WorldWideScience

Sample records for grains mo

  1. Explosive anisotropic grain growth of delta-NiMo by solid-state diffusion

    International Nuclear Information System (INIS)

    Chou, T.C.; Nieh, T.G.

    1991-01-01

    Anomalous, anisotropic grain growth has been observed in delta(δ)-NiMo intermetallic compound during the annealings of Mo/Ni thin-film diffusion couples at 700 and 800 degree C. Two layered microstructures showing median-sized, equiaxed grains and large columnar single crystalline grains were generated. The growth direction of the columnar grains was parallel to the direction of Ni diffusion flux. Electron diffraction indicated that both the median-sized and the columnar grains were δ-NiMo. The composition of δ-NiMo was determined to be Ni48-Mo52 (at.%). According to the thickness of reaction-formed δ-NiMo, the apparent interdiffusion coefficient was measured to be about 10 -10 cm 2 /s which is 4 to 5 orders of magnitude greater than literature data. The enhanced diffusion rate in Ni-Mo, and the anomalous anisotropic grain growth of δ-NiMo compound are discussed on the basis of exothermic reactions between Ni and Mo during diffusional intermixing. The enthalpy of the formation of δ-NiMo is calculated and demonstrated to be sufficient to cause melting/solidification of the compound

  2. Grain boundary and grain interior conduction in γ'-Bi2MoO6

    International Nuclear Information System (INIS)

    Vera, C.M.C.; Aragon, R.

    2005-01-01

    Impedance spectroscopy of fine grained ( 2 MoO 6 samples, in the frequency range of 0.1 Hz-250 kHz, relevant to sensor applications, up to 800 deg. C, has been used to characterize grain boundary and grain interior contributions to conduction. Above 500 deg. C, the grain boundary contribution is no longer rate limiting and conduction is dominated by the grain interior component. The corresponding activation energies are 0.98 eV for grain boundary and 0.73 eV for grain interior components. The weak dependence of conductivity on oxygen partial pressure below 500 deg. C can be attributed to electrode-electrolyte interface phenomena, whereas the robust response to ethanol is commensurate with changes in intrinsic ionic conductivity

  3. Grain size effect of monolayer MoS2 transistors characterized by second harmonic generation mapping

    KAUST Repository

    Lin, Chih-Pin

    2015-08-27

    We investigated different CVD-synthesized MoS2 films, aiming to correlate the device characteristics with the grain size. The grain size of MoS2 can be precisely characterized through nondestructive second harmonic generation mapping based on the degree of inversion symmetry. The devices with larger grains at the channel region show improved on/off current ratio, which can be explained by the less carrier scattering caused by the grain boundaries.

  4. Multiaxial creep of fine grained 0.5Cr-0.5Mo-0.25V and coarse grained 1Cr-0.5Mo steels

    International Nuclear Information System (INIS)

    Browne, R.J.; Flewitt, P.E.J.; Lonsdale, D.

    1991-01-01

    To explore the multiaxial creep response of materials used for electrical power generating plant, two steels, a fine grained 0.5Cr-0.5Mo-0.25V steel in a normalised and tempered condition with high creep ductility and a coarse grained 1Cr-0.5Mo steel in a quenched and tempered condition with low uniaxial creep ductility, have been selected. A range of multiaxial stress testing techniques which span the stress states that would allow identification of any technique dependent variables has been used. The deformation and failure of the normalised and tempered 0.5Cr-0.5Mo-0.25V steel for a range of multiaxial test techniques and, therefore, stress states may be described by an equivalent stress criterion. The results from the multiaxial tests carried out on the fully bainitic 1Cr-0.5Mo steel show that the multiaxial stress rupture criterion (MSRC) varies with stress state; at high triaxiality (notch), it is controlled by the maximum principal stress, whereas at low triaxiality (shear) it is dependent on both maximum principal stress and equivalent stress. Furthermore, a simple description of stress state based on maximum principal and equivalent stress does not define this uniquely, since the MSRC derived from uniaxial and torsion testing does not describe the failure of notch, tube, or double shear tests. (author)

  5. Grain boundary and grain interior conduction in {gamma}'-Bi{sub 2}MoO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Vera, C.M.C. [Laboratorio de Peliculas Delgadas, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina)]. E-mail: cvera@fi.uba.ar; Aragon, R. [Laboratorio de Peliculas Delgadas, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina); CINSO, CONICET, CITEFA, Lasalle 4397, Villa Martelli, Buenos Aires (Argentina)

    2005-07-25

    Impedance spectroscopy of fine grained (<10 {mu}m) {gamma}'-Bi{sub 2}MoO{sub 6} samples, in the frequency range of 0.1 Hz-250 kHz, relevant to sensor applications, up to 800 deg. C, has been used to characterize grain boundary and grain interior contributions to conduction. Above 500 deg. C, the grain boundary contribution is no longer rate limiting and conduction is dominated by the grain interior component. The corresponding activation energies are 0.98 eV for grain boundary and 0.73 eV for grain interior components. The weak dependence of conductivity on oxygen partial pressure below 500 deg. C can be attributed to electrode-electrolyte interface phenomena, whereas the robust response to ethanol is commensurate with changes in intrinsic ionic conductivity.

  6. Grain boundary engineering to control the discontinuous precipitation in multicomponent U10Mo alloy

    Energy Technology Data Exchange (ETDEWEB)

    Devaraj, Arun; Kovarik, Libor; Kautz, Elizabeth; Arey, Bruce; Jana, Saumyadeep; Lavender, Curt; Joshi, Vineet

    2018-06-01

    Grain boundaries in metallic alloys often play a crucial role, not only in determining the mechanical properties or thermal stability of alloys, but also in dictating the phase transformation kinetics during thermomechanical processing. We demonstrate that locally stabilized structure and compositional segregation at grain boundaries—“grain boundary complexions”—in a complex multicomponent alloy can be modified to influence the kinetics of cellular transformation during subsequent thermomechanical processing. Using aberration-corrected scanning transmission electron microscopy and atom probe tomography analysis of a metallic nuclear fuel highly relevant to worldwide nuclear non-proliferation efforts —uranium-10 wt% molybdenum (U-10Mo) alloy, new evidence for the existence of grain boundary complexion is provided. We then modified the concentration of impurities dissolved in Υ-UMo grain interiors and/or segregated to Υ-UMo grain boundaries by changing the homogenization treatment, and these effects were used used to retard the kinetics of cellular transformation during subsequent sub-eutectoid annealing in this U-10-Mo alloy during sub-eutectoid annealing. Thus, this work provided insights on tailoring the final microstructure of the U-10Mo alloy, which can potentially improve the irradiation performance of this important class of alloy fuels.

  7. Solute grain boundary segregation during high temperature plastic deformation in a Cr-Mo low alloy steel

    International Nuclear Information System (INIS)

    Chen, X.-M.; Song, S.-H.; Weng, L.-Q.; Liu, S.-J.

    2011-01-01

    Highlights: → The segregation of P and Mo is evidently enhanced by plastic deformation. → The boundary concentrations of P and Mo increase with increasing strain. → A model with consideration of site competition in grain boundary segregation in a ternary system is developed. → Model predictions show a reasonable agreement with the observations. - Abstract: Grain boundary segregation of Cr, Mo and P to austenite grain boundaries in a P-doped 1Cr0.5Mo steel is examined using field emission gun scanning transmission electron microscopy for the specimens undeformed and deformed by 10% with a strain rate of 2 x 10 -3 s -1 at 900 deg. C, and subsequently water quenched to room temperature. Before deformation, there is some segregation for Mo and P, but the segregation is considerably increased after deformation. The segregation of Cr is very small and there is no apparent difference between the undeformed and deformed specimens. Since the thermal equilibrium segregation has been attained prior to deformation, the segregation produced during deformation has a non-equilibrium characteristic. A theoretical model with consideration of site competition in grain boundary segregation between two solutes in a ternary alloy is developed to explain the experimental results. Model predictions are made, which show a reasonable agreement with the observations.

  8. Refinement of grain structure in 20 MnNiMo (SA508C) steel

    International Nuclear Information System (INIS)

    Sheng Zhongqi; Xiao Hong; Peng Feng; Zou Min

    1997-04-01

    The size of prior austenite grains and bainitic colonies of 20 MnNiMo (SA508C) steel (a reactor pressure vessel steel) after normal heat treatment is measured and its controlling factors are discussed. Results show that low aluminium content can induce serious mixed structure with fine and coarse grains in prior austenite. Fast cooling rate can promote refinement of bainitic colonies. Further refinement of grains can be obtained by inter-critical quenching. (5 figs., 1 tab.)

  9. High density of (pseudo) periodic twin-grain boundaries in molecular beam epitaxy-grown van der Waals heterostructure: MoTe{sub 2}/MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Horacio Coy; Ma, Yujing; Chaghi, Redhouane; Batzill, Matthias [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States)

    2016-05-09

    Growth of transition metal dichalcogenide heterostructures by molecular beam epitaxy (MBE) promises synthesis of artificial van der Waals materials with controllable layer compositions and separations. Here, we show that MBE growth of 2H-MoTe{sub 2} monolayers on MoS{sub 2} substrates results in a high density of mirror-twins within the films. The grain boundaries are tellurium deficient, suggesting that Te-deficiency during growth causes their formation. Scanning tunneling microscopy and spectroscopy reveal that the grain boundaries arrange in a pseudo periodic “wagon wheel” pattern with only ∼2.6 nm repetition length. Defect states from these domain boundaries fill the band gap and thus give the monolayer an almost metallic property. The band gap states pin the Fermi-level in MoTe{sub 2} and thus determine the band-alignment in the MoTe{sub 2}/MoS{sub 2} interface.

  10. Charging effect at grain boundaries of MoS2

    Science.gov (United States)

    Yan, Chenhui; Dong, Xi; Li, Connie H.; Li, Lian

    2018-05-01

    Grain boundaries (GBs) are inherent extended defects in chemical vapor deposited (CVD) transition metal dichalcogenide (TMD) films. Characterization of the atomic structure and electronic properties of these GBs is crucial for understanding and controlling the properties of TMDs via defect engineering. Here, we report the atomic and electronic structure of GBs in CVD grown MoS2 on epitaxial graphene/SiC(0001). Using scanning tunneling microscopy/spectroscopy, we find that GBs mostly consist of arrays of dislocation cores, where the presence of mid-gap states shifts both conduction and valence band edges by up to 1 eV. Our findings demonstrate the first charging effect near GBs in CVD grown MoS2, providing insights into the significant impact GBs can have on materials properties.

  11. Migration of liquid film and grain boundary in Mo-Ni induced by W diffusion

    International Nuclear Information System (INIS)

    Kang, H.K.; Hackney, S.; Yoon, D.N.

    1988-01-01

    The liquid films and grain boundaries in liquid phase sintered Mo-Ni alloy are observed to migrate during heat-treatment after adding W to the liquid matrix. Behind the migrating boundaries forms Mo-Ni-W solid solution with the W concentration decreasing with the migration distance because of W depletion in the liquid matrix. The migration rate during the heat-treatment at 1540 0 C after adding W decreases with the decreasing pretreatment sintering temperature. When the sintering temperature is 1420 0 C, the migration rate is almost reduced to O. Under this condition, the coherency strain due to the simultaneous diffusion of W and Ni into the grain surfaces is estimated to be almost O. The results thus show that the coherency strain due to lattice diffusion is the driving force for the liquid film and grain boundary migration

  12. Trace, isotopic analysis of micron-sized grains -- Mo, Zr analysis of stardust (SiC and graphite grains).

    Energy Technology Data Exchange (ETDEWEB)

    Pellin, M. J.; Nicolussi, G. K.

    1998-02-19

    Secondary Neutral Mass Spectrometry using resonant laser ionization can provide for both high useful yields and high discrimination while maintaining high lateral and depth resolutions. An example of the power of the method is measurement of the isotopic composition of Mo and Zr in 1-5 {micro}m presolar SiC and graphite grains isolated from the Murchison CM2 meteorite for the first time. These grains have survived the formation of the Solar System and isotopic analysis reveals a record of the stellar nucleosynthesis present during their formation. Mo and Zr, though present at less than 10 ppm in some grains, are particularly useful in that among their isotopes are members that can only be formed by distinct nucleosynthetic processes known as s-, p-, and r-process. Successful isotopic analysis of these elements requires both high selectivity (since these are trace elements) and high efficiency (since the total number of atoms available are limited). Resonant Ionization Spectroscopy is particularly useful and flexible in this application. While the sensitivity of this t.edmique has often been reported in the past, we focus hereon the very low noise properties of the technique. We further demonstrate the efficacy of noise removal by two complimentary methods. First we use the resonant nature of the signal to subtract background signal. Second we demonstrate that by choosing the appropriate resonance scheme background can often be dramatically reduced.

  13. Effect of Mo addition on the microstructure and hardness of ultrafine-grained Ni alloys processed by a combination of cryorolling and high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, Garima [Department of Materials Physics, Eötvös Loránd University, P.O.B. 32, Budapest H-1518 (Hungary); Huang, Yi [Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO171BJ (United Kingdom); Sarma, V. Subramanya [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Langdon, Terence G. [Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO171BJ (United Kingdom); Gubicza, Jenő, E-mail: jeno.gubicza@ttk.elte.hu [Department of Materials Physics, Eötvös Loránd University, P.O.B. 32, Budapest H-1518 (Hungary)

    2017-03-14

    An investigation was conducted to examine the effect of molybdenum (Mo) content on the grain size, lattice defect structure and hardness of nickel (Ni) processed by severe plastic deformation (SPD). The SPD processing was applied to Ni samples with low (~0.3 at%) and high (~5 at%) Mo concentrations by a consecutive application of cryorolling and high-pressure torsion (HPT). The grain size and the dislocation density were determined by scanning electron microscopy and X-ray line profile analysis, respectively. In addition, the hardness values in the centers, half-radius and peripheries of the HPT-processed disks were determined after ½, 5 and 20 turns. The results show the higher Mo content yields a dislocation density about two times larger and a grain size about 30% smaller. The smallest value of the grain size was ~125 nm and the highest measured dislocation density was ~60×10{sup 14} m{sup −2} for Ni-5% Mo. For the higher Mo concentration, the dislocation arrangement parameter was larger indicating a less clustered dislocation structure due to the hindering effect of Mo on the rearrangement of dislocations into low energy configurations. The results show there is a good correlation between the dislocation density and the yield strength using the Taylor equation. The α parameter in this equation is slightly lower for the higher Mo concentration in accordance with the less clustered dislocation structure.

  14. Surface tiny grain-dependent enhanced rate performance of MoO3 nanobelts with pseudocapacitance contribution for lithium-ion battery anode

    Science.gov (United States)

    Cao, Liyun; He, Juju; Li, Jiayin; Yan, Jingwen; Huang, Jianfeng; Qi, Ying; Feng, Liangliang

    2018-07-01

    In order to improve the rate performance of MoO3, a novel MoO3 nanobelt with tiny grains on surface (named as d-MoO3) is fabricated via one-step facile hydrothermal method with citric acid adding, in which citric acid (CA) serves as a weak reductant as well as surface modification agent. When tested as an anode in LIBs, d-MoO3 displays an improved discharge capacity of 787 mAh·g-1 at 0.1 A g-1 over 100 cycles with capacity retention of ∼91% while MoO3 decays to 50 mAh·g-1 in the 100th cycle. Notably, d-MoO3 delivers enhanced rate capability (536 and 370 mAh·g-1 at high rates of 5 and 10 A g-1 respectively). We consider these excellent electrochemical properties of d-MoO3 electrode are associated with the tiny grains on MoO3 surface, which effectively maintains the electrode's structural integrity. Even though d-MoO3 nanobelt suffers from a degree of in-situ pulverization after several cycles, these pulverized active particles can still maintain stable electrochemical contact and are highly exposed to electrolyte, realizing ultrahigh e-/Li+ diffusion kinetics. In addition, part extrinsic pseudocapacitance contribution to the Li+ storage also explains the high-rate performance. Combining all these merits, d-MoO3 is potentially a high-energy, high-power and well-stable anode material for Li ion batteries (LIBs).

  15. Microstructure and properties of MoSi2-MoB and MoSi2-Mo5Si3 molybdenum silicides

    International Nuclear Information System (INIS)

    Schneibel, J.H.; Sekhar, J.A.

    2003-01-01

    MoSi 2 -based intermetallics containing different volume fractions of MoB or Mo 5 Si 3 were fabricated by hot-pressing MoSi 2 , MoB, and Mo 5 Si 3 powders in vacuum. Both classes of alloys contained approximately 5 vol.% of dispersed silica phase. Additions of MoB or Mo 5 Si 3 caused the average grain size to decrease. The decrease in the grain size was typically accompanied by an increase in flexure strength, a decrease in the room temperature fracture toughness, and a decrease in the hot strength (compressive creep strength) measured around 1200 deg. C, except when the Mo 5 Si 3 effectively became the major phase. Oxidation measurements on the two classes of alloys were carried out in air. Both classes of alloys were protected from oxidation by an in-situ adherent scale that formed on exposure to high temperature. The scale, although not analyzed in detail, is commonly recognized in MoSi 2 containing materials as consisting mostly of SiO 2 . The MoB containing materials showed an increase in the scale thickness and the cyclic oxidation rate at 1400 deg. C when compared with pure MoSi 2 . However, in contrast with the pure MoSi 2 material, oxidation at 1400 deg. C began with a weight loss followed by a weight gain and the formation of the protective silica layer. The Mo 5 Si 3 containing materials experienced substantial initial weight losses followed by regions of small weight changes. Overall, the MoB and Mo 5 Si 3 additions to MoSi 2 tended to be detrimental for the mechanical and oxidative properties

  16. Quantification by image analysis of grain size of the high temperature phase (austenite) of martensitic steels 9Cr-1Mo

    International Nuclear Information System (INIS)

    Barcelo, F.; Brachet, J.C.

    1993-01-01

    In martensitic steels, the austenitic grain size before transformation may influence mechanical properties. 9Cr-1Mo steel (EM10) is used in hexagonal pipes fabrication in fast neutrons reactors. Image analysis allows to quantify the older grain size in function of the austenization heat treatment conditions. (A.B.). 2 figs

  17. The influences of impurity content, tensile strength, and grain size on in-service temper embrittlement of CrMoV steels

    International Nuclear Information System (INIS)

    Cheruvu, N.S.; Seth, B.B.

    1989-01-01

    The influences of impurity levels, grain size, and tensile strength on in-service temper embrittlement of CrMoV steels have been investigated. The samples for this study were taken from steam turbine CrMoV rotors which had operated for 15 to 26 years. The effects of grain size and tensile strength on embrittlement susceptibility were separated by evaluating the embrittlement behavior of two rotor forgings made from the same ingot after an extended step-cooling treatment. Among the residual elements in the steels, only P produces a significant embrittlement. The variation of P and tensile strength has no effect on in-service temper embrittlement susceptibility, as measured by the shift in fracture appearance transition temperature (FATT). However, the prior austenite grain size plays a major role in service embrittlement. The fine grain steels with a grain size of ASTM No. 9 or higher are virtually immune to in-service embrittlement. In steels having duplex grain sizes, embrittlement susceptibility is controlled by the size of coarser grains. For a given steel chemistry, the coarse grain steel is more susceptible to in-service embrittlement, and a decrease in ASTM grain size number from 4 to 0/1 increases the shift in FATT by 61 degrees C (10/10 degrees F). It is demonstrated that long-term service embrittlement can be simulated, except in very coarse grain steels, by using the extended step-cooling treatment. The results of step-cooling studies show that the coarse grain rotor steels take longer time during service to reach a fully embrittled state than the fine grain rotor steels

  18. Intergranular fracture stress and phosphorus grain boundary segregation of a Mn-Ni-Mo steel

    International Nuclear Information System (INIS)

    Naudin, C.; Frund, J.M.; Pineau, A.

    1999-01-01

    Nuclear Reactor Pressure Vessel (RPV) steel A508 class 3 which is a low alloyed steel is not usually sensitive to reversible temper embrittlement when properly heat treated. However heterogeneous zones may be present in particular near the inner side of the vessel. These zones result from the segregation of the alloying elements (C, Mn, Ni, Mo) and impurities (S, P) taking place during solidification of the material. They are called segregated zones (or ghost lines). They can reach 2 mm thick along the radius and 30 mm long through the circumferential direction. Their susceptibility to reversible temper embrittlement is mainly due to grain boundary phosphorus segregation triggering brittle intergranular fracture when the material is tested at low temperature. In this material like in other steels the influence of some other alloying elements (Mo, Mn...) is clearly significant and should also be taken into account. But phosphorus effect has proved to be predominant. The aim of the present study is therefore to find out a quantitative relationship between grain boundary phosphorus segregation and critical intergranular fracture stress. A synthetic steel with a chemical composition representative of an average segregated zone was prepared for the present study. A number of heat treatments were applied to reach different embrittlement conditions. Then brittle fracture properties were obtained by performing cryogenic fracture tests on notched tensile specimens while the corresponding grain boundary phosphorus levels were measured by Auger electron spectroscopy. Systematic fractographic observations were carried out. Moreover an attempt to determine the influence of temperature on the critical intergranular fracture stress was made

  19. High temperature corrosion behavior of different grain size specimens of 2.25 Cr-1 Mo steel in SO2+O2 environment

    International Nuclear Information System (INIS)

    Ghosh, D.; Mitra, S.K.

    2011-01-01

    The investigation is primarily aimed at the high temperature corrosion behavior of different grain sizes of 2.25 Cr-1 Mo steel at SO 2 +O 2 (mixed oxidation and sulfidation). The various grain sizes (18 μm,26 μm, 48 μm, and 72 μm) are obtained by different annealing treatment. Isothermal corrosion studies are carried out in different grain size specimens at 973K for 8 hours. The corrosion growth rate and the reaction kinetics are studied by weight gain method. The external scales of the post corroded specimen are studied in Scanning Electron Microscope (SEM) to examine the corrosion products morphology on the scale. X-ray mapping analysis of the different elements (Fe, O, Cr and S) is carried out by Energy Dispersive Spectroscopy (EDS) attached with SEM. The X-ray Diffraction Analysis (XRD) is also carried out to identify the corrosion products in the external scale. Finally, it is concluded that that the corrosion rate of 2.25 Cr-1 Mo steel strongly depend on grain sizes of the specimens. The corrosion rate increases with the decreases of grain size. The finer grain (18 μm) show higher corrosion rate than the coarse grains (72 μm). The weight gain kinetics follows the parabolic growth rate which further indicates that the corrosion process is diffusion controlled. The scale analysis shows the thicker scale and extensive scale cracking and spallations in case of finer grain size specimen (18 μm), whereas the coarse grain specimen (72 μm) shows compact and adherent layer. The XRD analysis shows that the corrosion products consist of mixtures of iron oxides( Fe 3 O 4 and Fe 2 O 3 ) and iron sulfides (FeS). The details mechanism of the corrosion is discussed to explain the difference in corrosion rate for different grain sizes. (author)

  20. Effect of Grain Boundary Character Distribution on the Impact Toughness of 410NiMo Weld Metal

    DEFF Research Database (Denmark)

    Divya, M.; Das, Chitta Ranjan; Chowdhury, Sandip Ghosh

    2016-01-01

    Grain boundary character distributions in 410NiMo weld metal were studied in the as-welded, first-stage, and second-stage postweld heat treatment (PWHT) conditions, and these were correlated with the Charpy-V impact toughness values of the material. The high impact toughness values in the weld...... metal in the as-welded and first-stage PWHT conditions compared to that in the second-stage condition are attributed to the higher fraction of low-energy I pound boundaries. A higher volume fraction of retained austenite and coarser martensite after second-stage PWHT accompanied by the formation...... in the impact toughness. In addition to this, grain refinement during 4-hour PWHT in the second stage also increased the toughness of the weld metal....

  1. Combined equilibrium and non-equilibrium phosphorus segregation to grain boundaries in a 2.25Cr1Mo steel

    International Nuclear Information System (INIS)

    Song, S.-H.; Shen, D.-D.; Yuan, Z.-X.; Liu, J.; Xu, T.-D.; Weng, L.-Q.

    2003-01-01

    Grain boundary segregation of phosphorus in a P-doped 2.25Cr1Mo steel during ageing at 540 deg. C after quenching from 980 deg. C is examined by Auger electron spectroscopy. The segregation is a combined effect of equilibrium segregation and non-equilibrium segregation. The effect of phosphorus non-equilibrium segregation is to enhance the kinetics of its equilibrium segregation

  2. Effects of Mo Content on Microstructure and Mechanical Property of PH13-8Mo Martensitic Precipitation-Hardened Stainless Steel

    Science.gov (United States)

    Yubing, Pei; Tianjian, Wang; Zhenhuan, Gao; Hua, Fan; Gongxian, Yang

    This paper introduces the effects of Mo content on microstructure and mechanical property of PH13-8Mo martensitic precipitation-hardened stainless steel which is used for LP last stage blade in steam turbine. Thermodynamic software Thermo-Calc has been used to calculate precipitation temperature and the mass fraction of precipitated phases in PH13-8Mo steel with different Mo content. The result shows that when the mass of Mo is below 0.6wt.%, chi-phase mu-phase and sigma-phase could disappear. The microstructure and mechanical property of high Mo PH13-8Mo (Mo=0.57wt.%) and low Mo PH13-8Mo (Mo=2.15wt.%)have been investigated in different heat treatments. The investigations reveal that austenitizing temperature decrease with the reduce of Mo content, so the optimum solution temperature for low Mo PH13-8Mo is lower than that for high Mo PH13-8Mo.The influence of solution temperature on grain size is weakened with the increase of Mo content, Mo rich carbides could retard coarsening of grain. An enormous amount of nano-size uniformly distributed β-NiAl particles are found in both kinds of steels using transmission electron microscopy, they are the most important strengthening phase in PH13-8Mo.

  3. Ultrasonic attenuation as a function of heat treatment and grain size in 79Ni--6Mo--15Fe alloy

    International Nuclear Information System (INIS)

    Gieske, J.H.

    1978-03-01

    A pulse echo ultrasonic technique was used to measure the attenuation coefficient for 79Ni-6Mo-15Fe alloy specimens. The attenuation coefficient was determined using a 25 MHz ultrasonic transducer for specimens which had undergone different time-temperature heat treatments. The ultrasonic attenuation data versus heat treat time was used to assess grain size growth in the specimens

  4. Impact of reduced graphene oxide on MoS{sub 2} grown by sulfurization of sputtered MoO{sub 3} and Mo precursor films

    Energy Technology Data Exchange (ETDEWEB)

    Pacley, Shanee, E-mail: shanee.pacley@us.af.mil; Brausch, Jacob; Beck-Millerton, Emory [U.S. Air Force Research Laboratory (AFRL)/Wright Patterson Air Force Base, Wright Patterson, Ohio 45433-7707 (United States); Hu, Jianjun; Jespersen, Michael [University of Dayton Research Institute, 300 College Park, Dayton, Ohio 45469 (United States); Hilton, Al [Wyle Laboratories, 4200 Colonel Glenn Hwy, Beavercreek, Ohio 45431 (United States); Waite, Adam [University Technology Corporation, 1270 N Fairfield Rd., Beavercreek, Ohio 45432 (United States); Voevodin, Andrey A. [Department of Materials Science and Engineering, University of North Texas, 1155 Union Circle, Denton, Texas 76203 (United States)

    2016-07-15

    Monolayer molybdenum disulfide (MoS{sub 2}), a two dimensional semiconducting dichalcogenide material with a bandgap of 1.8–1.9 eV, has demonstrated promise for future use in field effect transistors and optoelectronics. Various approaches have been used for MoS{sub 2} processing, the most common being chemical vapor deposition. During chemical vapor deposition, precursors such as Mo, MoO{sub 3}, and MoCl{sub 5} have been used to form a vapor reaction with sulfur, resulting in thin films of MoS{sub 2}. Currently, MoO{sub 3} ribbons and powder, and MoCl{sub 5} powder have been used. However, the use of ribbons and powder makes it difficult to grow large area-continuous films. Sputtering of Mo is an approach that has demonstrated continuous MoS{sub 2} film growth. In this paper, the authors compare the structural properties of MoS{sub 2} grown by sulfurization of pulse vapor deposited MoO{sub 3} and Mo precursor films. In addition, they have studied the effects that reduced graphene oxide (rGO) has on MoS{sub 2} structure. Reports show that rGO increases MoS{sub 2} grain growth during powder vaporization. Herein, the authors report a grain size increase for MoS{sub 2} when rGO was used during sulfurization of both sputtered Mo and MoO{sub 3} precursors. In addition, our transmission electron microscopy results show a more uniform and continuous film growth for the MoS{sub 2} films produced from Mo when compared to the films produced from MoO{sub 3}. Atomic force microscopy images further confirm this uniform and continuous film growth when Mo precursor was used. Finally, x-ray photoelectron spectroscopy results show that the MoS{sub 2} films produced using both precursors were stoichiometric and had about 7–8 layers in thickness, and that there was a slight improvement in stoichiometry when rGO was used.

  5. Effect of Mo2C/(Mo2C + WC) weight ratio on the microstructure and mechanical properties of Ti(C,N)-based cermet tool materials

    International Nuclear Information System (INIS)

    Xu, Qingzhong; Zhao, Jun; Ai, Xing; Qin, Wenzhen; Wang, Dawei; Huang, Weimin

    2015-01-01

    To optimize the Mo 2 C content in Ti(C,N)-based cermet tool materials used for cutting the high-strength steel of 42CrMo (AISI 4140/4142 steel), the cermets with different Mo 2 C/(Mo 2 C + WC) weight ratios were prepared. And the microstructure and mechanical properties of cermets were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD) and measurements of transverse rupture strength (TRS), Vickers hardness (HV) and fracture toughness (K IC ). The results indicate that the Mo 2 C/(Mo 2 C + WC) ratios have great influences on the microstructure features and mechanical properties of Ti(C,N)-based cermets. When the Mo 2 C/(Mo 2 C + WC) ratio increases, the Ti(C,N) grains become finer with smaller black cores surrounded by thinner rims, and the structure of cermets tends to be more compact with smaller binder mean free path. Owing to the medium grains and moderate rims, the cermets with a Mo 2 C/(Mo 2 C + WC) ratio of 0.4 exhibit better mechanical properties, and can be chosen as the tool material for machining 42CrMo steel due to the lower Mo content. - Highlights: • Mo 2 C/(Mo 2 C + WC) ratios affect microstructure and mechanical properties of cermets. • Grains become fine and structure of cermets tends to be compact with raised Mo 2 C. • The cermets with a Mo 2 C/(Mo 2 C + WC) ratio of 0.4 can be used to machine 42CrMo steel

  6. Atomistic simulation study of deformation twinning of nanocrystalline body-centered cubic Mo

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Xiaofeng [The College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu (China); Li, Dan, E-mail: txf8378@163.com [The College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu (China); Yu, You [College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu (China); You, Zhen Jiang [Australian School of Petroleum, University of Adelaide, SA 5005 (Australia); Li, Tongye [The National Key Laboratory of Nuclear Fuel and Materials, Nuclear Power Institute of China, Chengdu (China); Ge, Liangquan [The College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu (China)

    2017-04-06

    Deformation twinning of nanocrystalline body-centered cubic Mo was studied using molecular dynamics simulations, and the effects of grain sizes and temperatures on the deformation were evaluated. With small grain size, grain rotation accompanying grain growth was found to play important role in nanocrystalline Mo during tensile deformation. Additionally, grain rotation and the deformation controlled by GB-mediated processes induce to the difficulty of creating crack. Twin was formed by successive emission of twinning partials from grain boundaries in small grain size systems. However, the twin mechanisms of GB splitting and overlapping of two extended dislocations were also found in larger size grain. Twin induced crack tips were observed in our simulation, and this confirmed the results of previous molecular dynamics simulations. At higher temperatures, GB activities can be thermally activated, resulting in suppression of twinning tendency and improvement of ductility of nanocrystalline Mo.

  7. Effect of Mo{sub 2}C/(Mo{sub 2}C + WC) weight ratio on the microstructure and mechanical properties of Ti(C,N)-based cermet tool materials

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingzhong; Zhao, Jun, E-mail: zhaojun@sdu.edu.cn; Ai, Xing; Qin, Wenzhen; Wang, Dawei; Huang, Weimin

    2015-11-15

    To optimize the Mo{sub 2}C content in Ti(C,N)-based cermet tool materials used for cutting the high-strength steel of 42CrMo (AISI 4140/4142 steel), the cermets with different Mo{sub 2}C/(Mo{sub 2}C + WC) weight ratios were prepared. And the microstructure and mechanical properties of cermets were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD) and measurements of transverse rupture strength (TRS), Vickers hardness (HV) and fracture toughness (K{sub IC}). The results indicate that the Mo{sub 2}C/(Mo{sub 2}C + WC) ratios have great influences on the microstructure features and mechanical properties of Ti(C,N)-based cermets. When the Mo{sub 2}C/(Mo{sub 2}C + WC) ratio increases, the Ti(C,N) grains become finer with smaller black cores surrounded by thinner rims, and the structure of cermets tends to be more compact with smaller binder mean free path. Owing to the medium grains and moderate rims, the cermets with a Mo{sub 2}C/(Mo{sub 2}C + WC) ratio of 0.4 exhibit better mechanical properties, and can be chosen as the tool material for machining 42CrMo steel due to the lower Mo content. - Highlights: • Mo{sub 2}C/(Mo{sub 2}C + WC) ratios affect microstructure and mechanical properties of cermets. • Grains become fine and structure of cermets tends to be compact with raised Mo{sub 2}C. • The cermets with a Mo{sub 2}C/(Mo{sub 2}C + WC) ratio of 0.4 can be used to machine 42CrMo steel.

  8. Comparative study of NiW, NiMo and MoW prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Gonzalez, G.; Sagarzazu, A.; Villalba, R.; Ochoa, J.

    2007-01-01

    The present work concern the amorphisation process induced by mechanical alloying in the NiW, NiMo and MoW systems. The alloys chosen combine a group of transition elements varying from very similar atomic radius and electronic valences (MoW) to different ones (NiW and NiMo). The three systems achieved an amorphous state after 50 h of milling. The mechanism of amorphisation proposed for NiW and NiMo was the combined effect of an excess concentration of the solute atoms entering into the structure of one of the elements and a critical concentration of defects. Continuous formation of an amorphous phase at the interface of the crystalline phase was observed during the process. MoW seems to amorphize by continuous reduction of grain size down to a critical value where the amorphisation takes place

  9. Phase transformation kinetics in rolled U-10 wt. % Mo foil: Effect of post-rolling heat treatment and prior γ-UMo grain size

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Saumyadeep; Overman, Nicole; Varga, Tamas; Lavender, Curt; Joshi, Vineet V.

    2017-12-01

    The effect of sub-eutectoid heat treatment on the phase transformation behavior in rolled U-10 wt.percent Mo (U10Mo) foils was systematically investigated. The as-cast 5 mm thick foils were initially homogenized at 900 degrees C for 48 hours and were hot rolled to 2 mm and later cold rolled down to 0.2 mm. Three starting microstructures were evaluated: (i) hot- + cold-rolled to 0.2 mm (as-rolled condition), (ii) hot- + cold-rolled to 0.2 mm + annealed at 700 deg. C for 1 hour, and (iii) hot- + cold-rolled to 0.2 mm + annealed at 1000 deg. C for 60 hours. U10Mo rolled foils went through various degrees of decomposition when subjected to the sub-eutectoid heat-treatment step and formed a lamellar microstructure through a cellular reaction mostly along the previous γ-UMo grain boundaries.

  10. Effect of Mo/B atomic ratio on the properties of Mo2NiB2-based cermets

    International Nuclear Information System (INIS)

    Xie, Lang; Li, XiaoBo; Zhang, Dan; Yi, Li; Gao, XiaoQing; Xiangtan Univ.

    2015-01-01

    Using three elementary substances, Mo, Ni, and amorphous B as raw materials, four series of Mo 2 NiB 2 -based cermets with the Mo/B atomic ratio ranging from 0.9 to 1.2 were successfully prepared via reaction sintering. The effect of Mo/B atomic ratio on the microstructure and properties was studied for the cermets. The results indicate that there is a strong correlation between the Mo/B atomic ratio and properties. The transverse rupture strength of the cermets increases with an increase in Mo/B ratio and shows a maximum value of 1 872 MPa at an Mo/B atomic ratio of 1.1 and then decreases with increasing Mo/B atomic ratio. The hardness and the corrosion resistance of the cermets increase monotonically with an increase in Mo/B atomic ratio. In Mo-rich cermets with an atomic ratio of Mo/B above 1.1, a small amount Ni-Mo intermetallic compound is found precipitated at the interface of Mo 2 NiB 2 grains.

  11. Structure of MoCN films deposited by cathodic arc evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Gilewicz, A., E-mail: adam.gilewicz@tu.koszalin.pl [Koszalin University of Technology, Faculty of Technology and Education, Sniadeckich 2, 75-453 Koszalin (Poland); Jedrzejewski, R.; Kochmanska, A.E. [West Pomeranian University of Technology Szczecin, Faculty of Mechanical Engineering and Mechatronics, 19 Piastów Ave., 70-313 Szczecin (Poland); Warcholinski, B. [Koszalin University of Technology, Faculty of Technology and Education, Sniadeckich 2, 75-453 Koszalin (Poland)

    2015-02-27

    Molybdenum carbonitride (MoCN) coatings were deposited onto HS6-5-2 steel substrate using pure Mo targets in mixed acetylene and nitrogen atmosphere by cathodic arc evaporation. The structural properties of MoCN coatings with different carbon contents (as an effect of the C{sub 2}H{sub 2} flow rate) were investigated systematically. Phase and chemical composition evolution of the coatings were characterized both by the glancing angle of X-ray diffraction (XRD) and wavelength dispersive spectrometry, respectively. These analyses have been supplemented by estimates of grain sizes and stress in the coatings. The XRD results show that the increase in acetylene flow rate causes the formation of molybdenum carbide (MoC) hexagonal phase in the coatings, a reduction of grain size and an increase in internal stress. - Highlights: • MoN and MoCN coatings were deposited by cathodic arc evaporation in nitrogen atmosphere. • MoCN coatings were formed using different acetylene flow rates. • Phase composition evolution was observed. • Crystallite size and stress were calculated.

  12. Abnormal Grain Growth in the Heat Affected Zone of Friction Stir Welded Joint of 32Mn-7Cr-1Mo-0.3N Steel during Post-Weld Heat Treatment

    Directory of Open Access Journals (Sweden)

    Yijun Li

    2018-04-01

    Full Text Available The abnormal grain growth in the heat affected zone of the friction stir welded joint of 32Mn-7Cr-1Mo-0.3N steel after post-weld heat treatment was confirmed by physical simulation experiments. The microstructural stability of the heat affected zone can be weakened by the welding thermal cycle. It was speculated to be due to the variation of the non-equilibrium segregation state of solute atoms at the grain boundaries. In addition, the pressure stress in the welding process can promote abnormal grain growth in the post-weld heat treatment.

  13. Stress corrosion cracking of stainless steels under deaerated high-temperature water. Influence of grain boundary carbide precipitation, and effect of Mo and Cr in alloys

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki; Arioka, Koji

    2007-01-01

    In order to evaluate the influence of grain boundary carbide on IGSCC susceptibility of stainless steel, crack growth rate tests were performed under deaerated or 0.3 ppm hydrogenated pure water environments at 320degC using half-inch compact tension (CT) specimens. In our previous report, CT testing showed that the susceptibility of CW316 to IGSCC was inhibited by the precipitation of grain boundary carbide under these environments. The result suggested quite different behavior from that in an oxygenated high-temperature water environment. In this study, the influence of (1) Mo and (2) Cr content in alloys, and (3) Cr depletion at the grain boundary on the IGSCC growth behavior in stainless steel was studied at 320degC under a 0.3-ppm hydrogenated pure-water environment. As a result, (1) IGSCC growth was observed on non-sensitized CW20%316, CW20%304, CW20%20Cr316, and CW20%20Cr304 under a 0.3-ppm hydrogenated pure-water environment at 320degC. (2) IGSCC growth was not observed for sensitized CW20%316 and CW20%304 (at 650degC x 48 or 24 h) and healing heat-treated CW20%316 (at 650degC x 48 h + 900degC x 0.5 h) under the same water environment. (3) The susceptibility of high Cr content materials (CW20%20Cr316 and CW20% 20Cr304) to IGSCC resistance was improved that of conventional CW316 and CW304 under the same water environment. The higher Cr content is effective in inhibiting susceptibility to IGSCC, but the inhibiting effect of Cr content is smaller than the effect of the grain boundary carbide. (4) These differences in IGSCC suggest that grain boundary carbide has a beneficial effect in improving IGSCC resistance, at least in a 0.3-ppm hydrogenated pure-water environment, despite the Mo content and Cr depletion at grain boundary. (author)

  14. Investigation of the fabrication process of hot-worked stainless-steel and Mo sheathed PbMo6 S8 wires

    International Nuclear Information System (INIS)

    Yamasaki, H.; Kimura, Y.

    1988-01-01

    Stainless-steel and Mo sheathed PbMo 6 S 8 wires have been fabricated by hot working from modified PbS, Mo, and MoS 2 mixed powders which were prepared by reacting Pb, Mo, and S at 530 0 C. Critical current densities were investigated for different preparation conditions, and it is revealed that obtaining continuous current path between PbMo 6 S 8 grains is the most important factor to achieve high critical current density. The J/sub c/ value of 2.8 x 10 4 Acm 2 (8 T), 7.8 x 10 3 Acm 2 (15 T), and 1.3 x 10 3 Acm 2 (23 T) was observed for the PbMo 6 S/sub 7.0/ wire heat treated at 700 0 C.copic

  15. Observation of Wigner crystal phase and ripplon-limited mobility behavior in monolayer CVD MoS2 with grain boundary

    Science.gov (United States)

    Chen, Jyun-Hong; Zhong, Yuan-Liang; Li, Lain-Jong; Chen, Chii-Dong

    2018-06-01

    Two-dimensional electron gas (2DEG) is crucial in condensed matter physics and is present on the surface of liquid helium and at the interface of semiconductors. Monolayer MoS2 of 2D materials also contains 2DEG in an atomic layer as a field effect transistor (FET) ultrathin channel. In this study, we synthesized double triangular MoS2 through a chemical vapor deposition method to obtain grain boundaries for forming a ripple structure in the FET channel. When the temperature was higher than approximately 175 K, the temperature dependence of the electron mobility μ was consistent with those in previous experiments and theoretical predictions. When the temperature was lower than approximately 175 K, the mobility behavior decreased with the temperature; this finding was also consistent with that of the previous experiments. We are the first research group to explain the decreasing mobility behavior by using the Wigner crystal phase and to discover the temperature independence of ripplon-limited mobility behavior at lower temperatures. Although these mobility behaviors have been studied on the surface of liquid helium through theories and experiments, they have not been previously analyzed in 2D materials and semiconductors. We are the first research group to report the similar temperature-dependent mobility behavior of the surface of liquid helium and the monolayer MoS2.

  16. Observation of Wigner crystal phase and ripplon-limited mobility behavior in monolayer CVD MoS2 with grain boundary

    KAUST Repository

    Chen, Jyun-Hong

    2018-03-12

    Two-dimensional electron gas (2DEG) is crucial in condensed matter physics and is present on the surface of liquid helium and at the interface of semiconductors. Monolayer MoS2 of 2D materials also contains 2DEG in an atomic layer as field effect transistor (FET) ultrathin channel. In this study, we synthesized double triangular MoS2 through a chemical vapor deposition method to obtain grain boundaries for forming a ripple structure in FET channel. When the temperature was higher than approximately 175 K, the temperature dependence of the electron mobility μ was consistent with those in previous experiments and theoretical predictions. When the temperature was lower than approximately 175 K, the mobility behavior decreased with the temperature; this finding was also consistent with that of the previous experiments. We are the first research group to explain the decreasing mobility behavior by using the Wigner crystal phase and to discover the temperature independence of ripplon-limited mobility behavior at lower temperatures. Although these mobility behaviors have been studied on the surface of liquid helium through theories and experiments, they have not previously analyzed in 2D materials and semiconductors. We are the first research group to report the similar temperature-dependent mobility behavior of the surface of liquid helium and the monolayer MoS2.

  17. U-Mo Alloy Powder Obtained Through Selective Hydriding. Particle Size Control

    International Nuclear Information System (INIS)

    Balart, S.N.; Bruzzoni, P.; Granovsky, M.S.

    2002-01-01

    Hydride-dehydride methods to obtain U-Mo alloy powder for high-density fuel elements have been successfully tested by different authors. One of these methods is the selective hydriding of the α phase (HSα). In the HSα method, a key step is the partial decomposition of the γ phase (retained by quenching) to α phase and an enriched γ phase or U 2 Mo. This transformation starts mainly at grain boundaries. Subsequent hydrogenation of this material leads to selective hydriding of the α phase, embrittlement and intergranular fracture. According to this picture, the particle size of the final product should be related to the γ grain size of the starting alloy. The feasibility of controlling the particle size of the product by changing the γ grain size of the starting alloy is currently investigated. In this work an U-7 wt% Mo alloy was subjected to various heat treatments in order to obtain different grain sizes. The results on the powder particle size distribution after applying the HSα method to these samples show that there is a strong correlation between the original γ grain size and the particle size distribution of the powder. (author)

  18. Characterization of U-Mo Foils for AFIP-7

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Danny J.; Ermi, Ruby M.; Schemer-Kohrn, Alan L.; Overman, Nicole R.; Henager, Charles H.; Burkes, Douglas; Senor, David J.

    2012-11-07

    Twelve AFIP in-process foil samples, fabricated by either Y-12 or LANL, were shipped from LANL to PNNL for potential characterization using optical and scanning electron microscopy techniques. Of these twelve, nine different conditions were examined to one degree or another using both techniques. For this report a complete description of the results are provided for one archive foil from each source of material, and one unirradiated piece of a foil of each source that was irradiated in the Advanced Test Reactor. Additional data from two other LANL conditions are summarized in very brief form in an appendix. The characterization revealed that all four characterized conditions contained a cold worked microstructure to different degrees. The Y-12 foils exhibited a higher degree of cold working compared to the LANL foils, as evidenced by the highly elongated and obscure U-Mo grain structure present in each foil. The longitudinal orientations for both of the Y-12 foils possesses a highly laminar appearance with such a distorted grain structure that it was very difficult to even offer a range of grain sizes. The U-Mo grain structure of the LANL foils, by comparison, consisted of a more easily discernible grain structure with a mix of equiaxed and elongated grains. Both materials have an inhomogenous grain structure in that all of the characterized foils possess abnormally coarse grains.

  19. Modelling and characterization of chi-phase grain boundary precipitation during aging of Fe-Cr-Ni-Mo stainless steel

    International Nuclear Information System (INIS)

    Xu, W.; San Martin, D.; Rivera Diaz del Castillo, P.E.J.; Zwaag, S. van der

    2007-01-01

    High molybdenum stainless steels may contain the chi-phase precipitate (χ, Fe 36 Cr 12 Mo 10 ) which may lead to undesirable effects on strength, toughness and corrosion resistance. In the present work, specimens of a 12Cr-9Ni-4Mo wt% steel are heat treated at different temperatures and times, and the average particle size and particle size distribution of chi-phase precipitate are studied quantitatively. A computer model based on the KWN framework has been developed to describe the evolution of chi-phase precipitation. The kinetic model takes advantage of the KWN model to describe the precipitate particle size distribution, and is coupled with the thermodynamic software ThermoCalc for calculating the instantaneous local thermodynamic equilibrium condition at the interface and the driving force for nucleation. A modified version of Zener's theory accounting for capillarity effects at early growth stages is implemented in this model. The prediction of the model for chi-phase precipitation at a grain boundary is compared to experimental results and both the average particle size and the particle size distribution are found to be in good agreement with experimental observations at late precipitation stages

  20. Controllable Growth of Monolayer MoS2 and MoSe2 Crystals Using Three-temperature-zone Furnace

    Science.gov (United States)

    Zheng, Binjie; Chen, Yuanfu

    2017-12-01

    Monolayer molybdenum disulfide (MoS2) and molybdenum diselenide (MoSe2) have attracted a great attention for their exceptional electronic and optoelectronic properties among the two dimensional family. However, controllable synthesis of monolayer crystals with high quality needs to be improved urgently. Here we demonstrate a chemical vapor deposition (CVD) growth of monolayer MoS2 and MoSe2 crystals using three-temperature-zone furnace. Systematical study of the effects of growth pressure, temperature and time on the thickness, morphology and grain size of crystals shows the good controllability. The photoluminescence (PL) characterizations indicate that the as-grown monolayer MoS2 and MoSe2 crystals possess excellent optical qualities with very small full-width-half-maximum (FWHM) of 96 me V and 57 me V, respectively. It is comparable to that of exfoliated monolayers and reveals their high crystal quality. It is promising that our strategy should be applicable for the growth of other transition metal dichalcogenides (TMDs) monolayer crystals.

  1. Recent progress on RE2O3-Mo/W emission materials.

    Science.gov (United States)

    Wang, Jinshu; Zhang, Xizhu; Liu, Wei; Cui, Yuntao; Wang, Yiman; Zhou, Meiling

    2012-08-01

    RE2O3-Mo/W cathodes were prepared by powder metallurgy method. La2O3-Y2O3-Mo cermet cathodes prepared by traditional sintering method and spark plasma sintering (SPS) exhibit different secondary emission properties. The La2O3-Y2O3-Mo cermet cathode prepared by SPS method has smaller grain size and exhibits better secondary emission performance. Monte carlo calculation results indicate that the secondary electron emission way of the cathode correlates with the grain size. Decreasing the grain size can decrease the positive charging effect of RE2O3 and thus is favorable for the escaping of secondary electrons to vacuum. The Scandia doped tungsten matrix dispenser cathode with a sub-micrometer microstructure of matrix with uniformly distributed nanometer-particles of Scandia has good thermionic emission property. Over 100 A/cm2 full space charge limited current density can be obtained at 950Cb. The cathode surface is covered by a Ba-Sc-O active surface layer with nano-particles distributing mainly on growth steps of W grains, leads to the conspicuous emission property of the cathode.

  2. Effect of Mo contents on corrosion behaviors of welded duplex stainless steel

    Science.gov (United States)

    Bae, Seong Han; Lee, Hae Woo

    2013-05-01

    The corrosion behaviour and change of the phase fraction in welded 24Cr Duplex stainless steel was investigated for different chemical composition ranges of Mo contents. Filler metal was produced by fixing the contents of Cr, Ni, N, and Mn while adjusting the Mo content to 0.5, 1.4, 2.5, 3.5 wt%. The δ-ferrite fraction was observed to increase as the content of Mo increased. A polarisation test conducted in a salt solution, indicated the pitting corrosion potential increased continuously to 3.5 wt% Mo, while the corrosion potential changed most between 0.5 and 1.41 wt% Mo. The location of the pitting corrosion in 0.5 wt% Mo steel was randomly distributed, but it occurred selectively at the grain boundary between the γ- and δ-ferrite phases in 1.4, 2.5 and 3.5 wt% Mo steel. Energy dispersive X-ray spectroscopy mapping analysis showed that areas deficient in Cr, Mo, and Ni occurred around the grain boundary of the γ- and δ-ferrite phases. Non-metallic inclusions are thought to act as initiation points for the pitting corrosion that occurs in the salt solution initially as a result of the potential difference between the matrix structure and the incoherent inclusions.

  3. A facile route to large-scale synthesis MoO2 and MoO3 as electrode materials for high-performance supercapacitors

    International Nuclear Information System (INIS)

    Xuan, H.C.; Du, Y.W.; Zhang, Y.Q.; Xu, Y.K.; Li, H.; Han, P.D.; Wang, D.H.

    2016-01-01

    MoO 3 and MoO 2 materials have been successfully synthesized by thermal decomposition of ammonium paramolybdate in air and a sealed quartz tube, respectively. The microstructure of as-synthesized MoO 3 is composed of irregular lamellar plates with a plate thickness around 100 nm and MoO 2 has the larger grain size with lamellar plates connected with each other. A maximum specific capacitance of 318 F/g at 0.5 A/g is obtained for MoO 2 prepared in a closed environment. On the other hand, the sample MoO 3 exhibits excellent rate capacity with specific capacitances of 218, 209, 196, 188, 176, and 160 F/g at current densities of 0.5, 1, 2, 3, 4, and 5 A/g, respectively. These results pave the way to consider MoO 3 and MoO 2 as prospective materials for energy-storage applications. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Influence of Mo/MoSe{sub 2} microstructure on the damp heat stability of the Cu(In,Ga)Se{sub 2} back contact molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Theelen, Mirjam, E-mail: mirjam.theelen@tno.nl [TNO Solliance, Thin Film Technology, High Tech Campus 21, 5656 AE Eindhoven (Netherlands); Delft University of Technology, Photovoltaic Materials and Devices, Mekelweg 4, 2628 CD Delft (Netherlands); Harel, Sylvie [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Verschuren, Melvin [TNO Solliance, Thin Film Technology, High Tech Campus 21, 5656 AE Eindhoven (Netherlands); Tomassini, Mathieu [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Hovestad, Arjan [TNO Solliance, Thin Film Technology, High Tech Campus 21, 5656 AE Eindhoven (Netherlands); Barreau, Nicolas [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Berkum, Jurgen van [Philips Innovation Services, High Tech Campus 11, 5656 AE Eindhoven (Netherlands); Vroon, Zeger [TNO Solliance, Thin Film Technology, High Tech Campus 21, 5656 AE Eindhoven (Netherlands); Zeman, Miro [Delft University of Technology, Photovoltaic Materials and Devices, Mekelweg 4, 2628 CD Delft (Netherlands)

    2016-08-01

    The degradation behavior of Mo/MoSe{sub 2} layers have been investigated using damp heat exposure. The two studied molybdenum based films with different densities and microstructures were obtained by lifting off Cu(In,Ga)Se{sub 2} layers from a bilayer molybdenum stack on soda lime glass. Hereby, a glass/Mo/MoSe{sub 2} was obtained, which resembles the back contact as present in Cu(In,Ga)Se{sub 2} solar cells. The samples were degraded for 150 h under standard damp heat conditions and analyzed before, during and after degradation. It was observed that the degradation resulted in the formation of needles and molybdenum oxide layers near the glass/Mo and the Mo/Cu(In,Ga)Se{sub 2} interfaces. X-ray Photoelectron Spectroscopy measurements have shown that the sodium was also present at the surface of the degraded material and it is proposed that the degraded material consists mostly of MoO{sub 3} with intercalated Na{sup +}. This element has likely migrated from the soda lime glass. This intercalation process could have led to the formation of Na{sub x}MoO{sub 3} ‘molybdenum bronze’ following this redox reaction: xNa{sup +} + MoO{sub 3} + xe{sup −} ↔ Na{sub x}MoO{sub 3} It is proposed that the formed oxide layer contains Na{sub x}MoO{sub 3} with different Na{sup +} contents and different grades of conductivity. This intercalation process can also explain the high mobility of Na{sup +} via the grain boundaries in molybdenum. It was also observed that the molybdenum film with a top layer deposited at a high pressure is more susceptible for damp heat degradation. - Highlights: • SLG/high pressure Mo/low pressure Mo/MoSe{sub 2} stacks were exposed to damp heat. • Molybdenum deposited at low pressure retained the best reflectivity and conductivity. • Damp heat exposure leads to a Na{sub x}MoO{sub 3}/Mo multilayer structure. • The Na{sub x}MoO{sub 3} probably consists of Na{sup +} intercalated in a (reduced) MoO{sub 3} matrix. • Intercalation can explain the

  5. Mechanically activated synthesis of nanocrystalline ternary carbide Fe3Mo3C

    International Nuclear Information System (INIS)

    Zakeri, M.; Rahimipour, M.R.; Khanmohammadian, A.

    2008-01-01

    In this investigation, Fe 3 Mo 3 C ternary carbide was synthesized from the elemental powders of 3Mo/3Fe/C by mechanical milling and subsequent heat treatment. Structural and morphological evolutions of powders were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results showed that no phase transformation occurs during milling. A nanostructure Mo (Fe) solid solution obtained after 30 h of milling. With increasing milling time to 70 h no change takes place except grain size reduction to 9 nm and strain enhancement to 0.86%. Milled powders have spheroid shape and very narrow size distribution about 2 μm at the end of milling. Fe 3 Mo 3 C was synthesized during annealing of 70 h milled sample at 700 deg. C. Undesired phases of MoOC and Fe 2 C form at 1100 deg. C. No transformation takes place during annealing of 10 h milled sample at 700 deg. C. Mean grain size and strain get to 69 nm and 0.23% respectively with annealing of 70 h milled sample at 1100 deg. C

  6. Optical and structural properties of Mo-doped NiTiO{sub 3} materials synthesized via modified Pechini methods

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Thanh-Truc; Kang, Sung Gu; Shin, Eun Woo, E-mail: ewshin@ulsan.ac.kr

    2017-07-31

    Highlights: • Mo-doped NiTiO{sub 3} materials were well prepared by a modified Pechini method. • Recombination rates of the materials were significantly inhibited by Mo doping. • Defect sites were generated by the substitution of Mo for Ni or Ti positions. • The generation of defect sites gradually decreased the grain sizes of the materials. • The surface areas of the materials were increased with decreasing the grain sizes. - Abstract: In this study, molybdenum (Mo)-doped nickel titanate (NiTiO{sub 3}) materials were successfully synthesized as a function of Mo content through a modified Pechini method followed by a solvothermal treatment process. Various characterization methods were employed to investigate the optical and structural properties of the materials. XRD patterns clearly showed that the NiTiO{sub 3} structure maintained a single phase with no observed crystalline structure transformations, even after the addition of 10 wt.% Mo. In the Raman spectra and XRD patterns, peak positions shifted with a change in Mo content, confirming that the NiTiO{sub 3} lattice was doped with Mo. On the other hand, Mo doping of NiTiO{sub 3} materials changed their optical properties. DRS-UV demonstrated that the addition of Mo increased photon absorption within the UV region. Relaxation processes were inhibited by Mo doping, which was evident in the PL spectra. Structural properties of the prepared materials were studied via FE-SEM and HR-TEM. The measured surface area increased proportionally with Mo content due to a reduction in grain size of the materials.

  7. Large-area few-layer MoS 2 deposited by sputtering

    KAUST Repository

    Huang, Jyun-Hong

    2016-06-06

    Direct magnetron sputtering of transition metal dichalcogenide targets is proposed as a new approach for depositing large-area two-dimensional layered materials. Bilayer to few-layer MoS2 deposited by magnetron sputtering followed by post-deposition annealing shows superior area scalability over 20 cm(2) and layer-by-layer controllability. High crystallinity of layered MoS2 was confirmed by Raman, photo-luminescence, and transmission electron microscopy analysis. The sputtering temperature and annealing ambience were found to play an important role in the film quality. The top-gate field-effect transistor by using the layered MoS2 channel shows typical n-type characteristics with a current on/off ratio of approximately 10(4). The relatively low mobility is attributed to the small grain size of 0.1-1 mu m with a trap charge density in grain boundaries of the order of 10(13) cm(-2).

  8. The Tribological Performance of CrMoN/MoS2 Solid Lubrication Coating on a Piston Ring

    Directory of Open Access Journals (Sweden)

    Yuelan Di

    2017-05-01

    Full Text Available In order to improve the tribological properties of an engine piston ring and enhance its service life, magnetron sputtering technology and low temperature ion sulphurizing treatment technology were used to prepare CrMoN/MoS2 solid lubricant coating on the surface of an engine piston ring. The morphologies and compositions of the surface and cross-section of the sulfuration layer were analyzed by field emission scanning electron microscopy (FESEM, and wear property under high load, high speed and high temperature conditions were tested by a SRV®4 friction and wear testing machine. The results show that the CrMoN/MoS2 composite coatings appear as a dense grain structure, and the coating is an ideal solid lubrication layer that possesses an excellent high temperature wear resistance, reducing the engine operating temperature abrasion effectively and prolonging the service life of the engine.

  9. Kinetics of the U-1% Mo alloy transformation during continual cooling; Kinetika transformacije legura U-1% Mo pri kontinuiranom hladjenju

    Energy Technology Data Exchange (ETDEWEB)

    Mihajlovic, A; Djuric, B; Tepavac, P [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-11-15

    Study of continuous cooling of the U-1% Mo alloy is significant if it could be used as fuel in the nuclear reactor. Previous studies were dealing with relatively low cooling rate up to 3 deg C/s{sup 1}, which produced alpha + gamma structure. This task was devoted to testing the U-1% Mo alloy properties at higher cooling rates in order to discover whether bainite reaction and favourable alpha grain could be achieved under certain conditions.

  10. Wear behaviour of wear-resistant adaptive nano-multilayered Ti-Al-Mo-N coatings

    Science.gov (United States)

    Sergevnin, V. S.; Blinkov, I. V.; Volkhonskii, A. O.; Belov, D. S.; Kuznetsov, D. V.; Gorshenkov, M. V.; Skryleva, E. A.

    2016-12-01

    Coating samples in the Ti-Al-Mo-N system were obtained by arc-PVD method at variable bias voltage Ub applied to the substrate, and the partial pressure of nitrogen P(N2) used as a reaction gas. The deposited coatings were characterized by a nanocrystalline structure with an average grain size of 30-40 nm and multilayered architecture with alternating layers of (Ti,Al)N nitride and Mo-containing phases with a thickness comparable to the grain size. Coatings of (Ti,Al)N-Mo-Mo2N and (Ti,Al)N-Mo2N compositions were obtained by changing deposition parameters. The obtained coatings had hardness of 40 GPa and the relative plastic deformation under microindentation up to 60%. (Ti,Al)N-Mo2N coatings demonstrated better physicomechanical characteristics, showing high resistance to crack formation and destruction through the plastic deformation mechanism without brittle fracturing, unlike (Ti,Al)N-Mo-Mo2N. The friction coefficient of the study coatings (against Al2O3 balls under dry condition using a pin-on-disc method) reached the values of 0.35 and 0.5 at 20 °C and 500 °C respectively, without noticeable wear within this temperature range. These tribological properties were achieved by forming MoO3 acting as a solid lubricant. At higher temperatures the deterioration in the tribological properties is due to the high rate of MoO3 sublimation from friction surfaces.

  11. Fission-induced recrystallization effect on intergranular bubble-driven swelling in U-Mo fuel

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Linyun; Mei, Zhi-Gang; Yacout, Abdellatif M.

    2017-10-01

    We have developed a mesoscale phase-field model for studying the effect of recrystallization on the gas-bubble-driven swelling in irradiated U-Mo alloy fuel. The model can simulate the microstructural evolution of the intergranular gas bubbles on the grain boundaries as well as the recrystallization process. Our simulation results show that the intergranular gas-bubble-induced fuel swelling exhibits two stages: slow swelling kinetics before recrystallization and rapid swelling kinetics with recrystallization. We observe that the recrystallization can significantly expedite the formation and growth of gas bubbles at high fission densities. The reason is that the recrystallization process increases the nucleation probability of gas bubbles and reduces the diffusion time of fission gases from grain interior to grain boundaries by increasing the grain boundary area and decreasing the diffusion distance. The simulated gas bubble shape, size distribution, and density on the grain boundaries are consistent with experimental measurements. We investigate the effect of the recrystallization on the gas-bubble-driven fuel swelling in UMo through varying the initial grain size and grain aspect ratio. We conclude that the initial microstructure of fuel, such as grain size and grain aspect ratio, can be used to effectively control the recrystallization and therefore reduce the swelling in U-Mo fuel.

  12. Compressive intrinsic stress originates in the grain boundaries of dense refractory polycrystalline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Magnfält, D., E-mail: danma@ifm.liu.se; Sarakinos, K. [Nanoscale Engineering Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Fillon, A.; Abadias, G. [Institut P' , Département Physique et Mécanique des Matériaux, Université de Poitiers-CNRS-ENSMA, SP2MI, Téléport 2, Bd M. et P. Curie, F-86962 Chasseneuil-Futuroscope (France); Boyd, R. D.; Helmersson, U. [Plasma and Coatings Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden)

    2016-02-07

    Intrinsic stresses in vapor deposited thin films have been a topic of considerable scientific and technological interest owing to their importance for functionality and performance of thin film devices. The origin of compressive stresses typically observed during deposition of polycrystalline metal films at conditions that result in high atomic mobility has been under debate in the literature in the course of the past decades. In this study, we contribute towards resolving this debate by investigating the grain size dependence of compressive stress magnitude in dense polycrystalline Mo films grown by magnetron sputtering. Although Mo is a refractory metal and hence exhibits an intrinsically low mobility, low energy ion bombardment is used during growth to enhance atomic mobility and densify the grain boundaries. Concurrently, the lateral grain size is controlled by using appropriate seed layers on which Mo films are grown epitaxially. The combination of in situ stress monitoring with ex situ microstructural characterization reveals a strong, seemingly linear, increase of the compressive stress magnitude on the inverse grain size and thus provides evidence that compressive stress is generated in the grain boundaries of the film. These results are consistent with models suggesting that compressive stresses in metallic films deposited at high homologous temperatures are generated by atom incorporation into and densification of grain boundaries. However, the underlying mechanisms for grain boundary densification might be different from those in the present study where atomic mobility is intrinsically low.

  13. Magnetothermopower in A2−xLaxFeMoO6 (A = Sr, Ba

    Directory of Open Access Journals (Sweden)

    G. V. M. Williams

    2017-01-01

    Full Text Available A magnetothermopower has been observed in electronically spin-polarized polycrystalline Sr2-xLaxFeMoO6 and Ba2FeMoO6. The magnetothermopower is linear up to ~50 K for Sr2-xLaxFeMoO6 and linear up to ~270 K for Ba2FeMoO6. We suggest that the magnetothermopower may arise from a spin-tunneling magnetothermopower between the grains.

  14. TEM and XAS investigation of fission gas behaviors in U-Mo alloy fuels through ion beam irradiation

    Science.gov (United States)

    Zang, Hang; Yun, Di; Mo, Kun; Wang, Kunpeng; Mohamed, Walid; Kirk, Marquis A.; Velázquez, Daniel; Seibert, Rachel; Logan, Kevin; Terry, Jeffrey; Baldo, Peter; Yacout, Abdellatif M.; Liu, Wenbo; Zhang, Bo; Gao, Yedong; Du, Yang; Liu, Jing

    2017-10-01

    In this study, smaller-grained (hundred nano-meter size grain) and larger-grained (micro-meter size grain) U-10Mo specimens have been irradiated (implanted) with 250 keV Xe+ beam and were in situ characterized by TEM. Xe bubbles were not seen in the specimen after an implantation fluence of 2 × 1020 ions/m2 at room temperature. Nucleation of Xe bubbles happened during heating of the specimen to a final temperature of 300 °C. By comparing measured Xe bubble statistics, the nucleation and growth behaviors of Xe bubbles were investigated in smaller-grained and larger-grained U-10Mo specimens. A multi-atom kind of nucleation mechanism has been observed in both specimens. X-ray Absorption spectroscopy showed the edge position in the bubbles to be the same as that of Xe gas. The size of Xe bubbles has been shown to be bigger in larger-grained specimens than in smaller-grained specimens at the same implantation conditions.

  15. Cyclic Oxidation of High Mo, Reduced Density Superalloys

    Directory of Open Access Journals (Sweden)

    James L. Smialek

    2015-11-01

    Full Text Available Cyclic oxidation was characterized as part of a statistically designed, 12-alloy compositional study of 2nd generation single crystal superalloys as part of a broader study to co-optimize density, creep strength, and cyclic oxidation. The primary modification was a replacement of 5 wt. % W by 7% or 12% Mo for density reductions of 2%–7%. Compositions at two levels of Mo, Cr, Co, and Re were produced, along with a midpoint composition. Initially, polycrystalline vacuum induction samples were screened in 1100 °C cyclic furnace tests using 1 h cycles for 200 h. The behavior was primarily delimited by Cr content, producing final weight changes of −40 mg/cm2 to −10 mg/cm2 for 0% Cr alloys and −2 mg/cm2 to +1 mg/cm2 for 5% Cr alloys. Accordingly, a multiple linear regression fit yielded an equation showing a strong positive Cr effect and lesser negative effects of Co and Mo. The results for 5% Cr alloys compare well to −1 mg/cm2, and +0.5 mg/cm2 for Rene′ N4 and Rene′ N5 (or Rene′ N6, respectively. Scale phases commonly identified were Al2O3, NiAl2O4, NiTa2O6, and NiO, with (Ni,CoMoO4 found only on the least resistant alloys having 0% Cr and 12% Mo. Scale microstructures were complex and reflected variations in the regional spallation history. Large faceted NiO grains and fine NiTa2O6 particles distributed along NiAl2O4 grain boundaries were typical distinctive features. NiMoO4 formation, decomposition, and volatility occurred for a few high Mo compositions. A creep, density, phase stability, and oxidation balanced 5% Cr, 10% Co, 7% Mo, and 3% Re alloy was selected to be taken forward for more extensive evaluations in single crystal form.

  16. Processing, Microstructure and Creep Behavior of Mo-Si-B-Based Intermetallic Alloys for Very High Temperature Structural Applications

    Energy Technology Data Exchange (ETDEWEB)

    Vijay Vasudevan

    2008-03-31

    This research project is concerned with developing a fundamental understanding of the effects of processing and microstructure on the creep behavior of refractory intermetallic alloys based on the Mo-Si-B system. In the first part of this project, the compression creep behavior of a Mo-8.9Si-7.71B (in at.%) alloy, at 1100 and 1200 C was studied, whereas in the second part of the project, the constant strain rate compression behavior at 1200, 1300 and 1400 C of a nominally Mo-20Si-10B (in at.%) alloy, processed such as to yield five different {alpha}-Mo volume fractions ranging from 5 to 46%, was studied. In order to determine the deformation and damage mechanisms and rationalize the creep/high temperature deformation data and parameters, the microstructure of both undeformed and deformed samples was characterized in detail using x-ray diffraction, scanning electron microscopy (SEM) with back scattered electron imaging (BSE) and energy dispersive x-ray spectroscopy (EDS), electron back scattered diffraction (EBSD)/orientation electron microscopy in the SEM and transmission electron microscopy (TEM). The microstructure of both alloys was three-phase, being composed of {alpha}-Mo, Mo{sub 3}Si and T2-Mo{sub 5}SiB{sub 2} phases. The values of stress exponents and activation energies, and their dependence on microstructure were determined. The data suggested the operation of both dislocation as well as diffusional mechanisms, depending on alloy, test temperature, stress level and microstructure. Microstructural observations of post-crept/deformed samples indicated the presence of many voids in the {alpha}-Mo grains and few cracks in the intermetallic particles and along their interfaces with the {alpha}-Mo matrix. TEM observations revealed the presence of recrystallized {alpha}-Mo grains and sub-grain boundaries composed of dislocation arrays within the grains (in Mo-8.9Si-7.71B) or fine sub-grains with a high density of b = 1/2<111> dislocations (in Mo-20Si-10B), which

  17. Effect of Boron on Microstructure and Microhardness Properties of Mo-Si-B Based Coatings Produced Via TIG Process

    Directory of Open Access Journals (Sweden)

    Islak S.

    2016-09-01

    Full Text Available In this study, Mo-Si-B based coatings were produced using tungsten inert gas (TIG process on the medium carbon steel because the physical, chemical, and mechanical properties of these alloys are particularly favourable for high-temperature structural applications. It is aimed to investigate of microstructure and microhardness properties of Mo-Si-B based coatings. Optical microscopy (OM, X-ray diffraction (XRD and scanning electron microscopy (SEM were used to characterize the microstructures of Mo-Si-B based coatings. The XRD results showed that microstructure of Mo–Si–B coating consists of α-Mo, α-Fe, Mo2B, Mo3Si and Mo5SiB2 phases. It was reported that the grains in the microstructure were finer with increasing amounts of boron which caused to occur phase precipitations in the grain boundary. Besides, the average microhardness of coatings changed between 735 HV0.3 and 1140 HV0.3 depending on boron content.

  18. Characters of alloy Zr-0.4%Mo-0.5%Fe-0.5%Cr post heat treatment and cold rolling

    International Nuclear Information System (INIS)

    Sungkono; Siti Aidah

    2014-01-01

    Research and development of Zr-Mo-Fe-Cr alloys aimed to obtain PWR fuel element structure material with high burn up. In this study of the Zr-0.4%Mo-0.5%Fe-0.5%Cr alloys was prepared from zirconium sponge, molybdenum, iron and chromium powder. The alloy were heat treated at varying temperatures of 650 and 750 °C and retention time of 1, 1.5 and 2 hours. The objectives of this research was to obtain effect of thickness reduction on the character of Zr-0.4%Mo-0.5%Fe-0.5%Cr alloy. The results of this experiment showed that the microstructures of Zr-0.4%Mo-0.5%Fe-0.5%Cr alloy after heat treatment and cold rolling exhibits that the higher of the thickness reduction has applied on the alloy caused the microstructure to evolve from deformed equiaxial grains into flat bar grains and then into deformed flat bar grains. However, the higher of the temperature and the retention time then the larger grain structures so that the cold rolling causes the shape of the grains structure into a flat bar with a relatively larger size which affects the lower hardness. The Zr-0.4%Mo-0.5%Fe-0.5%Cr alloy after heat treatment (650-750°C; 1.5-2 hours) can undergo cold deformation without cracking at a thickness reduction between 5 to 15%. (author)

  19. Microstructure and Mechanical Properties of Highly Alloyed FeCrMoVC Steel Fabricated by Spark Plasma Sintering

    Science.gov (United States)

    Oh, Seung-Jin; Jun, Joong-Hwan; Lee, Min-Ha; Shon, In-Jin; Lee, Seok-Jae

    2018-05-01

    In this study, we successfully fabricated highly alloyed FeCrMoVC specimens within 2 min by using the spark plasma sintering (SPS) method. The densities of the sintered specimens were almost identical to their theoretical values. Fine (Mo, V)-rich carbides with lamellar structure were precipitated along the grain boundaries of the as-sintered specimen, whereas relatively large carbides were formed additionally in the transgranular region during the tempering treatment. Compared with the specimen produced by a conventional casting method, the FeCrMoVC specimens from SPS showed smaller grain size with finer carbides and higher hardness values.

  20. Enhancement effect of inter-pass annealing during equal channel angular pressing on grain refinement and ductility of 9Cr1Mo steel

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Ting, E-mail: hao.ting@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Tangi, Haiyin [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Luo, Guangnan [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Wang, Xianping; Liu, Changsong [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China); Fang, Qianfeng, E-mail: qffang@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129, Hefei 230031 (China)

    2016-06-14

    To obtain enhanced mechanical property in both the strength and the ductility, 9Cr1Mo steel (T91) was severely deformed by equal channel angular pressing (ECAP) combined with an additional inter-pass annealing. Tensile results show that the additional inter-pass annealing can significantly improve the ductility (i.e. 18% of the total elongation after four-pass extrusion with the inter-pass annealing) but slightly decrease the tensile strength comparing with the case without the inter-pass annealing (i.e. 10% of the total elongation after four-pass ECAP processing). The average grain size of the two passes ECAP-processed materials with the inter-pass annealing (~0.8 µm) is smaller than that of the sample without inter-pass annealing (~2 µm), and the fraction of the high angle grain boundaries in the samples with the inter-pass annealing (~40%) is higher than that of ~34% (two-pass ECAP) without the inter-pass annealing based on electron backscattering diffraction analysis. The crystallite size and dislocation density were evaluated by means of the modified Williamson-Hall plot based on X-ray diffraction analysis. The microstructural analysis indicates that the enhanced ductility of the ECAP processed and inter-pass annealed materials can be attributed to the relatively smaller grain sizes, larger crystallite sizes and lower dislocation densities.

  1. Enhancement effect of inter-pass annealing during equal channel angular pressing on grain refinement and ductility of 9Cr1Mo steel

    International Nuclear Information System (INIS)

    Hao, Ting; Tangi, Haiyin; Luo, Guangnan; Wang, Xianping; Liu, Changsong; Fang, Qianfeng

    2016-01-01

    To obtain enhanced mechanical property in both the strength and the ductility, 9Cr1Mo steel (T91) was severely deformed by equal channel angular pressing (ECAP) combined with an additional inter-pass annealing. Tensile results show that the additional inter-pass annealing can significantly improve the ductility (i.e. 18% of the total elongation after four-pass extrusion with the inter-pass annealing) but slightly decrease the tensile strength comparing with the case without the inter-pass annealing (i.e. 10% of the total elongation after four-pass ECAP processing). The average grain size of the two passes ECAP-processed materials with the inter-pass annealing (~0.8 µm) is smaller than that of the sample without inter-pass annealing (~2 µm), and the fraction of the high angle grain boundaries in the samples with the inter-pass annealing (~40%) is higher than that of ~34% (two-pass ECAP) without the inter-pass annealing based on electron backscattering diffraction analysis. The crystallite size and dislocation density were evaluated by means of the modified Williamson-Hall plot based on X-ray diffraction analysis. The microstructural analysis indicates that the enhanced ductility of the ECAP processed and inter-pass annealed materials can be attributed to the relatively smaller grain sizes, larger crystallite sizes and lower dislocation densities.

  2. A facile route to large-scale synthesis MoO{sub 2} and MoO{sub 3} as electrode materials for high-performance supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Xuan, H.C.; Du, Y.W. [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024 (China); Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093 (China); Zhang, Y.Q.; Xu, Y.K.; Li, H.; Han, P.D. [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024 (China); Wang, D.H. [Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093 (China)

    2016-09-15

    MoO{sub 3} and MoO{sub 2} materials have been successfully synthesized by thermal decomposition of ammonium paramolybdate in air and a sealed quartz tube, respectively. The microstructure of as-synthesized MoO{sub 3} is composed of irregular lamellar plates with a plate thickness around 100 nm and MoO{sub 2} has the larger grain size with lamellar plates connected with each other. A maximum specific capacitance of 318 F/g at 0.5 A/g is obtained for MoO{sub 2} prepared in a closed environment. On the other hand, the sample MoO{sub 3} exhibits excellent rate capacity with specific capacitances of 218, 209, 196, 188, 176, and 160 F/g at current densities of 0.5, 1, 2, 3, 4, and 5 A/g, respectively. These results pave the way to consider MoO{sub 3} and MoO{sub 2} as prospective materials for energy-storage applications. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Moiré-related in-gap states in a twisted MoS2/graphite heterojunction

    KAUST Repository

    Lu, Chun-I; Butler, Christopher J.; Huang, Jing-Kai; Chu, Yu-Hsun; Yang, Hung-Hsiang; Wei, Ching-Ming; Li, Lain-Jong; Lin, Minn-Tsong

    2017-01-01

    the band gap range of MoS2, and by comparing the tunneling spectra from MoS2 grains of varying rotation with respect to the substrate, show that these features have small but non-negligible dependence on the moiré superstructure. Furthermore, within a

  4. Characterization of Thin Walled Mo Tubing produced by FBCVD

    Energy Technology Data Exchange (ETDEWEB)

    Beaux, Miles Frank [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Usov, Igor Olegovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-21

    The goal of this report is to delineate the results of material characterization performed on Mo tubing produced via the fluidized bed chemical vapor deposition (FBCVD) method. Scanning electron microscopy (SEM) imaging reveals that small randomly oriented grains are achieved in the Mo deposition, but do not persist throughout the entire thickness of the material. Energy dispersive spectroscopy (EDS) reveals the Mo tubes contain residual chlorine and oxygen. EDS measurements on the tube surfaces separated from glass and quartz substrates reveal substrate material adhered to this surface. X-ray diffraction (XRD) revealed the presence of carbon contaminant in the form of Mo2C and oxygen in the form of MoO2. Combustion infrared detection (CID) and inert gas fusion (IGF) performed at Luvak Inc. was used to quantify weight percentages of oxygen and carbon in the tubes produced. Hardness value of the FBCVD Mo was found to be comparable to low carbon arc cast molybdenum.

  5. Structural, morphological, and optical characterizations of Mo, CrN and Mo:CrN sputtered coatings for potential solar selective applications

    Science.gov (United States)

    Ibrahim, Khalil; Mahbubur Rahman, M.; Taha, Hatem; Mohammadpour, Ehsan; Zhou, Zhifeng; Yin, Chun-Yang; Nikoloski, Aleksandar; Jiang, Zhong-Tao

    2018-05-01

    Mo, CrN, and Mo:CrN sputtered coatings synthesized onto silicon Si(100) substrates were investigated as solar selective surfaces and their potential applications in optical devices. These coatings were characterized using XRD, SEM, UV-vis, and FTIR techniques. XRD investigation, showed a change in CrN thin film crystallite characteristic due to Mo doping. Compared to the CrN coating, the Mo:CrN film has a higher lattice parameter and lower grain size of 4.19 nm and 106.18 nm, respectively. FESEM morphology confirmed the decrement in Mo:CrN crystal size due to Mo doping. Optical analysis showed that in the visible range of the solar spectrum, the CrN coatings exhibit the highest solar absorptance of 66% while the lowest thermal emittance value of 5.67 was recorded for the CrN coating doped with Mo. Consequently, the highest solar selectivity of 9.6, and the energy band-gap of 2.88 eV were achieved with the Mo-doped CrN coatings. Various optical coefficients such as optical absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of dielectric constants, and energy loss functions of these coatings were also estimated from the optical reflectance data recorded in the wavelength range of 190-2300 nm.

  6. Defects-tolerant Co-Cr-Mo dental alloys prepared by selective laser melting.

    Science.gov (United States)

    Qian, B; Saeidi, K; Kvetková, L; Lofaj, F; Xiao, C; Shen, Z

    2015-12-01

    CrCoMo alloy specimens were successfully fabricated using selective laser melting (SLM). The aim of this study was to carefully investigate microstructure of the SLM specimens in order to understand the influence of their structural features inter-grown on different length scales ranging from nano- to macro-levels on their mechanical properties. Two different sets of processing parameters developed for building the inner part (core) and the surface (skin) of dental prostheses were tested. Microstructures were characterized by SEM, EBSD and XRD analysis. The elemental distribution was assessed by EDS line profile analysis under TEM. The mechanical properties of the specimens were measured. The microstructures of both specimens were characterized showing formation of grains comprised of columnar sub-grains with Mo-enrichment at the sub-grain boundaries. Clusters of columnar sub-grains grew coherently along one common crystallographic direction forming much larger single crystal grains which are intercrossing in different directions forming an overall dendrite-like microstructure. Three types of microstructural defects were occasionally observed; small voids (10 μm). Despite the presence of these defects, the yield and the ultimate tensile strength (UTS) were 870 and 430MPa and 1300MPa and 1160MPa, respectively, for the skin and core specimens which are higher than casted dental alloy. Although the formation of microstructural defects is hard to be avoided during the SLM process, the SLM CoCrMo alloys can achieve improved mechanical properties than their casted counterparts, implying they are "defect-tolerant". Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. About oxide dispersion particles chemical compatibility with areas coherent dissipation/sub-grains of bcc-alloys in Fe - (Cr, V, Mo, W systems

    Directory of Open Access Journals (Sweden)

    Udovsky A.

    2016-01-01

    Full Text Available A concept of partial magnetic moments (PMM of the iron atoms located in the first ч four coordination spheres (1÷4 CS for bcc lattice have been introduced based on analysis of results obtained by quantum-mechanical calculations (QMC for volume dependence of the average magnetic moment ferromagnetic (FM Fe. The values of these moments have been calculated for pure bcc Fe and bcc - Fe-Cr alloys. This concept has been used to formulate a three sub-lattice model for binary FM alloys of the Fe-M systems (M is an alloying paramagnetic element. Physical reason for sign change dependence of the short-range order and mixing enthalpy obtained by QMCs for Fe-(Cr, V bcc phases has been found. Using this model it has been predicted that static displacements of Fe - atoms in alloy matrix increase with increasing the of CS number and result in reducing of the area of coherent dissipation (ACD size with growth of the dimension factor (DF in the Fe-(Cr, V, Mo, W systems in agreement with the X-ray experiments. It has been shown theoretically that anisotropy of spin- density in bcc lattice Fe and DF in binary Fe - (Cr, V, Mo, W systems is main factor for origins of segregations on small angle boundaries of ACD and sub-grains boundaries To prevent the coagulation of both ACD and sub-grains, and to increase the strength of alloys, it is advisable to add oxide dispersion particles into ferrite steel taking into account their chemical compatibility and coherent interfacing with the crystalline lattice of a ferrite matrix. Application of phase diagrams for binary and ternary the Fe-(Y, Zr-O systems to verify chemical compatibility of oxide dispersion particles with ferrite matrix have been discussed

  8. Nanocrystalline electrodeposited Ni-Mo-C cathodes for hydrogen production

    International Nuclear Information System (INIS)

    Hashimoto, K.; Sasaki, T.; Meguro, S.; Asami, K.

    2004-01-01

    Tailoring active nickel alloy cathodes for hydrogen evolution in a hot concentrated hydroxide solution was attempted by electrodeposition. The carbon addition to Ni-Mo alloys decreased the nanocrystalline grain size and remarkably enhanced the activity for hydrogen evolution, changing the mechanism of hydrogen evolution. The Tafel slope of hydrogen evolution was about 35 mV per decade. This suggested that the rate-determining step is desorption of adsorbed hydrogen atoms by recombination. As was distinct from the binary Ni-Mo alloys, after open circuit immersion, the overpotential, that is, the activity of nanocrystalline Ni-Mo-C alloys for hydrogen evolution was not changed, indicating the sufficient durability in the practical electrolysis

  9. Microstructural Evolution, Thermodynamics, and Kinetics of Mo-Tm2O3 Powder Mixtures during Ball Milling

    Directory of Open Access Journals (Sweden)

    Yong Luo

    2016-10-01

    Full Text Available The microstructural evolution, thermodynamics, and kinetics of Mo (21 wt % Tm2O3 powder mixtures during ball milling were investigated using X-ray diffraction and transmission electron microscopy. Ball milling induced Tm2O3 to be decomposed and then dissolved into Mo crystal. After 96 h of ball milling, Tm2O3 was dissolved completely and the supersaturated nanocrystalline solid solution of Mo (Tm, O was obtained. The Mo lattice parameter increased with increasing ball-milling time, opposite for the Mo grain size. The size and lattice parameter of Mo grains was about 8 nm and 0.31564 nm after 96 h of ball milling, respectively. Ball milling induced the elements of Mo, Tm, and O to be distributed uniformly in the ball-milled particles. Based on the semi-experimental theory of Miedema, a thermodynamic model was developed to calculate the driving force of phase evolution. There was no chemical driving force to form a crystal solid solution of Tm atoms in Mo crystal or an amorphous phase because the Gibbs free energy for both processes was higher than zero. For Mo (21 wt % Tm2O3, it was mechanical work, not the negative heat of mixing, which provided the driving force to form a supersaturated nanocrystalline Mo (Tm, O solid solution.

  10. Non-equilibrium grain boundary segregation of boron in austenitic stainless steel - IV. Precipitation behaviour and distribution of elements at grain boundaries

    International Nuclear Information System (INIS)

    Karlsson, L.; Norden, H.

    1988-01-01

    The distribution of elements and the precipitation behaviour at grain boundaries have been studied in boron containing AISI 316L and ''Mo-free AISI 316L'' type austenitic stainless steels. A combination of microanalytical techniques was used to study the boundary regions after cooling at 0.29-530 0 C/s from 800, 1075 or 1250 0 C. Tetragonal M/sub 2/B, M/sub 5/B/sub 3/ and M/sub 3/B/sub 2/, all rich in Fe, Cr and Mo, precipitated in the ''high B'' (40 ppm) AISI 316L steel whereas orthorhombic M/sub 2/B, rich in Cr and Fe was found in the ''Mo-free steel'' with 23 ppm B. In the ''high B steel'' a thin (<2nm), continuous layer, containing B, Cr, Mo and Fe and having a stoichiometry of typically M/sub 9/B, formed at boundaries after cooling at intermediate cooling rates. For both types of steels a boundary zone was found, after all heat treatments, with a composition differing significantly from the bulk composition. The differences were most marked after cooling at intermediate cooling rates. In both types of steel boundary depletion of Cr and enrichment of B and C occurred. It was found that non-equilibrium grain boundary segregation of boron can affect the precipitation behaviour by making the boundary composition enter a new phase field ''Non-equilibrium phases'' might also form. The synergistic effect of B and Mo on the boundary composition and precipitation behaviour, and the observed indications of C non-equilibrium segregation are discussed

  11. High heat load properties of TiC dispersed Mo alloys

    International Nuclear Information System (INIS)

    Tokunaga, Kazutoshi; Yoshida, Naoaki; Miura, Yasushi; Kurishita, Hiroaki; Kitsunai, Yuji; Kayano, Hideo.

    1996-01-01

    Electron beam high heat load experiment of new developed three kinds of TiC dispersed Mo alloys (Mo-0.1wt%TiC, Mo-0.5wt%TiC and Mo-1.0wt%TiC) was studied so as to evaluate it's high heat load at using as the surface materials of divertor. The obtained results indicated that cracks were not observed by embrittlement by recrystallization until about 2200degC of surface temperature and the gas emission properties were not different from sintered molibdenum. However, at near melting point, deep cracks on grain boundary and smaller gas emission than that of sintered Mo were observed. So that, we concluded that TiC dispersed Mo alloy was good surface materials used under the conditions of the stationary heat flux and less than the melting point, although not good one to be melted under nonstationary large heat flux. (S.Y.)

  12. Evaluating Strengthening and Impact Toughness Mechanisms for Ferritic and Bainitic Microstructures in Nb, Nb-Mo and Ti-Mo Microalloyed Steels

    Directory of Open Access Journals (Sweden)

    Gorka Larzabal

    2017-02-01

    Full Text Available Low carbon microalloyed steels show interesting commercial possibilities by combining different “micro”-alloying elements when high strength and low temperature toughness properties are required. Depending on the elements chosen for the chemistry design, the mechanisms controlling the strengths and toughness may differ. In this paper, a detailed characterization of the microstructural features of three different microalloyed steels, Nb, Nb-Mo and Ti-Mo, is described using mainly the electron backscattered diffraction technique (EBSD as well as transmission electron microscopy (TEM. The contribution of different strengthening mechanisms to yield strength and impact toughness is evaluated, and its relative weight is computed for different coiling temperatures. Grain refinement is shown to be the most effective mechanism for controlling both mechanical properties. As yield strength increases, the relative contribution of precipitation strengthening increases, and this factor is especially important in the Ti-Mo microalloyed steel where different combinations of interphase and random precipitation are detected depending on the coiling temperature. In addition to average grain size values, microstructural heterogeneity is considered in order to propose a new equation for predicting ductile–brittle transition temperature (DBTT. This equation considers the wide range of microstructures analyzed as well as the increase in the transition temperature related to precipitation strengthening.

  13. Grain refinement of aluminum and its alloys

    International Nuclear Information System (INIS)

    Zaid, A.I.O.

    2001-01-01

    Grain refinement of aluminum and its alloys by the binary Al-Ti and Ternary Al-Ti-B master alloys is reviewed and discussed. The importance of grain refining to the cast industry and the parameters affecting it are presented and discussed. These include parameters related to the cast, parameters related to the grain refining alloy and parameters related to the process. The different mechanisms, suggested in the literature for the process of grain refining are presented and discussed, from which it is found that although the mechanism of refining by the binary Al-Ti is well established the mechanism of grain refining by the ternary Al-Ti-B is still a controversial matter and some research work is still needed in this area. The effect of the addition of other alloying elements in the presence of the grain refiner on the grain refining efficiency is also reviewed and discussed. It is found that some elements e.g. V, Mo, C improves the grain refining efficiency, whereas other elements e.g. Cr, Zr, Ta poisons the grain refinement. Based on the parameters affecting the grain refinement and its mechanism, a criterion for selection of the optimum grain refiner is forwarded and discussed. (author)

  14. Mechanically activated synthesis of nanocrystalline ternary carbide Fe{sub 3}Mo{sub 3}C

    Energy Technology Data Exchange (ETDEWEB)

    Zakeri, M. [Materials Science Department, Islamic Azad University (Saveh branch), Saveh (Iran, Islamic Republic of)], E-mail: M_zakeri@iau-saveh.ac.ir; Rahimipour, M.R. [Ceramic Department, Materials and Energy Research Center, Tehran (Iran, Islamic Republic of); Khanmohammadian, A. [Materials Science Department, Islamic Azad University (Saveh branch), Saveh (Iran, Islamic Republic of)

    2008-09-25

    In this investigation, Fe{sub 3}Mo{sub 3}C ternary carbide was synthesized from the elemental powders of 3Mo/3Fe/C by mechanical milling and subsequent heat treatment. Structural and morphological evolutions of powders were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results showed that no phase transformation occurs during milling. A nanostructure Mo (Fe) solid solution obtained after 30 h of milling. With increasing milling time to 70 h no change takes place except grain size reduction to 9 nm and strain enhancement to 0.86%. Milled powders have spheroid shape and very narrow size distribution about 2 {mu}m at the end of milling. Fe{sub 3}Mo{sub 3}C was synthesized during annealing of 70 h milled sample at 700 deg. C. Undesired phases of MoOC and Fe{sub 2}C form at 1100 deg. C. No transformation takes place during annealing of 10 h milled sample at 700 deg. C. Mean grain size and strain get to 69 nm and 0.23% respectively with annealing of 70 h milled sample at 1100 deg. C.

  15. MBE growth of few-layer 2H-MoTe2 on 3D substrates

    Science.gov (United States)

    Vishwanath, Suresh; Sundar, Aditya; Liu, Xinyu; Azcatl, Angelica; Lochocki, Edward; Woll, Arthur R.; Rouvimov, Sergei; Hwang, Wan Sik; Lu, Ning; Peng, Xin; Lien, Huai-Hsun; Weisenberger, John; McDonnell, Stephen; Kim, Moon J.; Dobrowolska, Margaret; Furdyna, Jacek K.; Shen, Kyle; Wallace, Robert M.; Jena, Debdeep; Xing, Huili Grace

    2018-01-01

    MoTe2 is the least explored material in the Molybdenum-chalcogen family. Molecular beam epitaxy (MBE) provides a unique opportunity to tackle the small electronegativity difference between Mo and Te while growing layer by layer away from thermodynamic equilibrium. We find that for a few-layer MoTe2 grown at a moderate rate of ∼6 min per monolayer, a narrow window in temperature (above Te cell temperature) and Te:Mo ratio exists, where we can obtain pure phase 2H-MoTe2. This is confirmed using reflection high-energy electron diffraction (RHEED), Raman spectroscopy and X-ray photoemission spectroscopy (XPS). For growth on CaF2, Grazing incidence X-ray diffraction (GI-XRD) reveals a grain size of ∼90 Å and presence of twinned grains. In this work, we hypothesis the presence of excess Te incorporation in MBE grown few layer 2H-MoTe2. For film on CaF2, it is based on >2 Te:Mo stoichiometry using XPS as well as 'a' and 'c' lattice spacing greater than bulk 2H-MoTe2. On GaAs, its based on observations of Te crystallite formation on film surface, 2 × 2 superstructure observed in RHEED and low energy electron diffraction, larger than bulk c-lattice spacing as well as the lack of electrical conductivity modulation by field effect. Finally, thermal stability and air sensitivity of MBE 2H-MoTe2 is investigated by temperature dependent XRD and XPS, respectively.

  16. Preparation of Al2O3/Mo nanocomposite powder via chemical route and spray drying

    International Nuclear Information System (INIS)

    Lo, M.; Cheng, F.; Wei, W.J.

    1996-01-01

    A route to prepare nanometer-sized Mo particulates in Al 2 O 3 was attempted by a combination of solution reactions in molecular scale and forcing precipitation by a spray-drying technique. MoO 3 was first dissolved in ammonia water and then added in the slurry with high purity, submicrometer Al 2 O 3 powder. Mixed suspension was spray-dried, and then the dried granules were reduced by hydrogen gas and further hot-pressing to a bulky composite at various temperatures. Dissolution of Mo oxide, adsorption reactions on alumina surface, and surface potential of alumina particles in homogeneous ammonia suspension were studied. Characterization of the granules, including compactability, flowing properties, surface morphology, grain growth of Mo and Al 2 O 3 , and mixing homogeneity, were examined. Homogeneity of the spray-dried granules was determined by the calculation of mixing index and the observation of the microstructure of sintered body. The existence of intergranular, intragranular, and nanosized Mo particulates within Al 2 O 3 grains was observed by transmission electron microscopy (TEM). All the evidences revealed that homogeneous composites with nanometer-sized Mo had been successfully prepared by this attempt with the proposed chemical route and following spray-drying process. copyright 1996 Materials Research Society

  17. Effect of Mo on Microstructures and Wear Properties of In Situ Synthesized Ti(C,N)/Ni-Based Composite Coatings by Laser Cladding.

    Science.gov (United States)

    Wu, Fan; Chen, Tao; Wang, Haojun; Liu, Defu

    2017-09-06

    Using Ni60 alloy, C, TiN and Mo mixed powders as the precursor materials, in situ synthesized Ti(C,N) particles reinforcing Ni-based composite coatings are produced on Ti6Al4V alloys by laser cladding. Phase constituents, microstructures and wear properties of the composite coatings with 0 wt % Mo, 4 wt % Mo and 8 wt % Mo additions are studied comparatively. Results indicate that Ti(C,N) is formed by the in situ metallurgical reaction, the (Ti,Mo)(C,N) rim phase surrounding the Ti(C,N) ceramic particle is synthesized with the addition of Mo, and the increase of Mo content is beneficial to improve the wear properties of the cladding coatings. Because of the effect of Mo, the grains are remarkably refined and a unique core-rim structure that is uniformly dispersed in the matrix appears; meanwhile, the composite coatings with Mo addition exhibit high hardness and excellent wear resistance due to the comprehensive action of dispersion strengthening, fine grain strengthening and solid solution strengthening.

  18. Characterization of intergranular fission gas bubbles in U-Mo fuel

    International Nuclear Information System (INIS)

    Kim, Y. S.; Hofman, G.; Rest, J.; Shevlyakov, G. V.

    2008-01-01

    This report can be divided into two parts: the first part, which is composed of sections 1, 2, and 3, is devoted to report the analyses of fission gas bubbles; the second part, which is in section 4, is allocated to describe the mechanistic model development. Swelling data of irradiated U-Mo alloy typically show that the kinetics of fission gas bubbles is composed of two different rates: lower initially and higher later. The transition corresponds to a burnup of ∼0 at% U-235 (LEU) or a fission density of ∼3 x 10 21 fissions/cm 3 . Scanning electron microscopy (SEM) shows that gas bubbles appear only on the grain boundaries in the pretransition regime. At intermediate burnup where the transition begins, gas bubbles are observed to spread into the intragranular regions. At high burnup, they are uniformly distributed throughout fuel. In highly irradiated U-Mo alloy fuel large-scale gas bubbles form on some fuel particle peripheries. In some cases, these bubbles appear to be interconnected and occupy the interface region between fuel and the aluminum matrix for dispersion fuel, and fuel and cladding for monolithic fuel, respectively. This is a potential performance limit for U-Mo alloy fuel. Microscopic characterization of the evolution of fission gas bubbles is necessary to understand the underlying phenomena of the macroscopic behavior of fission gas swelling that can lead to a counter measure to potential performance limit. The microscopic characterization data, particularly in the pre-transition regime, can also be used in developing a mechanistic model that predicts fission gas bubble behavior as a function of burnup and helps identify critical physical properties for the future tests. Analyses of grain and grain boundary morphology were performed. Optical micrographs and scanning electron micrographs of irradiated fuel from RERTR-1, 2, 3 and 5 tests were used. Micrographic comparisons between as-fabricated and as-irradiated fuel revealed that the site of

  19. The effect of molybdenum on the grain boundary segregation of phosphorus in steel

    International Nuclear Information System (INIS)

    Moller, R.; Brenner, S.S.; Grabke, A.J.

    1986-01-01

    The beneficial effect of molybdenum on the temper embrittlement of steels is well known but has not yet been satisfactorily explained. Yu and McMahon suggested a strong interaction between molybdenum and phosphorus to form Mo-P clusters which decrease the concentration of phosphorus in the matrix and consequently the amount segregated to grain boundaries. Such clusters have as yet not been observed but this may have been owing to the insufficient resolution of conventional analytical methods. However, since no scavenging of phosphorus was observed in carbon-free Fe-Mo-P alloys, i.e. Mo alone did not affect the grain boundary concentration of phosphorus, it is improbable that the Mo-P cluster formation mechanisms can be operative. Instead, it is more likely that a requisite for the scavenging of phosphorus is the formation of Mo carbides in the steel. This work was undertaken to determine the distribution of phosphorus in two similar Fe-Mo-P alloys, one of which contained carbon while the other was carbon-free. The emphasis of the study was to determine the interaction of phosphorus with molybdenum and molybdenum carbides in the steel. Field-ion microscopy combined with atom probe microanalysis was used for this purpose. The atom-by-atom sampling method and the near-atomic spatial resolution of the FIM/atom probe make this instrument ideally suited for this type of investigations

  20. Ionic conductivity in new perovskite type oxides: NaAZrMO6 (A = Ca or Sr; M = Nb or Ta)

    International Nuclear Information System (INIS)

    Rajendran, Deepthi N.; Ravindran Nair, K.; Prabhakar Rao, P.; Sibi, K.S.; Koshy, Peter; Vaidyan, V.K.

    2008-01-01

    New oxides of the type, NaAZrMO 6 (M = Ca or Sr; M = Nb or Ta), have been prepared by the solid-state reaction technique. Phase identification by powder X-ray diffraction (XRD) shows that NaCaZrMO 6 has orthorhombic perovskite type structure (Pnma) and NaSrZrMO 6 has cubic perovskite type structure (Pm3m). The grain morphology observation by scanning electron microscope (SEM) shows well-sintered grains. ac impedance spectra and electrical conductivity measurements in air, oxygen and nitrogen atmospheres indicate that they are probable oxide ion conductors with ionic conductivities of the order of 10 -3 S cm -1 at 750 deg. C

  1. Cyclic tensile response of Mo-27 at% Re and Mo-0.3 at% Si solid solution alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yu, X.J.; Kumar, K.S., E-mail: Sharvan_Kumar@brown.edu

    2016-10-31

    Stress-controlled uniaxial cyclic tensile tests were conducted on binary Mo-27 at% Re and Mo-0.3 at% Si solid solutions as a function of temperature and compared against the previously reported cyclic response of pure Mo. The Mo-27 at% Re alloy with a recrystallized grain size of ~30 µm was evaluated in the temperature range 25 °C–800 °C at R=0.1 and stress range that was 80% of the ultimate tensile strength (UTS); a peak in fatigue life was observed between 300 °C and 500 °C. The decrease in fatigue life at the higher temperatures of 700 °C and 800 °C is attributed to dynamic strain aging. Transmission electron microscopy of the cyclically-deformed alloy revealed parallel bands of dislocation at room temperature that transitioned to a uniform cell structure at 500 °C and back to orthogonal planar arrays at 800 °C. The as-extruded Mo-0.3 at% Si alloy was evaluated from 25 °C to 1200 °C and showed superior fatigue life and ratcheting strain resistance as compared to pure Mo and the Mo-27 at% Re alloy (within the temperature range where data were available for comparison). The superior resistance is attributed to the high density of dislocations within the material in this mostly unrecrystallized state rather than Si in solid solution. Above 800 °C, the ratcheting strain increases and fatigue life decreases rapidly with increasing temperature and is associated with dynamic recovery.

  2. Hardness enhancement and oxidation resistance of nanocrystalline TiN/Mo xC multilayer films

    International Nuclear Information System (INIS)

    Liu, Q.; Wang, X.P.; Liang, F.J.; Wang, J.X.; Fang, Q.F.

    2006-01-01

    In this paper the influence of the layer's microstructure on the hardness enhancement in multilayer nanocrystalline films and the oxidation resistance are studied. The TiN/Mo x C multilayer films at different modulation period, and Mo x C and TiN monolayer films were deposited on the (0 0 1) silicon wafers and molybdenum sheets by rf and dc magnetron sputtering. The monolayer TiN films with a thickness of about 2 μm are of pure face-center cubic TiN phase, while the monolayer Mo x C films consist of two phases, one of which is body-center cubic Mo and the other is hexagonal Mo 2 C as determined by XRD. The coarse columnar grains of about 200 nm in the monolayer TiN films become much smaller or disappear in the multilayer films. The hardness enhancement of the multilayer films takes place at the modulation period of 320 nm, which can reach to 26 GPa and is much higher than the values of Mo x C and TiN monolayer films. This enhancement in hardness can be explained as the decrease in the size and/or disappearance of columnar grains in the TiN layer. The Young's modulus in the temperature range from 100 to 400 deg. C increases with decreasing modulation period. It is found that about 100 nm thick TiN films can increase largely the oxidation resistance of Mo x C films

  3. Effect of composition and heat treatment on carbide phases in Ni-Mo alloys

    International Nuclear Information System (INIS)

    Svistunova, T.V.; Tsvigunov, A.N.; Stegnukhina, L.V.; Sakuta, N.D.

    1984-01-01

    The investigation results of vanadium, iron, carbon and silicon effect and heat treatment regime on the type and composition of carbides in Ni-(26...31)%Mo alloys are presented. It is shown that type, composition and quantity of carbide phases forming in alloys are determined not only by molybdenum and carbon content, but presence of other elements (V, Fe), admixtures (C, Si) and reducers as well as by regime of thermal treatment. In the alloy, containing 26...31% Mo, 0.01...0.03% C ( 12 C type with a=1.083...1.089 nm lattice parameter, in which V and Ti, Fe and Si are presented besides Mo and Ni. In the temperature range of 600-800 deg C high dispersed carbides segregate on grain boundaries. Silicon initiates segregation of the carbide phases among them by grain boundaries at the temperatures of 800 deg C as well as regulates carbide of M 12 C type with a=1.094...1.098 nm lattice parameter

  4. Synthesis of Monolayer MoS2 by Chemical Vapor Deposition

    Science.gov (United States)

    Withanage, Sajeevi; Lopez, Mike; Dumas, Kenneth; Jung, Yeonwoong; Khondaker, Saiful

    Finite and layer-tunable band gap of transition metal dichalcogenides (TMDs) including molybdenum disulfide (MoS2) are highlighted over the zero band gap graphene in various semiconductor applications. Weak interlayer Van der Waal bonding of bulk MoS2 allows to cleave few to single layer MoS2 using top-down methods such as mechanical and chemical exfoliation, however few micron size of these flakes limit MoS2 applications to fundamental research. Bottom-up approaches including the sulfurization of molybdenum (Mo) thin films and co-evaporation of Mo and sulfur precursors received the attention due to their potential to synthesize large area. We synthesized monolayer MoS2 on Si/SiO2 substrates by atmospheric pressure Chemical Vapor Deposition (CVD) methods using sulfur and molybdenum trioxide (MoO3) as precursors. Several growth conditions were tested including precursor amounts, growth temperature, growth time and flow rate. Raman, photoluminescence (PL) and atomic force microscopy (AFM) confirmed monolayer islands merging to create large area were observed with grain sizes up to 70 μm without using any seeds or seeding promoters. These studies provide in-depth knowledge to synthesize high quality large area MoS2 for prospective electronics applications.

  5. Grain refinement of cast titanium alloys via trace boron addition

    International Nuclear Information System (INIS)

    Tamirisakandala, S.; Bhat, R.B.; Tiley, J.S.; Miracle, D.B.

    2005-01-01

    The grain size of as-cast Ti-6Al-4V is reduced by about an order of magnitude from 1700 to 200 μm with an addition of 0.1 wt.% boron. A much weaker dependence of reduction in grain size is obtained for boron additions from >0.1% to 1.0%. Similar trends were observed in boron-modified as-cast Ti-6Al-2Sn-4Zr-2Mo-0.1Si

  6. Effect of solute grain boundary segregation and hardness on the ductile-to-brittle transition for a Cr-Mo low-alloy steel

    International Nuclear Information System (INIS)

    Shen, D.-D.; Song, S.-H.; Yuan, Z.-X.; Weng, L.-Q.

    2005-01-01

    Combined solute grain boundary segregation and hardness effect on the ductile-to-brittle transition is examined for a P-doped 2.25Cr-1Mo steel by means of Auger electron spectroscopy (AES) in conjunction with hardness measurements, Charpy impact tests and scanning electron microscopy (SEM). During ageing at 540 deg. C after water quenching from 980 deg. C, the segregation of phosphorus, molybdenum and chromium increases and the hardness decreases with increasing ageing time. The ductile-to-brittle transition temperature (DBTT) increases with increasing phosphorus segregation and decreases with decreasing hardness. The phosphorus segregation effect is dominant until 100 h ageing and after that the hardness effect becomes dominant, making the DBTT decrease with further increasing ageing time although the segregation of phosphorus still increases strongly. The segregation of molybdenum has some effect on the DBTT decrease

  7. Accelerated carrier recombination by grain boundary/edge defects in MBE grown transition metal dichalcogenides

    Science.gov (United States)

    Chen, Ke; Roy, Anupam; Rai, Amritesh; Movva, Hema C. P.; Meng, Xianghai; He, Feng; Banerjee, Sanjay K.; Wang, Yaguo

    2018-05-01

    Defect-carrier interaction in transition metal dichalcogenides (TMDs) plays important roles in carrier relaxation dynamics and carrier transport, which determines the performance of electronic devices. With femtosecond laser time-resolved spectroscopy, we investigated the effect of grain boundary/edge defects on the ultrafast dynamics of photoexcited carrier in molecular beam epitaxy (MBE)-grown MoTe2 and MoSe2. We found that, comparing with exfoliated samples, the carrier recombination rate in MBE-grown samples accelerates by about 50 times. We attribute this striking difference to the existence of abundant grain boundary/edge defects in MBE-grown samples, which can serve as effective recombination centers for the photoexcited carriers. We also observed coherent acoustic phonons in both exfoliated and MBE-grown MoTe2, indicating strong electron-phonon coupling in this materials. Our measured sound velocity agrees well with the previously reported result of theoretical calculation. Our findings provide a useful reference for the fundamental parameters: carrier lifetime and sound velocity and reveal the undiscovered carrier recombination effect of grain boundary/edge defects, both of which will facilitate the defect engineering in TMD materials for high speed opto-electronics.

  8. Accelerated carrier recombination by grain boundary/edge defects in MBE grown transition metal dichalcogenides

    Directory of Open Access Journals (Sweden)

    Ke Chen

    2018-05-01

    Full Text Available Defect-carrier interaction in transition metal dichalcogenides (TMDs plays important roles in carrier relaxation dynamics and carrier transport, which determines the performance of electronic devices. With femtosecond laser time-resolved spectroscopy, we investigated the effect of grain boundary/edge defects on the ultrafast dynamics of photoexcited carrier in molecular beam epitaxy (MBE-grown MoTe2 and MoSe2. We found that, comparing with exfoliated samples, the carrier recombination rate in MBE-grown samples accelerates by about 50 times. We attribute this striking difference to the existence of abundant grain boundary/edge defects in MBE-grown samples, which can serve as effective recombination centers for the photoexcited carriers. We also observed coherent acoustic phonons in both exfoliated and MBE-grown MoTe2, indicating strong electron-phonon coupling in this materials. Our measured sound velocity agrees well with the previously reported result of theoretical calculation. Our findings provide a useful reference for the fundamental parameters: carrier lifetime and sound velocity and reveal the undiscovered carrier recombination effect of grain boundary/edge defects, both of which will facilitate the defect engineering in TMD materials for high speed opto-electronics.

  9. Microstructure and wear characterization of self-lubricating Al2O3 - MoS2 composite ceramic coatings

    International Nuclear Information System (INIS)

    Koshkarian, K.A.; Kriven, W.M.

    1989-01-01

    The authors report the results of composite ceramic coatings of alumina Al 2 O 3 containing some molybdenum disulfide MoS 2 electro-codeposited on to Al metal substrates by a combination of anodic sparks deposition of Al 2 O 3 and electrophoresis of MoS 2 . The microstructures were characterized by XRD, XPS, SEM, EDS, SNMS, TEM, SAD and relative wear resistance measurements. The coatings consisted mostly of Al 2 O 3 with some and present as well. The coatings were porous and microcracked. SEM showed them to consist of circular splats which had rapidly crystallized from the molten state in areas of dielectric breakdown in the coating. In the TEM the microstructure was seen to contain sets of parallel, elongated grains having a single crystallographic orientation. The grains were separated by dislocated, low angle grain boundaries or microcracks. The sets intersected at irregularly curved interfaces and were mechanically interlocked. Quantitative SNMS indicated that up to 26 wt% MoS 2 was incorporated in coatings fabricated from 5g/1 solutions. SEM/EDS as well as TEM/SAD/EDS identified 1-3 μ particles of MoS 2 incorporated into the 5g/1 solution derived coatings. These coatings exhibited 50% lower wear rate than pure alumina coatings deposited under the same condition

  10. Electron beam-induced structural transformations of MoO{sub 3} and MoO{sub 3-x} crystalline nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Droguett, D. E., E-mail: dodiaz@fis.puc.cl [Pontificia Universidad Catolica de Chile, Departamento de Fisica, Facultad de Fisica (Chile); Zuniga, A. [Universidad de Chile, Departamento de Ingenieria Mecanica, Facultad de Ciencias Fisicas y Matematicas (Chile); Solorzano, G. [PUC-RIO, Departamento de Ciencia dos Materiais e Metalurgia, DCMM (Brazil); Fuenzalida, V. M. [Universidad de Chile, Departamento de Fisica, Facultad de Ciencias Fisicas y Matematicas (Chile)

    2012-01-15

    Electron beam-induced damage and structural changes in MoO{sub 3} and MoO{sub 3-x} single crystalline nanostructures were revealed by in situ transmission electron microscopy (TEM) examination (at 200 kV) after few minutes of concentrating the electron beam onto small areas (diameters between 25 and 200 nm) of the samples. The damage was evaluated recording TEM images, while the structural changes were revealed acquiring selected area electron diffraction patterns and high resolution transmission electron microscopy (HRTEM) images after different irradiation times. The as-received nanostructures of orthorhombic MoO{sub 3} were transformed to a Magneli's phase of the oxide ({gamma}-Mo{sub 4}O{sub 11}) after {approx}10 min of electron beam irradiation. The oxygen loss from the oxide promoted structural changes. HRTEM observations showed that, in the first stage of the reduction, oxygen vacancies generated by the electron beam are accommodated by forming crystallographic shear planes. At a later stage of the reduction process, a polycrystalline structure was developed with highly oxygen-deficient grains. The structural changes can be attributed to the local heating of the irradiated zone combined with radiolysis.

  11. Reducing arsenic accumulation in rice grain through iron oxide amendment

    Science.gov (United States)

    In this research, we investigated the accumulation of arsenic (As), selenium (Se), molybdenum (Mo), and cadmium (Cd) in rice grain under different soil conditions in standard straighthead-resistant and straighthead-susceptible cultivars, Zhe 733 and Cocodrie, respectively. Results demonstrated that,...

  12. Heat treatment effects on impact toughness of 9Cr-1MoVNb and 12Cr-1MoVW steels irradiated to 100 dpa

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1997-08-01

    Plates of 9Cr-1MoVNb and 12Cr-1MoVW steels were given four different heat treatments: two normalizing treatments were used and for each normalizing treatment two tempers were used. Miniature Charpy specimens from each heat treatment were irradiated to {approx}19.5 dpa at 365{degrees}C and to {approx}100 dpa at 420{degrees}C in the Fast Flux Test Facility (FFTF). In previous work, the same materials were irradiated to 4-5 dpa at 365{degrees}C and 35-36 dpa at 420{degrees}C in FFTF. The tests indicated that prior austenite grain size, which was varied by the different normalizing treatments, had a significant effect on impact behavior of the 9Cr-1MoVNb but not on the 12Cr-1MoVW. Tempering treatment had relatively little effect on the shift in DBTT for both steels. Conclusions are presented on how heat treatment can be used to optimize impact properties.

  13. Heat treatment effects on impact toughness of 9Cr-1MoVNb and 12Cr-1MoVW steels irradiated to 100 dpa

    International Nuclear Information System (INIS)

    Klueh, R.L.; Alexander, D.J.

    1997-01-01

    Plates of 9Cr-1MoVNb and 12Cr-1MoVW steels were given four different heat treatments: two normalizing treatments were used and for each normalizing treatment two tempers were used. Miniature Charpy specimens from each heat treatment were irradiated to ∼19.5 dpa at 365 degrees C and to ∼100 dpa at 420 degrees C in the Fast Flux Test Facility (FFTF). In previous work, the same materials were irradiated to 4-5 dpa at 365 degrees C and 35-36 dpa at 420 degrees C in FFTF. The tests indicated that prior austenite grain size, which was varied by the different normalizing treatments, had a significant effect on impact behavior of the 9Cr-1MoVNb but not on the 12Cr-1MoVW. Tempering treatment had relatively little effect on the shift in DBTT for both steels. Conclusions are presented on how heat treatment can be used to optimize impact properties

  14. Complementary AES and AEM of grain boundary regions in irradiated γ'-strengthened alloys

    International Nuclear Information System (INIS)

    Farrell, K.; Kishimoto, N.; Clausing, R.E.; Heatherly, L.; Lehman, G.L.

    1986-01-01

    Two microchemical analysis techniques are used to measure solute segregation at grain boundaries in two γ'-strengthened, fcc Fe-Ni-Cr alloys that display radiation-induced intergranular fracture. Scanning Auger electron spectroscopy (AES) of grain boundary fracture surfaces and analytical electron microscopy (AEM) of intact grain boundaries using energy-dispersive x-ray spectroscopy show good agreement on the nature and extent of segregation. The elements Ni, Si, Ti, and Mo are found to accumulate in G, Laves and γ' phases on the grain boundaries. Segregation of P is detected by AES. The complementary features of the two analytical techniques are discussed briefly

  15. Ionic conductivity in new perovskite type oxides: NaAZrMO{sub 6} (A = Ca or Sr; M = Nb or Ta)

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, Deepthi N.; Ravindran Nair, K. [Regional Research Laboratory (CSIR), Trivandrum 695019 (India); Prabhakar Rao, P. [Regional Research Laboratory (CSIR), Trivandrum 695019 (India)], E-mail: padala_rao@yahoo.com; Sibi, K.S.; Koshy, Peter [Regional Research Laboratory (CSIR), Trivandrum 695019 (India); Vaidyan, V.K. [Department of Physics, University of Kerala, Trivandrum 695581 (India)

    2008-06-15

    New oxides of the type, NaAZrMO{sub 6} (M = Ca or Sr; M = Nb or Ta), have been prepared by the solid-state reaction technique. Phase identification by powder X-ray diffraction (XRD) shows that NaCaZrMO{sub 6} has orthorhombic perovskite type structure (Pnma) and NaSrZrMO{sub 6} has cubic perovskite type structure (Pm3m). The grain morphology observation by scanning electron microscope (SEM) shows well-sintered grains. ac impedance spectra and electrical conductivity measurements in air, oxygen and nitrogen atmospheres indicate that they are probable oxide ion conductors with ionic conductivities of the order of 10{sup -3} S cm{sup -1} at 750 deg. C.

  16. Pseudo-Capacitors: SPPS Deposition and Electrochemical Analysis of α-MoO3 and Mo2N Coatings

    Science.gov (United States)

    Golozar, Mehdi; Chien, Ken; Lian, Keryn; Coyle, Thomas W.

    2013-06-01

    Solution precursor plasma spraying (SPPS) is a novel thermal spray process in which a solution precursor is injected into the high-temperature zone of a DC-arc plasma jet to allow solvent evaporation from the precursor droplets, solute precipitation, and precipitate pyrolysis prior to substrate impact. This investigation explored the potential of SPPS to fabricate α-MoO3 coatings with fine grain sizes, high porosity levels, and high surface area: characteristics needed for application as pseudo-capacitor electrodes. Since molybdenum nitride has shown a larger electrochemical stability window and higher specific area capacitance, the α-MoO3 deposits were subsequently converted into molybdenum nitride. A multistep heat-treatment procedure resulted in a topotactic phase-transformation mechanism, which retained the high surface area lath-shaped features of the original α-MoO3. The electrochemical behaviors of molybdenum oxide and molybdenum nitride deposits formed under different deposition conditions were studied using cyclic voltammetry to assess the influence of the resulting microstructure on the charge storage behavior and potential for use in pseudo-capacitors.

  17. Preparation and characterization of nanocrystalline composites Mo-C-N hard films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Q. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, POB 1129, 230031 Hefei (China); Liu, T. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, POB 1129, 230031 Hefei (China); Fang, Q.F. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, POB 1129, 230031 Hefei (China)]. E-mail: qffang@issp.ac.cn; Liang, F.J. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, POB 1129, 230031 Hefei (China); Wang, J.X. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, POB 1129, 230031 Hefei (China)

    2006-05-01

    Molybdenum carbonitride (MoCN) films were deposited on Si (001) and stainless steel substrates by reactive direct-current magnetron sputtering with a molybdenum and graphite composite target. By changing the substrate temperature and the N{sub 2} / Ar ratio in the sputtering gas, it is found that good quality MoCN films can be deposited at substrate temperature of 300-400 deg. C under N{sub 2} partial pressure of 0.25-0.5 Pa with a total working pressure of 1 Pa. The structures of the films deposited at such conditions were determined by X-ray diffraction and X-ray photoelectron spectroscopy analysis as nanocrystalline molybdenum carbonitride with a grain size of several ten nanometers was embedded in the amorphous matrix of C and CN {sub x}. The hardness of the MoCN films can reach 28 GPa, much higher than the value of MoC and MoN films alone.

  18. Heating temperature effect on ferritic grain size of rotor steel

    International Nuclear Information System (INIS)

    Cheremnykh, V.G.; Derevyankin, E.V.; Sakulin, A.A.

    1983-01-01

    The heating temperature effect on ferritic grain size of two steels 13Kh1M1FA and 25Kh1M1FA is evaluated. It is shown that exposure time increase at heating temperatures below 1000 deg C up to 10h changes but slightly the size of the Cr-Mo-V ferritic grain of rotor steel cooled with 25 deg C/h rate. Heating up to 1000 deg C and above leads to substantial ferritic grain growth. The kinetics of ferritic grain growth is determined by the behaviour of phases controlling the austenitic grain growth, such as carbonitrides VCsub(0.14)Nsub(0.78) in 13Kh1M1FA steel and VCsub(0.18)Nsub(0.72) in 25Kh1M1FA steel. Reduction of carbon and alloying elements content in steel composition observed at the liquation over rotor length leads to a certain decrease of ferritic grain resistance to super heating

  19. Effect of alloying Mo on mechanical strength and corrosion resistance of Zr-1% Sn-1% Nb-1% Fe alloy

    International Nuclear Information System (INIS)

    Sugondo

    2011-01-01

    It had been done research on Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy. The ingot was prepared by means of electrical electrode technique. The chemical analysis was identified by XRF, the metallography examination was perform by an optical microscope, the hardness test was done by Vickers microhardness, and the corrosion test was done in autoclave. The objective of this research were making Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy with Mo concentration; comparing effect of Mo concentration to metal characteristics of Zr-1%Sn-1%Nb-1%Fe which covered microstructure; composition homogeneity, mechanical strength; and corrosion resistance in steam, and determining the optimal Mo concentration in Zr-1%Sn-1%Nb-1%Fe-(x)% Mo alloy for nuclear fuel cladding which had corrosion resistance and high hardness. The results were as follow: The alloying Mo refined grains at concentration in between 0,1%-0,3% and the concentration more than that could coarsened grains. The hardness of the Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was controlled either by the flaw or the dislocation, the intersection of the harder alloying element, the solid solution of the alloying element and the second phase formation of ZrMo 2 . The corrosion rate of the Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was controlled by the second phase of ZrMo 2 . The 0.3% Mo concentration in Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was the best for second phase formation. The Mo concentration in between 0,3-0,5% in Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was good for the second phase formation and the solid solution. (author)

  20. Flow behavior and microstructures of powder metallurgical CrFeCoNiMo0.2 high entropy alloy during high temperature deformation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiawen [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Liu, Yong, E-mail: yonliu@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Liu, Bin, E-mail: binliu@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Wang, Yan [School of Aeronautics and Astronautics, Central South University, Changsha 410083 (China); Cao, Yuankui; Li, Tianchen; Zhou, Rui [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2017-03-24

    Dynamic recrystallization (DRX) refine grains of high entropy alloys (HEAs) and significant improve the mechanical property of HEAs, but the effect of high melting point element molybdenum (Mo) on high temperature deformation behavior has not been fully understood. In the present study, flow behavior and microstructures of powder metallurgical CrFeCoNiMo{sub 0.2} HEA were investigated by hot compression tests performed at temperatures ranging from 700 to 1100 °C with strain rates from 10{sup −3} to 1 s{sup −1}. The Arrhenius constitutive equation with strain-dependent material constants was used for modeling and prediction of flow stress. It was found that at 700 °C, the dynamic recovery is the dominant softening mechanism, whilst with the increase in compression testing temperature, the DRX becomes the dominant mechanism of softening. In the present HEA, the addition of Mo results in the high activation energy (463 kJ mol{sup −1}) and the phase separation during hot deformation. The formation of Mo-rich σ phase particles pins grain boundary migration during DRX, and therefore refines the size of recrystallized grains.

  1. Mineral composition of durum wheat grain and pasta under increasing atmospheric CO2 concentrations.

    Science.gov (United States)

    Beleggia, Romina; Fragasso, Mariagiovanna; Miglietta, Franco; Cattivelli, Luigi; Menga, Valeria; Nigro, Franca; Pecchioni, Nicola; Fares, Clara

    2018-03-01

    The concentrations of 10 minerals were investigated in the grain of 12 durum wheat genotypes grown under free air CO 2 enrichment conditions, and in four of their derived pasta samples, using inductively coupled plasma mass spectrometry. Compared to ambient CO 2 (400ppm; AMB), under elevated CO 2 (570ppm; ELE), the micro-element and macro-element contents showed strong and significant decreases in the grain: Mn, -28.3%; Fe, -26.7%; Zn, -21.9%; Mg, -22.7%; Mo, -40.4%; K, -22.4%; and Ca, -19.5%. These variations defined the 12 genotypes as sensitive or non-sensitive to ELE. The pasta samples under AMB and ELE showed decreased mineral contents compared to the grain. Nevertheless, the contributions of the pasta to the recommended daily allowances remained relevant, also for the micro-elements under ELE conditions (range, from 18% of the recommended daily allowance for Zn, to 70% for Mn and Mo). Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Limitation of multi-elemental fingerprinting of wheat grains: Effect of cultivar, sowing date, and nutrient management

    DEFF Research Database (Denmark)

    Suarez-Tapia, Alfonso; Kucheryavskiy, Sergey V.; Christensen, Bent Tolstrup

    2017-01-01

    Multi-element fingerprinting demonstrates some potential for tracing the origin of agricultural products but not for discriminating among crop cultivars and nutrient management (source, rate). With principal component analysis (PCA) and univariate statistics, we examined 19 elements in grains from...... two winter wheat cultivars (Hereford, Mariboss) grown with different rates of animal manure (AM) or mineral fertilisers (NPK) in a long-term field experiment and two sowing dates (early, timely). Nitrogen, Cd and Mn related to NPK, and Mo and Na to AM. Barium, Fe, and P reflected nutrient rate......; these elements increased with nutrient rate regardless of source. Unmanured grains were enriched in Cu. Mariboss was characterized by higher concentrations of Sr, Ba and Sc compared to Hereford with Sr in grain as the main separator. Univariate statistics showed higher concentrations of N, P, Mg, Ba, Cu, Mo...

  3. J-type Carbon Stars: A Dominant Source of 14 N-rich Presolar SiC Grains of Type AB

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Nan; Stephan, Thomas; Boehnke, Patrick; Nittler, Larry R.; Alexander, Conel M. O’D.; Wang, Jianhua; Davis, Andrew M.; Trappitsch, Reto; Pellin, Michael J.

    2017-07-20

    We report Mo isotopic data of 27 new presolar SiC grains, including 12 N-14-rich AB (N-14/N-15 > 440, AB2) and 15 mainstream (MS) grains, and their correlated Sr and Ba isotope ratios when available. Direct comparison of the data for the MS grains, which came from low-mass asymptotic giant branch (AGB) stars with large s-process isotope enhancements, with the AB2 grain data demonstrates that AB2 grains show near-solar isotopic compositions and lack s-process enhancements. The near-normal Sr, Mo, and Ba isotopic compositions of AB2 grains clearly exclude born-again AGB stars, where the intermediate neutron-capture process (i-process) takes place, as their stellar source. On the other hand, low-mass CO novae and early R-and J-type carbon stars show C-13 and N-14 excesses but no s-process enhancements and are thus potential stellar sources of AB2 grains. Because both early R-type carbon stars and CO novae are rare objects, the abundant J-type carbon stars (10%-15% of all carbon stars) are thus likely to be a dominant source of AB2 grains.

  4. Estimation of grain boundary diffusivity in near-α titanium polycrystals

    International Nuclear Information System (INIS)

    Brockman, Robert A.; Pilchak, Adam L.; John Porter, W.; John, Reji

    2011-01-01

    The role of enhanced grain boundary diffusivity in high-temperature diffusion of interstitial elements through metals is widely recognized but poorly characterized in most materials. This paper summarizes an effort to estimate grain boundary diffusivity of oxygen in a near-α titanium alloy, Ti-6Al-2Sn-4Zr-2Mo-0.1Si, by explicitly incorporating microstructure obtained from electron backscatter diffraction into an analytical model. Attention is focused on near-surface diffusion behavior contributing to the rapid ingress of oxygen and possible crack initiation in high-temperature environments.

  5. J-type Carbon Stars: A Dominant Source of {sup 14}N-rich Presolar SiC Grains of Type AB

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Nan; Nittler, Larry R.; Alexander, Conel M. O’D.; Wang, Jianhua [Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015 (United States); Stephan, Thomas; Boehnke, Patrick; Davis, Andrew M.; Trappitsch, Reto; Pellin, Michael J., E-mail: nliu@carnegiescience.edu [Department of the Geophysical Sciences, The University of Chicago, Chicago, IL 60637 (United States)

    2017-07-20

    We report Mo isotopic data of 27 new presolar SiC grains, including 12 {sup 14}N-rich AB ({sup 14}N/{sup 15}N > 440, AB2) and 15 mainstream (MS) grains, and their correlated Sr and Ba isotope ratios when available. Direct comparison of the data for the MS grains, which came from low-mass asymptotic giant branch (AGB) stars with large s -process isotope enhancements, with the AB2 grain data demonstrates that AB2 grains show near-solar isotopic compositions and lack s -process enhancements. The near-normal Sr, Mo, and Ba isotopic compositions of AB2 grains clearly exclude born-again AGB stars, where the intermediate neutron-capture process ( i -process) takes place, as their stellar source. On the other hand, low-mass CO novae and early R- and J-type carbon stars show {sup 13}C and {sup 14}N excesses but no s -process enhancements and are thus potential stellar sources of AB2 grains. Because both early R-type carbon stars and CO novae are rare objects, the abundant J-type carbon stars (10%–15% of all carbon stars) are thus likely to be a dominant source of AB2 grains.

  6. Edge-spin-derived magnetism in few-layer MoS2 nanomeshes

    Directory of Open Access Journals (Sweden)

    G. Kondo

    2017-12-01

    Full Text Available Magnetism arising from edge spins is highly interesting, particularly in 2D atomically thin materials in which the influence of edges becomes more significant. Among such materials, molybdenum disulfide (MoS2; one of the transition metal dichalcogenide (TMD family is attracting significant attention. The causes for magnetism observed in the TMD family, including in MoS2, have been discussed by considering various aspects, such as pure zigzag atomic-structure edges, grain boundaries, and vacancies. Here, we report the observation of ferromagnetism (FM in few-layer MoS2 nanomeshes (NMs; honeycomb-like array of hexagonal nanopores with low-contamination and low-defect pore edges, which have been created by a specific non-lithographic method. We confirm robust FM arising from pore edges in oxygen(O-terminated MoS2-NMs at room temperature, while it disappears in hydrogen(H-terminated samples. The observed high-sensitivity of FM to NM structures and critical annealing temperatures suggest a possibility that the Mo-atom dangling bond in pore edge is a dominant factor for the FM.

  7. Creep damage of 12% CrMoV weldments

    International Nuclear Information System (INIS)

    Kussmaul, K.; Maile, K.; Theofel, H.

    1989-01-01

    Creep tests were performed to determine the creep behaviour of similar welded joints of 12% CrMoV-steels which had been made using various heat inputs. The specimens were taken transverse to the seam. The transition from the coarse-grained to the fine-grained area of the heat affected zone (HAZ) proved to be the location of failure after longer rupture times. All tested specimens lie in the +-20% scatterband of the material standard DIN 17175. Creep rupture was initiated by the nucleation and growth of cavities. The appearance of the damage zone near the fracture face depends on testing conditions and heat input. The nucleation of cavities can be detected at an early stage of lifetime

  8. Coated U(Mo) Fuel: As-Fabricated Microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel Perez; Dennis D. Keiser, Jr.; Ann Leenaers; Sven Van den Berghe; Tom Wiencek

    2014-04-01

    As part of the development of low-enriched uranium fuels, fuel plates have recently been tested in the BR-2 reactor as part of the SELENIUM experiment. These fuel plates contained fuel particles with either Si or ZrN thin film coating (up to 1 µm thickness) around the U-7Mo fuel particles. In order to best understand irradiation performance, it is important to determine the starting microstructure that can be observed in as-fabricated fuel plates. To this end, detailed microstructural characterization was performed on ZrN and Si-coated U-7Mo powder in samples taken from AA6061-clad fuel plates fabricated at 500°C. Of interest was the condition of the thin film coatings after fabrication at a relatively high temperature. Both scanning electron microscopy and transmission electron microscopy were employed. The ZrN thin film coating was observed to consist of columns comprised of very fine ZrN grains. Relatively large amounts of porosity could be found in some areas of the thin film, along with an enrichment of oxygen around each of the the ZrN columns. In the case of the pure Si thin film coating sample, a (U,Mo,Al,Si) interaction layer was observed around the U-7Mo particles. Apparently, the Si reacted with the U-7Mo and Al matrix during fuel plate fabrication at 500°C to form this layer. The microstructure of the formed layer is very similar to those that form in U-7Mo versus Al-Si alloy diffusion couples annealed at higher temperatures and as-fabricated U-7Mo dispersion fuel plates with Al-Si alloy matrix fabricated at 500°C.

  9. Structural, optical and compositional stability of MoS2 multi-layer flakes under high dose electron beam irradiation

    Science.gov (United States)

    Rotunno, E.; Fabbri, F.; Cinquanta, E.; Kaplan, D.; Longo, M.; Lazzarini, L.; Molle, A.; Swaminathan, V.; Salviati, G.

    2016-06-01

    MoS2 multi-layer flakes, exfoliated from geological molybdenite, have been exposed to high dose electron irradiation showing clear evidence of crystal lattice and stoichiometry modifications. A massive surface sulfur depletion is induced together with the consequent formation of molybdenum nanoislands. It is found that a nanometric amorphous carbon layer, unwillingly deposited during the transmission electron microscope experiments, prevents the formation of the nanoislands. In the absence of the carbon layer, the formation of molybdenum grains proceeds both on the top and bottom surfaces of the flake. If carbon is present on both the surfaces then the formation of Mo grains is completely prevented.

  10. Growth of preexisting abnormal grains in molybdenum under static and dynamic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Noell, Philip J. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-0889 (United States); Worthington, Daniel L. [Verily Life Sciences, 269 E. Grand Ave., South San Francisco, CA 94080, USA (United States); Taleff, Eric M., E-mail: taleff@utexas.edu [The University of Texas at Austin, Department of Mechanical Engineering, 204 East Dean Keeton St., Stop C2200, Austin, TX 78712 (United States)

    2017-04-24

    This investigation compares the growth rates of preexisting abnormal grains under both static and dynamic conditions. Abnormal grains several millimeters in length were produced in two commercial-purity molybdenum (Mo) materials by tensile straining at temperatures from 1923 to 2073 K (1650–1800 °C). This process is termed dynamic abnormal grain growth (DAGG) because it produces abnormal grains during concurrent plastic straining. DAGG creates abnormal grains at much lower temperatures than does static abnormal grain growth (SAGG). Abnormal grains created through DAGG were characterized with their surrounding microstructures and were then subjected to annealing treatments. Only one-third of the preexisting abnormal grains subsequently grew by SAGG. Among these, SAGG occurred only in those specimens that required the largest strains to initiate DAGG when creating the abnormal grain(s). The rates of boundary migration observed for SAGG were approximately two orders of magnitude slower than those for DAGG. When DAGG in one specimen was interrupted by extended static annealing, it did not recur when straining resumed. The dislocation substructure developed during hot deformation, which includes subgrains typical of five-power creep, is critically important to both DAGG and SAGG of preexisting abnormal grains under the conditions examined.

  11. Unravelling merging behaviors and electrostatic properties of CVD-grown monolayer MoS2 domains

    International Nuclear Information System (INIS)

    Hao, Song; Yang, Bingchu; Gao, Yongli

    2016-01-01

    The presence of grain boundaries is inevitable for chemical vapor deposition (CVD)-grown MoS 2 domains owing to various merging behaviors, which greatly limits its potential applications in novel electronic and optoelectronic devices. It is therefore of great significance to unravel the merging behaviors of the synthesized polygon shape MoS 2 domains. Here we provide systematic investigations of merging behaviors and electrostatic properties of CVD-grown polycrystalline MoS 2 crystals by multiple means. Morphological results exhibit various polygon shape features, ascribed to polycrystalline crystals merged with triangle shape MoS 2 single crystals. The thickness of triangle and polygon shape MoS 2 crystals is identical manifested by Raman intensity and peak position mappings. Three merging behaviors are proposed to illustrate the formation mechanisms of observed various polygon shaped MoS 2 crystals. The combined photoemission electron microscopy and kelvin probe force microscopy results reveal that the surface potential of perfect merged crystals is identical, which has an important implication for fabricating MoS 2 -based devices.

  12. Electron microscopy and auger spectroscopy study of the wetting of the grain boundaries in the systems Mo-Pb, Mo-Sn, Mo-Ni and Ni-Pb; Etude par microscopie electronique et spectroscopie auger du mouillage des joints de grains dans les systemes Mo-Pb, Mo-Sn, Mo-Ni et Ni-Pb

    Energy Technology Data Exchange (ETDEWEB)

    Charai, A. [Faculte des Sciences et Techniques de Saint Jerome, Lab. TECSEN, UMR 6122 du CNRS, 13 - Marseille (France); Kutcherinenko, I.; Priester, L. [Paris-11 Univ., ISMA, 91 - Orsay (France); Penisson, J.M. [CEA Grenoble, Dept. de Recherche Fondamentale sur la Matiere Condensee, DRFMC-SP2M, 38 (France); Pontikis, V. [Centre National de la Recherche Scientifique (CNRS), Centre d' Etudes de Chimie Metallurgique, 94 - Vitry-sur-Seine (France); Wolski, K. [Ecole NationaleSuperieure des Mines de Saint Etienne, Centre SMS/MPI, URA 1884 du CNRS, 42 - Saint Etienne (France); Vystavel, T. [Academy of Sciences of Czech Republic, Institute of Physics, Praha (Czech Republic)

    2002-09-01

    Understanding the mechanism of the intergranular penetration of a liquid phase into a metallic solid is an important problem. The structural and chemical characterization of nano-metric films at grain boundaries is now possible by using high resolution electron microscopy associated with X-ray micro-analysis, electron energy loss spectroscopy and Auger spectroscopy. In order to study this problem, two different classes of model materials were selected according to their crystallographic structure: a bcc metal (molybdenum) and an fcc one (nickel). The wetting element was either lead or tin or nickel. In a first approach, the metallic matrix was polycrystalline. The conditions in which the liquid phase penetrates into the grain boundaries were studied by using special preparation and observation techniques. In particular, the use of a Focused Ion Beam microscope (FIB) allowed the preparation of thin foils located very precisely inside the matrix as well as multi-scale observations. These specimens were further observed in electron microscopy with a very high resolution. (authors)

  13. 微量TiC对Mo-Ti-Zr-TiC合金性能与显微组织的影响%Effect of Trace TiC on Property and Microstructure of Mo-Ti-Zr-TiC Alloy

    Institute of Scientific and Technical Information of China (English)

    钱昭; 范景莲; 成会朝; 田家敏

    2012-01-01

    采用粉末冶金方法制备Mo-Ti-Zr-TiC合金,研究微量TiC的添加对Mo-Ti-Zr-TiC合金的拉伸性能和显微组织的影响.结果表明,在Mo-Ti-Zr合金中添加微量TiC(0.1%~0.5%,质量分数)后,合金的相对密度和室温抗拉强度得到了提高,当TiC添加量为0.4%时,合金强度最高,较Mo-Ti-Zr合金提高了28.1%.微量TiC的添加,阻碍了合金烧结过程中的晶粒长大,合金晶粒尺寸随TiC添加量的增加而降低.添加的细小TiC粒子在高温烧结过程中或与坯体中的微量氧发生反应形成了由Mo、Ti、C及O 4种元素组成的(Mo,Ti)xOyCz细小复合第二相粒子,或发生团聚结成大颗粒,对合金起到净化晶界氧和弥散强化的作用,因而合金的性能相比Mo-Ti-Zr合金有了较明显的提高.%Mo-Ti-Zr-TiC alloy was prepared via powder metallurgy method. The effects of trace TiC additive on the mechanical properties and microstructure of TiC reinforced Mo-Ti-Zr-TiC alloy were studied. The results indicate that the relative density and the tensile strength at room temperature of Mo-Ti-Zr-TiC alloy is effectively enhanced by adding trace TiC (0.1wt%~0.5wt%). The tensile strength achieves the highest value when the content of TiC is 0.4wt%, which is 28.1% higher than that of Mo-Ti-Zr alloy. The adding of trace TiC can inhibit the grain growth during alloy sintering process, which leads to the decrease of grain sizes with the rise of TiC content. A part of the fine TiC particles react with trace oxygen in molybdenum matrix to form (Mo,Ti)xOyC2 compound second phase particles during high temperature sintering, while the other part are agglomerated into large particles, which play a role in grain boundaries purification and dispersion-strengthening.

  14. Diffusion barrier performances of thin Mo, Mo-N and Mo/Mo-N films between Cu and Si

    International Nuclear Information System (INIS)

    Song Shuangxi; Liu Yuzhang; Mao Dali; Ling Huiqin; Li Ming

    2005-01-01

    In this work, we have studied the diffusion barrier performances of Mo, Mo-N and Mo/Mo-N metallization layers deposited by sputtering Mo in Ar/N 2 atmospheres, respectively. Samples were subsequently annealed at different temperatures ranging from 400 to 800 deg C in vacuum condition. The film properties and their suitability as diffusion barriers and protective coatings in silicon devices were characterized using four-point probe measurement, X-ray diffractometry, scanning electron microscopy, Auger electron spectroscopy and transmission electron microscopy analyses. Experimental results revealed that the Mo (20 nm)/Mo-N (30 nm) layer was able to prevent the diffusion reaction between Cu and Si substrate after being annealed at 600 deg C for 30 min. The adhesion between layers and the content of N atoms are the key parameters to improve the properties of Mo-based barrier materials. The Mo layer interposed between Cu and Mo-N diluted the high nitrogen concentration of the barrier and so enhanced the barrier performances

  15. Reheat cracking in 1/2 CrMoV steel. Heat affected zones

    International Nuclear Information System (INIS)

    Batte, A.D.; Miller, R.C.; Murphy, M.C.

    1976-01-01

    Low alloy creep resisting steels are inherently susceptible to cracking during stress relief heat treatment (reheat cracking) though few welds give rise to problems in manufacture or service. Mechanical tests on simulated affected zone structures in CrMoV forgings have shown that cracking occurs when the high temperature ductility is inadequate to accommodate the residual welding strain. Differences in susceptibility result from differences in heat affected zone grain size if the purity level is sufficiently high; reheat cracking may then be avoided by ensuring complete grain refinement during welding. The susceptibility of a lower purity forging was insensitive to grain size; heat affected zone refinement is unlikely to eliminate cracking in such steel. (orig.) [de

  16. Doping induced grain size reduction and photocatalytic performance enhancement of SrMoO{sub 4}:Bi{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yunjian, E-mail: wangyunjianmail@163.com; Xu, Hui; Shao, Congying; Cao, Jing, E-mail: caojing@mail.ipc.ac.cn

    2017-01-15

    Graphical abstract: Photocatalytic performance of SrMoO{sub 4} was greatly improved by Bi{sup 3+} doping effects, including crystalline size reduction, band gap narrowing, and lattice contraction. - Highlights: • An efficient SrMoO{sub 4} photocatalyst was fabricated by Bi{sup 3+} doping under hydrothermal condition. • Bi{sup 3+} doping effects, including crystalline size reduction, band gap narrowing, and lattice contraction were discovered in SrMoO{sub 4} nanomaterials. • The photocatalytic activity was great improved on account of Bi{sup 3+} doping effects. • Photoluminescence studies found that hydroxyl radical (·OH) is the main active species in the photocatalytic degradation process. - Abstract: Ion doping is one of the most effective ways to develop photocatalysts by creating impurity levels in the energy band structure. In this paper, novel Bi{sup 3+} doped SrMoO{sub 4} (SrMoO{sub 4}:Bi{sup 3+}) nanocrystals were prepared by a simple hydrothermal method. By systematic characterizations using x-ray diffraction, infrared spectra, UV–vis spectra, X-ray photoelectron spectroscopy and transmission electron microscopy, it is demonstrated that all the samples crystallized in a single phase of scheelite structure, and particle sizes of SrMoO{sub 4}:Bi{sup 3+} gradually decreased. The Bi{sup 3+} doped nanoparticles showed lattice contraction, and band-gap narrowing. The photocatalytic activity of the samples was measured by monitoring the degradation of methylene blue dye in an aqueous solution under UV-radiation exposure. It is found that SrMoO{sub 4}:Bi{sup 3+} showed excellent activity toward photodegradation of methylene blue solution under UV light irradiation compared to the pure SrMoO{sub 4}. These observations are interpreted in terms of the Bi{sup 3+} doping effects and the increased the surface active sites, which results in the improved the ratio of surface charge carrier transfer rate and reduced the electron–hole recombination rate. These

  17. The causes of relaxation- and hot cracking in the heat-affected zone of 22 NiMoCr 37 and 20 MnMoNi 55

    International Nuclear Information System (INIS)

    Schellhammer, W.

    1977-01-01

    Non-destructive and metallographic investigations with a view to relaxation cracking and hot cracking were carried out in 53 component-specific welds with wall thicknesses of 40 to 360 mm and 21 experimental welds with wall thicknesses of 140 to 275 mm of high-temperature, fine-grained structural steel 22 NiMoCr 37 as well as in 27 component-specific welds of high-strength, fine-grained structural steel 20 MnMoNi 55. Non-destructive tests and conventional metallographic analyses by means of transverse structure micrography were unable to give a sufficiently accurate picture of the two types of cracks in the micro- and millimeter range, a 'volumetric' method was employed (tangential structure micrography with stepwise abrasion) which permitted semi-automatic and fast evaluation. The experimental results showed the selective influence of several elements and led to the development of a method to evaluate the cumulative effect of the chemical elements on relaxation cracking and hot cracking by addition of the selective influence. The method gives quantitative data on material optimisation with regard to the reduction of brittle and crack-prone states and confirms the findings of welding simulation tests. (orig./IHOE) 891 IHOE/orig.- 892 HIS [de

  18. Unravelling merging behaviors and electrostatic properties of CVD-grown monolayer MoS{sub 2} domains

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Song; Yang, Bingchu, E-mail: bingchuyang@csu.edu.cn [College of Physics and Electronics, Institute of Super Microstructure and Ultrafast Process in Advanced Materials, Central South University, 605 South Lushan Road, Changsha 410012 (China); Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha 410012 (China); Gao, Yongli [College of Physics and Electronics, Institute of Super Microstructure and Ultrafast Process in Advanced Materials, Central South University, 605 South Lushan Road, Changsha 410012 (China); Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha 410012 (China); Department of Physics and Astronomy, University of Rochester, Rochester, New York 14534 (United States)

    2016-08-28

    The presence of grain boundaries is inevitable for chemical vapor deposition (CVD)-grown MoS{sub 2} domains owing to various merging behaviors, which greatly limits its potential applications in novel electronic and optoelectronic devices. It is therefore of great significance to unravel the merging behaviors of the synthesized polygon shape MoS{sub 2} domains. Here we provide systematic investigations of merging behaviors and electrostatic properties of CVD-grown polycrystalline MoS{sub 2} crystals by multiple means. Morphological results exhibit various polygon shape features, ascribed to polycrystalline crystals merged with triangle shape MoS{sub 2} single crystals. The thickness of triangle and polygon shape MoS{sub 2} crystals is identical manifested by Raman intensity and peak position mappings. Three merging behaviors are proposed to illustrate the formation mechanisms of observed various polygon shaped MoS{sub 2} crystals. The combined photoemission electron microscopy and kelvin probe force microscopy results reveal that the surface potential of perfect merged crystals is identical, which has an important implication for fabricating MoS{sub 2}-based devices.

  19. High temperature creep deformation of glass-phase containing MoSi sub 2 sintered compacts. Glass so wo fukumu MoSi sub 2 shoketsutai no koon henkei

    Energy Technology Data Exchange (ETDEWEB)

    Shobu, K.; Watanabe, T.; Tani, E. (Government Industrial Research Inst., Kyushu, Saga (Japan))

    1991-07-25

    As such deformation mechanisms as diffusion, grain boundary sliding and motion of dislocation are known for high temperature deformation of polycrystallines, these atomic theoretical mechanism and quantitative side are not resolved perfectly. In this report, high temperature plasticity of sintered MoSi {sub 2} containing glass phase was examined and obtained some results shown as follows: its transient feature was same as usually observed one; and according to observe its structure, the deformation mechanism was mainly based on grain boundary sliding, and viscous flow of glass phase and diffusion therethrough; stress feature in deformation was shown a transient phenomenon at about 10MPa, and stress index approached to 3 under low stress and to 1 under high stress, in other words stress feature was controlled by viscous flow under high stress and by grain boundary sliding under low stress; and the stress index of grain boundary sliding was supposed to be 3 at low inclined angle and responsive grain boundary and 2 at high inclined angle. 4 refs., 5 figs.

  20. Phase II Investigation at the Former CCC/USDA Grain Storage Facility in Savannah, Missouri

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, Lorraine M. [Argonne National Lab. (ANL), Argonne, IL (United States). Environmental Science Division. Applied Geosciences and Environmental Management Section

    2012-05-01

    From approximately 1949 until 1970, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) operated a grain storage facility on federally owned property approximately 0.25 mi northwest of Savannah, Missouri. During this time, commercial grain fumigants containing carbon tetrachloride were commonly used by the CCC/USDA and the private grain storage industry to preserve grain in their facilities. In November 1998, carbon tetrachloride was detected in a private well (Morgan) roughly 50 ft south of the former CCC/USDA facility, as a result of statewide screening of private wells near former CCC/USDA facilities, conducted in Missouri by the U.S. Environmental Protection Agency (EPA 1999). The 1998 and subsequent investigations by the EPA and the Missouri Department of Natural Resources (MDNR) confirmed the presence of carbon tetrachloride in the Morgan well, as well as in a second well on property currently owned by the Missouri Department of Transportation (MoDOT), directly east of the former CCC/USDA facility. The identified concentrations in these two wells were above the EPA maximum contaminant level (MCL) and the Missouri risk-based corrective action default target level (DTL) values of 5.0 μg/L for carbon tetrachloride in water used for domestic purposes (EPA 1999; MDNR 2000a,b, 2006). Because the observed contamination in the Morgan and MoDOT wells might be linked to the past use of carbon tetrachloride-based fumigants at its former grain storage facility, the CCC/USDA is conducting an investigation to (1) characterize the source(s), extent, and factors controlling the subsurface distribution and movement of carbon tetrachloride and (2) evaluate the potential risks to human health, public welfare, and the environment posed by the contamination. This work is being performed in accord with an Intergovernmental Agreement established in 2007 between the Farm Service Agency of the USDA and the MDNR, to address carbon tetrachloride

  1. Effect of Mo and nano-Nd{sub 2}O{sub 3} on the microstructure and wear resistance of laser cladding Ni-based alloy coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Lin; Hu, Shengsun; Shen, Junqi [Tianjin University, Tianjin Key Laboratory of Advanced Joining Technology, School of Materials Science and Engineering, Tianjin (China); Quan, Xiumin [Lu' an Vocation Technology College, School of Automobile and Mechanical and Electrical Engineering, Lu' an (China)

    2016-04-15

    Three kinds of coatings were successfully prepared on Q235 steel by laser cladding technique through adulterating with Mo and nano-Nd{sub 2}O{sub 3} into Ni-based alloys. The effect of Mo and nano-Nd{sub 2}O{sub 3} on the microstructure and properties of Ni-based coatings was investigated systematically by means of optical microscopy, X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, and microhardness testing and wear testing. The results indicated a certain amount of fine grains and polygonal equiaxed grains synthesized after adding Mo and nano-Nd{sub 2}O{sub 3}. Both the microhardness and wear resistance of Ni-based coatings improved greatly with a moderate additional amount of Mo and nano-Nd{sub 2}O{sub 3}. The largest improvement in microhardness was 31.9 and 14.7 %, and the largest reduction in loss was 45.0 and 30.7 %, respectively, for 5.0 wt% Mo powders and 1.0 wt% nano-Nd{sub 2}O{sub 3}. The effect of Mo on microhardness and wear resistance of laser cladding Ni-based alloy coatings is greater than the effect of nano-Nd{sub 2}O{sub 3}. (orig.)

  2. Segregation to grain boundaries in nimonic PE16 superalloy

    International Nuclear Information System (INIS)

    Nettleship, D.J.; Wild, R.K.

    1990-01-01

    Nimonic PE16 alloy is a nickel-based superalloy containing 34 wt.% iron and 16wt.% chromium with additions of molybdenum, titanium and aluminium. It is used in the fuel assembly of the UK advanced gas-cooled reactors (AGR). This component supports significant loads in service and its mechanical integrity is therefore of paramount importance. Mechanical properties may be influenced by the grain size and grain boundary composition, both of which can themselves alter during service. Scanning Auger microscopy is a well-established method for investigating grain boundaries, and has now been applied to the study of PE16. In order to expose PE16 grain boundary surfaces it is necessary to hydrogen charge samples and fracture by pulling in tension at a slow strain rate within the ultra-high vacuum chamber of the Auger microprobe. A series of casts of nimonic PE16 alloy that have received a range of thermal ageing treatments have been fractured in an intergranular manner and the grain boundary composition determined. Segregation of trace and minority elements, particularly Mo and P, has been detected at grain boundaries. Significant variations between different as-manufactured casts were observed, whilst ageing brought about the growth of chromium-rich particles on the grain boundaries. Ductile fracture in PE16 followed a path through Ti(C, N) particles. Many of these particles incorporated large amounts of sulphur. (author)

  3. Effect of graphite content on magnetic and mechanical properties of TiC-TiN-Mo-Ni cermets

    Science.gov (United States)

    Zhang, Man; Yang, Qingqing; Xiong, Weihao; Huang, Bin; Ruan, Linji; Mao, Qiao; Li, Shengtao

    2018-04-01

    TiC-10TiN-6Mo-xGr-yNi (mol%, Gr represents graphite, x = 0, 2, 4, 6, 8, and y = 15, 30) cermets were prepared by powder metallurgy method, in order to inverstigate the effect of Gr content on magnetic and mechanical properties of TiC-TiN-Mo-Ni cermets. Room-temperature (RT) saturation magnetization (Ms) and remanence (Mr) of cermets increased with increasing x. This was mainly attributed to that the total content of non-ferromagnetic carbonitride-forming elements Ti and Mo in Ni-based binder phase decreased with increasing x. At the same x, cermets for y = 15 had lower RT Ms and Mr than those for y = 30. Cermets containing more than 2 mol% Gr became ferromagnetic at RT. Bending strength of cermets first increased and then decreased with increasing x. It reached the maximum at x = 2, mainly due to high total content of solutes Ti and Mo in Ni-based binder phase, and moderate thickness of outer rim of Ti(C,N) ceramic grains. Hardness of cermets was not significantly affected by x, mainly due to the combined action of the decrease of the total content of Ti and Mo in binder phase and the increase of the volume fraction of ceramic grains. At the same x, cermets for y = 15 had lower bending strength and higher hardness than those for y = 30.

  4. TEM Characterization of High Burn-up Microstructure of U-7Mo Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jian Gan; Brandon Miller; Dennis Keiser; Adam Robinson; James Madden; Pavel Medvedev; Daniel Wachs

    2014-04-01

    As an essential part of global nuclear non-proliferation effort, the RERTR program is developing low enriched U-Mo fuels (< 20% U-235) for use in research and test reactors that currently employ highly enriched uranium fuels. One type of fuel being developed is a dispersion fuel plate comprised of U-7Mo particles dispersed in Al alloy matrix. Recent TEM characterizations of the ATR irradiated U-7Mo dispersion fuel plates include the samples with a local fission densities of 4.5, 5.2, 5.6 and 6.3 E+21 fissions/cm3 and irradiation temperatures of 101-136?C. The development of the irradiated microstructure of the U-7Mo fuel particles consists of fission gas bubble superlattice, large gas bubbles, solid fission product precipitates and their association to the large gas bubbles, grain subdivision to tens or hundreds of nanometer size, collapse of bubble superlattice, and amorphisation. This presentation will describe the observed microstructures specifically focusing on the U-7Mo fuel particles. The impact of the observed microstructure on the fuel performance and the comparison of the relevant features with that of the high burn-up UO2 fuels will be discussed.

  5. 99Mo production by 100Mo(n,2n)99Mo using accelerator neutrons

    International Nuclear Information System (INIS)

    Sato, Nozomi; Kawabata, Masako; Nagai, Yasuki; Hashimoto, Kazuyuki; Hatsukawa, Yuichi; Saeki, Hideya; Motoishi, Shoji; Kin, Tadahiro; Konno, Chikara; Ochiai, Kentaro; Takakura, Kosuke; Minato, Futoshi; Iwamoto, Osamu; Iwamoto, Nobuyuki; Hashimoto, Shintaro

    2013-01-01

    We proposed a new route to produce a medical radioisotope 99 Mo by the 100 Mo(n,2n) 99 Mo reaction using accelerator neutrons. A high-quality 99 Mo with a minimum level of radioactive waste can be obtained by the proposed reaction. The decay product of 99 Mo, 99m Tc, is separated from 99 Mo by the sublimation method. The proposed route could bring a major breakthrough in the solution of ensuring a constant and reliable supply of 99 Mo. (author)

  6. MoOx thin films deposited by magnetron sputtering as an anode for aqueous micro-supercapacitors

    Science.gov (United States)

    Liu, Can; Li, Zhengcao; Zhang, Zhengjun

    2013-12-01

    In order to examine the potential application of non-stoichiometric molybdenum oxide as anode materials for aqueous micro-supercapacitors, conductive MoOx films (2 ⩽ x ⩽ 2.3) deposited via RF magnetron sputtering at different temperatures were systematically studied for composition, structure and electrochemical properties in an aqueous solution of Li2SO4. The MoOx (x ≈ 2.3) film deposited at 150 °C exhibited a higher areal capacitance (31 mF cm-2 measured at 5 mV s-1), best rate capability and excellent stability at potentials below -0.1 V versus saturated calomel electrode, compared to the films deposited at room temperature and at higher temperatures. These superior properties were attributed to the multi-valence composition and mixed-phase microstructure, i.e., the coexistence of MoO2 nanocrystals and amorphous MoOx (2.3 < x ⩽ 3). A mechanism combining Mo(IV) oxidation/reduction on the hydrated MoO2 grain surfaces and cation intercalation/extrusion is proposed to illustrate the pseudo-capacitive process.

  7. MoOx thin films deposited by magnetron sputtering as an anode for aqueous micro-supercapacitors

    Directory of Open Access Journals (Sweden)

    Can Liu

    2013-11-01

    Full Text Available In order to examine the potential application of non-stoichiometric molybdenum oxide as anode materials for aqueous micro-supercapacitors, conductive MoOx films (2 ≤ x ≤ 2.3 deposited via RF magnetron sputtering at different temperatures were systematically studied for composition, structure and electrochemical properties in an aqueous solution of Li2SO4. The MoOx (x ≈ 2.3 film deposited at 150 °C exhibited a higher areal capacitance (31 mF cm−2 measured at 5 mV s−1, best rate capability and excellent stability at potentials below −0.1 V versus saturated calomel electrode, compared to the films deposited at room temperature and at higher temperatures. These superior properties were attributed to the multi-valence composition and mixed-phase microstructure, i.e., the coexistence of MoO2 nanocrystals and amorphous MoOx (2.3 < x ≤ 3. A mechanism combining Mo(IV oxidation/reduction on the hydrated MoO2 grain surfaces and cation intercalation/extrusion is proposed to illustrate the pseudo-capacitive process.

  8. Zr, Hf, Mo and W-containing oxide phases as pinning additives in Bi-2212 superconductor

    International Nuclear Information System (INIS)

    Makarova, M.V.; Kazin, P.E.; Tretyakov, Yu.D.; Jansen, M.; Reissner, M.; Steiner, W.

    2005-01-01

    Phase formation was investigated in Bi-Sr-Ca-Cu-M-O (M = Mo, W) systems at 850-900 deg C. It was found that Sr 2 CaMO 6 phases were chemically compatible with Bi-2212. The composites Bi-2212-Sr 2 CaMO 6 and Bi-2212-SrAO 3 (A = Zr, Hf) were obtained from a sol-gel precursor using crystallisation from the melt. The materials consisted of Bi-2212 matrix and submicron or micron grains of the corresponding dispersed phase. T c was equal or exceeded that for undoped Bi-2212, reaching T c = 97 K in the Mo-containing composite. The composites exhibited enhanced pinning in comparison with similar prepared pure Bi-2212, especially at T = 60 K. The best pinning parameters were observed for the Bi-2212-Sr 2 CaWO 6 composite

  9. Growth, structure and stability of sputter-deposited MoS2 thin films

    Directory of Open Access Journals (Sweden)

    Reinhard Kaindl

    2017-05-01

    Full Text Available Molybdenum disulphide (MoS2 thin films have received increasing interest as device-active layers in low-dimensional electronics and also as novel catalysts in electrochemical processes such as the hydrogen evolution reaction (HER in electrochemical water splitting. For both types of applications, industrially scalable fabrication methods with good control over the MoS2 film properties are crucial. Here, we investigate scalable physical vapour deposition (PVD of MoS2 films by magnetron sputtering. MoS2 films with thicknesses from ≈10 to ≈1000 nm were deposited on SiO2/Si and reticulated vitreous carbon (RVC substrates. Samples deposited at room temperature (RT and at 400 °C were compared. The deposited MoS2 was characterized by macro- and microscopic X-ray, electron beam and light scattering, scanning and spectroscopic methods as well as electrical device characterization. We find that room-temperature-deposited MoS2 films are amorphous, of smooth surface morphology and easily degraded upon moderate laser-induced annealing in ambient conditions. In contrast, films deposited at 400 °C are nano-crystalline, show a nano-grained surface morphology and are comparatively stable against laser-induced degradation. Interestingly, results from electrical transport measurements indicate an unexpected metallic-like conduction character of the studied PVD MoS2 films, independent of deposition temperature. Possible reasons for these unusual electrical properties of our PVD MoS2 thin films are discussed. A potential application for such conductive nanostructured MoS2 films could be as catalytically active electrodes in (photo-electrocatalysis and initial electrochemical measurements suggest directions for future work on our PVD MoS2 films.

  10. Electron microscopy and auger spectroscopy study of the wetting of the grain boundaries in the systems Mo-Pb, Mo-Sn, Mo-Ni and Ni-Pb

    International Nuclear Information System (INIS)

    Charai, A.; Kutcherinenko, I.; Priester, L.; Penisson, J.M.; Pontikis, V.; Wolski, K.; Vystavel, T.

    2002-01-01

    Understanding the mechanism of the intergranular penetration of a liquid phase into a metallic solid is an important problem. The structural and chemical characterization of nano-metric films at grain boundaries is now possible by using high resolution electron microscopy associated with X-ray micro-analysis, electron energy loss spectroscopy and Auger spectroscopy. In order to study this problem, two different classes of model materials were selected according to their crystallographic structure: a bcc metal (molybdenum) and an fcc one (nickel). The wetting element was either lead or tin or nickel. In a first approach, the metallic matrix was polycrystalline. The conditions in which the liquid phase penetrates into the grain boundaries were studied by using special preparation and observation techniques. In particular, the use of a Focused Ion Beam microscope (FIB) allowed the preparation of thin foils located very precisely inside the matrix as well as multi-scale observations. These specimens were further observed in electron microscopy with a very high resolution. (authors)

  11. Preparation of MoB and MoB-MoSi2 composites by combustion synthesis in SHS mode

    International Nuclear Information System (INIS)

    Yeh, C.L.; Hsu, W.S.

    2007-01-01

    Combustion synthesis in the mode of self-propagating high-temperature synthesis (SHS) was carried out in the Mo-B and Mo-B-Si systems for the preparation of molybdenum boride MoB and the composite of MoB-MoSi 2 from elemental powder compacts. Under a preheating temperature above 150 deg. C , the reaction of Mo with boron in the sample compact of Mo:B = 1:1 is characterized by a planar combustion front propagating in a self-sustaining and steady manner. As the preheating temperature or sample compaction density increased, combustion temperature was found to increase and the propagation rate of the combustion front was correspondingly enhanced. Moreover, the XRD analysis provides evidence of yielding nearly single-phase α-MoB from the Mo-B sample at equiatomic stoichiometry. In the synthesis of MoB-MoSi 2 composites, the starting stoichiometry of the Mo-B-Si powder compact was varied so as to produce the final composites containing 20-80 mol% MoB. It was also found the increase of flame-front velocity and combustion temperature with increasing MoB content formed in the composite. The composition analysis by XRD shows excellent conversion from the Mo-B-Si powder compact to the MoB-MoSi 2 composite through the SHS reaction; that is, in addition to a small amount of Mo 5 Si 3 , the as-synthesized composite is composed entirely of MoB and MoSi 2

  12. CVD grown 2D MoS{sub 2} layers: A photoluminescence and fluorescence lifetime imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Oezden, Ayberk; Madenoglu, Buesra [Department of Materials Science and Engineering, Faculty of Engineering, Anadolu University, Eskisehir (Turkey); Sar, Hueseyin; Ay, Feridun; Perkgoez, Nihan Kosku [Department of Electrical and Electronics Engineering, Faculty of Engineering, Anadolu University, Eskisehir (Turkey); Yeltik, Aydan [Department of Physics, UNAM Institute of Materials Science and Nanotechnology, Bilkent University, Ankara (Turkey); Sevik, Cem [Department of Mechanical Engineering, Faculty of Engineering, Anadolu University, Eskisehir (Turkey)

    2016-11-15

    In this letter, we report on the fluorescence lifetime imaging and accompanying photoluminescence properties of a chemical vapour deposition (CVD) grown atomically thin material, MoS{sub 2}. μ-Raman, μ-photoluminescence (PL) and fluorescence lifetime imaging microscopy (FLIM) are utilized to probe the fluorescence lifetime and photoluminescence properties of individual flakes of MoS{sub 2} films. Usage of these three techniques allows identification of the grown layers, grain boundaries, structural defects and their relative effects on the PL and fluorescence lifetime spectra. Our investigation on individual monolayer flakes reveals a clear increase of the fluorescence lifetime from 0.3 ns to 0.45 ns at the edges with respect to interior region. On the other hand, investigation of the film layer reveals quenching of PL intensity and lifetime at the grain boundaries. These results could be important for applications where the activity of edges is important such as in photocatalytic water splitting. Finally, it has been demonstrated that PL mapping and FLIM are viable techniques for the investigation of the grain-boundaries. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Effect of V content on the microstructure and mechanical properties of Mo2FeB2 based cermets

    International Nuclear Information System (INIS)

    Yu, Haizhou; Zheng, Yong; Liu, Wenjun; Zheng, Jianzhi; Xiong, Weihao

    2010-01-01

    Four series of cermets with V content between 0 and 7.5 wt.% in 2.5 wt.% increments were studied by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffractometry (XRD). The transverse rupture strength (TRS), hardness (HRA) and fracture toughness (K IC ) were also measured. It was found that the grain size was affected by the V content. The cermets with 2.5 wt.% V addition exhibited the smallest grain size. An increasing V content decreased the wettability of the binder on the Mo 2 FeB 2 hard phase, and accordingly resulted in the increase of porosity and aggregation of ceramic grains. EDS results showed that V addition occurred primarily in the hard phase, with a little amount in the Fe alloy binder. In addition, the content of Mo element in the binder decreased with increasing V content. The cermets with 2.5 wt.% V addition showed the highest TRS, hardness and fracture toughness of 2350 MPa, HRA 90.6 and 15.1 MPa m 1/2 , respectively.

  14. Oscillatory behavior of the magnetic properties of Nd–Fe–B films with Mo and Mo–Cu additions

    International Nuclear Information System (INIS)

    Urse, M.; Grigoras, M.; Lupu, N.; Borza, F.; Chiriac, H.

    2013-01-01

    A series of Ta/NdFeB/Ta thin films with Mo and Mo–Cu additions embedded by alloying and by stratification have been prepared by r.f. sputtering. The influence of additions, their embedding mode, and annealing temperature on the structural and magnetic behavior of Ta/NdFeB/Ta thin films is presented. The use of additions of Mo and Mo–Cu leads to refined grain structure and improvement in the hard magnetic characteristics of Ta/NdFeB/Ta thin films. The Ta/[NdFeBMo(540 nm)/Ta films and Ta/[NdFeB(180 nm)/MoCu(dnm)] × n/Ta multilayer films present enhanced coercivities and M r /M s ratios in comparison with the Ta/NdFeB(540 nm)/Ta films. The stratification of Ta/NdFeB/Ta thin films with Mo–Cu interlayers leads to an oscillatory behavior of hard magnetic characteristics of the Ta/[NdFeB(180 nm)/MoCu(dnm)] × n/Ta multilayer films, when the thickness, d, of Mo–Cu interlayers varies by increments of 1 nm. When the thickness of Mo–Cu interlayers varies by increments of 2 nm the oscillatory behavior of the magnetic characteristics is not revealed. For a thickness of the Mo–Cu interlayer of 3 nm in the Ta/[NdFeB(180 nm)/MoCu(3 nm)] × 3/Ta thin films annealed at 650 °C, the c-axis of part of the hard magnetic Nd 2 Fe 14 B grains is oriented out-of-plane

  15. Interface structure and composition of MoO3/GaAs(0 0 1)

    Science.gov (United States)

    Sarkar, Anirban; Ashraf, Tanveer; Grafeneder, Wolfgang; Koch, Reinhold

    2018-04-01

    We studied growth, structure, stress, oxidation state as well as surface and interface structure and composition of thermally-evaporated thin MoO3 films on the technologically important III/V-semiconductor substrate GaAs(0 0 1). The MoO3 films grow with Mo in the 6+  oxidation state. The electrical resistance is tunable by the oxygen partial pressure during deposition from transparent insulating to semi-transparant halfmetallic. In the investigated growth temperature range (room temperature to 200 °C) no diffraction spots are detected by x-ray diffraction. However, high resolution transmission electron microscopy reveals the formation of MoO3 nanocrystal grains with diameters of 5–8 nm. At the interface a  ≈3 nm-thick intermediate layer has formed, where the single-crystal lattice of GaAs gradually transforms to the nanocrystalline MoO3 structure. This interpretation is corroborated by our in situ and real-time stress measurements evidencing a two-stage growth process as well as by elemental interface analysis revealing coexistance of Ga, As, Mo, and oxygen in a intermediate layer of 3–4 nm.

  16. Characterization of hydrogenation behavior on Mo-modified Zr-Nb alloys as nuclear fuel cladding materials

    International Nuclear Information System (INIS)

    Yang, H.L.; Shibukawa, S.; Abe, H.; Satoh, Y.; Matsukawa, Y.; Kido, T.

    2014-01-01

    The effects of Mo in Zr-Nb alloys are investigated in terms of their mechanical properties associated with microstructure, as well as their behavior under hydrogen environment. Zr-Nb-Mo alloys were fabricated by arc melting and subsequently cold rolling and annealing below the eutectoid temperature. Hydrogen was absorbed in a furnace under argon and hydrogen gas flow environment at high temperature. X-Ray diffraction, electron backscatter diffraction, and tensile test were jointly utilized to carry out detailed microstructural characterization and mechanical properties. Results showed that fcc-δ-ZrH 1.66 was formed in all hydrogen-absorbed alloys, and the amount of hydride enhanced with increasing of hydrogen content. In addition, it was clear that δ-ZrH 1.66 was precipitated both in grain boundary and interior, and preferential precipitation was observed on the habit planes of (0001) and {101-bar7}. Moreover, the strengthening effect by Mo addition was observed. The ductility loss by hydrogen absorption was found from fracture surface observation. Large area cleavage facets were found in Mo-free specimen, and less cleavage facets was observed in Mo-containing specimen, showing an appropriate addition of Mo can increase the tolerance to hydrogen embrittlement. (author)

  17. Characteristic features of the magnetoresistance in the ferrimagnetic (Sr2FeMoO6-δ) - dielectric (SrMoO4) nanocomposite

    Science.gov (United States)

    Demyanov, S.; Kalanda, N.; Yarmolich, M.; Petrov, A.; Lee, S.-H.; Yu, S.-C.; Oh, S. K.; Kim, D.-H.

    2018-05-01

    Magnetic metal-oxide compounds with high values of magnetoresistance (MR) have attracted huge interest for spintronic applications, among which Sr2FeMoO6-δ (SFMO) has been relatively less known compared to the cobaltites and manganites, despite 100% electrons spin-polarization degree and a high Curie temperature. Here, stable fabrication and systematic analysis of nanocomposites based on SFMO with SrMoO4 dielectric sheaths are presented. SFMO-SrMoO4 nanocomposites were fabricated as follows: synthesis of the SFMO single-phase nanopowders by the modified citrate-gel technique; compaction under high pressure; thermal treatment for sheaths formation around grains. The nanocomposite is observed to exhibit a transitional behavior of conductivity from metallic, which is characteristic for the SFMO to semiconductor one in the temperature range 4 - 300K under magnetic fields up to 10T. A negative MR is observed due to the spin-polarized charge carriers tunneling through dielectric sheaths. MR value reaches 43% under 8T at 10κ. The dielectric sheaths thickness was determined to be about 10 nm by electric breakdown voltage value at current-voltage characteristics curves. The breakdown is found to be a reversible process determined by collisional ionization of dielectric atoms in strong electric field depending on knocked-out electrons from the SrMoO4. It was found that MR changes sign in electric breakdown region, revealing the giant magnetoresistive properties.

  18. Microstructure control of Zr-Nb-Sn alloy with Mo addition for HWR pressure tube application

    International Nuclear Information System (INIS)

    Hwang, S. K.; Kim, M. H.; Kim, J. H.; Kwon, S. I.; Kim, Y. S.

    1997-01-01

    As a basic research to develop the material for heavy water reactor pressure tube application the effect of Mo addition to Zr-Nb-Sn alloy was studied for the purpose of minimizing the amount of cold working while maintaining a high strength. To select the target alloy system we first designed various alloy compositions and chose Zr-Nb-Sn and Zr-Nb-Mo through multi-regression analysis of the relationship between the basic properties and the compositions. Plasma arc melting was used to produce the alloys and the microstructure change introduced by the processing steps including hot forging, beta-heat treatment, hot rolling, cold rolling and recrystallization heat treatment was investigated. Recrystallization of Zr-Nb-Sn was retarded by adding Mo and this resulted in a fine grain structure in Zr-Nb-Sn-Mo alloy. Beside the retarding effect recrystallization, Mo increased the amount of residual beta phase and showed an indication of precipitation hardening, which added up to the possibility of applying the alloy for the desired usage. (author)

  19. Pulsed cathodoluminescence and Raman spectra of MoS{sub 2} and WS{sub 2} nanocrystals and their combination MoS{sub 2}/WS{sub 2} produced by self-propagating high-temperature synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Bozheyev, Farabi, E-mail: farabi.bozheyev@gmail.com [Institute of High Technology Physics, National Research Tomsk Polytechnic University, 30 Lenin Ave., 634050 Tomsk (Russian Federation); National Nanolaboratory, al-Farabi Kazakh National University, 71 al-Farabi Ave., 050000 Almaty (Kazakhstan); Nazarbayev University Research and Innovation System, 53 Kabanbay Batyr St., 010000 Astana (Kazakhstan); Valiev, Damir [Institute of High Technology Physics, National Research Tomsk Polytechnic University, 30 Lenin Ave., 634050 Tomsk (Russian Federation); Nemkayeva, Renata [National Nanolaboratory, al-Farabi Kazakh National University, 71 al-Farabi Ave., 050000 Almaty (Kazakhstan)

    2016-02-29

    Molybdenum and tungsten disulfide nanoplates were produced by self-propagating high-temperature synthesis in argon atmosphere. This method provides an easy way to produce MoS{sub 2} and WS{sub 2} from nanoplates up to single- and several layers. The Raman peak intensities corresponding to in-plane E{sup 1}{sub 2g} and out-of-plane A{sub 1g} vibration modes and their shifts strongly depend on the thicknesses of the MoS{sub 2} and WS{sub 2} platelets indicating size-dependent scaling laws and properties. An electron beam irradiation of MoS{sub 2} and WS{sub 2} powders leads to an occurrence of pulsed cathodoluminescence (PCL) spectra at 575 nm (2.15 eV) and 550 nm (2.25 eV) characteristic to their intrinsic band gaps. For the combination of MoS{sub 2} and WS{sub 2} nanopowders, a PCL shoulder at 430 nm (2.88 eV) was observed, which is explained by the radiative electron-hole recombination at the MoS{sub 2}/WS{sub 2} grain boundaries. The luminescence decay kinetics of the MoS{sub 2}/WS{sub 2} nanoplates appears to be slower than for individual MoS{sub 2} and WS{sub 2} platelets due to a spatial separation of electrons and holes at MoS{sub 2}/WS{sub 2} junction resulting in extension of recombination time.

  20. The Effect of Milling Time on the Microstructural Characteristics and Strengthening Mechanisms of NiMo-SiC Alloys Prepared via Powder Metallurgy

    Science.gov (United States)

    Yang, Chao; Muránsky, Ondrej; Zhu, Hanliang; Thorogood, Gordon J.; Avdeev, Maxim; Huang, Hefei; Zhou, Xingtai

    2017-01-01

    A new generation of alloys, which rely on a combination of various strengthening mechanisms, has been developed for application in molten salt nuclear reactors. In the current study, a battery of dispersion and precipitation-strengthened (DPS) NiMo-based alloys containing varying amounts of SiC (0.5–2.5 wt %) were prepared from Ni-Mo-SiC powder mixture via a mechanical alloying (MA) route followed by spark plasma sintering (SPS) and rapid cooling. Neutron Powder Diffraction (NPD), Electron Back Scattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM) were employed in the characterization of the microstructural properties of these in-house prepared NiMo-SiC DPS alloys. The study showed that uniformly-dispersed SiC particles provide dispersion strengthening, the precipitation of nano-scale Ni3Si particles provides precipitation strengthening, and the solid-solution of Mo in the Ni matrix provides solid-solution strengthening. It was further shown that the milling time has significant effects on the microstructural characteristics of these alloys. Increased milling time seems to limit the grain growth of the NiMo matrix by producing well-dispersed Mo2C particles during sintering. The amount of grain boundaries greatly increases the Hall–Petch strengthening, resulting in significantly higher strength in the case of 48-h-milled NiMo-SiC DPS alloys compared with the 8-h-milled alloys. However, it was also shown that the total elongation is considerably reduced in the 48-h-milled NiMo-SiC DPS alloy due to high porosity. The porosity is a result of cold welding of the powder mixture during the extended milling process. PMID:28772747

  1. The Effect of Milling Time on the Microstructural Characteristics and Strengthening Mechanisms of NiMo-SiC Alloys Prepared via Powder Metallurgy

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2017-04-01

    Full Text Available A new generation of alloys, which rely on a combination of various strengthening mechanisms, has been developed for application in molten salt nuclear reactors. In the current study, a battery of dispersion and precipitation-strengthened (DPS NiMo-based alloys containing varying amounts of SiC (0.5–2.5 wt % were prepared from Ni-Mo-SiC powder mixture via a mechanical alloying (MA route followed by spark plasma sintering (SPS and rapid cooling. Neutron Powder Diffraction (NPD, Electron Back Scattering Diffraction (EBSD, and Transmission Electron Microscopy (TEM were employed in the characterization of the microstructural properties of these in-house prepared NiMo-SiC DPS alloys. The study showed that uniformly-dispersed SiC particles provide dispersion strengthening, the precipitation of nano-scale Ni3Si particles provides precipitation strengthening, and the solid-solution of Mo in the Ni matrix provides solid-solution strengthening. It was further shown that the milling time has significant effects on the microstructural characteristics of these alloys. Increased milling time seems to limit the grain growth of the NiMo matrix by producing well-dispersed Mo2C particles during sintering. The amount of grain boundaries greatly increases the Hall–Petch strengthening, resulting in significantly higher strength in the case of 48-h-milled NiMo-SiC DPS alloys compared with the 8-h-milled alloys. However, it was also shown that the total elongation is considerably reduced in the 48-h-milled NiMo-SiC DPS alloy due to high porosity. The porosity is a result of cold welding of the powder mixture during the extended milling process.

  2. Effect of Welding Processes on the Microstructure, Mechanical Properties and Residual Stresses of Plain 9Cr-1Mo Steel Weld Joints

    Science.gov (United States)

    Nagaraju, S.; Vasantharaja, P.; Brahadees, G.; Vasudevan, M.; Mahadevan, S.

    2017-12-01

    9Cr-1Mo steel designated as P9 is widely used in the construction of power plants and high-temperature applications. It is chosen for fabricating hexcan fuel subassembly wrapper components of fast breeder reactors. Arc welding processes are generally used for fabricating 9Cr-1Mo steel weld joints. A-TIG welding process is increasingly being adopted by the industries. In the present study, shielded metal arc (SMA), tungsten inert gas (TIG) and A-TIG welding processes are used for fabricating the 9Cr-1Mo steel weld joints of 10 mm thickness. Effect of the above welding processes on the microstructure evolution, mechanical properties and residual stresses of the weld joints has been studied in detail. All the three weld joints exhibited comparable strength and ductility values. 9Cr-1Mo steel weld joint fabricated by SMAW process exhibited lower impact toughness values caused by coarser grain size and inclusions. 9Cr-1Mo steel weld joint fabricated by TIG welding exhibited higher toughness due to finer grain size, while the weld joint fabricated by A-TIG welding process exhibited adequate toughness values. SMA steel weld joint exhibited compressive residual stresses in the weld metal and HAZ, while TIG and A-TIG weld joint exhibited tensile residual stresses in the weld metal and HAZ.

  3. Measurement of target and double-spin asymmetries for the e<mo>→>p<mo>→eπ+(n)> reaction in the nucleon resonance region at low Q2

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, X.; Adhikari, K. P.; Bosted, P.; Deur, A.; Drozdov, V.; El Fassi, L.; Kang, Hyekoo; Kovacs, K.; Kuhn, S.; Long, E.; Phillips, S. K.; Ripani, M.; Slifer, K.; Smith, L. C.; Adikaram, D.; Akbar, Z.; Amaryan, M. J.; Anefalos Pereira, S.; Asryan, G.; Avakian, H.; Badui, R. A.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chen, J. -P.; Chetry, T.; Choi, Seonho; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Crede, V.; D' Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Djalali, C.; Dodge, G. E.; Dupre, R.; Egiyan, H.; El Alaoui, A.; Elouadrhiri, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Golovach, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joosten, S.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Mirazita, M.; Mokeev, V.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Murdoch, G.; Nadel-Turonski, P.; Net, L. A.; Ni, A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Peng, P.; Pisano, S.; Pogorelko, O.; Price, J. W.; Puckett, A. J. R.; Raue, B. A.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stankovic, I.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tian, Ye; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zonta, I.

    2016-10-01

    We report measurements of target- and double-spin asymmetries for the exclusive channel e<mo>→>p<mo>→eπ+(n)> in the nucleon resonance region at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). These asymmetries were extracted from data obtained using a longitudinally polarized NH3 target and a longitudinally polarized electron beam with energies 1.1, 1.3, 2.0, 2.3, and 3.0 GeV. The new results are consistent with previous CLAS publications but are extended to a low Q2 range from 0.0065 to 0.35 (GeV/c)2. The Q2 access was made possible by a custom-built Cherenkov detector that allowed the detection of electrons for scattering angles as low as 6 degrees. These results are compared with the unitary isobar models JANR and MAID, the partial-wave analysis prediction from SAID, and the dynamic model DMT. In many kinematic regions our results, in particular results on the target asymmetry, help to constrain the polarization-dependent components of these models.

  4. Chemically-induced liquid film migration with low lattice diffusivity relative to the migration rate in Mo-Ni-(W)

    International Nuclear Information System (INIS)

    Lee, K.R.

    1992-01-01

    This paper reports that when a 90Mo-10Ni alloy (by wt) liquid phase sintered at 1400 degrees C is heat-treated at 1400 degrees C after replacing the matrix with a melt of 44Ni-34Mo-22W (by wt), the liquid films between the grains migrate, leaving behind an Mo alloy enriched with W. The ratio of the lattice diffusivity of W in Mo, D, to the initial migration velocity, v. (D/v) is estimated to be between 0.03 and 0.18 angstrom. Hence it appears that there is no lattice diffusion of W ahead of the migrating liquid film, and is such a case the driving force has been suggested to be the chemical free energy. But the observed v is approximately same as that to be expected if the driving force is assumed to be diffusional coherency strain energy. Likewise, a previous study of den Broeder and Nakahara shows that the rate of chemically-induced grain boundary migration in Cu-Ni shows a smooth variation with temperature as D/v decreases from values much larger than the interatomic spacing to values much smaller with decreasing temperature. The coherency strain energy thus appears to be a general driving force for the migration even when the apparent diffusion length indicated by D/v is smaller than the interatomic spacing

  5. Shear localization and microstructure in coarse grained beta titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingfeng, E-mail: biw009@ucsd.edu [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States of America (United States); Key Lab of Nonferrous Materials, Ministry of Education, Central South University, Changsha, Hunan (China); Wang, Xiaoyan [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Li, Zezhou [Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States of America (United States); Ma, Rui [School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Zhao, Shiteng [Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States of America (United States); Xie, Fangyu [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Zhang, Xiaoyong [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China)

    2016-01-15

    Adiabatic shear localization plays an important role in the deformation and failure of the coarse grained beta titanium alloy Ti-5 Al-5 Mo-5 V-1 Cr-1 Fe with grain size about 1 mm at high strain rate deformation. Hat shaped specimens with different nominal shear strains are used to induce the formation of shear bands under the controlled shock-loading experiments. The true stress in the specimens can reach about 1040 MPa where the strain is about 1.83. The whole shear localization process lasts about 35 μs. The microstructures within the shear band are investigated by optical microscopy, scanning electron microscopy / electron backscatter diffraction, and transmission electron microscopy. The results show that the width of the shear bands decreases with increasing nominal shear strain, and the grains in the transition region near the shear band are elongated along the shear band, and the core of the shear band consists of the ultrafine deformed grains with width of 0.1 μm and heavy dislocations. With the aims of accommodating the imposed shear strain and maintaining neighboring grain compatibility, the grain subdivision continues to take place within the band. A fiber texture is formed in the core of the shear band. The calculated temperature rise in the shear band can reach about 722 K. Dynamic recovery is responsible for the formation of the microstructure in coarse grained beta titanium alloy.

  6. Irradiated microstructure of U-10Mo monolithic fuel plate at very high fission density

    Science.gov (United States)

    Gan, J.; Miller, B. D.; Keiser, D. D.; Jue, J. F.; Madden, J. W.; Robinson, A. B.; Ozaltun, H.; Moore, G.; Meyer, M. K.

    2017-08-01

    Monolithic U-10Mo alloy fuel plates with Al-6061 cladding are being developed for use in research and test reactors as low enrichment fuel (RERTR-9B experiment. This paper discusses the TEM characterization results for this U-10Mo/Zr/Al6061 monolithic fuel plate (∼59% U-235 enrichment) irradiated in Advanced Test Reactor at Idaho National Laboratory with an unprecedented high local fission density of 9.8E+21 fissions/cm3. The calculated fuel foil centerline temperature at the beginning of life and the end of life is 141 and 194 °C, respectively. TEM lamellas were prepared using focus ion beam lift-out technique. The estimated U-Mo fuel swelling, based on the fuel foil thickness change from SEM, is approximately 76%. Large bubbles (>1 μm) are distributed evenly in U-Mo and interlink of these bubbles is evident. The average size of subdivided grains at this fission density appears similar to that at 5.2E+21 fissions/cm3. The measured average Mo and Zr content in the fuel matrix is ∼30 at% and ∼7 at%, respectively, in general agreement with the calculated Mo and Zr from fission density.

  7. Nanocomposite Nd-Y-Fe-B-Mo bulk magnets prepared by injection casting technique

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Shan [Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, Hangzhou 310018 (China); Ahmad, Zubair [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, Pengyue [Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, Hangzhou 310018 (China); Yan, Mi, E-mail: mse_yanmi@zju.edu.cn [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zheng, Xiaomei [Magnetism Key Laboratory of Zhejiang Province, China Jiliang University, Hangzhou 310018 (China)

    2017-09-01

    Highlights: • Nanocomposite Nd{sub 7}Y{sub 6}Fe{sub 61}B{sub 22}Mo{sub 4} sheet magnets were synthesized by injection casting. • High coercivity of 1289 kA/m was obtained for the directly casted magnet. • Magnetic properties arise from magnetically exchange coupled soft and hard phases. - Abstract: The phase composition, magnetic and microstructural properties of Nd{sub 2}Fe{sub 14}B/(α-Fe, Fe{sub 3}B) nanocomposite magnets produced by injection casting technique have been studied. Magnetic hysteresis loop of the Nd{sub 7}Y{sub 6}Fe{sub 61}B{sub 22}Mo{sub 4} permanent magnet demonstrates the coercivity as high as 1289 kA/m. Electron microscopy elucidates a microstructure composed of magnetically soft α-Fe, Fe{sub 3}B and hard Nd{sub 2}Fe{sub 14}B/Y{sub 2}Fe{sub 14}B nanograins (20–50 nm) separated by ultra-thin grain boundary layer. The Henkel plot curve of the Nd{sub 7}Y{sub 6}Fe{sub 61}B{sub 22}Mo{sub 4} magnet yields the existence of exchange coupling interactions between soft and hard phases. Macroscopically large size sheet magnet is obtained due to high glass forming ability of the Nd{sub 7}Y{sub 6}Fe{sub 61}B{sub 22}Mo{sub 4} alloy derived from large atomic radius mismatch and negative enthalpy of alloy constituent elements. The high coercivity of the magnet is attributed to the magnetically hard phase increment, nucleation of reverse domains and the presence of thin grain boundary phase. Good magnetic properties such as remanence of 0.51 T, coercivity of 1289 kA/m and maximum energy product of 46.2 kJ/m{sup 3} are obtained in directly casted Nd{sub 7}Y{sub 6}Fe{sub 61}B{sub 22}Mo{sub 4} sheet magnets.

  8. Electronic structures of B1 MoN, fcc Mo2N, and hexagonal MoN

    International Nuclear Information System (INIS)

    Ihara, H.; Kimura, Y.; Senzaki, K.; Kezuka, H.; Hirabayashi, M.

    1985-01-01

    The electronic structures of B1 MoN, fcc Mo 2 N, and hexagonal MoN were observed by photoelectron spectroscopic measurement. The B1-MoN phase has been predicted to be a high-T/sub c/ superconductor because of a large density of states at Fermi level. The observed electronic structure of the stoichiometric B1-MoN phase is different from that of the real B1-MoN type. The nitrogen excess B1-MoN/sub x/ (x> or =1.3) phase, however, shows the B1-type electronic structure. This is explained by the occurrence of a nitrogen vacancy in the apparent stoichiometric B1 phase and the occupation of the nitrogen vacancy in the nitrogen-excess B1 phase. This property is related to the previously reported low T/sub c/ of the B1-MoN crystals

  9. Ghost microstructure evolution and identification in the coarse grain heat affected zone of 2.25Cr-1Mo-V-Ti steel using tint etching

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyongwoon [Corporate R& D Institute, Doosan Heavy Industries & Construction,Gwigok-dong, Gyeongsangnam-do Seongsan-gu, Changwon-si 642-792 (Korea, Republic of); Lee, Seonghyeong; Na, Hyesung [School of Materials Science and Engineering, Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Kang, Chungyun, E-mail: kangcy@pusan.ac.kr [School of Materials Science and Engineering, Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of)

    2016-11-15

    Microstructural characteristics of the CGHAZ (coarse grained heat affected zone) made of the 2.25Cr-1Mo-V-Ti material for the thermal power plant boiler tube were discussed using the technique of tint etching. To conduct the micro structural characterization, the sample on which CGHAZ was produced by using a high temperature thermal cycle simulator, Gleeble 3500 equipment was used for comparative analyses using the existing Nital etching (ASTM E407-74) and the alkaline etching (ASTM E40785). The latter was used to observe a specific phase. For the microstructure on which the alkaline etching was experimented, the shape of a black strip (Ghost microstructure) in a few microns was observed, which was not observed from the Nital etching. It was found from the phase identifications based EPMA, EBSD and TEM experiments that the image of the black strip in a few microns represented the alpha phase in which C, Cr and Mo became segregated. In addition, it was verified that austenite and M{sub 23}C{sub 6} phase were present around the segregated zone. Based on such results, the mechanism by which the image of the black strip in a few microns was formed at the CGHAZ. In this study, we have investigated the mechanism of the appeared black strip in the CGHAZ. - Highlights: •Ghost microstructure was observed which was not observed from the nital etching. •Ghost microstructure has high concentrations of carbon and molybdenum than matrix. •Schematic illustration proposed of why Ghost microstructure was generated. •Ghost microstructure caused by partial dissolution of M{sub 23}C{sub 6} precipitation.

  10. Effect of boron on the hot ductility of 2.25Cr1Mo steel

    International Nuclear Information System (INIS)

    Song, S.-H.; Guo, A.-M.; Shen, D.-D.; Yuan, Z.-X.; Liu, J.; Xu, T.-D.

    2003-01-01

    The effect of boron on the hot ductility of 2.25Cr1Mo steel is investigated by means of a Gleeble 2000 thermomechanical simulator. There is a trough in the hot ductility-temperature curve, which is located between 1000 and 700 deg. C. The ductility trough shifts to lower temperatures with increasing boron content and the hot brittle range becomes shallow and narrow. In general, boron may improve the steel hot ductility in that it may retard the formation of pro-eutectoid ferrite and increase grain boundary cohesion. These effects may be related to the segregation of boron to austenite grain boundaries

  11. Corrosion resistance of Ni-Cr-Mo alloys. Chemical composition and metallurgical condition's effects

    International Nuclear Information System (INIS)

    Zadorozne, N.S.; Rebak, Raul B.

    2009-01-01

    P, may form if Ni-Cr-Mo alloys are exposed for tens of hours in the range of 600 C degrees to 1100 C degrees. These phases could have a detrimental effect upon corrosion resistance and cause a loss of mechanical ductility. The precipitation of TCP phases starts at grain boundaries and for long aging times it progresses to twins boundaries and then the grain bodies. TCP phases are rich in Mo and Cr. Zones in the matrix adjacent to the TCP precipitates may be depleted of Cr and Mo, and the alloy becomes sensitized.The aim of the present work was to compare the general corrosion rate and the crevice corrosion susceptibility of alloys C-22, C-22HS and HYBRID-BC1 in different metallurgical conditions when exposed to hot chloride solutions. The effects of the alloy composition and different heat treatments were assessed. (author)

  12. Modeling elasto-plastic behavior of polycrystalline grain structure of steels at mesoscopic level

    International Nuclear Information System (INIS)

    Kovac, Marko; Cizelj, Leon

    2005-01-01

    The multiscale model is proposed to explicitly account for the inhomogeneous structure of polycrystalline materials. Grains and grain boundaries are modeled explicitly using Voronoi tessellation. The constitutive model of crystal grains utilizes anisotropic elasticity and crystal plasticity. Commercially available finite element code is applied to solve the boundary value problem defined at the macroscopic scale. No assumption regarding the distribution of the mesoscopic strain and stress fields is used, apart the finite element discretization. The proposed model is then used to estimate the minimum size of polycrystalline aggregate of selected reactor pressure vessel steel (22 NiMoCr 3 7), above which it can be considered macroscopically homogeneous. Elastic and rate-independent plastic deformation modes are considered. The results are validated by the experimental and simulation results from the literature

  13. Final work plan : Phase I investigation of potential contamination at the former CCC/USDA grain storage facility in Savannah, Missouri.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2007-10-12

    From approximately 1949 until 1970, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) operated a grain storage facility on federally owned property approximately 0.25 mi northwest of Savannah, Missouri. During this time, commercial grain fumigants containing carbon tetrachloride were commonly used by the CCC/USDA and the private grain storage industry to preserve grain in their facilities. In November 1998, carbon tetrachloride was detected in a private well (Morgan) roughly 50 ft south of the former CCC/USDA facility, as a result of state-wide screening of private wells near former CCC/USDA facilities, conducted in Missouri by the U.S. Environmental Protection Agency (EPA 1999). The 1998 and subsequent investigations by the EPA and the Missouri Department of Natural Resources (MoDNR) confirmed the presence of carbon tetrachloride in the Morgan well, as well as in a second well (on property currently occupied by the Missouri Department of Transportation [MoDOT]), approximately 400 ft east of the former CCC/USDA facility. Carbon tetrachloride concentrations in the Morgan well have ranged from the initial value of 29 {micro}g/L in 1998, up to a maximum of 61 {micro}g/L in 1999, and back down to 22 {micro}g/L in 2005. The carbon tetrachloride concentration in the MoDOT well in 2000 (the only time it was sampled) was 321 {micro}g/L. The concentrations for the two wells are above the EPA maximum contaminant level (MCL) of 5 {micro}g/L for carbon tetrachloride (EPA 1999; MoDNR 2000a,b). Because the observed contamination in the Morgan and MoDOT wells might be linked to the past use of carbon tetrachloride-based grain fumigants at its former grain storage facility, the CCC/USDA will conduct investigations to (1) characterize the source(s), extent, and factors controlling the subsurface distribution and movement of carbon tetrachloride at Savannah and (2) evaluate the health and environmental threats potentially posed by the contamination

  14. Cross section TEM characterization of high-energy-Xe-irradiated U-Mo

    Energy Technology Data Exchange (ETDEWEB)

    Ye, B., E-mail: bye@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Lemont, IL 60439 (United States); Jamison, L.; Miao, Y. [Nuclear Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Lemont, IL 60439 (United States); Bhattacharya, S. [Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr. Evanston, IL 60208 (United States); Hofman, G.L.; Yacout, A.M. [Nuclear Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Lemont, IL 60439 (United States)

    2017-05-15

    U-Mo alloys irradiated with 84 MeV Xe ions to various doses were characterized with transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) techniques. The TEM thin foils were prepared perpendicular to the irradiated surface to allow a direct observation of the entire region modified by ions. Therefore, depth-selective microstructural information was revealed. Varied irradiation-induced phenomena such as gas bubble formation, phase reversal, and recrystallization were observed at different ion penetration depths in U-Mo. - Highlights: •Three distinct zones were observed along the ion traveling direction in U-7Mo irradiated with 84 MeV Xe ions at 350 °C. •The α-U particles within the Xe-implanted region were reverted to γ-U phase by irradiation. •High-density random intra-granular bubbles in a size of 4–5 nm were found in the irradiated region, coexisting with large inter-granular bubbles. •The high lattice stresses built up during the irradiation-induced phase reversal is probably the driving force for the small grain formation at cell boundaries.

  15. Friction and work function oscillatory behavior for an even and odd number of layers in polycrystalline MoS2.

    Science.gov (United States)

    Lavini, Francesco; Calò, Annalisa; Gao, Yang; Albisetti, Edoardo; Li, Tai-De; Cao, Tengfei; Li, Guoqing; Cao, Linyou; Aruta, Carmela; Riedo, Elisa

    2018-04-24

    A large effort is underway to investigate the properties of two-dimensional (2D) materials for their potential to become building blocks in a variety of integrated nanodevices. In particular, the ability to understand the relationship between friction, adhesion, electric charges and defects in 2D materials is of key importance for their assembly and use in nano-electro-mechanical and energy harvesting systems. Here, we report on a new oscillatory behavior of nanoscopic friction in continuous polycrystalline MoS2 films for an odd and even number of atomic layers, where odd layers show higher friction and lower work function. Friction force microscopy combined with Kelvin probe force microscopy and X-ray photoelectron spectroscopy demonstrates that an enhanced adsorption of charges and OH molecules is at the origin of the observed increase in friction for 1 and 3 polycrystalline MoS2 layers. In polycrystalline films with an odd number of layers, each crystalline nano-grain carries a dipole due to the MoS2 piezoelectricity, therefore charged molecules adsorb at the grain boundaries all over the surface of the continuous MoS2 film. Their displacement during the sliding of a nano-size tip gives rise to the observed enhanced dissipation and larger nanoscale friction for odd layer-numbers. Similarly, charged adsorbed molecules are responsible for the work function decrease in odd layer-number.

  16. Measurement and Estimation of the 99Mo Production Yield by 100Mo(n,2n)99Mo

    Science.gov (United States)

    Minato, Futoshi; Tsukada, Kazuaki; Sato, Nozomi; Watanabe, Satoshi; Saeki, Hideya; Kawabata, Masako; Hashimoto, Shintaro; Nagai, Yasuki

    2017-11-01

    We, for the first time, measured the yield of 99Mo, the mother nuclide of 99mTc used in nuclear medicine diagnostic procedures, produced by the 100Mo(n,2n)99Mo reaction with accelerator neutrons. The neutrons with a continuous energy spectrum from the thermal energy up to about 40 MeV were provided by the C(d,n) reaction with 40 MeV deuteron beams. It was proved that the 99Mo yield agrees with that estimated by using the latest data on neutrons from the C(d,n) reaction and the evaluated cross section of the 100Mo(n,2n)99Mo reaction given in the Japanese Evaluated Nuclear Data Library. On the basis of the agreement, a systematic calculation was carried out to search for an optimum condition that enables us to produce as much 99Mo as possible with a good 99Mo/100Mo value from an economical point of view. The calculated 99Mo yield from a 150 g 100MoO3 sample indicated that about 30% of the demand for 99Mo in Japan can be met with a single accelerator capable of 40 MeV, 2 mA deuteron beams. Here, by referring to an existing 18F-fluorodeoxyglucose (FDG) distribution system we assumed that 99mTc radiopharmaceuticals formed after separating 99mTc from 99Mo can be delivered to hospitals from a radiopharmaceutical company within 6 h. The elution of 99mTc from 99Mo twice a day would meet about 50% of the demand for 99Mo.

  17. The Effect of Milling Time on the Microstructural Characteristics and Strengthening Mechanisms of NiMo-SiC Alloys Prepared via Powder Metallurgy.

    Science.gov (United States)

    Yang, Chao; Muránsky, Ondrej; Zhu, Hanliang; Thorogood, Gordon J; Avdeev, Maxim; Huang, Hefei; Zhou, Xingtai

    2017-04-06

    A new generation of alloys, which rely on a combination of various strengthening mechanisms, has been developed for application in molten salt nuclear reactors. In the current study, a battery of dispersion and precipitation-strengthened (DPS) NiMo-based alloys containing varying amounts of SiC (0.5-2.5 wt %) were prepared from Ni-Mo-SiC powder mixture via a mechanical alloying (MA) route followed by spark plasma sintering (SPS) and rapid cooling. Neutron Powder Diffraction (NPD), Electron Back Scattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM) were employed in the characterization of the microstructural properties of these in-house prepared NiMo-SiC DPS alloys. The study showed that uniformly-dispersed SiC particles provide dispersion strengthening, the precipitation of nano-scale Ni₃Si particles provides precipitation strengthening, and the solid-solution of Mo in the Ni matrix provides solid-solution strengthening. It was further shown that the milling time has significant effects on the microstructural characteristics of these alloys. Increased milling time seems to limit the grain growth of the NiMo matrix by producing well-dispersed Mo₂C particles during sintering. The amount of grain boundaries greatly increases the Hall-Petch strengthening, resulting in significantly higher strength in the case of 48-h-milled NiMo-SiC DPS alloys compared with the 8-h-milled alloys. However, it was also shown that the total elongation is considerably reduced in the 48-h-milled NiMo-SiC DPS alloy due to high porosity. The porosity is a result of cold welding of the powder mixture during the extended milling process.

  18. Final work plan : phase I investigation of potential contamination at the former CCC/USDA grain storage facility in Montgomery City, Missouri.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2010-08-16

    From September 1949 until September 1966, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) leased property at the southeastern end of Montgomery City, Missouri, for the operation of a grain storage facility. During this time, commercial grain fumigants containing carbon tetrachloride were commonly used by the CCC/USDA and the private grain storage industry to preserve grain in their facilities. In January 2000, carbon tetrachloride was detected in a soil sample (220 {micro}g/kg) and two soil gas samples (58 {micro}g/m{sup 3} and 550 {micro}g/m{sup 3}) collected at the former CCC/USDA facility, as a result of a pre-CERCLIS site screening investigation (SSI) performed by TN & Associates, Inc., on behalf of the U.S. Environmental Protection Agency (EPA), Region VII (MoDNR 2001). In June 2001, the Missouri Department of Natural Resources (MoDNR) conducted further sampling of the soils and groundwater at the former CCC/USDA facility as part of a preliminary assessment/site inspection (PA/SI). The MoDNR confirmed the presence of carbon tetrachloride (at a maximum identified concentration of 2,810 {micro}g/kg) and chloroform (maximum 82 {micro}g/kg) in the soils and also detected carbon tetrachloride and chloroform (42.2 {micro}g/L and 58.4 {micro}g/L, respectively) in a groundwater sample collected at the former facility (MoDNR 2001). The carbon tetrachloride levels identified in the soils and groundwater are above the default target level (DTL) values established by the MoDNR for this contaminant in soils of all types (79.6 {micro}g/kg) and in groundwater (5.0 {micro}g/L), as outlined in Missouri Risk-Based Corrective Action (MRBCA): Departmental Technical Guidance (MoDNR 2006a). The corresponding MRBCA DTL values for chloroform are 76.6 {micro}g/kg in soils of all types and 80 {micro}g/L in groundwater. Because the observed contamination at Montgomery City might be linked to the past use of carbon tetrachloride-based fumigants at its

  19. Characterization and study of reduction and sulfurization processing in phase transition from molybdenum oxide (MoO{sub 2}) to molybdenum disulfide (MoS{sub 2}) chalcogenide semiconductor nanoparticles prepared by one-stage chemical reduction method

    Energy Technology Data Exchange (ETDEWEB)

    Shomalian, K.; Bagheri-Mohagheghi, M.M.; Ardyanian, M. [Damghan University, School of Physics, Damghan (Iran, Islamic Republic of)

    2017-01-15

    In this research, molybdenum disulfide (MoS{sub 2}) nanoparticles were prepared by chemical reduction method using MoO{sub 3} and thiourea as a precursor. The physical properties of the synthesized MoO{sub 2}-MoS{sub 2} nanoparticles annealed at different temperatures of 200, 300, 750 C have been investigated, before and after exposure to sulfur vapor. The nanostructure of nanoparticles has been characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM) analyses and UV-Vis spectrophotometer. The X-ray diffraction analysis showed the formation of MoS{sub 2} single phase at annealing temperature of 750 C in the presence of sulfur vapor. The Raman spectrum of the nanoparticles revealed that the formation of MoS{sub 2} at 750 C after annealing in sulfur vapor. The values of band gap were obtained in the range of 3.64-3.17 eV and 3.47-1.95 eV for MoS{sub 2} nanoparticles before and after exposure to sulfur vapor, respectively. According to SEM images, the grain size decreases with increasing annealing temperature up to 750 C. Also, nanoplate-nanoparticles of MoS{sub 2} are formed at annealing temperature of 200-750 C. The TEM images of MoS{sub 2} nanoparticles at T{sub a} = 750 C confirm that the nanoparticles have a homogeneous distribution with a hexagonal structure. The FTIR spectra of the MoS{sub 2} nanoparticles showed the peaks at about 467 cm {sup -1} belong to the characteristic bands of Mo-S. (orig.)

  20. Mass spectrometric determination of stability of gaseous BaMoO2, Ba2MoO4, Ba2MoO5, Ba2Mo2O8 molecules

    International Nuclear Information System (INIS)

    Kudin, L.S.; Balduchchi, Dzh.; Dzhil'i, G.; Gvido, M.

    1982-01-01

    During the mass spectrometric investigation of BaCrO 4 evaporation Cr + , Ba + , BaO + main ions are recorded as well as BaMoO 4 + , BaMoO 3 + , BaMoO 2 + , BaMoO + , BaMoO 4 + , Ba 2 MoO 5 + , BaMo 2 O 8 + ions - the products of ionization of three-component (Ba, Mo, M) molecules, forming as a result of substance chemical interaction with the material of an effusion cell (Mo). Heats of formation of BaMoO 2 , Ba 2 MoO 4 , Ba 2 MoO 5 and Ba 2 Mo 2 O 8 molecules which constituted - 577+-70, -1343+-115, -1464+-70, -2393+-90 k J/mol respectively are determined on the base of the analysis of curves of ionisation efficiency and of reaction heats Ba 2 MoO 5 =BaO+BaMoO 4 , ΔH 0 0 =322+-60 kJ/mol Ba 2 Mo 2 O 8 =2BaMoO 4 , ΔH 0 0 =351+-80 kJ/mol calculated with the use of third low of thermodynamics [ru

  1. 99Mo Yield Using Large Sample Mass of MoO3 for Sustainable Production of 99Mo

    Science.gov (United States)

    Tsukada, Kazuaki; Nagai, Yasuki; Hashimoto, Kazuyuki; Kawabata, Masako; Minato, Futoshi; Saeki, Hideya; Motoishi, Shoji; Itoh, Masatoshi

    2018-04-01

    A neutron source from the C(d,n) reaction has the unique capability of producing medical radioisotopes such as 99Mo with a minimum level of radioactive waste. Precise data on the neutron flux are crucial to determine the best conditions for obtaining the maximum yield of 99Mo. The measured yield of 99Mo produced by the 100Mo(n,2n)99Mo reaction from a large sample mass of MoO3 agrees well with the numerical result estimated with the latest neutron data, which are a factor of two larger than the other existing data. This result establishes an important finding for the domestic production of 99Mo: approximately 50% of the demand for 99Mo in Japan could be met using a 100 g 100MoO3 sample mass with a single accelerator of 40 MeV, 2 mA deuteron beams.

  2. Development of β Type Ti23Mo-45S5 Bioglass Nanocomposites for Dental Applications

    Directory of Open Access Journals (Sweden)

    Karolina Jurczyk

    2015-11-01

    Full Text Available Titanium β-type alloys attract attention as biomaterials for dental applications. The aim of this work was the synthesis of nanostructured β type Ti23Mo-x wt % 45S5 Bioglass (x = 0, 3 and 10 composites by mechanical alloying and powder metallurgy methods and their characterization. The crystallization of the amorphous material upon annealing led to the formation of a nanostructured β type Ti23Mo alloy with a grain size of approximately 40 nm. With the increase of the 45S5 Bioglass contents in Ti23Mo, nanocomposite increase of the α-phase is noticeable. The electrochemical treatment in phosphoric acid electrolyte resulted in a porous surface, followed by bioactive ceramic Ca-P deposition. Corrosion resistance potentiodynamic testing in Ringer solution at 37 °C showed a positive effect of porosity and Ca-P deposition on nanostructured Ti23Mo 3 wt % 45S5 Bioglass nanocomposite. The contact angles of glycerol on the nanostructured Ti23Mo alloy were determined and show visible decrease for bulk Ti23Mo 3 wt % 45S5 Bioglass and etched Ti23Mo 3 wt % 45S5 Bioglass nanocomposites. In vitro tests culture of normal human osteoblast cells showed very good cell proliferation, colonization, and multilayering. The present study demonstrated that porous Ti23Mo 3 wt % 45S5 Bioglass nanocomposite is a promising biomaterial for bone tissue engineering.

  3. Irradiated microstructure of U-10Mo monolithic fuel plate at very high fission density

    Energy Technology Data Exchange (ETDEWEB)

    Gan, J.; Miller, B. D.; Keiser, D. D.; Jue, J. F.; Madden, J. W.; Robinson, A. B.; Ozaltun, H.; Moore, G.; Meyer, M. K.

    2017-08-01

    Monolithic U-10Mo alloy fuel plates with Al-6061 cladding are being developed for use in research and test reactors as low enrichment fuel (< 20% U-235 enrichment) as a result of its high uranium loading capacity compared to that of U-7Mo dispersion fuel. These fuel plates contain a Zr diffusion barrier between the U-10Mo fuel and Al-6061 cladding that suppresses the interaction between the U-Mo fuel foil and Al alloy cladding that is known to be problematic under irradiation. This paper discusses the TEM results of the U-10Mo/Zr/Al6061 monolithic fuel plate (Plate ID: L1P09T, ~ 59% U-235 enrichment) irradiated in Advanced Test Reactor at Idaho National Laboratory as part of RERTR-9B irradiation campaign with an unprecedented high local fission density of 9.8E+21 fissions/cm3. The calculated fuel foil centerline temperature at the beginning of life and the end of life is 141 and 194 C, respectively. A total of 5 TEM lamellas were prepared using focus ion beam lift-out technique. The estimated U-Mo fuel swelling, based on the fuel foil thickness change from SEM, is approximately 76%. Large bubbles (> 1 µm) are distributed evenly in U-Mo and interlink of these bubbles is evident. The average size of subdivided grains at this fission density appears similar to that at 5.2E+21 fissions/cm3. The measured average Mo and Zr content in the fuel matrix is ~ 30 at% and ~ 7 at%, respectively, in general agreement with the calculated Mo and Zr from fission density.

  4. The influence of working ways on the microstructure and performance of Mo bar

    International Nuclear Information System (INIS)

    Zhang, J.L.; Zhang, Y.M.; Li, M.Q.; Su, Y.S.; Duan, Q.H.; Xie, H.J.

    2001-01-01

    A new Mo bar rolling process, step-by-step rolling, is introduced in this paper. Compared with the rolling processes before, such as the rejection forging and the pass rolling, a new process can acquired the bars with better microstructure and mechanical performance, like homogenous microstructure, thin and long grains, obviously promoted plasticity, which can overcome the difficulties in the following mechanical working. (author)

  5. Dipole strength distribution below the giant dipole resonance in {sup 92}Mo, {sup 98}Mo and {sup 100}Mo

    Energy Technology Data Exchange (ETDEWEB)

    Rusev, G.Y.

    2006-07-01

    Investigations of the dipole-strength distributions in {sup 92}Mo, {sup 98}Mo and {sup 100}Mo were carried out by means of the method of nuclear resonance fluorescence. The low-lying excitations in the nuclides {sup 92}Mo, {sup 98}Mo and {sup 100}Mo have been studied in photon-scattering experiments at an electron energy of 6 MeV at the ELBE accelerator and at electron energies from 3.2 to 3.8 MeV at the Dynamitron accelerator. Five levels were observed in {sup 92}Mo. Five levels in {sup 98}Mo and 14 in {sup 100}Mo were identified for the first time in the energy range from 2 to 4 MeV. Dipole-strength distributions up to the neutron-separation energies in the nuclides {sup 92}Mo, {sup 98}Mo and {sup 100}Mo have been investigated at the ELBE accelerator. Because of the possible observation of transitions in the neighboring nuclei produced via ({gamma},n) reaction, additional measurements at electron energies of 8.4 and 7.8 MeV, below the neutron-separation energy, were performed on {sup 98}Mo and {sup 100}Mo, respectively. The number of transitions assigned to {sup 92}Mo, {sup 98}Mo and {sup 100}Mo is 340, 485 and 499, respectively, the main part of them being dipole transitions. Statistical properties of the observed transitions are obtained. The continuum contains the ground-state transitions as well as the branching transitions to the low-lying levels and the subsequent deexcitations of these levels. (orig.)

  6. Development of Molybdenum Adsorbent for 99Mo/99mTc Radioisotope Generator Based on Irradiated Natural Molybdenum

    International Nuclear Information System (INIS)

    Rohadi Awaludin; Hotman Lubis; Sriyono; Abidin; Herlina; Endang Sarmini; Indra Saptiama; Hambali

    2011-01-01

    Preparation of 99 Mo/ 99m Tc radioisotope generator using irradiated natural molybdenum requires an adsorbent with high absorption capacity. Zirconium-based materials (ZBM), adsorbent with adsorption capacity of about 183 mg(Mo) / g(adsorbent), has been successfully synthesized. However, the adsorbent was easily broken in the Mo adsorption process due to many fractures in the grain. To increase the hardness, the material was immersed in tetraethyl orthosilicate (TEOS) and coated by TEOS flow in a column. The hardness test results showed that the ZBM with TEOS treatment was not broken when immersed into the Mo solution. Observations using SEM showed that the fractures formed on the ZBM were successfully removed by TEOS treatment. Measurements using EDS showed that after TEOS treatment, the silicon was detected and the oxygen content increased in the material surface. Adsorption test results showed that the TEOS immersion decreased the adsorption capacity of molybdenum from 183 to 79.8 mg of Mo per gram of adsorbent. The TEOS flow-in a column gave material with relatively high adsorption capacity, 140 mgMo per gram adsorbent. The content of Silicon in the surface was lower than that of adsorbent immersed in TEOS. (author)

  7. Impact of Reduced Graphene Oxide on MoS2 Grown by Sulfurization of Sputtered MoO3 and Mo Precursor Films (Postprint)

    Science.gov (United States)

    2016-05-26

    1,2 intercalation assisted exfoliation,8–11 physical vapor deposition (PVD),12,13 and a wet chemistry approach involving thermal decomposition of a... annealed MoO3, MoS2 films S1 (MoS2 using Mo precursor), S2 (MoS2 using MoO3 precursor), S1r (MoS2 using Mo pre- cursor and rGO), and S2r (MoS2 using...MoO3 precursor and rGO). The annealed MoO3 (a) shows Mo(IV) peaks which are indicative of MoO2, and Mo(VI) peaks that occur when MoO3 is present. Both

  8. Moiré-related in-gap states in a twisted MoS2/graphite heterojunction

    KAUST Repository

    Lu, Chun-I

    2017-07-21

    This report presents a series of low-temperature (4.5 K) scanning tunneling microscopy and spectroscopy experimental results on monolayer MoS2 deposited on highly oriented pyrolytic graphite using chemical vapor deposition. To reveal the detailed connection between atomic morphology and conductivity in twisted MoS2/graphite heterojunctions, we employ high-sensitivity tunneling spectroscopy measurements by choosing a reduced tip-sample distance. We discern previously unobserved conductance peaks within the band gap range of MoS2, and by comparing the tunneling spectra from MoS2 grains of varying rotation with respect to the substrate, show that these features have small but non-negligible dependence on the moiré superstructure. Furthermore, within a single moiré supercell, atomically resolved tunneling spectroscopy measurements show that the spectra between the moiré high and low areas are also distinct. These in-gap states are shown to have an energy shift attributed to their local lattice strain, matching corresponding behavior of the conduction band edge, and we therefore infer that these features are intrinsic to the density of states, rather than experimental artifacts, and attribute them to the twisted stacking and local strain energy of the MoS2/graphite heterointerface.

  9. Phase formation in Na2MoO4 - MgMoO4 - Cr2(MoO4)3 system

    International Nuclear Information System (INIS)

    Kotova, I.Yu.; Kozhevnikova, N.M.

    1998-01-01

    Interaction within Na 2 MoO 4 - MgMoO 4 - Cr 2 (MoO 4 ) 3 ternary system is studied by X ray phase and DTA methods. State diagram of NaCr(MoO 4 ) 2 - MgMoO 4 section is plotted. Production of ternary molybdates of Na 1-x Mg 1-x Cr 1+x (MoO 4 ) 3 , where 0 ≤ x ≤ 0.3, and NaMg 3 Cr(MoO 4 ) 5 composition is ascertained [ru

  10. Grain size refinement in nanocrystalline Hitperm-type glass-coated microwires

    International Nuclear Information System (INIS)

    Talaat, A.; Val, J.J. del; Zhukova, V.; Ipatov, M.; Klein, P.; Varga, R.; González, J.; Churyukanova, M.; Zhukov, A.

    2016-01-01

    We present a new-Fe 38.5 Co 38.5 B 18 Mo 4 Cu 1 Hitperm glass-coated microwires obtained by Taylor-Ulitovsky technique with nanocrystalline structure consisting of about 23 nm of BCC α-FeCo and an amorphous precursors in as-prepared samples. Annealing resulted in a considerable decrease of such nano-grains down to (11 nm). Obtained results are discussed in terms of the stress diffusion of limited crystalline growth and the chemical composition. Rectangular hysteresis loops have been observed on all annealed samples that are necessary conditions to obtain fast domain wall propagation. An enhancement of the domain wall velocity as well as mobility after annealing has been obtained due to the structural relaxation of such grains with positive magnetostriction. These structure benefits found in the nanocrystalline Hitperm glass-coated microwires are promising for developing optimal magnetic properties. - Highlights: • Grains size refinement upon annealing. • Enhancement of the domain wall velocity as well as mobility after annealing. • Nanocrystalline structure in as-prepared microwires.

  11. Realizing near stoichiometric and highly transparent CdS:Mo thin films by a low-cost improved SILAR technique

    Energy Technology Data Exchange (ETDEWEB)

    Ravichandran, K. [P.G. and Research Department of Physics, AVVM Sri Pushpam College (Autonomous), Poondi, Thanjavur 613503, Tamil Nadu (India); Nisha Banu, N. [P.G. and Research Department of Physics, AVVM Sri Pushpam College (Autonomous), Poondi, Thanjavur 613503, Tamil Nadu (India); Research Department of Physics, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), Thanjavur 613007, Tamil Nadu (India); Baneto, M. [CUER-UL, Universite de Lome, BP 1515, Lome (Togo); Senthamil Selvi, V. [Research Department of Physics, Kunthavai Naachiyaar Government Arts College for Women (Autonomous), Thanjavur 613007, Tamil Nadu (India)

    2016-02-15

    Undoped and molybdenum doped CdS thin films were deposited on glass substrates using Improved Successive Ionic Layer Adsorption and Reaction (ISILAR) technique. The Mo doping level was varied from 0 to 15 at.% in steps of 5 at.%. The XRD analysis shows that all the films are polycrystalline with cubic structure and grow preferentially along the (111) plane. The crystallite size increases gradually with the increase in Mo doping level up to 10 at.% and decreases with further doping. The morphological studies reveal that Mo doping significantly affects the grains size. Qualitative and quantitative compositional analysis show that near stoichiometric undoped and Mo doped CdS thin films can be achieved using this ISILAR technique. All the films exhibit high transparency in the visible region with an average transmittance in the range of 85-95%. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Simple thermodynamic model of the extension of solid solution of Cu-Mo alloys processed by mechanical alloying

    International Nuclear Information System (INIS)

    Aguilar, C.; Guzman, D.; Rojas, P.A.; Ordonez, Stella; Rios, R.

    2011-01-01

    Highlights: → Extension of solid solution in Cu-Mo systems achieved by mechanical alloying. → Simple thermodynamic model to explain extension of solid solution of Mo in Cu. → Model gives results that are consistent with the solubility limit extension reported in other works. - Abstract: The objective of this work is proposing a simple thermodynamic model to explain the increase in the solubility limit of the powders of the Cu-Mo systems or other binary systems processed by mechanical alloying. In the regular solution model, the effects of crystalline defects, such as; dislocations and grain boundary produced during milling were introduced. The model gives results that are consistent with the solubility limit extension reported in other works for the Cu-Cr, Cu-Nb and Cu-Fe systems processed by mechanical alloying.

  13. Assessment of effective thermal conductivity in U–Mo metallic fuels with distributed gas bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Shenyang; Casella, Andrew M.; Lavender, Curt A.; Senor, David J.; Burkes, Douglas E.

    2015-07-15

    This work presents a numerical method to assess the relative impact of various microstructural features including grain sizes, nanometer scale intragranular gas bubbles, and larger intergranular gas bubbles in irradiated U–Mo metallic fuels on the effective thermal conductivity. A phase-field model was employed to construct a three-dimensional polycrystalline U–Mo fuel alloy with a given crystal morphology and gas bubble microstructures. An effective thermal conductivity “concept” was taken to capture the effect of polycrystalline structures and gas bubble microstructures with significant size differences on the thermal conductivity. The thermal conductivity of inhomogeneous materials was calculated by solving the heat transport equation. The obtained results are in reasonably good agreement with experimental measurements made on irradiated U–Mo fuel samples containing similar microstructural features. The developed method can be used to predict the thermal conductivity degradation in operating nuclear fuels if the evolution of microstructures is known during operation of the fuel.

  14. MoSbTe for high-speed and high-thermal-stability phase-change memory applications

    Science.gov (United States)

    Liu, Wanliang; Wu, Liangcai; Li, Tao; Song, Zhitang; Shi, Jianjun; Zhang, Jing; Feng, Songlin

    2018-04-01

    Mo-doped Sb1.8Te materials and electrical devices were investigated for high-thermal-stability and high-speed phase-change memory applications. The crystallization temperature (t c = 185 °C) and 10-year data retention (t 10-year = 112 °C) were greatly enhanced compared with those of Ge2Sb2Te5 (t c = 150 °C, t 10-year = 85 °C) and pure Sb1.8Te (t c = 166 °C, t 10-year = 74 °C). X-ray diffraction and transmission electron microscopy results show that the Mo dopant suppresses crystallization, reducing the crystalline grain size. Mo2.0(Sb1.8Te)98.0-based devices were fabricated to evaluate the reversible phase transition properties. SET/RESET with a large operation window can be realized using a 10 ns pulse, which is considerably better than that required for Ge2Sb2Te5 (∼50 ns). Furthermore, ∼1 × 106 switching cycles were achieved.

  15. Moessbauer study of solute interactions with the lattice defect and grain boundary

    International Nuclear Information System (INIS)

    Ishida, Y.

    1979-10-01

    Moessbauer effect was used in the investigations of defect structures of Al- 57 Co alloys introduced by electron irradiation and grain boundary embrittlement in binary iron alloys containing sup(119m)Sn nuclei. The behaviour of tin during aging of Al-Cu-Sn alloys was examined by Moessbauer spectra during isothermal annealing of the samples at various temperatures. Similar investigations were conducted for polycrystalline and bicrystalline silver foils containing sup(119m)Sn sandwiched in the boundary. The binding state of tin atoms segregated at the grain boundary of fine grained iron and iron alloys provided the clues for the embrittlement of iron alloys. The inhibiting effect of Ti, V, and Mo can be explained by the usurpation of the electrons in the tin atoms to the 3d shell of iron. Moessbauer effect was extensively applied in studying the aging behaviour of aluminium alloys in quenching, ion-implantation and electron irradiation processes

  16. Anisotropy oxidation of textured ZrB2MoSi2 ceramics

    DEFF Research Database (Denmark)

    Liu, Hai-Tao; Zou, Ji; Ni, De Wei

    2012-01-01

    Oxidation behavior of hot forged textured ZrB2–20vol% MoSi2 ceramics with platelet ZrB2 grains was investigated at 1500°C for exposure time from 0.5 to 12h. Compared to untextured ceramics, the textured ceramics showed obvious anisotropic oxidation behavior and the surface normal to the hot forgi...

  17. Enhanced hot ductility of a Cr–Mo low alloy steel by rare earth cerium

    International Nuclear Information System (INIS)

    Jiang, X.; Song, S.-H.

    2014-01-01

    The hot ductility of a 1Cr–0.5Mo low alloy steel is investigated over a temperature range of 700–1050 °C using a Gleeble thermomechanical simulator in conjunction with various characterization techniques. The steel samples undoped and doped with cerium are heated at 1300 °C for 3 min and then cooled with a rate of 5 K s −1 down to different test temperatures, followed by tensile deformation until fracture. The results show that the hot ductility of the steel, evaluated by the reduction in area, can be substantially enhanced by a minor addition of cerium, especially in the range 800–1000 °C. In the austenite–ferrite dual-phase region, cerium may delay the formation of proeutectoid ferrite layers along austenite grain boundaries, thereby increasing the hot ductility of the steel. In the single austenite region, grain boundary segregation of cerium may increase the grain boundary cohesion, toughening the steel and thus raising the resistance to grain boundary sliding as well as promoting dynamic recrystallization. Consequently, the hot ductility of the steel is enhanced

  18. Carbides in Nodular Cast Iron with Cr and Mo

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2007-07-01

    Full Text Available In these paper results of elements microsegregation in carbidic nodular cast iron have been presented. A cooling rate in the centre of the cross-section and on the surface of casting and change of moulding sand temperature during casting crystallization and its self-cooling have been investigated. TDA curves have been registered. The linear distribution of elements concentration in an eutectic grain, primary and secondary carbides have been made. It was found, that there are two kinds of carbides: Cr and Mo enriched. A probable composition of primary and secondary carbides have been presented.

  19. Effect of molybdenum addition on aluminium grain refined by titanium on its metallurgical and mechanical characteristics in the as cast condition and after pressing by the equal angular channel process

    International Nuclear Information System (INIS)

    Zaid, A. I. O.; Atieh, A. M.

    2013-01-01

    Aluminium and its alloys are versatile materials which are widely used in industrial and engineering applications due to their attractive characteristics. However, they solidify in columnar structure which tends to reduce their surface quality and mechanical strength. It is therefore, grain refined by grain refiners i.e. titanium or titanium+boron. The equal angular channel pressing, ECAP, process is a recent method for producing severe plastic deformation in materials. In this research work, the effect of addition of molybdenum either alone or in the presence of titanium to commercially pure aluminium on microstructure and mechanical behaviour is investigated in two conditions; first, in the as cast condition, and second after pressing by the ECAP process at room temperature. It was found that addition of Ti alone at a rate of 0.15 percentage weight to commercially pure Al resulted in grain refining of microstructure and a grain size of 91 meu m was obtained. However, after pressing by the ECAP process further refinement was achieved and the grain size was reduced to 18 meu m. Addition of Mo alone to aluminium at a rate of 0.1 percentage resulted in grain size of 76 meu m in the as cast condition and 32 meu m after pressing by the ECAP process. The combination of the two elements Ti and Mo together resulted in 48 meu m grain size in the as cast condition, compared to 40 meu m after pressing by the ECAP process. Furthermore, it was found that in the as cast condition: addition of Ti alone to Al resulted in enhancement of its mechanical behaviour by an increase of 5.2 percentage increase in its flow stress at 20 percentage true strain, whereas addition of Mo either alone or in the presence of Ti resulted in decrease of its flow stress at 20 percentage by 9 percentage and 5.6 percentage respectively. However, after pressing by ECAP: it was found that addition of Ti or Mo either alone or together to Al resulted in increase of its flow stress at 20 percentage strain by

  20. Effect of molybdenum addition on aluminium grain refined by titanium on its metallurgical and mechanical characteristics in the as cast condition and after pressing by the equal angular channel process

    International Nuclear Information System (INIS)

    Zaid, A I O; Atieh, A M

    2014-01-01

    Aluminium and its alloys are versatile materials which are widely used in industrial and engineering applications due to their attractive characteristics. However, they solidify in columnar structure which tends to reduce their surface quality and mechanical strength. It is therefore, grain refined by grain refiners i.e. titanium or titanium+boron. The equal angular channel pressing, ECAP, process is a recent method for producing severe plastic deformation in materials. In this research work, the effect of addition of molybdenum either alone or in the presence of titanium to commercially pure aluminium on microstructure and mechanical behaviour is investigated in two conditions; first, in the as cast condition, and second after pressing by the ECAP process at room temperature. It was found that addition of Ti alone at a rate of 0.15% weight to commercially pure Al resulted in grain refining of microstructure and a grain size of 91μm was obtained. However, after pressing by the ECAP process further refinement was achieved and the grain size was reduced to 18μm. Addition of Mo alone to aluminium at a rate of 0.1% resulted in grain size of 76μm in the as cast condition and 32μm after pressing by the ECAP process. The combination of the two elements Ti and Mo together resulted in 48μm grain size in the as cast condition, compared to 40μm after pressing by the ECAP process. Furthermore, it was found that in the as cast condition: addition of Ti alone to Al resulted in enhancement of its mechanical behaviour by an increase of 5.2% increase in its flow stress at 20% true strain, whereas addition of Mo either alone or in the presence of Ti resulted in decrease of its flow stress at 20% by 9% and 5.6% respectively. However, after pressing by ECAP: it was found that addition of Ti or Mo either alone or together to Al resulted in increase of its flow stress at 20 % strain by the following percentages 5.49, 4.74 and 10.3% respectively

  1. Influence of synthesis conditions on microstructure and phase transformations of annealed Sr2FeMoO6−x nanopowders formed by the citrate–gel method

    Directory of Open Access Journals (Sweden)

    Marta Yarmolich

    2016-08-01

    Full Text Available The sequence of phase transformations during Sr2FeMoO6−x crystallization by the citrate–gel method was studied for powders synthesized with initial reagent solutions with pH values of 4, 6 and 9. Scanning electron microscopy revealed that the as-produced and annealed powders had the largest Sr2FeMoO6−x agglomerates with diameters in the range of 0.7–1.2 µm. The average grain size of the powders in the dispersion grows from 250 to 550 nm with increasing pH value. The X-ray diffraction analysis of the powders annealed at different temperatures between 770 and 1270 K showed that the composition of the initially formed Sr2FeMoO6−x changes and the molybdenum content increases with further heating. This leads to a change in the Sr2FeMoO6−x crystal lattice parameters and a contraction of the cell volume. An optimized synthesis procedure based on an initial solution of pH 4 allowed a single-phase Sr2FeMoO6−x compound to be obtained with a grain size in the range of 50–120 nm and a superstructural ordering of iron and molybdenum cations of 88%.

  2. Synthesis, characterization and thermal stability of solid solutions Zr (Y, Fe, MoO2

    Directory of Open Access Journals (Sweden)

    Felipe Legorreta-García

    2015-05-01

    Full Text Available The synthesis of Fe3+, Mo4+ and Y3+ fully stabilized zirconia by the nitrate/urea combustion route and thermal stability in air was investigated. The solid solution obtained was characterized by X ray diffraction (XRD, scanning electron microscopy (SEM and used the BET method for determining specific surface. The ceramic powders obtained were calcined at 1473 K in air atmosphere in order to determine their thermal stability. The scanning electron microscopy (SEM results showed a homogeneous grain surface, measuring several tens of micrometers across. The crystallographic study revealed that by this method it was successfully achieved zirconia doped with Fe3+, Mo4+ and Y3+ ions in the zirconia tetragonal monophase, even after calcinations.

  3. Type IIIa cracking at 2CrMo welds in 1/2CrMoV pipework

    Energy Technology Data Exchange (ETDEWEB)

    Brett, S J; Smith, P A [National Power plc, Swindon (United Kingdom)

    1999-12-31

    The most common form of in-service defect found today on the welds of National Power`s 1/2CrMoV pipework systems is Type IV cracking which occurs in intercritically transformed material at the edge of the heat affected zone. However an alternate form of cracking, termed IIIa, which occurs close to the weld fusion line in fully grain refined heat affected zones, has also been observed. The incidence of Type IIIa cracking has increased in recent years and these defects now constitute a significant part of the total recorded crack population. This presentation describes Type IIIa cracking and compares and contrasts it with the better documented Type IV cracking. Particular reference is made to the role of carbon diffusion at the weld fusion line in promoting Type IIIa damage in preference to Type IV. (orig.) 5 refs.

  4. Type IIIa cracking at 2CrMo welds in 1/2CrMoV pipework

    Energy Technology Data Exchange (ETDEWEB)

    Brett, S.J.; Smith, P.A. [National Power plc, Swindon (United Kingdom)

    1998-12-31

    The most common form of in-service defect found today on the welds of National Power`s 1/2CrMoV pipework systems is Type IV cracking which occurs in intercritically transformed material at the edge of the heat affected zone. However an alternate form of cracking, termed IIIa, which occurs close to the weld fusion line in fully grain refined heat affected zones, has also been observed. The incidence of Type IIIa cracking has increased in recent years and these defects now constitute a significant part of the total recorded crack population. This presentation describes Type IIIa cracking and compares and contrasts it with the better documented Type IV cracking. Particular reference is made to the role of carbon diffusion at the weld fusion line in promoting Type IIIa damage in preference to Type IV. (orig.) 5 refs.

  5. A Very High Uranium Density Fission Mo Target Suitable for LEU Using atomization Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C. K.; Kim, K. H.; Lee, Y. S.; Ryu, H. J.; Woo, Y. M.; Jang, S. J.; Park, J. M.; Choi, S. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    Currently HEU minimization efforts in fission Mo production are underway in connection with the global threat reduction policy. In order to convert HEU to LEU for the fission Mo target, higher uranium density material could be applied. The uranium aluminide targets used world widely for commercial {sup 99}Mo production are limited to 3.0 g-U/cc in uranium density of the target meat. A consideration of high uranium density using the uranium metal particles dispersion plate target is taken into account. The irradiation burnup of the fission Mo target are as low as 8 at.% and the irradiation period is shorter than 7 days. Pure uranium material has higher thermal conductivity than uranium compounds or alloys. It is considered that the degradation by irradiation would be almost negligible. In this study, using the computer code of the PLATE developed by ANL the irradiation behavior was estimated. Some considerations were taken into account to improve the irradiation performance further. It has been known that some alloying elements of Si, Cr, Fe, and Mo are beneficial for reducing the swelling by grain refinement. In the RERTR program recently the interaction problem could be solved by adding a small amount of Si to the aluminum matrix phase. The fabrication process and the separation process for the proposed atomized uranium particles dispersion target were reviewed

  6. Structural, magnetic and electric behavior of the new Ba2TiMoO6 material

    International Nuclear Information System (INIS)

    Alarcon-Suesca, C.E.; Opel, M.; TellezLandínez Téllez, D.A.; Roa-Rojas, J.

    2012-01-01

    We report synthesis and characterization of the structural, morphologic and ferroelectric behavior of the complex perovskite Ba 2 TiMoO 6 . Samples of Ba 2 TiMoO 6 were synthesized through standard solid state reaction methods. Crystalline structure was studied by means of X-ray diffraction experiments and Rietveld-like analysis. Results reveal that material crystallizes in a tetragonal structure, space group P4/mnm (no. 123), with cell parameters a=3.8557 Å and c=11.8678 Å. The tolerance factor of perovskite was determined to be 1.04. Surface morphology was examined using Scanning Electron Microscopy, which shows the micrometric granular character of samples with 1.0-5.0 μm mean grain size. Ferroelectric response of material was established from curves of polarization as a function of applied electric field. Our results reveal that Ba 2 TiMoO 6 double perovskite evidences a ferroelectric hysteretic behavior at ambient temperature and paramagnetic ordering. © 2011 Elsevier Science. All rights reserved.

  7. Effects of Sb-doping on the grain growth of Cu(In, Ga)Se2 thin films fabricated by means of single-target sputtering

    International Nuclear Information System (INIS)

    Zhang, Shu; Wu, Lu; Yue, Ruoyu; Yan, Zongkai; Zhan, Haoran; Xiang, Yong

    2013-01-01

    To investigate the effects of Sb doping on the kinetics of grain growth in Cu(In,Ga)Se 2 (CIGS) thin films during annealing, CIGS thin films were sputtered onto Mo coated substrates from a single CIGS alloy target, followed by chemical bath deposition of Sb 2 S 3 thin layers on top of CIGS layers and subsequent annealing at different temperatures for 30 min in Se vapors. X-ray diffraction results showed that CIGS thin films were obtained directly using the single-target sputtering method. After annealing, the In/Ga ratio in Sb-doped CIGS thin films remained stable compared to undoped film, possibly because Sb can promote the incorporation of Ga into CIGS. The grain growth in CIGS thin films was enhanced after Sb doping, exhibiting significantly larger grains after annealing at 400 °C or 450 °C compared to films without Sb. In particular, the effect was strikingly significant in grain growth across the film thickness, resulting in columnar grain structure in Sb-doped films. This grain growth improvement may be led by the diffusion of Sb from the front surface to the CIGS-Mo back interface, which promoted the mass transport process in CIGS thin films. - Highlights: ► Cu(In,Ga)Se 2 (CIGS) thin films made by sputtering from a single CIGS target. ► Chemical bath deposition used to introduce antimony into CIGS absorber layers. ► In/Ga ratio decreases in Sb-doped annealed films, comparatively to undoped films. ► Sb-doped CIGS films are superior to undoped films in terms of grain-growth kinetics

  8. Orientation dependence of grain-boundary energy in metals in the view of a pseudoheterophase dislocation core model

    International Nuclear Information System (INIS)

    Missol, W.

    1976-01-01

    A new dislocation model for symmetric tilt grain boundaries was developed as a basis for deriving the quantitative dependence of grain-boundary energy upon misorientation angle in the form of an expression similar to that given by Read and Shockley [Phys. Rev. 78: 275(1950)]. The range of applicability of this equation was extended to over 20 degrees. A comparison of theory and experiment was made for Bi, Ag, Cu, and Fe--Si 3 percent in the teen-degree range of misorientation angles and for Au, α-Fe, Mo, and W in the high-angle range

  9. Nanoparticles of superconducting γ-Mo2N and δ-MoN

    International Nuclear Information System (INIS)

    Gomathi, A.; Sundaresan, A.; Rao, C.N.R.

    2007-01-01

    We have been able to prepare nanoparticles (∼4 nm diameter) of cubic γ-Mo 2 N by a simple procedure involving the reaction of MoCl 5 with urea at 873 K. The nanoparticles show a superconducting transition around 6.5 K. The γ-Mo 2 N nanoparticles are readily transformed to nanoparticles of δ-MoN with a slightly larger diameter on heating in a NH 3 atmosphere at 573 K. Phase-pure δ-MoN obtained by this means shows a superconducting transition around 5 K. - Graphical abstract: TEM image of the γ-Mo 2 N particles with the inset showing the resistivity of the sample as a function of temperature

  10. Microwave effects on NiMoS and CoMoS single-sheet catalysts.

    Science.gov (United States)

    Borges, I; Silva, Alexander M; Modesto-Costa, Lucas

    2018-05-04

    Single-sheet nanoclusters of MoS 2 , NiMoS or CoMoS are widely used in hydrodesulfurization (HDS) catalysis in the petroleum industry. In HDS reactions under microwave irradiation, experiments indirectly pointed out that for pristine MoS 2 reaction rates are accelerated because hot spots are generated on the catalyst bed. In this work, we investigated NiMoS and CoMoS isolated single-sheet substituted catalysts before and after thiophene adsorption focusing on quantifying the effect of microwave irradiation. For that purpose, density functional theory (DFT) molecular charge densities of each system were decomposed according to the distributed multipole analysis (DMA) of Stone. Site dipole values of each system were directly associated with a larger or smaller interaction with the microwave field according to a proposed general approach. We showed that microwave enhancement of HDS reaction rates can occur more efficiently in the CoMoS and NiMoS promoted clusters compared to pristine MoS 2 in the following order: CoMoS > NiMoS > MoS 2 . The atomic origin of the catalyst hot spots induced by microwaves was clearly established in the promoted clusters.

  11. Electronic structure of structural open derivatives of the [Mo6X14]2- cluster: [Mo5Cl13]2- and [Mo4I11]2-

    International Nuclear Information System (INIS)

    Miessner, H.; Korol'kov, D.V.

    1983-01-01

    The electronic structure of structural open derivatives of the [Mo 6 X 14 ] 2 - -cluster [Mo 5 Cl 13 ] 2 - and [Mo 4 I 11 ] 2 - has been studied by the EHMO method. In [Mo 5 Cl 13 ] 2 - 9 occupied MO's with dominant Mo4d character are responsible for the formation of the 8 metal-metal bonds. In [Mo 4 I 11 ] 2 - the stronger covalent character of the Mo-I bonds affects the localization and the energy of molecular orbitals and also the charge distribution. The metal-metal bonds are formed by 8 MO's containing considerable participation of halogen AO's contrary to the chloride cluster. There is no bonding between the Mo atoms at the wing tips of the Mo 4 butterfly and the reason for decreasing the dihedral angle between the Mo 3 planes in [Mo 4 I 11 ] 2 - compared with the octahedral angle is apparently the stabilization of the whole system (Mo-Mo and Mo-I bonds). The unpaired electron occupies in both clusters a slightly antibonding (with regard to the Mo-Mo bonds) orbital. (author)

  12. Synthesis, characterization and thermal stability of solid solutions Zr (Y, Fe, Mo)O {sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Legorreta-Garcia, F.; Esperanza Hernandez-Cruz, L.; Villanueva-Ibanez, M.; Flores-Gonzalez, M. A.

    2015-10-01

    The synthesis of Fe{sup 3}+, Mo{sup 4+} and Y{sup 3+} fully stabilized zirconia by the nitrate/urea combustion route and thermal stability in air was investigated. The solid solution obtained was characterized by X ray diffraction (XRD), scanning electron microscopy (SEM) and used the BET method for determining specific surface. The ceramic powders obtained were calcined at 1473 K in air atmosphere in order to determine their thermal stability. The scanning electron microscopy (SEM) results showed a homogeneous grain surface, measuring several tens of micrometers across. The crystallographic study revealed that by this method it was successfully achieved zirconia doped with Fe{sup 3+}, Mo{sup 4+} and Y{sup 3+} ions in the zirconia tetragonal monophase, even after calcinations. (Author)

  13. Surface Modifications with Laser Synthesized Mo Modified Coating

    Science.gov (United States)

    Sun, Lu; Chen, Hao; Liu, Bo

    2013-01-01

    Mg-Cu-Al was first used to improve the surface performance of TA15 titanium alloys by means of laser cladding technique. The synthesis of hard composite coating on TA15 titanium alloy by laser cladding of Mg-Cu-Al-B4C/Mo pre-placed powders was investigated by means of scanning electron microscope, energy dispersive spectrometer and high resolution transmission electron microscope. Experimental results indicated that such composite coating mainly consisted of TiB2, TiB, TiC, Ti3Al and AlCuMg. Compared with TA15 alloy substrate, an improvement of wear resistance was observed for this composite coating due to the actions of fine grain, amorphous and hard phase strengthening.

  14. Development of microstructure and mechanical properties during annealing of a cold-swaged Co-Cr-Mo alloy rod.

    Science.gov (United States)

    Mori, Manami; Sato, Nanae; Yamanaka, Kenta; Yoshida, Kazuo; Kuramoto, Koji; Chiba, Akihiko

    2016-12-01

    In this study, we investigated the evolution of the microstructure and mechanical properties during annealing of a cold-swaged Ni-free Co-Cr-Mo alloy for biomedical applications. A Co-28Cr-6Mo-0.14N-0.05C (mass%) alloy rod was processed by cold swaging, with a reduction in area of 27.7%, and then annealed at 1173-1423K for various periods up to 6h. The duplex microstructure of the cold-swaged rod consisted of a face-centered cubic γ-matrix and hexagonal closed-packed ε-martensite developed during cold swaging. This structure transformed nearly completely to the γ-phase after annealing and many annealing twin boundaries were observed as a result of the heat treatment. A small amount of the ε-phase was identified in specimens annealed at 1173K. Growth of the γ-grains occurred with increasing annealing time at temperatures ≥1273K. Interestingly, the grain sizes remained almost unchanged at 1173K and a very fine grain size of approximately 8μm was obtained. The precipitation that occurred during annealing was attributed to the limited grain coarsening during heat treatment. Consequently, the specimens treated at this temperature showed the highest tensile strength and lowest ductility among the specimens prepared. An elongation-to-failure value larger than 30% is sufficient for the proposed applications. The other specimens treated at higher temperatures possessed similar tensile properties and did not show any significant variations with different annealing times. Optimization of the present rod manufacturing process, including cold swaging and interval annealing heat treatment, is discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Interdiffusion among U-Mo-Zr and alloys of Al to 550oC

    International Nuclear Information System (INIS)

    Komar Varela, C.L; Arico, S.F; Gribaudo, L.M

    2006-01-01

    The international community, by means of the project 'Reduced Enrichment for Research and Test Reactors' is interested in the development of a new nuclear fuel of very high density of uranium and low enrichment (≤ 20% de U 235 ) for reactors of investigation and production of radioisotopes, that permit to reach greater neutron flows, with good capacity to be reprocessed One of these assemblies are the alloys of U with Mo contents between 7 and 10% in weight. In the fuels 'dispersed type plate' the particles of U-Mo are mixed with dust of aluminum and are co - laminated between two plates of an alloy of the same material. The existing contact among the particles permits the interdiffusion of the materials with the consequent apparition of new phases. Studies pursuit-irradiation have shown a badly behavior of these new phases. It is for this that is necessary to control the presence of these products of interaction. The aggregate of a third element to the alloys U - Mo has begun to be practiced with this purpose. In this work the modification of the start of the disorder of the phase γU in the alloy U-7%Mo-1%Zr was studied and the interdiffusion between pure aluminum and the same alloy to 550 o C. The results obtained are compared with other obtained for peers U-Mo/Al. The techniques of characterization utilized were: optical microscopy, analysis by diffraction of X-rays and microanalysis quantitative by microprobe electronic. It was observed that the aggregate of Zr refines the grain for a processing of homogenized in composition of Mo to 1000 o C and accelerates the start of the disorder of the phase γU to 550 o C. As for the zone of interaction, was found that the composed identifying do not they differ to them reported in the in peers U-Mo/Al. These are: (U,Mo)Al 4 y UAl 3 (AG)

  16. Magnetic and structural characterization of Mo-Hitperm alloys with different Fe/Co ratio

    Energy Technology Data Exchange (ETDEWEB)

    Conde, C.F., E-mail: conde@us.es [Departamento de Fisica de la Materia Condensada, ICMSE-CSIC, Universidad de Sevilla, P.O. Box 1065, 41080 Sevilla (Spain); Borrego, J.M.; Blazquez, J.S.; Conde, A. [Departamento de Fisica de la Materia Condensada, ICMSE-CSIC, Universidad de Sevilla, P.O. Box 1065, 41080 Sevilla (Spain); Svec, P.; Janickovic, D. [Department of Metal Physics, Institute of Physics, Slovak Academy of Sciences, Dubravska Cesta 9, 845 11 Bratislava (Slovakia)

    2011-02-03

    Research highlights: > Nanocrystallization kinetics results based on isothermal (TMG) and non-isothermal (DSC) experiments agree describing a strongly inhibited grain growth process. > The crystalline volume fraction at the end of the nanocrystallization process is practically not affected with the increase of Co in the alloy, although it is lower than in the corresponding Co free alloy. The lattice parameter and the crystal size of the {alpha}-FeCo(Mo) phase nanocrystals decreases as the Co content in the alloy increases. > Moessbauer spectra were analyzed in the frame of three different contributions: pure crystalline, interface and amorphous contribution. Comparison between TEM, XRD and Moessbauer data indicates that some Mo could be present inside the nanocrystals. > Changing the Fe/Co ratio allows to increase the Curie temperature of the amorphous alloys for these compositions between room temperature and {approx}800 K, and therefore, allows tuning the temperature at which the maximum magnetocaloric effect takes place opening a possibility for these alloys as potential low cost magnetic refrigerants. - Abstract: The influence of the Co content on the microstructure and magnetic behaviour of a series of amorphous and nanocrystalline (FeCo){sub 79}Mo{sub 8}Cu{sub 1}B{sub 12} alloys is reported. Changes in the magnetic properties provoked by the microstructural evolution upon different thermal treatments of as-cast samples are analyzed as well. Kinetics of nanocrystallization process can be described by an isokinetic approach. As the Co content in the alloy increases, the Curie temperature of the amorphous as-cast samples increases while the crystallization onset temperature decreases. The crystalline volume fraction as well as the mean grain size of the nanocrystals at the end of the nanocrystallization process are slightly higher for the lowest Co content alloy but smaller than in similar Hitperm Mo-free alloys. The average magnetic field and the average isomer

  17. Phase relations in the M2MoO4 - Ag2MoO4 - Hf(MoO4)2 (M=Li, Na) systems

    International Nuclear Information System (INIS)

    Bazarova, Zh.G.; Bazarov, B.G.; Balsanova, L.V.

    2002-01-01

    The M 2 MoO 4 - Ag 2 MoO 4 - Hf(MoO 4 ) 2 (M=Li, Na) systems were studied by X-ray diffraction and differential thermal analyses in the subsolidus area (450 - 500 Deg C) for the first time. The formation of the binary compound with the variable composition Li 4-x Hf 1+0.2x (MoO 4 ) 4 (0 ≤ x ≤ 0.6) in the Li 2 MoO 4 - Hf(MoO 4 ) 2 system and the ternary molybdates Li 4 Ag 2 Hf(MoO 4 ) 5 (S 1 ) and Na 2 Ag 2 Hf(MoO 4 ) 4 (S 2 ) was established and the thermal characteristics of the prepared compounds were examined. The new binary molybdate Ag 2 Hf(MoO 4 ) 3 was prepared by the reaction between Ag 2 MoO 4 and Hf(MoO 4 ) 2 [ru

  18. Self-powdering and nonlinear optical domain structures in ferroelastic β'-Gd2(MoO4)3 crystals formed in glass

    International Nuclear Information System (INIS)

    Tsukada, Y.; Honma, T.; Komatsu, T.

    2009-01-01

    Ferroelastic β'-Gd 2 (MoO 4 ) 3 , (GMO), crystals are formed through the crystallization of 21.25Gd 2 O 3 -63.75MoO 3 -15B 2 O 3 glass (mol%), and two scientific curious phenomena are observed. (1) GMO crystals formed in the crystallization break into small pieces with a triangular prism or pyramid shape having a length of 50-500 μm spontaneously during the crystallizations in the inside of an electric furnace, not during the cooling in air after the crystallization. This phenomenon is called 'self-powdering phenomenon during crystallization' in this paper. (2) Each self-powdered GMO crystal grain shows a periodic domain structure with different refractive indices, and a spatially periodic second harmonic generation (SHG) depending on the domain structure is observed. It is proposed from polarized micro-Raman scattering spectra and the azimuthal dependence of second harmonic intensities that GMO crystals are oriented in each crystal grain and the orientation of (MoO 4 ) 2- tetrahedra in GMO crystals changes periodically due to spontaneous strains in ferroelastic GMO crystals. - Graphical abstract: This figure shows the polarized optical photograph at room temperature for a particle (piece) obtained by a heat treatment of the glass at 590 deg. C for 2 h in an electric furnace in air. This particle was obtained through the self-powdering behavior in the crystallization of glass. The periodic domain structure is observed. Ferroelastic β'-Gd 2 (MoO 4 ) 3 crystals are formed in the particle, and second harmonic generations are detected, depending on the domain structure.

  19. Phase formation in the Li2MoO4–K2MoO4–In2(MoO4)3 system and crystal structures of new compounds K3InMo4O15 and LiK2In(MoO4)3

    International Nuclear Information System (INIS)

    Khal’baeva, Klara M.; Solodovnikov, Sergey F.; Khaikina, Elena G.; Kadyrova, Yuliya M.; Solodovnikova, Zoya A.; Basovich, Olga M.

    2012-01-01

    XRD study of solid-phase interaction in the Li 2 MoO 4 –K 2 MoO 4 –In 2 (MoO 4 ) 3 system was performed. The boundary K 2 MoO 4 –In 2 (MoO 4 ) 3 system is an non-quasibinary join of the K 2 O–In 2 O 3 –MoO 3 system where a new polymolybdate K 3 InMo 4 O 15 isotypic to K 3 FeMo 4 O 15 was found. In the structure (a=33.2905(8), b=5.8610(1), c=15.8967(4) Å, β=90.725(1)°, sp. gr. C2/c, Z=8, R(F)=0.0407), InO 6 octahedra, Mo 2 O 7 diortho groups and MoO 4 tetrahedra form infinite ribbons {[In(MoO 4 ) 2 (Mo 2 O 7 )] 3− } ∞ along the b-axis. Between the chains, 8- to 10-coordinate potassium cations are located. A subsolidus phase diagram of the Li 2 MoO 4 –K 2 MoO 4 –In 2 (MoO 4 ) 3 system was constructed and a novel triple molybdate LiK 2 In(MoO 4 ) 3 was revealed. Its crystal structure (a=7.0087(2), b=9.2269(3), c=10.1289(3) Å, β=107.401(1)°, sp. gr. P2 1 , Z=2, R(F)=0.0280) contains an open framework of vertex-shared MoO 4 tetrahedra, InO 6 octahedra and LiO 5 tetragonal pyramids with nine- and seven-coordinate potassium ions in the framework channels. - Graphical abstract: Exploring the Li 2 MoO 4 –K 2 MoO 4 –In 2 (MoO 4 ) 3 system showed its partial non-quasibinarity and revealed new compounds K 3 InMo 4 O 15 (isotypic to K 3 FeMo 4 O 15 ) and LiK 2 In(MoO 4 ) 3 which were structurally studied. An open framework of the latter is formed by vertex-shared MoO 4 tetrahedra, InO 6 octahedra and LiO 5 tetragonal pyramids. Highlights: ► Subsolidus phase relations in the Li 2 MoO 4 –K 2 MoO 4 –In 2 (MoO 4 ) 3 system were explored. ► The K 2 MoO 4 –In 2 (MoO 4 ) 3 system is a non-quasibinary join of the K 2 O–In 2 O 3 –MoO 3 system. ► New compounds K 3 InMo 4 O 15 and LiK 2 In(MoO 4 ) 3 were obtained and structurally studied. ► K 3 InMo 4 O 15 is isotypic to K 3 FeMo 4 O 15 and carries bands of InO 6 , MoO 4 and Mo 2 O 7 units. ► An open framework of LiK 2 In(MoO 4 ) 3 is formed by polyhedra MoO 4 , InO 6 and LiO 5 .

  20. Thermomechanical process optimization of U-10wt% Mo – Part 2: The effect of homogenization on the mechanical properties and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Vineet V., E-mail: vineet.joshi@pnnl.gov; Nyberg, Eric A.; Lavender, Curt A.; Paxton, Dean; Burkes, Douglas E.

    2015-10-15

    In the first part of this series, it was determined that the as-cast U-10Mo had a dendritic microstructure with chemical inhomogeneity and underwent eutectoid transformation during hot compression testing. In the present (second) part of the work, the as-cast samples were heat treated at several temperatures and times to homogenize the Mo content. Like the previous as-cast material, the “homogenized” materials were then tested under compression between 500 and 800 °C. The as-cast samples and those treated at 800 °C for 24 h had grain sizes of 25–30 μm, whereas those treated at 1000 °C for 16 h had grain sizes around 250 μm before testing. Upon compression testing, it was determined that the heat treatment had effects on the mechanical properties and the precipitation of the lamellar phase at sub-eutectoid temperatures.

  1. Tensile flow behaviour of 2.25Cr-1Mo ferritic steel base metal an simulated heat affected zone structures of 2.25 Cr-1Mo weld joint

    International Nuclear Information System (INIS)

    Laha, K.; Chandravathi, K.S.; Rao, K.B.S.; Mannan, S. L.; Sastry, D.H.

    1999-01-01

    Tensile tests in the temperature range 298 to 873 K have been performed on 2.25Cr-1Mo base metal and simulated heat affected zone (HAZ) structures of its weld joint, namely coarse grain bainite, fine grain bainite and intercritical structure. Tensile flow behaviour of all the microstructural conditions could be adequately described by the Hollomon equation (σ = K 1 ε n1 ) at higher (>623 K) temperatures. Deviation from the Hollomon equation was observed at low strains and lower ( 1 ε n1 + exp (K 2 + n 2 ε), was found to describe the flow curve. In general, the flow parameters n 1 , K 1 , n 2 and K 2 were found to decrease with increase in temperature except in the intermediate temperature range (423 to 623 K). Peaks/plateaus were observed in their variation with temperature in the intermediate temperature range coinciding with the occurrence of serrated flow in the load-elongation curve. The n 1 value increased and the K 1 value decreased with the type of microstructure in the order: coarse grain bainite, fine grain bainite, base metal and intercritical structure. The variation of n 1 with microstructure has been rationalized on the basis of mean free path (MFP) of dislocations which is directly related to the inter-particle spacing. Larger MFP of dislocations lead to higher strain hardening exponents n 1 . (orig.)

  2. Trace element determination in presolar SiC grains by synchrotron x-ray fluorescence: Commencement of a coordinated multimethod study

    International Nuclear Information System (INIS)

    Knight, K.B.; Sutton, S.R.; Newville, M.; Davis, A.M.; Dauphas, N.; Lewis, R.S.; Amari, S.; Steele, I.M.; Savina, M.R.; Pellin, M.J.

    2008-01-01

    We determined trace element compositions of individual ∼1-3 ?m presolar SiC grains from 6 KJG grains and 26 additionally cleaned KJG grains from the Murchison CM chondrite using nondestructive synchrotron X-ray fluorescence (SXRF). Presolar SiC grains are robust remnants of stellar matter ejected from stars. They survived processing in the early solar system and retain the nucleosynthetic fingerprints of their stellar progenitors. As such, they represent unique physical probes of the interiors of stars. Presolar SiC grains are commonly analyzed by mass spectrometric techniques that determine isotopic compositions and, to some degree, elemental concentrations. These techniques, however, are destructive, and can be subject to matrix effects. Elemental composition data on presolar grains remain scarce and affected by contamination and analytical artifacts. In addition, contamination has plagued isotopic characterization of some elements such as Mo and Ba. We determined trace element compositions of individual ∼1-3 (micro)m presolar SiC grains from the Murchison CM chondrite using nondestructive synchrotron X-ray fluorescence (SXRF). Samples included the KJG fraction, and a second KJG fraction that underwent additional cleaning. As every cleaning step results in some grain loss, one goal of this study was to justify additional cleaning of grains. Six KJG grains and 26 additionally cleaned KJG grains were analyzed, with location and identities of individual grains noted for future correlated isotopic study.

  3. Study on soft magnetic properties of Finemet-type nanocrystalline alloys with Mo substituting for Nb

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Dehui; Zhou, Bingwen; Jiang, Boyu; Ya, Bin; Zhang, Xingguo [School of Materials Science and Engineering, Dalian University of Technology, Dalian (China)

    2017-10-15

    The thermal stability, microstructure, and soft magnetic properties as a function of annealing time were studied for Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 3-x}Mo{sub x} (x = 0, 1, 2, 3) (atom percent, at.%,) ribbons. It was found that substituting Nb by Mo reduced the thermal stability. After 15 min short time vacuum annealing, Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 2}Mo{sub 1} and Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 1}Mo{sub 2} samples obtained higher permeability and similar coercivity compared to the original Finemet alloy (Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 3}), Mo substituting Nb reduced the optimum annealing time in Finemet-type alloys, and meanwhile marginally increased the saturation magnetization. Substituting all Nb by Mo led to the earlier formation of non-soft magnetic phase, thus deteriorated the soft magnetic properties. XRD and TEM structural analysis showed that in Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 2}Mo{sub 1} and Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 1}Mo{sub 2} samples (annealed for 15 min), nanocrystals ∝10 nm in size were obtained, and the good soft magnetic properties of these alloys could be attributed to the small grain size. The relationship between annealing time, soft magnetic properties, and microstructure was established. Reducing annealing time and temperature to obtain best soft magnetic properties could cut down the production costs of Finemet-type alloys. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. In situ TEM and synchrotron characterization of U–10Mo thin specimen annealed at the fast reactor temperature regime

    International Nuclear Information System (INIS)

    Yun, Di; Mo, Kun; Mohamed, Walid; Ye, Bei; Kirk, Marquis A.; Baldo, Peter; Xu, Ruqing; Yacout, Abdellatif M.

    2015-01-01

    U–Mo metallic alloys have been extensively used for the Reduced Enrichment for Research and Test Reactors (RERTR) program, which is now known as the Office of Material Management and Minimization under the Conversion Program. This fuel form has also recently been proposed as fast reactor metallic fuels in the recent DOE Ultra-high Burnup Fast Reactor project. In order to better understand the behavior of U–10Mo fuels within the fast reactor temperature regime, a series of annealing and characterization experiments have been performed. Annealing experiments were performed in situ at the Intermediate Voltage Electron Microscope (IVEM-Tandem) facility at Argonne National Laboratory (ANL). An electro-polished U–10Mo alloy fuel specimen was annealed in situ up to 700 °C. At an elevated temperature of about 540 °C, the U–10Mo specimen underwent a relatively slow microstructure transition. Nano-sized grains were observed to emerge near the surface. At the end temperature of 700 °C, the near-surface microstructure had evolved to a nano-crystalline state. In order to clarify the nature of the observed microstructure, Laue diffraction and powder diffraction experiments were carried out at beam line 34-ID of the Advanced Photon Source (APS) at ANL. Phases present in the as-annealed specimen were identified with both Laue diffraction and powder diffraction techniques. The U–10Mo was found to recrystallize due to thermally-induced recrystallization driven by a high density of pre-existing dislocations. A separate in situ annealing experiment was carried out with a Focused Ion Beam processed (FIB) specimen. A similar microstructure transition occurred at a lower temperature of about 460 °C with a much faster transition rate compared to the electro-polished specimen. - Highlights: • TEM annealing experiments were performed in situ at the IVEM facility up to fast reactor temperature. • At 540 °C, the U-10Mo specimen underwent a slow microstructure transition

  5. In situ TEM and synchrotron characterization of U–10Mo thin specimen annealed at the fast reactor temperature regime

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Di, E-mail: diyun1979@xjtu.edu.cn [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Xi' an Jiao Tong University, 28 Xian Ning West Road, Xi' an 710049 (China); Mo, Kun; Mohamed, Walid; Ye, Bei; Kirk, Marquis A.; Baldo, Peter; Xu, Ruqing; Yacout, Abdellatif M. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2015-12-15

    U–Mo metallic alloys have been extensively used for the Reduced Enrichment for Research and Test Reactors (RERTR) program, which is now known as the Office of Material Management and Minimization under the Conversion Program. This fuel form has also recently been proposed as fast reactor metallic fuels in the recent DOE Ultra-high Burnup Fast Reactor project. In order to better understand the behavior of U–10Mo fuels within the fast reactor temperature regime, a series of annealing and characterization experiments have been performed. Annealing experiments were performed in situ at the Intermediate Voltage Electron Microscope (IVEM-Tandem) facility at Argonne National Laboratory (ANL). An electro-polished U–10Mo alloy fuel specimen was annealed in situ up to 700 °C. At an elevated temperature of about 540 °C, the U–10Mo specimen underwent a relatively slow microstructure transition. Nano-sized grains were observed to emerge near the surface. At the end temperature of 700 °C, the near-surface microstructure had evolved to a nano-crystalline state. In order to clarify the nature of the observed microstructure, Laue diffraction and powder diffraction experiments were carried out at beam line 34-ID of the Advanced Photon Source (APS) at ANL. Phases present in the as-annealed specimen were identified with both Laue diffraction and powder diffraction techniques. The U–10Mo was found to recrystallize due to thermally-induced recrystallization driven by a high density of pre-existing dislocations. A separate in situ annealing experiment was carried out with a Focused Ion Beam processed (FIB) specimen. A similar microstructure transition occurred at a lower temperature of about 460 °C with a much faster transition rate compared to the electro-polished specimen. - Highlights: • TEM annealing experiments were performed in situ at the IVEM facility up to fast reactor temperature. • At 540 °C, the U-10Mo specimen underwent a slow microstructure transition

  6. ITO-free flexible organic photovoltaics with multilayer MoO3/LiF/MoO3/Ag/MoO3 as the transparent electrode

    International Nuclear Information System (INIS)

    Chen, Shilin; Dai, Yunjie; Zhang, Hongmei; Zhao, Dewei

    2016-01-01

    We present efficient flexible organic photovoltaics (OPVs) with multiple layers of molybdenum oxide (MoO 3 )/LiF/MoO 3 /Ag/MoO 3 as the transparent electrode, where the thin Ag layer yields high conductivity and the dielectric layer MoO 3 /LiF/MoO 3 has high transparency due to optical interference, leading to improved power conversion efficiency compared with indium tin oxide (ITO) based devices. The MoO 3 contacting organic active layer is used as a buffer layer for good hole extraction. Thus, the multilayer MoO 3 /LiF/MoO 3 /Ag/MoO 3 can improve light transmittance and also facilitate charge carrier extraction. Such an electrode shows excellent mechanical bendability with a 9% reduction of efficiency after 1000 cycles of bending due to the ductile nature of the thin metal layer and dielectric layer used. Our results suggest that the MoO 3 /LiF/MoO 3 /Ag/MoO 3 multilayer electrode is a promising alternative to ITO as an electrode in OPVs. (paper)

  7. Research on low strain magnetic mechanical hysteresis damping performance of Fe-15Cr-3Mo-0.5Si alloy

    International Nuclear Information System (INIS)

    Wang, Hui; Huang, Huawei; Hong, Xiaofeng; Yin, Changgeng; Huang, Zhaohua; Chen, Le

    2015-01-01

    Highlights: • Heat treatment system has a great effect on the alloy damping performance. • Damping performance does not improve monotonously with temperature. • Furnace cooling is higher than that of alloy after air cooling. • There is an optimum annealing temperature and grain size to obtain high damping. - Abstract: This paper studies the preparation of Fe-15Cr-3Mo-0.5Si alloy by using vacuum induction melting furnace and vacuum annealing furnace, the damping performance of which in different heat treatment states is tested with dynamic mechanical thermal analyzer (DMA). Through microstructure observation with metallographic microscope (OM), grain boundary observation with scanning electron microscopy (SEM), phase structure analysis with X-ray diffraction (XRD) and internal stress of S-B model analysis, the effect law of annealing temperature, types of cooling, holding time and grain sizes on the damping performance of alloy and the related mechanism can be concluded as follows. The annealing temperature and grain sizes have a significant impact on the damping strain amplitude as well as the magnetic and mechanical damping performance of this ferromagnetic alloy. Proper annealing temperature and grain size is the necessary condition to get high damping performance of the alloy. It is not conducive to improvement of the damping performance if the annealing temperature is too high or too low and the grain size is too small or too large. For Fe-15Cr-3Mo-0.5Si alloy, within the range of the low strain amplitude, alloy damping performance does not improve monotonously with the increase of the annealing temperature and grain size. The maximum value appears at the annealing temperature of 1100 °C/1 h with the grain size of about 300 μm. At high annealing temperature of 1100 °C, the damping performance of alloy in the slow cooling furnace is higher than that with air cooling treatment. The extension or shortening of the holding time, to a certain extent

  8. Research on low strain magnetic mechanical hysteresis damping performance of Fe-15Cr-3Mo-0.5Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui, E-mail: qinghe5525@163.com; Huang, Huawei; Hong, Xiaofeng; Yin, Changgeng; Huang, Zhaohua; Chen, Le

    2015-02-15

    Highlights: • Heat treatment system has a great effect on the alloy damping performance. • Damping performance does not improve monotonously with temperature. • Furnace cooling is higher than that of alloy after air cooling. • There is an optimum annealing temperature and grain size to obtain high damping. - Abstract: This paper studies the preparation of Fe-15Cr-3Mo-0.5Si alloy by using vacuum induction melting furnace and vacuum annealing furnace, the damping performance of which in different heat treatment states is tested with dynamic mechanical thermal analyzer (DMA). Through microstructure observation with metallographic microscope (OM), grain boundary observation with scanning electron microscopy (SEM), phase structure analysis with X-ray diffraction (XRD) and internal stress of S-B model analysis, the effect law of annealing temperature, types of cooling, holding time and grain sizes on the damping performance of alloy and the related mechanism can be concluded as follows. The annealing temperature and grain sizes have a significant impact on the damping strain amplitude as well as the magnetic and mechanical damping performance of this ferromagnetic alloy. Proper annealing temperature and grain size is the necessary condition to get high damping performance of the alloy. It is not conducive to improvement of the damping performance if the annealing temperature is too high or too low and the grain size is too small or too large. For Fe-15Cr-3Mo-0.5Si alloy, within the range of the low strain amplitude, alloy damping performance does not improve monotonously with the increase of the annealing temperature and grain size. The maximum value appears at the annealing temperature of 1100 °C/1 h with the grain size of about 300 μm. At high annealing temperature of 1100 °C, the damping performance of alloy in the slow cooling furnace is higher than that with air cooling treatment. The extension or shortening of the holding time, to a certain extent

  9. Iron valence in double-perovskite (Ba,Sr,Ca)2FeMoO6: isovalent substitution effect

    International Nuclear Information System (INIS)

    Yasukawa, Y.; Linden, J.; Chan, T.S.; Liu, R.S.; Yamauchi, H.; Karppinen, M.

    2004-01-01

    In the Fe-Mo based B-site ordered double-perovskite, A 2 FeMoO 6.0 , with iron in the mixed-valence II/III state, the valence value of Fe is not precisely fixed at 2.5 but may be fine-tuned by means of applying chemical pressure at the A-cation site. This is shown through a systematic 57 Fe Moessbauer spectroscopy study using a series of A 2 FeMoO 6.0 [A=(Ba,Sr) or (Sr,Ca)] samples with high degree of Fe/Mo order, the same stoichiometric oxygen content and also almost the same grain size. The isomer shift values and other hyperfine parameters obtained from the Moessbauer spectra confirm that Fe remains in the mixed-valence state within the whole range of A constituents. However, upon increasing the average cation size at the A site the precise valence of Fe is found to decrease such that within the A=(Ba,Sr) regime the valence of Fe is closer to II, while within the A=(Sr,Ca) regime it is closer to the actual mixed-valence II/III state. As the valence of Fe approaches II, the difference in charges between Fe and Mo increases, and parallel with this the degree of Fe/Mo order increases. Additionally, for the less-ordered samples an increased tendency of clustering of the antisite Fe atoms is deduced from the Moessbauer data

  10. Photo- and Electrochromic Properties of Activated Reactive Evaporated MoO3 Thin Films Grown on Flexible Substrates

    Directory of Open Access Journals (Sweden)

    K. Hari Krishna

    2008-01-01

    Full Text Available The molybdenum trioxide (MoO3 thin films were grown onto ITO-coated flexible Kapton substrates using plasma assisted activated reactive evaporation technique. The film depositions were carried out at constant glow power and oxygen partial pressures of 8 W and 1×10−3 Torr, respectively. The influence of substrate temperature on the microstructural and optical properties was investigated. The MoO3 thin films prepared at a substrate temperature of 523 K were found to be composed of uniformly distributed nanosized grains with an orthorhombic structure of α-MoO3. These nanocrystalline MoO3 thin films exhibited higher optical transmittance of about 80% in the visible region with an evaluated optical band gap of 3.29 eV. With the insertion of 12.5 mC/cm2, the films exhibited an optical modulation of 40% in the visible region with coloration efficiency of 22 cm2/C at the wavelength of 550 nm. The MoO3 films deposited at 523 K demonstrated better photochromic properties and showed highest color center concentration for the irradiation time of 30 minutes at 100 mW/cm2.

  11. Thermal expansion studies on Th(MoO4)2, Na2Th(MoO4)3 and Na4Th(MoO4)4

    International Nuclear Information System (INIS)

    Keskar, Meera; Krishnan, K.; Dahale, N.D.

    2008-01-01

    Thermal expansion behavior of Th(MoO 4 ) 2 , Na 2 Th(MoO 4 ) 3 and Na 4 Th(MoO 4 ) 4 was studied under vacuum in the temperature range of 298-1123 K by high temperature X-ray diffractometer. Th(MoO 4 ) 2 was synthesized by reacting ThO 2 with 2 mol of MoO 3 , at 1073 K in air and Na 2 Th(MoO 4 ) 3 and Na 4 Th(MoO 4 ) 4 were prepared by reacting Th(MoO 4 ) 2 with 1 and 2 mol of Na 2 MoO 4 , respectively at 873 K in air. The XRD data of Th(MoO 4 ) 2 was indexed on orthorhombic system where as XRD data of Na 2 Th(MoO 4 ) 3 and Na 4 Th(MoO 4 ) 4 were indexed on tetragonal system. The lattice parameters and cell volume of all the three compounds, fit into polynomial expression with respect to temperature, showed positive thermal expansion (PTE) up to 1123 K. The average value of thermal expansion coefficients for Th(MoO 4 ) 2 , Na 2 Th(MoO 4 ) 3 and Na 4 Th(MoO 4 ) 4 were determined from the high temperature data

  12. Mechanical intermixing of components in (CoMoNi)-based systems and the formation of (CoMoNi)/WC nanocomposite layers on Ti sheets under ball collisions

    Science.gov (United States)

    Romankov, S.; Park, Y. C.; Shchetinin, I. V.

    2017-11-01

    Cobalt (Co), molybdenum (Mo), and nickel (Ni) components were simultaneously introduced onto titanium (Ti) surfaces from a composed target using ball collisions. Tungsten carbide (WC) balls were selected for processing as the source of a cemented carbide reinforcement phase. During processing, ball collisions continuously introduced components from the target and the grinding media onto the Ti surface and induced mechanical intermixing of the elements, resulting in formation of a complex nanocomposite structure onto the Ti surface. The as-fabricated microstructure consisted of uniformly dispersed WC particles embedded within an integrated metallic matrix composed of an amorphous phase with nanocrystalline grains. The phase composition of the alloyed layers, atomic reactions, and the matrix grain sizes depended on the combination of components introduced onto the Ti surface during milling. The as-fabricated layer exhibited a very high hardness compared to industrial metallic alloys and tool steel materials. This approach could be used for the manufacture of both cemented carbides and amorphous matrix composite layers.

  13. Ternary system of Na2MoO4-Cs2MoO4-MoO3

    International Nuclear Information System (INIS)

    Zueva, V.P.; Shabanova, A.N.; Drobasheva, T.I.

    1982-01-01

    Using the methods of thermal analysis interaction of components in ternary system Na 2 MoO 4 -Cs 2 MoO 4 -MoO 3 has been studied. Crystallization surface consists of nine fields belonging to initial components and compounds of lateral sides. Triangulation of the system is carried out and the character of nonvariant points is clarified, the temperature of 360 deg C corresponds to low-melting eutectics

  14. Precipitation of the sigma-phase in Mo-Re alloys

    International Nuclear Information System (INIS)

    Freze, N.I.; Levitskij, A.D.; Tyumentsev, A.N.; Korotaev, A.D.

    1975-01-01

    Disintegration processes in thin foils and replicas of alloys Mo+(52 - 56) wpc Re and Mo+(52 - 56)% Re+(0.05 - 0.10)% Fe wpc were studied by electronic microscopy. Alloying with iron was conducted to determine the effect of iron atom segregations at the grain boundaries on separation of the sigma-phase in these regions. Since the nature of disintegration in all alloys was identical, the experimental data were considered on the example of alloy Mo + 54 wpc Re. The laminated specimens of 1 - 2 mm in thickness subjected to cold rolling with subsequent tempering at T = 1100 deg C for 15 min were characterized by intensive disintegration. As a result finelydispersed laminated sigma-phase uniformly distributed throughout the entire volume of the material was formed. The non-deformed specimens did not show separation of the sigma-phase. As a result of separation of the finely-dispersed sigma-phase plasticity of the alloys was increased. So that a foil of Δh = 0.2 mm in thickness can be produced by cold rolling of the laminated specimens without intermediate annealing. By changing the initial state of the specimens and temperature of annealing dispersity and spatial distribution of the sigma-phase may be substantially modified. It provides for considerably increasing plasticity of the two-phase alloys. During separation of the sigma-phase hardness of the deformed specimens becomes greater. Therefore the low-temperature disintegration accompanied by separation of the sigma-phase may be employed for disperse strengthening of the Mo-Re alloys. The refractory properties of such alloye will not be high, since it is coagulated the finely-dispersed segregations of the sigma-phase even at T > 1100 deg C

  15. Influence of Normalizing Temperature on the Microstructure and Hardness of 9Cr-1Mo ODS Steel

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Ki Nam; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Kyu Tae [Dongguk University, Gyeongju (Korea, Republic of)

    2016-10-15

    Oxide dispersion strengthened(ODS) steel has superior high-temperature strength and creep properties because fine oxide particles having an excellent stability at high temperatures are uniformly distributed in the matrix. ODS steel has being developed for structure materials of sodium fast cooled reactor(SFR) because of its excellent irradiation resistance and mechanical properties. 9Cr-1Mo ODS steel has better high temperature strength and irradiation resistance than common 9Cr-1Mo steel because Y{sub 2}O{sub 3} nano-sized particles which interrupt dislocation movement and grain boundary slip are uniformly dispersed in the martensite matrix. The mechanical properties of the ODS steels are mainly determined by their microstructures, and the microstructure is considerably decided by the heat-treatment conditions. This study focused on the effect of normalizing temperature on microstructure and hardness of 9Cr-1Mo martensitic ODS steel so as to optimize the heat-treatment condition. In this study, the effect of normalizing temperature on mechanical property and microstructures of 9Cr-1Mo martensitic ODS steel was investigated. It was shown that the microhardness was steadily increased with increasing of the normalizing temperature. According to TEM observation, mechanical property of 9Cr-1Mo ODS steel was significantly affected by lath width. These observations, could be useful to understand the relationship between normalizing temperature and microstructure.

  16. Synthesis and characterization of MoB2−x thin films grown by nonreactive DC magnetron sputtering

    International Nuclear Information System (INIS)

    Malinovskis, Paulius; Lewin, Erik; Jansson, Ulf; Palisaitis, Justinas; Persson, Per O. Å.

    2016-01-01

    DC magnetron sputtering was used to deposit molybdenum boride thin films for potential low-friction applications. The films exhibit a nanocomposite structure with ∼10 nm large MoB 2−x (x > 0.4) grains surrounded by a boron-rich tissue phase. The preferred formation of the metastable and substoichiometric hP3-MoB 2 structure (AlB 2 -type) is explained with kinetic constraints to form the thermodynamically stable hR18-MoB 2 phase with a very complex crystal structure. Nanoindentation revealed a relatively high hardness of (29 ± 2) GPa, which is higher than bulk samples. The high hardness can be explained by a hardening effect associated with the nanocomposite microstructure where the surrounding tissue phase restricts dislocation movement. A tribological study confirmed a significant formation of a tribofilm consisting of molybdenum oxide and boron oxide, however, without any lubricating effects at room temperature.

  17. Effect of Mo Ion Implantation on Stability of Nanocrystalline Copper Surface Layers

    Directory of Open Access Journals (Sweden)

    XI Yang

    2016-08-01

    Full Text Available The surface of pure copper was modified using the surface mechanical attrition treatment (SMAT method, and molybdenum ions were implanted in the nanosurface using a metal vapor vacuum arc (MEVVA. The results of the SMAT were observed by optical microscopy (OM, X-ray diffraction (XRD and scanning electron microscopy (SEM. An obvious nanocrystalline layer and a deformation region exist on the surface. The size of the nanocrystalline layer was characterized using atomic force microscopy (AFM. The results indicate remarkable suppression on grain size, the nanocrystalline layer grows to 163nm after annealing and reduces to only 72nm due to the Mo ion implantation. In addition, the hardness of the topmost surface of the material is 3.5 times that of the SMATed copper, which is about 7 times of the value of the matrix. The above improvements most likely result from the dispersion of the Mo ions and the reactions of the crystal defects due to the SMAT and ion implantation.

  18. Impression creep behaviour of Mod. 9Cr-1Mo steel weld joints

    International Nuclear Information System (INIS)

    Ridhin Raj, V.R.; Kottda, Ravi Sankar; Kamaraj, M.; Maduraimuthu, V.M.; Vasudevan, M.

    2016-01-01

    P91 steel (9Cr-1Mo) steel is extensively used in power plants for super heater coils, headers and steam piping. The aim of the present work is to study the creep behaviour of different zones of A-TIG weld joint using impression creep technique and compare it with that of the TIG weld joint. P91 steel weld joints were made by A-TIG welding without using any filler material and multi-pass TIG welding is done using ER90S-B9 filler rods. Welds were subjected to post-weld heat treatment (PWHT). Impression creep tests were carried out at 650 °C on the base metal, weld metal and HAZ regions. Optical Microscope and TEM were used to correlate microstructures with observed creep rates. The FGHAZ showed significantly higher impression creep rate compared to that of the base metal and weld metal. Fine grain size and relatively coarser M 23 C 6 carbide particles are responsible for higher creep rate. The impression creep rate of A-TIG weld metal and coarse grain HAZ was found to be lower than that of base metal. This is attributed to the higher grain size in weld metal and coarse HAZ attributed to the higher grain size in weld metal and to the higher peak temperature observed during A-TIG welding. (author)

  19. Microstructure and tribological properties of NiMo/Mo2Ni3Si intermetallic 'in-situ' composites

    International Nuclear Information System (INIS)

    Gui Yongliang; Song Chunyan; Yang Li; Qin Xiaoling

    2011-01-01

    Research highlights: → Wear resistant NiMo/Mo 2 Ni 3 Si intermetallic 'in-situ' composites was fabricated successfully with Mo-Ni-Si powder blends as the starting materials. Microstructure of the NiMo/Mo 2 Ni 3 Si composites consists of Mo 2 Ni 3 Si primary dendrites, binary intermetallic phase NiMo and small amount of Ni/NiMo eutectics structure. The NiMo/Mo 2 Ni 3 Si composites exhibited high hardness and outstanding tribological properties under room-temperature dry-sliding wear test conditions which were attributed to the covalent-dominant strong atomic bonds and excellent combination of strength and ductility and toughness. - Abstract: Wear resistant NiMo/Mo 2 Ni 3 Si intermetallic 'in-situ' composites with a microstructure of ternary metal silicide Mo 2 Ni 3 Si primary dendritic, the long strip-like NiMo intermetallic phase, and a small amount of Ni/NiMo eutectics structure were designed and fabricated using molybdenum, nickel and silicon elemental powders. Friction and wear properties of NiMo/Mo 2 Ni 3 Si composites were evaluated under different contact load at room-temperature dry-sliding wear test conditions. Microstructure, worn surface morphologies and subsurface microstructure were characterized by OM, XRD, SEM and EDS. Results indicate that NiMo/Mo 2 Ni 3 Si composites have low fiction coefficient, excellent wear resistance and sluggish wear-load dependence. The dominant wear mechanisms of NiMo/Mo 2 Ni 3 Si composites are soft abrasion and slightly superficial oxidative wear.

  20. Synthesis, surface structure and optical properties of double perovskite Sr{sub 2}NiMoO{sub 6} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Lei; Wan, Yingpeng [State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 (China); Xie, Hongde, E-mail: xiehongde@suda.edu.cn [State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 (China); Huang, Yanlin; Yang, Li [State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 (China); Qin, Lin [Department of Physics and Interdisciplinary Program of Biomedical, Mechanical & Electrical Engineering, Pukyong National University, Busan, 608-737 (Korea, Republic of); Seo, Hyo Jin, E-mail: hjseo@pknu.ac.kr [Department of Physics and Interdisciplinary Program of Biomedical, Mechanical & Electrical Engineering, Pukyong National University, Busan, 608-737 (Korea, Republic of)

    2016-12-15

    Highlights: • Double perovskite Sr{sub 2}NiMoO{sub 6} nanoparticles were prepared via sol-gel route. • The nanoparticles have efficient optical absorption in visible light. • The band structure and energy positions were determined. • The perovskite has efficient photocatalytic on RhB photodegradation. • Multivalent Mo and Ni-ions on the surfaces were investigated. - Abstract: Double perovskite Sr{sub 2}NiMoO{sub 6} nanoparticles were synthesized via the chemical sol-gel route. The phase formation was investigated through X-ray polycrystalline diffraction (XRD) and Rietveld refinements. The perovskite crystallized in worm-like nano-grains with the diameter of 20–50 nm. The optical properties were measured by the optical absorption spectra. The nanoparticles present an indirect allowed transition with a narrow band gap of 2.1 eV. Sr{sub 2}NiMoO{sub 6} nanoparticles have obvious photocatalytic ability on the degradation of Rhodamine B (RhB) solutions under the irradiation of visible light. The transport behaviors of the excitons were investigated from the photoluminescence spectra and the corresponding decay lifetimes. Sr{sub 2}NiMoO{sub 6} nanoparticles present several advantages for photocatalysis such as the appropriate band energy positions, the quenched luminescence, and the coexistence of multivalent ions in the lattices.

  1. Effect of Prior Austenite Grain Size on the Morphology of Nano-Bainitic Steels

    Science.gov (United States)

    Singh, Kritika; Kumar, Avanish; Singh, Aparna

    2018-04-01

    The strength in nanostructured bainitic steels primarily arises from the fine platelets of bainitic ferrite embedded in carbon-enriched austenite. However, the toughness is dictated by the shape and volume fraction of the retained austenite. Therefore, the exact determination of processing-morphology relationships is necessary to design stronger and tougher bainite. In the current study, the morphology of bainitic ferrite in Fe-0.89C-1.59Si-1.65Mn-0.37Mo-1Co-0.56Al-0.19Cr (wt pct) bainitic steel has been investigated as a function of the prior austenite grain size (AGS). Specimens were austenitized at different temperatures ranging from 900 °C to 1150 °C followed by isothermal transformation at 300 °C. Detailed microstructural characterization has been carried out using scanning electron microscopy and X-ray diffraction. The results showed that the bainitic laths transformed in coarse austenite grains are finer resulting in higher hardness, whereas smaller austenite grains lead to the formation of thicker bainitic laths with a large fraction of blocky type retained austenite resulting in lower hardness.

  2. Enhanced thermoelectric performance of xMoS{sub 2}–TiS{sub 2} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Yang; Wang, Yulong; Shen, YaWei [College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); Wang, Yifeng, E-mail: yifeng.wang@njtech.edu.cn [College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); Pan, Lin [College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); Tu, Rong [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Lu, Chunhua [College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); Huang, Rong [School of Information Science and Technology, East China Normal University, Shanghai 200062 (China); Koumoto, Kunihito [Toyota Physical and Chemical Research Institute, Nagakute 4801192 (Japan)

    2016-05-05

    A series of nanocomposite ceramics of micro-scale TiS{sub 2} containing MoS{sub 2} nanoparticles mainly embedded along grain boundaries were prepared and investigated attempting to enhance the thermoelectric performance of TiS{sub 2}. Results show that, compared with that of pristine TiS{sub 2} ceramic, the power factor of the composites was improved by virtues of enhanced Seebeck coefficient that should be brought out due to reduced carrier concentration and electron scattering or filtering at the MoS{sub 2}/matrix interfaces. Moreover, thanks to the significantly reduced thermal conductivity that originated from the intensified multi-scale phonon scattering and the decreased electronic contribution, a maximal ZT value of 0.29 at 573 K was obtained in the sample with 3 mol % MoS{sub 2}, which is 60% higher than that of pristine TiS{sub 2}. These findings promise nanocomposite as an effective approach to suppress its thermal conduction without degradation of power factor and thus to enhance the performance of TiS{sub 2}-based thermoelectrics. - Highlights: • Nanocomposites of TiS{sub 2} including nano-MoS{sub 2} were prepared by SPS. • Distribution of MoS{sub 2} mainly along the boundaries was confirmed. • Seebeck coefficient increased by reduced electron density with electron filtering. • Thermal conductivity decreased by suppressed phonon and electron transport. • A maximal ZT value of 0.29 was obtained at 573 K.

  3. Effect of rapid thermal annealing on the Mo back contact properties for Cu_2ZnSnSe_4 solar cells

    International Nuclear Information System (INIS)

    Placidi, Marcel; Espindola-Rodriguez, Moises; Lopez-Marino, Simon; Sanchez, Yudania; Giraldo, Sergio; Acebo, Laura; Neuschitzer, Markus; Alcobé, Xavier; Pérez-Rodríguez, Alejandro; Saucedo, Edgardo

    2016-01-01

    The effect of a rapid thermal process (RTP) on the molybdenum (Mo) back contact for Cu_2ZnSnSe_4 (CZTSe) solar cells is here investigated. It is shown that the annealing of the Mo layer during 5 min at 550 °C, not only improves the crystalline quality of the back contact (avoiding the absorber decomposition at this region because Mo becomes more resistant to the selenization), but also helps achieving higher crystalline quality of the absorber with bigger grains, reducing the current leakage through the heterojunction. We demonstrate that this is related to the relaxation of the compressive stress of the CZTSe absorber, when synthesized on the RTP annealed substrates. CZTSe solar cells prepared on annealed Mo films exhibited higher short circuit current densities and higher open circuit voltages, resulting in 10% and 33% higher fill factors and efficiencies. - Highlights: • An RTP annealing applied for the first time on Mo for CZTSe solar cells. • Clear improvement of the efficiency from 5.7 to 7.6% with RTP treatment. • Discussion of this improvement with adequate material/device characterizations. • Stress-induced defects responsible of the electrical leakage are revealed.

  4. Microstructural evolution of a 2.25Cr - 1 Mo steel during austenitization and temper: austenite grain growth, carbide precipitation sequence and effects on mechanical properties

    International Nuclear Information System (INIS)

    Depinoy, Sylvain

    2015-01-01

    This work aims at optimizing tensile and toughness properties of a 2.25Cr - 1Mo steel by controlling its microstructure through heat treatments. To this aim, phase transformations during austenitization, quenching and tempering have to be understood. Quantitative microstructural analyses were performed by means of SEM, TEM and XRD to characterize and model metallurgical evolution of the steel at each step of the heat treatment. The evolution of austenite during the austenitization stage, and its influence on the resulting as-quenched microstructure were thoroughly investigated. Austenite grain growth was modelled in order to understand its mechanisms, including the limited growth phenomenon observed at lower temperatures. The effect of austenitization conditions on further decomposition of austenite and on mechanical properties after quenching + tempering was experimentally determined. An optimal austenitization condition was selected and applied to study the tempering stage. Carbide precipitation was studied for various tempering temperatures and amounts of time. M3C carbides precipitate first, followed by M2C and M7C3; M23C6 are the equilibrium carbides. The influence of carbide precipitation on mechanical properties was studied. Tensile properties are closely linked to the tempering conditions in the range investigated, while impact toughness remains stable. (author) [fr

  5. In-situ fabrication of MoSi2/SiC–Mo2C gradient anti-oxidation coating on Mo substrate and the crucial effect of Mo2C barrier layer at high temperature

    International Nuclear Information System (INIS)

    Liu, Jun; Gong, Qianming; Shao, Yang; Zhuang, Daming; Liang, Ji

    2014-01-01

    MoSi 2 /SiC–Mo 2 C gradient coating on molybdenum was in situ prepared with pack cementation process by two steps: (1) carburizing with graphite powder to obtain a Mo 2 C layer on Mo substrate, and (2) siliconizing with Si powder to get a composite MoSi 2 /SiC layer on the upper part of Mo 2 C layer. The microstructure and elemental distribution in the coating were investigated with scanning electron microscopy (SEM), backscattered electron (BSE), energy dispersive spectroscopy (EDS), electron probe microanalysis (EPMA) and X-ray diffraction (XRD). Cyclic oxidation tests (at 500 °C, 1200 °C, 1400 °C and 1600 °C) demonstrated excellent oxidation resistance for the gradient composite coating and the mass loss was only 0.23% in 60 min at 1600 °C. XRD, EPMA, thermal dynamic and phase diagram analyses indicated that the Mo 2 C barrier layer played the key role in slowing down the diffusion of C and Si toward inner Mo substrate at high temperature and principally this contributed to the excellent anti-oxidation for Mo besides the outer MoSi 2 /SiC composite layer.

  6. MoEDAL expands

    CERN Multimedia

    Anaïs Schaeffer

    2011-01-01

    The MoEDAL collaboration deployed a test array of 18 plastic Nuclear Track Etch Detector (NTD) stacks – covering an area of 1 m2 – in the MoEDAL/VELO cavern at Point 8 of the LHC ring in November 2009. This small array was supplemented by a further 110 stacks this past January. The MoEDAL test array, which now covers an area of 8 m2, will reveal its secrets early in 2013. The full MoEDAL detector will be installed in the next long shutdown of the LHC in 2013.   View of the MoEDAL detectors installed at Point 8 of the LHC ring in January 2011. MoEDAL (Monopole and Exotics Detector At the LHC), the seventh LHC experiment, was approved by the CERN Research Board at the end of 2009. Its goal is to search for very specific exotics such as highly ionising massive stable (or pseudo-stable) particles with conventional electrical charge and magnetic monopoles. “The main LHC experiments are designed to detect conventionally charged particles, with conventional ionisation patte...

  7. The Microstructural Evolution and Special Flow Behavior of Ti-5Al-2Sn-2Zr-4Mo-4Cr During Isothermal Compression at a Low Strain Rate

    Science.gov (United States)

    Sun, J. Z.; Li, M. Q.; Li, H.

    2017-09-01

    The microstructural evolution and special flow behavior of Ti-5Al-2Sn-2Zr-4Mo-4Cr during isothermal compression at a strain rate of 0.0001 s-1 were investigated. The dislocation climbs in elongated α grains resulted in the formation of low-angle boundaries that transform into high-angle boundaries with greater deformation, and the elongated α grains subsequently separated into homogenous globular α grains with the penetration of the β phase. The simultaneous occurrence of discontinuous dynamic recrystallization and continuous dynamic recrystallization in the primary β grains resulted in a trimode grain distribution. The β grains surrounded by dislocations presented an equilateral-hexagonal morphology, which suggests that grain boundary sliding through dislocation climbs was the main deformation mechanism. The true stress-strain curves for 1073 and 1113 K abnormally intersect at a strain of 0.35, related to the α → β phase transformation and distinct growth of the β grain size.

  8. The annealing effects on the micro-structure and properties of RuMoC films as seedless barrier for advanced Cu metallization

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Jianxiong; Liu, Bo, E-mail: liubo2009@scu.edu.cn, E-mail: gh.jiao@siat.ac.cn [Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064 (China); Jiao, Guohua, E-mail: liubo2009@scu.edu.cn, E-mail: gh.jiao@siat.ac.cn; Lu, Yuanfu; Dong, Yuming [Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen 518055 (China); The Chinese University of Hong Kong, Hong Kong (China); Li, Qiran [Institut d' Electronique Fondamentale, CNRS-Université Paris Sud UMR 8622, 91405 Orsay (France)

    2016-09-07

    100 nm thick RuMoC films and 5 nm thick RuMoC films with Cu capping have been deposited on Si(111) by magnetron co-sputtering with Ru and MoC confocal targets. The samples were subsequently annealed at temperatures ranging from 450 to 650 °C in vacuum at a pressure of 3 × 10{sup −4} Pa to study the annealing effects on the microstructures and properties of RuMoC films for advanced seedless Cu metallization applications. The sheet resistances, residual oxygen contents, and microstructures of the RuMoC films have close correlation with the doping contents of Mo and C, which can be easily controlled by the deposition power ratio of MoC versus Ru targets (DPR). When DPR was 0.5, amorphous RuMoC film (marked as RuMoC II) with low sheet resistances and residual oxygen contents was obtained. The fundamental relationship between the annealing temperatures with the microstructures and properties of the RuMoC films was investigated, and a critical temperature point was revealed at about 550 °C where the components and microstructures of the RuMoC II films changed obviously. Results indicated that below 550 °C, the RuMoC II films remained amorphous due to the well-preserved C-Ru and C-Mo bonds. However, above 550 °C, the microstructures of RuMoC II films transformed from amorphous to nano-composite structure due to the breakage of Ru-C bonds, while the supersaturated solid solution MoC segregated out along the grain boundaries of Ru, thus hindering the diffusion of Cu and O atoms. This is the main mechanism of the excellent thermal stability of the RuMoC films after annealing at high temperatures. The results indicated great prospects of amorphous RuMoC films in advanced seedless Cu metallization applications.

  9. Solution chemistry of Mo(III) and Mo(IV): Thermodynamic foundation for modeling localized corrosion

    International Nuclear Information System (INIS)

    Wang Peiming; Wilson, Leslie L.; Wesolowski, David J.; Rosenqvist, Joergen; Anderko, Andrzej

    2010-01-01

    To investigate the behavior of molybdenum dissolution products in systems that approximate localized corrosion environments, solubility of Mo(III) in equilibrium with solid MoO 2 has been determined at 80 deg. C as a function of solution acidity, chloride concentration and partial pressure of hydrogen. The measurements indicate a strong increase in solubility with acidity and chloride concentration and a weak effect of hydrogen partial pressure. The obtained results have been combined with literature data for systems containing Mo(III), Mo(IV), and Mo(VI) in solutions to develop a comprehensive thermodynamic model of aqueous molybdenum chemistry. The model is based on a previously developed framework for simulating the properties of electrolyte systems ranging from infinite dilution to solid saturation or fused salt limit. To reproduce the measurements, the model assumes the presence of a chloride complex of Mo(III) (i.e., MoCl 2+ ) and hydrolyzed species (MoOH 2+ , Mo(OH) 2 + , and Mo(OH) 3 0 ) in addition to the Mo 3+ ion. The model generally reproduces the experimental data within experimental scattering and provides a tool for predicting the phase behavior and speciation in complex, concentrated aqueous solutions. Thus, it provides a foundation for simulating the behavior of molybdenum species in localized corrosion environments.

  10. Spectrophotometric and potentiometric studies of oxidation of Mo(III) by Mo(VI) in phosphoric acid medium

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A; Verma, G S.P. [Ranchi Coll. (India). Dept. of Chemistry

    1975-12-01

    Oxidation of Mo(III) (green) by Mo(VI) in an inert atmosphere and in orthophosphoric acid medium at various acid concentrations is reported. Potentiometric and spectrophotometric data suggest that oxidation of Mo(III) proceeds to Mo(V) through a binuclear species Mo(III) Mo(IV) absorbing at 400 nm. The formation of this species is facilitated at high acid concentrations. It is further found that quantitative conversion of Mo(III) into Mo(V) takes place at fairly high acid concentrations. In high phosphoric acid concentrations, solution of Mo(III) has been found to be oxidized to Mo(VI) by air and hence this can be used as a good oxygen absorber.

  11. Transfer matrix approach to electron transport in monolayer MoS2/MoO x heterostructures

    Science.gov (United States)

    Li, Gen

    2018-05-01

    Oxygen plasma treatment can introduce oxidation into monolayer MoS2 to transfer MoS2 into MoO x , causing the formation of MoS2/MoO x heterostructures. We find the MoS2/MoO x heterostructures have the similar geometry compared with GaAs/Ga1‑x Al x As semiconductor superlattice. Thus, We employ the established transfer matrix method to analyse the electron transport in the MoS2/MoO x heterostructures with double-well and step-well geometries. We also considere the coupling between transverse and longitudinal kinetic energy because the electron effective mass changes spatially in the MoS2/MoO x heterostructures. We find the resonant peaks show red shift with the increasing of transverse momentum, which is similar to the previous work studying the transverse-momentum-dependent transmission in GaAs/Ga1‑x Al x As double-barrier structure. We find electric field can enhance the magnitude of peaks and intensify the coupling between longitudinal and transverse momentums. Moreover, higher bias is applied to optimize resonant tunnelling condition to show negative differential effect can be observed in the MoS2/MoO x system.

  12. Phase formation in the Li2MoO4-Rb2MoO4-Ln2(MoO4)3 systems and the properties of LiRbLn2(MoO4)4

    International Nuclear Information System (INIS)

    Basovich, O.M.; Khajkina, E.G.; Vasil'ev, E.V.; Frolov, A.M.

    1995-01-01

    Phase equilibria within subsolidus range of ternary salt systems Li 2 MoO 4 -Rb 2 MoO 4 -Ln 2 (MoO 4 ) 4 (Ln - Nd, Er) are analyzed. Formation of ternary molybdate LiRbNd 2 (MoO 4 ) 4 is proved along LiNd(MoO 4 ) 2 -RbNd(MoO 4 )-2 cross-section. Phase diagram of this cross-section is plotted. Similar compounds are synthesized for Ln = La-Eu. The parameters of their monoclinic elementary cells are determined. Luminescent properties of LiRbLa 2 (MoO 4 ) 4 -Nd 3+ are studied. 17 refs., 4 figs., 2 tabs

  13. Stacking change in MoS2 bilayers induced by interstitial Mo impurities.

    Science.gov (United States)

    Cortés, Natalia; Rosales, Luis; Orellana, Pedro A; Ayuela, Andrés; González, Jhon W

    2018-02-01

    We use a theoretical approach to reveal the electronic and structural properties of molybdenum impurities between MoS 2 bilayers. We find that interstitial Mo impurities are able to reverse the well-known stability order of the pristine bilayer, because the most stable form of stacking changes from AA' (undoped) into AB' (doped). The occurrence of Mo impurities in different positions shows their split electronic levels in the energy gap, following octahedral and tetrahedral crystal fields. The energy stability is related to the accommodation of Mo impurities compacted in hollow sites between layers. Other less stable configurations for Mo dopants have larger interlayer distances and band gaps than those for the most stable stacking. Our findings suggest possible applications such as exciton trapping in layers around impurities, and the control of bilayer stacking by Mo impurities in the growth process.

  14. High performance Mo adsorbent PZC

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1998-10-01

    We have developed Mo adsorbents for natural Mo(n, {gamma}){sup 99}Mo-{sup 99m}Tc generator. Among them, we called the highest performance adsorbent PZC that could adsorb about 250 mg-Mo/g. In this report, we will show the structure, adsorption mechanism of Mo, and the other useful properties of PZC when you carry out the examination of Mo adsorption and elution of {sup 99m}Tc. (author)

  15. Synthesis and characterization of MoB{sub 2−x} thin films grown by nonreactive DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Malinovskis, Paulius, E-mail: paulius.malinovskis@kemi.uu.se; Lewin, Erik; Jansson, Ulf [Department of Chemistry–Ångström Laboratory, Uppsala University, SE-751 21 Uppsala (Sweden); Palisaitis, Justinas; Persson, Per O. Å. [Department of Physics, Chemistry, and Biology (IFM), Thin Film Physics Division, Linköping University, SE-581 83 Linköping (Sweden)

    2016-05-15

    DC magnetron sputtering was used to deposit molybdenum boride thin films for potential low-friction applications. The films exhibit a nanocomposite structure with ∼10 nm large MoB{sub 2−x} (x > 0.4) grains surrounded by a boron-rich tissue phase. The preferred formation of the metastable and substoichiometric hP3-MoB{sub 2} structure (AlB{sub 2}-type) is explained with kinetic constraints to form the thermodynamically stable hR18-MoB{sub 2} phase with a very complex crystal structure. Nanoindentation revealed a relatively high hardness of (29 ± 2) GPa, which is higher than bulk samples. The high hardness can be explained by a hardening effect associated with the nanocomposite microstructure where the surrounding tissue phase restricts dislocation movement. A tribological study confirmed a significant formation of a tribofilm consisting of molybdenum oxide and boron oxide, however, without any lubricating effects at room temperature.

  16. Spectrophotometric and potentiometric studies of oxidation of Mo(III) by Mo(VI) in phosphoric acid medium

    International Nuclear Information System (INIS)

    Kumar, Arvind; Verma, G.S.P.

    1975-01-01

    Oxidation of Mo(III) (green) by Mo(VI) in an inert atmosphere and in orthophosphoric acid medium at various acid concentrations is reported. Potentiometric and spectrophotometric data suggest that oxidation of Mo(III) proceeds to Mo(V) through a binuclear species Mo(III) Mo(IV) absorbing at 400 nm. The formation of this species is facilitated at high acid concentrations. It is further found that quantitative conversion of Mo(III) into Mo(V) takes place at fairly high acid concentrations. In high phosphoric acid concentrations, solution of Mo(III) has been found to be oxidized to Mo(VI) by air and hence this can be used as a good oxygen absorber. (author)

  17. Spent 99Mo/99mTc generator as an economical source of 99Mo

    International Nuclear Information System (INIS)

    El-Kolaly, M.T.

    1990-01-01

    An improved method for utilization and purification of 99 Mo from spent 90 Mo/ 99m Tc generators has been described. After washing the generator with saline to remove the generated 99m Tc, followed by 2 mL 5 M NaOH containing a few drops of H 2 O 2 , the 99 Mo was quantitatively eluted from the generator with 5 mL 5 M NaOH. The alkaline eluate containing 99 Mo was contaminated with partially dissolved alumina. In the present method, an anion-exchange resin Dowex 1 x 8 column was used for purification of 99 Mo from the contaminating alumina. The resultant 99 Mo was of high purity and contained 3+ /mL 99 Mo solution, as estimated by atomic absorption. (author)

  18. Study of the activation of targets containing Mo for the production of 99Mo by the 98Mo(n,γ)99Mo nuclear reaction and the behaviour of the radionuclidic impurities of the process

    International Nuclear Information System (INIS)

    Nieto, Renata Correa

    1998-01-01

    The most used radioisotope in Nuclear Medicine is 99m Tc, in the 99 Mo- 99m Tc generator form. 99 Mo can be produced by several nuclear reactions in reactors and cyclotrons. The cyclotron production is not technically and economically viable. The production in the reactor can be done in two different ways: by the fission of 235 U and by 98 Mo(n,γ) 99 Mo reaction. A project for the production of 99 Mo by the activation of Mo and the preparation of gel type generators is under development at the 'Instituto de Pesquisas Energeticas e Nucleares'. In the present work, the radionuclidic impurities produced in the activation of MOO 3 and MoZr gel were evaluated, and these represent the two possible ways of preparing the gel of MoZr. A target of metallic Mo was also studied. The radionuclidic purity of 99m Tc eluted from generators prepared in these ways was also measured and compared with the generators prepared with fission 99 Mo. The results showed that, by all the parameters analysed, the best way of preparing the generator of 99 Mo - 99m Tc is the irradiation of MOO 3 and further preparation of the gel and the generators. (author)

  19. Film grain synthesis and its application to re-graining

    Science.gov (United States)

    Schallauer, Peter; Mörzinger, Roland

    2006-01-01

    Digital film restoration and special effects compositing require more and more automatic procedures for movie regraining. Missing or inhomogeneous grain decreases perceived quality. For the purpose of grain synthesis an existing texture synthesis algorithm has been evaluated and optimized. We show that this algorithm can produce synthetic grain which is perceptually similar to a given grain template, which has high spatial and temporal variation and which can be applied to multi-spectral images. Furthermore a re-grain application framework is proposed, which synthesises based on an input grain template artificial grain and composites this together with the original image content. Due to its modular approach this framework supports manual as well as automatic re-graining applications. Two example applications are presented, one for re-graining an entire movie and one for fully automatic re-graining of image regions produced by restoration algorithms. Low computational cost of the proposed algorithms allows application in industrial grade software.

  20. Dust grain charging in a wake of other grains

    International Nuclear Information System (INIS)

    Miloch, W. J.; Block, D.

    2012-01-01

    The charging of dust grain in the wake of another grains in sonic and supersonic collisionless plasma flows is studied by numerical simulations. We consider two grains aligned with the flow, as well as dust chains and multiple grain arrangements. It is found that the dust charge depends significantly on the flow speed, distance between the grains, and the grain arrangement. For two and three grains aligned, the charges on downstream grains depend linearly on the flow velocity and intergrain distance. The simulations are carried out with DiP3D, a three dimensional particle-in-cell code with both electrons and ions represented as numerical particles [W. J. Miloch et al., Phys. Plasmas 17, 103703 (2010)].

  1. Interstitial Mo-Assisted Photovoltaic Effect in Multilayer MoSe2 Phototransistors.

    Science.gov (United States)

    Kim, Sunkook; Maassen, Jesse; Lee, Jiyoul; Kim, Seung Min; Han, Gyuchull; Kwon, Junyeon; Hong, Seongin; Park, Jozeph; Liu, Na; Park, Yun Chang; Omkaram, Inturu; Rhyee, Jong-Soo; Hong, Young Ki; Yoon, Youngki

    2018-03-01

    Thin-film transistors (TFTs) based on multilayer molybdenum diselenide (MoSe 2 ) synthesized by modified atmospheric pressure chemical vapor deposition (APCVD) exhibit outstanding photoresponsivity (103.1 A W -1 ), while it is generally believed that optical response of multilayer transition metal dichalcogenides (TMDs) is significantly limited due to their indirect bandgap and inefficient photoexcitation process. Here, the fundamental origin of such a high photoresponsivity in the synthesized multilayer MoSe 2 TFTs is sought. A unique structural characteristic of the APCVD-grown MoSe 2 is observed, in which interstitial Mo atoms exist between basal planes, unlike usual 2H phase TMDs. Density functional theory calculations and photoinduced transfer characteristics reveal that such interstitial Mo atoms form photoreactive electronic states in the bandgap. Models indicate that huge photoamplification is attributed to trapped holes in subgap states, resulting in a significant photovoltaic effect. In this study, the fundamental origin of high responsivity with synthetic MoSe 2 phototransistors is identified, suggesting a novel route to high-performance, multifunctional 2D material devices for future wearable sensor applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Preparation of a gel of zirconium molybdate for use in the generators of 99 Mo - 99m Tc prepared with 99 Mo produced by the 98 Mo(n,γ)99 Mo reaction

    International Nuclear Information System (INIS)

    Osso Junior, Joao A.; Lima, Ana Lucia V.P.; Silva, Nestor C. da; Nieto, Renata C.; Velosa, Adriana C. de

    1998-01-01

    IPEN develops a project concerning the preparation of a gel of Zirconium Molybdate for use in the generators of 99 Mo- 99m Tc . 99m Tc is the most used radioisotope in nuclear medicine diagnosis procedures and nowadays the generators are being prepared with imported 99 Mo, produced by 235 U fission. The production of 99 Mo by the 98 Mo(n, γ) 99 Mo reaction is now possible because of the power upgrade of IPEN's IEA-R1 reactor, from 2 to 5 MW. This work describes the preparation method of Zirconium Molybdate gel that will be used in the 99 Mo- 99m Tc generators. The gel is prepared by the chemical reaction between Mo, in Mo O 3 form, and Zr, in Zr O Cl 2 .8H 2 O form. After the reaction, the gel is filtered, dried and cracked with saline solution. The product is then loaded into glass columns for use as 99m Tc generator. The results showed the good quality of the gel prepared at laboratory level and of the generators evaluated. (author)

  3. Edge termination of MoS2 and CoMoS catalyst particles

    DEFF Research Database (Denmark)

    Byskov, Line Sjolte; Nørskov, Jens Kehlet; Clausen, B. S.

    2000-01-01

    The edge termination of MoS2 and CoMoS catalyst particles is studied by density functional calculations. We show that for structures without vacancies Mo-terminated edges have the lowest edge energies. Creation of vacancies, which are believed to be active sites in these catalyst systems, leads...

  4. Cd3(MoO4)(TeO3)2: A Polar 3D Compound Containing d10-d0 SCALP-Effect Cations.

    Science.gov (United States)

    Feng, Yuquan; Fan, Huitao; Zhong, Zhiguo; Wang, Hongwei; Qiu, Dongfang

    2016-11-21

    The new polar 3D cadmium molybdotellurite Cd 3 (MoO 4 )(TeO 3 ) 2 was obtained by means of a high-temperature solid-state method. Cd 3 (MoO 4 )(TeO 3 ) 2 is a monoclinic crystal system, and it exhibits the polar space group P2 1 (No. 4). The structure of Cd 3 (MoO 4 )(TeO 3 ) 2 can be viewed as a complicated 3D architecture that is composed of distorted CdO n (n = 6, 7) polyhedra, TeO 3 trigonal pyramids, and MoO 4 polyhedra. The compound features the first 3D NCS cadmium molybdotellurite with 1D 4- and 6-MR channels and a polar structure originating from the TeO 3 groups, MoO 4 groups, and displacements of d 10 Cd 2+ cations. The results were further confirmed by calculations of the net polarization. The UV-vis spectrum and thermal properties indicate that Cd 3 (MoO 4 )(TeO 3 ) 2 exhibits a broad transparent region and excellent thermal stability. SHG tests of Cd 3 (MoO 4 )(TeO 3 ) 2 revealed that its response is approximately the same as that of KH 2 PO 4 at the same grain size between 105 and 150 μm and that it is phase-matchable.

  5. Deoxygenation of glycolaldehyde and furfural on Mo2C/Mo(100)

    Science.gov (United States)

    McManus, Jesse R.; Vohs, John M.

    2014-12-01

    The desire to produce fuels and chemicals in an energy conscious, environmentally sympathetic approach has motivated considerable research on the use of cellulosic biomass feedstocks. One of the major challenges facing the utilization of biomass is finding effective catalysts for the efficient and selective removal of oxygen from the highly-oxygenated, biomass-derived platform molecules. Herein, a study of the reaction pathways for the biomass-derived platform molecule furfural and biomass-derived sugar model compound glycolaldehyde provides insight into the mechanisms of hydrodeoxygenation (HDO) on a model molybdenum carbide catalyst, Mo2C/Mo(100). Using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS), it was found that the Mo2C/Mo(100) catalyst was active for selective deoxygenation of the aldehyde carbonyl by facilitating adsorption of the aldehyde in an η2(C,O) bonding configuration. Furthermore, the catalyst showed no appreciable activity for furanic ring hydrogenation, highlighting the promise of relatively inexpensive Mo2C catalysts for selective HDO chemistry.

  6. Effect of rapid thermal annealing on the Mo back contact properties for Cu{sub 2}ZnSnSe{sub 4} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Placidi, Marcel, E-mail: mplacidi@irec.cat [Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, pl.2, 08930 St Adrià del Besòs, Barcelona (Spain); Espindola-Rodriguez, Moises; Lopez-Marino, Simon; Sanchez, Yudania; Giraldo, Sergio; Acebo, Laura; Neuschitzer, Markus [Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, pl.2, 08930 St Adrià del Besòs, Barcelona (Spain); Alcobé, Xavier [Centres Científics i Tecnològics (CCiTUB), Lluis Solé i Sabarís 1, 08028 Barcelona (Spain); Pérez-Rodríguez, Alejandro [Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, pl.2, 08930 St Adrià del Besòs, Barcelona (Spain); IN2UB, Departament d’Electrònica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Saucedo, Edgardo [Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, pl.2, 08930 St Adrià del Besòs, Barcelona (Spain)

    2016-08-05

    The effect of a rapid thermal process (RTP) on the molybdenum (Mo) back contact for Cu{sub 2}ZnSnSe{sub 4} (CZTSe) solar cells is here investigated. It is shown that the annealing of the Mo layer during 5 min at 550 °C, not only improves the crystalline quality of the back contact (avoiding the absorber decomposition at this region because Mo becomes more resistant to the selenization), but also helps achieving higher crystalline quality of the absorber with bigger grains, reducing the current leakage through the heterojunction. We demonstrate that this is related to the relaxation of the compressive stress of the CZTSe absorber, when synthesized on the RTP annealed substrates. CZTSe solar cells prepared on annealed Mo films exhibited higher short circuit current densities and higher open circuit voltages, resulting in 10% and 33% higher fill factors and efficiencies. - Highlights: • An RTP annealing applied for the first time on Mo for CZTSe solar cells. • Clear improvement of the efficiency from 5.7 to 7.6% with RTP treatment. • Discussion of this improvement with adequate material/device characterizations. • Stress-induced defects responsible of the electrical leakage are revealed.

  7. Structural, magnetic and electric behavior of the new Ba{sub 2}TiMoO{sub 6} material

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon-Suesca, C.E. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, Carrera 30 calle 45, Bogota D.C., AA 5997 (Colombia); Chemistry Department, Technische Universitaet Muenchen, Lichtenbergstrasse, D-85748 Garching (Germany); Opel, M. [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, D-85748 Garching (Germany); TellezLandinez Tellez, D.A. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, Carrera 30 calle 45, Bogota D.C., AA 5997 (Colombia); Roa-Rojas, J., E-mail: jroar@unal.edu.co [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, Carrera 30 calle 45, Bogota D.C., AA 5997 (Colombia)

    2012-08-15

    We report synthesis and characterization of the structural, morphologic and ferroelectric behavior of the complex perovskite Ba{sub 2}TiMoO{sub 6}. Samples of Ba{sub 2}TiMoO{sub 6} were synthesized through standard solid state reaction methods. Crystalline structure was studied by means of X-ray diffraction experiments and Rietveld-like analysis. Results reveal that material crystallizes in a tetragonal structure, space group P4/mnm (no. 123), with cell parameters a=3.8557 A and c=11.8678 A. The tolerance factor of perovskite was determined to be 1.04. Surface morphology was examined using Scanning Electron Microscopy, which shows the micrometric granular character of samples with 1.0-5.0 {mu}m mean grain size. Ferroelectric response of material was established from curves of polarization as a function of applied electric field. Our results reveal that Ba{sub 2}TiMoO{sub 6} double perovskite evidences a ferroelectric hysteretic behavior at ambient temperature and paramagnetic ordering. Copyright-Sign 2011 Elsevier Science. All rights reserved.

  8. Effect of Cr3C2 content on the microstructure and properties of Mo2NiB2-based cermets

    International Nuclear Information System (INIS)

    Xie, Lang; Li, XiaoBo; Zhang, Dan; Yang, ChengMing; Yin, FuCheng; Xiangtan Univ., Hunan; Xiangtan Univ., Hunan; Xiao, YiFeng

    2015-01-01

    Four series of Mo 2 NiB 2 -based cermets with Cr 3 C 2 addition of between 0 and 7.5 wt.% in 2.5 wt.% increments were studied by means of scanning electron microscopy, energy dispersive X-ray analysis and X-ray diffractometry. The transverse rupture strength and hardness were also measured. It was found that Cr 3 C 2 completely dissolved in Mo 2 NiB 2 -based cermets. Cr 3 C 2 addition improved the wettability of the Ni binder phase on the Mo 2 NiB 2 hard phase, which resulted in a decrease in the porosity and an increase in the phase uniformity. The cermets with 2.5 wt.% Cr 3 C 2 content showed relatively fine grains and almost full density. A high Cr 3 C 2 content resulted in the formation of M 6 C (M = Mo, Cr, Ni) phase. In addition, energy dispersive X-ray spectroscopy results showed that the content of Mo in the binder decreased with increasing Cr 3 C 2 content. The cermets with 2.5 wt.% Cr 3 C 2 addition exhibited the highest transverse rupture strength of 2210 MPa, whereas the cermets without Cr 3 C 2 addition exhibited the highest hardness.

  9. Heat-affected zone microstructure and mechanical properties evolution for laser remanufacturing 35CrMoA axle steel

    Science.gov (United States)

    Feng, Xiangyi; Dong, Shiyun; Yan, Shixing; Liu, Xiaoting; Xu, Binshi; Pan, Fusheng

    2018-03-01

    In this article, by using orthogonal test the technological test was conducted and the optimum processing of the remanufacturing35CrMoA axle were obtained. The evolution of microstructure and mechanical property of HAZ were investigated. The microstructure of HAZ was characterized by means of OM and SEM. Meanwhile hardness distribution in HAZ and tensile property of cladding-HAZ-substrate samples were measured. The microstructure of cladding and HAZ were observed. The microsturcture evoltion and the mechanism of harden in the HAZ was discussed and revealed. The results indicated that the remanufacturing part has excellent strength due to grain refining and dispersive distribution of nanoscale cementite. The remanufacturing part will have uniform microstructure and hardness matching with that of 35CrMoA axle by using stress-relieving annealing at 580°.

  10. In-situ fabrication of MoSi{sub 2}/SiC–Mo{sub 2}C gradient anti-oxidation coating on Mo substrate and the crucial effect of Mo{sub 2}C barrier layer at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084 (China); State Key Laboratory of New Ceramics and Fine Processing, Beijing 100084 (China); Gong, Qianming, E-mail: gongqianming@mail.tsinghua.edu.cn [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084 (China); State Key Laboratory of New Ceramics and Fine Processing, Beijing 100084 (China); Shao, Yang; Zhuang, Daming [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084 (China); State Key Laboratory of New Ceramics and Fine Processing, Beijing 100084 (China); Liang, Ji [Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2014-07-01

    MoSi{sub 2}/SiC–Mo{sub 2}C gradient coating on molybdenum was in situ prepared with pack cementation process by two steps: (1) carburizing with graphite powder to obtain a Mo{sub 2}C layer on Mo substrate, and (2) siliconizing with Si powder to get a composite MoSi{sub 2}/SiC layer on the upper part of Mo{sub 2}C layer. The microstructure and elemental distribution in the coating were investigated with scanning electron microscopy (SEM), backscattered electron (BSE), energy dispersive spectroscopy (EDS), electron probe microanalysis (EPMA) and X-ray diffraction (XRD). Cyclic oxidation tests (at 500 °C, 1200 °C, 1400 °C and 1600 °C) demonstrated excellent oxidation resistance for the gradient composite coating and the mass loss was only 0.23% in 60 min at 1600 °C. XRD, EPMA, thermal dynamic and phase diagram analyses indicated that the Mo{sub 2}C barrier layer played the key role in slowing down the diffusion of C and Si toward inner Mo substrate at high temperature and principally this contributed to the excellent anti-oxidation for Mo besides the outer MoSi{sub 2}/SiC composite layer.

  11. Facile synthesis of stable structured MoS{sub 2}-Mo-CNFs heteroarchitecture with enhanced hydrogen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Qionghua [Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160 (China); Faculty of Material and Energy, South West University, Chongqing 400700 (China); Yao, Yucen [Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160 (China); Liu, Bitao, E-mail: liubitao007@163.com [Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160 (China); Peng, Lingling; Yan, Hengqing; Hou, Zhupei; Wang, Jun [Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160 (China); Lin, Yue, E-mail: linyue@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui 230026 (China)

    2017-06-01

    3D structured MoS{sub 2} are grown in-situ on Mo particles embedded carbon nanofibers (CNFs) via a hydrothermal method. Due to this special structure, the bonding and effective electron delivery between CNFs and MoS{sub 2} are both enhanced, and which will exhibits a better hydrogen evolution activity. The onset potential of this MoS{sub 2}-Mo-CNFs catalyst will decreased to 60 mV compared to the 90 mV for the MoS{sub 2}-CNFs. And its current density nearly no change with 5000 cycles which is better than the 32.3% decrease of MoS{sub 2}-CNFs at η = 300 mV (V vs RHE). - Highlights: • Newly structured MoS{sub 2}-Mo-CNFs with effectively connection between MoS{sub 2} and CNFs successfully synthesized. • This structure can enhance the charge transfer and significantly increase electrocatalytic efficiency. • Nearly no HER activity loss after 5000 CV cycles.

  12. Interdiffusion between U(Mo,Pt) or U(Mo,Zr) and Al or Al A356 alloy

    International Nuclear Information System (INIS)

    Komar Varela, C.; Mirandou, M.; Arico, S.; Balart, S.; Gribaudo, L.

    2009-01-01

    Solid state reactions in chemical diffusion couples U-7 wt.%Mo-0.9 wt.%Pt/Al at 580 deg. C and U-7 wt.%Mo-0.9 wt.%Pt/Al A356 alloy, U-7 wt.%Mo-1 wt.%Zr/Al and U-7 wt.%Mo-1 wt.%Zr/Al A356 alloy at 550 deg. C were characterized. Results were obtained from optical and scanning electron microscopy, electron probe microanalysis and X-ray diffraction. The UAl 3, UAl 4 and Al 20 Mo 2 U phases were identified in the interaction layers of γU(Mo,Pt)/Al and γU(Mo,Zr)/Al diffusion couples. Al 43 Mo 4 U 6 ternary compound was also identified in γU(Mo,Zr)/Al due to the decomposition of γU(Mo,Zr) phase. The U(Al,Si) 3 and U 3 Si 5 phases were identified in the interaction layers of γU(Mo,Pt)/Al A356 and γU(Mo,Zr)/Al A356 diffusion couples. These phases are formed due to the migration of Si to the interaction layer. In the diffusion couple U(Mo,Zr)/Al A356, Zr 5 Al 3 phase was also identified in the interaction layer. The use of synchrotron radiation at Brazilian Synchrotron Light Laboratory (LNLS, CNPq, Campinas, Brazil) was necessary to achieve a complete crystallographic characterization.

  13. Grain-filling duration and grain yield relationships in wheat mutants

    International Nuclear Information System (INIS)

    Larik, A.S.

    1987-01-01

    Nine stable mutants of bread wheat along with their mother cultivars were investigated for grain-filling characteristics in relation to grain yield. Significant differences among mutants for grain-filling duration and grain-filling index were observed. Inspite of the consistent differences in grain-filling duration there was no significant association between grain-filling duration and grain yield in C-591 and Nayab mutants. Failure to detect an yield advantage due to differences in grain-filling duration in these genotypes suggests that any advantage derived from alteration of grain-filling period may have been outweighed by the coincident changes in length of the vegetative period. Other factors such as synchrony of anthesis may have limited out ability to find an association between grainfilling duration and grain yield. On the contrary, significant association between grain-filling duration and grain yield displayed by indus-66 indus-66 mutants derived from gamma rays, shows the ability of gamma rays to induce functional alternations in the pattern of gene arrangements controlling these traits. Thus, the vaability observed in these physiological traits suggests that selection for these traits could be useful in improving grain yield. (author)

  14. A study of electron beam welding of Mo based TZM alloy

    International Nuclear Information System (INIS)

    Chakraborty, S.P.; Krishnamurthy, N.

    2013-12-01

    Mo based TZM alloy is one of the most promising refractory alloy having several unique high temperature properties suitable for structural applications in the new generation advanced nuclear reactors. However, this alloy easily picks up interstitial impurities such as N 2 , H 2 and C from air during welding due to its reactive nature. High melting point of TZM alloy also restricts use of conventional welding technique for welding. Hence, Electron beam welding (EBW) technique with its deep penetration power to produce narrow heat affected zones under high vacuum was employed to overcome the above welding constraints by conducting a systematic study using both processes of bead on plate and butt joint configuration. Uniform and defect free weld joints were produced. Weld joints were subjected to optical characterization, chemical homogeneity analysis and microhardness profile study across the width of welds. Improved grain structure with equiaxed grains was obtained in the weld zone as compared to fibrous base structure. Original chemical composition was retained in the weld zone. The detailed results are described in this report. (author)

  15. Corrosion and wear behavior of Ni60CuMoW coatings fabricated by combination of laser cladding and mechanical vibration processing

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongxi, E-mail: piiiliuhx@sina.com [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Xu, Qian [Faculty of Adult Education, Kunming University of Science and Technology, Kunming 650051 (China); Wang, Chuanqi; Zhang, Xiaowei [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2015-02-05

    Highlights: • Ni60CuMoW coatings were fabricated by mechanical vibration assisted laser cladding hybrid process. • The maximum micro-hardness of the coating with mechanical vibration increases by 16%. • The mass loss and friction coefficient of the coating decreases by 17% and 16%, respectively. • The E{sub corr} positive shifts 1134.9 mV and i{sub corr} decreases by nearly one order of magnitude. • The ideal vibration parameters is vibration frequency 200 Hz and vibration amplitude 140 μm. - Abstract: Ni60CuMoW composite coatings were fabricated on 45 medium carbon steel using mechanical vibration assisted laser cladding surface modification processing. The microstructure, element distribution, phase composition, microhardness, wear and corrosion resistance of cladding coatings were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy disperse spectroscopy (EDS), hardness tester, friction and wear apparatus and electrochemical workstation. The results indicate that the microstructure of M{sub 23}C{sub 6} (Cr{sub 23}C{sub 6} or (Fe, Ni){sub 23}C{sub 6}) carbide dispersion strengthening phase is uniformly distributed in eutectic (Ni, Fe) phase. The in-situ BCr and MoC compounds distribute in lamellar structure Fe{sub 3}B and dendrite Fe{sub 3}Ni{sub 3}Si, and some new W{sub 2}C phases also generated in Ni60CuMoW coating. In addition, the coarse dendrite has been replaced by some fine grain structure at the bonding interface. The fine grain hard phase makes the average microhardness of cladding coating increase from 720 to 835 HV{sub 0.5}. Under the condition of 200 Hz mechanical vibration frequency, the wear mass loss and friction coefficient of Ni60CuMoW coating are 7.6 mg and 0.068, 17% and 16% lower than the coating without mechanical vibration, respectively. The corrosion potential of cladding coating with mechanical vibration increases by 1134.9 mV and the corrosion current density decreases by nearly one order of

  16. On the reduction of orthorhombic MoO3 to MoO2

    International Nuclear Information System (INIS)

    Delannay, F.

    1982-01-01

    Electron diffraction shows evidence of topotactic orientation relationships between the original MoO 3 crystal and MoO 2 crystals formed under mild reduction conditions. These relationships differ from previously published literature data. A possible mechanism of formation of the [100] strings of edge sharing octahedra in the MoO 2 structure is tentatively proposed. (author)

  17. Cu4Pr6(MoO4)11-Pr2(MoO4)3 system

    International Nuclear Information System (INIS)

    Arzumanyan, G.A.

    1982-01-01

    Existence boundaries and Dalton compositions (CuPr(MoO 4 ) 2 , CuPr 3 (MoO 4 ) 5 ) of solid solutions that in the mojority are of shcheelite dsitored structure have been determined in the Cu 4 Pr 6 (MoO 4 ) 11 -Pr 2 (MoO 4 ) 3 system. It has been revealed that regions of homogeneity near the CuPr(MoO 4 ) 2 composition have a horseshoeshaped profile

  18. The modulation of Schottky barriers of metal-MoS2 contacts via BN-MoS2 heterostructures.

    Science.gov (United States)

    Su, Jie; Feng, Liping; Zhang, Yan; Liu, Zhengtang

    2016-06-22

    Using first-principles calculations within density functional theory, we systematically studied the effect of BN-MoS2 heterostructure on the Schottky barriers of metal-MoS2 contacts. Two types of FETs are designed according to the area of the BN-MoS2 heterostructure. Results show that the vertical and lateral Schottky barriers in all the studied contacts, irrespective of the work function of the metal, are significantly reduced or even vanish when the BN-MoS2 heterostructure substitutes the monolayer MoS2. Only the n-type lateral Schottky barrier of Au/BN-MoS2 contact relates to the area of the BN-MoS2 heterostructure. Notably, the Pt-MoS2 contact with n-type character is transformed into a p-type contact upon substituting the monolayer MoS2 by a BN-MoS2 heterostructure. These changes of the contact natures are ascribed to the variation of Fermi level pinning, work function and charge distribution. Analysis demonstrates that the Fermi level pinning effects are significantly weakened for metal/BN-MoS2 contacts because no gap states dominated by MoS2 are formed, in contrast to those of metal-MoS2 contacts. Although additional BN layers reduce the interlayer interaction and the work function of the metal, the Schottky barriers of metal/BN-MoS2 contacts still do not obey the Schottky-Mott rule. Moreover, different from metal-MoS2 contacts, the charges transfer from electrodes to the monolayer MoS2, resulting in an increment of the work function of these metals in metal/BN-MoS2 contacts. These findings may prove to be instrumental in the future design of new MoS2-based FETs with ohmic contact or p-type character.

  19. Effect of Grain Size Reduction by Sodium Molybdate on Mechanical Properties of Al-0.7Fe Alloy

    Directory of Open Access Journals (Sweden)

    M. Alizadeh

    2015-12-01

    Full Text Available Sodium molybdate (Na2MoO4 as a grain refiner was used to refine the microstructure of Al-0.7Fe alloy. Al-Fe samples with the addition of 0.1, 0.2, 0.3, 0.4 and 0.5 wt.% sodium molybdate were fabricated by casting in sand molds at 750 ͦC. The microstructures of the as-cast samples were investigated by scanning electron microscopy (SEM and the present phases were revealed by X-ray diffraction (XRD. The effect of sodium molybdate on the microstructure was examined by measuring the average grain sizes of the alloys, determining the widths of intermetallic compounds and carrying out hardness and tensile tests. The results showed that the addition of sodium molybdate modified the microstructure of Al-Fe alloy by reducing the average grain sizes. Also, it was found that the optimum amount of sodium molybdate to add to Al-0.7Fe alloy melt was 0.3 wt.% in this study.

  20. Phase formation in the Li2MoO4–Rb2MoO4–Fe2(MoO4)3 system and crystal structure of a novel triple molybdate LiRb2Fe(MoO4)3

    International Nuclear Information System (INIS)

    Khal'baeva, Klara M.; Solodovnikov, Sergey F.; Khaikina, Elena G.; Kadyrova, Yuliya M.; Solodovnikova, Zoya A.; Basovich, Olga M.

    2013-01-01

    X-ray investigation of solid state interaction of the components in the Li 2 MoO 4 –Rb 2 MoO 4 –Fe 2 (MoO 4 ) 3 system was carried out, and a subsolidus phase diagram of the said system was constructed. The subsystem Rb 2 MoO 4 –LiRbMoO 4 –RbFe(MoO 4 ) 2 was shown to be non-quasiternary. Formation of a novel triple molybdate LiRb 2 Fe(MoO 4 ) 3 was established, conditions of solid state synthesis and crystallization of the compound were found. Its crystal structure (orthorhombic, space group Pnma, Z=4, a=24.3956(6), b=5.8306(1), c=8.4368(2) Å) represents a new structure type and includes infinite two-row ribbons ([Fe(MoO 4 ) 3 ] 3− ) ∞ parallel to the b axis and composed of FeO 6 octahedra, terminal Mo(3)O 4 tetrahedra, and bridge Mo(1)O 4 and Mo(2)O 4 tetrahedra connecting two or three FeO 6 octahedra. The ribbons are connected to form 3D framework via corner-sharing LiO 4 tetrahedra. Rubidium cations are 11- and 13-coordinated and located in cavities of this heterogeneous polyhedral framework. - Graphical abstract: Exploring the Li 2 MoO 4 –Rb 2 MoO 4 –Fe 2 (MoO 4 ) 3 system showed its partial non-quasiternarity and revealed a new compound LiRb 2 Fe(MoO 4 ) 3 which was structurally studied. - Highlights: • The Li 2 MoO 4 –Rb 2 MoO 4 –Fe 2 (MoO 4 ) 3 system study revealed a new compound LiRb 2 Fe(MoO 4 ) 3 . • Its structure of a new type includes ribbons of FeO 6 octahedra and MoO 4 tetrahedra. • The ribbons are connected into a 3D framework via corner-sharing LiO 4 tetrahedra

  1. Successful labeling of 99mTc-MDP using 99mTc separated from 99Mo produced by 100Mo(n,2n)99Mo

    International Nuclear Information System (INIS)

    Nagai, Yasuki; Hatsukawa, Yuichi; Kin, Tadahiro; Hashimoto, Kazuyuki; Motoishi, Shoji; Konno, Chikara; Ochiai, Kentaro; Takakura, Kosuke; Sato, Yuichi; Sato, Norihito; Ohta, Akio; Yamabayashi, Hisamichi; Tanase, Masakazu; Fujisaki, Saburo; Kawauchi, Yukimasa; Teranaka, Tomoyuki; Takeuchi, Nobuhiro; Igarashi, Takashi

    2011-01-01

    We have for the first time succeeded in separating 99m Tc from a MoO 3 sample irradiated with accelerator neutrons free from any radioactive impurities and in formulating 99m Tc-methylene diphosphonate ( 99 mTc-MDP). 99 Mo, the mother nuclide of 99m Tc, was produced by the 100 Mo(n,2n) 99 Mo reaction using about 14 MeV neutrons provided by the 3 H(d,n) 4 He reaction at the Fusion Neutronics Source of Japan Atomic Energy Agency. The 99m Tc was separated from 99 Mo by sublimation and its radionuclide purity was confirmed to be higher than 99.99% by γ-spectroscopy. The labeling efficiency of 99m Tc-MDP was shown to be higher than 99% by thin-layer chromatography. These values exceed the United States Pharmacopeia requirements for a fission product, 99 Mo. Consequently, a 99m Tc radiopharmaceutical preparation formed by using the mentioned 99 Mo can be a promising substitute for the fission product 99 Mo, which is currently produced using a highly enriched uranium target in aging research reactors. A longstanding problem to ensure a reliable and constant supply of 99 Mo in Japan can be partially mitigated. (author)

  2. Giant grains

    International Nuclear Information System (INIS)

    Leitch-Devlin, M.A.; Millar, T.J.; Williams, D.A.

    1976-01-01

    Infrared observations of the Orion nebula have been interpreted by Rowan-Robinson (1975) to imply the existence of 'giant' grains, radius approximately 10 -2 cm, throughout a volume about a parsec in diameter. Although Rowan-Robinson's model of the nebula has been criticized and the presence of such grains in Orion is disputed, the proposition is accepted, that they exist, and in this paper situations in which giant grains could arise are examined. It is found that, while a giant-grain component to the interstellar grain density may exist, it is difficult to understand how giant grains arise to the extent apparently required by the Orion nebula model. (Auth.)

  3. Lattice structures and electronic properties of MO/MoSe2 interface from first-principles calculations

    Science.gov (United States)

    Zhang, Yu; Tang, Fu-Ling; Xue, Hong-Tao; Lu, Wen-Jiang; Liu, Jiang-Fei; Huang, Min

    2015-02-01

    Using first-principles plane-wave calculations within density functional theory, we theoretically studied the atomic structure, bonding energy and electronic properties of the perfect Mo (110)/MoSe2 (100) interface with a lattice mismatch less than 4.2%. Compared with the perfect structure, the interface is somewhat relaxed, and its atomic positions and bond lengths change slightly. The calculated interface bonding energy is about -1.2 J/m2, indicating that this interface is very stable. The MoSe2 layer on the interface has some interface states near the Fermi level, the interface states are mainly caused by Mo 4d orbitals, while the Se atom almost have no contribution. On the interface, Mo-5s and Se-4p orbitals hybridize at about -6.5 to -5.0 eV, and Mo-4d and Se-4p orbitals hybridize at about -5.0 to -1.0 eV. These hybridizations greatly improve the bonding ability of Mo and Se atom in the interface. By Bader charge analysis, we find electron redistribution near the interface which promotes the bonding of the Mo and MoSe2 layer.

  4. Metastable beta Ti-Nb-Mo alloys with improved corrosion resistance in saline solution

    International Nuclear Information System (INIS)

    Chelariu, R.; Bolat, G.; Izquierdo, J.; Mareci, D.; Gordin, D.M.; Gloriant, T.; Souto, R.M.

    2014-01-01

    Graphical abstract: - Highlights: • Microstructural and electrochemical characterization of metastable beta Ti-Nb-Mo alloys for biomedical implantation. • Corrosion resistance was established in 0.9 wt% NaCl saline solution at 25 °C using conventional and microelectrochemical techniques. • The materials spontaneously form passivating oxide films on their surface. • Surface films are stable for polarizations more positive than those encountered in the human body. • The addition of niobium to Ti12Mo enhances the capacitive characteristics of the passivating oxide layers. - Abstract: The present study explores the microstructural characteristics and electrochemical responses of four metastable beta Ti-Nb-Mo alloys for biomedical implantation. They were synthesized by the cold crucible levitation melting technique, and compositions were selected to keep the molybdenum equivalency close to 12 wt% Mo eq . For the sake of comparison, Ti12Mo was also investigated. Microstructural characterization reveals that all the alloys are β (body-centred cubic structure), and the surface is composed by β equiaxial grains with dimensions in the range of tens to hundreds μm. The corrosion resistance (potentiodynamic polarization and electrochemical impedance spectroscopy) of the alloys was determined in 0.9 wt% NaCl saline solution at 25 °C. The materials spontaneously form a passivating oxide film on their surface, and they are stable for polarizations up to +1.0 V SCE . No evidence of localized breakdown of the oxide layers is found for polarizations more positive than those encountered in the human body. The passive layers show dielectric characteristics, and the wide frequency ranges displaying capacitive characteristics occur for both higher niobium contents in the alloy and longer exposures to the saline solution. The insulating characteristics of the oxide-covered surfaces were investigated by scanning electrochemical microscopy operated in the feedback mode

  5. Effect of Nb Addition to Ti-Bearing Super Martensitic Stainless Steel on Control of Austenite Grain Size and Strengthening

    Science.gov (United States)

    Ma, Xiaoping; Langelier, Brian; Gault, Baptiste; Subramanian, Sundaresa

    2017-05-01

    The role of Nb in normalized and tempered Ti-bearing 13Cr5Ni2Mo super martensitic stainless steel is investigated through in-depth characterization of the bimodal chemistry and size of Nb-rich precipitates/atomic clusters and Nb in solid solution. Transmission electron microscopy and atom probe tomography are used to analyze the samples and clarify precipitates/atom cluster interactions with dislocations and austenite grain boundaries. The effect of 0.1 wt pct Nb addition on the promotion of (Ti, Nb)N-Nb(C,N) composite precipitates, as well as the retention of Nb in solution after cooling to room temperature, are analyzed quantitatively. (Ti, Nb)N-Nb(C,N) composite precipitates with average diameters of approximately 24 ± 8 nm resulting from epitaxial growth of Nb(C,N) on pre-existing (Ti,Nb)N particles, with inter-particle spacing on the order of 205 ± 68 nm, are found to be associated with mean austenite grain size of 28 ± 10 µm in the sample normalized at 1323 K (1050 °C). The calculated Zener limiting austenite grain size of 38 ± 13 µm is in agreement with the experimentally observed austenite grain size distribution. 0.08 wt pct Nb is retained in the as-normalized condition, which is able to promote Nb(C, N) atomic clusters at dislocations during tempering at 873 K (600 °C) for 2 hours, and increases the yield strength by 160 MPa, which is predicted to be close to maximum increase in strengthening effect. Retention of solute Nb before tempering also leads to it preferentially combing with C and N to form Nb(C, N) atom clusters, which suppresses the occurrence of Cr- and Mo-rich carbides during tempering.

  6. Sodium induced grain growth, defect passivation and enhancement in the photovoltaic properties of Cu{sub 2}ZnSnS{sub 4} thin film solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Om Pal; Gour, Kuldeep Singh [Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Academy of Scientific and Innovative Research, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Parmar, Rahul [Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Singh, Vidya Nand, E-mail: singhvn@nplindia.org [Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Academy of Scientific and Innovative Research, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India)

    2016-07-01

    Sodium diffusion from soda lime glass (SLG) during high temperature annealing is known to play a crucial role in affecting the grain growth and defect passivation in chalocogenide/kesterite solar cells. Additional sodium is required when low temperature or short term annealing is used. Although this fact is known, a systematic comparative study for kesterite films is seldom reported. In the present study, Cu{sub 2}ZnSnS{sub 4} thin films were deposited on SLG and Mo coated SLG using stacked layer reactive sputtering. Na was deposited over the CZTS thin film and the film was annealed in N{sub 2} atmosphere in order to enhance the grain growth. This resulted in the shift in the XRD peak towards lower diffraction angle. The optical bandgap shifted from 1.45 eV to 1.38 eV with Na addition. Significant grain growth from hundreds of nanometer to micrometer was observed in samples with Na. Device fabricated in SLG/Mo/CZTS/CdS/ZnO/ITO configuration with Al front contact shows increase in efficiencies values from 1.50% to 2.84%. - Highlights: • Reactive sputtering with reduced annealing time have been used for the growth of CZTS thin film. • NaF has been deposited over precursor film before annealing. • Na addition resulted in grain growth, improved compactness and reduction in band gap. • An enhancement in the photovoltaic characteristics have been observed with addition of Na.

  7. A detailed study of the amorphisation reaction in NiMo alloys by diffraction and scattering methods

    International Nuclear Information System (INIS)

    Rose, P.

    1995-01-01

    X-ray and neutron diffraction and neutron small angle scattering (SAS) measurements have been made on NiMo specimens prepared by mechanical alloying (MA). We have extended our earlier studies and measured a new series of MA treated NiMo samples. Molybdenum scatters X-rays more strongly than nickel, but with neutrons, the reverse is the case. Analysis of the X-ray and neutron diffraction patterns together, therefore provides an accurate measurement of the consumption of both constituents in the reaction. The diffraction data on the new samples confirm that the consumption of the parent crystalline materials follows an exponential dependence with the time of MA treatment and also provides evidence of a ''delayed start'' to the reaction. This is consistent with an initial period of mixing of the constituents before the onset of (atomic) interdiffusion and amorphisation. The neutron SAS experiments have been made on Ni 47.7 Mo 52.3 MA treated specimens, which can be ''contrast-matched'' to reduce the scattering from the external surfaces of the powder grains. The new neutron SAS data confirm the presence of fractal surfaces between the alloy constituents, for samples in the early stages of the MA process. (orig.)

  8. Perpendicular magnetic anisotropy in Mo/Co2FeAl0.5Si0.5/MgO/Mo multilayers with optimal Mo buffer layer thickness

    Science.gov (United States)

    Saravanan, L.; Raja, M. Manivel; Prabhu, D.; Pandiyarasan, V.; Ikeda, H.; Therese, H. A.

    2018-05-01

    Perpendicular Magnetic Anisotropy (PMA) was realized in as-deposited Mo(10)/Co2FeAl0.5Si0.5(CFAS)(3)/MgO(0.5)/Mo multilayer stacks with large perpendicular magnetic anisotropy energy (Keff). PMA of this multilayer is found to be strongly dependent on the thickness of the individual CFAS (tCFAS), Mo (tMo) and MgO (tMgO) layers and annealing temperatures. The interactions at the Mo/CFAS/MgO interfaces are critical to induce PMA and are tuned by the interfacial oxidation. The major contribution to PMA is due to iron oxide at the CFAS/MgO interface. X-ray diffraction (XRD) and infrared spectroscopic (FT-IR) studies further ascertain this. However, an adequate oxidation of MgO and the formation of (0 2 4) and (0 1 8) planes of α-Fe2O3 at the optimal Mo buffer layer thickness is mainly inducing PMA in Mo/CFAS/MgO/Mo stack. Microstructural changes in the films are observed by atomic force microscopy (AFM). X-ray photoelectron spectroscopy (XPS) demonstrates the oxidation of CFAS/MgO interface and the formation of Fe-O bonds confirming that the real origin of PMA in Mo/CFAS/MgO is due to hybridization of Fe (3dz2) and O (2pz) orbitals and the resulted spin-orbit interaction at their interface. The half-metallic nature CFAS with Mo layer exhibiting PMA can be a potential candidate as p-MTJs electrodes for the new generation spintronic devices.

  9. Phase relations in the systems M2MoO4-Cr2(MoO4)3-Zr(MoO4)2 (M=Li, Na, or Rb)

    International Nuclear Information System (INIS)

    Bazarov, B.G.; Chimitova, O.D.; Bazarova, Ts.T.; Arkhincheeva, S.I.; Bazarova, Zh.G.

    2008-01-01

    Phase equilibria in the systems M 2 MoO 4 -Cr 2 (MoO 4 ) 3 -Zr(MoO 4 ) 2 (M=Li, Na, or Rb) were investigated by X-ray powder diffraction analysis, DTA, and IR spectroscopy. The subsolidus structure of the phase diagrams of the systems under study was established. Two phases are formed in the Rb 2 MoO 4 -Cr 2 (MoO 4 ) 3 -Zr(MoO 4 ) 2 system with the molar ratios of the starting components equal to 5:1:1 (S 2 ) and 1:1:1 (S 1 ). Proceeding from isostructural character of Rb 5 FeHf(MoO 4 ) 6 and S 2 , the unit cell parameters are determined for S 2 [ru

  10. Microstructure of HFIR-irradiated 12-Cr 1 MoVW ferritic steel

    International Nuclear Information System (INIS)

    Vitek, J.M.; Klueh, R.L.

    1983-01-01

    As part of the fusion materials development program in the United States, a 12 Cr-1 MoVW ferritic steel was irradiated in the High Flux Isotope Reactor (HFIR) to a damage level of 36 dpa at 300, 400, 500, and 600 0 C. During irradiation in HFIR, a transmutation reaction of nickel results in the production of helium, to a level of 99 at. ppM in the present experiment. The microstructures were evaluated after irradiation and the results are presented. Cavities were found at all temperatures. Small cavities (3 to 9 nm) were observed after irradiation at 300, 500 and 600 0 C. At 500 and 600 0 C, the cavities were found preferentially at dislocations, lath boundaries, and prior austenite grain boundaries. After irradiation at 400 0 C, larger cavities (4 to 30 nm) were observed homogeneously distributed throughout the tempered martensite structure. The maximum swelling was 0.07% after irradiation at 400 0 C. Comparision of the results with other studies in which helium was not present at such high levels indicated helium enhances the swelling of 12 Cr-1 MoVW

  11. Controllable synthesis of carbon nanotubes by changing the Mo content in bimetallic Fe-Mo/MgO catalyst

    International Nuclear Information System (INIS)

    Xu Xiangju; Huang Shaoming; Yang Zhi; Zou Chao; Jiang Junfan; Shang Zhijie

    2011-01-01

    Research highlights: → Increasing the Mo content in the Fe-Mo/MgO catalysts resulted in an increase in wall number, diameter and growth yield of carbon nanotubes. → The Fe interacts with MgO to form complex (MgO) x (FeO) 1-x (0 4 and relative large metal Mo particles can be generated after reduction. → The avalanche-like reduction of MgMoO 4 makes the catalyst particles to be small thus enhances the utilize efficiency of Fe nanoparticles. - Abstract: A series of Fe-Mo/MgO catalysts with different Mo content were prepared by combustion method and used as catalysts for carbon nanotube (CNT) growth. Transmission electron microscopy studies of the nanotubes show that the number of the CNT walls and the CNT diameters increase with the increasing of Mo content in the bimetallic catalyst. The growth yield determined by thermogravimetric analysis also follows the trend: the higher the Mo content, the higher the yield of the CNTs. However, the increase of Mo content leads to the lower degree of graphitization of CNTs. A comparative study on the morphology and catalytic functions of Fe/MgO, Mo/MgO and Fe-Mo/MgO catalysts was carried out by scanning electron microscopy and X-ray diffraction. It is found that the Fe interacts with MgO to form complexes and is then dispersed into the MgO support uniformly, resulting in very small Fe nanoparticles after reduction. The Mo interacts with MgO to form stoichiometry compound MgMoO 4 and relative large metal Mo particles can be generated after reduction. High yield CNTs with small diameter can be generated from Fe-Mo/MgO because the avalanche-like reduction of MgMoO 4 makes the catalyst particles to be small thus enhances the utilize efficiency of Fe nanoparticles.

  12. Carpel size, grain filling, and morphology determine individual grain weight in wheat.

    Science.gov (United States)

    Xie, Quan; Mayes, Sean; Sparkes, Debbie L

    2015-11-01

    Individual grain weight is a major yield component in wheat. To provide a comprehensive understanding of grain weight determination, the carpel size at anthesis, grain dry matter accumulation, grain water uptake and loss, grain morphological expansion, and final grain weight at different positions within spikelets were investigated in a recombinant inbred line mapping population of bread wheat (Triticum aestivum L.)×spelt (Triticum spelta L.). Carpel size, grain dry matter and water accumulation, and grain dimensions interacted strongly with each other. Furthermore, larger carpels, a faster grain filling rate, earlier and longer grain filling, more grain water, faster grain water absorption and loss rates, and larger grain dimensions were associated with higher grain weight. Frequent quantitative trait locus (QTL) coincidences between these traits were observed, particularly those on chromosomes 2A, 3B, 4A, 5A, 5DL, and 7B, each of which harboured 16-49 QTLs associated with >12 traits. Analysis of the allelic effects of coincident QTLs confirmed their physiological relationships, indicating that the complex but orderly grain filling processes result mainly from pleiotropy or the tight linkages of functionally related genes. After grain filling, distal grains within spikelets were smaller than basal grains, primarily due to later grain filling and a slower initial grain filling rate, followed by synchronous maturation among different grains. Distal grain weight was improved by increased assimilate availability from anthesis. These findings provide deeper insight into grain weight determination in wheat, and the high level of QTL coincidences allows simultaneous improvement of multiple grain filling traits in breeding. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. How the sedimentary Re/Mo ratio and Tl enrichments trace past and present opaline productivity

    Science.gov (United States)

    Böning, Philipp; Brumsack, Hans-Jürgen

    2010-05-01

    Here, we critically examine how the trace metals Mo, Re and (the rather enigmatic) Tl may serve as indicators of productivity events, as shown for Late Quaternary organic/opal-rich, fast accumulating sediments in upwelling areas off Peru and Namibia. In all Peruvian samples, Mo and Re are highly enriched. The ultimate trapping mechanism for Mo in the sediments is H2S availability, i.e., the intensity of sulfate reduction. Rhenium, by contrast, seems to accumulate via diffusion across the sediment-water interface according to the extent of reducing conditions (Böning et al., 2004; 2009). Opal was determined in Peruvian surface samples (0-1 cm, 16 stations, 85 to 1400 m water depth) and in a long Pleistocene core by Wolf (2002). Interestingly, low Re/Mo ratios (close to and below the sea water value, i. e. ≤ 2 * 10-4) as well as Tl are significantly correlated with opal contents in samples from the surface and the long core (r2 >0.8). Our data clearly show that such low Re/Mo ratios are typical of fine-grained sediments rich in fresh organic matter (no coarse material, no phosphorites). Off Namibia opal-rich sediments show high contents in Re and Mo and very low Re/Mo ratios, averaging 0.5 * 10-4. In short and long cores off Namibia and Peru, where Re/Mo is ≤ 1 * 10-4, Tl seems exclusively associated with opal (as seen in a significant correlation of Tl/Al with Si/Al; r2 >0.8). How do we explain such low Re/Mo ratios? Even if the trapping mechanisms are different for Mo and Re, Crusius et al's. (1996) Re-Mo relationship is quite useful. These authors proposed that a Re/Mo ratio close to the seawater ratio (0.8 * 10-4) reflect the quantitative removal of both Re and Mo from solution. But the Re/Mo ratio below the seawater ratio cannot be explained by diffusion of both elements and quantitative enrichment in the sediments. Indeed, the diffusion of Re and Mo is limited off Namibia and Peru given the enormous biogenic particle rain. Hence, we propose an additional

  14. Effect of normalization heat treatment on creep and tensile properties of modified 9Cr-1Mo steel

    International Nuclear Information System (INIS)

    Panneer Selvi, S.; Sakthivel, T.; Parameswaran, P.; Laha, K.

    2016-01-01

    Creep and tensile properties have been investigated on modified 9Cr-1Mo steel subjected to single and double normalization heat treatments. Optical, scanning and transmission electron microscopic investigation revealed the presence of refined prior austenite grain size and fine M 23 C 6 precipitates in the double normalized steel compared to the steel subjected to single normalization heat treatment. Increased creep strain and significant reduction in creep rupture life were observed with the double normalized steel in comparison with single normalized steel. Increased tensile ductility coupled with marginal decrease in tensile strength at higher test temperature was observed with double normalized steel compared to single normalized steel. It has been attributed to the presence of refined prior austenite grain size and coarsening of Nb rich MX precipitates in double normalized steel. (author)

  15. Grains of Nonferrous and Noble Metals in Iron-Manganese Formations and Igneous Rocks of Submarine Elevations of the Sea of Japan

    Science.gov (United States)

    Kolesnik, O. N.; Astakhova, N. V.

    2018-01-01

    Iron-manganese formations and igneous rocks of submarine elevations in the Sea of Japan contain overlapping mineral phases (grains) with quite identical morphology, localization, and chemical composition. Most of the grains conform to oxides, intermetallic compounds, native elements, sulfides, and sulfates in terms of the set of nonferrous, noble, and certain other metals (Cu, Zn, Sn, Pb, Ni, Mo, Ag, Pd, and Pt). The main conclusion that postvolcanic hydrothermal fluids are the key sources of metals is based upon a comparison of the data of electron microprobe analysis of iron-manganese formations and igneous rocks dredged at the same submarine elevations in the Sea of Japan.

  16. Substitution-induced near phase transition with Maxwell-Wagner polarization in SrBi{sub 2}(Nb{sub 1-x}A{sub x}){sub 2}O{sub 9} ceramics [A = W, Mo and x = 0, 0.025

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Prasun; Franco, Adolfo Jr. [Instituto de Fisica, Universidade Federal de Goias, Goiania (Brazil)

    2017-10-15

    The synthesis, micro-structure, spectroscopic, and dielectric properties of SrBi{sub 2}(Nb{sub 1-x}A{sub x}){sub 2}O{sub 9} [with A=W, Mo and x = 0, 0.025] ceramics were systematically studied. A relative density of ≥98% was obtained for all the samples using a two-step solid state sintering process. XRD images showed that a single phase layered perovskite structure of SrBi{sub 2}Nb{sub 2}O{sub 9} (SBN) was formed. The orthorhombic structure with A2{sub 1}am phase group was found up to ∝2.5 at.% substitution of W and Mo into the SBN matrix. SEM revealed the rod-like grain structure similar to the Maxwell-Wagner (MW) parallel plate capacitor model in SBN ceramic, whereas smaller heterogeneous grain structure was observed in W and Mo donor doped ceramics. The initial high value of real and imaginary part of relative permittivity also indicated the presence of interfacial MW relaxation in the SBN ceramics. The experimental data fit well to the theoretical data obtained from MW polarization model in SBN ceramics. The possible origin of the difference of the properties present in the doped sample has been explained based on grain size, orientation, and modification done in the ceramic matrices. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Effect of unlabelled monoclonal antibody (MoAb) on biodistribution of /sup 111/Indium labelled (MoAb)

    Energy Technology Data Exchange (ETDEWEB)

    Lamki, L M; Murray, J L; Rosenblum, M G; Patt, Y Z; Babaian, Richard; Unger, M W

    1988-08-01

    We have evaluated immunoscintigraphy in cancer patients using four /sup 111/In-labelled murine monoclonal antibodies (MoAb): 96.5 (anti-P97 of melanoma), ZME-018 (anti-high molecular weight antibody of melanoma), ZCE-025 (anti-CEA for colon cancer) and PAY-276 (anti-prostatic acid phosphatase for prostatic cancer). The effect of increasing the doses of unlabelled MoAb (co-infused with 1 mg labelled MoAb) on the relative body distribution of each labelled MoAb was assessed. Localization in the liver decreased significantly in all cases, with increasing MoAb dose, except for ZME-018. Localization in other organs increased significantly as the liver activity decreased. The spleen activity, however, fell in the case of MoAb ZME-018. Blood-pool activity increased with MoAb dose in all four MoAbs. These findings correlated with the rise in the detection rate of metastases, the plasma half-life, and other pharmacokinetic parameters. However, the dose level at which this correlation occurred varied with each antibody. These data demonstrate the co-infusion of unlabelled MoAb with /sup 111/In-labelled MoAb could alter the organ distribution, pharmacokinetics and tumour uptake in a favourable manner, though the degree to which this occurs depends on the antibody in question.

  18. Photo-transmutation of {sup 100}Mo to {sup 99}Mo with Laser-Compton Scattering Gamma-ray

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jiyoung; Rehman, Haseeb ur; Kim, Yonghee [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    This paper presents a photonuclear transmutation method using laser Compton scattering (LCS) gamma-ray beam. Potential production rate (reaction rate) of 99Mo using the photonuclear (γ,n) reaction is evaluated. Rigorous optimization of the LCS spectrum has also been performed to maximize production of the 99Mo. Cyclotron proton accelerators are used worldwide to produce many short-living medical isotopes. However, few are capable of producing Mo-99 and none are suitable for producing more than a small fraction of the required amounts. More than 90% of the world's demand of 99Mo is sourced from five nuclear reactors. Two of these reactors have already been decommissioned and the rest are more than 45 years old. Relatively short half-life of the parent 99Mo requires continuous re-supply to meet the requirements of medical industry. Therefore, there is an urgent need to produce the 99Mo and 99mTc isotopes by alternative ways. One such alternative is giant dipole resonance (GDR) based photonuclear transmutation of 100Mo to 99Mo. For 99Mo production with the LCS photons using GDR-based (γ,n) reaction, the gamma-ray energy should be around 15 MeV. This study indicates that optimization of LCS spectrum by varying the electron and laser energies within practical limits can enhance the transmutation of Mo-100 to M-99 quite significantly. It has been found that irradiation time should be rather short, e.g., less than 6 hours, to maximize the weekly production of Mo-99 in the GDR-based Mo-99 production facility using the LCS photons. The analysis shows that production of 99Mo using a high-performance LCS facility offers a potentially-promising alternative for the production of 99mTc.

  19. Microstructure and mechanical properties of friction stir welded 18Cr–2Mo ferritic stainless steel thick plate

    International Nuclear Information System (INIS)

    Han, Jian; Li, Huijun; Zhu, Zhixiong; Barbaro, Frank; Jiang, Laizhu; Xu, Haigang; Ma, Li

    2014-01-01

    Highlights: • We focus on friction stir welding of 18Cr–2Mo ferritic stainless steel thick plate. • We produce high-quality joints with special tool and optimised welding parameters. • We compare microstructure and mechanical properties of steel and joint. • Friction stir welding is a method that can maintain the properties of joint. - Abstract: In this study, microstructure and mechanical properties of a friction stir welded 18Cr–2Mo ferritic stainless steel thick plate were investigated. The 5.4 mm thick plates with excellent properties were welded at a constant rotational speed and a changeable welding speed using a composite tool featuring a chosen volume fraction of cubic boron nitride (cBN) in a W–Re matrix. The high-quality welds were successfully produced with optimised welding parameters, and studied by means of optical microscopy (OM), scanning electron microscopy (SEM), electron back-scattered diffraction (EBSD) and standard hardness and impact toughness testing. The results show that microstructure and mechanical properties of the joints are affected greatly, which is mainly related to the remarkably fine-grained microstructure of equiaxed ferrite that is observed in the friction stir welded joint. Meanwhile, the ratios of low-angle grain boundary in the stir zone regions significantly increase, and the texture turns strong. Compared with the base material, mechanical properties of the joint are maintained in a comparatively high level

  20. Holey Reduced Graphene Oxide Coupled with an Mo2 N-Mo2 C Heterojunction for Efficient Hydrogen Evolution.

    Science.gov (United States)

    Yan, Haijing; Xie, Ying; Jiao, Yanqing; Wu, Aiping; Tian, Chungui; Zhang, Xiaomeng; Wang, Lei; Fu, Honggang

    2018-01-01

    An in situ catalytic etching strategy is developed to fabricate holey reduced graphene oxide along with simultaneous coupling with a small-sized Mo 2 N-Mo 2 C heterojunction (Mo 2 N-Mo 2 C/HGr). The method includes the first immobilization of H 3 PMo 12 O 40 (PMo 12 ) clusters on graphite oxide (GO), followed by calcination in air and NH 3 to form Mo 2 N-Mo 2 C/HGr. PMo 12 not only acts as the Mo heterojunction source, but also provides the Mo species that can in situ catalyze the decomposition of adjacent reduced GO to form HGr, while the released gas (CO) and introduced NH 3 simultaneously react with the Mo species to form an Mo 2 N-Mo 2 C heterojunction on HGr. The hybrid exhibits superior activity towards the hydrogen evolution reaction with low onset potentials of 11 mV (0.5 m H 2 SO 4 ) and 18 mV (1 m KOH) as well as remarkable stability. The activity in alkaline media is also superior to Pt/C at large current densities (>88 mA cm -2 ). The good activity of Mo 2 N-Mo 2 C/HGr is ascribed to its small size, the heterojunction of Mo 2 N-Mo 2 C, and the good charge/mass-transfer ability of HGr, as supported by a series of experiments and theoretical calculations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Prevalence of IgE antibodies to grain and grain dust in grain elevator workers.

    Science.gov (United States)

    Lewis, D M; Romeo, P A; Olenchock, S A

    1986-01-01

    IgE-mediated allergic reactions have been postulated to contribute to respiratory reactions seen in workers exposed to grain dusts. In an attempt better to define the prevalence of IgE antibodies in workers exposed to grain dusts, we performed the radioallergosorbent test (RAST) on worker sera using both commercial allergens prepared from grain and worksite allergens prepared from grain dust samples collected at the worksite. We found that the two types of reagents identified different populations with respect to the specificity of IgE antibodies present. The RAST assay performed using worksite allergens correlated well with skin test procedures. These results may allow us to gain better understanding of allergy associated with grain dust exposure, and document the utility of the RAST assay in assessment of occupational allergies. PMID:3709478

  2. Prevalence of IgE antibodies to grain and grain dust in grain elevator workers

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, D.M.; Romeo, P.A.; Olenchock, S.A.

    1986-04-01

    IgE-mediated allergic reactions have been postulated to contribute to respiratory reactions seen in workers exposed to grain dusts. In an attempt better to define the prevalence of IgE antibodies in workers exposed to grain dusts, we performed the radioallergosorbent test (RAST) on worker sera using both commercial allergens prepared from grain and worksite allergens prepared from grain dust samples collected at the worksite. We found that the two types of reagents identified different populations with respect to the specificity of IgE antibodies present. The RAST assay performed using worksite allergens correlated well with skin test procedures. These results may allow us to gain better understanding of allergy associated with grain dust exposure, and document the utility of the RAST assay in assessment of occupational allergies.

  3. Prevalence of IgE antibodies to grain and grain dust in grain elevator workers

    International Nuclear Information System (INIS)

    Lewis, D.M.; Romeo, P.A.; Olenchock, S.A.

    1986-01-01

    IgE-mediated allergic reactions have been postulated to contribute to respiratory reactions seen in workers exposed to grain dusts. In an attempt better to define the prevalence of IgE antibodies in workers exposed to grain dusts, we performed the radioallergosorbent test (RAST) on worker sera using both commercial allergens prepared from grain and worksite allergens prepared from grain dust samples collected at the worksite. We found that the two types of reagents identified different populations with respect to the specificity of IgE antibodies present. The RAST assay performed using worksite allergens correlated well with skin test procedures. These results may allow us to gain better understanding of allergy associated with grain dust exposure, and document the utility of the RAST assay in assessment of occupational allergies

  4. Synthesis, structure and optical properties of two isotypic crystals, Na3MO4Cl (M=W, Mo)

    International Nuclear Information System (INIS)

    Han, Shujuan; Bai, Chunyan; Zhang, Bingbing; Yang, Zhihua; Pan, Shilie

    2016-01-01

    Two isotypic compounds, Na 3 MO 4 Cl (M = W, Mo) have been obtained from the high temperature solution, and their structures were determined by single-crystal X-ray diffraction. Both of them crystallize in the space group P4/nmm of tetragonal system with the unit cells: a=7.5181(15), c=5.360(2) for Na 3 WO 4 Cl and a=7.4942(12), c=5.3409(18) for Na 3 MoO 4 Cl. The structure exhibits a 3D network built up by the ClNa 6 groups, and the MO 4 groups reside in the tunnels of the 3D network. The structural similarities and differences between Na 3 MO 4 Cl (M=W, Mo) and Sr 3 MO 4 F (M=Al, Ga) have been discussed. Meanwhile, detailed structure comparison analyses between Na 3 MO 4 Cl (M=W, Mo) and Na 3 MO 4 F (M=W, Mo) indicate that the different connection modes of ClNa 6 and FNa 6 make Na 3 MO 4 Cl and Na 3 MO 4 F crystallize in different structures. The IR spectra were used to verify the validity of the structure. The diffuse reflectance spectra show that the UV absorption edges are about 249 nm (4.99 eV) and 265 nm (4.69 eV) for Na 3 WO 4 Cl and Na 3 MoO 4 Cl, respectively. In addition, the first-principles theoretical studies are also carried out to aid the understanding of electronic structures and linear optical properties. - Graphical abstract: Two isotypic compounds, Na 3 MO 4 Cl (M=W, Mo) have been obtained from the high temperature solution. Both of them crystallize in the space group P4/nmm of tetragonal system. The structure exhibits a 3D network built up by the ClNa 6 groups, and the MO 4 groups reside in the tunnels of the 3D network. - Highlights: • Structure and properties of Na 3 MO 4 Cl (M=W, Mo) are reported for the first time. • They show a 3D network built by ClNa 6 , and WO 4 lies in the tunnels of the network. • IR spectra were used to verify the validity of the structure. • Band structures and density of states have been calculated.

  5. Radiochemical purity of Mo and Tc solution obtained after irradiation and dissolution of Mo-100-enriched and ultra-high-purity natural Mo disks

    Energy Technology Data Exchange (ETDEWEB)

    Tkac, Peter [Argonne National Lab. (ANL), Argonne, IL (United States); Gromov, Roman [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, Sergey D. [Argonne National Lab. (ANL), Argonne, IL (United States); Rotsch, David A. [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    Four irradiations of ultra-high-purity natural Mo targets and one irradiation using 97.4% Mo-100-enriched material were performed. The purpose of these irradiations was to determine whether the presence of Sn stabilizer in the H2O2 used for the dissolution of sintered Mo disks can affect the radiochemical purity of the final K2MoO4 in 5M KOH solution. Results from radiochemical purity tests performed using thin-layer paper chromatography show that even 2– 3× excess of Sn-stabilized H2O2 typically used for dissolution of sintered Mo disks did not affect the radiochemical purity of the final product.

  6. Development on UO3-K2O and MoO3-K2O binary systems and study of UO2MoO4-MoO3 domain within UO3-MoO3-K2O ternary system

    International Nuclear Information System (INIS)

    Dion, C.; Noel, A.

    1983-01-01

    This paper confirms the previous study on the MoO 3 -K 2 O system, and constitutes a clarity of the UO 3 -K 2 O system. Four distinct uranates VI with alkaline metal/uranium ratio's 2, 1, 0,5 and 0,285 exist. Preparation conditions and powder diffraction spectra of these compounds are given. Additional informations relative to K 2 MoO 4 allotropic transformations are provided. Study of UO 2 MoO 4 -K 2 MoO 4 diagram has brought three new phases into prominence: (B) K 6 UMo 4 O 18 incongruently melting point, (E) K 2 UMo 2 O 10 congruently melting and (F) K 2 U 3 Mo 4 O 22 incongruently melting point. Within MoO 3 -K 2 MoO 4 -UO 2 MoO 4 ternary system, no new phase is found. The general appearance of ternary liquidus and crystallization fields of several compounds are given. These three new compounds become identified with these of UO 2 MoO 4 -Na 2 MoO 4 binary system [fr

  7. Investigation of BaMoO4-Ln2(MoO4)3 systems (Ln = Nd, Sm, Yb)

    International Nuclear Information System (INIS)

    Vakulyuk, V.V.; Evdokimov, A.A.; Khomchenko, G.P.

    1982-01-01

    Using the methods of X-ray phase and differential-thermal analyses phase ratios in the systems BaMoO 4 -Ln 2 (MoO 4 ) 3 (Ln=Nd, Sm, Yb); BaNd 2 (MoO 4 ) 4 -MaGd 2 (MoO 4 ) are studied. Unit cell parameters and the character of melting of the compounds BaLn 2 (MoO 4 ) 4 are specified. Effect of growth conditions on laminated nature of BaGd 2 (MoO 4 ) 4 monocrystals is studied

  8. Refining of cast intermetallic alloy Ti - 43 % Al - X (Nb, Mo, B) microstructure using heat treatment

    International Nuclear Information System (INIS)

    Imaev, R.M.; Imaev, V.M.; Khismatullin, T.G.

    2006-01-01

    The microstructure and high temperature mechanical properties are studied in a cast alloy Ti - 43 % Al - X (Nb, Mo, B) using methods of optical and scanning electron microscopy, X ray spectrum microanalysis and differential thermal analysis. The alloy belongs to a new class of β-solidifying γ-TiAl+α 2 -Ti 3 Al alloys. The alloy is investigated as cast and after heat treatment that promotes grain refinement. Mechanical properties are determined on tensile tests at 1000 and 1100 deg C in the air [ru

  9. Gate-bias and temperature dependence of charge transport in dinaphtho[2,3-b:2‧,3‧-d]thiophene thin-film transistors with MoO3/Au electrodes

    Science.gov (United States)

    Shaari, Safizan; Naka, Shigeki; Okada, Hiroyuki

    2018-04-01

    We investigated the gate-bias and temperature dependence of the voltage-current (V-I) characteristics of dinaphtho[2,3-b:2‧,3‧-d]thiophene with MoO3/Au electrodes. The insertion of the MoO3 layer significantly improved the device performance. The temperature dependent V-I characteristics were evaluated and could be well fitted by the Schottky thermionic emission model with barrier height under forward- and reverse-biased regimes in the ranges of 33-57 and 49-73 meV, respectively. However, at a gate voltage of 0 V, at which a small activation energy was obtained, we needed to consider another conduction mechanism at the grain boundary. From the obtained results, we concluded that two possible conduction mechanisms governed the charge injection at the metal electrode-organic semiconductor interface: the Schottky thermionic emission model and the conduction model in the organic thin-film layer and grain boundary.

  10. Systems Tl2MoO4-E(MoO4)2, where E=Zr or Hf, and the crystal structure of Tl8Hf(MoO4)6

    International Nuclear Information System (INIS)

    Bazarov, B.G.; Bazarova, Ts.T.; Fedorov, K.N.; Bazarova, Zh.G.; Chimitova, O.D.; Klevtsova, R.F.; Glinskaya, L.A.

    2006-01-01

    Systems Tl 2 MoO 4 -E(MoO 4 ) 2 (E=Zr, Hf) were studied by X-ray diffraction, differential thermal analysis and IR spectroscopy. Formation of Tl 8 E(MoO 4 ) 6 and Tl 2 E(MoO 4 ) 2 compounds was established. Phase T-x diagrams of the Tl 2 MoO 4 -Zr(MoO 4 ) 2 system were constructed. Monocrystals were grown, and structure of Tl 8 Hf(MoO 4 ) 6 was studied. The compound is crystallized in monoclinic syngony with elementary cell parameters a=9.9688(6), b=18.830(1), c=7.8488(5) A, β=108.538(1) Deg, Z=2, sp. gr. C2/m. The isolated group [HfMo 6 O 24 ] 8- is responsible for fundamental fragment of the structure. Three varieties of crystallographically independent Tl-polyhedra fill space evenly between fragments [HfMo 6 O 24 ] 8- forming three-dimensional form [ru

  11. The influence of wall thickness on the microstructure of bronze BA1055 with the additions of Si, Cr, Mo and/or W

    Directory of Open Access Journals (Sweden)

    B.P. Pisarek

    2008-12-01

    Full Text Available Aluminium bronzes belong to the high-grade constructional materials applied on the put under strongly load pieces of machines, about good sliding, resistant properties on corrosion both in the cast state how and after the thermal processing. It moves to them Cr and Si in the aim of the improvement of their usable proprieties. Additions Mo and/or W were not applied so far in the larger concentration, these elements were introduced to the melts of the copper as the components of modifiers. It was worked out therefore the new kind of bronzes casting including these elements. Make additions to the Cu-Al-Fe-Ni bronze of Si, Cr, Mo and/or W in the rise of these properties makes possible. The investigations of the influence of the wall thickness of the cast on size of crystallites were conducted: the primary phase β and intermetallic phase κ and the width separates of the secondary phase α precipitate at phase boundary. It results from conducted investigations, that in the aluminium bronze BA1055 after simultaneous makes additions Si, Cr, Mo and in the primary phase β it undergoes considerable reducing size. The addition W reduce size of the grain phase β in the thin walls of the cast 3-6 mm, and addition Cr in the range of the thickness of the wall of the cast 3-6 mm it favors to reducing size the phase β, in walls 12-25 mm the growth causes it. The addition Mo does not influence the change of the size of the grain of the β phase significantly. The make addition singly or simultaneously of the Cr, Mo and W to the bronze CuAl10Fe5Ni5Si it influences the decrease of the quantity separates of the phase α on the interface boundary and of width it separates independently from the thickness of the wall of the cast. The simultaneous make addition of the Si, Cr, Mo and W it enlarges the surface of the phase κFe, κMo. The make addition to the bronze CuAl10Fe5Ni5Si of the Cr, Mo or W the quantity of crystallizing hard phase κ enlarges and the

  12. Phase equilibria in the Tl2MoO4–R2(MoO43–Zr(MoO42 (R = Al, Cr systems: synthesis, structure and properties of new triple molybdates Tl5RZr(MoO46 and TlRZr0.5(MoO43

    Directory of Open Access Journals (Sweden)

    V. G. Grossman

    2017-12-01

    Full Text Available The Tl2MoO4–R2(MoO43–Zr(MoO42 (R = Al, Cr systems were studied in the subsolidus region using X-ray powder diffraction and differential scanning calorimetric (DSC analysis. Quasi-binary joins were revealed, and triangulation was carried out. New ternary molybdates: Tl5RZr(MoO46 (5:1:2 and TlRZr0.5(MoO43 (1:1:1 (R = Al, Cr were prepared. The unit cell parameters for the new compounds were calculated.

  13. Initiation of Stress Corrosion Cracking of 26Cr-1Mo Ferritic Stainless Steels in Hot Chloride Solution

    International Nuclear Information System (INIS)

    Kwon, H. S.; Hehemann, R. F.

    1987-01-01

    Elongation measurements of 26Cr-1Mo ferritic stainless steels undergoing stress corrosion in boiling LiCl solution allow the induction period to be distinguished from the propagation period of cracks by the deviation of elongation from the logarithmic creep law. Localised corrosion cells are activated exclusively at slip steps by loading and developed into corrosion trenches. No cracks have developed from the corrosion trenches until the induction period is exceeded. The induction period is regarded as a time for localised corrosion cells to achieve a critical degree of occlusion for crack initiation. The repassivation rate of exposed metal by creep or emergence of slip steps decreases as the load increases and is very sensitive to the microstructural changes that affect slip tep height. The greater susceptibility to stress corrosion cracking of either prestrained or grain coarsened 26Cr-1Mo alloy compared with that of mill annealed material results from a significant reduction of repassivation rate associated with the increased slip step height. The angular titanium carbonitrides particles dispersed in Ti-stabilized 26Cr-1Mo alloy have a detrimental effect on the resistance to stress corrosion cracking

  14. Hydrothermal Synthesis of MoO2 and Supported MoO2 Cata-lysts for Oxidative Desulfurization of Dibenzothiophene

    Institute of Scientific and Technical Information of China (English)

    Wang Danhong; Zhang Jianyong; Liu Ni; Zhao Xin; Zhang Minghui

    2014-01-01

    A novel method for obtaining spherical MoO2 nanoparticles and SiO2-Al2O3 supported MoO2 by hydrothermal reduction of Mo (VI) species was studied. The obtained MoO2 catalysts show very high catalytic activity in the oxidative desulfurization (ODS) process. The effect of hydrothermal temperature and crystallization temperature on ODS activity was investigated. The ODS activity of supported MoO2 catalysts with various MoO2 contents were also investigated. The mecha-nism for formation of MoO2 involving oxalic acid was proposed.

  15. Phase equilibria in the CdMoO4-Gd2(MoO4)3 system

    International Nuclear Information System (INIS)

    Tunik, T.A.; Fedorov, N.F.; Razumovskij, S.N.

    1980-01-01

    The constitutional diagram of the CdMoO 4 -Cd 2 (MoO 4 ) 3 system has been plotted using statistical and dynamic methods as well as a complex of instrumental analysis procedures. Three major phases have been found to occur in the systems, viz.: CdMoO 4 based solid solutions that crystallize in the range from 0 to 25 mol.percent of Cd 2 (MoO 4 ) 3 and pass in transit the two-phase narrow region becoming then solid solutions having a distorted scheelite structure and existing in concentrations from 40 to 65 mol.% of Cd 2 (MoO 4 ) 3 . The entire range, in which the Cd 2 (MoO 4 ) 3 solid solutions can exist, amounts to less than 5 mol.%. Certain crystallochemical constants of the phases that occur in the system have been determined [ru

  16. Abnormal grain growth: a non-equilibrium thermodynamic model for multi-grain binary systems

    International Nuclear Information System (INIS)

    Svoboda, J; Fischer, F D

    2014-01-01

    Abnormal grain growth as the abrupt growth of a group of the largest grains in a multi-grain system is treated within the context of unequal retardation of grain growth due to the segregation of solute atoms from the bulk of the grains into the grain boundaries. During grain boundary migration, the segregated solute atoms are dragged under a small driving force or left behind the migrating grain boundary under a large driving force. Thus, the solute atoms in the grain boundaries of large grains, exhibiting a large driving force, can be released from the grain boundary. The mobility of these grain boundaries becomes significantly higher and abnormal grain growth is spontaneously provoked. The mean-field model presented here assumes that each grain is described by its grain radius and by its individual segregation parameter. The thermodynamic extremal principle is engaged to obtain explicit evolution equations for the radius and segregation parameter of each grain. Simulations of grain growth kinetics for various conditions of segregation with the same initial setting (100 000 grains with a given radius distribution) are presented. Depending on the diffusion coefficients of the solute in the grain boundaries, abnormal grain growth may be strongly or marginally pronounced. Solute segregation and drag can also significantly contribute to the stabilization of the grain structure. Qualitative agreement with several experimental results is reported. (paper)

  17. Inter-grain tunnelling in the half-metallic double-perovskites Sr2BB'O6 (BB'= FeMo, FeRe, CrMo, CrW, CrRe

    Directory of Open Access Journals (Sweden)

    Fisher B.

    2014-07-01

    Full Text Available The zero-field conductivities (σ of polycrystalline title materials, are governed by intergrain transport. In the majority of cases their σ(T can be described by the "fluctuation induced tunnelling" model. Analysis of the results in terms of this model reveals two remarkable features: 1. For all Sr2FeMoO6 samples of various microstructures, the tunnelling constant (barrier width × inverse decay-length of the wave-function is ~ 2, indicating the existence of an intrinsic insulating boundary layer with a well-defined electronic (and magnetic structure. 2. The tunnelling constant for all cold-pressed samples decreases linearly with increasing magnetic-moment/formula-unit.

  18. Measurement of formation cross-section of 99Mo from the 98Mo(n,γ) and 100Mo(n,2n) reactions.

    Science.gov (United States)

    Badwar, Sylvia; Ghosh, Reetuparna; Lawriniang, Bioletty M; Vansola, Vibha; Sheela, Y S; Naik, Haladhara; Naik, Yeshwant; Suryanarayana, Saraswatula V; Jyrwa, Betylda; Ganesan, Srinivasan

    2017-11-01

    The formation cross-section of medical isotope 99 Mo from the 98 Mo(n,γ) reaction at the neutron energy of 0.025eV and from the 100 Mo(n,2n) reaction at the neutron energies of 11.9 and 15.75MeV have been determined by using activation and off-line γ-ray spectrometric technique. The thermal neutron energy of 0.025eV was used from the reactor critical facility at BARC, Mumbai, whereas the average neutron energies of 11.9 and 15.75MeV were generated using 7 Li(p,n) reaction in the Pelletron facility at TIFR, Mumbai. The experimentally determined cross-sections were compared with the evaluated nuclear data libraries of ENDF/B-VII.1, CENDL-3.1, JENDL-4.0 and JEFF-3.2 and are found to be in close agreement. The 100 Mo(n,2n) 99 Mo reaction cross-sections were also calculated theoretically by using TALYS-1.8 and EMPIRE-3.2 computer codes and compared with the experimental data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Microstructure characteristic for high temperature deformation of powder metallurgy Ti–47Al–2Cr–0.2Mo alloy

    International Nuclear Information System (INIS)

    Zhang, Dan-yang; Li, Hui-zhong; Liang, Xiao-peng; Wei, Zhong-wei; Liu, Yong

    2014-01-01

    Highlights: • With temperature increasing and strain rate decreasing, the β phase decreases. • With temperature increasing and strain rate decreasing, DRX grains increase. • The high temperature deformation mechanism of TiAl alloy was clearly. - Abstract: Hot compression tests of a powder metallurgy (P/M) Ti–47Al–2Cr–0.2Mo (at. pct) alloy were carried out on a Gleeble-3500 simulator at the temperatures ranging from 1000 °C to 1150 °C with low strain rates ranging from 1 × 10 −3 s −1 to 1 s −1 . Electron back scattered diffraction (EBSD), scanning electron microscope (SEM) and transmission electron microscope (TEM) were employed to investigate the microstructure characteristic and nucleation mechanisms of dynamic recrystallization. The stress–strain curves show the typical characteristic of working hardening and flow softening. The working hardening is attributed to the dislocation movement. The flow softening is attributed to the dynamic recrystallization (DRX). The number of β phase decreases with increasing of deformation temperature and decreasing of strain rate. The ratio of dynamic recrystallization grain increases with the increasing of temperature and decreasing of strain rate. High temperature deformation mechanism of powder metallurgy Ti–47Al–2Cr–0.2Mo alloy mainly refers to twinning, dislocations motion, bending and reorientation of lamellae

  20. A grain-boundary diffusion model of dynamic grain growth during superplastic deformation

    International Nuclear Information System (INIS)

    Kim, Byung-Nam; Hiraga, Keijiro; Sakka, Yoshio; Ahn, Byung-Wook

    1999-01-01

    Dynamic grain growth during superplastic deformation is modelled on the basis of a grain-boundary diffusion mechanism. On the grain boundary where a static and a dynamic potential difference coexist, matter transport along the boundary is assumed to contribute to dynamic grain growth through depositing the matter on the grain surface located opposite to the direction of grain-boundary migration. The amount of the diffusive matter during deformation is calculated for an aggregate of spherical grains and is converted to the increment of mean boundary migration velocity. The obtained relationship between the strain rate and the dynamic grain growth rate is shown to be independent of deformation mechanisms, provided that the grain growth is controlled by grain-boundary diffusion. The strain dependence, strain-rate dependence and temperature dependence of grain growth predicted from this model are consistent with those observed in superplastic ZrO 2 -dispersed Al 2 O 3

  1. Comparitive study of fluorescence lifetime quenching of rhodamine 6G by MoS2 and Au-MoS2

    Science.gov (United States)

    Shakya, Jyoti; Kasana, Parath; Mohanty, T.

    2018-04-01

    Time resolved fluorescence study of Rhodamine 6G (R6G) in the presence of Molybdenum disulfide (MoS2) nanosheets and gold doped MoS2 (Au-MoS2) have been carried out and discussed. We have analyzed the fluorescence decay curves of R6G and it is observed that Au-MoS2 is a better fluorescence lifetime quencher as compare to MoS2 nanosheets. Also, the energy transfer efficiency and energy transfer rate from R6G to MoS2 and Au-MoS2 has been calculated and found higher for Au-MoS2.

  2. Demonstration of resonant photopumping of Mo VII by Mo XII for a VUV laser near 600 Angstrom

    International Nuclear Information System (INIS)

    Ilcisin, K.J.; Aumayr, F.; Schwob, J.L.; Suckewer, S.

    1993-09-01

    We present data of experiments on the resonant photopumping of Mo VII by Mo XII as a method of generating a coherent VUV source near 600 angstrom. The experiment is based on a scheme proposed by Feldman and Reader in which the 4p 6 -- 4p 5 6s transition in Mo VII in resonantly photopumped by the 5s 2 S 1/2 -- 4p 2 P 1/2 transition in Mo XII. Results of the laser produced plasma experiments show the successful enhancement of the population of the Mo VII 4p 5 6s upper lasing level when pumped by an adjacent Mo VII plasma. No enhancement was seen in a control experiment where the Mo VII plasma was pumped by a Zr X plasma. Improvements of the intensity of the Mo XII pump source, achieved using an additional pump laser, lead to the generation of a population inversion for the VUV transition

  3. Carpel size, grain filling, and morphology determine individual grain weight in wheat

    OpenAIRE

    Xie, Quan; Mayes, Sean; Sparkes, Debbie L.

    2015-01-01

    Individual grain weight is a major yield component in wheat. To provide a comprehensive understanding of grain weight determination, the carpel size at anthesis, grain dry matter accumulation, grain water uptake and loss, grain morphological expansion, and final grain weight at different positions within spikelets were investigated in a recombinant inbred line mapping population of bread wheat (Triticum aestivum L.)?spelt (Triticum spelta L.). Carpel size, grain dry matter and water accumulat...

  4. Ternary CoS{sub 2}/MoS{sub 2}/RGO electrocatalyst with CoMoS phase for efficient hydrogen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan-Ru; Shang, Xiao [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); Gao, Wen-Kun [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); College of Science, China University of Petroleum (East China), Qingdao 266580 (China); Dong, Bin, E-mail: dongbin@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); College of Science, China University of Petroleum (East China), Qingdao 266580 (China); Chi, Jing-Qi; Li, Xiao; Yan, Kai-Li; Chai, Yong-Ming [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); Liu, Yun-Qi, E-mail: liuyq@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); Liu, Chen-Guang [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China)

    2017-08-01

    Highlights: • Ternary CoS{sub 2}/MoS{sub 2}/RGO with CoMoS phase as electrocatalyst for HER was prepared. • CoMoS phase have the metallic nature and highly intrinsic activity for HER. • RGO support ensures good distribution of CoMoS phase and enhances the conductivity. • The introduction of CoMoS and RGO may be a novel strategy for efficient HER of MoS{sub 2}. - Abstract: CoMoS phase with metallic character plays crucial role on enhancing the activity of MoS{sub 2} electrocatalysts for hydrogen evolution reaction (HER). However, only Co atoms located in the edges of MoS{sub 2} can create CoMoS phase, so it is a challenge to obtain CoMoS phase with homogeneous distribution limited by the layered MoS{sub 2} and doping method of Co. Herein, we reported a simple one-pot hydrothermal method to prepare novel ternary CoS{sub 2}/MoS{sub 2}/RGO with CoMoS phase for HER using reduced graphene oxide (RGO) as support. XPS proves the formation of CoMoS phase, implying the enhanced activity for HER. RGO support ensures the well distribution of CoMoS phase and enhances the conductivity of CoS{sub 2}/MoS{sub 2}/RGO. Compared to CoS{sub 2}/RGO, MoS{sub 2}/RGO and CoS{sub 2}/MoS{sub 2}, the obtained CoS{sub 2}/MoS{sub 2}/RGO shows superior activity for HER with an onset overpotential of −80 mV (vs. RHE), small Tafel slope of 56 mV dec{sup −1}, high exchange current density of 11.4 μA cm{sup −2} and rigid electrochemical durability. The enhanced performances for HER may be ascribed to the formation of CoMoS phase with high activity and the existence of RGO support with good electrical conductivitys in ternary CoS{sub 2}/MoS{sub 2}/RGO. Therefore, the introduction of CoMoS phase and RGO into MoS{sub 2} could effectively enhance electrocatalytic properties for HER.

  5. Reporting performance in MoS{sub 2}–TiO{sub 2} bilayer and heterojunction films based dye-sensitized photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    He, Zuoli, E-mail: wandaohzl@163.com; Que, Wenxiu, E-mail: wxque@mail.xjtu.edu.cn; Xing, Yonglei; Liu, Xiaobin

    2016-07-05

    Three types of bilayer and heterojunction films photoanodes were designed and fabricated from green synthesized MoS{sub 2} and TiO{sub 2} nanoparticles (NPs), and then the dye-sensitized solar cells based on these various films photoanodes were investigated. Results demonstrated that layered semiconductor MoS{sub 2} could be a viable material candidate for solar cell applications due to its superior photoelectric characteristics. The DSSCs from the MoS{sub 2}@TiO{sub 2} heterojunction film photoanode exhibit the highest solar energy conversion efficiency of 6.02% under AM 1.5G simulated solar irradiation, which is 1.5 times higher than that of the cell from pure TiO{sub 2} film photoanode. MoS{sub 2}–TiO{sub 2} heterojunction at the interface helps MoS{sub 2} NPs to efficiently collect the photo-injected electrons from TiO{sub 2} NPs, thus reduce charge recombination at both the NPs-electrolyte and NPs-dye interfaces. These advantages together with collecting or transferring injected electrons abilities by combining the improved light absorption and the large dye-loading capacity of such structural NPs films, rendering the MoS{sub 2}–TiO{sub 2} composite photoelectrode superior potential for DSSCs applications. - Highlights: • MoS{sub 2} and TiO{sub 2} NPs were synthesized via green process using rape pollen grains as bio-templates. • DSSCs based on these various bilayer and heterojunction films photoanodes were investigated. • Enhanced η of MoS{sub 2}@TiO{sub 2} based DSSCs was related to its strong light adsorption ability. • The mechanism of electron transport in these various films photoanodes was proposed.

  6. On-stack two-dimensional conversion of MoS2 into MoO3

    Science.gov (United States)

    Yeoung Ko, Taeg; Jeong, Areum; Kim, Wontaek; Lee, Jinhwan; Kim, Youngchan; Lee, Jung Eun; Ryu, Gyeong Hee; Park, Kwanghee; Kim, Dogyeong; Lee, Zonghoon; Lee, Min Hyung; Lee, Changgu; Ryu, Sunmin

    2017-03-01

    Chemical transformation of existing two-dimensional (2D) materials can be crucial in further expanding the 2D crystal palette required to realize various functional heterostructures. In this work, we demonstrate a 2D ‘on-stack’ chemical conversion of single-layer crystalline MoS2 into MoO3 with a precise layer control that enables truly 2D MoO3 and MoO3/MoS2 heterostructures. To minimize perturbation of the 2D morphology, a nonthermal oxidation using O2 plasma was employed. The early stage of the reaction was characterized by a defect-induced Raman peak, drastic quenching of photoluminescence (PL) signals and sub-nm protrusions in atomic force microscopy images. As the reaction proceeded from the uppermost layer to the buried layers, PL and optical second harmonic generation signals showed characteristic modulations revealing a layer-by-layer conversion. The plasma-generated 2D oxides, confirmed as MoO3 by x-ray photoelectron spectroscopy, were found to be amorphous but extremely flat with a surface roughness of 0.18 nm, comparable to that of 1L MoS2. The rate of oxidation quantified by Raman spectroscopy decreased very rapidly for buried sulfide layers due to protection by the surface 2D oxides, exhibiting a pseudo-self-limiting behavior. As exemplified in this work, various on-stack chemical transformations can be applied to other 2D materials in forming otherwise unobtainable materials and complex heterostructures, thus expanding the palette of 2D material building blocks.

  7. Geochronology of the Thompson Creek Mo Deposit: Evidence for the Formation of Arc-related Mo Deposits

    Science.gov (United States)

    Lawrence, C. D.; Coleman, D. S.; Stein, H. J.

    2016-12-01

    The Thompson Creek Mo deposit in central ID, has been categorized as an arc-related Mo deposit due to the location, grade of Mo, and relative lack of enrichments in F, Rb, and Nb, compared to the Climax-type Mo deposits. Geochronology from this arc-related deposit provides an opportunity to compare and contrast magmatism, and mineralization to that in Climax-type deposits. Distinct pulses of magmatism were required to form the Thompson Creek Mo deposit, which is consistent with recent geochronology from Climax-type deposits. Molybdenite Re-Os geochronology from five veins requires at least three pulses of magmatism and mineralization between 89.39 +/- 0.37 and 88.47 +/- 0.16 Ma. Zircon U-Pb ages from these mineralized samples overlap with molybdenite mineralization, but show a much wider range (91.01 +/- 0.37 to 87.27 +/- 0.69). Previous work from Climax-type Mo deposits suggest a correlation between a super eruption, and the subsequent rapid (<1 Ma) onset, and completion of Mo mineralizing intrusions. The longer life (3-4 Ma) for the Thompson Creek Mo deposit suggests that the mineralizing intrusions for arc-related Mo deposits may not need to have as high [Mo] as the Climax-type deposits. This study also finds a shift in the source of magmatism from the pre- to syn-mineralizing intrusions. Zircons from pre-mineralizing intrusions have much higher (15-60 pg) concentrations of radiogenic Pb than zircons from mineralized intrusions, which all have less than 15 pg, though whole rock [U] are similar.

  8. Phase equilibria in the MgMoO4-Ln2(MoO4)3 (Ln=La,Gd) systems

    International Nuclear Information System (INIS)

    Fedorov, N.F.; Ipatov, V.V.; Kvyatkovskij, O.V.

    1980-01-01

    Phase equilibria in the MgMoO 4 -Ln 2 (MoO 4 ) 3 systems (Ln=La, Gd) have been studied by static and dynamic methods of the physico-chemical analysis, using differential thermal, visual-polythermal, crystal-optical, X-ray phase, and infrared spectroscopic methods, and their phase diagrams have been constructed. Phase equilibria in the systems studied are characterized by limited solubility of components in the liquid state, formation of solid solutions on the base of α- and β-forms of Gd 2 (MoO 4 ) 3 . Eutectics in the MgMoO 4 -Ln 2 (MoO 4 ) 3 (Ln=La, Gd) systems corresponds to the composition of 71 mode % La 2 (MoO 4 ) 3 -29 mole % MgMoO 4 , tsub(melt)--935+-5 deg C and 57 mole % Gd 2 (MoO 4 ) 3 -43 mole % MgMoO 4 , tsub(melt)=1020+-5 deg C. The region of glass formation has been established [ru

  9. Magnetoresistance in Co/2D MoS2/Co and Ni/2D MoS2/Ni junctions.

    Science.gov (United States)

    Zhang, Han; Ye, Meng; Wang, Yangyang; Quhe, Ruge; Pan, Yuanyuan; Guo, Ying; Song, Zhigang; Yang, Jinbo; Guo, Wanlin; Lu, Jing

    2016-06-28

    Semiconducting single-layer (SL) and few-layer MoS2 have a flat surface, free of dangling bonds. Using density functional theory coupled with non-equilibrium Green's function method, we investigate the spin-polarized transport properties of Co/2D MoS2/Co and Ni/2D MoS2/Ni junctions with MoS2 layer numbers of N = 1, 3, and 5. Well-defined interfaces are formed between MoS2 and metal electrodes. The junctions with a SL MoS2 spacer are almost metallic owing to the strong coupling between MoS2 and the ferromagnets, while those are tunneling with a few layer MoS2 spacer. Both large magnetoresistance and tunneling magnetoresistance are found when fcc or hcp Co is used as an electrode. Therefore, flat single- and few-layer MoS2 can serve as an effective nonmagnetic spacer in a magnetoresistance or tunneling magnetoresistance device with a well-defined interface.

  10. Determination of Mo- and Ca-isotope ratios in Ca100MoO4 crystal for AMoRE-I experiment

    Science.gov (United States)

    Karki, S.; Aryal, P.; Kim, H. J.; Kim, Y. D.; Park, H. K.

    2018-01-01

    The first phase of the AMoRE (Advanced Mo-based Rare process Experiment) is to search for neutrinoless double-beta decay of 100Mo with calcium molybdate (Ca100MoO4) crystals enriched in 100Mo and depleted in 48Ca using a cryogenic technique at Yangyang underground laboratory in Korea. It is important to know 100Mo- and 48Ca-isotope ratios in Ca100MoO4 crystal to estimate half-life of 100Mo decays and to 2 νββ background from 48Ca. We employed the ICP-MS (Inductive Coupled Plasma Mass Spectrometer) to measure 100Mo- and 48Ca-isotope ratios in Ca100MoO4 crystal. The measured results for 100Mo- and 48Ca-isotope ratios in the crystal are (94 . 6 ± 2 . 8) % and (0 . 00211 ± 0 . 00006) %, respectively, where errors are included both statistical and systematic uncertainties.

  11. Postirradiation tensile properties of Mo and Mo alloys irradiated with 600 MeV protons

    International Nuclear Information System (INIS)

    Mueller, G.V.; Gavillet, D.; Victoria, M.; Martin, J.L.

    1994-01-01

    Tensile specimens of pure Mo and Mo-5 Re, Mo-41 Re and TZM alloys have been irradiated with 600 MeV protons in the PIREX facility at 300 and 660 K to 0.5 dpa. Results of the postirradiation tensile testing show a strong radiation hardening and a severe loss of ductility for all the materials tested at room temperature. ((orig.))

  12. Grain dissection as a grain size reducing mechanism during ice microdynamics

    Science.gov (United States)

    Steinbach, Florian; Kuiper, Ernst N.; Eichler, Jan; Bons, Paul D.; Drury, Martin R.; Griera, Albert; Pennock, Gill M.; Weikusat, Ilka

    2017-04-01

    Ice sheets are valuable paleo-climate archives, but can lose their integrity by ice flow. An understanding of the microdynamic mechanisms controlling the flow of ice is essential when assessing climatic and environmental developments related to ice sheets and glaciers. For instance, the development of a consistent mechanistic grain size law would support larger scale ice flow models. Recent research made significant progress in numerically modelling deformation and recrystallisation mechanisms in the polycrystalline ice and ice-air aggregate (Llorens et al., 2016a,b; Steinbach et al., 2016). The numerical setup assumed grain size reduction is achieved by the progressive transformation of subgrain boundaries into new high angle grain boundaries splitting an existing grain. This mechanism is usually termed polygonisation. Analogue experiments suggested, that strain induced grain boundary migration can cause bulges to migrate through the whole of a grain separating one region of the grain from another (Jessell, 1986; Urai, 1987). This mechanism of grain dissection could provide an alternative grain size reducing mechanism, but has not yet been observed during ice microdynamics. In this contribution, we present results using an updated numerical approach allowing for grain dissection. The approach is based on coupling the full field theory crystal visco-plasticity code (VPFFT) of Lebensohn (2001) to the multi-process modelling platform Elle (Bons et al., 2008). VPFFT predicts the mechanical fields resulting from short strain increments, dynamic recrystallisation process are implemented in Elle. The novel approach includes improvements to allow for grain dissection, which was topologically impossible during earlier simulations. The simulations are supported by microstructural observations from NEEM (North Greenland Eemian Ice Drilling) ice core. Mappings of c-axis orientations using the automatic fabric analyser and full crystallographic orientations using electron

  13. MoMoSat -- Mobile Service for Monitoring with GeoNotes via Satellite

    Energy Technology Data Exchange (ETDEWEB)

    Niemeyer, Irmgard [Forschungszentrum Juelich (Germany). Programme Group Systems Analysis and Technology Evaluation (STE); Jonas, Karl [Univ. of Applied Science Bonn-Rhein-Sieg, Sankt Augustin (Germany). FhG FOKUS CC SATCom; Horz, Alexander [horz informatik, Sankt Augustin (Germany); Wettschereck, Dietrich; Schmidt, Dirk [DIALOGIS GmbH, Bonn (Germany)

    2003-05-01

    The MoMoSat service will enable mobile end-users to view, manage, annotate, and communicate mapbased information in the field. The handled information exists of a huge volume of raster (satellite or aerial images) and vector data (i.e. street networks, cadastral maps or points of interest), as well as text-specific geo-referenced textual notes (the so-called 'GeoNotes') and real-time voice. A secure real-time communication between mobile units and the primary data store is an essential task of the MoMoSat service. The basic information is stored in the primary database that is accessible through a virtual private network (VPN) and cached at a server at a base station in order to ensure data availability. The base station may be installed in a car or another mobile vehicle. The two servers will periodically communicate with each other via secure satellite communication in order to check for updates. The base station supplies the relevant GIS data for the mobile units (people or even robots in the field at remote solutions). The communication between the mobile units is based on a peer-to-peer wireless local area network (WLAN) architecture. The mobile units are equipped with mobile computers (i.e. laptop, tablet PC or PDA) combined with a satellite-based positioning system (GPS) that enables them to request the proper geographic data sets from yhe base station's map server. An interactive mapping software shows the actual location on the map and allows the user to navigate (zoom, pan) through the high-resolution map display. The user can switch 'on' or 'off' several thematic layers (i.e. street network or points of interest) on the map. The software also supports collaborative aspects of MoMoSat by offering tools for the management of the GeoNotes that can be visualized by categories. The user can extend the existing GeoNotes with his personnel comments or create new GeoNotes by defining categories, recipients and the level of

  14. Temporal evolution of granitic magmas in the Luanchuan metallogenic belt, east Qinling Orogen, central China: Implications for Mo metallogenesis

    Science.gov (United States)

    Li, Dong; Han, Jiangwei; Zhang, Shouting; Yan, Changhai; Cao, Huawen; Song, Yaowu

    2015-11-01

    The Luanchuan metallogenic belt, located within the eastern part of the Qinling Orogen, central China, hosts a number of world-class Mo deposits that are closely related to small late Mesozoic granitic plutons. Zircon U-Pb dating of distinct plutons in the Luanchuan metallogenic belt has yielded ages of 153 ± 1, 154 ± 2, 152 ± 2, and 148 ± 1 Ma. Molybdenite Re-Os isotopic compositions of Yuku ore district in the southern part of Luanchuan metallogenic belt has yielded an isochron age of 146 ± 1 Ma, which is consistent with the large-scale mineralization ages in the northern part of the Luanchuan metallogenic belt. A combination of previous studies and new geochronological and isotopic data show a concordant temporal and genetic link between granitic magmatism and Mo mineralization in the Luanchuan metallogenic belt, suggesting that this mineralization episode formed the most extensive Mo mineralization belt in the east Qinling Orogen. Zircon grains from Mo-related granitic plutons show similar trace element distributions. High-precision Multi Collector-Inductively Coupled Plasma-Mass Spectrometry (MC-ICP-MS) Pb isotope analysis of K-feldspar megacrysts from mineralization-related granites suggest that they were derived from the lower crust. Similarly, the Pb isotopic compositions of pyrite coprecipitated with molybdenite also suggest that the metals were derived form the lower crust, with probably minor mantle contribution. A continuum mineralization model that describes the sourcing of Mo from an evolving granitic magma over successive differentiation events, possibly in separate but connected magma chambers, could explain the remarkable Mo enrichment in the Luanchuan metallogenic belt. The volatile- and Mo-bearing granitic magmas ascended as diapirs from the deep crust, and were emplaced as dikes in the upper crust. Lithological differences between these Mo-bearing granites may relate to different stages in the evolution of individual magmas. Finally, ore

  15. The fracture toughness and DBTT of MoB particle-reinforced MoSi2 composites

    International Nuclear Information System (INIS)

    Xiong Zhi; Wang Gang; Jiang Wan

    2005-01-01

    The room temperature fracture toughness and the high temperature DBTT of MoB particle-reinforced MoSi 2 composites were investigated using Vickers indentation technique and MSP testing method, respectively. Modified small punch (MSP) test is a method for evaluation of mechanical properties using very small specimens, and it's appropriate for the determination of strength and DBTT. It was found that the approximate fracture toughness of the composite is 1.3 times that of monolithic MoSi 2 , and its DBTT is 100 C higher than that of monolithic MoSi 2 materials. Cracks deflection is a probable mechanism responsible for this behavior. (orig.)

  16. Theoretical prediction of high electron mobility in multilayer MoS2 heterostructured with MoSe2

    Science.gov (United States)

    Ji, Liping; Shi, Juan; Zhang, Z. Y.; Wang, Jun; Zhang, Jiachi; Tao, Chunlan; Cao, Haining

    2018-01-01

    Two-dimensional (2D) MoS2 has been considered to be one of the most promising semiconducting materials with the potential to be used in novel nanoelectronic devices. High carrier mobility in the semiconductor is necessary to guarantee a low power dissipation and a high switch speed of the corresponding electronic device. Strain engineering in 2D materials acts as an important approach to tailor and design their electronic and carrier transport properties. In this work, strain is introduced to MoS2 through perpendicularly building van der Waals heterostructures MoSe2-MoS2. Our first-principles calculations demonstrate that acoustic-phonon-limited electron mobility can be significantly enhanced in the heterostructures compared with that in pure multilayer MoS2. It is found that the effective electron mass and the deformation potential constant are relatively smaller in the heterostructures, which is responsible for the enhancement in the electron mobility. Overall, the electron mobility in the heterostructures is about 1.5 times or more of that in pure multilayer MoS2 with the same number of layers for the studied structures. These results indicate that MoSe2 is an excellent material to be heterostructured with multilayer MoS2 to improve the charge transport property.

  17. The effects of microstructure on the temper embrittlement susceptibility of a 2 1/4Cr1Mo forging

    International Nuclear Information System (INIS)

    Gage, G.; Edwards, B.C.; Hudson, J.A.

    This paper describes the results of a detailed metallurgical assessment of the microstructural stability and temper embrittlement susceptibility of a 255mm thick 2 1/4Cr1Mo steel forging which was manufactured by a process typical of that used for the tube plates of steam generator units. Ageing effects were studied over the temperature range 450-575 deg. C for times up to 20,000h. Grain boundary compositional changes were monitored using Auger Electron Spectroscopy (AES) and microstructural changes determined by both transmission electron microscopy and X-ray analysis. Brittle intergranular failure was produced in the lower shelf energy regime and AES analysis showed that this was associated with the grain boundary segregation of phosphorus. This segregation was shown to exhibit equilibrium characteristics and was consistent with that of phosphorus segregation in α-iron. Implying no significant alloy-impurity interaction. The shift in the ductile-to-brittle transition temperature was not uniquely a function of the grain boundary segregation but was shown to be dependent upon both the level of grain boundary solute segregation and the type of precipitate particles present. Heat treatment conditions which promoted the formation of M 6 C precipitates were particularly deleterious to toughness. (author)

  18. Grain-size sorting and slope failure in experimental subaqueous grain flows

    NARCIS (Netherlands)

    Kleinhans, M.G.; Asch, Th.W.J. van

    2005-01-01

    Grain-size sorting in subaqueous grain flows of a continuous range of grain sizes is studied experimentally with three mixtures. The observed pattern is a combination of stratification and gradual segregation. The stratification is caused by kinematic sieving in the grain flow. The segregation is

  19. PROCESSING OATS GRAIN FOR CULL COWS FINISHED IN FEEDLOT PROCESSAMENTO DO GRÃO DE AVEIA PARA ALIMENTAÇÃO DE VACAS DE DESCARTE TERMINADAS EM CONFINAMENTO

    Directory of Open Access Journals (Sweden)

    João Restle

    2009-07-01

    Full Text Available The processing of oats grain (entire or grounded on the performance of feedlot finished cull cows was studied. Cows were fed with 60% of corn silage and 40% of concentrate, composed by oats grain, urea, limestone and salt.  The treatments were Treatment 1 with whole oats grain, Treatment 2 with 50% grounded grain, e Treatment 3 with 100% grounded grain. The data were analyzed by regression. Grinding did not affect dry matter intake, being the average values 10.563 kg/animal/day, 2.2% when expressed per 100 kg of live weight and 102.94 g when expressed per metabolic weight. Average daily weight gain increased linearly with the inclusion of grounded oats in the diet (Y=.79976+.0033X, while feed conversion declined linearly (Y=13.21155-.04021X. Subcutaneous fat thickness increased lenarly with the increase of grounded oats in the diet. The better use of the grounded oats resulted in higher weight gain and slaughter weight, which explains the higher fat deposition of cows fed with grounded oats.

    KEY WORDS: Feed conversion, intake, weight gain.
    Foi estudado o efeito do processamento do grão de aveia-preta sobre o desempenho de vacas de descarte em confinamento. As vacas foram alimentadas com 60% de silagem de milho e 40% de concentrado, composto por grãos de aveia-preta, ureia, calcário calcítico e cloreto de sódio. A forma como se forneceram os grãos aos animais representaram os tratamentos, ou seja, Tratamento 1 com grãos de aveia fornecidos inteiros, Tratamento 2 com 50% dos grãos fornecidos moídos, e Tratamento 3 com 100% dos grãos fornecidos moídos. Os dados foram submetidos à análise de regressão polinomial a 5% de significância. A moagem da aveia não influenciou o consumo dos animais, que apresentaram consumo de 10,563 kg/dia, ou 2,2% quando ajustado para peso vivo e 102,94 g por unidade de tamanho metabólico. O ganho de peso apresentou comportamento linear com a substituição do grão inteiro por grão mo

  20. MoDnm1 Dynamin Mediating Peroxisomal and Mitochondrial Fission in Complex with MoFis1 and MoMdv1 Is Important for Development of Functional Appressorium in Magnaporthe oryzae.

    Directory of Open Access Journals (Sweden)

    Kaili Zhong

    2016-08-01

    Full Text Available Dynamins are large superfamily GTPase proteins that are involved in various cellular processes including budding of transport vesicles, division of organelles, cytokinesis, and pathogen resistance. Here, we characterized several dynamin-related proteins from the rice blast fungus Magnaporthe oryzae and found that MoDnm1 is required for normal functions, including vegetative growth, conidiogenesis, and full pathogenicity. In addition, we found that MoDnm1 co-localizes with peroxisomes and mitochondria, which is consistent with the conserved role of dynamin proteins. Importantly, MoDnm1-dependent peroxisomal and mitochondrial fission involves functions of mitochondrial fission protein MoFis1 and WD-40 repeat protein MoMdv1. These two proteins display similar cellular functions and subcellular localizations as MoDnm1, and are also required for full pathogenicity. Further studies showed that MoDnm1, MoFis1 and MoMdv1 are in complex to regulate not only peroxisomal and mitochondrial fission, pexophagy and mitophagy progression, but also appressorium function and host penetration. In summary, our studies provide new insights into how MoDnm1 interacts with its partner proteins to mediate peroxisomal and mitochondrial functions and how such regulatory events may link to differentiation and pathogenicity in the rice blast fungus.

  1. Studies of the effect of irradiation in a nuclear reactor, of targets containing Mo used for the preparation of 99Mo gel, material that constitutes the 99Mo - 99mTc generators

    International Nuclear Information System (INIS)

    Nieto, Renata Correa

    2004-01-01

    The most used radioisotope in Nuclear Medicine is 99m Tc, obtained in the 99 Mo - 99m Tc generator form. 99 Mo can be produced by several nuclear reactions in Cyclotron and Reactor. The production in Cyclotron is not technically and commercially feasible. The production in Nuclear Reactor can be made in two ways: 235 U fission and 99 Mo (n,γ) 99 Mo reaction. A project aiming the production of 99 Mo by activation of Mo is under way at IPEN, producing a gel type MoZr generator. There are two ways of preparing the gel and the generators: by irradiating MoO 3 and preparing the gel or by the preparation of the gel and further irradiation. This work consists in the study of the irradiation effects in several targets containing Mo for the production of 99 Mo by the 98 Mo (n,γ) 99 Mo reaction and further preparation of the gel for use as a gel type 99 Mo - 99m Tc generator. Three rinds of gel were studied: zirconium, titanium and cerium molybdate, and their morphology, infrared structure and elution yield of 99m Tc were analysed. The best results were achieved with the generators prepared with MoZr post formed gel, with amorphous structure and better elution yields. The pre formed gel induced crystallinity and worst performance of the generators. (author)

  2. Ternary alloying study of MoSi2

    International Nuclear Information System (INIS)

    Yi, D.; Li, C.; Akselsen, O.M.; Ulvensoen, J.H.

    1998-01-01

    Ternary alloying of MoSi 2 with adding a series of transition elements was investigated by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy (TEM), and energy dispersive spectroscopy (EDS). Iron, Co, Ni, Cr, V, Ti, and Nb were chosen as alloying elements according to the AB 2 structure map or the atomic size factor. The studied MoSi 2 base alloys were prepared by the arc melting process from high-purity metals. The EDS analysis showed that Fe, Co, and Ni have no solid solubility in as-cast MoSi 2 , while Cr, V, Ti, and Nb exhibit limited solid solubilities, which were determined to be 1.4 ± 0.7, 1.4 ± 0.4, 0.4 ± 0.1, and 0.8 ± 0.1. Microstructural characterization indicated that Mo-Si-M VIII (M VIII = Fe, Co, Ni) and Mo-Si-Cr alloys have a two-phase as-cast microstructure, i.e., MoSi 2 matrix and the second-phase FeSi 2 , CoSi, NiSi 2 , and CrSi 2 , respectively. In as-cast Mo-Si-V, Mo-Si-Ti, and Mo-Si-Nb alloys, besides MoSi 2 and C40 phases, the third phases were observed, which have been identified to be (Mo, V) 5 Si 3 , TiSi 2 , and (Mo, Nb) 5 Si 3

  3. Physicochemical investigation of Bi2MoO6 solid-phase interaction with Sm2MoO6

    International Nuclear Information System (INIS)

    Khajkina, E.G.; Kovba, L.M.; Bazarova, Zh.G.; Khal'baeva, K.M.; Khakhinov, V.V.; Mokhosoev, M.V.

    1986-01-01

    Bi 2 MoO 6 -Sm 2 MoO 6 interaction in the temperature range of 700-1000 deg C is studied using X-ray phase analysis and vibrational spectroscopy. Formation of monoclinic solid solutions based on γ'-Bi 2 MoO 6 and B 2-x Sm x MoO 6 varied composition phase with α-Ln 2 MoO 6 structure which homogeneity region extent at 1000 deg C constitutes ∼ 50 mol % (0.7≤x≤1.7) is stated. Crystallographic characteristics of the synthesized phases are determined

  4. Investigations on grain boundary segregation energy of phosphorus in 12Cr1MoV steel under elastic stress

    Czech Academy of Sciences Publication Activity Database

    Zheng, L.; Fu, Y.; Lejček, Pavel; Song, S.; Schmitz, G.; Meng, Y.

    2016-01-01

    Roč. 18, č. 4 (2016), 506-510 ISSN 1438-1656 R&D Projects: GA ČR GAP108/12/0144 Institutional support: RVO:68378271 Keywords : grain boundary segregation, * stress effect, * phosphorus, * steel Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.319, year: 2016

  5. Microstructure characteristics and temperature-dependent high cycle fatigue behavior of advanced 9% Cr/CrMoV dissimilarly welded joint

    International Nuclear Information System (INIS)

    Wu, Qingjun; Lu, Fenggui; Cui, Haichao; Ding, Yuming; Liu, Xia; Gao, Yulai

    2014-01-01

    Advanced 9% Cr and CrMoV steels chosen as candidate materials are first welded by narrow-gap submerged arc welding (NG-SAW) to fabricate the heavy section rotor. The present work focuses on studying the high-cycle fatigue (HCF) behavior of advanced 9% Cr/CrMoV dissimilarly welded joint at different temperatures. Conditional fatigue strength of this dissimilarly welded joint was obtained by HCF tests at room temperature (RT), 400 °C and 470 °C. It was observed that the failure occurred at the side of CrMoV base metal (BM), weld metal (WM) and heat affected zone (HAZ) of CrMoV side over 5×10 7 cycles for the specimens tested at RT, 400 °C and 470 °C. The detailed microstructures of BMs, WMs and HAZs as well as fracture appearance were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Precipitation and aggregation of carbides along the grain boundaries were clearly detected with the increase of temperature, which brought a negative effect on the fatigue properties. It is interesting to note that the inclusion size leading to crack initiation became smaller for the HCF test at higher temperature. Therefore, reduction in the inclusion size in a welded joint helps to improve the HCF performance at high temperature

  6. Microstructure characteristics and temperature-dependent high cycle fatigue behavior of advanced 9% Cr/CrMoV dissimilarly welded joint

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qingjun [Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, Shanghai 200240 (China); Lu, Fenggui, E-mail: Lfg119@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, Shanghai 200240 (China); Shanghai Key Laboratory of Modern Metallurgy and Materials Processing, Shanghai University, Shanghai 200072 (China); Cui, Haichao [Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, Shanghai 200240 (China); Ding, Yuming; Liu, Xia [Shanghai Turbine Plant of Shanghai Electric Power Generation Equipment Co. Ltd., Shanghai 200240 (China); Gao, Yulai, E-mail: ylgao@shu.edu.cn [Shanghai Key Laboratory of Modern Metallurgy and Materials Processing, Shanghai University, Shanghai 200072 (China)

    2014-10-06

    Advanced 9% Cr and CrMoV steels chosen as candidate materials are first welded by narrow-gap submerged arc welding (NG-SAW) to fabricate the heavy section rotor. The present work focuses on studying the high-cycle fatigue (HCF) behavior of advanced 9% Cr/CrMoV dissimilarly welded joint at different temperatures. Conditional fatigue strength of this dissimilarly welded joint was obtained by HCF tests at room temperature (RT), 400 °C and 470 °C. It was observed that the failure occurred at the side of CrMoV base metal (BM), weld metal (WM) and heat affected zone (HAZ) of CrMoV side over 5×10{sup 7} cycles for the specimens tested at RT, 400 °C and 470 °C. The detailed microstructures of BMs, WMs and HAZs as well as fracture appearance were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Precipitation and aggregation of carbides along the grain boundaries were clearly detected with the increase of temperature, which brought a negative effect on the fatigue properties. It is interesting to note that the inclusion size leading to crack initiation became smaller for the HCF test at higher temperature. Therefore, reduction in the inclusion size in a welded joint helps to improve the HCF performance at high temperature.

  7. AMORE Mo-99 Spike Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Youker, Amanda J. [Argonne National Lab. (ANL), Argonne, IL (United States); Krebs, John F. [Argonne National Lab. (ANL), Argonne, IL (United States); Quigley, Kevin J. [Argonne National Lab. (ANL), Argonne, IL (United States); Byrnes, James P. [Argonne National Lab. (ANL), Argonne, IL (United States); Rotsch, David A [Argonne National Lab. (ANL), Argonne, IL (United States); Brossard, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States); Wesolowski, Kenneth [Argonne National Lab. (ANL), Argonne, IL (United States); Alford, Kurt [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-09-27

    With funding from the National Nuclear Security Administrations Material Management and Minimization Office, Argonne National Laboratory (Argonne) is providing technical assistance to help accelerate the U.S. production of Mo-99 using a non-highly enriched uranium (non-HEU) source. A potential Mo-99 production pathway is by accelerator-initiated fissioning in a subcritical uranyl sulfate solution containing low enriched uranium (LEU). As part of the Argonne development effort, we are undertaking the AMORE (Argonne Molybdenum Research Experiment) project, which is essentially a pilot facility for all phases of Mo-99 production, recovery, and purification. Production of Mo-99 and other fission products in the subcritical target solution is initiated by putting an electron beam on a depleted uranium (DU) target; the fast neutrons produced in the DU target are thermalized and lead to fissioning of U-235. At the end of irradiation, Mo is recovered from the target solution and separated from uranium and most of the fission products by using a titania column. The Mo is stripped from the column with an alkaline solution. After acidification of the Mo product solution from the recovery column, the Mo is concentrated (and further purified) in a second titania column. The strip solution from the concentration column is then purified with the LEU Modified Cintichem process. A full description of the process can be found elsewhere [1–3]. The initial commissioning steps for the AMORE project include performing a Mo-99 spike test with pH 1 sulfuric acid in the target vessel without a beam on the target to demonstrate the initial Mo separation-and-recovery process, followed by the concentration column process. All glovebox operations were tested with cold solutions prior to performing the Mo-99 spike tests. Two Mo-99 spike tests with pH 1 sulfuric acid have been performed to date. Figure 1 shows the flow diagram for the remotely operated Mo-recovery system for the AMORE project

  8. Metallography of a pulsed Nd:YAG laser weld in a RS/PM Al-8Fe-2Mo alloy

    International Nuclear Information System (INIS)

    Krishnaswamy, S.; Baeslack, W.A. III

    1990-01-01

    This paper reports the microstructure of a pulsed Nd:YAG laser weld in a rapid solidification/powder metallurgy (RS/PM) Al-8.0 wt.% Fe-2.3 wt.% Mo (Al-8Fe-2Mo) alloy investigated using light microcopy, canning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. This analysis revealed significant microstructure variations across the weld fusion zone (FZ). Near the fusion boundary, a light-etching FZ microstructure was observed to contain submicron dispersoids entrapped in a matrix of fine-sized dendritic alpha aluminum. At the center of the FZ, the presence of relatively coarse-sized intermetallic particles that served as growth centers for coarser dendritic alpha aluminum promoted a dark-etching microstructure. In the boundary between successive melt zones, both a heat-affected zone (HAZ) containing acicular dispersoids and a fusion boundary region (FBR) containing irregular-shaped particles in a coarse-grained dendritic alpha aluminum matrix were observed

  9. Decay of 99Mo

    International Nuclear Information System (INIS)

    Dickens, J.K.; Love, T.A.

    1976-01-01

    Relative intensities for K x-rays and gamma rays emanating from 99 Mo in equilibrium with its 99 Tc* daughter have been measured using several Ge photon detectors. Combining these intensities with an evaluated set of electron-conversion coefficients has provided a set of absolute intensities for the observed gamma rays. The absolute intensity for the dominant 140.5-keV gamma ray in 99 Tc was determined to be 90.7 +- 0.6/100 99 Mo disintegrations for 99 Mo decay in equilibrium with decay of the 99 Tc* daughter

  10. High pressure effect on MoS2 and MoSe2 single crystals grown by ...

    Indian Academy of Sciences (India)

    Unknown

    tetrahedral anvil apparatus up to 5 GPa. In this paper we report room temperature resistance mea- surements as a function of pressure on MoS2 and MoSe2 single crystals. In each case the resistance decreases un- der pressure due to an increase in the carrier concentration. 2. Experimental. Single crystals of MoS2 and ...

  11. Kinetics of cellular transformation and competing precipitation mechanisms during sub-eutectoid annealing of U10Mo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Saumyadeep; Devaraj, Arun; Kovarik, Libor; Arey, Bruce W.; Sweet, Lucas E.; Varga, Tamas; Lavender, Curt A.; Joshi, Vineet V.

    2017-11-01

    Transformation kinetics of metastable body-centered cubic γ-UMo phase in U-10 wt.percent Mo alloy during annealing at sub-eutectoid temperatures of 500C and 400C has been determined as a function of time using detailed microstructural characterization by scanning electron microscopy, X-ray diffraction analysis, scanning transmission electron microscopy, and atom probe tomography. Based on the results, we found that the phase transformation is initiated by cellular transformation at both the temperatures, which results in formation of a lamellar microstructure along prior γ-UMo grain boundaries.

  12. Ion bombardment damage in a modified Fe-9Cr-1Mo steel

    International Nuclear Information System (INIS)

    Farrell, K.; Lee, E.H.

    1984-01-01

    A normalized-and-tempered Fe-9Cr-1Mo steel, with small Nb and V additions, was bombarded with 4-MeV iron ions to 100 dpa at 400, 450, 500, 550, and 600 0 C. Major damage feature was dislocation tangles which coarsened with increasing bombardment temperature. Sparse cavities were heterogeneously distributed at 500 and 550 0 C. Incorporation of helium and deuterium simultaneously in the bombardments at rates of 10 and 45 appM/dpa, respectively, introduced very high concentrations of small cavities at all temperatures, many of them on grain boundaries. These cavities were shown to be promoted by helium. A small fraction of the matrix cavities exhibited bias-driven growth at 500 and 550 0 C, with swelling 0 C higher than the peak swelling temperature found in neutron irradiations, which is compatible with the higher damage rate used in the ion bombardments. High concentrations of subgrain boundaries and dislocations resulting from the heat treatment, and unbalanced cavity and dislocation sink strengths in the damage structures contribute to the swelling resistance. Such resistance may not be permanent. High densities of bubbles on grain boundaries indicate a need for helium embrittlement tests

  13. Measurement of Mo-99 column activity in the evaluation of Mo-99/Tc-99m generator

    International Nuclear Information System (INIS)

    Kuster, Z.

    1994-01-01

    In order to calculate the real elution efficiency of Mo-99/Tc-99m generator the Mo-99 content on the column has to be previously determined. As found in this work, the external measurement of Mo-99-column activity by means of Geiger-Mueller counter is a simple, fast and reliable method. Generally, Mo-99-column is placed slightly out of the center of the generator; therefore the externally measured flux of photons (φ) is an angular-dependent function. If the thickness of the lead container is radially uniform, the flux measured at some distance from the generator (which is rotated in 2π/3 steps) is given by the equation φ = A (1 + Bcos (α-2π(i - 2)/3)) -1 , i=1,2 or 3 (Eq.1) where A is a numerical constant depending on the Mo-99-column activity, B is a numerical constant depending on the Mo-99- column position within the lead container, the angle α depends on the initial orientation of the generator. A total of 20 generator were studied. The measured Mo-99-column activities (Capintec dose calibrator) were in the range 13.1- 35.11 GBq. Contrary to the findings of Vinberg and Kristensen (Eur J Nucl Med 1/1976(219), values of A (Eq. 1) are in good correlation (r 2 =0.9794) with the measured Mo-99-column activities. (author)

  14. Highly flexible, conductive and transparent MoO3/Ag/MoO3 multilayer electrode for organic photovoltaic cells

    International Nuclear Information System (INIS)

    Abachi, T.; Cattin, L.; Louarn, G.; Lare, Y.; Bou, A.; Makha, M.; Torchio, P.

    2013-01-01

    MoO 3 /Ag/MoO 3 (MAM) multilayer structures were deposited by vacuum evaporation on polyethylene terephthalate (PET) substrate. We demonstrate that, as in the case of glass substrate, the sheet resistance of such structures depends significantly on the Ag film deposition rate. When it is deposited between 0.2 and 0.4 nm/s, an Ag thickness of 11 nm allows achieving sheet resistance of 13 Ω/sq and an averaged transmission of 74%. A study of the influence of the PET substrate on the optimum MoO 3 thicknesses was done. A good qualitative agreement between the theoretical calculations of the variation of the optical transmittance of the MoO 3 /Ag/MoO 3 structures is obtained. The optimum MAM structures MoO 3 (17.5 nm)/Ag (11 nm)/MoO 3 (35 nm) has a factor of merit F M = 4.21 10 −3 (Ω/sq) −1 . Proven by the scotch test the MAM structures exhibit a good adhesion to the PET substrates. The MAM structures were also submitted to bending tests. For outer bending, the samples exhibit no variation of their resistance value, while for inner bending there is a small increase of the resistance of the MAM structures. However this increasing is smaller than that exhibited by Indium Tin Oxide. When the PET/MAM structures are used as anode in organic photovoltaic cells, it is shown that the need to use thicker Ag films inside the multilayer and to cover the MAM with Au to obtain promising Current density vs Voltage characteristics is due to the heating of the PET substrate during the deposition process. - Highlights: • MoO 3 /Ag/MoO 3 structures deposited on polyethylene terephthalate substrate. • MoO 3 /Ag/MoO 3 structures deposited by vacuum evaporation. • The Ag deposition rate influences the properties of the structures. • The MoO 3 /Ag/MoO 3 optimum structure has a factor of merit F M = 4.21 10 −3 (Ω/sq) −1 . • The MoO 3 /Ag/MoO 3 structures exhibit a high flexibility

  15. EXAFS study of Mo2N and Mo nitrides supported on zeolites

    International Nuclear Information System (INIS)

    Liu Zhenlin; Meng Ming; Fu Yilu; Jiang Ming; Hu Tiandou; Xie Yaning; Liu Tao

    2002-01-01

    In the present study, the reaction is applied to prepare molybdenum nitrides with high surface area, and zeolites are used as supports. The EXAFS of the Mo K-absorption edge is measured and the change of coordination environment of Mo atoms before and after the nitridation is revealed

  16. Hidroxyapatite Coating on CoCrMo Alloy Titanium Nitride Coated Using Biomimetic Method

    International Nuclear Information System (INIS)

    Charlena; Sukaryo, S.G.; Fajar, M.

    2016-01-01

    Bone implants is a way to cure broken bones which is being developed. The implants can be made of metals, ceramics and polymers. Metallic materials commonly used are titanium (Ti), stainless steel, and metal alloys. This study used Co-based alloys, i.e. CoCrMo coated with titanium nitride (TiN) which was then coated on hidroxyapatite (HAp). The HAp coating on the surface of CoCrMo alloy was done by biomimetic methods, first by soaking the metal alloys in simulated body fluid (SBF) solution for 18, 24, and 36 hours. The immersion in the SBF solution produced white coat on the surface of the metal alloy. The layers formed were analyzed by scanning electron microscope (SEM) and characterized by x-ray diffractometer (XRD). Based on the SEM results of 36 hours treatment, the morphology of apatite crystal formed fine grains. According to XRD result, there were HAp peaks at angles 2θ 31.86, 32.25, dan 39.48. However, there were also CaCO 3 peaks at angles 2θ 29.46, 36.04, and 46.79. It indicated the pure HAp is not yet formed. (paper)

  17. Hidroxyapatite Coating on CoCrMo Alloy Titanium Nitride Coated Using Biomimetic Method

    Science.gov (United States)

    Charlena; Sukaryo, S. G.; Fajar, M.

    2016-11-01

    Bone implants is a way to cure broken bones which is being developed. The implants can be made of metals, ceramics and polymers. Metallic materials commonly used are titanium (Ti), stainless steel, and metal alloys. This study used Co-based alloys, i.e. CoCrMo coated with titanium nitride (TiN) which was then coated on hidroxyapatite (HAp). The HAp coating on the surface of CoCrMo alloy was done by biomimetic methods, first by soaking the metal alloys in simulated body fluid (SBF) solution for 18, 24, and 36 hours. The immersion in the SBF solution produced white coat on the surface of the metal alloy. The layers formed were analyzed by scanning electron microscope (SEM) and characterized by x-ray diffractometer (XRD). Based on the SEM results of 36 hours treatment, the morphology of apatite crystal formed fine grains. According to XRD result, there were HAp peaks at angles 2θ 31.86, 32.25, dan 39.48. However, there were also CaCO3 peaks at angles 2θ 29.46, 36.04, and 46.79. It indicated the pure HAp is not yet formed.

  18. First attempts towards the early detection of fatigued substructures using cyclic-loaded 20 MnMoNi 5 5 steel

    International Nuclear Information System (INIS)

    Dobmann, G.; Seibold, A.

    1992-01-01

    Materials subjected to cyclic loading undergo substructural changes which may affect service life. The low alloy, fine-grained structural steel 20 MnMoNi 5 5 is used to demonstrate how substructural changes detected using TEM techniques are a function of the number of cycles undergone. For a given cyclic loading the usage factor η=N/N f =0.5 can be derived. Initial investigations using nondestructive examination methods have indicated that substructural changes and magnetic variables can be correlated. (orig.)

  19. Fatigue strength of Co-Cr-Mo alloy clasps prepared by selective laser melting.

    Science.gov (United States)

    Kajima, Yuka; Takaichi, Atsushi; Nakamoto, Takayuki; Kimura, Takahiro; Yogo, Yoshiaki; Ashida, Maki; Doi, Hisashi; Nomura, Naoyuki; Takahashi, Hidekazu; Hanawa, Takao; Wakabayashi, Noriyuki

    2016-06-01

    We aimed to investigate the fatigue strength of Co-Cr-Mo clasps for removable partial dentures prepared by selective laser melting (SLM). The Co-Cr-Mo alloy specimens for tensile tests (dumbbell specimens) and fatigue tests (clasp specimens) were prepared by SLM with varying angles between the building and longitudinal directions (i.e., 0° (TL0, FL0), 45° (TL45, FL45), and 90° (TL90, FL90)). The clasp specimens were subjected to cyclic deformations of 0.25mm and 0.50mm for 10(6) cycles. The SLM specimens showed no obvious mechanical anisotropy in tensile tests and exhibited significantly higher yield strength and ultimate tensile strength than the cast specimens under all conditions. In contrast, a high degree of anisotropy in fatigue performance associated with the build orientation was found. For specimens under the 0.50mm deflection, FL90 exhibited significantly longer fatigue life (205,418 cycles) than the cast specimens (112,770 cycles). In contrast, the fatigue lives of FL0 (28,484 cycles) and FL45 (43,465 cycles) were significantly shorter. The surface roughnesses of FL0 and FL45 were considerably higher than those of the cast specimens, whereas there were no significant differences between FL90 and the cast specimens. Electron backscatter diffraction (EBSD) analysis indicated the grains of FL0 showed preferential close to orientation of the γ phase along the normal direction to the fracture surface. In contrast, the FL45 and FL90 grains showed no significant preferential orientation. Fatigue strength may therefore be affected by a number of factors, including surface roughness and crystal orientation. The SLM process is a promising candidate for preparing tough removable partial denture frameworks, as long as the appropriate build direction is adopted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A comparison of grain boundary evolution during grain growth in fcc metals

    International Nuclear Information System (INIS)

    Brons, J.G.; Thompson, G.B.

    2013-01-01

    Grain growth of Cu and Ni thin films, subjected to in situ annealing within a transmission electron microscope, has been quantified using a precession-enhanced electron diffraction technique. The orientation of each grain and its misorientation with respect to its neighboring grains were calculated. The Cu underwent grain growth that maintained a monomodal grain size distribution, with its low-angle grain boundaries being consumed, and the Ni exhibited grain size distributions in stages, from monomodal to bimodal to monomodal. The onset of Ni’s abnormal grain growth was accompanied by a sharp increase in the Σ3 and Σ9 boundary fractions, which is attributed to simulation predictions of their increased mobility. These Σ3 and Σ9 fractions then dropped to their room temperature values during the third stage of grain growth. In addition to the Σ3 and Σ9 boundaries, the Σ5 and Σ7 boundaries also underwent an increase in total boundary fraction with increasing temperature in both metals

  1. Study of methodologies for quality control of 99Mo used in 99Mo/99mTc generators

    International Nuclear Information System (INIS)

    Said, Daphne de Souza

    2016-01-01

    99m Tc is the most used radionuclide in nuclear medicine. In Brazil, the 99 Mo/ 99m Tc generators are exclusively produced by Radiopharmacy Center at IPEN-CNEN/ SP, by importing 99 Mo from different suppliers. 99 Mo (t 1/2 = 66 h) is a fission product of 235 U and it can have radionuclidic impurities that are prejudicial for human health. For safe use of generators, it is necessary to perform the evaluation of 99 Mo by quality control tests in order to assess if 99 Mo complies with the specifications. The European Pharmacopoeia (EP) presents a monograph for evaluation of the quality of the [ 99 Mo] solution as sodium molybdate,that is used as raw material for 99 Mo/ 99m Tc generators production, including specification parameters (identification, radiochemical purity and radionuclidic purity), analysis methods and limits. However, it has been observed difficulties on the execution and implementation of these methods by the generators producers, with a few literature about this subject, probably due to complexity of the proposed methods. In this work, many quality control parameters of 99 Mo described in the EP monograph were evaluated. Separation methods for 99M o from its radionuclidic impurities by solid phase extraction (SPE) and TLC were studied. After SPE separation, the quantification of metals by ICP-OES to evaluate the percentage of retention of Mo and the percentage of recovery of Ru, Te and Sr using different types of cartridges were proposed, replacing radiotracers use. It was observed that the specific type of SPE cartridge recommended by the EP for separation of 99 Mo presented low recoveries for Ru, compared to other available anion exchange SPE cartridges. 99 Mo samples from different worldwide suppliers were analyzed. It was observed that quantification of 103 Ru in 99 Mo samples with decay time higher than 4 weeks is possible. An alternative method for separation of 131 I from 99 Mo showed promising results by TLC. The quantification of beta and

  2. Evaluation of AS-CAST U-Mo alloys processed in graphite crucible coated with boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Marra, Kleiner M., E-mail: kleiner.marra@prof.una.br [Centro Universitario UNA, Belo Horizonte, MG (Brazil). Curso de Engenharia Mecânica; Reis, Sérgio C.; Paula, João B. de; Pedrosa, Tércio A., E-mail: reissc@cdtn.br, E-mail: jbp@cdtn.br, E-mail: tap@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    This paper reports the production of uranium-molybdenum alloys, which have been considered promising fuel for test and research nuclear reactors. U-Mo alloys were produced in three molybdenum contents: 5w%, 7w%, and 10w%, using an electric vacuum induction furnace. A boron nitride-coated graphite crucible was employed in the production of the alloys and, after melting, the material was immediately poured into a boron nitride-coated graphite mold. The incorporation of carbon was observed, but it happened in a lower intensity than in the case of the non-coated crucible/mold. It is observed that the carbon incorporation increased and alloys density decreased with Mo addition. It was also noticed that the increase in the carbon or molybdenum content did not seem to change the as-cast structure in terms of granulation. The three alloys presented body-centered cubic crystal structure (γ-phase), after solidification, besides a seeming negative microsegregation of molybdenum, from the center to the periphery of the grains. There were signs of macrosegregation, from the base to the top of the ingots. (author)

  3. Measurement of the molar heat capacities of MoO2 and MoO3 from 350 to 950 K

    International Nuclear Information System (INIS)

    Inaba, H.; Miyahara, K.; Naito, K.

    1984-01-01

    Molar heat capacities of MoO 2 and MoO 3 were measured in the range between 350 and 950 K by means of adiabatic scanning calorimetry. For MoO 2 , a sharp heat-capacity anomaly with a molar enthalpy change of (178 +- 24) J.mol -1 and a molar entropy change of (0.207 +- 0.028) J.K -1 .mol -1 was observed at 865 K, which had not been detected by drop calorimetry. For MoO 3 , two heat-capacity anomalies with molar enthalpy changes of (88 +- 21) and (60 +- 36) J.mol -1 were found at 808 K and 857 K, respectively; neither anomaly had been detected by the drop method. The lattice molar heat capacities of MoO 2 and MoO 3 are estimated as Csub(l,m)(MoO 2 ) = D(469 K/T) + E(578 K/T) + E(876 K/T) and Csub(l,m)(MoO 3 ) = D(208 K/T) + 2E(488 K/T) + E(1170 K/T), where D(x) and E(x) are the Debye and Einstein functions, respectively. The temperature coefficient of the electronic molar heat capacity of MoO 2 is estimated as (6.0 +- 0.5) mJ.K -2 .mol -1 . The excess heat capacity in MoO 3 found at higher temperatures is interpreted as being due to vacancy formation with a molar activation energy of (98 +-5) kJ.mol -1 . The origin of the heat-capacity anomalies is inferred as arising from the slight movement of distorted MoO 6 octahedra in the MoO 2 and MoO 3 structures. (author)

  4. Carbon and Mo transformations during the synthesis of mesoporous Mo2C/carbon catalysts by carbothermal hydrogen reduction

    Science.gov (United States)

    Wang, Haiyan; Liu, Shida; Liu, Bing; Montes, Vicente; Hill, Josephine M.; Smith, Kevin J.

    2018-02-01

    The synthesis of mesoporous Mo2C/carbon catalysts by carbothermal hydrogen reduction is reported. Petroleum coke (petcoke) was activated with KOH at 800 °C to obtain high surface area microporous activated petcoke (APC; 2000 m2/g). The APC was wet impregnated with ammonium heptamolybdate (AHM: 10 wt% Mo), dried and reduced in H2 at temperatures from 400 to 800 °C, to yield Mo2C/APC catalysts. Increased reduction temperature increased the Mo2C yield and the mesoporous volume of the Mo2C/APC. At a reduction temperature of 750 °C the mesopore volume of the catalyst doubled compared to the APC support and accounted for 37% of the total pore volume. Maintaining the final CHR temperature for 90 min further increased the Mo2C yield and mesoporosity of the catalyst. The role of Mo2C in the catalytic hydrogenation of the APC and mesopore generation is demonstrated. The activity of the Mo2C/carbon catalysts in the hydrodeoxygenation of 4-methyl phenol increased with increased CHR temperature and catalyst mesoporosity.

  5. Influence of Nitrogen Partial Pressure on Microstructure and Tribological Properties of Mo-Cu-V-N Composite Coatings with High Cu Content

    Directory of Open Access Journals (Sweden)

    Haijuan Mei

    2018-01-01

    Full Text Available In this study, Mo-Cu-V-N composite coatings with high Cu content of ~18 at.% were deposited on 316L stainless steel and YT14 cemented carbide substrates by high power impulse magnetron sputtering in Ar–N2 gas mixtures. The influence of N2 partial pressure was investigated with respect to the microstructure and tribological properties of the coatings. The results indicated that the Mo-Cu-V-N composite coatings exhibited FCC B1-MoN phase with a strong (200 preferred orientation, and Cu phase was found to exist as metallic species. As the N2 partial pressure increased from 0.11 to 0.35 Pa, the peak intensity of (200 plane decreased gradually and simultaneous peak broadening was observed, which was typical for grain refinement. With increasing the N2 partial pressure, the columnar microstructure became much coarser, which led to the decrease of residual stress and hardness. The Mo-Cu-V-N composite coatings with high Cu content exhibited a relatively low wear rate of 10−8 mm3/N·m at 25 °C, which was believed to be attributed to the mixed lubricious oxides of MoO2, CuO and V2O5 formed during tribo-oxidation, which cannot be formed in the coatings with low Cu content. When the wear temperature was increased up to 400 °C, the wear rate increased sharply up to 10−6 mm3/N·m despite the formation of lubricious oxides of MoO3/CuMoO4 and V2O5. This could be due to the loss of nitrogen and pronounced oxidation at high temperatures, which led the wear mechanism to be transformed from mild oxidation wear to severe oxidation wear.

  6. Vertical MoSe2-MoO x p-n heterojunction and its application in optoelectronics

    Science.gov (United States)

    Chen, Xiaoshuang; Liu, Guangbo; Hu, Yunxia; Cao, Wenwu; Hu, PingAn; Hu, Wenping

    2018-01-01

    The hybrid n-type 2D transition-metal dichalcogenide (TMD)/p-type oxide van der Waals (vdW) heterojunction nanosheets consist of 2D layered MoSe2 (the n-type 2D material) and MoO x (the p-type oxide) which are grown on SiO2/Si substrates for the first time via chemical vapor deposition technique, displaying the regular hexagon structures with the average length dimension of sides of ˜8 μm. Vertical MoSe2-MoO x p-n heterojunctions demonstrate obviously current-rectifying characteristic, and it can be tuned via gate voltage. What is more, the photodetector based on vertical MoSe2-MoO x heterojunctions displays optimal photoresponse behavior, generating the responsivity, detectivity, and external quantum efficiency to 3.4 A W-1, 0.85 × 108 Jones, and 1665.6%, respectively, at V ds = 5 V with the light wavelength of 254 nm under 0.29 mW cm-2. These results furnish a building block on investigating the flexible and transparent properties of vdW and further optimizing the structure of the devices for better optoelectronic and electronic performance.

  7. 99Mo production using MoO3 pellets obtained by mechanical compression and heat treatment

    International Nuclear Information System (INIS)

    Rojas, Jorge; Mendoza, Pablo; Lopez, Alcides

    2014-01-01

    This paper shows the results of the MoO 3 pellets fabrication by mechanical compression and the heat treatment method (MCHT) in order to optimize the production of 99 Mo in the RACSO Nuclear Center. The effects of polyvinyl alcohol (PVA) as binder are assessed by heat treatment of pellets in air atmosphere, evaluating the elimination process with increasing temperature and solubility in 5N NaOH. The results show that the pellets fabrication technique is suitable because fulfills the required technical specifications, allows to irradiate 50 % more of 98 Mo mass and facilitate a safer radiological handling of the irradiated MoO 3 . (authors).

  8. Achieving tunable doping of MoSe2 based devices using GO@MoSe2 heterostructure

    Science.gov (United States)

    Maji, Tuhin Kumar; Tiwary, Krishna Kanhaiya; Karmakar, Debjani

    2017-05-01

    Doping nature of MoSe2, one of the promising Graphene analogous device material, can be tuned by controlling the concentration of functional groups in Graphene oxide (GO)@MoSe2 heterostructure. In this study, by first-principles simulation, we have observed that GO can be used as a carrier injection layer for MoSe2, where n or p type carriers are introduced within MoSe2 layer depending on the type and concentration of functional moieties in it. Both n and p-type Schottky barrier height modulations are investigated for different modeled configurations of the heterostructure. This combinatorial heterostructure can be a promising material for future electronic device application.

  9. Origins of residual stress in Mo and Ta films: The role of impurities, microstructural evolution, and phase transformations

    International Nuclear Information System (INIS)

    Parfitt, L.J.; Karpenko, O.P.; Yalisove, S.M.; Bilello, J.C.

    1997-01-01

    Both the sign and magnitude of residual stress can vary with the thickness of sputter deposited films. The origins of this behavior are not well understood. In this work, the authors consider the correlation between the residual stress behavior and the depth dependence of impurities in thin (2.5 nm--150 nm) sputtered Mo and Ta films. They also consider the effects of phase transformations and microstructural changes on the stress behavior. Films were deposited onto Si substrates with native oxide. The residual stress observed in the Mo films varied from highly compressive at 2.5 nm film thickness to ∼0 at 10 nm thickness. Ta films also exhibited a high compressive stress, which relaxed from highly compressive to tensile between 10 nm and 50 nm film thickness. Impurities in the films may originate from the sputtering targets, the background gases, and the substrate surfaces. Auger Electron Spectroscopy (AES) results showed the presence of O and C contamination near the film/Si interface; these impurities contributed to the compressive stresses in the thinner films. As anticipated, both Mo and Ta films exhibited grain growth as a function of film thickness, which may have contributed to the relaxation in the compressive stress. The Mo films were entirely bcc. The Ta films showed a transformation from the amorphous phase to the β crystalline phase between 2.5 nm and 20 nm film thickness, which contributed to the relaxation in stress observed in that thickness regime

  10. Mechanism of secondary recrystallization of Goss grains in grain-oriented electrical steel

    Science.gov (United States)

    Hayakawa, Yasuyuki

    2017-12-01

    Since its invention by Goss in 1934, grain-oriented (GO) electrical steel has been widely used as a core material in transformers. GO exhibits a grain size of over several millimeters attained by secondary recrystallization during high-temperature final batch annealing. In addition to the unusually large grain size, the crystal direction in the rolling direction is aligned with , which is the easy magnetization axis of α-iron. Secondary recrystallization is the phenomenon in which a certain very small number of {110} (Goss) grains grow selectively (about one in 106 primary grains) at the expense of many other primary recrystallized grains. The question of why the Goss orientation is exclusively selected during secondary recrystallization has long been a main research subject in this field. The general criterion for secondary recrystallization is a small and uniform primary grain size, which is achieved through the inhibition of normal grain growth by fine precipitates called inhibitors. This paper describes several conceivable mechanisms of secondary recrystallization of Goss grains mainly based on the selective growth model.

  11. Microstructural defects modeling in the Al-Mo system

    International Nuclear Information System (INIS)

    Pascuet, Maria I.; Fernandez, Julian R.; Monti, Ana M.

    2006-01-01

    In this work we have utilized computer simulation techniques to study microstructural defects, such as point defects and interfaces, in the Al-Mo alloy. Such alloy is taken as a model to study the Al(fcc)/U-Mo(bcc) interface. The EAM interatomic potential used has been fitted to the formation energy and lattice constant of the AlMo 3 intermetallic. Formation of vacancies for both components Al and Mo and anti-sites, Al Mo and Mo Al , as well as vacancy migration was studied in this structure. We found that the lowest energy defect complex that preserves stoichiometry is the antisite pair Al Mo +Mo Al , in correspondence with other intermetallics of the same structure. Our results also suggest that the structure of the Al(fcc)/Mo(bcc) interface is unstable, while that of the Al(fcc)/Al 5 Mo interface is stable, as observed experimentally. (author) [es

  12. Development of improved HP/IP rotor material 2% CrMoNiWV (23 CrMoNiWV 88)

    International Nuclear Information System (INIS)

    Wiemann, W.

    1989-01-01

    The new 2% CrMoNiWV steel has a sufficient strength level, a very good creep (rupture) behaviour and an excellent toughness behaviour for a creep resistant steel. Even after long time high temperature exposure the toughness degradation is so small that it is still better than this of best 1% CrMo(Ni)V steels. The fatigue behaviour is well comparable to this of 1% CrMo(Ni)V. The 2% CrMoNiWV steel has the capability to substitute the traditional 1% CrMo(Ni)V. (orig.) With 26 annexes

  13. Electrical characteristics of multilayer MoS2 FET's with MoS2/graphene heterojunction contacts.

    Science.gov (United States)

    Kwak, Joon Young; Hwang, Jeonghyun; Calderon, Brian; Alsalman, Hussain; Munoz, Nini; Schutter, Brian; Spencer, Michael G

    2014-08-13

    The electrical properties of multilayer MoS2/graphene heterojunction transistors are investigated. Temperature-dependent I-V measurements indicate the concentration of unintentional donors in exfoliated MoS2 to be 3.57 × 10(11) cm(-2), while the ionized donor concentration is determined as 3.61 × 10(10) cm(-2). The temperature-dependent measurements also reveal two dominant donor levels, one at 0.27 eV below the conduction band and another located at 0.05 eV below the conduction band. The I-V characteristics are asymmetric with drain bias voltage and dependent on the junction used for the source or drain contact. I-V characteristics of the device are consistent with a long channel one-dimensional field-effect transistor model with Schottky contact. Utilizing devices, which have both graphene/MoS2 and Ti/MoS2 contacts, the Schottky barrier heights of both interfaces are measured. The charge transport mechanism in both junctions was determined to be either thermionic-field emission or field emission depending on bias voltage and temperature. On the basis of a thermionic field emission model, the barrier height at the graphene/MoS2 interface was determined to be 0.23 eV, while the barrier height at the Ti/MoS2 interface was 0.40 eV. The value of Ti/MoS2 barrier is higher than previously reported values, which did not include the effects of thermionic field emission.

  14. Grain-boundary engineering applied to grain growth in a high temperature material

    International Nuclear Information System (INIS)

    Huda, Z.

    1993-01-01

    Crystallography of grain boundaries are determined for a high temperature material, before and after grain growth processes, so as to study the induction of special properties useful for application in components of a gas-turbine engine. The philosophy of grain-boundary engineering is applied to grain growth in APK-6, a powder formed nickel-base superalloy so as to establish the possible structure/property relationships. The alloy in the as received condition is shown to possess a strong texture and contained coincident site lattices (CSL) boundaries with most boundaries having sigma values in the range of 3 > sigma > 25. A normal grain-growth heat treatment result in a good population of low angle grain boundaries, and drastically reduces the proportion of CSL boundaries. A strong [011] annealing texture is observed after an intermediate grain growth; most grain boundaries, here, tend to be high angle indicating a possibility of possessing special properties. (author)

  15. Structural and magnetic properties of NdFeB and NdFeB/Fe films with Mo addition

    Energy Technology Data Exchange (ETDEWEB)

    Urse, M; Grigoras, M; Lupu, N; Chiriac, H, E-mail: urse@phys-iasi.ro [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania)

    2011-07-06

    The influence of the Mo addition on the microstructure and magnetic properties of Nd-Fe-B and Nd-Fe-B/Fe films was studied. The coercivity is a key parameter in the control of technical performances of Nd-Fe-B films. A small amount of about 1 at.% Mo can enhance the coercivity of Nd-Fe-B film by controlling the growth of soft and hard magnetic grains. A coercivity of 22.1 kOe, a remanence ratio, M{sub r}/M{sub s}, of 0.83 and a maximum energy product of 8 MGOe were obtained for Ta/[NdFeBMo(1at.%)(540nm)/Ta films annealed at 650{sup 0}C for 20 minutes due to Mo precipitates formed at the Nd{sub 2}Fe{sub 14}B phase boundaries which prevent the nucleation and expansion of the magnetic domains. Simultaneous use of Mo as addition and the stratification of Nd-Fe-B-Mo films using Fe as spacer layer are important tools for the improvement of the hard magnetic properties of Nd-Fe-B films. The Ta/[NdFeBMo(1at.%)(180nm)/Fe(1nm)]x3/Ta multilayer film annealed at 620{sup 0}C exhibits an increase in the coercivity from 12.1 kOe to 22.8 kOe, in the remanence ratio from 0.77 to 0.80, and in the maximum energy product from 4.5 to 7.1 MGOe in comparison with Ta/Nd-Fe-B/Ta film. As compared to Ta/Nd-Fe-B/Ta film, the Ta/[NdFeBMo(1at.%)(180nm)/Fe(1nm)]x3/Ta film presents a decrease in the crystallization temperature of about 30{sup 0}C.

  16. Development of Mo recycle technique from generator materials

    Energy Technology Data Exchange (ETDEWEB)

    Tanimoto, Masataka; Kurosawa, Makoto; Kimura, Akihiro; Nishikata, Kaori; Tsuchiya, Kunihiko [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan); Kakei, Sadanori; Yoshinaga, Hideo [Taiyo Koko Corp., Ako Laboratory, Ako, Hyogo (Japan)

    2012-03-15

    The domestic {sup 99}Mo production by the (n,{gamma}) method is proposed in JMTR because of low amount of radioactive wastes and easy {sup 99}Mo/{sup 99m}Tc production process. For the development of domestic production, it is necessary to use the enriched {sup 98}MoO{sub 3}, which is very expensive, for high specific activity of {sup 99}Mo. A large amount of used PZC/PTC embraced {sup 98}Mo is also generated after the decay of {sup 99}Mo. JAEA and Taiyo Koko is proposed to recover molybdenum from the used PZC/PTC for an effective use of resources and reduction of radioactive wastes. Preliminary experiments of Mo recycling with un-irradiated MoO{sub 3} were carried out by the elution and sublimation methods. From the results, Mo recovery rate from the PZC/PTC was more than 95% by two kinds of methods. The prospects are bright for Mo recycle and reduction of radioactive wastes using these methods. (author)

  17. RF power dependent formation of amorphous MoO3-x nanorods by RF magnetron sputtering

    International Nuclear Information System (INIS)

    Navas, I.; Vinodkumar, R.; Detty, A.P.; Mahadevan Pillai, V.P.

    2009-01-01

    Full text: The fabrication of nanorods has received increasing attention for their unique physical and chemical properties and a wide range of potential applications such as photonics and nanoelectronics Molybdenum oxide nanorods with high activity can be used in a wide variety of applications such as cathodes in rechargeable batteries, field emission devices, solid lubricants, superconductors thermoelectric materials, and electrochromic devices. In this paper, amorphous MoO 3-x nanorods can find excellent applications in electrochromic and gas sensing have been successfully prepared by varying the R F power in R F Magnetron Sputtering system without heating the substrate; other parameters which are optimised in our earlier studies. We have found that the optimum RF power for nanorod formation is 200W. At a moderate RF power (200W), sputtering redeposition takes places constructively which leads to formation of fine nanorods. Large RF power creates high energetic ion bombardment on the grains surfaces which can lead to re-nucleation, so the grains become smaller and columnar growth is interrupted. Beyond the RF power 200W, the etching effect of the plasma became more severe and damaged the surface of the nanorods. All the molybdenum oxide films prepared are amorphous; the XRD patterns exhibit no characteristic peak corresponds to MoO 3 . The amorphous nature is preferred for good electrochromic colouration The spectroscopic properties of the nanorods have been investigated systematically using atomic force microscopy, x-ray diffraction, micro-Raman, UV-visible and photoluminescence (PL) spectroscopy. The films exhibit two emission bands; a near band edge UV emission and a defect related deep level visible emission

  18. Phloem Transport of Arsenic Species from Flag Leaf to Grain During Grain Filling

    Energy Technology Data Exchange (ETDEWEB)

    A Carey; G Norton; C Deacon; K Scheckel; E Lombi; T Punshon; M Guerinot; A Lanzirotti; M Newville; et al.

    2011-12-31

    Strategies to reduce arsenic (As) in rice grain, below concentrations that represent a serious human health concern, require that the mechanisms of As accumulation within grain be established. Therefore, retranslocation of As species from flag leaves into filling rice grain was investigated. Arsenic species were delivered through cut flag leaves during grain fill. Spatial unloading within grains was investigated using synchrotron X-ray fluorescence (SXRF) microtomography. Additionally, the effect of germanic acid (a silicic acid analog) on grain As accumulation in arsenite-treated panicles was examined. Dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) were extremely efficiently retranslocated from flag leaves to rice grain; arsenate was poorly retranslocated, and was rapidly reduced to arsenite within flag leaves; arsenite displayed no retranslocation. Within grains, DMA rapidly dispersed while MMA and inorganic As remained close to the entry point. Germanic acid addition did not affect grain As in arsenite-treated panicles. Three-dimensional SXRF microtomography gave further information on arsenite localization in the ovular vascular trace (OVT) of rice grains. These results demonstrate that inorganic As is poorly remobilized, while organic species are readily remobilized, from leaves to grain. Stem translocation of inorganic As may not rely solely on silicic acid transporters.

  19. Phloem transport of arsenic species from flag leaf to grain during grain filling

    Energy Technology Data Exchange (ETDEWEB)

    Carey, Anne-Marie; Norton, Gareth J.; Deacon, Claire; Scheckel, Kirk G.; Lombi, Enzo; Punshon, Tracy; Guerinot, Mary Lou; Lanzirotti, Antonio; Newville, Matt; Choi, Yongseong; Price, Adam H.; Meharg, Andrew A. (EPA); (U. South Australia); (Aberdeen); (UC); (Dartmouth)

    2011-09-20

    Strategies to reduce arsenic (As) in rice grain, below concentrations that represent a serious human health concern, require that the mechanisms of As accumulation within grain be established. Therefore, retranslocation of As species from flag leaves into filling rice grain was investigated. Arsenic species were delivered through cut flag leaves during grain fill. Spatial unloading within grains was investigated using synchrotron X-ray fluorescence (SXRF) microtomography. Additionally, the effect of germanic acid (a silicic acid analog) on grain As accumulation in arsenite-treated panicles was examined. Dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) were extremely efficiently retranslocated from flag leaves to rice grain; arsenate was poorly retranslocated, and was rapidly reduced to arsenite within flag leaves; arsenite displayed no retranslocation. Within grains, DMA rapidly dispersed while MMA and inorganic As remained close to the entry point. Germanic acid addition did not affect grain As in arsenite-treated panicles. Three-dimensional SXRF microtomography gave further information on arsenite localization in the ovular vascular trace (OVT) of rice grains. These results demonstrate that inorganic As is poorly remobilized, while organic species are readily remobilized, from leaves to grain. Stem translocation of inorganic As may not rely solely on silicic acid transporters.

  20. Effect of Mo addition on the electrocatalytic activity of Pt-Sn-Mo/C for direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Lee, Eungje; Murthy, Arun; Manthiram, Arumugam

    2011-01-01

    Carbon-supported Pt-Sn-Mo electrocatalysts have been synthesized by a polyol reduction method and characterized for ethanol electro-oxidation reaction (EOR). While the percent loading of the synthesized nanoparticles on the carbon support is higher than 35%, energy dispersive spectroscopy (EDS) reveals that the Mo contents in the nanoparticle catalysts are lower than the nominal value, indicating incomplete reduction of the Mo precursor. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analyses reveal that the Sn and Mo exist as oxide phases at the surface layers of the nanoparticles and the degree of alloying is very low. The electrochemical properties of the electrocatalysts have been evaluated by cyclic voltammetry (CV) and chronoamperometry. The catalytic activity for EOR decreases in the order PtSnMo 0.6 /C > PtSnMo 0.4 /C > PtSn/C. Single cell direct ethanol fuel cell (DEFC) tests also confirm that the PtSnMo 0.6 /C anode catalyst exhibit better performance than the PtSn/C anode catalyst. An analysis of the electrochemical data suggests that the incorporation of Mo to Pt-Sn enhances further the catalytic activity for EOR.

  1. Ionizing radiation for insect control in grain and grain products

    International Nuclear Information System (INIS)

    Tilton, E.W.; Brower, J.H.

    1987-01-01

    A technical review summarizes and discusses information on various aspects of the use of ionizing radiation for the control of insect infestation in grains and grain products. Topics include: the effects of ionizing radiation on insects infesting stored-grain products; the 2 main types of irradiators (electron accelerators; radioisotopes (e.g.: Co-60; Cs-137); dosimetry systems and methodology; variations in radiation resistance by stored-product pests; the proper selection of radiation dose; the effects of combining various treatments (temperature, infrared/microwave radiation, hypoxia, chemicals) with ionizing radiation; sublethal radiation for controlling bulk grain insects; the feeding capacity of irradiated insects; the susceptibility of insecticide-resistant insects to ionizing radiation; and the possible resistance of insects to ionizing radiation. Practical aspects of removing insects from irradiated grain also are discussed

  2. Phase formation in the Rb2MoO4-Li2MoO4-Hf(MoO4)2 system and the crystal structure of Rb5(Li1/3Hf5/3)(MoO4)6

    International Nuclear Information System (INIS)

    Solodovnikov, S.F.; Zolotova, E.S.; Balsanova, L.V.; Bazarov, B.G.; Bazarova, Zh.G.

    2003-01-01

    Phase formation in the Rb 2 MoO 4 -Li 2 MoO 4 -Hf(MoO 4 ) 2 system is studied in subsolidus region in air by the method of crossing sections. Three ternary molybdates are detected in the system. Compositions of two of them are corroborated by selection of isostructural analogues [ru

  3. Thermal and x-ray studies on Tl2U(MoO4)3 and Tl4U(MoO4)4

    International Nuclear Information System (INIS)

    Dahale, N.D.; Keskar, Meera; Kulkarni, N.K.; Singh Mudher, K.D.

    2006-01-01

    In the quaternary Tl-U(IV)-Mo-O system, two new compounds namely Tl 2 U(MoO 4 ) 3 and Tl 4 U(MoO 4 ) 4 were prepared and characterized by powder X-ray diffraction and thermal methods. These compounds were prepared by solid state reactions of Tl 2 MoO 4 , UMoO 5 and MoO 3 in the required stoichiometric ratio at 500 deg C in evacuated sealed quartz ampoule. The XRD data of Tl 2 U(MoO 4 ) 3 and Tl 4 U(MoO 4 ) 4 were indexed on orthorhombic cell. TG curves of Tl 2 U(MoO 4 ) 3 and Tl 4 U(MoO 4 ) 4 did not show any weight change up to 700 deg C in an inert atmosphere. During heating in an inert atmosphere, Tl 2 U(MoO 4 ) 3 and Tl 4 U(MoO 4 ) 4 showed endothermic Dta peaks due to melting of the compounds at 519 and 565 deg C, respectively. (author)

  4. Stress-assisted grain growth in nanocrystalline metals: Grain boundary mediated mechanisms and stabilization through alloying

    International Nuclear Information System (INIS)

    Zhang, Yang; Tucker, Garritt J.; Trelewicz, Jason R.

    2017-01-01

    The mechanisms of stress-assisted grain growth are explored using molecular dynamics simulations of nanoindentation in nanocrystalline Ni and Ni-1 at.% P as a function of grain size and deformation temperature. Grain coalescence is primarily confined to the high stress region beneath the simulated indentation zone in nanocrystalline Ni with a grain size of 3 nm. Grain orientation and atomic displacement vector mapping demonstrates that coalescence transpires through grain rotation and grain boundary migration, which are manifested in the grain interior and grain boundary components of the average microrotation. A doubling of the grain size to 6 nm and addition of 1 at.% P eliminates stress-assisted grain growth in Ni. In the absence of grain coalescence, deformation is accommodated by grain boundary-mediated dislocation plasticity and thermally activated in pure nanocrystalline Ni. By adding solute to the grain boundaries, the temperature-dependent deformation behavior observed in both the lattice and grain boundaries inverts, indicating that the individual processes of dislocation and grain boundary plasticity will exhibit different activity based on boundary chemistry and deformation temperature.

  5. Hormonal changes in the grains of rice subjected to water stress during grain filling.

    Science.gov (United States)

    Yang, J; Zhang, J; Wang, Z; Zhu, Q; Wang, W

    2001-09-01

    Lodging-resistant rice (Oryza sativa) cultivars usually show slow grain filling when nitrogen is applied in large amounts. This study investigated the possibility that a hormonal change may mediate the effect of water deficit that enhances whole plant senescence and speeds up grain filling. Two rice cultivars showing high lodging resistance and slow grain filling were field grown and applied with either normal or high amount nitrogen (HN) at heading. Well-watered and water-stressed (WS) treatments were imposed 9 days post anthesis to maturity. Results showed that WS increased partitioning of fixed (14)CO(2) into grains, accelerated the grain filling rate but shortened the grain filling period, whereas the HN did the opposite way. Cytokinin (zeatin + zeatin riboside) and indole-3-acetic acid contents in the grains transiently increased at early filling stage and WS treatments hastened their declines at the late grain filling stage. Gibberellins (GAs; GA(1) + GA(4)) in the grains were also high at early grain filling but HN enhanced, whereas WS substantially reduced, its accumulation. Opposite to GAs, abscisic acid (ABA) in the grains was low at early grain filling but WS remarkably enhanced its accumulation. The peak values of ABA were significantly correlated with the maximum grain filling rates (r = 0.92**, P water stress during grain filling, especially a decrease in GAs and an increase in ABA, enhances the remobilization of prestored carbon to the grains and accelerates the grain filling rate.

  6. Grain dynamics and inter-grain coupling in dusty plasma Coulomb crystals

    International Nuclear Information System (INIS)

    Rahman, H.U.; Mohideen, U.; Smith, M.A.; Rosenberg, M.; Mendis, D.A.

    2001-01-01

    We review our results on the lattice structure and the lattice dynamics of dusty plasma Coulomb crystals formed in rectangular conductive grooves. The basic structure appears to be made of mutually repulsive columns of grains confined by the walls of the groove. The columns are oriented along the direction of the electrode sheath electric field. Inter-grain coupling as a function of plasma temperature and density were investigated by measurement of these parameters. A simple phenomenological model wherein the inter-grain spacing along the column results from an attractive electric field induced dipole-dipole force balanced by a repulsive monopole Coulomb force is consistent with observed features of the Coulomb crystal. In addition, here we present some preliminary measurements of the vibration and rotation dynamics of the individual grains in the Coulomb crystal. The thermal energy of the dust grain thus calculated is much less than the inter-grain Coulomb potential energy as required for the formation of stable structures. Also the observed rotational frequency is consistent with the assumption of thermal equilibrium between the dust grains and the neutral gas. (orig.)

  7. Novel and facile microwave-assisted synthesis of Mo-doped hydroxyapatite nanorods: Characterization, gamma absorption coefficient, and bioactivity.

    Science.gov (United States)

    Abutalib, M M; Yahia, I S

    2017-09-01

    In the current work, the authors report the microwave-assisted synthesis Molybdenum-doped (from 0.05 to 5wt%) hydroxyapatite (HAp) for the first time. The morphology of Mo-doped HAp is nanorods of diameter in the range of 25-70nm and length in the range of 25nm to 200nm. The good crystalline nature was confirmed from X-ray diffraction patterns and also lattice parameters, grain size, strain and dislocation density were determined. The crystallite size was found to be in the range 16 to 30nm and crystallinity was found to be enhanced from 0.5 to 0.7 with doping. The field emission SEM micrographs show that the morphology of the synthesized nanostructures of pure and Mo-doped HAp are nanorods of few nanometers. The vibrational modes were identified using the FT-Raman and FT-IR spectroscopy. The dielectric properties were studied and the AC electrical conductivity was found to be increased with increasing the concentration of Mo ions doping in HAp. Moreover, antimicrobial studies were also carried out to understand the anti-bacterial and anti-fungi properties. The results suggest that it may be a good bio-ceramics material for bio-medical applications. Mo-doped HAp was subjected to the gamma irradiation produced from Cs-137 (662keV) and its related parameters such as linear absorption coefficient, the half-value layer (HVL) and the tenth value layer TVL were calculated and analyzed. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Synthesis of MoS2 and MoO2 for their applications in H2 generation and lithium ion batteries: a review

    International Nuclear Information System (INIS)

    Zhao Yufei; Zhang Yuxia; Yang Zhiyu; Yan Yiming; Sun Kening

    2013-01-01

    Scientists increasingly witness the applications of MoS 2 and MoO 2 in the field of energy conversion and energy storage. On the one hand, MoS 2 and MoO 2 have been widely utilized as promising catalysts for electrocatalytic or photocatalytic hydrogen evolution in aqueous solution. On the other hand, MoS 2 and MoO 2 have also been verified as efficient electrode material for lithium ion batteries. In this review, the synthesis, structure and properties of MoS 2 and MoO 2 are briefly summarized according to their applications for H 2 generation and lithium ion batteries. Firstly, we overview the recent advancements in the morphology control of MoS 2 and MoO 2 and their applications as electrocatalysts for hydrogen evolution reactions. Secondly, we focus on the photo-induced water splitting for H 2 generation, in which MoS 2 acts as an important co-catalyst when combined with other semiconductor catalysts. The newly reported research results of the significant functions of MoS 2 nanocomposites in photo-induced water splitting are presented. Thirdly, we introduce the advantages of MoS 2 and MoO 2 for their enhanced cyclic performance and high capacity as electrode materials of lithium ion batteries. Recent key achievements in MoS 2 - and MoO 2 -based lithium ion batteries are highlighted. Finally, we discuss the future scope and the important challenges emerging from these fascinating materials. (review)

  9. Diodes based on semi-insulating CdTe crystals with Mo/MoO{sub x} contacts for X- and γ-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Maslyanchuk, O.; Kulchynsky, V.; Solovan, M. [Chernivtsi National University, Chernivtsi (Ukraine); Gnatyuk, V. [Institute of Semiconductor Physics, NAS of Ukraine, Kyiv (Ukraine); Potiriadis, C. [Greek Atomic Energy Commission, Attiki (Greece); Kaissas, I. [Greek Atomic Energy Commission, Attiki (Greece); Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki (Greece); Brus, V. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany)

    2017-03-15

    This paper reports on the possible applications of molybdenum oxide (Mo/MoO{sub x}) contacts in combination with semi-insulating CdTe crystals. The electrical contacts to p-type Cl-doped CdTe crystals were formed by the deposition of molybdenum oxide and pure molybdenum thin films by the DC reactive magnetron sputtering. Electrical properties of the prepared Mo-MoO{sub x}/p-CdTe/MoO{sub x}-Mo surface-barrier structures were investigated at different temperatures. It is shown that the rapid growth of the reverse current with increasing bias voltage higher than 10 V is caused by the space-charge limited currents. Spectrometric properties of the Mo-MoO{sub x}/p-CdTe/MoO{sub x}-Mo structures have been also analyzed. It is revealed that the developed heterojunction has shown promising characteristics for its practical application in X- and γ-ray radiation detector fabrication. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Extremely 54Cr- and 50Ti-rich Presolar Oxide Grains in a Primitive Meteorite: Formation in Rare Types of Supernovae and Implications for the Astrophysical Context of Solar System Birth

    Science.gov (United States)

    Nittler, Larry R.; O’D. Alexander, Conel M.; Liu, Nan; Wang, Jianhua

    2018-04-01

    We report the identification of 19 presolar oxide grains from the Orgueil CI meteorite with substantial enrichments in 54Cr, with 54Cr/52Cr ratios ranging from 1.2 to 56 times the solar value. The most enriched grains also exhibit enrichments at mass-50, most likely due in part to 50Ti, but close-to-normal or depleted 53Cr/52Cr ratios. There is a strong inverse relationship between 54Cr enrichment and grain size; the most extreme grains are all attractive, as these likely occur much more frequently than high-density SN Ia, and their evolutionary timescales (∼20 Myr) are comparable to those of molecular clouds. Self-pollution of the Sun’s parent cloud from an ECSN may explain the heterogeneous distribution of n-rich isotopic anomalies in planetary materials, including a recently reported dichotomy in Mo isotopes in the solar system. The stellar origins of three grains with solar 54Cr/52Cr, but anomalies in 50Cr or 53Cr, as well as of a grain enriched in 57Fe, are unclear.

  11. Phase formation in the K2MoO4-Lu2(MoO4)3-Hf(MoO4)2 system and the structural study of triple molybdate K5LuHf(MoO4)6

    International Nuclear Information System (INIS)

    Romanova, E.Yu.; Bazarov, B.G.; Tushinova, Yu.L.; Fedorov, K.N.; Bazarova, Zh.G.; Klevtsova, R.F.; Glinskaya, L.A.

    2007-01-01

    Interactions in the ternary system K 2 MoO 4 -Lu 2 (MoO 4 ) 3 -Hf(MoO 4 ) 2 have been studied by X-ray powder diffraction and differential thermal analysis. A new triple (potassium lutetium hafnium) molybdate with the 5 : 1 : 2 stoichiometry has been found. Monocrystals of this molybdate have been grown. Its X-ray diffraction structure has been refined (an X8 APEX automated diffractometer, MoK α radiation, 1960 F(hkl), R = 0.0166). The trigonal unit cell has the following parameters: a = 10.6536(1) A, c = 37.8434(8) A, V=3719.75(9) A, Z = 6, space group R3-bar c. The mixed 3D framework of the structure is built of Mo tetrahedra sharing corners with two independent (Lu,Hf)O 6 octahedra. Two sorts of potassium atoms occupy large framework voids [ru

  12. Three-Dimensional Heterostructures of MoS 2 Nanosheets on Conducting MoO 2 as an Efficient Electrocatalyst To Enhance Hydrogen Evolution Reaction

    KAUST Repository

    Nikam, Revannath Dnyandeo

    2015-10-05

    Molybdenum disulfide (MoS) is a promising catalyst for hydrogen evolution reaction (HER) because of its unique nature to supply active sites in the reaction. However, the low density of active sites and their poor electrical conductivity have limited the performance of MoS in HER. In this work, we synthesized MoS nanosheets on three-dimensional (3D) conductive MoO via a two-step chemical vapor deposition (CVD) reaction. The 3D MoO structure can create structural disorders in MoS nanosheets (referred to as 3D MoS/MoO), which are responsible for providing the superior HER activity by exposing tremendous active sites of terminal disulfur of S2 (in MoS) as well as the backbone conductive oxide layer (of MoO) to facilitate an interfacial charge transport for the proton reduction. In addition, the MoS nanosheets could protect the inner MoO core from the acidic electrolyte in the HER. The high activity of the as-synthesized 3D MoS/MoO hybrid material in HER is attributed to the small onset overpotential of 142 mV, a largest cathodic current density of 85 mA cm, a low Tafel slope of 35.6 mV dec, and robust electrochemical durability.

  13. Three-Dimensional Heterostructures of MoS 2 Nanosheets on Conducting MoO 2 as an Efficient Electrocatalyst To Enhance Hydrogen Evolution Reaction

    KAUST Repository

    Nikam, Revannath Dnyandeo; Lu, Ang-Yu; Sonawane, Poonam Ashok; Kumar, U. Rajesh; Yadav, Kanchan; Li, Lain-Jong; Chen, Yit Tsong

    2015-01-01

    Molybdenum disulfide (MoS) is a promising catalyst for hydrogen evolution reaction (HER) because of its unique nature to supply active sites in the reaction. However, the low density of active sites and their poor electrical conductivity have limited the performance of MoS in HER. In this work, we synthesized MoS nanosheets on three-dimensional (3D) conductive MoO via a two-step chemical vapor deposition (CVD) reaction. The 3D MoO structure can create structural disorders in MoS nanosheets (referred to as 3D MoS/MoO), which are responsible for providing the superior HER activity by exposing tremendous active sites of terminal disulfur of S2 (in MoS) as well as the backbone conductive oxide layer (of MoO) to facilitate an interfacial charge transport for the proton reduction. In addition, the MoS nanosheets could protect the inner MoO core from the acidic electrolyte in the HER. The high activity of the as-synthesized 3D MoS/MoO hybrid material in HER is attributed to the small onset overpotential of 142 mV, a largest cathodic current density of 85 mA cm, a low Tafel slope of 35.6 mV dec, and robust electrochemical durability.

  14. Microbiota of kefir grains

    Directory of Open Access Journals (Sweden)

    Tomislav Pogačić

    2013-03-01

    Full Text Available Kefir grains represent the unique microbial community consisting of bacteria, yeasts, and sometimes filamentous moulds creating complex symbiotic community. The complexity of their physical and microbial structures is the reason that the kefir grains are still not unequivocally elucidated. Microbiota of kefir grains has been studied by many microbiological and molecular approaches. The development of metagenomics, based on the identification without cultivation, is opening new possibilities for identification of previously nonisolated and non-identified microbial species from the kefir grains. Considering recent studies, there are over 50 microbial species associated with kefir grains. The aim of this review is to summarise the microbiota composition of kefir grains. Moreover, because of technological and microbiological significance of the kefir grains, the paper provides an insight into the microbiological and molecular methods applied to study microbial biodiversity of kefir grains.

  15. Large grain CBMM Nb ingot slices: An ideal test bed for exploring the microstructure-electromagnetic property relationships relevant to SRF

    International Nuclear Information System (INIS)

    Sung, Zu-Hawn; Lee, Peter J.; Polyanskii, Anatolii; Balachandran, Shreyas; Chetri, Santosh; Larbalestier, David C.; Wang, Mingmin; Compton, Christopher; Bieler, Thomas R.

    2015-01-01

    High purity (RRR > 200), large grain (> 5-10 cm) niobium ingot slices have been successfully used to fabricate radio frequency (RF) cavities for particle accelerators. They offer significantly reduced fabrication cost by eliminating processing steps and furthermore they provide the opportunity to study the influence of individual grain boundaries in SRF Nb. Here we summarize our measurements of grain boundary (GB) effects on the superconducting properties of large grain high purity niobium sheet manufactured by CBMM. We show by magneto-optical (MO) imaging that GBs allow premature flux penetration, but only when they are oriented close to the direction of the magnetic field. However, even low angle GBs produced by minor deformations commensurate with half-cell forming produce localized flux penetration. The transport properties of grain boundaries were investigated by direct transport across them and evidence for preferential vortex flow along the GBs of SRF Nb was observed for the first time. Using transmission electron microscopy (TEM) and micro crystallographic analysis with electron backscattered diffraction (EBSD), we were able to quantitatively characterize surface substructures that can lead to localized thermal breakdown of superconductivity. Important to these studies was the development of sample preparation techniques that made the cutout single, bi-crystal and tri-crystal Nb coupons as representative as possible of the surface properties of cavities manufactured by standard techniques

  16. Creep-fatigue evaluation method for modified 9Cr-1Mo steel

    International Nuclear Information System (INIS)

    Wada, Y.; Aoto, K.

    1997-01-01

    As creep-fatigue evaluation methods on normalized and tempered Modified 9Cr-1Mo steel for design use, the time fraction rule and the simplified conventional ductility exhaustion rule are investigated for the prediction of tension strain hold creep-fatigue damage of this material. For the above investigation, stress relaxation behaviour during strain hold has to be analyzed using stress-strain-time relation. The initial value of stress relaxation was determined by cyclic stress-strain curves in continuous cycling fatigue tests. Cyclic stress-strain behaviour of Mod.9Cr-1Mo(NT) steel is different from that of austenitic stainless steels, so this effect was considered. Stress relaxation analysis was performed using static creep strain-time relation and conventional hardening rule. The time fraction by using the above stress relaxation analysis results can give good prediction for creep-fatigue life of Mod.9Cr-1Mo(NT) steel. For design use it is practical to be able to estimate creep damages conservatively by both strain behaviour of cyclic plastic (in continuous cycling fatigue tests) and monotonic creep (in standard creep tests). The life reduction by strain hold at the minimum peak of compressive stress in creep-fatigue tests was examined, and this effects can be evaluated by the relationship between the location of oxidation and the effective deformation at crack tip. In an accelerated oxidation environment, for example in high temperature and high pressure steam, a different approach for life reduction should be developed based on the mechanism of growth of oxide and crack growth with oxidation. However, in the creep damage dominant region, its effect is saturated and the effect of cavity growth along grain boundary becomes dominant for long-term strain hold in the high temperature conditions. (author). 6 refs, 6 figs

  17. Origins of GEMS Grains

    Science.gov (United States)

    Messenger, S.; Walker, R. M.

    2012-01-01

    Interplanetary dust particles (IDPs) collected in the Earth s stratosphere contain high abundances of submicrometer amorphous silicates known as GEMS grains. From their birth as condensates in the outflows of oxygen-rich evolved stars, processing in interstellar space, and incorporation into disks around new stars, amorphous silicates predominate in most astrophysical environments. Amorphous silicates were a major building block of our Solar System and are prominent in infrared spectra of comets. Anhydrous interplanetary dust particles (IDPs) thought to derive from comets contain abundant amorphous silicates known as GEMS (glass with embedded metal and sulfides) grains. GEMS grains have been proposed to be isotopically and chemically homogenized interstellar amorphous silicate dust. We evaluated this hypothesis through coordinated chemical and isotopic analyses of GEMS grains in a suite of IDPs to constrain their origins. GEMS grains show order of magnitude variations in Mg, Fe, Ca, and S abundances. GEMS grains do not match the average element abundances inferred for ISM dust containing on average, too little Mg, Fe, and Ca, and too much S. GEMS grains have complementary compositions to the crystalline components in IDPs suggesting that they formed from the same reservoir. We did not observe any unequivocal microstructural or chemical evidence that GEMS grains experienced prolonged exposure to radiation. We identified four GEMS grains having O isotopic compositions that point to origins in red giant branch or asymptotic giant branch stars and supernovae. Based on their O isotopic compositions, we estimate that 1-6% of GEMS grains are surviving circumstellar grains. The remaining 94-99% of GEMS grains have O isotopic compositions that are indistinguishable from terrestrial materials and carbonaceous chondrites. These isotopically solar GEMS grains either formed in the Solar System or were completely homogenized in the interstellar medium (ISM). However, the

  18. Phase transitions in alloys of the Ni-Mo system

    International Nuclear Information System (INIS)

    Ustinovshikov, Y.; Shabanova, I.

    2011-01-01

    Graphical abstract: The structure of Ni-20 at.% Mo and Ni-25 at.% Mo alloys was studied by methods of TEM and XPS. It is shown that at high temperatures the tendency toward phase separation takes place in the alloys and crystalline bcc Mo particles precipitate in the liquid solution. At 900 deg. C and below, the tendency toward ordering leads to the dissolution of Mo particles and precipitation of the particles of Ni 3 Mo, Ni 2 Mo or Ni 4 Mo chemical compounds. Highlights: → 'Chemical' phase transition 'ordering-phase separation' is first discovered in alloys of the Ni-Mo system. → It is first shown that the phase separation in the alloys studied begins at temperatures above the liquidus one. → The formation of Ni 3 Mo from A1 has gone through the intervening stage of the Ni 4 Mo and Ni 2 Mo coexistence. - Abstract: The structure of Ni-20 at.% Mo and Ni-25 at.% Mo alloys heat treated at different temperatures was studied by the method of transmission electron microscopy. X-ray photoelectron spectroscopy was used to detect the sign of the chemical interaction between Ni and Mo atoms at different temperatures. It is shown that at high temperatures the tendency toward phase separation takes place. The system of additional reflections at positions {1 1/2 0} on the electron diffraction patterns testifies that the precipitation of crystalline bcc Mo particles begins in the liquid solution. At 900 deg. C and below, the tendency toward ordering leads to the precipitation of the particles of the chemical compounds. A body-centered tetragonal phase Ni 4 Mo (D1 a ) is formed in the Ni-20 at.% Mo alloy. In the Ni-25 at.% Mo alloy, the formation of the Ni 3 Mo (D0 22 ) chemical compound from the A1 solid solution has gone through the intervening stage of the Ni 4 Mo (D1 a ) and Ni 2 Mo (Pt 2 Mo) formation.

  19. The effects of irradiation on grain coat color and grain texture in winter wheat

    International Nuclear Information System (INIS)

    Miao Bingliang; Liu Xueyu

    1989-01-01

    Dry seeds of the variety ''Yangmai 5'' with red grain coat, semihard grain texture, and the variety ''Ningmai 3'' with red grain coat, soft grain texture were irradiated with Y-rays at various doses.The effect on M1 grain coat color was different between two varieties, the higher doses made grain coat color of ''Yangmai 5'' redder, but had hardly effect on ''Ningmai 3''.The effect on M1 grain texture showed that the grain texture became softer with doses increased.It was found that there were 0.6% of positive ( red to white ) grain coat color mutants and 2.0% of negative(hard to soft) grain texture mutants in M2 of ''Yangmai 5'', and there were 0.7% of negative ( white to red ) grain coat color mutants and 3.6% of positive ( soft to hard ) grain texture mutants in M2 of ''Ningmai 3''. It seemed that the positive mutants selected in M3 were stable in M4. The results showed that γ-rays can be used to improve the grain coat color andgrain texture of wheat varieties

  20. X-ray and electron microscopy investigation of the topotactic transformation of MoO3 into MoO2

    International Nuclear Information System (INIS)

    Bertrand, O.; Dufour, L.C.

    1980-01-01

    The reduction of MoO 3 is investigated by X-ray analysis and electron microscopy from MoO 3 (010) platelets between 1000 A and 5 mm long. In all cases, the following orientation relationship between both lattices is found: [100] 2 parallel [010] 3 , [122] 2 parallel [100] 3 . [-12-2] 2 parallel [001] 3 . MoO 3 crystallites twinning and misorientation are discussed in relation with the particular importance of [101] 3 directions in MoO 3 preserved in the transformation and becoming [010] 2 of MoO 2 . A model for this topotactic reduction is proposed where the reaction develops layer (010) 3 by layer (010) 3 to form [20-1] 2 type planes in MoO 2 structure. Data on the kinetics of the boundary moving in [010] 3 direction are also presented. (author)

  1. PENGARUH SERBUK U-Mo HASIL PROSES MEKANIK DAN HYDRIDE – DEHYDRIDE – GRINDING MILL TERHADAP KUALITAS PELAT ELEMEN BAKAR U-Mo/Al

    Directory of Open Access Journals (Sweden)

    Supardjo Supardjo

    2015-07-01

    Full Text Available PENGARUH SERBUK U-Mo HASIL PROSES MEKANIK DAN HYDRIDE – DEHYDRIDE – GRINDING MILL TERHADAP KUALITAS PELAT ELEMEN BAKAR U-Mo/Al. Penelitian bahan bakar U-7Mo/Al tipe pelat dilakukan dalam rangka pengembangan bahan bakar U3Si2/Al untuk mendapatkan bahan bakar baru yang memiliki densitas uranium lebih tinggi, stabil selama digunakan sebagai bahan bakar di dalam reaktor dan mudah dilakukan proses olah ulangnya. Lingkup penelitian meliputi pembuatan: paduan U-7Mo dengan teknik peleburan, pembuatan serbuk U-7Mo dengan dikikir dan hydride - dehydride - grinding mill, IEB U-7Mo/Al dengan teknik kompaksi pada tekanan 20 bar, dan PEB U-7Mo/Al dengan teknik pengerolan panas pada temperatur 425oC. Paduan U-7Mo hasil proses peleburan cukup homogen, berat jenis 16,34 g/cm3 dan bersifat ulet, kemudian dibuat menjadi serbuk dengan cara dikikir dan hydride - dehydride - grinding mill. Serbuk U-7Mo hasil proses kikir berbentuk pipih, kontaminan Fe cukup tinggi, sedangkan serbuk hasil proses hydride - dehydride - grinding mill, cenderung equiaxial dengan kontaminan yang rendah. Kedua jenis serbuk U-7Mo tersebut digunakan sebagai bahan baku pembuatan IEB U-7Mo/Al dan PEB U-7Mo/Al dengan densitas uranium 7 gU/cm3 dan diperoleh produk dengan kualitas yang hampir sama. Hasil uji IEB U-7Mo/Al berukuran 25 x 15 x 3,15±0,05 mm, tidak terdapat cacat/retak, distribusi U-7Mo di dalam matriks cukup homogen dan tidak terdapat pengelompokan/aglomerasi U-7Mo yang berdimensi >1 mm. PEB U-7Mo/Al hasil pengerolan dengan tebal akhir 1,45 mm, memiliki ketebalan meat rerata 0,60 mm dan tebal kelongsong 0,4 mm dan terdapat 1 titik pengukuran kelongsong dengan ketebalan 0,15 mm. Dengan membandingkan penggunaan kedua jenis serbuk U-7Mo tersebut, IEB U-7Mo/Al dan PEB U-7Mo/Al yang dihasilkan memiliki kualitas hampir sama. Namun demikian penggunaan serbuk U- 7Mo hasil proses hydride - dehydride - grinding mill lebih baik karena proses pengerjaannya lebih cepat dan impuritas dalam

  2. Microstructure investigation of NiAl-Cr(Mo) interface in a directionally solidified NiAl-Cr(Mo) eutectic alloyed with refractory metal

    International Nuclear Information System (INIS)

    Chen, Y.X.; Cui, C.Y.; Guo, J.T.; Li, D.X.

    2004-01-01

    The microstructure of a directionally solidified NiAl-Cr(Mo) eutectic alloyed with refractory metal in as-processed and heat-treated states has been studied by means of scanning electron microscopy and high resolution electron microscopy (HREM). The microstructure of the NiAl-Cr(Mo) eutectic was characterized by lamellar Cr(Mo) phases embedded within NiAl matrix with common growth direction of . The interface between NiAl and lamellar Cr(Mo) did not have any transition layers. Misfit dislocations were observed at the NiAl-Cr(Mo) interface. In addition to lamellar Cr(Mo) phases, coherent Cr(Mo, Ni, Al) precipitates and NiAl precipitates were also observed in the NiAl matrix and lamellar Cr(Mo) phases, respectively. After hot isostatic pressing and heat treatment, the NiAl-Cr(Mo) interfaces became smooth and straight. Square array of misfit dislocations was directly observed at the (0 0 1) interface between NiAl and Cr(Mo, Ni, Al) precipitate. The configuration of misfit dislocation network showed a generally good agreement with prediction based on the geometric O-lattice model

  3. Intermediate report of MoReMo. Modelling resilience for maintenance and outage

    Energy Technology Data Exchange (ETDEWEB)

    Oedewald, P.; Macchi, L. (VTT Technical Research Centre of Finland (Finland)); Axelsson, C. (Ringhals AB, Vattenfall AB (Sweden)); Eitrheim, M.H.R. (Institute for Energy Technology (Norway))

    2012-02-15

    Resilience Engineering (RE) is a new approach to safety that helps organisations and individuals adapt to unforeseen events and long-term changes. Such an approach is needed by nuclear power plants (NPPs) as they face demanding modification projects, high staff turnover and increased pressures to maintain and improve safety. The goal of the Modelling Resilience for Maintenance and Outage (MoReMO) project is to develop and test models and methods to identify and analyse resilience in safety-critical activities in natural everyday settings. In 2011, we have applied four approaches in different case studies: Organisational Core Task modelling (OCT), Functional Resonance Analysis Method (FRAM), Efficiency Thoroughness Trade-Off (ETTO) analysis, and Work Practice and Culture Characterisation. The project has collected data through observations, interviews and document reviews at two NPPs. Together, the four approaches have provided valuable insights for understanding the rationale behind work practices, their effects on safety, and the support of flexibility and adaptability. In 2012, the MoReMO project will complete the data collection and integrate results on how resilience can be operationalized in practical safety management tools for the companies. (Author)

  4. Intermediate report of MoReMo. Modelling resilience for maintenance and outage

    International Nuclear Information System (INIS)

    Oedewald, P.; Macchi, L.; Axelsson, C.; Eitrheim, M.H.R.

    2012-02-01

    Resilience Engineering (RE) is a new approach to safety that helps organisations and individuals adapt to unforeseen events and long-term changes. Such an approach is needed by nuclear power plants (NPPs) as they face demanding modification projects, high staff turnover and increased pressures to maintain and improve safety. The goal of the Modelling Resilience for Maintenance and Outage (MoReMO) project is to develop and test models and methods to identify and analyse resilience in safety-critical activities in natural everyday settings. In 2011, we have applied four approaches in different case studies: Organisational Core Task modelling (OCT), Functional Resonance Analysis Method (FRAM), Efficiency Thoroughness Trade-Off (ETTO) analysis, and Work Practice and Culture Characterisation. The project has collected data through observations, interviews and document reviews at two NPPs. Together, the four approaches have provided valuable insights for understanding the rationale behind work practices, their effects on safety, and the support of flexibility and adaptability. In 2012, the MoReMO project will complete the data collection and integrate results on how resilience can be operationalized in practical safety management tools for the companies. (Author)

  5. First-principles study of van der Waals interactions in MoS2 and MoO3

    International Nuclear Information System (INIS)

    Peelaers, H; Van de Walle, C G

    2014-01-01

    Van der Waals interactions play an important role in layered materials such as MoS 2 and MoO 3 . Within density functional theory, several methods have been developed to explicitly include van der Waals interactions. We compare the performance of several of these functionals in describing the structural and electronic properties of MoS 2 and MoO 3 . We include functionals based on the local density or generalized gradient approximations, but also based on hybrid functionals. The coupling of the semiempirical Grimme D2 method with the hybrid functional HSE06 is shown to lead to a very good description of both structural and electronic properties. (paper)

  6. Controlled synthesis of MoO3 microcrystals by subsequent calcination of hydrothermally grown pyrazine–MoO3 nanorod hybrids and their photodecomposition properties

    International Nuclear Information System (INIS)

    Rajagopal, S.; Nataraj, D.; Khyzhun, O.Y.; Djaoued, Yahia; Robichaud, Jacques; Kim, Chang-Koo

    2013-01-01

    We present our results on successful synthesis of pyrazine–MoO 3 nanorod hybrids by using pyrazine and MoO 3 nanorods. On the first stage, MoO 3 nanorods were grown hydrothermally and, on the second stage, their mixture with pyrazine was again involved in a hydrothermal reaction to produce organic–inorganic hybrids. To understand the growth mechanism of the hybrids we varied time and temperature of the hydrothermal process. Intercalation of pyrazine was confirmed through X-ray diffraction analysis, X-ray photoelectron spectroscopy, X-ray emission spectroscopy, scanning electron microscopy methods. Upon calcinations, pyrazine was deintercalated, i.e. removed from the MoO 3 hybrid system, and the MoO 3 nanorods were found to bind together resulting in formation of MoO 3 microslabs with increased surface area. Photodecomposition performance of the MoO 3 nanorods, pyrazine–MoO 3 hybrids and MoO 3 microcrystals was studied against Procion Red MX-5B textile dye. A high photodecomposition performance was found to decrease when going from MoO 3 nanorods to MoO 3 microcrystal and, further, to pyrazine–MoO 3 hybrids. - Graphical abstract: Display Omitted - Highlights: • High aspect ratio MoO 3 nanorods were prepared through a new hydrothermal method. • Hybrids of pyrazine–MoO 3 were formed by intercalating pyrazine into MoO 3 nanorods. • Intercalation of pyrazine was confirmed in X-ray spectroscopic analysis. • After calcinations, MoO 3 crystal was retained by binding MoO 3 nanorods together. • High photodegradation performance was noticed from MoO 3 nanorods

  7. Biodistribution of 99Mo in rats

    International Nuclear Information System (INIS)

    Souza, Raphael Sancho Sisley de; Ribeiro, Bianca da Silva; Dantas, Ana Leticia Almeida; Dantas, Bernardo Maranhao; Bernardo Filho, Mario

    2009-01-01

    The modification of 99 Mo standard metabolism in the presence of MDP would alter the dosimetry of this radionuclide in nuclear medicine patients. Therefore, the objective of this work is to evaluate the influence of MDP in the biodistribution of 99 Mo. Wistar rats were divided in two groups of six animals, being inoculated respectively 99 Molibdate and 99 Mo+MDP via plex ocular. The biodistribution study was carried out after 10 and 120 minutes respectively. The organs were counted with a NaI(Tl) detector. The uptake values did not present significant differences among the groups. An in vitro study through planar chromatography was carried out to determine the affinity between molybdenum and MDP. The results show that 99 Mo has low affinity both to propanone and NaCl-0.9% solution. However, 99 Mo in the presence of MDP presented affinity to NaCl-0.9% solution and low affinity to propanone suggesting that 99 Mo was bound to MDP under the conditions of the experiment. (author)

  8. Synthesis of Fine Mo2C Powder from Prereduced Mo in Undiluted CH4 Flow

    Science.gov (United States)

    Cetinkaya, S.; Eroglu, S.

    2017-10-01

    The carburization behavior of prereduced Mo was investigated in undiluted CH4 flow at 900-1000 K. Prior to the experiments, equilibrium thermodynamic analysis was carried out in the Mo-C-H system. The products were characterized by mass measurement, x-ray diffraction and scanning electron microscopy techniques. A single Mo2C phase was obtained within 45 min, 5 min, and 2.5 min at 900 K, 950 K, and 1000 K, respectively, at CH4 contents higher than the predicted ones. The reasons for this behavior were discussed in terms of CH4 stability, open tube flow, and self-created atmosphere in the powder bed. The fractional conversion-time curves indicated that the carburization kinetics followed a linear rate law. The Mo2C crystallite size (26-37 nm) and platelet thickness (50-100 nm) were found to be smaller than those of the parent Mo phase. These findings were attributable to the defects formed as a result of stresses associated with the reduction and the carburization.

  9. Benchmark experiment for the cross section of the 100Mo(p,2n)99mTc and 100Mo(p,pn)99Mo reactions

    Science.gov (United States)

    Takács, S.; Ditrói, F.; Aikawa, M.; Haba, H.; Otuka, N.

    2016-05-01

    As nuclear medicine community has shown an increasing interest in accelerator produced 99mTc radionuclide, the possible alternative direct production routes for producing 99mTc were investigated intensively. One of these accelerator production routes is based on the 100Mo(p,2n)99mTc reaction. The cross section of this nuclear reaction was studied by several laboratories earlier but the available data-sets are not in good agreement. For large scale accelerator production of 99mTc based on the 100Mo(p,2n)99mTc reaction, a well-defined excitation function is required to optimise the production process effectively. One of our recent publications pointed out that most of the available experimental excitation functions for the 100Mo(p,2n)99mTc reaction have the same general shape while their amplitudes are different. To confirm the proper amplitude of the excitation function, results of three independent experiments were presented (Takács et al., 2015). In this work we present results of a thick target count rate measurement of the Eγ = 140.5 keV gamma-line from molybdenum irradiated by Ep = 17.9 MeV proton beam, as an integral benchmark experiment, to prove the cross section data reported for the 100Mo(p,2n)99mTc and 100Mo(p,pn)99Mo reactions in Takács et al. (2015).

  10. Solid state reactions of MoO3 and Na2MoO4 with (U.85,Ce.15)O2x

    International Nuclear Information System (INIS)

    Dahale, N.D.; Keskar, Meera; Singh Mudher, K.D.; Chawla, K.L.

    1999-01-01

    (U .85 ,Ce .15 )MoO 6-x was prepared by the solid state reactions of (U .85 ,Ce .15 )O 2±x with MoO 3 in air at 600 deg C. Solid state reactions of Na 2 MoO 4 with (U .85 ,Ce .15 )MoO 6.x up to 550 deg C in air led to the formation of Na 2 (U .85 ,Ce .15 )Mo 2 O 10-x and Na 2 (U .85 , Ce .15 ) 2 Mo 3 O 16-x . These compounds were characterised by x-ray and thermal methods. The x-ray powder data of (U .85 , Ce .15 ) MoO 6-x were indexed on monoclinic system whereas, data of Na 2 (U .85 ,Ce .15 ) Mo 2 O 10-x and Na 2 (U .85 ,Ce .15 ) 2 Mo 3 O 16-x were indexed on orthorhombic and monoclinic system respectively. (author)

  11. Influences of Mo and W on the precipitation of secondary phases and the associated localized corrosion and embrittlement in 29%Cr ferritic stainless steels

    International Nuclear Information System (INIS)

    Park, Chan Jin; Ahn, Myung Kyu; Kwon, Hyuk Sang

    2005-01-01

    Influences of molybdenum (Mo) substitution by tungsten (W) on the formation kinetics of secondary phases and the associated localized corrosion and embrittlement of Fe-29Cr-4Mo. Fe-29Cr-4W, and Fe-29Cr-8W ferritic stainless steels were investigated. Fine χ phase formed first in grain boundaries in an early stage of aging and it was gradually substituted by σ phase with further aging. The precipitation rate of σ phase appears to be determined by both the diffusion rates of W and Mo for the formation of the σ phase as well as by the affinity of χ phase, as a competitor, for the elements. Due to the high affinity of χ phase for W with a slow diffusion rate, the nucleation of σ phase was significantly delayed in Fe-29Cr-4W and Fe-29Cr-8W alloys compared with that in Fe-29Cr-4Mo alloy. In addition, the deterioration of ductility and localized corrosion resistance by the precipitation of secondary phases was significantly retarded in Fe-29Cr-4W alloy compared with that in Fe-29Cr-4Mo alloy, due to the delayed precipitation of secondary phases in Fe-29Cr-4W alloy. In particular, retardation of degradation in localized corrosion resistance by the formation of σ phase, which induced significant depletion of Cr and W (or Mo) around the phase, was prominent in the W-containing alloys. The W-containing alloys exhibited effective delay of σ phase formation

  12. Grain Entrapment Pressure on the Torso: Can You Breathe while Buried in Grain?

    Science.gov (United States)

    Moore, Kevin G; Jones, Carol L

    2017-04-26

    The pressure applied to the chest and back of a simulated grain entrapment victim was measured. Pressure sensors were attached to the chest and back of a manikin that was buried in grain in the vertical position. Measurements were made in four grain types at four grain depths ranging from the top of the manikin's shoulders to 0.61 m (24 in.) over the head. The pressure ranged from 1.6 to 4.0 kPa (0.23 to 0.57 psi). Based on available physiological information, this amount of pressure is unlikely to limit the respiration of an otherwise healthy adult male victim. However, other factors, such as the victim's age, gender, and body position in the grain, may influence respiration. The aspiration of grain appears to be the most likely asphyxiation risk during grain bin entrapment. Entering a grain storage bin is inherently dangerous, and Occupational Safety and Health Administration (OSHA) guidelines for permit-required confined spaces and grain handling facilities must be followed. Due to the risk of grain aspiration during engulfment, the development of safety equipment that could help protect the airway of a victim should be investigated. Copyright© by the American Society of Agricultural Engineers.

  13. Basic investigation for life assessment technology of modified 9CR-1Mo steel

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, Hiroyuki [Science Univ. of Tokyo (Japan); Ohtani, Ryuichi [Kyoto Univ. (Japan); Fujii, Kazuya [Japan Power Engineering and Inspection Corp., Tokyo (Japan); Kimura, Kazushige; Ishii, Ryuichi; Fujiyama, Kazunari; Hongo, Shigetada; Iseki, Takashi; Uchida, Hiroshi [Toshiba Corp., Kawasaki, Kanagawa (Japan)

    1998-11-01

    For the basic study of life assessment technologies for aged components made of mod.9Cr-1Mo steel, specimens were artificially deteriorated by aging, creep and fatigue tests at elevated temperatures. And metallurgical and mechanical properties were examined. The change in the precipitates caused the decrease in toughness. The creep damage in base metal corresponded to the decrease in hardness. The fatigue damage in base metal correlated to the maximum length of a crack among micro-cracks initiated during fatigue cycle. In the welded joint, the creep fracture occurred by the formation and growth of voids in the fine grained region of HAZ near base metal. The creep damage was associated with the increase in both number and area fraction of voids. (orig.)

  14. Effect of molybdenum on structure, microstructure and mechanical properties of biomedical Ti-20Zr-Mo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Pedro Akira Bazaglia [UNESP - Univ Estadual Paulista, Laboratório de Anelasticidade e Biomateriais, 17.033-360, Bauru, SP (Brazil); IBTN/Br – Institute of Biomaterials, Tribocorrosion and Nanomedicine, Brazilian Branch, 17.033-360 Bauru, SP (Brazil); Buzalaf, Marília Afonso Rabelo [USP – Universidade de São Paulo, Departamento de Ciências Biológicas, 17.012-901, Bauru, SP (Brazil); Grandini, Carlos Roberto, E-mail: betog@fc.unesp.br [UNESP - Univ Estadual Paulista, Laboratório de Anelasticidade e Biomateriais, 17.033-360, Bauru, SP (Brazil); IBTN/Br – Institute of Biomaterials, Tribocorrosion and Nanomedicine, Brazilian Branch, 17.033-360 Bauru, SP (Brazil)

    2016-10-01

    Titanium has an allotropic transformation around 883 °C. Below this temperature, the crystalline structure is hexagonal close-packed (α phase), changing to body-centered cubic (β phase). Zirconium has the same allotropic transformation around 862 °C. Molybdenum has body-centered cubic structure, being a strong β-stabilizer for the formation of titanium alloys. In this paper, the effect of substitutional molybdenum was analyzed on the structure, microstructure and selected mechanical properties of Ti-20 Zr-Mo (wt%) alloys to be used in biomedical applications. The samples were prepared by arc-melting and characterized by x-ray diffraction with subsequent refinement by the Rietveld method, optical and scanning electron microscopy. The mechanical properties were analyzed by Vickers microhardness and dynamic elasticity modulus. X-ray measurements and Rietveld analysis revealed the presence of α′ phase without molybdenum, α′ + α″ phases with 2.5 wt% of molybdenum, α″ + β phases with 5 and 7.5 wt% of molybdenum, and only β phase with 10 wt% of molybdenum. These results were corroborated by microscopy results, with a microstructure composed of grains of β phase and lamellae and needles of α′ and α″ phase in intra-grain the region. The hardness of the alloy was higher than the commercially pure titanium, due to the action of zirconium and molybdenum as hardening agents. The samples have a smaller elasticity modulus than the commercially pure titanium. - Highlights: • Ti-20Zr-Mo system alloys were developed. • β-Stabilizer effect of Zr in the presence of another β-stabilizer element • Alloys with low elastic modulus.

  15. Normal and grazing incidence pulsed laser deposition of nanostructured MoSx hydrogen evolution catalysts from a MoS2 target

    Science.gov (United States)

    Fominski, V. Yu.; Romanov, R. I.; Fominski, D. V.; Dzhumaev, P. S.; Troyan, I. A.

    2018-06-01

    Pulsed laser ablation of a MoS2 target causes enhanced splashing of the material. So, for MoSx films obtained by pulsed laser deposition (PLD) in the conventional normal incidence (NI) configuration, their typical morphology is characterized by an underlying granular structure with an overlayer of widely dispersed spherical Mo and MoSx particles possessing micro-, sub-micro- and nanometer sizes. We investigated the possibility of using high surface roughness, which occurs due to particle deposition, as a support with a large exposed surface area for thin MoSx catalytic layers for the hydrogen evolution reaction (HER). For comparison, the HER performance of MoSx layers formed by grazing incidence (GI) PLD was studied. During GI-PLD, a substrate was placed along the direction of laser plume transport and few large particles loaded the substrate. The local structure and composition of thin MoSx layers formed by the deposition of the vapor component of the laser plume were varied by changing the pressure of the buffer gas (argon, Ar). In the case of NI-PLD, an increase in Ar pressure caused the formation of quasi-amorphous MoSx (x ≥ 2) films that possessed highly active catalytic sites on the edges of the layered MoS2 nanophase. At the same time, a decrease in the deposition rate of the MoSx film appeared due to the scattering of the vapor flux by Ar molecules during flux transport from the target to the substrate. This effect prevented uniform deposition of the MoSx catalytic film on the surface of most particles, whose deposition rate was independent of Ar pressure. The scattered vapor flux containing Mo and S atoms was a dominant source for MoSx film growth during GI-PLD. The thickness and composition distribution of the MoSx film on the substrate depended on both the pressure of the buffer gas and the distance from the target. For 1.0-2.5 cm from the target, the deposition rate was quite sufficient to form S-enriched quasi-amorphous MoSx (2.5 < x < 6) catalytic

  16. Study on Mo(V) species, location and adsorbates interactions in MoH-SAPO-34 by employing ESR and electron spin-echo modulation spectroscopies

    International Nuclear Information System (INIS)

    Back, Gern Ho; Jang, Chang Ki; Ru, Chang Kuk; Cho, Young Hwan; So, Hyun Soo; Larry, Keven

    2002-01-01

    A solid-state reaction of MoO 3 with as-synthesized H-SAPO-34 generated paramagnetic Mo(V) species. The dehydration resulted in weak Mo(V) species, and subsequent activation resulted in the formation of Mo(V) species such as Mo(V) 5c and Mo(V) 6c that are characterized by ESR. The data of ESR and ESEM show the oxomolybdenum species, to be (MoO 2 ) + or (MoO) 3+ . The (MoO 2 ) + species seems to be more probable. Since H-SAPO-34 has a low framework negative charge, (MoO) 3+ with a high positive charge can not be easily stabilized. A solution reaction between the solution of silico-molybdic acid and calcined H-SAPO-34 resulted in only MoO + 2 species. A rhombic ESR signal is observed on adsorption of D 2 O, CD 3 OH, CH 3 CH 2 OD and ND 3 . The Location and coordination structure of Mo(V) species has been determined by three-pulse electron spin-echo modulation data and their simulations. After the adsorption of methanol, ethylene, ammonia, and water for MoH-SAPO-34, three molecules, one and one molecule, respectively, are directly coordinated to (MoO 2 ) +

  17. Surface relief of α doubleprime martensite in a Ti-Mo alloy

    International Nuclear Information System (INIS)

    Guo, H.; Okuda, K.; Enomoto, M.

    2000-01-01

    The surface relief of αdouble p rime martensite plates in a polycrystalline Ti-4.74 at. pct Mo alloy was studied by atomic force microscopy (AFM). The orientation of matrix grains was measured by electron backscatter diffraction (EBSD), and measured surface tilt angles were compared with calculation by the crystallographic theory of martensite transformation. The observed maximum tilt angle was close to the predicted value of 7.57 deg. The overall agreement between measured and calculated tilt angles was improved significantly by taking into account not only the inclination of habit plane to the specimen surface, but also the shear direction predicted from the theory. The tile angle may vary with the moving direction of the interface unless the habit plane is perpendicular to the specimen surface. However, this effect was small in this transformation

  18. Grain Handling and Storage.

    Science.gov (United States)

    Harris, Troy G.; Minor, John

    This text for a secondary- or postecondary-level course in grain handling and storage contains ten chapters. Chapter titles are (1) Introduction to Grain Handling and Storage, (2) Elevator Safety, (3) Grain Grading and Seed Identification, (4) Moisture Control, (5) Insect and Rodent Control, (6) Grain Inventory Control, (7) Elevator Maintenance,…

  19. Grain Grading and Handling.

    Science.gov (United States)

    Rendleman, Matt; Legacy, James

    This publication provides an introduction to grain grading and handling for adult students in vocational and technical education programs. Organized in five chapters, the booklet provides a brief overview of the jobs performed at a grain elevator and of the techniques used to grade grain. The first chapter introduces the grain industry and…

  20. Quasi-static and dynamic forced shear deformation behaviors of Ti-5Mo-5V-8Cr-3Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhiming; Chen, Zhiyong, E-mail: czysh@netease.com; Zhan, Congkun; Kuang, Lianjun; Shao, Jianbo; Wang, Renke; Liu, Chuming

    2017-04-13

    The mechanical behavior and microstructure characteristics of Ti-5Mo-5V-8Cr-3Al alloy were investigated with hat-shaped samples compressed under quasi-static and dynamic loading. Compared with the quasi-static loading, a higher shear stress peak and a shear instability stage were observed during the dynamic shear response. The results showed that an adiabatic shear band consisting of ultrafine equiaxed grains was only developed in the dynamic specimen, while a wider shear region was formed in the quasi-static specimen. The microhardness measurements revealed that shear region in the quasi-static specimen and adiabatic shear band in the dynamic specimen exhibited higher hardness than that of adjacent regions due to the strain hardening and grain refining, respectively. A stable orientation, in which the crystallographic {110} planes and <111> directions were respectively parallel to the shear plane and shear direction, developed in both specimens. And the microtexture of the adiabatic shear band was more well-defined than that of the shear region in the quasi-static specimen. Rotational dynamic recrystallization mechanism was suggested to explain the formation of ultrafine equiaxed grains within the adiabatic shear band by thermodynamic and kinetic calculations.

  1. Concurrent grain boundary motion and grain rotation under an applied stress

    International Nuclear Information System (INIS)

    Gorkaya, Tatiana; Molodov, Konstantin D.; Molodov, Dmitri A.; Gottstein, Guenter

    2011-01-01

    Simultaneous shear coupling and grain rotation were observed experimentally during grain boundary migration in high-purity Al bicrystals subjected to an external mechanical stress at elevated temperatures. This behavior is interpreted in terms of the structure of the investigated planar 18.2 o non-tilt grain boundary with a 20 o twist component. For characterization of the grain rotation after annealing under stress the bicrystal surface topography across the boundary was measured by atomic force microscopy. The temperature dependence of the boundary migration rate was measured and the migration activation energy determined.

  2. Methods of assessing grain-size distribution during grain growth

    DEFF Research Database (Denmark)

    Tweed, Cherry J.; Hansen, Niels; Ralph, Brian

    1985-01-01

    This paper considers methods of obtaining grain-size distributions and ways of describing them. In order to collect statistically useful amounts of data, an automatic image analyzer is used, and the resulting data are subjected to a series of tests that evaluate the differences between two related...... distributions (before and after grain growth). The distributions are measured from two-dimensional sections, and both the data and the corresponding true three-dimensional grain-size distributions (obtained by stereological analysis) are collected. The techniques described here are illustrated by reference...

  3. Crystallography of sigma phase precipitation in superaustenitic Fe-22Cr-21Ni-6Mo-0.3N stainless steels

    International Nuclear Information System (INIS)

    Lee, Tae Ho; Jung, Yun Chul; Kim, Sung Joon

    1999-01-01

    The crystallographic features of sigma phase precipitation in super austenitic Fe-22Cr-21Ni-6Mo-(0.3N) stainless steels during isothermal aging were investigated utilizing transmission electron microscopy. The sigma phase precipitated along the austenite grain boundaries even after solution treatment due to higher Mo contents and remained stable throughout aging at 900 .deg. C up to 168 hours. The sigma phase observed in this study was found to be ternary Fe-Cr-Mo sigma phase and had tetragonal structure with lattice parameters of a=9.17A and c=4.74A. The orientation relationships between the sigma phase and austenite were determined from the analyses of selected area diffraction patterns taken by various zone axes and stereo graphic analyses. The orientation relationships between sigma and austenite phases obtained in this study were as follows; 1) (110) γ ll (110) σ , [111] γ ll [001] σ and (112) γ ll (110) σ , [111] γ ll [001] σ and 2) (110) γ ll (110) σ , [112] γ ll [113] σ and (111) γ ll (332) σ , [112] γ ll [113] σ . However, the former orientation relationship was predominant throughout aging and the latter orientation relationship was scarcely observed in very limited aging condition

  4. Computational identification of MoRFs in protein sequences.

    Science.gov (United States)

    Malhis, Nawar; Gsponer, Jörg

    2015-06-01

    Intrinsically disordered regions of proteins play an essential role in the regulation of various biological processes. Key to their regulatory function is the binding of molecular recognition features (MoRFs) to globular protein domains in a process known as a disorder-to-order transition. Predicting the location of MoRFs in protein sequences with high accuracy remains an important computational challenge. In this study, we introduce MoRFCHiBi, a new computational approach for fast and accurate prediction of MoRFs in protein sequences. MoRFCHiBi combines the outcomes of two support vector machine (SVM) models that take advantage of two different kernels with high noise tolerance. The first, SVMS, is designed to extract maximal information from the general contrast in amino acid compositions between MoRFs, their surrounding regions (Flanks), and the remainders of the sequences. The second, SVMT, is used to identify similarities between regions in a query sequence and MoRFs of the training set. We evaluated the performance of our predictor by comparing its results with those of two currently available MoRF predictors, MoRFpred and ANCHOR. Using three test sets that have previously been collected and used to evaluate MoRFpred and ANCHOR, we demonstrate that MoRFCHiBi outperforms the other predictors with respect to different evaluation metrics. In addition, MoRFCHiBi is downloadable and fast, which makes it useful as a component in other computational prediction tools. http://www.chibi.ubc.ca/morf/. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Ordering in rapidly solidified Ni/sub 2/Mo

    International Nuclear Information System (INIS)

    Kulkarni, U.D.; Dey, G.K.; Banerjee, S.

    1988-01-01

    Ordering processes in the Ni-Mo system have been a subject of several investigations. Although the ordering behaviour of the Ni/sub 4/Mo and the Ni/sub 3/Mo has been examined in detail, no such study has been reported in the case of the Ni/sub 2/Mo alloy. The lack of experimental work on ordering transformations in Ni/sub 2/Mo is presumably due to the difficulty in obtaining a single phase fcc alloy of this composition. Enhanced solid solubility of Mo in Ni, which accompanies rapid solidification processing (RSP) makes the formation of such a phase possible. The ordering processes in Ni-Mo based alloys show several remarkable features. Firstly, the alloy (15 - 28 at % Mo) quenched from the α -phase filed exhibit a short range order (SRO) characterized by the presence of intensity maxima at /1 1/2 0/ fcc positions of the reciprocal space. This state of SRO has been attributed to the occurrence of 1 1/2 O spinodal ordering in the system. Secondly, the transformation from the state of SRO to the equilibrium/metastable coherent long range ordered (LRO) structures appears to take place in a continuous manner at relatively low temperatures of aging. Three different coherent LRO structures, namely: the equilibrium Ni/sub 4/Mo (prototype structure D1/sub a/) and the metastable Ni/sub 3/Mo (DO/sub 22/) and Ni/sub 2/Mo (Pt/sub 2/Mo) structures have reported to evolve from the SRO alloy, depending upon the aging treatment and the composition of the alloy

  6. Grain boundary structure and properties

    International Nuclear Information System (INIS)

    Balluffi, R.W.

    1979-01-01

    An attempt is made to distinguish those fundamental aspects of grain boundaries which should be relevant to the problem of the time dependent fracture of high temperature structural materials. These include the basic phenomena which are thought to be associated with cavitation and cracking at grain boundaries during service and with the more general microstructural changes which occur during both processing and service. A very brief discussion of the current state of our knowledge of these fundamentals is given. Included are the following: (1) structure of ideal perfect boundaries; (2) defect structure of grain boundaries; (3) diffusion at grain boundaries; (4) grain boundaries as sources/sinks for point defects; (5) grain boundary migration; (6) dislocation phenomena at grain boundaries; (7) atomic bonding and cohesion at grain boundaries; (8) non-equilibrium properties of grain boundaries; and (9) techniques for studying grain boundaries

  7. Fission 99Mo production technology

    International Nuclear Information System (INIS)

    Miao Zengxing; Luo Zhifu; Ma Huimin; Liang Yufu; Yu Ningwen

    2003-01-01

    This paper describes a production technology of fission 99 Mo in the Department Isotope, CIAE. The irradiation target is tubular U-Al alloy containing highly enriched uranium. The target is irradiated in the swimming pool reactor core. The neutron flux is about 4x10 13 /cm 2 .sec. The production scale is 3.7-7.4 TBq (100-200Ci) of fission 99 Mo per batch. Total recovery of 99 Mo is more than 70%. The production practice proves that the process and equipment are safe and reliable. (author)

  8. Interstellar grains

    Energy Technology Data Exchange (ETDEWEB)

    Hoyle, F.; Wickramasinghe, N.C.

    1980-11-01

    Interstellar extinction of starlight was observed and plotted as a function of inverse wavelength. Agreement with the calculated effects of the particle distribution is shown. The main kinds of grain distinguished are: (1) graphite spheres of radius 0.02 microns, making up 10% of the total grain mass (2) small dielectric spheres of radius 0.04 microns making up 25% and (3) hollow dielectric cylinders containing metallic iron, with diameters of 2/3 microns making up 45%. The remaining 20% consists of other metals, metal oxides, and polysiloxanes. Absorption factor evidence suggests that the main dielectric component of the grains is organic material.

  9. Sintering of Mo2FeB2 based cermet and its layered composites containing Sic fibers

    International Nuclear Information System (INIS)

    Rao, D.; Upadhyaya, G.S.

    2001-01-01

    In the present investigation Mo 2 FeB 2 based cermet (KH-C50) and its composites containing SiC fibers were sintered in two different atmospheres namely hydrogen and vacuum. It was observed that vacuum sintered samples have remarkably lower porosities than the hydrogen sintered ones. Two different sintering cycles were employed for each of the atmosphere and properties of the material were studied. Introduction of fibers in the composite imparts shrinkage anisotropy during sintering. Fiber containing cermets have rather poor densification and transverse rupture strength (TRS). TRS, macro and microhardness, and boride grain size measurements were also carried out for the cermets sintered in different atmospheres. (author)

  10. Resonant photoelectron spectroscopy at the Mo 4p→4d absorption edge in MoS2

    International Nuclear Information System (INIS)

    Lince, J.R.; Didziulis, S.V.; Yarmoff, J.A.

    1991-01-01

    A systematic study has been conducted of the resonant behavior of the valence-band photoelectron spectrum of MoS 2 for hν=26--70 eV, spanning the Mo 4p→4d transition region. A broad Fano-like resonance appears at ∼42 eV in the constant-initial-state (CIS) intensity plot of the d z 2 peak near the valence-band maximum [∼2 eV binding energy (BE)], confirming its predominantly Mo 4d character. A second shoulder on the higher-hν side of the maximum in the d z 2 CIS intensity plot is suggested to result from transitions to unoccupied states in the 5sp band ∼10 eV above E F , by comparison with a partial-yield spectrum and previous inverse-photoemission data. The region of the valence band in the range 3--4.5-eV BE also exhibits resonant behavior, indicating Mo 4d character, although somewhat less than for the d z 2 peak. The 5--7-eV BE range does not exhibit resonance behavior at the Mo 4p edge and, therefore, contains negligible Mo 4d character. A feature at ∼30 eV in the CIS intensity plot for the 5--7-eV BE range could not be definitively assigned in this study, but may be due to a resonance between direct photoemission and a process involving absorption and autoionization of electronic states that contain Mo 5s and 5p character

  11. Reproductive performance of reindeer fed all-grain and hay-grain rations

    Directory of Open Access Journals (Sweden)

    J. M. Blanchard

    1986-06-01

    Full Text Available Reproductive performance of grain-fed reindeer {Rangifer tarandus was evaluated over a 2-year period. Groups of pregnant reindeer were fed one of three rations, (1 100% whole-grain barley, (2 98.9% whole-grain barley and 1.2% mineral and trace element supplement, and (3 70% whole-grain barley and 30% finely-chopped bluegrass hay. Reindeer fed unsupplemented whole-barley failed to produce a single live calf. The addition of mineral and trace element supplement to the ration did not result in any significant improvement in reproductive performance. Eighty-five percent of the reindeer consuming unsupplemented and supplemented all-barley rations became pregnant; however, 76% of the pregnancies resulted in stillborn calves. One-hundred percent of the cows maintained on the grain/hay ration produced live calves. We speculate that reproductive failure in reindeer cows maintained on all-grain rations is most likely a result of a diet induced disfunction in maternal rumen and/or carbohydrate metabolism rather than a micro-nutrient deficiency. More research is neeeded to determine which metabolic pathways are affected.

  12. Creep and shrinkage of Mo(Ni)

    International Nuclear Information System (INIS)

    Kaysser, W.A.; Hofmann-Amtenbrink, M.; Petzow, G.

    1984-01-01

    To avoid some of the errors inherent in a quantitative interpretation of shrinkage of powder compacts as Mo-Ni, other experiments were looked for, where the influence of Ni on the material transport properties of Mo could be measured semi-quantitatively during heating up to temperature and subsequent isothermal annealing. The bending of thin Mo foils under small loads was found to be an experimental arrangement, where variations in stress, in Ni-concentration and in intrinsic material properties could be realized. The results of these creep experiments will be compared in a qualitative sense with sintering experiments in Mo-Ni done under similar conditions as the creep experiments

  13. Study of the water-gas shift reaction on Mo2C/Mo catalytic coatings for application in microstructured fuel processors

    NARCIS (Netherlands)

    Rebrov, E.V.; Kuznetsov, S.A.; Croon, de M.H.J.M.; Schouten, J.C.

    2007-01-01

    The activity and stability of two types of molybdenum carbide coatings deposited on molybdenum substrates (Mo2C/Mo) were compared in the water-gas shift reaction at 513–631 K. The activity of the Mo2C/Mo coatings obtained by carburization of preoxidized molybdenum substrates in a CH4/H2 mixture at

  14. IEA Mobility Model (MoMo) and its use in the ETP 2008

    International Nuclear Information System (INIS)

    Fulton, Lew; Cazzola, Pierpaolo; Cuenot, Francois

    2009-01-01

    The IEA published 'Energy Technology Perspectives' (ETP) in June 2008. That document reports on IEA scenarios for baseline and low-CO 2 alternative scenarios to 2050, across the energy economy. The study included creating scenarios for transport, using the IEA Mobility Model (MoMo). This paper reports on the transport-related ETP scenarios and describes the model used in the analysis. According to the ETP Baseline scenario, world transport energy use and CO 2 emissions will more than double by 2050. In the most challenging scenario, called 'BLUE', transport emissions are reduced by 70% in 2050 compared to their baseline level in that year (and about 25% below their 2005 levels). There are several versions of the BLUE scenario, but all involve: a 50% or greater improvement in LDV efficiency, 30-50% improvement in efficiency of other modes (e.g. trucks, ships and aircraft), 25% substitution of liquid fossil fuels by biofuels, and considerable penetration of electric and/or fuel-cell vehicles. In the second half of this paper, an overview of the MoMo model is provided. Details on the complete analysis are contained in the ETP 2008 document, available at (www.iea.org). Details of the LDV fuel economy analysis are contained in a separate paper in this collection.

  15. Single Phase Melt Processed Powellite (Ba,Ca) MoO{sub 4} For The Immobilization Of Mo-Rich Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, Kyle [Savannah River Site (SRS), Aiken, SC (United States); Marra, James [Savannah River Site (SRS), Aiken, SC (United States); Fox, Kevin [Savannah River Site (SRS), Aiken, SC (United States); Reppert, Jason [Savannah River Site (SRS), Aiken, SC (United States); Crum, Jarrod [Paci fic Northwest National Laboratory , Richland, WA (United States); Tang, Ming [Los Alamos National Laboratory , Los Alamos, NM (United States)

    2012-09-17

    Crystalline and glass composite materials are currently being investigated for the immobilization of combined High Level Waste (HLW) streams resulting from potential commercial fuel reprocessing scenarios. Several of these potential waste streams contain elevated levels of transition metal elements such as molybdenum (Mo). Molybdenum has limited solubility in typical silicate glasses used for nuclear waste immobilization. Under certain chemical and controlled cooling conditions, a powellite (Ba,Ca)MoO{sub 4} crystalline structure can be formed by reaction with alkaline earth elements. In this study, single phase BaMoO{sub 4} and CaMoO{sub 4} were formed from carbonate and oxide precursors demonstrating the viability of Mo incorporation into glass, crystalline or glass composite materials by a melt and crystallization process. X-ray diffraction, photoluminescence, and Raman spectroscopy indicated a long range ordered crystalline structure. In-situ electron irradiation studies indicated that both CaMoO{sub 4} and BaMoO{sub 4} powellite phases exhibit radiation stability up to 1000 years at anticipated doses with a crystalline to amorphous transition observed after 1 X 10{sup 13} Gy. Aqueous durability determined from product consistency tests (PCT) showed low normalized release rates for Ba, Ca, and Mo (<0.05 g/m{sup 2}).

  16. Decomposition of the metastable phase γU in U-7% and U-7% Mo-0.9% Pt

    International Nuclear Information System (INIS)

    Arico, Sergio F.; Gribaudo, Luis M.

    2004-01-01

    The 'Reduced Enrichment for Research and Test Reactors' is an international project for the development of a nuclear fuel with high density in uranium capable to get a great neutron flux with good capacity for being reprocessed. One of the candidates is a fuel containing U-Mo alloy powder, as bcc metastable phase γ, dispersed in Al powder. In order to know the influence of Pt as a stabilizing element two U-7 wt.% Mo alloys are studied, one of them with 0.9 wt.% Pt. They were fabricated in an arc furnace and both homogenized in composition during 2 h at 1000 C degrees. Then, isothermal treatments at 480, 430 and 350 C degrees were performed at times between 1 and 177 h. The decomposition of the γ phase was studied by metallography and X-ray diffraction analysis. Adding Pt, the start of the decomposition of the γ phase is delayed, but the initial grain size of the alloys is an important variable which has also to be considered. (author) [es

  17. Why do interstellar grains exist

    International Nuclear Information System (INIS)

    Seab, C.G.; Hollenbach, D.J.; Mckee, C.F.; Tielens, A.G.G.M.

    1986-01-01

    There exists a discrepancy between calculated destruction rates of grains in the interstellar medium and postulated sources of new grains. This problem was examined by modelling the global life cycle of grains in the galaxy. The model includes: grain destruction due to supernovae shock waves; grain injection from cool stars, planetary nebulae, star formation, novae, and supernovae; grain growth by accretion in dark clouds; and a mixing scheme between phases of the interstellar medium. Grain growth in molecular clouds is considered as a mechanism or increasing the formation rate. To decrease the shock destruction rate, several new physical processes, such as partial vaporization effects in grain-grain collisions, breakdown of the small Larmor radius approximation for betatron acceleration, and relaxation of the steady-state shock assumption are included

  18. U-Mo fuel qualification program in HANARO

    International Nuclear Information System (INIS)

    Lee, K.H.; Lee, C.S.; Kim, H.R.; Kuk, I.H.; Kim, C.K.

    2000-01-01

    Atomized U-Mo fuel has shown good performance from the results of previous out-of-pile tests and post-irradiation examinations. A qualification program of rod type U-Mo fuel is in progress and the fuel will be irradiated in HANARO. 6 gU/cm 3 U-7Mo, U-8Mo and U-9Mo are considered in this program. The laboratory test results of porosity, mechanical property, thermal conductivity, and thermal compatibility test are discussed in this paper. In parallel with this qualification program, the feasibility study on the core conversion from the present U 3 Si fuel to U-Mo in HANARO will be initiated to provide technical bases for the policy making. Several options of core conversion for HANARO are proposed and each option will be addressed briefly in terms of the operation policy, fuel management, and licensing of HANARO. (author)

  19. On the coexistence of copper-molybdenum bronzes: CuxMoO3 (0.2 yMoO3-z (0.1 2-O quasi-ternary system

    International Nuclear Information System (INIS)

    Warner, T.E.; Skou, E.M.

    2010-01-01

    Two copper-molybdenum bronzes: Cu y MoO 3-z (0.1 x MoO 3 (0.2 3 at 600 o C under argon in Pt crucibles. Powder XRD showed that the material with global composition '0.1Cu.MoO 3 ' comprises ∼Cu 0.15 MoO 3 and MoO 3 ; whilst '0.2Cu.MoO 3 ' comprises ∼Cu 0.15 MoO 3 and ∼Cu 0.23 MoO 3 . DTA performed on '0.2Cu.MoO 3 ' reveals a reversible solid state phase transition ∼520 o C under argon. Reacting equimolar amounts of Cu 2 O and MoO 2 at 600 o C in a Cu crucible under argon yields: Cu 6 Mo 5 O 18 , Cu and MoO 2 . A tentative subsolidus Cu-MoO 2 -O isothermal (∼25 o C) phase diagram under argon is drawn from these data. Oxidation states of Cu and Mo within this system are discussed.

  20. Evolution of grain boundary character distributions in alloy 825 tubes during high temperature annealing: Is grain boundary engineering achieved through recrystallization or grain growth?

    International Nuclear Information System (INIS)

    Bai, Qin; Zhao, Qing; Xia, Shuang; Wang, Baoshun; Zhou, Bangxin; Su, Cheng

    2017-01-01

    Grain boundary engineering (GBE) of nickel-based alloy 825 tubes was carried out with different cold drawing deformations by using a draw-bench on a factory production line and subsequent annealing at various temperatures. The microstructure evolution of alloy 825 during thermal-mechanical processing (TMP) was characterized by means of the electron backscatter diffraction (EBSD) technique to study the TMP effects on the grain boundary network and the evolution of grain boundary character distributions during high temperature annealing. The results showed that the proportion of ∑ 3 n coincidence site lattice (CSL) boundaries of alloy 825 tubes could be increased to > 75% by the TMP of 5% cold drawing and subsequent annealing at 1050 °C for 10 min. The microstructures of the partially recrystallized samples and the fully recrystallized samples suggested that the proportion of low ∑ CSL grain boundaries depended on the annealing time. The frequency of low ∑ CSL grain boundaries increases rapidly with increasing annealing time associating with the formation of large-size highly-twinned grains-cluster microstructure during recrystallization. However, upon further increasing annealing time, the frequency of low ∑ CSL grain boundaries decreased markedly during grain growth. So it is concluded that grain boundary engineering is achieved through recrystallization rather than grain growth. - Highlights: •The grain boundary engineering (GBE) is applicable to 825 tubes. •GBE is achieved through recrystallization rather than grain growth. •The low ∑ CSL grain boundaries in 825 tubes can be increased to > 75%.

  1. DFT study of the reactions of Mo and Mo with CO2 in gas phase

    Indian Academy of Sciences (India)

    understanding the mechanism of second-row metal reacting with CO2. The minimum energy ... et al.18 performed an IR study on the reaction of laser- ablated Mo atom .... indicate that the weak electrostatic interaction between. Mo. + and CO2 ...

  2. HAZ microstructure in joints made of X13CrMoCoVNbNB9-2-1 (PB2 steel welded with and without post-weld heat treatment

    Directory of Open Access Journals (Sweden)

    M. Łomozik

    2016-07-01

    Full Text Available The article presents the results of research butt welded joints made of X13CrMoCoVNbNB9-2-1 steel. The joints were welded with post-weld heat treatment PWHT and without PWHT, using the temper bead technique TBT. After welding the joint welded with PWHT underwent stress-relief annealing at 770 °C for 3 hours. The scope of structural tests included the microstructural examination of the coarse-grained heat affected zone (HAZ areas of the joints, the comparison of the morphology of these areas and the determination of carbide precipitate types of the coarse grain heat affected zone (CGHAZ of the joints welded with and without PWHT.

  3. Development of fission Mo-99 production technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2001-05-01

    This R and D project is planed to supply domestic demands of Mo-99 through fission route, and consequently this project will be expected to rise up utilization of HANARO and KAERI's capability for marketing extension into domestic and oversea radiopharmaceutical market. HEU and LEU target types are decided and designed for fission Mo-99 production in domestic. Experimental study of target fabrication technology was performed and developed processing equipments. And conceptual design of target loading/unloading in/from HANARO device are performed. Tracer test of Mo-99 separation and purification process was performed, test results reach to Mo-99 recovery yield above 80% and decontamination factor above 1600. Combined Mo-99 separation and purification process was decided for hot test scheduled from next year, and performance test was performed. Conceptual design for modification of existing hot cell for fission Mo-99 production facility was performed and will be used for detail design. Assumption for the comparison of LEU and HEU target in fission Mo-99 production process were suggested and compared of merits and demerits in view of fabrication technology and economy feasibility.

  4. Development of fission Mo-99 production technology

    International Nuclear Information System (INIS)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2001-05-01

    This R and D project is planed to supply domestic demands of Mo-99 through fission route, and consequently this project will be expected to rise up utilization of HANARO and KAERI's capability for marketing extension into domestic and oversea radiopharmaceutical market. HEU and LEU target types are decided and designed for fission Mo-99 production in domestic. Experimental study of target fabrication technology was performed and developed processing equipments. And conceptual design of target loading/unloading in/from HANARO device are performed. Tracer test of Mo-99 separation and purification process was performed, test results reach to Mo-99 recovery yield above 80% and decontamination factor above 1600. Combined Mo-99 separation and purification process was decided for hot test scheduled from next year, and performance test was performed. Conceptual design for modification of existing hot cell for fission Mo-99 production facility was performed and will be used for detail design. Assumption for the comparison of LEU and HEU target in fission Mo-99 production process were suggested and compared of merits and demerits in view of fabrication technology and economy feasibility

  5. Measurements of emissivities on JT-60 first wall materials (inconel 625, Mo, TiC-coated Mo)

    International Nuclear Information System (INIS)

    Nakamura, Hiroo; Shimizu, Masatsugu; Makino, Toshiro; Kunitomo, Takeshi.

    1985-02-01

    To evaluate heat removal performance of JT-60 first wall, emissivities and reflectivities on Inconel 625, Mo, TiC coated Mo with optically smooth surface and actual surface are measured at temperature from a room temperature to 1300 K. Spectra are measured in the rnage of wave lengthes from 0.34 μm to 20 μm. Actual surfaces are machined/pickled surfaces for Inconel 625, electro-polished surfaces for molybdenum, and as-coated surfaces for TiC-coated molybdenum. Results of Inconel 625 and molybdenum with oplically smooth surfaces are examined by a two-electrons-type dispersion model of optical constants. Electronic constants of the equation are given and formulated in order to correlates the macroscopic properties of the radiative heat transfer. Total emissivities, obtained from the spectral emissivities of optically smooth surface, are 0.13(RT) -- 0.21(1300 K) for Inconel 625, 0.035(RT) -- 0.18(1300 K) for Mo, and 0.053(RT) for TiC-coated Mo. Moreover, total emissivities of the actual surface at a room temperature are 0.35(Inconel 625), 0.124(Mo), and 0.073(TiC-coated Mo). Large dependence of the emissivities on temperature and wave length shows that the model including these dependences is necessary for an accurate evaluation of the radiative heat transfer. (author)

  6. Study of the dynamics of the MoO2-Mo2C system for catalytic partial oxidation reactions

    Science.gov (United States)

    Cuba Torres, Christian Martin

    On a global scale, the energy demand is largely supplied by the combustion of non-renewable fossil fuels. However, their rapid depletion coupled with environmental and sustainability concerns are the main drivers to seek for alternative energetic strategies. To this end, the sustainable generation of hydrogen from renewable resources such as biodiesel would represent an attractive alternative solution to fossil fuels. Furthermore, hydrogen's lower environmental impact and greater independence from foreign control make it a strong contender for solving this global problem. Among a wide variety of methods for hydrogen production, the catalytic partial oxidation offers numerous advantages for compact and mobile fuel processing systems. For this reaction, the present work explores the versatility of the Mo--O--C catalytic system under different synthesis methods and reforming conditions using methyl oleate as a surrogate biodiesel. MoO2 exhibits good catalytic activity and exhibits high coke-resistance even under reforming conditions where long-chain oxygenated compounds are prone to form coke. Moreover, the lattice oxygen present in MoO2 promotes the Mars-Van Krevelen mechanism. Also, it is introduced a novel beta-Mo2C synthesis by the in-situ formation method that does not utilize external H2 inputs. Herein, the MoO 2/Mo2C system maintains high catalytic activity for partial oxidation while the lattice oxygen serves as a carbon buffer for preventing coke formation. This unique feature allows for longer operation reforming times despite slightly lower catalytic activity compared to the catalysts prepared by the traditional temperature-programmed reaction method. Moreover, it is demonstrated by a pulse reaction technique that during the phase transformation of MoO2 to beta-Mo2C, the formation of Mo metal as an intermediate is not responsible for the sintering of the material wrongly assumed by the temperature-programmed method.

  7. Controlled formation of MoSe{sub 2} by MoN{sub x} thin film as a diffusion barrier against Se during selenization annealing for CIGS solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Chan-Wook [School of Chemical Engineering, Yeungnam University, Gyeongsangbuk-do 712-749 (Korea, Republic of); Cheon, Taehoon [School of Materials Science and Engineering, Yeungnam University, Gyeongsangbuk-do 712-749 (Korea, Republic of); Center for Core Research Facilities, DaeguGyeongbuk Institute of Science & Technology, Daegu (Korea, Republic of); Kim, Hangil [School of Materials Science and Engineering, Yeungnam University, Gyeongsangbuk-do 712-749 (Korea, Republic of); Kwon, Min-Su [School of Chemical Engineering, Yeungnam University, Gyeongsangbuk-do 712-749 (Korea, Republic of); Kim, Soo-Hyun [School of Materials Science and Engineering, Yeungnam University, Gyeongsangbuk-do 712-749 (Korea, Republic of)

    2015-09-25

    Highlights: • Mo/MoN{sub x}/Mo multilayer was investigated as a back contact for CIGS solar cell. • The MoN{sub x} protected the underlying Mo layer during high temperature selenization. • The formation of MoSe{sub 2} layer was precisely controlled. • The diffusion barrier performance of MoN{sub x} against Se was evaluated using TEM analysis. - Abstract: This study investigated the interfacial reactions and electrical properties of a Mo single layer and Mo/MoN{sub x}/Mo multilayer during high temperature selenization annealing. The Mo single layer was converted easily to MoSe{sub 2}, which was 7 times thicker than the Mo layer consumed ∼900 nm, by selenization at 460 °C for 10 min and the sheet resistance increased 8 fold compared to that of the as-deposited Mo film. On the other hand, in the Mo/MoN{sub x}/Mo structure, transmission electron microscopy (TEM) showed that the MoSe{sub 2} transformation was localized only in the top Mo layer and the bottom Mo layer was completely unaffected, even after selenization at 560 °C. The sheet resistance of the multilayer was relatively unchanged by selenization. This suggests that the MoN{sub x} layer performed well as a diffusion barrier against Se and the thickness of MoSe{sub 2} can be controlled precisely by adjusting the top Mo layer thickness. Furthermore, TEM and energy dispersive spectroscopy analysis showed that the selenized multilayer consisted of MoSe{sub 2}/Mo/MoN{sub x}/Mo, in which the top Mo layer of 60 nm was not fully converted to MoSe{sub 2} and 20 nm was left unreacted. The residual Mo interlayer located at the interface of MoSe{sub 2} and MoN{sub x} is believed to be beneficial for the ohmic contact of the selenized multilayer.

  8. A Rare Allele of GS2 Enhances Grain Size and Grain Yield in Rice.

    Science.gov (United States)

    Hu, Jiang; Wang, Yuexing; Fang, Yunxia; Zeng, Longjun; Xu, Jie; Yu, Haiping; Shi, Zhenyuan; Pan, Jiangjie; Zhang, Dong; Kang, Shujing; Zhu, Li; Dong, Guojun; Guo, Longbiao; Zeng, Dali; Zhang, Guangheng; Xie, Lihong; Xiong, Guosheng; Li, Jiayang; Qian, Qian

    2015-10-05

    Grain size determines grain weight and affects grain quality. Several major quantitative trait loci (QTLs) regulating grain size have been cloned; however, our understanding of the underlying mechanism that regulates the size of rice grains remains fragmentary. Here, we report the cloning and characterization of a dominant QTL, grain size on chromosome 2 (GS2), which encodes Growth-Regulating Factor 4 (OsGRF4), a transcriptional regulator. GS2 localizes to the nucleus and may act as a transcription activator. A rare mutation of GS2 affecting the binding site of a microRNA, OsmiR396c, causes elevated expression of GS2/OsGRF4. The increase in GS2 expression leads to larger cells and increased numbers of cells, which thus enhances grain weight and yield. The introduction of this rare allele of GS2/OsGRF4 into rice cultivars could significantly enhance grain weight and increase grain yield, with possible applications in breeding high-yield rice varieties. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  9. An experimental study: Role of different ambient on sulfurization of MoO{sub 3} into MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Prabhat, E-mail: prabhat89k@gmail.com; Singh, Megha; Sharma, Rabindar K.; Reddy, G.B.

    2016-06-25

    Molybdenum disulfide (MoS{sub 2}) nanostructured thin films (NTFs) were synthesised by sulfurizing MoO{sub 3} NTFs using three different non-conventional methods (named methods 1–3). Method 1 uses sulfur vapors, second employs H{sub 2}S/Ar gas and third adopts plasma of H{sub 2}S/Ar gas. HRTEM revealed formation of core–shell nanostructures with maximum shell thickness obtained in method 3. The samples showed uniform nanoflakes (NFs) throughout substrate, revealed by SEM, same as their precursor MoO{sub 3.} XRD and Raman analysis disclosed crystalline MoS{sub 2} and degree of crystallinity was greatest in case of sulfurization in plasma ambient. Quantitative analysis of sulfurized films carried out by XPS shows presence of MoS{sub 2} in all three methods with percentage found to be 18%, 87% and ∼100% respectively. The effect of sulfurizing ambient on its efficiency to convert MoO{sub 3} into MoS{sub 2} has been studied and it was found out that plasma ambient has resulted in high quality of MoS{sub 2} NTFs based on parameters as crystallinity, purity, uniformity and stoichiometry control. - Highlights: • Comparison of three non-conventional methods of sulfurization. • Parameters used for comparison are crystallinity, purity, sulfurized thickness, uniformity and stoichiometry. • H{sub 2}S/Ar plasma based method came out to be best among other techniques. • A soft template reactions for sulfurization of MoO{sub 3} nanoflake is proposed.

  10. Effects of heat treatment condition on the mechanical properties and weldability of 10Cr-1Mo-VNbN cast steel

    International Nuclear Information System (INIS)

    Shon, Dae Young; Bang, Kook Soo; Lee, Kyong Woon; Chi, Byung Ha

    2003-01-01

    Mechanical properties and weldability such as HAZ hardness, cold cracking susceptibility and hot ductility of two differently heat treated 10Cr-1Mo-VNbN cast steels were measured and compared. Because of high hardenability of the cast steel, as-annealed cast steel showed martensitic microstructure and thus had higher hardness than annealed-normalized-tempered cast steel which had tempered martensite. Because the welding electrode used resulted in a high hardness weld metal, both cast steels showed same weld metal cold cracking susceptibility even though the as-annealed cast steel had higher HAZ hardness than the annealed-normalized-tempered cast steel. Both cast steels had excellent hot ductility in high temperature range, indicating no risk of grain boundary liquation cracking in the HAZ. However, the as-annealed cast steel showed an inferior ductility in the intermediate temperature range of 1000∼1150 .deg. C because of larger unrecrystallized grain size

  11. MoEDAL: Passive but no less active

    CERN Multimedia

    MoEDAL Collaboration

    2015-01-01

    Relying almost completely on passive detectors, MoEDAL is a pioneering experiment designed to search for highly ionising avatars of new physics, such as magnetic monopoles or massive (pseudo-)stable charged particles. The first test detectors were deployed at LHC Point 8 in 2012 and analysed in 2013, and the full MoEDAL detector was installed in the winter of 2014 to start data-taking during Run 2 this year.   The image shows the MoEDAL detector systems installed at Point 8 of the LHC. MoEDAL’s groundbreaking physics programme defines over 30 scenarios that yield potentially revolutionary insights into such fundamental questions as: are there extra dimensions or new symmetries? Does magnetic charge exist? What is the nature of dark matter? And how did the big bang develop? MoEDAL's purpose is to meet such far-reaching challenges at the frontier of the field. Having reached its final configuration in winter 2014, MoEDAL now consists of ten layers of plastic attached to the ...

  12. Simultaneous effect of mechanical alloying and arc-melting processes in the microstructure and hardness of an AlCoFeMoNiTi high-entropy alloy

    International Nuclear Information System (INIS)

    Baldenebro-Lopez, F.J.; Herrera-Ramírez, J.M.; Arredondo-Rea, S.P.; Gómez-Esparza, C.D.; Martínez-Sánchez, R.

    2015-01-01

    Highlights: • Multi-component systems of AlCoFeMoNiTi were produced by mechanical alloying. • Consolidated samples were fabricated by two different processing routes, sintering and arc melting. • Effect of routes of consolidation on microstructural evolution and microhardness is reported. • High hardness values are found in consolidated samples. • Alloying elements, grain size, and precipitates have a high effect on microhardness. - Abstract: A nanostructured AlCoFeMoNiTi high entropy alloy was synthesized through the mechanical alloying process. Bulk samples were obtained by two different routes to compare the microstructural evolution and hardness behavior: sintering and arc melting. Through electron microscopy analyses the formation of Mo-rich and Ti-rich phases were identified in the melted sample, while Ti-rich nano-precipitates were observed in the sintered sample. A higher microhardness value was achieved on the sintered sample than for the melted sample. The disadvantage of porosity in the sintered sample in comparison to the melted one was overcome by the hardening effect produced by the mechanical alloying

  13. Simultaneous effect of mechanical alloying and arc-melting processes in the microstructure and hardness of an AlCoFeMoNiTi high-entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Baldenebro-Lopez, F.J. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Prol. Ángel Flores y Fuente de Poseidón, S.N., 81223 Los Mochis, Sinaloa (Mexico); Herrera-Ramírez, J.M. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Arredondo-Rea, S.P. [Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Prol. Ángel Flores y Fuente de Poseidón, S.N., 81223 Los Mochis, Sinaloa (Mexico); Gómez-Esparza, C.D. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Martínez-Sánchez, R., E-mail: roberto.martinez@cimav.edu.mx [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico)

    2015-09-15

    Highlights: • Multi-component systems of AlCoFeMoNiTi were produced by mechanical alloying. • Consolidated samples were fabricated by two different processing routes, sintering and arc melting. • Effect of routes of consolidation on microstructural evolution and microhardness is reported. • High hardness values are found in consolidated samples. • Alloying elements, grain size, and precipitates have a high effect on microhardness. - Abstract: A nanostructured AlCoFeMoNiTi high entropy alloy was synthesized through the mechanical alloying process. Bulk samples were obtained by two different routes to compare the microstructural evolution and hardness behavior: sintering and arc melting. Through electron microscopy analyses the formation of Mo-rich and Ti-rich phases were identified in the melted sample, while Ti-rich nano-precipitates were observed in the sintered sample. A higher microhardness value was achieved on the sintered sample than for the melted sample. The disadvantage of porosity in the sintered sample in comparison to the melted one was overcome by the hardening effect produced by the mechanical alloying.

  14. Phase equilibria of the Mo-Al-Ho ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yitai; Chen, Xiaoxian; Liu, Hao [Guangxi Univ., Nanning (China). College of Materials Science and Engineering; Guangxi Univ., Nanning (China). Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials; Zhan, Yongzhong [Guangxi Univ., Nanning (China). College of Materials Science and Engineering; Guangxi Univ., Nanning (China). Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials; Guangxi Univ., Nanning (China). Center of Ecological Collaborative Innovation for Aluminum Industry

    2017-08-15

    Investigation into the reactions and phase equilibria of transition metal elements (i.e. Mo, Zr, Cr, V and Ti), Al and rare earths is academically and industrially important for the development of both refractory alloys and lightweight high-temperature materials. In this work, the equilibria of the Mo-Al-Ho ternary system at 773 K have been determined by using X-ray powder diffraction and scanning electron microscopy equipped with energy dispersive X-ray analysis. A new ternary phase Al{sub 4}Mo{sub 2}Ho has been found and the other ternary phase Al{sub 43}Mo{sub 4}Ho{sub 6} is observed. Ten binary phases in the Al-Mo and Al-Ho systems, including Al{sub 17}Mo{sub 4} rather than Al{sub 4}Mo, have been determined to exist at 773 K. The homogeneity ranges of AlMo{sub 3} and Al{sub 8}Mo{sub 3} phase are 7.5 at.% and 1 at.%, respectively. According to the phase-disappearing method, the maximum solubility of Al in Mo is about 16 at.%.

  15. Faceted MoS2 nanotubes and nanoflowers

    International Nuclear Information System (INIS)

    Deepak, Francis Leonard; Mayoral, Alvaro; Yacaman, Miguel Jose

    2009-01-01

    A simple synthesis of novel faceted MoS 2 nanotubes (NTs) and nanoflowers (NFs) starting from molybdenum oxide and thiourea as the sulphur source is reported. The MoS 2 nanotubes with the faceted morphology have not been observed before. Further the as-synthesized MoS 2 nanotubes have high internal surface area. The nanostructures have been characterized by a variety of electron microscopy techniques. It is expected that these MoS 2 nanostrutures will find important applications in energy storage, catalysis and field emission.

  16. Post-irradiation examinations and high-temperature tests on undoped large-grain UO{sub 2} discs

    Energy Technology Data Exchange (ETDEWEB)

    Noirot, J., E-mail: jean.noirot@cea.fr [CEA, DEN, DEC, Cadarache, F-13108 St. Paul Lez Durance (France); Pontillon, Y. [CEA, DEN, DEC, Cadarache, F-13108 St. Paul Lez Durance (France); Yagnik, S. [EPRI, P.O. Box 10412, Palo Alto, CA 94303-0813 (United States); Turnbull, J.A. [Independent Consultant (United Kingdom)

    2015-07-15

    Within the Nuclear Fuel Industry Research (NFIR) programme, several fuel variants –in the form of thin circular discs – were irradiated in the Halden Boiling Water Reactor (HBWR) at burn-ups up to ∼100 GWd/t{sub HM}. The design of the fuel assembly was similar to that used in other HBWR programmes: the assembly contained several rods with fuel discs sandwiched between Mo discs, which limited temperature differences within each fuel disc. One such variant was made of large-grain UO{sub 2} discs (3D grain size = ∼45 μm) which were subjected to three burn-ups: 42, 72 and 96 GWd/t{sub HM}. Detailed characterizations of some of these irradiated large-grain UO{sub 2} discs were performed in the CEA Cadarache LECA-STAR hot laboratory. The techniques used included electron probe microanalysis (EPMA), scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS). Comparisons were then carried out with more standard grain size UO{sub 2} discs irradiated under the same conditions. Examination of the high burn-up large-grain UO{sub 2} discs revealed the limited formation of a high burn-up structure (HBS) when compared with the standard-grain UO{sub 2} discs at similar burn-up. High burn-up discs were submitted to temperature transients up to 1200 °C in the heating test device called Merarg at a relatively low temperature ramp rate (0.2 °C/s). In addition to the total gas release during these tests, the release peaks throughout the temperature ramp were monitored. Tests at 1600 °C were also conducted on the 42 GWd/t{sub HM} discs. The fuels were then characterized with the same microanalysis techniques as those used before the tests, to investigate the effects of these tests on the fuel’s microstructure and on the fission gas behaviour. This paper outlines the high resistance of this fuel to gas precipitation at high temperature and to HBS formation at high burn-up. It also shows the similarity of the positions, within the grains, where HBS forms

  17. Single-layer MoS2 electronics.

    Science.gov (United States)

    Lembke, Dominik; Bertolazzi, Simone; Kis, Andras

    2015-01-20

    CONSPECTUS: Atomic crystals of two-dimensional materials consisting of single sheets extracted from layered materials are gaining increasing attention. The most well-known material from this group is graphene, a single layer of graphite that can be extracted from the bulk material or grown on a suitable substrate. Its discovery has given rise to intense research effort culminating in the 2010 Nobel Prize in physics awarded to Andre Geim and Konstantin Novoselov. Graphene however represents only the proverbial tip of the iceberg, and increasing attention of researchers is now turning towards the veritable zoo of so-called "other 2D materials". They have properties complementary to graphene, which in its pristine form lacks a bandgap: MoS2, for example, is a semiconductor, while NbSe2 is a superconductor. They could hold the key to important practical applications and new scientific discoveries in the two-dimensional limit. This family of materials has been studied since the 1960s, but most of the research focused on their tribological applications: MoS2 is best known today as a high-performance dry lubricant for ultrahigh-vacuum applications and in car engines. The realization that single layers of MoS2 and related materials could also be used in functional electronic devices where they could offer advantages compared with silicon or graphene created a renewed interest in these materials. MoS2 is currently gaining the most attention because the material is easily available in the form of a mineral, molybdenite, but other 2D transition metal dichalcogenide (TMD) semiconductors are expected to have qualitatively similar properties. In this Account, we describe recent progress in the area of single-layer MoS2-based devices for electronic circuits. We will start with MoS2 transistors, which showed for the first time that devices based on MoS2 and related TMDs could have electrical properties on the same level as other, more established semiconducting materials. This

  18. Effects of grain size and grain boundaries on defect production in nanocrystalline 3C-SiC

    International Nuclear Information System (INIS)

    Swaminathan, N.; Kamenski, Paul J.; Morgan, Dane; Szlufarska, Izabela

    2010-01-01

    Cascade simulations in single crystal and nanocrystalline SiC have been conducted in order to determine the role of grain boundaries and grain size on defect production during primary radiation damage. Cascades are performed with 4 and 10 keV silicon as the primary knock-on atom (PKA). Total defect production is found to increase with decreasing grain size, and this effect is shown to be due to increased production in grain boundaries and changing grain boundary volume fraction. In order to consider in-grain defect production, a new mapping methodology is developed to properly normalize in-grain defect production rates for nanocrystalline materials. It is shown that the presence of grain boundaries does not affect the total normalized in-grain defect production significantly (the changes are lower than ∼20%) for the PKA energies considered. Defect production in the single grain containing the PKA is also studied and found to increase for smaller grain sizes. In particular, for smaller grain sizes the defect production decreases with increasing distance from the grain boundary while for larger grain sizes the presence of the grain boundaries has negligible effect on defect production. The results suggest that experimentally observed changes in radiation resistance of nanocrystalline materials may be due to long-term damage evolution rather than changes in defect production rates from primary damage.

  19. Interface morphology of Mo/Si multilayer systems with varying Mo layer thickness studied by EUV diffuse scattering.

    Science.gov (United States)

    Haase, Anton; Soltwisch, Victor; Braun, Stefan; Laubis, Christian; Scholze, Frank

    2017-06-26

    We investigate the influence of the Mo-layer thickness on the EUV reflectance of Mo/Si mirrors with a set of unpolished and interface-polished Mo/Si/C multilayer mirrors. The Mo-layer thickness is varied in the range from 1.7 nm to 3.05 nm. We use a novel combination of specular and diffuse intensity measurements to determine the interface roughness throughout the multilayer stack and do not rely on scanning probe measurements at the surface only. The combination of EUV and X-ray reflectivity measurements and near-normal incidence EUV diffuse scattering allows to reconstruct the Mo layer thicknesses and to determine the interface roughness power spectral density. The data analysis is conducted by applying a matrix method for the specular reflection and the distorted-wave Born approximation for diffuse scattering. We introduce the Markov-chain Monte Carlo method into the field in order to determine the respective confidence intervals for all reconstructed parameters. We unambiguously detect a threshold thickness for Mo in both sample sets where the specular reflectance goes through a local minimum correlated with a distinct increase in diffuse scatter. We attribute that to the known appearance of an amorphous-to-crystallization transition at a certain thickness threshold which is altered in our sample system by the polishing.

  20. Grain dust and the lungs.

    Science.gov (United States)

    Chan-Yeung, M.; Ashley, M. J.; Grzybowski, S.

    1978-01-01

    Grain dust is composed of a large number of materials, including various types of grain and their disintegration products, silica, fungi, insects and mites. The clinical syndromes described in relation to exposure to grain dust are chronic bronchitis, grain dust asthma, extrinsic allergic alveolitis, grain fever and silo-filler's lung. Rhinitis and conjunctivitis are also common in grain workers. While the concentration and the quality of dust influence the frequency and the type of clinical syndrome in grain workers, host factors are also important. Of the latter, smoking is the most important factor influencing the frequency of chronic bronchitis. The role of atopy and of bronchial hyperreactivity in grain dust asthma has yet to be assessed. Several well designed studies are currently being carried out in North America not only to delineate the frequency of the respiratory abnormalities, the pathogenetic mechanisms and the host factors, but also to establish a meaningful threshold limit concentration for grain dust. Images p1272-a PMID:348288

  1. Effect of nanoprecipitates and grain size on the mechanical properties of advanced structural steels

    International Nuclear Information System (INIS)

    Suarez, M.A.; Alvarez-Perez, M.A.; Alvarez-Fregoso, O.; Juarez-Islas, J.A.

    2011-01-01

    Highlights: → The composition of the steel responded positively to the thermomechanical processing. → Yield strength was increased due to micrometric grain size of 2.2 μm. → Mechanical properties were improved due to nanometric precipitates of 5 nm. → Yield strength values of the API steel were improved up to 877.9 MPa. - Abstract: The microstructure and nanometric precipitates present in advanced structured steel have been studied by high resolution transmission electron microscopy equipped with energy dispersion X-ray microanalysis, in order to relate the nanometric precipitates and grain size with the improvement of the yield strength value of the API steel. The microstructure and nanometric precipitates of the advanced steel were obtained by a combination of thermo-mechanical controlled hot rolling and accelerated cooling procedures. The API steel composition consisted of hot rolled Nb-Ti microalloyed with: 0.07C, 1.40Mn, 0.24Si, 0.020Al, 0.009P, 0.001S, 0.05Mo, 0.5Cr, 0.05Nb, 0.25Ni, 0.10Cu, 0.012Ti, 0.05N in wt%. As a result, this hot rolled steel tested at a strain rate of 5 x 10 -3 s -1 showed an improved yield strength from 798 MPa to 878 MPa due to the micrometric grain size of 2.2 μm and to the nanometric precipitates with a size of around 5 nm in the microstructure of the steel studied.

  2. Influence of heat treatment on microstructure and properties of GX12CrMoVNbN9-1 cast steel

    Directory of Open Access Journals (Sweden)

    G. Golański

    2010-07-01

    Full Text Available The paper presents results of research on the influence of multistage heat treatment on microstructure and properties of high-chromiummartensitic GX12CrMoVNbN9 – 1 (GP91 steel. The material under investigation were samples taken out from a test coupon. Heattreatment of GP91 cast steel was performed at the parameters of temperature and time typical of treatment for multi-ton steel casts. The research has proved that in the as-received condition (as-cast state GP91 cast steel was characterized by a coarse grain, martensitic microstructure which provided the required standard mechanical properties. The heat treatment of GP91 cast steel contributed to obtainment of a fine grain microstructure of high tempered martensite with numerous precipitations of carbides of diverse size. The GP91 cast steel structure received through heat treatment made it possible to obtain high plastic properties, particularly impact strength, maintaining strength properties on the level of the required minimum.

  3. Synthesis and electrochemical properties of tin-doped MoS{sub 2} (Sn/MoS{sub 2}) composites for lithium ion battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Lin; Min, Feixia; Luo, Zhaohui; Wang, Shiquan, E-mail: wsqhao@126.com [Hubei University, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules (China); Teng, Fei [Nanjing University of Information Science and Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Sciences and Engineering (China); Li, Guohua [Zhejiang University of Technology, School of Chemical Engineering and Materials Science (China); Feng, Chuanqi [Hubei University, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules (China)

    2016-12-15

    SnO{sub 2}-MoO{sub 3} composites were synthesized by using (NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}·4H{sub 2}O and SnCl{sub 2}·2H{sub 2}O as raw materials through a simple solvothermal method followed by pyrolysis. Tin-doped MoS{sub 2} (Sn/MoS{sub 2}) flowers have been synthesized by a solvothermal method followed with annealing in Ar(H{sub 2}) atmosphere, with SnO{sub 2}-MoO{sub 3}, thioacetamide (TAA), and urea as starting materials. The doping and the content of Sn-doping play crucial roles in the morphology and electrochemical performance of the MoS{sub 2}. As anode materials for lithium ion battery (LIB), all Sn/MoS{sub 2} composites exhibit both higher reversible capacity and better cycling performance at current density of 200 mA g{sup −1}, compared with MoS{sub 2} without Sn doping. The achieved discharge capacity for Sn/MoS{sub 2} composites is above 1000 mAh g{sup −1} after 100 cycles with nearly 100% coulombic efficiency. The doping of metal Sn in MoS{sub 2} can improve the conductivity of MoS{sub 2} and significantly enhance its electrochemical properties. The good electrochemical performance suggests that the Sn/MoS{sub 2} composite could be a promising candidate as a novel anode material for LIB application. Our present work provides a new approach to the fabrication of anode materials for LIB applications.

  4. K(MoO24O3(AsO4

    Directory of Open Access Journals (Sweden)

    Raja Jouini

    2013-06-01

    Full Text Available A new compound with a non-centrosymmetric structure, potassium tetrakis[dioxomolybdenum(IV] arsenate trioxide, K(MoO24O3(AsO4, has been synthesized by a solid-state reaction. The [(MoO24O3(AsO4]+ three-dimensional framework consists of single arsenate AsO4 tetrahedra, MoO6 octahedra, MoO5 bipyramids and bioctahedral units of edge-sharing Mo2O10 octahedra. The [Mo2O8]∞ octahedral chains running along the a-axis direction are connected through their corners to the AsO4 tetrahedra, MoO6 octahedra and MoO5 bipyramids, so as to form large tunnels propagating along the a axis in which the K+ cations are located. This structure is compared with compounds containing M2O10 (M = Mo, V, Fe dimers and with those containing M2O8 (M = V chains.

  5. The effect of microstructure on the deformation modes and mechanical properties of Ti-6Al-2Nb-1Ta-0.8Mo: Part II. Equiaxed structures

    Science.gov (United States)

    Lin, Fu-Shiong; Starke, E. A.; Gysler, A.

    1984-10-01

    The Ti-6Al-2Nb-lTa-0.8Mo alloy was processed to develop both near-basal and transverse textures. Samples were annealed at different temperatures to vary the equiaxed alpha grain size and the thick-ness of the grain boundary beta, and subsequently quenched in order to transform the beta phase to either martensite, tempered martensite, or Widmanstätten alpha + beta. The effect of microstructure and texture on tensile properties and on fracture toughness was investigated. In addition, yield locus diagrams were constructed in order to study the texture strengthening effect. The yield strength was found to be strongly dependent on the thickness and Burgers relationship of the transformed beta phase surrounding the alpha grains. A texture hardening effect as large as 60 pct was found for the basal-texture material but only 15 pct for the transverse texture material. These variations are asso-ciated with differences in deformation behavior.

  6. Plasma-assisted synthesis of MoS2

    Science.gov (United States)

    Campbell, Philip M.; Perini, Christopher J.; Chiu, Johannes; Gupta, Atul; Ray, Hunter S.; Chen, Hang; Wenzel, Kevin; Snyder, Eric; Wagner, Brent K.; Ready, Jud; Vogel, Eric M.

    2018-03-01

    There has been significant interest in transition metal dichalcogenides (TMDs), including MoS2, in recent years due to their potential application in novel electronic and optical devices. While synthesis methods have been developed for large-area films of MoS2, many of these techniques require synthesis temperatures of 800 °C or higher. As a result of the thermal budget, direct synthesis requiring high temperatures is incompatible with many integrated circuit processes as well as flexible substrates. This work explores several methods of plasma-assisted synthesis of MoS2 as a way to lower the synthesis temperature. The first approach used is conversion of a naturally oxidized molybdenum thin film to MoS2 using H2S plasma. Conversion is demonstrated at temperatures as low as 400 °C, and the conversion is enabled by hydrogen radicals which reduce the oxidized molybdenum films. The second method is a vapor phase reaction incorporating thermally evaporated MoO3 exposed to a direct H2S plasma, similar to chemical vapor deposition (CVD) synthesis of MoS2. Synthesis at 400 °C results in formation of super-stoichiometric MoS2 in a beam-interrupted growth process. A final growth method relies on a cyclical process in which a small amount of Mo is sputtered onto the substrate and is subsequently sulfurized in a H2S plasma. Similar results could be realized using an atomic layer deposition (ALD) process to deposit the Mo film. Compared to high temperature synthesis methods, the lower temperature samples are lower quality, potentially due to poor crystallinity or higher defect density in the films. Temperature-dependent conductivity measurements are consistent with hopping conduction in the plasma-assisted synthetic MoS2, suggesting a high degree of disorder in the low-temperature films. Optimization of the plasma-assisted synthesis process for slower growth rate and better stoichiometry is expected to lead to high quality films at low growth temperature.

  7. Defects and morphological changes in nanothin Cu films on polycrystalline Mo analyzed by thermal helium desorption spectrometry

    International Nuclear Information System (INIS)

    Venugopal, V.; Seijbel, L.J.; Thijsse, B.J.

    2005-01-01

    Thermal helium desorption spectrometry (THDS) has been used for the investigation of defects and thermal stability of thin Cu films (5-200 A ) deposited on a polycrystalline Mo substrate in ultrahigh vacuum. These films are metastable at room temperature. On heating, the films transform into islands, giving rise to a relatively broad peak in the helium desorption spectra. The temperature of this island formation is dependent on film thickness, being 417 K for 10 A and 1100 K for a 200 A film. The activation energy for island formation was found to be 0.3±0.1 eV for 75 A film. Grain boundaries have a strong effect on island formation. The defect concentration in the as-deposited films is ∼5x10 -4 , for films thicker than 50 A and more for thinner films. Helium release from monovacancies was identified in the case of a 200 A film. Helium release was also seen during sublimation of the Cu film (∼1350 K). Overlayer experiments were used to identify helium trapped close to the film surface. An increase of the substrate temperature during deposition resulted in a film that had already formed islands. Argon-ion assistance (250 eV) during film deposition with an ion/atom ratio of ∼0.1 resulted in a significant enhancement of helium trapping in the films. The argon concentration in the films was found to be 10 -3 . The temperature of island formation was increased due to argon-ion assistance. The helium and argon desorption spectra are found to be similar, which is due to most of the helium becoming trapped in the defects created by the argon beam. The role of the Mo surface in affecting the defects at the film-substrate interface is investigated. The effect of variation of helium fluence and helium implantation energy is also considered. The present THDS results of Cu/poly-Mo are compared to those of Cu/Mo(100) and Cu/Mo(100) reported earlier

  8. On the Mo-Papas equation

    Science.gov (United States)

    Aguirregabiria, J. M.; Chamorro, A.; Valle, M. A.

    1982-05-01

    A new heuristic derivation of the Mo-Papas equation for charged particles is given. It is shown that this equation cannot be derived for a point particle by closely following Dirac's classical treatment of the problem. The Mo-Papas theory and the Bonnor-Rowe-Marx variable mass dynamics are not compatible.

  9. Grain centre mapping - 3DXRD measurements of average grain characteristics

    DEFF Research Database (Denmark)

    Oddershede, Jette; Schmidt, Søren; Lyckegaard, Allan

    2014-01-01

    characteristics of each grain (such as their centre-of-mass positions, volumes, phases, orientations and/or elastic strain tensor components), while the exact locations of the grain boundaries are unknown. In the present chapter a detailed description of the setup and software for both grain centre mapping...... and the closely related boxscan method is given. Both validation experiments and applications for in situ studies of microstructural changes during plastic deformation and crack growth are given. Finally an outlook with special emphasis on coupling the measured results with modelling is given....

  10. Grain Boundary Segregation in Metals

    CERN Document Server

    Lejcek, Pavel

    2010-01-01

    Grain boundaries are important structural components of polycrystalline materials used in the vast majority of technical applications. Because grain boundaries form a continuous network throughout such materials, their properties may limit their practical use. One of the serious phenomena which evoke these limitations is the grain boundary segregation of impurities. It results in the loss of grain boundary cohesion and consequently, in brittle fracture of the materials. The current book deals with fundamentals of grain boundary segregation in metallic materials and its relationship to the grain boundary structure, classification and other materials properties.

  11. XPS study of organic/MoO3 hybrid thin films for aldehyde gas sensors. Correlation between average Mo valance and sensitivity

    International Nuclear Information System (INIS)

    Itoh, Toshio; Matsubara, Ichiro; Shin, Woosuck; Izu, Noriya; Nishibori, Maiko

    2010-01-01

    We investigate the formaldehyde gas sensing properties of poly(5,6,7,8-tetrahydro-1-naphthylamine)-intercalated MoO 3 thin films ((PTHNA) x MoO 3 ). The resistance responses of (PTHNA) x MoO 3 to formaldehyde increase with increasing intercalation temperature. X-ray photoelectron spectroscopy reveals that the molar ratio of Mo 5+ decreases with increasing intercalation temperature. (author)

  12. Grain boundary migration

    International Nuclear Information System (INIS)

    Dimitrov, O.

    1975-01-01

    Well-established aspects of grain-boundary migration are first briefly reviewed (influences of driving force, temperature, orientation and foreign atoms). Recent developments of the experimental methods and results are then examined, by considering the various driving of resistive forces acting on grain boundaries. Finally, the evolution in the theoretical models of grain-boundary motion is described, on the one hand for ideally pure metals and, on the other hand, in the presence of solute impurity atoms [fr

  13. Physical properties of monolithic U8 wt.%-Mo

    Science.gov (United States)

    Hengstler, R. M.; Beck, L.; Breitkreutz, H.; Jarousse, C.; Jungwirth, R.; Petry, W.; Schmid, W.; Schneider, J.; Wieschalla, N.

    2010-07-01

    As a possible high density fuel for research reactors, monolithic U8 wt.%-Mo ("U8Mo") was examined with regard to its structural, thermal and electric properties. X-ray diffraction by the Bragg-Brentano method was used to reveal the tetragonal lattice structure of rolled U8Mo. The specific heat capacity of cast U8Mo was determined by differential scanning calorimetry, its thermal diffusivity was measured by the laser flash method and its mass density by Archimedes' principle. From these results, the thermal conductivity of U8Mo in the temperature range from 40 °C to 250 °C was calculated; in the measured temperature range, it is in good accordance with literature data for UMo with 8 and 9 wt.% Mo, is higher than for 10 wt.% Mo and lower than for 5 wt.% Mo. The electric conductivity of rolled and cast U8Mo was measured by a four-wire method and the electron based part of the thermal conductivity calculated by the Wiedemann-Frantz law. Rolled and cast U8Mo was irradiated at about 150 °C with 80 MeV 127I ions to receive the same iodine ion density in the damage peak region as the fission product density in the fuel of a typical high flux reactor after the targeted nuclear burn-up. XRD analysis of irradiated U8Mo showed a change of the lattice parameters as well as the creation of UO 2 in the superficial sample regions; however, a phase change by irradiation was not observed. The determination of the electron based part of the thermal conductivity of the irradiated samples failed due to high measurement errors which are caused by the low thickness of the damage region in the ion irradiated samples.

  14. Phloem Transport Of Arsenic Species From Flag Leaf To Grain During Grain Filling

    Science.gov (United States)

    Strategies to reduce arsenic (As) in rice grain, below concentrations that represent a serious human health concern, require that the mechanisms of As accumulation within grain be established. Therefore, retranslocation of As species from flag leaves into filling rice grain was ...

  15. Sr3Fe5/4Mo3/4O6.9, an n = 2 Ruddlesen-Popper Phase: Synthesis and Properties

    International Nuclear Information System (INIS)

    Whaley, L.; Lobanov, M.; Sehptyakov, D.; Croft, M.; Ramanujachary, K.; Lofland, S.; Stephens, P.; Her, J.; Van Tendeloo, G.

    2006-01-01

    In a systematic search for an oxygen-stoichiometric phase, Sr 3 (FeMo)O 7 , in a range of iron-to-molybdenum ratios greater than 1:1 that typically give phase mixtures, we have found an n = 2 Ruddlesden-Popper phase, Sr 3 Fe 5/4 Mo 3/4 O 6.9 , as supported by synchrotron powder X-ray diffraction (SPXD), high-resolution transmission electron microscopy (HREM), and powder neutron diffraction (PND) results. By SPXD, this oxygen-deficient, B-site disordered, two-dimensional analogue of Sr2FeMoO6 adopts tetragonal I4/mmm symmetry (a = b = 3.92449(5) Angstroms; c = 20.3423(3) Angstroms) with vacancies at the O(1) oxygen site and with a composition that refines to a nominal stoichiometry Sr 3 Fe 5/4 Mo 3/4 O 6.9 . The two-phase SPXD refinement includes Sr 3 Fe 5/4 Mo 3/4 O 6.9 (95.7%) and a double-perovskite (DP) intergrowth, Sr 2 FeMoO 6 (4.3%), consistent with HREM studies in which DP intergrowths but no individual DP grains were found. The G-type antiferromagnetically (AFM)-ordered structure of the phase, with the magnetic cell a m = √2a ∼ 5.548 Angstroms, c m = c ∼ 20.35 Angstroms, derived from PND data, displays a saturated moment of 2.17(1) μ B at 9 K and an asynchronous decrease of the in-plane component of the Fe/Mo moment (μ xy ), with respect to the out-of-plane moment (μ z ) upon increasing temperature from 9 K up to the Neel temperature, TN ∼ 150 K. No structural transitions were observed over the entire temperature range studied: from 1.5 to 500 K. The temperature-dependent resistivity is consistent with Efros-Shklovskii variable-range hopping, applicable to two ranges of temperature (189 K RT ∼ 3 μ(Omega)·cm). A small negative magnetoresistance is observed (∼2.5%) at 5 T near the ordering temperature (∼150 K). The temperature-dependent magnetic susceptibility shows an inflection between 125 and 150 K, consistent with the AFM ordering temperature (∼150 K) observed by PND. X-ray near-edge spectroscopy data are consistent with formal

  16. An alternative route for the preparation of the medical isotope 99Mo from the 238U(γ, f) and 100Mo(γ, n) reactions

    International Nuclear Information System (INIS)

    Naik, H.; Goswami, A.; Suryanarayana, S.V.; Jagadeesan, K.C.; Thakare, S.V.; Joshi, P.V.; Nimje, V.T.; Mittal, K.C.; Venugopal, V.; Kailas, S.

    2013-01-01

    The radionuclide 99 Mo, which has a half-life of 65.94 h was produced from 238 U(γ, f) and 100 Mo(γ, n) reactions using a 10 MeV electron linac at EBC, Kharghar Navi-Mumbai, India. This has been investigated since the daughter product 99m Tc is very important from a medical point of view and can be produced in a generator from the parent 99 Mo. The activity of 99 Mo was analyzed by a γ-ray spectrometric technique using a HPGe detector. From the detected γ-rays activity of 140.5 and 739.8 keV, the amount of 99 Mo produced was determined. For comparison, the amount of 99 Mo from 238 U(γ, f) and 100 Mo(γ, n) reactions was also estimated using the experimental photon flux from 197 Au(γ, n) 196 Au reaction. The amount of 99 Mo from the detected γ-lines is in agreement with the estimated value for 238 U(γ, f) and 100 Mo(γ, n) reactions. The production of 99 Mo activity from 238 U(γ, f) and 100 Mo(γ, n) reactions is a relevant and novel approach, which provides alternative routes to 235,238 U(n, f) and 98 Mo(n, γ) reactions, circumventing the need for a reactor. The viability and practicality of the 99 Mo production from the 238 U(γ, f) and 100 Mo(γ, n) reactions alternative to 235,238 U(n, f) and 98 Mo(n, γ) reactions has been emphasize. An estimate has been also arrived based on the experimental data of present work to fulfill the requirement of DOE. (author)

  17. Structural transformation of MoO3 nanobelts into MoS2 nanotubes

    International Nuclear Information System (INIS)

    Deepak, Francis Leonard; Mayoral, Alvaro; Yacaman, Miguel Jose

    2009-01-01

    The structural transformation of MoO 3 nanobelts into MoS 2 nanotubes using a simple sulfur source has been reported. This transformation has been extensively investigated using electron microscopic and spectroscopic techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), and energy-dispersive X-ray analysis (SEM-EDAX and TEM-EDX). The method described in this report will serve as a generic route for the transformation of other oxide nanostructures into the chalcogenide nanostructures. (orig.)

  18. Quality of Metal Deposited Flux Cored Wire With the System Fe-C-Si-Mn-Cr-Mo-Ni-V-Co

    Science.gov (United States)

    Gusev, Aleksander I.; Kozyrev, Nikolay A.; Osetkovskiy, Ivan V.; Kryukov, Roman E.; Kozyreva, Olga A.

    2017-10-01

    Studied the effect of the introduction of vanadium and cobalt into the charge powder fused wire system Fe-C-Si-Mn-Cr-Ni-Mo-V, used in cladding assemblies and equipment parts and mechanisms operating under abrasive and abrasive shock loads. the cored wires samples were manufactured in the laboratory conditions and using appropriate powder materials and as a carbonfluoride contained material were used the dust from gas purification of aluminum production, with the following components composition, %: Al2O3 = 21-46.23; F = 18-27; Na2O = 8-15; K2O = 0.4-6; CaO = 0.7-2.3; Si2O = 0.5-2.48; Fe2O3 = 2.1-3.27; C = 12.5-30.2; MnO = 0.07-0.9; MgO = 0.06-0.9; S = 0.09-0.19; P = 0.1-0.18. Surfacing was produced on the St3 metal plates in 6 layers under the AN-26C flux by welding truck ASAW-1250. Cutting and preparation of samples for research had been implemented. The chemical composition and the hydrogen content of the weld metal were determined by modern methods. The hardness and abrasion rate of weld metal had been measured. Conducted metallographic studies of weld metal: estimated microstructure, grain size, contamination of oxide non-metallic inclusions. Metallographic studies showed that the microstructure of the surfaced layer by cored wire system Fe-C-Si-Mn-Cr-Mo-Ni-V-Co is uniform, thin dendrite branches are observed. The microstructure consists of martensite, which is formed inside the borders of the former austenite grain retained austenite present in small amounts in the form of separate islands, and thin layers of δ-ferrite, which is located on the borders of the former austenite grains. Carried out an assessment the effect of the chemical composition of the deposited metal on the hardness and wear and hydrogen content. In consequence of multivariate correlation analysis, it was determined dependence to the hardness of the deposited layer and the wear resistance of the mass fraction of the elements included in the flux-cored wires of the system Fe-C-Si-Mn-Cr-Mo

  19. A first principle Comparative study of electronic and optical properties of 1H –MoS2 and 2H –MoS2

    International Nuclear Information System (INIS)

    Kumar, Ashok; Ahluwalia, P.K.

    2012-01-01

    First principle calculations of electronic and optical properties of monolayer MoS 2 , so called 1H –MoS 2 , is performed which has emerged as a new direct band gap semiconductor. Before calculations of the properties of 1H –MoS 2 , we have calculated structural parameters, electronic properties (electronic band structure and electronic density of states) and frequency dependent optical response (real and imaginary part of dielectric function, energy loss function, absorption and reflectance spectra) of 2H –MoS 2 and compared with existing experimental results and found that our calculated results are in very good agreements with experimental results. To compare the dielectric functions of bulk (2H –MoS 2 ) and monolayer (1H –MoS 2 ) phases we have further extended these calculations to the single layer MoS 2 (1H –MoS 2 ) which is analogous to graphene. Structural parameters of 1H –MoS 2 are found very close to its bulk 2H –MoS 2 . We find direct electronic band gap at ‘K’ high symmetry point as compared to indirect band gap in its bulk 2H – MoS2. Our calculated dielectric function for 1H – MoS2 shows structure at nearly same energy positions as compared to 2H – MoS2 with additional structure at 3.8 eV. Also additional well defined energy loss peaks revealing the plasmonic resonances at 15.7 eV and 16.0 eV for E vector perpendicular and parallel to c axis respectively for 1H – MoS2 have been found, which are the signatures of surface plasmons at these energies. -- Highlights: ► Structural parameters of 2H-MoS2 and 1H-MoS2 are nearly identical. ► States around the Fermi energy are mainly due to the metal d states. ► Strong hybridization between Mo-d and S-p states below the Fermi energy has been found. ► Optical spectra of 2H-MoS2 finds very good agreements with experimental optical spectra. ► The band gap is found to be direct for 1H-MoS2 as compared to indirect for 2H-MoS2.

  20. Phase transformations in Mo-doped FINEMETs

    Energy Technology Data Exchange (ETDEWEB)

    Silveyra, Josefina M., E-mail: jsilveyra@fi.uba.a [Lab. de Solidos Amorfos, INTECIN, FIUBA-CONICET, Paseo Colon 850, (C1063ACV) Buenos Aires (Argentina); Illekova, Emilia; Svec, Peter; Janickovic, Dusan [Institute of Physics SAS, Dubravska cesta 9, 845 11 Bratislava (Slovakia); Rosales-Rivera, Andres [Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Manizales (Colombia); Cremaschi, Victoria J. [Lab. de Solidos Amorfos, INTECIN, FIUBA-CONICET, Paseo Colon 850, (C1063ACV) Buenos Aires (Argentina)

    2010-06-15

    In this paper, the phase transformations occurring during the crystallization process of FINEMETs in which Nb has been gradually replaced by Mo have been studied by a variety of techniques including DSC, DTA, TGA, XRD and TEM. The thermal stability of the alloy was deteriorated as a consequence of Mo's smaller atomic size. The gradual replacement of Nb by Mo reduced the onset temperature of Fe-Si and of the borides. The Curie temperature of the amorphous phase slightly decreased from 594 K for x=0 to 587 K for x=3. The borides compounds Fe{sub 2}B and Fe{sub 23}B{sub 6} as well as the (Nb,Mo){sub 5}Si{sub 3} phase were found to precipitate in the second and third crystallization.

  1. Grain boundary motion and grain rotation in aluminum bicrystals: recent experiments and simulations

    International Nuclear Information System (INIS)

    Molodov, D A; Barrales-Mora, L A; Brandenburg, J-E

    2015-01-01

    The results of experimental and computational efforts over recent years to study the motion of geometrically different grain boundaries and grain rotation under various driving forces are briefly reviewed. Novel in-situ measuring techniques based on orientation contrast imaging and applied simulation techniques are described. The experimental results obtained on specially grown aluminum bicrystals are presented and discussed. Particularly, the faceting and migration behavior of low angle grain boundaries under the curvature force is addressed. In contrast to the pure tilt boundaries, which remained flat/faceted and immobile during annealing at elevated temperatures, mixed tilt-twist boundaries readily assumed a curved shape and steadily moved under the capillary force. Computational analysis revealed that this behavior is due to the inclinational anisotropy of grain boundary energy, which in turn depends on boundary geometry. The shape evolution and shrinkage kinetics of cylindrical grains with different tilt and mixed boundaries were studied by molecular dynamics simulations. The mobility of low angle <100> boundaries with misorientation angles higher than 10°, obtained by both the experiments and simulations, was found not to differ from that of the high angle boundaries, but decreases essentially with further decrease of misorientation. The shape evolution of the embedded grains in simulations was found to relate directly to results of the energy computations. Further simulation results revealed that the shrinkage of grains with pure tilt boundaries is accompanied by grain rotation. In contrast, grains with the tilt-twist boundaries composed of dislocations with the mixed edge-screw character do not rotate during their shrinkage. Stress driven boundary migration in aluminium bicrystals was observed to be coupled to a tangential translation of the grains. The activation enthalpy of high angle boundary migration was found to vary non-monotonically with

  2. Ligand bridging-angle-driven assembly of molecular architectures based on quadruply bonded Mo-Mo dimers.

    Science.gov (United States)

    Li, Jian-Rong; Yakovenko, Andrey A; Lu, Weigang; Timmons, Daren J; Zhuang, Wenjuan; Yuan, Daqiang; Zhou, Hong-Cai

    2010-12-15

    A systematic exploration of the assembly of Mo2(O2C-)4-based metal-organic molecular architectures structurally controlled by the bridging angles of rigid organic linkers has been performed. Twelve bridging dicarboxylate ligands were designed to be of different sizes with bridging angles of 0, 60, 90, and 120° while incorporating a variety of nonbridging functional groups, and these ligands were used as linkers. These dicarboxylate linkers assemble with quadruply bonded Mo-Mo clusters acting as nodes to give 13 molecular architectures, termed metal-organic polygons/polyhedra with metal cluster node arrangements of a linear shape, triangle, octahedron, and cuboctahedron/anti-cuboctahedron. The syntheses of these complexes have been optimized and their structures determined by single-crystal X-ray diffraction. The results have shown that the shape and size of the resulting molecular architecture can be controlled by tuning the bridging angle and size of the linker, respectively. Functionalization of the linker can adjust the solubility of the ensuing molecular assembly but has little or no effect on the geometry of the product. Preliminary gas adsorption, spectroscopic, and electrochemical properties of selected members were also studied. The present work is trying to enrich metal-containing supramolecular chemistry through the inclusion of well-characterized quadruply bonded Mo-Mo units into the structures, which can widen the prospect of additional electronic functionality, thereby leading to novel properties.

  3. Tetracarbonylbis(η5-cyclopentadienylbis(diphenylphosphinedimolybdenum(Mo—Mo hexane solvate

    Directory of Open Access Journals (Sweden)

    David R. Tyler

    2008-07-01

    Full Text Available The title compound, [Mo2(C5H52(C12H11P2(CO4]·C6H14, is a centrosymmetric Mo complex in which two Mo atoms are connected by an Mo—Mo bond [3.2072 (12 Å]. Each Mo atom is coordinated by an η5-cyclopentadienyl ligand, two carbonyl ligands and a diphenylphosphine ligand in a piano-stool fashion.

  4. Room-temperature superparamagnetism due to giant magnetic anisotropy in Mo S defected single-layer MoS2

    Science.gov (United States)

    Khan, M. A.; Leuenberger, Michael N.

    2018-04-01

    Room-temperature superparamagnetism due to a large magnetic anisotropy energy (MAE) of a single atom magnet has always been a prerequisite for nanoscale magnetic devices. Realization of two dimensional (2D) materials such as single-layer (SL) MoS2, has provided new platforms for exploring magnetic effects, which is important for both fundamental research and for industrial applications. Here, we use density functional theory (DFT) to show that the antisite defect (Mo S ) in SL MoS2 is magnetic in nature with a magnetic moment μ of  ∼2 μB and, remarkably, exhibits an exceptionally large atomic scale MAE =\\varepsilon\\parallel-\\varepsilon\\perp of  ∼500 meV. Our calculations reveal that this giant anisotropy is the joint effect of strong crystal field and significant spin–orbit coupling (SOC). In addition, the magnetic moment μ can be tuned between 1 μB and 3 μB by varying the Fermi energy \\varepsilonF , which can be achieved either by changing the gate voltage or by chemical doping. We also show that MAE can be raised to  ∼1 eV with n-type doping of the MoS2:Mo S sample. Our systematic investigations deepen our understanding of spin-related phenomena in SL MoS2 and could provide a route to nanoscale spintronic devices.

  5. Diversification of 99Mo/99mTc separation: non–fission reactor production of 99Mo as a strategy for enhancing 99mTc availability.

    Science.gov (United States)

    Pillai, Maroor R A; Dash, Ashutosh; Knapp, Furn F Russ

    2015-01-01

    This paper discusses the benefits of obtaining (99m)Tc from non-fission reactor-produced low-specific-activity (99)Mo. This scenario is based on establishing a diversified chain of facilities for the distribution of (99m)Tc separated from reactor-produced (99)Mo by (n,γ) activation of natural or enriched Mo. Such facilities have expected lower investments than required for the proposed chain of cyclotrons for the production of (99m)Tc. Facilities can receive and process reactor-irradiated Mo targets then used for extraction of (99m)Tc over a period of 2 wk, with 3 extractions on the same day. Estimates suggest that a center receiving 1.85 TBq (50 Ci) of (99)Mo once every 4 d can provide 1.48-3.33 TBq (40-90 Ci) of (99m)Tc daily. This model can use research reactors operating in the United States to supply current (99)Mo needs by applying natural (nat)Mo targets. (99)Mo production capacity can be enhanced by using (98)Mo-enriched targets. The proposed model reduces the loss of (99)Mo by decay and avoids proliferation as well as waste management issues associated with fission-produced (99)Mo.

  6. PREPARATION AND CATALYTIC ACTIVITY FOR ISOPROPYL BENZENE CRACKING OF Co, Mo AND Co/Mo-Al2O3-PILLARED MONTMORILLONITE CATALYSTS

    Directory of Open Access Journals (Sweden)

    Hasanudin Hasanudin

    2010-06-01

    Full Text Available It has been prepared Co, Mo and Co/Mo-Al2O3-pillared montmorillonite catalysts using montmorillonite clay  as raw material. The structure and porosity of the catalysts were determined using N2 adsorption-desorption and FT-IR spectroscopy analysis methods. Isopropyl benzene cracking using these catalysts were used to test the catalytic activity and performance of Co, Mo and Co/Mo-Al2O3-pillared montmorillonites.  Characterization results showed that pillarization resulted in the increase of the total pore volume and specific surface area of the clay. Meanwhile, transition metals (Co, Mo and Co/Mo loaded on Al2O3-pillared monmorillonites could increase the catalytic activity of the catalysts for isopropyl benzene cracking significantly.   Keywords: pillared monmorillonite, isopropyl benzene  and cracking catalyst

  7. Double molybdates in Li2MoO4 - Na2MoO4 - H2O system at 25 grad C

    International Nuclear Information System (INIS)

    Karov, Z.G.; Mirzoev, R.S.; Makitova, D.D.; Zhilova, S.B.; Podnek, A.G.; Urusova, R.Kh.

    1989-01-01

    Solubility in Li 2 MoO 4 - Na 2 MoO 4 - H 2 O system at 25 deg C is first stuied. Formation of two Li 2 MoO 4 · Na 2 MoO 4 · 4H 2 O and Li 2 MoO 4 · 3Na 2 MoO 4 · 12H 2 O compounds in a system is ascertained. Density, refractive index, viscosity, surface tension, electric conductivity and pH of saturated solutions are determined. Isothermes of mole volume, equivalent and reduced electric conductivity and seeming mole volume of salts sum in solutions are calculated. All these properties adequtely confirm the character of components interaction in a system determined by solubility method. Crystallhydrates of binary molybdates are separated, indentified and studied

  8. Effects of Mo on microstructure of as-cast 28 wt.% Cr–2.6 wt.% C–(0–10) wt.% Mo irons

    Energy Technology Data Exchange (ETDEWEB)

    Imurai, S. [Department of Physics and Materials Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thanachayanont, C.; Pearce, J.T.H. [National Metal and Materials Technology Center, Pathumthani 12120 (Thailand); Tsuda, K. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Chairuangsri, T., E-mail: tchairuangsri@gmail.com [Department of Industrial Chemistry, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-04-01

    Microstructures of as-cast 28 wt.% Cr–2.6 wt.% C irons containing (0–10) wt.% Mo with the Cr/C ratio of about 10 were studied and related to hardness. The experimental irons were cast into dry sand molds. Microstructural investigation was performed by light microscopy, X-ray diffractometry, scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectrometry. It was found that the iron with about 10 wt.% Mo was eutectic/peritectic, whereas the others with less Mo content were hypoeutectic. The matrix in all irons was austenite, partly transformed to martensite during cooling. Mo addition promoted the formation of M{sub 23}C{sub 6} and M{sub 6}C. At 1 wt.% Mo, multiple eutectic carbides including M{sub 7}C{sub 3}, M{sub 23}C{sub 6} and M{sub 6}C were observed. M{sub 23}C{sub 6} existed as a transition zone between eutectic M{sub 7}C{sub 3} and M{sub 6}C, indicating a carbide transition as M{sub 7}C{sub 3}(M{sub 2.3}C) → M{sub 23}C{sub 6}(M{sub 3.8}C) → M{sub 6}C. At 6 wt.% Mo, multiple eutectic carbides including M{sub 7}C{sub 3} and M{sub 23}C{sub 6} were observed together with fine cellular/lamellar M{sub 6}C aggregates. In the iron with 10 wt.% Mo, only eutectic/peritectic M{sub 23}C{sub 6} and M{sub 6}C were found without M{sub 7}C{sub 3}. Mo distribution to all carbides has been determined to be increased from ca. 0.4 to 0.7 in mass fraction as the Mo content in the irons was increased. On the other hand, Cr distribution to all carbides is quite constant as ca. 0.6 in mass fraction. Mo addition increased Vickers macro-hardness of the irons from 495 up to 674 HV{sub 30}. High Mo content as solid-solution in the matrix and the formation of M{sub 6}C or M{sub 23}C{sub 6} aggregates were the main reasons for hardness increase, indicating potentially improved wear performance of the irons with Mo addition. - Highlights: • Mo promoted the formation of M{sub 23}C{sub 6} and M{sub 6}C in the irons with Cr/C ratio of about 10

  9. Laves-phase evolution during aging in 9Cr-1.8W-0.5Mo-VNb steel for USC power plants

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xue, E-mail: wangxue2011@whu.edu.cn [School of Power and Mechanics, Wuhan University, Wuhan 430072 (China); Xu, Qiang [School of Computing and Engineering, The University of Huddersfield, Huddersfield HD1 3DH, England (United Kingdom); Yu, Shu-min; Hu, Lei [School of Power and Mechanics, Wuhan University, Wuhan 430072 (China); Liu, Hong [DongFang Boiler Group Co.,Ltd., Zigong 643001 (China); Ren, Yao-yao [School of Power and Mechanics, Wuhan University, Wuhan 430072 (China)

    2015-08-01

    Long term precipitation and coarsening of Laves-phase in tungsten strengthened 9% Cr steel under thermal aging at 923 K was investigated and reported in this paper. It experimentally measured the evolution of mean particle size, the number density, the volume fraction of Laves-phase precipitates, the partition coefficients of W and Mo in the matrix, as well as the change of hardness. Its main conclusions were: 1) Laves-phase nucleates and grows rapidly on grain boundaries and lath boundaries within the first 1500 h of aging time; 2) The two stages characteristics and kinetics of Laves-phase nucleation and growth which were determined experimentally; 3) The coarsening of Laves-phase is much faster than that of M{sub 23}C{sub 6} carbides; 4) The precipitation of Laves-phase produces a pronounced matrix depletion of W and Mo atoms; and 5) The precipitated Laves-phase gives rise to weaker precipitation strengthening in comparison with M{sub 23}C{sub 6} carbides, and causes the loss of hardness due to the depletion of Mo and W from the solid solution. This paper contributes to the knowledge of kinetics of Laves-phase precipitation and coarsening, providing the essential information for comparative investigation of creep damage mechanisms. This paper also contributes to the understanding the creep damage broadly. - Highlights: • The characteristics of precipitation and coarsening of Laves-phase were determined. • The matrix depletion of W and Mo due to Laves-phase precipitation was quantified. • The effect of precipitated Laves-phase on the hardness was evaluated.

  10. Irradiation performance of U-Mo-Ti and U-Mo-Zr dispersion fuels in Al-Si matrixes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Hofman, G.L. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Robinson, A.B.; Wachs, D.M. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Ryu, H.J.; Park, J.M.; Yang, J.H. [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2012-08-15

    Performance of U-7 wt.%Mo with 1 wt.%Ti, 1 wt.%Zr or 2 wt.%Zr, dispersed in an Al-5 wt.%Si alloy matrix, was investigated through irradiation tests in the ATR at INL and HANARO at KAERI. Post-irradiation metallographic features show that the addition of Ti or Zr suppresses interaction layer growth between the U-Mo and the Al-5 wt.%Si matrix. However, higher fission gas swelling was observed in the fuel with Zr addition, while no discernable effect was found in the fuel with Ti addition as compared to U-Mo without the addition. Known to have a destabilizing effect on the {gamma}-phase U-Mo, Zr, either as alloy addition or fission product, is ascribed for the disadvantageous result. Considering its benign effect on fuel swelling, with slight disadvantage from neutron economy point of view, Ti may be a better choice for this purpose.

  11. 75 FR 76254 - Official Performance and Procedural Requirements for Grain Weighing Equipment and Related Grain...

    Science.gov (United States)

    2010-12-08

    ... DEPARTMENT OF AGRICULTURE Grain Inspection, Packers and Stockyards Administration 7 CFR Part 802 [Docket GIPSA-2010-FGIS-0012] RIN 0580-AB19 Official Performance and Procedural Requirements for Grain Weighing Equipment and Related Grain Handling Systems AGENCY: Grain Inspection, Packers and Stockyards...

  12. Photochemical studies of alkylammonium molybdates. Part 12. O→Mo charge-transfer triplet-states-initiated self-assembly to {Mo154} ring- and tube-molybdenum-blues

    Science.gov (United States)

    Yamase, T.; Prokop, P.; Arai, Y.

    2003-08-01

    The chemically induced dynamic electron-spin-polarization technique is employed in order to investigate the primary steps of the photoredox reaction between polyoxomolybdates and alkylammonium cations as both proton and electron-donors in solutions. An observation of emissive electron-spin-polarization signals of alkylamino radical cations for the photoredox reaction between polyoxomolybdates and alkylammonium cations in solutions reveals that the O→Mo ligand-to-metal charge-transfer triplet states are involved in the transfers of both proton and electron from alkylammonium cation to polyoxomolybdate anions. Prolonged photolysis of aqueous solutions containing [Mo36O112(H2O)16]8-, [iPrNH3]+, and LaCl3 at pH 1.0 leads to formation of two kinds of {Mo154} molybdenum-blues, [Mo28VMo126VIO462H28(H2O)70]·156.5H2O (1) and [iPrNH3]8 [Mo28VMo126VIO458H12(H2O)66]·127H2O (2), which were X-ray crystallographically characterized. The former exhibits the intact car-tire-shaped {Mo154} ring structure (with thickness of about 1.1 nm and with outer- and inner-rings of approximately 3.5- and 2.3-nm diameters, respectively) derived formally from the dehydrated cyclic heptamerization of four-electron reduced building blocks of {Mo22} (≡[Mo4VMo18VIO70H12(H2O)10]) with overall symmetry of D7d. The anion for the latter, [Mo28VMo126VIO458H12(H2O)66]8- (2a), exhibits a nanotube structure of {Mo154} rings, each inner ring of which contains a bis(μ-oxo)-linkaged [MoO2(μ-O)(μ-H2O)MoO2]2+ unit replacing one of seven [Mo(H2O)O2(μ-O)Mo(H2O)O2]2+linker units. The neighboring {Mo154} rings are connected by six Mo-O-Mo bridge between inner-rings consisting of 7 head- and 14 linkers-MoO6 octahedra for each.

  13. Qualidade da silagem de grãos de milho com adição de soja crua e parâmetros de digestibilidade parcial e total em bovinos Quality of high moisture corn grain silage with addition of raw soybean grains and parameters of partial and total digestibility in cattle

    Directory of Open Access Journals (Sweden)

    C.C. Jobim

    2010-02-01

    Full Text Available Avaliou-se a qualidade da silagem de grãos úmidos de milho com adição de soja crua, por meio de medidas de digestibilidade parcial e total em bovinos. Foram utilizados três animais mestiços Nelore x Red Angus, implantados com cânulas ruminal e duodenal. O delineamento experimental foi o quadrado latino 3x3, com os seguintes tratamentos: SGM66= 60% de volumoso, 26,6% de silagem de grãos de milho e 13,4% de farelo de soja e milho moído; SGM33= 60% de volumoso, 13,4% de silagem de grãos de milho e 26,6% de farelo de soja e milho moído, e GMS= 60% de volumoso e 40% de farelo de soja e milho moído. A digestão e a digestibilidade da matéria seca não foram influenciadas pela inclusão de SGM na dieta. A dieta SGM66 aumentou a digestibilidade de matéria seca no intestino em relação à dieta GMS. Não houve efeito da inclusão da silagem de grãos na digestão e na digestibilidade das frações fibra em detergente ácido e fibra em detergente neutro da ração, bem como no fluxo ruminal e intestinal do amido. A SGM66 melhorou a digestibilidade total da proteína bruta, mas não mostrou efeito sobre a digestibilidade total da matéria seca, da fibra e do amido e sobre o ambiente ruminal no que se refere à acidez e à concentração de amônia.The quality of high moisture corn grain silage with addition of raw soybean grains was evaluated by measures of partial and total digestibilities in cattle. Three crossbred Nelore x Red Angus steers averaging 305kg of live weigth and fitted with ruminal and duodenal cannulas were used. The experimental design was a 3x3 Latin square, and the steers received the following treatments: HMGS66 = 60% roughage, 26.6% high moisture grain silage, and 13.4% soybean meal and ground corn; HMGS33 = 60% roughage, 13.4% high moisture grain silage, and 26.6% soybean meal and ground corn; and GC = 60% roughage and 40% soybean meal and ground corn. The digestion and digestibility of dry matter was not influenced by

  14. 78 FR 33224 - Safety Zone; Grain-Shipment and Grain-Shipment Assist Vessels, Columbia and Willamette Rivers

    Science.gov (United States)

    2013-06-04

    ... 1625-AA00 Safety Zone; Grain-Shipment and Grain-Shipment Assist Vessels, Columbia and Willamette Rivers... Guard is establishing a temporary safety zone around all inbound and outbound grain-shipment and grain-shipment assist vessels involved in commerce with the Columbia Grain facility on the Willamette River in...

  15. 78 FR 57261 - Safety Zone; Grain-Shipment and Grain-Shipment Assist Vessels, Columbia and Willamette Rivers

    Science.gov (United States)

    2013-09-18

    ... 1625-AA00 Safety Zone; Grain-Shipment and Grain-Shipment Assist Vessels, Columbia and Willamette Rivers... temporary safety zone around all inbound and outbound grain-shipment and grain-shipment assist vessels involved in commerce with the Columbia Grain facility on the Willamette River in Portland, OR, the United...

  16. Mo isotope fractionation during hydrothermal evolution of porphyry Cu systems

    Science.gov (United States)

    Shafiei, Behnam; Shamanian, GholamHossein; Mathur, Ryan; Mirnejad, Hassan

    2015-03-01

    We present Mo isotope compositions of molybdenite types from three successive stages of ore deposition in several porphyry copper deposits of the Kerman region, Iran. The data provide new insights into controlling processes on Mo isotope fractionation during the hydrothermal evolution of porphyry systems. The Mo isotope compositions of 27 molybdenite samples show wide variations in δ97Mo ranging from -0.37 to +0.92 ‰. The data reveal that molybdenites in the early and transitional stages of mineralization (preferentially 2H polytypes; δ97Mo mean = 0.35 ‰) have higher δ97Mo values than late stage (mainly 3R polytypes; δ97Mo mean = 0.02 ‰) molybdenites. This trend suggests that fractionation of Mo isotopes occurred in high-temperature stages of mineralization and that hydrothermal systems generally evolve towards precipitation of molybdenite with lower δ97Mo values. Taking into account the genetic models proposed for porphyry Cu deposits along with the temperature-dependent fractionation of Mo isotope ratios, it is proposed that large variations of Mo isotopes in the early and the transitional stages of ore deposition could be controlled by the separation of the immiscible ore-forming fluid phases with different density, pH, and ƒO2 properties (i.e., brine and vapor). The fractionation of Mo isotopes during fluid boiling and Rayleigh distillation processes likely dominates the Mo isotope budget of the remaining ore-forming fluids for the late stage of mineralization. The lower δ97Mo values in the late stage of mineralization can be explained by depletion of the late ore-forming hydrothermal solutions in 97Mo, as these fluids have moved to considerable distance from the source. Finally, the relationship observed between MoS2 polytypes (2H and 3R) and their Mo isotopic compositions can be explained by the molecular vibration theory, in which heavier isotopes are preferentially partitioned into denser primary 2H MoS2 crystals.

  17. Coke formation during the hydrotreatment of bio-oil using NiMo and CoMo catalysts

    NARCIS (Netherlands)

    Kadarwati, Sri; Hu, Xun; Gunawan, Richard; Westerhof, Roel; Gholizadeh, Mortaza; Hasan, M. D.Mahmudul; Li, Chun-Zhu

    2017-01-01

    This study aims to investigate the coke formation during the hydrotreatment of bio-oil at low temperature. The catalytic hydrotreatment of bio-oil produced from the pyrolysis of mallee wood was carried out using pre-sulphided NiMo and CoMo catalysts at a temperature range of 150–300 °C. Our results

  18. Grain destruction in interstellar shocks

    International Nuclear Information System (INIS)

    Seab, C.G.; Shull, J.M.

    1984-01-01

    One of the principal methods for removing grains from the Interstellar Medium is to destroy them in shock waves. Previous theoretical studies of shock destruction have generally assumed only a single size and type of grain; most do not account for the effect of the grain destruction on the structure of the shock. Earlier calculations have been improved in three ways: first, by using a ''complete'' grain model including a distribution of sizes and types of grains; second, by using a self-consistent shock structure that incorporates the changing elemental depletions as the grains are destroyed; and third, by calculating the shock-processed ultraviolet extinction curves for comparison with observations. (author)

  19. Comparative study of 99Mo/99mTc generators at base of synthesized gels starting from activation and fission 99Mo

    International Nuclear Information System (INIS)

    Lopez M, I.Z.; Monroy G, F.; Rivero G, T.; Rojas N, P.

    2007-01-01

    The 99m Tc is used for diagnostic and therapy. It is produced starting from 99 Mo, absorbed in chromatographic columns, loaded with alumina that absorb only 0.2% of 99 Mo with high specific activities of 99 Mo, obtained from the 235 U fission. Given these conditions and limitations, new preparation procedures of 99 Mo/ 99m Tc generators, its have been developed, using zirconium molybdates gels that incorporates until 30% of 99 Mo, conserve similar characteristics of quality and purity that the traditional generator. The radiochemical characteristics of the 99m Tc elution, depend strongly on the gel preparation conditions. In particular, the present work has by object to determine the influence of the 99 Mo used type, fission or activation product, during the gels synthesis, as well as the used air flow for the agitation in the gels preparation and its influence in the 99 Mo/ 99m Tc generators quality. When diminishing the flow of agitation air the efficiency it increases and in the radionuclide purity of the eluates and when using 99 Mo from fission for the gels production it increases in an important way the elutriation efficiency, the radiochemical and radionuclide purity of the 99m Tc eluates. (Author)

  20. Quality control studies of 99Mo used in 99Mo/99mTc generators produced at IPEN/CNEN-SP, Brazil

    International Nuclear Information System (INIS)

    Said, Daphne S.; Brambilla, Tania P.; Matsuda, Margareth M.N.; Osso Junior, Joao A.

    2015-01-01

    99m Tc is the most used radionuclide in nuclear medicine. In Brazil, the 99 Mo/ 99m Tc generators are produced exclusively by the Center of Radiopharmacy at IPEN-CNEN/SP, by importing 99 Mo from different suppliers. 99 Mo (t 1/2 = 66 h) is a fission product of 235 U, therefore, it can be accompanied by several radioisotopes that are highly prejudicial for human health, demanding a strict quality control of this product for generators safe use. The European Pharmacopoeia established some parameters and limits that evaluate the quality of the solution of sodium [ 99 Mo]molybdate, that is used as raw material for generator's production. The European Pharmacopoeia also recommends some analytical methods to perform these evaluations, however, it has been observed difficulties on the implementation of these methods by the generator's producers. These difficulties are probably related to the lack of practicability of the proposed methods and the extensive list of utilized reagents. In this work some procedures of the European Pharmacopoeia's quality control method for 99 Mo were evaluated. Different types of solid phase exchanger cartridges were tested for retention of 99 Mo in 3 different conditions. Cartridges that presented percentages of retention higher than 90% were also tested for separation of 99 Mo from possible contaminants (Ru e Te). The results shown that solid phase exchanger cartridges that presented percentages of retention of Mo higher than 90% also presented significant percentages of retention of Ru and Te. An alternative method for separation of 99 Mo from 131 I (other contaminant) are also proposed. (author)

  1. Development of fission Mo-99 production technology

    International Nuclear Information System (INIS)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2000-05-01

    Fission Mo-99 is the only parent nuclide of Tc-99m, an extremely useful tool for mdeical diagnosis, with an estimated usage of greater than 80% of nuclear medicine applicatons. HEU and LEU targets to optimize in HANARO irradiation condition suggested and designed for domestic production of fission Mo-99. The optimum process conditions are established in each unit process to meet quality requirements of fission Mo-99 products, and the results of performance test in combined process show Mo separation and purification yield of the above 97%. The concept of Tc generator production process is established, and the result of performance test show Tc production yield of 98.4% in Tc generator procuction process. The drafts is prepared for cooperation of technical cooperation and business investment with foreign country. Evaluation on economic feasibility is accompanied for fission Mo-99 and Tc-99m generator production

  2. Development of fission Mo-99 production technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2000-05-01

    Fission Mo-99 is the only parent nuclide of Tc-99m, an extremely useful tool for mdeical diagnosis, with an estimated usage of greater than 80% of nuclear medicine applicatons. HEU and LEU targets to optimize in HANARO irradiation condition suggested and designed for domestic production of fission Mo-99. The optimum process conditions are established in each unit process to meet quality requirements of fission Mo-99 products, and the results of performance test in combined process show Mo separation and purification yield of the above 97%. The concept of Tc generator production process is established, and the result of performance test show Tc production yield of 98.4% in Tc generator procuction process. The drafts is prepared for cooperation of technical cooperation and business investment with foreign country. Evaluation on economic feasibility is accompanied for fission Mo-99 and Tc-99m generator production.

  3. Monolayer MoS2 heterojunction solar cells

    KAUST Repository

    Tsai, Menglin

    2014-08-26

    We realized photovoltaic operation in large-scale MoS2 monolayers by the formation of a type-II heterojunction with p-Si. The MoS 2 monolayer introduces a built-in electric field near the interface between MoS2 and p-Si to help photogenerated carrier separation. Such a heterojunction photovoltaic device achieves a power conversion efficiency of 5.23%, which is the highest efficiency among all monolayer transition-metal dichalcogenide-based solar cells. The demonstrated results of monolayer MoS 2/Si-based solar cells hold the promise for integration of 2D materials with commercially available Si-based electronics in highly efficient devices. © 2014 American Chemical Society.

  4. Grotrian diagrams for highly ionized molybdenum Mo VI through Mo XLII

    International Nuclear Information System (INIS)

    Shirai, Toshizo; Sugar, J.; Wiese, W.L.

    1997-07-01

    Grotrian diagrams are presented to provide graphical overviews for 1,930 spectral lines of highly ionized molybdenum, Mo VI through Mo XLII. In the usual diagram display such as that by Bashkin and Stoner (North-Holland, Amsterdam, 1975), the density of transitions is often too high to allow each transition to be drawn separately. Here in our modified diagrams, the transitions are also represented by lines connecting the upper and lower energy levels, but the lower energy levels are extended and repeated for successive configurations as needed. As a sequence, dense packing is avoided and all lines in a multiplet can be accommodated. (author)

  5. Plant Density Effect on Grain Number and Weight of Two Winter Wheat Cultivars at Different Spikelet and Grain Positions

    Science.gov (United States)

    Ni, Yingli; Zheng, Mengjing; Yang, Dongqing; Jin, Min; Chen, Jin; Wang, Zhenlin; Yin, Yanping

    2016-01-01

    In winter wheat, grain development is asynchronous. The grain number and grain weight vary significantly at different spikelet and grain positions among wheat cultivars grown at different plant densities. In this study, two winter wheat (Triticum aestivum L.) cultivars, ‘Wennong6’ and ‘Jimai20’, were grown under four different plant densities for two seasons, in order to study the effect of plant density on the grain number and grain weight at different spikelet and grain positions. The results showed that the effects of spikelet and grain positions on grain weight varied with the grain number of spikelets. In both cultivars, the single-grain weight of the basal and middle two-grain spikelets was higher at the 2nd grain position than that at the 1st grain position, while the opposite occurred in the top two-grain spikelets. In the three-grain spikelets, the distribution of the single-grain weight was different between cultivars. In the four-grain spikelets of Wennong6, the single-grain weight was the highest at the 2nd grain position, followed by the 1st, 3rd, and 4th grain positions. Regardless of the spikelet and grain positions, the single-grain weight was the highest at the 1st and 2nd grain positions and the lowest at the 3rd and 4th grain positions. Overall, plant density affected the yield by controlling the seed-setting characteristics of the tiller spike. Therefore, wheat yield can be increased by decreasing the sterile basal and top spikelets and enhancing the grain weight at the 3rd and 4th grain positions, while maintaining it at the 1st and 2nd grain positions on the spikelet. PMID:27171343

  6. Nanostructured Mo-based electrode materials for electrochemical energy storage.

    Science.gov (United States)

    Hu, Xianluo; Zhang, Wei; Liu, Xiaoxiao; Mei, Yueni; Huang, Yunhui

    2015-04-21

    The development of advanced energy storage devices is at the forefront of research geared towards a sustainable future. Nanostructured materials are advantageous in offering huge surface to volume ratios, favorable transport features, and attractive physicochemical properties. They have been extensively explored in various fields of energy storage and conversion. This review is focused largely on the recent progress in nanostructured Mo-based electrode materials including molybdenum oxides (MoO(x), 2 ≤ x ≤ 3), dichalconides (MoX2, X = S, Se), and oxysalts for rechargeable lithium/sodium-ion batteries, Mg batteries, and supercapacitors. Mo-based compounds including MoO2, MoO3, MoO(3-y) (0 energy storage systems because of their unique physicochemical properties, such as conductivity, mechanical and thermal stability, and cyclability. In this review, we aim to provide a systematic summary of the synthesis, modification, and electrochemical performance of nanostructured Mo-based compounds, as well as their energy storage applications in lithium/sodium-ion batteries, Mg batteries, and pseudocapacitors. The relationship between nanoarchitectures and electrochemical performances as well as the related charge-storage mechanism is discussed. Moreover, remarks on the challenges and perspectives of Mo-containing compounds for further development in electrochemical energy storage applications are proposed. This review sheds light on the sustainable development of advanced rechargeable batteries and supercapacitors with nanostructured Mo-based electrode materials.

  7. Intercalation of Si between MoS2 layers

    Directory of Open Access Journals (Sweden)

    Rik van Bremen

    2017-09-01

    Full Text Available We report a combined experimental and theoretical study of the growth of sub-monolayer amounts of silicon (Si on molybdenum disulfide (MoS2. At room temperature and low deposition rates we have found compelling evidence that the deposited Si atoms intercalate between the MoS2 layers. Our evidence relies on several experimental observations: (1 Upon the deposition of Si on pristine MoS2 the morphology of the surface transforms from a smooth surface to a hill-and-valley surface. The lattice constant of the hill-and-valley structure amounts to 3.16 Å, which is exactly the lattice constant of pristine MoS2. (2 The transitions from hills to valleys are not abrupt, as one would expect for epitaxial islands growing on-top of a substrate, but very gradual. (3 I(V scanning tunneling spectroscopy spectra recorded at the hills and valleys reveal no noteworthy differences. (4 Spatial maps of dI/dz reveal that the surface exhibits a uniform work function and a lattice constant of 3.16 Å. (5 X-ray photo-electron spectroscopy measurements reveal that sputtering of the MoS2/Si substrate does not lead to a decrease, but an increase of the relative Si signal. Based on these experimental observations we have to conclude that deposited Si atoms do not reside on the MoS2 surface, but rather intercalate between the MoS2 layers. Our conclusion that Si intercalates upon the deposition on MoS2 is at variance with the interpretation by Chiappe et al. (Adv. Mater. 2014, 26, 2096–2101 that silicon forms a highly strained epitaxial layer on MoS2. Finally, density functional theory calculations indicate that silicene clusters encapsulated by MoS2 are stable.

  8. Excitation functions of the 98Mo+d reactions

    International Nuclear Information System (INIS)

    Zarubin, P.P.; Padalko, V.Yu.; Khrisanfov, Yu.V.; Lebedev, P.P.; Podkopaev, Yu.N.

    The excitation functions of the 98 Mo+d reactions were studied. The energy dependence of (d,p),(d,n) and (d,α) reactions was investigated by the activation analysis. The energies of deuterons in the range (6-12) MeV were determined by means of the aluminium filters. 98 Mo foils with surface densities of 1.02, 0.23 and 0.14 mgxcm -2 with 98 Mo enrichment of 94.1% were used as targets. The gamma spectra were measured by a Ge(Li) detector. The 98 Mo(d,p) 99 Mo reaction excitation function was determined via detection of 739 and 181 keV γ-radiation of 99 Mo (Tsub(1/2)=66.47h); 140 keV γ-radiation of 99 Tc (Tsub(1/2)=6h) was detected for the 98 Mo(d,n) 99 Tc reaction excitation function determination and 460, 568, 1091, 1200 and 1492 keV γ-quanta of 96 Nb (Tsub(1/2)=23.35h) - for the 98 Mo(d,α) 96 Nb reaction. In the excitation function the wide extremum was observed at Esub(d) approximately 10 MeV. The ratio of cross sections σsup(m)(d,n)/σ(d,p) on the 98 Mo target was determined. The ratio σsup(m)(d,n)/σ(d,p) was found to be decreasing function of the deuteron energy. The relative cross sections were determined with an accuracy of +-5%, while for the absolute values of cross sections the accuracy was +-15%

  9. OPAL: prediction of MoRF regions in intrinsically disordered protein sequences.

    Science.gov (United States)

    Sharma, Ronesh; Raicar, Gaurav; Tsunoda, Tatsuhiko; Patil, Ashwini; Sharma, Alok

    2018-06-01

    Intrinsically disordered proteins lack stable 3-dimensional structure and play a crucial role in performing various biological functions. Key to their biological function are the molecular recognition features (MoRFs) located within long disordered regions. Computationally identifying these MoRFs from disordered protein sequences is a challenging task. In this study, we present a new MoRF predictor, OPAL, to identify MoRFs in disordered protein sequences. OPAL utilizes two independent sources of information computed using different component predictors. The scores are processed and combined using common averaging method. The first score is computed using a component MoRF predictor which utilizes composition and sequence similarity of MoRF and non-MoRF regions to detect MoRFs. The second score is calculated using half-sphere exposure (HSE), solvent accessible surface area (ASA) and backbone angle information of the disordered protein sequence, using information from the amino acid properties of flanks surrounding the MoRFs to distinguish MoRF and non-MoRF residues. OPAL is evaluated using test sets that were previously used to evaluate MoRF predictors, MoRFpred, MoRFchibi and MoRFchibi-web. The results demonstrate that OPAL outperforms all the available MoRF predictors and is the most accurate predictor available for MoRF prediction. It is available at http://www.alok-ai-lab.com/tools/opal/. ashwini@hgc.jp or alok.sharma@griffith.edu.au. Supplementary data are available at Bioinformatics online.

  10. Coordination of {Mo142} Ring to La3+ Provides Elliptical {Mo134La10} Ring with a Variety of Coordination Modes

    Directory of Open Access Journals (Sweden)

    Eri Ishikawa

    2009-12-01

    Full Text Available A28-electron reduced C2h-Mo-blue 34Ǻ outer ring diameter circular ring, [Mo142O429H10(H2O49(CH3CO25(C2H5CO2]30- (≡{Mo142(CH3CO25(C2H5CO2} comprising eight carboxylate-coordinated (with disorder {Mo2} linkers and six defect pockets in two inner rings (four and three for each, respectively, reacts with La3+ in aqueous solutions at pH 3.5 to yield a 28-electron reduced elliptical Ci-Mo-blue ring of formula [Mo134O416H20(H2O46{La(H2O5}4{La(H2O7}4{LaCl2(H2O5}2]10- (≡{Mo134La10}, isolated as the Na10[Mo134O416H20(H2O46{La(H2O5}4{La(H2O7}4{LaCl2(H2O5}2]·144 H2O Na+ salt. The elliptical structure of {Mo134La10} showing 36 and 31 Å long and short axes for the outer ring diameters is attributed to four (A-D modes of LaO9/LaO7Cl2 tricapped-trigonal-prismatic coordination (TTP geometries. Two different LaO2(H2O7 and one LaO2(H2O2Cl2 TTP geometries (as A-C modes for each of two inner rings result from the coordination of all three defect pockets of the inner ring for {Mo142(CH3CO25(C2H5CO2}, and two LaO4(H2O5 TTP geometries (as D mode result from the displacement of two (acetate/propionate-coordinated binuclear {Mo2} linkers with La3+ in each inner ring. The isothermal titration calorimetry (ITC of the ring modification from circle to ellipsoid, showing the endothermic reaction of [La3+]/[{Mo142(CH3CO25(C2H5CO2}] = 6/1 with DH = 22 kJ×mol-1, DS = 172 J×K-1×mol-1, DG = −28 kJ×mol-1, and K = 9.9 ´ 104 M-1 at 293 K, leads to the conclusion that the coordination of the defect pockets to La3+ precedes the replacement of the {Mo2} linkers with La3+. 139La- NMR spectrometry of the coordination of {Mo142(CH3CO25(C2H5CO2} ring to La3+ is also discussed.

  11. A modified {sup 99} Mo- {sup 99} Tc generator on Zirconium molybdo- phosphate-{sup 99} Mo gel. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    El-Kolaly, M T; Talaat, H [Labelled Compounds Department, Cairo (Egypt); Botros, N [Radioistspe and Generator Department, Radioisotope Production and Sealed Source Division, Hot Laboratories Center, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    A modified {sup 99} Mo - {sup 99} Tc gel generator is described. The new generator is based on the use of zirconium molybdophosphate - {sup 99} Mo gel in which {sup 99} Mo chemically combined in the gel structure, where {sup 99m}Tc can be easily eluted with distilled water or saline. The gel was prepared via chemical reaction between zirconyl chloride and molybdophosphate - {sup 99} Mo solution. The PH of the reaction mixture was adjusted with NaOH. Different gels have been prepared by varying the molar ratio of Mo:Zr:p. The PH and time of digeston on complete gel formation was also investigated in order to optimize the condition of gel preparation. Molybdophosphate {sup 32} P solution was used to determine the phosphorous content in the gel and in the {sup 99m}Tc eluate. The temperature and time of drying of the gel and their effect on {sup 99m}Tc elution efficiency were also studied. From the data obtained, the optimum conditions for routine production of {sup 99} Mo - {sup 99m}Tc generator are presented and discussed. 2 figs., 6 tabs.

  12. Theoretical calculations of valence states in Fe-Mo compounds

    International Nuclear Information System (INIS)

    Estrada, F; Navarro, O; Noverola, H; Suárez, J R; Avignon, M

    2014-01-01

    The half-metallic ferromagnetic double perovskite compound Sr 2 FeMoO 6 is considered as an important material for spintronic applications. It appears to be fundamental to understand the role of electronic parameters controlling the half-metallic ground state. Fe-Mo double perovskites usually present some degree of Fe/Mo disorder which generally increases with doping. In this work, we study the valence states of Fe-Mo cations in the off-stoichiometric system Sr 2 Fe 1+x Mo 1−x O 6 (−1 ≤ x ≤ 1/3) with disorder. Our results for Fe and Mo valence states are obtained using the Green functions and the renormalization perturbation expansion method. The model is based on a correlated electron picture with localized Fe-spins and conduction Mo-electrons interacting with the local spins via a double-exchange-type mechanism

  13. Feasibility study on mass production of (n,γ)99Mo

    International Nuclear Information System (INIS)

    Jun, Byung Jin; Tanimoto, Masataka; Kimura, Akihiro; Hori, Naohiko; Izumo, Hironobu; Tsuchiya, Kunihiko

    2011-01-01

    The world is currently suffering from a severe shortage of 99 Mo and various efforts have been given for its availability. The (n,γ) method is one of candidates for the alternative supply of 99 Mo. The only but critical shortage of (n,γ) 99 Mo is its extremely low specific activity, which gives inconveniency in the extraction of 99m Tc and is consequently converted to additional cost. Potential technologies which make the (n,γ) 99 Mo competitive by reducing the additional cost are already available. It is expected that verification of such technologies is much easy and cost effective compared to any other options known for the alternative 99 Mo production. Because Japan and Korea import all 99 Mo from long distance, the cost benefit of local (n,γ) 99 Mo production in these countries is especially large. If five high flux reactors in China, Japan and Korea are utilized for the cross backup supply of (n,γ) 99 Mo, stable availability of 99 Mo in the region can be secured. Therefore, it is necessary to evaluate its feasibility on (n,γ) 99 Mo production in the Asia region. In this report, we studied feasibility of the mass (n,γ) 99 Mo production from viewpoints of global and regional status of 99 Mo demand and supply, competitiveness with other production methods, requirements and flow of the 99 Mo, production capability, cost, convenience in usage, and alternative technologies to overcome its shortage. (author)

  14. A Survey On Mean Glandular Dose From Full-Field Digital Mammography Systems, Operate Using Mo/ Mo And W/Rh Target/ Filter Combinations

    International Nuclear Information System (INIS)

    Noriah Jamal; Siti Selina Abdul Hamid; Humairah Samad Cheung; Siti Kamariah Che Mohamed; Ellyda Muhammed Nordin; Radhiana Hassan; Rehir Dahalan

    2013-01-01

    We had conducted a survey on Mean Glandular Dose (MGD) from Full-Field Digital Mammography systems (FFDM) operate using Molybdenum/ Molybdenum (Mo/ Mo) and Tungsten/ Rhodium (W/ Rh) target/ filter combinations. A survey was carried out at two randomly selected mammography centres in Malaysia, namely National Cancer Society and International Islamic University of Malaysia. The first centre operates using a W/ Rh, while the second centre operates using an Mo/ Mo target/ filter combinations. On the basis of recorded information, data on mammographic views, MGD, age and Compressed Breast Thickness (CBT) were recorded for 100 patients, for each mammographic centre respectively. The MGD data were analyzed for variation with age group, with 5 years increment. The MGD data were also analyzed for variation with CBT, with 5 mm increment. We found that for both CC and MLO views, FFDM systems operated using Mo/ Mo and W/ Rh target/ filter combinations present the same trend on MGD. The average MGD decreases as age increases. While average MGD increases with the increasing of CBT. However, FFDM system operates using Mo/ Mo gives higher MGD as compared with FFDM system operates using W/ Rh. (author)

  15. Effects of exposure to high-temperature helium containing oxygen on the mechanical properties of molybdenum and TZM-Mo alloy at room temperature

    International Nuclear Information System (INIS)

    Noda, T.; Okada, M.; Watanabe, R.

    1980-01-01

    The effects of exposure to helium containing oxygen of 0.1-115 vpm at 1000 0 C on the mechanical properties of molybdenum and TZM-Mo alloy at room temperature were studied. The stress-relieved molybdenum specimen which was not recrystallized at test temperature showed the ductility after exposure to helium containing oxygen. The recrystallized molybdenum and TZM lost ductility after exposure to helium containing oxygen of 0.1-13 vpm in a few hours. The embrittlement of molybdenum was considered to be due to the grain boundary weakening. Molybdenum to which carbon was added seemed to hinder the grain boundary weakening by the oxygen contamination. Both stress-relieved and recrystallized TZM specimens picked up oxygen linearly with time of exposure to helium. The increase in oxygen content of TZM, which was considered to be caused by the internal oxidation of titanium and zirconium, results in the embrittlement of TZM. (orig.)

  16. Modelling of grain refinement driven by negative grain boundary energy

    Czech Academy of Sciences Publication Activity Database

    Fischer, F. D.; Zickler, G. A.; Svoboda, Jiří

    2017-01-01

    Roč. 97, č. 23 (2017), s. 1963-1977 ISSN 1478-6435 R&D Projects: GA ČR(CZ) GA15-06390S Institutional support: RVO:68081723 Keywords : grain refinement * grain nucleation * distribution concept * jump on distribution function Subject RIV: BJ - Thermodynamics OBOR OECD: Thermodynamics Impact factor: 1.505, year: 2016

  17. Oxygen potential of a prototypic Mo-cermet fuel containing plutonium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Miwa, Shuhei, E-mail: miwa.shuhei@jaea.go.jp [Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki, 311-1393 (Japan); Osaka, Masahiko [Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki, 311-1393 (Japan); Nozaki, Takahiro; Arima, Tatsumi; Idemitsu, Kazuya [Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395 (Japan)

    2015-10-15

    Oxygen potential of a prototypic Mo-cermet fuel containing 50 vol.% PuO{sub 2−x} were investigated by the thermogravimetric analysis in the temperature range from 1273 K to 1473 K. It was shown that the oxygen potential and oxidation rate of the Mo-cermet were the same as those of pure PuO{sub 2−x} below the oxygen potential of Mo/MoO{sub 2} oxidation reaction. The same features of the Mo-cermet sample containing 50 vol.% PuO{sub 2−x} with those of pure PuO{sub 2−x} were discussed in terms of the microstructure. - Highlights: • Oxygen potential of Mo-cermet fuel was investigated by thermogravimetric analysis. • It was the same as that of pure PuO{sub 2−x} below the oxygen potential for Mo/MoO{sub 2}. • Gradual oxidation of Mo matrix occurred only above the oxygen potential for Mo/MoO{sub 2}. • Mo matrix and PuO{sub 2−x} in Mo-cermet fuel can thus be thermochemically individual.

  18. Oxygen potential of a prototypic Mo-cermet fuel containing plutonium oxide

    International Nuclear Information System (INIS)

    Miwa, Shuhei; Osaka, Masahiko; Nozaki, Takahiro; Arima, Tatsumi; Idemitsu, Kazuya

    2015-01-01

    Oxygen potential of a prototypic Mo-cermet fuel containing 50 vol.% PuO_2_−_x were investigated by the thermogravimetric analysis in the temperature range from 1273 K to 1473 K. It was shown that the oxygen potential and oxidation rate of the Mo-cermet were the same as those of pure PuO_2_−_x below the oxygen potential of Mo/MoO_2 oxidation reaction. The same features of the Mo-cermet sample containing 50 vol.% PuO_2_−_x with those of pure PuO_2_−_x were discussed in terms of the microstructure. - Highlights: • Oxygen potential of Mo-cermet fuel was investigated by thermogravimetric analysis. • It was the same as that of pure PuO_2_−_x below the oxygen potential for Mo/MoO_2. • Gradual oxidation of Mo matrix occurred only above the oxygen potential for Mo/MoO_2. • Mo matrix and PuO_2_−_x in Mo-cermet fuel can thus be thermochemically individual.

  19. Grain Interactions in Crystal Plasticity

    International Nuclear Information System (INIS)

    Boyle, K.P.; Curtin, W.A.

    2005-01-01

    The plastic response of a sheet metal is governed by the collective response of the underlying grains. Intragranular plasticity depends on intrinsic variables such as crystallographic orientation and on extrinsic variables such as grain interactions; however, the role of the latter is not well understood. A finite element crystal plasticity formulation is used to investigate the importance of grain interactions on intragranular plastic deformation in initially untextured polycrystalline aggregates. A statistical analysis reveals that grain interactions are of equal (or more) importance for determining the average intragranular deviations from the applied strain as compared to the orientation of the grain itself. Furthermore, the influence of the surrounding grains is found to extend past nearest neighbor interactions. It is concluded that the stochastic nature of the mesoscale environment must be considered for a proper understanding of the plastic response of sheet metals at the grain-scale

  20. Precipitation sequences in austenitic Fe-22Cr-21Ni-6Mo-(N) stainless steels

    International Nuclear Information System (INIS)

    Kim, S.-J.; Lee, T.-H.

    1999-01-01

    Precipitation sequence of nitrogen containing Fe-22Cr-21Ni-6Mo-N austenitic stainless steel has been investigated after aging at high temperatures, and compared with nitrogen free steel. The σ phases and M 23 C 6 carbides were observed along the grain boundaries as well as in the matrix in both of the solution treated specimens. The M 6 C carbides and chi phase appeared successively in between 3 hours and 24 hours depending on the nitrogen content. Main difference in aging behavior was the precipitation of fine nitrides. Aging for 24 hours and 168 hours of nitrogen containing steel resulted in the formation of fine Cr 2 N and faceted AlN nitrides. The crystallography, structure and morphology were analyzed with analytical electron microscopy. (orig.)