WorldWideScience

Sample records for grains preferentially oriented

  1. Anisotropic Negative Thermal Expansion Behavior of the As-Fabricated Ti-Rich and Equiatomic Ti-Ni Alloys Induced by Preferential Grain Orientation

    Zhao, Zhong-Xun; Ma, Xiao; Cao, Shan-Shan; Ke, Chang-Bo; Zhang, Xin-Ping

    2018-03-01

    The present study focuses on the anisotropic negative thermal expansion (NTE) behaviors of Ti-rich (Ti54Ni46) and equiatomic Ti-Ni (Ti50Ni50) alloys fabricated by vacuum arc melting and without subsequent plastic deformation. Both alloys exhibit NTE responses in vertical and horizontal directions, and the total strains and CTEs of the NTE stage along the two mutually perpendicular measuring directions are obviously different, indicating obvious anisotropic NTE behavior of the alloys. Besides, the numerical differences between the starting temperature of NTE and austenitic transformation and between the finishing temperature of NTE and austenitic transformation are very small, which indicates that an apparent relationship exists between the NTE behavior and the phase transformation. The microstructure in the vertical cross sections shows obviously preferential orientation characteristics: Ti2Ni phases of both alloys grow along the vertical direction, and B19' martensite of Ti50Ni50 alloy has distinct preferential orientation, which results from a large temperature gradient between the top and the bottom of the button ingots during solidification. The microstructure with preferential orientation induces the anisotropic NTE behavior of the samples.

  2. The preferential orientation and lattice misfit of the directionally solidified Fe-Al-Ta eutectic composite

    Cui, Chunjuan; Wang, Pei; Yang, Meng; Wen, Yagang; Ren, Chiqiang; Wang, Songyuan

    2018-01-01

    Fe-Al intermetallic compound has been paid more attentions recently in many fields such as aeronautic, aerospace, automobile, energy and chemical engineering, and so on. In this paper Fe-Al-Ta eutectic was prepared by a modified Bridgman directional solidification technique, and it is found that microstructure of the Fe-Al-Ta eutectic alloy transforms from the broken-lamellar eutectic to cellular eutectic with the increase of the solidification rate. In the cellular eutectic structure, the fibers are parallel to each other within the same grain, but some fibers are deviated from the original orientation at the grain boundaries. To study the crystallographic orientation relationship (OR) between the two phases, the preferential orientation of the Fe-Al-Ta eutectic alloy at the different solidification rates was studied by Selected Area Electron Diffraction (SAED). Moreover, the lattice misfit between Fe2Ta(Al) Laves phase and Fe(Al,Ta) matrix phase was calculated.

  3. Grain orientation, deformation microstructure and flow stress

    Hansen, N.; Huang, X.; Winther, G.

    2008-01-01

    Dislocation structures in deformed metals have been analyzed quantitatively by transmission electron microscopy, high-resolution electron microscopy and Kikuchi line analysis. A general pattern for the microstructural evolution with increasing strain has been established and structural parameters have been defined and quantified. It has been found that two dislocation patterns co-exist in all grains, however, with very different characteristics dependent on grain orientation. This correlation with the grain orientation has been applied in modeling of the tensile flow stress and the flow stress anisotropy of fcc polycrystals. In conclusion some future research areas are briefly outlined

  4. Evidence for preferential flux flow at the grain boundaries of superconducting RF-quality niobium

    Sung, Z.-H.; Lee, P. J.; Gurevich, A.; Larbalestier, D. C.

    2018-04-01

    The question of whether grain boundaries (GBs) in niobium can be responsible for lowered operating field (B RF) or quality factor (Q 0) in superconducting radio frequency (SRF) cavities is still controversial. Here, we show by direct DC transport across planar GBs isolated from a slice of very large-grain SRF-quality Nb that vortices can preferentially flow along the grain boundary when the external magnetic field lies in the GB plane. However, increasing the misalignment between the GB plane and the external magnetic field vector markedly reduces preferential flux flow along the GB. Importantly, we find that preferential GB flux flow is more prominent for a buffered chemical polished than for an electropolished bi-crystal. The voltage-current characteristics of GBs are similar to those seen in low angle grain boundaries of high temperature superconductors where there is clear evidence of suppression of the superconducting order parameter at the GB. While local weakening of superconductivity at GBs in cuprates and pnictides is intrinsic, deterioration of current transparency of GBs in Nb appears to be extrinsic, since the polishing method clearly affect the local GB degradation. The dependence of preferential GB flux flow on important cavity preparation and experimental variables, particularly the final chemical treatment and the angle between the magnetic field and the GB plane, suggests two more reasons why real cavity performance can be so variable.

  5. Observation of changing crystal orientations during grain coarsening

    Sharma, Hemant; Huizenga, Richard M.; Bytchkov, Aleksei; Sietsma, Jilt; Offerman, S. Erik

    2012-01-01

    Understanding the underlying mechanisms of grain coarsening is important in controlling the properties of metals, which strongly depend on the microstructure that forms during the production process or during use at high temperature. Grain coarsening of austenite at 1273 K in a binary Fe–2 wt.% Mn alloy was studied using synchrotron radiation. Evolution of the volume, average crystallographic orientation and mosaicity of more than 2000 individual austenite grains was tracked during annealing. It was found that an approximately linear relationship exists between grain size and mosaicity, which means that orientation gradients are present in the grains. The orientation gradients remain constant during coarsening and consequently the character of grain boundaries changes during coarsening, affecting the coarsening rate. Furthermore, changes in the average orientation of grains during coarsening were observed. The changes could be understood by taking the observed orientation gradients and anisotropic movement of grain boundaries into account. Five basic modes of grain coarsening were deduced from the measurements, which include: anisotropic (I) and isotropic (II) growth (or shrinkage); movement of grain boundaries resulting in no change in volume but a change in shape (III); movement of grain boundaries resulting in no change in volume and mosaicity, but a change in crystallographic orientation (IV); no movement of grain boundaries (V).

  6. The fictional transition of the preferential orientation of yttria-stabilized zirconia thin films

    Lamas, J.S.; Leroy, W.P.; Depla, D.

    2012-01-01

    The fundamental study of the microstructural and textural evolution of yttria-stabilized zirconia (YSZ) thin films is of great importance given that the crystallographic properties are intimately related to their extrinsic or functional properties. In order to study these properties, YSZ thin films were obtained using dual magnetron sputtering. The results of a polar plot graph, based on X-ray diffraction (XRD) data, seem to indicate a transition from [200] out-of-plane preferential orientation to [111], indicating a dependence on composition and yttrium target–substrate (Y T–S) distance at low pressure. However, no transition is identified at high pressure, showing only [111] out-of-plane orientation, independent of composition and Y T–S distance. Scanning electron microscopy (SEM) indicates a tilt in the columnar structure of the film but no other microstructural change is in evidence, possibly related to the growth transition from [200] to [111]. Pole figures were used to clarify the texture transition in the YSZ thin films. These results indicate that there is indeed no transition in the preferential orientation of the films from [200] to [111] but a tilt of the [200] orientation towards the zirconium source. Detailed study using pole figures and SEM, clearly indicated that no growth zone transition was present and the effect is caused by geometrical configuration, contradicting expectations from standard θ/2θ XRD measurements. - Highlights: ► Study of the preferential orientation of Yttria-stabilized zirconia thin films ► Comparison of the preferential orientation at two different chamber pressures ► Correlation with the energy per adparticle and the extended structure zone model ► Use of pole figures analyses to clarify the change in the preferential orientation

  7. The fictional transition of the preferential orientation of yttria-stabilized zirconia thin films

    Lamas, J.S., E-mail: Jerika.Lamas@UGent.be; Leroy, W.P.; Depla, D.

    2012-12-15

    The fundamental study of the microstructural and textural evolution of yttria-stabilized zirconia (YSZ) thin films is of great importance given that the crystallographic properties are intimately related to their extrinsic or functional properties. In order to study these properties, YSZ thin films were obtained using dual magnetron sputtering. The results of a polar plot graph, based on X-ray diffraction (XRD) data, seem to indicate a transition from [200] out-of-plane preferential orientation to [111], indicating a dependence on composition and yttrium target-substrate (Y T-S) distance at low pressure. However, no transition is identified at high pressure, showing only [111] out-of-plane orientation, independent of composition and Y T-S distance. Scanning electron microscopy (SEM) indicates a tilt in the columnar structure of the film but no other microstructural change is in evidence, possibly related to the growth transition from [200] to [111]. Pole figures were used to clarify the texture transition in the YSZ thin films. These results indicate that there is indeed no transition in the preferential orientation of the films from [200] to [111] but a tilt of the [200] orientation towards the zirconium source. Detailed study using pole figures and SEM, clearly indicated that no growth zone transition was present and the effect is caused by geometrical configuration, contradicting expectations from standard {theta}/2{theta} XRD measurements. - Highlights: Black-Right-Pointing-Pointer Study of the preferential orientation of Yttria-stabilized zirconia thin films Black-Right-Pointing-Pointer Comparison of the preferential orientation at two different chamber pressures Black-Right-Pointing-Pointer Correlation with the energy per adparticle and the extended structure zone model Black-Right-Pointing-Pointer Use of pole figures analyses to clarify the change in the preferential orientation.

  8. Surface morphology and preferential orientation growth of TaC crystals formed by chemical vapor deposition

    Xiong Xiang, E-mail: Xiong228@sina.co [State Key Lab for Powder Metallurgy, Central South University, Changsha 410083 (China); Chen Zhaoke; Huang Baiyun; Li Guodong [State Key Lab for Powder Metallurgy, Central South University, Changsha 410083 (China); Zheng Feng [School of Material Science and Engineering, Central South University, Changsha 410083 (China); Xiao Peng; Zhang Hongbo [State Key Lab for Powder Metallurgy, Central South University, Changsha 410083 (China)

    2009-04-02

    TaC film was deposited on (002) graphite sheet by isothermal chemical vapor deposition using TaCl{sub 5}-Ar-C{sub 3}H{sub 6} mixtures, with deposition temperature 1200 {sup o}C and pressure about 200 Pa. The influence of deposition position (or deposition rate) on preferential orientation and surface morphology of TaC crystals were investigated by X-ray diffraction and scanning electron microscopy methods. The deposits are TaC plus trace of C. The crystals are large individual columns with pyramidal-shape at deposition rate of 32.4-37.3 {mu}m/h, complex columnar at 37.3-45.6 {mu}m/h, lenticular-like at 45.6-54.6 {mu}m/h and cauliflower-like at 54.6-77.3 {mu}m/h, with <001>, near <001>, <110> and no clear preferential orientation, respectively. These results agree in part with the preditions of the Pangarov's model of the relationship between deposition rate and preferential growth orientation. The growth mechanism of TaC crystals in <001>, near <001>, <111> and no clear preferential orientation can be fairly explained by the growth parameter {alpha} with Van der Drift's model, deterioration model and Meakin model. Furthermore, a nucleation and coalescence model is also proposed to explain the formation mechanism of <110> lenticular-like crystals.

  9. Evolution of orientations and deformation structures within individual grains in cold rolled columnar grained nickel

    Wu, G.L.; Godfrey, A.; Winther, Grethe

    2011-01-01

    Columnar grained Ni is used as a model material allowing simultaneous non-surface investigations of the evolution of crystallographic orientations and deformation microstructures within individual grains as a function of rolling strain up to ε=0.7. Electron channelling contrast and electron...... backscattered diffraction are used to visualise microstructures and crystallographic orientations. It is found that both the microstructural and the textural development depend strongly on the initial grain orientation. A grain size effect is observed on the deformation-induced orientation scatter within...

  10. Preferential binding effects on protein structure and dynamics revealed by coarse-grained Monte Carlo simulation

    Pandey, R. B.; Jacobs, D. J.; Farmer, B. L.

    2017-05-01

    The effect of preferential binding of solute molecules within an aqueous solution on the structure and dynamics of the histone H3.1 protein is examined by a coarse-grained Monte Carlo simulation. The knowledge-based residue-residue and hydropathy-index-based residue-solvent interactions are used as input to analyze a number of local and global physical quantities as a function of the residue-solvent interaction strength (f). Results from simulations that treat the aqueous solution as a homogeneous effective solvent medium are compared to when positional fluctuations of the solute molecules are explicitly considered. While the radius of gyration (Rg) of the protein exhibits a non-monotonic dependence on solvent interaction over a wide range of f within an effective medium, an abrupt collapse in Rg occurs in a narrow range of f when solute molecules rapidly bind to a preferential set of sites on the protein. The structure factor S(q) of the protein with wave vector (q) becomes oscillatory in the collapsed state, which reflects segmental correlations caused by spatial fluctuations in solute-protein binding. Spatial fluctuations in solute binding also modify the effective dimension (D) of the protein in fibrous (D ˜ 1.3), random-coil (D ˜ 1.75), and globular (D ˜ 3) conformational ensembles as the interaction strength increases, which differ from an effective medium with respect to the magnitude of D and the length scale.

  11. Dependence of crystallite formation and preferential backbone orientations on the side chain pattern in PBDTTPD polymers

    El Labban, Abdulrahman

    2014-11-26

    (Figure Presented) Alkyl substituents appended to the π-conjugated main chain account for the solution-processability and film-forming properties of most π-conjugated polymers for organic electronic device applications, including field-effect transistors (FETs) and bulk-heterojunction (BHJ) solar cells. Beyond film-forming properties, recent work has emphasized the determining role that side-chain substituents play on polymer self-assembly and thin-film nanostructural order, and, in turn, on device performance. However, the factors that determine polymer crystallite orientation in thin-films, implying preferential backbone orientation relative to the device substrate, are a matter of some debate, and these structural changes remain difficult to anticipate. In this report, we show how systematic changes in the side-chain pattern of poly(benzo[1,2-b:4,5-b′]dithiophene-alt-thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymers can (i) influence the propensity of the polymer to order in the π-stacking direction, and (ii) direct the preferential orientation of the polymer crystallites in thin films (e.g., "face-on" vs "edge-on"). Oriented crystallites, specifically crystallites that are well-ordered in the π-stacking direction, are believed to be a key contributor to improved thin-film device performance in both FETs and BHJ solar cells.

  12. Evidence of preferential diffusion and segregation of impurities at grain boundaries in very pure niobium used for radiofrequency cavities

    Antoine, C.; Bonin, B.; Safa, H.; Berthier, B.; Tessier, E.; Trocelier, P.; Chevarier, A.; Chevarier, N.; Roux, B.

    1996-01-01

    Complete text of publication follows. Grain boundaries (GB) of titanified, heat treated and then etched niobium have been observed by the mean of the nuclear microprobe from the Laboratoire Pierre Sue at Saclay. The very small area of the probe allows to measure by PIXE 1 quantities of titanium as low as one monolayer at the GB. Indeed concentrations of titanium as high as some atomic percent were found on 6 μm etched samples, giving indication of a preferential diffusion and/or segregation at GB. Titanium was detectable also on 15 μm etched samples but was bellow the sensitivity of the microprobe for 35 μm etched samples. Moreover it was shown that not all boundaries were polluted with titanium, and that their behaviour was correlated with orientation. A discussion of the literature shows that all these facts are consistent with the behaviour of very pure metals. Segregation at GB is also known to influence dramatically the GB resistivity in metals and superconductors. For the latter, it has been shown that the GB resistivity can be responsible of occurrence of granular superconductivity phenomena. The presence of Ti deep into the Nb GB explains why a strong etching is needed after a purification heat treatment. Moreover, it has been shown that a heat treatment at lower temperature, although much longer in time, allows less deep diffusion of Ti and then needs a lighter etch. (author)

  13. Detection of preferential particle orientation in the atmosphere: Development of an alternative polarization lidar system

    Geier, Manfred; Arienti, Marco

    2014-01-01

    Increasing interest in polarimetric characterization of atmospheric aerosols has led to the development of complete sample-measuring (Mueller) polarimeters that are capable of measuring the entire backscattering phase matrix of a probed volume. These Mueller polarimeters consist of several moving parts, which limit measurement rates and complicate data analysis. In this paper, we present the concept of a less complex polarization lidar setup for detection of preferential orientation of atmospheric particulates. On the basis of theoretical considerations of data inversion stability and propagation of measurement uncertainties, an optimum optical configuration is established for two modes of operation (with either a linear or a circular polarized incident laser beam). The conceptualized setup falls in the category of incomplete sample-measuring polarimeters and uses four detection channels for simultaneous measurement of the backscattered light. The expected performance characteristics are discussed through an example of a typical aerosol with a small fraction of particles oriented in a preferred direction. The theoretical analysis suggests that achievable accuracies in backscatter cross-sections and depolarization ratios are similar to those with conventional two-channel configurations, while in addition preferential orientation can be detected with the proposed four-channel system for a wide range of conditions. - Highlights: • A theoretical study of a new four-channel lidar concept is offered. • Preferential particle orientation detection could be realized with minor device modifications. • The proposed configuration is optimized to balance inversion uncertainties. • Circular polarized beam is demonstrated to provide the best noise performance. • Operation with ultra-short pulses is proposed to quantify particle number density

  14. Preferential orientation relationships in Ca2MnO4 Ruddlesden-Popper thin films

    Lacotte, M.; David, A.; Prellier, W.; Rohrer, G. S.; Salvador, P. A.

    2015-01-01

    A high-throughput investigation of local epitaxy (called combinatorial substrate epitaxy) was carried out on Ca 2 MnO 4 Ruddlesden-Popper thin films of six thicknesses (from 20 to 400 nm), all deposited on isostructural polycrystalline Sr 2 TiO 4 substrates. Electron backscatter diffraction revealed grain-over-grain local epitaxial growth for all films, resulting in a single orientation relationship (OR) for each substrate-film grain pair. Two preferred epitaxial ORs accounted for more than 90% of all ORs on 300 different microcrystals, based on analyzing 50 grain pairs for each thickness. The unit cell over unit cell OR ([100][001] film ∥ [100][001] substrate , or OR1) accounted for approximately 30% of each film. The OR that accounted for 60% of each film ([100][001] film ∥ [100][010] substrate , or OR2) corresponds to a rotation from OR1 by 90° about the a-axis. OR2 is strongly favored for substrate orientations in the center of the stereographic triangle, and OR1 is observed for orientations very close to (001) or to those near the edge connecting (100) and (110). While OR1 should be lower in energy, the majority observation of OR2 implies kinetic hindrances decrease the frequency of OR1. Persistent grain over grain growth and the absence of variations of the OR frequencies with thickness implies that the growth competition is finished within the first few nm, and local epitaxy persists thereafter during growth

  15. Enhanced thermoelectric properties of polycrystalline Bi2Te3 core fibers with preferentially oriented nanosheets

    Min Sun

    2018-03-01

    Full Text Available Bi2Te3-based materials have been reported to be one of the best room-temperature thermoelectric materials, and it is a challenge to substantially improve their thermoelectric properties. Here novel Bi2Te3 core fibers with borosilicate glass cladding were fabricated utilizing a modified molten core drawing method. The Bi2Te3 core of the fiber was found to consist of hexagonal polycrystalline nanosheets, and polycrystalline nanosheets had a preferential orientation; in other words, the hexagonal Bi2Te3 lamellar cleavage more tended to be parallel to the symmetry axis of the fibers. Compared with a homemade 3-mm-diameter Bi2Te3 rod, the polycrystalline nanosheets’ preferential orientation in the 89-μm-diameter Bi2Te3 core increased its electrical conductivity, but deduced its Seebeck coefficient. The Bi2Te3 core exhibits an ultrahigh ZT of 0.73 at 300 K, which is 232% higher than that of the Bi2Te3 rod. The demonstration of fibers with oriented nano-polycrystalline core and the integration with an efficient fabrication technique will pave the way for the fabrication of high-performance thermoelectric fibers.

  16. Coincidence orientations of grains in hexagonal materials

    Grimmer, H.; Warrington, D.H.

    1986-06-01

    The connection between the rotation matrix in hexagonal lattice coordinates and an angle-axis quadruple is given. The multiplication law of quadruples is derived. It corresponds to multiplying two matrices and gives the effect of two successive rotations. The relation is given between two quadruples that describe the same relative orientation of two lattices due to their hexagonal symmetry; a unique standard description of the relative orientation is proposed. The restrictions satisfied by rotations generating coincidence site lattices (CSLs) are derived for any value of the axial ratio rho = c/a. It is shown that the law for cubic lattices, where the multiplicity SIGMA of the CSL was equal to the least common denominator of the elements of the rotation matrix, does not always hold for hexagonal lattices. A generalisation of this law to lattices of arbitrary symmetry is given and another, quicker method to determine SIGMA for hexagonal lattices is derived. Finally, convenient algorithms are described for determining bases of the CSL and the DSC lattice. (author)

  17. Processing, microstructure and properties of grain-oriented ferroelectric ceramics

    Okazaki, K.; Igarashi, H.; Nagata, K.; Yamamoto, T.; Tashiro, S.

    1986-01-01

    Grain oriented ferroelectric ceramics such as PbBi/sub 2/Nb/sub 2/O/sub 9/, bismuth compound with layer structure, (PbLa)Nb/sub 2/O/sub 6/, tungsten-bronze structure and SbSI were prepared by an uni-axial hot-pressing, a double-stage hot-pressing and tape casting methods. Microstructures of them were examined by SEM and the prefered textures of the ceramics composed of thin plate and/or needle crystallites were ascertained. Grain orientation effects on electrical, piezoelectric, optical and mechanical properties are discussed

  18. Evidence of preferential diffusion and segregation of impurities at grain boundaries in very pure niobium used for radiofrequency cavities

    Antoine, C.; Bonin, B.; Safa, H.; Berthier, B.; Tessier, E.; Trocelier, P.; Chevarier, A.; Chevarier, N.; Roux, B.

    1996-04-01

    In order to overcome dissipation due to impurity segregation at grain boundary, niobium cavities are submitted to a purification annealing (1300 deg C ± 200 deg C under vacuum) during which titanium is evaporated onto the Nb surface. The resulting titanium layer acts as a solid state getter reacting with light impurities (H, C, N, O), thereby removing these impurities from the bulk of the niobium. Evidence of preferential titanium diffusion and segregation at grain boundaries has been studied using PIXE analysis induced by proton microbeam. (author)

  19. Mechanism of secondary recrystallization of Goss grains in grain-oriented electrical steel

    Hayakawa, Yasuyuki

    2017-12-01

    Since its invention by Goss in 1934, grain-oriented (GO) electrical steel has been widely used as a core material in transformers. GO exhibits a grain size of over several millimeters attained by secondary recrystallization during high-temperature final batch annealing. In addition to the unusually large grain size, the crystal direction in the rolling direction is aligned with , which is the easy magnetization axis of α-iron. Secondary recrystallization is the phenomenon in which a certain very small number of {110} (Goss) grains grow selectively (about one in 106 primary grains) at the expense of many other primary recrystallized grains. The question of why the Goss orientation is exclusively selected during secondary recrystallization has long been a main research subject in this field. The general criterion for secondary recrystallization is a small and uniform primary grain size, which is achieved through the inhibition of normal grain growth by fine precipitates called inhibitors. This paper describes several conceivable mechanisms of secondary recrystallization of Goss grains mainly based on the selective growth model.

  20. Anisotropy model for modern grain oriented electrical steel based on orientation distribution function

    Fan Jiang

    2018-05-01

    Full Text Available Accurately modeling the anisotropic behavior of electrical steel is mandatory in order to perform good end simulations. Several approaches can be found in the literature for that purpose but the more often those methods are not able to deal with grain oriented electrical steel. In this paper, a method based on orientation distribution function is applied to modern grain oriented laminations. In particular, two solutions are proposed in order to increase the results accuracy. The first one consists in increasing the decomposition number of the cosine series on which the method is based. The second one consists in modifying the determination method of the terms belonging to this cosine series.

  1. Refinement by Rietveld method of a rolled sheet Al-Mg-Si 6063 alloy with preferential orientation

    Carrio, J.A.G.; Hattori, C.S.; Miranda, L.F.; Domingues Junior, N.I.; Lima, N.B.; Couto, A.A.; Aguiar, A.A.

    2010-01-01

    The Rietveld refinement of a sample with preferential orientation was accomplished using data of X ray diffraction of a rolled 6063 aluminum alloy. The refinement of the preferential orientation by spherical harmonic was accomplished using a symmetry of sample mmm (rolling) until the order of 8 and was compared with experimental pole figures. The four pole figures presented indicate a sharp texture of the planes (111), (200), (220) and (311). The calculated pole figures obtained from the refinement of the X ray diffraction spectrum can incur in mistakes of preferential orientation. This happens because the measure is restricted to the planes parallel to the surface without inference to the symmetry of the sample. (author)

  2. Origin of grain orientation during solidification of an aluminum alloy

    Wei, H.L.; Elmer, J.W.; DebRoy, T.

    2016-01-01

    The evolution of grain morphology during solidification of a moving aluminum alloy pool is simulated by considering heat transfer, flow of liquid metal in the molten pool and solidification parameters. The computationally efficient model consists of a 3D coupled heat transfer and fluid flow simulation to predict the molten pool shape and temperature field, and a 2D model of grain formation in the molten pool. The results demonstrate that columnar grains grow in a curved pattern rather than along straight lines from the fusion boundary towards the center of the molten pool. The calculated results are validated with independent experimental data. The computed ratio of local temperature gradient to solidification rate, G/R, is used to model the columnar to equiaxed transition during solidification. The simulated results show that only curved columnar grains are formed when the scanning speed is low (2.0 mm/s). In contrast, a transition from curved columnar to equiaxed morphologies occurs at the higher scanning speeds of 8.0 mm/s and 11.5 mm/s, with higher equiaxed grain fraction at higher speed. The similarities between the physical processes governing fusion welding and additive manufacturing (AM) make the model capable of predicting grain orientation in both processes.

  3. Evidence of preferential diffusion and segregation of impurities at grain boundaries in very pure niobium used for radiofrequency cavities

    Antoine, C.; Bonin, B.; Safa, H.; Chevarier, A.; Chevarier, N.; Roux, B.

    1996-01-01

    Grain boundaries (GB) of titaniferous, heat treated and then etched niobium have been observed by nuclear microprobe analysis. The very small area of the probe allows to measure by PIXE quantities of titanium as low as one monolayer at the GB. Concentrations of titanium as high as some atomic percent were found on 6 μm etched samples, giving indication of a preferential diffusion and/or segregation at GB. Titanium was detectable also on 15 μm etched samples but was bellow the sensitivity of the microprobe for 35 μm etched samples. (author)

  4. Correlation between grain orientation and the shade of color etching

    Szabo, Peter J.; Kardos, I.

    2010-01-01

    Color etching is an extremely effective metallographic technique not only for making grains well visible, but also for making them distinguishable for automated image analyzers. During color etching, a thin film is formed on the surface of the specimen. The thickness of this layer is in the order of magnitude of the visible light and since both the metal-film boundary and the film surface reflect light, an interference occurs. A wavelength-component of the white line is eliminated and its complementary color will be seen on the surface. As the thickness changes, the colors also change grain by grain. The thickness of the film is dependent on several factors, mostly on the type of the phase. However, different color shades can be observed on the surfaces of single phase materials, which phenomenon is caused by the different crystallographic orientations of the grains. This paper shows a combined color etching electron backscatter diffraction (EBSD) investigation of cast iron. An area of the surface of a gray cast iron specimen was etched. Colors were characterized by their luminescence and their red, green and blue intensity. An EBSD orientation map was taken from the same area and the orientations of the individual grains were determined. Results showed that a strong correlation was found between the luminescence and the R, G, B intensity of the color and the angle between the specimen normal and the direction, while such correlation was not observed between the color parameters and the and directions, respectively. This indicates that film thickness is sensitive to the direction of the crystal.

  5. Microstructure-grain orientation relationship in coarse grain nickel cold-rolled to large strain

    Chen, H.S.; Godfrey, A.; Hansen, N.; Xie, J.X.; Liu, Q.

    2008-01-01

    The relationship between crystallographic orientation and the deformation microstructure formed during cold-rolling to high strains (up to ε vM = 4.5) has been investigated. The starting material was Ni (99.96% purity) with a coarse initial average grain size (approximately 500 μm). Microstructural characterization was carried out using a combination of electron channeling contrast imaging and electron back-scatter diffraction orientation mapping. An orientation dependence of the deformation microstructure was observed even at the highest strain examined. A large increase in the average boundary misorientation is found at strains above ε vM = 1.8 for regions with the {1 1 2} and {1 2 3} orientations. This increase accompanies the structural transition from a medium strain microstructure to a high strain lamellar microstructure. In contrast, the average misorientation in regions of {1 1 0} orientation increases only slowly even up to the highest strain examined

  6. Polycrystalline AlN films with preferential orientation by plasma enhanced chemical vapor deposition

    Sanchez, G.; Wu, A.; Tristant, P.; Tixier, C.; Soulestin, B.; Desmaison, J.; Bologna Alles, A.

    2008-01-01

    AlN thin films for acoustic wave devices were prepared by Microwave Plasma Enhanced Chemical Vapor Deposition under different process conditions, employing Si (100) and Pt (111)/SiO 2 /Si (100) substrates. The films were characterized by X-ray diffraction, Fourier transform infrared transmission spectroscopy, atomic force microscopy, scanning electron microscopy, and transmission electron microscopy. The values of the distance between the plasma and the tri-methyl-aluminum precursor injector, the radiofrequency bias potential, and the substrate temperature were central in the development of polycrystalline films. The choice of the chamber total pressure during deposition allowed for the development of two different crystallographic orientations, i.e., or . The film microstructures exhibited in general a column-like growth with rounded tops, an average grain size of about 40 nm, and a surface roughness lower than 20 nm under the best conditions

  7. Interactive contribution of grain size and grain orientation to coercivity of melt spun ribbons

    Wang, N.; Li, G.; Yao, W.J.; Wen, X.X.

    2010-01-01

    During melt spinning process, the improvement of certain grain orientation and the refinement of grain size with surface velocity have interactive and contradictory effects on the magnetic properties. The contributions of these effects have seldom been taken into account and they were discussed in this paper via Fe-2, 4, 6.5 wt% Si alloys. Heat treatment at 1173 K for 1 h was performed to show the annealing impact. The X-ray diffraction patterns show that the high surface velocity and heat treatment increase the intensity ratio of line (2 0 0) to (1 1 0) of A2 phase. The (2 0 0) line corresponds to (2 0 0) plane in direction, easy magnetization direction of α-Fe phase in Fe-Si alloy. The improvement of this grain orientation with the surface velocity decreases the coercivity, which should increase due to the grain refinement. It is revealed that the texture promoted by the anisotropic heat release during melt spinning process is one factor to improve the magnetic properties and should be considered when preparing soft magnetic materials.

  8. Effects of Cold Rolling Reduction and Initial Goss Grains Orientation on Texture Evolution and Magnetic Performance of Ultra-thin Grain-oriented Silicon Steel

    LIANG Rui-yang

    2017-06-01

    Full Text Available The ultra-thin grain-oriented silicon steel strips with a thickness of 0.06-0.12mm were produced by one-step-rolling methods with different Goss-orientation of grain-oriented silicon steel sheets. The effect of cold rolling reduction and initial Goss-orientation of samples on texture evolution and magnetic performance of ultra-thin grain-oriented silicon steel strips was studied by EBSD. The result shows that with the increase of cold rolling reduction and decrease of strips thickness, the recrystallization texture is enhanced after annealing.When the cold rolling reduction is 70%,RD//〈001〉 recrystallization texture is the sharpest, and the magnetic performance is the best. The higher degree of Goss orientation in initial sample is, the better magnetic performance of ultra-thin grain-oriented silicon steel.Therefore, for producing an ultra-thin grain-oriented silicon steel with high performance, a material with a concentrated orientation of Goss grains can be used.

  9. Comparison of grain to grain orientation and stiffness mapping by spatially resolved acoustic spectroscopy and EBSD.

    Mark, A F; Li, W; Sharples, S; Withers, P J

    2017-07-01

    Our aim was to establish the capability of spatially resolved acoustic spectroscopy (SRAS) to map grain orientations and the anisotropy in stiffness at the sub-mm to micron scale by comparing the method with electron backscatter diffraction (EBSD) undertaken within a scanning electron microscope. In the former the grain orientations are deduced by measuring the spatial variation in elastic modulus; conversely, in EBSD the elastic anisotropy is deduced from direct measurements of the crystal orientations. The two test-cases comprise mapping the fusion zones for large TIG and MMA welds in thick power plant austenitic and ferritic steels, respectively; these are technologically important because, among other things, elastic anisotropy can cause ultrasonic weld inspection methods to become inaccurate because it causes bending in the paths of sound waves. The spatial resolution of SRAS is not as good as that for EBSD (∼100 μm vs. ∼a few nm), nor is the angular resolution (∼1.5° vs. ∼0.5°). However the method can be applied to much larger areas (currently on the order of 300 mm square), is much faster (∼5 times), is cheaper and easier to perform, and it could be undertaken on the manufacturing floor. Given these advantages, particularly to industrial users, and the on-going improvements to the method, SRAS has the potential to become a standard method for orientation mapping, particularly in cases where the elastic anisotropy is important over macroscopic/component length scales. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  10. Localised corrosion in AA 2099-T83 aluminium-lithium alloy: The role of grain orientation

    Ma, Y.; Zhou, X.; Liao, Y.; Yi, Y.; Wu, H.; Wang, Z.; Huang, W.

    2016-01-01

    Highlights: • Schmid factor of the grain/subgrain can indicate its corrosion susceptibility. • The localised corrosion prefers the grain with relatively large Schmid factor. • The localised corrosion is related to selective dissolution of T_1 phase. - Abstract: The mechanism for localised corrosion in AA 2099-T83 alloy during immersion in 3.5% NaCl solution is investigated. It is found that localised corrosion tends to occur in the grain with relatively large Schmid factor. The localised corrosion is related to selective dissolution of T_1 (Al_2CuLi) phase that preferentially precipitates at grain/subgrain boundaries and dislocations within grain interiors. A model is proposed to explain the development of the localised corrosion in the alloy by taking into account heterogeneous plastic deformation during cold working and preferential precipitation of T_1 phase at crystallographic defects within deformed grains.

  11. Texture development due to preferential grain growth of Ho--Ba--Cu--O in 1.6-T magnetic field

    Holloway, A.; McCallum, R.W.; Arrasmith, S.R.

    1993-01-01

    It has been experimentally observed that the application of even a relatively weak magnetic field of 1.6-T during sintering of HoBa 2 Cu 3 O 7-δ (hereafter HoBCO) results in a significant degree of grain alignment. The orientation of grains is found to be controlled by the direction and magnitude of a magnetic field. The degree of alignment was monitored by x-ray diffraction measurements on the flat surface of the samples and by metallography. It has been observed that the degree of alignment grows as the magnitude of the field increases between 0 and 1.6 T for a fixed temperature and processing time. The degree of alignment also increases when the processing temperature changes from 930 degree C to 965 degree C for a fixed field and time. It has also been observed that for both a fixed field and processing temperature, the alignment grows when the processing time increases between 16 and 72 hours. Metallography measurements on the flat and cross-sectional parts of the samples showed that the texture propagates into the bulk of the samples. In the presence of a sufficient amount of the liquid phase, the enhancement of the grain growth in the direction favorable to the magnetic field produces rather large single-crystals (0.3 to 0.5 mm linear size) within the sample

  12. Simulation of growing grains under orientation relation - dependent quadruple point dragging

    Ito, K

    2015-01-01

    The growth behaviour of a specified grain embedded in matrix grains, for which the migration mobility of the quadruple points depended on the relation between the orientations of the growing and shrinking grains, was studied using a modified Potts MC-type threedimensional simulation. Large embedded grains continued to grow without being overcome by coarsening matrix grains, whereas small embedded grains disappeared, under the influence of the relative mobilities of the quadruple points, the composition of the matrix grain texture and the width of the grain size distribution of the matrix grains. These results indicate that orientation relation-dependent quadruple point dragging can affect the recrystallization texture during the grain coarsening stage. (paper)

  13. Preferential orientation relationships in Ca{sub 2}MnO{sub 4} Ruddlesden-Popper thin films

    Lacotte, M.; David, A.; Prellier, W., E-mail: wilfrid.prellier@ensicaen.fr [Laboratoire CRISMAT, CNRS UMR 6508, ENSICAEN, Université de Basse-Normandie, 6 Bd Maréchal Juin, F-14050 Caen Cedex 4 (France); Rohrer, G. S.; Salvador, P. A. [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213 (United States)

    2015-07-28

    A high-throughput investigation of local epitaxy (called combinatorial substrate epitaxy) was carried out on Ca{sub 2}MnO{sub 4} Ruddlesden-Popper thin films of six thicknesses (from 20 to 400 nm), all deposited on isostructural polycrystalline Sr{sub 2}TiO{sub 4} substrates. Electron backscatter diffraction revealed grain-over-grain local epitaxial growth for all films, resulting in a single orientation relationship (OR) for each substrate-film grain pair. Two preferred epitaxial ORs accounted for more than 90% of all ORs on 300 different microcrystals, based on analyzing 50 grain pairs for each thickness. The unit cell over unit cell OR ([100][001]{sub film} ∥ [100][001]{sub substrate}, or OR1) accounted for approximately 30% of each film. The OR that accounted for 60% of each film ([100][001]{sub film} ∥ [100][010]{sub substrate}, or OR2) corresponds to a rotation from OR1 by 90° about the a-axis. OR2 is strongly favored for substrate orientations in the center of the stereographic triangle, and OR1 is observed for orientations very close to (001) or to those near the edge connecting (100) and (110). While OR1 should be lower in energy, the majority observation of OR2 implies kinetic hindrances decrease the frequency of OR1. Persistent grain over grain growth and the absence of variations of the OR frequencies with thickness implies that the growth competition is finished within the first few nm, and local epitaxy persists thereafter during growth.

  14. Grain interaction mechanisms leading to intragranular orientation spread in tensile deformed bulk grains of interstitial-free steel

    Winther, Grethe; Wright, Jonathan P.; Schmidt, Søren

    2017-01-01

    environments representing the bulk texture, yet their deformation-induced rotations are very different. The ALAMEL model is employed to analyse the grain interaction mechanisms. Predictions of this model qualitatively agree with the directionality and magnitude of the experimental orientation spread. However......, quantitative agreement requires fine-tuning of the boundary conditions. The majority of the modelled slip is accounted for by four slip systems also predicted to be active by the classical Taylor model in uniaxial tension, and most of the orientation spread along the grain boundaries is caused by relative...... variations in the activities of these. Although limited to two grains, the findings prove that shear at the grain boundaries as accounted for by the ALAMEL model is a dominant grain interaction mechanism....

  15. Effect of hot band grain size on development of textures and magnetic properties in 2.0% Si non-oriented electrical steel sheet

    Lee, K.M. [Department of Materials Science and Engineering, Korea University, 5-1, Anam-dong, Sungbuk-Gu, Seoul 136-701 (Korea, Republic of); Huh, M.Y., E-mail: myhuh@korea.ac.kr [Department of Materials Science and Engineering, Korea University, 5-1, Anam-dong, Sungbuk-Gu, Seoul 136-701 (Korea, Republic of); Lee, H.J.; Park, J.T.; Kim, J.S. [Electrical Steel Sheet Research Group, Technical Research Laboratories, POSCO, Goedong-dong, Pohang (Korea, Republic of); Shin, E.J. [Korea Atomic Energy Research Institute, Neutron Science Division, Daejeon 305-353 (Korea, Republic of); Engler, O. [Hydro Aluminium Rolled Products GmbH, Research and Development Bonn, P.O. Box 2468, D-53014 Bonn (Germany)

    2015-12-15

    The effect of hot band grain size on the development of crystallographic texture and magnetic properties in non-oriented electrical steel sheet was studied. After cold rolling the samples with different initial grain sizes displayed different microstructures and micro-textures but nearly identical macro-textures. The homogeneous recrystallized microstructure and micro-texture in the sample having small grains caused normal continuous grain growth. The quite irregular microstructure and micro-texture in the recrystallized sample with large initial grain size provided a preferential growth of grains in 〈001〉//ND and 〈113〉//ND which were beneficial for developing superior magnetic properties. - Highlights: • We produced hot bands of electrical steel with different grain size but same texture. • Hot band grain size strongly affected cold rolling and subsequent annealing textures. • Homogeneous recrystallized microstructure caused normal continuous grain growth. • Irregular recrystallized microstructure led to selective growth of <001>//ND grains. • Hot band with large grains was beneficial for superior magnetic properties.

  16. On the preferential crystallographic orientation of Au nanoparticles: Effect of electrodeposition time

    El-Deab, Mohamed S.

    2009-01-01

    The crystallographic orientation of Au nanoparticles electrodeposited at glassy carbon (nano-Au/GC) electrodes (prepared by potential step electrolysis) is markedly influenced by the width of the potential step. The oxygen reduction reaction (ORR) and the reductive desorption of cysteine have been studied on nano-Au/GC electrodes. Furthermore, electron backscatter diffraction (EBSD) technique has been used to probe the crystallographic orientation of the electrodeposited Au nanoparticles. That is, Au nanoparticles prepared in short time (5-60 s) have been found rich in the Au(1 1 1) facet orientation and are characterized by a relatively small particle size (ca. 10-50 nm) as well as high particle density (number of particles per unit area) as revealed by SEM images. Whereas Au nanoparticles prepared by longer electrolysis time (>60 s) are found to be much enriched in the Au(1 0 0) and Au(1 1 0) facets and are characterized by a relatively large particle size (>100 nm). EBSD patterns provided definitive information about the crystal orientations mapping of Au nanoparticles prepared at various deposition times.

  17. Microstructure Control of Barium Titanate Grain-oriented Ceramics and Their Piezoelectric Properties

    Mori, Rintaro; Nakashima, Koichi; Fujii, Ichiro; Wada, Satoshi; Hayashi, Hiroshi; Nagamori, Yoshitaka; Yamamoto, Yuichi

    2011-01-01

    The Barium titanate (BaTiO 3 , BT) [110] grain-oriented ceramics along [110] direction were prepared by a templated grain growth (TGG) method. The [110] oriented BT platelike particles (t-BT) were used as template particles. The relationship between poling treatment program and piezoelectric constant was investigated. The change in the poling conditions did not greatly influence domain size and the piezoelectric constant. The relationship between piezoelectric properties and domain size in BT grain-oriented ceramics was investigated. The smaller domain size was required to increase the piezoelectric constant.

  18. Mouse preferential incising force orientation changes during jaw closing muscle hyperalgesia and is sex dependent.

    Widmer, C G; Morris-Wiman, J

    2016-12-01

    Mouse incising is controlled by a central pattern generator and this activity can change in the presence of pain. The incising frequency and maximum force generation decreases with pain. In this study, we used repetitive acidic injections in the left masseter muscle of male and female mice to determine differences between baseline and jaw muscle pain conditions and the effect of sex on preferential incising direction. A within subject design was used to evaluate data previously acquired using multi-axis force data (X, Y and Z) from the 4th baseline recording day and day 7 post-injection (day of maximal pain response) for each mouse of each sex. A total of 34 female and male (age 3-9months) CD-1 mice were evaluated. After mathematically rotating the X and Y axes to align the Y axis to be parallel to the wire struts of the cage top, data were analyzed to determine incising direction preference during baseline (non-pain) and pain (day 7) conditions and between sex. Radar plots of X-Y, X-Z and Y-Z axes depicted the average direction of incising preference between baseline and pain conditions for each sex. Statistical differences among groups were tested using a mixed model ANOVA. Similar to previous findings, female mice had a more robust difference in incising direction preference when comparing male and female pain conditions and this was most evident in the X-Z axes. The incising frequencies most commonly affected were 5.3, 6.2 and 7.6Hz. Male mice varied little in their incising direction preference between the baseline and pain conditions. In addition, statistical comparison of ratios of the percent of time spent incising in the Z versus X axes for each incising frequency found that the incising preference was not different when comparing 5.3 and 7.6Hz frequencies. Finally, female mice used a novel approach to minimize pain while incising by rotating their head and body nearly 180 degrees while males did not use this strategy as frequently. The preferred incising

  19. Influence of crystal orientation on magnetostriction waveform in grain orientated electrical steel

    Kijima, Gou, E-mail: g-kijima@jfe-steel.co.jp [Steel Research Laboratory, JFE Steel Corporation, Kawasaki, 210-0855 (Japan); Yamaguchi, Hiroi; Senda, Kunihiro; Hayakawa, Yasuyuki [Steel Research Laboratory, JFE Steel Corporation, Kurashiki, 712-8511 (Japan)

    2014-08-01

    Aiming to gain insight into the mechanisms of grain-oriented electrical steel sheet magnetostriction waveforms, we investigated the influence of crystal orientations. An increase in the β angle results in an increase in the amplitude of magnetostriction waveform, but does not affect the waveform itself. By slanting the excitation direction to simulate the change of the α angle, change in the magnetostriction waveform and a constriction–extension transition point in the steel plate was observed. The amplitude, however, was not significantly affected. We explained the nature of constriction–extension transition point in the magnetostriction waveform by considering the magnetization rotation. We speculated that the change of waveform resulting from the increase in the coating tensile stress can be attributed to the phenomenon of the magnetization rotation becoming hard to be generated due to the increase of magnetic anisotropy toward [001] axis. - Highlights: • β angle is related with the amplitude of magnetostriction waveform. • α angle is related with the magnetostriction waveform itself. • The effect of α angle can be controlled by the effect of coating tensile stress.

  20. Fine control of the amount of preferential <001> orientation in DC magnetron sputtered nanocrystalline TiO2 films

    Stefanov, B; Granqvist, C G; Österlund, L

    2014-01-01

    Different crystal facets of anatase TiO 2 are known to have different chemical reactivity; in particular the {001} facets which truncates the bi-tetrahedral anatase morphology are reported to be more reactive than the usually dominant {101} facets. Anatase TiO 2 thin films were deposited by reactive DC magnetron sputtering in Ar/O 2 atmosphere and were characterized using Rietveld refined grazing incidence X-ray diffraction, atomic force microscopy and UV/Vis spectroscopy. By varying the partial O2 pressure in the deposition chamber, the degree of orientation of the grains in the film could be systematically varied with preferred <001> orientation changing from random upto 39% as determined by March-Dollase method. The orientation of the films is shown to correlate with their reactivity, as measured by photo-degradation of methylene blue in water solutions. The results have implications for fabrication of purposefully chemically reactive thin TiO 2 films prepared by sputtering methods

  1. Characterizing Grain-Oriented Silicon Steel Sheet Using Automated High-Resolution Laue X-ray Diffraction

    Lynch, Peter; Barnett, Matthew; Stevenson, Andrew; Hutchinson, Bevis

    2017-11-01

    Controlling texture in grain-oriented (GO) silicon steel sheet is critical for optimization of its magnetization performance. A new automated laboratory system, based on X-ray Laue diffraction, is introduced as a rapid method for large scale grain orientation mapping and texture measurement in these materials. Wide area grain orientation maps are demonstrated for both macroetched and coated GO steel sheets. The large secondary grains contain uniform lattice rotations, the origins of which are discussed.

  2. Effect of crystal orientation on grain boundary migration and radiation-induced segregation

    Hashimoto, N.; Eda, Y.; Takahashi, H.

    1996-01-01

    Fe-Cr-Ni, Ni-Al and Ni-Si alloys were electron-irradiated using a high voltage electron microscope (1 MeV), and in situ observations of the structural evolution and micro-chemical analysis were carried out. During the irradiation, the grain boundaries in the irradiated region migrated, while no grain boundary migration occurred in the unirradiated area. The occurrence of boundary migration depended on the orientation relationship of the boundary interfaces. Grain boundary migration took place in Fe-Cr-Ni and Ni-Si alloys with large crystal orientation difference between the two grains across a grain boundary. In Ni-Al, however, the grain boundary migration did not occur. The solute segregation was caused at grain boundary under irradiation and this segregation behavior was closely related to solute size, namely the concentrations of undersized Ni and oversized Cr elements in Fe-Cr-Ni alloy increased and reduced at grain boundary, respectively. The same dependence of segregation on the solute size was derived in Ni-Si and Ni-Al alloys, in which Si and Al solutes are undersized and oversized elements, respectively. Therefore, Si solute enriched and Al solute depleted at grain boundary. From the present segregation behavior, it is suggested that the flow of point defects into the boundary is the cause of grain boundary migration. (orig.)

  3. Grain Orientation and Interface Character Distribution During Austenite Precipitation Phase in Duplex Stainless Steel

    XU Ting

    2018-02-01

    Full Text Available The grain orientation and the interface character distribution were investigated for γ precipitation from the supersaturated α during aging at 1323K in duplex stainless steel by using EBSD technique and misorientation analysis based on Rodrigues-Frank (R-F space. The results show that sharp texture and the grain boundary character distribution featured by a high population of low angle grain boundary (LAB and a small number of twin boundaries (TBs are produced in the γ precipitated from cold-rolled supersaturated coarse α with pre-strain of ε=2. The precipitated γ grains approximately possess K-S, N-W and Bain orientation relationship with the α matrix equally. For the unstrained α matrix of the same orientation, nearly random texture and the grain boundary character predominated by TBs are introduced in the γ precipitation after aging. Most of γ have K-S relation with the α matrix. However, twining in γ leads to the deviation from typical K-S orientation relationship. And also, one-fourth of phase boundaries along γ grains containing twins are found to obey a new orientation relationship of 35°/〈110〉 with α matrix.

  4. The Role of Grain Orientation and Grain Boundary Characteristics in the Mechanical Twinning Formation in a High Manganese Twinning-Induced Plasticity Steel

    Shterner, Vadim; Timokhina, Ilana B.; Rollett, Anthony D.; Beladi, Hossein

    2018-04-01

    In the current study, the dependence of mechanical twinning on grain orientation and grain boundary characteristics was investigated using quasi in-situ tensile testing. The grains of three main orientations (i.e., , , and parallel to the tensile axis (TA)) and certain characteristics of grain boundaries (i.e., the misorientation angle and the inclination angle between the grain boundary plane normal and the TA) were examined. Among the different orientations, and were the most and the least favored orientations for the formation of mechanical twins, respectively. The orientation was intermediate for twinning. The annealing twin boundaries appeared to be the most favorable grain boundaries for the nucleation of mechanical twinning. No dependence was found for the inclination angle of annealing twin boundaries, but the orientation of grains on either side of the annealing twin boundary exhibited a pronounced effect on the propensity for mechanical twinning. Annealing twin boundaries adjacent to high Taylor factor grains exhibited a pronounced tendency for twinning regardless of their inclination angle. In general, grain orientation has a significant influence on twinning on a specific grain boundary.

  5. 2D magnetization of grain-oriented 3%-Si steel under uniaxial stress

    Permiakov, V.; Dupre, L.; Pulnikov, A.; Melkebeek, J.

    2005-01-01

    Magnetization in electrical steels is strongly affected by mechanical stress. The stress dependence of magnetic properties of non-oriented steels has been studied at one- and two-dimensional magnetization. This paper deals with the stress effect on one- and two-dimensional magnetization in grain-oriented 3%-Si steel. The special magnetic measurements system is applied to combine uniaxial stress and 2D magnetic measurements. The uniaxial stress ranges from 10 MPa compressive stress to 100 MPa tensile stress. A domain theory is a suitable tool for prediction and a physical explanation of stress dependency in grain-oriented steel

  6. Development of microstructure and texture in strip casting grain oriented silicon steel

    Wang, Yang; Xu, Yun-Bo, E-mail: yunbo_xu@126.com; Zhang, Yuan-Xiang; Fang, Feng; Lu, Xiang; Liu, Hai-Tao; Wang, Guo-Dong

    2015-04-01

    Grain oriented silicon steel was produced by strip casting and two-stage cold rolling processes. The development of microstructure and texture was investigated by using optical microscopy, X-ray diffraction and electron backscattered diffraction. It is shown that the microstructure and texture evolutions of strip casting grain oriented silicon steel are significantly distinct from those in the conventional processing route. The as-cast strip is composed of coarse solidification grains and characterized by pronounced 〈001〉//ND texture together with very weak Goss texture. The initial coarse microstructure enhances {111} shear bands formation during the first cold rolling and then leads to the homogeneously distributed Goss grains through the thickness of intermediate annealed sheet. After the secondary cold rolling and primary annealing, strong γ fiber texture with a peak at {111}〈112〉 dominates the primary recrystallization texture, which is beneficial to the abnormal growth of Goss grain during the subsequent high temperature annealing. Therefore, the secondary recrystallization of Goss orientation evolves completely after the high temperature annealing and the grain oriented silicon steel with a good magnetic properties (B{sub 8}=1.94 T, P{sub 1.7/50}=1.3 W/kg) can be prepared. - Highlights: • Grain oriented silicon steel was developed by a novel ultra-short process. • Many evenly distributed Goss “seeds” were originated from cold rolled shear bands. • More MnS inhibitors were obtained due to the rapid cooling of strip casing. • The magnetic induction of grain oriented silicon steel was significantly improved.

  7. Analysis of Orientation Relations Between Deformed Grains and Recrystallization Nuclei

    West, Stine S.; Winther, Grethe; Juul Jensen, Dorte

    2011-01-01

    Nucleation in 30 pct rolled high-purity aluminum samples was investigated by the electron backscattering pattern method before and after annealing. A total of 29 nuclei including two twins were observed, and approximately one third of these nuclei had orientations not detected in the deformed state....... Possible orientation relations between these nuclei and the deformed state were by 20 to 55 deg rotation around axes. These axes were compared with the active slip systems, and the crystallographic features of the deformation-induced dislocation boundaries. Good agreement was found between the rotation...

  8. 78 FR 70574 - Grain-Oriented Electrical Steel From China, Czech Republic, Germany, Japan, Korea, Poland, and...

    2013-11-26

    ...)] Grain-Oriented Electrical Steel From China, Czech Republic, Germany, Japan, Korea, Poland, and Russia..., Germany, Japan, Korea, Poland, and Russia of grain-oriented electrical steel, provided for in subheadings... alleged to be sold in the United States at less than fair value (LTFV), and by reason of imports of grain...

  9. Secondary recrystallization behavior in a twin-roll cast grain-oriented electrical steel

    Song, Hong-Yu; Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn; Wang, Yin-Ping; Wang, Guo-Dong

    2017-04-15

    The microstructure and texture evolution along the processing was investigated with a particular focus on the secondary recrystallization behavior in a 0.23 mm-thick twin-roll cast grain-oriented electrical steel. A striking feature is that Goss orientation originated during twin-roll casting as a result of shear deformation and it was further enhanced during hot rolling and normalizing. After primary recrystallization annealing, a homogeneous microstructure associated with a sharp γ-fiber texture was produced. During secondary recrystallization annealing, the γ-fiber texture was first strengthened and weakened with increasing temperature prior to the onset of secondary recrystallization. Goss grains always exhibited more 20–45° misoriented boundaries than the matrix. The matrix was quite stable during secondary recrystallization with the aid of dense inhibitors. Finally, a complete secondary recrystallization microstructure consisting of large Goss grains was produced. The grain boundary characteristics distribution indicated that the high energy model was responsible for the abnormal growth of Goss grains under the present conditions. - Highlights: • A 0.23 mm twin-roll cast grain-oriented silicon steel sheet was produced. • Goss orientation originated during twin-roll casting. • Secondary recrystallization behavior was briefly investigated. • γ-fiber texture was enhanced prior to the onset of secondary recrystallization. • A complete secondary recrystallization microstructure was produced.

  10. Behavior of Goss, {411}<148>, and {111}<112> Oriented Grains During Recrystallization and Decarburization After Cold-rolling of Fe-3.1% GrainOriented Electrical Steel

    Choi, Sung-Ji; Park, No-Jin [Kumoh National Institute of Technology, Gumi (Korea, Republic of); Joo, Hyung-Don; Park, Jong-Tae [POSCO, Pohang (Korea, Republic of)

    2016-07-15

    Grain-oriented electrical steel is used as a core material in transformers and motors. To obtain improved magnetic properties from the grain-oriented electrical steel, the steel should have a strong {110}<001> Goss texture. Recently, controlled manufacturing processes have been employed for developing electrical steels with a strong Goss texture. It is important to carry out research on the {411}<148> and {111}<112> oriented grains in relation to coincidence site lattice (CSL) boundaries, as they have an effect on the easy growth of the Goss grains upon secondary recrystallization. In this study, the behavior of the{411}<148> and {111}<112> oriented grains, which are neighbored with Goss grains after recrystallization with rapid and typical heating rates, and after decarburization, was examined by using x-ray diffraction (XRD) and electron back-scattered diffraction (EBSD) measurements. In the decarburized specimen, the Goss grains encroached the {411}<148> and {111}<112> oriented grains to a greater extent with a rapid heating rate than with a typical heating rate, and larger Goss grains were observed with the rapid heating rate. The {111}<112> oriented grains especially affect the easy growth of the Goss grains, as they are located near the Goss grains. Therefore, larger Goss grains can be produced at rapid heating rates, and the product is estimated to exhibit improved magnetic properties after secondary recrystallization.

  11. Effects of crystallographic orientation vs. grain interaction on slip systems

    Winther, Grethe

    . Such investigations reveal both similarities and differences. The present contribution gives an overview of a series of investigations, including transmission electron microscopy as well as three-dimensional x-ray diffraction on polycrystalline aluminium deformed to strains of 5-50%. The data are analysed focusing...... on the set of activated slip systems, more precisely whether the observed differences can be attributed to fluctuations in the relative activities of the same set of systems or whether activation of truly different systems is the origin of the variations between and within grains....

  12. Study of secondary recrystallization in grain-oriented steel treated under dynamical heat treatment conditions

    V. Stoyka

    2009-04-01

    Full Text Available The present study was made to investigate secondary recrystallization in grain-oriented steels annealed at short time temperature exposures with application of dynamical heating. The investigated GO steels for experiments were taken from one industrial line after final cold rolling reduction and subsequent box annealing. It was shown that application of short time heat treatment conditions could lead to complete abnormal grain growth in the investigated GO steel. The texture and microstructure obtained in the laboratory treated material is similar to that observed in the same GO steel taken after industrial final box-annealing. However, some “parasitic” grains were observed in the secondary recrystallized matrix of the laboratory treated GO steel. These “parasitic” grains possess the unwanted from magnetic properties point of view {111} orientation components.

  13. Spatially resolved acoustic spectroscopy for rapid imaging of material microstructure and grain orientation

    Smith, Richard J; Li, Wenqi; Coulson, Jethro; Clark, Matt; Somekh, Michael G; Sharples, Steve D

    2014-01-01

    Measuring the grain structure of aerospace materials is very important to understand their mechanical properties and in-service performance. Spatially resolved acoustic spectroscopy is an acoustic technique utilizing surface acoustic waves to map the grain structure of a material. When combined with measurements in multiple acoustic propagation directions, the grain orientation can be obtained by fitting the velocity surface to a model. The new instrument presented here can take thousands of acoustic velocity measurements per second. The spatial and velocity resolution can be adjusted by simple modification to the system; this is discussed in detail by comparison of theoretical expectations with experimental data. (paper)

  14. Crystalline orientation dependent photoresponse and heterogeneous behaviors of grain boundaries in perovskite solar cells

    Jiang, Chuanpeng; Zhang, Pengpeng

    2018-02-01

    Using photoconductive atomic force microscopy and Kelvin probe force microscopy, we characterize the local electrical properties of grains and grain boundaries of organic-inorganic hybrid perovskite (CH3NH3PbI3) thin films on top of a poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS)/ITO substrate. Three discrete photoconductivity levels are identified among perovskite grains, likely corresponding to the crystal orientation of each grain. Local J-V curves recorded on these grains further suggest an anti-correlation behavior between the short circuit current (JSC) and open circuit voltage (VOC). This phenomenon can be attributed to diffusion-limited surface recombination at the non-selective perovskite-tip contact, where a higher carrier mobility established in the perovskite grain results in an enhanced surface recombination and thus a lower VOC. In addition, the photoresponse of perovskite films displays a pronounced heterogeneity across the grain boundaries, with the boundaries formed between grains of the same photoconductivity level displaying even enhanced photocurrent and open circuit voltage compared to those of the adjacent grain interiors. These observations highlight the significance of controlling the microstructure of perovskite thin films, which will be a necessary route for further improving the efficiency of perovskite solar cells.

  15. Magnetic uni- and tri-axial grain-orientation in superconductors with layered structures

    Horii, S.; Yamaki, M.; Ogino, H.; Maeda, T.; Shimoyama, J.

    2010-01-01

    We report the grain-orientation effects under a modulated rotation magnetic field for Y-based cuprate superconductors and LaFeAsO (La1111). Tri-axial orientation has been successfully achieved only for orthorhombic Y 2 Ba 4 Cu 7 O y and YBa 2 Cu 4 O 8 powders without a twin microstructure, while separation of three crystallographic axes could not be observed in twinned YBa 2 Cu 3 O y (Y123) and tetragonal La1111 powders. The morphology of grains, in addition to the symmetry of crystal structures, seriously affects the degrees of tri-axial orientation, which means that the control of twin microstructures is required for the tri-axial magnetic orientation in Y123.

  16. Anisotropy and intergrain current density in oriented grained bulk YBa2Cu3Ox superconductor

    Selvamanickam, V.; Salama, K.

    1990-01-01

    The intergrain transport current density and its anisotropy have been studied in oriented grained bulk YBa 2 Cu 3 O x superconductors fabricated by the liquid phase processing method. Current density measurements were performed on oriented grained samples with the transport current aligned at different angles to the a-b plane. In these measurements, the transport current passed through several oriented grain boundaries. The results indicate that the critical current density drops rapidly when the transport current flows at small angles to the a-b plane and then decreases slowly at larger angles. At 77 K and zero magnetic field, an anisotropy ratio of about 25 is observed between J c along a-b plane and that perpendicular to the plane. Further, the critical current density in these samples is found to depend weakly on magnetic field even though the current crosses grain boundaries. These results support the notion that grain boundaries of these superconductors are different in nature from those of solid-state sintered samples.

  17. Shape preferred orientation of iron grains compatible with Earth's uppermost inner core hemisphericity

    Calvet, Marie; Margerin, Ludovic

    2018-01-01

    Constraining the possible patterns of iron fabrics in the Earth's Uppermost Inner Core (UIC) is key to unravel the mechanisms controlling its growth and dynamics. In the framework of crystalline micro-structures composed of ellipsoidal, aligned grains, we discuss possible textural models of UIC compatible with observations of P-wave attenuation and velocity dispersion. Using recent results from multiple scattering theory in textured heterogeneous materials, we compute the P-wave phase velocity and scattering attenuation as a function of grain volume, shape, and orientation wrt to the propagation direction of seismic P-waves. Assuming no variations of the grain volume between the Eastern and Western hemisphere, we show that two families of texture are compatible with the degree-one structure of the inner core as revealed by the positive correlation between seismic velocity and attenuation. (1) Strong flattening of grains parallel to the Inner Core Boundary in the Western hemisphere and weak anisometry in the Eastern hemisphere. (2) Strong radial elongation of grains in the Western hemisphere and again weak anisometry in the Eastern hemisphere. Both textures can quantitatively explain the seismic data in a limited range of grain volumes. Furthermore, the velocity and attenuation anisotropy locally observed under Africa demands that the grains be locally elongated in the direction of Earth's meridians. Our study demonstrates that the hemispherical seismic structure of UIC can be entirely explained by changes in the shape and orientation of grains, thereby offering an alternative to changes in grain volumes. In the future, our theoretical toolbox could be used to systematically test the compatibility of textures predicted by geodynamical models with seismic observations.

  18. Quantitative characterization of the orientation spread within individual grains in copper after tensile deformation

    Krog-Pedersen, Stine; Bowen, Jacob R.; Pantleon, Wolfgang

    2009-01-01

    By means of electron backscatter diffraction, orientations are determined on a regular grid on a polished section of a copper specimen after tensile deformation to 25%. Individual grains separated by boundaries with disorientation angles above 7° are identified and the microtexture in the form...

  19. Grain orientation mapping of passivated aluminum interconnect wires with X-ray micro-diffraction

    MacDowell, A.A.; Padmore, H.A.; Thompson, A.C.; Chang, C.H.; Patel, J.R.

    1998-06-01

    A micro x-ray diffraction facility is under development at the Advanced Light source. Spot sizes are typically about 1-microm size generated by means of grazing incidence Kirkpatrick-Baez focusing mirrors. Photon energy is either white of energy range 6--14 keV or monochromatic generated from a pair of channel cut crystals. A Laue diffraction pattern from a single grain in passivated 2-microm wide bamboo structured Aluminum interconnect line has been recorded. Acquisition times are of the order of a few seconds. The Laue pattern has allowed the determination of the crystallographic orientation of individual grains along the line length. The experimental and analysis procedures used are described, as is a grain orientation result. The future direction of this program is discussed in the context of strain measurements in the area of electromigration

  20. Grain orientation mapping of passivated aluminum interconnect lines with X-ray micro-diffraction

    Chang, C.H.; Patel, J.R.; MacDowell, A.A.; Padmore, H.A.; Thompson, A.C.

    1998-01-01

    A micro x-ray diffraction facility is under development at the Advanced Light Source. Spot sizes are typically about 1-microm size generated by means of grazing incidence Kirkpatrick-Baez focusing mirrors. Photon energy is either white of energy range 6--14 keV or monochromatic generated from a pair of channel cut crystals. Laue diffraction pattern from a single grain in a passivated 2-microm wide bamboo structured Aluminum interconnect line has been recorded. Acquisition times are of the order of seconds. The Laue pattern has allowed the determination of the crystallographic orientation of individual grains along the line length. The experimental and analysis procedure used is described, as is the latest grain orientation result. The impact of x-ray micro-diffraction and its possible future direction are discussed in the context of other developments in the area of electromigration, and other technological problems

  1. Grain orientation mapping of passivated aluminum interconnect lines by x-ray micro-diffraction

    Chang, C. H.; Patel, J. R.; MacDowell, A. A.; Padmore, H. A.; Thompson, A. C.

    1998-01-01

    A micro x-ray diffraction facility is under development at the Advanced Light Source. Spot sizes are typically about 1-μm size generated by means of grazing incidence Kirkpatrick-Baez focusing mirrors. Photon energy is either white of energy range 6-14 keV or monochromatic generated from a pair of channel cut crystals. Laue diffraction pattern from a single grain in a passivated 2-μm wide bamboo structured Aluminum interconnect line has been recorded. Acquisition times are of the order of seconds. The Laue pattern has allowed the determination of the crystallographic orientation of individual grains along the line length. The experimental and analysis procedure used is described, as is the latest grain orientation result. The impact of x-ray micro-diffraction and its possible future direction are discussed in the context of other developments in the area of electromigration, and other technological problems

  2. Electrodeposited copper oxide films: Effect of bath pH on grain orientation and orientation-dependent interfacial behavior

    Wang, L.C.; Tacconi, N.R. de; Chenthamarakshan, C.R.; Rajeshwar, K.; Tao, M.

    2007-01-01

    Copper (I) oxide (Cu 2 O) films were cathodically electrodeposited on Sn-doped indium oxide substrates. The influence of electrodeposition bath pH on grain orientation and crystallite shape was carefully re-examined using X-ray diffraction and scanning electron microscopy. In addition to the (100) and (111) preferred orientations identified in two previous sets of studies, as the bath pH was varied in the present study from ∼ 7.5 to ∼ 12, a third preferred orientation, (110), was identified in a narrow pH range, ∼ 9.4 to ∼ 9.9. A remarkable shift in the flat-band potential (spanning ∼ 500 mV) was measured in a non-aqueous electrolyte medium for the various Cu 2 O samples obtained from baths of varying pH

  3. Preferential Flow Paths and Recirculation-Disrupting Jets in the Leeside of Self-Forming Coarse-Grained Laboratory Bedforms

    Lichtner, D.; Christensen, K. T.; Best, J.; Blois, G.

    2014-12-01

    Exchange of fluid in the near-subsurface of a streambed is influenced by turbulence in the free flow, as well as by bed topography and permeability. Macro-roughness elements such as bedforms are known to produce pressure gradients that drive fluid into the streambed on their stoss sides and out of the bed on their lee sides. To study the modification of the near-bed flow field by self-forming permeable bedforms, laboratory experiments were conducted in a 5 mm wide flume filled with 1.3 mm glass beads. The narrow width of the flume permitted detailed examination of the fluid exiting the bed immediately downstream of a bedform. Dense 2-D velocity field measurements were gathered using particle image velocimetry (PIV). In up to 8% of instantaneous PIV realizations, the flow at the near-bed presented a component perpendicular to the streambed, indicating flow across the interface. At the downstream side of the bedform, such flow disrupted the mean recirculation pattern that is typically observed in finer sediment beds. It is hypothesized that the coarse grain size and the resulting high bed permeability promote such near-surface jet events. A qualitative analysis of raw image frames indicated that an in-place jostling of sediment is associated with these jets thus suggesting that subsurface flow may be characterized by impulsive events. These observations are relevant to hyporheic exchange rates in coarse sediments and can have strong morphodynamic implications as they can explain the lack of ripples and characteristics of dunes in high permeability gravels. Overall, further study of the flow structure over highly permeable streambeds is needed to understand subsurface exchange and bedform initiation.

  4. Effects of seed orientation on the growth behavior of single grain REBCO bulk superconductors

    Lee, Hee Gyoun [Korea Polytechnic University, Siheung (Korea, Republic of)

    2017-06-15

    This study presents a simple method to control the seed orientation which leads to the various growth characteristics of a single grain REBCO (RE: rare-earth elements) bulk superconductors. Seed orientation was varied systematically from c-axis to a-axis with every 30 degree rotation around b-axis. Orientations of a REBCO single grain was successfully controlled by placing the seed with various angles on the prismatic indent prepared on the surface of REBCO powder compacts. Growth pattern was changed from cubic to rectangular when the seed orientation normal to compact surface was varied from c-axis to a-axis. Macroscopic shape change has been explained by the variation of the wetting angle of un-reacted melt depending on the interface energy between YBa2Cu3O7-y (Y123) grain and melt. Higher magnetic levitation force was obtained for the specimen prepared using tilted seed with an angle of 30 degree rotation around b-axis.

  5. Solvent minimization induces preferential orientation and crystal clustering in serial micro-crystallography on micro-meshes, in situ plates and on a movable crystal conveyor belt

    Soares, Alexei S., E-mail: soares@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973 (United States); Mullen, Jeffrey D. [Brookhaven National Laboratory, Upton, NY 11973 (United States); University of Oregon, Eugene, OR 97403-1274 (United States); Parekh, Ruchi M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Suffolk County Community College, Selden, NY 11784 (United States); McCarthy, Grace S.; Roessler, Christian G.; Jackimowicz, Rick; Skinner, John M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Orville, Allen M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Brookhaven National Laboratory, Upton, NY 11973 (United States); Allaire, Marc [Brookhaven National Laboratory, Upton, NY 11973 (United States); Sweet, Robert M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2014-10-09

    Strategies are described for optimizing the signal-to-noise of diffraction data, and for combining data from multiple crystals. One challenge that must be overcome is the non-random orientation of crystals with respect to one another and with respect to the surface that supports them. X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltd in situ micro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ∼100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face that preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. High-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies.

  6. Solvent minimization induces preferential orientation and crystal clustering in serial micro-crystallography on micro-meshes, in situ plates and on a movable crystal conveyor belt

    Soares, Alexei S.; Mullen, Jeffrey D.; Parekh, Ruchi M.; McCarthy, Grace S.; Roessler, Christian G.; Jackimowicz, Rick; Skinner, John M.; Orville, Allen M.; Allaire, Marc; Sweet, Robert M.

    2014-01-01

    Strategies are described for optimizing the signal-to-noise of diffraction data, and for combining data from multiple crystals. One challenge that must be overcome is the non-random orientation of crystals with respect to one another and with respect to the surface that supports them. X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltd in situ micro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ∼100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face that preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. High-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies

  7. Relative effect(s) of texture and grain size on magnetic properties in a low silicon non-grain oriented electrical steel

    PremKumar, R.; Samajdar, I.; Viswanathan, N.N.; Singal, V.; Seshadri, V.

    2003-01-01

    Hot rolled low Si (silicon) non-grain oriented electrical steel was cold rolled to different reductions. Cold rolled material was subsequently recrystallized, 650 deg. C and 2 h, and then temper rolled (to 7% reduction) for the final grain growth annealing and decarburization treatment at 850 deg. C for 2-24 h. The development of texture, grain size and magnetic properties were characterized at different stages of processing. Effect of texture on magnetic properties (watt loss and permeability) was observed to be best represented by the ratio of volume fractions of (1 1 1) /(0 0 1) fibers, as estimated by convoluting X-ray ODFs (orientation distribution functions) with respective model functions. Such a ratio was termed as generalized texture factor (tf) for the non-grain oriented electrical steel. An effort was made to delink effects of grain size and texture, as represented by respective tf, on watt loss and permeability by careful analysis of experimental data. In general, low tf and/or high grain size were responsible for low watt loss and high permeability. However, individual effect of grain size or tf on magnetic properties was less significant at low tf or large grain size, respectively. An attempt was made to fit regression equations, namely--linear, exponential and power, relating magnetic properties with tf and grain size, limiting the fitting parameters to 3. Least standard deviations, between experimental and predicted values, were obtained by power regression equations for both magnetic properties

  8. Three-dimensional investigation of grain orientation effects on void growth in commercially pure titanium

    Pushkareva, Marina; Adrien, Jérôme; Maire, Eric; Segurado, Javier; Llorca, Javier; Weck, Arnaud

    2016-01-01

    The fracture process of commercially pure titanium was visualized in model materials containing artificial holes. These model materials were fabricated using a femtosecond laser coupled with a diffusion bonding technique to obtain voids in the interior of titanium samples. Changes in void dimensions during in-situ straining were recorded in three dimensions using x-ray computed tomography. Void growth obtained experimentally was compared with the Rice and Tracey model which predicted well the average void growth. A large scatter in void growth data was explained by differences in grain orientation which was confirmed by crystal plasticity simulations. It was also shown that grain orientation has a stronger effect on void growth than intervoid spacing and material strength. Intervoid spacing, however, appears to control whether the intervoid ligament failure is ductile or brittle.

  9. Three-dimensional investigation of grain orientation effects on void growth in commercially pure titanium

    Pushkareva, Marina [Department of Mechanical Engineering, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); Adrien, Jérôme; Maire, Eric [Université de Lyon, INSA-Lyon, MATEIS CNRS UMR5510, 7 Avenue Jean Capelle, F-69621 Villeurbanne (France); Segurado, Javier; Llorca, Javier [IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain); Department of Materials Science, Polytechnic University of Madrid, E. T. S. de Ingenieros de Caminos, 28040 Madrid (Spain); Weck, Arnaud, E-mail: aweck@uottawa.ca [Department of Mechanical Engineering, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); Centre for Research in Photonics at the University of Ottawa, 800 King Edward Ave., Ottawa, ON, Canada K1N 6N5 (Canada)

    2016-08-01

    The fracture process of commercially pure titanium was visualized in model materials containing artificial holes. These model materials were fabricated using a femtosecond laser coupled with a diffusion bonding technique to obtain voids in the interior of titanium samples. Changes in void dimensions during in-situ straining were recorded in three dimensions using x-ray computed tomography. Void growth obtained experimentally was compared with the Rice and Tracey model which predicted well the average void growth. A large scatter in void growth data was explained by differences in grain orientation which was confirmed by crystal plasticity simulations. It was also shown that grain orientation has a stronger effect on void growth than intervoid spacing and material strength. Intervoid spacing, however, appears to control whether the intervoid ligament failure is ductile or brittle.

  10. Evolution of surface topography in dependence on the grain orientation during surface thermal fatigue of polycrystalline copper

    Aicheler, M; Taborelli, M; Calatroni, S; Neupert, H; Wuensch, W; Sgobba, S

    2011-01-01

    Surface degradation due to cyclic thermal loading plays a major role in the Accelerating Structures (AS) of the future Compact Linear Collider (CLIC) In this article results on surface degradation of thermally cycled polycrystalline copper as a function of the orientation of surface grains are presented Samples with different grain sizes were subjected to thermal fatigue using two different methods and were then characterized using roughness measurements and Orientation Imaging Scanning-Electron-Microscopy (OIM-SEM) Samples fatigued by a pulsed laser show the same trend in the orientation-fatigue damage accumulation as the sample fatigued by pulsed Radio-Frequency-heating (RF) it is clearly shown that 11 1 1] surface grains develop significantly more damage than the surface grains oriented in {[}100] and three reasons for this behaviour are pointed out Based on observations performed near grain boundaries their role in the crack initiation process is discussed The results are in good agreement with previous f...

  11. Determination of lattice orientation in aluminium alloy grains by low energy gallium ion-channelling

    Silk, Jonathan R. [Aerospace Metal Composites Ltd., RAE Road, Farnborough, GU14 6XE (United Kingdom); Dashwood, Richard J. [WMG, University of Warwick, Coventry, CV4 7AL (United Kingdom); Chater, Richard J., E-mail: r.chater@imperial.ac.u [Department of Materials, Imperial College, London SW7 2AZ (United Kingdom)

    2010-06-15

    Polished sections of a fine-grained aluminium, silicon carbide metal matrix composite (MMC) alloy were prepared by sputtering using a low energy gallium ion source and column (FIB). The MMC had been processed by high temperature extrusion. Images of the polished surface were recorded using the ion-induced secondary electron emission. The metal matrix grains were distinguished by gallium ion-channelling contrast from the silicon carbide component. The variation of the contrast from the aluminium grains with tilt angle can be recorded and used to determine lattice orientation with the contrast from the silicon carbide (SiC) component as a reference. This method is rapid and suits site-specific investigations where classical methods of sample preparation fail.

  12. Effect of grain orientation and heat treatment on mechanical properties of pure W

    Noto, Hiroyuki, E-mail: noto_hiroyuki@iae.kyoto-u.ac.jp [Graduate School of Energy Science, Kyoto University, Kyoto 611-0011 (Japan); Research Fellow of Japan Society for the Promotion of Science (Japan); Taniguchi, Shuichi [Graduate School of Energy Science, Kyoto University, Kyoto 611-0011 (Japan); Kurishita, Hiroaki; Matsuo, Satoru [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Ukita, Takashi; Tokunaga, Kazutoshi [Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Kyoto 611-0011 (Japan)

    2014-12-15

    The effect of grain orientation, heat-treatment temperature and test temperature on the mechanical properties of tungsten (W), which vary depending on plastic working and fabrication process, was investigated by mechanical testing of tensile or bending. Heavily worked W samples (1.5–2.0 mm in the final thickness) exhibit degradation of fracture strength due to recrystallization embrittlement after heat-treatment at 1240 °C (temperature of diffusion bonding between W and a candidate material of the Fe base support structure). On the other hand, W samples with lower thickness reduction rates do not suffer degradation of fracture strength after heating up to around 1300 °C, and show somewhat higher fracture strength by heat-treatment below 1300 °C than the samples in the as-received state. The observed behavior is a reflection of recovery of dislocations introduced by plastic working. High temperature tensile testing of ITER grade W with an anisotropic grain structure and S-TUN with an equiaxed grain structure revealed that both W grades exhibit plastic elongation at temperatures higher than 200 °C with essentially the same temperature dependence of yield strength, which is relatively insensitive to grain orientation in the structure at 200–1300 °C.

  13. Effect of grain orientation and heat treatment on mechanical properties of pure W

    Noto, Hiroyuki; Taniguchi, Shuichi; Kurishita, Hiroaki; Matsuo, Satoru; Ukita, Takashi; Tokunaga, Kazutoshi; Kimura, Akihiko

    2014-01-01

    The effect of grain orientation, heat-treatment temperature and test temperature on the mechanical properties of tungsten (W), which vary depending on plastic working and fabrication process, was investigated by mechanical testing of tensile or bending. Heavily worked W samples (1.5–2.0 mm in the final thickness) exhibit degradation of fracture strength due to recrystallization embrittlement after heat-treatment at 1240 °C (temperature of diffusion bonding between W and a candidate material of the Fe base support structure). On the other hand, W samples with lower thickness reduction rates do not suffer degradation of fracture strength after heating up to around 1300 °C, and show somewhat higher fracture strength by heat-treatment below 1300 °C than the samples in the as-received state. The observed behavior is a reflection of recovery of dislocations introduced by plastic working. High temperature tensile testing of ITER grade W with an anisotropic grain structure and S-TUN with an equiaxed grain structure revealed that both W grades exhibit plastic elongation at temperatures higher than 200 °C with essentially the same temperature dependence of yield strength, which is relatively insensitive to grain orientation in the structure at 200–1300 °C

  14. Grain orientation and strain measurements in sub-micron wide passivated individual aluminum test structures

    Tamura, N.; Valek, B.C.; Spolenak, R.; MacDowell, A.A.; Celestre, R.S.; Padmore, H.A.; Brown, W.L.; Marieb, T.; Bravman, J.C.; Batterman, B.W.; Patel, J.R.

    2001-01-01

    An X-ray microdiffraction dedicated beamline, combining white and monochromatic beam capabilities, has been built at the Advanced Light Source. The purpose of this beamline is to address the myriad of problems in Materials Science and Physics that require submicron x-ray beams for structural characterization. Many such problems are found in the general area of thin films and nano-materials. For instance, the ability to characterize the orientation and strain state in individual grains of thin films allows us to measure structural changes at a very local level. These microstructural changes are influenced heavily by such parameters as deposition conditions and subsequent treatment. The accurate measurement of strain gradients at the micron and sub-micron level finds many applications ranging from the strain state under nano-indenters to gradients at crack tips. Undoubtedly many other applications will unfold in the future as we gain experience with the capabilities and limitations of this instrument. We have applied this technique to measure grain orientation and residual stress in single grains of pure Al interconnect lines and preliminary results on post-electromigration test experiments are presented. It is shown that measurements with this instrument can be used to resolve the complete stress tensor (6 components) in a submicron volume inside a single grain of Al under a passivation layer with an overall precision of about 20 MPa. The microstructure of passivated lines appears to be complex, with grains divided into identifiable subgrains and noticeable local variations of both tensile/compressive and shear stresses within single grains

  15. Solvent minimization induces preferential orientation and crystal clustering in serial micro-crystallography on micro-meshes, in situ plates and on a movable crystal conveyor belt.

    Soares, Alexei S; Mullen, Jeffrey D; Parekh, Ruchi M; McCarthy, Grace S; Roessler, Christian G; Jackimowicz, Rick; Skinner, John M; Orville, Allen M; Allaire, Marc; Sweet, Robert M

    2014-11-01

    X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltd in situ micro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ∼100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face that preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. High-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies.

  16. Magnetic and transport properties of Zn0.4Fe2.6O4 thin films with highly preferential orientation

    Lu, Z.L.; Zou, W.Q.; Liu, X.C.; Lin, Y.B.; Lu, Z.H.; Wang, J.F.; Xu, J.P.; Lv, L.Y.; Zhang, F.M.; Du, Y.W.

    2007-01-01

    Highly preferentially oriented Zn 0.4 Fe 2.6 O 4 thin films have been fabricated on Si, SrTiO 3 and ZrO 2 substrates, respectively, using RF magnetron sputtering. All the films show a large saturation magnetization of about 4.2μ B and low coercive field at 300 K and a spin (cluster) glass transition at about 60 K due to the non-magnetic Zn 2+ ions substitution. Moreover, the fairly high spin polarization of the carrier at 300 K has been confirmed by both the giant magnetoresistance and anomalous Hall coefficient measurements

  17. Place oriented ecological footprint analysis. The case of Israel's grain supply

    Kissinger, Meidad; Gottlieb, Dan

    2010-01-01

    In today's world, any nation's ecological footprint is spread all over the globe. Still, most footprint studies are not yet sensitive to the specific locations on which the footprint falls and to the unique production characteristics of each supporting region. In recent years some studies have acknowledged the need to quantify the 'real land' footprints and particularly the share of the footprint embodied in trade. Our goal is to analyse the ecological footprint of grain-based consumption in the state of Israel during the last two decades. We present a detailed, place oriented calculation procedure of Israel's grain footprint on specific locations around the world. We document modes of production, major energy inputs in specific sources of supply, the energy required for shipping from each source, and the CO 2 emissions from those operations. Our research reveals that most of Israel's grain footprint falls on North America followed by the Black Sea region. It also shows that while the overall consumption of grain products has increased throughout the research period, the size of the footprint has been dropping in recent years as a consequence of changing sources of supply and grain composition. Finally, we discuss some of the implications of the method presented here for future footprint calculations and environmental resource management. (author)

  18. Effect of Primary Recrystallized Microstructure and Nitriding on Secondary Recrystallization in Grain Oriented Silicon Steel by Low Temperature Slab Reheating

    LIU Gong-tao

    2018-01-01

    Full Text Available Different primary recrystallized grain sizes were obtained by controlling decarburization process in grain oriented silicon steel produced by low temperature slab reheating technique. The effect of primary grain size on secondary recrystallization and magnetic properties was studied. The appropriate nitrogen content after nitriding was explored in case of very large primary grain size, and the effect of {411}〈148〉 primary recrystallized texture on the abnormal growth behavior was discussed. The results show that an increase in average primary grain size from 10μm to 15μm leads to an increase of secondary recrystallization temperature and a sharper Goss texture with higher magnetic permeability, in the condition of a very large average primary grain size of 28μm, the suitable amount of nitrogen increases to about 6×10-4. The {411}〈148〉 oriented grains in primary recrystallized microstructure can easily grow into larger sizes due to their size advantage, and thus hinder the abnormal growth of secondary grains, moreover, the hindering effect is more pronounced in the abnormal growth of Brass-oriented grains due to their misorientation with low migration rate other than Goss grains.

  19. Nanocompositional Electron Microscopic Analysis and Role of Grain Boundary Phase of Isotropically Oriented Nd-Fe-B Magnets

    Gregor A. Zickler

    2017-01-01

    Full Text Available Nanoanalytical TEM characterization in combination with finite element micromagnetic modelling clarifies the impact of the grain misalignment and grain boundary nanocomposition on the coercive field and gives guidelines how to improve coercivity in Nd-Fe-B based magnets. The nanoprobe electron energy loss spectroscopy measurements obtained an asymmetric composition profile of the Fe-content across the grain boundary phase in isotropically oriented melt-spun magnets and showed an enrichment of iron up to 60 at% in the Nd-containing grain boundaries close to Nd2Fe14B grain surfaces parallel to the c-axis and a reduced iron content up to 35% close to grain surfaces perpendicular to the c-axis. The numerical micromagnetic simulations on isotropically oriented magnets using realistic model structures from the TEM results reveal a complex magnetization reversal starting at the grain boundary phase and show that the coercive field increases compared to directly coupled grains with no grain boundary phase independently of the grain boundary thickness. This behaviour is contrary to the one in aligned anisotropic magnets, where the coercive field decreases compared to directly coupled grains with an increasing grain boundary thickness, if Js value is > 0.2 T, and the magnetization reversal and expansion of reversed magnetic domains primarily start as Bloch domain wall at grain boundaries at the prismatic planes parallel to the c-axis and secondly as Néel domain wall at the basal planes perpendicular to the c-axis. In summary our study shows an increase of coercive field in isotropically oriented Nd-Fe-B magnets for GB layer thickness > 5 nm and an average Js value of the GB layer < 0.8 T compared to the magnet with perfectly aligned grains.

  20. Diffraction-amalgamated grain boundary tracking for mapping 3D crystallographic orientation and strain fields during plastic deformation

    Toda, Hiroyuki; Kamiko, Takanobu; Tanabe, Yasuto; Kobayashi, Masakazu; Leclere, D.J.; Uesugi, Kentaro; Takeuchi, Akihisa; Hirayama, Kyosuke

    2016-01-01

    By amalgamating the X-ray diffraction technique with the grain boundary tracking technique, a novel method, diffraction-amalgamated grain boundary tracking (DAGT), has been developed. DAGT is a non-destructive in-situ analysis technique for characterising bulk materials, which can be applied up to near the point of fracture. It provides information about local crystal orientations and detailed grain morphologies in three dimensions, together with high-density strain mapping inside grains. As it obtains the grain morphologies by utilising X-ray imaging instead of X-ray diffraction, which latter is typically vulnerable to plastic deformation, DAGT is a fairly robust technique for analysing plastically deforming materials. Texture evolution and localised deformation behaviours have here been successfully characterised in Al–Cu alloys, during tensile deformation of 27% in applied strain. The characteristic rotation behaviours of grains were identified, and attributed to the effects of interaction with adjacent grains on the basis of the 3D local orientation and plastic strain distributions. It has also been revealed that 3D strain distribution in grains is highly heterogeneous, which is not explained by known mechanisms such as simple incompatibility with adjacent grains or strain percolation through soft grains. It has been clarified that groups consisting of a few adjacent grains may deform coordinately, especially in shear and lateral deformation, and the characteristic deformation pattern is thereby formed on a mesoscopic scale.

  1. Inductive current measurements in an oriented grained YBa2Cu3Ox superconductor

    Kupfer, H.; Keller, C.; Salama, K.; Selvamanickam, V.

    1989-01-01

    The critical current of grain aligned YBa 2 Cu 3 O x bulk material was investigated by inductive flux profile and ac susceptibility measurements. The induced current was directed perpendicular to the a-b plane oriented grains where high values of the transport current, have been previously reported. In spite of the unfavorable geometry of the investigated shielding current, no features of granularity were observed. The results yield a uniform bulk critical current density j c of 3x10 4 A/cm 2 at zero field and 77 K. Field and temperature dependences of this j c are discussed and compared with those in a granular Y-Ba-Cu-O material

  2. Analysis of microstructure and microtexture in grain-oriented electrical steel (GOES during manufacturing process

    A. Volodarskaja

    2015-10-01

    Full Text Available The final Goss texture in grain-oriented electrical steels (GOES is affected by microstructure evolution and inheritance during the whole production process. This paper presents the results of detailed microtexture and microstructure investigations on GOES after the basic steps of the industrial AlN + Cu manufacturing process: hot rolling, first cold rolling + decarburization annealing, second cold rolling and final high temperature annealing. Microstructure studies showed that a copper addition to GOES affected solubility of sulphides. Copper rich sulphides dissolved during hot rolling and re-precipitated during decarburization annealing. An intensive precipitation of AlN and Si3N4 took place during decarburization annealing. No ε - Cu precipitation was detected. After high temperature annealing the misorientation of individual grains reached up to 8°.

  3. Transport current anisotropy in oriented grained bulk YBa2Cu3O(x) superconductor

    Selvamanickam, V.; Salama, K.

    1990-01-01

    The anisotropy in transport current density has been studied on bulk YBa2Cu3O(x) superconductor. The transport current density measurements were performed on oriented grained YBa2Cu3O(x) superconductor with the current aligned at different angles to the a-b plane. The angular dependence of Jc shows a rapid drop when the transport current is misaligned from the a-b plane at small angles and then a slow decrease at higher angles. An anisotropy ratio of about 25 is observed at 77 K and zero field between the Jc along a-b plane and that perpendicular to the plane. 15 refs

  4. Transport current anisotropy in oriented grained bulk YBa2Cu3Ox superconductor

    Selvamanickam, V.; Salama, K.

    1990-01-01

    The anisotropy in transport current density has been studied on bulk YBa 2 Cu 3 O x superconductor. The transport current density measurements were performed on oriented grained YBa 2 Cu 3 O x superconductor with the current aligned at different angles to the a endash b plane. The angular dependence of J c shows a rapid drop when the transport current is misaligned from the a endash b plane at small angles and then a slow decrease at higher angles. An anisotropy ratio of about 25 is observed at 77 K and zero field between the J c along a endash b plane and that perpendicular to the plane

  5. Perfect alignment and preferential orientation of nitrogen-vacancy centers during chemical vapor deposition diamond growth on (111) surfaces

    Michl, Julia; Zaiser, Sebastian; Jakobi, Ingmar; Waldherr, Gerald; Dolde, Florian; Neumann, Philipp; Wrachtrup, Jörg; Teraji, Tokuyuki; Doherty, Marcus W.; Manson, Neil B.; Isoya, Junichi

    2014-01-01

    Synthetic diamond production is a key to the development of quantum metrology and quantum information applications of diamond. The major quantum sensor and qubit candidate in diamond is the nitrogen-vacancy (NV) color center. This lattice defect comes in four different crystallographic orientations leading to an intrinsic inhomogeneity among NV centers, which is undesirable in some applications. Here, we report a microwave plasma-assisted chemical vapor deposition diamond growth technique on (111)-oriented substrates, which yields perfect alignment (94% ± 2%) of as-grown NV centers along a single crystallographic direction. In addition, clear evidence is found that the majority (74% ± 4%) of the aligned NV centers were formed by the nitrogen being first included in the (111) growth surface and then followed by the formation of a neighboring vacancy on top. The achieved homogeneity of the grown NV centers will tremendously benefit quantum information and metrology applications

  6. Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO3 material.

    Yan, Yongke; Zhou, Jie E; Maurya, Deepam; Wang, Yu U; Priya, Shashank

    2016-10-11

    A rapid surge in the research on piezoelectric sensors is occurring with the arrival of the Internet of Things. Single-phase oxide piezoelectric materials with giant piezoelectric voltage coefficient (g, induced voltage under applied stress) and high Curie temperature (T c ) are crucial towards providing desired performance for sensing, especially under harsh environmental conditions. Here, we report a grain-oriented (with 95% texture) modified PbTiO 3 ceramic that has a high T c (364 °C) and an extremely large g 33 (115 × 10 -3  Vm N -1 ) in comparison with other known single-phase oxide materials. Our results reveal that self-polarization due to grain orientation along the spontaneous polarization direction plays an important role in achieving large piezoelectric response in a domain motion-confined material. The phase field simulations confirm that the large piezoelectric voltage coefficient g 33 originates from maximized piezoelectric strain coefficient d 33 and minimized dielectric permittivity ɛ 33 in [001]-textured PbTiO 3 ceramics where domain wall motions are absent.

  7. Strain Amount Dependent Grain Size and Orientation Developments during Hot Compression of a Polycrystalline Nickel Based Superalloy

    Guoai He

    2017-02-01

    Full Text Available Controlling grain size in polycrystalline nickel base superalloy is vital for obtaining required mechanical properties. Typically, a uniform and fine grain size is required throughout forging process to realize the superplastic deformation. Strain amount occupied a dominant position in manipulating the dynamic recrystallization (DRX process and regulating the grain size of the alloy during hot forging. In this article, the high-throughput double cone specimen was introduced to yield wide-range strain in a single sample. Continuous variations of effective strain ranging from 0.23 to 1.65 across the whole sample were achieved after reaching a height reduction of 70%. Grain size is measured to be decreased from the edge to the center of specimen with increase of effective strain. Small misorientation tended to generate near the grain boundaries, which was manifested as piled-up dislocation in micromechanics. After the dislocation density reached a critical value, DRX progress would be initiated at higher deformation region, leading to the refinement of grain size. During this process, the transformations from low angle grain boundaries (LAGBs to high angle grain boundaries (HAGBs and from subgrains to DRX grains are found to occur. After the accomplishment of DRX progress, the neonatal grains are presented as having similar orientation inside the grain boundary.

  8. Structure analysis of aluminium silicon manganese nitride precipitates formed in grain-oriented electrical steels

    Bernier, Nicolas; Xhoffer, Chris; Van De Putte, Tom; Galceran, Montserrat; Godet, Stéphane

    2013-01-01

    We report a detailed structural and chemical characterisation of aluminium silicon manganese nitrides that act as grain growth inhibitors in industrially processed grain-oriented (GO) electrical steels. The compounds are characterised using energy dispersive X-ray spectrometry (EDX) and energy filtered transmission electron microscopy (EFTEM), while their crystal structures are analysed using X-ray diffraction (XRD) and TEM in electron diffraction (ED), dark-field, high-resolution and automated crystallographic orientation mapping (ACOM) modes. The chemical bonding character is determined using electron energy loss spectroscopy (EELS). Despite the wide variation in composition, all the precipitates exhibit a hexagonal close-packed (h.c.p.) crystal structure and lattice parameters of aluminium nitride. The EDX measurement of ∼ 900 stoichiometrically different precipitates indicates intermediate structures between pure aluminium nitride and pure silicon manganese nitride, with a constant Si/Mn atomic ratio of ∼ 4. It is demonstrated that aluminium and silicon are interchangeably precipitated with the same local arrangement, while both Mn 2+ and Mn 3+ are incorporated in the h.c.p. silicon nitride interstitial sites. The oxidation of the silicon manganese nitrides most likely originates from the incorporation of oxygen during the decarburisation annealing process, thus creating extended planar defects such as stacking faults and inversion domain boundaries. The chemical composition of the inhibitors may be written as (AlN) x (SiMn 0.25 N y O z ) 1−x with x ranging from 0 to 1. - Highlights: • We study the structure of (Al,Si,Mn)N inhibitors in grain oriented electrical steels. • Inhibitors have the hexagonal close-packed symmetry with lattice parameters of AlN. • Inhibitors are intermediate structures between pure AlN and (Si,Mn)N with Si/Mn ∼ 4. • Al and Si share the same local arrangement; Mn is incorporated in both Mn 2+ and Mn 3+ . • Oxygen

  9. Combined effect of preferential orientation and Zr/Ti atomic ratio on electrical properties of Pb(ZrxTi1-x)O3 thin films

    Gong Wen; Li Jingfeng; Chu Xiangcheng; Gui Zhilun; Li Longtu

    2004-01-01

    Lead zirconate titanate [Pb(Zr x Ti 1-x )O 3 , PZT] thin films with various compositions, whose Zr/Ti ratio were varied as 40/60, 48/52, 47/53, and 60/40, were deposited on Pt(111)/Ti/SiO 2 /Si substrates by sol-gel method. A seeding layer was introduced between the PZT layer and the bottom electrode to control the texture of overlaid PZT thin films. A single perovskite PZT thin film with absolute (100) texture was obtained, when lead oxide was used as the seeding crystal, whereas titanium dioxide resulted in highly [111]-oriented PZT films. The dielectric and ferroelectric properties of PZT films with different preferential orientations were evaluated systemically as a function of composition. The maximums of relative dielectric constant were obtained in the morphotropic phase boundary region for both (100)- and (111)-textured PZT films. The ferroelectric properties also greatly depend on films' texture and composition. The intrinsic and extrinsic contributions to dielectric and ferroelectric properties were discussed

  10. Amino-Acid-Induced Preferential Orientation of Perovskite Crystals for Enhancing Interfacial Charge Transfer and Photovoltaic Performance.

    Shih, Yen-Chen; Lan, Yu-Bing; Li, Chia-Shuo; Hsieh, Hsiao-Chi; Wang, Leeyih; Wu, Chih-I; Lin, King-Fu

    2017-06-01

    Interfacial engineering of perovskite solar cells (PSCs) is attracting intensive attention owing to the charge transfer efficiency at an interface, which greatly influences the photovoltaic performance. This study demonstrates the modification of a TiO 2 electron-transporting layer with various amino acids, which affects charge transfer efficiency at the TiO 2 /CH 3 NH 3 PbI 3 interface in PSC, among which the l-alanine-modified cell exhibits the best power conversion efficiency with 30% enhancement. This study also shows that the (110) plane of perovskite crystallites tends to align in the direction perpendicular to the amino-acid-modified TiO 2 as observed in grazing-incidence wide-angle X-ray scattering of thin CH 3 NH 3 PbI 3 perovskite film. Electrochemical impedance spectroscopy reveals less charge transfer resistance at the TiO 2 /CH 3 NH 3 PbI 3 interface after being modified with amino acids, which is also supported by the lower intensity of steady-state photoluminescence (PL) and the reduced PL lifetime of perovskite. In addition, based on the PL measurement with excitation from different side of the sample, amino-acid-modified samples show less surface trapping effect compared to the sample without modification, which may also facilitate charge transfer efficiency at the interface. The results suggest that appropriate orientation of perovskite crystallites at the interface and trap-passivation are the niche for better photovoltaic performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Magnetic losses reduction in grain oriented silicon steel by pulse and continuous fiber laser processing

    Petryshynets, Ivan; Kováč, František; Puchý, Viktor; Šebek, Martin; Füzer, Ján; Kollár, Peter

    2018-04-01

    The present paper shows the impact of different laser scribing conditions on possible reduction of magnetic losses in grain oriented electrical steel sheets. The experimental Fe-3%Si steel was taken from industrial line after final box annealing. The surface of investigated steel was subjected to fiber laser processing using both pulse and continuous scribing regimes in order to generate residual thermal stresses inducing the magnetic domains structure refinement. The magnetic losses of experimental samples before and after individual laser scribing regimes were tested in AC magnetic field with 50Hz frequency and induction of 1.5T. The most significant magnetic losses reduction of 38% was obtained at optimized conditions of continuous laser scribing regime. A semi quantitative relationship has been found between the domain patterns and the used fiber laser processing.

  12. Magnetic losses reduction in grain oriented silicon steel by pulse and continuous fiber laser processing

    Ivan Petryshynets

    2018-04-01

    Full Text Available The present paper shows the impact of different laser scribing conditions on possible reduction of magnetic losses in grain oriented electrical steel sheets. The experimental Fe-3%Si steel was taken from industrial line after final box annealing. The surface of investigated steel was subjected to fiber laser processing using both pulse and continuous scribing regimes in order to generate residual thermal stresses inducing the magnetic domains structure refinement. The magnetic losses of experimental samples before and after individual laser scribing regimes were tested in AC magnetic field with 50Hz frequency and induction of 1.5T. The most significant magnetic losses reduction of 38% was obtained at optimized conditions of continuous laser scribing regime. A semi quantitative relationship has been found between the domain patterns and the used fiber laser processing.

  13. Scaling-based prediction of magnetic anisotropy in grain-oriented steels

    Najgebauer Mariusz

    2017-06-01

    Full Text Available The paper presents the scaling-based approach to analysis and prediction of magnetic anisotropy in grain-oriented steels. Results of the anisotropy scaling indicate the existence of two universality classes. The hybrid approach to prediction of magnetic anisotropy, combining the scaling analysis with the ODFs method, is proposed. This approach is examined in prediction of angular dependencies of magnetic induction as well as magnetization curves for the 111-35S5 steel. It is shown that it is possible to predict anisotropy of magnetic properties based on measurements in three arbitrary directions for φ = 0°, 60° and 90°. The relatively small errors between predicted and measured values of magnetic induction are obtained.

  14. Thin grain oriented electrical steel for PWM voltages fed magnetic cores

    Thierry Belgrand

    2018-04-01

    Full Text Available This paper reports on performances of high permeability grain oriented electrical steel when used in association with power electronic switching devices. Loss measurement results obtained from the Epstein test, using sinusoidal or various PWM voltages in medium frequency range, show that for both studied thicknesses (HGO 0.23mm and HGO 0.18mm, comparing performances at a fixed induction level between the various situations may not be the most convenient method. The effect of magnetic domain refinement has been investigated. After having shown the interest of lowering the thickness, an alternative way of looking at losses is proposed that may help to design the magnetic core when it comes to the matter of reducing size in considering frequency and magnetization levels.

  15. Numerical Simulation of Shear Slitting Process of Grain Oriented Silicon Steel using SPH Method

    Bohdal Łukasz

    2017-12-01

    Full Text Available Mechanical cutting allows separating of sheet material at low cost and therefore remains the most popular way to produce laminations for electrical machines and transformers. However, recent investigations revealed the deteriorating effect of cutting on the magnetic properties of the material close to the cut edge. The deformations generate elastic stresses in zones adjacent to the area of plastically deformed and strongly affect the magnetic properties. The knowledge about residual stresses is necessary in designing the process. This paper presents the new apprach of modeling residual stresses induced in shear slitting of grain oriented electrical steel using mesh-free method. The applications of SPH (Smoothed Particle Hydrodynamics methodology to the simulation and analysis of 3D shear slitting process is presented. In experimental studies, an advanced vision-based technology based on digital image correlation (DIC for monitoring the cutting process is used.

  16. An ultrasonic methodology to non-destructively estimate the grain orientation in an anisotropic weld

    Wirdelius Håkan

    2014-06-01

    Full Text Available The initial step towards a non-destructive technique that estimates grain orientation in an anisotropic weld is presented in this paper. The purpose is to aid future forward simulations of ultrasonic NDT of this kind of weld to achieve a better result. A forward model that consists of a weld model, a transmitter model, a receiver model and a 2D ray tracing algorithm is introduced. An inversion based on a multi-objective genetic algorithm is also presented. Experiments are conducted for both P and SV waves in order to collect enough data used in the inversion. Calculation is conducted to fulfil the estimation with both the synthetic data and the experimental data. Concluding remarks are presented at the end of the paper.

  17. Effects of DC bias on magnetic performance of high grades grain-oriented silicon steels

    Ma, Guang; Cheng, Ling [Global Energy Interconnection Research Institute, State Key Laboratory of Advanced Transmission Technology,Beijing 102211 (China); Lu, Licheng [State Grid Corporation of China, Beijing 100031 (China); Yang, Fuyao; Chen, Xin [Global Energy Interconnection Research Institute, State Key Laboratory of Advanced Transmission Technology,Beijing 102211 (China); Zhu, Chengzhi [State Grid Zhejiang Electric Power Company, Hangzhou 310007 (China)

    2017-03-15

    When high voltage direct current (HVDC) transmission adopting mono-polar ground return operation mode or unbalanced bipolar operation mode, the invasion of DC current into neutral point of alternating current (AC) transformer will cause core saturation, temperature increasing, and vibration acceleration. Based on the MPG-200D soft magnetic measurement system, the influence of DC bias on magnetic performance of 0.23 mm and 0.27 mm series (P{sub 1.7}=0.70–1.05 W/kg, B{sub 8}>1.89 T) grain-oriented (GO) silicon steels under condition of AC / DC hybrid excitation were systematically realized in this paper. For the high magnetic induction GO steels (core losses are the same), greater thickness can lead to stronger ability of resisting DC bias, and the reasons for it were analyzed. Finally, the magnetostriction and A-weighted magnetostriction velocity level of GO steel under DC biased magnetization were researched. - Highlights: • Magnetic properties of 0.23 mm and 0.27 mm series (P{sub 1.7}=0.70–1.05 W/kg, B{sub 8}>1.89 T) grain-oriented (GO) silicon steels under condition of AC / DC hybrid excitation were systematically analyzed. • Influence of DC biased magnetization on core loss, magnetostriction, and A-weighted magnetostriction velocity level of GO steel were researched. • Greater thickness and relatively lower magnetic induction (B{sub 8}>1.89 T yet) of GO steel can lead to stronger ability of resisting DC bias, and the reasons for it were analyzed.

  18. Formation of {1 0 0} textured columnar grain structure in a non-oriented electrical steel by phase transformation

    Xie, Li; Yang, Ping, E-mail: yangp@mater.ustb.edu.cn; Zhang, Ning; Zong, Cui; Xia, Dongsheng; Mao, Weimin

    2014-04-01

    This study confirms the effect of anisotropic strain energy on the formation of {1 0 0} textured columnar grain structure induced by temperature gradient during γ to α phase transformation in pure hydrogen atmosphere. Results indicate that high temperature gradient in pure hydrogen atmosphere induces a significant strain energy difference across grain boundaries during γ to α phase transformation, leading to the formation of {1 0 0} texture with columnar grains. Given its simplicity in processing and its ability to obtain good texture-related magnetic properties, the proposed approach is helpful to the development of new types of non-oriented electrical steel. - Highlights: • A strong {1 0 0} texture with columnar grains was obtained. • Good texture and magnetic properties are attributed to the anisotropic strain energy. • The anisotropy in elastic strain energy was induced by the temperature gradient. • The phase transformation rate affects columnar grain morphology.

  19. Tunable photovoltaic performance of preferentially oriented rutile TiO2 nanorod photoanodes based dye sensitized solar cells with quasi-state electrolyte.

    T C, Sabari Girisun; C, Jeganathan; N, Pavithra; Anandan, Sambandam

    2017-12-20

    Photoanodes made of highly oriented TiO2 nanorod arrays with different aspect ratios were synthesized via one-step hydrothermal technique. Preferentially oriented single crystalline rutile TiO2 was confirmed by the single peak in XRD pattern (2θ=63o, (0 0 2)). FESEM image evidence the growth of an array of nanorods having different geometry with respect to reaction time and solution refreshment rate. The length, diameter and aspect ratio of the nanorods increased with reaction time as 4 hours (1.98 μm, 121 nm, 15.32), 8 hours (4 μm, 185 nm, 22.70), 12 hours (5.6 μm, 242 nm, 27.24) and 16 hours (8 μm, 254 nm, 38.02) respectively. Unlike conventional Dye-Sensitized Solar Cell (DSSC) with a liquid electrolyte, DSSC were fabricated here using 1D rutile TiO2 nanorods based photoanodes, N719 dye and quasi-state electrolyte. The charge transport properties were investigated from current-voltage curves and fitted using one-diode model. Interestingly photovoltaic performance of DSSCs increased exponentially with the length of the nanorod and is attributed to the higher surface to volume ratio, more dye anchoring, and channelized electron transport. Higher photovoltaic performance (Jsc=5.99 mA/cm2, Voc=750 mV, η=3.08%) was observed with photoanodes (16 hours) made of densely packed longest TiO2 nanorods (8 µm, 254 nm). © 2017 IOP Publishing Ltd.

  20. Tunable photovoltaic performance of preferentially oriented rutile TiO2 nanorod photoanode based dye sensitized solar cells with quasi-state electrolyte.

    Girisun, T C Sabari; Jeganathan, C; Pavithra, N; Anandan, S

    2018-01-23

    Photoanodes made of highly oriented TiO 2 nanorod (NR) arrays with different aspect ratios were synthesized via a one-step hydrothermal technique. Preferentially oriented single crystalline rutile TiO 2 was confirmed by the single peak in an XRD pattern (2θ = 63°, (0 0 2)). FESEM images evidenced the growth of an array of NRss having different geometries with respect to reaction time and solution refreshment rate. The length, diameter and aspect ratio of the NRs increased with reaction time as 4 h (1.98 μm, 121 nm, 15.32), 8 h (4 μm, 185 nm, 22.70), 12 h (5.6 μm, 242 nm, 27.24) and 16 h (8 μm, 254 nm, 38.02), respectively. Unlike a conventional dye-sensitized solar cell (DSSC) with a liquid electrolyte, DSSCs were fabricated here using one-dimensional rutile TiO 2 NR based photoanodes, N719 dye and a quasi-state electrolyte. The charge transport properties were investigated using current-voltage curves and fitted using the one-diode model. Interestingly the photovoltaic performance of the DSSCs increased exponentially with the length of the NR and was attributed to a higher surface to volume ratio, more dye anchoring, and channelized electron transport. The higher photovoltaic performance (J sc  = 5.99 mA cm -2 , V oc  = 750 mV, η = 3.08%) was observed with photoanodes (16 h) made with the longer, densely packed TiO 2 NRs (8 μm, 254 nm).

  1. 78 FR 59059 - Grain-Oriented Electrical Steel From China, Czech Republic, Germany, Japan, Korea, Poland, and...

    2013-09-25

    ...)] Grain-Oriented Electrical Steel From China, Czech Republic, Germany, Japan, Korea, Poland, and Russia... Republic, Germany, Japan, Korea, Poland, and Russia that are alleged to be sold in the United States at less than fair value. Unless the Department of Commerce extends the time for initiation pursuant to...

  2. A DETERMINATION OF THE FLUX DENSITY IN CORE OF DISTRIBUTION TRANSFORMERS, WHAT BUILT WITH THE COMMON USING OF GRAIN AND NON GRAIN ORIENTED MAGNETIC STEELS

    I.V. Pentegov

    2015-12-01

    Full Text Available Purpose. The development of calculation method to determinate the flux densities in different parts of the magnetic cores of distribution transformers, what built from different types magnetic steel (mixed core. Methodology. The method is based on the scientific positions of Theoretical Electrical Engineering – the theory of the electromagnetic field in nonlinear mediums to determine the distribution of magnetic flux in mixed core of transformer, what are using different types of steel what have the different magnetic properties. Results. The developed method gives possible to make calculation of the flux density and influence of skin effect in different parts of the magnetic cores of distribution transformer, where are used mix of grain oriented (GO and non grain oriented (NGO steels. Was determinate the general basic conditions for the calculation of flux density in the laminations from grain and non grain oriented steels of the magnetic core: the strength of magnetic field for the laminations of particular part of mixed core is the same; the sum of the magnetic fluxes in GO and NGO steels in particular part of mixed core is equal with the designed magnetic flux in this part of mixed core. Discover, the magnetic flux in mixed core of the transformer has specific distribution between magnetic steels. The flux density is higher in laminations from GO steel and smaller in laminations from the NGO steel. That is happened because for magnetic flux is easier pass through laminations from GO steel, what has better magnetic conductance than laminations from NGO steel. Originality. The common using of different types of magnetic steels in cores for distribution transformers gives possibility to make design of transformer with low level of no load losses, high efficiency and with optimal cost. Practical value. The determination of the flux density in different parts of magnetic core with GO and NGO steels gives possibility make accurate calculation of

  3. Micromagnetic simulation of the orientation dependence of grain boundary properties on the coercivity of Nd-Fe-B sintered magnets

    Jun Fujisaki

    2016-05-01

    Full Text Available This paper is focused on the micromagnetic simulation study about the orientation dependence of grain boundary properties on the coercivity of polycrystalline Nd-Fe-B sintered magnets. A multigrain object with a large number of meshes is introduced to analyze such anisotropic grain boundaries and the simulation is performed by combining the finite element method and the parallel computing. When the grain boundary phase parallel to the c-plane is less ferromagnetic the process of the magnetization reversal changes and the coercivity of the multigrain object increases. The simulations with various magnetic properties of the grain boundary phases are executed to search for the way to enhance the coercivity of polycrystalline Nd-Fe-B sintered magnets.

  4. Precipitation and Evolution Behavior of Second Phase Particles in Grain-oriented Silicon Steel with Cu

    LI Zhi-chao

    2017-12-01

    Full Text Available The precipitation behavior and distribution of second phase particles in conventional grain-oriented silicon steel during manufacturing process were observed by field emission scanning electron microscopy, and the average particle size, the areal particle density, and the Zener factor were statistically analyzed. The results show that the samples mainly contain two kinds of precipitates:A class is the (Cu,MnS composite precipitates with the average size of 1μm; B class is the Cu2S precipitates with the size of 10-30nm, the key inhibition effect is produced by Cu2S. Hot rolling leads to a large amount of fine second phase particles precipitation, which has the minimum average particle size and the highest areal density; in the manufacturing process before high temperature annealing, the average particle size is increasing and the areal density is decreasing; in the process of high temperature annealing, with the decrease of volume fraction of precipitates, the inhibition ability exhibits reducing trend,obvious aggregation occurs at 960℃,secondary recrystallization will happen when Zener factor A decreases below the critical value of 0.19nm-1, and the residual particles will not produce valid inhibition effect.

  5. Orientation-dependent evolution of the dislocation density in grain populations with different crystallographic orientations relative to the tensile axis in a polycrystalline aggregate of stainless steel

    Ungár, Tamás; Stoica, Alexandru D.; Tichy, Géza; Wang, Xun-Li

    2014-01-01

    Line profile analysis was carried out on neutron diffraction patterns collected by the energy-dispersive method for an in situ tensile-deformed AISI-316 stainless steel specimen. The experiments were carried out at the VULCAN engineering beam line of the spallation neutron source of the Oak Ridge National Laboratory. Both the dislocation densities and the local stresses in grains oriented with different h k l crystal directions along the tensile axis were determined. The work-hardening equation of Taylor was tested for the h k l-dependent phenomenological constant α. The grain-orientation-dependent α values were directly related to the heterogeneity of dislocation distribution in correlation with previous transmission electron microscopy data

  6. Influence of Substrate on Crystal Orientation of Large-Grained Si Thin Films Formed by Metal-Induced Crystallization

    Kaoru Toko

    2015-01-01

    Full Text Available Producing large-grained polycrystalline Si (poly-Si film on glass substrates coated with conducting layers is essential for fabricating Si thin-film solar cells with high efficiency and low cost. We investigated how the choice of conducting underlayer affected the poly-Si layer formed on it by low-temperature (500°C Al-induced crystallization (AIC. The crystal orientation of the resulting poly-Si layer strongly depended on the underlayer material: (100 was preferred for Al-doped-ZnO (AZO and indium-tin-oxide (ITO; (111 was preferred for TiN. This result suggests Si heterogeneously nucleated on the underlayer. The average grain size of the poly-Si layer reached nearly 20 µm for the AZO and ITO samples and no less than 60 µm for the TiN sample. Thus, properly electing the underlayer material is essential in AIC and allows large-grained Si films to be formed at low temperatures with a set crystal orientation. These highly oriented Si layers with large grains appear promising for use as seed layers for Si light-absorption layers as well as for advanced functional materials.

  7. Orientations of recrystallization nuclei developed in columnar-grained Ni at triple junctions

    Xu, C.L.; Huang, S.; Zhang, Yubin

    2015-01-01

    A high purity columnar grained nickel sample with a strong <001> fiber texture was cold rolled to 50% reduction in thickness, followed by annealing at different temperatures. Optical microscopy was used to depict the grain boundaries prior to annealing and to detect nuclei formed on grain boundar...

  8. Influence of orientation mismatch on charge transport across grain boundaries in tri-isopropylsilylethynyl (TIPS) pentacene thin films.

    Steiner, Florian; Poelking, Carl; Niedzialek, Dorota; Andrienko, Denis; Nelson, Jenny

    2017-05-03

    We present a multi-scale model for charge transport across grain boundaries in molecular electronic materials that incorporates packing disorder, electrostatic and polarisation effects. We choose quasi two-dimensional films of tri-isopropylsilylethynyl pentacene (TIPS-P) as a model system representative of technologically relevant crystalline organic semiconductors. We use atomistic molecular dynamics, with a force-field specific for TIPS-P, to generate and equilibrate polycrystalline two-dimensional thin films. The energy landscape is obtained by calculating contributions from electrostatic interactions and polarization. The variation in these contributions leads to energetic barriers between grains. Subsequently, charge transport is simulated using a kinetic Monte-Carlo algorithm. Two-grain systems with varied mutual orientation are studied. We find relatively little effect of long grain boundaries due to the presence of low impedance pathways. However, effects could be more pronounced for systems with limited inter-grain contact areas. Furthermore, we present a lattice model to generalize the model for small molecular systems. In the general case, depending on molecular architecture and packing, grain boundaries can result in interfacial energy barriers, traps or a combination of both with qualitatively different effects on charge transport.

  9. Grain Oriented Perovskite Layer Structure Ceramics for High-Temperature Piezoelectric Applications

    Fuierer, Paul Anton

    The perovskite layer structure (PLS) compounds have the general formula (A^{2+}) _2(B^{5+})_2 O_7, or (A^ {3+})_2(B^{4+ })_2O_7, and crystallize in a very anisotropic layered structure consisting of parallel slabs made up of perovskite units. Several of these compounds possess the highest Curie temperatures (T_{rm c} ) of any known ferroelectrics. Two examples are Sr_2Nb_2O _7 with T_{rm c} of 1342^circC, and La_2Ti_2O _7 with T_{rm c} of 1500^circC. This thesis is an investigation of PLS ceramics and their feasibility as a high temperature transducer material. Piezoelectricity in single crystals has been measured, but the containerless float zone apparatus necessary to grow high quality crystals of these refractory compounds is expensive and limited to a small number of research groups. Previous attempts to pole polycrystalline Sr_2Nb _2O_7 have failed, and to this point piezoelectricity has been absent. The initiative taken in this research was to investigate PLS ceramics by way of composition and processing schemes such that polycrystalline bodies could be electrically poled. The ultimate objective then was to demonstrate piezoelectricity in PLS ceramics, especially at high temperatures. Donor-doping of both La_2Ti _2O_7 and Sr_2Nb_2O _7 was found to increase volume resistivities at elevated temperatures, an important parameter to consider during the poling process. Sr_2Ta _2O_7 (T _{rm c} = -107 ^circC) was used to make solid solution compositions with moderately high Curie temperatures, of about 850^circC, and lower coercive fields. A hot-forging technique was employed to produce ceramics with high density (>99% of theoretical) and high degree of grain orientation (>90%). Texturing was characterized by x-ray diffraction and microscopy. Considerable anisotropy was observed in physical and electrical properties, including thermal expansion, resistivity, dielectric constant, and polarization. The direction perpendicular to the forging axis proved to be the

  10. Interactions between the phase stress and the grain-orientation-dependent stress in duplex stainless steel during deformation

    Jia, N.; Peng, R. Lin; Wang, Y.D.; Chai, G.C.; Johansson, S.; Wang, G.; Liaw, P.K.

    2006-01-01

    The development of phase stress and grain-orientation-dependent stress under uniaxial compression was investigated in a duplex stainless steel consisting of austenite and ferrite. Using in situ neutron diffraction measurements, the strain response of several h k l planes to the applied compressive stress was mapped as a function of applied stress and sample direction. Analysis based on the experimental results and elastoplastic self-consistent simulations shows that phase stresses of thermal origin further increase during elastic loading but decrease with increased plastic deformation. Grain-orientation-dependent stresses become significant in both austenite and ferrite after loading into the plastic region. After unloading from the plastic regime, a considerable intergranular stress remains in the austenitic phase and dominates over the phase stress. This study provides fundamental experimental inputs for future micromechanical modeling aiming at the evaluation and prediction of the mechanical performance of multiphase materials

  11. Preparation and characterization of Grain-Oriented Barium Titanate Ceramics Using Electrophoresis Deposition Method under A High Magnetic Field

    Kita, T; Kondo, S; Takei, T; Kumada, N; Nakashima, K; Fujii, I; Wada, S [Material Science and Technology, Interdisciplinary Graduate School of Medical and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510 (Japan); Suzuki, T S; Uchikoshi, T; Sakka, Y [National Institute for materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Miwa, Y; Kawada, S; Kimura, M, E-mail: swada@yamanashi.ac.jp [Murata Manufacturing Co., Ltd. 2288 Ooshinohara, Yasu, Shiga 520-2393 (Japan)

    2011-10-29

    Barium titanate (BaTiO{sub 3}) grain-oriented ceramics were prepared using electrophoresis deposition (EPD) method under high magnetic field of 12 T. First, BaTiO{sub 3} nanoparticles with high c/a ratio of 1.008 and size of 84 nm were prepared by two-step thermal decomposition method with barium titanyl oxalate nanoparticles. Using the BaTiO{sub 3} slurry, BaTiO{sub 3} nanoparticle accumulations were prepared by EPD method under high magnetic field. After binder burnout, the accumulations were sintered and BaTiO{sub 3} grain-oriented ceramics were prepared. Moreover, dielectric properties of their ceramics were investigated

  12. Thin resolver using the easy magnetization axis of the grain-oriented silicon steel as an angle indicator

    Jisho Oshino

    2017-05-01

    Full Text Available A new type of thin resolver is presented, in which the easy axis of the magnetic anisotropy in the grain-oriented silicon steel is used as an angle indicator. The total thickness including a rotor, PCB coils and a back yoke can be made less than 4 mm. With a rotor of 50 mm diameter, a good linear response (non-linearity error < 0.4% between the mechanical angle input and the electrical angle output has been obtained. The influence of a weak magnetic anisotropy in the non-grain-oriented silicon steel used for the back yoke on the accuracy of the resolver can be deleted by the method proposed in this paper.

  13. CREATION OF EXPORT-ORIENTED NETWORK OF GRAIN ELEVATORS IN UKRAINE

    D. M. Kozachenko

    2017-04-01

    Full Text Available Purpose. The scientific paper highlights improving the efficiency of export rail transportation of grain cargoes in Ukraine by introducing shipper routing and concentration of loading at the terminal grain elevators. Methodology. According to the experience of the USA and Canada, one of the most effective ways to reduce costs in the grain to-port supply chain is a shipper routing of the rail traffic. Shipper routing for transportation of grain cargoes involves the concentration of their loading on the multiple junctions. The junctions are proposed to be selected with the use of cluster analysis methods. For the formation of the grain loading concentration areas the authors used methods of set theory and multi-criteria optimization. Findings. Based on agglomerative cluster analysis algorithm, the junctions on a network of Ukrainian railways are selected and the areas of possible concentration of grain loading are formed. DSU-algorithm allowed distinguishing the overlapping and non-overlapping areas of concentration. The problem of selecting non-overlapping areas of the grain loading concentration is formalized as the problem of multiobjective integer programming with boolean variables. The solution of this problem by a modified simplex algorithm allows selecting on the railway network of Ukraine 24 districts of possible grain loading concentration, which cover 70 stations and at minimal additional cost provide routing of about 7.5 million tons of grain per year. Originality. The originality of the work lies in the fact that the authors developed the mathematical procedure for selection of junctions and concentration areas of grain loading at the Ukrainian railway network, taking into account the economic efficiency of the process. Practicalvalue. Application of the developed method of grain loading concentration for the formation of unit trains will significantly reduce the logistics costs in the supply chain of grain to Ukrainian ports for

  14. A novel ultra-low carbon grain oriented silicon steel produced by twin-roll strip casting

    Wang, Yang, E-mail: wy069024019@163.com [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Zhang, Yuan-Xiang; Lu, Xiang; Fang, Feng; Xu, Yun-Bo; Cao, Guang-Ming; Li, Cheng-Gang [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Misra, R.D.K. [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, TX 79968 (United States); Wang, Guo-Dong [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China)

    2016-12-01

    A novel ultra-low carbon grain oriented silicon steel was successfully produced by strip casting and two-stage cold rolling method. The microstructure, texture and precipitate evolution under different first cold rolling reduction were investigated. It was shown that the as-cast strip was mainly composed of equiaxed grains and characterized by very weak Goss texture ({110}<001>) and λ-fiber (<001>//ND). The coarse sulfides of size ~100 nm were precipitated at grain boundaries during strip casting, while nitrides remained in solution in the as-cast strip and the fine AlN particles of size ~20–50 nm, which were used as grain growth inhibitors, were formed in intermediate annealed sheet after first cold rolling. In addition, the suitable Goss nuclei for secondary recrystallization were also formed during intermediate annealing, which is totally different from the conventional process that the Goss nuclei originated in the subsurface layer of the hot rolled sheet. Furthermore, the number of AlN inhibitors and the intensity of desirable Goss texture increased with increasing first cold rolling reduction. After secondary recrystallization annealing, very large grains of size ~10–40 mm were formed and the final magnetic induction, B{sub 8}, was as high as 1.9 T. - Highlights: • A novel chemical composition base on strip casting silicon steel was proposed. • The ultra-low carbon design could shorten the processing routes. • The novel composition and processes were beneficial to obtain more inhibitors. • The magnetic induction of grain oriented silicon steel was significantly improved.

  15. Precipitation of grain boundary α in a laser deposited compositionally graded Ti-8Al-xV alloy - an orientation microscopy study

    Banerjee, R.; Bhattacharyya, D.; Collins, P.C.; Viswanathan, G.B.; Fraser, H.L.

    2004-01-01

    A graded ternary Ti-8Al-xV alloy (all compositions in wt%) has been deposited using the laser engineered net-shaping (LENS TM ) process. A compositional gradient in the alloy, from binary Ti-8Al to Ti-8Al-20V, has been achieved within a length of ∼25 mm. The feedstock used for depositing the graded alloy consisted of elemental Ti, Al, and V powders. Due to the columnar growth morphology of the β grains in these LENS TM deposited Ti alloys, the same prior β grain boundary often extends across lengths ∼10 mm. Using orientation microscopy techniques in a scanning electron microscope, the crystallography of precipitation of grain boundary α across the same boundary with changing composition has been investigated in detail. It was observed that while most grain boundary α precipitates maintain a Burgers or near-Burgers orientation relationship with only one of the β grains, a few of these precipitates develop a Burgers orientation relationship with the other β grain. In some rare instances, the grain boundary α did not develop a Burgers or near-Burgers orientation relationship with either β grains. Interestingly, in many cases while the grain boundary α maintained Burgers relationship with one of the β grains, precipitates of two different variants decorated the boundary, in a near-alternate fashion

  16. Magnetic field and temperature dependence of flux creep in oriented grained and single-crystalline YBa2Cu3Ox

    Keller, C.; Kuepfer, H.; Gurevich, A.; Meier-Hirmer, R.; Wolf, T.; Fluekiger, R.; Selvamanickam, V.; Salama, K.

    1990-01-01

    Thermally activated flux creep of oriented grained and single-crystalline YBa 2 Cu 3 O x was studied in fields up to 12 T and at temperatures ranging between 4 and 90 K. In fixed fields the activation energy U 0 of both samples was found to increase with temperature, pass through some maximum and drop to the order of k B T around the irreversibility line. While at constant temperature U 0 of the oriented grained sample showed a monotonous decrease with field; in the case of the single crystal it was found to follow a characteristic minimum-maximum structure paralleled by the previously observed field dependence of the shielding current. This clearly demonstrates the influence of the coupling properties, i.e., bulk behavior of the oriented grained sample and granularity of the single crystal, on relaxation. Therefore, models exclusively based either on a pinning or on a junction approach alone could not describe our experimental findings. A more appropriate explanation is based on the properties of the defect structure. Depending on field and temperature, defective regions are driven into the normal state whereby additional pinning centers are created which in turn give rise to increasing activation energies. The connectivity of the sample then depends on size and density of these defects

  17. Influence of grain size and additions of Al and Mn on the magnetic properties of non-oriented electrical steels with 3 wt. (% Si

    Rodrigo Felix de Araujo Cardoso

    2008-03-01

    Full Text Available The influence of hot-band grain size and additions of aluminum and manganese on the magnetic properties of non-oriented grain (NOG low-carbon electrical steel with about 3 wt. (% Si were investigated using optical microscopy and X ray diffraction. The addition of manganese resulted in larger grains after final annealing. Coarse grains in the hot-band and addition of Mn led to a Goss orientation component after final annealing, which resulted in an increase in the magnetic permeability.

  18. Effect of non-metallic precipitates and grain size on core loss of non-oriented electrical silicon steels

    Wang, Jiayi; Ren, Qiang; Luo, Yan; Zhang, Lifeng

    2018-04-01

    In the current study, the number density and size of non-metallic precipitates and the size of grains on the core loss of the 50W800 non-oriented electrical silicon steel sheets were investigated. The number density and size of precipitates and grains were statistically analyzed using an automatic scanning electron microscope (ASPEX) and an optical microscope. Hypothesis models were established to reveal the physical feature for the function of grain size and precipitates on the core loss of the steel. Most precipitates in the steel were AlN particles smaller than 1 μm so that were detrimental to the core loss of the steel. These finer AlN particles distributed on the surface of the steel sheet. The relationship between the number density of precipitates (x in number/mm2 steel area) and the core loss (P1.5/50 in W/kg) was regressed as P1.5/50 = 4.150 + 0.002 x. The average grain size was approximately 25-35 μm. The relationship between the core loss and grain size (d in μm) was P1.5/50 = 3.851 + 20.001 d-1 + 60.000 d-2.

  19. Effect of deformation mode and grain orientation on misorientation development in a body-centered cubic steel

    Kang, J.-Y.; Bacroix, B.; Regle, H.; Oh, K.H.; Lee, H.-C.

    2007-01-01

    Strain-induced misorientation development was studied in an IF steel as a function of strain for two deformation modes, plane strain compression and simple shear. Using electron back-scattered diffraction, orientation maps of 'large' areas were obtained, from which several individual grains associated with the principal texture components could be extracted so that only intragranular misorientations could be estimated for these orientations. It was observed that the increase of the misorientation angle was more prominent in simple shear than in plane strain compression and that the orientation influence was different for each mode. Considering texture evolution as a possible source of misorientation development, the lattice spin tensor was estimated with the Taylor model for the two deformation modes; both reorientation axis and angle were compared with misorientation angle and axis. The striking concordance of both quantities allows us to conclude that there is a direct contribution of texture evolution to misorientation accumulation with strain

  20. On the orientation dependent grain boundary migration in an Fe-6at.%Si alloy

    Lejcek, P.; Adamek, J.

    1995-01-01

    The [100]symmetrical tilt grain boundaries in an Fe-6at.%Si alloy were found to exhibit as pronounced anisotropy of activation enthalpy of migration characterized by its high values for special boundaries as compared to general ones. This rather surprising posing three main contributions to the migration enthalpy: intrinsic migration enthalpy, migration enthalpy resulting from grain boundary segregation, and migration enthalpy resulting from alloy mixing. It is shown that the differences in migration enthalpy of special and general grain boundaries in a concentrated alloy reflect the prevailing character of the intrinsic migration enthalpy over the weakened segregation effects. (orig.)

  1. Comparison between measured and computed magnetic flux density distribution of simulated transformer core joints assembled from grain-oriented and non-oriented electrical steel

    Hamid Shahrouzi

    2018-04-01

    Full Text Available The flux distribution in an overlapped linear joint constructed in the central region of an Epstein Square was studied experimentally and results compared with those obtained using a computational magnetic field solver. High permeability grain-oriented (GO and low permeability non-oriented (NO electrical steels were compared at a nominal core flux density of 1.60 T at 50 Hz. It was found that the experimental results only agreed well at flux densities at which the reluctance of different paths of the flux are similar. Also it was revealed that the flux becomes more uniform when the working point of the electrical steel is close to the knee point of the B-H curve of the steel.

  2. Influence of welding passes on grain orientation – The example of a multi-pass V-weld

    Ye, Jing; Moysan, Joseph; Song, Sung-Jin; Kim, Hak-Joon; Chassignole, Bertrand; Gueudré, Cécile; Dupond, Olivier

    2012-01-01

    The accurate modelling of grain orientations in a weld is important, when accurate ultrasonic test predictions of a welded assembly are needed. To achieve this objective, Electricité de France (EDF) and the Laboratoire de Caractérisation Non Destructive (LCND) have developed a dedicated code, which makes use of information recorded in the welding procedure. Among the welding parameters recorded, although the order in which the welding passes are made is of primary importance in the welding process, this information is not always well known or accurately described. In the present paper we analyse in greater detail the influence of the order of welding passes, using data obtained from the Centre for Advanced Non Destructive Evaluation (CANDE), derived from a dissimilar metal weld (DMW) with buttering. Comparisons are made using grain orientation measurements on a macrograph. - Highlights: ► Influence of welding process on grain structure is studied using the MINA model. ► For the first time the importance of a slight slope of the layers is evaluated. ► Two orders of passes are compared for the modelling approach. ► A major effect is observed due to a change in the order of passes.

  3. Measurement of magnetic properties of grain-oriented silicon steel using round rotational single sheet tester (RRSST)

    Gorican, Viktor; Hamler, Anton; Jesenik, Marko; Stumberger, Bojan; Trlep, Mladen

    2004-01-01

    The magnetic properties of grain-oriented material under rotational magnetic flux condition were measured, using two different pairs of B coils with different angle with respect to the rolling direction. It is known that induced voltages in two perpendicularly positioned B coils do not represent the actual amplitude and the angular speed of vector B in the measuring region. Consequently, the control of the induced voltages in the B coils at different positions means that the sample is measured under different magnetic flux condition. This leads to a difference between the results of vector H and the rotational loss

  4. Movement and Orientation Decision Modeling of Rhyzopertha dominica (Coleoptera: Bostrichidae) in the Grain Mass.

    Cordeiro, Erick M G; Campbell, James F; Phillips, Thomas W

    2016-04-01

    Grain stored in bins is initially a relatively homogenous resource patch for stored-product insects, but over time, spatial pattern in insect distribution can form, due in part to insect movement patterns. However, the factors that influence stored-product insect movement patterns in grain are not well-understood. This research focused on the movement of the lesser grain borer, Rhyzopertha dominica (F.), within a simulated wheat grain mass (vertical monolayer of wheat) and the identification of factors that contribute to overall and upward movement (age since adult emergence from an infested kernel [1, 7, and 14 d], sex, strain, and different levels of environment quality). We also used the model selection approach to select the most relevant factors and determine the relationships among them. Three-week-old adults tended to stay closer to the surface compared with 1- or 2-wk-old insects. Also, females tended to be more active and to explore a larger area compared with males. Explored area and daily displacement were also significantly strain-dependent, and increasing grain infestation level decreased daily displacement and explored area. Variation in movement pattern is likely to influence the formation of spatial pattern and affect probability to disperse. Understanding movement behavior within a grain bin is crucial to designing better strategies to implement and interpret monitoring programs and to target control tactics. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.

  5. Reconstruction of Single-Grain Orientation Distribution Functions for Crystalline Materials

    Hansen, Per Christian; Sørensen, Henning Osholm; Sükösd, Zsuzsanna

    2009-01-01

    for individual grains of the material in consideration. We study two iterative large-scale reconstruction algorithms, the algebraic reconstruction technique (ART) and conjugate gradients for least squares (CGLS), and demonstrate that right preconditioning is necessary in both algorithms to provide satisfactory...

  6. Differentiation of grain orientation with corrosive and colour etching on a granular bainitic steel.

    Reisinger, S; Ressel, G; Eck, S; Marsoner, S

    2017-08-01

    This study presents a detailed verification of the etching methods with Nital and Klemm on a granular bainitic steel. It is shown that both methods allow the identification of the crystal orientation, whereas Klemm etching enables also a quantification of the apparent phases, as also retained austenite can be distinguished from the other bainitic microstructures. A combination of atom probe tomography with electron-back-scattered-diffraction showed that both etching methods emphasize the bainitic {100} crystal orientation. However, a cross-section produced by focused ion beam evidenced that Klemm etching leads to the formation of a topography of the different oriented bainitic crystals that directly affects the thickness and therefore the apparent colour of the deposited layer formed during etching. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Evolution of microstructure, texture and inhibitor along the processing route for grain-oriented electrical steels using strip casting

    Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China); Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625, Jiangsu (China); Yao, Sheng-Jie [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, 264209 (China); Sun, Yu; Gao, Fei; Song, Hong-Yu; Liu, Guo-Huai [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China); Li, Lei; Geng, Dian-Qiao [Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Liu, Zhen-Yu; Wang, Guo-Dong [State Key Laboratory of Rolling and Automation, Northeastern University, P.O. Box 105, Shenyang 110819 (China)

    2015-08-15

    In the present work, a regular grade GO sheet was produced successively by strip casting, hot rolling, normalizing annealing, two-stage cold rolling with intermediate annealing, primary recrystallization annealing, secondary recrystallization annealing and purification. The aim of this paper was to characterize the evolution of microstructure, texture and inhibitor along the new processing route by comprehensive utilization of optical microscopy, X-ray diffraction and transmission electron microscopy. It was found that a fine microstructure with the ferrite grain size range of 7–12 μm could be obtained in the primary recrystallization annealed sheet though a very coarse microstructure was produced in the initial as-cast strip. The main finding was that the “texture memory” effect on Goss texture started on the through-thickness intermediate annealed strip after first cold rolling, which was not similar to the “texture memory” effect on Goss texture starting on the surface layers of the hot rolled strip in the conventional production route. As a result, the origin of Goss nuclei capable of secondary recrystallization lied in the grains already presented in Goss orientation in the intermediate annealed strip after first cold rolling. Another finding was that fine and dispersive inhibitors (mainly AlN) were easy to be produced in the primary recrystallization microstructure due to the initial rapid solidification during strip casting and the subsequent rapid cooling, and the very high temperature reheating usually used before hot rolling in the conventional production route could be avoided. - Highlights: • A regular grade grain-oriented electrical steel was produced. • Evolution of microstructure, texture and inhibitor was characterized. • Origin of Goss nuclei lied in the intermediate annealed strip. • A fine primary recrystallization microstructure could be produced. • Effective inhibitors were easy to be obtained in the new processing route.

  8. A fine-grained, customizable debugger for aspect-oriented programming

    Yin, Haihan; Leavens, G.T.; Chiba, S.; Bockisch, Christoph; Aksit, Mehmet; Tanter, E.

    2013-01-01

    To increase modularity, many aspect-oriented programming languages provide a mechanism based on implicit invocation: An aspect can influence runtime behavior of other modules without the need that these modules refer to the aspect. Recent studies show that a significant part of reported bugs in

  9. Effects of crystal structure and grain orientation on the roughness of deformed polycrystalline metals

    Wouters, Onne; Vellinga, WP; van Tijum, Redmer; De Hosson, JTM

    Surface roughening during tensile deformation of polycrystalline aluminum, iron and zinc is investigated using white light confocal microscopy and orientation imaging microscopy. A height-height correlation technique is used to analyze the data. The surface obeys self-affine scaling on length scales

  10. Selective Electron Beam Manufacturing of Ti-6Al-4V Strips: Effect of Build Orientation, Columnar Grain Orientation, and Hot Isostatic Pressing on Tensile Properties

    Wang, J.; Tang, H. P.; Yang, K.; Liu, N.; Jia, L.; Qian, M.

    2018-03-01

    Many novel designs for additive manufacturing (AM) contain thin-walled (≤ 3 mm) sections in different orientations. Selective electron beam melting (SEBM) is particularly suited to AM of such thin-walled titanium components because of its high preheating temperature and high vacuum. However, experimental data on SEBM of Ti-6Al-4V thin sections remains scarce because of the difficulty and high cost of producing long, thin and smooth strip tensile specimens (see Fig. 1). In this study, 80 SEBM Ti-6Al-4V strips (180 mm long, 42 mm wide, 3 mm thick) were built both vertically (V-strips) and horizontally (H-strips). Their density, microstructure and tensile properties were investigated. The V-strips showed clearly higher tensile strengths but lower elongation than the H-strips. Hot isostatic pressing (HIP) produced the same lamellar α-β microstructures in terms of the average α-lath thickness in both types of strips. The retained prior-β columnar grain boundaries after HIP showed no measurable influence on the tensile properties, irrespective of their length and orientation, because of the formation of randomly distributed fine α-laths.[Figure not available: see fulltext.

  11. Influence of MgO containing strontium on the structure of ceramic film formed on grain oriented silicon steel surface

    Daniela C. Leite Vasconcelos

    1999-07-01

    Full Text Available The oxide layer formed on the surface of a grain oriented silicon steel was characterized by SEM and EDS. 3% Si steel substrates were coated by two types of slurries: one formed by MgO and water and other formed by MgO, water and SrSO4. The ceramic films were evaluated by SEM, EDS and X-ray diffraction. Depth profiles of Fe, Si and Mg were obtained by GDS. The magnetic core losses (at 1.7 Tesla, 60 Hz of the coated steel samples were evaluated as well. The use of MgO containing strontium reduced the volume fraction of forsterite particles beneath the outermost ceramic layer. It was observed a reduced magnetic core loss with the use of the slurry with MgO containing strontium.

  12. Microstructure and crystallographic preferred orientation of polycrystalline microgarnet aggregates developed during progressive creep, recovery, and grain boundary sliding

    Massey, M.A.; Prior, D.J.; Moecher, D.P.

    2011-01-01

    Optical microscopy, electron probe microanalysis, and electron backscatter diffraction methods have been used to examine a broad range of garnet microstructures within a high strain zone that marks the western margin of a major transpression zone in the southern New England Appalachians. Garnet accommodated variable states of finite strain, expressed as low strain porphyroclasts (Type 1), high strain polycrystalline aggregates (Type 2), and transitional morphologies (Type 3) that range between these end members. Type 1 behaved as rigid porphyroclasts and is characterized by four concentric Ca growth zones. Type 2 help define foliation and lineation, are characterized by three Ca zones, and possess a consistent bulk crystallographic preferred orientation of (100) symmetrical to the tectonic fabric. Type 3 show variable degrees of porphyroclast associated with aggregate, where porphyroclasts display complex compositional zoning that corresponds to lattice distortion, low-angle boundaries, and subgrains, and aggregate CPO mimics porphyroclast orientation. All aggregates accommodated a significant proportion of greenschist facies deformation through grain boundary sliding, grain rotation and impingement, and pressure solution, which lead to a cohesive behavior and overall strain hardening of the aggregates. The characteristic CPO could not have been developed in this manner, and was the result of an older phase of partitioned amphibolite facies dislocation creep, recovery including chemical segregation, and recrystallization of porphyroclasts. This study demonstrates the significance of strain accommodation within garnet and its affect on composition under a range of PT conditions, and emphasizes the importance of utilizing EBSD methods with studies that rely upon a sound understanding of garnet. ?? 2010 Elsevier Ltd.

  13. Mechanical properties and deformation mechanism of Mg-Al-Zn alloy with gradient microstructure in grain size and orientation

    Chen, Liu; Yuan, Fuping; Jiang, Ping; Xie, Jijia; Wu, Xiaolei, E-mail: xlwu@imech.ac.cn

    2017-05-10

    The surface mechanical attrition treatment was taken to fabricate the gradient structure in AZ31 magnesium alloy sheet. Microstructural investigations demonstrate the formation of dual gradients with respect to grain size and orientation, where the microstructural sizes decreased from several microns to about 200 nm from center area to treated surface, while the c-axis gradually inclined from being vertical to treated plane towards parallel with it. According to tensile results, the gradient structured sample has yield strength of 305 MPa in average, which is increased by about 4 times when compared with its coarse-grained counterpart. Meanwhile, contrary to quickly failure after necking in most traditional magnesium alloys, the failure process of gradient structure appears more gently, which makes it has 6.5% uniform elongation but 11.5% total elongation. The further comparative tensile tests for separated gradient layers and corresponding cores demonstrate that the gradient structured sample has higher elongation either in uniform or in post-uniform stages. In order to elucidate the relationship between mechanical properties and deformation mechanisms for this dual gradient structure, the repeated stress relaxation tests and pole figure examinations via X-ray diffraction were conducted in constituent gradient layer and corresponding core, as well as gradient structured sample. The results show that the pyramidal dislocations in dual gradient structure are activated through the whole thickness of sample. Together with the contribution of grain-size gradient, more dislocations are activated in dual gradient structure under tensile loading, which results in stronger strain hardening and hence higher tensile ductility.

  14. Mechanical properties and deformation mechanism of Mg-Al-Zn alloy with gradient microstructure in grain size and orientation

    Chen, Liu; Yuan, Fuping; Jiang, Ping; Xie, Jijia; Wu, Xiaolei

    2017-01-01

    The surface mechanical attrition treatment was taken to fabricate the gradient structure in AZ31 magnesium alloy sheet. Microstructural investigations demonstrate the formation of dual gradients with respect to grain size and orientation, where the microstructural sizes decreased from several microns to about 200 nm from center area to treated surface, while the c-axis gradually inclined from being vertical to treated plane towards parallel with it. According to tensile results, the gradient structured sample has yield strength of 305 MPa in average, which is increased by about 4 times when compared with its coarse-grained counterpart. Meanwhile, contrary to quickly failure after necking in most traditional magnesium alloys, the failure process of gradient structure appears more gently, which makes it has 6.5% uniform elongation but 11.5% total elongation. The further comparative tensile tests for separated gradient layers and corresponding cores demonstrate that the gradient structured sample has higher elongation either in uniform or in post-uniform stages. In order to elucidate the relationship between mechanical properties and deformation mechanisms for this dual gradient structure, the repeated stress relaxation tests and pole figure examinations via X-ray diffraction were conducted in constituent gradient layer and corresponding core, as well as gradient structured sample. The results show that the pyramidal dislocations in dual gradient structure are activated through the whole thickness of sample. Together with the contribution of grain-size gradient, more dislocations are activated in dual gradient structure under tensile loading, which results in stronger strain hardening and hence higher tensile ductility.

  15. Effect of texture and grain size on magnetic flux density and core loss in non-oriented electrical steel containing 3.15% Si

    Lee, K.M.; Park, S.Y. [Department of Materials Science and Engineering, Korea University, 5-1, Anam-dong, Sungbuk-Gu, Seoul 136-701 (Korea, Republic of); Huh, M.Y., E-mail: myhuh@korea.ac.kr [Department of Materials Science and Engineering, Korea University, 5-1, Anam-dong, Sungbuk-Gu, Seoul 136-701 (Korea, Republic of); Kim, J.S. [Electrical Steel Sheet Research Group, Technical Research Laboratories, POSCO, Goedong-dong, Pohang (Korea, Republic of); Engler, O. [Hydro Aluminium Rolled Products GmbH, R and D Center Bonn, P.O. Box 2468, D-53014 Bonn (Germany)

    2014-03-15

    In an attempt to differentiate the impact of grain size and crystallographic texture on magnetic properties of non-oriented (NO) electrical steel sheets, samples with different grain sizes and textures were produced and analyzed regarding magnetic flux density B and core loss W. The textures of the NO electrical steel samples could be precisely quantified with the help of elliptical Gaussian distributions. In samples with identical textures, small grain sizes resulted in about 15% higher core loss W than larger grains, whereas grain size only moderately affected the magnetic flux density B. In samples having nearly the same grain size, a correlation of the magneto-crystalline anisotropic properties of B and W with texture was obtained via the anisotropy parameter A(h{sup →}). With increasing A(h{sup →}) a linear decrease of B and a linear increase of W were observed. - Highlights: • We produced electrical steel sheets having different grain size and texture. • Magnetic flux density B and core loss W were varied with grain size and texture. • Correlation of B and W with texture was established via anisotropy parameter A(h{sup →}). • With increasing A(h{sup →}) a linear decrease of B and a linear increase of W were observed. • Grain size mainly affected W with only minor impact on B.

  16. Influence of specimen size and grain orientation to the life of a polycrystalline Ni-base alloy at LCF stress

    Seibel, Thomas

    2014-01-01

    In the present work the LCF (Low Cycle Fatigue) crack initiation life of the conventionally cast Ni-base alloy RENE 80 was analyzed as a function of specimen size and grain orientation. Five specimen geometries with distinctly different gauge sections were used: 3 geometries with cylindrical gauge section (G1-G3) and two notched geometries with a stress concentration factor of α 1 = 1,62 (KG1) and α 2 = 2,60 (KG2), resulting in a maximum difference of the damage relevant surface area up to a factor of approximately 72. Correction factors were determined by FEM calculations for all specimen geometries with highly reduced gauge sections where direct strain measurement was not possible. Additionally a uniform failure criterion with a relatively small crack size of 0,962 mm 2 was defined. Totally, 116 isothermal LCF tests were carried out at the different specimen types at a temperature of 850 C in total strain control with a load ratio (minimum strain / maximum strain) of R ε = -1. The load cycles were applied with triangular waveform at a frequency of 0.1 Hz for high strain amplitudes and 1 Hz for low strain amplitudes, respectively. After the LCF-Tests the fracture surfaces of all samples were analyzed in more detail by SEM to identify the crack initiation mechanisms as well as the crack initiation sites. In this context it could be shown, that fatigue cracks were generally initiated at slip bands in surface grains. Accordingly, the grain orientations at the crack initiation sites were measured by electron back scatter diffraction (EBSD) and the maximum shear stresses in the respective principal slip system (111) <110> was calculated using the Schmid approach. For this, longitudinal sections were be prepared exactly at the crack initiation sites of samples loaded with low strain amplitudes where clearly defined single crack initiation sites were observed. Afterwards the maximum shear stress in the principal slip system at the crack initiation site was correlated

  17. Effects by the microstructure after hot and cold rolling on the texture and grain size after final annealing of ferritic non-oriented FeSi electrical steel

    Schneider, J.; Stöcker, A.; Franke, A.; Kawalla, R.

    2018-04-01

    The magnetic properties of fully processed non-oriented FeSi electrical steel are characterized by their magnetization behavior and specific magnetic losses. The magnetic properties are determined by the texture and microstructure. Less gamma fiber intensity and a high intensity of preferable texture components, especially cube fiber texture, are desirable to obtain an excellent magnetizing behavior. Furthermore, large grain sizes are necessary to reach low values of the specific magnetic losses. The fabrication route of the fully processed non-oriented electrical steels comprises a heavy cold rolling of the hot rolled material before final annealing. To fulfill the requirements on large grain size for low loss materials, grain growth, which appears after complete recrystallization, plays an important role. In this paper we will analyze the influence of different microstructures of the hot strip and the resulting microstructure after cold rolling on the appearance of recrystallization and grain growth after final annealing. The evolution of texture reflects the present ongoing softening processes: recovery, recrystallization and finally grain growth at the given annealing conditions. It will be shown that the image of texture at recrystallization is remarkable different from the texture at grain growth. Substantially grain growth is obtained at lower annealing temperatures for an optimum microstructure of the hot rolled material.

  18. Effects by the microstructure after hot and cold rolling on the texture and grain size after final annealing of ferritic non-oriented FeSi electrical steel

    J. Schneider

    2018-04-01

    Full Text Available The magnetic properties of fully processed non-oriented FeSi electrical steel are characterized by their magnetization behavior and specific magnetic losses. The magnetic properties are determined by the texture and microstructure. Less gamma fiber intensity and a high intensity of preferable texture components, especially cube fiber texture, are desirable to obtain an excellent magnetizing behavior. Furthermore, large grain sizes are necessary to reach low values of the specific magnetic losses. The fabrication route of the fully processed non-oriented electrical steels comprises a heavy cold rolling of the hot rolled material before final annealing. To fulfill the requirements on large grain size for low loss materials, grain growth, which appears after complete recrystallization, plays an important role. In this paper we will analyze the influence of different microstructures of the hot strip and the resulting microstructure after cold rolling on the appearance of recrystallization and grain growth after final annealing. The evolution of texture reflects the present ongoing softening processes: recovery, recrystallization and finally grain growth at the given annealing conditions. It will be shown that the image of texture at recrystallization is remarkable different from the texture at grain growth. Substantially grain growth is obtained at lower annealing temperatures for an optimum microstructure of the hot rolled material.

  19. Influence of cold rolling direction on texture, inhibitor and magnetic properties in strip-cast grain-oriented 3% silicon steel

    Fang, F., E-mail: fangfengdbdx@163.com [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China); Lu, X.; Zhang, Y.X.; Wang, Y.; Jiao, H.T.; Cao, G.M.; Yuan, G.; Xu, Y.B. [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China); Misra, R.D.K. [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, EL Paso, TX 79968 (United States); Wang, G.D. [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China)

    2017-02-15

    An unconventional cold rolling scheme (inclined rolling at 0°, 30°, 45°, 90° during second-stage cold rolling process) was adopted to process grain-oriented silicon steel based on strip casting process. The influences of inclination angles on microstructure, texture, inhibitor and magnetic properties were studied by a combination of EBSD, XRD and TEM. It was found that the α-fiber texture was weakened and γ-fiber was strengthened in cold rolled sheet with increase in inclination angle. The primary recrystallization sheet exhibited more homogeneous microstructure with relatively strong γ-fiber, medium α-fiber texture, weak λ-fiber texture and Goss component at high inclination angles. Fine and homogeneous inhibitors were obtained after primary annealing with increase in inclination angle from 0° to 90° because of more uniform deformation after inclined rolling. The grain-oriented silicon steel experienced completely secondary recrystallization at various inclination angles after final annealing process, with superior magnetic properties at 0° and 90°. Furthermore, Goss nuclei capable of final secondary recrystallization in strip casting process newly formed both in-grain shear bands and grain boundaries region during second-stage cold rolling and subsequent annealing process, which is different from the well-accepted results that Goss texture originated from the subsurface layer of the hot rolled sheet or during intermediate annealing process. In addition, the Goss texture that nucleated in-grain shear bands was weaker but more accurate as compared to that in grain boundaries region. - Highlights: • Inclined cold rolling was adopted to process strip-cast grain-oriented silicon steel. • Influence of inclination angles on texture, inhibitor and magnetic properties was studied. • The initial texture was changed with respect to the inclination angle. • Homogeneous inhibitors were obtained after primary annealing at various inclination angles.

  20. Grain-orientation-dependent of γ–ε–α′ transformation and twinning in a super-high-strength, high ductility austenitic Mn-steel

    Eskandari, M., E-mail: m.eskandari@scu.ac.ir [Department of Materials Science & Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of); Zarei-Hanzaki, A. [Hot Deformation & Thermo-mechanical Processing of High Performance Engineering Materials, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Mohtadi-Bonab, M.A. [Department of Mechanical Engineering, University of Bonab, Velayat Highway (Iran, Islamic Republic of); Onuki, Y. [Frontier Research Center for Applied Atomic Sciences, Ibaraki University (Japan); Basu, R. [Department of Mechanical Engineering, ITM University, Gurgaon (India); Asghari, A. [Electrical and Computer Engineering Department, University of Texas at San Antonio, Texas (United States); Szpunar, J.A. [Advanced Materials for Clean Energy, Department of Mechanical Engineering, University of Saskatchewan (Canada)

    2016-09-30

    A newly developed, austenitic lightweight steel, containing a low-density element, Al, exhibits tensile elongation up to 50% as well as high ultimate-tensile stress (tensile fracture at 1800 MPa) without necking behavior. Electron backscatter diffraction analysis is carried out to investigate the orientation dependence of the martensitic transformation in tensile testing to 30% strain at 323 K (25 °C). A pronounced γ→ε→α′ transformation is observed in <111> and <110>∥TD (TD: tensile direction) γ-grains. The α′-transformation textures is analyzed. Large misorientation spreads is seen in the <100>∥TD γ-grains. Interestingly, twin-assisted martensitic transformation is detected in the <111>∥TD followed by the twin boundary directly moving to a γ/α′ phase boundary. These phenomena are related to a change of Schmid factor for different orientations of grains.

  1. Effect of asymmetric hot rolling on texture, microstructure and magnetic properties in a non-grain oriented electrical steel

    Chen, S., E-mail: Shangping.chen@tatasteel.com [Tata Steel, 1970 CA IJmuiden (Netherlands); Butler, J. [Tata Steel, S60 3AR South Yorkshire (United Kingdom); Melzer, S. [Tata Steel, 1970 CA IJmuiden (Netherlands)

    2014-11-15

    In this study, both asymmetric hot rolling (AHR) and conventional hot rolling (CHR) were carried out to study the effect of the hot rolling conditions on the evolution of the texture and microstructure in a non-grain oriented (NGO) steel. The microstructure and texture in the subsequent processing stages were characterised and related to the final magnetic properties. The results show that AHR, compared with CHR, tends to homogenise texture through thickness of the hot band strips. AHR results in a higher fraction of the θ-fibre ({0 0 1}) and a lower fraction of the γ-fibre ({1 1 1}) in the hot band strips, which are favourable features in relation to the magnetic properties of the strip. However, the favourable features observed in hot rolled AHR strips are eliminated after cold rolling and annealing. Contrarily, the required θ-fibre is decreased and the unwanted γ-fibre is intensified in the AHR sheet after cold rolling and their strength is maintained in the subsequent process steps. On the other hand, AHR does not produce a discernible change in the grain size in the hot band annealed strip and in the final annealed sheet, except that the magnetic anisotropy in the AHR is improved after skin pass and extra annealing as the result of the redistribution of the texture components within the θ-fibre, no significant improvement of the magnetic properties as a direct consequence of the application of asymmetric hot rolling has been observed under the current AHR experimental conditions. - Highlights: • Asymmetrical hot rolling (AHR) produces more uniform distribution of texture through the thickness of the hot rolled strips and of the hot band annealed strips when compared with conventional hot rolling (CHR). • AHR results in a higher fraction of the θ-fibre ({0 0 1}) and a lower fraction of the γ-fibre ({1 1 1}) in the hot band strips. The θ-fibre is decreased but the γ-fibre is intensified in the AHR sheet after cold rolling

  2. Effect of asymmetric hot rolling on texture, microstructure and magnetic properties in a non-grain oriented electrical steel

    Chen, S.; Butler, J.; Melzer, S.

    2014-01-01

    In this study, both asymmetric hot rolling (AHR) and conventional hot rolling (CHR) were carried out to study the effect of the hot rolling conditions on the evolution of the texture and microstructure in a non-grain oriented (NGO) steel. The microstructure and texture in the subsequent processing stages were characterised and related to the final magnetic properties. The results show that AHR, compared with CHR, tends to homogenise texture through thickness of the hot band strips. AHR results in a higher fraction of the θ-fibre ({0 0 1}) and a lower fraction of the γ-fibre ({1 1 1}) in the hot band strips, which are favourable features in relation to the magnetic properties of the strip. However, the favourable features observed in hot rolled AHR strips are eliminated after cold rolling and annealing. Contrarily, the required θ-fibre is decreased and the unwanted γ-fibre is intensified in the AHR sheet after cold rolling and their strength is maintained in the subsequent process steps. On the other hand, AHR does not produce a discernible change in the grain size in the hot band annealed strip and in the final annealed sheet, except that the magnetic anisotropy in the AHR is improved after skin pass and extra annealing as the result of the redistribution of the texture components within the θ-fibre, no significant improvement of the magnetic properties as a direct consequence of the application of asymmetric hot rolling has been observed under the current AHR experimental conditions. - Highlights: • Asymmetrical hot rolling (AHR) produces more uniform distribution of texture through the thickness of the hot rolled strips and of the hot band annealed strips when compared with conventional hot rolling (CHR). • AHR results in a higher fraction of the θ-fibre ({0 0 1}) and a lower fraction of the γ-fibre ({1 1 1}) in the hot band strips. The θ-fibre is decreased but the γ-fibre is intensified in the AHR sheet after cold rolling

  3. On Techniques to Characterize and Correlate Grain Size, Grain Boundary Orientation and the Strength of the SiC Layer of TRISO Coated Particles: A Preliminary Study

    I.J.van Rooyen; J.L. Dunzik Gougar; T. Trowbridge; Philip M van Rooyen

    2012-10-01

    The mechanical properties of the silicon carbide (SiC) layer of the TRi-ISOtropic (TRISO) coated particle (CP) for high temperature gas reactors (HTGR) are performance parameters that have not yet been standardized by the international HTR community. Presented in this paper are the results of characterizing coated particles to reveal the effect of annealing temperature (1000 to 2100°C) on the strength and grain size of unirradiated coated particles. This work was further expanded to include possible relationships between the grain size and strength values. The comparative results of two strength measurement techniques and grain size measured by the Lineal intercept method are included. Preliminary grain boundary characterization results determined by electron backscatter diffraction (EBSD) are included. These results are also important for future fission product transport studies, as grain boundary diffusion is identified as a possible mechanism by which 110mAg, one of the fission activation products, might be released through intact SiC layers. Temperature is a parameter known to influence the grain size of SiC and therefore it is important to investigate the effect of high temperature annealing on the SiC grain size. Recommendations and future work will also be briefly discussed.

  4. Electroless Co–P-Carbon Nanotube composite coating to enhance magnetic properties of grain-oriented electrical steel

    Goel, Vishu; Anderson, Philip; Hall, Jeremy; Robinson, Fiona; Bohm, Siva

    2016-01-01

    The effect of Co–P-CNT coating on the magnetic properties of grain oriented electrical steel was investigated. To analyse the coating, Raman spectroscopy, Superconducting QUantum Interference Device (SQUID), single strip testing, Scanning Electron Microscopy (SEM) and talysurf surface profilometry were performed. Raman spectra showed the D and G band which corroborates the presence of Multi-Walled Carbon Nanotubes (MWCNT) in the coating. The magnetic nature of the coating was confirmed by SQUID results. Power loss results show an improvement ranging 13–15% after coating with Co–P-CNT. The resistivity of the coating was measured to be 10 4 µΩ cm. Loss separation graphs were plotted before and after coating to study the improvement in power loss. It was found that the coating helps in reducing the hysteresis loss. The thickness of the coating was found to be 414±40 nm. The surface profilometry results showed that the surface roughness improved after coating the sample. - Highlights: • Co–P-CNT coating on Fe–3%Si steel was able to reduce the power loss by 13–15%. • Co–P-CNT coating reduced the surface roughness and enhanced the magnetic properties. • The decrease in coating thickness increased the stacking factor. • The stacking factor was further improved by the magnetic nature of the coating.

  5. CrAlN coating to enhance the power loss and magnetostriction in grain oriented electrical steel

    Vishu Goel

    2016-05-01

    Full Text Available Grain oriented electrical steels (GOES are coated with aluminium orthophosphate on top of a forsterite (Mg2SiO4 layer to provide stress and insulation resistance to reduce the power loss and magnetostriction. In this work Chromium Aluminium Nitride (CrAlN was coated on GOES samples with electron beam physical vapour deposition and was tested in the single strip and magnetostriction tester to measure the power loss and magnetostriction before and after coating. Power loss was reduced by 2% after coating and 6 % post annealing at 800 °C. For applied compressive stress of 6 MPa, the magnetostrictive strain was zero with the CrAlN coating as compared to 22 and 24 μϵ for fully finished GOES and GOES without phosphate coating. The thickness of the coating was found to be 1.9 ± 0.2 μm estimated with Glow Discharge Optical Emission Spectroscopy (GDOES. The magnetic domain imaging showed domain narrowing after coating. The reduction in power loss and magnetostriction was due to the large residual compressive stress and Young’s modulus (270 GPa of the coating.

  6. CrAlN coating to enhance the power loss and magnetostriction in grain oriented electrical steel

    Goel, Vishu; Anderson, Philip; Hall, Jeremy [Wolfson Centre for Magnetics, Cardiff University, Cardiff- CF243AA (United Kingdom); Robinson, Fiona [Cogent power Ltd., Newport-NP190RB (United Kingdom); Bohm, Siva [Dept. of metallurgical engineering & materials science, IIT Bombay, Mumbai-400076 (India)

    2016-05-15

    Grain oriented electrical steels (GOES) are coated with aluminium orthophosphate on top of a forsterite (Mg{sub 2}SiO{sub 4}) layer to provide stress and insulation resistance to reduce the power loss and magnetostriction. In this work Chromium Aluminium Nitride (CrAlN) was coated on GOES samples with electron beam physical vapour deposition and was tested in the single strip and magnetostriction tester to measure the power loss and magnetostriction before and after coating. Power loss was reduced by 2% after coating and 6 % post annealing at 800 °C. For applied compressive stress of 6 MPa, the magnetostrictive strain was zero with the CrAlN coating as compared to 22 and 24 μϵ for fully finished GOES and GOES without phosphate coating. The thickness of the coating was found to be 1.9 ± 0.2 μm estimated with Glow Discharge Optical Emission Spectroscopy (GDOES). The magnetic domain imaging showed domain narrowing after coating. The reduction in power loss and magnetostriction was due to the large residual compressive stress and Young’s modulus (270 GPa) of the coating.

  7. Orthogonal decomposition of core loss along rolling and transverse directions of non-grain oriented silicon steels

    Xuezhi Wan

    2017-05-01

    Full Text Available Rotational core loss of the silicon steel laminations are measured under elliptical rotating excitation. The core loss decomposition model is very important in magnetic core design, in which the decomposition coefficients are calculated through the measurement data. By using the transformation of trigonometric function, the elliptical rotational magnetic flux can be decomposed into two parts along two directions. It is assumed that the rotating core loss is the sum of alternating core losses along rolling and transverse directions. The magnetic strength vector H of non-grain oriented (NGO silicon steel 35WW270 along rolling and transverse directions is measured by a novel designed 3-D magnetic properties tester. Alternating core loss along the rolling, transverse directions and rotating core loss in the xoy-plane of this specimen in different frequencies such as 50 Hz, 100 Hz, and 200 Hz. Experimental results show that the core loss model is more accurate and useful to predict the total core loss.

  8. Electroless Co–P-Carbon Nanotube composite coating to enhance magnetic properties of grain-oriented electrical steel

    Goel, Vishu, E-mail: vishu.goel.nit@gmail.com [Wolfson Centre for Magnetics, Cardiff University, Cardiff CF243AA (United Kingdom); Anderson, Philip, E-mail: AndersonPI1@cf.ac.uk [Wolfson Centre for Magnetics, Cardiff University, Cardiff CF243AA (United Kingdom); Hall, Jeremy, E-mail: HallJP@cf.ac.uk [Wolfson Centre for Magnetics, Cardiff University, Cardiff CF243AA (United Kingdom); Robinson, Fiona, E-mail: fiona.cj.robinson@tatasteel.com [Cogent power Ltd., Newport NP19 0RB (United Kingdom); Bohm, Siva, E-mail: siva.bohm@tatasteel.com [IIT Bombay, Mumbai 400076 (India)

    2016-06-01

    The effect of Co–P-CNT coating on the magnetic properties of grain oriented electrical steel was investigated. To analyse the coating, Raman spectroscopy, Superconducting QUantum Interference Device (SQUID), single strip testing, Scanning Electron Microscopy (SEM) and talysurf surface profilometry were performed. Raman spectra showed the D and G band which corroborates the presence of Multi-Walled Carbon Nanotubes (MWCNT) in the coating. The magnetic nature of the coating was confirmed by SQUID results. Power loss results show an improvement ranging 13–15% after coating with Co–P-CNT. The resistivity of the coating was measured to be 10{sup 4} µΩ cm. Loss separation graphs were plotted before and after coating to study the improvement in power loss. It was found that the coating helps in reducing the hysteresis loss. The thickness of the coating was found to be 414±40 nm. The surface profilometry results showed that the surface roughness improved after coating the sample. - Highlights: • Co–P-CNT coating on Fe–3%Si steel was able to reduce the power loss by 13–15%. • Co–P-CNT coating reduced the surface roughness and enhanced the magnetic properties. • The decrease in coating thickness increased the stacking factor. • The stacking factor was further improved by the magnetic nature of the coating.

  9. In situ neutron diffraction study of grain-orientation-dependent phase transformation in 304L stainless steel at a cryogenic temperature

    Tao Kaixiang; Wall, James J.; Li, Hongqi; Brown, Donald W.; Vogel, Sven C.; Choo, Hahn

    2006-01-01

    In situ time-of-flight neutron diffraction was performed to investigate the martensitic phase transformation during quasistatic uniaxial compression testing of 304L stainless steel at 300 and 203 K. In situ neutron diffraction enabled the bulk measurement of intensity evolution for various hkl atomic planes during the austenite (fcc) to martensite (hcp and bcc) phase transformation. Based on the neutron diffraction patterns, the martensite phases were observed from the very beginning of the plastic deformation at 203 K. However, at 300 K, no newly formed martensite, except a small amount of preexisting hcp phase, was observed throughout the test. From the changes in the relative intensities of individual hkl atomic planes, the grain-orientation-dependent phase transformation was investigated. The preferred orientation of the newly formed martensite grains was also investigated for the sample deformed at 203 K using neutron diffraction. The results reveal the orientation relationships between the austenite and the newly formed martensites. The fcc grain family diffracting with (200) plane normal parallel to the loading axis is favored for the fcc to bcc transformation and the bcc (200) plane normals are primarily aligned along the loading direction. For the fcc to hcp transformation, the fcc grains with (111) plane normals at an angle in between about 10 deg. and 50 deg. to the loading direction are favored

  10. Microstructure and texture evolution of ultra-thin grain-oriented silicon steel sheet fabricated using strip casting and three-stage cold rolling method

    Song, Hong-Yu; Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn; Wang, Yin-Ping; Wang, Guo-Dong

    2017-03-15

    A 0.1 mm-thick grain-oriented silicon steel sheet was successfully produced using strip casting and three-stage cold rolling method. The microstructure, texture and inhibitor evolution during the processing was briefly analyzed. It was found that Goss texture was absent in the hot rolled sheet because of the lack of shear deformation. After normalizing, a large number of dispersed MnS precipitates with the size range of 15–90 nm were produced. During first cold rolling, dense shear bands were generated in the deformed ferrite grains, resulting in the intense Goss texture after first intermediate annealing. The microstructure was further refined and homogenized during the subsequent cold rolling and annealing processes. After primary recrystallization annealing, a homogeneous microstructure consisting of fine and equiaxed grains was produced while the associated texture was characterized by a strong γ-fiber texture. Finally, a complete secondary recrystallization microstructure consisting of entirely large Goss grains was produced. The magnetic induction B{sub 8} and iron loss P{sub 10/400} was 1.79 T and 6.9 W/kg, respectively. - Highlights: • Ultra-thin grain-oriented silicon steel was produced by strip casting process. • Microstructure, texture and inhibitor evolution was briefly investigated. • Goss texture was absent in primary recrystallization annealed sheet. • MnS precipitates with a size range of 15–90 nm formed after normalizing. • A complete secondary recrystallization microstructure was produced.

  11. Influence of initial heating during final high temperature annealing on the offset of primary and secondary recrystallization in Cu-bearing grain oriented electrical steels

    Rodriguez-Calvillo, P.; Leunis, E.; Van De Putte, T.; Jacobs, S.; Zacek, O.; Saikaly, W.

    2018-04-01

    The industrial production route of Grain Oriented Electrical Steels (GOES) is complex and fine-tuned for each grade. Its metallurgical process requires in all cases the abnormal grain growth (AGG) of the Goss orientation during the final high temperature annealing (HTA). The exact mechanism of AGG is not yet fully understood, but is controlled by the different inhibition systems, namely MnS, AlN and CuxS, their size and distribution, and the initial primary recrystallized grain size. Therefore, among other parameters, the initial heating stage during the HTA is crucial for the proper development of primary and secondary recrystallized microstructures. Cold rolled 0.3 mm Cu-bearing Grain Oriented Electrical Steel has been submitted to interrupted annealing experiments in a lab tubular furnace. Two different annealing cycles were applied:• Constant heating at 30°C/h up to 1000°C. Two step cycle with initial heating at 100°C/h up to 600°C, followed by 18 h soaking at 600°C and then heating at 30°C/h up to 1050°C. The materials are analyzed in terms of their magnetic properties, grain size, texture and precipitates. The characteristic magnetic properties are analyzed for the different extraction temperatures and Cycles. As the annealing was progressing, the coercivity values (Hc 1.7T [A/m]) decreased, showing two abrupt drops, which can be associated to the on-set of primary and secondary recrystallization. The primary recrystallized grain sizes and recrystallized fractions are fitted to a model using a non-isothermal approach. This analysis shows that, although the resulting grain sizes were similar, the kinetics for the two step annealing were faster due to the lower recovery. The on-set of secondary recrystallization was also shifted to higher temperatures in the case of the continuous heating cycle, which might end in different final grain sizes and final magnetic properties. In both samples, nearly all the observed precipitates are Al-Si-Mn nitrides

  12. Influence of initial heating during final high temperature annealing on the offset of primary and secondary recrystallization in Cu-bearing grain oriented electrical steels

    P. Rodriguez-Calvillo

    2018-04-01

    Full Text Available The industrial production route of Grain Oriented Electrical Steels (GOES is complex and fine-tuned for each grade. Its metallurgical process requires in all cases the abnormal grain growth (AGG of the Goss orientation during the final high temperature annealing (HTA. The exact mechanism of AGG is not yet fully understood, but is controlled by the different inhibition systems, namely MnS, AlN and CuxS, their size and distribution, and the initial primary recrystallized grain size. Therefore, among other parameters, the initial heating stage during the HTA is crucial for the proper development of primary and secondary recrystallized microstructures. Cold rolled 0.3 mm Cu-bearing Grain Oriented Electrical Steel has been submitted to interrupted annealing experiments in a lab tubular furnace. Two different annealing cycles were applied:• Constant heating at 30°C/h up to 1000°C. Two step cycle with initial heating at 100°C/h up to 600°C, followed by 18 h soaking at 600°C and then heating at 30°C/h up to 1050°C. The materials are analyzed in terms of their magnetic properties, grain size, texture and precipitates. The characteristic magnetic properties are analyzed for the different extraction temperatures and Cycles. As the annealing was progressing, the coercivity values (Hc 1.7T [A/m] decreased, showing two abrupt drops, which can be associated to the on-set of primary and secondary recrystallization. The primary recrystallized grain sizes and recrystallized fractions are fitted to a model using a non-isothermal approach. This analysis shows that, although the resulting grain sizes were similar, the kinetics for the two step annealing were faster due to the lower recovery. The on-set of secondary recrystallization was also shifted to higher temperatures in the case of the continuous heating cycle, which might end in different final grain sizes and final magnetic properties. In both samples, nearly all the observed precipitates are Al

  13. Normal modal preferential consequence

    Britz, K

    2012-12-01

    Full Text Available beyond the basic (propositional) KLM postulates, thereby making use of the additional expressivity provided by modal logic. In particular, we show that the additional constraints we impose on the preferential semantics ensure that the rule...

  14. Influence of grain orientation on evolution of surface features in fatigued polycrystalline copper: A comparison of thermal and uniaxial mechanical fatigue results

    Aicheler, Markus

    2010-01-01

    Surface state plays a major role in the crack nucleation process of pure metals in the High-Cycle-Fatigue (HCF) as well as in the Ultra-High-Cycle-Fatigue (UHCF) regime. Therefore, in studies dealing with HCF or UHCF, special attention is paid to the evolution of surface degradation during fatigue life. The accelerating structures of the future Compact Linear Collider (CLIC) under study at CERN will be submitted to a high number of thermal-mechanical fatigue cycles, arising from Radio Frequency (RF) induced eddy currents, causing local superficial cyclic heating. The number of cycles during the foreseen lifetime of CLIC reaches 2x10 11 . Fatigue may limit the lifetime of CLIC structures. In order to assess the effects of superficial fatigue, specific tests are defined and performed on polycrystalline Oxygen Free Electronic (OFE) grade Copper, a candidate material for the structures. Surface degradation depends on the orientation of near-surface grains. Copper samples thermally fatigued in two different fatigue experiments, pulsed laser and pulsed RF-heating, underwent postmortem Electron Backscattered Diffraction measurements. Samples fatigued by pulsed laser show the same trend in the orientation-fatigue damage behavior as samples fatigued by pulsed RF-heating. It is clearly observed that surface grains, oriented [1 1 1] with respect to the surface, show significantly more damage than surface grains oriented [1 0 0]. Results arising from a third fatigue experiment, the ultrasound (US) swinger, are compared to the results of the mentioned experiments. The US swinger is an uniaxial mechanical fatigue test enabling to apply within several days a total number of cycles representative of the life of the CLIC structures, thanks to a high repetition rate of 24 kHz. For comparison, laser fatigue experiments have much lower repetition rates. The dependence of surface degradation on grain orientation of samples tested by the US swinger was monitored during the fatigue life

  15. The production of grain oriented lanthanum titanate (La2Ti2O7) ceramics by uniaxial hot-forging process for improved fracture toughness

    Ceylan, Ali

    2008-01-01

    The layered-structural ceramics, such as lanthanum titanate (La 2 Ti 2 O 7 ), have been known for their good electrical and optical properties at high frequencies and temperatures. However, few studies have been conducted on the mechanical properties of these ceramics. The interest in ceramic hot-forging (HF) has been greatly increased recently due to the enhancement in fracture toughness via bridging effect of oriented grains. In this study, grain oriented lanthanum titanate was produced by the hot-forging process. The characterizations of the samples were achieved by density measurement, scanning electron microscopy (SEM), optical microscopy, X-ray diffraction (XRD), Vickers indentation and three-point bending test. According to X-ray diffraction patterns, the orientation factor (f) was found to be 0.73 for certain hot-forging conditions resulting an improved fracture toughness. The improved fracture toughness of La 2 Ti 2 O 7 (3.2 MPa m 1/2 ) reached to the value of monolithic alumina (Al 2 O 3 ) between 3 and 4 MPa m 1/2

  16. Preferential role restrictions

    Britz, K

    2013-07-01

    Full Text Available ., Pozzato, G.: ALC+T : a preferential exten- sion of description logics. Fundamenta Informaticae 96(3), 341–372 (2009) 15. Giordano, L., Olivetti, N., Gliozzi, V., Pozzato, G.: A minimal model semantics for nonmonotonic reasoning. In: Proc. JELIA. pp. 228...

  17. Preferential Affirmative Action.

    Bell, Derrick A., Jr.

    1982-01-01

    Discusses the philosophical rationale for preferential affirmative action presented by Daniel C. Maguire in "A New American Justice." Maintains that self-interest bars present society's acceptance of Maguire's theories of justice, as demonstrated in negative reactions to the Harvard Law Review's affirmative action plan. (MJL)

  18. Effect of Grain Orientation and Boundary Distributions on Hydrogen-Induced Cracking in Low-Carbon-Content Steels

    Masoumi, Mohammad; Coelho, Hana Livia Frota; Tavares, Sérgio Souto Maior; Silva, Cleiton Carvalho; de Abreu, Hamilton Ferreira Gomes

    2017-08-01

    Hydrogen-induced cracking (HIC) causes considerable economic losses in a wide range of steels exposed to corrosive environments. The effect of crystallographic texture and grain boundary distributions tailored by rolling at 850 °C in three different steels with a body-centered cube structure was investigated on HIC resistance. The x-ray and electron backscattered diffraction techniques were used to characterize texture evolutions during the rolling process. The findings revealed a significant improvement against HIC based on texture engineering. In addition, increasing the number of {111} and {110} grains, associated with minimizing the number of {001} grains in warm-rolled samples, reduced HIC susceptibility. Moreover, the results showed that boundaries associated with low {hkl} indexing and denser packing planes had more resistance against crack propagation.

  19. Dielectric, piezoelectric, and ferroelectric properties of grain-orientated Bi3.25La0.75Ti3O12 ceramics

    Liu Jing; Shen Zhijian; Yan Haixue; Reece, Michael J.; Kan Yanmei; Wang Peiling

    2007-01-01

    By dynamic forging during Spark Plasma Sintering (SPS), grain-orientated ferroelectric Bi 3.25 La 0.75 Ti 3 O 12 (BLT) ceramics were prepared. Their ferroelectric, piezoelectric, and dielectric properties are anisotropic. The textured ceramics parallel and perpendicular to the shear flow directions have similar thermal depoling behaviors. The d 33 piezoelectric coefficient of BLT ceramics gradually reduces up to 350 deg. C; it then drops rapidly. The broadness of the dielectric constant and loss peaks and the existence of d 33 above the permittivity peak, T m , show that the BLT ceramic has relaxor-like behavior

  20. Orientation dependence of grain-boundary energy in metals in the view of a pseudoheterophase dislocation core model

    Missol, W.

    1976-01-01

    A new dislocation model for symmetric tilt grain boundaries was developed as a basis for deriving the quantitative dependence of grain-boundary energy upon misorientation angle in the form of an expression similar to that given by Read and Shockley [Phys. Rev. 78: 275(1950)]. The range of applicability of this equation was extended to over 20 degrees. A comparison of theory and experiment was made for Bi, Ag, Cu, and Fe--Si 3 percent in the teen-degree range of misorientation angles and for Au, α-Fe, Mo, and W in the high-angle range

  1. A Study on the Effects on Low Cycle Fatigue Life of a High Pressure Turbine Nozzle due to the Perturbation of Crystal Orientation of Grain of DS Materials

    Huh, Jae Sung; Kang, Young Seok; Rhee, Dong Ho [Korea Aerospace Research Institute, Daejeon (Korea, Republic of)

    2016-07-15

    High pressure components of a gas turbine engine are generally made of nickel-base superalloys, using precision casting process due to complicated geometries with intricate channels and cooling holes. Turbine components manufactured from directionally solidified and single crystal materials have columnar grains; however, it is found that the crystals do not grow in its preferred direction, although the orientation can be controlled. This anisotropy can lead to the variations of elastic and Hill's parameters in constitutive equations, and they alter stress distributions and the low cycle fatigue life. We aims to evaluate the effects of perturbed crystal orientations on the structural integrity of a directionally solidified nozzle using low cycle fatigue life. We also attempt to show the necessity for the control of allowed manufacturing errors and stochastic analysis. Our approaches included conjugate heat transfer and structural analysis, along with low cycle fatigue life assessment.

  2. Strain hardening behavior and microstructural evolution during plastic deformation of dual phase, non-grain oriented electrical and AISI 304 steels

    Soares, Guilherme Corrêa; Gonzalez, Berenice Mendonça; Arruda Santos, Leandro de, E-mail: leandro.arruda@demet.ufmg.br

    2017-01-27

    Strain hardening behavior and microstructural evolution of non-grain oriented electrical, dual phase, and AISI 304 steels, subjected to uniaxial tensile tests, were investigated in this study. Tensile tests were performed at room temperature and the strain hardening behavior of the steels was characterized by three different parameters: modified Crussard–Jaoul stages, strain hardening rate and instantaneous strain hardening exponent. Optical microscopic analysis, X-ray diffraction measurements, phase quantification by Rietveld refinement and hardness tests were also carried out in order to correlate the microstructural and mechanical responses to plastic deformation. Distinct strain hardening stages were observed in the steels in terms of the instantaneous strain hardening exponent and the strain hardening rate. The dual phase and non-grain oriented steels exhibited a two-stage strain hardening behavior while the AISI 304 steel displayed multiple stages, resulting in a more complex strain hardening behavior. The dual phase steels showed a high work hardening capacity in stage 1, which was gradually reduced in stage 2. On the other hand, the AISI 304 steel showed high strain hardening capacity, which continued to increase up to the tensile strength. This is a consequence of its additional strain hardening mechanism, based on a strain-induced martensitic transformation, as shown by the X-ray diffraction and optical microscopic analyses.

  3. Large Piezoelectric Strain with Superior Thermal Stability and Excellent Fatigue Resistance of Lead-Free Potassium Sodium Niobate-Based Grain Orientation-Controlled Ceramics.

    Quan, Yi; Ren, Wei; Niu, Gang; Wang, Lingyan; Zhao, Jinyan; Zhang, Nan; Liu, Ming; Ye, Zuo-Guang; Liu, Liqiang; Karaki, Tomoaki

    2018-03-19

    Environment-friendly lead-free piezoelectric materials with high piezoelectric response and high stability in a wide temperature range are urgently needed for various applications. In this work, grain orientation-controlled (with a 90% ⟨001⟩ c -oriented texture) (K,Na)NbO 3 -based ceramics with a large piezoelectric response ( d 33 *) = 505 pm V -1 and a high Curie temperature ( T C ) of 247 °C have been developed. Such a high d 33 * value varies by less than 5% from 30 to 180 °C, showing a superior thermal stability. Furthermore, the high piezoelectricity exhibits an excellent fatigue resistance with the d 33 * value decreasing within only by 6% at a field of 20 kV cm -1 up to 10 7 cycles. These exceptional properties can be attributed to the vertical morphotropic phase boundary and the highly ⟨001⟩ c -oriented textured ceramic microstructure. These results open a pathway to promote lead-free piezoelectric ceramics as a viable alternative to lead-based piezoceramics for various practical applications, such as actuators, transducers, sensors, and acoustic devices, in a wide temperature range.

  4. Determination of Specific Losses in the Limbs of an Epstein Frame Using a Three Epstein Frame Methodology Applied to Grain Oriented Electrical Steels.

    Parent, Guillaume; Penin, Rémi; Lecointe, Jean-Philippe; Brudny, Jean-François; Belgrand, Thierry

    2016-06-04

    An experimental method to characterize the magnetic properties of Grain Oriented Electrical Steel in the rolling direction is proposed in this paper. It relies on the use of three 25 cm Epstein frames combined to generate three test-frames of different lengths. This enables the identification of the effective specific losses of the electrical steel when magnetization is applied along the rolling direction. As a consequence, it evidences the deviation of the loss figures obtained using the standardised Epstein test. The difference in losses is explained by the fact that the described method gives "only" the losses attached to the straight parts. The concept of the magnetic path length as defined by the standard is discussed.

  5. Determination of Specific Losses in the Limbs of an Epstein Frame Using a Three Epstein Frame Methodology Applied to Grain Oriented Electrical Steels

    Guillaume Parent

    2016-06-01

    Full Text Available An experimental method to characterize the magnetic properties of Grain Oriented Electrical Steel in the rolling direction is proposed in this paper. It relies on the use of three 25 cm Epstein frames combined to generate three test-frames of different lengths. This enables the identification of the effective specific losses of the electrical steel when magnetization is applied along the rolling direction. As a consequence, it evidences the deviation of the loss figures obtained using the standardised Epstein test. The difference in losses is explained by the fact that the described method gives “only” the losses attached to the straight parts. The concept of the magnetic path length as defined by the standard is discussed.

  6. Investigating the fatigue behavior of grain-oriented Fe-3%Si steel sheets using magnet-optical Kerr microscopy and micromagnetic multiparameter, microstructure and stress analysis

    Deldar Shayan

    2018-01-01

    Full Text Available Fatigue is considered as a reason for a significant number of mechanical failures of engineering materials. Conventionally, microstructural investigations along with stress-strain hysteresis measurements are performed to understand and characterize the fatigue behavior of metallic materials. Moreover, further physical data like temperature, electrical resistance and, in the case of ferromagnetic materials, magnetic properties can be used for a comprehensive characterization of fatigue process. The present work has employed Magneto-Optical Kerr Effect (MOKE microscope and Micromagnetic Multiparameter, Microstructure and stress Analysis (3MA system to illustrate magnetic domain structure and various intrinsic magnetic properties including magnetic Barkhausen noise (MBN of the investigated material. In order to investigate the influence of the mechanical deformation processes on the magnetic parameters, samples were produced out of the grain-oriented electrical steel sheets and were subjected to a tensile test as well as a cyclic strain increase load test with R = 0 at ambient temperature.

  7. Effect of laser cutting on microstructure and on magnetic properties of grain non-oriented electrical steels

    Belhadj, A. E-mail: ahmed@metallur.rug.ac.be; Baudouin, P.; Breaban, F.; Deffontaine, A.; Dewulf, M.; Houbaert, Y

    2003-01-01

    Non-oriented electrical steels have been cut with two different techniques, the laser cutting and the mechanical cutting. In order to investigate the effect of the first technique on magnetic properties, different cutting parameters have been tested. Despite this, the best magnetic properties have been obtained after mechanical cutting. The laser cutting causes a coercive field increase and a permeability drop. Due to thermal effect, internal stress seems to be the main process drawback. No correlation between the heat affected zone and the magnetic properties has been found00.

  8. Transport properties of olivine grain boundaries from electrical conductivity experiments

    Pommier, Anne; Kohlstedt, David L.; Hansen, Lars N.; Mackwell, Stephen; Tasaka, Miki; Heidelbach, Florian; Leinenweber, Kurt

    2018-05-01

    Grain boundary processes contribute significantly to electronic and ionic transports in materials within Earth's interior. We report a novel experimental study of grain boundary conductivity in highly strained olivine aggregates that demonstrates the importance of misorientation angle between adjacent grains on aggregate transport properties. We performed electrical conductivity measurements of melt-free polycrystalline olivine (Fo90) samples that had been previously deformed at 1200 °C and 0.3 GPa to shear strains up to γ = 7.3. The electrical conductivity and anisotropy were measured at 2.8 GPa over the temperature range 700-1400 °C. We observed that (1) the electrical conductivity of samples with a small grain size (3-6 µm) and strong crystallographic preferred orientation produced by dynamic recrystallization during large-strain shear deformation is a factor of 10 or more larger than that measured on coarse-grained samples, (2) the sample deformed to the highest strain is the most conductive even though it does not have the smallest grain size, and (3) conductivity is up to a factor of 4 larger in the direction of shear than normal to the shear plane. Based on these results combined with electrical conductivity data for coarse-grained, polycrystalline olivine and for single crystals, we propose that the electrical conductivity of our fine-grained samples is dominated by grain boundary paths. In addition, the electrical anisotropy results from preferential alignment of higher-conductivity grain boundaries associated with the development of a strong crystallographic preferred orientation of the grains.

  9. Exceptionally High Piezoelectric Coefficient and Low Strain Hysteresis in Grain-Oriented (Ba, Ca)(Ti, Zr)O3 through Integrating Crystallographic Texture and Domain Engineering.

    Liu, Yingchun; Chang, Yunfei; Li, Fei; Yang, Bin; Sun, Yuan; Wu, Jie; Zhang, Shantao; Wang, Ruixue; Cao, Wenwu

    2017-09-06

    Both low strain hysteresis and high piezoelectric performance are required for practical applications in precisely controlled piezoelectric devices and systems. Unfortunately, enhanced piezoelectric properties were usually obtained with the presence of a large strain hysteresis in BaTiO 3 (BT)-based piezoceramics. In this work, we propose to integrate crystallographic texturing and domain engineering strategies into BT-based ceramics to resolve this challenge. [001] c grain-oriented (Ba 0.94 Ca 0.06 )(Ti 0.95 Zr 0.05 )O 3 (BCTZ) ceramics with a texture degree as high as 98.6% were synthesized by templated grain growth. A very high piezoelectric coefficient (d 33 ) of 755 pC/N, and an extremely large piezoelectric strain coefficient (d 33 * = 2027 pm/V) along with an ultralow strain hysteresis (H s ) of 4.1% were simultaneously achieved in BT-based systems for the first time, which are among the best values ever reported on both lead-free and lead-based piezoceramics. The exceptionally high piezoelectric response is mainly from the reversible contribution, and can be ascribed to the piezoelectric anisotropy, the favorable domain configuration, and the formation of smaller sized domains in the BCTZ textured ceramics. This study paves a new pathway to develop lead-free piezoelectrics with both low strain hysteresis and high piezoelectric coefficient. More importantly, it represents a very exciting discovery with potential application of BT-based ceramics in high-precision piezoelectric actuators.

  10. High spatial resolution grain orientation and strain mapping in thin films using polychromatic submicron x-ray diffraction

    Tamura, N.; MacDowell, A. A.; Celestre, R. S.; Padmore, H. A.; Valek, B.; Bravman, J. C.; Spolenak, R.; Brown, W. L.; Marieb, T.; Fujimoto, H.; Batterman, B. W.; Patel, J. R.

    2002-05-01

    The availability of high brilliance synchrotron sources, coupled with recent progress in achromatic focusing optics and large area two-dimensional detector technology, has allowed us to develop an x-ray synchrotron technique that is capable of mapping orientation and strain/stress in polycrystalline thin films with submicron spatial resolution. To demonstrate the capabilities of this instrument, we have employed it to study the microstructure of aluminum thin film structures at the granular and subgranular levels. Due to the relatively low absorption of x-rays in materials, this technique can be used to study passivated samples, an important advantage over most electron probes given the very different mechanical behavior of buried and unpassivated materials.

  11. The influence of laser scribing on magnetic domain formation in grain oriented electrical steel visualized by directional neutron dark-field imaging

    Rauscher, P.; Betz, B.; Hauptmann, J.; Wetzig, A.; Beyer, E.; Grünzweig, C.

    2016-12-01

    The performance and degree of efficiency of transformers are directly determined by the bulk magnetic properties of grain oriented electrical steel laminations. The core losses can be improved by post manufacturing methods, so-called domain refinement techniques. All these methods induce mechanical or thermal stress that refines the domain structure. The most commonly used technique is laser scribing due to the no-contact nature and the ease of integration in existing production systems. Here we show how directional neutron dark-field imaging allows visualizing the impact of laser scribing on the bulk and supplementary domain structure. In particular, we investigate the domain formation during magnetization of samples depending on laser treatment parameters such as laser energy and line distances. The directional dark-field imaging findings were quantitatively interpreted in the context with global magnetic hysteresis measurements. Especially we exploit the orientation sensitivity in the dark-field images to distinguish between different domain structures alignment and their relation to the laser scribing process.

  12. Influences of crystallographic orientations on deformation mechanism and grain refinement of Al single crystals subjected to one-pass equal-channel angular pressing

    Han, W.Z.; Zhang, Z.F.; Wu, S.D.; Li, S.X.

    2007-01-01

    The influences of crystallographic orientations on the evolution of dislocation structures and the refinement process of sub-grains in Al single crystals processed by one-pass equal-channel angular pressing (ECAP) were systematically investigated by means of scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. Three single crystals with different orientations, denoted as crystal I, crystal II and crystal III, were specially designed according to the shape of the ECAP die. For crystal I, its insert direction is parallel to [1 1 0] and its extrusion direction is parallel to [1-bar11]. For crystal II, the (1-bar11) plane is located parallel to the intersection plane of the ECAP die, and the [1 1 0] direction is along the general shear direction on the intersection plane. For crystal III, the (1-bar11) plane is laid on the plane perpendicular to the intersection of the ECAP die, and the [1 1 0] direction is vertical to the general shear direction. For crystal I, abundant cell block structures with multi-slip characters were formed, and they should be induced by four symmetric slip systems, while for crystal II, there are two sets of sub-grain structures with higher misorientation, making an angle of ∼70 deg., which can be attributed to the interactions of the two asymmetric primary slip planes, whereas for crystal III, only one set of ribbon structures was parallel to the traces of (1-bar11) with the lowest misorientation angle among the three single crystals, which should result from the homogeneous slip on the primary slip plane. The different microstructural features of the three single crystals provide clear experimental evidence that the microstructures and misorientation evolution are strongly affected by the crystallographic orientation or by the interaction between shear deformation imposed by the ECAP die and the intrinsic slip deformation of the single crystals. Based on the experimental results and the

  13. Orientation aspects of growth during recrystallization

    Juul Jensen, D.

    1997-04-01

    Recrystallization of heavily cold rolled aluminium and copper is studied with the aim of achieving information about effects of crystallography orientation on the growth process. The potentials of several experimental techniques are analysed, and a method well suited for characterizing growth rates of grains with different orientations is developed. This method, which is referred to as the extended Cahn-Hagel method, is used for growth rate determinations in aluminium and copper deformed and annealed under five different conditions. In all the investigated cases, preferential growth of cube oriented grains is observed. Recrystallization models, which simulates the orientational as well as microstructural development, are described. selected models are applied for studies of recrystallization in aluminium and copper under specific deformation and annealing conditions as well as for more general studies of the effects of orientation dependent growth rates on the recrystallization microstructure and texture. Finally, reasons for the observed orientation dependent growth rates are discussed. A new mechanism, orientation pinning, is suggested and it is shown that this mechanism is necessary for the understanding of experimental results. (au) 4 tabs., 41 ills., 153 refs

  14. Orientation aspects of growth during recrystallization

    Juul Jensen, D.

    1997-04-01

    Recrystallization of heavily cold rolled aluminium and copper is studied with the aim of achieving information about effects of crystallography orientation on the growth process. The potentials of several experimental techniques are analysed, and a method well suited for characterizing growth rates of grains with different orientations is developed. This method, which is referred to as the extended Cahn-Hagel method, is used for growth rate determinations in aluminium and copper deformed and annealed under five different conditions. In all the investigated cases, preferential growth of cube oriented grains is observed. Recrystallization models, which simulates the orientational as well as microstructural development, are described. selected models are applied for studies of recrystallization in aluminium and copper under specific deformation and annealing conditions as well as for more general studies of the effects of orientation dependent growth rates on the recrystallization microstructure and texture. Finally, reasons for the observed orientation dependent growth rates are discussed. A new mechanism, orientation pinning, is suggested and it is shown that this mechanism is necessary for the understanding of experimental results. (au) 4 tabs., 41 ills., 153 refs.

  15. Processing, adhesion and electrical properties of silicon steel having non-oriented grains coated with silica and alumina sol-gel

    Vasconcelos, D.C.L.; Orefice, R.L.; Vasconcelos, W.L.

    2007-01-01

    Silicon steels having non-oriented grains are usually coated with a series of inorganic or organic films to be used in electrical applications. However, the commercially available coatings have several disadvantages that include poor adhesion to the substrates, low values of electrical resistance and degradation at higher temperatures. In this work, silica and alumina sol-gel films were deposited onto silicon steel in order to evaluate the possibility of replacing the commercially available coatings by these sol-gel derived materials. Silica and alumina sol-gel coatings were prepared by dipping silicon steel samples into hydrolyzed silicon or aluminum alkoxides. Samples coated with sol-gel films were studied by scanning electron microscopy, energy dispersive spectroscopy and infrared spectroscopy. Adhesion between silicon steel and sol-gel films was measured by using several standard adhesion tests. Electrical properties were evaluated by the Franklin method. Results showed that homogeneous sol-gel films can be deposited onto silicon steel. Thicknesses of the films could be easily managed by altering the speed of deposition. The structure of the films could also be tailored by introducing additives, such as nitric acid and N,N-dimethyl formamide. Adhesion tests revealed a high level of adhesion between coatings and metal. The Franklin test showed that sol-gel films can produce coated samples with electrical resistances suitable for electrical applications. Electrical properties of the coated samples could also be manipulated by altering the structure of the sol-gel films or by changing the thickness of them

  16. Use of the Fourier transform infrared (FTIR) technique for determination of the composition of final phosphate coatings on grain-oriented electrical steel

    Poultney, Darren; Snell, David

    2008-01-01

    Electrical steels are highly specialised, magnetically soft materials, used to form the cores that carry the magnetic flux in electrical machines such as motors, generators and transformers. The steel strip is coated with a phosphate-based solution, which, on curing, provides an electrically insulating layer that also imparts a tension onto the strip. It has previously been shown that the magnetic losses of the material are affected by the ratio of phosphate and silica within the coating solution [O. Tanaka, H. Kobayashi, E. Minematsu, New insulating coating for grain-oriented electrical steel, J. Mater. Eng. 13 (1991) 161-168.]. It would therefore be highly beneficial to possess an analytical technique that can be used to accurately and rapidly determine the composition of this coating. This paper details the evaluation of the Fourier transform infrared (FTIR) technique for this purpose. Analysing each of the important constituents separately enabled their specific absorption bands to be identified, and laboratory trials produced spectra that exhibited a good agreement with theoretical predictions. Analysis of samples coated under production conditions was found to be more challenging due to the detection of an underlying forsterite layer. However, there is potential for FTIR analysis when using regions of the spectra that were unaffected by this compound

  17. Preferential reasoning for modal logics

    Britz, K

    2011-11-01

    Full Text Available Modal logic is the foundation for a versatile and well-established class of knowledge representation formalisms in artificial intelligence. Enriching modal logics with non-monotonic reasoning capabilities such as preferential reasoning as developed...

  18. Grain boundary migration

    Dimitrov, O.

    1975-01-01

    Well-established aspects of grain-boundary migration are first briefly reviewed (influences of driving force, temperature, orientation and foreign atoms). Recent developments of the experimental methods and results are then examined, by considering the various driving of resistive forces acting on grain boundaries. Finally, the evolution in the theoretical models of grain-boundary motion is described, on the one hand for ideally pure metals and, on the other hand, in the presence of solute impurity atoms [fr

  19. Appraisal on Textured Grain Growth and Photoconductivity of ZnO Thin Film SILAR

    Deepu Thomas

    2014-01-01

    Full Text Available ZnO thin films were prepared by successive ionic layer adsorption reaction (SILAR method. The textured grain growth along c-axis in pure ZnO thin films and doped with Sn was studied. The structural analysis of the thin films was done by X-ray diffraction and surface morphology by scanning electron microscopy. Textured grain growth of the samples was measured by comparing the peak intensities. Textured grain growth and photo current in ZnO thin films were found to be enhanced by doping with Sn. ZnO thin film having good crystallinity with preferential (002 orientation is a semiconductor with photonic properties of potential benefit to biophotonics. From energy dispersive X-ray analysis, it is inferred that oxygen vacancy creation is responsible for the enhanced textured grain growth in ZnO thin films.

  20. Crystallographic orientation study of silicon steels using X-ray diffraction, electrons diffraction and the Etch Pit method

    Santos, Hamilta de Oliveira

    1999-01-01

    The aim of the present study is the microstructural and crystallographic orientation of Fe-3%Si steel. The silicon steel shows good electrical properties and it is used in the nuclear and electrical power fields. The studied steel was supplied by Cia. Acos Especiais Itabira S/A - ACESITA. The material was received in the hot compressed condition, in one or two passes. The hot compressing temperatures used were 900, 1000 and 1100 deg C with soaking times ranging from 32 to 470 s. The material preferential crystallographic orientation was evaluated in every grain of the samples. The characterization techniques used were: scanning electron microscopy (SEM) using the etch pit method; X ray diffraction using the Laue back-reflection method; orientation imaging microscopy (OIM). Microstructural characterization in terms of grain size measurement and mean number of grains in the sample were also undertaken. The Laue method was found an easy technique to access crystallographic orientation of this work polycrystalline samples 2.5 mm average grain size. This was due to the inability to focus the X-rays on a single grain of the material. The scanning electron microscopy showed microcavities left by the etch pit method, which allowed the observation of the crystallographic orientation of each grain from the samples. No conclusive grain crystallographic orientation was possible to obtain by the OIM technique due to the non-existing rolling direction. A more extensive work with the OIM technique must be undertaken on the Fe-3%Si with oriented grains and non oriented grains. (author)

  1. Non-preferential Trading Clubs

    Raimondos-Møller, Pascalis; Woodland, Alan D.

    2006-01-01

    This paper examines the welfare implications of non-discriminatory tariff reforms by a subset of countries, which we term a non-preferential trading club. We show that there exist coordinated tariff reforms, accompanied by appropriate income transfers between the member countries, that unambiguou......This paper examines the welfare implications of non-discriminatory tariff reforms by a subset of countries, which we term a non-preferential trading club. We show that there exist coordinated tariff reforms, accompanied by appropriate income transfers between the member countries...

  2. Modelling grain-scattered ultrasound in austenitic stainless-steel welds: A hybrid model

    Nowers, O.; Duxbury, D. J.; Velichko, A.; Drinkwater, B. W.

    2015-01-01

    The ultrasonic inspection of austenitic stainless steel welds can be challenging due to their coarse grain structure, charaterised by preferentially oriented, elongated grains. The anisotropy of the weld is manifested as both a ‘steering’ of the beam and the back-scatter of energy due to the macroscopic granular structure of the weld. However, the influence of weld properties, such as mean grain size and orientation distribution, on the magnitude of scattered ultrasound is not well understood. A hybrid model has been developed to allow the study of grain-scatter effects in austenitic welds. An efficient 2D Finite Element (FE) method is used to calculate the complete scattering response from a single elliptical austenitic grain of arbitrary length and width as a function of the specific inspection frequency. A grain allocation model of the weld is presented to approximate the characteristic structures observed in austenitic welds and the complete scattering behaviour of each grain calculated. This model is incorporated into a semi-analytical framework for a single-element inspection of a typical weld in immersion. Experimental validation evidence is demonstrated indicating excellent qualitative agreement of SNR as a function of frequency and a minimum SNR difference of 2 dB at a centre frequency of 2.25 MHz. Additionally, an example Monte-Carlo study is presented detailing the variation of SNR as a function of the anisotropy distribution of the weld, and the application of confidence analysis to inform inspection development

  3. Controlling the opto-electronic properties of nc-SiOx:H films by promotion of 〈220〉 orientation in the growth of ultra-nanocrystallites at the grain boundary

    Das, Debajyoti; Samanta, Subhashis

    2018-01-01

    A systematic development of undoped nc-SiOx:H thin films from (SiH4 + CO2) plasma diluted by a combination of H2 and He has been investigated through structural, optical and electrical characterization and correlation. Gradual inclusion of O into a highly crystalline silicon network progressively produces a two-phase structure where Si-nanocrystals (Si-nc) are embedded into the a-SiOx:H matrix. However, at the intermediate grain boundary region the growth of ultra-nanocrystallites controls the effectiveness of the material. The ultra-nanocrystallites are the part and portion of crystallinity accommodating the dominant fraction of thermodynamically preferred 〈220〉 crystallographic orientation, most favourable for stacked layer device performance. Atomic H plays a dominant role in maintaining an improved nanocrystalliny in the network even during O inclusion, while He in its excited state (He*) maintains a good energy balance at the grain boundary and produces a significant fraction of ultra-nanocrystalline component which has been demonstrated to organize the energetically favourable 〈220〉 crystallographic orientation in the network. The nc-SiOx:H films, maintaining proportionally good electrical conductivity over an wide range of optical band gap, remarkably low microstructure factor and simultaneous high crystalline volume fraction dominantly populated by ultra-nanocrystallites of 〈220〉 crystallographic orientation mostly at the grain boundary, have been obtained in technologically most popular 13.56 MHz PECVD SiH4 plasma even at a low substrate temperature ∼250 °C, convenient for device fabrication.

  4. Grain Interactions in Crystal Plasticity

    Boyle, K.P.; Curtin, W.A.

    2005-01-01

    The plastic response of a sheet metal is governed by the collective response of the underlying grains. Intragranular plasticity depends on intrinsic variables such as crystallographic orientation and on extrinsic variables such as grain interactions; however, the role of the latter is not well understood. A finite element crystal plasticity formulation is used to investigate the importance of grain interactions on intragranular plastic deformation in initially untextured polycrystalline aggregates. A statistical analysis reveals that grain interactions are of equal (or more) importance for determining the average intragranular deviations from the applied strain as compared to the orientation of the grain itself. Furthermore, the influence of the surrounding grains is found to extend past nearest neighbor interactions. It is concluded that the stochastic nature of the mesoscale environment must be considered for a proper understanding of the plastic response of sheet metals at the grain-scale

  5. Interface Orientation Distribution during Grain Growth in Bulk SrTiO3 Measured by Means of 3D X-Ray Diffraction Contrast Tomography

    Syha, Melanie; Rheinheimer, Wolfgang; Bäurer, Michael

    2012-01-01

    3D x-ray diffraction contrast tomography (DCT) is a non-destructive technique for the determination of grain shape and crystallography in polycrystalline bulk materials. Using this technique, a strontium titanate specimen was repeatedly measured between annealing steps.. A systematic analysis...

  6. Proposal for the award of a contract for the supply of moulded assemblies of tape-wound cut cores of grain-oriented silicon-steel for the LHC beam dumping system

    2001-01-01

    This document concerns the award of a contract for the supply of moulded assemblies of tape-wound cut cores of grain-oriented silicon-steel for the three different types of fast pulsed magnets for the beam dumping system of the LHC. Following a market survey carried out among 14 firms in four Member States and six firms in two non-Member States, a call for tenders (IT-2674/SL/LHC) was sent on 26 January 2001 to one firm in one Member State. By the closing date, CERN had received a tender from the firm. The Finance Committee is invited to agree to the negotiation of a contract with TELMAG MAGNETIC COMPONENTS (UK), the only bidder, for the supply of 2885 moulded assemblies of tape-wound cut cores of grain-oriented silicon-steel, of three different types, for a total amount of 2 414 664 euros (3 692 147 Swiss francs), not subject to revision, with options for 560 additional moulded core assemblies of three different types, for an additional amount of 468 496 euros (716 355 Swiss francs), not subject to revision,...

  7. Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K0.5Bi0.5TiO3-BaTiO3-Na0.5Bi0.5TiO3 piezoelectric materials.

    Maurya, Deepam; Zhou, Yuan; Wang, Yaojin; Yan, Yongke; Li, Jiefang; Viehland, Dwight; Priya, Shashank

    2015-02-26

    We synthesized grain-oriented lead-free piezoelectric materials in (K0.5Bi0.5TiO3-BaTiO3-xNa0.5Bi0.5TiO3 (KBT-BT-NBT) system with high degree of texturing along the [001]c (c-cubic) crystallographic orientation. We demonstrate giant field induced strain (~0.48%) with an ultra-low hysteresis along with enhanced piezoelectric response (d33 ~ 190pC/N) and high temperature stability (~160°C). Transmission electron microscopy (TEM) and piezoresponse force microscopy (PFM) results demonstrate smaller size highly ordered domain structure in grain-oriented specimen relative to the conventional polycrystalline ceramics. The grain oriented specimens exhibited a high degree of non-180° domain switching, in comparison to the randomly axed ones. These results indicate the effective solution to the lead-free piezoelectric materials.

  8. Influence of applied compressive stress on the hysteresis curves and magnetic domain structure of grain-oriented transverse Fe-3%Si steel

    Perevertov, O; Schäfer, R

    2012-01-01

    The influence of an applied compressive stress on the hysteresis curve and domain structure in conventional (1 1 0) [0 0 1] Fe-3%Si steel cut transverse to the rolling direction is studied. Quasistatic hysteresis loops under compressive stress up to 75 MPa were measured. The magnetic domains and magnetization processes were observed by longitudinal Kerr microscopy at different levels of stress. It is shown that the bulk hysteresis loop can be described with a good accuracy by the action of an effective field, which is the product of the stress and a function of magnetization. Domain observations have shown that the reasons for the effective field are demagnetizing fields due to the disappearance of supplementary domains along [0 1 0] and [1 0 0] at low fields and different domain systems in different grains at moderate fields. The latter are caused by differences in grain sensitivity to stress depending on the degree of misorientation. A decrease in the effective field above 1 T is connected with a transformation of all grains into the same domain system—the column pattern. (paper)

  9. Giant grains

    Leitch-Devlin, M.A.; Millar, T.J.; Williams, D.A.

    1976-01-01

    Infrared observations of the Orion nebula have been interpreted by Rowan-Robinson (1975) to imply the existence of 'giant' grains, radius approximately 10 -2 cm, throughout a volume about a parsec in diameter. Although Rowan-Robinson's model of the nebula has been criticized and the presence of such grains in Orion is disputed, the proposition is accepted, that they exist, and in this paper situations in which giant grains could arise are examined. It is found that, while a giant-grain component to the interstellar grain density may exist, it is difficult to understand how giant grains arise to the extent apparently required by the Orion nebula model. (Auth.)

  10. Information filtering via preferential diffusion

    Lü, Linyuan; Liu, Weiping

    2011-06-01

    Recommender systems have shown great potential in addressing the information overload problem, namely helping users in finding interesting and relevant objects within a huge information space. Some physical dynamics, including the heat conduction process and mass or energy diffusion on networks, have recently found applications in personalized recommendation. Most of the previous studies focus overwhelmingly on recommendation accuracy as the only important factor, while overlooking the significance of diversity and novelty that indeed provide the vitality of the system. In this paper, we propose a recommendation algorithm based on the preferential diffusion process on a user-object bipartite network. Numerical analyses on two benchmark data sets, MovieLens and Netflix, indicate that our method outperforms the state-of-the-art methods. Specifically, it can not only provide more accurate recommendations, but also generate more diverse and novel recommendations by accurately recommending unpopular objects.

  11. “To see a world in a grain of sand”: Towards Future-oriented What-If Analysis in Narrative Research

    Sools, Anna Maria

    2012-01-01

    In this article, I explore narrative building blocks for future-oriented what-if (i.e., possibilities-generating) analysis developed in a health promotion study. The aim of this study was to gain insight into future possibilities for good health among participants known for their poor health status.

  12. Grain interaction effects in polycrystalline Cu

    Thorning, C.; Somers, Marcel A.J.; Wert, John A.

    2005-01-01

    Crystal orientation maps for a grain in a deformed Cu polycrystal have been analysed with the goal of understanding the effect of grain interactions on orientation subdivision. The polycrystal was incrementally strained in tension to 5, 8, 15 and 25% extension; a crystal orientation map...... was measured after each strain increment. The measurements are represented as rotations from the initial crystal orientation. A coarse domain structure forms in the initial 5% strain increment and persists at higher strains. Crystal rotations for all coarse domains in the grain are consistent with the full...... range of Tailor solutions for axisymmetric strain; grain interactions are not required to account for the coarse domain structure. Special orientation domains extend 20-100 µm into the grain at various locations around its periphery. The special orientation domain morphologies include layers along...

  13. Hamiltonian dynamics of preferential attachment

    Zuev, Konstantin; Papadopoulos, Fragkiskos; Krioukov, Dmitri

    2016-01-01

    Prediction and control of network dynamics are grand-challenge problems in network science. The lack of understanding of fundamental laws driving the dynamics of networks is among the reasons why many practical problems of great significance remain unsolved for decades. Here we study the dynamics of networks evolving according to preferential attachment (PA), known to approximate well the large-scale growth dynamics of a variety of real networks. We show that this dynamics is Hamiltonian, thus casting the study of complex networks dynamics to the powerful canonical formalism, in which the time evolution of a dynamical system is described by Hamilton’s equations. We derive the explicit form of the Hamiltonian that governs network growth in PA. This Hamiltonian turns out to be nearly identical to graph energy in the configuration model, which shows that the ensemble of random graphs generated by PA is nearly identical to the ensemble of random graphs with scale-free degree distributions. In other words, PA generates nothing but random graphs with power-law degree distribution. The extension of the developed canonical formalism for network analysis to richer geometric network models with non-degenerate groups of symmetries may eventually lead to a system of equations describing network dynamics at small scales. (paper)

  14. 15 CFR 700.14 - Preferential scheduling.

    2010-01-01

    ...) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE NATIONAL SECURITY INDUSTRIAL BASE REGULATIONS DEFENSE PRIORITIES AND ALLOCATIONS SYSTEM Industrial Priorities § 700.14 Preferential scheduling. (a) A...

  15. Deformation Mechanism and Recrystallization Relationships in Galfenol Single Crystals: On the Origin of Goss and Cube Orientations

    Na, Suok-Min; Smith, Malcolm; Flatau, Alison B.

    2018-06-01

    In this work, deformation mechanism related to recrystallization behavior in single-crystal disks of Galfenol (Fe-Ga alloy) was investigated to gain insights into the influence of crystal orientations on structural changes and selective grain growth that take place during secondary recrystallization. We started with the three kinds of single-crystal samples with (011)[100], (001)[100], and (001)[110] orientations, which were rolled and annealed to promote the formation of different grain structures and texture evolutions. The initial Goss-oriented (011)[100] crystal mostly rotated into {111} orientations with twofold symmetry and shear band structures by twinning resulted in the exposure of rolled surface along {001} orientation during rolling. In contrast, the Cube-oriented (001)[100] single crystal had no change in texture during rolling with the thickness reduction up to 50 pct. The {123} slip systems were preferentially activated in these single crystals during deformation as well as {112} slip systems that are known to play a role in primary slip of body-centered cubic (BCC) materials such as α-iron and Fe-Si alloys. After annealing, the deformed Cube-oriented single crystal had a small fraction ( orientation, associated with {123} slip systems as well. This was expected to provide potential sites of nucleation for secondary recrystallization; however, no Goss- and Cube-oriented components actually developed in this sample during secondary recrystallization. Those results illustrated how the recrystallization behavior can be influenced by deformed structure and the slip systems.

  16. Orientation and thickness dependence of magnetic levitation force and trapped magnetic field of single grain YBa{sub 2}Cu{sub 3}O{sub 7-y} bulk superconductors

    Jung, Y.; Go, S. J.; Joo, H. T. [Korea Science Academy of Korea Advanced Institute of Science and Technology, Pusan (Korea, Republic of); Lee, Y. J.; Park, S. D.; Jun, B. H.; KIm, C. J. [Neutron Utilization Technology Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-03-15

    The effects of the crystallographic orientation and sample thickness on the magnetic levitation forces (F) and trapped magnetic field (B) of single grain YBCO bulk superconductors were examined. Single grain YBCO samples with a (001), (110) or (100) surface were used as the test samples. The samples used for the force-distance (F-d) measurement were cooled at 77 K without a magnetic field (zero field cooling, ZFC), whereas the samples used for the B measurement were cooled under the external magnetic field of a Nd-B-Fe permanent magnet (field cooling, FC). It was found that F and B of the (001) surface were higher than those of the (110) or (100) surface, which is attributed to the higher critical current density (J{sub c}) of the (001) surface. For the (001) samples with t=5–18 mm, the maximum magnetic levitation forces (F{sub max}s) of the ZFC samples were larger than 40 N. About 80% of the applied magnetic field was trapped in the FC samples. However, the F and B decreased rapidly as t decreased below 5 mm. There exists a critical sample thickness (t=5 mm for the experimental condition of this study) for maintaining the large levitation/trapping properties, which is dependent on the material properties and magnitude of the external magnetic fields.

  17. Concept model semantics for DL preferential reasoning

    Britz, K

    2011-07-01

    Full Text Available ., Olivetti, N., Gliozzi, V., Pozzato, G.: ALC +T : a preferential exten- sion of description logics. Fund. Informatica 96(3), 341{372 (2009) 7. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod- els and cumulative logics. Arti...

  18. Influence of specimen size and grain orientation to the life of a polycrystalline Ni-base alloy at LCF stress; Einfluss der Probengroesse und der Kornorientierung auf die Lebensdauer einer polykristallinen Ni-Basislegierung bei LCF-Beanspruchung

    Seibel, Thomas

    2014-07-01

    In the present work the LCF (Low Cycle Fatigue) crack initiation life of the conventionally cast Ni-base alloy RENE 80 was analyzed as a function of specimen size and grain orientation. Five specimen geometries with distinctly different gauge sections were used: 3 geometries with cylindrical gauge section (G1-G3) and two notched geometries with a stress concentration factor of α{sub 1} = 1,62 (KG1) and α{sub 2} = 2,60 (KG2), resulting in a maximum difference of the damage relevant surface area up to a factor of approximately 72. Correction factors were determined by FEM calculations for all specimen geometries with highly reduced gauge sections where direct strain measurement was not possible. Additionally a uniform failure criterion with a relatively small crack size of 0,962 mm{sup 2} was defined. Totally, 116 isothermal LCF tests were carried out at the different specimen types at a temperature of 850 C in total strain control with a load ratio (minimum strain / maximum strain) of R{sub ε} = -1. The load cycles were applied with triangular waveform at a frequency of 0.1 Hz for high strain amplitudes and 1 Hz for low strain amplitudes, respectively. After the LCF-Tests the fracture surfaces of all samples were analyzed in more detail by SEM to identify the crack initiation mechanisms as well as the crack initiation sites. In this context it could be shown, that fatigue cracks were generally initiated at slip bands in surface grains. Accordingly, the grain orientations at the crack initiation sites were measured by electron back scatter diffraction (EBSD) and the maximum shear stresses in the respective principal slip system (111) <110> was calculated using the Schmid approach. For this, longitudinal sections were be prepared exactly at the crack initiation sites of samples loaded with low strain amplitudes where clearly defined single crack initiation sites were observed. Afterwards the maximum shear stress in the principal slip system at the crack initiation

  19. Friction force microscopy: a simple technique for identifying graphene on rough substrates and mapping the orientation of graphene grains on copper

    Marsden, A J; Wilson, N R; Phillips, M

    2013-01-01

    At a single atom thick, it is challenging to distinguish graphene from its substrate using conventional techniques. In this paper we show that friction force microscopy (FFM) is a simple and quick technique for identifying graphene on a range of samples, from growth substrates to rough insulators. We show that FFM is particularly effective for characterizing graphene grown on copper where it can correlate the graphene growth to the three-dimensional surface topography. Atomic lattice stick–slip friction is readily resolved and enables the crystallographic orientation of the graphene to be mapped nondestructively, reproducibly and at high resolution. We expect FFM to be similarly effective for studying graphene growth on other metal/locally crystalline substrates, including SiC, and for studying growth of other two-dimensional materials such as molybdenum disulfide and hexagonal boron nitride. (paper)

  20. Improving the thermoelectric performance of metastable rock-salt GeTe-rich Ge-Sb-Te thin films through tuning of grain orientation and vacancies

    Chen, I. Nan [Department of Physics, National Taiwan University, Taipei (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei (China); Chong, Cheong-Wei [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei (China); Center for Condensed Matter Sciences, National Taiwan University, Taipei (China); Wong, Deniz P.; Lyu, Liang-Ming; Chien, Wei-Lun; Anbalagan, Ramakrishnan; Aminzare, Masoud; Chen, Kuei-Hsien [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei (China); Chen, Yang-Fang [Department of Physics, National Taiwan University, Taipei (China); Chen, Li-Chyong [Center for Condensed Matter Sciences, National Taiwan University, Taipei (China)

    2016-12-15

    Phase-change memory materials such as the pseudobinary GeTe-Sb{sub 2}Te{sub 3} compounds have recently gained attention for their good thermoelectric properties, which can be used for power-generation/cooling applications. In this work, GeTe-rich Ge-Sb-Te thin films deposited using a radio-frequency magnetron sputtering method readily exhibit the metastable face-centered cubic (FCC) phase at room temperature. This is in stark contrast to its bulk form, which only transforms to its FCC phase after a transition temperature of around 350 C. Based on previous works, the FCC phase contributes to the superior thermoelectric properties of this material system. In this study, by decreasing the working deposition pressure, the preferred orientation of (200) plane is observed that translates to improved carrier mobility. Moreover, increasing the annealing temperature has been shown to decrease the carrier concentration due to Te deficiency, leading to a significant improvement in the Seebeck coefficient of the film. By combining these effects, an optimized thermoelectric power factor (21 μW/cm K{sup 2}) was obtained at an operating temperature of 350 C. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Interstellar grains

    Hoyle, F.; Wickramasinghe, N.C.

    1980-11-01

    Interstellar extinction of starlight was observed and plotted as a function of inverse wavelength. Agreement with the calculated effects of the particle distribution is shown. The main kinds of grain distinguished are: (1) graphite spheres of radius 0.02 microns, making up 10% of the total grain mass (2) small dielectric spheres of radius 0.04 microns making up 25% and (3) hollow dielectric cylinders containing metallic iron, with diameters of 2/3 microns making up 45%. The remaining 20% consists of other metals, metal oxides, and polysiloxanes. Absorption factor evidence suggests that the main dielectric component of the grains is organic material.

  2. Semantic foundation for preferential description logics

    Britz, K

    2011-12-01

    Full Text Available Description logics are a well-established family of knowledge representation formalisms in Artificial Intelligence. Enriching description logics with non-monotonic reasoning capabilities, especially preferential reasoning as developed by Lehmann...

  3. Grain centre mapping - 3DXRD measurements of average grain characteristics

    Oddershede, Jette; Schmidt, Søren; Lyckegaard, Allan

    2014-01-01

    characteristics of each grain (such as their centre-of-mass positions, volumes, phases, orientations and/or elastic strain tensor components), while the exact locations of the grain boundaries are unknown. In the present chapter a detailed description of the setup and software for both grain centre mapping...... and the closely related boxscan method is given. Both validation experiments and applications for in situ studies of microstructural changes during plastic deformation and crack growth are given. Finally an outlook with special emphasis on coupling the measured results with modelling is given....

  4. Analysis of the β→α variant selection in a Zy-4 rod by means of specific crystal orientation maps

    Gey, N.; Humbert, M.; Gautier, E.; Bechade, J.L.

    2002-01-01

    A specific analysis of the α inherited crystal orientation map (COM) is proposed to study the β→α texture inheritance of a Zy-4 rod. In particular, it is shown that the α colonies inherited from each parent grain can systematically be identified on the α Map by considering the misorientations between pixels. Once identified, the orientations of these colonies are used to calculate the orientation of their common β grain. Finally, the orientation data of the parent phase can also be displayed as a COM. The β COM shows that at high temperature, the β grains were mainly oriented around the left angle 111 right angle //AD fibre. Moreover, the analysis of the parent and the inherited COM, makes clear that each β grain has preferentially transformed into different variants belonging each to the left angle 11.0 right angle //AD fibre. This variant selection is responsible for the sharp α texture of the Zy-4 rod after a treatment in the β field. (orig.)

  5. Indium hexagonal island as seed-layer to boost a-axis orientation of AlN thin films

    Redjdal, N.; Salah, H.; Azzaz, M.; Menari, H.; Manseri, A.; Guedouar, B.; Garcia-Sanchez, A.; Chérif, S. M.

    2018-06-01

    Highly a-axis oriented aluminum nitride films have been grown on Indium coated (100) Si substrate by DC reactive magnetron sputtering. It is shown that In incorporated layer improve the extent of preferential growth along (100) axis and form dense AlN films with uniform surface and large grains, devoid of micro-cracks. As revealed by SEM cross section images, AlN structure consists of oriented columnar grains perpendicular to the Si surface, while AlN/In structure results in uniformely tilted column. SEM images also revealed the presence of In hexagonal islands persistent throughout the entire growth. Micro -Raman spectroscopy of the surface and the cross section of the AlN/In grown films evidenced their high degree of homogeneity and cristallinity.

  6. Preferred orientation of ettringite in concrete fractures

    Wenk, Hans-Rudolf; Monteiro, Paulo J. M.; Kunz, Martin; Chen, Kai; Tamura, Nobumichi; Lutterotti, Luca; Del Arroz, John

    2009-01-01

    distribution of ettringite crystals. Diffraction images are analyzed using the Rietveld method to obtain information on textures. The analysis reveals that the c axes of the trigonal crystallites are preferentially oriented perpendicular to the fracture

  7. Discovering Preferential Patterns in Sectoral Trade Networks.

    Cingolani, Isabella; Piccardi, Carlo; Tajoli, Lucia

    2015-01-01

    We analyze the patterns of import/export bilateral relations, with the aim of assessing the relevance and shape of "preferentiality" in countries' trade decisions. Preferentiality here is defined as the tendency to concentrate trade on one or few partners. With this purpose, we adopt a systemic approach through the use of the tools of complex network analysis. In particular, we apply a pattern detection approach based on community and pseudocommunity analysis, in order to highlight the groups of countries within which most of members' trade occur. The method is applied to two intra-industry trade networks consisting of 221 countries, relative to the low-tech "Textiles and Textile Articles" and the high-tech "Electronics" sectors for the year 2006, to look at the structure of world trade before the start of the international financial crisis. It turns out that the two networks display some similarities and some differences in preferential trade patterns: they both include few significant communities that define narrow sets of countries trading with each other as preferential destinations markets or supply sources, and they are characterized by the presence of similar hierarchical structures, led by the largest economies. But there are also distinctive features due to the characteristics of the industries examined, in which the organization of production and the destination markets are different. Overall, the extent of preferentiality and partner selection at the sector level confirm the relevance of international trade costs still today, inducing countries to seek the highest efficiency in their trade patterns.

  8. A generalized theory of preferential linking

    Hu, Haibo; Guo, Jinli; Liu, Xuan; Wang, Xiaofan

    2014-12-01

    There are diverse mechanisms driving the evolution of social networks. A key open question dealing with understanding their evolution is: How do various preferential linking mechanisms produce networks with different features? In this paper we first empirically study preferential linking phenomena in an evolving online social network, find and validate the linear preference. We propose an analyzable model which captures the real growth process of the network and reveals the underlying mechanism dominating its evolution. Furthermore based on preferential linking we propose a generalized model reproducing the evolution of online social networks, and present unified analytical results describing network characteristics for 27 preference scenarios. We study the mathematical structure of degree distributions and find that within the framework of preferential linking analytical degree distributions can only be the combinations of finite kinds of functions which are related to rational, logarithmic and inverse tangent functions, and extremely complex network structure will emerge even for very simple sublinear preferential linking. This work not only provides a verifiable origin for the emergence of various network characteristics in social networks, but bridges the micro individuals' behaviors and the global organization of social networks.

  9. Preferential sampling in veterinary parasitological surveillance

    Lorenzo Cecconi

    2016-04-01

    Full Text Available In parasitological surveillance of livestock, prevalence surveys are conducted on a sample of farms using several sampling designs. For example, opportunistic surveys or informative sampling designs are very common. Preferential sampling refers to any situation in which the spatial process and the sampling locations are not independent. Most examples of preferential sampling in the spatial statistics literature are in environmental statistics with focus on pollutant monitors, and it has been shown that, if preferential sampling is present and is not accounted for in the statistical modelling and data analysis, statistical inference can be misleading. In this paper, working in the context of veterinary parasitology, we propose and use geostatistical models to predict the continuous and spatially-varying risk of a parasite infection. Specifically, breaking with the common practice in veterinary parasitological surveillance to ignore preferential sampling even though informative or opportunistic samples are very common, we specify a two-stage hierarchical Bayesian model that adjusts for preferential sampling and we apply it to data on Fasciola hepatica infection in sheep farms in Campania region (Southern Italy in the years 2013-2014.

  10. Comparing perceptual and preferential decision making.

    Dutilh, Gilles; Rieskamp, Jörg

    2016-06-01

    Perceptual and preferential decision making have been studied largely in isolation. Perceptual decisions are considered to be at a non-deliberative cognitive level and have an outside criterion that defines the quality of decisions. Preferential decisions are considered to be at a higher cognitive level and the quality of decisions depend on the decision maker's subjective goals. Besides these crucial differences, both types of decisions also have in common that uncertain information about the choice situation has to be processed before a decision can be made. The present work aims to acknowledge the commonalities of both types of decision making to lay bare the crucial differences. For this aim we examine perceptual and preferential decisions with a novel choice paradigm that uses the identical stimulus material for both types of decisions. This paradigm allows us to model the decisions and response times of both types of decisions with the same sequential sampling model, the drift diffusion model. The results illustrate that the different incentive structure in both types of tasks changes people's behavior so that they process information more efficiently and respond more cautiously in the perceptual as compared to the preferential task. These findings set out a perspective for further integration of perceptual and preferential decision making in a single ramework.

  11. Establishment of Grain Farmers' Supply Response Model and Empirical Analysis under Minimum Grain Purchase Price Policy

    Zhang, Shuang

    2012-01-01

    Based on farmers' supply behavior theory and price expectations theory, this paper establishes grain farmers' supply response model of two major grain varieties (early indica rice and mixed wheat) in the major producing areas, to test whether the minimum grain purchase price policy can have price-oriented effect on grain production and supply in the major producing areas. Empirical analysis shows that the minimum purchase price published annually by the government has significant positive imp...

  12. Preferential attachment in evolutionary earthquake networks

    Rezaei, Soghra; Moghaddasi, Hanieh; Darooneh, Amir Hossein

    2018-04-01

    Earthquakes as spatio-temporal complex systems have been recently studied using complex network theory. Seismic networks are dynamical networks due to addition of new seismic events over time leading to establishing new nodes and links to the network. Here we have constructed Iran and Italy seismic networks based on Hybrid Model and testified the preferential attachment hypothesis for the connection of new nodes which states that it is more probable for newly added nodes to join the highly connected nodes comparing to the less connected ones. We showed that the preferential attachment is present in the case of earthquakes network and the attachment rate has a linear relationship with node degree. We have also found the seismic passive points, the most probable points to be influenced by other seismic places, using their preferential attachment values.

  13. Preferential flow occurs in unsaturated conditions

    Nimmo, John R.

    2012-01-01

    Because it commonly generates high-speed, high-volume flow with minimal exposure to solid earth materials, preferential flow in the unsaturated zone is a dominant influence in many problems of infiltration, recharge, contaminant transport, and ecohydrology. By definition, preferential flow occurs in a portion of a medium – that is, a preferred part, whether a pathway, pore, or macroscopic subvolume. There are many possible classification schemes, but usual consideration of preferential flow includes macropore or fracture flow, funneled flow determined by macroscale heterogeneities, and fingered flow determined by hydraulic instability rather than intrinsic heterogeneity. That preferential flow is spatially concentrated associates it with other characteristics that are typical, although not defining: it tends to be unusually fast, to transport high fluxes, and to occur with hydraulic disequilibrium within the medium. It also has a tendency to occur in association with large conduits and high water content, although these are less universal than is commonly assumed. Predictive unsaturated-zone flow models in common use employ several different criteria for when and where preferential flow occurs, almost always requiring a nearly saturated medium. A threshold to be exceeded may be specified in terms of the following (i) water content; (ii) matric potential, typically a value high enough to cause capillary filling in a macropore of minimum size; (iii) infiltration capacity or other indication of incipient surface ponding; or (iv) other conditions related to total filling of certain pores. Yet preferential flow does occur without meeting these criteria. My purpose in this commentary is to point out important exceptions and implications of ignoring them. Some of these pertain mainly to macropore flow, others to fingered or funneled flow, and others to combined or undifferentiated flow modes.

  14. Reverse preferential spread in complex networks

    Toyoizumi, Hiroshi; Tani, Seiichi; Miyoshi, Naoto; Okamoto, Yoshio

    2012-08-01

    Large-degree nodes may have a larger influence on the network, but they can be bottlenecks for spreading information since spreading attempts tend to concentrate on these nodes and become redundant. We discuss that the reverse preferential spread (distributing information inversely proportional to the degree of the receiving node) has an advantage over other spread mechanisms. In large uncorrelated networks, we show that the mean number of nodes that receive information under the reverse preferential spread is an upper bound among any other weight-based spread mechanisms, and this upper bound is indeed a logistic growth independent of the degree distribution.

  15. Defeasible modes of inference: A preferential perspective

    Britz, K

    2012-06-01

    Full Text Available . Hence UM = f(Mi; wj) j i 2 f1; 2g; j 2 f1; 2; 3; 4gg. We construct a preferential model (Definition 4) in which to check the satisfiability and truth of a few sentences. The purpose is to illustrate the semantics of our notion of defea- sibility... exceptional situations would the pile be on while the cooler is off, e.g. during a serious malfunction (states s7 and s8). In the preferential model P depicted above, one can check that s6 2 Jh^ p p f:hK: at s6 we have a hazardous situ- ation...

  16. A Cellular Automaton / Finite Element model for predicting grain texture development in galvanized coatings

    Guillemot, G.; Avettand-Fènoël, M.-N.; Iosta, A.; Foct, J.

    2011-01-01

    Hot-dipping galvanizing process is a widely used and efficient way to protect steel from corrosion. We propose to master the microstructure of zinc grains by investigating the relevant process parameters. In order to improve the texture of this coating, we model grain nucleation and growth processes and simulate the zinc solid phase development. A coupling scheme model has been applied with this aim. This model improves a previous two-dimensional model of the solidification process. It couples a cellular automaton (CA) approach and a finite element (FE) method. CA grid and FE mesh are superimposed on the same domain. The grain development is simulated at the micro-scale based on the CA grid. A nucleation law is defined using a Gaussian probability and a random set of nucleating cells. A crystallographic orientation is defined for each one with a choice of Euler's angle (Ψ,θ,φ). A small growing shape is then associated to each cell in the mushy domain and a dendrite tip kinetics is defined using the model of Kurz [2]. The six directions of basal plane and the two perpendicular directions develop in each mushy cell. During each time step, cell temperature and solid fraction are then determined at micro-scale using the enthalpy conservation relation and variations are reassigned at macro-scale. This coupling scheme model enables to simulate the three-dimensional growing kinetics of the zinc grain in a two-dimensional approach. Grain structure evolutions for various cooling times have been simulated. Final grain structure has been compared to EBSD measurements. We show that the preferentially growth of dendrite arms in the basal plane of zinc grains is correctly predicted. The described coupling scheme model could be applied for simulated other product or manufacturing processes. It constitutes an approach gathering both micro and macro scale models.

  17. Applications of the rotating orientation XRD method to oriented materials

    Guo Zhenqi; Li Fei; Jin Li; Bai Yu

    2009-01-01

    The rotating orientation x-ray diffraction (RO-XRD) method, based on conventional XRD instruments by a modification of the sample stage, was introduced to investigate the orientation-related issues of such materials. In this paper, we show its applications including the determination of single crystal orientation, assistance in crystal cutting and evaluation of crystal quality. The interpretation of scanning patterns by RO-XRD on polycrystals with large grains, bulk material with several grains and oriented thin film is also presented. These results will hopefully expand the applications of the RO-XRD method and also benefit the conventional XRD techniques. (fast track communication)

  18. Stress-assisted grain growth in nanocrystalline metals: Grain boundary mediated mechanisms and stabilization through alloying

    Zhang, Yang; Tucker, Garritt J.; Trelewicz, Jason R.

    2017-01-01

    The mechanisms of stress-assisted grain growth are explored using molecular dynamics simulations of nanoindentation in nanocrystalline Ni and Ni-1 at.% P as a function of grain size and deformation temperature. Grain coalescence is primarily confined to the high stress region beneath the simulated indentation zone in nanocrystalline Ni with a grain size of 3 nm. Grain orientation and atomic displacement vector mapping demonstrates that coalescence transpires through grain rotation and grain boundary migration, which are manifested in the grain interior and grain boundary components of the average microrotation. A doubling of the grain size to 6 nm and addition of 1 at.% P eliminates stress-assisted grain growth in Ni. In the absence of grain coalescence, deformation is accommodated by grain boundary-mediated dislocation plasticity and thermally activated in pure nanocrystalline Ni. By adding solute to the grain boundaries, the temperature-dependent deformation behavior observed in both the lattice and grain boundaries inverts, indicating that the individual processes of dislocation and grain boundary plasticity will exhibit different activity based on boundary chemistry and deformation temperature.

  19. 75 FR 60161 - WTO Dispute Settlement Proceeding Regarding China-Countervailing and Antidumping Duties on Grain...

    2010-09-29

    ... Proceeding Regarding China--Countervailing and Antidumping Duties on Grain Oriented Flat-Rolled Electrical... States of grain oriented flat-rolled electrical steel. That request may be found at http://www.wto.org... countervailing and antidumping duties on grain oriented flat-rolled electrical steel (``GOES'') exported from the...

  20. The Probabilistic Nature of Preferential Choice

    Rieskamp, Jorg

    2008-01-01

    Previous research has developed a variety of theories explaining when and why people's decisions under risk deviate from the standard economic view of expected utility maximization. These theories are limited in their predictive accuracy in that they do not explain the probabilistic nature of preferential choice, that is, why an individual makes…

  1. Preferential flow from pore to landscape scales

    Koestel, J. K.; Jarvis, N.; Larsbo, M.

    2017-12-01

    In this presentation, we give a brief personal overview of some recent progress in quantifying preferential flow in the vadose zone, based on our own work and those of other researchers. One key challenge is to bridge the gap between the scales at which preferential flow occurs (i.e. pore to Darcy scales) and the scales of interest for management (i.e. fields, catchments, regions). We present results of recent studies that exemplify the potential of 3-D non-invasive imaging techniques to visualize and quantify flow processes at the pore scale. These studies should lead to a better understanding of how the topology of macropore networks control key state variables like matric potential and thus the strength of preferential flow under variable initial and boundary conditions. Extrapolation of this process knowledge to larger scales will remain difficult, since measurement technologies to quantify macropore networks at these larger scales are lacking. Recent work suggests that the application of key concepts from percolation theory could be useful in this context. Investigation of the larger Darcy-scale heterogeneities that generate preferential flow patterns at the soil profile, hillslope and field scales has been facilitated by hydro-geophysical measurement techniques that produce highly spatially and temporally resolved data. At larger regional and global scales, improved methods of data-mining and analyses of large datasets (machine learning) may help to parameterize models as well as lead to new insights into the relationships between soil susceptibility to preferential flow and site attributes (climate, land uses, soil types).

  2. Across plane ionic conductivity of highly oriented neodymium doped ceria thin films.

    Baure, G; Kasse, R M; Rudawski, N G; Nino, J C

    2015-05-14

    A methodology to limit interfacial effects in thin films is proposed and explained. The strategy is to reduce the impact of the electrode interfaces and eliminate cross grain boundaries that impede ionic motion. To this end, highly oriented Nd0.1Ce0.9O2-δ (NDC) nanocrystalline thin films were grown using pulsed laser deposition (PLD) on platinized single crystal a-plane sapphire substrates. High resolution cross-sectional transmission electron microscopy (HR-XTEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) verified the films were textured with columnar grains. The average widths of the columns were approximately 40 nm and not significantly changed by film thickness between 100 and 300 nm. HR-XTEM and XRD determined the {111} planes of NDC were grown preferentially on top of the {111} planes of platinum despite the large lattice mismatch between the two planes. From the XRD patterns, the out of plane strains on the platinum and NDC layers were less than 1%. This can be explained by the coincident site lattice (CSL) theory. Rotating the {111} ceria planes 19.11° with respect to the {111} platinum planes forms a Σ7 boundary where 1 in 7 cerium lattice sites are coincident with the platinum lattice sites. This orientation lowers interfacial energy promoting the preferential alignment of those two planes. The across plane ionic conductivity was measured at low temperatures (<350 °C) for the various film thicknesses. It is here shown that columnar grain growth of ceria can be induced on platinized substrates allowing pathways that are clear of blocking grain boundaries that cause conductivities to diminish as film thickness decreases.

  3. The effects of cold rolling orientation and water chemistry on stress corrosion cracking behavior of 316L stainless steel in simulated PWR water environments

    Chen, Junjie [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); Lu, Zhanpeng, E-mail: zplu@t.shu.edu.cn [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); State Key Laboratory of Advanced Special Steels, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Xiao, Qian; Ru, Xiangkun; Han, Guangdong; Chen, Zhen [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); Zhou, Bangxin [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); State Key Laboratory of Advanced Special Steels, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Shoji, Tetsuo [New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579 (Japan)

    2016-04-15

    Stress corrosion cracking behaviors of one-directionally cold rolled 316L stainless steel specimens in T–L and L–T orientations were investigated in hydrogenated and deaerated PWR primary water environments at 310 °C. Transgranular cracking was observed during the in situ pre-cracking procedure and the crack growth rate was almost not affected by the specimen orientation. Locally intergranular stress corrosion cracks were found on the fracture surfaces of specimens in the hydrogenated PWR water. Extensive intergranular stress corrosion cracks were found on the fracture surfaces of specimens in deaerated PWR water. More extensive cracks were found in specimen T–L orientation with a higher crack growth rate than that in the specimen L–T orientation with a lower crack growth rate. Crack branching phenomenon found in specimen L–T orientation in deaerated PWR water was synergistically affected by the applied stress direction as well as the preferential oxidation path along the elongated grain boundaries, and the latter was dominant. - Highlights: • Transgranular fatigue crack growth rate was not affected by the cold rolling orientation. • Locally intergranular SCC was found in the hydrogenated PWR water. • Extensive intergranular SCC cracks were found in deaerated PWR water. • T–L specimen showed more extensive SCC cracks and a higher crack growth rate. • Crack branching related to the applied stress and the preferential oxidation path.

  4. Ferroelectric domain continuity over grain boundaries

    Mantri, Sukriti; Oddershede, Jette; Damjanovic, Dragan

    2017-01-01

    Formation and mobility of domain walls in ferroelectric materials is responsible for many of their electrical and mechanical properties. Domain wall continuity across grain boundaries has been observed since the 1950's and is speculated to affect the grain boundary-domain interactions, thereby...... impacting macroscopic ferroelectric properties in polycrystalline systems. However detailed studies of such correlated domain structures across grain boundaries are limited. In this work, we have developed the mathematical requirements for domain wall plane matching at grain boundaries of any given...... orientation. We have also incorporated the effect of grain boundary ferroelectric polarization charge created when any two domains meet at the grain boundary plane. The probability of domain wall continuity for three specific grain misorientations is studied. Use of this knowledge to optimize processing...

  5. Preferential acceleration in collisionless supernova shocks

    Hainebach, K.; Eichler, D.; Schramm, D.

    1979-01-01

    The preferential acceleration and resulting cosmic ray abundance enhancements of heavy elements (relative to protons) are calculated in the collisionless supernova shock acceleration model described by Eichler in earlier work. Rapidly increasing enhancements up to several tens times solar ratios are obtained as a function of atomic weight over charge at the time of acceleration. For material typical of hot phase interstellar medium, good agreement is obtained with the observed abundance enhancements

  6. Preferential Pathway for Glycine Formation in Star-Forming Regions

    Pilling, S.; Boechat-Roberty, H. M.; Baptista, L.; Santos A. C., F.

    Interstellar clouds, similar to that from which the solar system was formed, contain many organic molecules including aldehydes, acids, ketones, and sugars Ehrenfreund & Charnley (2000). Those organic compounds have important functions in terrestrial biochemistry and could also have been important in prebiotic synthesis. The simplest amino acid, glycine (NH2CH2COOH), was recently detected in the hot molecular cores Sgr B2(N-LMH), Orion KL, and W51 e1/e2 Kuan et al. (2003). The formic acid (HCOOH) and acetic acid(CH3COOH) have also been detected in those regions Liu et al. (2002), Remijan et al. (2004). The goal of this work is to study experimentally photoionization and photodissociation processes of glycine precursor molecules, acetic acid and formic acid to elucidate a possible preferentially in the glycine synthesis between ice and gas phase. The measurements were taken at the Brazilian Synchrotron Light Laboratory (LNLS), employing soft X-ray photons from a toroidal grating monochromator TGM) beamline (100 - 310 eV). The experimental set up consists of a high vacuum chamber with a Time-Of-Flight Mass Spectrometer (TOF-MS). Mass spectra were obtained using PhotoElectron PhotoIon Coincidence (PEPICO) technique. Kinetic energy distributions and abundances for each ionic fragment have been obtained from the analysis of the corresponding peak shapes in the mass spectra. Dissociative and non-dissociative photoionization cross sections for both molecules were also determined Boechat-Roberty, Pilling & Santos (2005). Due to the high photodissociation cross section of formic acid it is possible that in PDRs regions, just after molecules evaporation from the grains surface, it is almost destructed by soft X-rays, justifying the observed low abundance of HCOOH in gaseous phase Ehrenfreund et al. (2001). Acetic acid have shown to be more stable to the ionizing field, and its main outcomes from dissociation process were the reactive ionic fragments COOH+ and CH3CO+. To

  7. Behaviors of Deformation, Recrystallization and Textures Evolution of Columnar Grains in 3%Si Electrical Steel Slabs

    SHAO Yuan-yuan

    2017-11-01

    Full Text Available The behaviors of deformation and recrystallization and textures evolution of 3% (mass fraction Si columnar-grained electrical steel slabs were investigated by electron backscatter diffractometer technique and X-ray diffraction. The results indicate that the three columnar-grained samples have different initial textures with the long axes arranged along rolling, transverse and normal directions. Three shear orientations can be obtained in surface layer after hot rolling, of which Goss orientation is formed easily. The α and γ fibre rolling orientations are obtained in RD sample, while strong γ fibre orientations in TD sample and sharp {100} orientations in ND sample are developed respectively. In addition, cube orientation can be found in all the three samples. The characteristics of hot rolled orientations in center region reveal distinct dependence on initial columnar-grained orientations. Strong {111}〈112〉 orientation in RD and TD samples separately comes from Goss orientation of hot rolled sheets, and sharp rotated cube orientation in ND sample originates from the initial {100} orientation of hot rolled sheets after cold rolling. Influenced by initial deviated orientations and coarse grain size, large orientation gradient of rotated cube oriented grain can be observed in ND sample. The coarse {100} orientated grains of center region in the annealed sheets show the heredity of the initial columnar-grained orientations.

  8. Preferential Attachment in Online Networks: Measurement and Explanations

    Kunegis, J; Blattner, M; Moser, C.

    2013-01-01

    We perform an empirical study of the preferential attachment phenomenon in temporal networks and show that on the Web, networks follow a nonlinear preferential attachment model in which the exponent depends on the type of network considered. The classical preferential attachment model for networks

  9. Pressure-induced preferential growth of nanocrystals in amorphous Nd9Fe85B6

    Wu Wei; Li Wei; Sun Hongyu; Li Hui; Zhang Xiangyi; Li Xiaohong; Liu Baoting

    2008-01-01

    Control over the growth and crystallographic orientation of nanocrystals in amorphous alloys is of particular importance for the development of advanced nanocrystalline materials. In the present study, Nd 2 Fe 14 B nanocrystals with a strong crystallographic texture along the [410] direction have been produced in Nd-lean amorphous Nd 9 Fe 85 B 6 under a high pressure of 6 GPa at 923 K. This is attributed to the high pressure inducing the preferential growth of Nd 2 Fe 14 B nanocrystals in the alloy. The present study demonstrates the potential application of high-pressure technology in controlling nanocrystalline orientation in amorphous alloys

  10. Branching-induced grain boundary evolution during directional solidification of columnar dendritic grains

    Guo, Chunwen; Li, Junjie; Yu, Honglei; Wang, Zhijun; Lin, Xin; Wang, Jincheng

    2017-01-01

    We present an investigation of secondary and tertiary branching behavior in diverging grain boundaries (GBs) between two columnar dendritic grains with different crystallographic orientations, both by two-dimensional phase-field simulations and thin-sample experiments. The stochasticity of the GB trajectories and the statistically averaged GB orientations were analyzed in detail. The side-branching dynamics and subsequent branch competition behaviors found in the simulations agreed well with the experimental results. When the orientations of two grains are given, the experimental results indicated that the average GB orientation was independent of the pulling velocity in the dendritic growth regime. The simulation and experimental results, as well as the results reported in the literature exhibit a uniform relation between the percentage of the whole gap region occupied by the favorably oriented grain and the difference in the absolute values of the secondary arm growth directions of the two competitive grains. By describing such a uniform relation with a simple fitting equation, we proposed a simple analytical model for the GB orientation at diverging GBs, which gives a more accurate description of GB orientation selection than the existing models.

  11. Grain Boundary Engineering of Electrodeposited Thin Films

    Alimadadi, Hossein

    is not yet well-understood. This, at least partly, owes to the lack of robust characterization methods for analyzing the nature of grain boundaries including the grain boundary plane characteristics, until recently. In the past decade, significant improvements in the 2-dimensional and 3-dimensional analysis...... of the favorable boundaries that break the network of general grain boundaries. Successful dedicated synthesis of a textured nickel film fulfilling the requirements of grain boundary engineered materials, suggests improved boundary specific properties. However, the textured nickel film shows fairly low...... thermal stability and growth twins annihilate by thermal treatment at 600 degree C. In contrast, for oriented grains, growth nano-twins which are enveloped within columnar grains show a high thermal stability even after thermal treatment at 600 degree C. In order to exploit the high thermal...

  12. Structure and blood compatibility of highly oriented PLA/MWNTs composites produced by solid hot drawing.

    Li, Zhengqiu; Zhao, Xiaowen; Ye, Lin; Coates, Phil; Caton-Rose, Fin; Martyn, Michasel

    2014-03-01

    Highly oriented poly(lactic acid) (PLA)/multi-walled carbon nanotubes (MWNTs) composites were fabricated through solid hot drawing technology in an effort to improve the mechanical properties and blood biocompatibility of PLA as blood-contacting medical devices. It was found that proper MWNTs content and drawing orientation can improve the tensile strength and modulus of PLA dramatically. With the increase in draw ratio, the cold crystallization peak became smaller, and the glass transition and the melting peak of PLA moved to high temperature, while the crystallinity increased, and the grain size decreased, indicating the stress-induced crystallization of PLA during drawing. MWNTs showed a nucleation effect on PLA, leading to the rise in the melting temperature, increase in crystallinity and reduction of spherulite size for the composites. Moreover, the intensity of (002) diffraction of MWNTs increased with draw ratio, indicating that MWNTs were preferentially aligned and oriented during drawing. Microstructure observation demonstrated that PLA matrix had an ordered fibrillar bundle structure, and MWNTs in the composite tended to align parallel to the drawing direction. In addition, the dispersion of MWNTs in PLA was also improved by orientation. Introduction of MWNTs and drawing orientation could significantly enhance the blood compatibility of PLA by prolonging kinetic clotting time, reducing hemolysis ratio and platelet activation.

  13. Large grain CBMM Nb ingot slices: An ideal test bed for exploring the microstructure-electromagnetic property relationships relevant to SRF

    Sung, Zu-Hawn; Lee, Peter J.; Polyanskii, Anatolii; Balachandran, Shreyas; Chetri, Santosh; Larbalestier, David C.; Wang, Mingmin; Compton, Christopher; Bieler, Thomas R.

    2015-01-01

    High purity (RRR > 200), large grain (> 5-10 cm) niobium ingot slices have been successfully used to fabricate radio frequency (RF) cavities for particle accelerators. They offer significantly reduced fabrication cost by eliminating processing steps and furthermore they provide the opportunity to study the influence of individual grain boundaries in SRF Nb. Here we summarize our measurements of grain boundary (GB) effects on the superconducting properties of large grain high purity niobium sheet manufactured by CBMM. We show by magneto-optical (MO) imaging that GBs allow premature flux penetration, but only when they are oriented close to the direction of the magnetic field. However, even low angle GBs produced by minor deformations commensurate with half-cell forming produce localized flux penetration. The transport properties of grain boundaries were investigated by direct transport across them and evidence for preferential vortex flow along the GBs of SRF Nb was observed for the first time. Using transmission electron microscopy (TEM) and micro crystallographic analysis with electron backscattered diffraction (EBSD), we were able to quantitatively characterize surface substructures that can lead to localized thermal breakdown of superconductivity. Important to these studies was the development of sample preparation techniques that made the cutout single, bi-crystal and tri-crystal Nb coupons as representative as possible of the surface properties of cavities manufactured by standard techniques

  14. Preferential treatment and exemption policy impacts energy

    Doelle, R.R.

    1991-01-01

    This paper reports on the preferential treatment and exemption policy of the Federal Energy Regulatory Commission (FERC) for State and State Agencies which creates an anticompetitive and restraint of trade attitude in California against the development of alternative energy resources by the private sector when such development competes directly with state owned power generation under the State Water and Central Valley Water Projects, particularly in the area of water and power supply. The existing state water policy fails to address the effects of global warming and the adverse potential of the greenhouse effect in California, i.e. rising tides can seriously impact sea water intrusion problems of the San Francisco Bay-Delta Area by not only flooding agricultural lands in the Delta and Central Valley, but impacting the supply of water to large population areas in Southern and Northern California, especially when coupled with drought conditions. The California investigative research results herein reported demonstrates the fallacy of a preferential treatment and exemption policy in a free market economy, especially when such policy creates the potential for excessive state budget burdens upon the public in the face of questionable subsidies to special interest, i.e., allowing the resulting windfall profits to be passed onto major utilities and commingled at the expense of public interest so as to undermine the financial means for development of alternative energy resources. The cited Congressional and State Legislative Laws which provide the ways and means to resolve any energy or water resource problems are only as good as the enforcement and the commitment by the executive branch of government and the lawmakers to up-hold existing laws

  15. Statistics of grain misorientations in molybdenum

    Rybin, V V; Titovets, Yu F; Teplitskij, D M; Zolotorevskij, N Yu

    1982-03-01

    Sets of misorientations between neighbouring grains for three recrystallized molybdenum polycrystals differing in purity, phase composition and prehistory are experimentally determined. The data obtained are analyzed according to modern representations of intergrain boundary structure. In the two materials among the three mentioned above the share of boundaries close to special boundaries with high density of coinciding points turned to be 1.5 times higher than in the polycrystal with chaotic distribution of grains by orientations.

  16. Corrosion resistant surface for vanadium nitride and hafnium nitride layers as function of grain size

    Escobar, C. A.; Caicedo, J. C.; Aperador, W.

    2014-01-01

    In this research it was studied vanadium nitride (VN) and hafnium nitride (HfN) film, which were deposited onto silicon (Si (100)) and AISI 4140 steel substrates via r.f. magnetron sputtering technique in Ar/N2 atmosphere with purity at 99.99% for both V and Hf metallic targets. Both films were approximately 1.2±0.1 μm thick. The crystallography structures that were evaluated via X-ray diffraction analysis (XRD) showed preferential orientations in the Bragg planes VN (200) and HfN (111). The chemical compositions for both films were characterized by EDX. Atomic Force Microscopy (AFM) was used to study the morphology; the results reveal grain sizes of 78±2 nm for VN and 58±2 nm for HfN and roughness values of 4.2±0.1 nm for VN and 1.5±0.1 nm for HfN films. The electrochemical performance in VN and HfN films deposited onto steel 4140 were studied by Tafel polarization curves and impedance spectroscopy methods (EIS) under contact with sodium chloride at 3.5 wt% solution, therefore, it was found that the corrosion rate decreased about 95% in VN and 99% for HfN films in relation to uncoated 4140 steel, thus demonstrating, the protecting effect of VN and HfN films under a corrosive environment as function of morphological characteristics (grain size). VN(grain size)=78±2.0 nm, VN(roughness)=4.2±0.1 nm, VN(corrosion rate)=40.87 μmy. HfN(grain size)=58±2.0 nm, HfN(roughness)=1.5±0.1 nm, HfN(corrosion rate)=0.205 μmy. It was possible to analyze that films with larger grain size, can be observed smaller grain boundary thus generating a higher corrosion rate, therefore, in this work it was found that the HfN layer has better corrosion resistance (low corrosion rate) in relation to VN film which presents a larger grain size, indicating that the low grain boundary in (VN films) does not restrict movement of the Cl- ion and in this way the corrosion rate increases dramatically.

  17. Grain dissection as a grain size reducing mechanism during ice microdynamics

    Steinbach, Florian; Kuiper, Ernst N.; Eichler, Jan; Bons, Paul D.; Drury, Martin R.; Griera, Albert; Pennock, Gill M.; Weikusat, Ilka

    2017-04-01

    Ice sheets are valuable paleo-climate archives, but can lose their integrity by ice flow. An understanding of the microdynamic mechanisms controlling the flow of ice is essential when assessing climatic and environmental developments related to ice sheets and glaciers. For instance, the development of a consistent mechanistic grain size law would support larger scale ice flow models. Recent research made significant progress in numerically modelling deformation and recrystallisation mechanisms in the polycrystalline ice and ice-air aggregate (Llorens et al., 2016a,b; Steinbach et al., 2016). The numerical setup assumed grain size reduction is achieved by the progressive transformation of subgrain boundaries into new high angle grain boundaries splitting an existing grain. This mechanism is usually termed polygonisation. Analogue experiments suggested, that strain induced grain boundary migration can cause bulges to migrate through the whole of a grain separating one region of the grain from another (Jessell, 1986; Urai, 1987). This mechanism of grain dissection could provide an alternative grain size reducing mechanism, but has not yet been observed during ice microdynamics. In this contribution, we present results using an updated numerical approach allowing for grain dissection. The approach is based on coupling the full field theory crystal visco-plasticity code (VPFFT) of Lebensohn (2001) to the multi-process modelling platform Elle (Bons et al., 2008). VPFFT predicts the mechanical fields resulting from short strain increments, dynamic recrystallisation process are implemented in Elle. The novel approach includes improvements to allow for grain dissection, which was topologically impossible during earlier simulations. The simulations are supported by microstructural observations from NEEM (North Greenland Eemian Ice Drilling) ice core. Mappings of c-axis orientations using the automatic fabric analyser and full crystallographic orientations using electron

  18. Preferential solvation: dividing surface vs excess numbers.

    Shimizu, Seishi; Matubayasi, Nobuyuki

    2014-04-10

    How do osmolytes affect the conformation and configuration of supramolecular assembly, such as ion channel opening and actin polymerization? The key to the answer lies in the excess solvation numbers of water and osmolyte molecules; these numbers are determinable solely from experimental data, as guaranteed by the phase rule, as we show through the exact solution theory of Kirkwood and Buff (KB). The osmotic stress technique (OST), in contrast, purposes to yield alternative hydration numbers through the use of the dividing surface borrowed from the adsorption theory. However, we show (i) OST is equivalent, when it becomes exact, to the crowding effect in which the osmolyte exclusion dominates over hydration; (ii) crowding is not the universal driving force of the osmolyte effect (e.g., actin polymerization); (iii) the dividing surface for solvation is useful only for crowding, unlike in the adsorption theory which necessitates its use due to the phase rule. KB thus clarifies the true meaning and limitations of the older perspectives on preferential solvation (such as solvent binding models, crowding, and OST), and enables excess number determination without any further assumptions.

  19. DEVELOPMENT OF GRAIN MARKET IN UKRAINE

    Aleksandr Maslak

    2015-11-01

    Full Text Available The subject of the research is a set of theoretical, methodological and practical fundamentals of organizational and economic functioning are integrated agricultural formations in the grain market of Ukraine. The methodological basis of research is the complex analysis of economic processes in the grain market in Ukraine and the world. During research we used such methods as method of systematization and comparison, statistic, economic, balance, constructive, target-oriented, and the methods of induction and deduction, analogy and comparison. Main aim of this article is the analysis of the situation on the grain market in Ukraine, defining the role of integrated agricultural formations in this market, improving the organizational-economic mechanism of its functioning, identifies ways of improving the competitiveness of Ukraine among world exporters of grain. Using results of the studies we examined trends grain market in Ukraine; influence of businesses in grain production; analysis of constraints to improve production efficiency of grain; defined domestic (internal needs of grain in Ukraine; assessed the status and expediency transformation infrastructure of the grain market of Ukraine; defined priority directions of development of the grain market in Ukraine. As a result of the preparation of articles, it is obtained the following conclusions: Ukraine is the world's largest producers and exporters of grain, the production of integrated agricultural units to a third of the total grain; technical condition of farm does not meet the needs of production; the domestic market is unable to provide the existing demand for grain production, contributing to export growth; Ukraine has a number of problems due to increased grain production, namely the shortage of storage capacity for the storage of grain, limited performance transshipment of grain in port elevators and imperfection and depreciation of transport systems; solving the existing problems is

  20. Rapid heating effects on grain-size, texture and magnetic properties ...

    Administrator

    oriented electrical steels (Kumar et ... through changes in recovery and recrystallization beha- viour during the final annealing treatment (Duan et .... recovery, recrystallization and grain coarsening (Doherty et al 1988). The size of recrystallized grain is ...

  1. Grain Handling and Storage.

    Harris, Troy G.; Minor, John

    This text for a secondary- or postecondary-level course in grain handling and storage contains ten chapters. Chapter titles are (1) Introduction to Grain Handling and Storage, (2) Elevator Safety, (3) Grain Grading and Seed Identification, (4) Moisture Control, (5) Insect and Rodent Control, (6) Grain Inventory Control, (7) Elevator Maintenance,…

  2. Grain Grading and Handling.

    Rendleman, Matt; Legacy, James

    This publication provides an introduction to grain grading and handling for adult students in vocational and technical education programs. Organized in five chapters, the booklet provides a brief overview of the jobs performed at a grain elevator and of the techniques used to grade grain. The first chapter introduces the grain industry and…

  3. Modeling online social networks based on preferential linking

    Hu Hai-Bo; Chen Jun; Guo Jin-Li

    2012-01-01

    We study the phenomena of preferential linking in a large-scale evolving online social network and find that the linear preference holds for preferential creation, preferential acceptance, and preferential attachment. Based on the linear preference, we propose an analyzable model, which illustrates the mechanism of network growth and reproduces the process of network evolution. Our simulations demonstrate that the degree distribution of the network produced by the model is in good agreement with that of the real network. This work provides a possible bridge between the micro-mechanisms of network growth and the macrostructures of online social networks

  4. The response dynamics of preferential choice.

    Koop, Gregory J; Johnson, Joseph G

    2013-12-01

    The ubiquity of psychological process models requires an increased degree of sophistication in the methods and metrics that we use to evaluate them. We contribute to this venture by capitalizing on recent work in cognitive science analyzing response dynamics, which shows that the bearing information processing dynamics have on intended action is also revealed in the motor system. This decidedly "embodied" view suggests that researchers are missing out on potential dependent variables with which to evaluate their models-those associated with the motor response that produces a choice. The current work develops a method for collecting and analyzing such data in the domain of decision making. We first validate this method using widely normed stimuli from the International Affective Picture System (Experiment 1), and demonstrate that curvature in response trajectories provides a metric of the competition between choice options. We next extend the method to risky decision making (Experiment 2) and develop predictions for three popular classes of process model. The data provided by response dynamics demonstrate that choices contrary to the maxim of risk seeking in losses and risk aversion in gains may be the product of at least one "online" preference reversal, and can thus begin to discriminate amongst the candidate models. Finally, we incorporate attentional data collected via eye-tracking (Experiment 3) to develop a formal computational model of joint information sampling and preference accumulation. In sum, we validate response dynamics for use in preferential choice tasks and demonstrate the unique conclusions afforded by response dynamics over and above traditional methods. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Deformation inhomogeneity in large-grained AA5754 sheets

    Zhu Guozhen; Hu Xiaohua; Kang Jidong; Mishra, Raja K.; Wilkinson, David S.

    2011-01-01

    Research highlights: → Microstructure and strain relationship at individual grain level was studied. → 'Hot spots' nucleate early and most keep growing throughout deformation stages. → 'Hot spots' are correlated with 'soft' grains and soft-evolution grains. → Grains with high Schmid factors tend to be 'soft' grains. → Grains with the direction close to tensile axis tend to become softer. - Abstract: Models for deformation and strain localization in polycrystals that incorporate microstructural features including particles are computationally intensive due to the large variation in scale in going from particles to grains to a specimen. As a result such models are generally 2-D in nature. This is an issue for experimental validation. We have therefore studied deformation heterogeneities and strain localization behavior of coarse-grained alloys with only two grains across the sample thickness, therefore mimicking 2-D behavior. Aluminum alloy sheets (AA5754) have been investigated by a number of surface techniques, including digital image correlation, slip trace analysis and electron backscattered diffraction, at the individual grain level. Local strain concentration zones appear from the very beginning of deformation, which then maintain sustained growth and lead, in one of these regions, to localization and final fracture. These 'hot spots' occur in areas with locally soft grains (i.e. grains with or close to the tensile direction) and soft-evolution orientations (i.e. grains with close to the tensile direction). These grains can be correlated with Taylor and/or Schmid factors.

  6. Distributed network generation based on preferential attachment in ABS

    K. Azadbakht (Keyvan); N. Bezirgiannis (Nikolaos); F.S. de Boer (Frank)

    2017-01-01

    textabstractGeneration of social networks using Preferential Attachment (PA) mechanism is proposed in the Barabasi-Albert model. In this mechanism, new nodes are introduced to the network sequentially and they attach to the existing nodes preferentially where the preference can be based on the

  7. Early detection of preferential channeling in reverse electrodialysis

    Vermaas, David; Saakes, Michel; Nijmeijer, Dorothea C.

    2014-01-01

    Membrane applications often experience fouling, which prevent uniform flow distribution through the feed water compartments, i.e. preferential channeling may occur. This research shows the effect of preferential channeling on energy generation from mixing salt water and fresh water using reverse

  8. Monte Carlo simulation of grain growth

    Paulo Blikstein

    1999-07-01

    Full Text Available Understanding and predicting grain growth in Metallurgy is meaningful. Monte Carlo methods have been used in computer simulations in many different fields of knowledge. Grain growth simulation using this method is especially attractive as the statistical behavior of the atoms is properly reproduced; microstructural evolution depends only on the real topology of the grains and not on any kind of geometric simplification. Computer simulation has the advantage of allowing the user to visualize graphically the procedures, even dynamically and in three dimensions. Single-phase alloy grain growth simulation was carried out by calculating the free energy of each atom in the lattice (with its present crystallographic orientation and comparing this value to another one calculated with a different random orientation. When the resulting free energy is lower or equal to the initial value, the new orientation replaces the former. The measure of time is the Monte Carlo Step (MCS, which involves a series of trials throughout the lattice. A very close relationship between experimental and theoretical values for the grain growth exponent (n was observed.

  9. Simulation of grain boundary effects on electronic transport in metals, and detailed causes of scattering

    Feldman, Baruch [Process Technology Modeling, Design and Technology Solutions, Technology and Manufacturing Group, Intel Corporation, Santa Clara, CA 95052 (United States); Department of Physics, University of Washington, Seattle, WA 98195 (United States); Park, Seongjun; Haverty, Michael; Shankar, Sadasivan [Process Technology Modeling, Design and Technology Solutions, Technology and Manufacturing Group, Intel Corporation, Santa Clara, CA 95052 (United States); Dunham, Scott T. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Department of Electrical Engineering, University of Washington, Seattle, WA 98195 (United States)

    2010-07-15

    We present first-principles simulations of single grain boundary reflectivity of electrons in noble metals, Cu and Ag. We examine twin and non-twin grain boundaries using non-equilibrium Green's function and first principles methods. We also investigate the determinants of reflectivity in grain boundaries by modeling atomic vacancies, disorder, and orientation and find that both the change in grain orientation and disorder in the boundary itself contribute significantly to reflectivity. We find that grain boundary reflectivity may vary widely depending on the grain boundary structure, consistent with published experimental results. Finally, we examine the reflectivity from multiple grain boundaries and find that grain boundary reflectivity may depend on neighboring grain boundaries. This study raises some potential limitations in the independent grain boundary assumptions of the Mayadas-Shatzkes (MS) model. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  10. Preferentially Cytotoxic Constituents of Andrographis paniculata and their Preferential Cytotoxicity against Human Pancreatic Cancer Cell Lines.

    Lee, Sullim; Morita, Hiroyuki; Tezuka, Yasuhiro

    2015-07-01

    In the course of our search for anticancer agents based on a novel anti-austerity strategy, we found that the 70% EtOH extract of the crude drug Andrographis Herba (aerial parts of Andrographis paniculata), used in Japanese Kampo medicines, killed PANC-1 human pancreatic cancer cells preferentially in nutrient-deprived medium (NDM). Phytochemical investigation of the 70% EtOH extract led to the isolation of 21 known compounds consisting of six labdane-type diterpenes (11, 15, 17-19, 21), six flavones (5, 7, 10, 12, 14, 20), three flavanones (2, 6, 16), two sterols (3, 8), a fatty acid (1), a phthalate (4), a triterpene (9), and a monoterpene (13). Among them, 14-deoxy-11,12-didehydroandrographolide (17) displayed the most potent preferential cytotoxicity against PANC-1 and PSN-1 cells with PC50 values of 10.0 μM and 9.27 μM, respectively. Microscopical observation, double staining with ethidium bromide (EB) and acridine orange (AO), and flow cytometry with propidium iodide/annexin V double staining indicated that 14-deoxy-11,12-didehydroandrographolide (17) triggered apoptosis-like cell death in NDM with an amino acids and/or serum-sensitive mode.

  11. Blocking of grain reorientation in self-doped alumina materials

    Suarez, M.; Fernandez, A.; Menendez, J.L.; Ramirez-Rico, J.; Torrecillas, R.

    2011-01-01

    Alumina nanoparticles 10-20 nm in diameter were nucleated on alumina particles, 150 nm average diameter, by a colloidal route followed by calcination. It is shown that after sintering, the final grain size is up to 20% smaller due to the addition of the alumina nanoparticles. Electron backscattered diffraction analysis shows that whereas a correlation in the relative crystalline orientations between neighbouring grains exists in the pure materials, the addition of alumina nanoparticles results in a random crystalline orientation.

  12. Towards modeling intergranular stress corrosion cracks on grain size scales

    Simonovski, Igor; Cizelj, Leon

    2012-01-01

    Highlights: ► Simulating the onset and propagation of intergranular cracking. ► Model based on the as-measured geometry and crystallographic orientations. ► Feasibility, performance of the proposed computational approach demonstrated. - Abstract: Development of advanced models at the grain size scales has so far been mostly limited to simulated geometry structures such as for example 3D Voronoi tessellations. The difficulty came from a lack of non-destructive techniques for measuring the microstructures. In this work a novel grain-size scale approach for modelling intergranular stress corrosion cracking based on as-measured 3D grain structure of a 400 μm stainless steel wire is presented. Grain topologies and crystallographic orientations are obtained using a diffraction contrast tomography, reconstructed within a detailed finite element model and coupled with advanced constitutive models for grains and grain boundaries. The wire is composed of 362 grains and over 1600 grain boundaries. Grain boundary damage initialization and early development is then explored for a number of cases, ranging from isotropic elasticity up to crystal plasticity constitutive laws for the bulk grain material. In all cases the grain boundaries are modeled using the cohesive zone approach. The feasibility of the approach is explored.

  13. The relevance of grain dissection for grain size reduction in polar ice: insights from numerical models and ice core microstructure analysis

    Steinbach, Florian; Kuiper, Ernst-Jan N.; Eichler, Jan; Bons, Paul D.; Drury, Martyn R.; Griera, Albert; Pennock, Gill M.; Weikusat, Ilka

    2017-09-01

    The flow of ice depends on the properties of the aggregate of individual ice crystals, such as grain size or lattice orientation distributions. Therefore, an understanding of the processes controlling ice micro-dynamics is needed to ultimately develop a physically based macroscopic ice flow law. We investigated the relevance of the process of grain dissection as a grain-size-modifying process in natural ice. For that purpose, we performed numerical multi-process microstructure modelling and analysed microstructure and crystallographic orientation maps from natural deep ice-core samples from the North Greenland Eemian Ice Drilling (NEEM) project. Full crystallographic orientations measured by electron backscatter diffraction (EBSD) have been used together with c-axis orientations using an optical technique (Fabric Analyser). Grain dissection is a feature of strain-induced grain boundary migration. During grain dissection, grain boundaries bulge into a neighbouring grain in an area of high dislocation energy and merge with the opposite grain boundary. This splits the high dislocation-energy grain into two parts, effectively decreasing the local grain size. Currently, grain size reduction in ice is thought to be achieved by either the progressive transformation from dislocation walls into new high-angle grain boundaries, called subgrain rotation or polygonisation, or bulging nucleation that is assisted by subgrain rotation. Both our time-resolved numerical modelling and NEEM ice core samples show that grain dissection is a common mechanism during ice deformation and can provide an efficient process to reduce grain sizes and counter-act dynamic grain-growth in addition to polygonisation or bulging nucleation. Thus, our results show that solely strain-induced boundary migration, in absence of subgrain rotation, can reduce grain sizes in polar ice, in particular if strain energy gradients are high. We describe the microstructural characteristics that can be used to

  14. The Relevance of Grain Dissection for Grain Size Reduction in Polar Ice: Insights from Numerical Models and Ice Core Microstructure Analysis

    Florian Steinbach

    2017-09-01

    Full Text Available The flow of ice depends on the properties of the aggregate of individual ice crystals, such as grain size or lattice orientation distributions. Therefore, an understanding of the processes controlling ice micro-dynamics is needed to ultimately develop a physically based macroscopic ice flow law. We investigated the relevance of the process of grain dissection as a grain-size-modifying process in natural ice. For that purpose, we performed numerical multi-process microstructure modeling and analyzed microstructure and crystallographic orientation maps from natural deep ice-core samples from the North Greenland Eemian Ice Drilling (NEEM project. Full crystallographic orientations measured by electron backscatter diffraction (EBSD have been used together with c-axis orientations using an optical technique (Fabric Analyser. Grain dissection is a feature of strain-induced grain boundary migration. During grain dissection, grain boundaries bulge into a neighboring grain in an area of high dislocation energy and merge with the opposite grain boundary. This splits the high dislocation-energy grain into two parts, effectively decreasing the local grain size. Currently, grain size reduction in ice is thought to be achieved by either the progressive transformation from dislocation walls into new high-angle grain boundaries, called subgrain rotation or polygonisation, or bulging nucleation that is assisted by subgrain rotation. Both our time-resolved numerical modeling and NEEM ice core samples show that grain dissection is a common mechanism during ice deformation and can provide an efficient process to reduce grain sizes and counter-act dynamic grain-growth in addition to polygonisation or bulging nucleation. Thus, our results show that solely strain-induced boundary migration, in absence of subgrain rotation, can reduce grain sizes in polar ice, in particular if strain energy gradients are high. We describe the microstructural characteristics that can be

  15. Microbiota of kefir grains

    Tomislav Pogačić

    2013-03-01

    Full Text Available Kefir grains represent the unique microbial community consisting of bacteria, yeasts, and sometimes filamentous moulds creating complex symbiotic community. The complexity of their physical and microbial structures is the reason that the kefir grains are still not unequivocally elucidated. Microbiota of kefir grains has been studied by many microbiological and molecular approaches. The development of metagenomics, based on the identification without cultivation, is opening new possibilities for identification of previously nonisolated and non-identified microbial species from the kefir grains. Considering recent studies, there are over 50 microbial species associated with kefir grains. The aim of this review is to summarise the microbiota composition of kefir grains. Moreover, because of technological and microbiological significance of the kefir grains, the paper provides an insight into the microbiological and molecular methods applied to study microbial biodiversity of kefir grains.

  16. Three dimensional grain boundary modeling in polycrystalline plasticity

    Yalçinkaya, Tuncay; Özdemir, Izzet; Fırat, Ali Osman

    2018-05-01

    At grain scale, polycrystalline materials develop heterogeneous plastic deformation fields, localizations and stress concentrations due to variation of grain orientations, geometries and defects. Development of inter-granular stresses due to misorientation are crucial for a range of grain boundary (GB) related failure mechanisms, such as stress corrosion cracking (SCC) and fatigue cracking. Local crystal plasticity finite element modelling of polycrystalline metals at micron scale results in stress jumps at the grain boundaries. Moreover, the concepts such as the transmission of dislocations between grains and strength of the grain boundaries are not included in the modelling. The higher order strain gradient crystal plasticity modelling approaches offer the possibility of defining grain boundary conditions. However, these conditions are mostly not dependent on misorientation of grains and can define only extreme cases. For a proper definition of grain boundary behavior in plasticity, a model for grain boundary behavior should be incorporated into the plasticity framework. In this context, a particular grain boundary model ([l]) is incorporated into a strain gradient crystal plasticity framework ([2]). In a 3-D setting, both bulk and grain boundary models are implemented as user-defined elements in Abaqus. The strain gradient crystal plasticity model works in the bulk elements and considers displacements and plastic slips as degree of freedoms. Interface elements model the plastic slip behavior, yet they do not possess any kind of mechanical cohesive behavior. The physical aspects of grain boundaries and the performance of the model are addressed through numerical examples.

  17. The role of grain size in He bubble formation: Implications for swelling resistance

    El-Atwani, O.; Nathaniel, J. E.; Leff, A. C.; Muntifering, B. R.; Baldwin, J. K.; Hattar, K.; Taheri, M. L.

    2017-02-01

    Nanocrystalline metals are postulated as radiation resistant materials due to their high defect and particle (e.g. Helium) sink density. Here, the performance of nanocrystalline iron films is investigated in-situ in a transmission electron microscope (TEM) using He irradiation at 700 K. Automated crystal orientation mapping is used in concert with in-situ TEM to explore the role of grain orientation and grain boundary character on bubble density trends. Bubble density as a function of three key grain size regimes is demonstrated. While the overall trend revealed an increase in bubble density up to a saturation value, grains with areas ranging from 3000 to 7500 nm2 show a scattered distribution. An extrapolated swelling resistance based on bubble size and areal density indicated that grains with sizes less than 2000 nm2 possess the greatest apparent resistance. Moreover, denuded zones are found to be independent of grain size, grain orientation, and grain boundary misorientation angle.

  18. Inter-grain coupling and grain charge in dusty plasma Coulomb crystals

    Smith, M. A.; Goodrich, J.; Mohideen, U.; Rahman, H. U.; Rosenberg, M.; Mendis, D. A.

    1998-01-01

    We have studied the lattice structure and grain charge of dusty plasma Coulomb crystals formed in rectangular conductive grooves as a function of plasma temperature and density. The crystal appears to be made of mutually repulsive columns of grains confined by the walls of the groove. The columns are oriented along the direction of the electrode sheath electric field. A simple phenomenological model wherein the inter-grain spacing results from an attractive electric field induced dipole-dipole force balanced by a repulsive monopole Coulomb force is consistent with observed features of the Coulomb crystal

  19. A comparison of grain boundary evolution during grain growth in fcc metals

    Brons, J.G.; Thompson, G.B.

    2013-01-01

    Grain growth of Cu and Ni thin films, subjected to in situ annealing within a transmission electron microscope, has been quantified using a precession-enhanced electron diffraction technique. The orientation of each grain and its misorientation with respect to its neighboring grains were calculated. The Cu underwent grain growth that maintained a monomodal grain size distribution, with its low-angle grain boundaries being consumed, and the Ni exhibited grain size distributions in stages, from monomodal to bimodal to monomodal. The onset of Ni’s abnormal grain growth was accompanied by a sharp increase in the Σ3 and Σ9 boundary fractions, which is attributed to simulation predictions of their increased mobility. These Σ3 and Σ9 fractions then dropped to their room temperature values during the third stage of grain growth. In addition to the Σ3 and Σ9 boundaries, the Σ5 and Σ7 boundaries also underwent an increase in total boundary fraction with increasing temperature in both metals

  20. Study of rapid grain boundary migration in a nanocrystalline Ni thin film

    Kacher, Josh; Robertson, I.M.; Nowell, Matt; Knapp, J.; Hattar, Khalid

    2011-01-01

    Research highlights: → Abnormal growth is distributed randomly in the foil and initiates at different times. → Growth occurs from seemingly uncorrelated regions of the grain boundary. → Growth twins are created during all stages of abnormal grain growth. → Grain growth patterns are qualitatively similar to a vacancy diffusion model. → Grain boundaries and orientations evolve during growth to minimize system energy. - Abstract: Grain boundary migration associated with abnormal grain growth in pulsed-laser deposited Ni was studied in real time by annealing electron transparent films in situ in the transmission electron microscope. The resulting texture evolution and grain boundary types produced were evaluated by ex situ electron backscatter diffraction of interrupted anneals. The combination of these two techniques allowed for the investigation of grain growth rates, grain morphologies, and the evolution of the orientation and grain boundary distributions. Grain boundaries were found to progress in a sporadic, start/stop fashion with no evidence of a characteristic grain growth rate. The orientations of the abnormally growing grains were found to be predominately //ND throughout the annealing process. A high fraction of twin boundaries developed during the annealing process. The intermittent growth from different locations of the grain boundary is discussed in terms of a vacancy diffusion model for grain growth.

  1. Preferential Market Access, Foreign Aid and Economic Development

    Afesorgbor, Sylvanus Kwaku; Abreha, Kaleb Girma

    contributed to the economic development of the beneficiary countries. Focusing on the ACP countries over the period 1970-2009, we show that only the EU preferential scheme is effective in promoting exports and that market access plays a significant and economically large role in the development of beneficiary......Several studies highlight that exporters in developing countries face substantial trade costs. To reduce these costs, a few developed countries mainly Canada, the EU, Japan and the USA granted preferential market access to these exporters. We assess whether these preferential accesses have...

  2. Soil properties and preferential solute transport at the field scale

    Koestel, J K; Minh, Luong Nhat; Nørgaard, Trine

    An important fraction of water flow and solute transport through soil takes place through preferential flow paths. Although this had been already observed in the nineteenth century, it had been forgotten by the scientific community until it was rediscovered during the 1970s. The awareness...... of the relevance of preferential flow was broadly re-established in the community by the early 1990s. However, since then, the notion remains widespread among soil scientists that the occurrence and strength of preferential flow cannot be predicted from measurable proxy variables such as soil properties or land...

  3. German Orientalism

    Margaret Olin

    2011-01-01

    Review of: Suzanne L. Marchand, German Orientalism in the Age of Empire: Religion, Race and Scholarship, Cambridge and Washington, D.C.: Cambridge University Press, 2009. This analysis of Suzanne L. Marchand’s German Orientalism in the Age of Empire: Religion, Race and Scholarship reads her contribution in part against the background of Edward Said’s path breaking book Orientalism. Differences lie in her more expansive understanding of the term ‘Oriental’ to include the Far East and her conce...

  4. Conceptualization of preferential flow for hillslope stability assessment

    Kukemilks, Karlis; Wagner, Jean-Frank; Saks, Tomas; Brunner, Philip

    2018-03-01

    This study uses two approaches to conceptualize preferential flow with the goal to investigate their influence on hillslope stability. Synthetic three-dimensional hydrogeological models using dual-permeability and discrete-fracture conceptualization were subsequently integrated into slope stability simulations. The slope stability simulations reveal significant differences in slope stability depending on the preferential flow conceptualization applied, despite similar small-scale hydrogeological responses of the system. This can be explained by a local-scale increase of pore-water pressures observed in the scenario with discrete fractures. The study illustrates the critical importance of correctly conceptualizing preferential flow for slope stability simulations. It further demonstrates that the combination of the latest generation of physically based hydrogeological models with slope stability simulations allows for improvement to current modeling approaches through more complex consideration of preferential flow paths.

  5. Emergence of global preferential attachment from local interaction

    Li Menghui; Fan Ying; Wu Jinshan; Di Zengru; Gao Liang

    2010-01-01

    Global degree/strength-based preferential attachment is widely used as an evolution mechanism of networks. But it is hard to believe that any individual can get global information and shape the network architecture based on it. In this paper, it is found that the global preferential attachment emerges from the local interaction models, including the distance-dependent preferential attachment (DDPA) evolving model of weighted networks (Li et al 2006 New J. Phys. 8 72), the acquaintance network model (Davidsen et al 2002 Phys. Rev. Lett. 88 128701) and the connecting nearest-neighbor (CNN) model (Vazquez 2003 Phys. Rev. E 67 056104). For the DDPA model and the CNN model, the attachment rate depends linearly on the degree or vertex strength, whereas for the acquaintance network model, the dependence follows a sublinear power law. It implies that for the evolution of social networks, local contact could be more fundamental than the presumed global preferential attachment.

  6. Preferential attachment in the evolution of metabolic networks

    Elofsson Arne

    2005-11-01

    Full Text Available Abstract Background Many biological networks show some characteristics of scale-free networks. Scale-free networks can evolve through preferential attachment where new nodes are preferentially attached to well connected nodes. In networks which have evolved through preferential attachment older nodes should have a higher average connectivity than younger nodes. Here we have investigated preferential attachment in the context of metabolic networks. Results The connectivities of the enzymes in the metabolic network of Escherichia coli were determined and representatives for these enzymes were located in 11 eukaryotes, 17 archaea and 46 bacteria. E. coli enzymes which have representatives in eukaryotes have a higher average connectivity while enzymes which are represented only in the prokaryotes, and especially the enzymes only present in βγ-proteobacteria, have lower connectivities than expected by chance. Interestingly, the enzymes which have been proposed as candidates for horizontal gene transfer have a higher average connectivity than the other enzymes. Furthermore, It was found that new edges are added to the highly connected enzymes at a faster rate than to enzymes with low connectivities which is consistent with preferential attachment. Conclusion Here, we have found indications of preferential attachment in the metabolic network of E. coli. A possible biological explanation for preferential attachment growth of metabolic networks is that novel enzymes created through gene duplication maintain some of the compounds involved in the original reaction, throughout its future evolution. In addition, we found that enzymes which are candidates for horizontal gene transfer have a higher average connectivity than other enzymes. This indicates that while new enzymes are attached preferentially to highly connected enzymes, these highly connected enzymes have sometimes been introduced into the E. coli genome by horizontal gene transfer. We speculate

  7. Shock fabrics in fine-grained micrometeorites

    Suttle, M. D.; Genge, M. J.; Russell, S. S.

    2017-10-01

    The orientations of dehydration cracks and fracture networks in fine-grained, unmelted micrometeorites were analyzed using rose diagrams and entropy calculations. As cracks exploit pre-existing anisotropies, analysis of their orientation provides a mechanism with which to study the subtle petrofabrics preserved within fine-grained and amorphous materials. Both uniaxial and biaxial fabrics are discovered, often with a relatively wide spread in orientations (40°-60°). Brittle deformation cataclasis and rotated olivine grains are reported from a single micrometeorite. This paper provides the first evidence for impact-induced shock deformation in fine-grained micrometeorites. The presence of pervasive, low-grade shock features in CM chondrites and CM-like dust, anomalously low-density measurements for C-type asteroids, and impact experiments which suggest CM chondrites are highly prone to disruption all imply that CM parent bodies are unlikely to have remained intact and instead exist as a collection of loosely aggregated rubble-pile asteroids, composed of primitive shocked clasts.

  8. Grain distinct stratified nanolayers in aluminium alloys

    Donatus, U., E-mail: uyimedonatus@yahoo.com [School of Materials, The University of Manchester, Manchester, M13 9PL, England (United Kingdom); Thompson, G.E.; Zhou, X.; Alias, J. [School of Materials, The University of Manchester, Manchester, M13 9PL, England (United Kingdom); Tsai, I.-L. [Oxford Instruments NanoAnalysis, HP12 2SE, High Wycombe (United Kingdom)

    2017-02-15

    The grains of aluminium alloys have stratified nanolayers which determine their mechanical and chemical responses. In this study, the nanolayers were revealed in the grains of AA6082 (T6 and T7 conditions), AA5083-O and AA2024-T3 alloys by etching the alloys in a solution comprising 20 g Cr{sub 2}O{sub 3} + 30 ml HPO{sub 3} in 1 L H{sub 2}O. Microstructural examination was conducted on selected grains of interest using scanning electron microscopy and electron backscatter diffraction technique. It was observed that the nanolayers are orientation dependent and are parallel to the {100} planes. They have ordered and repeated tunnel squares that are flawed at the sides which are aligned in the <100> directions. These flawed tunnel squares dictate the tunnelling corrosion morphology as well as appearing to have an affect on the arrangement and sizes of the precipitation hardening particles. The inclination of the stratified nanolayers, their interpacing, and the groove sizes have significant influence on the corrosion behaviour and seeming influence on the strengthening mechanism of the investigated aluminium alloys. - Highlights: • Stratified nanolayers in aluminium alloy grains. • Relationship of the stratified nanolayers with grain orientation. • Influence of the inclinations of the stratified nanolayers on corrosion. • Influence of the nanolayers interspacing and groove sizes on hardness and corrosion.

  9. Preferred orientation of ettringite in concrete fractures

    Wenk, Hans-Rudolf

    2009-05-15

    Sulfate attack and the accompanying crystallization of fibrous ettringite [Ca6Al2(OH)12(SO4) 3·26H2O] cause cracking and loss of strength in concrete structures. Hard synchrotron X-ray microdiffraction is used to quantify the orientation distribution of ettringite crystals. Diffraction images are analyzed using the Rietveld method to obtain information on textures. The analysis reveals that the c axes of the trigonal crystallites are preferentially oriented perpendicular to the fracture surfaces. By averaging single-crystal elastic properties over the orientation distribution, it is possible to estimate the elastic anisotropy of ettringite aggregates. © 2009 International Union of Crystallography.

  10. Deformation-induced microstructural evolution at grain scale

    Winther, Grethe

    During plastic deformation metals develop microstructures which may be analysed on several scales,spanning from crystallographic textures averaged over the entire sample to the scale of individualgrains. Even within individual grains, intragranular phenomena in the form of orientation gradients...... aswell as dislocation patterning by formation of dislocation boundaries occur. Experimental data andassociated data analysis at the grain scale and below will be presented to illustrate our current level ofunderstanding. The basis for the analysis is the crystallographic orientation of the grain as well...... is presented for both fcc and bcc materials inseveral deformation modes, demonstrating a clear grain orientation dependence [Huang & Winther,2007]. This dependence has its origin in a dependence on the slip systems [Winther & Huang, 2007].This further implies that the dislocations in the boundaries come from...

  11. Orienteering injuries

    Folan, Jean M.

    1982-01-01

    At the Irish National Orienteering Championships in 1981 a survey of the injuries occurring over the two days of competition was carried out. Of 285 individual competitors there was a percentage injury rate of 5.26%. The article discusses the injuries and aspects of safety in orienteering.

  12. Grain by grain study of the mechanisms of crack propagation during iodine SCC of Zry-4

    Haddad Andalag, R.E.

    1993-01-01

    This paper describes the tests conducted to determine the conditions leading to cracking of a specified grain of metal, focussing on the crystallographic orientation of crack paths, the critical stress conditions and the significance of the fractographic features encountered. In order to get orientable cracking, a technique was developed to produce iodine SCC, by means of pressurizing tubes of a specially heat treated Zry-4 having very large grains, shaped as discs of a few millimeters in diameter and grown up to the wall thickness. Careful orientation of fractured grains, performed by means of a back-reflection Laue technique with a precision better than one degree, has proved that transgranular cracking occurs only along basal planes. The effect of anisotropy, plasticity, triaxiality and residual stresses originated in thermal contraction, has to be considered to account for the influence of the stress state . A grain by grain calculation led to the conclusion that transgranular cracking always occurs on those bearing the maximum resolved tensile stress on basal planes. There are clear indications of the need of a triaxial stress state for the process to occur. Fracture modes other than pseudo-cleavage have been encountered, including intergranular separation, ductile tearing produced by prismatic slip and propagation along twin boundaries. In each case the fractographic features have been identified, and associations have been made with fractographs obtained in normal fuel cladding. (Author)

  13. High performance devices enabled by epitaxial, preferentially oriented, nanodots and/or nanorods

    Goyal, Amit [Knoxville, TN

    2011-10-11

    Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic, superconducting and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.

  14. Preferential orientation of magnetization and interfacial disorder in Co/Au multilayers

    Quispe-Marcatoma, J., E-mail: justinianoqm@gmail.com [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180 (Brazil); Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, P.O. Box 14–0149, Lima 14, Perú (Peru); Pandey, B. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180 (Brazil); Alayo, W. [Departamento de Física, Universidade Federal de Pelotas, Campus Universitário, 96010-900 Pelotas, RS (Brazil); Sousa, M.A. de; Pelegrini, F. [Instituto de Física, Universidade Federal de Goiás, Goiânia 74001-970 (Brazil); Saitovitch, E. Baggio [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180 (Brazil)

    2013-10-15

    Two families of Co/Au multilayer films with different interlayer magnetostatic coupling were grown by the DC magnetron sputtering technique. The structure of these films was analyzed by X-ray diffraction (XRD), and the magnetic properties by vibrating sample magnetometer (VSM) and ferromagnetic resonance (FMR) spectroscopy. All these techniques give complementary information about the structure of the multilayers and the magnetization direction as a function of thickness of the Co layers. The structural analysis shows a decrease of the interfacial disorder for increasing Co layer thickness in both groups of samples. This behavior has been correlated with a transition of the magnetization direction from perpendicular to parallel to the films plane. Thin Co layer samples gave high remnant magnetization with very low saturation field while thick Co layer samples showed low remnant magnetization with high value of saturation field. In the FMR study, the spectra showed two resonance modes, which were associated to the internal and interfacial Co atoms. Volume (K{sub v}) and surface (K{sub s}) anisotropy constants were deduced from the FMR experiments and are in good agreement with the reported values for Co/Au multilayers. - Highlights: • We find a competition between the magnetostatic coupling and magnetic anisotropy. • We find two resonant modes associated to different environments of Co atoms. • The main mode shows perpendicular magnetic anisotropy for samples with t{sub Co}<10 Å. • The secondary mode shows in-plane anisotropy for samples with t{sub Co}<10 Å.

  15. Dependence of crystallite formation and preferential backbone orientations on the side chain pattern in PBDTTPD polymers

    El Labban, Abdulrahman; Warnan, Julien; Cabanetos, Clement; Ratel, Olivier; Tassone, Christopher J.; Toney, Michael F.; Beaujuge, Pierre

    2014-01-01

    -effect transistors (FETs) and bulk-heterojunction (BHJ) solar cells. Beyond film-forming properties, recent work has emphasized the determining role that side-chain substituents play on polymer self-assembly and thin-film nanostructural order, and, in turn, on device

  16. Electromechanical Response of Polycrystalline Barium Titanate Resolved at the Grain Scale

    Majkut, Marta; Daniels, John E.; Wright, Jonathan P.

    2017-01-01

    critical for understanding bulk polycrystalline ferroic behavior. Here, three-dimensional X-ray diffraction is used to reconstruct a 3D grain map (grain orientations and neighborhoods) of a polycrystalline barium titanate sample and track the grain-scale non-180° ferroelectric domain switching strains...

  17. Determining grain resolved stresses in polycrystalline materials using three-dimensional X-ray diffraction

    Oddershede, Jette; Schmidt, Søren; Poulsen, Henning Friis

    2010-01-01

    An algorithm is presented for characterization of the grain resolved (type II) stress states in a polycrystalline sample based on monochromatic X-ray diffraction data. The algorithm is a robust 12-parameter-per-grain fit of the centre-of-mass grain positions, orientations and stress tensors...

  18. Preferential flow through intact soil cores: Effects of matrix head

    Langner, H.W.; Gaber, H.M.; Wraith, J.M.; Huwe, B.; Inskeep, W.P.

    1999-12-01

    Continuous soil pores may act as pathways for preferential flow depending on their size and water status (filled or drained), the latter being largely controlled by the soil matrix head (h). The literature contains a wide range of proposed minimal pore sizes that may contribute to preferential flow. The objective of this study was to examine the relationship between h (and corresponding pore sizes) and preferential solute transport in a naturally structured soil. Tracer ({sup 3}H{sub 2}O and pentafluorobenzoic acid, [PFBA]) miscible displacement experiments were performed at several h values in intact soil cores (15-cm diameter, 30-cm length) using an apparatus especially suited to maintain constant h while collecting large effluent volumes. To test for the occurrence of preferential flow, observed breakthrough curves (BTCs) were evaluated for physical nonequilibrium (PNE) using a comparison between fitted local equilibrium (PNE) and PNE models. Fitting results of the observed BTCs indicated absence of PNE in all solute transport experiments at h {le} {minus}10 cm. Experiments at h {ge} {minus}5 cm consistently exhibited PNE conditions, indicating the presence of preferential flow. These results suggest that soil pores with effective radii of 150 {micro}m and smaller (water-filled at h = {minus}10 cm) do not contribute to preferential flow. Observed pore water velocities were not indicative of the presence or absence of preferential flow conditions. Continuous measurements of soil water content ({theta}) using time domain reflectometry (TDR) revealed that at h = {minus}10 cm, <2% of the soil volume had drained.

  19. Investigation of grain competitive growth during directional solidification of single-crystal nickel-based superalloys

    Zhao, Xinbao [National Energy R and D Center of Clean and High-Efficiency Fossil-Fired Power Generation Technology, Xi' an Thermal Power Research Institute Co. Ltd., Xi' an (China); Northwestern Polytechnical University, State Key Laboratory of Solidification Processing, Xi' an (China); Liu, Lin; Zhang, Jun [Northwestern Polytechnical University, State Key Laboratory of Solidification Processing, Xi' an (China)

    2015-08-15

    Grain competitive growth of nickel-based single-crystal superalloys during directional solidification was investigated. A detailed characterization of bi-crystals' competitive growth was performed to explore the competitive grain evolution. It was found that high withdrawal rate improved the efficiency of grain competitive growth. The overgrowth rate was increased when the misorientation increased. Four patterns of grain competitive growth with differently oriented dispositions were characterized. The results indicated that the positive branching of the dendrites played a significant role in the competitive growth process. The effect of crystal orientation and heat flow on the competitive growth can be attributed to the blocking mechanism between the adjacent grains. (orig.)

  20. Compaction of cereal grain

    Wychowaniec, J.; Griffiths, I.; Gay, A.; Mughal, A.

    2013-01-01

    We report on simple shaking experiments to measure the compaction of a column of Firth oat grain. Such grains are elongated anisotropic particles with a bimodal polydispersity. In these experiments, the particle configurations start from an initially disordered, low-packing-fraction state and under vertical shaking evolve to a dense state with evidence of nematic-like structure at the surface of the confining tube. This is accompanied by an increase in the packing fraction of the grain.

  1. Evolution of interstellar grains

    Greenberg, J.M.

    1984-01-01

    The principal aim of this chapter is to derive the properties of interstellar grains as a probe of local physical conditions and as a basis for predicting such properties as related to infrared emissivity and radiative transfer which can affect the evolution of dense clouds. The first sections will develop the criteria for grain models based directly on observations of gas and dust. A summary of the chemical evolution of grains and gas in diffuse and dense clouds follows. (author)

  2. Microbiota of kefir grains

    Tomislav Pogačić; Sanja Šinko; Šimun Zamberlin; Dubravka Samaržija

    2013-01-01

    Kefir grains represent the unique microbial community consisting of bacteria, yeasts, and sometimes filamentous moulds creating complex symbiotic community. The complexity of their physical and microbial structures is the reason that the kefir grains are still not unequivocally elucidated. Microbiota of kefir grains has been studied by many microbiological and molecular approaches. The development of metagenomics, based on the identification without cultivation, is opening new possibilities f...

  3. Spatial connectivity in a highly heterogeneous aquifer: From cores to preferential flow paths

    Bianchi, M.; Zheng, C.; Wilson, C.; Tick, G.R.; Liu, Gaisheng; Gorelick, S.M.

    2011-01-01

    This study investigates connectivity in a small portion of the extremely heterogeneous aquifer at the Macrodispersion Experiment (MADE) site in Columbus, Mississippi. A total of 19 fully penetrating soil cores were collected from a rectangular grid of 4 m by 4 m. Detailed grain size analysis was performed on 5 cm segments of each core, yielding 1740 hydraulic conductivity (K) estimates. Three different geostatistical simulation methods were used to generate 3-D conditional realizations of the K field for the sampled block. Particle tracking calculations showed that the fastest particles, as represented by the first 5% to arrive, converge along preferential flow paths and exit the model domain within preferred areas. These 5% fastest flow paths accounted for about 40% of the flow. The distribution of preferential flow paths and particle exit locations is clearly influenced by the occurrence of clusters formed by interconnected cells with K equal to or greater than the 0.9 decile of the data distribution (10% of the volume). The fraction of particle paths within the high-K clusters ranges from 43% to 69%. In variogram-based K fields, some of the fastest paths are through media with lower K values, suggesting that transport connectivity may not require fully connected zones of relatively homogenous K. The high degree of flow and transport connectivity was confirmed by the values of two groups of connectivity indicators. In particular, the ratio between effective and geometric mean K (on average, about 2) and the ratio between the average arrival time and the arrival time of the fastest particles (on average, about 9) are consistent with flow and advective transport behavior characterized by channeling along preferential flow paths. ?? 2011 by the American Geophysical Union.

  4. Effect of grain refinement by severe plastic deformation on the next-neighbor misorientation distribution

    Toth, L.S.; Beausir, B.; Gu, C.F.; Estrin, Y.; Scheerbaum, N.; Davies, C.H.J.

    2010-01-01

    Next-neighbor misorientation distributions (NNMD) in severely deformed polycrystalline materials are commonly measured by orientation imaging. A procedure is proposed which enables the separation of NNMD of ultrafine-grained materials into two parts: the distribution of misorientations between newly emerged grains within the original ('parent') grain interior ('internal daughter grains') and the distribution of misorientations between grains adjacent to an original grain boundary on its opposite sides ('grain boundary daughter grains'). The procedure is based on electron backscatter diffraction orientation map analyses carried out on different planes of deformed samples considering the evolution of the grain size and shape during severe plastic deformation. It was applied to copper processed by up to three passes of equal-channel angular pressing. A characteristic feature of the measured NNMD is the occurrence of a double peak, which is clearly due to the differences between the NNMD of the two distinct populations of new grains defined above. The peak at low angles represents mainly the continual grain subdivision process in the interior of a parent grain (and is associated with internal daughter grains), while the peak at large angles is due to the high angle misorientations of the grain boundary daughter grains.

  5. Origins of GEMS Grains

    Messenger, S.; Walker, R. M.

    2012-01-01

    Interplanetary dust particles (IDPs) collected in the Earth s stratosphere contain high abundances of submicrometer amorphous silicates known as GEMS grains. From their birth as condensates in the outflows of oxygen-rich evolved stars, processing in interstellar space, and incorporation into disks around new stars, amorphous silicates predominate in most astrophysical environments. Amorphous silicates were a major building block of our Solar System and are prominent in infrared spectra of comets. Anhydrous interplanetary dust particles (IDPs) thought to derive from comets contain abundant amorphous silicates known as GEMS (glass with embedded metal and sulfides) grains. GEMS grains have been proposed to be isotopically and chemically homogenized interstellar amorphous silicate dust. We evaluated this hypothesis through coordinated chemical and isotopic analyses of GEMS grains in a suite of IDPs to constrain their origins. GEMS grains show order of magnitude variations in Mg, Fe, Ca, and S abundances. GEMS grains do not match the average element abundances inferred for ISM dust containing on average, too little Mg, Fe, and Ca, and too much S. GEMS grains have complementary compositions to the crystalline components in IDPs suggesting that they formed from the same reservoir. We did not observe any unequivocal microstructural or chemical evidence that GEMS grains experienced prolonged exposure to radiation. We identified four GEMS grains having O isotopic compositions that point to origins in red giant branch or asymptotic giant branch stars and supernovae. Based on their O isotopic compositions, we estimate that 1-6% of GEMS grains are surviving circumstellar grains. The remaining 94-99% of GEMS grains have O isotopic compositions that are indistinguishable from terrestrial materials and carbonaceous chondrites. These isotopically solar GEMS grains either formed in the Solar System or were completely homogenized in the interstellar medium (ISM). However, the

  6. Stoichiometry-, phase- and orientation-controlled growth of polycrystalline pyrite (FeS 2) thin films by MOCVD

    Höpfner, C.; Ellmer, K.; Ennaoui, A.; Pettenkofer, C.; Fiechter, S.; Tributsch, H.

    1995-06-01

    The growth process of polycrystalline pyrite thin films employing low pressure metalorganic chemical vapor deposition (LP-MOCVD) in a vertical cold wall reactor has been investigated. Iron pentacarbonyl (IPC) and t-butyldisulfide (TBDS) were utilized as precursors. Study of the growth rate as a function of temperature reveals a kinetically controlled growth process with an activation energy of 73 kJ / mol over the temperature range from 250 to 400°C. From 500 to 630°C, the growth rate is mainly mass transport limited. Decomposition of the films into pyrrhotite (Fe 1 - xS) occurs at higher growth temperatures. The {S}/{Fe} ratio in the films has been controlled from 1.23 up to 2.03 by changing the TBDS partial pressure. With increasing deposition temperature, the crystallites in the films show the tendency to grow [100]-oriented on amorphous substrates at a growth rate of 2.5 Å / s. The grains show a preferential orientation in the [111] direction upon lowering the growth rate down to 0.3 Å / s. Temperatures above 550°C are beneficial in enhancing the grain size in the columnar structured films up to 1.0 μm.

  7. Stoichiometry-, phase- and orientation-controlled growth of polycrystalline pyrite (FeS{sub 2}) thin films by MOCVD

    Hoepfner, C.; Ellmer, K.; Ennaoui, A.; Pettenkofer, C.; Fiechter, S.; Tributsch, H. [Hahn-Meitner-Institut Berlin, Abteilung Solare Energetik, Berlin (Germany)

    1995-06-01

    The growth process of polycrystalline pyrite thin films employing low pressure metalorganic chemical vapor deposition (LP-MOCVD) in a vertical cold wall reactor has been investigated. Iron pentacarbonyl (IPC) and t-butyldisulfide (TBDS) were utilized as precursors. Study of the growth rate as a function of temperature reveals a kinetically controlled growth process with an activation energy of 73 kJ/mol over the temperature range from 250 to 400C. From 500 to 630C, the growth rate is mainly mass transport limited. Decomposition of the films into pyrrhotite (Fe{sub 1-x}S) occurs at higher growth temperatures. The S/Fe ratio in the films has been controlled from 1.23 up to 2.03 by changing the TBDS partial pressure. With increasing deposition temperature, the crystallites in the films show the tendency to grow [100]-oriented on amorphous substrates at a growth rate of 2.5 A/s. The grains show a preferential orientation in the [111] direction upon lowering the growth rate down to 0.3 A/s. Temperatures above 550C are beneficial in enhancing the grain size in the columnar structured films up to 1.0 {mu}m

  8. Reversal of asymmetry of X-ray peak profiles from individual grains during a strain path change

    Wejdemann, Christian; Lienert, U.; Pantleon, Wolfgang

    2010-01-01

    X-ray peak profiles are measured from individual bulk grains during tensile deformation. Two differently oriented copper samples pre-deformed in tension show the expected peak profile asymmetry caused by intra-grain stresses. One of the samples is oriented to achieve a significant change of the i......X-ray peak profiles are measured from individual bulk grains during tensile deformation. Two differently oriented copper samples pre-deformed in tension show the expected peak profile asymmetry caused by intra-grain stresses. One of the samples is oriented to achieve a significant change...

  9. The relation between the column density structures and the magnetic field orientation in the Vela C molecular complex

    Soler, J. D.; Ade, P. A. R.; Angilè, F. E.; Ashton, P.; Benton, S. J.; Devlin, M. J.; Dober, B.; Fissel, L. M.; Fukui, Y.; Galitzki, N.; Gandilo, N. N.; Hennebelle, P.; Klein, J.; Li, Z.-Y.; Korotkov, A. L.; Martin, P. G.; Matthews, T. G.; Moncelsi, L.; Netterfield, C. B.; Novak, G.; Pascale, E.; Poidevin, F.; Santos, F. P.; Savini, G.; Scott, D.; Shariff, J. A.; Thomas, N. E.; Tucker, C. E.; Tucker, G. S.; Ward-Thompson, D.

    2017-07-01

    We statistically evaluated the relative orientation between gas column density structures, inferred from Herschel submillimetre observations, and the magnetic field projected on the plane of sky, inferred from polarized thermal emission of Galactic dust observed by the Balloon-borne Large-Aperture Submillimetre Telescope for Polarimetry (BLASTPol) at 250, 350, and 500 μm, towards the Vela C molecular complex. First, we find very good agreement between the polarization orientations in the three wavelength-bands, suggesting that, at the considered common angular resolution of 3.´0 that corresponds to a physical scale of approximately 0.61 pc, the inferred magnetic field orientation is not significantly affected by temperature or dust grain alignment effects. Second, we find that the relative orientation between gas column density structures and the magnetic field changes progressively with increasing gas column density, from mostly parallel or having no preferred orientation at low column densities to mostly perpendicular at the highest column densities. This observation is in agreement with previous studies by the Planck collaboration towards more nearby molecular clouds. Finally, we find a correspondencebetween (a) the trends in relative orientation between the column density structures and the projected magnetic field; and (b) the shape of the column density probability distribution functions (PDFs). In the sub-regions of Vela C dominated by one clear filamentary structure, or "ridges", where the high-column density tails of the PDFs are flatter, we find a sharp transition from preferentially parallel or having no preferred relative orientation at low column densities to preferentially perpendicular at highest column densities. In the sub-regions of Vela C dominated by several filamentary structures with multiple orientations, or "nests", where the maximum values of the column density are smaller than in the ridge-like sub-regions and the high-column density

  10. Current challenges in quantifying preferential flow through the vadose zone

    Koestel, John; Larsbo, Mats; Jarvis, Nick

    2017-04-01

    In this presentation, we give an overview of current challenges in quantifying preferential flow through the vadose zone. A review of the literature suggests that current generation models do not fully reflect the present state of process understanding and empirical knowledge of preferential flow. We believe that the development of improved models will be stimulated by the increasingly widespread application of novel imaging technologies as well as future advances in computational power and numerical techniques. One of the main challenges in this respect is to bridge the large gap between the scales at which preferential flow occurs (pore to Darcy scales) and the scale of interest for management (fields, catchments, regions). Studies at the pore scale are being supported by the development of 3-D non-invasive imaging and numerical simulation techniques. These studies are leading to a better understanding of how macropore network topology and initial/boundary conditions control key state variables like matric potential and thus the strength of preferential flow. Extrapolation of this knowledge to larger scales would require support from theoretical frameworks such as key concepts from percolation and network theory, since we lack measurement technologies to quantify macropore networks at these large scales. Linked hydro-geophysical measurement techniques that produce highly spatially and temporally resolved data enable investigation of the larger-scale heterogeneities that can generate preferential flow patterns at pedon, hillslope and field scales. At larger regional and global scales, improved methods of data-mining and analyses of large datasets (machine learning) may help in parameterizing models as well as lead to new insights into the relationships between soil susceptibility to preferential flow and site attributes (climate, land uses, soil types).

  11. Preferential ascus discharge during cross maturation in Sordaria brevicollis.

    MacDonald, D J; Bond, D J

    1974-02-01

    Crosses involving spore color mutants of Sordaria brevicollis all showed a decline in the frequency of second division asymmetric asci (2:2:2:2's) as the cross matured. This decline was due to the preferential maturation and/or discharge of these asci. The proportion of spindle overlap and recombinational asci within the group did not change as shown by ascus dissection. The preferential discharge was also found to occur in two-point crosses where the asci did not contain wild-type spores.

  12. A Weighted Evolving Network with Community Size Preferential Attachment

    Zhuo Zhiwei; Shan Erfang

    2010-01-01

    Community structure is an important characteristic in real complex network. It is a network consists of groups of nodes within which links are dense but among which links are sparse. In this paper, the evolving network include node, link and community growth and we apply the community size preferential attachment and strength preferential attachment to a growing weighted network model and utilize weight assigning mechanism from BBV model. The resulting network reflects the intrinsic community structure with generalized power-law distributions of nodes' degrees and strengths.

  13. Grain dynamics and inter-grain coupling in dusty plasma Coulomb crystals

    Rahman, H.U.; Mohideen, U.; Smith, M.A.; Rosenberg, M.; Mendis, D.A.

    2001-01-01

    We review our results on the lattice structure and the lattice dynamics of dusty plasma Coulomb crystals formed in rectangular conductive grooves. The basic structure appears to be made of mutually repulsive columns of grains confined by the walls of the groove. The columns are oriented along the direction of the electrode sheath electric field. Inter-grain coupling as a function of plasma temperature and density were investigated by measurement of these parameters. A simple phenomenological model wherein the inter-grain spacing along the column results from an attractive electric field induced dipole-dipole force balanced by a repulsive monopole Coulomb force is consistent with observed features of the Coulomb crystal. In addition, here we present some preliminary measurements of the vibration and rotation dynamics of the individual grains in the Coulomb crystal. The thermal energy of the dust grain thus calculated is much less than the inter-grain Coulomb potential energy as required for the formation of stable structures. Also the observed rotational frequency is consistent with the assumption of thermal equilibrium between the dust grains and the neutral gas. (orig.)

  14. The influence of grain size, grain color, and suspended-sediment concentration on light attenuation: why fine-grained terrestrial sediment is bad for coral reef ecosystems

    Storlazzi, Curt; Norris, Benjamin; Rosenberger, Kurt

    2015-01-01

    Sediment has been shown to be a major stressor to coral reefs globally. Although many researchers have tested the impact of sedimentation on coral reef ecosystems in both the laboratory and the field and some have measured the impact of suspended sediment on the photosynthetic response of corals, there has yet to be a detailed investigation on how properties of the sediment itself can affect light availability for photosynthesis. We show that finer-grained and darker-colored sediment at higher suspended-sediment concentrations attenuates photosynthetically active radiation (PAR) significantly more than coarser, lighter-colored sediment at lower concentrations and provide PAR attenuation coefficients for various grain sizes, colors, and suspended-sediment concentrations that are needed for biophysical modeling. Because finer-grained sediment particles settle more slowly and are more susceptible to resuspension, they remain in the water column longer, thus causing greater net impact by reducing light essential for photosynthesis over a greater duration. This indicates that coral reef monitoring studies investigating sediment impacts should concentrate on measuring fine-grained lateritic and volcanic soils, as opposed to coarser-grained siliceous and carbonate sediment. Similarly, coastal restoration efforts and engineering solutions addressing long-term coral reef ecosystem health should focus on preferentially retaining those fine-grained soils rather than coarse silt and sand particles.

  15. Plasticity mechanisms in ultrafine grained freestanding aluminum thin films revealed by in-situ transmission electron microscopy nanomechanical testing

    Idrissi, Hosni; Kobler, Aaron; Amin-Ahmadi, Behnam; Schryvers, Dominique; Coulombier, Michael; Pardoen, Thomas; Galceran, Montserrat; Godet, Stéphane; Raskin, Jean-Pierre; Kübel, Christian

    2014-01-01

    In-situ bright field transmission electron microscopy (TEM) nanomechanical tensile testing and in-situ automated crystallographic orientation mapping in TEM were combined to unravel the elementary mechanisms controlling the plasticity of ultrafine grained Aluminum freestanding thin films. The characterizations demonstrate that deformation proceeds with a transition from grain rotation to intragranular dislocation glide and starvation plasticity mechanism at about 1% deformation. The grain rotation is not affected by the character of the grain boundaries. No grain growth or twinning is detected

  16. Plasticity mechanisms in ultrafine grained freestanding aluminum thin films revealed by in-situ transmission electron microscopy nanomechanical testing

    Idrissi, Hosni, E-mail: hosni.idrissi@ua.ac.be [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Place Sainte Barbe 2, B-1348 Louvain-La-Neuve (Belgium); Kobler, Aaron [Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology - KIT, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Joint Research Laboratory Nanomaterials (KIT and TUD) at Technische Universität Darmstadt (TUD), Petersenstr. 32, 64287 Darmstadt (Germany); Amin-Ahmadi, Behnam; Schryvers, Dominique [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Coulombier, Michael; Pardoen, Thomas [Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Place Sainte Barbe 2, B-1348 Louvain-La-Neuve (Belgium); Galceran, Montserrat; Godet, Stéphane [Matters and Materials Department, Université Libre de Bruxelles, 50 Av. FD Roosevelt CP194/03, 1050 Brussels (Belgium); Raskin, Jean-Pierre [Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Microwave Laboratory, Université catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Kübel, Christian [Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology - KIT, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-03-10

    In-situ bright field transmission electron microscopy (TEM) nanomechanical tensile testing and in-situ automated crystallographic orientation mapping in TEM were combined to unravel the elementary mechanisms controlling the plasticity of ultrafine grained Aluminum freestanding thin films. The characterizations demonstrate that deformation proceeds with a transition from grain rotation to intragranular dislocation glide and starvation plasticity mechanism at about 1% deformation. The grain rotation is not affected by the character of the grain boundaries. No grain growth or twinning is detected.

  17. Local current-voltage behaviors of preferentially and randomly textured Cu(In,Ga)Se2 thin films investigated by conductive atomic force microscopy

    Shin, R.H.; Jo, W.; Kim, D.W.; Yun, Jae Ho; Ahn, S.

    2011-01-01

    Electrical transport properties on polycrystalline Cu(In,Ga)Se 2 (CIGS) (Ga/(In+Ga) ∼35%) thin films were examined by conductive atomic force microscopy. The CIGS thin films with a (112) preferential or random texture were deposited on Mo-coated glass substrates. Triangular pyramidal grain growths were observed in the CIGS thin films preferentially textured to the (112) planes. Current maps of the CIGS surface were acquired with a zero or non-zero external voltage bias. The contrast of the images on the grain boundaries and intragrains displayed the conduction path in the materials. Local current-voltage measurements were performed to evaluate the charge conduction properties of the CIGS thin films. (orig.)

  18. Local current-voltage behaviors of preferentially and randomly textured Cu(In,Ga)Se{sub 2} thin films investigated by conductive atomic force microscopy

    Shin, R.H.; Jo, W. [Ewha Womans University, Department of Physics, Seoul (Korea, Republic of); Kim, D.W. [Ewha Womans University, Department of Physics, Seoul (Korea, Republic of); Ewha Womans University, Department of Chemistry and Nanosciences, Seoul (Korea, Republic of); Yun, Jae Ho; Ahn, S. [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2011-09-15

    Electrical transport properties on polycrystalline Cu(In,Ga)Se{sub 2} (CIGS) (Ga/(In+Ga) {approx}35%) thin films were examined by conductive atomic force microscopy. The CIGS thin films with a (112) preferential or random texture were deposited on Mo-coated glass substrates. Triangular pyramidal grain growths were observed in the CIGS thin films preferentially textured to the (112) planes. Current maps of the CIGS surface were acquired with a zero or non-zero external voltage bias. The contrast of the images on the grain boundaries and intragrains displayed the conduction path in the materials. Local current-voltage measurements were performed to evaluate the charge conduction properties of the CIGS thin films. (orig.)

  19. Preferential interactions and the effect of protein PEGylation

    Holm, Louise Stenstrup; Thulstrup, Peter Waaben; Kasimova, Marina Robertovna

    2015-01-01

    enthalpy was decreased to half the value for PEGylated lysozyme. The ratio between calorimetric and van't Hoff enthalpy suggests that our PEGylated lysozyme is a dimer. CONCLUSION/SIGNIFICANCE: The PEGylated model protein displayed similar stability responses to the addition of preferentially active...

  20. Unified Model for Generation Complex Networks with Utility Preferential Attachment

    Wu Jianjun; Gao Ziyou; Sun Huijun

    2006-01-01

    In this paper, based on the utility preferential attachment, we propose a new unified model to generate different network topologies such as scale-free, small-world and random networks. Moreover, a new network structure named super scale network is found, which has monopoly characteristic in our simulation experiments. Finally, the characteristics of this new network are given.

  1. Growth of preferential attachment random graphs via continuous ...

    Preferential attachment processes have a long history dating back at least to Yule ... We remark that some connections to branching and continuous-time Markov ..... convenience, we provide a short proof of Lemma 2.1 in the general form in ...

  2. The impact of preferential procurement in South African construction ...

    The impact of preferential procurement in South African construction industry. ... The outcome of this study shows that there are problems in the implementation of PPPFA during tendering and procurement processes and procedures for achieving success in government projects. Key words: HDIs, PPPFA, Policies, ...

  3. Fitness networks for real world systems via modified preferential attachment

    Shang, Ke-ke; Small, Michael; Yan, Wei-sheng

    2017-05-01

    Complex networks are virtually ubiquitous, and the Barabási and Albert model (BA model) has became an acknowledged standard for the modelling of these systems. The so-called BA model is a kind of preferential attachment growth model based on the intuitive premise that popularity is attractive. However, preferential attachment alone is insufficient to describe the diversity of complex networks observed in the real world. In this paper we first use the accuracy of a link prediction method, as a metric for network fitness. The link prediction method predicts the occurrence of links consistent with preferential attachment, the performance of this link prediction scheme is then a natural measure of the ;preferential-attachment-likeness; of a given network. We then propose several modification methods and modified BA models to construct networks which more accurately describe the fitness properties of real networks. We find that all features assortativity, degree distribution and rich-club formation can play significant roles for the network construction and eventual structure. Moreover, link sparsity and the size of a network are key factors for network reconstruction. In addition, we find that the structure of the network which is limited by geographic location (nodes are embedded in a Euclidean space and connectivity is correlated with distances) differs from other typical networks. In social networks, we observe that the high school contact network has similar structure as the friends network and so we speculate that the contact behaviours can reflect real friendships.

  4. Estimating preferential flow in karstic aquifers using statistical mixed models.

    Anaya, Angel A; Padilla, Ingrid; Macchiavelli, Raul; Vesper, Dorothy J; Meeker, John D; Alshawabkeh, Akram N

    2014-01-01

    Karst aquifers are highly productive groundwater systems often associated with conduit flow. These systems can be highly vulnerable to contamination, resulting in a high potential for contaminant exposure to humans and ecosystems. This work develops statistical models to spatially characterize flow and transport patterns in karstified limestone and determines the effect of aquifer flow rates on these patterns. A laboratory-scale Geo-HydroBed model is used to simulate flow and transport processes in a karstic limestone unit. The model consists of stainless steel tanks containing a karstified limestone block collected from a karst aquifer formation in northern Puerto Rico. Experimental work involves making a series of flow and tracer injections, while monitoring hydraulic and tracer response spatially and temporally. Statistical mixed models (SMMs) are applied to hydraulic data to determine likely pathways of preferential flow in the limestone units. The models indicate a highly heterogeneous system with dominant, flow-dependent preferential flow regions. Results indicate that regions of preferential flow tend to expand at higher groundwater flow rates, suggesting a greater volume of the system being flushed by flowing water at higher rates. Spatial and temporal distribution of tracer concentrations indicates the presence of conduit-like and diffuse flow transport in the system, supporting the notion of both combined transport mechanisms in the limestone unit. The temporal response of tracer concentrations at different locations in the model coincide with, and confirms the preferential flow distribution generated with the SMMs used in the study. © 2013, National Ground Water Association.

  5. Predicting Alcohol, Cigarette, and Marijuana Use from Preferential Music Consumption

    Oberle, Crystal D.; Garcia, Javier A.

    2015-01-01

    This study investigated whether use of alcohol, cigarettes, and marijuana may be predicted from preferential consumption of particular music genres. Undergraduates (257 women and 78 men) completed a questionnaire assessing these variables. Partial correlation analyses, controlling for sensation-seeking tendencies and behaviors, revealed that…

  6. Kansas Agents Study Grain Marketing

    Schoeff, Robert W.

    1973-01-01

    Author is an extension specialist in feed and grain marketing for Kansas State University. He describes a tour set up to educate members of the Kansas Grain and Feed Dealers' Association in the area of grain marketing and exporting. (GB)

  7. Advantageous grain boundaries in iron pnictide superconductors

    Katase, Takayoshi; Ishimaru, Yoshihiro; Tsukamoto, Akira; Hiramatsu, Hidenori; Kamiya, Toshio; Tanabe, Keiichi; Hosono, Hideo

    2011-01-01

    High critical temperature superconductors have zero power consumption and could be used to produce ideal electric power lines. The principal obstacle in fabricating superconducting wires and tapes is grain boundaries—the misalignment of crystalline orientations at grain boundaries, which is unavoidable for polycrystals, largely deteriorates critical current density. Here we report that high critical temperature iron pnictide superconductors have advantages over cuprates with respect to these grain boundary issues. The transport properties through well-defined bicrystal grain boundary junctions with various misorientation angles (θGB) were systematically investigated for cobalt-doped BaFe2As2 (BaFe2As2:Co) epitaxial films fabricated on bicrystal substrates. The critical current density through bicrystal grain boundary (JcBGB) remained high (>1 MA cm−2) and nearly constant up to a critical angle θc of ∼9°, which is substantially larger than the θc of ∼5° for YBa2Cu3O7–δ. Even at θGB>θc, the decay of JcBGB was much slower than that of YBa2Cu3O7–δ. PMID:21811238

  8. Deformation bands in ⟨120⟩ grains in coarse-grained aluminium

    Bilde-Sørensen, Jørgen

    1986-01-01

    Coarse-grained aluminium, deformed in tension to a strain of 0.05, was examined in a scanning electron microscope by channelling contrast. Pronounced bands with a width typically of the order of 200 μm were found in some grains with an orientation close to [120]. When observed on surfaces close......)[011](111) and (a/2)[011](111). The Schmid factor for the highest stressed secondary systems has a local minimum of 0.245 at [120]. The application of Frank's equation shows that the only boundaries without long-range stresses that can be formed by combination of the two sets of dislocations, (a/2)- [011...

  9. Orienteering club

    Club d'orientation

    2015-01-01

    Course d'orientation La reprise des courses d’orientation était attendue dans la région puisque près de 150 coureurs ont participé à la première épreuve automnale organisée par le club d’orientation du CERN sur le site de La Faucille. Les circuits ont été remportés par Yann Locatelli du club d’Orientation Coeur de Savoie avec 56 secondes d’avance sur Damien Berguerre du club SOS Sallanches pour le parcours technique long, Marie Vuitton du club CO CERN (membre également de l’Equipe de France Jeune) pour le parcours technique moyen avec presque 4 minutes d’avance sur Jeremy Wichoud du club Lausanne-Jorat, Victor Dannecker pour le circuit technique court devant Alina Niggli, Elliot Dannecker pour le facile moyen et Alice Merat sur le facile court, tous membres du club O’Jura. Les résultats comp...

  10. Oriental cholangiohepatitis

    Scheible, F.W.; Davis, G.B.; California Univ., San Diego, La Jolla

    1981-01-01

    The recent influx of immigrants from Southeast Asia into the United States has increased the likelihood of encountering unusual diseases heretofore rarely seen in this country. Among these disorders is Oriental cholangiohepatitis, a potentially life-threatening process whose early diagnosis is facilitated by roentgenographic findings. Ultrasonography can also provide useful information, although potential pitfalls in diagnosis should be recognized. (orig.)

  11. Oriental cholangiohepatitis

    Scheible, F.W.; Davis, G.B.

    1981-07-15

    The recent influx of immigrants from Southeast Asia into the United States has increased the likelihood of encountering unusual diseases heretofore rarely seen in this country. Among these disorders is Oriental cholangiohepatitis, a potentially life-threatening process whose early diagnosis is facilitated by roentgenographic findings. Ultrasonography can also provide useful information, although potential pitfalls in diagnosis should be recognized.

  12. Whole Grains and Fiber

    ... for Physical Activity in Children My Family Health Tree What's that you're drinking? Get Active with ... grains. When grocery shopping, an easy way to identify healthy food choices is to look for the ...

  13. 6 Grain Yield

    create a favourable environment for rice ... developing lines adaptable to many ... have stable, not too short crop duration with ..... Analysis of variance of the effect of site and season on maturity, grain yield and plant ..... and yield components.

  14. The effect of crystallographic orientation on the active corrosion of pure magnesium

    Liu Ming; Qiu Dong; Zhao Mingchun; Song, Guangling; Atrens, Andrej

    2008-01-01

    An improved method was used to investigate the influence of crystallographic orientation on the corrosion of pure magnesium in 0.1 N HCl. The corrosion depth and orientation of surface features were mapped against crystallographic orientation (obtained by electron backscatter diffraction) for many off-principal magnesium crystals. The grains near (0 0 0 1) orientation are the most corrosion resistant. Most grains exhibited a striated structure of long and narrow hillocks with a unique direction

  15. Competitive grain growth in directional solidification investigated by phase field simulation

    Li Junjie; Wang Zhijun; Wang Jincheng; Yang Yujuan

    2012-01-01

    During directional solidification, the competitive dendritic growth between various oriented grains is a key factor to obtain desirable texture. In order to understand the mechanism of competitive dendritic growth, the phase field method was adopted to simulate the microstructure evolution of bicrystal samples. The simulation has well reproduced the whole competitive growth process for both diverging and converging dendrites. In converging case, besides the block of the unfavorably oriented dendrite by the favorably oriented one, the unfavorably oriented dendrite is also able to overgrow the favorable one under the condition of relatively low pulling velocity. This unusual overgrowth is dictated by the solute interaction of the converging dendrite tips. In diverging case, it was found that the grain boundary can be either inclined or parallel to the favorably oriented grain depending on the disposition of two grains.

  16. Mesoscopic simulation of recrystallization and grain growth

    Rollett, A.D.

    2000-01-01

    A brief summary of simulation techniques for recrystallization and grain growth is given. The available methods include surface evolver, front tracking (including finite element methods and vertex methods), networks of curves, phase field, cellular automata, and Monte Carlo. Two of the models that use a regular lattice, the Potts model and the Cellular Automaton (CA) model, have proved to be very useful. Microstructure is represented on a discrete lattice where the value of the field at each point represents the local orientation of the material and boundaries exist between points of unlike orientation. Two issues are discussed: one is a hybrid approach to combining the standard Monte Carlo and cellular automata algorithms for recrystallization modeling. The second is adaptation of the MC method for modeling grain growth (and recrystallization) with physically based boundary properties. Both models have significant limitations in their standard forms. The CA model is very useful and efficient for simulating recrystallization with deterministic motion of the recrystallization fronts. It can be adapted to simulate curvature driven migration provided that multiple sub-lattices are used with a probabilistic switching rule. The Potts model is very successful in modeling curvature driven boundary migration and grain growth. It does not simulate the proportionality between boundary velocity and a stored energy driving force, however, unless rather restricted conditions of stored energy (in relation to the grain boundary energy) and lattice temperature are satisfied. A new approach based on a hybrid of the Potts model (MC) and the Cellular Automaton (CA) model has been developed to obtain the desired limiting behavior for both curvature-driven and stored energy-driven grain boundary migration. The combination of methods is achieved by interleaving the two different types of reorientation event in time. The results show that the hybrid algorithm models the Gibbs

  17. In situ grain fracture mechanics during uniaxial compaction of granular solids

    Hurley, R. C.; Lind, J.; Pagan, D. C.; Akin, M. C.; Herbold, E. B.

    2018-03-01

    Grain fracture and crushing are known to influence the macroscopic mechanical behavior of granular materials and be influenced by factors such as grain composition, morphology, and microstructure. In this paper, we investigate grain fracture and crushing by combining synchrotron x-ray computed tomography and three-dimensional x-ray diffraction to study two granular samples undergoing uniaxial compaction. Our measurements provide details of grain kinematics, contacts, average intra-granular stresses, inter-particle forces, and intra-grain crystal and fracture plane orientations. Our analyses elucidate the complex nature of fracture and crushing, showing that: (1) the average stress states of grains prior to fracture vary widely in their relation to global and local trends; (2) fractured grains experience inter-particle forces and stored energies that are statistically higher than intact grains prior to fracture; (3) fracture plane orientations are primarily controlled by average intra-granular stress and contact fabric rather than the orientation of the crystal lattice; (4) the creation of new surfaces during fracture accounts for a very small portion of the energy dissipated during compaction; (5) mixing brittle and ductile grain materials alters the grain-scale fracture response. The results highlight an application of combined x-ray measurements for non-destructive in situ analysis of granular solids and provide details about grain fracture that have important implications for theory and modeling.

  18. Film grain synthesis and its application to re-graining

    Schallauer, Peter; Mörzinger, Roland

    2006-01-01

    Digital film restoration and special effects compositing require more and more automatic procedures for movie regraining. Missing or inhomogeneous grain decreases perceived quality. For the purpose of grain synthesis an existing texture synthesis algorithm has been evaluated and optimized. We show that this algorithm can produce synthetic grain which is perceptually similar to a given grain template, which has high spatial and temporal variation and which can be applied to multi-spectral images. Furthermore a re-grain application framework is proposed, which synthesises based on an input grain template artificial grain and composites this together with the original image content. Due to its modular approach this framework supports manual as well as automatic re-graining applications. Two example applications are presented, one for re-graining an entire movie and one for fully automatic re-graining of image regions produced by restoration algorithms. Low computational cost of the proposed algorithms allows application in industrial grade software.

  19. Review of Grain Refinement of Cast Metals Through Inoculation: Theories and Developments

    Liu, Zhilin

    2017-10-01

    The inoculation method of grain refinement is widely used in research and industry. Because of its commercial and engineering importance, extensive research on the mechanisms/theories of grain refinement and development of effective grain refiners for diverse cast metals/alloys has been conducted. In 1999, Easton and St. John reviewed the mechanisms of grain refinement of cast Al alloys. Since then, grain refinement in alloys of Al, Mg, Fe, Ti, Cu, and Zn has evolved a lot. However, there is still no full consensus on the mechanisms/theories of grain refinement. Moreover, some new grain refiners developed based on the theories do not ensure efficient grain refinement. Thus, the factors that contribute to grain refinement are still not fully understood. Clarification of the prerequisite issues that occur in grain refinement is required using recent theories. This review covers multiple metals/alloys and developments in grain refinement from the last twenty years. The characteristics of effective grain refiners are considered from four perspectives: effective particle/matrix wetting configuration, sufficiently powerful segregating elements, preferential crystallographic matching, and geometrical features of effective nucleants. Then, recent mechanisms/theories on the grain refinement of cast metals/alloys are reviewed, including the peritectic-related, hypernucleation, inert nucleant, and constitutional supercooling-driven theories. Further, developments of deterministic and probabilistic modeling and nucleation crystallography in the grain refinement of cast metals are reviewed. Finally, the latest progress in the grain refinement of cast Zn and its alloys is described, and future work on grain refinement is summarized.

  20. Measuring the elastic strain of individual grains in polycrystalline materials

    AllB, which fits centre-of-mass grain positions, orientations and strain tensors from the experimental far-field 3DXRD data, was developed. The program builds on peaksearch, ImageD11 and GrainSpotter and will eventually be implemented in the Fable GUI. By the use of simulated data the presentation will focus...... a careful calibration of the global parameters relating to the experiment (sample-to-detector distance, tilts of detector and sample and beam centre on detector) must be performed. For this purpose the option of fitting the global parameters simultaneously for any number of indexed grains is included in Fit...

  1. New deformation model of grain boundary strengthening in polycrystalline metals

    Trefilov, V.I.; Moiseev, V.F.; Pechkovskij, Eh.P.

    1988-01-01

    A new model explaining grain boundary strengthening in polycrystalline metals and alloys by strain hardening due to localization of plastic deformation in narrow bands near grain boundaries is suggested. Occurrence of localized deformation is caused by different flow stresses in grains of different orientation. A new model takes into account the active role of stress concentrator, independence of the strengthening coefficient on deformation, influence of segregations. Successful use of the model suggested for explanation of rhenium effect in molybdenum and tungsten is alloys pointed out

  2. Orientation Club

    Club d'orientation

    2014-01-01

    COURSE ORIENTATION Résultats de samedi 10 mai    C’est sur une carte entièrement réactualisée dans les bois de Versoix, que plus de 100 coureurs sont venus participer à la course d’orientation, type longue distance, préparée par des membres du club du CERN. Le terrain plutôt plat nécessitait une orientation à grande vitesse, ce qui a donné les podiums suivants :  Technique long avec 17 postes : 1er Jurg Niggli, O’Jura en 52:48, 2e Beat Muller, COLJ Lausanne-Jorat en 58:02, 3e Christophe Vuitton, CO CERN en 58:19 Technique moyen avec 13 postes : 1er Jean-Bernard Zosso, CO CERN, en 46:05 ; 2e Yves Rousselot, Balise 25 Besançon, en 55:11 ; 3e Laurent Merat, O'Jura, en 55:13 Technique court avec 13 postes : 1er Julien Vuitton, CO CERN en 40:59, 2e Marc Baumgartner, CO CERN en 43:18, 3e Yaelle Mathieu en 51:42 Su...

  3. Orienteering Club

    Club d'orientation

    2013-01-01

    Courses d’orientation ce printemps Le Club d’orientation du CERN vous invite à venir découvrir la course d’orientation et vous propose, en partenariat avec d’autres clubs de la région, une dizaine de courses populaires. Celles-ci ont lieu les samedis après-midi, elles sont ouvertes à tous, quel que soit le niveau, du débutant au sportif confirmé, en famille ou en individuel, en promenade ou en course. Si vous êtes débutant vous pouvez profiter d’une petite initiation offerte par l’organisateur avant de vous lancer sur un parcours. Divers types de parcours sont à votre choix lors de chaque épreuve : facile court (2-3 km), facile moyen (3-5 km), technique court (3-4 km), technique moyen (4-5 km) et technique long (5-7 km). Les dates à retenir sont les suivantes : Samedi 23 mars: Pully (Vd) Samedi 13 avril: Pougny...

  4. Is there reciprocity in preferential trade agreements on services?

    Marchetti, Juan; Roy, Martin; Zoratto, Laura

    2012-01-01

    Are market access commitments on services in Preferential Trade Agreements (PTAs) reciprocal or simply unilateral? If reciprocal, do concessions granted in services depend on concessions received from the trading partner in other services or in non-services areas as well? In this paper we investigate the presence of reciprocity in bilateral services agreements, by sub-sector, mode of supply and type of agreement (North-North, South-North, South-South). To do so, we use a database of concessio...

  5. Preferential growth in FeCoV/Ti:N multilayers

    Clemens, D.; Senthil Kumar, M.; Boeni, P.; Horisberger, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    The preferential growth in Fe{sub 0.50}Co{sub 0.48}V{sub 0.02}/Ti:N multilayers was studied by X-ray diffraction. X-ray specular reflectometry and subsequent simulation of the spectra was used to extract information about the thickness and interface roughness of individual layers. The investigation gives structural information about the material combination and its potential for the use of neutron polarizers. (author) 2 figs., 1 tab., 2 refs.

  6. Bioclogging in Porous Media: Preferential Flow Paths and Anomalous Transport

    Holzner, M.; Carrel, M.; Morales, V.; Derlon, N.; Beltran, M. A.; Morgenroth, E.; Kaufmann, R.

    2016-12-01

    Biofilms are sessile communities of microorganisms held together by an extracellular polymeric substance that enables surface colonization. In porous media (e.g. soils, trickling filters etc.) biofilm growth has been shown to affect the hydrodynamics in a complex fashion at the pore-scale by clogging individual pores and enhancing preferential flow pathways and anomalous transport. These phenomena are a direct consequence of microbial growth and metabolism, mass transfer processes and complex flow velocity fields possibly exhibiting pronounced three-dimensional features. Despite considerable past work, however, it is not fully understood how bioclogging interacts with flow and mass transport processes in porous media. In this work we use imaging techniques to determine the flow velocities and the distribution of biofilm in a porous medium. Three-dimensional millimodels are packed with a transparent porous medium and a glucose solution to match the optical refractive index. The models are inoculated with planktonic wildtype bacteria and biofilm cultivated for 60 h under a constant flow and nutrient conditions. The pore flow velocities in the increasingly bioclogged medium are measured using 3D particle tracking velocimetry (3D-PTV). The three-dimensional spatial distribution of the biofilm within the pore space is assessed by imaging the model with X-Ray microtomography. We find that biofilm growth increases the complexity of the pore space, leading to the formation of preferential flow pathways and "dead" pore zones. The probability of persistent high and low velocity regions (within preferential paths resp. stagnant flow regions) thus increases upon biofilm growth, leading to an enhancement of anomalous transport. The structural data seems to indicate that the largest pores are not getting clogged and carry the preferential flow, whereas intricated structures develop in the smallest pores, where the flow becomes almost stagnant. These findings may be relevant for

  7. Influence of grain size in the near-micrometre regime on the deformation microstructure in aluminium

    Le, G.M.; Godfrey, A.; Hansen, N.; Liu, W.; Winther, G.; Huang, X.

    2013-01-01

    The effect of grain size on deformation microstructure formation in the near-micrometre grain size regime has been studied using samples of aluminium prepared using a spark plasma sintering technique. Samples in a fully recrystallized grain condition with average grain sizes ranging from 5.2 to 0.8 μm have been prepared using this technique. Examination in the transmission electron microscope of these samples after compression at room temperature to approximately 20% reduction reveals that grains larger than 7 μm are subdivided by cell block boundaries similar to those observed in coarse-grained samples, with a similar dependency on the crystallographic orientation of the grains. With decreasing grain size down to approx. 1 μm there is a gradual transition from cell block structures to cell structures. At even smaller grain sizes of down to approx. 0.5 μm the dominant features are dislocation bundles and random dislocations, although at a larger compressive strain of 30% dislocation rotation boundaries may also be found in the interior of grains of this size. A standard 〈1 1 0〉 fibre texture is found for all grain sizes, with a decreasing sharpness with decreasing grain size. The structural transitions with decreasing grain size are discussed based on the general principles of grain subdivision by deformation-induced dislocation boundaries and of low-energy dislocation structures as applied to the not hitherto explored near-micrometre grain size regime

  8. Preferential adsorption of uranium ions in aqueous solutions by polymers

    Sakuragi, Masako; Ichimura, Kunihiro; Fujishige, Shoei; Kato, Masao

    1981-01-01

    Amidoxime fiber and triazine fiber were prepared by chemical modification of commercially available polyacrylonitril fiber. It was found that the Amidoxime fiber is efficient to adsorb uranium ions in the artificial sea water. The efficiency of the preferential adsorption decreases by treatment the material with an acid-or an alkaline-solution. The triazine fiber adsorbs uranium ions only in aqueous solutions of such uranyl acetate, in the absence of other ions. In the artificial sea water, it adsorbs other ions instead of uranium. The preferential adsorption of uranium ions was further investigated with a series of polystyrenesulfonamides. Among the polystyrene derivatives, those having carboxyl groups, derived from imino diacetic acid (PSt-Imi), β-alanine (PSt-Ala), glycine (PSt-Gly), and sarcosine (PSt-Sar) were qualified for further discussion. However, it was found that the amount of adsorption of uranium ions by PSt-Imi decreases with increasing the volume of the artificial sea water and/or the duration of the treatment. Taking into account the facts, the preferential adsorption of uranium ions by PSt-Imi in aqueous solution was discussed in detail. (author)

  9. Formal requirements for exclusion of the preferential right to shares

    Marjanski Vladimir

    2014-01-01

    Full Text Available A preferential subscription right to shares is a subjective property right of a shareholder based on which he or she has a preferential right of subscription to shares from a new issue in proportion to the number of fully paid-in shares of that class he or she holds on the date of adoption of the decision on issuing of shares compared with the total number of shares of that class. However, this right of a shareholder can be completely or partially excluded, if formal and substantial requirements for such exclusion are met. This paper focuses primarily on analysis of formal requirements for exclusion envisaged by the Serbian Law on Companies with a brief review of EU law and comparative law. According to the Serbian Law on Companies, there are three formal requirements for exclusion of a preferential subscription right: 1. shares are issued through the offer for which there is no obligation to publish a prospectus; 2. there is a written proposal for exclusion from the Board of Directors, or of the Supervisory Board if a company has a two-tier management system; 3. the exclusion is based on a decision of the General Meeting of the Joint-stock company. With regards formal requirements, the paper concentrates on several weaknesses of the Serbian Law on Companies which considerably undermine the position of the so-called small shareholders.

  10. Grain boundary structure and properties

    Balluffi, R.W.

    1979-01-01

    An attempt is made to distinguish those fundamental aspects of grain boundaries which should be relevant to the problem of the time dependent fracture of high temperature structural materials. These include the basic phenomena which are thought to be associated with cavitation and cracking at grain boundaries during service and with the more general microstructural changes which occur during both processing and service. A very brief discussion of the current state of our knowledge of these fundamentals is given. Included are the following: (1) structure of ideal perfect boundaries; (2) defect structure of grain boundaries; (3) diffusion at grain boundaries; (4) grain boundaries as sources/sinks for point defects; (5) grain boundary migration; (6) dislocation phenomena at grain boundaries; (7) atomic bonding and cohesion at grain boundaries; (8) non-equilibrium properties of grain boundaries; and (9) techniques for studying grain boundaries

  11. Preferential and Non-Preferential Approaches to Trade Liberalization in East Asia: What Differences Do Utilization Rates and Reciprocity Make?

    Menon, Jayant

    2013-01-01

    Previous studies on the impacts of free trade agreements (FTAs) in East Asia have assumed full utilization of preferences. The evidence suggests that this assumption is seriously in error, with the estimated uptake particularly low in East Asia. In this paper, we assume a more realistic utilization rate in estimating impacts. We find that actual utilization rates significantly diminish the benefits from preferential liberalization, but in a non-linear way. Reciprocity is an important motivati...

  12. Radiation disinfestation of grain

    NONE

    1962-10-15

    A panel was convened by the International Atomic Energy Agency to consider ways of applying radiation to grain handling and insect control, and to make recommendations on the advisability and nature of any future action in this field. Among other subjects, the panel discussed the use of electron accelerators and gamma radiation for grain disinfestation as well as problems of radiation entomology and wholesomeness of irradiated grain. After reviewing the present state of knowledge regarding radiation disinfestation of grain, the experts agreed that pilot plant operations be initiated as soon as practicable in order to evaluate the use of irradiation plants under practical conditions in their entomological, engineering and economic aspects. They recommended that research effort be directed towards solving certain fundamental problems related to the proposed pilot plant projects; such as rapid methods for differentiation between sterile insects and normal ones; study of the metabolism of irradiated immature stages of insects in relation to the heating of treated grain; research into possible induction of radiation resistance; irradiation susceptibility of insects which show resistance to conventional insecticides; and study of methods of sensitizing insects to irradiation damage. It was also pointed out that the distribution of irradiated food for human consumption was controlled in most countries under present legislative procedures, and no country had yet approved radiation treatment of cereals. The experts recommended that countries in a position to submit evidence to their appropriate authorities regarding the wholesomeness of irradiated cereals should be encouraged to do so as soon as possible. Regarding the engineering aspects of irradiation pilot plant projects, the experts noted that the process could be automated and operated safely. Electron accelerators and cobalt sources could be used for all the throughput rates utilized in most conventional grain

  13. Computerized radioautographic grain counting

    McKanna, J.A.; Casagrande, V.A.

    1985-01-01

    In recent years, radiolabeling techniques have become fundamental assays in physiology and biochemistry experiments. They also have assumed increasingly important roles in morphologic studies. Characteristically, radioautographic analysis of structure has been qualitative rather than quantitative, however, microcomputers have opened the door to several methods for quantifying grain counts and density. The overall goal of this chapter is to describe grain counting using the Bioquant, an image analysis package based originally on the Apple II+, and now available for several popular microcomputers. The authors discuss their image analysis procedures by applying them to a study of development in the central nervous system

  14. Radiation disinfestation of grain

    1962-01-01

    A panel was convened by the International Atomic Energy Agency to consider ways of applying radiation to grain handling and insect control, and to make recommendations on the advisability and nature of any future action in this field. Among other subjects, the panel discussed the use of electron accelerators and gamma radiation for grain disinfestation as well as problems of radiation entomology and wholesomeness of irradiated grain. After reviewing the present state of knowledge regarding radiation disinfestation of grain, the experts agreed that pilot plant operations be initiated as soon as practicable in order to evaluate the use of irradiation plants under practical conditions in their entomological, engineering and economic aspects. They recommended that research effort be directed towards solving certain fundamental problems related to the proposed pilot plant projects; such as rapid methods for differentiation between sterile insects and normal ones; study of the metabolism of irradiated immature stages of insects in relation to the heating of treated grain; research into possible induction of radiation resistance; irradiation susceptibility of insects which show resistance to conventional insecticides; and study of methods of sensitizing insects to irradiation damage. It was also pointed out that the distribution of irradiated food for human consumption was controlled in most countries under present legislative procedures, and no country had yet approved radiation treatment of cereals. The experts recommended that countries in a position to submit evidence to their appropriate authorities regarding the wholesomeness of irradiated cereals should be encouraged to do so as soon as possible. Regarding the engineering aspects of irradiation pilot plant projects, the experts noted that the process could be automated and operated safely. Electron accelerators and cobalt sources could be used for all the throughput rates utilized in most conventional grain

  15. Application of Electron Backscattered Diffraction (EBSD) and Atomic Force Microscopy (AFM) to Determine Texture, Mesotexture, and Grain Boundary Energies in Ceramics

    Glass, S.J.; Rohrer, G.S.; Saylor, D.M.; Vedula, V.R.

    1999-01-01

    Crystallographic orientations in alumina (Al 2 0 3 ) and magnesium aluminate spinel (MgAl 2 0 4 ) were obtained using electron backscattered diffraction (EBSD) patterns. The texture and mesotexture (grain boundary mis-orientations) were random and no special boundaries were observed. The relative grain boundary energies were determined by thermal groove geometries using atomic force microscopy (AFM) to identify relationships between the grain boundary energies and mis-orientations

  16. Columns formed by multiple twinning in nickel layers—An approach of grain boundary engineering by electrodeposition

    Alimadadi, Hossein; da Silva Fanta, Alice Bastos; Somers, Marcel A. J.

    2013-01-01

    grain boundaries. A peculiar arrangement of Σ3 boundaries forming five-fold junctions is observed. The resulting microstructure meets the requirements for grain boundary engineering. Twinning induced effects on the crystallographic orientation of grains result in one major texture component being a ⟨210......⟩ fiber axis and additional minor orientations originating from first and second generation twins of ⟨210⟩, i.e., ⟨542⟩ and ⟨20 2 1⟩....

  17. Quantitative orientational characterization if low - density polyethylene blow films by x-ray and birefringence

    Taheri Qazvini, N.; Mohammadi, N.; Ghaffarian, R.; Assempour, H.; Haghighatkish, M.

    2002-01-01

    The effect of two important parameters of film blowing processes, i.e., take-up ration and blow-up ratio, on the overall orientation of low-density blown films have been investigated using birefringence measurements. Furthermore, by combining x-ray diffraction pole figure analysis and birefringence, the White and Spruiell biaxial orientation functions have been determined for aforementioned sample. Within the range of processing condition studied, increasing take-up ratio, increases orientation in both machine and transverse direction. Upon increasing blow-up ratio, orientation in the transverse direction increases and the overall orientation state approaches to equal biaxial one. Characterization of the crystalline regions by pole figure analysis reveals that a and b crystallographic axes preferentially orientate in the film plane and the direction normal to it, respectively. The amorphous regions do not have any preferential orientation

  18. Grain boundary motion and grain rotation in aluminum bicrystals: recent experiments and simulations

    Molodov, D A; Barrales-Mora, L A; Brandenburg, J-E

    2015-01-01

    The results of experimental and computational efforts over recent years to study the motion of geometrically different grain boundaries and grain rotation under various driving forces are briefly reviewed. Novel in-situ measuring techniques based on orientation contrast imaging and applied simulation techniques are described. The experimental results obtained on specially grown aluminum bicrystals are presented and discussed. Particularly, the faceting and migration behavior of low angle grain boundaries under the curvature force is addressed. In contrast to the pure tilt boundaries, which remained flat/faceted and immobile during annealing at elevated temperatures, mixed tilt-twist boundaries readily assumed a curved shape and steadily moved under the capillary force. Computational analysis revealed that this behavior is due to the inclinational anisotropy of grain boundary energy, which in turn depends on boundary geometry. The shape evolution and shrinkage kinetics of cylindrical grains with different tilt and mixed boundaries were studied by molecular dynamics simulations. The mobility of low angle <100> boundaries with misorientation angles higher than 10°, obtained by both the experiments and simulations, was found not to differ from that of the high angle boundaries, but decreases essentially with further decrease of misorientation. The shape evolution of the embedded grains in simulations was found to relate directly to results of the energy computations. Further simulation results revealed that the shrinkage of grains with pure tilt boundaries is accompanied by grain rotation. In contrast, grains with the tilt-twist boundaries composed of dislocations with the mixed edge-screw character do not rotate during their shrinkage. Stress driven boundary migration in aluminium bicrystals was observed to be coupled to a tangential translation of the grains. The activation enthalpy of high angle boundary migration was found to vary non-monotonically with

  19. Orienteering club

    Club d'orientation

    2013-01-01

    Courses d’orientation Le soleil enfin de retour a incité nombre de sportifs et promeneurs à nous rejoindre dans la belle forêt de Challex /Pougny pour la deuxième étape de notre coupe de printemps 2013. Certains sont revenus crottés et fourbus alors que d’autres avaient les joues bien roses après un grand bol d’air frais. Mais tous avaient passé un agréable moment dans la nature. Nous rappelons que nos activités sont ouvertes à tous, jeunes, moins jeunes, sportifs, familles, du CERN ou d’ailleurs, et que le seul inconvénient est que si vous goûtez à la course d’orientation, il vous sera difficile de ne pas y revenir ! Samedi 20 avril 2013, nous serons sur le Mont Mourex (entre Gex et Divonne) pour notre prochaine épreuve et vous y serez les bienvenus. Les inscriptions et les départ...

  20. Orienteering club

    Club d’Orientation du CERN

    2015-01-01

    Courses d’orientation Nouvelle saison nouveau programme Le Club d’orientation du CERN, en partenariat avec d’autres clubs de la région, vous propose une dizaine de courses populaires comptant pour la coupe Genevoise de printemps: samedi 28 mars: Vernand Dessus samedi 18 avril: Pougny/Challex samedi 25 avril: Chancy/Valleiry samedi 2 mai: Mauvernay samedi 9 mai: Longchaumois samedi 16 mai: Genolier samedi 30 mai: Prevondavaux samedi 6 juin: Biere-Ballens samedi 13 juin: Haut-Jura samedi 20 juin: Bonmont - Finale Ces courses sont ouvertes à tous, quel que soit le niveau, du débutant au sportif confirmé, en famille ou en individuel, en promenade ou en course. Les inscriptions se font sur place le jour de l’épreuve. Si vous êtes débutant, vous pouvez profiter d’une initiation offerte par l’organisateur avant de vous lancer sur un parcours. Le club propose aussi...

  1. Orienteering club

    Orienteering Club

    2016-01-01

    Course d'orientation Calendrier des courses d’orientation Coupe genevoise d’automne 2016 Samedi 3 septembre : La Faucille (01) Samedi 10 septembre : Prémanon (39) Samedi 17 septembre : Saint-Cergue (VD) Samedi 24 septembre : Jorat / Corcelles (VD) Samedi 1 octobre: Bière - Ballens (VD) -relais Vendredi 14 octobre : Parc Mon Repos (GE) - nocturne Samedi 15 octobre : Terrasse de Genève (74) Samedi 29 octobre : Bonmont (VD) Samedi 5 novembre : Pomier (74) – one-man-relay - Finale   Courses ouvertes à toutes et à tous, sportifs, familles, débutants ou confirmés, du CERN ou d’ailleurs. Cinq circuits disponibles, ceci va du facile court (2 km) adapté aux débutants et aux enfants jusqu’au parcours technique long de 6 km pour les chevronnés en passant par les parcours facile moyen (4&am...

  2. COURSE ORIENTATION

    Club d'orientation du CERN

    2015-01-01

      Les coureurs d’orientation de la région se sont donné rendez-vous samedi dernier dans les bois de Pougny/Challex lors de l’épreuve organisée par le club d’orientation du CERN. La carte proposée pour les 5 circuits offrait aussi bien un coté très technique avec un relief pentu qu’un coté avec de grandes zones plates à forêt claire. Le parcours technique long comportant 20 postes a été remporté par Beat Muller du COLJ Lausanne en 56:26 devançant Denis Komarov, CO CERN en 57:30 et Yvan Balliot, ASO Annecy en 57:46. Pour les autres circuits les résultats sont les suivants: Technique moyen (13 postes): 1er Joël Mathieu en 52:32 à une seconde du 2e Vladimir Kuznetsov, COLJ Lausanne-Jorat, 3e Jean-Bernard Zosso, CO CERN, en 54:01 Technique court (12 postes): 1er Lennart Jirden, ...

  3. Orienteering Club

    Club d'Orientation

    2013-01-01

    Course d’orientation Face aux Championnats de France des Clubs à Poitiers, et à une météo hivernale (vent glaciale et pluie), il ne restait qu’une cinquantaine d’orienteurs pour participer à l’épreuve organisée le samedi 25 mai à Grange-Malval. Les participants ont tout de même bien apprécié les 5 circuits proposés par le Satus Genève. Les résultats sont disponibles sur notre site http://cern.ch/club-orientation. En plus des résultats, vous pourrez noter des informations sur la nouvelle école de CO encadrée par B. Barge, Prof. EPS à Ferney-Voltaire pour les jeunes à partir de 6 ans. La prochaine étape de la coupe genevoise se déroulera samedi 1er juin à Morez (39). Epreuve organisée par le club O’Jura&nb...

  4. Orienteering Club

    Le Club d’orientation du CERN

    2017-01-01

    COURSE ORIENTATION Finale de la coupe d’automne Le club d’orientation du CERN (COC Genève) a organisé sa dernière course populaire de la saison samedi 4 novembre au lieu-dit Les Terrasses de Genève (74). Cette 9e épreuve qui se courait sous la forme d’un One-Man-Relay, clôturait ainsi la coupe genevoise d’automne dont les lauréats sont : Circuit technique long : 1. Julien Vuitton (COC Genève), 2. Berni Wehrle (COC Genève), 3. Christophe Vuitton (COC Genève). Circuit technique moyen : 1. Vladimir Kuznetsov (Lausanne-Jorat), 2. J.-Bernard Zosso (COC Genève), 3. Laurent Merat (O’Jura). Circuit technique court : 1. Thibault Rouiller (COC Genève), 2. exæquo Lennart Jirden (COC Genève) et Katya Kuznetsova (Lausanne-Jorat). Circuit facile moyen : 1. Tituan Barge ...

  5. Orienteering Club

    Le Club d’orientation du CERN

    2017-01-01

    COURSE ORIENTATION Finale de la coupe d’automne Le club d’orientation du CERN (COC Genève) a organisé sa dernière course populaire de la saison samedi 4 novembre au lieu-dit Les Terrasses de Genève (74). Cette 9e épreuve qui se courait sous la forme d’un One-Man-Relay, clôturait ainsi la coupe genevoise d’automne dont les lauréats sont : Circuit technique long : 1. Julien Vuitton (COC Genève), 2. Berni Wehrle (COC Genève), 3. Christophe Vuitton (COC Genève). Circuit technique moyen : 1. Vladimir Kuznetsov (Lausanne-Jorat), 2. J.-Bernard Zosso (COC Genève), 3. Laurent Merat (O’Jura). Circuit technique court : 1. Thibault Rouiller (COC Genève), 2. exæquo Lennart Jirden (COC Genève) et Katya Kuznetsova (Lausanne-Jorat). Circuit facile moyen : 1. Tituan Barge...

  6. Orienteering Club

    Club d'Orientation

    2015-01-01

    Course orientation C’est au pied du Salève, proche du Golf de Bosset, que le club d’orientation du CERN (CO CERN) a organisé samedi 19 septembre une nouvelle épreuve comptant pour la Coupe Genevoise d’automne. La zone « des Terrasses de Genève » avait été cartographiée et mise en service l’année dernière. Les participants ont pu apprécier un terrain ludique avec beaucoup de microreliefs, de points d’eau et de gros rochers, le tout au milieu d’une forêt assez claire et agréable à courir. Sur le parcours technique long, le résultat a été très serré puisque Pierrick Merino du club d’Annecy a gagné avec seulement 9 secondes d’avance sur Gaëtan Vuitton (CO CERN) qui confiait avoir perdu beaucoup du te...

  7. Orienteering Club

    Le Club d’orientation du CERN

    2017-01-01

    Course orientation Les courses d’orientation comptant pour la coupe genevoise de printemps s’enchainent dans la région franco-suisse. Samedi dernier, une bonne centaine de coureurs se sont retrouvés au Mont Mourex où le club du CERN avait préparé la sixième épreuve. A l’issue de la course, les participants confirmaient l’exigence des circuits, à savoir la condition physique et le côté technique du traçage. Le parcours technique long comportant 20 postes a été remporté par Darrell High du Care Vevey en 1:22:38 devançant Beat Muller du COLJ Lausanne-Jorat en 1:25:25 et Alison High également du Care Vevey en 1:28:51. Le circuit technique moyen a été remporté par Christophe Vuitton du CO CERN et le circuit technique court par Claire-Lise Rouiller, CO CERN. Les trois pr...

  8. Orienteering Club

    Club d'orientation

    2010-01-01

    COURSE D’ORIENTATION La finale de la coupe de printemps Après avoir remporté le challenge club, samedi 29 juin lors du relais inter-club à Lausanne, le Club d’orientation du CERN organisait la dernière étape de la coupe genevoise de printemps samedi 5 juin à Saint-Cergue dans les bois de Monteret (Canton de Vaud). Plus de 100 participants se sont déplacés pour venir participer à la finale et découvrir une toute nouvelle carte dans une forêt vallonnée. Les résultats pour chaque circuit de cette étape sont : Technique long : 1. Jurg Niggli du club O’Jura, 2. Clément Poncet, 3. Oystein Midttun. Technique moyen : 1. Zoltan Trocsanyi CO CERN, 2. Christophe Ingold, 3. Christina Falga. Technique court : 1. Pierre-Andre Baum, CARE Vevey, 2. Emese Szunyog, 3. Solène Balay. Facile moyen : 1. Elisa P...

  9. Club Orientation

    Club d'orientation

    2014-01-01

      COURSE ORIENTATION   Pas moins de 100 concurrents sont venus s’affronter sur les parcours proposés par le club d’orientation du CERN ce samedi 26 avril lors de la 4e étape de la coupe genevoise de printemps. Les podiums ont été attribués à :  Technique long avec 19 postes : 1er Yvan Balliot, ASO Annecy en 1:01:39 ; 2e Dominique Fleurent, ASO Annecy, en 1:05:12 ; 3e Rémi Fournier, SOS Sallanches, en 1:05:40. Technique moyen avec 14 postes : 1er Jean-Bernard Zosso, CO CERN, en 46:42 ; 2e Céline Zosso, CO CERN, en 50:51 ; 3e Clément Poncet, O’Jura Prémanon, en 51:27. Technique court avec 13 postes : 1er Jaakko Murtomaki, YKV Seinaejoki, en 36:04 ; 2e Marc Baumgartner en 41:27 ; 3e Natalia Niggli, O’Jura Prémanon, en 52:43. Sur les parcours facile moyen et facile court, victoire respectivement de Stéphanie...

  10. Orienteering Club

    Le Club d’orientation du CERN

    2017-01-01

    Calendrier des courses de la Coupe Genevoise – printemps 2017 Club d'orientation - Julien,  jeune membre du club. Le Club d’orientation du CERN, en partenariat avec d’autres clubs de la région, vous propose une série de courses populaires, qui se dérouleront des deux côtés de la frontière franco-suisse, à savoir : Samedi 1 avril : Pougny/Challex (01) Samedi 8 avril: Ballens (VD) Samedi 22 avril: Apples (VD) Samedi 29 avril: Mont Mussy (01) Samedi 6 mai: Prémanon (39) Samedi 13 mai: Mont Mourex (01) Samedi 20 mai: Prévondavaux (VD) Samedi 10 juin: Chancy/Valleiry (74) Samedi 17 juin: Trélex - Finale (VD) Ces courses sont ouvertes à tous, quel que soit le niveau, du débutant au sportif confirmé, en famille ou en individuel. Les inscriptions sur un des 5 parcours proposés se font sur place le jour de l...

  11. Moniliformin in Norwegian grain

    Uhlig, S.; Torp, M.; Jarp, J.; Parich, A.; Gutleb, A.C.; Krska, R.

    2004-01-01

    Norwegian grain samples (73 oats, 75 barley, 83 wheat) from the 2000-02 growing seasons were examined for contamination with moniliformin, and the association between the fungal metabolite and the number of kernels infected with common Fusaria was investigated. Before quantification of moniliformin

  12. Assessing the grain structure of highly X-ray absorbing metallic alloys

    Bormann, Therese [Basel Univ. (Switzerland). Biomaterials Science Center; University of Applied Sciences Northwestern Switzerland, Muttenz (Switzerland). Inst. for Medical and Analytical Technologies; Beckmann, Felix [Helmholtz-Zentrum Geesthacht (Germany). Inst. of Materials Research; Schinhammer, Michael [Eidgenoessische Technische Hochschule (ETH), Zuerich (Switzerland). Dept. of Materials; Deyhle, Hans; Mueller, Bert [Basel Univ. (Switzerland). Biomaterials Science Center; Wild, Michael de [University of Applied Sciences Northwestern Switzerland, Muttenz (Switzerland). Inst. for Medical and Analytical Technologies

    2014-07-15

    Selective laser melting allows the fabrication of NiTi implants with pre-defined, complex shapes. The control of the process parameters regulates the arrangement of the granular microstructure of the NiTi alloy. We prepared specimens with elongated grains, which build a sound basis for diffraction contrast tomography experiments using synchrotron radiation and for electron backscatter diffraction measurements. Both approaches reveal the orientation and size of the individual grains within the specimen. Still, electron backscatter diffraction is confined to two-dimensional cross-sections while diffraction contrast tomography reveals these microstructural features in three dimensions. We demonstrate that the grains in the selective laser melted specimen, which are oriented along the building direction, do not exhibit a well-defined planar grain orientation but are twisted. These twisted grains give rise to diffraction spots observable for several degrees of specimen rotation simultaneously to the acquisition of tomography data. (orig.)

  13. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-05-01

    The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Why do interstellar grains exist

    Seab, C.G.; Hollenbach, D.J.; Mckee, C.F.; Tielens, A.G.G.M.

    1986-01-01

    There exists a discrepancy between calculated destruction rates of grains in the interstellar medium and postulated sources of new grains. This problem was examined by modelling the global life cycle of grains in the galaxy. The model includes: grain destruction due to supernovae shock waves; grain injection from cool stars, planetary nebulae, star formation, novae, and supernovae; grain growth by accretion in dark clouds; and a mixing scheme between phases of the interstellar medium. Grain growth in molecular clouds is considered as a mechanism or increasing the formation rate. To decrease the shock destruction rate, several new physical processes, such as partial vaporization effects in grain-grain collisions, breakdown of the small Larmor radius approximation for betatron acceleration, and relaxation of the steady-state shock assumption are included

  15. Towards realistic molecular dynamics simulations of grain boundary mobility

    Zhou, J.; Mohles, V.

    2011-01-01

    In order to investigate grain boundary migration by molecular dynamics (MD) simulations a new approach involving a crystal orientation-dependent driving force has been developed by imposing an appropriate driving force on grain boundary atoms and enlarging the effective range of driving force. The new approach has been validated by the work of the driving force associated with the motion of grain boundaries. With the new approach the relation between boundary migration velocity and driving force is found to be nonlinear, as was expected from rate theory for large driving forces applied in MD simulations. By evaluating grain boundary mobility nonlinearly for a set of symmetrical tilt boundaries in aluminum at high temperature, high-angle grain boundaries were shown to move much faster than low-angle grain boundaries. This agrees well with experimental findings for recrystallization and grain growth. In comparison with the available data the simulated mobility of a 38.21 o Σ7 boundary was found to be significantly lower than other MD simulation results and comparable with the experimental values. Furthermore, the average volume involved during atomic jumps for boundary migration is determined in MD simulations for the first time. The large magnitude of the volume indicates that grain boundary migration is accomplished by the correlated motion of atom groups.

  16. Assessing preferential flow by simultaneously injecting nanoparticle and chemical tracers

    Subramanian, S. K.; Li, Yan; Cathles, L. M.

    2013-01-01

    The exact manner in which preferential (e.g., much faster than average) flow occurs in the subsurface through small fractures or permeable connected pathways of other kinds is important to many processes but is difficult to determine, because most chemical tracers diffuse quickly enough from small flow channels that they appear to move more uniformly through the rock than they actually do. We show how preferential flow can be assessed by injecting 2 to 5 nm carbon particles (C-Dots) and an inert KBr chemical tracer at different flow rates into a permeable core channel that is surrounded by a less permeable matrix in laboratory apparatus of three different designs. When the KBr tracer has a long enough transit through the system to diffuse into the matrix, but the C-Dot tracer does not, the C-Dot tracer arrives first and the KBr tracer later, and the separation measures the degree of preferential flow. Tracer sequestration in the matrix can be estimated with a Peclet number, and this is useful for experiment design. A model is used to determine the best fitting core and matrix dispersion parameters and refine estimates of the core and matrix porosities. Almost the same parameter values explain all experiments. The methods demonstrated in the laboratory can be applied to field tests. If nanoparticles can be designed that do not stick while flowing through the subsurface, the methods presented here could be used to determine the degree of fracture control in natural environments, and this capability would have very wide ranging value and applicability.

  17. Ultra-low-angle boundary networks within recrystallizing grains

    Ahl, Sonja Rosenlund; Simons, Hugh; Zhang, Yubin

    2017-01-01

    We present direct evidence of a network of well-defined ultra-low-angle boundaries in bulk recrystallizing grains of 99.5% pure aluminium (AA1050) by means of a new, three-dimensional X-ray mapping technique; dark-field X-ray microscopy. These boundaries separate lattice orientation differences o...

  18. New 3DXRD results on recrystallization and grain growth

    Juul Jensen, Dorte; West, Stine; Poulsen, Stefan Othmar

    2012-01-01

    New in-situ 3DXRD results obtained since the last Rex&GG conference are presented and discussed. This includes: Documentation of the formation of nuclei with new orientations, determination of apparent activation energies for individual bulk grains during recrystallization and evolution in the 3D...

  19. Using DC electrical resistivity tomography to quantify preferential flow in fractured rock environments

    May, F

    2011-09-01

    Full Text Available . This investigation aims to identify preferential flow paths in fractured rock environments. Time-lapse Electrical Resistivity Tomography (TLERT, Lund Imaging System), is regarded as a suitable method for identifying preferential water flow....

  20. Field investigation of preferential fissure flow paths with hydrochemical analysis of small-scale sprinkling experiments

    Krzeminska, D.M.; Bogaard, T.A.; Debieche, T.H.; Cervi, F.; Marc, V.; Malet, J.P.

    2014-01-01

    The unsaturated zone largely controls groundwater recharge by buffering precipitation while at the same time providing preferential flow paths for infiltration. The importance of preferential flow on landslide hydrology is recognised in the literature; however, its monitoring and quantification

  1. Grain Boundary Segregation in Metals

    Lejcek, Pavel

    2010-01-01

    Grain boundaries are important structural components of polycrystalline materials used in the vast majority of technical applications. Because grain boundaries form a continuous network throughout such materials, their properties may limit their practical use. One of the serious phenomena which evoke these limitations is the grain boundary segregation of impurities. It results in the loss of grain boundary cohesion and consequently, in brittle fracture of the materials. The current book deals with fundamentals of grain boundary segregation in metallic materials and its relationship to the grain boundary structure, classification and other materials properties.

  2. Grain destruction in interstellar shocks

    Seab, C.G.; Shull, J.M.

    1984-01-01

    One of the principal methods for removing grains from the Interstellar Medium is to destroy them in shock waves. Previous theoretical studies of shock destruction have generally assumed only a single size and type of grain; most do not account for the effect of the grain destruction on the structure of the shock. Earlier calculations have been improved in three ways: first, by using a ''complete'' grain model including a distribution of sizes and types of grains; second, by using a self-consistent shock structure that incorporates the changing elemental depletions as the grains are destroyed; and third, by calculating the shock-processed ultraviolet extinction curves for comparison with observations. (author)

  3. Wavelength-Dependent Extinction and Grain Sizes in "Dippers"

    Sitko, Michael; Russell, Ray W.; Long, Zachary; Bayyari, Ammar; Assani, Korash; Grady, Carol; Lisse, Carey Michael; Marengo, Massimo; Wisniewski, John

    2018-01-01

    We have examined inter-night variability of K2-discovered "Dippers" that are not close to being viewed edge-on (as determined from previously-reported ALMA images) using the SpeX spectrograph on NASA's Infrared Telescope facility (IRTF). The three objects observed were EPIC 203850058, EPIC 205151387, and EPIC 204638512 ( = 2MASS J16042165-2130284). Using the ratio of the fluxes from 0.7-2.4 microns between two successive nights, we find that in at least two cases, the extinction increased toward shorter wavelengths. In the case of EPIC 204638512, we find that the properties of the dust differ from that seen in the diffuse interstellar medium and denser molecular clouds. However, the grain properties needed to explain the extinction does resemble those used to model the disks of many young stellar objects. The best fit to the data on EPIC 204638512 includes grains at least 500 microns in size, but lacks grains smaller than 0.25 microns. Since EPIC 204638512 is seen nearly face-on, it is possible the grains are entrained in an accretion flow that preferentially destroys the smallest grains. However, we have no indication of significant gas accretion onto the star in the form of emission lines observed in young low-mass stars. But the He I line at 1.083 microns was seen to change from night to night, and showed a P Cygni profile on one night, suggesting the gas might be outflowing from regions near the star.

  4. Orienting hypnosis.

    Hope, Anna E; Sugarman, Laurence I

    2015-01-01

    This article presents a new frame for understanding hypnosis and its clinical applications. Despite great potential to transform health and care, hypnosis research and clinical integration is impaired in part by centuries of misrepresentation and ignorance about its demonstrated efficacy. The authors contend that advances in the field are primarily encumbered by the lack of distinct boundaries and definitions. Here, hypnosis, trance, and mind are all redefined and grounded in biological, neurological, and psychological phenomena. Solutions are proposed for boundary and language problems associated with hypnosis. The biological role of novelty stimulating an orienting response that, in turn, potentiates systemic plasticity forms the basis for trance. Hypnosis is merely the skill set that perpetuates and influences trance. This formulation meshes with many aspects of Milton Erickson's legacy and Ernest Rossi's recent theory of mind and health. Implications of this hypothesis for clinical skills, professional training, and research are discussed.

  5. Oriented Approach

    Seyed Mohammad Moghimi

    2013-12-01

    Full Text Available Promoting productivity is one of the goals of usinginformation technology in organizations. The purpose of this research isexamining the impact of IT on organizational productivity andrecognizing its mechanisms based on process-oriented approach. For thisend, by reviewing the literature of the subject a number of impacts of ITon organizational processes were identified. Then, through interviewswith IT experts, seven main factors were selected and presented in aconceptual model. This model was tested through a questionnaire in 148industrial companies. Data analysis shows that impact of IT onproductivity can be included in the eight major categories: Increasing ofthe Automation, Tracking, Communication, Improvement, Flexibility,Analytic, Coordination and Monitoring in organizational processes.Finally, to improve the impact of information technology onorganizational productivity, some suggestions are presented.

  6. Dust grain charging in a wake of other grains

    Miloch, W. J.; Block, D.

    2012-01-01

    The charging of dust grain in the wake of another grains in sonic and supersonic collisionless plasma flows is studied by numerical simulations. We consider two grains aligned with the flow, as well as dust chains and multiple grain arrangements. It is found that the dust charge depends significantly on the flow speed, distance between the grains, and the grain arrangement. For two and three grains aligned, the charges on downstream grains depend linearly on the flow velocity and intergrain distance. The simulations are carried out with DiP3D, a three dimensional particle-in-cell code with both electrons and ions represented as numerical particles [W. J. Miloch et al., Phys. Plasmas 17, 103703 (2010)].

  7. Investigation of grain subdivision at very low plastic strains in a magnesium alloy

    Hong, X. [Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Godfrey, A., E-mail: awgodfrey@mail.tsinghua.edu.cn [Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Zhang, C.L.; Liu, W. [Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Chapuis, A. [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China)

    2017-05-02

    In-situ tensile loading combined with electron backscatter diffraction (EBSD) measurements has been used to investigate the plastic deformation of a magnesium alloy. A novel EBSD mapping is presented, based on construction of maps showing the rotation axis component in the sample coordinate frame of the misorientation from each pixel to the average grain orientation in the deformed sample. Using this mapping it is shown that the pattern of grain subdivision, even at very low plastic strains, can be revealed simultaneously in a large number of grains. In addition, it is demonstrated how maps of the rotation axis corresponding to the misorientation between each pixel and the initial grain orientation provide complimentary information directly useful for crystal plasticity analysis. A detailed slip system analysis shows that the grain subdivision can be accounted for according to the low energy dislocation structures (LEDS) model of work-hardening by differences in the slip amplitudes within different parts of each grain.

  8. MESOSCALE SIMULATIONS OF MICROSTRUCTURE AND TEXTURE EVOLUTION DURING DEFORMATION OF COLUMNAR GRAINS

    Sarma, G.

    2001-01-01

    In recent years, microstructure evolution in metals during deformation processing has been modeled at the mesoscale by combining the finite element method to discretize the individual grains with crystal plasticity to provide the constitutive relations. This approach allows the simulations to capture the heterogeneous nature of grain deformations due to interactions with neighboring grains. The application of this approach to study the deformations of columnar grains present in solidification microstructures is described. The microstructures are deformed in simple compression, assuming the easy growth direction of the columnar grains to be parallel to the compression axis in one case, and perpendicular in the other. These deformations are similar to those experienced by the columnar zones of a large cast billet when processed by upsetting and drawing, respectively. The simulations show that there is a significant influence of the initial microstructure orientation relative to the loading axis on the resulting changes in grain shape and orientation

  9. Heat transfer rate within non-spherical thick grains

    Huchet Florian

    2017-01-01

    Full Text Available The prediction of the internal heat conduction into non-spherical thick grains constitutes a significant issue for physical modeling of a large variety of application involving convective exchanges between fluid and grains. In that context, the present paper deals with heat rate measurements of various sizes of particles, the thermal sensors being located at the interface fluid/grain and into the granular materials. Their shape is designed as cuboid in order to control the surface exchanges. In enclosed coneshaped apparatus, a sharp temperature gradient is ensured from a hot source releasing the air stream temperature equal to about 400°C. Two orientations of grain related to the air stream are considered: diagonally and straight arrangements. The thermal diffusivity of the grains and the Biot numbers are estimated from an analytical solution established for slab. The thermal kinetics evolution is correlated to the sample granular mass and its orientation dependency is demonstrated. Consequently, a generalized scaling law is proposed which is funded from the effective area of the heat transfer at the grain-scale, the dimensionless time being defined from the calculated diffusional coefficients.

  10. Heat transfer rate within non-spherical thick grains

    Huchet, Florian; Richard, Patrick; Joniot, Jules; Le Guen, Laurédan

    2017-06-01

    The prediction of the internal heat conduction into non-spherical thick grains constitutes a significant issue for physical modeling of a large variety of application involving convective exchanges between fluid and grains. In that context, the present paper deals with heat rate measurements of various sizes of particles, the thermal sensors being located at the interface fluid/grain and into the granular materials. Their shape is designed as cuboid in order to control the surface exchanges. In enclosed coneshaped apparatus, a sharp temperature gradient is ensured from a hot source releasing the air stream temperature equal to about 400°C. Two orientations of grain related to the air stream are considered: diagonally and straight arrangements. The thermal diffusivity of the grains and the Biot numbers are estimated from an analytical solution established for slab. The thermal kinetics evolution is correlated to the sample granular mass and its orientation dependency is demonstrated. Consequently, a generalized scaling law is proposed which is funded from the effective area of the heat transfer at the grain-scale, the dimensionless time being defined from the calculated diffusional coefficients.

  11. EDITORIAL: Optical orientation Optical orientation

    SAME ADDRESS *, Yuri; Landwehr, Gottfried

    2008-11-01

    priority of the discovery in the literature, which was partly caused by the existence of the Iron Curtain. I had already enjoyed contact with Boris in the 1980s when the two volumes of Landau Level Spectroscopy were being prepared [2]. He was one of the pioneers of magneto-optics in semiconductors. In the 1950s the band structure of germanium and silicon was investigated by magneto-optical methods, mainly in the United States. No excitonic effects were observed and the band structure parameters were determined without taking account of excitons. However, working with cuprous oxide, which is a direct semiconductor with a relative large energy gap, Zakharchenya and his co-worker Seysan showed that in order to obtain correct band structure parameters, it is necessary to take excitons into account [3]. About 1970 Boris started work on optical orientation. Early work by Hanle in Germany in the 1920s on the depolarization of luminescence in mercury vapour by a transverse magnetic field was not appreciated for a long time. Only in the late 1940s did Kastler and co-workers in Paris begin a systematic study of optical pumping, which led to the award of a Nobel prize. The ideas of optical pumping were first applied by Georges Lampel to solid state physics in 1968. He demonstrated optical orientation of free carriers in silicon. The detection method was nuclear magnetic resonance; optically oriented free electrons dynamically polarized the 29Si nuclei of the host lattice. The first optical detection of spin orientation was demonstrated by with the III-V semiconductor GaSb by Parsons. Due to the various interaction mechanisms of spins with their environment, the effects occurring in semiconductors are naturally more complex than those in atoms. Optical detection is now the preferred method to detect spin alignment in semiconductors. The orientation of spins in crystals pumped with circularly polarized light is deduced from the degree of circular polarization of the recombination

  12. Numerical modeling of the effect of preferential flow on hillslope hydrology and slope stability

    Shao, W.

    2017-01-01

    The topic of this thesis is the quantification of the influence of preferential flow on landslide-triggering in potentially unstable slopes. Preferential flow paths (e.g., cracks, macropores, fissures, pipes, etc.) commonly exists in slopes. Flow velocities in preferential flow paths can be

  13. Innovation and nested preferential growth in chess playing behavior

    Perotti, J. I.; Jo, H.-H.; Schaigorodsky, A. L.; Billoni, O. V.

    2013-11-01

    Complexity develops via the incorporation of innovative properties. Chess is one of the most complex strategy games, where expert contenders exercise decision making by imitating old games or introducing innovations. In this work, we study innovation in chess by analyzing how different move sequences are played at the population level. It is found that the probability of exploring a new or innovative move decreases as a power law with the frequency of the preceding move sequence. Chess players also exploit already known move sequences according to their frequencies, following a preferential growth mechanism. Furthermore, innovation in chess exhibits Heaps' law suggesting similarities with the process of vocabulary growth. We propose a robust generative mechanism based on nested Yule-Simon preferential growth processes that reproduces the empirical observations. These results, supporting the self-similar nature of innovations in chess are important in the context of decision making in a competitive scenario, and extend the scope of relevant findings recently discovered regarding the emergence of Zipf's law in chess.

  14. Preferential lentiviral targeting of astrocytes in the central nervous system.

    Michael Fassler

    Full Text Available The ability to visualize and genetically manipulate specific cell populations of the central nervous system (CNS is fundamental to a better understanding of brain functions at the cellular and molecular levels. Tools to selectively target cells of the CNS include molecular genetics, imaging, and use of transgenic animals. However, these approaches are technically challenging, time consuming, and difficult to control. Viral-mediated targeting of cells in the CNS can be highly beneficial for studying and treating neurodegenerative diseases. Yet, despite specific marking of numerous cell types in the CNS, in vivo selective targeting of astrocytes has not been optimized. In this study, preferential targeting of astrocytes in the CNS was demonstrated using engineered lentiviruses that were pseudotyped with a modified Sindbis envelope and displayed anti-GLAST IgG on their surfaces as an attachment moiety. Viral tropism for astrocytes was initially verified in vitro in primary mixed glia cultures. When injected into the brains of mice, lentiviruses that displayed GLAST IgG on their surface, exhibited preferential astrocyte targeting, compared to pseudotyped lentiviruses that did not incorporate any IgG or that expressed a control isotype IgG. Overall, this approach is highly flexible and can be exploited to selectively target astrocytes or other cell types of the CNS. As such, it can open a window to visualize and genetically manipulate astrocytes or other cells of the CNS as means of research and treatment.

  15. Stationary and nonstationary properties of evolving networks with preferential linkage

    Jezewski, W.

    2002-01-01

    Networks evolving by preferential attachment of both external and internal links are investigated. The rate of adding an external link is assumed to depend linearly on the degree of a preexisting node to which a new node is connected. The process of creating an internal link, between a pair of existing vertices, is assumed to be controlled entirely by the vertex that has more links than the other vertex in the pair, and the rate of creation of such a link is assumed to be, in general, nonlinear in the degree of the more strongly connected vertex. It is shown that degree distributions of networks evolving only by creating internal links display for large degrees a nonstationary power-law decay with a time-dependent scaling exponent. Nonstationary power-law behaviors are numerically shown to persist even when the number of nodes is not fixed and both external and internal connections are introduced, provided that the rate of preferential attachment of internal connections is nonlinear. It is argued that nonstationary effects are not unlikely in real networks, although these effects may not be apparent, especially in networks with a slowly varying mean degree

  16. Waste streams that preferentially corrode 55-gallon steel storage drums

    Zirker, L.R.; Beitel, G.A.; Reece, C.M.

    1995-06-01

    When 55-gal steel drum waste containers fail in service, i.e., leak, corrode or breach, the standard fix has been to overpack the drum. When a drum fails and is overpacked into an 83-gal overpack drum, there are several negative consequences. Identifying waste streams that preferentially corrode steel drums is essential to the pollution prevention philosophy that ''an ounce of prevention is worth a pound of cure.'' It is essential that facilities perform pollution prevention measures at the front end of processes to reduce pollution on the back end. If these waste streams can be identified before they are packaged, the initial drum packaging system could be fortified or increased to eliminate future drum failures, breaches, clean-ups, and the plethora of other consequences. Therefore, a survey was conducted throughout the US Department of Energy complex for information concerning waste streams that have demonstrated preferential corrosion of 55-gal steel drums. From 21 site contacts, 21 waste streams were so identified. The major components of these waste streams include acids, salts, and solvent liquids, sludges, and still bottoms. The solvent-based waste streams typically had the shortest time to failure, 0.5 to 2 years. This report provides the results of this survey and research

  17. A single grain approach applied to modelling recrystallization kinetics in a single-phase metal

    Chen, S.P.; Zwaag, van der S.

    2004-01-01

    A comprehensive model for the recrystallization kinetics is proposed which incorporates both microstructure and the textural components in the deformed state. The model is based on the single-grain approach proposed previously. The influence of the as-deformed grain orientation, which affects the

  18. Experimental determination and theoretical analysis of local residual stress at grain scale

    Basu, Indranil; Ocelík, Václav; De Hosson, Jeff Th M.

    2017-01-01

    Grain/phase boundaries contribute significantly to build up of residual stresses, owing to varied plastic/thermal response of different grain orientations or phases during thermomechanical treatment. Hence, accurate quantification of such local scale stress gradients in commercial components is

  19. Biaxial magnetic grain alignment

    Staines, M.; Genoud, J.-Y.; Mawdsley, A.; Manojlovic, V.

    2000-01-01

    Full text: We describe a dynamic magnetic grain alignment technique which can be used to produce YBCO thick films with a high degree of biaxial texture. The technique is, however, generally applicable to preparing ceramics or composite materials from granular materials with orthorhombic or lower crystal symmetry and is therefore not restricted to superconducting applications. Because magnetic alignment is a bulk effect, textured substrates are not required, unlike epitaxial coated tape processes such as RABiTS. We have used the technique to produce thick films of Y-247 on untextured silver substrates. After processing to Y-123 the films show a clear enhancement of critical current density relative to identically prepared untextured or uniaxially textured samples. We describe procedures for preparing materials using magnetic biaxial grain alignment with the emphasis on alignment in epoxy, which can give extremely high texture. X-ray rocking curves with FWHM of as little as 1-2 degrees have been measured

  20. Grain Boundary Complexions

    2014-05-01

    Cantwell et al. / Acta Materialia 62 (2014) 1–48 challenging from a scientific perspective, but it can also be very technologically rewarding , given the...energy) is a competing explanation that remains to be explored. Strategies to drive the grain boundary energy toward zero have produced some success...Thompson AM, Soni KK, Chan HM, Harmer MP, Williams DB, Chabala JM, et al. J Am Ceram Soc 1997;80:373. [172] Behera SK. PhD dissertation, Materials Science

  1. Predictive coarse-graining

    Schöberl, Markus, E-mail: m.schoeberl@tum.de [Continuum Mechanics Group, Technical University of Munich, Boltzmannstraße 15, 85748 Garching (Germany); Zabaras, Nicholas [Institute for Advanced Study, Technical University of Munich, Lichtenbergstraße 2a, 85748 Garching (Germany); Department of Aerospace and Mechanical Engineering, University of Notre Dame, 365 Fitzpatrick Hall, Notre Dame, IN 46556 (United States); Koutsourelakis, Phaedon-Stelios [Continuum Mechanics Group, Technical University of Munich, Boltzmannstraße 15, 85748 Garching (Germany)

    2017-03-15

    We propose a data-driven, coarse-graining formulation in the context of equilibrium statistical mechanics. In contrast to existing techniques which are based on a fine-to-coarse map, we adopt the opposite strategy by prescribing a probabilistic coarse-to-fine map. This corresponds to a directed probabilistic model where the coarse variables play the role of latent generators of the fine scale (all-atom) data. From an information-theoretic perspective, the framework proposed provides an improvement upon the relative entropy method and is capable of quantifying the uncertainty due to the information loss that unavoidably takes place during the coarse-graining process. Furthermore, it can be readily extended to a fully Bayesian model where various sources of uncertainties are reflected in the posterior of the model parameters. The latter can be used to produce not only point estimates of fine-scale reconstructions or macroscopic observables, but more importantly, predictive posterior distributions on these quantities. Predictive posterior distributions reflect the confidence of the model as a function of the amount of data and the level of coarse-graining. The issues of model complexity and model selection are seamlessly addressed by employing a hierarchical prior that favors the discovery of sparse solutions, revealing the most prominent features in the coarse-grained model. A flexible and parallelizable Monte Carlo – Expectation–Maximization (MC-EM) scheme is proposed for carrying out inference and learning tasks. A comparative assessment of the proposed methodology is presented for a lattice spin system and the SPC/E water model.

  2. Grain alcohol study: summary

    The study has concentrated upon a detailed examination of all considerations involved in the production, use, and marketing of ethyl alcohol (ethanol) as produced from the fermentation of agricultural grains. Each parameter was examined in the light of current energy markets and trends; new sources and technological, and processes for fermentation, the capability of the agricultural industry to support fermentation demand; the optimizaton of value of agricultural crops; and the efficiencies of combining related industries. Ahydrous (200 proof) ethanol makes an excellent blending component for all present automotive fuels and an excellent octane additive for unleaded fuels in proportions up to 35% without requiring modifications to current engines. There is no difference between ethanol produced by fermentation and ethanol produced synthetically from petroleum. The decision to produce ethanol one way or the other is purely economic. The agricultural industry can support a major expansion in the fermentation industry. The residue (distillers grains) from the fermentation of corn for ethanol is an excellent and economical feed for livestock and poultry. A reliable supply of distillers grain can assist in making the large beef feedlot operations more economically viable. The source materials, fuels, products and by-products of an ethanol plant, beef feedlot, gas biodigester plant, municipal waste recovery plant and a steam generated electrical plant are interrelated and mutually beneficial for energy efficiencies and economic gains when co-located. The study concludes that the establishment of such agricultural- environment industrial energy complexes, would provide a broad range of significant benefits to Indiana.

  3. Grain alcohol study: summary

    The study has concentrated upon a detailed examination of all considerations involved in the production, use, and marketing of ethyl alcohol (Ethanol) as produced from the fermentation of agricultural grains. Each parameter was examined in the light of current energy markets and trends; new sources and technological, and processes for fermentation, the capability of the agricultural industry to support fermentaton demand; the optimization of value of agricultureal crops; and the efficiencies of combining related industries. Anhydrous (200 proof) ethanol makes an excellent blending component for all present automotive fuels and an excellent octane additive for unleaded fuels in proportions up to 35% without requiring modifications to current engines. There is no difference between ethanol produced by fermentation and ethanol produced synthetically from petroleum. The decision to produce ethanol one way or the other is purely economic. The agricultural industry can support a major expansion in the fermentation industry. The residue (distillers grains) from the fermentation of corn for ethanol is an excellent and economical feed for livestock and poultry. A reliable supply of distillers grains can assist in making the large beef feedlot operations more economically viable. The source materials, fuels, products and by-products of an ethanol plant, beef feedlot, gas biodigester plant, municipal waste recovery plant and a steam generated electrical plant are interrelated and mutually beneficial for energy efficiencies and economic gains when co-located. The study concludes that the establishment of such agricultural-environment industrial energy complexes, would provide a broad range of significant benefits to Indiana.

  4. Grain preservation in SSSR

    Trisviatski, L.A.

    1973-01-01

    First the importance of cereals collected in the S.S.S.R., the reason why the government had to put in practice a storage chain, composed of large capacity store houses (200 000 metric tonnes, or more) is reminded. When climatic conditions result in wet harvested grains, cereals are dried either in state enterprise dryers (32 to 50 tonnes/hour) or in kolkhozes' dryers (2 to 16 tonnes/hour). A new type of drying with recycling, has been developped, economizing 10 to 15 p. 100. Then the possibilities offered by the technique of partial drying of very wet grains are studied and the preservation processes using fresh ventilation, or hot ventilation with drying effect are described. The question of silage of wet grains destined to animal consumption is then examined as well as preservation by sodium pyrosulfide; the use of propionic acid, little developped in SSSR, is studied now, just as storage with inert gas. The struggle technics against insects, either with chemical agents, or with irradiation are described. Finally the modalities of technicians formation, specialized in preservation, are discussed [fr

  5. Origins of amorphous interstellar grains

    Hasegawa, H.

    1984-01-01

    The existence of amorphous interstellar grains has been suggested from infrared observations. Some carbon stars show the far infrared emission with a lambda -1 wavelength dependence. Far infrared emission supposed to be due to silicate grains often show the lambda -1 wavelength dependence. Mid infrared spectra around 10 μm have broad structure. These may be due to the amorphous silicate grains. The condition that the condensed grains from the cosmic gas are amorphous is discussed. (author)

  6. Photoelectric charging of dust grains

    Ignatov, A. M.

    2009-01-01

    Photoemission from the surface of a dust grain in vacuum is considered. It is shown that the cutoff in the energy spectrum of emitted electrons leads to the formation of a steady-state electron cloud. The equation describing the distribution of the electric potential in the vicinity of a dust grain is solved numerically. The dust grain charge is found as a function of the grain size.

  7. Orienteering Club

    Club d'orientation

    2013-01-01

    Course d'orientation Le coup d’envoi de la coupe genevoise a été donné samedi 31 août dans les bois de Combe Froide à Prémanon. Plus de 150 coureurs avaient fait le déplacement. Les parcours facile court, facile moyen et technique court ont été remportés par des coureurs du club O’Jura - Ulysse Dannecker, Léo Lonchampt, Franck Lonchampt, le technique moyen par Pekka Marti du club Ol Biel Seeland et le technique long par Térence Risse du CA Rosé – également membre de l’équipe nationale suisse des moins de 20 ans. Pour le club du CERN, les meilleures résultats ont été obtenus pas Emese Szunyog sur technique court et Marie Vuitton sur technique moyen avec une 4e place. La prochaine course aura lieu samedi 14 septembre à La Faucille. Le club propose aussi...

  8. Orienteering club

    Club d'orientation

    2014-01-01

    Course d'orientation Finale de la coupe d’automne La dernière épreuve de la coupe d’automne organisée par le club s’est déroulée ce samedi 1er novembre avec une course type «one-man-relay» dans la forêt de Trelex (Vd). Les concurrents des circuits techniques devaient parcourir trois boucles et ceux des circuits «faciles» deux boucles, avec changements de carte. Le parcours technique long a été remporté par un membre du club, Berni Wehrle. A l’issue de cette course, le Président du club, L. Jirden annonçait le classement général de la coupe d’automne, basé sur les 6 meilleurs résultats de la saison : Circuit technique long : 1er Juerg Niggli (O’Jura), 2e Berni Wehrle, 3e Beat Mueller. Circuit technique moyen : 1er Laurent Merat (O&r...

  9. Orienteering club

    Club d'orientation

    2013-01-01

    Course d'orientation Finale de la coupe genevoise Rapide et méthodique, voilà les qualités dont il fallait faire preuve pour remporter la dernière étape de la coupe organisée par le club du CERN dans les bois de Monteret. Il s’agissait d’une course au score où chaque concurrent disposait d’un temps imparti pour poinçonner le maximum de balises. Le parcours technique a été remporté par Tomas Shellman et le parcours facile par Victor Dannecker. Cette dernière étape était aussi décisive pour la désignation des lauréats de la coupe genevoise de printemps. Les résultats officiels étaient donnés par le président du club, L. Jirden : Circuit Technique Long : Berni Wehrle, Bruno Barge, Edvins Reisons Circuit Technique Moyen : J.-Bernard Zosso, ...

  10. Orienteering Club

    Club d'Orientation

    2011-01-01

    Course d'orientation Avec la CO en nocturne organisée par le club du CERN vendredi 14 octobre au stade des Eveaux (Ge), et la CO à Savigny (Vd) proposée par le club de Lausanne-Jorat le lendemain, les étapes de la coupe genevoise d’automne s’enchainent rapidement. Il ne reste plus que 3 rendez-vous pour boucler la saison. Les premières places devraient certainement se jouer entre des membres du club du CERN, du O’Jura ou de Lausanne-Jorat. La prochaine course du club est programmée pour samedi 22 octobre à Pomier, près de Cruseilles. L’accueil se fera à partir de 12h30 et les départs s’échelonneront de 13h à 15h. * * * * * * * Nouvelle belle victoire samedi 8 octobre à Saint Cergue du jeune finlandais Ville Keskisaari (COLJ) en 50:56 devant Jürg Niggli (O’Jura) en 1:03:32, et Alexandre...

  11. Orienteering Club

    Club d'orientation

    2013-01-01

    De jour comme de nuit Les amateurs de course d’orientation ont pu s’en donner à cœur joie ce week-end puisqu’ils avaient la possibilité de courir sur deux épreuves en moins de 24 heures. En effet, le club du CERN organisait une course de nuit aux Evaux et la 7e étape de la coupe genevoise se tenait samedi après-midi dans les bois du Grand Jorat à Savigny. Les vainqueurs pour chaque course sont : Technique long CO de nuit: Julien Charlemagne, SOS Sallanches CO samedi: Philipp Khlebnikov, ANCO   Technique moyen CO de nuit: Céline Zosso, CO CERN CO samedi: Pavel Khlebnikov, ANCO Technique court CO de nuit: Colas Ginztburger, SOS Sallanches CO samedi: Victor Kuznetsov, COLJ Lausannne Facile moyen CO de nuit: Gaëtan Rickenbacher, CO CERN CO samedi: Tamas Szoke   Facile court CO de nuit:Oriane Rickenbacher, CO CERN CO samedi: Katya Kuznetsov...

  12. Orienteering Club

    Club d'Orientation

    2015-01-01

    Course orientation Finale de la coupe genevoise La série des courses de printemps s’est achevée samedi dernier dans les bois de Bonmont (Vaud) avec une épreuve «one-man-relay» organisée par le club. Le vainqueur du parcours technique  long, Yann Locatelli (Club de Chambéry Savoie) a réalisé les deux boucles comportant 24 balises avec presque 6 minutes d’avance sur le second concurrent Domenico Lepori (Club CARE Vevey). Cette dernière étape était aussi décisive pour la désignation des lauréats de la coupe genevoise de printemps, en comptabilisant les 6 meilleurs résultats sur les 10 épreuves. Le podium officiel était donné par le président du club, L. Jirden, qui profitait de l’occasion pour remercier tous les participants et également tous les...

  13. Orienteering Club

    CLUB D'ORIENTATION

    2013-01-01

    Calendrier de la coupe d’automne Le Club d’orientation du CERN, en partenariat avec d’autres clubs de la région, vous propose, pour cette nouvelle coupe d’automne genevoise, une série de 10 courses. Le club du O’Jura donnera le coup d’envoi le samedi 31 août. Les courses s’enchaîneront selon le calendrier suivant : Samedi 31 août : Prémanon (39) - longue distance Samedi 14 septembre : La Faucille (01) - longue distance Samedi 21 septembre : Saint Cergue (VD) - longue distance Samedi 28 septembre : Ballens (VD) - relais Samedi 5 octobre : La Pile (VD) - longue distance Vendredi 11 octobre : Les Evaux (GE) - nocturne Samedi 12 octobre : Grand Jorat, Savigny (VD) - longue distance Samedi 19 octobre : Terrasses de Genève (74) - longue distance Samedi 26 octobre : Prémanon (39) - longue distance Samedi 2 novembre : Bois Tollot (GE) - score - Finale Les &a...

  14. Orienteering club

    Club d'orientation

    2014-01-01

    Course d'orientation C’est sous un beau soleil samedi 4 octobre que s’est déroulée la 6e étape de la Coupe genevoise d’automne organisée par le club. Plus d’une centaine de concurrents provenant de 7 clubs de CO avaient fait le déplacement pour courir sur un des cinq parcours proposés dans les bois de Trélex-Génolier (VD). Le podium est le suivant : Technique long (5,9 km, 19 postes) : 1er Jurg Niggli, O’Jura (1:00:02); 2e Berni Wehrle, CO CERN (1:06:44); 3e Konrad Ehrbar, COLJ (1:07:08) Technique moyen (4,8 km, 18 postes) : 1er Christophe Vuitton, CO CERN (54:25); 2e J.B. Zosso, CO CERN (1:01:19); 3e Jeremy Wichoud, COLJ (1:06:21) Technique court (3,8 km, 14 postes) : 1er Julien Vuitton, CO CERN (36:19); 2e Vladimir Kuznetsov, COLJ (48:47); 3e Natalia Niggli, O’Jura (50:38) Facile moyen (3,2 km, 11 postes) : 1ère Alina Niggli, O&...

  15. Orienteering Club

    Club d'Orientation

    2012-01-01

    Relais inter-club/Challenge Carlo Milan Samedi dernier, lors de l’épreuve de course d’orientation organisée par le club du O’Jura, le moteur de la discipline était l’esprit d’équipe, puisqu’il était question d’un relais inter-club avec le Challenge Carlo Milan. Les clubs avaient aligné leurs coureurs soit sur le relais technique (trois participants) soit sur le relais facile (deux participants). Côté O’Jura, il fallait noter la participation de François Gonon, champion du monde 2011, côté club du CERN, Marie et Gaëtan Vuitton, jeunes espoirs du club, devaient préparer la piste pour lancer le dernier relayeur. Côté Lausanne-Jorat, il fallait compter sur le très jeune Viktor Kuznetsov. Les 31 équipes engagées n’ont pas m&ea...

  16. Orienteering Club

    Club d'Orientation

    2012-01-01

     Finale de la coupe de printemps   La dernière course d’orientation comptant pour la Coupe de printemps a eu lieu samedi dernier dans le village des Rousses et vers le Fort. Il s’agissait d’un sprint organisé par le club O’Jura. Les temps de course ont avoisiné les 20 minutes que ce soit pour le parcours technique moyen ou technique long. Tous les habitués étaient au rendez-vous pour venir consolider ou améliorer leur place au classement. A l’issue de cette course, le classement général de la Coupe de printemps prenant en compte les 6 meilleurs résultats des 9 courses était établi et les lauréats de chaque catégorie sont les suivants: Circuit technique long : 1er Berni Wehrle, 2e Bruno Barge, 3e Edvins Reisons. Circuit technique moyen : 1er Jean-Bernard Zosso, 2e Cédric Wehrl&...

  17. Orienteering club

    Club d'orientation

    2010-01-01

    COURSE D’ORIENTATION  De La Rippe à Sauvabellin, la coupe genevoise continue ! Le rendez-vous était donné samedi 8 mai aux amateurs de course d’orientation dans les bois de La Rippe (Canton de Vaud). Cette 6e épreuve était organisée par le Club Satus Grutli de Genève. Il est dommage que les participants n’aient pas été aussi nombreux que lors des dernières courses, les Championnats de France des clubs à Dijon ayant certainement retenus plus d’un compétiteur. La première place est revenue à : – Technique long : Berni Wehrle – Technique moyen : Jean-Bernard Zosso – Technique court : Berni Wehrle – Facile moyen : Peter Troscanyi – Facile court : Claire Droz. Il ne restera plus que deux épreuves ...

  18. Orienteering club

    Club d'orientation

    2013-01-01

    Courses d’orientation Samedi 20 avril, les organisateurs du Club de CO du CERN ont accueilli au Mont Mourex 70 participants qui n’ont pas hésité à venir malgré la forte bise. Berni Wehrle du CO CERN s’est octroyé la première place en 1:04:49 sur le parcours technique long devant Pyry Kettunen du Saynso Juankoski en 1:06:52, la 3e place revenant à Bruno Barge, CO CERN, à 7 secondes. Les autres parcours ont été remportés par : Technique moyen : 1er Jacques Moisset, Chamonix (47:44), 2e Yves Rousselot, Balise 25 Besançon (57:16), 3e Jean-Bernard Zosso, CO CERN (59:28). Technique court : 1er Victor Kuznetsov, COLJ (51:53), 2e Pierrick Collet, CO CERN (1:12:52), 3e Dominique Balay, CO CERN (1:16:04). Pour les parcours facile moyen et facile court, Ralf Nardini et Léa Nicolas, tous deux du CO CERN, terminaient respectivement premier. Voi...

  19. Storing Peanuts in Grain Bags

    A study was executed to determine the potential of storing farmers stock peanuts and shelled peanuts for crushing in hermetically sealed grain bags. The objectives of the study were to evaluate equipment for loading and unloading the grain bags, the capacity of the grain bags, and the changes in qu...

  20. Affecting factors of preferential flow in the forest of the Three Gorges area, Yangtze River

    CHENG Jinhua; ZHANG Hongjiang; HE Fan; QI Shenglin; SUN Yanhong; ZHANG Youyan; SHI Yuhu

    2007-01-01

    In order to study the factors affecting preferential flow,a 2.9 m-long,2.6 m-deep soil profile was dug in the Quxi watershed,Yangtze River.To analyze the influence of rainfall on preferential flow,the preferential flow process was observed when the rainfalls were recorded.Soil physical and infiltration characteristics were also measured to study their effect on preferential flow.The results showed that the rainfall amount that could cause preferential flow was over 26 mm.There are four types of rainfall in the Three Gorges area,namely gradually dropping rain,even rain,sudden rain and peak rain.Preferential flow process was found to be relevant to the rainfall process.It was determined that with different rainfall types,preferential flow appeared at different times,occurring first in peak rain,followed by sudden rain,gradually dropping rain,and then even rain.Preferential flow would appear when the rainfall intensity was over 0.075 mm/min.In the studied area,the coarse soil particles increased with the soil depth,and for the deeper soil layer,the coarse particles promote the formation of preferential flow.Preferential flow accelerates the steady infiltration rate in the 83-110 cm soil horizon,and the quickly moving water in this horizon also enhanced the further formation and development of preferential flow.

  1. Investigating selective transport and abrasion on an alluvial fan using quantitative grain size and shape analysis

    Litwin, K. L.; Jerolmack, D. J.

    2011-12-01

    Selective sorting and abrasion are the two major fluvial processes that are attributed to the downstream fining of sediments in rivers and alluvial fans. Selective transport is the process by which smaller grains are preferentially transported downstream while larger grains are deposited closer to the source. Abrasion is defined by the production of fine sediments and sand that occurs by saltation of gravel, where particle-to-particle collisions supply the energy required to break apart grains. We hypothesize that abrasion results in the gradual fining of large grains and the production of fine sands and silts, while sorting accounts for the differences in transport of these two grain-size fractions produced from abrasion, thereby creating the abrupt gravel-sand transition observed in many channel systems. In this research, we explore both selective transport and abrasion processes on the Dog Canyon alluvial fan near Alamogordo, New Mexico. We complete an extensive grain size analysis down the main channel of the fan employing an image-based technique that utilizes an autocorrelation process. We also characterize changes in grain shape using standard shape parameters, as well as Fourier analysis, which allows the study of contributions of grain roughness on a variety of length scales. Sorting appears to dominate the upper portion of the fan; the grain-size distribution narrows moving downstream until reaching a point of equal mobility, at which point sorting ceases. Abrasion exerts a subtle but persistent effect on grains during transport down the fan. Shape analysis reveals that particles become more rounded by the removal of small-scale textural features, a process that is expected to only modestly influence grain size of gravel, but should produce significant quantities of sand. This study provides a better understanding of the importance of grain abrasion and sorting on the downstream fining of channel grains in an alluvial fan, as well as an improved knowledge

  2. Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components.

    Timasheff, Serge N

    2002-07-23

    Solvent additives (cosolvents, osmolytes) modulate biochemical reactions if, during the course of the reaction, there is a change in preferential interactions of solvent components with the reacting system. Preferential interactions can be expressed in terms of preferential binding of the cosolvent or its preferential exclusion (preferential hydration). The driving force is the perturbation by the protein of the chemical potential of the cosolvent. It is shown that the measured change of the amount of water in contact with protein during the course of the reaction modulated by an osmolyte is a change in preferential hydration that is strictly a measure of the cosolvent chemical potential perturbation by the protein in the ternary water-protein-cosolvent system. It is not equal to the change in water of hydration, because water of hydration is a reflection strictly of protein-water forces in a binary system. There is no direct relation between water of preferential hydration and water of hydration.

  3. Flotation preferentially selects saccate pollen during conifer pollination.

    Leslie, Andrew B

    2010-10-01

    • Among many species of living conifers the presence of pollen with air bladders (saccate pollen) is strongly associated with downward-facing ovules and the production of pollination drops. This combination of features enables saccate pollen grains captured in the pollination drop to float upwards into the ovule. Despite the importance of this mechanism in understanding reproduction in living conifers and in extinct seed plants with similar morphologies, experiments designed to test its effectiveness have yielded equivocal results. • In vitro and in vivo pollination experiments using saccate and nonsaccate pollen were performed using modeled ovules and two Pinus species during their natural pollination period. • Buoyant saccate pollen readily floated through aqueous droplets, separating these grains from nonbuoyant pollen and spores. Ovules that received saccate pollen, nonsaccate pollen or a mixture of both all showed larger amounts and higher proportions of saccate pollen inside ovules after drop secretion. • These results demonstrate that flotation is an effective mechanism of pollen capture and transport in gymnosperms, and suggest that the prevalence of saccate grains and downward-facing ovules in the evolutionary history of seed plants is a result of the widespread use of this mechanism.

  4. Monkeys preferentially process body information while viewing affective displays.

    Bliss-Moreau, Eliza; Moadab, Gilda; Machado, Christopher J

    2017-08-01

    Despite evolutionary claims about the function of facial behaviors across phylogeny, rarely are those hypotheses tested in a comparative context-that is, by evaluating how nonhuman animals process such behaviors. Further, while increasing evidence indicates that humans make meaning of faces by integrating contextual information, including that from the body, the extent to which nonhuman animals process contextual information during affective displays is unknown. In the present study, we evaluated the extent to which rhesus macaques (Macaca mulatta) process dynamic affective displays of conspecifics that included both facial and body behaviors. Contrary to hypotheses that they would preferentially attend to faces during affective displays, monkeys looked for longest, most frequently, and first at conspecifics' bodies rather than their heads. These findings indicate that macaques, like humans, attend to available contextual information during the processing of affective displays, and that the body may also be providing unique information about affective states. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. Network evolution by nonlinear preferential rewiring of edges

    Xu, Xin-Jian; Hu, Xiao-Ming; Zhang, Li-Jie

    2011-06-01

    The mathematical framework for small-world networks proposed in a seminal paper by Watts and Strogatz sparked a widespread interest in modeling complex networks in the past decade. However, most of research contributing to static models is in contrast to real-world dynamic networks, such as social and biological networks, which are characterized by rearrangements of connections among agents. In this paper, we study dynamic networks evolved by nonlinear preferential rewiring of edges. The total numbers of vertices and edges of the network are conserved, but edges are continuously rewired according to the nonlinear preference. Assuming power-law kernels with exponents α and β, the network structures in stationary states display a distinct behavior, depending only on β. For β>1, the network is highly heterogeneous with the emergence of starlike structures. For β<1, the network is widely homogeneous with a typical connectivity. At β=1, the network is scale free with an exponential cutoff.

  6. Preferential rifting of continents - A source of displaced terranes

    Vink, G. E.; Morgan, W. J.; Zhao, W.-L.

    1984-01-01

    Lithospheric rifting, while prevalent in the continents, rarely occurs in oceanic regions. To explain this preferential rifting of continents, the total strength of different lithospheres is compared by integrating the limits of lithospheric stress with depth. Comparisons of total strength indicate that continental lithosphere is weaker than oceanic lithosphere by about a factor of three. Also, a thickened crust can halve the total strength of normal continental lithosphere. Because the weakest area acts as a stress guide, any rifting close to an ocean-continent boundary would prefer a continental pathway. This results in the formation of small continental fragments or microplates that, once accreted back to a continent during subduction, are seen as displaced terranes. In addition, the large crustal thicknesses associated with suture zones would make such areas likely locations for future rifting episodes. This results in the tendency of new oceans to open along the suture where a former ocean had closed.

  7. Seeking a preferential option for the rural poor in Chile

    Edward Dew

    2006-01-01

    Full Text Available From colonial times well into the twentieth century (and, unfortunately, even beyond the man/land relationship in Latin America has been markedly unjust. Small numbers of families have owned large tracts of the best land, while large numbers of poor families have struggled with tiny plots of marginal land or labored on the estates of the rich. Chile was no exception to this pattern. Thus, its experiment with land reform in the 1960s and 1970s, the setback of reform under the military in the 1970s and 1980s, and the resumption of reform under democrats in the 1990s, may provide lessons for the rest of Latin America. Is a preferential option for the rural poor still possible in a neoliberal economic system? In Chile, the answer is a qualified “yes”

  8. Personalized recommendation based on preferential bidirectional mass diffusion

    Chen, Guilin; Gao, Tianrun; Zhu, Xuzhen; Tian, Hui; Yang, Zhao

    2017-03-01

    Recommendation system provides a promising way to alleviate the dilemma of information overload. In physical dynamics, mass diffusion has been used to design effective recommendation algorithms on bipartite network. However, most of the previous studies focus overwhelmingly on unidirectional mass diffusion from collected objects to uncollected objects, while overlooking the opposite direction, leading to the risk of similarity estimation deviation and performance degradation. In addition, they are biased towards recommending popular objects which will not necessarily promote the accuracy but make the recommendation lack diversity and novelty that indeed contribute to the vitality of the system. To overcome the aforementioned disadvantages, we propose a preferential bidirectional mass diffusion (PBMD) algorithm by penalizing the weight of popular objects in bidirectional diffusion. Experiments are evaluated on three benchmark datasets (Movielens, Netflix and Amazon) by 10-fold cross validation, and results indicate that PBMD remarkably outperforms the mainstream methods in accuracy, diversity and novelty.

  9. Predicting Alcohol, Cigarette, and Marijuana Use From Preferential Music Consumption.

    Oberle, Crystal D; Garcia, Javier A

    2015-01-01

    This study investigated whether use of alcohol, cigarettes, and marijuana may be predicted from preferential consumption of particular music genres. Undergraduates (257 women and 78 men) completed a questionnaire assessing these variables. Partial correlation analyses, controlling for sensation-seeking tendencies and behaviors, revealed that listening to conventional music (pop, country, and religious genres) was negatively correlated with cigarette smoking (p=.001) and marijuana use (pmusic (rap or hip-hop and soul or funk genres) was positively correlated with marijuana use (p=.004). The only significant predictor of alcohol use was country music, with which it was positively correlated (p=.04). This research suggests an especially harmful influence of energetic music on marijuana use. © The Author(s) 2015.

  10. A preferential coating technique for fabricating large, high quality optics

    Alcock, S.G.; Cockerton, S.

    2010-01-01

    A major challenge facing optic manufacturers is the fabrication of large mirrors (>1 m) with minimal residual slope errors (<0.5 μrad rms). We present a differential coating method with the potential to satisfy such exacting technical demands. Iterative cycles of measurement using the Diamond-NOM, followed by preferential deposition, were performed on a 1200 mm long, silicon mirror. The applied coatings were observed to reduce the optical slope and figure errors from 1.62 to 0.44 μrad rms, and from 208 to 13 nm rms, respectively. It is hoped that this research will lead to commercially available products, of direct benefit to the Synchrotron, Free Electron Laser, Astronomy, Space, and Laser communities, who all require state-of-the-art optics.

  11. An algorithm for preferential selection of spectroscopic targets in LEGUE

    Carlin, Jeffrey L.; Newberg, Heidi Jo; Lépine, Sébastien; Deng Licai; Chen Yuqin; Fu Xiaoting; Gao Shuang; Li Jing; Liu Chao; Beers, Timothy C.; Christlieb, Norbert; Grillmair, Carl J.; Guhathakurta, Puragra; Han Zhanwen; Hou Jinliang; Lee, Hsu-Tai; Liu Xiaowei; Pan Kaike; Sellwood, J. A.; Wang Hongchi

    2012-01-01

    We describe a general target selection algorithm that is applicable to any survey in which the number of available candidates is much larger than the number of objects to be observed. This routine aims to achieve a balance between a smoothly-varying, well-understood selection function and the desire to preferentially select certain types of targets. Some target-selection examples are shown that illustrate different possibilities of emphasis functions. Although it is generally applicable, the algorithm was developed specifically for the LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) survey that will be carried out using the Chinese Guo Shou Jing Telescope. In particular, this algorithm was designed for the portion of LEGUE targeting the Galactic halo, in which we attempt to balance a variety of science goals that require stars at fainter magnitudes than can be completely sampled by LAMOST. This algorithm has been implemented for the halo portion of the LAMOST pilot survey, which began in October 2011.

  12. Complex networks as an emerging property of hierarchical preferential attachment

    Hébert-Dufresne, Laurent; Laurence, Edward; Allard, Antoine; Young, Jean-Gabriel; Dubé, Louis J.

    2015-12-01

    Real complex systems are not rigidly structured; no clear rules or blueprints exist for their construction. Yet, amidst their apparent randomness, complex structural properties universally emerge. We propose that an important class of complex systems can be modeled as an organization of many embedded levels (potentially infinite in number), all of them following the same universal growth principle known as preferential attachment. We give examples of such hierarchy in real systems, for instance, in the pyramid of production entities of the film industry. More importantly, we show how real complex networks can be interpreted as a projection of our model, from which their scale independence, their clustering, their hierarchy, their fractality, and their navigability naturally emerge. Our results suggest that complex networks, viewed as growing systems, can be quite simple, and that the apparent complexity of their structure is largely a reflection of their unobserved hierarchical nature.

  13. Preferential emission into epsilon-near-zero metamaterial [Invited

    Galfsky, Tal; Sun, Zheng; Jacob, Zubin; Menon, Vinod M.

    2015-01-01

    We report the use of epsilon near zero (ENZ) metamaterial to control spontaneous emission from Zinc-Oxide (ZnO) excitons. The ENZ material consists of alternating layers of silver and alumina with subwavelength thicknesses, resulting in an effective medium where one of the components of the dielectric constant approach zero between 370nm-440nm wavelength range. Bulk ZnO with photoluminescence maximum in the ENZ regime was deposited via atomic layer deposition to obtain a smooth film with near field coupling to the ENZ metamaterial. Preferential emission from the ZnO layer into the metamaterial with suppression of forward emission by 90% in comparison to ZnO on silicon is observed. We attribute this observation to the presence of dispersionless plasmonic modes in the ENZ regime as shown by the results of theoretical modeling presented here. Integration of ENZ metamaterials with light emitters is an attractive platform for realizing a low threshold subwavelength laser

  14. Cyclosporin A preferentially attenuates skeletal slow-twitch muscle regeneration

    Miyabara E.H.

    2005-01-01

    Full Text Available Calcineurin, a Ca2+/calmodulin-dependent phosphatase, is associated with muscle regeneration via NFATc1/GATA2-dependent pathways. However, it is not clear whether calcineurin preferentially affects the regeneration of slow- or fast-twitch muscles. We investigated the effect of a calcineurin inhibitor, cyclosporin A (CsA, on the morphology and fiber diameter of regenerating slow- and fast-twitch muscles. Adult Wistar rats (259.5 ± 9 g maintained under standard conditions were treated with CsA (20 mg/kg body weight, ip for 5 days, submitted to cryolesion of soleus and tibialis anterior (TA muscles on the 6th day, and then treated with CsA for an additional 21 days. The muscles were removed, weighed, frozen, and stored in liquid nitrogen. Cryolesion did not alter the body weight gain of the animals after 21 days of regeneration (P = 0.001 and CsA significantly reduced the body weight gain (15.5%; P = 0.01 during the same period. All treated TA and soleus muscles showed decreased weights (17 and 29%, respectively, P < 0.05. CsA treatment decreased the cross-sectional area of both soleus and TA muscles of cryoinjured animals (TA: 2108 ± 930 vs 792 ± 640 µm²; soleus: 2209 ± 322 vs 764 ± 439 m²; P < 0.001. Histological sections of both muscles stained with Toluidine blue revealed similar regenerative responses after cryolesion. In addition, CsA was able to minimize these responses, i.e., centralized nuclei and split fibers, more efficiently so in TA muscle. These results indicate that calcineurin preferentially plays a role in regeneration of slow-twitch muscle.

  15. On the role of the grain size in the magnetic behavior of sintered permanent magnets

    Efthimiadis, K. G.; Ntallis, N.

    2018-02-01

    In this work the finite elements method is used to simulate, by micromagnetic modeling, the magnetic behavior of sintered anisotropic magnets. Hysteresis loops were simulated for different grain sizes in an oriented multigrain sample. By keeping out other parameters that contribute to the magnetic microstructure, such as the sample size, the grain morphology and the grain boundaries mismatch, it has been found that the grain size affects the magnetic properties only if the grains are exchange-decoupled. In this case, as the grain size decreases, a decrease in the nucleation field of a reverse magnetic domain is observed and an increase in the coercive field due to the pinning of the magnetic domain walls at the grain boundaries.

  16. Orientation dependent fracture behavior of nanotwinned copper

    Kobler, Aaron, E-mail: aaron.kobler@kit.edu; Hahn, Horst, E-mail: ahodge@usc.edu, E-mail: horst.hahn@kit.edu, E-mail: christian.kuebel@kit.edu [Technische Universität Darmstadt (TUD), KIT-TUD Joint Research Laboratory Nanomaterials, 64287 Darmstadt (Germany); Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Hodge, Andrea M., E-mail: ahodge@usc.edu, E-mail: horst.hahn@kit.edu, E-mail: christian.kuebel@kit.edu [University of Southern California (USC), Department of Aerospace and Mechanical Engineering, Los Angeles, California 90089-1453 (United States); Kübel, Christian, E-mail: ahodge@usc.edu, E-mail: horst.hahn@kit.edu, E-mail: christian.kuebel@kit.edu [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2015-06-29

    Columnar grown nanotwinned Cu was tensile tested in-situ inside the TEM in combination with automated crystal orientation mapping scanning transmission electron microscopy to investigate the active deformation mechanisms present in this material. Two tensile directions were applied, one parallel to the twin boundaries and the other perpendicular to the twin boundaries. In case of tensile testing perpendicular to the twin boundaries, the material deformed by detwinning and the formation of new grains, whereas in the parallel case, no new grains were formed and the fracture happened along the twin boundaries and a boundary that has formed during the deformation.

  17. Orientation dependent fracture behavior of nanotwinned copper

    Kobler, Aaron; Hahn, Horst; Hodge, Andrea M.; Kübel, Christian

    2015-01-01

    Columnar grown nanotwinned Cu was tensile tested in-situ inside the TEM in combination with automated crystal orientation mapping scanning transmission electron microscopy to investigate the active deformation mechanisms present in this material. Two tensile directions were applied, one parallel to the twin boundaries and the other perpendicular to the twin boundaries. In case of tensile testing perpendicular to the twin boundaries, the material deformed by detwinning and the formation of new grains, whereas in the parallel case, no new grains were formed and the fracture happened along the twin boundaries and a boundary that has formed during the deformation

  18. Sexual Orientation (For Parents)

    ... Staying Safe Videos for Educators Search English Español Sexual Orientation KidsHealth / For Parents / Sexual Orientation What's in this ... orientation is part of that process. What Is Sexual Orientation? The term sexual orientation refers to the gender ( ...

  19. Effect of Strain Restored Energy on Abnormal Grain Growth in Mg Alloy Simulated by Phase Field Methods

    Wu, Yan; Huang, Yuan-yuan

    2018-03-01

    Abnormal grain growth of single phase AZ31 Mg alloy in the spatio-temporal process has been simulated by phase field models, and the influencing factors of abnormal grain growth are studied in order to find the ways to control secondary recrystallization in the microstructure. The study aims to find out the mechanisms for abnormal grain growth in real alloys. It is shown from the simulated results that the abnormal grain growth can be controlled by the strain restored energy. Secondary recrystallization after an annealing treatment can be induced if there are grains of a certain orientation in the microstructure with local high restored energy. However, if the value of the local restored energy at a certain grain orientation is not greater than 1.1E 0, there may be no abnormal grain growth in the microstructure.

  20. Is attention based on spatial contextual memory preferentially guided by low spatial frequency signals?

    Patai, Eva Zita; Buckley, Alice; Nobre, Anna Christina

    2013-01-01

    A popular model of visual perception states that coarse information (carried by low spatial frequencies) along the dorsal stream is rapidly transmitted to prefrontal and medial temporal areas, activating contextual information from memory, which can in turn constrain detailed input carried by high spatial frequencies arriving at a slower rate along the ventral visual stream, thus facilitating the processing of ambiguous visual stimuli. We were interested in testing whether this model contributes to memory-guided orienting of attention. In particular, we asked whether global, low-spatial frequency (LSF) inputs play a dominant role in triggering contextual memories in order to facilitate the processing of the upcoming target stimulus. We explored this question over four experiments. The first experiment replicated the LSF advantage reported in perceptual discrimination tasks by showing that participants were faster and more accurate at matching a low spatial frequency version of a scene, compared to a high spatial frequency version, to its original counterpart in a forced-choice task. The subsequent three experiments tested the relative contributions of low versus high spatial frequencies during memory-guided covert spatial attention orienting tasks. Replicating the effects of memory-guided attention, pre-exposure to scenes associated with specific spatial memories for target locations (memory cues) led to higher perceptual discrimination and faster response times to identify targets embedded in the scenes. However, either high or low spatial frequency cues were equally effective; LSF signals did not selectively or preferentially contribute to the memory-driven attention benefits to performance. Our results challenge a generalized model that LSFs activate contextual memories, which in turn bias attention and facilitate perception.

  1. Interstellar gas and large grains toward HD 38087

    Snow, T.P.; Witt, A.

    1989-01-01

    High-dispersion IUE spectra have been obtained of HD 38087, a star associated with reflection nebulosity where 2175 A scattering has previously been observed. The presence of 2175 A in emission implies unusually large grains, an attempt was made to see how these unusual grains may have affected the depletions of gas-phase elements onto dust in the line of sight. Even though the observed scattering region constitutes only a fraction of the total column density of dust, it is expected that the present line-of-sight analysis provides useful information on the gas and dust in the scattering nebulosity. Somewhat larger overall depletions than normal are found, and it is found that the depletions of certain elements (manganese and zinc) are enhanced relative to the normal pattern of element-to-element depletions, suggesting that grain growth has occurred with some elements sticking to grains preferentially. The molecular fraction in the line of sight is low, in accord with similar lines of sight having low far-ultraviolet extinction and large depletions. 37 refs

  2. The role of grain size in He bubble formation: Implications for swelling resistance

    El-Atwani, O., E-mail: oelatwan25@gmail.com [Drexel University, Department of Materials Science & Engineering, Philadelphia, PA (United States); Nathaniel, J.E.; Leff, A.C. [Drexel University, Department of Materials Science & Engineering, Philadelphia, PA (United States); Muntifering, B.R. [Department of Radiation Solid Interactions, Sandia National Laboratories, NM (United States); Baldwin, J.K. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM (United States); Hattar, K. [Department of Radiation Solid Interactions, Sandia National Laboratories, NM (United States); Taheri, M.L. [Drexel University, Department of Materials Science & Engineering, Philadelphia, PA (United States)

    2017-02-15

    Nanocrystalline metals are postulated as radiation resistant materials due to their high defect and particle (e.g. Helium) sink density. Here, the performance of nanocrystalline iron films is investigated in-situ in a transmission electron microscope (TEM) using He irradiation at 700 K. Automated crystal orientation mapping is used in concert with in-situ TEM to explore the role of grain orientation and grain boundary character on bubble density trends. Bubble density as a function of three key grain size regimes is demonstrated. While the overall trend revealed an increase in bubble density up to a saturation value, grains with areas ranging from 3000 to 7500 nm{sup 2} show a scattered distribution. An extrapolated swelling resistance based on bubble size and areal density indicated that grains with sizes less than 2000 nm{sup 2} possess the greatest apparent resistance. Moreover, denuded zones are found to be independent of grain size, grain orientation, and grain boundary misorientation angle.

  3. Crystallographic contribution to the formation of the columnar grain structure in cobalt films

    Hara, K.; Itoh, K.; Okamoto, K.; Hashimoto, T.

    1996-01-01

    In order to clarify the crystallographic contribution to the formation of the columnar grain structure, the geometric and crystallographic alignments of columnar grains in cobalt films were investigated on the basis of magnetic and optical measurements. The films were deposited by sputtering at an incidence angle of 45 on glass substrates heated at 332 K. The film thickness ranged from 20 to 850 nm. Above 50 nm the columnar grains align in the direction parallel to the incidence plane and form a two-degree crystallographic orientation. The packing density of columnar grains decreases with increasing thickness when the thickness exceeds 50 nm. From these results we conclude that the crystal habit appearing on column tops induces the two-degree orientation through geometric selection and aligns the selected columnar grains in the parallel direction. (orig.)

  4. An evolutionarily conserved gene, FUWA, plays a role in determining panicle architecture, grain shape and grain weight in rice.

    Chen, Jun; Gao, He; Zheng, Xiao-Ming; Jin, Mingna; Weng, Jian-Feng; Ma, Jin; Ren, Yulong; Zhou, Kunneng; Wang, Qi; Wang, Jie; Wang, Jiu-Lin; Zhang, Xin; Cheng, Zhijun; Wu, Chuanyin; Wang, Haiyang; Wan, Jian-Min

    2015-08-01

    Plant breeding relies on creation of novel allelic combinations for desired traits. Identification and utilization of beneficial alleles, rare alleles and evolutionarily conserved genes in the germplasm (referred to as 'hidden' genes) provide an effective approach to achieve this goal. Here we show that a chemically induced null mutation in an evolutionarily conserved gene, FUWA, alters multiple important agronomic traits in rice, including panicle architecture, grain shape and grain weight. FUWA encodes an NHL domain-containing protein, with preferential expression in the root meristem, shoot apical meristem and inflorescences, where it restricts excessive cell division. Sequence analysis revealed that FUWA has undergone a bottleneck effect, and become fixed in landraces and modern cultivars during domestication and breeding. We further confirm a highly conserved role of FUWA homologs in determining panicle architecture and grain development in rice, maize and sorghum through genetic transformation. Strikingly, knockdown of the FUWA transcription level by RNA interference results in an erect panicle and increased grain size in both indica and japonica genetic backgrounds. This study illustrates an approach to create new germplasm with improved agronomic traits for crop breeding by tapping into evolutionary conserved genes. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  5. Chevron defect at the intersection of grain boundaries with free surfaces in Au

    Radetic, T.; Lancon, F.; Dahmen, U.

    2002-01-01

    We have identified a new defect at the intersection between grain boundaries and surfaces in Au using atomic resolution transmission electron microscopy. At the junction line of 90 deg. tilt grain boundaries of (110)-(001) orientation with the free surface, a small segment of the grain boundary, about 1 nm in length, dissociates into a triangular region with a chevronlike stacking disorder and a distorted hcp structure. The structure and stability of these defects are confirmed by atomistic simulations, and we point out the relationship with the one-dimensional incommensurate structure of the grain boundary

  6. Structure and electronic properties of boron nitride sheet with grain boundaries

    Wang Zhiguo

    2012-01-01

    Using first-principles calculations, the structure, stability, and electronic properties of BN sheets with grain boundaries (GBs) are investigated. Two types of GBs, i.e., zigzag- and armchair-oriented GBs, are considered. Simulation results reveal that the zigzag-oriented GBs are more stable than the armchair-oriented ones. The GBs induce defect levels located within the band gap, which must be taken into account when building nanoelectronic devices.

  7. Diffraction stress analysis of thin films; investigating elastic grain interaction

    Kumar, A.

    2005-12-01

    This work is dedicated to the investigation of specimens exhibiting anisotropic microstructures (and thus macroscopic elastic anisotropy) and/or inhomogeneous microstructures, as met near surfaces and in textured materials. The following aspects are covered: (i) Analysis of specimens with direction-dependent (anisotropic) elastic grain-interaction. Elastic grain-interaction determines the distribution of stresses and strains over the (crystallographically) differently oriented grains of a mechanically stressed polycrystal and the mechanical and diffraction (X-ray) elastic constants (relating (diffraction) lattice strains to mechanical stresses). Grain interaction models that allow for anisotropic, direction-dependent grain interaction have been developed very recently. The notion 'direction-dependent' grain-interaction signifies that different grain-interaction constraints prevail along different directions in a specimen. Practical examples of direction-dependent grain interaction are the occurrence of surface anisotropy in thin films and the surface regions of bulk polycrystals and the occurrence of grain-shape (morphological) texture. In this work, for the first time, stress analyses of thin films have been performed on the basis of these newly developed grain-interaction models. It has also been demonstrated that the identification of the (dominant) source of direction-dependent grain interaction is possible. The results for the grain interaction have been discussed in the light of microstructural investigations of the specimens by microscopic techniques. (ii) Analysis of specimens with depth gradients: Diffraction stress analysis can be hindered if gradients of the stress state, the composition or the microstructure occur in the specimen under investigation, as the so-called information depth varies in the course of a traditional stress measurement: Ambiguous results are thus generally obtained. In this work, a strategy for stress measurements at fixed

  8. Transitional grain-size-sensitive flow of milky quartz aggregates

    Fukuda, J. I.; Holyoke, C. W., III; Kronenberg, A. K.

    2014-12-01

    Fine-grained (~15 μm) milky quartz aggregates exhibit reversible flow strengths in triaxial compression experiments conducted at T = 800-900oC, Pc = 1.5 GPa when strain rates are sequentially decreased (typically from 10-3.5 to 10-4.5 and 10-5.5 s-1), and then returned to the original rate (10-3.5 s-1), while samples that experience grain growth at 1000oC (to 35 μm) over the same sequence of strain rates exhibit an irreversible increase in strength. Polycrystalline quartz aggregates have been synthesized from natural milky quartz powders (ground to 5 μm) by HIP methods at T = 1000oC, Pc = 1.5 GPa and t = 24 hours, resulting in dense, fine-grained aggregates of uniform water content of ~4000 ppm (H/106Si), as indicated by a broad OH absorption band at 3400 cm-1. In experiments performed at 800o and 900oC, grain sizes of the samples are essentially constant over the duration of each experiment, though grain shapes change significantly, and undulatory extinction and deformation lamellae indicate that much of the sample shortening (to 50%) is accomplished, over the four strain-rate steps, by dislocation creep. Differential stresses measured at T = 800oC decrease from 160 to 30 MPa as strain rate is reduced from 10-4.6 to 10-5.5 s-1, and a stress of 140 MPa is measured when strain rate is returned to 10-4.5 s-1. Samples deformed at 1000o and 1100oC experience normal grain growth, with grain boundary energy-driven grain-coarsening textures superposed by undulatory extinction and deformation lamellae. Differential stresses measured at 1000oC and strain rates of 10-3.6, 10-4.6, and 10-5.5 s-1 are 185, 80, and 80 MPa, respectively, while an increased flow stress of 260 MPa is measured (following ~28 hours of prior high temperature deformation and grain growth) when strain rate is returned to 10-3.6 s-1. While all samples exhibit lattice preferred orientations, the stress exponent n inferred for the fine-grained 800oC sample is 1.5 and the stress exponent of the coarse-grained

  9. Consequences of Melt-Preferred Orientation for Magmatic Segregation in Deforming Mantle Rock

    Katz, R. F.; Taylor-West, J.; Allwright, J.; Takei, Y.; Qi, C.; Kohlstedt, D. L.

    2014-12-01

    In partially molten regions of the mantle, deviatoric stresses cause large-scale deformation and mantle flow. The same stresses also lead to preferential wetting of coherently oriented grain boundaries [DK97, T10]. This alignment is called melt-preferred orientation (MPO). Because of the contrast between the physical properties of melt and solid grains, MPO has the potential to introduce anisotropy into the mechanical and transport properties of the liquid/solid aggregate. Here we consider the possible consequences for (and of) anisotropic viscosity and permeability of the partially molten aggregate. The consequences are evaluated in the context of laboratory experiments on partially molten rocks. The controlled experiments involve deformation of an initially uniform mixture of solid olivine and liquid basalt [KZK10]. The resultant patterns of melt segregation include two robust features: (i) melt segregation into bands with high melt fraction oriented at a low angle to the shear plane; and (ii) melt segregation associated with an imposed gradient in shear stress, in experiments where this is present. Although there are other reproducible features of experiments, these are the most robust and provide a challenge to models. A theoretical model for the effect of MPO on mantle viscosity under diffusion creep is available [TH09] and makes predictions that are consistent with laboratory experiments [TK13,KT13,QKKT14,AK14]. We review the mechanics of this model and the predictions for flow in torsional and pipe Poiseuille flow, showing a quantitative comparison with experimental results. Furthermore, it is logical to expect MPO to lead to anisotropy of permeability, and we present a general model of tensorial permeability. We demonstrate the consequences of this anisotropy for simple shear deformation of a partially molten rock. REFERENCES: DK97 = Daines & Kohlstedt (1997), JGR, 10.1029/97JB00393. T10 = Takei (2010), JGR, 10.1029/2009JB006568. KZK10 = King, Zimmerman

  10. Grain Flow at High Stresses

    McSaveney, M. J.

    2015-12-01

    The transport mechanism of rapid long-runout rock avalanches was a hotly debated topic when I came on the scene in 1967. So how come it is still debated today? My explanation is that it is the expected outcome of peer review, poor comprehension, and technological advances outpacing intellectual advances. Why think about the problem when we can model it! So let us think about the problem. Shreve thought that rock avalanches fell upon and trapped a layer of air. What physics was he thinking about? It is how feathers and tissue papers fall. When my rock avalanches fly, they fly like unlubricated bricks using the physics of projectiles and ballistics. But the main transport mechanism is not flight. The dominant impression from watching a rock avalanche in motion is of fluid flow, as Heim described it in 1882. A rock avalanche is a very large grain flow. Bagnold studied dispersive grain flows, but why should one assume that rock avalanches are dispersive grain flows as many do. The more common grain flow type is a dense grain flow and rock avalanches are dense grain flows in which the weight can and does generate very high stresses at grain contacts. Brittle rock deforms elastically up to its compressive strength, whereupon it breaks, releasing elastic strain as transient elastic strain (seismic energy to a seismologist, acoustic energy to a physicist). Melosh and others have shown that acoustic energy can fluidize a grain mass. There is no exotic physics behind grain flow at high stress. When grains break, the released elastic strain has to go somewhere, and it goes somewhere principally by transmission though grain contacts. Depending on the state of stress at the grain contact, the contact will pass the stress or will slip at conventional values of Coulomb friction. Enough thinking! A physical model of the entire process is too big for any laboratory. So whose numerical model will do it?

  11. Preferential inclusion of extrachromosomal genetic elements in yeast meiotic spores.

    Brewer, B J; Fangman, W L

    1980-09-01

    During meiosis and sporulation in the yeast Saccharomyces cerevisiae, extrachromosomal traits are efficiently transmitted to haploid spores. Although the pattern of inheritance of chromosomal traits reflects the mechanism of regular chromosomal segregation in meiosis, it is not known what processes are reflected by the efficient inheritance of extrachromosomal traits. Because extrachromosomal genetic elements in yeast are present in multiple copies, perpetuation of an extrachromosomal trait could occur by the passive envelopment of a subset of copies or by an active sequestering of all or a subset of copies within the four spores. We show that only subsets of the four extrachromosomal nucleic acids commonly found in yeast are transmitted through meiosis--55% of mitochondrial DNA copies, 82% of the 2-micron DNA plasmids, and about 70% of the L and M double-stranded RNAs. However, electron micrographs of serial sections through yeast asci indicate that the four spore enclose only 30% of the total ascus material. Thus these extrachromosomal elements are preferentially included within the spores, indicating that their inheritance is not a random process. Transmission of mitochondrial DNA can be accounted for by the observed enclosure of 52% of the mitochondrial volume within the spores. The high transmission frequencies of the double-stranded RNAs (which exist as virus-like particles in the cytoplasm) and 2-micron DNA must indicate that either these nucleic acids are actively recruited from the cytoplasm by some mechanism or they are associated in some way with the nucleus during meiosis.

  12. Maximum entropy networks are more controllable than preferential attachment networks

    Hou, Lvlin; Small, Michael; Lao, Songyang

    2014-01-01

    A maximum entropy (ME) method to generate typical scale-free networks has been recently introduced. We investigate the controllability of ME networks and Barabási–Albert preferential attachment networks. Our experimental results show that ME networks are significantly more easily controlled than BA networks of the same size and the same degree distribution. Moreover, the control profiles are used to provide insight into control properties of both classes of network. We identify and classify the driver nodes and analyze the connectivity of their neighbors. We find that driver nodes in ME networks have fewer mutual neighbors and that their neighbors have lower average degree. We conclude that the properties of the neighbors of driver node sensitively affect the network controllability. Hence, subtle and important structural differences exist between BA networks and typical scale-free networks of the same degree distribution. - Highlights: • The controllability of maximum entropy (ME) and Barabási–Albert (BA) networks is investigated. • ME networks are significantly more easily controlled than BA networks of the same degree distribution. • The properties of the neighbors of driver node sensitively affect the network controllability. • Subtle and important structural differences exist between BA networks and typical scale-free networks

  13. Multimodality imaging demonstrates trafficking of liposomes preferentially to ischemic myocardium

    Lipinski, Michael J.; Albelda, M. Teresa; Frias, Juan C.; Anderson, Stasia A.; Luger, Dror; Westman, Peter C.; Escarcega, Ricardo O.; Hellinga, David G.; Waksman, Ron; Arai, Andrew E.; Epstein, Stephen E.

    2016-01-01

    Introduction: Nanoparticles may serve as a promising means to deliver novel therapeutics to the myocardium following myocardial infarction. We sought to determine whether lipid-based liposomal nanoparticles can be shown through different imaging modalities to specifically target injured myocardium following intravenous injection in an ischemia–reperfusion murine myocardial infarction model. Methods: Mice underwent ischemia–reperfusion surgery and then either received tail-vein injection with gadolinium- and fluorescent-labeled liposomes or no injection (control). The hearts were harvested 24 h later and underwent T1 and T2-weighted ex vivo imaging using a 7 Tesla Bruker magnet. The hearts were then sectioned for immunohistochemistry and optical fluorescent imaging. Results: The mean size of the liposomes was 100 nm. T1-weighted signal intensity was significantly increased in the ischemic vs. the non-ischemic myocardium for mice that received liposomes compared with control. Optical imaging demonstrated significant fluorescence within the infarct area for the liposome group compared with control (163 ± 31% vs. 13 ± 14%, p = 0.001) and fluorescent microscopy confirmed the presence of liposomes within the ischemic myocardium. Conclusions: Liposomes traffic to the heart and preferentially home to regions of myocardial injury, enabling improved diagnosis of myocardial injury and could serve as a vehicle for drug delivery.

  14. Effect of reactor heat transfer limitations on CO preferential oxidation

    Ouyang, X.; Besser, R. S.

    Our recent studies of CO preferential oxidation (PrOx) identified systematic differences between the characteristic curves of CO conversion for a microchannel reactor with thin-film wall catalyst and conventional mini packed-bed lab reactors (m-PBR's). Strong evidence has suggested that the reverse water-gas-shift (r-WGS) side reaction activated by temperature gradients in m-PBR's is the source of these differences. In the present work, a quasi-3D tubular non-isothermal reactor model based on the finite difference method was constructed to quantitatively study the effect of heat transport resistance on PrOx reaction behavior. First, the kinetic expressions for the three principal reactions involved were formed based on the combination of experimental data and literature reports and their parameters were evaluated with a non-linear regression method. Based on the resulting kinetic model and an energy balance derived for PrOx, the finite difference method was then adopted for the quasi-3D model. This model was then used to simulate both the microreactor and m-PBR's and to gain insights into their different conversion behavior. Simulation showed that the temperature gradients in m-PBR's favor the reverse water-gas-shift (r-WGS) reaction, thus causing a much narrower range of permissible operating temperature compared to the microreactor. Accordingly, the extremely efficient heat removal of the microchannel/thin-film catalyst system eliminates temperature gradients and efficiently prevents the onset of the r-WGS reaction.

  15. Short-ranged memory model with preferential growth

    Schaigorodsky, Ana L.; Perotti, Juan I.; Almeira, Nahuel; Billoni, Orlando V.

    2018-02-01

    In this work we introduce a variant of the Yule-Simon model for preferential growth by incorporating a finite kernel to model the effects of bounded memory. We characterize the properties of the model combining analytical arguments with extensive numerical simulations. In particular, we analyze the lifetime and popularity distributions by mapping the model dynamics to corresponding Markov chains and branching processes, respectively. These distributions follow power laws with well-defined exponents that are within the range of the empirical data reported in ecologies. Interestingly, by varying the innovation rate, this simple out-of-equilibrium model exhibits many of the characteristics of a continuous phase transition and, around the critical point, it generates time series with power-law popularity, lifetime and interevent time distributions, and nontrivial temporal correlations, such as a bursty dynamics in analogy with the activity of solar flares. Our results suggest that an appropriate balance between innovation and oblivion rates could provide an explanatory framework for many of the properties commonly observed in many complex systems.

  16. Functional hierarchy underlies preferential connectivity disturbances in schizophrenia.

    Yang, Genevieve J; Murray, John D; Wang, Xiao-Jing; Glahn, David C; Pearlson, Godfrey D; Repovs, Grega; Krystal, John H; Anticevic, Alan

    2016-01-12

    Schizophrenia may involve an elevated excitation/inhibition (E/I) ratio in cortical microcircuits. It remains unknown how this regulatory disturbance maps onto neuroimaging findings. To address this issue, we implemented E/I perturbations within a neural model of large-scale functional connectivity, which predicted hyperconnectivity following E/I elevation. To test predictions, we examined resting-state functional MRI in 161 schizophrenia patients and 164 healthy subjects. As predicted, patients exhibited elevated functional connectivity that correlated with symptom levels, and was most prominent in association cortices, such as the fronto-parietal control network. This pattern was absent in patients with bipolar disorder (n = 73). To account for the pattern observed in schizophrenia, we integrated neurobiologically plausible, hierarchical differences in association vs. sensory recurrent neuronal dynamics into our model. This in silico architecture revealed preferential vulnerability of association networks to E/I imbalance, which we verified empirically. Reported effects implicate widespread microcircuit E/I imbalance as a parsimonious mechanism for emergent inhomogeneous dysconnectivity in schizophrenia.

  17. Multimodality imaging demonstrates trafficking of liposomes preferentially to ischemic myocardium

    Lipinski, Michael J., E-mail: mjlipinski12@gmail.com [MedStar Heart and Vascular Institute, MedStar Washington Hospital Center, Washington, DC (United States); Albelda, M. Teresa [GIBI2" 3" 0, Grupo de Investigación Biomédica en Imagen, IIS La Fe, Valencia (Spain); Frias, Juan C. [Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Valencia (Spain); Anderson, Stasia A. [Advanced Cardiovascular Imaging Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (United States); Luger, Dror; Westman, Peter C.; Escarcega, Ricardo O.; Hellinga, David G.; Waksman, Ron [MedStar Heart and Vascular Institute, MedStar Washington Hospital Center, Washington, DC (United States); Arai, Andrew E. [Advanced Cardiovascular Imaging Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (United States); Epstein, Stephen E. [MedStar Heart and Vascular Institute, MedStar Washington Hospital Center, Washington, DC (United States)

    2016-03-15

    Introduction: Nanoparticles may serve as a promising means to deliver novel therapeutics to the myocardium following myocardial infarction. We sought to determine whether lipid-based liposomal nanoparticles can be shown through different imaging modalities to specifically target injured myocardium following intravenous injection in an ischemia–reperfusion murine myocardial infarction model. Methods: Mice underwent ischemia–reperfusion surgery and then either received tail-vein injection with gadolinium- and fluorescent-labeled liposomes or no injection (control). The hearts were harvested 24 h later and underwent T1 and T2-weighted ex vivo imaging using a 7 Tesla Bruker magnet. The hearts were then sectioned for immunohistochemistry and optical fluorescent imaging. Results: The mean size of the liposomes was 100 nm. T1-weighted signal intensity was significantly increased in the ischemic vs. the non-ischemic myocardium for mice that received liposomes compared with control. Optical imaging demonstrated significant fluorescence within the infarct area for the liposome group compared with control (163 ± 31% vs. 13 ± 14%, p = 0.001) and fluorescent microscopy confirmed the presence of liposomes within the ischemic myocardium. Conclusions: Liposomes traffic to the heart and preferentially home to regions of myocardial injury, enabling improved diagnosis of myocardial injury and could serve as a vehicle for drug delivery.

  18. Highly -oriented growth of polycrystalline silicon films on glass by pulsed magnetron sputtering

    Reinig, P.; Selle, B.; Fenske, F.; Fuhs, W.; Alex, V.; Birkholz, M.

    2002-01-01

    Nominally undoped polycrystalline silicon (poly-Si) thin films were deposited on glass at 450 deg. C at high deposition rate (>100 nm/min) by pulsed dc magnetron sputtering. The pulse frequency was found to have a significant influence on the preferred grain orientation. The x-ray diffraction pattern exhibits a strong enhancement of the (400) reflex with increasing pulse frequency. The quantitative evaluation reveals that over 90% of the grains are oriented. The observed change in preferred grain orientation in poly-Si films at low temperatures is associated with concurrent ion bombardment of the growing film

  19. Grain dust and the lungs.

    Chan-Yeung, M.; Ashley, M. J.; Grzybowski, S.

    1978-01-01

    Grain dust is composed of a large number of materials, including various types of grain and their disintegration products, silica, fungi, insects and mites. The clinical syndromes described in relation to exposure to grain dust are chronic bronchitis, grain dust asthma, extrinsic allergic alveolitis, grain fever and silo-filler's lung. Rhinitis and conjunctivitis are also common in grain workers. While the concentration and the quality of dust influence the frequency and the type of clinical syndrome in grain workers, host factors are also important. Of the latter, smoking is the most important factor influencing the frequency of chronic bronchitis. The role of atopy and of bronchial hyperreactivity in grain dust asthma has yet to be assessed. Several well designed studies are currently being carried out in North America not only to delineate the frequency of the respiratory abnormalities, the pathogenetic mechanisms and the host factors, but also to establish a meaningful threshold limit concentration for grain dust. Images p1272-a PMID:348288

  20. Residual-stress-induced grain growth of twinned grains and its effect on formability of magnesium alloy sheet at room temperature

    Kim, Se-Jong [Korea Institute of Material Science, 66 Sangnam-dong, C-si, Gyeongnam 641-831 (Korea, Republic of); Kim, Daeyong, E-mail: daeyong@kims.re.kr [Korea Institute of Material Science, 66 Sangnam-dong, C-si, Gyeongnam 641-831 (Korea, Republic of); Lee, Keunho; Cho, Hoon-Hwe; Han, Heung Nam [Department of Materials Science and Engineering and RIAM, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2015-11-15

    A magnesium alloy sheet was subjected to in-plane compression along with a vertical load to avoid buckling during compression. Pre-compressed specimens machined from the sheet were annealed at different temperatures and the changes in microstructure and texture were observed using electron back scattered diffraction (EBSD). Twinned grains preferentially grew during annealing at 300 °C, so that a strong texture with the < 0001 > direction parallel to the transverse direction developed. EBSD analysis confirmed that the friction caused by the vertical load induced inhomogeneous distribution of residual stress, which acted as an additional driving force for preferential grain growth of twinned grain during annealing. The annealed specimen showed excellent formability. - Highlights: • A magnesium alloy sheet subjected to in-plane compression under a vertical load • The vertical load induced inhomogeneous distribution of the residual stress. • The residual stress acted as an additional driving force for grain growth. • The annealed specimen with strong non-basal texture showed excellent formability.

  1. Preferential Au precipitation at deformation-induced defects in Fe–Au and Fe–Au–B–N alloys

    Zhang, S., E-mail: S.Zhang-1@tudelft.nl [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Langelaan, G. [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Brouwer, J.C.; Sloof, W.G. [Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Brück, E. [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Zwaag, S. van der [Novel Aerospace Materials Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands); Dijk, N.H. van [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)

    2014-01-25

    Highlights: • Fe–Au–B–N forms a good model alloy system for self healing of deformation damage. • Solute Au atoms exclusively precipitate at grain boundaries, cracks and cavities. • XPS indicates a strong tendency for Au segregation on free surfaces at 550 °C. • Interstitial B and N form hexagonal BN on free surfaces at 550 °C. • Selective Au precipitation at open volume defects can cause autonomous repair. -- Abstract: The influence of deformation-induced defects on the isothermal precipitation of Au was studied in high-purity Fe–Au and Fe–Au–B–N alloys. Preferential Au precipitation upon annealing at 550 °C is observed at local plastic indentations. In fractured Fe–Au–B–N, solute Au atoms were found to heterogeneously precipitate at grain boundaries and local micro-cracks. This is supported by in-situ creep tests that showed a strong tendency for Au precipitation at cracks and cavities also formed during creep loading at 550 °C. Complementary X-ray photoelectron spectroscopy experiments indicate a strong tendency of Au, B and N segregation onto free surface during aging. The observed site-specific precipitation of Au holds interesting opportunities for defect healing in steels subjected to creep deformation.

  2. Crystallographic investigation of grain selection during initial solidification

    Esaka, H; Shinozuka, K; Kataoka, Y

    2016-01-01

    Normally, macroscopic solidified structure consists of chill, columnar and equiaxed zones. In a chill zone, many fine grains nucleate on the mold surface and grow their own preferred growth direction. Only a few of them continue to grow because of grain selection. In order to understand the grain selection process, crystallographic investigation has been carried out in the zone of initial solidification in this study. 10 g of Al-6 wt%Si alloy was melted at 850 °C and poured on the thick copper plate. Longitudinal cross section of the solidified shell was observed by a SEM and analyzed by EBSD. The result of EBSD mapping reveals that crystallographic orientation was random in the range of initial solidification. Further, some grains are elongated along their <100> direction. Columnar grains, whose growth directions are almost parallel to the heat flow direction, develop via grain selection. Here, a dendrite whose growth direction is close to the heat flow direction overgrows the other dendrite whose growth direction is far from the heat flow direction. However, sometimes we observed that dendrite, whose zenith angle is large, overgrew the other dendrite. It can be deduced that the time of nucleation on the mold surface is not constant. (paper)

  3. Modelling of grain refinement driven by negative grain boundary energy

    Fischer, F. D.; Zickler, G. A.; Svoboda, Jiří

    2017-01-01

    Roč. 97, č. 23 (2017), s. 1963-1977 ISSN 1478-6435 R&D Projects: GA ČR(CZ) GA15-06390S Institutional support: RVO:68081723 Keywords : grain refinement * grain nucleation * distribution concept * jump on distribution function Subject RIV: BJ - Thermodynamics OBOR OECD: Thermodynamics Impact factor: 1.505, year: 2016

  4. Determination of grain boundary mobility during recrystallization by statistical evaluation of electron backscatter diffraction measurements

    Basu, I.; Chen, M.; Loeck, M.; Al-Samman, T.; Molodov, D.A.

    2016-01-01

    One of the key aspects influencing microstructural design pathways in metallic systems is grain boundary motion. The present work introduces a method by means of which direct measurement of grain boundary mobility vs. misorientation dependence is made possible. The technique utilizes datasets acquired by means of serial electron backscatter diffraction (EBSD) measurements. The experimental EBSD measurements are collectively analyzed, whereby datasets were used to obtain grain boundary mobility and grain aspect ratio with respect to grain boundary misorientation. The proposed method is further validated using cellular automata (CA) simulations. Single crystal aluminium was cold rolled and scratched in order to nucleate random orientations. Subsequent annealing at 300 °C resulted in grains growing, in the direction normal to the scratch, into a single deformed orientation. Growth selection was observed, wherein the boundaries with misorientations close to Σ7 CSL orientation relationship (38° 〈111〉) migrated considerably faster. The obtained boundary mobility distribution exhibited a non-monotonic behavior with a maximum corresponding to misorientation of 38° ± 2° about 〈111〉 axes ± 4°, which was 10–100 times higher than the mobility values of random high angle boundaries. Correlation with the grain aspect ratio values indicated a strong growth anisotropy displayed by the fast growing grains. The observations have been discussed in terms of the influence of grain boundary character on grain boundary motion during recrystallization. - Highlights: • Statistical microstructure method to measure grain boundary mobility during recrystallization • Method implementation independent of material or crystal structure • Mobility of the Σ7 boundaries in 5N Al was calculated as 4.7 × 10"–"8 m"4/J ⋅ s. • Pronounced growth selection in the recrystallizing nuclei in Al • Boundary mobility values during recrystallization 2–3 orders of magnitude

  5. Ionizing radiation for insect control in grain and grain products

    Tilton, E.W.; Brower, J.H.

    1987-01-01

    A technical review summarizes and discusses information on various aspects of the use of ionizing radiation for the control of insect infestation in grains and grain products. Topics include: the effects of ionizing radiation on insects infesting stored-grain products; the 2 main types of irradiators (electron accelerators; radioisotopes (e.g.: Co-60; Cs-137); dosimetry systems and methodology; variations in radiation resistance by stored-product pests; the proper selection of radiation dose; the effects of combining various treatments (temperature, infrared/microwave radiation, hypoxia, chemicals) with ionizing radiation; sublethal radiation for controlling bulk grain insects; the feeding capacity of irradiated insects; the susceptibility of insecticide-resistant insects to ionizing radiation; and the possible resistance of insects to ionizing radiation. Practical aspects of removing insects from irradiated grain also are discussed

  6. The influence of the grain boundary strength on the macroscopic properties of a polycrystalline aggregate

    Simonovski, Igor; Cizelj, Leon; Garrido, Oriol Costa

    2013-01-01

    Highlights: ► Grain boundary stiffness should be at least 1.5× higher that the stiffness of bulk grains. ► The ratio δ n pl /δ n el should be at least 400. ► Simultaneous increase of δ n el and δ n pl at constant grain boundary strength increases numerical stability but results in high percentage of damage grain boundary area. ► Shear contributes significantly to damage initialization. -- Abstract: In this work a model, based on a X-ray diffraction contrast tomography data of a stainless steel wire with a diameter of 0.4 mm is presented. As measured 3D grain geometry and crystallographic orientation of individual grains are directly transferred into a finite element model. Anisotropic elasticity and crystal plasticity constitutive laws are used for the bulk grain material while the grain boundaries are explicitly modeled using the cohesive zone approach. A parametric study on the effects of the grain boundary strength and other cohesive zone parameters on the macroscopic response and damaged grain boundary area of a polycrystalline aggregate is presented. Recommendations for the cohesive zone parameters values aimed at achieving low damaged grain boundary area during numerical tensile tests are given while at the same time taking into account the numerical stability of the simulations

  7. The influence of the grain boundary strength on the macroscopic properties of a polycrystalline aggregate

    Simonovski, Igor, E-mail: Igor.Simonovski@ec.europa.eu [European Commission, DG-JRC, Institute for Energy and Transport, P.O. Box 2, NL-1755 ZG Petten (Netherlands); Cizelj, Leon, E-mail: Leon.Cizelj@ijs.si [Jožef Stefan Institute, Reactor Engineering Division, Jamova Cesta 39, SI-1000 Ljubljana (Slovenia); Garrido, Oriol Costa, E-mail: Oriol.Costa@ijs.si [Jožef Stefan Institute, Reactor Engineering Division, Jamova Cesta 39, SI-1000 Ljubljana (Slovenia)

    2013-08-15

    Highlights: ► Grain boundary stiffness should be at least 1.5× higher that the stiffness of bulk grains. ► The ratio δ{sub n}{sup pl}/δ{sub n}{sup el} should be at least 400. ► Simultaneous increase of δ{sub n}{sup el} and δ{sub n}{sup pl} at constant grain boundary strength increases numerical stability but results in high percentage of damage grain boundary area. ► Shear contributes significantly to damage initialization. -- Abstract: In this work a model, based on a X-ray diffraction contrast tomography data of a stainless steel wire with a diameter of 0.4 mm is presented. As measured 3D grain geometry and crystallographic orientation of individual grains are directly transferred into a finite element model. Anisotropic elasticity and crystal plasticity constitutive laws are used for the bulk grain material while the grain boundaries are explicitly modeled using the cohesive zone approach. A parametric study on the effects of the grain boundary strength and other cohesive zone parameters on the macroscopic response and damaged grain boundary area of a polycrystalline aggregate is presented. Recommendations for the cohesive zone parameters values aimed at achieving low damaged grain boundary area during numerical tensile tests are given while at the same time taking into account the numerical stability of the simulations.

  8. Entrepreneurial orientation, market orientation, and competitive environment

    Sørensen, Hans Eibe; Cadogan, John W.

    This study sheds light on the role that the competitive environment plays in determining how elements of market orientation and elements of entrepreneurial orientation interact to influence business success. We develop a model in which we postulate that market orientation, entrepreneurial...... orientation, and competitive environment shape business performance via a three-way interaction. We test the model using primary data from the CEOs of 270 CEO of manufacturing firms, together with secondary data on these firms' profit performance. An assessment of the results indicates that customer...... orientation moderates the positive relationships between the competitiveness element of entrepreneurial orientation and market share and return on assets (ROA): the positive relationships between competitiveness and market share and competitiveness and ROA become stronger the greater the firms' customer...

  9. Partial preferential chromosome pairing is genotype dependent in tetraploid rose.

    Bourke, Peter M; Arens, Paul; Voorrips, Roeland E; Esselink, G Danny; Koning-Boucoiran, Carole F S; Van't Westende, Wendy P C; Santos Leonardo, Tiago; Wissink, Patrick; Zheng, Chaozhi; van Geest, Geert; Visser, Richard G F; Krens, Frans A; Smulders, Marinus J M; Maliepaard, Chris

    2017-04-01

    It has long been recognised that polyploid species do not always neatly fall into the categories of auto- or allopolyploid, leading to the term 'segmental allopolyploid' to describe everything in between. The meiotic behaviour of such intermediate species is not fully understood, nor is there consensus as to how to model their inheritance patterns. In this study we used a tetraploid cut rose (Rosa hybrida) population, genotyped using the 68K WagRhSNP array, to construct an ultra-high-density linkage map of all homologous chromosomes using methods previously developed for autotetraploids. Using the predicted bivalent configurations in this population we quantified differences in pairing behaviour among and along homologous chromosomes, leading us to correct our estimates of recombination frequency to account for this behaviour. This resulted in the re-mapping of 25 695 SNP markers across all homologues of the seven rose chromosomes, tailored to the pairing behaviour of each chromosome in each parent. We confirmed the inferred differences in pairing behaviour among chromosomes by examining repulsion-phase linkage estimates, which also carry information about preferential pairing and recombination. Currently, the closest sequenced relative to rose is Fragaria vesca. Aligning the integrated ultra-dense rose map with the strawberry genome sequence provided a detailed picture of the synteny, confirming overall co-linearity but also revealing new genomic rearrangements. Our results suggest that pairing affinities may vary along chromosome arms, which broadens our current understanding of segmental allopolyploidy. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  10. Frac Sand Mines Are Preferentially Sited in Unzoned Rural Areas.

    Christina Locke

    Full Text Available Shifting markets can cause unexpected, stochastic changes in rural landscapes that may take local communities by surprise. Preferential siting of new industrial facilities in poor areas or in areas with few regulatory restrictions can have implications for environmental sustainability, human health, and social justice. This study focuses on frac sand mining-the mining of high-quality silica sand used in hydraulic fracturing processes for gas and oil extraction. Frac sand mining gained prominence in the 2000s in the upper midwestern United States where nonmetallic mining is regulated primarily by local zoning. I asked whether frac sand mines were more commonly sited in rural townships without formal zoning regulations or planning processes than in those that undertook zoning and planning before the frac sand boom. I also asked if mine prevalence was correlated with socioeconomic differences across townships. After creating a probability surface to map areas most suitable for frac sand mine occurrence, I developed neutral landscape models from which to compare actual mine distributions in zoned and unzoned areas at three different spatial extents. Mines were significantly clustered in unzoned jurisdictions at the statewide level and in 7 of the 8 counties with at least three frac sand mines and some unzoned land. Subsequent regression analyses showed mine prevalence to be uncorrelated with land value, tax rate, or per capita income, but correlated with remoteness and zoning. The predicted mine count in unzoned townships was over two times higher than that in zoned townships. However, the county with the most mines by far was under a county zoning ordinance, perhaps indicating industry preferences for locations with clear, homogenous rules over patchwork regulation. Rural communities can use the case of frac sand mining as motivation to discuss and plan for sudden land-use predicaments, rather than wait to grapple with unfamiliar legal processes

  11. Frac Sand Mines Are Preferentially Sited in Unzoned Rural Areas.

    Locke, Christina

    2015-01-01

    Shifting markets can cause unexpected, stochastic changes in rural landscapes that may take local communities by surprise. Preferential siting of new industrial facilities in poor areas or in areas with few regulatory restrictions can have implications for environmental sustainability, human health, and social justice. This study focuses on frac sand mining-the mining of high-quality silica sand used in hydraulic fracturing processes for gas and oil extraction. Frac sand mining gained prominence in the 2000s in the upper midwestern United States where nonmetallic mining is regulated primarily by local zoning. I asked whether frac sand mines were more commonly sited in rural townships without formal zoning regulations or planning processes than in those that undertook zoning and planning before the frac sand boom. I also asked if mine prevalence was correlated with socioeconomic differences across townships. After creating a probability surface to map areas most suitable for frac sand mine occurrence, I developed neutral landscape models from which to compare actual mine distributions in zoned and unzoned areas at three different spatial extents. Mines were significantly clustered in unzoned jurisdictions at the statewide level and in 7 of the 8 counties with at least three frac sand mines and some unzoned land. Subsequent regression analyses showed mine prevalence to be uncorrelated with land value, tax rate, or per capita income, but correlated with remoteness and zoning. The predicted mine count in unzoned townships was over two times higher than that in zoned townships. However, the county with the most mines by far was under a county zoning ordinance, perhaps indicating industry preferences for locations with clear, homogenous rules over patchwork regulation. Rural communities can use the case of frac sand mining as motivation to discuss and plan for sudden land-use predicaments, rather than wait to grapple with unfamiliar legal processes during a period of

  12. Analysis on the energetics, magnetism and electronic properties in a 45° ZnO grain boundary doped with Gd

    Devi, Assa Aravindh Sasikala; Roqan, Iman S.

    2018-01-01

    The structural stability and magnetic properties of a grain boundary (GB) formed by aligning two ZnO single crystals oriented at an angle of 45° is investigated by density functional theory, using generalized gradient approximation (GGA) and taking

  13. Stochastic theory of grain growth

    Hu Haiyun; Xing Xiusan.

    1990-11-01

    The purpose of this note is to set up a stochastic theory of grain growth and to derive the statistical distribution function and the average value of the grain radius so as to match them with the experiment further. 8 refs, 1 fig

  14. NUTRITIONAL CHARACTERIZATION OF GRAIN AMARANTH ...

    IBUKUN

    children; increased body mass index of people formerly wasted by HIV/AIDS; ... and market acceptability of Amaranth cruentus based products in order to ... Peru, grain amaranth also used the grains as food; preparation of local beverage; added ... initiated to know the proximate composition, mineral and vitamin contents of ...

  15. Stress-driven grain growth

    Nabarro, FRN

    1998-11-13

    Full Text Available of length b (1+ epsilon) is parallel to sigma, embedded in a grain in which the lattice vector b (1+ epsilon) is transverse to sigma. If the embedded grain grows at the expense of its matrix, the source of the stress will do work, and therefore the presence...

  16. Effect of grain defects on the mechanical behavior of nickel-based single crystal superalloy

    Tang, Haibin; Guo, Haiding [Nanjing Univ. of Aeronautics and Astronautics (China). Jiangsu Province Key Lab. of Aerospace Power System

    2017-03-15

    In this paper, a single crystal (SC) partition model, consisting of primary grains and grain defects, is proposed to simulate the weakening effect of grain defects generated at geometric discontinuities of SC materials. The plastic deformation of SC superalloy is described with the modified yield criterion, associated flow rule and hardening law. Then a bicrystal model containing only one group of misoriented grains under uniaxial loading is constructed and analyzed in the commercial finite element software ABAQUS. The simulation results indicate that the yield strength and elastic modulus of misoriented grains, which are determined by the crystallographic orientation, have a significant effect on the stress distribution of the bicrystal model. A critical stress, which is calculated by the stress state at critical regions, is proposed to evaluate the local stress rise at the sub-boundary of primary and misoriented grains.

  17. Grain-Boundary Resistance in Copper Interconnects: From an Atomistic Model to a Neural Network

    Valencia, Daniel; Wilson, Evan; Jiang, Zhengping; Valencia-Zapata, Gustavo A.; Wang, Kuang-Chung; Klimeck, Gerhard; Povolotskyi, Michael

    2018-04-01

    Orientation effects on the specific resistance of copper grain boundaries are studied systematically with two different atomistic tight-binding methods. A methodology is developed to model the specific resistance of grain boundaries in the ballistic limit using the embedded atom model, tight- binding methods, and nonequilibrium Green's functions. The methodology is validated against first-principles calculations for thin films with a single coincident grain boundary, with 6.4% deviation in the specific resistance. A statistical ensemble of 600 large, random structures with grains is studied. For structures with three grains, it is found that the distribution of specific resistances is close to normal. Finally, a compact model for grain-boundary-specific resistance is constructed based on a neural network.

  18. Grain Refinement of Freeform Fabricated Ti-6Al-4V Alloy Using Beam/Arc Modulation

    Mitzner, Scott; Liu, Stephen; Domack, Marcia S.; Hafley, Robert A.

    2012-01-01

    Grain refinement can significantly improve the mechanical properties of freeform-fabricated Ti-6Al-4V alloy, promoting increased strength and enhanced isotropy compared with coarser grained material. Large beta-grains can lead to a segregated microstructure, in regard to both alpha-phase morphology and alpha-lath orientation. Beam modulation, which has been used in conventional fusion welding to promote grain refinement, is explored in this study for use in additive manufacturing processes including electron beam freeform fabrication (EBF(sup 3)) and gas-tungsten arc (GTA) deposition to alter solidification behavior and produce a refined microstructure. The dynamic molten pool size induced by beam modulation causes rapid heat flow variance and results in a more competitive grain growth environment, reducing grain size. Consequently, improved isotropy and strength can be achieved with relatively small adjustments to deposition parameters.

  19. Effect of grain defects on the mechanical behavior of nickel-based single crystal superalloy

    Tang, Haibin; Guo, Haiding

    2017-01-01

    In this paper, a single crystal (SC) partition model, consisting of primary grains and grain defects, is proposed to simulate the weakening effect of grain defects generated at geometric discontinuities of SC materials. The plastic deformation of SC superalloy is described with the modified yield criterion, associated flow rule and hardening law. Then a bicrystal model containing only one group of misoriented grains under uniaxial loading is constructed and analyzed in the commercial finite element software ABAQUS. The simulation results indicate that the yield strength and elastic modulus of misoriented grains, which are determined by the crystallographic orientation, have a significant effect on the stress distribution of the bicrystal model. A critical stress, which is calculated by the stress state at critical regions, is proposed to evaluate the local stress rise at the sub-boundary of primary and misoriented grains.

  20. Grain boundary cavity growth under applied stress and internal pressure

    Mancuso, J.F.

    1977-08-01

    The growth of grain boundary cavities under applied stress and internal gas pressure was investigated. Methane gas filled cavities were produced by the C + 4H reversible CH4 reaction in the grain boundaries of type 270 nickel by hydrogen charging in an autoclave at 500 0 C with a hydrogen pressure of either 3.4 or 14.5 MPa. Intergranular fracture of nickel was achieved at a charging temperature of 300 0 C and 10.3 MPa hydrogen pressure. Cavities on the grain boundaries were observed in the scanning electron microscope after fracture. Photomicrographs of the cavities were produced in stereo pairs which were analyzed so as to correct for perspective distortion and also to determine the orientational dependence of cavity growth under an applied tensile stress

  1. Autonomous grain combine control system

    Hoskinson, Reed L.; Kenney, Kevin L.; Lucas, James R.; Prickel, Marvin A.

    2013-06-25

    A system for controlling a grain combine having a rotor/cylinder, a sieve, a fan, a concave, a feeder, a header, an engine, and a control system. The feeder of the grain combine is engaged and the header is lowered. A separator loss target, engine load target, and a sieve loss target are selected. Grain is harvested with the lowered header passing the grain through the engaged feeder. Separator loss, sieve loss, engine load and ground speed of the grain combine are continuously monitored during the harvesting. If the monitored separator loss exceeds the selected separator loss target, the speed of the rotor/cylinder, the concave setting, the engine load target, or a combination thereof is adjusted. If the monitored sieve loss exceeds the selected sieve loss target, the speed of the fan, the size of the sieve openings, or the engine load target is adjusted.

  2. Inferential statistics of electron backscatter diffraction data from within individual crystalline grains

    Bachmann, Florian; Hielscher, Ralf; Jupp, Peter E.

    2010-01-01

    -spatial statistical analysis adapts ideas borrowed from the Bingham quaternion distribution on . Special emphasis is put on the mathematical definition and the numerical determination of a `mean orientation' characterizing the crystallographic grain as well as on distinguishing several types of symmetry......Highly concentrated distributed crystallographic orientation measurements within individual crystalline grains are analysed by means of ordinary statistics neglecting their spatial reference. Since crystallographic orientations are modelled as left cosets of a given subgroup of SO(3), the non...... of the orientation distribution with respect to the mean orientation, like spherical, prolate or oblate symmetry. Applications to simulated as well as to experimental data are presented. All computations have been done with the free and open-source texture toolbox MTEX....

  3. Methods of assessing grain-size distribution during grain growth

    Tweed, Cherry J.; Hansen, Niels; Ralph, Brian

    1985-01-01

    This paper considers methods of obtaining grain-size distributions and ways of describing them. In order to collect statistically useful amounts of data, an automatic image analyzer is used, and the resulting data are subjected to a series of tests that evaluate the differences between two related...... distributions (before and after grain growth). The distributions are measured from two-dimensional sections, and both the data and the corresponding true three-dimensional grain-size distributions (obtained by stereological analysis) are collected. The techniques described here are illustrated by reference...

  4. Preferential flow in water-repellent sandy soils : model development and lysimeter experiments

    Rooij, de G.H.

    1996-01-01


    When water enters a water-repellent topsoil, preferential flow paths develop and the flow bypasses a large part of the unsaturated zone. Therefore, preferential flow caused by water- repellency is expected to accelerate solute leaching to the groundwater. In soils with water-repellent

  5. Outflow and clogging of shape-anisotropic grains in hoppers with small apertures.

    Ashour, A; Wegner, S; Trittel, T; Börzsönyi, T; Stannarius, R

    2017-01-04

    Outflow of granular material through a small orifice is a fundamental process in many industrial fields, for example in silo discharge, and in everyday's life. Most experimental studies of the dynamics have been performed so far with monodisperse disks in two-dimensional (2D) hoppers or spherical grains in 3D. We investigate this process for shape-anisotropic grains in 3D hoppers and discuss the role of size and shape parameters on avalanche statistics, clogging states, and mean flow velocities. It is shown that an increasing aspect ratio of the grains leads to lower flow rates and higher clogging probabilities compared to spherical grains. On the other hand, the number of grains forming the clog is larger for elongated grains of comparable volumes, and the long axis of these blocking grains is preferentially aligned towards the center of the orifice. We find a qualitative transition in the hopper discharge behavior for aspect ratios larger than ≈6. At still higher aspect ratios >8-12, the outflowing material leaves long vertical holes in the hopper that penetrate the complete granular bed. This changes the discharge characteristics qualitatively.

  6. Speciation and Localization of Arsenic in White and Brown Rice Grains

    Meharg, Andrew A.; Lombi, Enzo; Williams, Paul N.; Scheckel, Kirk G.; Feldmann, Joerg; Raab, Andrea; Zhu, Yongguan; Islam, Rafiql (EPA); (Bangladesh); (UCopenhagen); (Aberdeen); (Chinese Aca. Sci.)

    2008-06-30

    Synchrotron-based X-ray fluorescence (S-XRF) was utilized to locate arsenic (As) in polished (white) and unpolished (brown) rice grains from the United States, China, and Bangladesh. In white rice As was generally dispersed throughout the grain, the bulk of which constitutes the endosperm. In brown rice As was found to be preferentially localized at the surface, in the region corresponding to the pericarp and aleurone layer. Copper, iron, manganese, and zinc localization followed that of arsenic in brown rice, while the location for cadmium and nickel was distinctly different, showing relatively even distribution throughout the endosperm. The localization of As in the outer grain of brown rice was confirmed by laser ablation ICP?MS. Arsenic speciation of all grains using spatially resolved X-ray absorption near edge structure (?-XANES) and bulk extraction followed by anion exchange HPLC?ICP?MS revealed the presence of mainly inorganic As and dimethylarsinic acid (DMA). However, the two techniques indicated different proportions of inorganic:organic As species. A wider survey of whole grain speciation of white (n = 39) and brown (n = 45) rice samples from numerous sources (field collected, supermarket survey, and pot trials) showed that brown rice had a higher proportion of inorganic arsenic present than white rice. Furthermore, the percentage of DMA present in the grain increased along with total grain arsenic.

  7. Mechanical stability of individual austenite grains in TRIP steel studied by synchrotron X-ray diffraction during tensile loading

    Blondé, R. [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Materials Innovation Institute, Mekelweg 2, 2628 CD Delft (Netherlands); Jimenez-Melero, E. [Dalton Cumbrian Facility, The University of Manchester, Westlakes Science and Technology Park, Moor Row, Cumbria, CA24 3HA (United Kingdom); Zhao, L. [Materials Innovation Institute, Mekelweg 2, 2628 CD Delft (Netherlands); Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Wright, J.P. [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, BP 220, 38043 Grenoble Cedex (France); Brück, E. [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Zwaag, S. van der [Novel Aerospace Materials Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft (Netherlands); Dijk, N.H. van, E-mail: N.H.vanDijk@tudelft.nl [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)

    2014-11-17

    The stability of individual metastable austenite grains in low-alloyed TRIP steels has been studied during tensile loading using high-energy X-ray diffraction. The carbon concentration, grain volume and grain orientation with respect to the loading direction was monitored for a large number of individual grains in the bulk microstructure. Most austenite grains transform into martensite in a single transformation step once a critical load is reached. The orientation-dependent stability of austenite grains was found to depend on their Schmid factor with respect to the loading direction. Under the applied tensile stress the average Schmid factor decreased from an initial value of 0.44 to 0.41 at 243 MPa. The present study reveals the complex interplay of microstructural parameters on the mechanical stability of individual austenite grains, where the largest grains with the lowest carbon content tend to transform first. Under the applied tensile stress the average carbon concentration of the austenite grains increased from an initial value of 0.90 to 1.00 wt% C at 243 MPa, while the average grain volume of the austenite grains decreased from an initial value of 19 to 15 µm{sup 3} at 243 MPa.

  8. Scratching experiments on quartz crystals: Orientation effects in chipping

    Tellier, C. R.; Benmessaouda, D.

    1994-06-01

    The deformation and microfracture properties of quartz crystals were studied by scratching experiments. The critical load at which microfractures are initiated was found to be orientation dependent, whereas the average width of ductile grooves and chips remained relatively insensitive to crystal orientation. In contrast, a marked anisotropy in the shape of chips was observed. This anisotropy has been interpreted in terms of microfractures propagating preferentially along slip planes. Simple geometrical conditions for the SEM (scanning electron microscopy) observation of active slip planes are proposed.

  9. Grain-resolved elastic strains in deformed copper measured by three-dimensional X-ray diffraction

    Oddershede, Jette; Schmidt, Søren; Poulsen, Henning Friis

    2011-01-01

    This X-ray diffraction study reports the grain-resolved elastic strains in about 1000 randomly oriented grains embedded in a polycrystalline copper sample. Diffraction data were collected in situ in the undeformed state and at a plastic strain of 1.5% while the sample was under tensile load...

  10. Three-dimensional grain structure of sintered bulk strontium titanate from X-ray diffraction contrast tomography

    Syha, M.; Rheinheimer, W.; Bäurer, M.

    2012-01-01

    The three-dimensional grain boundary network of sintered bulk strontium titanate is reconstructed using X-ray diffraction contrast tomography, a non-destructive technique for determining the grain shape and crystallographic orientation in polycrystals that is ideally suited for detailed studies...

  11. Spreading dynamics of an e-commerce preferential information model on scale-free networks

    Wan, Chen; Li, Tao; Guan, Zhi-Hong; Wang, Yuanmei; Liu, Xiongding

    2017-02-01

    In order to study the influence of the preferential degree and the heterogeneity of underlying networks on the spread of preferential e-commerce information, we propose a novel susceptible-infected-beneficial model based on scale-free networks. The spreading dynamics of the preferential information are analyzed in detail using the mean-field theory. We determine the basic reproductive number and equilibria. The theoretical analysis indicates that the basic reproductive number depends mainly on the preferential degree and the topology of the underlying networks. We prove the global stability of the information-elimination equilibrium. The permanence of preferential information and the global attractivity of the information-prevailing equilibrium are also studied in detail. Some numerical simulations are presented to verify the theoretical results.

  12. Prevalence of IgE antibodies to grain and grain dust in grain elevator workers

    Lewis, D.M.; Romeo, P.A.; Olenchock, S.A.

    1986-04-01

    IgE-mediated allergic reactions have been postulated to contribute to respiratory reactions seen in workers exposed to grain dusts. In an attempt better to define the prevalence of IgE antibodies in workers exposed to grain dusts, we performed the radioallergosorbent test (RAST) on worker sera using both commercial allergens prepared from grain and worksite allergens prepared from grain dust samples collected at the worksite. We found that the two types of reagents identified different populations with respect to the specificity of IgE antibodies present. The RAST assay performed using worksite allergens correlated well with skin test procedures. These results may allow us to gain better understanding of allergy associated with grain dust exposure, and document the utility of the RAST assay in assessment of occupational allergies.

  13. Prevalence of IgE antibodies to grain and grain dust in grain elevator workers.

    Lewis, D M; Romeo, P A; Olenchock, S A

    1986-01-01

    IgE-mediated allergic reactions have been postulated to contribute to respiratory reactions seen in workers exposed to grain dusts. In an attempt better to define the prevalence of IgE antibodies in workers exposed to grain dusts, we performed the radioallergosorbent test (RAST) on worker sera using both commercial allergens prepared from grain and worksite allergens prepared from grain dust samples collected at the worksite. We found that the two types of reagents identified different populations with respect to the specificity of IgE antibodies present. The RAST assay performed using worksite allergens correlated well with skin test procedures. These results may allow us to gain better understanding of allergy associated with grain dust exposure, and document the utility of the RAST assay in assessment of occupational allergies. PMID:3709478

  14. Prevalence of IgE antibodies to grain and grain dust in grain elevator workers

    Lewis, D.M.; Romeo, P.A.; Olenchock, S.A.

    1986-01-01

    IgE-mediated allergic reactions have been postulated to contribute to respiratory reactions seen in workers exposed to grain dusts. In an attempt better to define the prevalence of IgE antibodies in workers exposed to grain dusts, we performed the radioallergosorbent test (RAST) on worker sera using both commercial allergens prepared from grain and worksite allergens prepared from grain dust samples collected at the worksite. We found that the two types of reagents identified different populations with respect to the specificity of IgE antibodies present. The RAST assay performed using worksite allergens correlated well with skin test procedures. These results may allow us to gain better understanding of allergy associated with grain dust exposure, and document the utility of the RAST assay in assessment of occupational allergies

  15. KEPLER EXOPLANET CANDIDATE HOST STARS ARE PREFERENTIALLY METAL RICH

    Schlaufman, Kevin C.; Laughlin, Gregory

    2011-01-01

    We find that Kepler exoplanet candidate (EC) host stars are preferentially metal rich, including the low-mass stellar hosts of small-radius ECs. The last observation confirms a tentative hint that there is a correlation between the metallicity of low-mass stars and the presence of low-mass and small-radius exoplanets. In particular, we compare the J-H-g-r color-color distribution of Kepler EC host stars with a control sample of dwarf stars selected from the ∼150, 000 stars observed during Q1 and Q2 of the Kepler mission but with no detected planets. We find that at J - H = 0.30 characteristic of solar-type stars, the average g-r color of stars that host giant ECs is 4σ redder than the average color of the stars in the control sample. At the same J - H color, the average g-r color of solar-type stars that host small-radius ECs is indistinguishable from the average color of the stars in the control sample. In addition, we find that at J - H = 0.62 indicative of late K dwarfs, the average g-r color of stars that host small-radius ECs is 4σ redder than the average color of the stars in the control sample. These offsets are unlikely to be caused by differential reddening, age differences between the two populations, or the presence of giant stars in the control sample. Stellar models suggest that the first color offset is due to a 0.2 dex enhancement in [Fe/H] of the giant EC host population at M * ∼ 1 M sun , while Sloan photometry of M 67 and NGC 6791 suggests that the second color offset is due to a similar [Fe/H] enhancement of the small-radius EC host population at M * ∼ 0.7 M sun . These correlations are a natural consequence of the core-accretion model of planet formation.

  16. Effect of pre-existing crystallographic preferred orientation on the rheology of Carrara marble

    de Raadt, W.S.; Burlini, L.; Kunze, K.; Spiers, C.J.

    2014-01-01

    Abstract Localized deformation during high temperature plastic flow is frequently attributed to mechanical weakening caused by grain size reduction and, in some cases, by the development of a crystallographic preferred orientation (CPO). This study aims to investigate experimentally the contribution

  17. Active and Passive 3D Vector Radiative Transfer with Preferentially-Aligned Ice Particles

    Adams, I. S.; Munchak, S. J.; Pelissier, C.; Kuo, K. S.; Heymsfield, G. M.

    2017-12-01

    To support the observation of clouds and precipitation using combinations of radars and radiometers, a forward model capable of representing diverse sensing geometries for active and passive instruments is necessary for correctly interpreting and consistently combining multi-sensor measurements from ground-based, airborne, and spaceborne platforms. As such, the Atmospheric Radiative Transfer Simulator (ARTS) uses Monte Carlo integration to produce radar reflectivities and radiometric brightness temperatures for three-dimensional cloud and precipitation input fields. This radiative transfer framework is capable of efficiently sampling Gaussian antenna beams and fully accounting for multiple scattering. By relying on common ray-tracing tools, gaseous absorption models, and scattering properties, the model reproduces accurate and consistent radar and radiometer observables. While such a framework is an important component for simulating remote sensing observables, the key driver for self-consistent radiative transfer calculations of clouds and precipitation is scattering data. Research over the past decade has demonstrated that spheroidal models of frozen hydrometeors cannot accurately reproduce all necessary scattering properties at all desired frequencies. The discrete dipole approximation offers flexibility in calculating scattering for arbitrary particle geometries, but at great computational expense. When considering scattering for certain pristine ice particles, the Extended Boundary Condition Method, or T-Matrix, is much more computationally efficient; however, convergence for T-Matrix calculations fails at large size parameters and high aspect ratios. To address these deficiencies, we implemented the Invariant Imbedding T-Matrix Method (IITM). A brief overview of ARTS and IITM will be given, including details for handling preferentially-aligned hydrometeors. Examples highlighting the performance of the model for simulating space-based and airborne measurements

  18. MATHEMATICAL MODEL OF GRAIN MICRONIZATION

    V. A. Afanas’ev

    2014-01-01

    Full Text Available Summary. During micronisation grain moisture evaporates mainly in decreasing drying rate period. Grain layer located on the surface of the conveyor micronisers will be regarded as horizontal plate. Due to the fact that the micronisation process the surface of the grain evaporates little moisture (within 2-7 % is assumed constant plate thickness. Because in the process of micronization grain structure is changing, in order to achieve an exact solution of the equations necessary to take into account changes thermophysical, optical and others. Equation of heat transfer is necessary to add a term that is responsible for the infrared heating. Because of the small thickness of the grain, neglecting the processes occurring at the edge of the grain, that is actually consider the problem of an infinite plate. To check the adequacy of the mathematical model of the process of micronisation of wheat grain moisture content must be comparable to the function of time, obtained by solving the system of equations with the measured experimental data of experience. Numerical solution of a system of equations for the period of decreasing drying rate is feasible with the help of the Maple 14, substituting the values of the constants in the system. Calculation of the average relative error does not exceed 7- 10 %, and shows a good agreement between the calculated data and the experimental values.

  19. PESTICIDES USE AMONG GRAIN MERCHANTS IN MUBI GRAIN ...

    AGROSEARCH UIL

    pose the greatest threat to increased food production, storage and handling ... are to: assess pest control practices of grain merchants in Mubi markets with a .... This further cements the fact that multiple routes of contaminations are possible.

  20. Why Is It Important to Eat Grains, Especially Whole Grains?

    ... Style What Is a Healthy Eating Style? Choosing Foods and Beverages Saturated, Unsaturated, and Trans Fats Sodium Added Sugars ... may reduce the risk of heart disease. Consuming foods containing fiber, ... weight management. Eating grain products fortified with folate before and ...

  1. Monte carlo simulation of anisotropic grain growth in liquid phase sintering

    Han, Yoon Soo; Kim, Do Kyung

    2003-01-01

    One of the key techniques in modern engineering ceramic system is microstructural control of anisotropic grain growth because grain orientation and shape proved to have an influence on mechanic, dielectric and electric behavior of ceramics. But until now, computer simulation for grain growth has not sufficiently addressed to this subject. The reason is that simulation algorithm was laborious because it has to contain mass transfer through liquid phase and especially anisotropic grain growth has to be considered based on interfacial properties in real system. The goal of present study is simulation of anisotropic grain growth in liquid phase by Q-states model. To give anisotropic inherency to grains, constraint on mobility to specific boundaries was applied. For comparison, we measured grain size distribution and deduced grain growth kinetics from relation ship between average grain size and time. As a result, the grain size distribution functions become broader and the peak height decreases as the anisotropy is increased. The growth exponent 0.67 and 0.47 found by linear fitting have slightly different values in comparison with work of Grest et al. but similar is trend to the decrease of exponent with anisotropy

  2. Oriented hydroxyapatite single crystals produced by the electrodeposition method

    Santos, E.A. dos, E-mail: euler@ufs.br [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France); IPCMS - Departement de Surfaces et Interfaces, 23, rue du Loess, BP 43, 67034 Strasbourg (France); Moldovan, M.S. [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France); IPCMS - Departement de Surfaces et Interfaces, 23, rue du Loess, BP 43, 67034 Strasbourg (France); Jacomine, L. [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France); Mateescu, M. [IS2M - Equipe Interaction Surface-Matiere Vivant, 15, rue Jean Starcky, BP 2488, 68057 Mulhouse (France); Werckmann, J. [IPCMS - Departement de Surfaces et Interfaces, 23, rue du Loess, BP 43, 67034 Strasbourg (France); Anselme, K. [IS2M - Equipe Interaction Surface-Matiere Vivant, 15, rue Jean Starcky, BP 2488, 68057 Mulhouse (France); Mille, P.; Pelletier, H. [INSA - Groupe Ingenierie des Surfaces, 24, Bld de la Victoire, 67084 Strasbourg (France)

    2010-05-25

    We propose here the use of cathodic electrodeposition as tool to fabricate implant coatings consisting in nano/micro single crystals of hydroxyapatite (HA), preferentially orientated along the c-axis. Coating characterization is the base of this work, where we discuss the mechanisms related to the deposition of oriented hydroxyapatite thin films. It is shown that when deposited on titanium alloys, the HA coating is constituted by two distinct regions with different morphologies: at a distance of few microns from the substrate, large HA single crystals are oriented along the c-axis and appear to grow up from a base material, consisting in an amorphous HA. This organized system has a great importance for cell investigation once the variables involved in the cell/surface interaction are reduced. The use of such systems could give a new insight on the effect of particular HA orientation on the osteoblast cells.

  3. Chemisputtering of interstellar graphite grains

    Draine, B.T.

    1979-01-01

    The rate of erosion of interstellar graphite grains as a result of chemical reaction with H, N, and O is estimated using the available experiment evidence. It is argued that ''chemical sputtering'' yields for interstellar graphite grains will be much less than unity, contrary to earlier estimates by Barlow and Silk. Chemical sputtering of graphite grains in evolving H II regions is found to be unimportant, except in extremely compact (n/sub H/> or approx. =10 5 cm -3 ) H II regions. Alternative explanations are considered for the apparent weakness of the lambda=2175 A extinction ''bump'' in the direction of several early type stars

  4. Influence of the oxygen pressure on the preferred orientation and optical properties of the pulsed-laser deposited Mn{sub 1.56}Co{sub 0.96}Ni{sub 0.48}O{sub 4±δ} thin films

    Kong, Wenwen [Key Laboratory of Functional Materials and Devices for Special Environments of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry of CAS, Urumqi 830011 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Gao, Bo [Key Laboratory of Functional Materials and Devices for Special Environments of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry of CAS, Urumqi 830011 (China); Jiang, Chunping, E-mail: cpjiang2008@sinano.ac.cn [Key Laboratory of Functional Materials and Devices for Special Environments of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry of CAS, Urumqi 830011 (China); Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics of CAS, Suzhou 215123 (China); Chang, Aimin, E-mail: changam@ms.xjb.ac.cn [Key Laboratory of Functional Materials and Devices for Special Environments of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry of CAS, Urumqi 830011 (China)

    2015-11-25

    Mn{sub 1.56}Co{sub 0.96}Ni{sub 0.48}O{sub 4±δ} (MCN) thin films with different oxygen pressures (in the range of 2 × 10{sup −4} to 2 Pa) are prepared on Si(100)/SiO{sub x} substrates by pulsed laser deposition technique. Effects of oxygen pressures on the microstructure and optical properties of the prepared thin films are investigated in detail. The grain sizes of films gradually decrease and the preferential orientation of the MCN films change from (400) to (113) as the oxygen pressure increases. The x-ray photoelectron spectroscopy results show that the composition of these films is proximity to that of the bulk material. In addition, the Mn{sup 3+}/Mn{sup 4+} pairs increase with an increase in the oxygen pressures increase. From spectroscopic ellipsometer spectroscopy, it is found that both the refractive index n and extinction coefficient k of the (400)-oriented films have no obvious peaks, whereas in the (113)-oriented films, peaks are exist. This feature typically originates from a change in the crystal structure as oxygen pressures increase. Furthermore, the Raman active mode (around ca. 650 cm{sup −1}) of (400) films almost disappears, whilst the active mode in (113) films remain. - Highlights: • The Mn{sub 1.56}Co{sub 0.96}Ni{sub 0.48}O{sub 4-δ} (MCN) spinel films are deposited by pulsed laser deposition process at different oxygen pressures. • The preferential orientation of the films changes from (400) plane to (113) as the oxygen pressure increases. • The E{sub g} of the (113) film is twice as large as that of the (400) film. • The Raman active mode (around ca. 650 cm{sup −1}) can be observed in the (113) films while not in the (400) film.

  5. Grain growth competition during thin-sample directional solidification of dendritic microstructures: A phase-field study

    Tourret, D.; Song, Y.; Clarke, A.J.; Karma, A.

    2017-01-01

    We present the results of a comprehensive phase-field study of columnar grain growth competition in bi-crystalline samples in two dimensions (2D) and in three dimensions (3D) for small sample thicknesses allowing a single row of dendrites to form. We focus on the selection of grain boundary (GB) orientation during directional solidification in the steady-state dendritic regime, and study its dependence upon the orientation of two competing grains. In 2D, we map the entire orientation range for both grains, performing several simulations for each configuration to account for the stochasticity of GB orientation selection and to assess the average GB behavior. We find that GB orientation selection depends strongly on whether the primary dendrite growth directions have lateral components (i.e. components perpendicular to the axis of the temperature gradient) that point in the same or opposite directions in the two grains. We identify a range of grain orientations in which grain selection follows the classical description of Walton and Chalmers. We also identify conditions that favor unusual overgrowth of favorably-oriented dendrites at a converging GB. We propose a simple analytical description that reproduces the average GB orientation selection from 2D simulations within statistical fluctuations of a few degrees. In 3D, we find a similar GB orientation selection as in 2D when secondary branches grow in planes parallel and perpendicular to the sample walls. Remarkably, quasi-2D behavior is also observed even when those perpendicular sidebranching planes are rotated by a finite azimuthal angle about the primary dendrite growth axis as long as the absolute values of those azimuthal angles are equal in both grains. In contrast, when the absolute values of those azimuthal angles differ markedly, we find that unusual overgrowth events at a converging GB are promoted by a high azimuthal angle in the least-favorably-oriented grain. We also find that diverging GBs can be

  6. The valuation of commercial grain silos

    The valuation of grain silos is a complex exercise when one considers all the variables that affect their ... their grains, larger grain-processing companies, traders, importers or exporters that have ..... 2015: personal interview). The percentages ...

  7. Debris flow rheology: Experimental analysis of fine-grained slurries

    Major, Jon J.; Pierson, Thomas C.

    1992-01-01

    The rheology of slurries consisting of ≤2-mm sediment from a natural debris flow deposit was measured using a wide-gap concentric-cylinder viscometer. The influence of sediment concentration and size and distribution of grains on the bulk rheological behavior of the slurries was evaluated at concentrations ranging from 0.44 to 0.66. The slurries exhibit diverse rheological behavior. At shear rates above 5 s−1 the behavior approaches that of a Bingham material; below 5 s−1, sand exerts more influence and slurry behavior deviates from the Bingham idealization. Sand grain interactions dominate the mechanical behavior when sand concentration exceeds 0.2; transient fluctuations in measured torque, time-dependent decay of torque, and hysteresis effects are observed. Grain rubbing, interlocking, and collision cause changes in packing density, particle distribution, grain orientation, and formation and destruction of grain clusters, which may explain the observed behavior. Yield strength and plastic viscosity exhibit order-of-magnitude variation when sediment concentration changes as little as 2–4%. Owing to these complexities, it is unlikely that debris flows can be characterized by a single rheological model.

  8. Effect of texture on grain boundary misorientation distributions in polycrystalline high temperature superconductors

    Goyal, A.; Specht, E.D.; Kroeger, D.M.; Mason, T.A.

    1996-01-01

    Computer simulations were performed to determine the most probable grain boundary misorientation distribution (GBMD) in model polycrystalline superconductors. GBMDs in polycrystalline superconductors can be expected to dictate the macroscopic transport critical current density, J c . Calculations were performed by simulating model polycrystals and then determining the GBMD. Such distributions were calculated for random materials having cubic, tetragonal, and orthorhombic crystal symmetry. In addition, since most high temperature superconductors are tetragonal or pseudotetragonal, the effect of macroscopic uniaxial and biaxial grain orientation texture on the GBMD was determined for tetragonal materials. It is found that macroscopic texture drastically alters the grain boundary misorientation distribution. The fraction of low angle boundaries increases significantly with uniaxial and biaxial texture. The results of this study are important in correlating the macroscopic transport J c with the measured grain orientation texture as determined by x-ray diffraction copyright 1996 American Institute of Physics

  9. Downstream lightening and upward heavying, sorting of sediments of uniform grain size but differing in density

    Viparelli, E.; Solari, L.; Hill, K. M.

    2014-12-01

    Downstream fining, i.e. the tendency for a gradual decrease in grain size in the downstream direction, has been observed and studied in alluvial rivers and in laboratory flumes. Laboratory experiments and field observations show that the vertical sorting pattern over a small Gilbert delta front is characterized by an upward fining profile, with preferential deposition of coarse particles in the lowermost part of the deposit. The present work is an attempt to answer the following questions. Are there analogous sorting patterns in mixtures of sediment particles having the same grain size but differing density? To investigate this, we performed experiments at the Hydrosystems Laboratory at the University of Illinois at Urbana-Champaign. During the experiments a Gilbert delta formed and migrated downstream allowing for the study of transport and sorting processes on the surface and within the deposit. The experimental results show 1) preferential deposition of heavy particles in the upstream part of the deposit associated with a pattern of "downstream lightening"; and 2) a vertical sorting pattern over the delta front characterized by a pattern of "upward heavying" with preferential deposition of light particles in the lowermost part of the deposit. The observed downstream lightening is analogous of the downstream fining with preferential deposition of heavy (coarse) particles in the upstream part of the deposit. The observed upward heavying was unexpected because, considering the particle mass alone, the heavy (coarse) particles should have been preferentially deposited in the lowermost part of the deposit. Further, the application of classical fractional bedload transport relations suggests that in the case of mixtures of particles of uniform size and different densities equal mobility is not approached. We hypothesize that granular physics mechanisms traditionally associated with sheared granular flows may be responsible for the observed upward heavying and for the

  10. Theories of Sexual Orientation.

    Storms, Michael D.

    1980-01-01

    Results indicated homosexuals, heterosexuals, and bisexuals did not differ within each sex on measures of masculinity and femininity. Strong support was obtained for the hypothesis that sexual orientation relates primarily to erotic fantasy orientation. (Author/DB)

  11. Orientation effects on indexing of electron backscatter diffraction patterns

    Nowell, Matthew M.; Wright, Stuart I.

    2005-01-01

    Automated Electron Backscatter Diffraction (EBSD) has become a well-accepted technique for characterizing the crystallographic orientation aspects of polycrystalline microstructures. At the advent of this technique, it was observed that patterns obtained from grains in certain crystallographic orientations were more difficult for the automated indexing algorithms to accurately identify than patterns from other orientations. The origin of this problem is often similarities between the EBSD pattern of the correct orientation and patterns from other orientations or phases. While practical solutions have been found and implemented, the identification of these problem orientations generally occurs only after running an automated scan, as problem orientations are often readily apparent in the resulting orientation maps. However, such an approach only finds those problem orientations that are present in the scan area. It would be advantageous to identify all regions of orientation space that may present problems for automated indexing prior to initiating an automated scan, and to minimize this space through the optimization of acquisition and indexing parameters. This work presents new methods for identifying regions in orientation space where the reliability of the automated indexing is suspect prior to performing a scan. This methodology is used to characterize the impact of various parameters on the indexing algorithm

  12. Spring Small Grains Area Estimation

    Palmer, W. F.; Mohler, R. J.

    1986-01-01

    SSG3 automatically estimates acreage of spring small grains from Landsat data. Report describes development and testing of a computerized technique for using Landsat multispectral scanner (MSS) data to estimate acreage of spring small grains (wheat, barley, and oats). Application of technique to analysis of four years of data from United States and Canada yielded estimates of accuracy comparable to those obtained through procedures that rely on trained analysis.

  13. Interstellar Grains: 50 Years On

    Wickramasinghe, N. Chandra

    2011-01-01

    Our understanding of the nature of interstellar grains has evolved considerably over the past half century with the present author and Fred Hoyle being intimately involved at several key stages of progress. The currently fashionable graphite-silicate-organic grain model has all its essential aspects unequivocally traceable to original peer-reviewed publications by the author and/or Fred Hoyle. The prevailing reluctance to accept these clear-cut priorities may be linked to our further work tha...

  14. Grain boundary structure and properties

    Balluffi, R.W.

    1979-05-01

    An attempt is made to distinguish those fundamental aspects of grain boundaries which should be relevant to the problem of the time dependent fracture of high temperature structural materials. These include the basic phenomena which are thought to be associated with cavitation and cracking at grain boundaries during service and with the more general microstructural changes which occur during both processing and service. A very brief discussion of the current state of knowledge of these fundamentals is given

  15. Preferential Allele Expression Analysis Identifies Shared Germline and Somatic Driver Genes in Advanced Ovarian Cancer

    Halabi, Najeeb M.; Martinez, Alejandra; Al-Farsi, Halema; Mery, Eliane; Puydenus, Laurence; Pujol, Pascal; Khalak, Hanif G.; McLurcan, Cameron; Ferron, Gwenael; Querleu, Denis; Al-Azwani, Iman; Al-Dous, Eman; Mohamoud, Yasmin A.; Malek, Joel A.; Rafii, Arash

    2016-01-01

    Identifying genes where a variant allele is preferentially expressed in tumors could lead to a better understanding of cancer biology and optimization of targeted therapy. However, tumor sample heterogeneity complicates standard approaches for detecting preferential allele expression. We therefore developed a novel approach combining genome and transcriptome sequencing data from the same sample that corrects for sample heterogeneity and identifies significant preferentially expressed alleles. We applied this analysis to epithelial ovarian cancer samples consisting of matched primary ovary and peritoneum and lymph node metastasis. We find that preferentially expressed variant alleles include germline and somatic variants, are shared at a relatively high frequency between patients, and are in gene networks known to be involved in cancer processes. Analysis at a patient level identifies patient-specific preferentially expressed alleles in genes that are targets for known drugs. Analysis at a site level identifies patterns of site specific preferential allele expression with similar pathways being impacted in the primary and metastasis sites. We conclude that genes with preferentially expressed variant alleles can act as cancer drivers and that targeting those genes could lead to new therapeutic strategies. PMID:26735499

  16. Crystallographic and morphological relationships between β phase and the Widmanstaetten and allotriomorphic α phase at special β grain boundaries in an α/β titanium alloy

    Bhattacharyya, D.; Viswanathan, G.B.; Fraser, Hamish L.

    2007-01-01

    In the present study, the relationship between the crystallographic orientations and growth directions of grain boundary-allotriomorphic-α (GB α) and secondary Widmanstaetten α laths growing from the GB α at grain boundaries separating β grains with specific misorientations has been examined. These relationships have been determined using a variety of characterization techniques, including scanning electron microscopy, orientation imaging microscopy, transmission electron microscopy (TEM) and a dual-beam focused ion beam instrument to provide site-selected TEM foils. Two very interesting cases, one in which the two adjacent β grains are rotated mutually by approximately 10.5 o about a common direction and the other in which the two β grains are in a twin relationship, i.e. a 60 o rotation about a common direction, have been studied. It was discovered that the α laths growing into two adjacent β grains from the common grain boundary may have the same orientation in both grains, while they may have either large (∼88.8 o ) or small (28.8 o ) angular differences in growth directions in the two adjacent β grains, depending on the relative misorientation of the β grains. The growth directions of the α laths growing from such boundaries are explained on the basis of the Burgers orientation relationship between the Widmanstaetten α and the β phases and the interfacial structure proposed previously by various workers

  17. Investigation of the role of grain boundary on the mechanical properties of metals

    Kheradmand, Nousha; Barnoush, Afrooz; Vehoff, Horst

    2010-01-01

    Compression testing of micropillars was used to investigate the gain boundary effect on the strength of metals which is especially interesting in ultra fine grained and nanocrystalline metals. Single and bicrystal micropillars of different sizes and crystallographic orientations were fabricated using a focused ion beam system and the compression test was performed with a nanoindenter. A reduction of the pillar size as well as the introduction of a grain boundary results in an increase in the yield strength. The results show that the size and the orientation of different adjoining crystals in bicrystalline pillars have an obvious effect on dislocation nucleation and multiplication.

  18. The Relevance of Grain Dissection for Grain Size Reduction in Polar Ice : Insight from Numerical Models and Ice Core Microstructure Analysis

    Steinbach, F.; Kuiper, E.N.; Eichler, J.; Bons, P. D.; Drury, M. R.; Griera, A.; Pennock, G.M.; Weikusat, I.

    2017-01-01

    The flow of ice depends on the properties of the aggregate of individual ice crystals, such as grain size or lattice orientation distributions. Therefore, an understanding of the processes controlling ice micro-dynamics is needed to ultimately develop a physically based macroscopic ice flow law. We

  19. SILICON CARBIDE GRAIN BOUNDARY DISTRIBUTIONS, IRRADIATION CONDITIONS, AND SILVER RETENTION IN IRRADIATED AGR-1 TRISO FUEL PARTICLES

    Lillo, T. M.; Rooyen, I. J.; Aguiar, J. A.

    2016-11-01

    Precession electron diffraction in the transmission electron microscope was used to map grain orientation and ultimately determine grain boundary misorientation angle distributions, relative fractions of grain boundary types (random high angle, low angle or coincident site lattice (CSL)-related boundaries) and the distributions of CSL-related grain boundaries in the SiC layer of irradiated TRISO-coated fuel particles. Two particles from the AGR-1 experiment exhibiting high Ag-110m retention (>80%) were compared to a particle exhibiting low Ag-110m retention (<19%). Irradiated particles with high Ag-110m retention exhibited a lower fraction of random, high angle grain boundaries compared to the low Ag-110m retention particle. An inverse relationship between the random, high angle grain boundary fraction and Ag-110m retention is found and is consistent with grain boundary percolation theory. Also, comparison of the grain boundary distributions with previously reported unirradiated grain boundary distributions, based on SEM-based EBSD for similarly fabricated particles, showed only small differences, i.e. a greater low angle grain boundary fraction in unirradiated SiC. It was, thus, concluded that SiC layers with grain boundary distributions susceptible to Ag-110m release were present prior to irradiation. Finally, irradiation parameters were found to have little effect on the association of fission product precipitates with specific grain boundary types.

  20. Understanding political market orientation

    Ormrod, Robert P.; Henneberg, Stephan C.

    influences of such behavior. The study includes structural equation modeling to investigate several propositions. While the results show that political parties need to focus on several different aspects of market-oriented behavior, especially using an internal and external orientation as cultural antecedents......This article develops a conceptual framework and measurement model of political market orientation that consists of attitudinal and behavioural constructs. The article reports on perceived relationships among different behavioral aspects of political market orientation and the attitudinal......, a more surprising result is the inconclusive effect of a voter orientation on market-oriented behaviours. The article discusses the findings in the context of the existing literature in political marketing and commercial market orientation....