WorldWideScience

Sample records for grain yield leaf

  1. Long-term Low Radiation Decreases Leaf Photosynthesis, Photochemical Efficiency and Grain Yield in Winter Wheat

    Mu, H; Jiang, D; Wollenweber, Bernd

    2010-01-01

    the impact of low radiation on crop growth, photosynthesis and yield. Grain yield losses and leaf area index (LAI) reduction were less than the reduction in solar radiation under both shading treatment in both cultivars. Compared with the control (S0), grain yield only reduced 6.4 % and 9.9 % under 22.......0-22.9 % (S1) and 29.5-49.6 % (S2), which was consistent with the reduction in radiation. The reduction in LAI was partially compensated by increases in the fraction of the top and bottom leaf area to the total leaf area, which facilitated to intercept more solar radiation by the canopy. The decrease......Low radiation reduces wheat grain yield in tree-crop intercropping systems in the major wheat planting area of China. Here, two winter wheat (Triticum aestivum L) cultivars, Yangmai 158 (shading tolerant) and Yangmai 11 (shading sensitive), were shaded from jointing to maturity to evaluate...

  2. Estimating grain yield losses caused by septoria leaf blotch on durum wheat in Tunisia

    Samia Berraies

    2014-12-01

    Full Text Available Septoria leaf blotch (SLB, caused by Zymoseptoria tritici (Desm. Quaedvlieg & Crous, 2011 (teleomorph: Mycosphaerella graminicola (Fuckel J. Schrot., is an important wheat disease in the Mediterranean region. In Tunisia, SLB has become a major disease of durum wheat (Triticum turgidum L. subsp. durum [Desf.] Husn. particularly during favorable growing seasons where significant yield losses and increase of fungicides use were recorded over the last three decades. The objectives of this study were to evaluate the effect of SLB severity on grain yield of new elite durum wheat breeding lines and to measure the relative effect of fungicide control on grain yield. Experiments were conducted during 2007-2008 and 2008-2009 cropping seasons. A set of 800 breeding lines were screened for reaction to SLB under natural infection at Beja research station. To estimate the disease effect, correlation between disease severity at early grain filling stage and grain yield was performed. Results showed that susceptible varieties yield was significantly reduced by SLB. Average yield reduction was as high as 384 and 325 kg ha-1 for every increment in disease severity on a 0-9 scale in both seasons, respectively. A negative correlation coefficient varied between -0.61 and -0.66 in both seasons. Treated and untreated trials conducted during 2008-2009 and 2009-2010 showed that yield of treated plots increased by 50% on the commonly cultivated susceptible varieties. The results of this investigation suggested that septoria incidence is related to large grain yield losses particularly on susceptible high yielding cultivars. However, appropriate fungicide application at booting growth stage could be beneficial for farmers. The development and use of more effective fungicide could be sought to alleviate the disease effects and therefore could be considered as a part of the integrated pest management and responsible use strategy on septoria leaf blotch in Tunisia.

  3. 6 Grain Yield

    create a favourable environment for rice ... developing lines adaptable to many ... have stable, not too short crop duration with ..... Analysis of variance of the effect of site and season on maturity, grain yield and plant ..... and yield components.

  4. Effects of Sowing Date, Planting Pattern and Nitrogen Levels on Leaf and Flower Essential Oil, Yield and Component Yield Grain of Buckwheat (Fagopyroum esculentum Moench

    M. R Sobhani

    2017-12-01

    Full Text Available Introduction Buckwheat which has been scientifically named Fagopyrum esculentum can be considered as a yearling broad-leaved plant belonging to the family of Polygonaceae which is known as false Cereal. Its seeds are in use as a nutritional and medicinal product that is due to the rutin content of them. As the population is rapidly increasing worldwide, a solution must be found to supply necessary food. What agriculture science is responsible for is to produce more products with better quality in order to meet this increasing population’s needs so that food poverty and starvation are more likely to be removed and keep food safety. Considering the fact that buckwheat is of a variety of medical, industrial and food applications and in our country and some other ones, it has not been seriously cultivated, this plant must be used as a new plant and it should be extensively applied in multiple planting systems (summer planting for commercial goals through producing seeds while its nutritional value is more than grain and it can be regarded as a rich source of high quality protein, amino acid necessary for lysine, high starch percent, minerals and vitamins for different applications involving cake flour, frumenty and soup and improving the optimal rate of rutin as a secondary metabolite having effective medical features concerning our country’s climatic conditions. Materials and Methods In order to investigate the effects of sowing date, planting patterns and nitrogen on leaf and flower rutin, yield and yield component of Buckwheat plant, a field study was conducted during 2010 and 2011 in Agricultural Research Institute of Arak, Iran. The experimental design was regarded as the randomized complete block design in the form of split plot factorial with three replications. Planting treatments as the fundamental elements may be implemented at two levels including the mounds with the width of 50 cm associated with two planting rows regarding the

  5. Mid-Season Leaf Glutamine Predicts End-Season Maize Grain Yield and Nitrogen Content in Response to Nitrogen Fertilization under Field Conditions

    Travis Goron

    2017-06-01

    Full Text Available After uptake in cereal crops, nitrogen (N is rapidly assimilated into glutamine (Gln and other amino acids for transport to sinks. Therefore Gln has potential as an improved indicator of soil N availability compared to plant N demand. Gln has primarily been assayed to understand basic plant physiology, rather than to measure plant/soil-N under field conditions. It was hypothesized that leaf Gln at early-to-mid season could report the N application rate and predict end-season grain yield in field-grown maize. A three-year maize field experiment was conducted with N application rates ranging from 30 to 218 kg ha−1. Relative leaf Gln was assayed from leaf disk tissue using a whole-cell biosensor for Gln (GlnLux at the V3-V14 growth stages. SPAD (Soil Plant Analysis Development and NDVI (Normalized Difference Vegetation Index measurements were also performed. When sampled at V6 or later, GlnLux glutamine output consistently correlated with the N application rate, end-season yield, and grain N content. Yield correlation outperformed GreenSeekerTM NDVI, and was equivalent to SPAD chlorophyll, indicating the potential for yield prediction. Additionally, depleting soil N via overplanting increased GlnLux resolution to the earlier V5 stage. The results of the study are discussed in the context of luxury N consumption, leaf N remobilization, senescence, and grain fill. The potential and challenges of leaf Gln and GlnLux for the study of crop N physiology, and future N management are also discussed.

  6. Leaf gas exchange, carbon isotope discrimination, and grain yield in contrasting rice genotypes subjected to water deficits during the reproductive stage.

    Centritto, Mauro; Lauteri, Marco; Monteverdi, Maria Cristina; Serraj, Rachid

    2009-01-01

    Genotypic variations in leaf gas exchange and yield were analysed in five upland-adapted and three lowland rice cultivars subjected to a differential soil moisture gradient, varying from well-watered to severely water-stressed conditions. A reduction in the amount of water applied resulted in a significant decrease in leaf gas exchange and, subsequently, in above-ground dry mass and grain yield, that varied among genotypes and distance from the line source. The comparison between the variable J and the Delta values in recently synthesized sugars methods, yielded congruent estimations of mesophyll conductance (g(m)), confirming the reliability of these two techniques. Our data demonstrate that g(m) is a major determinant of photosynthesis (A), because rice genotypes with inherently higher g(m) were capable of keeping higher A in stressed conditions. Furthermore, A, g(s), and g(m) of water-stressed genotypes rapidly recovered to the well-watered values upon the relief of water stress, indicating that drought did not cause any lasting metabolic limitation to photosynthesis. The comparisons between the A/C(i) and corresponding A/C(c) curves, measured in the genotypes that showed intrinsically higher and lower instantaneous A, confirmed this finding. Moreover, the effect of drought stress on grain yield was correlated with the effects on both A and total diffusional limitations to photosynthesis. Overall, these data indicate that genotypes which showed higher photosynthesis and conductances were also generally more productive across the entire soil moisture gradient. The analysis of Delta revealed a substantial variation of water use efficiency among the genotypes, both on the long-term (leaf pellet analysis) and short-term scale (leaf soluble sugars analysis).

  7. Phenotyping of field-grown wheat in the UK highlights contribution of light response of photosynthesis and flag leaf longevity to grain yield.

    Carmo-Silva, Elizabete; Andralojc, P John; Scales, Joanna C; Driever, Steven M; Mead, Andrew; Lawson, Tracy; Raines, Christine A; Parry, Martin A J

    2017-06-15

    Improving photosynthesis is a major target for increasing crop yields and ensuring food security. Phenotyping of photosynthesis in the field is critical to understand the limits to crop performance in agricultural settings. Yet, detailed phenotyping of photosynthetic traits is relatively scarce in field-grown wheat, with previous studies focusing on narrow germplasm selections. Flag leaf photosynthetic traits, crop development, and yield traits were compared in 64 field-grown wheat cultivars in the UK. Pre-anthesis and post-anthesis photosynthetic traits correlated significantly and positively with grain yield and harvest index (HI). These traits included net CO2 assimilation measured at ambient CO2 concentrations and a range of photosynthetic photon flux densities, and traits associated with the light response of photosynthesis. In most cultivars, photosynthesis decreased post-anthesis compared with pre-anthesis, and this was associated with decreased Rubisco activity and abundance. Heritability of photosynthetic traits suggests that phenotypic variation can be used to inform breeding programmes. Specific cultivars were identified with traits relevant to breeding for increased crop yields in the UK: pre-anthesis photosynthesis, post-anthesis photosynthesis, light response of photosynthesis, and Rubisco amounts. The results indicate that flag leaf longevity and operating photosynthetic activity in the canopy can be further exploited to maximize grain filling in UK bread wheat. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. Monitoring and evaluation of need for nitrogen fertilizer topdressing for maize leaf chlorophyll readings and the relationship with grain yield

    Maria Anita Gonçalves da Silva

    2011-08-01

    Full Text Available The study was carried out for two years in maize in succession to the wheat using no tillage system in a distroferric Red Latosol (Hapludox. Methods of management nitrogen fertilizer (120 kg ha-1 with ammonium sulphate were studied; the fertilizer was applied in maize sowing or in maize topdressing, and N with previous application in wheat sowing. In addition, leaf chlorophyll reading was used as an indicator for the need for topdressed nitrogen fertilizer. Nitrogen supply index (NSI was shown to be effective at predicting need for topdressed nitrogen fertilizer for maize. The application of N improved the yield of the maize independent of the management system. The flowering stage was carried out at the appropriate time in order to estimate the nitrogen nutrition state and yield of maize using the relative chlorophyll level (RIC.

  9. Enhanced leaf photosynthesis as a target to increase grain yield: insights from transgenic rice lines with variable Rieske FeS protein content in the cytochrome b6 /f complex.

    Yamori, Wataru; Kondo, Eri; Sugiura, Daisuke; Terashima, Ichiro; Suzuki, Yuji; Makino, Amane

    2016-01-01

    Although photosynthesis is the most important source for biomass and grain yield, a lack of correlation between photosynthesis and plant yield among different genotypes of various crop species has been frequently observed. Such observations contribute to the ongoing debate whether enhancing leaf photosynthesis can improve yield potential. Here, transgenic rice plants that contain variable amounts of the Rieske FeS protein in the cytochrome (cyt) b6 /f complex between 10 and 100% of wild-type levels have been used to investigate the effect of reductions of these proteins on photosynthesis, plant growth and yield. Reductions of the cyt b6 /f complex did not affect the electron transport rates through photosystem I but decreased electron transport rates through photosystem II, leading to concomitant decreases in CO2 assimilation rates. There was a strong control of plant growth and grain yield by the rate of leaf photosynthesis, leading to the conclusion that enhancing photosynthesis at the single-leaf level would be a useful target for improving crop productivity and yield both via conventional breeding and biotechnology. The data here also suggest that changing photosynthetic electron transport rates via manipulation of the cyt b6 /f complex could be a potential target for enhancing photosynthetic capacity in higher plants. © 2015 John Wiley & Sons Ltd.

  10. Genotype variation in grain yield response to basal N fertilizer ...

    user

    2012-07-24

    Jul 24, 2012 ... identify the variation of grain yield response to basal fertilizer among 199 rice varieties with different genetic background, and finally choose the suitable rice varieties for us to ... proper timing, rate, placement, and use of modified forms ... sowed in seedling-bed with uniform nutritional conditions until 3-leaf.

  11. Sequential Path Model for Grain Yield in Soybean

    Mohammad SEDGHI

    2010-09-01

    Full Text Available This study was performed to determine some physiological traits that affect soybean,s grain yield via sequential path analysis. In a factorial experiment, two cultivars (Harcor and Williams were sown under four levels of nitrogen and two levels of weed management at the research station of Tabriz University, Iran, during 2004 and 2005. Grain yield, some yield components and physiological traits were measured. Correlation coefficient analysis showed that grain yield had significant positive and negative association with measured traits. A sequential path analysis was done in order to evaluate associations among grain yield and related traits by ordering the various variables in first, second and third order paths on the basis of their maximum direct effects and minimal collinearity. Two first-order variables, namely number of pods per plant and pre-flowering net photosynthesis revealed highest direct effect on total grain yield and explained 49, 44 and 47 % of the variation in grain yield based on 2004, 2005, and combined datasets, respectively. Four traits i.e. post-flowering net photosynthesis, plant height, leaf area index and intercepted radiation at the bottom layer of canopy were found to fit as second-order variables. Pre- and post-flowering chlorophyll content, main root length and intercepted radiation at the middle layer of canopy were placed at the third-order path. From the results concluded that, number of pods per plant and pre-flowering net photosynthesis are the best selection criteria in soybean for grain yield.

  12. Quantitative trait loci associated with resistance to gray leaf spot and grain yield in corn QTLs associados à resistência a cercosporiose e produção de grãos em milho

    Adriano Delly Veiga

    2012-02-01

    Full Text Available The main objectives of hybrid development programs include incorporating genetic resistance to diseases and increasing grain yield. Identification of Quantitative Trait Loci (QTL through the statistical analysis of molecular markers allows efficient selection of resistant and productive hybrids. The objective of this research was to identify QTL associated with resistance to gray leaf spot and for grain yield in the germplasm of tropical corn. We used two strains with different degrees of reaction to the disease; the genotypes are owned by GENESEEDS Ltda, their F1 hybrid and the F2 population. The plants were evaluated for gray leaf spot resistance, for grain yield and were genotyped with 94 microsatellite markers. Association of the markers with the QTL was performed by single marker analysis using linear regression and maximum likelihood analysis. It was observed that the additive effect was predominant for genetic control of resistance to gray leaf spot, and the dominant effect in that of grain yield. The most promising markers to be used in studies of assisted selection are: umc2082 in bins 4.03 and umc1117 in bins 4.04 for resistance to gray leaf spot; for grain yield umc1042 in bins 2.07 and umc1058 in bins 4.11.A incorporação de resistência genética a doenças e o aumento na produtividade de grãos estão entre os principais objetivos dos programas de desenvolvimento de híbridos. A identificação de locos de caracteres quantitativos (QTL por meio de análises estatísticas associadas a marcadores moleculares possibilita a rápida obtenção de híbridos resistentes e produtivos. Nesta pesquisa, objetivou-se identificar locos de caracteres quantitativos (QTL associados com resistência à cercosporiose e com produção de grãos em germoplasma de milho tropical. Foram utilizadas duas linhagens contrastantes em níveis de reação à doença (genótipos pertencentes à GENESEEDS - Ltda, seu híbrido F1 e a população segregante F2

  13. Path Analysis of Grain Yield and Yield Components and Some Agronomic Traits in Bread Wheat

    Mohsen Janmohammadi

    2014-01-01

    Full Text Available Development of new bread wheat cultivars needs efficient tools to monitor trait association in a breeding program. This investigation was aimed to characterize grain yield components and some agronomic traits related to bread wheat grain yield. The efficiency of a breeding program depends mainly on the direction of the correlation between different traits and the relative importance of each component involved in contributing to grain yield. Correlation and path analysis were carried out in 56 bread wheat genotypes grown under field conditions of Maragheh, Iran. Observations were recorded on 18 wheat traits and correlation coefficient analysis revealed grain yield was positively correlated with stem diameter, spike length, floret number, spikelet number, grain diameter, grain length and 1000 seed weight traits. According to the variance inflation factor (VIF and tolerance as multicollinearity statistics, there are inconsistent relationships among the variables and all traits could be considered as first-order variables (Model I with grain yield as the response variable due to low multicollinearity of all measured traits. In the path coefficient analysis, grain yield represented the dependent variable and the spikelet number and 1000 seed weight traits were the independent ones. Our results indicated that the number of spikelets per spikes and leaf width and 1000 seed weight traits followed by the grain length, grain diameter and grain number per spike were the traits related to higher grain yield. The above mentioned traits along with their indirect causal factors should be considered simultaneously as an effective selection criteria evolving high yielding genotype because of their direct positive contribution to grain yield.

  14. Heterosis and combining ability for grain yield and yield component ...

    ... ranged from 0 to -13% indicating that the hybrids tend to be earlier in maturity than the parents. The mean squares due to GCA for days to maturity, ear diameter, member of kernels per row, 1000 kernel weight and grain yield were significant, indicating the importance of additive genetic variance in controlling these traits.

  15. Effects of split nitrogen fertilization on post-anthesis photoassimilates, nitrogen use efficiency and grain yield in malting barley

    Cai, Jian; Jiang, Dong; Liu, Fulai

    2011-01-01

    photosynthesis after anthesis, dry matter accumulation and assimilates remobilization, nitrogen use efficiency and grain yield to fraction of topdressed nitrogen treatments were investigated in malting barley. Net photosynthetic rate of the penultimate leaf, leaf area index and light extinction coefficient...... assimilation rate and nitrogen use efficiency resulting in higher grain yields and proper grain protein content in malting barley.......Split nitrogen applications are widely adopted to improve grain yield and enhance nitrogen use effective in crops. In a twoyear field experiment at two eco-sites, five fractions of topdressed nitrogen of 0%, 20%, 30%, 40% and 50% were implemented. Responses of radiation interception and leaf...

  16. Investigation of The Relationship Between Grain Yield with Physiological Parameters in Some Bread Wheat Varieties

    Mehmet KARAMAN

    2015-08-01

    Full Text Available This study was conducted to analyze the relationships between grain yield with physiological parameters in some bread wheat varieties. For this purpose, ten bread wheat genotypes were grown in randomized complete block design with 3 replications under rainfall conditions in the experimental field of GAP International Agricultural Research and Training Center during the 2012-2013 growing season. The most high yielding varieties in this study, Pehlivan, Kate A-1, Cemre and Anapo, were observed as standing out in terms of flag leaf chlorophyll content (SPAD value, flag leaf ash ratio, leaf area index and grain filling period . The correlation analyses of the study showed positive and significant correlations between chlorophyll content of flag leaf at heading stage with chlorophyll content at flowering stage, between chlorophyll content of flag leaf at flowering and heading stages with chlorophyll content of flag leaf at milk stage and between grain filling rate with leaf area index, In addition, positive and significant correlations were identified between flag leaf ash ratio and NDVI reading prior to heading time with grain yield

  17. Grain yield stability of early maize genotypes

    Chitra Bahadur Kunwar

    2016-12-01

    Full Text Available The objective of this study was to estimate grain yield stability of early maize genotypes. Five early maize genotypes namely Pool-17, Arun1EV, Arun-4, Arun-2 and Farmer’s variety were evaluated using Randomized Complete Block Design along with three replications at four different locations namely Rampur, Rajahar, Pakhribas and Kabre districts of Nepal during summer seasons of three consecutive years from 2010 to 2012 under farmer’s fields. Genotype and genotype × environment (GGE biplot was used to identify superior genotype for grain yield and stability pattern. The genotypes Arun-1 EV and Arun-4 were better adapted for Kabre and Pakhribas where as pool-17 for Rajahar environments. The overall findings showed that Arun-1EV was more stable followed by Arun-2 therefore these two varieties can be recommended to farmers for cultivation in both environments.

  18. Grain yield and agronomic characteristics of Romanian bread wheat ...

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... Wheat is adapted to diverse environments, between the ... international collaborative studies many new varieties ... Stability of grain yield and quality characteristics over locations ... grain yield capacity and yield components of twelve .... Analysis of variance for grain yield and yield-related traits over two ...

  19. Leaf gas exchange and yield of three upland rice cultivars

    Rita de Cássia Félix Alvarez

    2015-03-01

    Full Text Available Studies of physiological parameters associated with crop performance and growth in different groups of upland rice (Oryza sativa L. may support plant breeding programs. We evaluated the role of gas exchange rates and dry matter accumulation (DMA as traits responsible for yields in a traditional (cv. ‘Caiapó’, intermediate (cv. ‘Primavera’ and modern (cv. ‘Maravilha’ upland rice cultivars. Leaf gas exchange rates, DMA, leaf area index (LAI, harvest indexes (HI and yield components were measured on these genotypes in the field, under sprinkler irrigation. Panicles per m2 and DMA at flowering (FL and heading, as well as CO2 assimilation rates (A were similar across these cultivars. The highest yield was found in ‘Primavera’, which may be explained by (i a two-fold higher HI compared to the other cultivars, (ii greater rates of DMA during spikelet formation and grain-filling, as well as (iii a slow natural decrease of A in this cultivar, at the end of the season (between FL and maturation.

  20. PREDICTION MODELS OF GRAIN YIELD AND CHARACTERIZATION

    Narciso Ysac Avila Serrano

    2009-06-01

    Full Text Available With the objective to characterize the grain yield of five cowpea cultivars and to find linear regression models to predict it, a study was developed in La Paz, Baja California Sur, Mexico. A complete randomized blocks design was used. Simple and multivariate analyses of variance were carried out using the canonical variables to characterize the cultivars. The variables cluster per plant, pods per plant, pods per cluster, seeds weight per plant, seeds hectoliter weight, 100-seed weight, seeds length, seeds wide, seeds thickness, pods length, pods wide, pods weight, seeds per pods, and seeds weight per pods, showed significant differences (P≤ 0.05 among cultivars. Paceño and IT90K-277-2 cultivars showed the higher seeds weight per plant. The linear regression models showed correlation coefficients ≥0.92. In these models, the seeds weight per plant, pods per cluster, pods per plant, cluster per plant and pods length showed significant correlations (P≤ 0.05. In conclusion, the results showed that grain yield differ among cultivars and for its estimation, the prediction models showed determination coefficients highly dependable.

  1. Senescence-induced ectopic expression of A. tumefaciens ipt gene in wheat delays leaf senescence, increases cytokinin content, nitrate influx and nitrate reductase activity but does not affect grain yield

    Sýkorová, Blanka; Kurešová, G.; Daskalova, S.; Trčková, M.; Hoyerová, Klára; Raimanová, I.; Motyka, Václav; Trávníčková, Alena; Elliott, M. C.; Kamínek, Miroslav

    2008-01-01

    Roč. 59, č. 2 (2008), s. 377-387 ISSN 0022-0957 R&D Projects: GA ČR GA522/02/0530; GA MŠk 1M06030; GA AV ČR(CZ) IAA600380507 Keywords : Cytokinins * grain yield * ipt gene Subject RIV: EF - Botanics Impact factor: 4.001, year: 2008

  2. Grain filling parameters and yield components in wheat

    Brdar Milka; Kobiljski Borislav; Balalić-Kraljević Marija

    2006-01-01

    Grain yield of wheat (Triticum aestivum L.) is influenced by number of grains per unit area and grain weight, which is result of grain filling duration and rate. The aim of the study was to investigate the relationships between grain filling parameters in 4 wheat genotypes of different earliness and yield components. Nonlinear regression estimated and observed parameters were analyzed. Rang of estimated parameters corresponds to rang of observed parameters. Stepwise MANOVA indicated that the ...

  3. Approaches to achieve high grain yield and high resource use efficiency in rice

    Jianchang YANG

    2015-06-01

    Full Text Available This article discusses approaches to simultaneously increase grain yield and resource use efficiency in rice. Breeding nitrogen efficient cultivars without sacrificing rice yield potential, improving grain fill in later-flowering inferior spikelets and enhancing harvest index are three important approaches to achieving the dual goal of high grain yield and high resource use efficiency. Deeper root distribution and higher leaf photosynthetic N use efficiency at lower N rates could be used as selection criteria to develop N-efficient cultivars. Enhancing sink activity through increasing sugar-spikelet ratio at the heading time and enhancing the conversion efficiency from sucrose to starch though increasing the ratio of abscisic acid to ethylene in grains during grain fill could effectively improve grain fill in inferior spikelets. Several practices, such as post-anthesis controlled soil drying, an alternate wetting and moderate soil drying regime during the whole growing season, and non-flooded straw mulching cultivation, could substantially increase grain yield and water use efficiency, mainly via enhanced remobilization of stored carbon from vegetative tissues to grains and improved harvest index. Further research is needed to understand synergistic interaction between water and N on crop and soil and the mechanism underlying high resource use efficiency in high-yielding rice.

  4. Grain-filling duration and grain yield relationships in wheat mutants

    Larik, A.S.

    1987-01-01

    Nine stable mutants of bread wheat along with their mother cultivars were investigated for grain-filling characteristics in relation to grain yield. Significant differences among mutants for grain-filling duration and grain-filling index were observed. Inspite of the consistent differences in grain-filling duration there was no significant association between grain-filling duration and grain yield in C-591 and Nayab mutants. Failure to detect an yield advantage due to differences in grain-filling duration in these genotypes suggests that any advantage derived from alteration of grain-filling period may have been outweighed by the coincident changes in length of the vegetative period. Other factors such as synchrony of anthesis may have limited out ability to find an association between grainfilling duration and grain yield. On the contrary, significant association between grain-filling duration and grain yield displayed by indus-66 indus-66 mutants derived from gamma rays, shows the ability of gamma rays to induce functional alternations in the pattern of gene arrangements controlling these traits. Thus, the vaability observed in these physiological traits suggests that selection for these traits could be useful in improving grain yield. (author)

  5. Computing wheat nitrogen requirements from grain yield and protein maps

    Optical protein sensors and mass-flow yield monitors provide the opportunity to continuously measure grain quality and quantity during harvesting. This chapter illustrates how yield monitor and grain protein measurements may provide useful postharvest information for evaluating water or nitrogen (N)...

  6. The effect of water deficit stress and nitrogen fertilizer levels on morphology traits, yield and leaf area index in maize

    Moosavi, S.G.

    2012-01-01

    In order to study the effect of water deficit stress at different growth stages and N fertilizer levels on morphological traits, yield and yield components of maize cv. Single Cross 704, an experiment was conducted as a split-plot based on a Randomized Complete Block Design with three replications. The main plot included irrigation at four levels (irrigation stop at 10-leaf, tasselling and grain-filling stages and optimum irrigation) and the sub-plot was N fertilizer at three levels (75, 150 and 225 kg N/ha). The results of analysis of variance showed that water-deficit stress and N fertilizer level significantly affected leaf area index at silking stage, ear length, grain number per ear, 1000-grain weight and grain yield. Stem diameter, ear diameter and harvest index were only affected by irrigation treatments and the interaction between irrigation and N level did not significantly affect the studied traits. Means comparison indicated that ear diameter under optimum irrigation was higher than that under the treatments of irrigation stop at 8-leaf, tasselling and grain-filling stages by 29.9, 19.1 and 33.5%, respectively; and ear length was higher than them by 38.1, 28.9 and 25.2%, respectively. Moreover, the highest grain number per ear, 1000-grain weight and grain yield were obtained under optimum irrigation treatment, and irrigation stop at 10-leaf, tasselling and grain-filling stages decreased grain yield by 52.8, 66.4 and 44.9%, respectively; and it decreased grain number/ear by 45.9, 59.3 and 30.1%, respectively. In addition, optimum irrigation treatment with mean 1000-grain weight of 289.2 g was significantly superior over other irrigation stop treatments by 27.6-42.8% and produced the highest leaf area index at silking stage (4.1). Means comparison of traits at different N levels indicated that N level of 225 kg/ha produced the highest ear length (17.82 cm), grain number per ear (401.9), 1000-grain weight (258.8 g), leaf area index at silking stage (4

  7. Slope Controls Grain Yield and Climatic Yield in Mountainous Yunnan province, China

    Duan, X.; Rong, L.; Gu, Z.; Feng, D.

    2017-12-01

    Mountainous regions are increasingly vulnerable to food insecurity because of limited arable land, growing population pressure, and climate change. Development of sustainable mountain agriculture will require an increased understanding of the effects of environmental factors on grain and climatic yields. The objective of this study was to explore the relationships between actual grain yield, climatic yield, and environmental factors in a mountainous region in China. We collected data on the average grain yield per unit area in 119 counties in Yunnan province from 1985 to 2012, and chose 17 environmental factors for the same period. Our results showed that actual grain yield ranged from 1.43 to 6.92 t·ha-1, and the climatic yield ranged from -0.15 to -0.01 t·ha-1. Lower climatic yield but higher grain yield was generally found in central areas and at lower slopes and elevations in the western and southwestern counties of Yunnan province. Higher climatic yield but lower grain yield were found in northwestern parts of Yunnan province on steep slopes. Annual precipation and temperature had a weak influence on the climatic yield. Slope explained 44.62 and 26.29% of the variation in grain yield and climatic yield. The effects of topography on grain and climatic yields were greater than climatic factors. Slope was the most important environmental variable for the variability in climatic and grain yields in the mountainous Yunnan province due to the highly heterogeneous topographic conditions. Conversion of slopes to terraces in areas with higher climatic yields is an effective way to maintain grain production in response to climate variability. Additionally, soil amendments and soil and water conservation measures should be considered to maintain soil fertility and aid in sustainable development in central areas, and in counties at lower slopes and elevations in western and southwestern Yunnan province.

  8. Integrated crop management practices for maximizing grain yield of double-season rice crop

    Wang, Depeng; Huang, Jianliang; Nie, Lixiao; Wang, Fei; Ling, Xiaoxia; Cui, Kehui; Li, Yong; Peng, Shaobing

    2017-01-01

    Information on maximum grain yield and its attributes are limited for double-season rice crop grown under the subtropical environment. This study was conducted to examine key characteristics associated with high yielding double-season rice crop through a comparison between an integrated crop management (ICM) and farmers’ practice (FP). Field experiments were conducted in the early and late seasons in the subtropical environment of Wuxue County, Hubei Province, China in 2013 and 2014. On average, grain yield in ICM was 13.5% higher than that in FP. A maximum grain yield of 9.40 and 10.53 t ha-1 was achieved under ICM in the early- and late-season rice, respectively. Yield improvement of double-season rice with ICM was achieved with the combined effects of increased plant density and optimized nutrient management. Yield gain of ICM resulted from a combination of increases in sink size due to more panicle number per unit area and biomass production, further supported by the increased leaf area index, leaf area duration, radiation use efficiency, crop growth rate, and total nitrogen uptake compared with FP. Further enhancement in the yield potential of double-season rice should focus on increasing crop growth rate and biomass production through improved and integrated crop management practices.

  9. Post-anthesis nitrate uptake is critical to yield and grain protein content in Sorghum bicolor.

    Worland, Belinda; Robinson, Nicole; Jordan, David; Schmidt, Susanne; Godwin, Ian

    2017-09-01

    Crops only use ∼50% of applied nitrogen (N) fertilizer creating N losses and pollution. Plants need to efficiently uptake and utilize N to meet growing global food demands. Here we investigate how the supply and timing of nitrate affects N status and yield in Sorghum bicolor (sorghum). Sorghum was grown in pots with either 10mM (High) or 1mM (Low) nitrate supply. Shortly before anthesis the nitrate supply was either maintained, increased 10-fold or eliminated. Leaf sheaths of sorghum grown with High nitrate accumulated nitrate in concentrations >3-times higher than leaves. Removal of nitrate supply pre-anthesis resulted in the rapid reduction of stored nitrate in all organs. Plants receiving a 10-fold increase in nitrate supply pre-anthesis achieved similar grain yield and protein content and 29% larger grains than those maintained on High nitrate, despite receiving 24% less nitrate over the whole growth period. In sorghum, plant available N is important throughout development, particularly anthesis and grain filling, for grain yield and grain protein content. Nitrate accumulation in leaf sheaths presents opportunities for the genetic analysis of mechanisms behind nitrate storage and remobilization in sorghum to improve N use efficiency. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Effect of Fungicide Applications on Grain Sorghum (Sorghum bicolor L. Growth and Yield

    Dan D. Fromme

    2017-01-01

    Full Text Available Field studies were conducted in the upper Texas Gulf Coast and in central Louisiana during the 2013 through 2015 growing seasons to evaluate the effects of fungicides on grain sorghum growth and development when disease pressure was low or nonexistent. Azoxystrobin and flutriafol at 1.0 L/ha and pyraclostrobin at 0.78 L/ha were applied to the plants of two grain sorghum hybrids (DKS 54-00, DKS 53-67 at 25% bloom and compared with the nontreated check for leaf chlorophyll content, leaf temperature, and plant lodging during the growing season as well as grain mold, test weight, yield, and nitrogen and protein content of the harvested grain. The application of a fungicide had no effect on any of the variables tested with grain sorghum hybrid responses noted. DKS 53-67 produced higher yield, greater test weight, higher percent protein, and N than DKS 54-00. Results of this study indicate that the application of a fungicide when little or no disease is present does not promote overall plant health or increase yield.

  11. Consequences of diverse use of nitrogen sources on grain yield ...

    A two year field experiment was conducted to check the consequences of diverse use of nitrogen sources on grain yield, grain quality and growth attributes of hybrid maize (Zea mays L.) at the Agronomic Research Area, University of Agriculture, Faisalabad during Autumn 2008 and 2009. Experiments were laid out in a ...

  12. Consequences of diverse use of nitrogen sources on grain yield ...

    Muhammad Waseem

    2012-08-28

    Aug 28, 2012 ... sources on grain yield, grain quality and growth attributes of hybrid maize (Zea mays L.) at the. Agronomic Research Area, University ...... rate were found in 2009. Evans et al. (2003) also noted similar interactive effects of hybrid and N sources in maize. In year 2008, contrasts comparison (Table 4) between ...

  13. Selection of common bean lines with high grain yield and high grain calcium and iron concentrations

    Nerinéia Dalfollo Ribeiro

    2014-02-01

    Full Text Available Genetic improvement of common bean nutritional quality has advantages in marketing and can contribute to society as a food source. The objective of this study was to evaluate the genetic variability for grain yield, calcium and iron concentrations in grains of inbred common bean lines obtained by different breeding methods. For this, 136 F7 inbred lines were obtained using the Pedigree method and 136 F7 inbred lines were obtained using the Single-Seed Descent (SSD method. The lines showed genetic variability for grain yield, and concentrations of calcium and iron independently of the method of advancing segregating populations. The Pedigree method allows obtaining a greater number of lines with high grain yield. Selection using the SSD method allows the identification of a larger number of lines with high concentrations of calcium and iron in grains. Weak negative correlations were found between grain yield and calcium concentration (r = -0.0994 and grain yield and iron concentration (r = -0.3926. Several lines show genetic superiority for grain yield and concentrations of calcium and iron in grains and their selection can result in new common bean cultivars with high nutritional quality.

  14. Effects of delaying transplanting on agronomic traits and grain yield of rice under mechanical transplantation pattern.

    Qihua Liu

    Full Text Available A delay in the mechanical transplantation (MT of rice seedlings frequently occurs in Huanghuai wheat-rice rotation cropping districts of China, due to the late harvest of wheat, the poor weather conditions and the insufficiency of transplanters, missing the optimum transplanting time and causing seedlings to age. To identify how delaying transplanting rice affects the agronomic characteristics including the growth duration, photosynthetic productivity and dry matter remobilization efficiency and the grain yield under mechanical transplanting pattern, an experiment with a split-plot design was conducted over two consecutive years. The main plot includes two types of cultivation: mechanical transplanting and artificial transplanting (AT. The subplot comprises four japonica rice cultivars. The results indicate that the rice jointing, booting, heading and maturity stages were postponed under MT when using AT as a control. The tiller occurrence number, dry matter weight per tiller, accumulative dry matter for the population, leaf area index, crop growth rate, photosynthetic potential, and dry matter remobilization efficiency of the leaf under MT significantly decreased compared to those under AT. In contrast, the reduction rate of the leaf area during the heading-maturity stage was markedly enhanced under MT. The numbers of effective panicles and filled grains per panicle and the grain yield significantly decreased under MT. A significant correlation was observed between the dry matter production, remobilization and distribution characteristics and the grain yield. We infer that, as with rice from old seedlings, the decrease in the tiller occurrence, the photosynthetic productivity and the assimilate remobilization efficiency may be important agronomic traits that are responsible for the reduced grain yield under MT.

  15. Combining ability for maize grain yield and other agronomic ...

    Field experiments were conducted at the University of Ilorin Teaching and Research Farm in 2005 and 2006 cropping seasons with the objective to evaluate the combining ability for maize grain yield and other agronomic characters in 10 open pollinated maize varieties, which have been selected for high yield and stress ...

  16. interrelationships between grain yield and other physiological traits

    Prof. Adipala Ekwamu

    Combined analysis of variance, cluster analysis and genotype-by- ... all phenological and morphological traits, except grain yield and associated yield components. ... egg, and other protein-rich foods (Alghali, 1991). ... systematic modelling approach. ... MD IT98 K -132 – 3 .... traits based on Principal Component axes (PC)1.

  17. Determination of ontogenetic selection criteria for grain yield in ...

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... spring barley in cool and short-season environments. Key words: ... Many researchers have used a linear correlation analysis ... of each yield component on grain yield from the indirect ... ANOVA was carried out using the SPSS statistics programme ..... stable characteristic in barley (Gallagher et al., 1975),.

  18. Nitrogen dose and plant density effects on popcorn grain yield ...

    and plant densities on grain yield and yield-related plant characteristics of popcorn in Hatay, located at Southern Mediterranean region of Turkey, during 2002 and 2003. The experiment was designed in a randomized complete block design with a split-plot arrangement with three replications. Nitrogen doses of 0, 120, 180 ...

  19. Effect of wheat gluten proteins on bioethanol yield from grain

    Buresova, Iva [Agrotest Fyto, Ltd., Havlickova 2787/121, 767 01 Kromeriz (Czech Republic); Hrivna, Ludek [Mendel University in Brno, Zemedelska 1, 613 00 Brno (Czech Republic)

    2011-04-15

    Bioethanol can be used as motor fuel and/or as a gasoline enhancer. A high yield feedstock for bioethanol production is cereal grain. Cereal grains containing less gluten proteins (glutenin and gliadin), but high starch, are favoured by distillers because they increase the bioethanol conversion. The direct effect of wheat gluten proteins on bioethanol yield was studied on triticale grain. Examined triticale Presto 1R.1D{sub 5+10}-2 and Presto Valdy were developed by introducing selected segments of wheat chromosome 1D into triticale chromosome 1R. Even if the samples analysed in this study do not afford to make definitive assumptions, it can be noticed that in analysed cases the presence of gliadin had more significant effect on investigated parameters than the presence of glutenin. Despite the presence of glutenin subunits did not significantly decrease the investigated parameters - specific weight, Hagberg falling number and starch content in grain met the requirements for grain for bioethanol production - protein content was higher than is optimal. The fermentation experiments demonstrated good bioethanol yields but depression in grain yields caused by the presence of wheat gliadin and glutenin decreased the energy balance of Presto Valdy and Presto 1R.1D{sub 5+10}-2. (author)

  20. PHOTOSYNTHETIC EFFICIENCY IN JUVENILE STAGE AND WINTER BARLEY BREEDING FOR IMPROVED GRAIN YIELD AND STABILITY

    Josip Kovačević

    2011-06-01

    Full Text Available Photosynthetic efficiency parameters (Fv/Fm, ET0/ABS and PIABS were investigated at the end of tillering stage of winter barley grown in stress environment (21.3% vol. water content of soil and control (water content 30.4% vol. in relation to grain yield per vegetative pot. The trial was conducted in vegetative pots according to the RBD method of two-factorial experiment with 10 winter barley cultivars (7 tworowed and 3 six-rowed and 2 treatments in 3 repetitions. The stressed variant was exposed to water reduction three times (end of tillering stage, flag leaf to beginning of heading stage, grain filling stage. From sowing to maturity, the air temperature varied from -3.9°C to 32.9°C and water content from 16.4 % to 39.0 % of soil volume in vegetative pot. Significant differences were found for grain yield among the cultivars. The short-term drought stress caused significant reductions in grain yield per pot. The photosynthetic efficiency parameters were significant between cultivars, but significant effects for treatments and interaction were only detected for the Fv/Fm parameter. Photosynthetic efficiency parameters did not have significant correlation coefficients with grain yield and its stability in both treatments. Stability indexes of the parameters PIABS and Fv/Fm had positive but not significant correlations with grain yield in stressed variant (0.465 and 0.452 and stability index of grain yield (0.337 and 0.481.

  1. A Rare Allele of GS2 Enhances Grain Size and Grain Yield in Rice.

    Hu, Jiang; Wang, Yuexing; Fang, Yunxia; Zeng, Longjun; Xu, Jie; Yu, Haiping; Shi, Zhenyuan; Pan, Jiangjie; Zhang, Dong; Kang, Shujing; Zhu, Li; Dong, Guojun; Guo, Longbiao; Zeng, Dali; Zhang, Guangheng; Xie, Lihong; Xiong, Guosheng; Li, Jiayang; Qian, Qian

    2015-10-05

    Grain size determines grain weight and affects grain quality. Several major quantitative trait loci (QTLs) regulating grain size have been cloned; however, our understanding of the underlying mechanism that regulates the size of rice grains remains fragmentary. Here, we report the cloning and characterization of a dominant QTL, grain size on chromosome 2 (GS2), which encodes Growth-Regulating Factor 4 (OsGRF4), a transcriptional regulator. GS2 localizes to the nucleus and may act as a transcription activator. A rare mutation of GS2 affecting the binding site of a microRNA, OsmiR396c, causes elevated expression of GS2/OsGRF4. The increase in GS2 expression leads to larger cells and increased numbers of cells, which thus enhances grain weight and yield. The introduction of this rare allele of GS2/OsGRF4 into rice cultivars could significantly enhance grain weight and increase grain yield, with possible applications in breeding high-yield rice varieties. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  2. [Impacts of drought stress on the growth and development and grain yield of spring maize in Northeast China].

    Ji, Rui-Peng; Che, Yu-Sheng; Zhu, Yong-Ning; Liang, Tao; Feng, Rui; Yu, Wen-Ying; Zhang, Yu-Shu

    2012-11-01

    Taking spring maize variety Danyu-39 as test object, an experiment was conducted in a large-scale agricultural water controlling experimental field to study the impacts of drought stress at three key growth stages, i. e. , 3-leaf-jointing, jointing-silking, and silking-milk ripe, on the growth and development and grain yield of spring maize in Northeast China. Two treatments were installed, including moderate drought stress (MS) and re-watering to suitable water (CK). Compared with CK, the MS at 3-leaf-jointing stage postponed the whole growth period of Danyu-39 by 13 d, and the plant height and leaf area at jointing stage were decreased by 29.8% and 41.2%, respectively. After re-watering, the plant height and grain yield recovered obviously, and the differences in ear characteristics and final yield were insignificant. The MS at jointing-silking stage shortened the whole growth period by 7 d, the plant height and leaf area at silking stage were decreased by 18.6% and 14.1%, respectively, the ear length, grain number per ear, ear dry mass, and grain mass per ear decreased by 6.9%, 19.1%, 28.1%, and 29.4%, respectively, and the blank stem rate increased by 13.3%. When the maize suffered from moderate drought stress at silking-milk ripe stage, the whole growth period was shortened by 15 d, the plant height and leaf area at milk ripe stage were decreased by 2.3% and 37.3%, respectively, the ear length, grain number per ear, ear dry mass, and grain mass per ear decreased by 9.2%, 24.1%, 30.8%, and 27.9%, respectively, and the blank stem rate increased by 24.5%. After re-watering at the latter two stages, the recovery of plant height was little, and the grain yield decreased significantly.

  3. Enhanced Sucrose Loading Improves Rice Yield by Increasing Grain Size.

    Wang, Liang; Lu, Qingtao; Wen, Xiaogang; Lu, Congming

    2015-12-01

    Yield in cereals is a function of grain number and size. Sucrose (Suc), the main carbohydrate product of photosynthesis in higher plants, is transported long distances from source leaves to sink organs such as seeds and roots. Here, we report that transgenic rice plants (Oryza sativa) expressing the Arabidopsis (Arabidopsis thaliana) phloem-specific Suc transporter (AtSUC2), which loads Suc into the phloem under control of the phloem protein2 promoter (pPP2), showed an increase in grain yield of up to 16% relative to wild-type plants in field trials. Compared with wild-type plants, pPP2::AtSUC2 plants had larger spikelet hulls and larger and heavier grains. Grain filling was accelerated in the transgenic plants, and more photoassimilate was transported from the leaves to the grain. In addition, microarray analyses revealed that carbohydrate, amino acid, and lipid metabolism was enhanced in the leaves and grain of pPP2::AtSUC2 plants. Thus, enhancing Suc loading represents a promising strategy to improve rice yield to feed the global population. © 2015 American Society of Plant Biologists. All Rights Reserved.

  4. Effect of salinity on grain yield and grain quality of wheat (triticum aestivum l.)

    Abbas, G.; Saqib, M.; Rafique, Q.; Rahman, A.U.; Akhtar, J.; Haq, M.A.U.

    2013-01-01

    Salinity is one of the important stresses resulting in the reduction of growth and yield of different crops including wheat. In saline soils the concentration of Na/sup +/ and Cl/sup -/ is higher accompanied with the decreased K/sup +/: Na/sup +/ ratio thus severely affecting the growth and yield of crops. The effect of salinity on the growth and yield of wheat is well documented, whereas there is very little information about salinity tolerance and grain quality of wheat. Present study was conducted to assess the effect of salinity on yield components, ionic relations and grain quality and to understand the relationship among these parameters. A pot experiment was conducted using wheat genotype Pasban-90. There were two treatments i.e. non-saline (0.33 dS m/sup -1/) and saline (15 dS m/sup -1/) with five replications. Salinity resulted in a significant reduction of the grain protein, fat and fiber contents. Similarly yield components were significantly reduced. Maximum reduction was noted in case of number of tillers plant/sup -1/, followed by grain weight plant/sup -1/. High Na/sup +/ and low K/sup +/, P concentration and K/sup +/: Na/sup +/ ratio was observed in the shoot, root and grain. This disturbed ionic composition seems to be apparent cause of yield reduction and deterioration of wheat quality under salinity. (author)

  5. Combining ability for maize grain yield and other agronomic ...

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... the parameters except plant height, while specific combining ability (sca) and gca x year effects were significant only for grain yield. However, Tze Comp4 ... and days to flowering, with Hei 97 Tze Comp3 C4 combining very well with 3 parents (Acr 90 Pool 16-Dt,. Tze Comp4-Dmr Srbc2 and Tze Comp4 C2).

  6. Grain yield and agronomic characteristics of Romanian bread wheat ...

    In this study, fourteen bread wheat varieties, twelve of which were introduced into Turkey from Romania, were evaluated for grain yield and seven agronomic properties in Biga, Çanakkale in northwest part of Turkey in 2005 - 2006 and 2006 - 2007 growing seasons. The objectives of the research, carried out in a completely ...

  7. Growth, assimilate partitioning and grain yield response of soybean ...

    This investigation tested variation in the growth components, assimilate partitioning and grain yield of soybean (Glycine max L. Merrrill) varieties established in CO2 enriched atmosphere when inoculated with mixtures of Arbuscular mycorrhizal fungi (AMF) species in the humid rainforest of Nigeria. A pot and a field ...

  8. Potential of multiseeded mutant (msd) to boost sorghum grain yield

    Seed number per plant is an important determinant of the grain yield in cereal and other crops. We have isolated a class of multiseeded (msd) sorghum (Sorghum bicolor L. Moench) mutants that are capable of producing three times the seed number and twice the seed weight per panicle as compared with t...

  9. genotype by environment interaction and grain yield stability

    Preferred Customer

    among environments, GXE interaction and Interaction Principal Component Analysis (IPCA-I) but ... value closer to zero, Genotype Selection Index (GSI) of 4 each and AMMI stability value (ASV) of 0.124 and. 0.087 ..... Analysis of variance for grain yield using Additive Mean Effect and Multiple Interactions (AMMI) model.

  10. Inheritance of grain yield and its correlation with yield components in ...

    SAM

    2014-03-19

    Mar 19, 2014 ... average yield of wheat in China is 4.75 t ha-1, which is low compared to other .... Analysis of variance for combining ability for grain yield plant-1. Source of variation ..... Hayman BI (1954). The theory and analysis of diallel crosses. .... Analysis and prospect of China wheat market in 2011. Food and Oil.

  11. Leaf nitrogen remobilisation for plant development and grain filling.

    Masclaux-Daubresse, C; Reisdorf-Cren, M; Orsel, M

    2008-09-01

    A major challenge of modern agriculture is to reduce the excessive input of fertilisers and, at the same time, to improve grain quality without affecting yield. One way to achieve this goal is to improve plant nitrogen economy through manipulating nitrogen recycling, and especially nitrogen remobilisation, from senescing plant organs. In this review, the contribution of nitrogen remobilisation efficiency (NRE) to global nitrogen use efficiency (NUE), and tools dedicated to the determination of NRE are described. An overall examination of the physiological, metabolic and genetic aspects of nitrogen remobilisation is presented.

  12. Effect of planting density and cutting frequency on forage and grain yields of kochia (Kochia scoparia under saline water irrigation

    mseou ziyaeii

    2009-06-01

    Full Text Available AField experiment was conducted at Research Farms of Center of Excellence for Special Crops, Ferdowsi University of Mashhad, Mashhad, Iran, in 2006 to evaluate the effect of planting density on forage and grain yield of kochia (Kochia scoparia. Experimental design was a randomized complete block with split-plot arrangement of treatments,with three replications, where different planting densities (10, 20, 30 and 40 plant m-2 were assigned to main plots and number of cutting (including a single cutting, two cutting and no cutting i.e. allowing the crop to grow until maturity allocated to sub-plots. At each harvest date (cutting the biological yield, leaf and stem dry weight, plant height, number of branches and the individual plant biomass were measured. Grain yield and thousand seed weight were also determined at the end of growing season. Result showed the highest biological yield and leaf and stem dry weights for kochia obtaind at 30 plant m-2. The total biomass, leaf and stem dry weights, plant height, number of branches were greater for the first cutting as compared to the second cutting. Planting density and cutting number interacted to affect the leaf dry weight. At physiological maturity stage there were no significant differences among planting densities for plant height and number of branches. The best planting density, in terms of biomass production and leaf and stem dry weight, was found as 30 plant m-2, while for grain production a planting density of 20 plant m-2 could be recommended. Key words: Kochia, planting density, sward, biological yield, grain production.

  13. Grain yield losses in yellow-rusted durum wheat estimated using digital and conventional parameters under field conditions

    Omar Vergara-Diaz

    2015-06-01

    Full Text Available The biotrophic fungus Puccinia striiformis f. sp. tritici is the causal agent of the yellow rust in wheat. Between the years 2010–2013 a new strain of this pathogen (Warrior/Ambition, against which the present cultivated wheat varieties have no resistance, appeared and spread rapidly. It threatens cereal production in most of Europe. The search for sources of resistance to this strain is proposed as the most efficient and safe solution to ensure high grain production. This will be helped by the development of high performance and low cost techniques for field phenotyping. In this study we analyzed vegetation indices in the Red, Green, Blue (RGB images of crop canopies under field conditions. We evaluated their accuracy in predicting grain yield and assessing disease severity in comparison to other field measurements including the Normalized Difference Vegetation Index (NDVI, leaf chlorophyll content, stomatal conductance, and canopy temperature. We also discuss yield components and agronomic parameters in relation to grain yield and disease severity. RGB-based indices proved to be accurate predictors of grain yield and grain yield losses associated with yellow rust (R2 = 0.581 and R2 = 0.536, respectively, far surpassing the predictive ability of NDVI (R2 = 0.118 and R2 = 0.128, respectively. In comparison to potential yield, we found the presence of disease to be correlated with reductions in the number of grains per spike, grains per square meter, kernel weight and harvest index. Grain yield losses in the presence of yellow rust were also greater in later heading varieties. The combination of RGB-based indices and days to heading together explained 70.9% of the variability in grain yield and 62.7% of the yield losses.

  14. High yielding small grain mutant of rice variety Pankaj

    NONE

    1987-07-01

    Full text: By treatment with EMS a mutant has been produced from the variety Pankaj which has better tillering, longer panicle and more grains per panicle. In multilocation trials at Burdwan, Suri and Rampurhat in West Bengal it yielded significantly more than Pankaj and Mahsuri at all locations, with a mean 5.2t. The mutant named BU 79 would be a suitable substitute for Pankaj and similar long-duration rices. (author)

  15. Effects of grain-producing cover crops on rice grain yield in Cabo Delgado, Mozambique

    Adriano Stephan Nascente

    Full Text Available ABSTRACT Besides providing benefits to the environment such as soil protection, release of nutrients, soil moisture maintenance, and weed control, cover crops can increase food production for grain production. The aim of this study was to evaluate the production of biomass and grain cover crops (and its respective effects on soil chemical and physical attributes, yield components, and grain yield of rice in Mozambique. The study was conducted in two sites located in the province of Cabo Delgado, in Mozambique. The experimental design was a randomized block in a 2 × 6 factorial, with four repetitions. Treatments were carried out in two locations (Cuaia and Nambaua with six cover crops: Millet (Pennisetum glaucum L.; namarra bean (Lablab purpureus (L. Sweet, velvet beans (Mucuna pruriens L., oloco beans (Vigna radiata (L. R. Wilczek, cowpea (Vigna unguiculata L., and fallow. Cover crops provided similar changes in chemical and physical properties of the soil. Lablab purpureus, Vigna unguiculata, and Mucuna pruriens produced the highest dry matter biomass. Vigna unguiculada produced the highest amount of grains. Rice grain yields were similar under all cover crops and higher in Cuaia than Nambaua.

  16. [Flag leaf photosynthetic characteristics, change in chlorophyll fluorescence parameters, and their relationships with yield of winter wheat sowed in spring].

    Xu, Lan; Gao, Zhi-qang; An, Wei; Li, Yan-liang; Jiao, Xiong-fei; Wang, Chuang-yun

    2016-01-01

    With five good winter wheat cultivars selected from the middle and lower reaches of Yangtze River and Southwest China as test materials, a field experiment in Xinding basin area of Shanxi Province was conducted to study the photosynthetic characteristics, chlorophyll content, and chlorophyll fluorescence parameters of flag leaf at different sowing dates, as well as the correlations between these indices and yield for two years (2013-2014). The results showed that the difference in most fluorescence parameters except chlorophyll content among cultivars was significant. The correlations between these fluorescence parameters and yield were significant. The variation coefficient of chlorophyll (Chl) content was low (0.12-0.17), and that of performance index based on absorption (PIabs) was high (0.32-0.39), with the partial correlation coefficients of them with grain yield from 2013 to 2014 ranged in 0.70-0.81. Under the early sowing condition, the grain yield positively correlated with PIabs at flowering and filling stages and chlorophyll content at grain filling stage, but negatively correlated with the relative variable fluorescence at I point (Vi) at grain filling stage. About 81.1%-82.8% of grain yield were determined by the variations of PIabs, Chl, and Vi. Wheat cultivars had various performances in the treatments with different sowing dates and a consistent trend was observed in the two experimental years. Among these 5 cultivars, Yangmai 13 was suitable for early sowing, with the flag leaf photosynthetic rate (Pn), Chl, most fluorescence parame-ters, and grain yield showed obviously high levels. In conclusion, under early sowing condition chlorophyll content at grain filling stages, PIabs at flowering and filling stages, and Pn were important indices for selecting wheat cultivars with high photosynthetic efficiency.

  17. Response of maize varieties to nitrogen application for leaf area profile, crop growth, yield and yield components

    Akmal, M.; Hameed-urRehman; Farhatullah; Asim, M.; Akbar, H.

    2010-01-01

    An experiment was conducted at NWFP Agricultural University, Peshawar, to study maize varieties and Nitrogen (N) rates for growth, yield and yield components. Three varieties (Azam, Jalal and Sarhad white) and three N rates (90, 120, 150, kg N ha/sup -1/) were compared. Experiment was conducted in a Randomized Complete Block design; split plot arrangement with 4 replications. Uniform and recommended cultural practices were applied during the crop growth. The results revealed that maize variety 'Jalal' performed relatively better crop growth rate (CGR) and leaf area profile (LAP) at nodal position one to six as compared to the other two varieties (Sarhad white and Azam). This resulted higher radiation use efficiency by the crop canopy at vegetative stage of development and hence contributed higher assimilates towards biomass production. Heavier grains in number and weight were due to higher LAP and taller plants of Jalal which yielded higher in the climate. Nitrogen applications have shown that maize seed yield increase in quadratic fashion with increased N to a plateau level. Considering soil fertility status and cropping system, the 150 kg ha/sup -1/ N application to maize variety Jalal in Peshawar is required for maximum biological and seed production. (author)

  18. Effect of subsoil tillage depth on nutrient accumulation, root distribution, and grain yield in spring maize

    Hongguang Cai

    2014-10-01

    Full Text Available A four-year field experiment was conducted to investigate the effect of subsoiling depth on root morphology, nitrogen (N, phosphorus (P, and potassium (K uptake, and grain yield of spring maize. The results indicated that subsoil tillage promoted root development, increased nutrient accumulation, and increased yield. Compared with conventional soil management (CK, root length, root surface area, and root dry weight at 0–80 cm soil depth under subsoil tillage to 30 cm (T1 and subsoil tillage to 50 cm (T2 were significantly increased, especially the proportions of roots in deeper soil. Root length, surface area, and dry weight differed significantly among three treatments in the order of T2 > T1 > CK at the 12-leaf and early filling stages. The range of variation of root diameter in different soil layers in T2 treatment was the smallest, suggesting that roots were more likely to grow downwards with deeper subsoil tillage in soil. The accumulation of N, P, and K in subsoil tillage treatment was significantly increased, but the proportions of kernel and straw were different. In a comparison of T1 with T2, the grain accumulated more N and P, while K accumulation in kernel and straw varied in different years. Grain yield and biomass were increased by 12.8% and 14.6% on average in subsoil tillage treatments compared to conventional soil treatment. Although no significant differences between different subsoil tillage depths were observed for nutrient accumulation and grain yield, lodging resistance of plants was significantly improved in subsoil tillage to 50 cm, a characteristic that favors a high and stable yield under extreme environments.

  19. Effects of some growth regulating applications on leaf yield, raw ...

    This study investigated the effects of repetitive applications of herbagreen (HG), humic acid (HA), combined foliar fertilizer (CFF) and HG+CFF performed in the Müsküle grape variety grafted on 5 BB rootstock on fresh or pickled leaf size and leaf raw cellulose content. HA application increased leaf area and leaf water ...

  20. Effect of irrigation frequencies on grain yield of maize

    Ahmad, M.; Chaudhry, M.H.; Amjed, M.T.

    2008-01-01

    To find out the water requirement and its application frequencies in spring Maize a trial was designed. The trial was comprised of five maize varieties (Ev-5098, EV-6098, EV-1098, Composite-20 and Pack Afgoyee) and five irrigation frequencies (7,8,9,10 and 11). The trial was sown in split plot design with three replication, keeping varieties in main plots and irrigation frequencies in sub plots. The plot size was 5m x 4.5 with 75cm apart rows and plant to plant distance was 15 com to maintain the 88888 plants per hectare. The trial was conducted during spring 2000 and 2001. Data were collected for days to 50% silking. Plant height (cm), cob height (cm) and grain yield per hectare. The data were analyzed and results obtained which revealed highly significant differences among varieties and also among irrigation frequencies in all the characters studied during both the years and in pooled analysis over years. The interaction between varieties and irrigation frequencies was highly significant for grain yield kg ha/sup -1/ and significant for other characters studied in year wise as well as in pooled analysis. Years effect was also high significant which is clear from the table of weather data which shows that temperature remained high during the crop season of 2001 as compared to 2000 along with high temperature more rains were also received in March. April and May in 2001 while in 2000 rain was received only in February. Three was gradual decrease in days to 50% silking with the increase in number of irrigations in all the varieties while plant height, cob height and grain yield increased with every addition of irrigation. Trend of increase or decrease remained the same during both the year. All the varieties separately or in combine showed better results during spring 2001, maximum grain yield was obtained by EV-5098 (full duration variety) with 11 irrigations during both the years 2000 and 2001 i.e. 3511 and 6140 kg ha/sup -1/ while EV-1098 (short duration variety

  1. Genetic analysis and hybrid vigor study of grain yield and other quantitative traits in auto tetraploid rice

    Shahid, M.Q.; Xiong, C.Z.; Juan, L.Y.; Ming, X.H.

    2011-01-01

    Genetic analysis and genotype-by-environment interaction for important traits of auto tetraploid rice were evaluated by additive, dominance and additive X additive model. It was show n that genetic effects had more influence on grain yield and other quantitative traits of auto tetraploid rice than genotypic environment interaction. Plant height, panicle length, seed set , grain yield, dry matter production and 1000-grain weight we re mainly regulated by dominance variance. Additive and additive X additive gene action constructed the main proportion of genetic variance for heading date (flowering), number of panicles, grains per panicle, grain length, however grain width was supposed to be affected by additive X additive and dominance variance. Flag leaf length and width, fresh weight, peduncle length, unfilled grains and awn length were greatly influenced by genotypic environment interaction. Heading date produced highly negative heterosis over mid parent (H pm) and better parent ( H pb), whereas H pm and H pb were detected to be highly positive and significant for grain yield, seed set, peduncle length, filled grains and 1000-grain weight in F/sub 1/ and F/sub 2/ generations. The results indicated that auto tetraploid hybrids 96025 X Jackson (indica/japonica), 96025 X Linglun (indica/indica) and Linglun X Jackson (indica/japonica) showed highly significant hybrid vigor with improved seed set percentage and grain yield. These results suggest that intra-specific auto tetraploid rice hybrids have more hybrid vigor as compared to intra-sub specific auto tetraploid rice hybrids and auto tetraploid rice has the potential to be used for further studies and commercial application. (author)

  2. Swedish Spring Wheat Varieties with the Rare High Grain Protein Allele of NAM-B1 Differ in Leaf Senescence and Grain Mineral Content

    Asplund, Linnéa; Bergkvist, Göran; Leino, Matti W.; Westerbergh, Anna; Weih, Martin

    2013-01-01

    Some Swedish spring wheat varieties have recently been shown to carry a rare wildtype (wt) allele of the gene NAM-B1, known to affect leaf senescence and nutrient retranslocation to the grain. The wt allele is believed to increase grain protein concentration and has attracted interest from breeders since it could contribute to higher grain quality and more nitrogen-efficient varieties. This study investigated whether Swedish varieties with the wt allele differ from varieties with one of the more common, non-functional alleles in order to examine the effect of the gene in a wide genetic background, and possibly explain why the allele has been retained in Swedish varieties. Forty varieties of spring wheat differing in NAM-B1 allele type were cultivated under controlled conditions. Senescence was monitored and grains were harvested and analyzed for mineral nutrient concentration. Varieties with the wt allele reached anthesis earlier and completed senescence faster than varieties with the non-functional allele. The wt varieties also had more ears, lighter grains and higher yields of P and K. Contrary to previous information on effects of the wt allele, our wt varieties did not have increased grain N concentration or grain N yield. In addition, temporal studies showed that straw length has decreased but grain N yield has remained unaffected over a century of Swedish spring wheat breeding. The faster development of wt varieties supports the hypothesis of NAM-B1 being preserved in Fennoscandia, with its short growing season, because of accelerated development conferred by the NAM-B1 wt allele. Although the possible effects of other gene actions were impossible to distinguish, the genetic resource of Fennoscandian spring wheats with the wt NAM-B1 allele is interesting to investigate further for breeding purposes. PMID:23555754

  3. ESTIMATION OF PEA GRAIN YIELD STABILITY (Pisum sativum L.

    Tihomir Čupić

    2003-06-01

    Full Text Available The paper aimed to determine yield and estimate pea grain yield stability of newly-created lines JSG-1 (cultivar in recognition process as well as compare with foreign origin cultivars in agroecological area of east Slavonia. The trial was set up by a randomized block design on the experimental field of Agricultural Institute Osijek in four replicates in the five-year period (1998 – 2002. Six (five foreign and one inland cultivars were included by the trial: Eiffil, Erbi, JP-5, JSG-1 (in a recognition process, Torsz and Baccara. Stability parameters were calculated by the grouping method after Francis and Kannenberg (1978 and by the model of individual stability estimation after Eberhart and Russel method (1966. According to Francis and Kannenberg, cultivars Eiffil, Erbi, JSG-1 and Baccara belonged to group I known for high yield and low trait varying coefficient, thus, represent stabile yield cultivars. According to regression coefficient and regression deviation variance the most stabile cultivar appeared to be cultivar JSG-1 (bi =1.06 and S2 di=0.010 and the lowest one was Torsz (bi =0.67 and S2 di =0.160. Cultivar Baccara (bi = 1.22 and S2 di =0.034 was comprised by the group of unstabile and adaptible for high-yielding environments.

  4. Meta-analysis of grain yield QTL identified during agricultural drought in grasses showed consensus.

    Swamy, B P Mallikarjuna; Vikram, Prashant; Dixit, Shalabh; Ahmed, H U; Kumar, Arvind

    2011-06-16

    In the last few years, efforts have been made to identify large effect QTL for grain yield under drought in rice. However, identification of most precise and consistent QTL across the environments and genetics backgrounds is essential for their successful use in Marker-assisted Selection. In this study, an attempt was made to locate consistent QTL regions associated with yield increase under drought by applying a genome-wide QTL meta-analysis approach. The integration of 15 maps resulted in a consensus map with 531 markers and a total map length of 1821 cM. Fifty-three yield QTL reported in 15 studies were projected on a consensus map and meta-analysis was performed. Fourteen meta-QTL were obtained on seven chromosomes. MQTL1.2, MQTL1.3, MQTL1.4, and MQTL12.1 were around 700 kb and corresponded to a reasonably small genetic distance of 1.8 to 5 cM and they are suitable for use in marker-assisted selection (MAS). The meta-QTL for grain yield under drought coincided with at least one of the meta-QTL identified for root and leaf morphology traits under drought in earlier reports. Validation of major-effect QTL on a panel of random drought-tolerant lines revealed the presence of at least one major QTL in each line. DTY12.1 was present in 85% of the lines, followed by DTY4.1 in 79% and DTY1.1 in 64% of the lines. Comparative genomics of meta-QTL with other cereals revealed that the homologous regions of MQTL1.4 and MQTL3.2 had QTL for grain yield under drought in maize, wheat, and barley respectively. The genes in the meta-QTL regions were analyzed by a comparative genomics approach and candidate genes were deduced for grain yield under drought. Three groups of genes such as stress-inducible genes, growth and development-related genes, and sugar transport-related genes were found in clusters in most of the meta-QTL. Meta-QTL with small genetic and physical intervals could be useful in Marker-assisted selection individually and in combinations. Validation and comparative

  5. Nitrogen efficiency in oats on grain yield with stability

    José A. G. da Silva

    Full Text Available ABSTRACT Nitrogen (N is the nutrient most absorbed by the oat crop. Unfavorable climate conditions decrease its efficiency, generating instability and reduction in yield. The objective of this study was to improve N use efficiency in oat grain yield by the economic value of the product and of the input and by models that scale the stability, considering systems of succession of high and reduced residual-N release in favorable and unfavorable years for cultivation. The study was conducted in the years 2013, 2014 and 2015 in two systems of succession (soybean/oat, maize/oat in randomized blocks with eight replicates, using the N-fertilizer doses of 0, 30, 60 and 120 kg ha-1. The N-fertilizer dose for maximum economic efficiency in oats should be considered based on the meteorological trends of the cultivation year. N use optimization by models that determine the stability is an innovative proposal to increase fertilization efficiency on the yield. The N-fertilizer dose of 60 kg ha-1 promotes greater efficiency with predictability and yield, regardless of the agricultural year and the system of succession.

  6. Effect of different transplanting leaf age on rice yield, nitrogen utilization efficiency and fate of 15N-fertilizer

    Fan Hongzhu; Lu Shihua; Zeng Xiangzhong

    2010-01-01

    Field experiments were conducted to study rice yield, N uptake and fate by using 15 N-urea at transplanting leaf age of 2-, 4-and 6-leaf, respectively. The results showed that rice yield significantly decreased with delay of transplanting leaf age, and 15 N-fertilizer uptake by grain and straw of rice, nitrogen utilization and residue also decreased, but loss of 15 N-fertilizer increased. Under different transplanting leaf age, N absorption by rice mainly came from the soil. Almost 1/3 of total N was supplied by fertilizer, and 2/3 came from soil. The efficiency of fertilizer was 20.8% ∼ 25.7%, 15 N-fertilizer residue ratio was 17.9% ∼ 32.2%, and 15 N-fertilizer loss was 42.1% ∼ 61.3%. 15 N-fertilizer residue mainly distributed in 0 ∼ 20 cm top soil under different treatments. The results indicated that transplanting young leaf age could increase rice yield and nitrogen utilization efficiency, and decrease loss of nitrogen fertilizer and pollution level on environment. (authors)

  7. Response of barley to grasshopper defoliation in interior Alaska: dry matter and grain yield.

    Begna, Sultan H; Fielding, Dennis J

    2005-12-01

    Barley, Hordeum vulgare L., is well adapted to subarctic Alaska growing conditions, but little is known about its response to grasshopper defoliation. A field experiment was conducted to study dry matter and grain yield in response to a combination of grasshopper defoliation and weeds in 2002 and 2003 near Delta Junction, AK (63 degrees 55' N, 145 degrees 20' W). Barley plants at third to fourth leaf stage were exposed to a combination of two levels of weeds (present or absent) and four densities of grasshoppers (equivalent to 0, 25, 50, and 75 grasshoppers per m2) of third to fourth instars of Melanoplus sanguinipes (F). Dry matter accumulation by the barley plants was determined at three times during the growing seasons: approximately 10 d after introduction of the grasshoppers, shortly after anthesis, and at maturity. Dry matter accumulation and grain yield were much lower in 2003 than in 2002, probably due to very low levels of soil moisture early in the growing season of 2003. Head clipping accounted for a greater portion of yield loss in 2003 than in 2002. The percentage of reduction in harvestable yield due to grasshoppers remained fairly constant between years (1.9 and 1.4 g per grasshopper per m2 in 2002 and 2003, respectively) despite a large difference in overall yield. Examination of the yield components suggest that yields were reduced by the early season drought in 2003 primarily through fewer seeds per head, whereas grasshoppers in both years reduced average seed weight, but not numbers of seeds.

  8. New hybrid rice cultivar 'Zhefuliangyou 12' with improved grain quality produced by leaf color marker-labeled male sterile line and mutant with enhanced tillers and improved grain quality

    Mei Shufang; Zhao Hua; Wang Yongqiang; Shu Xiaoli; Wu Dianxing

    2013-01-01

    In order to breed high yielding and good grain quality new variety with controllable seed purity, hybrid rice 'Zhefuliangyou 12' was produced by green-revertible albino leaf color marker-labeled two-line male sterile line 'NHR111S' and mutant 'ZF-2' with enhanced tillers and improved grain quality, which was characterized by improved grain quality, rice blast resistance and lodging resistance. Breeding protocol, characteristics, and high yielding cultivation techniques of 'Zhefuliangyou 12' were briefly introduced in the current paper. (authors)

  9. Improvement in grain quality characteristics and yield in rice by induced mutation

    Govindaswami, S.; Ghosh, A.K.; Misra, S.N.

    1975-01-01

    Improvement in grain quality has been obtained in two rice cultures CR.75-83 and CR-75-93 (Rexore X Chianan-8) after gamma irradiation. The culture CR.75-83 and R.75-93 have good field resistance for bacterial leaf blight, but have comparatively low yield potential (4-5 tonns/ha) and have defects in grain quality such as low gelatinization temperature of starch and relatively low amylose content with inferior cooking quality since one of their parents was a 'Ponlai' type (Taiwan japonica). Improvement in fineness of the kernel and cooking quality by mutation of genes especially for higher amylose content and intermediate gelatinization temperature have been achieved in CR.75-83 mutants No.1,4,6,7,8,9,11 and 13 under 15Kr., in CR.75-93 in mutant No.2,4 and 10 under 25 Kr. Yield atributes have also improved with a shortening in the total duration by 10 to 20 days. The feasibility of improving the cooking quality especially the geletinization temperature and amylose content in the high yielding varieties by mutagenesis is discussed. (author)

  10. Effects of ozone on growth, yield and leaf gas exchange rates of two Bangladeshi cultivars of wheat (Triticum aestivum L.)

    Akhtar, Nahid; Yamaguchi, Masahiro; Inada, Hidetoshi; Hoshino, Daiki; Kondo, Taisuke; Izuta, Takeshi

    2010-01-01

    To clarify the effects of O 3 on crop plants cultivated in Bangladesh, two Bangladeshi wheat cultivars (Sufi and Bijoy) were grown in plastic boxes filled with Andisol and exposed daily to charcoal-filtered air or O 3 at 60 and 100 nl l -1 (10:00-17:00) from 13 March to 4 June 2008. The whole-plant dry mass and grain yield per plant of the two cultivars at the final harvest were significantly reduced by the exposure to O 3 . Although there was no significant effect of O 3 on stomatal diffusive conductance to H 2 O of flag leaf, net photosynthetic rate of the leaf was significantly reduced by the exposure to O 3. The sensitivity of growth, yield, yield components and leaf gas exchange rates to O 3 was not significantly different between the two cultivars. The results obtained in the present study suggest that ambient levels of O 3 may detrimentally affect wheat production in Bangladesh. - The exposure to ambient levels of ozone decreases growth, yield and leaf gas exchange rates of two Bangladeshi cultivars of wheat.

  11. Grain Yield Observations Constrain Cropland CO2 Fluxes Over Europe

    Combe, M.; de Wit, A. J. W.; Vilà-Guerau de Arellano, J.; van der Molen, M. K.; Magliulo, V.; Peters, W.

    2017-12-01

    Carbon exchange over croplands plays an important role in the European carbon cycle over daily to seasonal time scales. A better description of this exchange in terrestrial biosphere models—most of which currently treat crops as unmanaged grasslands—is needed to improve atmospheric CO2 simulations. In the framework we present here, we model gross European cropland CO2 fluxes with a crop growth model constrained by grain yield observations. Our approach follows a two-step procedure. In the first step, we calculate day-to-day crop carbon fluxes and pools with the WOrld FOod STudies (WOFOST) model. A scaling factor of crop growth is optimized regionally by minimizing the final grain carbon pool difference to crop yield observations from the Statistical Office of the European Union. In a second step, we re-run our WOFOST model for the full European 25 × 25 km gridded domain using the optimized scaling factors. We combine our optimized crop CO2 fluxes with a simple soil respiration model to obtain the net cropland CO2 exchange. We assess our model's ability to represent cropland CO2 exchange using 40 years of observations at seven European FluxNet sites and compare it with carbon fluxes produced by a typical terrestrial biosphere model. We conclude that our new model framework provides a more realistic and strongly observation-driven estimate of carbon exchange over European croplands. Its products will be made available to the scientific community through the ICOS Carbon Portal and serve as a new cropland component in the CarbonTracker Europe inverse model.

  12. Effect of Silicon application on Morpho-physiological Characteristics, Grain Yield and Nutrient Content of Bread Wheat under Water Stress Conditions

    A. Karmollachaab

    2015-03-01

    Full Text Available In order to investigate the effect of silicon application on some physiological characteristics, yield and yield components, and grain mineral contents of bread wheat (Triticum aestivum under water stress condition, an experiment was conducted in Ramin Agriculture and Natural Resources University, Khuzestan, in 2012. The experiment was arranged in split-plots design in RCBD (Completely Randomized Blocks Design with three replications. Treatments consisted of drought stress (irrigation after 25, 50 and 75% depletion of Available Water Content in main plots and silicon (0, 10, 20 and 30 Kg Si ha-1 arranged in sub-plots. Results showed that the effect of drought stress was significant on most traits and led to the increase of electrolyte leakage (EL, cuticular wax, leaf and grain silicon content and grain nitrogen content. But drought led to negative impacts on grain yield and its components, and leaf potassium content, i.e. moderate and severe stresses reduced yield by 17% and 38% compared to control, respectively. Effect of silicon application was significant on all traits except for spike per square meter. Silicon had the greatest impact on EL and led to 35% decrease in this trait. Also, silicon led to increase in leaf and grain silicon contents and grain K content and grain yield and yield components, when applied at 30 kg ha-1. Generally, application of 30 kg ha-1 of silicon led to 6 and 14% increases of grain yield at the presence of moderate and severe drought stresses, respectively. Thus, given the abundance of silicon it can be used as an ameliorating element for planting bread wheat in drought-prone conditions.

  13. Grain, milling, and head rice yields as affected by nitrogen rate and bio-fertilizer application

    Saeed FIROUZI

    2015-11-01

    Full Text Available To evaluate the effects of nitrogen rate and bio-fertilizer application on grain, milling, and head rice yields, a field experiment was conducted at Rice Research Station of Tonekabon, Iran, in 2013. The experimental design was a factorial treatment arrangement in a randomized complete block with three replicates. Factors were three N rates (0, 75, and 150 kg ha-1 and two bio-fertilizer applications (inoculation and uninoculation with Nitroxin, a liquid bio-fertilizer containing Azospirillum spp. and Azotobacter spp. bacteria. Analysis of variance showed that rice grain yield, panicle number per m2, grain number per panicle, flag leaves area, biological yield, grains N concentration and uptake, grain protein concentration, and head rice yield were significantly affected by N rate, while bio-fertilizer application had significant effect on rice grain yield, grain number per panicle, flag leaves area, biological yield, harvest index, grains N concentration and uptake, and grain protein concentration. Results showed that regardless of bio-fertilizer application, rice grain and biological yields were significantly increased as N application rate increased from 0 to 75 kg ha-1, but did not significantly increase at the higher N rate (150 kg ha-1. Grain yield was significantly increased following bio-fertilizer application when averaged across N rates. Grains N concentration and uptake were significantly increased as N rate increased up to 75 kg ha-1, but further increases in N rate had no significant effect on these traits. Bio-fertilizer application increased significantly grains N concentration and uptake, when averaged across N rates. Regardless of bio-fertilizer application, head rice yield was significantly increased from 56 % to 60 % when N rate increased from 0 to 150 kg ha-1. Therefore, this experiment illustrated that rice grain and head yields increased with increasing N rate, while bio-fertilizer application increased only rice grain

  14. CORRELATION ANALYSIS OF AGRONOMIC CHARACTERS AND GRAIN YIELD OF RICE FOR TIDAL SWAMP AREAS

    Aris Hairmansis

    2013-05-01

    Full Text Available Development of rice varieties for tidal swamp areas is emphasized on the improvement of rice yield potential in specific environment. However, grain yield is a complex trait and highly dependent on the other agronomic characters; while information related to the relationship between agronomic characters and grain yield in the breeding program particularly for tidal swamp areas is very limited. The objective of this study was to investigate relationship between agronomic characters and grain yield of rice as a basis for selection of high yielding rice varieties for tidal swamp areas. Agronomic characters and grain yield of nine advanced rice breeding lines and two rice varieties were evaluated in a series of experiments in tidal swamp areas, Karang Agung Ulu Village, Banyuasin, South Sumatra, for four cropping seasons in dry season (DS 2005, wet season (WS 2005/2006, DS 2006, and DS 2007. Result from path analysis revealed that the following characters had positive direct effect on grain yield, i.e. number of productive tillers per hill (p = 0.356, number of filled grains per panicle (p = 0.544, and spikelet fertility (p = 0.215. Plant height had negative direct effect (p = -0.332 on grain yield, while maturity, number of spikelets per panicle, and 1000-grain weight showed negligible effect on rice grain yield. Present study suggests that indirect selection of high yielding tidal swamp rice can be done by selecting breeding lines which have many product tive tillers, dense filled grains, and high spikelet fertility.

  15. Phloem Transport Of Arsenic Species From Flag Leaf To Grain During Grain Filling

    Strategies to reduce arsenic (As) in rice grain, below concentrations that represent a serious human health concern, require that the mechanisms of As accumulation within grain be established. Therefore, retranslocation of As species from flag leaves into filling rice grain was ...

  16. Leaf chlorophyll and nitrogen dynamics and their relationship to lowland rice yield for site-specific paddy management

    Asa Gholizadeh

    2017-12-01

    Full Text Available The optimum rate and application timing of Nitrogen (N fertilizer are crucial in achieving a high yield in rice cultivation; however, conventional laboratory testing of plant nutrients is time-consuming and expensive. To develop a site-specific spatial variable rate application method to overcome the limitations of traditional techniques, especially in fields under a double-cropping system, this study focused on the relationship between Soil Plant Analysis Development (SPAD chlorophyll meter readings and N content in leaves during different growth stages to introduce the most suitable stage for assessment of crop N and prediction of rice yield. The SPAD readings and leaf N content were measured on the uppermost fully expanded leaf at panicle formation and booting stages. Grain yield was also measured at the end of the season. The analysis of variance, variogram, and kriging were calculated to determine the variability of attributes and their relationship, and finally, variability maps were created. Significant linear relationships were observed between attributes, with the same trends in different sampling dates; however, accuracy of semivariance estimation reduces with the growth stage. Results of the study also implied that there was a better relationship between rice leaf N content (R2 = 0.93, as well as yield (R2 = 0.81, with SPAD readings at the panicle formation stage. Therefore, the SPAD-based evaluation of N status and prediction of rice yield is more reliable on this stage rather than at the booting stage. This study proved that the application of SPAD chlorophyll meter paves the way for real-time paddy N management and grain yield estimation. It can be reliably exploited in precision agriculture of paddy fields under double-cropping cultivation to understand and control spatial variations. Keywords: Spatial variability, Non-invasive measurement, Precision farming, Decision support

  17. Effect of Plant Density and Weed Interference on Yield and Yied Components of Grain Sorghum

    S. Sarani

    2018-01-01

    Full Text Available Introduction Weed control is an essential part of all crop production systems. Weeds reduce yields by competing with crops for water, nutrients, and sunlight. Weeds also directly reduce profits by hindering harvest operations, lowering crop quality, and producing chemicals which are harmful to crop plants. Plant density is an efficient management tool for maximizing grain yield by increasing the capture of solar radiation within the canopy, which can significantly affect development of crop-weed association. The response of yield and yield components to weed competition varies by crop and weeds species and weeds interference duration. The objective of the present study was to evaluate the effect of weed interference periods and plant density on the yield and yield components of sorghum. Materials and Methods In order to study the effect of plant density and weeds interference on weeds traits, yield and yield components of sorghum (Var. Saravan, an experiment was conducted as in factorial based on a randomized complete block design with three replications at the research field of Islamic Azad University, Birjand Branch in South Khorasan province during year of 2013. Experimental treatments consisted of three plant density (10, 20 and 30 plants m-2 and four weeds interference (weed free until end of growth season, interference until 6-8 leaf stage, interference until stage of panicle emergence, interference until end of growth season. Measuring traits included the panicle length, number of panicle per plant, number of panicle per m2, number of seed per panicle, 1000-seed weight, seed yield, biological yield, number and weight of weeds per m2. Weed sampling in each plot have done manually from a square meter and different weed species counted and oven dried at 72 °C for 48 hours. MSTAT-C statistical software used for data analysis and means compared with Duncan multiple range test at 5% probability level. Results and Discussion Results showed that

  18. Phloem Transport of Arsenic Species from Flag Leaf to Grain During Grain Filling

    A Carey; G Norton; C Deacon; K Scheckel; E Lombi; T Punshon; M Guerinot; A Lanzirotti; M Newville; et al.

    2011-12-31

    Strategies to reduce arsenic (As) in rice grain, below concentrations that represent a serious human health concern, require that the mechanisms of As accumulation within grain be established. Therefore, retranslocation of As species from flag leaves into filling rice grain was investigated. Arsenic species were delivered through cut flag leaves during grain fill. Spatial unloading within grains was investigated using synchrotron X-ray fluorescence (SXRF) microtomography. Additionally, the effect of germanic acid (a silicic acid analog) on grain As accumulation in arsenite-treated panicles was examined. Dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) were extremely efficiently retranslocated from flag leaves to rice grain; arsenate was poorly retranslocated, and was rapidly reduced to arsenite within flag leaves; arsenite displayed no retranslocation. Within grains, DMA rapidly dispersed while MMA and inorganic As remained close to the entry point. Germanic acid addition did not affect grain As in arsenite-treated panicles. Three-dimensional SXRF microtomography gave further information on arsenite localization in the ovular vascular trace (OVT) of rice grains. These results demonstrate that inorganic As is poorly remobilized, while organic species are readily remobilized, from leaves to grain. Stem translocation of inorganic As may not rely solely on silicic acid transporters.

  19. Phloem transport of arsenic species from flag leaf to grain during grain filling

    Carey, Anne-Marie; Norton, Gareth J.; Deacon, Claire; Scheckel, Kirk G.; Lombi, Enzo; Punshon, Tracy; Guerinot, Mary Lou; Lanzirotti, Antonio; Newville, Matt; Choi, Yongseong; Price, Adam H.; Meharg, Andrew A. (EPA); (U. South Australia); (Aberdeen); (UC); (Dartmouth)

    2011-09-20

    Strategies to reduce arsenic (As) in rice grain, below concentrations that represent a serious human health concern, require that the mechanisms of As accumulation within grain be established. Therefore, retranslocation of As species from flag leaves into filling rice grain was investigated. Arsenic species were delivered through cut flag leaves during grain fill. Spatial unloading within grains was investigated using synchrotron X-ray fluorescence (SXRF) microtomography. Additionally, the effect of germanic acid (a silicic acid analog) on grain As accumulation in arsenite-treated panicles was examined. Dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) were extremely efficiently retranslocated from flag leaves to rice grain; arsenate was poorly retranslocated, and was rapidly reduced to arsenite within flag leaves; arsenite displayed no retranslocation. Within grains, DMA rapidly dispersed while MMA and inorganic As remained close to the entry point. Germanic acid addition did not affect grain As in arsenite-treated panicles. Three-dimensional SXRF microtomography gave further information on arsenite localization in the ovular vascular trace (OVT) of rice grains. These results demonstrate that inorganic As is poorly remobilized, while organic species are readily remobilized, from leaves to grain. Stem translocation of inorganic As may not rely solely on silicic acid transporters.

  20. Inheritance of culm height and grain yield in durum wheat

    Filev, K.

    1984-01-01

    Results from a study of GA sensitive and GA insensitive durum wheat mutants and cultivars in relation with their culm height and 1000 grain weight are presented. With increasing culm height, the GA response also increased. A positive correlation between plant height and GA response was found. Crosses were made between durum wheats and the F 1 and F 2 progenies were analysed. A different inheritance in F 1 and segregation in F 2 was obtained in crosses of a semi-dwarf, GA insensitive [1] line with GA sensitive (S) lines differing in height, medium (93.2cm) and tall (133.5cm). In a reciprocal cross, semi-dwarf - I with medium - S, the semi-dwarf type was dominant in F 1 , suggesting that their semi-dwarfing genes were not allelic. When the semi-dwarf - I and tall - S were crossed an intermediate inheritance in F 1 was observed. In the F 2 generation from crosses semi-dwarf - I with medium - S with semi-dwarf - I, a phenotypic dihybred segregation 9:3:3:1 was observed. In crosses semi-dwarf - I with tall - S different variation curves were obtained. Semi-dwarfs with high productivity were observed in F 2 , a fact indicating that lodging resistant lines with high yields could be selected. (author)

  1. Factors controlling regional grain yield in China over the last 20 years

    wang, Xiaobin; Cai, D.X.; Grant, C.; Hoogmoed, W.B.; Oenema, O.

    2015-01-01

    Food production is highly dependent on regional yields of crops. Regional differences in grain yields could be due to fertilizer management and climate variability. Here, we analyze trends of grain yields in North China, Northeast China, East China, and Central and Southwest China from 1992 to 2012,

  2. Grain Yield and Water Use Efficiency of Five Sorghum Cultivars under Different Irrigation Regimes in Kerman

    H Vahidi

    2016-02-01

    Full Text Available Introduction Reduction of the forage and grain yield of sorghum genotypes under different levels of deficit irrigation has been reported. The plants that have higher water use efficiency (WUE, have a better chance of survival in arid regions. On average, WUE of sorghum in clay, loamy soil has been reported equal to 1.46 kg m-3. Effects of drought stress and different levels of nitrogen on yield of two cultivars of sorghum were investigated and results showed significant effects on plant height, leaf area index, fresh and dry weight of leaf, dry weight of stem and forage yield. The purpose of this research is to investigate the effect of deficit irrigation on grain yield and WUE of sorghum cultivars in Kerman. Materials and Methods This study has been conducted in the research station of Shahid Bahonar University of Kerman with 56o 58' E longitude, 30o 15' N latitude and 1753.8 altitudes. According to the regional information from 1952 to 2005, the average temperature is 17.1 oC, the average rainfall is 154.1 mm, the average annual relative humidity is 32%. The climate of Kerman according to De Martonne method can be classified as semiarid. The experimental design was split-plot based on RCBD with three replications. Three levels of irrigation (after 50, 80 and 110 mm evaporation from class A pan were assigned to the main plots and the five sub-plots of sorghum cultivars (Speedfeed, Pegah, Payam, Sepideh and Kimia. On the 20th of May all sorghum cultivars were planted at the distance of 10 cm from each other on ridges. On the 7th of October, with considering margins, four square meters of the two middle lines were selected to determine the grain and biological yield. The samples were weighed with a digital scale and heated for 48 hours in the degree of 75 oC-and then the dry weight of each samples were measured again. Finally, the data were analyzed by SAS software (v. 9.1. Comparision of the averages attributes was performed using, Duncan

  3. Enhancement of Biogas Yield of Poplar Leaf by High-Solid Codigestion with Swine Manure.

    Wangliang, Li; Zhikai, Zhang; Guangwen, Xu

    2016-05-01

    The aim of this work was to examine the improvement of anaerobic biodegradability of organic fractions of poplar leaf from codigestion with swine manure (SM), thus biogas yield and energy recovery. When poplar leaf was used as a sole substrate, the cumulative biogas yield was low, about 163 mL (g volatile solid (VS))(-1) after 45 days of digestion with a substrate/inoculum ratio of 2.5 and a total solid (TS) of 22 %. Under the same condition, the cumulative biogas yield of poplar leaf reached 321 mL (g VS)(-1) when SM/poplar leaf ratio was 2:5 (based on VS). The SM/poplar leaf ratio can determine C/N ratio of the cosubstrate and thus has significant influence on biogas yield. When the SM/poplar leaf ratio was 2:5, C/N ratio was calculated to be 27.02, and the biogas yield in 45 days of digestion was the highest. The semi-continuous digestion of poplar leaf was carried out with the organic loading rate of 1.25 and 1.88 g VS day(-1). The average daily biogas yield was 230.2 mL (g VS)(-1) and 208.4 mL (g VS)(-1). The composition analysis revealed that cellulose and hemicellulose contributed to the biogas production.

  4. Effect of Mulch and Water Stress on Some Physiological Traits, Yield Components and Grain Yield of Red Kidney bean (Phaseolus vulgaris L.

    R Amini

    2016-02-01

    Full Text Available Introduction Water use in agricultural production as one of the most important environmental factors affecting plant growth and development, especially in arid and semi-arid climatic conditions of Iran is of special importance (21. One of the ways of alleviating water scarcity is by enhancing its use efficiency or productivity. Improving water use efficiency in arid and semi-arid areas depends on effective conservation of moisture and efficient use of limited water. Mulching is one of the management practices for increasing water use efficiency (WUE . Straw mulch is commonly used as mulch. Straw mulching has potential for increasing soil water storage (16. Mulches modify the microclimate and growing conditions of crops (16, conserve more water and increase water use efficiency (34. Red kidney bean (Phaseolus vulgaris L. is the most important food legume (25 and is an important source of proteins and minerals (28. The majority of red kidney bean production is under drought conditions, and thus yield reductions due to drought are very common (29. This research was carried out to evaluate the effect of wheat straw mulch and water stress on physiological traits, yield components and grain yield of red kidney bean cultivars. Materials and Methods A field experiment was conducted in 2012 at the Research Farm of the Faculty of Agriculture, University of Tabriz, Iran (latitude 38°05_N, longitude 46°17_E, altitude 1360 m above sea level. In order to investigate the effect of mulch on grain yield and yield components of red kidney bean (Phaseolus vulgaris L. cultivars at different water stress treatments, a factorial experiment was conducted based on RCB design with three replications. The factors were including water stress treatment (I1 and I2, irrigation after 60 and 120 mm evaporation from class A pan, respectively; mulch application at two levels (M1: (no mulch and M2: 2 ton ha-1 wheat straw mulch and red kidney bean cultivars including Akhtar and

  5. VARIATION IN GRAIN YIELD, BIOMASS AND GRAIN NUMBER OF BARLEY UNDER DROUGHT

    Cándido López-Castañeda

    2011-08-01

    Full Text Available Variability in grain yield (GY, aerial biomass (BM and number of grains m-2 (G M-2 in F6 lines and commercial varieties of barley was studied, and the relationship among these characters in full-irrigation (FI, drought (D and rain-fed (RF conditions was determined. Variation in GY, BM and G M-2 among all genotypes, between F6 lines and varieties, and among genotypes of F6 lines and varieties was significant in all the three soil moisture environments. GY, BM and G M-2 in FI were 23, 14 and 21 % greater than the average of the three soil moisture environments; GY, BM and G M-2 in RF were 21, 16 y 24 % lower than this average. F6 lines produced greater GY (380 g m-2, BM (1027 g m-2 and G M-2 (8641 than the commercial varieties (GY=290 g m-2; BM=726 g m-2 y G M-2=7463 in average of the three environments. GY was positive and significantly associated with BM and G M-2; BM and G M-2 were also associated. GY could be improved in either FI, D or RF environments by selecting genotypes with a greater BM and G M-2 or both of them.

  6. Effect of different N fertilizer forms on antioxidant capacity and grain yield of rice growing under Cd stress

    Jalloh, Mohamed Alpha; Chen Jinghong; Zhen Fanrong; Zhang Guoping

    2009-01-01

    Cadmium contamination in soil has become a serious issue in sustainable agriculture production and food safety. A pot experiment was conducted to study the influence of four N fertilizer forms on grain yield, Cd concentration in plant tissues and oxidative stress under two Cd levels (0 and 100 mg Cd kg -1 soil). The results showed that both N form and Cd stress affected grain yield, with urea-N and NH 4 + -N treatments having significantly higher grain yields, and Cd addition reducing yield. NO 3 - -N and NH 4 + -N treated plants had the highest and lowest Cd concentration in plant tissues, respectively. Urea-N and NH 4 + -N treatments had significantly higher N accumulation in plant tissues than other two N treatments. Cd addition caused a significant increase in leaf superoxide dismutase (SOD) and peroxidase (POD) activities for all N treatments, except for NO 3 - -N treatment, with urea-N and NH 4 + -N treated plants having more increase than organic-N treated ones. The results indicated that growth inhibition, yield reduction and Cd uptake of rice plants in response to Cd addition varied with the N fertilizer form

  7. Effect of different N fertilizer forms on antioxidant capacity and grain yield of rice growing under Cd stress.

    Jalloh, Mohamed Alpha; Chen, Jinghong; Zhen, Fanrong; Zhang, Guoping

    2009-03-15

    Cadmium contamination in soil has become a serious issue in sustainable agriculture production and food safety. A pot experiment was conducted to study the influence of four N fertilizer forms on grain yield, Cd concentration in plant tissues and oxidative stress under two Cd levels (0 and 100 mg Cd kg(-1)soil). The results showed that both N form and Cd stress affected grain yield, with urea-N and NH(4)(+)-N treatments having significantly higher grain yields, and Cd addition reducing yield. NO(3)(-)-N and NH(4)(+)-N treated plants had the highest and lowest Cd concentration in plant tissues, respectively. Urea-N and NH(4)(+)-N treatments had significantly higher N accumulation in plant tissues than other two N treatments. Cd addition caused a significant increase in leaf superoxide dismutase (SOD) and peroxidase (POD) activities for all N treatments, except for NO(3)(-)-N treatment, with urea-N and NH(4)(+)-N treated plants having more increase than organic-N treated ones. The results indicated that growth inhibition, yield reduction and Cd uptake of rice plants in response to Cd addition varied with the N fertilizer form.

  8. Effect of different N fertilizer forms on antioxidant capacity and grain yield of rice growing under Cd stress

    Jalloh, Mohamed Alpha; Chen Jinghong; Zhen Fanrong [Department of Agronomy, Huajiachi Campus, Zhejiang University, Hangzhou 310029 (China); Zhang Guoping [Department of Agronomy, Huajiachi Campus, Zhejiang University, Hangzhou 310029 (China)], E-mail: zhanggp@zju.edu.cn

    2009-03-15

    Cadmium contamination in soil has become a serious issue in sustainable agriculture production and food safety. A pot experiment was conducted to study the influence of four N fertilizer forms on grain yield, Cd concentration in plant tissues and oxidative stress under two Cd levels (0 and 100 mg Cd kg{sup -1} soil). The results showed that both N form and Cd stress affected grain yield, with urea-N and NH{sub 4}{sup +}-N treatments having significantly higher grain yields, and Cd addition reducing yield. NO{sub 3}{sup -}-N and NH{sub 4}{sup +}-N treated plants had the highest and lowest Cd concentration in plant tissues, respectively. Urea-N and NH{sub 4}{sup +}-N treatments had significantly higher N accumulation in plant tissues than other two N treatments. Cd addition caused a significant increase in leaf superoxide dismutase (SOD) and peroxidase (POD) activities for all N treatments, except for NO{sub 3}{sup -}-N treatment, with urea-N and NH{sub 4}{sup +}-N treated plants having more increase than organic-N treated ones. The results indicated that growth inhibition, yield reduction and Cd uptake of rice plants in response to Cd addition varied with the N fertilizer form.

  9. Effect of Puccinia silphii on Yield Components and Leaf Physiology in Silphium integrifolium: Lessons for the Domestication of a Perennial Oilseed Crop

    M. Kathryn Turner

    2018-03-01

    Full Text Available New crops with greater capacity for delivering ecosystem services are needed to increase agricultural sustainability. However, even in these crops, seed yield is usually the main criteria for grain domestication. This focus on yield can cause unintended structural and functional changes. Leaves of selected plants tend to be more vulnerable to infection, which can reduce performance, assimilates, and ultimately yield. Our objectives were to determine the impact of rust (caused by Puccinia silphii on yield and leaf function in selected Silphium integrifolium (Asteraceae plants. We tested the effect of a fungicide treatment on rust severity and yield, compared the rust infection of individuals in a population selected for yield, and related this to chemical changes at the leaf level. We also estimated heritability for rust resistance. We found that productivity indicators (head number and weight, leaf weight and leaf processes (photosynthetic capacity, water use efficiency were reduced when silphium leaves and stems were more heavily infected by P. silphii. Leaf resin content increased when susceptible plants were infected. Fungicide treatments were effective at reducing rust infection severity, but were ineffective at preventing yield losses. We propose that disease resistance should be included early in the selection process of new perennial crops.

  10. The yield gap of global grain production: A spatial analysis

    Neumann, K.; Verburg, P.H.; Stehfest, E.; Muller, C.

    2010-01-01

    Global grain production has increased dramatically during the past 50 years, mainly as a consequence of intensified land management and introduction of new technologies. For the future, a strong increase in grain demand is expected, which may be fulfilled by further agricultural intensification

  11. Characterization of the Wheat Leaf Metabolome during Grain Filling and under Varied N-Supply

    Elmien Heyneke

    2017-11-01

    Full Text Available Progress in improving crop growth is an absolute goal despite the influence multifactorial components have on crop yield and quality. An Avalon × Cadenza doubled-haploid wheat mapping population was used to study the leaf metabolome of field grown wheat at weekly intervals during the time in which the canopy contributes to grain filling, i.e., from anthesis to 5 weeks post-anthesis. Wheat was grown under four different nitrogen supplies reaching from residual soil N to a luxury over-fertilization (0, 100, 200, and 350 kg N ha−1. Four lines from a segregating doubled haploid population derived of a cross of the wheat elite cvs. Avalon and Cadenza were chosen as they showed pairwise differences in either N utilization efficiency (NUtE or senescence timing. 108 annotated metabolites of primary metabolism and ions were determined. The analysis did not provide genotype specific markers because of a remarkable stability of the metabolome between lines. We speculate that the reason for failing to identify genotypic markers might be due to insufficient genetic diversity of the wheat parents and/or the known tendency of plants to keep metabolome homeostasis even under adverse conditions through multiple adaptations and rescue mechanism. The data, however, provided a consistent catalogue of metabolites and their respective responses to environmental and developmental factors and may bode well for future systems biology approaches, and support plant breeding and crop improvement.

  12. Diallel analyze of yield and progress of the severity of leaf diseases in maize hybrids in two population density

    Marcos Ventura Faria

    2015-02-01

    Full Text Available Seven commercial maize hybrids (AS1575, 2B688, Penta, GNZ2004, AG8021, Sprint e P30F53 were intercrossed in a complete diallel, excluded reciprocal, obtaining 21 crosses. The 28 treatments were evaluated in two environments characterized by different densities (62,500 and 90,000 plants ha-1, with the aim of selecting the most promising parents for generating base population to obtain lines. Two experiments were carried out in Guarapuava-PR, at randomized block design with three replications. We estimated the general (GCA and specific (SCA combining abilities for yield and disease severity assessed by the area under the common rust (Puccinia sorghi progress curve (AURPC and the area under the leaf spot (Cercospora zeae-maydis progress curve (AULPC. The effects of GCA and SCA were significant for grain yield and diseases severity in both densities, revealing the importance of both additive and non-additive effects. There GCA x densities interaction was significant only for grain yield. Crossings P30F53 x AG8021 and P30F53 x Penta had negative estimates of SCA for AURPC and AULPC on the environments average. Hybrids GNZ 2004 and P30F53 stood out showing positive GCA for grain yield and negative for AURPC and AULPC in both densities and therefore are recommended for generating base populations for obtaining lines adapted for both densities, conventional and denser plantings, given the current trends in management of maize.

  13. Capability of crop water content for revealing variability of winter wheat grain yield and soil moisture under limited irrigation.

    Zhang, Chao; Liu, Jiangui; Shang, Jiali; Cai, Huanjie

    2018-08-01

    Winter wheat (Triticum aestivum L.) is a major crop in the Guanzhong Plain, China. Understanding its water status is important for irrigation planning. A few crop water indicators, such as the leaf equivalent water thickness (EWT: g cm -2 ), leaf water content (LWC: %) and canopy water content (CWC: kg m -2 ), have been estimated using remote sensing techniques for a wide range of crops, yet their suitability and utility for revealing winter wheat growth and soil moisture status have not been well studied. To bridge this knowledge gap, field-scale irrigation experiments were conducted over two consecutive years (2014 and 2015) to investigate relationships of crop water content with soil moisture and grain yield, and to assess the performance of four spectral process methods for retrieving these three crop water indicators. The result revealed that the water indicators were more sensitive to soil moisture variation before the jointing stage. All three water indicators were significantly correlated with soil moisture during the reviving stage, and the correlations were stronger for leaf water indicators than that of the canopy water indicator at the jointing stage. No correlation was observed after the heading stage. All three water indicators showed good capabilities of revealing grain yield variability in jointing stage, with R 2 up to 0.89. CWC had a consistent relationship with grain yield over different growing seasons, but the performances of EWT and LWC were growing-season specific. The partial least squares regression was the most accurate method for estimating LWC (R 2 =0.72; RMSE=3.6%) and comparable capability for EWT and CWC. Finally, the work highlights the usefulness of crop water indicators to assess crop growth, productivity, and soil water status and demonstrates the potential of various spectral processing methods for retrieving crop water contents from canopy reflectance spectrums. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. 70-79 Effects of Crop Rotation and NP Fertilizer Rate on Grain Yield a

    amendment enabled maize yields and soil fertility to be maintained at a higher level. Multiple ... Higher grain yield and high net return of maize were realized following Niger seed, ...... Generation, Transfer and Gap Analysis Workshop. Nekemt ...

  15. Effects of some growth regulating applications on leaf yield, raw ...

    Jane

    2011-06-22

    Jun 22, 2011 ... covering the region of Hadim-Aladağ, 59% of the soil in the region was ... 11.00 g diet fiber, 6.3 g sugar, 9 mg sodium, 363.08 mg calcium, 2.63 g ... Inst. Inc., Canada), and leaf volume was determined by dipping the samples into ... prepared by applying the wet burning method and in these plant extracts, P ...

  16. Increased sbpase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions

    Driever, Steven M.; Simkin, Andrew J.; Alotaibi, Saqer; Fisk, Stuart J.; Madgwick, Pippa J.; Sparks, Caroline A.; Jones, Huw D.; Lawson, Tracy; Parry, Martin A.J.; Raines, Christine A.

    2017-01-01

    To meet the growing demand for food, substantial improvements in yields are needed. This is particularly the case for wheat, where global yield has stagnated in recent years. Increasing photosynthesis has been identified as a primary target to achieve yield improvements. To increase leaf

  17. Progresso temporal da ferrugem e redução sobre a área foliar e os componentes do rendimento de grãos em soja Temporal progress of rust and reduced leaf area and yield components in soybean grain

    Felipe Rafael Garcés Fiallos

    2011-04-01

    lesions and urédias and later converted into percent severity (%. The leaf area index (LAI was measured at the full pod filling stage and the grain yield components at the harvest. The final disease severity was over 50% on non-sprayed plots. There were differences in disease severity among plant parts (lower, medium, and upper thirds, which were caused by varying initial disease, since the rates of disease progress determined by Logistic and Gompertz models were similar among thirds (0.13 to 0.14 to Logistic and 0.1 to 0.11 to Gompertz. The LAI varied from 1.96 on non-treated plots to 4.4 on the standard treatment with four sprays of epoxiconazol + pyraclostrobin. Disease control programs with two or three sprays began at the phenological stage V9 resulted in higher LAI and higher grain weight on the upper third. The number of pods or grains per plant and the number of grains per pod did not differ among treatments. There was only difference in weight of the upper grain, when fungicides were applied two or three times from phenological stage V9.

  18. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality.

    Wang, Shaokui; Li, Shan; Liu, Qian; Wu, Kun; Zhang, Jianqing; Wang, Shuansuo; Wang, Yi; Chen, Xiangbin; Zhang, Yi; Gao, Caixia; Wang, Feng; Huang, Haixiang; Fu, Xiangdong

    2015-08-01

    The deployment of heterosis in the form of hybrid rice varieties has boosted grain yield, but grain quality improvement still remains a challenge. Here we show that a quantitative trait locus for rice grain quality, qGW7, reflects allelic variation of GW7, a gene encoding a TONNEAU1-recruiting motif protein with similarity to C-terminal motifs of the human centrosomal protein CAP350. Upregulation of GW7 expression was correlated with the production of more slender grains, as a result of increased cell division in the longitudinal direction and decreased cell division in the transverse direction. OsSPL16 (GW8), an SBP-domain transcription factor that regulates grain width, bound directly to the GW7 promoter and repressed its expression. The presence of a semidominant GW7(TFA) allele from tropical japonica rice was associated with higher grain quality without the yield penalty imposed by the Basmati gw8 allele. Manipulation of the OsSPL16-GW7 module thus represents a new strategy to simultaneously improve rice yield and grain quality.

  19. Studies on the Effects of Climatic Factors on Dryland Wheat Grain Yield in Maragheh Region

    V. Feiziasl

    2011-01-01

    Full Text Available Abstract In order to study the effects of climate variables on rainfed wheat grain yield, climate data and wheat yield for 10 years (1995-2005 collected from Dryland Agricultural Research Institute (DARI in Maragheh as the main station in cold and semi-cold areas. Collected data were analyzed by correlation coefficient, simple regression, stepwise regression and path analysis. The results showed that relationships between grain yield with average relative humidity and total rainfall of growing season was positive and significant at 5% and 1% probabilities, respectively. However, evaluation between grain yield with sunny hours and class A pan evaporation was negative and significant (p

  20. Increased SBPase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions.

    Driever, Steven M; Simkin, Andrew J; Alotaibi, Saqer; Fisk, Stuart J; Madgwick, Pippa J; Sparks, Caroline A; Jones, Huw D; Lawson, Tracy; Parry, Martin A J; Raines, Christine A

    2017-09-26

    To meet the growing demand for food, substantial improvements in yields are needed. This is particularly the case for wheat, where global yield has stagnated in recent years. Increasing photosynthesis has been identified as a primary target to achieve yield improvements. To increase leaf photosynthesis in wheat, the level of the Calvin-Benson cycle enzyme sedoheptulose-1,7-biphosphatase (SBPase) has been increased through transformation and expression of a Brachypodium distachyon SBPase gene construct. Transgenic lines with increased SBPase protein levels and activity were grown under greenhouse conditions and showed enhanced leaf photosynthesis and increased total biomass and dry seed yield. This showed the potential of improving yield potential by increasing leaf photosynthesis in a crop species such as wheat. The results are discussed with regard to future strategies for further improvement of photosynthesis in wheat.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Authors.

  1. Verification of “Channel-Probability Model” of Grain Yield Estimation

    ZHENG Hong-yan

    2016-07-01

    Full Text Available The "channel-probability model" of grain yield estimation was verified and discussed systematically by using the grain production data from 1949 to 2014 in 16 typical counties, and 6 typical districts, and 31 provinces of China. The results showed as follows:(1Due to the geographical spatial scale was large enough, different climate zones and different meteorological conditions could compensated, and grain yield estimation error was small in the scale of nation. Therefore, it was not necessary to modify the grain yield estimation error by mirco-trend and the climate year types in the scale of nation. However, the grain yield estimation in the scale of province was located at the same of a climate zone,the scale was small, so the impact of the meteorological conditions on grain yield was less complementary than the scale of nation. While the spatial scale of districts and counties was smaller, accordingly the compensation of the impact of the meteorological conditions on grain yield was least. Therefore, it was necessary to use mrico-trend amendment and the climate year types amendment to modify the grain yield estimation in districts and counties.(2Mirco-trend modification had two formulas, generally, when the error of grain yield estimation was less than 10%, it could be modified by Y×(1-K; while the error of grain yield estimation was more than 10%, it could be modified by Y/(1+K.(3Generally, the grain estimation had 5 grades, and some had 7 grades because of large error fluctuation. The parameters modified of super-high yield year and super-low yield year must be depended on the real-time crop growth and the meteorological condition. (4By plenty of demonstration analysis, it was proved that the theory and method of "channel-probability model" was scientific and practical. In order to improve the accuracy of grain yield estimation, the parameters could be modified with micro-trend amendment and the climate year types amendment. If the

  2. Spatial-temporal variability of leaf chlorophyll and its relationship with cocoa yield

    Caique C. Medauar

    Full Text Available ABSTRACT The objective of this study was to evaluate the spatial-temporal variability of leaf chlorophyll index and its relationship with cocoa yield. The experiment was carried out in an experimental area of cocoa production located in Ilhéus, Bahia State, Brazil. Leaf chlorophyll content was measured in September, October, January, February, March and April in the 2014/2015 season, at each sampling point of a regular grid by using a portable chlorophyll meter. Under the same conditions, yield was evaluated and the data were submitted to descriptive statistics and a linear correlation study. Geostatistical analysis was used to determine and quantify the spatial and temporal variability of leaf chlorophyll index and yield. Leaf chlorophyll index varied over the period evaluated, but the months of February, March and April showed no spatial dependence in the study area, indicating absence of temporal stability. Cocoa monthly yield, except in January, presented high spatial variability. Under the conditions of this study, it was not possible to establish a relationship between leaf chlorophyll index and cocoa yield.

  3. Estimation of Maize grain yield using multispectral satellite data sets ...

    Dr-Adeline

    Crop yield prediction is production estimates that are made a couple of months or ... involving the effect of biotic and abiotic factors cumulatively which could however ...... Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence.

  4. The Effect of Irrigation Intervals and Arbuscular Mycorrhizal Fungi on Chlorophyll Index, Yield and Yield Components of Grain Sorghum

    J. Hamzei

    2014-08-01

    Full Text Available This experiment was carried out to study the effect of irrigation intervals and arbuscular mycorrhizal fungi on chlorophyll index, yield and yield components of grain sorghum. A factorial experiment was done based on randomized complete block design (RCBD with three replications at the Agriculture Research Station faculty of Agriculture, Bu- Ali Sina University in growing season of 2011. Irrigation intervals (7, 14 and 21 days with three levels of seed inoculation (control without inoculation, inoculation with Glomus mossea and inoculation with G. intraradices were the experimental treatments. Results indicated that the effect of irrigation intervals and mycorrhizal fungi were significant for traits of chlorophyll index, percentage of root symbiosis (PRS, number of grain per panicle, 1000 seed weight, grain yield and harvest index (HI. Maximum value for each trait was observed at G. mossea treatment. G. mossea treatment in comparison with G. intraradices and control treatment can increase the grain yield of sorghum up to 6.80 and 23.10%, respectively. Also, with increasing irrigation interval from 7 to 21 days, PRS increased up to 27.9%. Maximum value for grain yield (755 g m-2 was achieved at irrigation every 14 days and application of G. mossea treatment. But, there was no significant difference between irrigation sorghum plants every 14 days and application of G. mossea and irrigation every 7 days and application of either G. mossea or G. intraradices. In general, irrigation of sorghum plants every 14 days and supplying of G. mossea can produce the highest grain yield, while decreasing water consumption for sorghum production.

  5. Assimilating Remote Sensing Observations of Leaf Area Index and Soil Moisture for Wheat Yield Estimates: An Observing System Simulation Experiment

    Nearing, Grey S.; Crow, Wade T.; Thorp, Kelly R.; Moran, Mary S.; Reichle, Rolf H.; Gupta, Hoshin V.

    2012-01-01

    Observing system simulation experiments were used to investigate ensemble Bayesian state updating data assimilation of observations of leaf area index (LAI) and soil moisture (theta) for the purpose of improving single-season wheat yield estimates with the Decision Support System for Agrotechnology Transfer (DSSAT) CropSim-Ceres model. Assimilation was conducted in an energy-limited environment and a water-limited environment. Modeling uncertainty was prescribed to weather inputs, soil parameters and initial conditions, and cultivar parameters and through perturbations to model state transition equations. The ensemble Kalman filter and the sequential importance resampling filter were tested for the ability to attenuate effects of these types of uncertainty on yield estimates. LAI and theta observations were synthesized according to characteristics of existing remote sensing data, and effects of observation error were tested. Results indicate that the potential for assimilation to improve end-of-season yield estimates is low. Limitations are due to a lack of root zone soil moisture information, error in LAI observations, and a lack of correlation between leaf and grain growth.

  6. Grain Yield and Quality of Foxtail Millet (Setaria italica L. in Response to Tribenuron-Methyl.

    Na Ning

    Full Text Available Foxtail millet (Setaria italica L. is cultivated around the world for human and animal consumption. There is no suitable herbicide available for weed control in foxtail millet fields during the post-emergence stage. In this study, we investigated the effect and safety of the post-emergence herbicide tribenuron-methyl (TBM on foxtail millet in terms of grain yield and quality using a split-plot field design. Field experiments were conducted using two varieties in 2013 and 2014, i.e., high-yielding hybrid Zhangzagu 10 and high-quality conventional Jingu 21. TBM treatments at 11.25 to 90 g ai ha(-1 reduced root and shoot biomass and grain yield to varying degrees. In each of the two years, grain yield declined by 50.2% in Zhangzagu 10 with a herbicide dosage of 45 g ai ha(-1 and by 45.2% in Jingu 21 with a herbicide dosage of 22.5 g ai ha(-1 (recommended dosage. Yield reduction was due to lower grains per panicle, 1000-grain weight, panicle length, and panicle diameter. Grain yield was positively correlated with grains per panicle and 1000-grain weight, but not with panicles ha(-1. With respect to grain protein content at 22.5 g ai ha(-1, Zhangzagu 10 was similar to the control, whereas Jingu 21 was markedly lower. An increase in TBM dosage led to a decrease in grain Mn, Cu, Fe, and Zn concentrations. In conclusion, the recommended dosage of TBM was relatively safe for Zhangzagu 10, but not for Jingu 21. Additionally, the hybrid variety Zhangzagu 10 had a greater tolerance to TBM than the conventional variety Jingu 21.

  7. Grain Yield and Quality of Foxtail Millet (Setaria italica L.) in Response to Tribenuron-Methyl.

    Ning, Na; Yuan, Xiangyang; Dong, Shuqi; Wen, Yinyuan; Gao, Zhenpan; Guo, Meijun; Guo, Pingyi

    2015-01-01

    Foxtail millet (Setaria italica L.) is cultivated around the world for human and animal consumption. There is no suitable herbicide available for weed control in foxtail millet fields during the post-emergence stage. In this study, we investigated the effect and safety of the post-emergence herbicide tribenuron-methyl (TBM) on foxtail millet in terms of grain yield and quality using a split-plot field design. Field experiments were conducted using two varieties in 2013 and 2014, i.e., high-yielding hybrid Zhangzagu 10 and high-quality conventional Jingu 21. TBM treatments at 11.25 to 90 g ai ha(-1) reduced root and shoot biomass and grain yield to varying degrees. In each of the two years, grain yield declined by 50.2% in Zhangzagu 10 with a herbicide dosage of 45 g ai ha(-1) and by 45.2% in Jingu 21 with a herbicide dosage of 22.5 g ai ha(-1) (recommended dosage). Yield reduction was due to lower grains per panicle, 1000-grain weight, panicle length, and panicle diameter. Grain yield was positively correlated with grains per panicle and 1000-grain weight, but not with panicles ha(-1). With respect to grain protein content at 22.5 g ai ha(-1,) Zhangzagu 10 was similar to the control, whereas Jingu 21 was markedly lower. An increase in TBM dosage led to a decrease in grain Mn, Cu, Fe, and Zn concentrations. In conclusion, the recommended dosage of TBM was relatively safe for Zhangzagu 10, but not for Jingu 21. Additionally, the hybrid variety Zhangzagu 10 had a greater tolerance to TBM than the conventional variety Jingu 21.

  8. Investigation of Barely Grain Yield Improvement during the Last Half Century across Golestan Province

    M Hajipoor

    2017-03-01

    Full Text Available Introduction Barely (Hordeum vulgare is the fourth most important cereal after wheat, corn and rice. Regarding the role of breeding to increase barley grain yield a large number of studies have been done in different countries. However, a few studies have been performed across Golestan Province, in Iran. Therefore, this study was conducted to know what barley traits have changed with grain yield during recent years. How these traits will further improve the barley grain yield in the future breeding programs? Materials and Methods In order to study barely grain yield improvement during the last half century across Golestan Province, this expriment carried out at randomized complete block desing with 4 replications in Gonbad kavous university research field in 2013-2014. Treatments were included nine barley cultivars: Sahra, Dasht, Torkaman, Gorgan4, Nimruz, Mahoor, Khoram, Reyhan and Yousef. We analysed the results using ANOVA in the statistical software package SAS. Step by step regression analysis and pathway analysis was done to evaluate the relative proportion of different traits on yield and direct and indirect impacts of yield components on grain yield, respectively. Results and Discussion The results showed that the values of the studied parameters were significantly different in different cultivars. Results illustrated that the hieghest and the lowest grain weight were related to Mahoor (37.33 mg and Torkaman (22.66 mg, respectively. Due to the high number of rows per spike in barely cultivars, grains are closer together and there are less space for growth and phothosynthetic material storage. In addition, total assimilation was not enough to fill the grain of cultivars which have the more grain numbers per spike and it caused low grain weight. Although thousand grain weight is among the main grain yield components with high heritability, it influenced by other components such as the number of spikes and its length. The highest and the

  9. Yield and grain quality of spring barley as affected by biomass formation at early growth stages

    Křen, J.; Klem, Karel; Svobodová, I.; Míša, P.; Neudert, L.

    2014-01-01

    Roč. 60, č. 5 (2014), s. 221-227 ISSN 1214-1178 R&D Projects: GA MZe QI111A133 Keywords : Hordeum vulgare L * above-ground biomass * tillering * grain yield formation * grain protein content Subject RIV: EH - Ecology, Behaviour Impact factor: 1.226, year: 2014

  10. Genotype-by-environment interaction and grain yield stability of ...

    The objective of this paper is to identify stable and high yielding varieties among 20 Ethiopian Bread wheat (Triticum aestivum L.) genotypes on the basis of experiments conducted during the 2007 and 2008 growing seasons. The additive main effects and multiplicative interaction (ammi) model has been used to estimate ...

  11. Effects of Low Light on Agronomic and Physiological Characteristics of Rice Including Grain Yield and Quality

    Qi-hua LIU

    2014-09-01

    Full Text Available Light intensity is one of the most important environmental factors that determine the basic characteristics of rice development. However, continuously cloudy weather or rainfall, especially during the grain-filling stage, induces a significant loss in yield and results in poor grain quality. Stress caused by low light often creates severe meteorological disasters in some rice-growing regions worldwide. This review was based on our previous research and related research regarding the effects of low light on rice growth, yield and quality as well as the formation of grain, and mainly reviewed the physiological metabolism of rice plants, including characteristics of photosynthesis, activities of antioxidant enzymes in rice leaves and key enzymes involved in starch synthesis in grains, as well as the translocations of carbohydrate and nitrogen. These characteristics include various grain yield and rice quality components (milling and appearance as well as cooking, eating and nutritional qualities under different rates of shading imposed at the vegetative or reproductive stages of rice plants. Furthermore, we discussed why grain yield and quality are reduced under the low light environment. Next, we summarized the need for future research that emphasizes methods can effectively improve rice grain yield and quality under low light stress. These research findings can provide a beneficial reference for rice cultivation management and breeding program in low light environments.

  12. Dryland Winter Wheat Yield, Grain Protein, and Soil Nitrogen Responses to Fertilizer and Biosolids Applications

    Richard T. Koenig

    2011-01-01

    Full Text Available Applications of biosolids were compared to inorganic nitrogen (N fertilizer for two years at three locations in eastern Washington State, USA, with diverse rainfall and soft white, hard red, and hard white winter wheat (Triticum aestivum L. cultivars. High rates of inorganic N tended to reduce yields, while grain protein responses to N rate were positive and linear for all wheat market classes. Biosolids produced 0 to 1400 kg ha−1 (0 to 47% higher grain yields than inorganic N. Wheat may have responded positively to nutrients other than N in the biosolids or to a metered N supply that limited vegetative growth and the potential for moisture stress-induced reductions in grain yield in these dryland production systems. Grain protein content with biosolids was either equal to or below grain protein with inorganic N, likely due to dilution of grain N from the higher yields achieved with biosolids. Results indicate the potential to improve dryland winter wheat yields with biosolids compared to inorganic N alone, but perhaps not to increase grain protein concentration of hard wheat when biosolids are applied immediately before planting.

  13. Determination of the compressive yield strength for nano-grained YAG transparent ceramic by XRD analysis

    Wang, H.M.; Jiang, J.S.; Huang, Z.Y.; Chen, Y.; Liu, K.; Lu, Z.W.; Qi, J.Q.; Li, F.; He, D.W.; Lu, T.C.; Wang, Q.Y.

    2016-01-01

    Nano-grained ceramics have their unique mechanical characteristics that are not commonly found in their coarse-grained counterparts. In this study, nano-grained YAG transparent ceramics (NG-YAG) were prepared by low-temperature high-pressure technique (LTHP). The peak profile analysis of the X-ray diffraction was employed to investigate the compressive yield strength of NG-YAG. During the temperature at 450 °C, the residual micro-strain (RMS) increased with increasing loading pressure. However when the loading pressure was exceeded to 4.0 GPa the RMS exhibited a severe negative slop. The temperature effects on the compressive yield strength were also studied. It shows that the compressive yield strength of NG-YAG is 4.0 GPa and 5.0 GPa respectively at 450 °C and 350 °C. More importantly according to this investigation, a feasible technique to study the nano-grained ceramics is provided. - Graphical abstract: Fig. 2 shows the significant slope changes of calculated residual micro-strain (RMS) associated with five selected pressure-temperature conditions. Another the grain size estimated from Scherrer's formula, especially when it changes with the pressure-temperature condition is also plotted in Fig. 2. - Highlights: • Prepared the nano-grained YAG transparent ceramic by high pressure technique. • Obtained the compressive yield with different temperature. • Obtained the compressive yield of nano-grained YAG transparent ceramic.

  14. Consortium Application of Endophytic Bacteria and Fungi Improves Grain Yield and Physiological Attributes in Advanced Lines of Bread Wheat

    Ghulam Muhae-Ud-Din

    2018-02-01

    Full Text Available Increasing human population places pressure on agriculture. To feed this population, two time increase in the current wheat production is needed. Today agriculture is becoming input intensive with more reliance on synthetic fertilizers and agrochemicals to fulfil the feed demand of the growing numbers. Use of synthetic fertilizer since last few years is impacting the soil quality. In this scenario, the use of beneficial endophytic microbes is an attractive strategy to overcome the use of synthetic products. To investigate the effect of consortium application of endophytic bacteria and fungus on plant growth, grain yield moisture status, a pot experiment was conducted in different wheat lines. It comprised four treatments like control, application of bacterial strain Bacillus sp. MN54, fungal strain Trichoderma sp. MN6, and their consortium (Bacillus sp. MN54 + Trichoderma sp. MN6. The effect of consortium application was more prominent and significantly different from the sole application of bacteria and fungus. The results showed that with a consortium application of endophytic bacteria and fungus, there was 28.6, 4.3, -6.3 and -3.7% increases in flag leaf area, chlorophyll content, relative membrane permeability and water content respectively. Consortia of endophytic microbes also resulted in the yield enhancement through the betterment of various yield attributes like number of spikelet’s, grains per spike and grain yield per plant (32.2, 25.8 and 30.8%, respectively. So, consortia of endophytic microbes can greatly promote the progress of plants in dry land agriculture and increase the yield in an environmentally sustainable way.

  15. Use of optical sensor for in-season nitrogen management and grain yield prediction in maize

    Bandhu Raj Baral

    2015-12-01

    Full Text Available Precision agriculture technologies have developed optical sensors which can determine plant’s normalized difference vegetation index (NDVI.To evaluate the relationship between maize grain yield and early season NDVI readings, an experiment was conducted at farm land of National Maize Research Program, Rampur, Chitwan during winter season of 2012. Eight different levels of N 0, 30, 60, 90, 120, 150, 180 and 210 kg N/ha were applied for hybrid maize RML 32 × RML 17 to study grain yield response and NDVI measurement. Periodic NDVI was measured at 10 days interval from 55 days after sowing (DAS to 115 DAS by using Green seeker hand held crop sensor. Periodic NDVI measurement taken at a range of growing degree days (GDD was critical for predicting grain yield potential. Poor exponential relationship existed between NDVI from early reading measured before 208 GDD (55 DAS and grain yield. At the 261GDD (65DAS a strong relationship (R2 = 0.70 was achieved between NDVI and grain yield. Later sensor measurements after 571 GDD (95DAS failed to distinguish variation in green biomass as a result of canopy closure. N level had significantly influenced on NDVI reading, measured grain yield, calculated in season estimated yield (INSEY, predicted yield with added N (YPN, response index (RI and grain N demand. Measuring NDVI reading by GDD (261–571 GDD allow a practical window of opportunity for side dress N applications. This study showed that yield potential in maize could be accurately predicted in season with NDVI measured with the Green Seeker crop sensor.

  16. Investigating the Effect of Cultivate Lines Direction, Bio-Fertilizer Nitroxin and Superabsorbent Materials on Yield and Yield Components of Broad Leaf Vetch (Vicia narbonensis

    E Latifinia

    2017-12-01

    Full Text Available Introduction The excessive use of fertilizers has caused severe damages to the bio-cycle in the fields and has destroyed the sustainable agricultural machinery. These destructive effects have led to the recommended use of bio-fertilizers. Biodiversity is one of the key sources of supplying nutrients in sustainable agriculture. The use of biological fertilizers in a sustainable agricultural system leads to sustained yield in plant production. Biological fertilizer of nitroxin has increased biological yield and grain yield in fodder corn. Water shortage as a limiting factor has limited vegetation growth and development in these areas. Considering that Iran is a dry country, the use of super adsorbent is one of the ways to reduce water consumption. Investigators in the study of superabsorbent showed that superabsorbent had a significant and positive effect on the yield of forage plants. Crop directions can affect the amount of the product by increasing the leaf area and absorbing light. Proper orientation of crop lines increases the photosynthetic efficiency and increases the yield and yield components of the plant. Research has shown that yields are much higher in plants planted on the north-south lines compared with plants planted on east-west lines. Materials and Methods In order to investigate the effect of nitroxin and superabsorbent fertilizer on yield and yield components of broad leaf vetch in a research field of agricultural faculty, Lorestan University, as a split plot factorial based on a complete block design randomization was performed in three replicates. In this research, for main lines, the main factors were considered in the North-South and East-West directions in the main plots. Sub-factors In this experiment, nitroxin biosynthesis and superabsorbent materials were applied at two levels of consumption and non-consumption in sub plots. Nitroxin fertilizer was used as a seed lot at a rate of 1 liter per hectare and the stockosorb

  17. INFLUENCE OF WEATHER CONDITIONS ON GRAIN YIELD, OIL CONTENT AND OIL YIELD OF NEW OS SUNFLOWER HYBRIDS

    Anto Mijić

    2017-01-01

    Full Text Available With the purpose of determining the influence of weather conditions on the yield components of sunflower, the results of three-year field trials are analysed in the paper. In the trials sown in Osijek in 2013, 2014 and 2015, there were 15 sunflower hybrids: two foreign hybrids and 13 hybrid combinations of the Agricultural Institute Osijek. In the period before sowing (January – March, the highest amount of precipitation was in 2013 (213.1 mm, then in 2015 (167.9 mm, and the lowest in 2014 (109.5 mm. In the growing period (April – September, the highest amount of precipitation (487.3 mm was in 2014, 475.7 mm in 2013, and in 2015 it was the lowest (251.6 mm. In 2013, during the growing period, the mean monthly air temperature was 19.1°C, in 2015 19.9°C, and in 2014 18.6°C. Of these years, statistically significant at the P=0.05, the highest value of the analysed traits was recorded in 2013: grain yield of 6.47 t ha-1, oil content 51.69% and oil yield 3.05 t ha-1. Grain yield, oil content and oil yield were lower in 2015, and the lowest in 2014. Matej, a newly recognized sunflower hybrid of the Agricultural Institute Osijek had the highest values of grain and oil yield (6.95 and 3.39 t ha-1, and by its oil content of 53.44%, it was in the third place. For high grain and oil yields of sunflower, in addition to the optimal air temperature, the amount and distribution of precipitation before and also during the growing season are very important.

  18. Correlation of concentration of fumonisins and yield grain of wheat

    Protić Nada M.

    2005-01-01

    Full Text Available Wheat from different locations was served for the isolation of Fusarium spp. Isolates were precisely identified and multiplied for artificial inoculation. Three sorts of winter wheat were chosen: PKB Lepoklasa Jugoslavija and Francuska. To these sorts three different treatments were applied: artificial inoculation with the isolates of Fusarium spp. protection of wheat with fungicide Impact-C and follow-up of a spontaneous infection in different phenophasis of wheat development. The control was done with the same sort, of the same location, not covered by an experiment. The research lasted for three years. Phytopathological evaluation was done twice during vegetation. The sort of Jugoslavija had an average of 85% of infected plants, Francuska 65%, but PKB Lepoklasa during each of three years had 100% of infection by Fusarium spp. fungi. Presence of fungi Fusarium spp. causes production of numerous mycotoxins and we determined presence of fumonisins. The mentioned mycotoxin was found only in the treatment of artificial inoculation for each sort. Presence of fumonisins was proved by fluorometric method and concentration was by sorts as follows: Jugoslavija 0.30 mg/kg, Francuska 0.62 mg/kg, and PKB Lepoklasa 0.56mg/kg. In grains 100% infected by fungus, the concentration of mentioned toxins is of a greater quantity.

  19. Growth and yield response to plant density of water leaf ( Talinum ...

    The effects of different planting spaces (15cm x 15cm, 20cm x 20cm, 25cm x 25cm and 30cm x 30cm) on the growth and yield of Talinum triangulare (Water leaf) were investigated in two cropping seasons from 2012 to 2013 (rainy and dry seasons) at University of Port Harcourt Teaching and Research farm, Port Harcourt, ...

  20. The effects of different nitrogen doses on yield, quality and leaf ...

    ONOS

    2010-08-09

    Aug 9, 2010 ... The effects of different nitrogen doses on yield, quality and leaf nitrogen content of some early grape cultivars. (V. vinifera L.) grown in greenhouse. Hatice Bilir Ekbic1, Gultekin Ozdemir2, Ali Sabir3* and Semih Tangolar1. 1Department of Horticulture, Faculty of Agriculture, University of Cukurova, Adana, ...

  1. Grain Yield, Its Components, Genetic Diversity and Heritability in Chickpea (Cicer arietinum L.

    M. Kakaei

    2015-09-01

    Full Text Available The current research was carried out to investigate grain yield and components and their genetic diversity and heritability of some important agronomic traits, in 19 chickpea genotypes, based on a randomized complete block design with 3 replications in Research Field of Bu-Ali Sina University, Hamadan, Iran in 2011-2012 growing seasons. The ANOVA results showed that, there were highly significant differences (p < 0.01 among genotypes for the SPAD number, number of sub-branch per plant, pod number per plant, 100-kernel weight, grain yield, biological yield, and harvest index. The mean comparisons results indicated that the genotypes 14, 12, 4 and 19 (with 234.7, 240, 250.3 and 259.4 kilogram of grain yield per ha, respectively and the genotypes 18, 8, 15, and 6 (with 151.01, 167.6, 167.8 and 189 kilogram of grain yield per ha, respectively had the maximum and minimum economic yield, respectively. According to phonotypical correlation results, there were positive and significant (p < 0.01 correlations between grain yield and pod number per plant (0.623**, plant height (0.432**, harvest index (0.425** and biomass (0.349**. Step-wise regression indicated that the pod number per plant, harvest index, biomass, number of sub-branch per plant, and plant height were the most effective traits on economic yield and they explained 84.68 percent of the variation in economic yield. Furthermore, harvest index and seed number per plant had the maximum and minimum heritability, respectively, indicating that they could be hired as sources of variation for improving the grain yield and selecting superior genotypes.

  2. Inheritance of grain yield and its correlation with yield components in ...

    SAM

    2014-03-19

    Mar 19, 2014 ... 7 × 7 incomplete diallel cross of seven wheat parents during the crop season of 2009 to 2010. Mean square of general ... Genetic background and yield traits of the seven parents. Parent. Pedigree. Released year ..... Correlation and path analysis for yield and yield contributing characters in wheat (Triticum ...

  3. Effect of gamma irradiation on the grain yield of Nigerian Zea mays and Arachis hypogaea

    Mokobia, C E; Okpakorese, E M; Analogbei, C; Agbonwanegbe, J [Department of Physics, Delta State University, Abraka, Delta State (Nigeria)

    2006-12-15

    As a follow-up to our earlier investigation on the effect of gamma radiation on the germination and growth of certain Nigerian agricultural crops, the present study sought to determine the effect of gamma radiation on the grain yield of Zea mays (maize) and Arachis hypogaea (groundnut). The seeds were planted after irradiation without the application of fertiliser. The results show that for maize, grain yield for irradiated samples is increased to levels above the unirradiated yield at doses up to about 250 Gy with the optimum yield occurring at 150 Gy. The corresponding increase for groundnut is observed at doses up to about 930 Gy with optimum yield at a dose of 300 Gy. Inhibition in yield was observed to set in at a dose greater than 250 Gy for maize and 930 Gy for groundnut. The actual relationship between mean yield of these crops and gamma radiation dose was obtained using sixth-degree polynomial equations. (note)

  4. Effect of gamma irradiation on the grain yield of Nigerian Zea mays and Arachis hypogaea

    Mokobia, C E; Okpakorese, E M; Analogbei, C; Agbonwanegbe, J

    2006-01-01

    As a follow-up to our earlier investigation on the effect of gamma radiation on the germination and growth of certain Nigerian agricultural crops, the present study sought to determine the effect of gamma radiation on the grain yield of Zea mays (maize) and Arachis hypogaea (groundnut). The seeds were planted after irradiation without the application of fertiliser. The results show that for maize, grain yield for irradiated samples is increased to levels above the unirradiated yield at doses up to about 250 Gy with the optimum yield occurring at 150 Gy. The corresponding increase for groundnut is observed at doses up to about 930 Gy with optimum yield at a dose of 300 Gy. Inhibition in yield was observed to set in at a dose greater than 250 Gy for maize and 930 Gy for groundnut. The actual relationship between mean yield of these crops and gamma radiation dose was obtained using sixth-degree polynomial equations. (note)

  5. Genetic Loci Governing Grain Yield and Root Development under Variable Rice Cultivation Conditions

    Margaret Catolos

    2017-10-01

    Full Text Available Drought is the major abiotic stress to rice grain yield under unpredictable changing climatic scenarios. The widely grown, high yielding but drought susceptible rice varieties need to be improved by unraveling the genomic regions controlling traits enhancing drought tolerance. The present study was conducted with the aim to identify quantitative trait loci (QTLs for grain yield and root development traits under irrigated non-stress and reproductive-stage drought stress in both lowland and upland situations. A mapping population consisting of 480 lines derived from a cross between Dular (drought-tolerant and IR64-21 (drought susceptible was used. QTL analysis revealed three major consistent-effect QTLs for grain yield (qDTY1.1, qDTY1.3, and qDTY8.1 under non-stress and reproductive-stage drought stress conditions, and 2 QTLs for root traits (qRT9.1 for root-growth angle and qRT5.1 for multiple root traits, i.e., seedling-stage root length, root dry weight and crown root number. The genetic locus qDTY1.1 was identified as hotspot for grain yield and yield-related agronomic and root traits. The study identified significant positive correlations among numbers of crown roots and mesocotyl length at the seedling stage and root length and root dry weight at depth at later stages with grain yield and yield-related traits. Under reproductive stage drought stress, the grain yield advantage of the lines with QTLs ranged from 24.1 to 108.9% under upland and 3.0–22.7% under lowland conditions over the lines without QTLs. The lines with QTL combinations qDTY1.3+qDTY8.1 showed the highest mean grain yield advantage followed by lines having qDTY1.1+qDTY8.1 and qDTY1.1+qDTY8.1+qDTY1.3, across upland/lowland reproductive-stage drought stress. The identified QTLs for root traits, mesocotyl length, grain yield and yield-related traits can be immediately deployed in marker-assisted breeding to develop drought tolerant high yielding rice varieties.

  6. Updated stomatal flux and flux-effect models for wheat for quantifying effects of ozone on grain yield, grain mass and protein yield.

    Grünhage, Ludger; Pleijel, Håkan; Mills, Gina; Bender, Jürgen; Danielsson, Helena; Lehmann, Yvonne; Castell, Jean-Francois; Bethenod, Olivier

    2012-06-01

    Field measurements and open-top chamber experiments using nine current European winter wheat cultivars provided a data set that was used to revise and improve the parameterisation of a stomatal conductance model for wheat, including a revised value for maximum stomatal conductance and new functions for phenology and soil moisture. For the calculation of stomatal conductance for ozone a diffusivity ratio between O(3) and H(2)O in air of 0.663 was applied, based on a critical review of the literature. By applying the improved parameterisation for stomatal conductance, new flux-effect relationships for grain yield, grain mass and protein yield were developed for use in ozone risk assessments including effects on food security. An example of application of the flux model at the local scale in Germany shows that negative effects of ozone on wheat grain yield were likely each year and on protein yield in most years since the mid 1980s. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. A new economic assessment index for the impact of climate change on grain yield

    Dong, Wenjie; Chou, Jieming; Feng, Guolin

    2007-03-01

    The impact of climate change on agriculture has received wide attention by the scientific community. This paper studies how to assess the grain yield impact of climate change, according to the climate change over a long time period in the future as predicted by a climate system model. The application of the concept of a traditional “yield impact of meteorological factor (YIMF)” or “yield impact of weather factor” to the grain yield assessment of a decadal or even a longer timescale would be suffocated at the outset because the YIMF is for studying the phenomenon on an interannual timescale, and it is difficult to distinguish between the trend caused by climate change and the one resulting from changes in non-climatic factors. Therefore, the concept of the yield impact of climatic change (YICC), which is defined as the difference in the per unit area yields (PUAY) of a grain crop under a changing and an envisaged invariant climate conditions, is presented in this paper to assess the impact of global climate change on grain yields. The climatic factor has been introduced into the renowned economic Cobb-Douglas model, yielding a quantitative assessment method of YICC using real data. The method has been tested using the historical data of Northeast China, and the results show that it has an encouraging application outlook.

  8. A New Economic Assessment Index for the Impact of Climate Change on Grain Yield

    2007-01-01

    The impact of climate change on agriculture has received wide attention by the scientific community.This paper studies how to assess the grain yield impact of climate change, according to the climate change over a long time period in the future as predicted by a climate system model. The application of the concept of a traditional "yield impact of meteorological factor (YIMF)" or "yield impact of weather factor" to the grain yield assessment of a decadal or even a longer timescale would be suffocated at the outset because the YIMF is for studying the phenomenon on an interannual timescale, and it is difficult to distinguish between the trend caused by climate change and the one resulting from changes in non-climatic factors. Therefore,the concept of the yield impact of climatic change (YICC), which is defined as the difference in the per unit area yields (PUAY) of a grain crop under a changing and an envisaged invariant climate conditions, is presented in this paper to assess the impact of global climate change on grain yields. The climatic factor has been introduced into the renowned economic Cobb-Douglas model, yielding a quantitative assessment method of YICC using real data. The method has been tested using the historical data of Northeast China,and the results show that it has an encouraging application outlook.

  9. The Combining Ability of Maize Inbred Lines for Grain Yield and ...

    The Combining Ability of Maize Inbred Lines for Grain Yield and Reaction to Grey ... East African Journal of Sciences ... (GLS) to maize production, the national maize research program of Ethiopia ... The information from this study will be useful for the development of high-yielding and GLS disease-resistant maize varieties.

  10. Comparison of Grain Yield and Some Characteristics of Hulled, Durum and Bread Wheat Genotypes Varieties

    Bekir Atar

    2017-02-01

    Full Text Available In spite of the low grain yield they produce, the hulled wheat have become even more important in recent years because of their resistance to negative environmental conditions and healthy nutritional content. The research was carry out in order to comparison the yield and yield characteristics of durum (Kiziltan-91 and C-1252, hulled (Einkorn and Emmer and bread wheat (Tir varieties in Isparta ecological conditions in 2013-14 and 2014-15 vegetation periods. In both years, the highest grain yield was obtained in Kiziltan-91 variety (3992 and 3758 kg ha-1 respectively. The grain yield of hulled wheats in the first year (Einkorn 1269 kg ha-1, Emmer 2125 kg ha-1 was around Turkey averages. However, grain yield decreased of commercial wheat varieties due to the negative effect of high amount of rainfall in June in the second year, but considerably increased in (Einkorn 2150 kg ha-1, Emmer 2533 kg ha-1. N uptake was found to be lower in the than durum wheats. In terms of grain protein content, the highest values were obtained in Emmer variety (16.4%-15.3%.

  11. Genotype × environment interaction of quality protein maize grain yield in Nepal

    Jiban Shrestha

    2016-12-01

    Full Text Available In order to determine G × E interaction of quality protein maize grain yield, six maize genotypes were evaluated under different environments of three Terai (Chitwan, Surkhet and Doti and four mid hill (Dhankuta, Lalitpur, Dolakha and Kaski districts of Nepal during summer seasons of 2014 and 2015. The experiments were conducted using randomized complete block design along with three replications. The genotypes namely S99TLYQ-B, S99TLYQ-HG-AB and S03TLYQ-AB-01 were identified high yielding and better adapted genotypes for Terai environments with grain yield of 4199 kg ha-1, 3715 kg ha-1, and 3336 kg ha-1 respectively and S99TLYQ-B and S03TLYQ-AB-01 for mid hill environments with grain yield of 4547 kg ha-1 and 4365 kg ha-1 respectively. Therefore, these genotypes can be suggested for cultivation in their respective environments in the country.

  12. Yielding of leaf celery Apium graveolens L. var. secalinum Alef. depending on the number of harvests and irrigation

    Ewa Rożek

    2013-04-01

    Full Text Available Leaf celery (Apium graveolensvar. secalinum is a vegetable with medicinal and spicy properties. Its numerous intensely fragrant leaves can be cut several times during the plant growing period. The aim of this study was to evaluate the effect of irrigation and number of harvests on leaf celery yield of the cultivars ‘Afina’ and‘Gewone Snij’. Plant irrigation significantly increased leaf yield and plant height of leaf celery. Higher total yield was obtained from non-irrigated plants when leaves were harvested three times, whereas for irrigated plants yield was higher in the case of two leaf harvests. Irrespective of the experimental factors, higher yield was obtained from the cultivar ‘Gewone Snij’.

  13. Grain yield and baking quality of wheat under different sowing dates

    Raphael Rossi Silva

    2014-04-01

    Full Text Available Choosing the right sowing dates can maximize the outcomes of the interaction between genotype and environment, thus increasing grain yield and baking quality of wheat (Triticum aestivum L.. The present study aimed at determining the most appropriate sowing dates that maximize grain yield and baking quality of wheat cultivars. Seven wheat cultivars (BRS 179, BRS Guamirim, BRS Guabiju, BRS Umbu, Safira, CD 105 and CD 115 were evaluated at four sowing dates (the 1st and the 15th of June and July in two harvesting seasons (2007 and 2008. The study was setup in a completely randomized block design with four repetitions. The effects of the year and sowing date when combined explained 93% of the grain yield variance. In 2007, the CD 105 and Safira cultivars had the highest grain yield (GY for all sowing dates. Only the BRS Guabiju and Safira cultivars possessed high baking quality for all sowing dates assessed. In 2008, the environmental conditions were favorable for superior GY, but the baking quality was inferior. Considering adapted cultivars and sowing dates, it is possible to maximize grain yield and baking quality of wheat.

  14. Evaluation of early maize genotypes for grain yield and agromorphological traits

    Bishal Dhakal

    2017-12-01

    Full Text Available The purpose of this study was to assess the variation on agro-morphological traits and grain yield. A set of 14 early maize genotypes were studied at research field of Regional Agricultural Research Station (RARS, Doti, Nepal in summer seasons of 2015 and 2016. The experiment was carried out in Randomized Complete Block Design (RCBD with three replications in each year. The variation among genotypes was observed for grain yield and flowering. The genotype SO3TEY-PO-BM produced the highest grain yield (4.33 t/ha in 2015 whereas Rajahar Local Variety produced the highest grain yield (2.52 t/ha in 2016. The combined analysis over years showed that Farmer’s variety was found earlier in tasseling (36 days and silking (39 days, followed by S97TEYGHAYB(3 in tasseling (45 days and by S97TEYGHAYB(3 and Arun-4 in silking (48 days. EEYC1 produced the highest grain yield (3.17 t/ha, followed by COMPOL-NIBP (3.09 t/ha, SO3TEY-PO-BM (2.90 t/ha, S97TEYGHAYB(3 (2.78 t/ha and Rajahar Local variety (2.77 t/ha, respectively. The information on variation for the agro-morphological traits among studied early maize genotypes will be helpful to plant breeders in constructing their breeding materials and implementing selection strategies.

  15. Weed Competition and its Effects on Pwani Hybrid 1 Maize Grain Yields in Coastal Kenya

    Kamau, G.M.; Saha, H.M.

    1999-01-01

    Weed competition is a serious constraint to maize production in coastal Kenya. A trial to asses the effects of weed competition on performance of maize was planted at Regional Research Centre-Mtwapa and Msabaha Research Sub-centre-Malindi in 1992. Pwani hybrid 1 maize was used in the trials. Weeding was done at weekly intervals from germination up to the sixth week in an additive weed removal system and plots maintained weed free afterwards. A weedy and a weed free plot were used as checks. Data on plant counts plant heights, weed biomass, weed identification and maize grain yield at 15 % MC were all recorded. There was a significant difference between weed and weedy free plots for grain yield, plant height and weed biomass for both sites. A 53% maize grain yield reduction due to weed competition was recorded. A 3% grain yield reduction equivalent to 1.03 bags for every week's delay in weeding after the first to weeks was realised for both sites. There was a corresponding grain yield loss as delay in weeding increased

  16. The influence of climatic conditions changes on grain yield in Winter Triticale (X Triticosecale Wittm.

    Ionuț RACZ

    2017-05-01

    Full Text Available The aim of this paper is making out the influence of climatic changes on grain yield of winter triticale in relation with applied fertilizer. The influence of environmental conditions on growing and development of triticale plants depends of grow stages and their duration. During five experimental years (2010-2015 the climatic conditions were different year to year, with an accentuated heating trend, influencing plant phenology, accelerating or slowing down some important processes disturbing grain yield formation. The influence of drought is more accentuated by heating stress and prolonging of these conditions during the main phenological processes have a negative influence on plant growth or development with effect on the grain yield formation process.

  17. Plant height and grain yield of soybean depending on the year, irrigation and variety

    Daria Galić Šubašić

    2017-01-01

    Full Text Available Three-year field trials determined the influence of the year, irrigation treatment and varieties on plant height and grain yield of soybeans in the eastern Croatia conditions. All three investigated factors, as well as their interactions, with the exception of irrigation interactions and varieties that were significant at P=0.05, show a statistically significant influence (P=0.01 on the height of soybean plants. Soybean grain yields, as well as all their interactions, affect the significance level P=0.01. The obtained values of soybean grain yields during the study (mostly greater than 3000 kg ha-1 indicate the importance of selecting appropriate varieties and irrigation treatment in adapting soybean production to adverse weather effects of the year.

  18. Grain size effect on yield strength of titanium alloy implanted with aluminum ions

    Popova, Natalya, E-mail: natalya-popova-44@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk (Russian Federation); Nikonenko, Elena, E-mail: vilatomsk@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); National Research Tomsk Polytechnic University, 30, Lenin Str., 634050, Tomsk (Russian Federation); Yurev, Ivan, E-mail: yiywork@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Kalashnikov, Mark, E-mail: kmp1980@mail.ru [Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk (Russian Federation); Kurzina, Irina, E-mail: kurzina99@mail.ru [National Research Tomsk State University, 36, Lenin Str., 634050, Tomsk (Russian Federation)

    2016-01-15

    The paper presents a transmission electron microscopy (TEM) study of the microstructure and phase state of commercially pure titanium VT1-0 implanted by aluminum ions. This study has been carried out before and after the ion implantation for different grain size, i.e. 0.3 µm (ultra-fine grain condition), 1.5 µm (fine grain condition), and 17 µm (polycrystalline condition). This paper presents details of calculations and analysis of strength components of the yield stress. It is shown that the ion implantation results in a considerable hardening of the entire thickness of the implanted layer in the both grain types. The grain size has, however, a different effect on the yield stress. So, both before and after the ion implantation, the increase of the grain size leads to the decrease of the alloy hardening. Thus, hardening in ultra-fine and fine grain alloys increased by four times, while in polycrystalline alloy it increased by over six times.

  19. Contributions to yield strength in an ultrafine grained 1050 aluminum alloy after DC current annealing

    Cao, Yiheng; He, Lizi; Zhou, Yizhou; Wang, Ping; Cui, Jianzhong

    2016-01-01

    The ultrafine grained (UFG) 1050 aluminum alloy was prepared by equal channel angular pressing at cryogenic temperature (cryoECAP). The evolution of the yield strength and microstructures of UFG 1050 aluminum alloy after direct electric current (DC current) annealing at 150–400 °C for 1 h were investigated by tensile test, electron back scattering diffraction pattern (EBSD) and transmission electron microscopy (TEM). For the cryoECAPed and annealed samples at 150–250 °C, the predominant boundaries are high angle boundaries (HABs) (>60%), many dislocations accumulate at subgrain and/or grain boundaries, the yield strength (126–159 MPa) mainly comes from the dislocation and grain boundary strengthening contributions. While an unusual increase in the yield strength (by 8.1–11.2%) observed in samples annealed at 150–200 °C is attributed to an additional strengthening contribution from the more HABs having stable structures which can act as effective barriers to dislocation motion during tensile deformation. When annealing at 300–400 °C, the microstructures are free of dislocations, the yield strength (29–45 MPa) comes from the grain boundary strengthening contribution. With the application of DC current, the larger grain size, lower dislocation density and higher fraction of LABs having misorientation angle between 3−7° in samples annealed at 150–250 °C result in the lower yield strength, while the smaller average grain sizes in samples annealed at 300–400 °C cause the higher yield strength.

  20. Contributions to yield strength in an ultrafine grained 1050 aluminum alloy after DC current annealing

    Cao, Yiheng [Key Lab of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); He, Lizi, E-mail: helizi@epm.neu.edu.cn [Key Lab of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); Zhou, Yizhou [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Ping; Cui, Jianzhong [Key Lab of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China)

    2016-09-30

    The ultrafine grained (UFG) 1050 aluminum alloy was prepared by equal channel angular pressing at cryogenic temperature (cryoECAP). The evolution of the yield strength and microstructures of UFG 1050 aluminum alloy after direct electric current (DC current) annealing at 150–400 °C for 1 h were investigated by tensile test, electron back scattering diffraction pattern (EBSD) and transmission electron microscopy (TEM). For the cryoECAPed and annealed samples at 150–250 °C, the predominant boundaries are high angle boundaries (HABs) (>60%), many dislocations accumulate at subgrain and/or grain boundaries, the yield strength (126–159 MPa) mainly comes from the dislocation and grain boundary strengthening contributions. While an unusual increase in the yield strength (by 8.1–11.2%) observed in samples annealed at 150–200 °C is attributed to an additional strengthening contribution from the more HABs having stable structures which can act as effective barriers to dislocation motion during tensile deformation. When annealing at 300–400 °C, the microstructures are free of dislocations, the yield strength (29–45 MPa) comes from the grain boundary strengthening contribution. With the application of DC current, the larger grain size, lower dislocation density and higher fraction of LABs having misorientation angle between 3−7° in samples annealed at 150–250 °C result in the lower yield strength, while the smaller average grain sizes in samples annealed at 300–400 °C cause the higher yield strength.

  1. Genotype x environment interaction for grain yield of wheat genotypes tested under water stress conditions

    Sail, M.A.; Dahot, M.U.; Mangrio, S.M.; Memon, S.

    2007-01-01

    Effect of water stress on grain yield in different wheat genotypes was studied under field conditions at various locations. Grain yield is a complex polygenic trait influenced by genotype, environment and genotype x environment (GxE) interaction. To understand the stability among genotypes for grain yield, twenty-one wheat genotypes developed Through hybridization and radiation-induced mutations at Nuclear Institute of Agriculture (NIA) TandoJam were evaluated with four local check varieties (Sarsabz, Thori, Margalla-99 and Chakwal-86) in multi-environmental trails (MET/sub s/). The experiments were conducted over 5 different water stress environments in Sindh. Data on grain yield were recorded from each site and statistically analyzed. Combined analysis of variance for all the environments indicated that the genotype, environment and genotype x environment (GxE) interaction were highly significant (P greater then 0.01) for grain yield. Genotypes differed in their response to various locations. The overall highest site mean yield (4031 kg/ha) recorded at Moro and the lowest (2326 kg/ha) at Thatta. Six genotypes produced significantly (P=0.01) the highest grain yield overall the environments. Stability analysis was applied to estimate stability parameters viz., regression coefficient (b), standard error of regression coefficient and variance due to deviation from regression (S/sub 2/d) genotypes 10/8, BWS-78 produced the highest mean yield over all the environments with low regression coefficient (b=0.68, 0.67 and 0.63 respectively and higher S/sup 2/ d value, showing specific adaptation to poor (un favorable) environments. Genotype 8/7 produced overall higher grain yield (3647 kg/ha) and ranked as third high yielding genotype had regression value close to unity (b=0.9) and low S/sup d/ value, indicating more stability and wide adaptation over the all environments. The knowledge of the presence and magnitude of genotype x environment (GE) interaction is important to

  2. Simulation Models of Leaf Area Index and Yield for Cotton Grown with Different Soil Conditioners.

    Lijun Su

    Full Text Available Simulation models of leaf area index (LAI and yield for cotton can provide a theoretical foundation for predicting future variations in yield. This paper analyses the increase in LAI and the relationships between LAI, dry matter, and yield for cotton under three soil conditioners near Korla, Xinjiang, China. Dynamic changes in cotton LAI were evaluated using modified logistic, Gaussian, modified Gaussian, log normal, and cubic polynomial models. Universal models for simulating the relative leaf area index (RLAI were established in which the application rate of soil conditioner was used to estimate the maximum LAI (LAIm. In addition, the relationships between LAIm and dry matter mass, yield, and the harvest index were investigated, and a simulation model for yield is proposed. A feasibility analysis of the models indicated that the cubic polynomial and Gaussian models were less accurate than the other three models for simulating increases in RLAI. Despite significant differences in LAIs under the type and amount of soil conditioner applied, LAIm could be described by aboveground dry matter using Michaelis-Menten kinetics. Moreover, the simulation model for cotton yield based on LAIm and the harvest index presented in this work provided important theoretical insights for improving water use efficiency in cotton cultivation and for identifying optimal application rates of soil conditioners.

  3. Grain yield increase in cereal variety mixtures: A meta-analysis of field trials

    Kiær, Lars Pødenphant; Skovgaard, Ib; Østergård, Hanne

    2009-01-01

    on grain yield. To investigate the prevalence and preconditions for positive mixing effects, reported grain yields of variety mixtures and pure variety stands were obtained from previously published variety trials, converted into relative mixing effects and combined using meta-analysis. Furthermore...... as meeting the criteria for inclusion in the meta-analysis; on the other hand, nearly 200 studies were discarded. The accepted studies reported results on both winter and spring types of each crop species. Relative mixing effects ranged from 30% to 100% with an overall meta-estimate of at least 2.7% (p

  4. Grain yields and disease resistance as selection criteria for introduction of new varieties of small grain cereal in Lubumbashi, D.R. Congo.

    Mukobo, M R P; Ngongo, L M; Haesaert, G

    2014-01-01

    Wheat production in African countries is a major challenge for their development, considering their increasing consumption of wheat flour products. In the Democratic Republic of Congo, wheat and wheat-based products are the important imported food products although there is a potential for the cultivation of small grain cereals such as durum wheat, wheat and triticale. Trials done in Lubumbashi in the Katanga Province have shown that Septoria Leaf Blotch, Septoria Glume Blotch and Fusarium head blight are the main constraints to the efficient development of these cultures. Some varieties of Elite Spring Wheat, High Rainfall Wheat, Triticale and Durum Wheat from CIMMYT were followed during 4 growing seasons and agronomic characteristics and their levels of disease resistance were recorded. Correlations of agronomic characteristics with yields showed that in most cases, thousand kernel weight is the parameter that has the most influence on the yield level (p < 0.0001). The analysis of variance for all diseases showed that there were significant effects related to the year, the species and the interaction years x species. Triticale varieties seem to have a better resistance against the two forms of Septoria compared to wheat varieties but, they seem to be more sensitive to Fusarium Head Blight than wheat varieties. However, the Fusarium Head Blight has a rather low incidence in Lubumbashi.

  5. Effects of ozone on growth, yield and leaf gas exchange rates of four Bangladeshi cultivars of rice (Oryza sativa L.)

    Akhtar, Nahid; Yamaguchi, Masahiro; Inada, Hidetoshi; Hoshino, Daiki; Kondo, Taisuke; Fukami, Motohiro; Funada, Ryo; Izuta, Takeshi

    2010-01-01

    To assess the effects of tropospheric O 3 on rice cultivated in Bangladesh, four Bangladeshi cultivars (BR11, BR14, BR28 and BR29) of rice (Oryza sativa L.) were exposed daily to charcoal-filtered air or O 3 at 60 and 100 nl l -1 (10:00-17:00) from 1 July to 28 November 2008. The whole-plant dry mass and grain yield per plant of the four cultivars were significantly reduced by the exposure to O 3 . The exposure to O 3 significantly reduced net photosynthetic rate of the 12th and flag leaves of the four cultivars. The sensitivity to O 3 of growth, yield and leaf gas exchange rates was not significantly different among the four cultivars. The present study suggests that the sensitivity to O 3 of yield of the four Bangladeshi rice cultivars is greater than that of American rice cultivars and is similar to that of Japanese rice cultivars and that O 3 may detrimentally affect rice production in Bangladesh. - Bangladeshi cultivars of rice are sensitive to O 3 below 100 ppb.

  6. Effect of different methods of soil fertility increasing via application of organic, chemical and biological fertilizers on grain yield and quality of canola (Brassica napus L.

    K. Mohammadi

    2016-05-01

    Full Text Available Different resource of fertilizers had an effect on grain yield, oil and grain quality. Information regarding the effect of simultaneous application of organic, chemical and biological fertilizers on canola (Brassica napus L. traits is not available. In order to study the effect of different systems of soil fertility on grain yield and quality of canola (Talayeh cultivar, an experiment was conducted at experimental farm of Agricultural Research Center of Sanandaj, Iran, during two growing seasons of 2007-2008 and 2008-2009. The experimental units were arranged as split plots based on randomized complete blocks design with three replications. Main plots consisted of five methods for obtaining the basal fertilizers requirement including (N1: farm yard manure; (N2: compost; (N3: chemical fertilizers; (N4: farm yard manure + compost and (N5: farm yard manure + compost + chemical fertilizers; and control (N6. Sub plots consisted four levels of biofertilizers were (B1: Bacillus lentus and Pseudomonas putida; (B2: Trichoderma harzianum; (B3: Bacillus lentus and Pseudomonas putida and Trichoderma harzianum; and (B4: control, (without biofertilizers. Results showed that basal fertilizers and biofertilizers have a significant effect on grain yield. The highest grain yield was obtained from N5 treatment in which organic and chemical fertilizers were applied simultaneously applied. Basal fertilizers, biofertilizers have a significant effect on leaf chlorophyll. The highest nitrogen content (42.85 mg.g-1 and least amount of (N/S were obtained from N5 treatment. The highest oil percent was obtained from N1 and N2 treatments and highest oil yield was obtained from N5 treatment. Finally, application of organic manure and biofertilizers with chemical fertilizer led to an increase in yield and quality of canola grain.

  7. Common bean grain yield as affected by sulfur fertilization and cultivars

    Adriano Stephan Nascente

    Full Text Available ABSTRACT A better understanding of the differential growth of common bean cultivars with increasing soil sulfur (S availability can indicate how to improve common bean grain yield in soils of Savannas. The objective of this study was to evaluate the response of sprinkler-irrigated common bean cultivars to sulfur fertilization in a no-tillage system. The experiment was designed as a randomized block in a split-plot scheme with sulfur rates (0, 10, 20, 40, and 60 kg ha-1 as main plots and common bean cultivars (BRS Requinte, BRS Cometa, Diamante Negro, BRS Grafite, BRS Valente, and Corrente as subplots, with three replications. Common bean cultivars did not differ regarding grain yield response to sulfur rates, which fitted to a quadratic equation. Among the cultivars tested, only BRS Requinte and BRS Valente differed in grain yield for S fertilization, the first being more productive. Moreover, S fertilization allows significant increases in common bean grain yield in average of six cultivars and must be considered in cropping systems aiming for high yields.

  8. Corn stover harvest strategy effects on grain yield and soil quality indicators

    Douglas, K.; Stuart, B.; Adam, W.

    2013-01-01

    Developing strategies to collect and use cellulo sic biomass for bio energy production is important because those materials are not used as human food sources. This study compared corn (Zea mays L.) stover harvest strategies on a 50 ha Clarion- Nicol let-Webster soil Association site near Emmetsburg, Iowa, USA. Surface soil samples (0 to 15 cm) were analyzed after each harvest to monitor soil organic carbon (Soc), ph, phosphorus (P) and potassium (K) changes. Grain yields in 2008, before the stover harvest treatments were imposed, averaged 11.4 Mg ha-1. In 2009, 2010, and 2011 grain yields averaged 10.1, 9.7, and 9.5 Mg ha-1, respectively. Although grain yields after stover harvest strategies imposed were lower than in 2008, there were no significant differences among the treatments. Four-year average stover collection rates ranged 1.0 to 5.2 Mg ha-1 which was 12 to 60% of the above-ground biomass. Soc showed a slight decrease during the study, but the change was not related to any specific stover harvest treatment. Instead, we attribute the Soc decline to the tillage intensity and lower than expected crop yields. Overall, these results are consistent with other Midwestern USA studies that indicate corn stover should not be harvested if average grain yields are less than 11 Mg ha-1

  9. Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance.

    Foulkes, M John; Slafer, Gustavo A; Davies, William J; Berry, Pete M; Sylvester-Bradley, Roger; Martre, Pierre; Calderini, Daniel F; Griffiths, Simon; Reynolds, Matthew P

    2011-01-01

    A substantial increase in grain yield potential is required, along with better use of water and fertilizer, to ensure food security and environmental protection in future decades. For improvements in photosynthetic capacity to result in additional wheat yield, extra assimilates must be partitioned to developing spikes and grains and/or potential grain weight increased to accommodate the extra assimilates. At the same time, improvement in dry matter partitioning to spikes should ensure that it does not increase stem or root lodging. It is therefore crucial that improvements in structural and reproductive aspects of growth accompany increases in photosynthesis to enhance the net agronomic benefits of genetic modifications. In this article, six complementary approaches are proposed, namely: (i) optimizing developmental pattern to maximize spike fertility and grain number, (ii) optimizing spike growth to maximize grain number and dry matter harvest index, (iii) improving spike fertility through desensitizing floret abortion to environmental cues, (iv) improving potential grain size and grain filling, and (v) improving lodging resistance. Since many of the traits tackled in these approaches interact strongly, an integrative modelling approach is also proposed, to (vi) identify any trade-offs between key traits, hence to define target ideotypes in quantitative terms. The potential for genetic dissection of key traits via quantitative trait loci analysis is discussed for the efficient deployment of existing variation in breeding programmes. These proposals should maximize returns in food production from investments in increased crop biomass by increasing spike fertility, grain number per unit area and harvest index whilst optimizing the trade-offs with potential grain weight and lodging resistance.

  10. Effects of shading on morphology, physiology and grain yield of winter wheat

    Li, Huawei; Jiang, Dong; Wollenweber, Bernd

    2010-01-01

    In a field experiment, winter wheat (Triticum aestivum L.) cultivars Yangmai 158 (YM 158, shading tolerant) and Yangmai 11 (YM 11, shading-sensitive) were subjected to shading between jointing and maturity. Three shading treatments were applied, i.e. 92% (S1), 85% (S2) and 77% (S3) of full...... the shading treatments applied, leaf area index, length of the peduncle internode, area of the upper leaves and content of pigments increased, which favoured efficient light capture. Shading modified light quality in the canopy as indicated by increases of diffuse- and blue light fractions and a reduction...... the flag leaf, as in most cases Pn of the third and the penultimate leaves were found to increase under shading treatments. Shading increased the redistribution of dry matter from vegetative organs into grains. The responses of the morphological and physiological traits to shading are discussed in relation...

  11. Dissecting grain yield pathways and their interactions with grain dry matter content by a two-step correlation approach with maize seedling transcriptome

    Melchinger Albrecht E

    2010-04-01

    Full Text Available Abstract Background The importance of maize for human and animal nutrition, but also as a source for bio-energy is rapidly increasing. Maize yield is a quantitative trait controlled by many genes with small effects, spread throughout the genome. The precise location of the genes and the identity of the gene networks underlying maize grain yield is unknown. The objective of our study was to contribute to the knowledge of these genes and gene networks by transcription profiling with microarrays. Results We assessed the grain yield and grain dry matter content (an indicator for early maturity of 98 maize hybrids in multi-environment field trials. The gene expression in seedlings of the parental inbred lines, which have four different genetic backgrounds, was assessed with genome-scale oligonucleotide arrays. We identified genes associated with grain yield and grain dry matter content using a newly developed two-step correlation approach and found overlapping gene networks for both traits. The underlying metabolic pathways and biological processes were elucidated. Genes involved in sucrose degradation and glycolysis, as well as genes involved in cell expansion and endocycle were found to be associated with grain yield. Conclusions Our results indicate that the capability of providing energy and substrates, as well as expanding the cell at the seedling stage, highly influences the grain yield of hybrids. Knowledge of these genes underlying grain yield in maize can contribute to the development of new high yielding varieties.

  12. Effects of supplemental irrigation on water consumption characteristics and grain yield in different wheat cultivars

    Meng Weiwei

    2015-06-01

    Full Text Available Shortage of water resources is a major limiting factor for wheat (Triticum aestivum L. production in the North China Plain. The objectives of this study were to evaluate the effects of supplemental irrigation (SI on water use characteristics and grain yield of the wheat cultivars 'Jimai 22'and 'Zhouyuan 9369'. Two supplemental irrigation treatment regimens were designed based on target relative soil moisture contents in 0-140 cm soil layers at jointing rising to 75% of field capacity (FC for each cultivar, and at anthesis rising to 65% and 75% (W1, and 70% and 80% (W2 in 2009-2010 and 2010-2011, respectively. Rain-fed (W0 treatment was used as control. Under W1, grain yield of 'Jimai 22' was 5.22% higher than that of W2, and water use efficiency (WUE of 'Zhouyuan 9369' was 4.0% higher than that under W2. No significant differences in WUE of 'Jimai 22' and grain yield of 'Zhouyuan 9369' were observed for the two treatment regimens in 2009-2010. Grain yield and WUE in W1 were higher than those of W2 for both cultivars in 2010-2011. W1 enhanced soil water consumption compared to W2, especially in the 100-200 cm soil layers, for both cultivars in 2009-2011. Meanwhile, 'Jimai 22' showed higher soil water consumption and ET from anthesis to mature stage, which resulted in increase in grain yield and WUE of 'Jimai 22' by 8.15-21.7% and 7.75-11.73% in 2009-2010 and 2010-2011, respectively, compared with 'Zhouyuan 9369'. Thus, our results showed that SI increased the yield and WUE of 'Jimai 22' and W1 was the better treatment regimen.

  13. Can arbuscular mycorrhizal fungi improve grain yield, As uptake and tolerance of rice grown under aerobic conditions?

    Li, H. [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (Hong Kong); Ye, Z.H. [State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Chan, W.F.; Chen, X.W.; Wu, F.Y. [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (Hong Kong); Wu, S.C. [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (Hong Kong); School of Environment and Natural Resources, Zhejiang Agriculture and Forestry University, Lin' an, Zhejiang 311300 (China); Wong, M.H., E-mail: mhwong@hkbu.edu.hk [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (Hong Kong); School of Environment and Natural Resources, Zhejiang Agriculture and Forestry University, Lin' an, Zhejiang 311300 (China)

    2011-10-15

    The effects of arbuscular mycorrhizal fungi (AMF) -Glomus intraradices and G. geosporum on arsenic (As) and phosphorus (P) uptake by lowland (Guangyinzhan) and upland rice (Handao 502) were investigated in soil, spiked with and without 60 mg As kg{sup -1}. In As-contaminated soil, Guangyinzhan inoculated with G. intraradices or Handao 502 inoculated with G. geosporum enhanced As tolerance, grain P content, grain yield. However, Guangyinzhan inoculated with G. geosporum or Handao 502 inoculated with G. intraradices decreased grain P content, grain yield and the molar ratio of grain P/As content, and increased the As concentration and the ratio of grain/straw As concentration. These results show that rice/AMF combinations had significant (p < 0.05) effects on grain As concentration, grain yield and grain P uptake. The variation in the transfer and uptake of As and P reflected strong functional diversity in AM (arbuscular mycorrhizal) symbioses. - Highlights: > Rice/AMF combinations had significant effects on grain As concentration, grain yield and grain P uptake. > Rice colonized with suitable AMF can increase grain yield. > The variation in the transfer and uptake of As and P reflected strong functional diversity in AM symbioses. - Different rice/AMF combinations had very different effects on arsenic and phosphorus uptake.

  14. Can arbuscular mycorrhizal fungi improve grain yield, As uptake and tolerance of rice grown under aerobic conditions?

    Li, H.; Ye, Z.H.; Chan, W.F.; Chen, X.W.; Wu, F.Y.; Wu, S.C.; Wong, M.H.

    2011-01-01

    The effects of arbuscular mycorrhizal fungi (AMF) -Glomus intraradices and G. geosporum on arsenic (As) and phosphorus (P) uptake by lowland (Guangyinzhan) and upland rice (Handao 502) were investigated in soil, spiked with and without 60 mg As kg -1 . In As-contaminated soil, Guangyinzhan inoculated with G. intraradices or Handao 502 inoculated with G. geosporum enhanced As tolerance, grain P content, grain yield. However, Guangyinzhan inoculated with G. geosporum or Handao 502 inoculated with G. intraradices decreased grain P content, grain yield and the molar ratio of grain P/As content, and increased the As concentration and the ratio of grain/straw As concentration. These results show that rice/AMF combinations had significant (p < 0.05) effects on grain As concentration, grain yield and grain P uptake. The variation in the transfer and uptake of As and P reflected strong functional diversity in AM (arbuscular mycorrhizal) symbioses. - Highlights: → Rice/AMF combinations had significant effects on grain As concentration, grain yield and grain P uptake. → Rice colonized with suitable AMF can increase grain yield. → The variation in the transfer and uptake of As and P reflected strong functional diversity in AM symbioses. - Different rice/AMF combinations had very different effects on arsenic and phosphorus uptake.

  15. Effect of nitrogen fertiliser rates and plant density on grain yield of ...

    Low soil fertility has constrained maize production in Sidama district in the Southern region of Ethiopia. The effects of four levels of nitrogen fertiliser (0, 46, 92, 138 kg N ha-1) and four plant populations (44000, 53000, 67000 and 89000 plants ha-1) on grain yield of maize were evaluated over four years (1995-98) at Awassa ...

  16. Identification of QTL for maize grain yield and kernel-related traits

    [Yang C., Zhang L., Jia A. and Rong T. 2016 Identification of QTL for maize grain yield and kernel-related traits. ... 2010; Zhang et al. ...... in the structure and evolution of genetic systems. ... 2013 Fine mapping a major QTL for kernel number per.

  17. Effect of Weed Management on Weeds and Grain Yield of Haricot ...

    Weeds are one of the major constraints limiting haricot bean productivity and production. Field experiments were conducted on the effect of weed managements on weeds and grain yield of haricot bean (Phaseolus Vulgaris L.) at Melkassa Agricultural Research Center from 2011 - 2013. The objective was to determine the ...

  18. Effect of weed management on weeds and grain yield of haricot bean

    Weeds are one of the major constraints limiting haricot bean productivity and production. Field experiments were conducted on the effect of weed managements on weeds and grain yield of haricot bean (Phaseolus Vulgaris L.) at Melkassa Agricultural Research Center from 2011 - 2013. The objective was to determine the ...

  19. Analyses of moisture deficit grain yield loss in drought tolerant maize ...

    Development of drought tolerant maize cultivars is prerequisite to achieving stable grain yield in drought–prone ecologies of Nigeria's Guinea savanna. However, success has been limited mainly due to lack of maize genotypes that show clear differences in response to well defined moisture deficit condition. Two sets of ...

  20. Effect of pre- and post-heading waterlogging on growth and grain yield of four millets

    Asana Matsuura

    2016-07-01

    Full Text Available Seeds of Panicum miliaceum, Panicum sumatrense, Setaria glauca, and Setaria italica were raised in polyvinylchloride tubes filled with soil to determine interspecific differences in waterlogging tolerance and the effect of pre- and post-heading waterlogging on growth and grain yield. Four treatments were conducted including control (no-waterlogging stress during growth. Pre-heading waterlogging treatment was initiated 17 days after sowing to heading (TC. Post-heading waterlogging treatment was initiated heading till harvest (CT. Waterlogging treatment was initiated 17 days after sowing to harvesting (TT. The grain yield of P. miliaceum, S. glauca, and S. italica decreased 16, 18, and 4%, while that of P. sumatrense increased 210% under TT treatment and this showed P. sumatrense had most waterlogging tolerance. The grain yield was more affected under TC treatment in S. italica and P. miliaceum. However, there was not significant differences the grain yield between TC and CT treatment in P. sumatrense and S. glauca. Total dry weight, total root dry weight, number of crown root, and the proportion of lysigenous aerenchyma of P. sumatrense were significantly higher than those of other millets at harvesting. Plant growth rate, total root dry weight, number of crown root, and the proportion of lysigenous aerenchyma of P. sumatrense were significantly higher than those of other millets at heading. These results suggest that P. sumatrense exhibits waterlogging tolerance by enhancing root growth characterized by a high proportion of lysigenous aerenchyma in the crown root.

  1. Yield and grain quality of winter wheat under Southern Steppe of Ukraine growing conditions

    М. М. Корхова

    2014-12-01

    Full Text Available The results of three years study of the effect of sowing time and seed application rates on yield and grain quality of different varieties of winter wheat under the conditions of South Steppe of Ukraine were presented. It was found that winter wheat provides optimal combination of high yield and grain quality in case of sowing in October 10 with seed application rate of 5,0 million seeds/ha. The highest yield – 4,59 t/ha on average in 2011–2013 was obtained for the variety of Natalka when sowing in October 10 with seed application rate  of 5 million germinable seeds. With increasing seed application rate from 3 to 5 million seeds/ha, protein content in winter wheat was decreased by 0,3%, gluten – by 0,6%. The variety Natalka  formed the highest quality grains when sowing in October 20 with seed application rate of 3 million seeds/ha, in this case protein content was 15,8%, gluten – 32,9%. It is proved that early sowing time  – September 10 leads to yields reduction and grain   quality deterioration for all winter wheat varieties.

  2. Genetic, Genomic, and Breeding Approaches to Further Explore Kernel Composition Traits and Grain Yield in Maize

    Da Silva, Helena Sofia Pereira

    2009-01-01

    Maize ("Zea mays L.") is a model species well suited for the dissection of complex traits which are often of commercial value. The purpose of this research was to gain a deeper understanding of the genetic control of maize kernel composition traits starch, protein, and oil concentration, and also kernel weight and grain yield. Germplasm with…

  3. CULTIVAR RELEASE - FAEM Carlasul: new white oat cultivar with high grain yield

    Antônio Costa de Oliveira

    2012-01-01

    Full Text Available The white oat cultivar FAEM Carlasul was developed at the Plant Genomics and Breeding Center, Faculty of Agronomy Eliseu Maciel, Federal University of Pelotas, as a result of the cross between UFRGS 10 and 90SAT-28 (Coronado2/Cortez3/Pendek/ME 1563. It is characterized by high yield and grain quality.

  4. gge biplot application for adaptability of african yam bean grain yield

    ACSS

    However, Ubiaja was most supportive for grain production of AYB. Some of the accessions identified with high yielding, adaptable/stable in the study included. TSs101, TSs111, TSs93, TSs94, TSs57, TSs104B and TSs109. Key Words: Accessions, mega-environment, principal components, Sphenostylis stenocarpa.

  5. Relationships between early spring wheat streak mosaic severity levels and grain yield: Implications for management decisions

    Wheat streak mosaic (WSM) caused by Wheat streak mosaic virus, which is transmitted by the wheat curl mite (Aceria tosichella), is a major yield-limiting disease in the Texas High Plains. In addition to its impact on grain production, the disease reduces water-use efficiency by affecting root develo...

  6. Effect of Irrigation Timing on Root Zone Soil Temperature, Root Growth and Grain Yield and Chemical Composition in Corn

    Xuejun Dong

    2016-05-01

    Full Text Available High air temperatures during the crop growing season can reduce harvestable yields in major agronomic crops worldwide. Repeated and prolonged high night air temperature stress may compromise plant growth and yield. Crop varieties with improved heat tolerance traits as well as crop management strategies at the farm scale are thus needed for climate change mitigation. Crop yield is especially sensitive to night-time warming trends. Current studies are mostly directed to the elevated night-time air temperature and its impact on crop growth and yield, but less attention is given to the understanding of night-time soil temperature management. Delivering irrigation water through drip early evening may reduce soil temperature and thus improve plant growth. In addition, corn growers typically use high-stature varieties that inevitably incur excessive respiratory carbon loss from roots and transpiration water loss under high night temperature conditions. The main objective of this study was to see if root-zone soil temperature can be reduced through drip irrigation applied at night-time, vs. daytime, using three corn hybrids of different above-ground architecture in Uvalde, TX where day and night temperatures during corn growing season are above U.S. averages. The experiment was conducted in 2014. Our results suggested that delivering well-water at night-time through drip irrigation reduced root-zone soil temperature by 0.6 °C, increase root length five folds, plant height 2%, and marginally increased grain yield by 10%. However, irrigation timing did not significantly affect leaf chlorophyll level and kernel crude protein, phosphorous, fat and starch concentrations. Different from our hypothesis, the shorter, more compact corn hybrid did not exhibit a higher yield and growth as compared with taller hybrids. As adjusting irrigation timing would not incur an extra cost for farmers, the finding reported here had immediate practical implications for farm

  7. Effect of Plant Growth Promoting Rhizobacteria (PGPR on Phenological Traits, Grain Yield and Yield Components of Three Maize (Zea mays L. Cultivars

    A Soleimani Fard

    2013-11-01

    Full Text Available To evaluate the effect of bio-fertilize on yield and its components in maize cultivars, an split plot experiment based on randomized complete bock design with three replications in was conducted in Payam-noor University of Ilam, Iran, in 2009-2010. Treatments were cultivar (SC604, SC704 and SC807 assigned to main plots and bio-fertilizer (non- inoculation, inoculation with Azetobacter, Azospirillum and dual inoculation ofAzotobacterand Azospirillum to subplots. The effect of cultivar on days to maturity, plant height, dry matter, ear length, stem diameter, number of grain per ear row, 1000-grain weight, grain yield, biological yield and protein content was significant cultivar. SC 704 had the highest dry matter (259.5 g.m-2, plant height (201.1 cm, number of grain per ear row (42.8 grain, grain yield (10850 kg.m-2, and biological yield (22040 kg.m-2. The effect of plant growth promoting rhizobacteria on all traits expect harvest index was significant. Dual inoculation ofAzotobacterand Azospirillum had the longest days to ear initiation (71.2 days, days to maturity (115.4 day, number of leaves above ear (5.6 ear, dry matter (240.4 g.m-2, ear length (24.3 cm, plant height (212.4 cm, seed number of rows per ear (14.5 row, number of grains per row (44.2 grain, grain yield (10190 kg.m-2, biological yield (21320 kg.m-2 and protein content (10.7%. Interaction effect of cultivar× plant growth promoting rhizobacteria on grain yield was significant. The highest and lowest grain yield was obtained from SC 704 and application of dual inoculation ofAzotobacterand Azospirillum (12320 kg.ha-1 and lowest from SC 604 when inoculation treatments were not used 7570 kg.ha-1 respectively.

  8. Field evaluations of leaf spot resistance and yield in peanut genotypes in the United States and Bolivia

    Field experiments were conducted in 2002-2006 to characterize yield potential and disease resistance to Cercospora arachidicola (early leaf spot) and Cercosporidium personatum (late leaf spot) in the Bolivian peanut (Arachis hypogaea) cultivar, Bayo Grande, and breeding lines developed from crosses ...

  9. Adaptability and phenotypic stability of soybean cultivars for grain yield and oil content.

    Silva, K B; Bruzi, A T; Zuffo, A M; Zambiazzi, E V; Soares, I O; de Rezende, P M; Fronza, V; Vilela, G D L; Botelho, F B S; Teixeira, C M; de O Coelho, M A

    2016-04-25

    The aim of this study was to verify the adaptability and stability of soybean cultivars with regards to yield and oil content. Data of soybean yield and oil content were used from experiments set up in six environments in the 2011/12 and 2012/13 crop seasons in the municipalities of Patos de Minas, Uberaba, Lavras, and São Gotardo, Minas Gerais, Brazil, testing 36 commercial soybean cultivars of both conventional and transgenic varieties. The Wricke method and GGE biplot analysis were used to evaluate adaptability and stability of these cultivars. Large variations were observed in grain yield in relation to the different environments studied, showing that these materials are adaptable. The cultivars exhibited significant differences in oil content. The cultivars BRSGO204 (Goiânia) and BRSMG (Garantia) exhibited the greatest average grain yield in the different environments studied, and the cultivar BRSMG 760 SRR had the greatest oil content among the cultivars evaluated. Ecovalence was adopted to identify the most stable cultivars, and the estimates were nearly uniform both for grain yield and oil content, showing a variation of 0.07 and 0.01%, respectively. The GGE biplot was efficient at identifying cultivars with high adaptability and phenotype stability.

  10. Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice.

    Wang, Qing; Nian, Jinqiang; Xie, Xianzhi; Yu, Hong; Zhang, Jian; Bai, Jiaoteng; Dong, Guojun; Hu, Jiang; Bai, Bo; Chen, Lichao; Xie, Qingjun; Feng, Jian; Yang, Xiaolu; Peng, Juli; Chen, Fan; Qian, Qian; Li, Jiayang; Zuo, Jianru

    2018-02-21

    In crops, nitrogen directly determines productivity and biomass. However, the improvement of nitrogen utilization efficiency (NUE) is still a major challenge in modern agriculture. Here, we report the characterization of are1, a genetic suppressor of a rice fd-gogat mutant defective in nitrogen assimilation. ARE1 is a highly conserved gene, encoding a chloroplast-localized protein. Loss-of-function mutations in ARE1 cause delayed senescence and result in 10-20% grain yield increases, hence enhance NUE under nitrogen-limiting conditions. Analysis of a panel of 2155 rice varieties reveals that 18% indica and 48% aus accessions carry small insertions in the ARE1 promoter, which result in a reduction in ARE1 expression and an increase in grain yield under nitrogen-limiting conditions. We propose that ARE1 is a key mediator of NUE and represents a promising target for breeding high-yield cultivars under nitrogen-limiting condition.

  11. Effects of Foliar Application of Nitrogen, Zinc and Manganese on Yield, Yield Components and Grain Quality of Chickpea in Two Growing Seasons

    B. Shirani

    2015-09-01

    Full Text Available To study the effects of foliar application of zinc, manganese and nitrogen on yield, yield components and grain quality of chickpea (Cicer arientinum L. two experiments, one in autumn and the other in spring were conducted at Research Farm, Shahrekord University in 2009-2010 growing season each as a randomized complete block design with three replications. The treatments were foliar application of zinc sulfate, manganese sulfate zinc sulfate and manganese sulfate mixture, nitrogen and distilled water (as control. The results showed that planting season had a significant effect on plant height, 100-seed weight and seed yield. All measured traits, except plant height, increased in winter compared to spring growing season. This increase was more than 12% for grain yield. Foliar application of nutrients significantly affected seed yield and seed yield components. Foliar application of nitrogen, presumably, through significant increase in number of pods per plant, number of seeds per plant and 100-seed weight, increased the grain yield by 6.2% compared to control. Foliar application × planting season interactions were significant for plant height and number of pods per plant. Foliar application of nitrogen caused a significant increase in grain yield and protein content. Foliar application of zinc sulphate significantly increased Zn content of grains however it did not affect seed yield. In conclusion, foliar application of nitrogen could be suggested for increasing protein and grain yield in chickpea under similar conditions to that of the present study.

  12. Adaptability and stability of soybean cultivars for grain yield and seed quality.

    Silva, K B; Bruzi, A T; Zambiazzi, E V; Soares, I O; Pereira, J L A R; Carvalho, M L M

    2017-05-10

    This study aimed at verifying the adaptability and stability of soybean cultivars, considering the grain yield and quality of seeds, adopting univariate and multivariate approaches. The experiments were conducted in two crops, three environments, in 2013/2014 and 2014/2015 crop seasons, in the county of Inconfidentes, Lavras, and Patos de Minas, in the Minas Gerais State, Brazil. We evaluated 17 commercial soybean cultivars. For adaptability and stability evaluations, the Graphic and GGE biplot methods were employed. Previously, a selection index was estimated based on the sum of the standardized variables (Z index). The data relative to grain yield, mass of one thousand grain, uniformity test (sieve retention), and germination test were standardized (Z ij ) per cultivar. With the sum of Z ij , we obtained the selection index for the four traits evaluated together. In the Graphic method evaluation, cultivars NA 7200 RR and CD 2737 RR presented the highest values for selection index Z. By the GGE biplot method, we verified that cultivar NA 7200 RR presented greater stability in both univariate evaluations, for grain yield, and for selection index Z.

  13. Measurements of Photoelectric Yield and Physical Properties of Individual Lunar Dust Grains

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, F. A.; Taylor, L.; Hoover, R.

    2005-01-01

    Micron size dust grains levitated and transported on the lunar surface constitute a major problem for the robotic and human habitat missions for the Moon. It is well known since the Apollo missions that the lunar surface is covered with a thick layer of micron/sub-micron size dust grains. Transient dust clouds over the lunar horizon were observed by experiments during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and the levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics is believed to have a severe impact on the human habitat and the lifetime and operations of a variety of equipment, it is necessary to investigate the phenomena and the charging properties of the lunar dust in order to develop appropriate mitigating strategies. We will present results of some recent laboratory experiments on individual micro/sub-micron size dust grains levitated in electrodynamic balance in simulated space environments. The experiments involve photoelectric emission measurements of individual micron size lunar dust grains illuminated with UV radiation in the 120-160 nm wavelength range. The photoelectric yields are required to determine the charging properties of lunar dust illuminated by solar UV radiation. We will present some recent results of laboratory measurement of the photoelectric yields and the physical properties of individual micron size dust grains from the Apollo and Luna-24 sample returns as well as the JSC-1 lunar simulants.

  14. Effect of nitrogen on partitioning and yield in grain sorghum under differing environmental conditions in the semi-arid tropics

    Muchow, R.C.

    1990-01-01

    The effect of nitrogen (N) supply on the relative contributions of pre- and post-anthesis net above-ground biomass accumulation and N uptake to grain-yield and grain N concentration was examined in four contrasting environments in semi-arid tropical Australia. The four environments had different radiation and temperature regimes, and varying levels of water deficit. The grain-yield achieved under high N supply ranged from 156 to 621 g m −2 (on an oven-dry basis). In all but the lowest-yielding environment, there was substantial biomass accumulation during grain-filling and it increased with N application. Only in the lowest-yielding environment was there substantial mobilization of pre-anthesis biomass to grain. Biomass mobilization was not affected by N application. Nitrogen uptake during grain-filling was unresponsive to N application, and was small relative to total N uptake during the life-cycle. Mobilization of pre-anthesis N to the grain was much more significant. In all but the lowest-yielding environment, N mobilization increased with N application. Grain-yield under variable N supply and differing environmental conditions was not dependent on the proportions of pre- and post-anthesis growth. However, grain-yield was proportional to biomass at maturity over the entire yield range in this study and variability in biomass accounted for 95% of the variance in grain-yield. Similarly, grain N concentration was not related to the proportions of pre- and post-anthesis N uptake, but variability in total N uptake accounted for 92% of the variance in grain N accumulation. Consequently, there was no differential effect of N supply or environmental factors on yield physiology that could not be explained by their effect on biomass and N uptake. (author)

  15. Effect of different forms of nitrogen fertlizers applied in the end of tillering on yield and quality of winter wheat grain

    Ladislav Ducsay

    2005-01-01

    Full Text Available In the years 1999 to 2001 in conditions of small-plot field experiments was carried out on loamy degraded chernozems at the Plant Breeding Station of Sládkovičovo-Nový Dvor to solve the problems of topdressing winter wheat (Triticum aestivum, L., variety Astella, with different forms of nitrogenous fertilizers. Nitrogenous fertilizers were applied at the growth phase of the 6th leaf (Zadoks = 29. Four various forms of fertilizers were exemined: urea solution, DAM-390, DAM-390 + Dumag, DASA. Different weather conditions statistically highly significantly influenced grain yield in respective experimental years. Topdressing with nitrogen (30 kg N.ha–1 caused statistically highly significant increase of grain yield in all fertilized variants ranging from +0.29 t.ha–1 (applied of DAM-390 to +0.69 t.ha–1 (applied of DASA according to respective treatments. Average grain yield in unfertilized control variant represented 7.23 t.ha–1. Nitrogen nutrition showed positive effect on the main macroelements offtake (N, P, K, Ca, Mg, S by winter wheat grain in all fertilized variants. Nitrogen fertilizing positively influenced formation of wet gluten and crude protein with highest increment in variant with DASA and variant with DAM-390 + Dumag.

  16. VERMICOMPOST APPLICATION IMPROVING SEMIARID-GROWN CORN GREEN EAR AND GRAIN YIELDS

    PAULO SÉRGIO LIMA E SILVA

    2017-01-01

    Full Text Available Intensive corn farming quickly depletes soil organic matter in the nutrient-poor soils of the Brazilian semiarid region. Application of vermicompost, an excellent organic fertilizer, could help solve that problem. This study evaluated the effect of applying Eisenia fetida vermicompost in the seeding furrows, at 0, 2, 4, 6, 8, and 10 Mg.ha-1 application rates, on the green ear yield and grain yield of two corn cultivars. Treatments were replicated five times with split-plots (vermicompost application rates within plots in a completely randomized block design. The number of mature ears, number of kernels per ear (cultivar BR 106, and 100-kernel weight (cultivar AG 1051 were not affected by vermicompost application rate. However, vermicompost application increased total number and weight of unhusked and husked marketable green ears as well as grain yield. Total number of green ears was higher in cultivar BR 106 than in cultivar AG 1051. Conversely, grain yield and total ear weight and marketable weight of unhusked and husked green ears was higher in cultivar AG 1051, but responses in the latter two traits were dose-dependent.

  17. Impact of integrated nutrient management on growth and grain yield of wheat under irrigated cropping system

    Nawab, K.; Amanullah, A.; Shah, P.; Arif, M.; Khan, A.M.

    2011-01-01

    Field study was conducted during 2001-02 and 2002-03 to investigate the effect of cropping patterns and farm yard manure, potassium and zinc on the grain yield of wheat. Trials were conducted at Agricultural Research Farm, KPK Agricultural University Peshawar, Pakistan. Two factors cropping patterns and manures/fertilizers were studied in the experiment. Randomized complete block design was used with split plot arrangements and four replications having net plot size of 12 m/sup 2/. Wheat variety Ghaznavi-98 was sown in November soon after ploughing the soil at proper moisture level suitable for wheat seed germination. Five cropping patterns were allotted to main plots and the eight combinations of FYM, K and Zn to the sub-plots. Same plots were used for next year sowing. Effects of five cropping patterns i.e., rice-wheat, maize-wheat, sunflower-wheat, sorghum-wheat and pigeon pea-wheat and three organic and in-organic fertilizers (Farmyard Manure, Potassium and Zinc) on subsequent wheat crop were observed. Highest grain yield was obtained when wheat was planted after pigeon pea. Manures/fertilizer application (Farmyard Manure, Potassium and Zinc) produced significantly higher grain yield than the control plots. The findings of the present study revealed that leguminous crops can significantly increase the yield of succeeding crops. Thus use of Farmyard Manure, Potassium and Zinc should be included in integrated crop management approaches for sustainable agriculture. (author)

  18. Effects of water deficit and mycorrhizae on grain yield, reproductive and physiological traits of corn hybrids

    Mikail Nordokht

    2018-06-01

    and draw graphs, respectively. Based on results of this investigation, response of cultivars to drought were different. In irrigation after 70 mm evaporaation from evaporate basin in 704 cultivar highest grain yield observed. In cultivar 704 both irrigation after 110 mm evaporaation from evaporate basin and irrigation after 150 mm evaporaation from evaporate basin decreased grain yield by 19 and 50.6 % in grain yield, but in 640 cultivar that had higher grain yield in control than 704, drought did not had significant effect on grain yield. Mycorrhizae also increased grain yield by 25.2 %. All three factor of drought, Mycorrhizae and cultivar caused changes by changing both yield component of grain number and 100 grain weight. It seems drought caused a decrease in grain number by decreasing number of total floret and increasing unfertile floret number, but Mycorrhizae had opposite effect that this decrease in floret number can caused by gap increase between tasseling and silk emergence. Drought did not had effect on chlorophyll a, but it decreased chlorophyll b, but Mycorrhizae caused an increase in chlorophyll b. Drought and Mycorrhizae increased catalase and Peroxidase content. We then suggest potential areas for future research related to (a the adoption of cropping practices promoting AM colonization and survival; (b the further understanding of AM effects on maize morpho-physiology; and (c the creation of AM-colonized, drought-tolerant maize cultivars through conventional breeding as well as molecular and genomic techniques.

  19. Effects of different irrigation intervals and plant density on morphological characteristics, grain and oil yields of sesame (Sesamum indicum

    parviz rezvani moghadam

    2009-06-01

    Full Text Available In order to study the effects of different irrigation intervals and plant density on morphological characteristics, grain and oil yields of sesame, an experiment was conducted at experimental station, college of agriculture, Ferdowsi University of Mashhad. Four different irrigation intervals (one, two, three and four weeks with four plant densities (20, 30, 40 and 50 plants/m2 were compared in a spilt plot arrangement based on randomized complete block design with four replications. Irrigation intervals and plant densities allocated in main plots and subplots, respectively. Different characteristics such as plant height, distance of first capsule from soil surface, number of branches per plant, number of grains per capsule, number of capsules per plant, grain yield, 1000-seed weight, harvest index and oil yield were recorded. The results showed that there were no significant difference between different irrigation intervals in terms of distance of first capsule from soil surface, number of grains per capsule, 1000-seed weight and harvest index. Different irrigation intervals had significant effects on plant height, number of branches per plant, number of capsules per plant, grain yield and oil yield. There were significant differences between different plant densities in terms of distance of first capsule from soil surface, number of branches per plant, number of graines per capsule, number of capsules per plant, grain yield, harvest index and oil yield. The highest grain yield (798/7 kg/ha and oil yield (412/8 kg/ha were obtained at one week and four weeks irrigation intervals, respectively. Between all treatments, 50 plants/m2 and one week irrigation interval produced the highest grain yield (914/7 kg/ha and oil yield (478/6 kg/ha. Because of shortage of water in Mashhad condition, the results recommended that, 50 plants/m2 and two weeks irrigation interval produced rather acceptable grain yield, with less water consumption.

  20. Supplementary material from "Increased SBPase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions"

    Driever, S.M.; Simkin, Andrew J.; Alotaibi, Saqer; Fisk, Stuart J.; Madgwick, Pippa J.; Sparks, Caroline A.; Jones, Huw D.; Lawson, Tracy; Parry, Martin A.J.; Raines, Christine A.

    2017-01-01

    To meet the growing demand for food, substantial improvements in yields are needed. This is particularly the case for wheat, where global yield has stagnated in recent years. Increasing photosynthesis has been identified as a primary target to achieve yield improvements. To increase leaf

  1. Constitutive expression of CaPLA1 conferred enhanced growth and grain yield in transgenic rice plants.

    Park, Ki Youl; Kim, Eun Yu; Seo, Young Sam; Kim, Woo Taek

    2016-03-01

    Phospholipids are not only important components of cell membranes, but participate in diverse processes in higher plants. In this study, we generated Capsicum annuum phospholipiase A1 (CaPLA1) overexpressing transgenic rice (Oryza sativa L.) plants under the control of the maize ubiquitin promoter. The T4 CaPLA1-overexpressing rice plants (Ubi:CaPLA1) had a higher root:shoot mass ratio than the wild-type plants in the vegetative stage. Leaf epidermal cells from transgenic plants had more cells than wild-type plants. Genes that code for cyclin and lipid metabolic enzymes were up-regulated in the transgenic lines. When grown under typical paddy field conditions, the transgenic plants produced more tillers, longer panicles and more branches per panicle than the wild-type plants, all of which resulted in greater grain yield. Microarray analysis suggests that gene expressions that are related with cell proliferation, lipid metabolism, and redox state were widely altered in CaPLA1-overexpressing transgenic rice plants. Ubi:CaPLA1 plants had a reduced membrane peroxidation state, as determined by malondialdehyde and conjugated diene levels and higher peroxidase activity than wild-type rice plants. Furthermore, three isoprenoid synthetic genes encoding terpenoid synthase, hydroxysteroid dehydrogenase and 3-hydroxy-3-methyl-glutaryl-CoA reductase were up-regulated in CaPLA1-overexpressing plants. We suggest that constitutive expression of CaPLA1 conferred increased grain yield with enhanced growth in transgenic rice plants by alteration of gene activities related with cell proliferation, lipid metabolism, membrane peroxidation state and isoprenoid biosynthesis.

  2. BRS FC402: high-yielding common bean cultivar with carioca grain, resistance to anthracnose and fusarium wilt

    Leonardo Cunha Melo

    2016-12-01

    Full Text Available BRS FC402 is a common bean cultivar of the carioca-grain group with commercial grain quality, suitable for cultivation in 21 Brazilian states. Cultivar has a normal cycle (85-94 days, high yield potential (4479 kg ha-1, 10.1% higher mean yield than the controls (2462 kg ha-1 and resistance to fusarium wilt and anthracnose.

  3. Correlation and path analysis of grain yield and morphological traits in test–cross populations of maize

    Sreckov, Z.; Nastasic, A.; Bocanski, J.; Djalovic, I.; Vukosavljev, M.; Jockovic, B.

    2011-01-01

    One of the goals of this paper was to determine correlation between grain yield, like the most important agronomic trait, and traits of the plant and ear that are influencing on the grain yield, in two test-cross populations, which are formed by crossing progenies of NSU(1) population after 17

  4. Response of Barley Double Haploid Lines to the Grain Yield and Morphological Traits under Water Deficit Stress Conditions

    Maroof Khalily

    2017-04-01

    Full Text Available To study the relationships of grain yield and some of agro-morphological traits in 40 doubled haploid (DH lines along with parental and three check genotypes in a randomized complete block design with two replications under two water regimes (normal and stress were evaluated during 2011-2012 and 2012-2013 growing seasons. Combined analysis of variance showed significant difference for all the traits in terms of the year, water regimes, lines, and and line × year. Comparison of group means, between non-stress and stress conditions, showed that DH lines had the lowest reduction percentage for the number of grains per spike, thousand grain weight, grain yield and biological yield as opposed to check genotypes. The correlation between grain yield with biological yield, harvest index, thousand grain weight, and hectoliter of kernel weight in both conditions, were highly significant and positive. Based on stepwise regression the peduncle length, number of seeds per spike, thousand seed weight, and hectoliter of kernel weight had important effect on increasing seed yield. The result of path analysis showed that these traits had the highest direct effect on grain yield. Based on mean comparisons of morphological characters as well as STI and GMP indices it can be concluded that lines No.11, 13, 14, 24, 29, 30, 35 and 39 were distinguished to be desirable lines for grain yield and their related traits and also tolerant lines in terms of response to drought stress conditions.

  5. Effect of induced lodging on grain yield and quality of brewing barley

    Eduardo Caierão

    2006-01-01

    Full Text Available Lodging is one of the main factors of constraint to grain yield stability in barley. The objective of this study wasto evaluate the effects of lodging on agronomic and qualitative traits, when induced at different stages of the crop development.The trial was carried out in Victor Graeff, RS, using a randomized complete block design with four replications and 3 factors:year, lodging date and lodging intensity. The analyzed parameters were grain yield (GY, kernel plumpness (KP, germination(G, and score of lodging at harvest (SLH. No significant interaction was observed for GY and G. The effects of inducedlodging at the booting and physiologic maturity stages were distinct for GY, KP and G. Unlike G, the variables GY and KPwere not significantly affected by lodging intensity. Quantitative and qualitative losses in barley can be predicted based onlodging.

  6. Genetic variations in the dynamics of dry matter accumulation, nitrogen assimilation and translocation in new T. aestivum L. varieties. II. Nitrogen assimilation and translocation in relation to grain yield and protein content

    Nankova, M.; Kostov, K.; Penchev, E.

    1999-01-01

    The study was carried out under greenhouse and field conditions and showed considerable genotype differences between the vrs. Enola, Karat, Svilena and Pliska (T. aestivum L.) with regard to N assimilation during heading, which played an important role in grain yield formation (0.852). Grain yield depends considerably on N translocation (NT) in the period heading-full maturity (0.864) and on its part affects the intensity of N uptake in grain during grain filling-full maturity. In both experiments cv. Svilena demonstrated high NR from the leaves, which was the reason for more than 52 % of N in grain. In the field experiment cv. Svilena confirmed this tendency, the NR being highest in the 2-3 leaf stage, followed by the flag leaf and the down leaves. The intensity of N uptake in grain during grain filling-full maturity was highest in the vrs. Enola and Karat. This intensity was in strong correlation with NA during heading, and with NT in V m during heading-full maturity. It also affected to a high degree the protein content in grain, as well as grain yield. In both experiments a strong negative correlation was established between the NHI/GHI ratio, and grain yield and nitrogen assimilation during heading; a positive correlation was determined with grain NHI. Under the conditions of increasing N dressing, the vrs. Enola, Karat, and Svilena had higher N expense for formation of a production unit, 63 up to 91 % of the N being used for formation of grain with high protein content. Protein yield correlated strongly not only with protein in grain, but also with the intensity of uptake in grain during grain filling - full maturity. The highest protein yield was registered in cv. Karat. By their N expense for production of 100 kg protein, the new varieties did not differ from the standard variety Pliska. The results from the study showed a higher genetic potential of the agrochemically promising varieties Karat, Enola and Svilena than the standard variety Pliska. Refs. 10

  7. Impact of Corn Earworm (Lepidoptera: Noctuidae) on Field Corn (Poales: Poaceae) Yield and Grain Quality.

    Bibb, Jenny L; Cook, Donald; Catchot, Angus; Musser, Fred; Stewart, Scott D; Leonard, Billy Rogers; Buntin, G David; Kerns, David; Allen, Tom W; Gore, Jeffrey

    2018-05-28

    Corn earworm, Helicoverpa zea (Boddie), commonly infests field corn, Zea mays (L.). The combination of corn plant biology, corn earworm behavior in corn ecosystems, and field corn value renders corn earworm management with foliar insecticides noneconomical. Corn technologies containing Bacillus thuringiensis (Bt) Berliner (Bacillales: Bacillaceae) were introduced that exhibit substantial efficacy against corn earworm and may reduce mycotoxin contamination in grain. The first generation Bt traits in field corn demonstrated limited activity on corn earworm feeding on grain. The pyramided corn technologies have greater cumulative protein concentrations and higher expression throughout the plant, so these corn traits should provide effective management of this pest. Additionally, reduced kernel injury may affect physical grain quality. Experiments were conducted during 2011-2012 to investigate corn earworm impact on field corn yield and grain quality. Treatments included field corn hybrids expressing the Herculex, YieldGard, and Genuity VT Triple Pro technologies. Supplemental insecticide treatments were applied every 1-2 d from silk emergence until silk senescence to create a range of injured kernels for each technology. No significant relationship between the number of corn earworm damaged kernels and yield was observed for any technology/hybrid. In these studies, corn earworm larvae did not cause enough damage to impact yield. Additionally, no consistent relationship between corn earworm damage and aflatoxin contamination was observed. Based on these data, the economic value of pyramided Bt corn traits to corn producers, in the southern United States, appears to be from management of other lepidopteran insect pests including European and southwestern corn borer.

  8. Agronomic Characteristics Related to Grain Yield and Nutrient Use Efficiency for Wheat Production in China.

    Limin Chuan

    Full Text Available In order to make clear the recent status and trend of wheat (Triticum aestivum L. production in China, datasets from multiple field experiments and published literature were collected to study the agronomic characteristics related to grain yield, fertilizer application and nutrient use efficiency from the year 2000 to 2011. The results showed that the mean grain yield of wheat in 2000-2011 was 5950 kg/ha, while the N, P2O5 and K2O application rates were 172, 102 and 91 kg/ha on average, respectively. The decrease in N and P2O5 and increase in K2O balanced the nutrient supply and was the main reason for yield increase. The partial factor productivity (PFP, kg grain yield produced per unit of N, P2O5 or K2O applied values of N (PFP-N, P (PFP-P and K (PFP-K were in the ranges of 29.5~39.6, 43.4~74.9 and 44.1~76.5 kg/kg, respectively. While PFP-N showed no significant changes from 2000 to 2010, both PFP-P and PFP-K showed an increased trend over this period. The mean agronomic efficiency (AE, kg grain yield increased per unit of N, P2O5 or K2O applied values of N (AEN, P (AEP and K (AEK were 9.4, 10.2 and 6.5 kg/kg, respectively. The AE values demonstrated marked inter-annual fluctuations, with the amplitude of fluctuation for AEN greater than those for AEP and AEK. The mean fertilizer recovery efficiency (RE, the fraction of nutrient uptake in aboveground plant dry matter to the nutrient of fertilizer application values of N, P and K in the aboveground biomass were 33.1%, 24.3% and 28.4%, respectively. It was also revealed that different wheat ecological regions differ greatly in wheat productivity, fertilizer application and nutrient use efficiency. In summary, it was suggested that best nutrient management practices, i.e. fertilizer recommendation applied based on soil testing or yield response, with strategies to match the nutrient input with realistic yield and demand, or provided with the 4R's nutrient management (right time, right rate, right

  9. The plus-hybrid effect on the grain yield of two ZP maize hybrids

    Božinović Sofija

    2010-01-01

    Full Text Available The combined effect of cytoplasmic male sterility and xenia on maize hybrid traits is referred to as the plus-hybrid effect. Two studied ZP hybrids differently responded to this effect for grain yield. All plus-hybrid combinations of the firstly observed hybrid had a higher yield than their fertile counterparts, but not significantly, while only one combination of the second hybrid positively responded, also without statistical significance. It seems that the observed effect mostly depended on the genotype of the female component.

  10. Genotype × environment interaction of quality protein maize grain yield in Nepal

    Jiban Shrestha; Chitra Bahadur Kunwar; Jharana Upadhyaya; Maiya Giri; Ram Bahadur Katuwal; Ramesh Acharya; Suk Bahadur Gurung; Bhim Nath Adhikari; Amrit Prasad Paudel; Ram Babu Paneru

    2016-01-01

    In order to determine G × E interaction of quality protein maize grain yield, six maize genotypes were evaluated under different environments of three Terai (Chitwan, Surkhet and Doti) and four mid hill (Dhankuta, Lalitpur, Dolakha and Kaski) districts of Nepal during summer seasons of 2014 and 2015. The experiments were conducted using randomized complete block design along with three replications. The genotypes namely S99TLYQ-B, S99TLYQ-HG-AB and S03TLYQ-AB-01 were identified high yielding ...

  11. Evaluation of short stature mutants of Basmati-370 for yield and grain quality characteristics

    Awan, M.A.; Ahmad, M.; Cheema, A.A.

    1982-01-01

    Three short stature mutants were induced in an indica rice cultivar by gamma irradiation. The mutants were assessed for their yielding ability and grain quality characteristics. All the mutants out yielded the parent variety, Basmati-370. The increase in yield of the mutants ranged from 19.37% to 29.66%. DM-2 gave the highest yield (3587.96 kg/ha) among the mutants. As regards physical, cooking and eating quality characteristics, there was no significant difference in water absorption, volume expansion ratios and stickiness among the mutants and Basmati-370. However, Basmati-370 was scored best for flavour as this variety had strong aroma as compared to its mutants which were scored for moderately strong aroma. (authors)

  12. Relations among Valencia orange yields with soil and leaf nutrients in Northwestern Paraná, Brazil

    Jonez Fidalski

    2000-01-01

    Full Text Available The Valencia orange orchards established on soils of low fertility in the Northwest region of Paraná State, Brazil, have showed symptoms of Mg deficiency and reduced fruit yields. The objective of this study was to verify the relationship between yield with soil and leaf nutrients during 1996/97 growing season. Two sites of low and high productivity were selected in seven orchards. Leaf and soil samples (fertilized rows and interrows were collected in 1996. The results showed that the citrus yields were negatively related with soil Mg/K and Ca+Mg/K ratios in the fertilized rows, and fruit weight positively correlated with leaf Zn in the low productivity orchards. The fruit weight was positively related with leaf Ca and soil Ca in the fertilized rows of the high productivity orchards. The results suggested an adequate lime and K fertilization managements in the fertilized rows, as well as an adequate Zn supply.Os pomares de laranja Valência (Citrus sinensis (L. Osbeck estabelecidos em solos de baixa fertilidade da região noroeste do Paraná, tem apresentado sintomas de desequilíbrio nutricional, principalmente deficiência de Mg e redução da produção e do tamanho dos frutos. O objetivo deste trabalho foi verificar as relações da produção e peso dos frutos com os nutrientes das folhas e do solo de sete pomares de laranja Valência na safra de 1996/97, em talhões de produtividade inferior e superior. Em 1996, foram coletadas amostras de folha e de solo nas faixas de adubação e nas entrelinhas. Os resultados mostraram que a produção de frutos correlacionou-se negativamente com as relações dos cátions Mg/K e Ca+Mg/K do solo das faixas de adubação dos pomares de baixa produtividade e, o peso dos frutos, correlacionou-se positivamente com os teores foliares de Zn. Nos pomares de produtividade superior, o peso dos frutos correlacionou-se positivamente com os teores de Ca das folhas e do solo nas faixas de adubação. Estes

  13. Identification of QTLs for grain yield and grain-related traits of maize (Zea mays L.) using an AFLP-map, different testers, and cofactor analysis

    Ajimone Marsan, P.; Gorni, C.; Chitto, A.; Redaelli, R.; Vijk, van R.; Stam, P.; Motto, M.

    2001-01-01

    Abstract We exploited the AFLP?1(AFLP? is a registered trademark of Keygene, N.V.) technique to map and characterise quantitative trait loci (QTLs) for grain yield and two grain-related traits of a maize segregating population. Two maize elite inbred lines were crossed to produce 229 F2 individuals

  14. Grain yield of corn at different population densities and intercropped with forages

    José M. do Nascimento

    2015-12-01

    Full Text Available ABSTRACT The no-tillage system optimizes agricultural areas, maintaining the supply of straw and promoting crop rotation and soil conservation. The aim of the present study was to evaluate sowing quality and grain yield of corn intercropped with three forage species of the Urochloa genus associated with two corn population densities. The experiment was conducted at the São Paulo State University (UNESP, in Jaboticabal-SP, Brazil. The experimental design was randomized blocks in a 2 x 3 factorial scheme with four replicates. The treatments consisted of two corn densities (55,000 and 75,000 plants ha-1 intercropped with three forages (Urochloa brizantha, Urochloa decumbens and Urochloa ruziziensis sown between rows of corn in the V4 stage. The following corn variables were analysed: mean number of days for emergence, longitudinal distribution, grain yield, initial population and final population. There were differences between corn populations (p < 0.1 and the intercropping of corn with the species U. brizantha and U. ruziziensis promoted the best results, which permitted concluding that the cultivation of corn at the population density of 75,000 plants ha-1 intercropped U. brizantha and U. ruziziensis promoted better sowing quality and, consequently, higher grain yields.

  15. Effect of Seed Distribution and Population on Maize (Zea mays L. Grain Yield

    Bee Khim Chim

    2014-01-01

    Full Text Available Maize planting is normally accomplished by hand in the developing world where two or more seeds are placed per hill with a heterogeneous plant spacing and density. To understand the interaction between seed distribution and distance between hills, experiments were established in 2012 and 2013 at Lake Carl Blackwell (LCB and Efaw Agronomy Research Stations, near Stillwater, OK. A randomized complete block design was used with three replications and 9 treatments and a factorial treatment structure of 1, 2, and 3 seeds per hill using interrow spacing of 0.16, 0.32, and 0.48 m. Data for normalized difference vegetation index (NDVI, intercepted photosynthetically active radiation (IPAR, grain yield, and grain N uptake were collected. Results showed that, on average, NDVI and IPAR increased with number of seeds per hill and decreased with increasing plant spacing. In three of four site-years, planting 1 or 2 seeds per hill, 0.16 m apart, increased grain yield and N uptake. Over sites, planting 1 seed, every 0.16 m, increased yields by an average of 1.15 Mg ha−1 (range: 0.33 to 2.46 Mg ha−1 when compared to the farmer practice of placing 2 to 3 seeds per hill, every 0.48 m.

  16. Effects of nitrogen application rate on dry matter redistribution, grain yield, nitrogen use efficiency and photosynthesis in malting barley

    Cai, J; Jiang, D; Wollenweber, Bernd

    2012-01-01

    The harmonious combination of malting barley yield, quality and nitrogen (N) use-efficiency under nitrogen (N) rates applications was greatly conducive to production in China. The malting barley cultivar Supi 3 was planted during the growing seasons 2005 and 2006 at two contrasting sites in China....... Five nitrogen (N) application rates (0, 75, 150, 225 and 300 kg ha−1) were applied for research of effects of N rates application on grain yield, protein content and N use-efficiency. At both sites and in both years, grain yield increased with increasing N application rates up to 225 kg N ha−1...... with a quadrant model, the optimum N application rates for high grain yield with high nitrogen use-efficiency in malting barley could be indicated. So, the higher yields could be mainly ascribed to the higher accumulation of photoassimilates between anthesis and maturity. In order to achieve high grain yield...

  17. Effect of different fertilizer resources on yield and yield components of grain maize (Zea mays L. affected by tillage managements

    Ahmad Ghasemi

    2016-03-01

    maturity, 10 plants were randomly selected and the plant height, the number of kernels per row, the number of rows per ear, the seed weight, the harvest index, and the ear length were measured, separately. Results and discussion The results showed that in comparison with the first year, in the second year a significant increase was observed in plant height, ear length, number of kernel per row, weight of 100 seed weight, harvest index, and seed yield. The highest grain yield was obtained from the conventional tillage systems (mixing the fertilizer with the soil with the mean of 4494.85 kg.ha-1. Other characteristics, except the number of row per ear, increased more in the conventional tillage than in the no tillage. Fertilizer sources were significant for plant height, ear length, number of kernel per row, weight of 100 kernels, harvest index, and seed yield. The highest grain yield was obtained from the sixth treatment (mix of animal, chemical and green manures with the mean of 7018.5 kg.ha-1. The interaction of year, tillage and fertilizer sources indicated that the highest grain yield and 100 seed weight were obtained from the conventional tillage systems and from the 6th treatment (mix of animal, chemical and green manures with the means of 9400.33 kg.ha-1 and 246 g, respectively. In the conventional tillage, microbial decomposition occurs faster than in the no tillage. Nutrients are released in vicinity of the plant roots and it can be placed conveniently at the disposal plant. In this way, the sixth treatment will achieve higher yield and better quality, because it can create diverse sources of essential nutrients for the plant; moreover, it can increase absorption capacity in corn. Conclusion In conventional tillage systems, where the sources of fertilizer are mixed with soil, the plant is placed in direct contact with the soil degrading bacteria, accelerating the fertilizers’ mineralization, and ultimately, improving the plant growth. Due to high soil density

  18. Effect of environmental and genetic factors on the correlation and stability of grain yield components in wheat

    Hristov Nikola

    2011-01-01

    Full Text Available More effective breeding and development of new wheat genotypes depend on an intricate analysis of the complex relationships among many different traits. The objective of this paper was to determine the interrelationship, direct and indirect effects, and stability of different yield components in wheat. Forty divergent genotypes were analyzed in a three- year study (2005-2007. Highly significant correlations were found between grain yield per plant and all the other traits analyzed except spike length, with the only negative correlation being that with plant height. Path analysis revealed highly significant direct effects of grain number per spike, grain mass per spike and 1000 grain weight on grain yield per plant. Analysis of stability parameters showed that the stability of grain yield per plant depended for the most part on the stability of grain number per spike, grain mass per spike and harvest index. Cluster analysis identified genotypes with a high performance for grain yield per plant and good stability parameters, indicating the possibility of developing wheat varieties with a high potential and high stability for a particular trait.

  19. Rice grain yield as affected by subsoiling, compaction on sowing furrow and seed treatment

    Veneraldo Pinheiro

    2016-05-01

    Full Text Available ABSTRACT This study aimed to determine the effects of subsoiling, compaction on sowing furrow and seed treatments with insecticides on the grain yield of upland rice cultivated under no-tillage. Two experiments were carried out, one in an area with and the other in an area without subsoiling, in which five seed treatments combined with five compaction pressures on the sowing furrow were compared in a randomized block design, in a factorial scheme, with three replicates. The seed treatments were: T0 - without treatment, T1 - imidacloprid + thiodicarb, T2 - thiamethoxam, T3 - carbofuran, and T4 - fipronil + pyraclostrobin + thiophanate methyl. The compaction pressures were: 25, 42, 126, 268 and 366 kPa. Subsoiling positively affected rice yield in the presence of higher compaction pressures on the sowing furrow. Seed treatment was effective at increasing rice grain yield only at the lowest compaction pressures. Rice yield showed quadratic response to compaction on the sowing furrow, with maximum values obtained at pressures ranging from 238.5 to 280.3 kPa.

  20. Yield and acidity indices of sunflower and soybean oils in function of grain drying and storage

    Paulo Carteri Coradi

    2017-04-01

    Full Text Available The aim of this study was to identify the best conditions for drying and storing soybeans and sunflower grains to maintain their quality. In the first experiment, the soybeans were found to have initial moisture contents of 25 and 19% (w.b. at different drying air temperatures (75, 90, 105, and 120°C. In the second step, the soybeans were evaluated after they were stored in paper bags and plastic polyethylene at temperatures of 3, 10 and 23°C for six months. In the third experiment, sunflower grains were tested after exposure to drying air temperatures of 45, 55, 65, and 75°C, and under storage conditions of 25°C and 50%, 20°C and 60%, 30°C and 40% RH over six months in paper bags and raffia. Drying the sunflower seeds at 45°C and storing them at 30°C and 40% RH led to higher oil yields and lower acid numbers. The oil that was extracted from the acid number was higher for soybean grains that were dried down from initial concentrations of 25% water at a drying air temperature of 120°C. The air temperature in storage at 3°C favored for yield and reduction of the soybean oil acidity.

  1. Duplication of an upstream silencer of FZP increases grain yield in rice.

    Bai, Xufeng; Huang, Yong; Hu, Yong; Liu, Haiyang; Zhang, Bo; Smaczniak, Cezary; Hu, Gang; Han, Zhongmin; Xing, Yongzhong

    2017-11-01

    Transcriptional silencer and copy number variants (CNVs) are associated with gene expression. However, their roles in generating phenotypes have not been well studied. Here we identified a rice quantitative trait locus, SGDP7 (Small Grain and Dense Panicle 7). SGDP7 is identical to FZP (FRIZZY PANICLE), which represses the formation of axillary meristems. The causal mutation of SGDP7 is an 18-bp fragment, named CNV-18bp, which was inserted ~5.3 kb upstream of FZP and resulted in a tandem duplication in the cultivar Chuan 7. The CNV-18bp duplication repressed FZP expression, prolonged the panicle branching period and increased grain yield by more than 15% through substantially increasing the number of spikelets per panicle (SPP) and slightly decreasing the 1,000-grain weight (TGW). The transcription repressor OsBZR1 binds the CGTG motifs in CNV-18bp and thereby represses FZP expression, indicating that CNV-18bp is the upstream silencer of FZP. These findings showed that the silencer CNVs coordinate a trade-off between SPP and TGW by fine-tuning FZP expression, and balancing the trade-off could enhance yield potential.

  2. Do the rich always become richer? Characterizing the leaf physiological response of the high-yielding rice cultivar Takanari to free-air CO2 enrichment.

    Chen, Charles P; Sakai, Hidemitsu; Tokida, Takeshi; Usui, Yasuhiro; Nakamura, Hirofumi; Hasegawa, Toshihiro

    2014-02-01

    The development of crops which are well suited to growth under future environmental conditions such as higher atmospheric CO2 concentrations ([CO2]) is essential to meeting the challenge of ensuring food security in the face of the growing human population and changing climate. A high-yielding indica rice variety (Oryza sativa L. cv. Takanari) has been recently identified as a potential candidate for such breeding, due to its high productivity in present [CO2]. To test if it could further increase its productivity under elevated [CO2] (eCO2), Takanari was grown in the paddy field under season-long free-air CO2 enrichment (FACE, approximately 200 µmol mol(-1) above ambient [CO2]) and its leaf physiology was compared with the representative japonica variety 'Koshihikari'. Takanari showed consistently higher midday photosynthesis and stomatal conductance than Koshihikari under both ambient and FACE growth conditions over 2 years. Maximum ribulose-1,5-bisphosphate carboxylation and electron transport rates were higher for Takanari at the mid-grain filling stage in both years. Mesophyll conductance was higher in Takanari than in Koshihikari at the late grain-filling stage. In contrast to Koshihikari, Takanari grown under FACE conditions showed no decrease in total leaf nitrogen on an area basis relative to ambient-grown plants. Chl content was higher in Takanari than in Koshihikari at the same leaf nitrogen level. These results indicate that Takanari maintains its superiority over Koshihikari in regards to its leaf-level productivity when grown in elevated [CO2] and it may be a valuable resource for rice breeding programs which seek to increase crop productivity under current and future [CO2].

  3. Climatic warming increases winter wheat yield but reduces grain nitrogen concentration in east China.

    Yunlu Tian

    Full Text Available Climatic warming is often predicted to reduce wheat yield and grain quality in China. However, direct evidence is still lacking. We conducted a three-year experiment with a Free Air Temperature Increase (FATI facility to examine the responses of winter wheat growth and plant N accumulation to a moderate temperature increase of 1.5°C predicted to prevail by 2050 in East China. Three warming treatments (AW: all-day warming; DW: daytime warming; NW: nighttime warming were applied for an entire growth period. Consistent warming effects on wheat plant were recorded across the experimental years. An increase of ca. 1.5°C in daily, daytime and nighttime mean temperatures shortened the length of pre-anthesis period averagely by 12.7, 8.3 and 10.7 d (P<0.05, respectively, but had no significant impact on the length of the post-anthesis period. Warming did not significantly alter the aboveground biomass production, but the grain yield was 16.3, 18.1 and 19.6% (P<0.05 higher in the AW, DW and NW plots than the non-warmed plot, respectively. Warming also significantly increased plant N uptake and total biomass N accumulation. However, warming significantly reduced grain N concentrations while increased N concentrations in the leaves and stems. Together, our results demonstrate differential impacts of warming on the depositions of grain starch and protein, highlighting the needs to further understand the mechanisms that underlie warming impacts on plant C and N metabolism in wheat.

  4. EFFECT OF NITROGEN-FIXING BACTERIA ON GRAIN YIELD AND DEVELOPMENT OF FLOODED IRRIGATED RICE

    AMAURI NELSON BEUTLER

    2016-01-01

    Full Text Available This study aimed at evaluating the effect of Azospirillum brasilense , a nitrogen - fixing bacterium, on flooded irrigated rice yield. Evaluations were carried out in a shaded nursery, with seedlings grown on an Alfisol. Were performed two sets of experiments. In the first, were carried out four experiments using the flooded rice cultivars INIA Olimar, Puitá Inta - CL, Br Irga 409 and Irga 424; these trials were set up as completely randomized design in a 5x4 factorial scheme, with four replications. Treatments consisted of five nitrogen rates (0, 40, 80, 120 and 160 kg ha - 1 and four levels of liquid inoculant Ab - V5 and Ab - V6 - A. brasilense (0, 1, 2 and 4 times the manufacturer's recommendation without seed treatment. In second set, were performed two experiments using the cultivars Puitá Inta - CL and Br Irga 409, arranged in the same design, but using a 4x2 factorial. In this set, treatments were composed of four levels of Ab - V5 and Ab - V6 - A. brasilense liquid inoculant (0, 1, 2 and 4 times the recommendation of 100 mL ha - 1 , using rice seeds with and without insecticide and fungicide treatment. Shoot dry matter, number of panicles, and rice grain yield per pot were the assessed variables. The results showed that rice seed inoculation with A. brasilense had no effects on rice grain yield of the cultivars INIA Olimar, Puitá Inta - CL, Br Irga 409 and Irga 424.

  5. Interpreting genotype × environment interactions for grain yield of rainfed durum wheat in Iran

    Reza Mohammadi

    2015-12-01

    Full Text Available Clustering genotype × environment (GE interactions and understanding the causes of GE interactions are among the most important tasks in crop breeding programs. Pattern analysis (cluster and ordination techniques was applied to analyze GE interactions for grain yield of 24 durum wheat (Triticum turgidum L. var. durum genotypes (breeding lines and old and new cultivars along with a popular bread wheat (Triticum aestivum cultivar grown in 21 different rainfed environments during the 2010–2013 cropping seasons. To investigate the causes of GE interaction, several genotypic and environmental covariables were used. In a combined ANOVA, environment was the predominant source of variation, accounting for 81.2% of the total sum of squares (TSS, and the remaining TSS due to the GE interaction effect was almost seven times that of the genetic effect. Cluster analysis separated the environments into four groups with similar discriminating ability among genotypes, and genotypes into five groups with similar patterns in yield performance. Pattern analysis confirmed two major environmental clusters (cold and warm, and allowed the discrimination and characterization of genotype adaptation. Within the cold-environment cluster, several subclusters were identified. The breeding lines were most adapted to moderate and warm environments, whereas the old varieties were adapted to cold environments. The results indicated that winter rainfall and plant height were among the environmental and genotypic covariables, respectively, that contributed most to GE interaction for grain yield in rainfed durum wheat.

  6. Evaluation Physiological Characteristics and Grain Yield Canola Cultivars under end Seasonal Drought Stress in Weather Condition of Ahvaz

    A Seyed Ahmadi

    2015-07-01

    Full Text Available To evaluate canola cultivars response to physiological characteristics and grain yield end seasonal drought stress in weather condition of Ahvaz, farm experiments were done at research farm of Khuzestan agriculture and natural resources center. During 2007-2008 and 2008-2009 crop years. Farm test comprised drought stress was done as split plot form with randomize complete block design with four replication, treatments consist of drought stress (main factor including 50, 60 and 70 percent of water use content, which was applied from early heading stage until physiological maturity, and three spring canola cultivar including Shirali, Hayola 401 and R.G.S. were considered as sub plots. Measurements include biological yield, grain yield, harvesting index, number of pod per plant 1000 grain weight, number of grain in pod, plant height, and stem diameter, oil and protein percentage. Results showed that drought stress reduced significantly grain yield, biological yield, harvest index and the average of reduction of them during 2 years for per unit reduce moisture from 50% to 70% were 2, 1.35, and 0.81 percent, respectively. During two years, 1000 grain weight, number of pods per plant and number of grain per pod reduced 27, 36 and 20 percent, respectively. Terminal Drought stress reduced significantly plant height, stem diameter, stem number per plant and pod length, this reduced were 12, 46, 36 and 14 percent, respectively. Stem diameter, and stem number per plant reduced more than other characteristics. In this study oil grain decreased 12 % and protein grain increased 18.5% but oil and protein yield decreased 44.9% and 27.1% respectively..Finally, in weather condition of Khuzestan, terminal drought stress on February and March in which has simultaneous with early flowering stage and filling seed, significantly, reduced yield and compounded yield and affects on stem growth and qualities oil and protein negatively. Therefore, with irrigation

  7. Effective Use of Water and Increased Dry Matter Partitioned to Grain Contribute to Yield of Common Bean Improved for Drought Resistance

    Jose A. Polania

    2016-05-01

    Full Text Available Common bean (Phaseolus vulgaris L. is the most important food legume in the diet of poor people in the tropics. Drought causes severe yield loss in this crop. Identification of traits associated with drought resistance contributes to improving the process of generating bean genotypes adapted to these conditions. Field studies were conducted at the International Center for Tropical Agriculture (CIAT, Palmira, Colombia, to determine the relationship between grain yield and different parameters such as effective use of water (EUW, canopy biomass and dry partitioning indices (pod partitioning index, harvest index and pod harvest index in elite lines selected for drought resistance over the past decade. Carbon isotope discrimination (CID was used for estimation of water use efficiency (WUE. The main objectives were: (i to identify specific morpho-physiological traits that contribute to improved resistance to drought in lines developed over several cycles of breeding and that could be useful as selection criteria in breeding; and (ii to identify genotypes with desirable traits that could serve as parents in the corresponding breeding programs. A set of 36 bean genotypes belonging to the Middle American gene pool were evaluated under field conditions with two levels of water supply (irrigated and drought over two seasons. Eight bean lines (NCB 280, NCB 226, SEN 56, SCR 2, SCR 16, SMC 141, RCB 593 and BFS 67 were identified as resistant to drought stress. Resistance to terminal drought stress was positively associated with EUW combined with increased dry matter partitioned to pod and seed production and negatively associated with days to flowering and days to physiological maturity. Differences in genotypic response were observed between grain CID and grain yield under irrigated and drought stress. Based on phenotypic differences in CID, leaf stomatal conductance, canopy biomass and grain yield under drought stress, the lines tested were classified into

  8. Effect of low doses of X-rays on grain and straw yield of Setaria italica

    Joshi, R.K.; Bhattacharya, S.; Fendrik, I.

    1976-01-01

    Dry or pre-soaked seeds were irradiated with 250-1,500 R/h of X-rays at a dose rate of 1,000 R/h and sown into pots. Till harvest normal cultural practices were employed. A stimulation of grain and straw yield was only obtained by irradiation of dry seeds. Irradiation of pre-soaked seeds was ineffective or somewhat harmful. The absence of any effects in post-soaked seeds indicated that early hydration of seeds after irradiation results in a stabilization of the damage. (MG) [de

  9. The Effect of Zinc Fertilizer Application on Grain Yield of Different Zinc-Efficient Spring and Winter Wheat Cultivars

    M. Malian

    2014-08-01

    Full Text Available These field trials were carried out to investigate the effect of various zinc (Zn fertilizer application treatments on grain yield of some spring (Isfahan and Neishabour and winter wheat cultivars (Mashhad and Jolge-e-Rokh with different Zn efficiency during 2009-2010 growth seasons. Five Zn fertilizer treatments were applied including: no added Zn (control, soil application of Zn-sulfate, and foliar spray of Zn-sulfate, Omex1, and Omex2. Omex1 and Omex2 contained 4 and 17% Zn, respectively. Foliar spray was performed at the anthesis stage. Both spring and winter wheat genotypes significantly differed in grain yield. The results showed that wheat genotypes largely varied in their grain yield response to different Zn application treatments. Some spring (Sholeh in Isfahan and winter (Sabalan in Jolg-e-Rokh wheat genotypes had greater response to Zn fertilization so that Zn addition increased grain yield of Sholeh by 48% and Sabalan by 17% as compared with no added Zn control. In contrast, Zn addition had no effect on grain yield of some other genotypes. Yield response of wheat genotypes to Zn application treatments significantly varied upon location. According to the results obtained from this study, the efficacy of Zn fertilizer treatments on grain yield of wheat is dependent on the genotype and location. Therefore, this concern should be considered in fertilizer recommendation programs that a specific Zn fertilizer treatment may not be recommended for all wheat cultivars and locations.

  10. Dry land Winter Wheat Yield, Grain Protein, and Soil Nitrogen Responses to Fertilizer and Bio solids Applications

    Koenig, R.T.; Cogger, C.G.; Bary, A.I.

    2011-01-01

    Applications of bio solids were compared to inorganic nitrogen (N) fertilizer for two years at three locations in eastern Washington State, USA, with diverse rainfall and soft white, hard red, and hard white winter wheat (Triticum aestivum L.) cultivars. High rates of inorganic N tended to reduce yields, while grain protein responses to N rate were positive and linear for all wheat market classes. Bio solids produced 0 to 1400 kg ha -1 (0 to 47%) higher grain yields than inorganic N. Wheat may have responded positively to nutrients other than N in the bio solids or to a metered N supply that limited vegetative growth and the potential for moisture stress-induced reductions in grain yield in these dry land production systems. Grain protein content with bio solids was either equal to or below grain protein with inorganic N, likely due to dilution of grain N from the higher yields achieved with bio solids. Results indicate the potential to improve dry land winter wheat yields with bio solids compared to inorganic N alone, but perhaps not to increase grain protein concentration of hard wheat when bio solids are applied immediately before planting.

  11. Calibration of Soil Available Nitrogen and Water Content with Grain Yield of Dry land Wheat

    V. Feiziasl

    2017-01-01

    Full Text Available Introduction: Nitrogen (N is one of the most important growth-limiting nutrients for dryland wheat. Mineral nitrogen or ammonium (NH4+ and nitrate (NO3− are two common forms of inorganic nitrogen that can serve as limiting factors for plant growth. Nitrogen fertilization in dryland area can increase the use of soil moisture, and improve wheat yields to some extent. Many researchers have been confirmed interactions between water stress and nitrogen fertilizers on wheat, especially under field conditions. Because of water stress affects forms of nitrogen uptake that leads to disorder in plant metabolism, reduction in grain yield and crop quality in dryland condition. On the other hand, use of suitable methods for determining nitrogen requirement can increase dryland wheat production. However, nitrogen recommendations should be based on soil profile content or precipitation. An efficient method for nitrogen fertilizer recommendation involves choosing an effective soil extractant and calibrating soil nitrogen (Total N, NO3− andNH4+ tests against yield responses to applied nitrogen in field experiments. Soil testing enables initial N supply to be measured and N supply throughout the season due to mineralization to be estimated. This study was carried out to establish relationship between nitrogen forms (Total N, NO3− andNH4+ in soil and soil profile water content with plant response for recommendation of nitrogen fertilizer. Materials and Methods: This study was carried out in split-split plot in a RCBD in Dryland Agricultural Research Institute (DARI, Maragheh, Iranwhere N application times (fall, 2/3 in fall and 1/3 in spring were assigned to the main plots, N rates to sub plot (0, 30, 60 and 90 kg/ha, and 7 dryland wheat genotypes to sub-sub plots (Azar2, Ohadi, Rasad and 1-4 other genotypes in three replications in 2010-2011. Soil samples were collected from 0-20, 20-40, 40-60 and 60-80 cm in sub-sub plots in shooting stage (ZGS32. Ammonium

  12. Root growth, soil water variation, and grain yield response of winter wheat to supplemental irrigation

    Jianguo Man

    2016-04-01

    Full Text Available Water shortage threatens agricultural sustainability in the Huang-Huai-Hai Plain of China. Thus, we investigated the effect of supplemental irrigation (SI on the root growth, soil water variation, and grain yield of winter wheat in this region by measuring the moisture content in different soil layers. Prior to SI, the soil water content (SWC at given soil depths was monitored to calculate amount of irritation water that can rehydrate the soil to target SWC. The SWC before SI was monitored to depths of 20, 40, and 60 cm in treatments of W20, W40, and W60, respectively. Rainfed treatment with no irrigation as the control (W0. The mean root weight density (RWD, triphenyl tetrazolium chloride reduction activity (TTC reduction activity, soluble protein (SP concentrations as well as catalase (CAT, and superoxide dismutase (SOD activities in W40 and W60 treatments were significantly higher than those in W20. The RWD in 60–100 cm soil layers and the root activity, SP concentrations, CAT and SOD activities in 40–60 cm soil layers in W40 treatment were significantly higher than those in W20 and W60. W40 treatment is characterized by higher SWC in the upper soil layers but lower SWC in the 60–100-cm soil layers during grain filling. The soil water consumption (SWU in the 60–100 cm soil layers from anthesis after SI to maturity was the highest in W40. The grain yield, water use efficiency (WUE, and irrigation water productivity were the highest in W40, with corresponding mean values of 9169 kg ha−1, 20.8 kg ha−1 mm−1, and 35.5 kg ha−1 mm−1. The RWD, root activities, SP concentrations, CAT and SOD activities, and SWU were strongly positively correlated with grain yield and WUE. Therefore, the optimum soil layer for SI of winter wheat after jointing is 0–40 cm.

  13. Field establishment and grain yield of maize affected by hydro-priming of differentially aged seeds

    Kazem Ghassemi-Golezani

    2017-02-01

    Full Text Available A sub-sample of maize seeds (cv. SC-AR68 with a 100% germination was kept as control, and two other sub-samples were artificially deteriorated at 40 °C for 2 and 3 days, reducing normal germination to 98% and 93%, respectively. Consequently, three seed lots of maize with different levels of vigor were provided. Each seed lot was then divided into four sub-samples, one unprimed and the other three lots were primed in distilled water at 15 °C for 7, 14 and 21 hours, and then dried back to initial moisture content (about 20% at a room temperature of 20–22 °C for 24 hours. The field experiment was arranged as factorial based on randomized complete block design with three replications. Although germination percentage of seed lots was not significantly affected by hydro-priming, germination rate and seedling dry weight were considerably enhanced as a result of seed priming. Hydro-priming for 21 hours enhanced seedling emergence rate of all seed lots with different levels of vigor. This hydro-priming duration also increased grain yield of maize by about 32%, although this superiority was not statistically significant. This advantage in grain yield of plants from primed seeds was related with rapid germination and seedling growth and early emergence in the field.

  14. Zinc, iron, manganese and copper uptake requirement in response to nitrogen supply and the increased grain yield of summer maize.

    Yanfang Xue

    Full Text Available The relationships between grain yields and whole-plant accumulation of micronutrients such as zinc (Zn, iron (Fe, manganese (Mn and copper (Cu in maize (Zea mays L. were investigated by studying their reciprocal internal efficiencies (RIEs, g of micronutrient requirement in plant dry matter per Mg of grain. Field experiments were conducted from 2008 to 2011 in North China to evaluate RIEs and shoot micronutrient accumulation dynamics during different growth stages under different yield and nitrogen (N levels. Fe, Mn and Cu RIEs (average 64.4, 18.1 and 5.3 g, respectively were less affected by the yield and N levels. ZnRIE increased by 15% with an increased N supply but decreased from 36.3 to 18.0 g with increasing yield. The effect of cultivars on ZnRIE was similar to that of yield ranges. The substantial decrease in ZnRIE may be attributed to an increased Zn harvest index (from 41% to 60% and decreased Zn concentrations in straw (a 56% decrease and grain (decreased from 16.9 to 12.2 mg kg-1 rather than greater shoot Zn accumulation. Shoot Fe, Mn and Cu accumulation at maturity tended to increase but the proportions of pre-silking shoot Fe, Cu and Zn accumulation consistently decreased (from 95% to 59%, 90% to 71% and 91% to 66%, respectively. The decrease indicated the high reproductive-stage demands for Fe, Zn and Cu with the increasing yields. Optimized N supply achieved the highest yield and tended to increase grain concentrations of micronutrients compared to no or lower N supply. Excessive N supply did not result in any increases in yield or micronutrient nutrition for shoot or grain. These results indicate that optimized N management may be an economical method of improving micronutrient concentrations in maize grain with higher grain yield.

  15. Simultaneous improvement of grain yield and protein content in durum wheat by different phenotypic indices and genomic selection.

    Rapp, M; Lein, V; Lacoudre, F; Lafferty, J; Müller, E; Vida, G; Bozhanova, V; Ibraliu, A; Thorwarth, P; Piepho, H P; Leiser, W L; Würschum, T; Longin, C F H

    2018-06-01

    Simultaneous improvement of protein content and grain yield by index selection is possible but its efficiency largely depends on the weighting of the single traits. The genetic architecture of these indices is similar to that of the primary traits. Grain yield and protein content are of major importance in durum wheat breeding, but their negative correlation has hampered their simultaneous improvement. To account for this in wheat breeding, the grain protein deviation (GPD) and the protein yield were proposed as targets for selection. The aim of this work was to investigate the potential of different indices to simultaneously improve grain yield and protein content in durum wheat and to evaluate their genetic architecture towards genomics-assisted breeding. To this end, we investigated two different durum wheat panels comprising 159 and 189 genotypes, which were tested in multiple field locations across Europe and genotyped by a genotyping-by-sequencing approach. The phenotypic analyses revealed significant genetic variances for all traits and heritabilities of the phenotypic indices that were in a similar range as those of grain yield and protein content. The GPD showed a high and positive correlation with protein content, whereas protein yield was highly and positively correlated with grain yield. Thus, selecting for a high GPD would mainly increase the protein content whereas a selection based on protein yield would mainly improve grain yield, but a combination of both indices allows to balance this selection. The genome-wide association mapping revealed a complex genetic architecture for all traits with most QTL having small effects and being detected only in one germplasm set, thus limiting the potential of marker-assisted selection for trait improvement. By contrast, genome-wide prediction appeared promising but its performance strongly depends on the relatedness between training and prediction sets.

  16. Effects of Cd2+ on chlorophyll content in flag and grain yield of wheats

    Zhu Zhiyong; Li Youjun; Liu Yingjie; Duan Youqiang; Li Qiang; Hao Yufen; Guo Jia

    2011-01-01

    A field experiment was conducted with wheat cultivars Luohan 6 and Yumai 18 to investigate the effects of Cd 2+ stress on chlorophyll contents in flag leaves, flag leave area, thousand kernel weight, kernel filling velocity and yield of wheat. Results indicated that, under low Cd 2+ stress (10 mg/kg), the average contents of chlorophyll a + b of Luohan 6 reduced by 1.6%, however, its average area of flag leave and yield increased by 3.8% and 1.6%, respectively. At the same time, the average content of chlorophyll a + b, area of flag leave yield of Yumai 18 reduced 8.0%, 9.6% and 5.4%. Under high Cd 2+ stress (100 mg/kg), the average contents of chlorophyll a + b, areas of flag leaves and yields of Luohan 6 and Yumai 18 reduced by 29.2% and 30.5%, 6.3% and 17.4%, 16.7% and 36.7%, respectively. The results demonstrated that Cd 2+ restrained synthesis and accumulation of chlorophyll and its components. This study even showed that within a range of Cd 2+ concentration could promote the growth of flag leaves, and it also had an equal positive effect on yield of wheat if the Cd 2+ concentration in grains were not out of limit. The growth of flag leave and yield of wheat would be limited when Cd 2+ concentration exceed that range. Overall, Yumai 18 bore more poison from Cd 2+ than Luohan 6. (authors)

  17. Effects of location and year on grain yield and its components in wheat genotypes developed from seed irradiation treatment

    Amer, I.M.; El-Rassas, H.N.; Abdel-Aleem, M.M.

    1994-01-01

    Eight mutant lines derived from gamma ray treatments and their parental cultivar sokha 69 of bread wheat were evaluated for grain yield per feddan, straw yield per feddan, harvest index, spike length, spike yield and weight of 1000-kernels at two locations (El-Fayoum and Inshas) in two seasons, 1991/92 and 1992/93. Significant effects of location on yield and yield components were found and the year significantly affects all the studied traits except grain yield per feddan. A significant location genotype interaction was detected for spike length, 1000-kernel weight and straw yield per feddan. In addition, year genotype interaction was significant in weight of 1000-kernels, straw yield per feddan and harvest index. The statistical analysis showed a significant difference among genotypes over all environments for spike length, 1000-kernel weight, straw yield per feddan and harvest index. However, these did not reflect significant effect on grain yield per feddan over all environments because it has a highly compensation ability. Meanwhile, mutant L 1 2 -1 exhibited significantly higher straw yield than sokha 69, when averaged over two seasons at El-Fayoum. Mutant L 1 9 -1 gave higher weight of 1000-kernels, spike length and harvest index than the other genotypes at low-yielding location (Inshas). It seems to be stable over a wide range of environments. 3 tabs

  18. CO2 dose–response functions for wheat grain, protein and mineral yield based on FACE and open-top chamber experiments

    Pleijel, Håkan; Högy, Petra

    2015-01-01

    Data from three Swedish open-top chamber and four German FACE experiments were combined to derive response functions for elevated CO 2 (eCO 2 ) effects on Cd, Zn, Mn, protein, grain yield, grain mass and grain number of wheat. Grain yield and grain number were increased by ∼6% and ∼7%, respectively, per 100 ppm CO 2 ; the former effect was linked to plant nitrogen status. Grain mass was not influenced by eCO 2 , whereas Cd concentration was reduced. Unlike Zn, Mn and protein, effects on Cd yield were not related to effects on grain yield. Yields of Mn, Zn and (weakly) protein were positively affected by eCO 2 . For protein, grain yield, grain mass and grain number, the results were consistent among the FACE and OTC experiments. A key conclusion was that yields of essential nutrients were enhanced (Mn > Zn > protein), although less than grain yield, which would not be expected from a simple dilution model. - Highlights: • Grain yield and grain number were positively affected by 6–7% per 100 ppm CO 2 . • Yield stimulation by CO 2 was influenced by plant nitrogen status. • Cd concentration was reduced by elevated CO 2 . • Yields of Zn, Mn and protein were stimulated by CO 2 , but less than grain yield. • A simple dilution model did not explain effects on Zn, Mn and protein. - Yields of Zn, Mn and protein were stimulated less by elevated CO 2 than grain yield, while Cd yield and grain mass were unaffected, in wheat exposed in FACE and open-top chambers

  19. Soil Texture and Cultivar Effects on Rice (Oryza sativa, L. Grain Yield, Yield Components and Water Productivity in Three Water Regimes.

    Fugen Dou

    Full Text Available The objective of this study was to determine the effects of water regime/soil condition (continuous flooding, saturated, and aerobic, cultivar ('Cocodrie' and 'Rondo', and soil texture (clay and sandy loam on rice grain yield, yield components and water productivity using a greenhouse trial. Rice grain yield was significantly affected by soil texture and the interaction between water regime and cultivar. Significantly higher yield was obtained in continuous flooding than in aerobic and saturated soil conditions but the latter treatments were comparable to each other. For Rondo, its grain yield has decreased with soil water regimes in the order of continuous flooding, saturated and aerobic treatments. The rice grain yield in clay soil was 46% higher than in sandy loam soil averaged across cultivar and water regime. Compared to aerobic condition, saturated and continuous flooding treatments had greater panicle numbers. In addition, panicle number in clay soil was 25% higher than in sandy loam soil. The spikelet number of Cocodrie was 29% greater than that of Rondo, indicating that rice cultivar had greater effect on spikelet number than soil type and water management. Water productivity was significantly affected by the interaction of water regime and cultivar. Compared to sandy loam soil, clay soil was 25% higher in water productivity. Our results indicated that cultivar selection and soil texture are important factors in deciding what water management option to practice.

  20. Enhancement of Growth and Grain Yield of Rice in Nutrient Deficient Soils by Rice Probiotic Bacteria

    Md Mohibul Alam KHAN; Effi HAQUE; Narayan Chandra PAUL; Md Abdul KHALEQUE; Saleh M. S. AL-GARNI; Mahfuzur RAHMAN; Md Tofazzal ISLAM

    2017-01-01

    Plant associated bacteria are promising alternatives to chemical fertilizers for plant growth and yield improvement in an eco-friendly manner. In this study, rice associated bacteria were isolated and assessed for mineral phosphate solubilization and indole-3-acetic acid (IAA) production activity in vitro. Six promising strains, which were tentatively identified as phylotaxon Pseudochrobactrum sp. (BRRh-1), Burkholderia sp. (BRRh-2), Burkholderia sp. (BRRh-3), Burkholderia sp. (BRRh-4), Pseudomonas aeruginosa (BRRh-5 and BRRh-6) based on their 16S rRNA gene phylogeny, exhibited significant phosphate solubilizing activity in National Botanical Research Institute phosphate growth medium, and BRRh-4 displayed the highest phosphate solubilizing activity, followed by BRRh-5. The pH of the culture broth declined, resulting in increase of growth rate of bacteria at pH 7, which might be due to organic acid secretion by the strains. In presence of L-tryptophan, five isolates synthesized IAA and the maximum IAA was produced by BRRh-2, followed by BRRh-1. Application of two most efficient phosphate solubilizing isolates BRRh-4 and BRRh-5 by root dipping (colonization) of seedling and spraying at the flowering stage significantly enhanced the growth and grain yield of rice variety BRRI dhan-29. Interestingly, application of both strains with 50% of recommended nitrogen, phosphorus and potassium fertilizers produced equivalent or higher grain yield of rice compared to the control grown with full recommended fertilizer doses, which suggests that these strains may have the potential to be used as bioinoculants for sustainable rice production.

  1. Seed priming with iron and zinc in bread wheat: effects in germination, mitosis and grain yield.

    Reis, Sara; Pavia, Ivo; Carvalho, Ana; Moutinho-Pereira, José; Correia, Carlos; Lima-Brito, José

    2018-07-01

    Currently, the biofortification of crops like wheat with micronutrients such as iron (Fe) and zinc (Zn) is extremely important due to the deficiencies of these micronutrients in the human diet and in soils. Agronomic biofortification with Fe and Zn can be done through different exogenous strategies such as soil application, foliar spraying, and seed priming. However, the excess of these micronutrients can be detrimental to the plants. Therefore, in the last decade, a high number of studies focused on the evaluation of their phytotoxic effects to define the best strategies for biofortification of bread wheat. In this study, we investigated the effects of seed priming with different dosages (1 mg L -1 to 8 mg L -1 ) of Fe and/or Zn in germination, mitosis and yield of bread wheat cv. 'Jordão' when compared with control. Overall, our results showed that: micronutrient dosages higher than 4 mg L -1 negatively affect the germination; Fe and/or Zn concentrations higher than 2 mg L -1 significantly decrease the mitotic index and increase the percentage of dividing cells with anomalies; treatments performed with 8 mg L -1 of Fe and/or 8 mg L -1 Zn caused negative effects in germination, mitosis and grain yield. Moreover, seed priming with 2 mg L -1 Fe + 2 mg L -1 Zn has been shown to be non-cytotoxic, ensuring a high rate of germination (80%) and normal dividing cells (90%) as well as improving tillering and grain yield. This work revealed that seed priming with Fe and Zn micronutrients constitutes a useful and alternative approach for the agronomic biofortification of bread wheat.

  2. Performance, carcass yield, and meat quality of free-range broilers fed wet grain corn silage

    ESPB Saldanha

    2006-06-01

    Full Text Available This study aimed at evaluating the effect of total replacement of dry corn by wet grain corn silage (WGCS in the feed of label broilers older than 28 days of age on performance, mortality, carcass, parts, breast meat and thighs meat yields, and meat quality. A mixed-sex flock of 448 ISA S 757-N (naked-neck ISA JA Label day-old chicks was randomly distributed in to randomized block experimental design with four treatments (T1 - with no WGCS; T2 - WGCS between 28 and 83 days; T3 - WGCS between 42 and 83 days; and T4 - WGCS between 63 and 83 days and four replicates of 28 birds each. Birds were raised under the same management and feeding conditions until 28 days of age, when they started to have free access to paddock with pasture (at least 3m²/bird and to be fed the experimental diets. Feed and water were offered ad libitum throughout the rearing period, which was divided in three stages: starter (1 to 28 days, grower (29 to 63 days, and finisher (64 to 83 days according to the feeding schedule. During the short periods of WGCS use (group T2 during grower stage and T4 during the finisher stage, performance and mortality results were similar as to those of the control group (T1. At the end of the experiment, it was observed that the extended use of WGCS (T2 and T3 determined a negative effect on feed conversion ratio. However, the best results of breast meat yield were observed with birds fed WGCS since 28 days (T2. It was concluded that WGCS can replace dry corn grain for short periods during the grower and finisher stages with no impairment of meat quality and yield in slow growth broilers.

  3. Contrasting response of biomass and grain yield to severe drought in Cappelle Desprez and Plainsman V wheat cultivars

    Kenny Paul

    2016-02-01

    Full Text Available We report a case study of natural variations and correlations of some photosynthetic parameters, green biomass and grain yield in Cappelle Desprez and Plainsman V winter wheat (Triticum aestivum L. cultivars, which are classified as being drought sensitive and tolerant, respectively. We monitored biomass accumulation from secondary leaves in the vegetative phase and grain yield from flag leaves in the grain filling period. Interestingly, we observed higher biomass production, but lower grain yield stability in the sensitive Cappelle cultivar, as compared to the tolerant Plainsman cv. Higher biomass production in the sensitive variety was correlated with enhanced water-use efficiency. Increased cyclic electron flow around PSI was also observed in the Cappelle cv. under drought stress as shown by light intensity dependence of the ratio of maximal quantum yields of Photosystem I and Photosystem II, as well by the plot of the Photosystem I electron transport rate as a function of Photosystem II electron transport rate. Higher CO2 uptake rate in flag leaves of the drought-stressed Plainsman cv. during grain filling period correlates well with its higher grain yield and prolonged transpiration rate through spikes. The increase in drought factor (DFI and performance (PI indices calculated from variable chlorophyll fluorescence parameters of secondary leaves also showed correlation with higher biomass in the Cappelle cultivar during the biomass accumulation period. However, during the grain filling period, DFI and PI parameters of the flag leaves were higher in the tolerant Plainsman V cultivar and showed correlation with grain yield stability. Our results suggest that overall biomass and grain yield may respond differentially to drought stress in different wheat cultivars and therefore phenotyping for green biomass cannot be used as a general approach to predict grain yield. We also conclude that photosynthetic efficiency of flag and secondary leaves

  4. Influence of oxidative stress and grains on sclerotial biomass and carotenoid yield of Penicillium sp. PT95.

    Chen, Shu-Jun; Wang, Qi; Han, Jian-Rong

    2010-08-01

    Oxidative stress and grains were evaluated for carotenoid production by solid-state fermentation using Penicillium sp. PT95. When the fungus was grown at high oxidative stress, its sclerotial biomass and carotenoid content in sclerotia increased significantly with respect to low oxidative stress (P < 0.01). High oxidative stress also caused a statistically significant increase in carotenoid yield as compared with low oxidative stress (P < 0.01). Both the sclerotial biomass and the amount of carotenoid accumulated in sclerotia of strain PT95 were strongly dependent on the grain medium used. Among the grain media tested under high oxidative stress, buckwheat medium gave the highest content of carotenoid in sclerotia (828 microg/g dry sclerotia), millet medium gave respectively the highest sclerotial biomass (12.69 g/100 g grain) and carotenoid yield (10.152 mg/100 g grain). Copyright 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  5. Effects of water deficit and nitrogen levels on grain yield and oil and protein contents of maize

    Kazem Ghassemi-Golezani

    2015-02-01

    Full Text Available This research was conducted in 2014, to evaluate the effects of water deficit and nitrogen fertilizer on grain yield, oil and protein contents of maize (cv. double Cross 303. The experiment was arranged as split-plot based on Randomized Complete Block design (RCB with three replications. Irrigation treatments (irrigation after 60, 90, 120 and 150 mm evaporation and nitrogen levels (0, 46 and 92 kg N/ha were located in the main and sub plots, respectively. Mean grain yield per unit area decreased with decreasing water availability, but it was improved with increasing nitrogen fertilizer. Grain oil percentage significantly decreased, but protein percentage slightly increased as a result of water deficit. In general, oil and protein yields significantly decreased under moderate and severe water stress, mainly because of decreasing grain yield under these conditions. Nitrogen application decreased oil percentage, but increased protein percentage significantly. Nevertheless, nitrogen fertilizer enhanced oil and protein yields per unit area, with no significant difference between nitrogen rates. These results were positively related with grain yield per unit area in maize.

  6. Varying plant density and harvest time to optimize cowpea leaf yield and nutrient content

    Ohler, T. A.; Nielsen, S. S.; Mitchell, C. A.

    1996-01-01

    Plant density and harvest time were manipulated to optimize vegetative (foliar) productivity of cowpea [Vigna unguiculata (L.) Walp.] canopies for future dietary use in controlled ecological life-support systems as vegetables or salad greens. Productivity was measured as total shoot and edible dry weights (DW), edible yield rate [(EYR) grams DW per square meter per day], shoot harvest index [(SHI) grams DW per edible gram DW total shoot], and yield-efficiency rate [(YER) grams DW edible per square meter per day per grams DW nonedible]. Cowpeas were grown in a greenhouse for leaf-only harvest at 14, 28, 42, 56, 84, or 99 plants/m2 and were harvested 20, 30, 40, or 50 days after planting (DAP). Shoot and edible dry weights increased as plant density and time to harvest increased. A maximum of 1189 g shoot DW/m2 and 594 g edible DW/m2 were achieved at an estimated plant density of 85 plants/m2 and harvest 50 DAP. EYR also increased as plant density and time to harvest increased. An EYR of 11 g m-2 day-1 was predicted to occur at 86 plants/m2 and harvest 50 DAP. SHI and YER were not affected by plant density. However, the highest values of SHI (64%) and YER (1.3 g m-2 day-1 g-1) were attained when cowpeas were harvested 20 DAP. The average fat and ash contents [dry-weight basis (dwb)] of harvested leaves remained constant regardless of harvest time. Average protein content increased from 25% DW at 30 DAP to 45% DW at 50 DAP. Carbohydrate content declined from 50% DW at 30 DAP to 45% DW at 50 DAP. Total dietary fiber content (dwb) of the leaves increased from 19% to 26% as time to harvest increased from 20 to 50 days.

  7. Grain sorghum stillage recycling: Effect on ethanol yield and stillage quality.

    Egg, R P; Sweeten, J M; Coble, C G

    1985-12-01

    Stillage obtained from ethanol production of grain sorghum was separated into two fractions: thin stillage and wet solids. A portion of the thin stillage was recycled as cooking water in subsequent fermentation runs using both bench- and full-scale ethanol production plants. When thin stillage replaced 50-75% of the cooking water, large increases occurred in solids content, COD, and EC of the resulting thin stillage. It was found that while the volume of thin stillage requiring treatment or disposal was reduced, there was little reduction in the total pollutant load. Stillage rcycling had little effect on the quality of the stillage wet solids fraction. At the high levels of stillage recycle used, ethanol yield was reduced after three to five runs of consecutive recycling.

  8. Comparative role of neem seed extract, moringa leaf extract and imidacloprid in the management of wheat aphids in relation to yield losses in Pakistan.

    Shah, Farhan Mahmood; Razaq, Muhammad; Ali, Abid; Han, Peng; Chen, Julian

    2017-01-01

    Wheat being staple food of Pakistan is constantly attacked by major wheat aphid species, Schizaphis graminum (R.), Rhopalosiphum padi (L.) and Sitobion avenae (F.). Due to concern on synthetic chemical use in wheat, it is imperative to search for alternative environment- and human- friendly control measures such as botanical pesticides. In the present study, we evaluated the comparative role of neem seed extract (NSE), moringa leaf extract (MLE) and imidacloprid (I) in the management of the aphid as well as the yield losses parameters in late planted wheat fields. Imidacloprid reduced significantly aphids infestation compared to the other treatments, hence resulting in higher yield, particularly when applied with MLE. The percentages of yield increase in I+MLE treated plots over the control were 19.15-81.89% for grains per spike, 5.33-37.62% for thousand grain weight and 27.59-61.12% for yield kg/ha. NSE was the second most effective control measure in suppressing aphid population, but the yield protected by NSE treatment over the control was comparable to that by imidacloprid. Population densities of coccinellids and syrphids in the plots treated with NSE-2 were higher than those treated with imidacloprid in two out of three experiments during 2013-14. Low predator density in imidacloprid-treated plots was attributed to the lower availability of prey aphids. The efficacy of NSE against aphids varied depending on degree of synchronization among the application timing, the activity of aphids, crop variety and environmental conditions. Despite that, we suggested NSE to be a promising alternative botanical insecticide compared to the most commonly recommended imidiacloprid. Further studies should consider the side effects of biopesticides on non-target organisms in order to provide better management practices in the field.

  9. Indices to screen for grain yield and grain-zinc mass concentrations in aerobic rice at different soil-Zn levels

    Jiang, W.; Struik, P.C.; Zhao, M.; Keulen, van H.; Fan, T.Q.; Stomph, T.J.

    2008-01-01

    Zinc is an important micronutrient for both crop growth and human nutrition. In rice production, yields are often reduced and Zn mass concentrations in the grains are often low when Zn is in short supply to the crop. This may result in malnutrition of people dependent on a rice-based diet. Plant

  10. Prediction of the competitive effects of weeds on crop yields based on the relative leaf area of weeds

    Lotz, L. A. P.; Christensen, Svend; Cloutier, D.

    1996-01-01

    . alba whereas the density model did not. A parameter that allows the maximum yield loss to be smaller than 100% was mostly not needed to describe the effects of weed competition. The parameter that denotes the competitiveness of the weed species with respect to the crop decreased the later the relative......For implementation of simple yield loss models into threshold-based weed management systems, a thorough validation is needed over a great diversity of sites. Yield losses by competition wsth Sinapis alba L. (white mustard) as a model weed, were studied in 12 experiments in sugar beet (Beta vulgaris...... L.) and in 11 experiments in spring wheat (Triticum aestivum L.). Most data sets were heller described by a model based on the relative leaf area of the weed than by a hyperbolic model based on weed density. This leaf area model accounted for (part of) the effect of different emerging times of the S...

  11. Effect of Trichoderma harzianum on Wheat (Triticum aestivum L. Grain Yield under Different Levels of Cadmium Nitrate

    F. Taghavi Ghasemkheyli

    2014-12-01

    Full Text Available A pot experiment was designed to evaluate the effect of Trichoderma spp. on yield and yield components of wheat (cv. N81 under different levels of cadmium nitrate. Experiment was arranged in factorial based on completely randomized design with three replicates. Trichoderma harzianum at two levels (with and without inoculation and four levels of cadmium nitrate (0, 50, 100, 150 mg l-1 were the treatment. Results of ANOVA and mean comparisons showed that inoculation of Trichoderma increased biological yield (46% and straw yield (30% as compared to control. Cadmium pollution has led to significant decrease in harvest index, grain number per spike and partitioning coefficient up to 5, 20, 24 and 38 percent compared to control, respectively. Furthermore, cadmium and fungus interaction were significant in terms of spike number, grain weight per spike, grain yield and tolerance index. Maximum grain yield and tolerance index were recorded in Trichoderma inoculation under cadmium-free plots which nearly increased 65 and 53 percent, respectively. In conclusion, using Trichoderma under cadmium pollution could improve wheat growth, yield and tolerance index

  12. Multitrait, Random Regression, or Simple Repeatability Model in High-Throughput Phenotyping Data Improve Genomic Prediction for Wheat Grain Yield.

    Sun, Jin; Rutkoski, Jessica E; Poland, Jesse A; Crossa, José; Jannink, Jean-Luc; Sorrells, Mark E

    2017-07-01

    High-throughput phenotyping (HTP) platforms can be used to measure traits that are genetically correlated with wheat ( L.) grain yield across time. Incorporating such secondary traits in the multivariate pedigree and genomic prediction models would be desirable to improve indirect selection for grain yield. In this study, we evaluated three statistical models, simple repeatability (SR), multitrait (MT), and random regression (RR), for the longitudinal data of secondary traits and compared the impact of the proposed models for secondary traits on their predictive abilities for grain yield. Grain yield and secondary traits, canopy temperature (CT) and normalized difference vegetation index (NDVI), were collected in five diverse environments for 557 wheat lines with available pedigree and genomic information. A two-stage analysis was applied for pedigree and genomic selection (GS). First, secondary traits were fitted by SR, MT, or RR models, separately, within each environment. Then, best linear unbiased predictions (BLUPs) of secondary traits from the above models were used in the multivariate prediction models to compare predictive abilities for grain yield. Predictive ability was substantially improved by 70%, on average, from multivariate pedigree and genomic models when including secondary traits in both training and test populations. Additionally, (i) predictive abilities slightly varied for MT, RR, or SR models in this data set, (ii) results indicated that including BLUPs of secondary traits from the MT model was the best in severe drought, and (iii) the RR model was slightly better than SR and MT models under drought environment. Copyright © 2017 Crop Science Society of America.

  13. Effect of grain size on yield strength of Ni3Al and other alloys

    Takeyama, M.; Liu, C.T.

    1988-01-01

    This paper analyzes the effect of grain size on yield stress of ordered Ni 3 Al and Zr 3 Al, and mild steels that show Lueders band propagation after yielding, using the Hall--Petch relation, σ/sub y/ = σ 0 +k/sub y/ d -1 /sup // 2 , and the new relation proposed by Schulson et al., σ/sub y/ = σ 0 +kd/sup -(//sup p//sup +1)/2/ [Schulson et al., Acta Metall. 33, 1587 (1985)]. The major emphasis is placed on the analysis of Ni 3 Al data obtained from published and new results, with a careful consideration of the alloy stoichiometry effect. All data, except for binary stoichiometric Ni 3 Al prepared by powder extrusion, fit the Hall--Petch relation, whereas the data from boron-doped Ni 3 Al and mild steels do not follow the Schulson relation. However, no conclusion can be made simply from the curve fitting using either relation. The results are also discussed in terms of Lueders strain and alloy preparation methods. On the basis of the Hall--Petch analysis, the small slope k/sub y/ is obtained only for hypostoichiometric Ni 3 Al with boron, which would be related to a stronger segregation of boron in nickel-rich Ni 3 Al. In addition, the potency for the solid solution strengthening effect of boron is found to be much higher for stoichiometric Ni 3 Al than for hypostoichiometric alloys

  14. Effect of Timing of Potassium Application on Millet (Setaria italica Yield and Grain Protein Content in Different Irrigation Regimes

    A. Hayati

    2011-05-01

    Full Text Available The research on reducing the water consumption in conventional cropping system is one of the important strategies to improve the water use efficiency in agriculture. In order to investigate the effect of time of potassium application under different irrigation regimes on millet grain yield and protein percent, a field experiment was carried out in Agricultural Research Center of Yasuj, Iran, in 2009. The experiment was conducted as split plot design in a randomized complete blocks design with 3 replications. Irrigation regime included 7, 14 and 21-day intervals as main factor and sub-plots included time of potassium fertilizer application in four stages: planting, tillering, stem development and flowering. The results showed that the effect of irrigation interval was significant on 1000-seed weight, grain and biological yield, number of grains per spike, harvest index, protein content, and chlorophyll a, b and total of leaves. By increasing the irrigation interval, all the above-mentioned traits decreased, except the protein percent that increased. The 1000-seed weight, grain and biological yield, harvest index and protein content were affected significantly by the time of potassium application. Maximum grain yield was obtained by interaction of 7- day irrigation interval and potassium application at the stem development stage. Maximum grain protein content was measured in potassium application at flowering stage. In general, increasing the irrigation interval, and subsequent water stress, reduced plant growth and yield components. Application of potassium fertilizer at early growth stages increased yield and yield components, while in reproductive stages increased seed quality.

  15. Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field

    Schilling, Rhiannon K.

    2013-11-22

    Cereal varieties with improved salinity tolerance are needed to achieve profitable grain yields in saline soils. The expression of AVP1, an Arabidopsis gene encoding a vacuolar proton pumping pyrophosphatase (H+-PPase), has been shown to improve the salinity tolerance of transgenic plants in greenhouse conditions. However, the potential for this gene to improve the grain yield of cereal crops in a saline field has yet to be evaluated. Recent advances in high-throughput nondestructive phenotyping technologies also offer an opportunity to quantitatively evaluate the growth of transgenic plants under abiotic stress through time. In this study, the growth of transgenic barley expressing AVP1 was evaluated under saline conditions in a pot experiment using nondestructive plant imaging and in a saline field trial. Greenhouse-grown transgenic barley expressing AVP1 produced a larger shoot biomass compared to segregants, as determined by an increase in projected shoot area, when grown in soil with 150 mm NaCl. This increase in shoot biomass of transgenic AVP1 barley occurred from an early growth stage and also in nonsaline conditions. In a saline field, the transgenic barley expressing AVP1 also showed an increase in shoot biomass and, importantly, produced a greater grain yield per plant compared to wild-type plants. Interestingly, the expression of AVP1 did not alter barley leaf sodium concentrations in either greenhouse- or field-grown plants. This study validates our greenhouse-based experiments and indicates that transgenic barley expressing AVP1 is a promising option for increasing cereal crop productivity in saline fields. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field

    Schilling, Rhiannon K.; Marschner, Petra; Shavrukov, Yuri N.; Berger, Bettina; Tester, Mark A.; Roy, Stuart John; Plett, Darren Craig

    2013-01-01

    Cereal varieties with improved salinity tolerance are needed to achieve profitable grain yields in saline soils. The expression of AVP1, an Arabidopsis gene encoding a vacuolar proton pumping pyrophosphatase (H+-PPase), has been shown to improve the salinity tolerance of transgenic plants in greenhouse conditions. However, the potential for this gene to improve the grain yield of cereal crops in a saline field has yet to be evaluated. Recent advances in high-throughput nondestructive phenotyping technologies also offer an opportunity to quantitatively evaluate the growth of transgenic plants under abiotic stress through time. In this study, the growth of transgenic barley expressing AVP1 was evaluated under saline conditions in a pot experiment using nondestructive plant imaging and in a saline field trial. Greenhouse-grown transgenic barley expressing AVP1 produced a larger shoot biomass compared to segregants, as determined by an increase in projected shoot area, when grown in soil with 150 mm NaCl. This increase in shoot biomass of transgenic AVP1 barley occurred from an early growth stage and also in nonsaline conditions. In a saline field, the transgenic barley expressing AVP1 also showed an increase in shoot biomass and, importantly, produced a greater grain yield per plant compared to wild-type plants. Interestingly, the expression of AVP1 did not alter barley leaf sodium concentrations in either greenhouse- or field-grown plants. This study validates our greenhouse-based experiments and indicates that transgenic barley expressing AVP1 is a promising option for increasing cereal crop productivity in saline fields. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Effects of field high temperature on grain yield and quality of a subtropical type japonica rice—Pon-Lai rice

    Yi-Chien Wu

    2016-01-01

    Full Text Available Typical japonica type rice is sensitive to high temperature. Pon-Lai rice is a special japonica type with adaptation to the subtropical climate in Taiwan. Facing climate change, rising temperatures would damage the yield and quality of rice production. This research was conducted using Pon-Lai rice in the field of a subtropical climate. We conducted 2 experiments, including a year-round experiment and collection of samples from different districts for building different temperature conditions. We analyzed the correlation between rising temperature and rice yield or quality. In our results, the critical period of temperature effect is 0–15 days after heading (H15. The threshold of high temperature damage in yield and appearance quality was 25–27 °C. Grain weight decreased about 2–6%, while the temperature of H15 was raised 1 °C above the thresholds. Perfect grain ratio and chalky grain ratio decreased and increased, respectively, while the temperature of H15 was raised above the thresholds. However, the high temperature in H15 affected the physicochemical characteristics. In addition, we found positive correlation between grain length to width ratio and perfect grain ratio. Grain length to width ratio could be an index of temperature effects for grain quality. In our study, when the temperature was below 30 °C, a rising temperature of H15 could damage rice yield and appearance quality, and change grain shape. Our results could provide reference for dealing with the warming future in other temperate rice-cultivated countries.

  18. The Effect of Inoculation with Azotobacter and Nitrogen Levels on Grain and Corn Yield Components at Simultaneous Cropping System with Legumes

    mohammad mirzakhani

    2017-09-01

    Full Text Available Introduction: Corn has been regarded as one of the important crops from the view point of both human and animal feeding resource. Intercropping defined as cultivation of two or more species together. The advantages of intercropping can be included: efficient use of water and sunlight, exchange of nutrients, weed competition reduction, reduction of pathogens and the increase of soil fertility. Research shows that intercropping combinations of legume–grass will increase forage quality. Because, grasses Grains have a lot of carbohydrates and legumes are rich in protein and vitamins. This study was conducted to evaluate the effect of inoculation with azotobacter and nitrogen levels on grain and corn yield components at simultaneous cropping system with legumes under the weather conditions of Markazi province. Materials and methods: This study was carried out at agricultural research field of Payame Noor University, Arak Branch during 2011. A factorial arrangement of treatment in a randomized complete block design with three replications was used. Methods of plant nutrition (M0= inoculation with azotobacter, M1= inoculation with azotobacter + 37/5 Kg ha-1 of rare nitrogen with foliar application method, M2= inoculation with azotobacter + 150 Kg ha-1 of rare nitrogen mix with soil and simultaneous cropping treatment of legumes, [S1= corn + alfalfa (Medicago sativa L., S2= corn + bitter vetch (Lathyrus sativus L., S3= corn + mung bean (Vigna radiata L., S4= corn + chickpea (Cicer arientinum L., S5= corn + vetch (Vicia ervillia L. ] were assigned in plots. Each sub plot consisted of 4 rows, 6 m long with 60 cm between rows space and 20 cm between plants on the rows and S.C Apex hybrid was used. In this study characteristics such as: plant height, earing height, the number of grains per m-2, the number of rows per ear, the number of grains per row, surface of ear leaf, grain yield of corn, 1000 grain weight, harvest index of corn, nitrogen use

  19. Regulatory role of OsMADS34 in the determination of glumes fate, grain yield and quality in rice

    Deyong Ren

    2016-12-01

    Full Text Available Grasses produce seeds on spikelets, a unique type of inflorescence. Despite the importance of grass crops for food, the genetic mechanisms that control spikelet development remain poorly understood. In this study, we used m34-z, a new mutant allele of the rice (Oryza sativa E-class gene OsMADS34, to examine OsMADS34 function in determining the identities of glumes (rudimentary glume and sterile lemma and grain size. In the m34-z mutant, both the rudimentary glume and sterile lemma were homeotically converted to the lemma-like organs and acquired the lemma identity, suggesting that OsMADS34 plays important roles in the development of glumes. In the m34-z mutant, most of the grains from the secondary panicle branches were decreased in size, compared with grains from wild type, but no differences were observed in the grains from the primary panicle branches. The amylose content and gel consistency, and a seed-setting rate from the secondary panicle branches were reduced in the m34-z mutant. Interesting, transcriptional activity analysis revealed that OsMADS34 protein was a transcription repressor and it may influence grain yield by suppressing the expressions of BG1, GW8, GW2 and GL7 in the m34-z mutant. These findings revealed that OsMADS34 largely affects grain yield by affecting the size of grains from the secondary branches.

  20. The Effect of Different Zinc Application Methods on Yield and Grain Zinc Concentration of Bread Wheat Varieties

    Hatun Barut

    2017-08-01

    Full Text Available This study was carried out to elucidate the impacts of zinc (Zn treatments on growth, development, quality and yield of commonly sown bread wheat cultivars under field conditions of Çukurova Region. Three different bread wheat cultivars (Adana-99, Ceyhan-99 and Pandas were experimented in randomized complete blocks-split plots experimental design with 3 replications. Field experiments were performed by two different Zn application methods; via soil and via soil+foliage. In the both trials, 0, 5, 10, 20, 30, and 40 kg ha-1 pure Zn doses were applied to the soil. 0.4% ZnSO4.7H2O solution was used for foliar Zn applications. Current findings revealed that Zn treatments had significant effects on grain yield, grain Zn concentration, grain phosphorus (P concentration and thousand grain weight of bread wheat cultivars, but significant effects were not observed on grain protein concentrations. Soil+foliar Zn treatments were more effective in improving grain Zn concentrations. It was concluded that 10- 20 kg ha-1 Zn treatment was quite effective on grain Zn concentrations.

  1. Polycomb Protein OsFIE2 Affects Plant Height and Grain Yield in Rice.

    Xianbo Liu

    Full Text Available Polycomb group (PcG proteins have been shown to affect growth and development in plants. To further elucidate their role in these processes in rice, we isolated and characterized a rice mutant which exhibits dwarfism, reduced seed setting rate, defective floral organ, and small grains. Map-based cloning revealed that abnormal phenotypes were attributed to a mutation of the Fertilization Independent Endosperm 2 (OsFIE2 protein, which belongs to the PcG protein family. So we named the mutant as osfie2-1. Histological analysis revealed that the number of longitudinal cells in the internodes decreased in osfie2-1, and that lateral cell layer of the internodes was markedly thinner than wild-type. In addition, compared to wild-type, the number of large and small vascular bundles decreased in osfie2-1, as well as cell number and cell size in spikelet hulls. OsFIE2 is expressed in most tissues and the coded protein localizes in both nucleus and cytoplasm. Yeast two-hybrid and bimolecular fluorescence complementation assays demonstrated that OsFIE2 interacts with OsiEZ1 which encodes an enhancer of zeste protein previously identified as a histone methylation enzyme. RNA sequencing-based transcriptome profiling and qRT-PCR analysis revealed that some homeotic genes and genes involved in endosperm starch synthesis, cell division/expansion and hormone synthesis and signaling are differentially expressed between osfie2-1 and wild-type. In addition, the contents of IAA, GA3, ABA, JA and SA in osfie2-1 are significantly different from those in wild-type. Taken together, these results indicate that OsFIE2 plays an important role in the regulation of plant height and grain yield in rice.

  2. Environmental modification of yield and food composition of cowpea and leaf lettuce

    Mitchell, Cary A.; Nielsen, Suzanne S.; Bubenheim, David L.

    1990-01-01

    Cowpea (Vigna unguiculata (L.) Walp.) and leaf lettuce (Lactuca sativa L.) are candidate species to provide ligume protein and starch or serve as a salad base for a nutritionally balanced and psychologically satisfying vegetarian diet in the Controlled Ecology Life Support System (CELSS). Various nutritional parameters are reported. Hydroponic leaf lettuce grew best under CO2 enrichment and photosynthetic photon flux (PPF) enhancement. Leaf protein content reached 36 percent with NH4(+) + NO3 nutrition; starch and free sugar content was as high as 7 or 8.4 percent of DW, respectively, for high PPF/CO2 enriched environments.

  3. Stability Parameters for Grain Yield and its Component Traits in Maize Hybrids of Different FAO Maturity Groups

    Dragan Djurovic

    2014-12-01

    Full Text Available An objective evaluation of maize hybrids in intensive cropping systems requires identification not only of yield components and other agronomically important traits but also of stability parameters. Grain yield and its components were assessed in 11 maize hybrids with different lengths of growing season (FAO 300-700 maturity groups using analysis of variance and regression analysis at three different locations in Western Serbia. The test hybrids and locations showed significant differences in grain yield, grain moisture content at maturity, 1,000-kernel weight and ear length. A significant interaction was observed between all traits and the environment. The hybrids with higher mean values of the traits, regardless of maturity group, generally exhibited sensitivity i.e. adaptation to more favourable environmental conditions as compared to those having lower mean values. Regression coefficient (bi values for grain yield mostly suggested no significant differences relative to the mean. The medium-season hybrid gave high yields and less favourable values of stability parameters at most locations and in most years, as compared to mediumlate hybrids. As compared to medium-early hybrids, medium-late hybrids (FAO 600 and 700 mostly exhibited unfavourable values of stability parameters i.e. a specific response and better adaptation to favourable environmental conditions, and gave higher average yields. Apart from producing lower average yields, FAO 300 and 400 hybrids showed higher yield stability as compared to the other hybrids tested. Medium-late hybrids had higher yields and showed a better response to favourable environmental conditions compared to early-maturing hybrids. Therefore, they can be recommended for intensive cultural practices and low-stress environments. Due to their more favourable stability parameter values, medium-early hybrids can be recommended for low-intensity cultural practices and stressful environments.

  4. Effect of Tillage Systems with Corn Residue on Grain Yield of Rapeseed in Moghan Region

    J Taghinazhad

    2014-09-01

    Full Text Available This study carried out to evaluate the effect of different tillage systems on rapeseed yield (hayola 401 planted in corn residues. This experiment was done in Moghan region with clay soils during 2009-2012. Different seedbed preparation methods include MT: moldboard + disk tillage (conventional tillage was included, SCT: Stem Crusher + chisel + disk tandem harrow, STT: Stem Crusher + double-disc, CT: chisel + disk tillage and DD: two heavy disks. The experiment was conducted in a randomized complete block design with four replications. The results showed that soil bulk density in the 0-10 cm layer was not significant in different tillage treatments, but it was significantly higher than the conventional tillage in 10-20 cm depth. However, penetration resistance in 10-30 cm under DD was significantly higher than other treatments, but it was not significant in 0-10 cm layer among all tillage treatments. Thus, Comparison of the soil bulk density, penetration resistance, and plant establishment showed that the reduced tillage in canola seedbed preparation was effective. Besides, the surveys indicated that there was a significant different between MWD after primary and secondary tillage. The mean diameter weighted under SCT and DD, were 1.19 and 1.24 cm, respectively had the best status. The highest value and the worst status of this parameter observed for MT which was 1.92 cm. The highest rate of grain yield obtained by application of treatment SCT, and it was 2563.8 kg ha-1, The SCT treatment can be recommended as an effective canola bed preparation due to its significant saving in time and cost after corn harvesting.

  5. The Effect of Silicon on some Morpho-physiological Characteristics and Grain Yield of Sorghum (Sorghum bicolor L. under Salt Stress

    S Hasibi

    2016-12-01

    Full Text Available Introduction Nowadays, salinity is one of the limiting factors for crop production in arid and semi-arid regions. On the other hand, sorghum (Sorghum bicolor L. is a self-pollinated and short-day plant, which partly has been adapted to salinity and water stress conditions; also play an important role in humans, livestock and poultry nourishments. All studies have showed the positive effects of Silicon on growth and yield of plants in both normal and stress conditions. The aim of this experiment was to improve salinity tolerance of Sorghum by application of Silicon. Materials and Methods A split plot experiment based on randomized complete block design with three replications in both normal and salt stress conditions was carried out at research farm of Shahid Bahonar University of Kerman in 2013. Silicon treatments (0 and 6 mM were considered as main plot and various sorghum genotypes (payam, sepideh, TN-4-70, TN-04-71, TN-04-39, TN-04-107, TN-04-100, TN-04-37, TN-04-68, TN-04-83, TN-04-62 and TN-04-95 were assigned to sub plots. The sodium silicate was used as silica source. The data were analyzed by SAS software using combine analysis. Means comparisons were accomplished by Duncan multiple range test at 5% probability level. Some of the measured traits were as follow: Relative water content (Ritchie and Nguyen, 1990, Relative permeability (33, leaf area index and chlorophyll index (by SPAD. Results and Discussion According to the results, use of silicon led to increase of RWC under salinity stress, while RWC decreased by 13% when no silicon applied. Salinity significantly decreased 1000-grain weight. Maximum grain yield obtained from TN-04-37 (987.6 g m-2 under normal condition with foliar application of silicon. Application of silicon under stress condition led to 38% increase in grain yield of Sepideh compared to control. Under salt stress, silicon also increased shoot dry weight in TN-04-107, TN-04-70, TN-04-37, Payam and Sepideh genotypes

  6. Genome-Wide Analysis of Grain Yield Stability and Environmental Interactions in a Multiparental Soybean Population

    Alencar Xavier

    2018-02-01

    Full Text Available Genetic improvement toward optimized and stable agronomic performance of soybean genotypes is desirable for food security. Understanding how genotypes perform in different environmental conditions helps breeders develop sustainable cultivars adapted to target regions. Complex traits of importance are known to be controlled by a large number of genomic regions with small effects whose magnitude and direction are modulated by environmental factors. Knowledge of the constraints and undesirable effects resulting from genotype by environmental interactions is a key objective in improving selection procedures in soybean breeding programs. In this study, the genetic basis of soybean grain yield responsiveness to environmental factors was examined in a large soybean nested association population. For this, a genome-wide association to performance stability estimates generated from a Finlay-Wilkinson analysis and the inclusion of the interaction between marker genotypes and environmental factors was implemented. Genomic footprints were investigated by analysis and meta-analysis using a recently published multiparent model. Results indicated that specific soybean genomic regions were associated with stability, and that multiplicative interactions were present between environments and genetic background. Seven genomic regions in six chromosomes were identified as being associated with genotype-by-environment interactions. This study provides insight into genomic assisted breeding aimed at achieving a more stable agronomic performance of soybean, and documented opportunities to exploit genomic regions that were specifically associated with interactions involving environments and subpopulations.

  7. Association mapping for yield and grain quality traits in rice (Oryza sativa L.)

    2010-01-01

    Association analysis was applied to a panel of accessions of Embrapa Rice Core Collection (ERiCC) with 86 SSR and field data from two experiments. A clear subdivision between lowland and upland accessions was apparent, thereby indicating the presence of population structure. Thirty-two accessions with admixed ancestry were identified through structure analysis, these being discarded from association analysis, thus leaving 210 accessions subdivided into two panels. The association of yield and grain-quality traits with SSR was undertaken with a mixed linear model, with markers and subpopulation as fixed factors, and kinship matrix as a random factor. Eight markers from the two appraised panels showed significant association with four different traits, although only one (RM190) maintained the marker-trait association across years and cultivation. The significant association detected between amylose content and RM190 was in agreement with previous QTL analyses in the literature. Herein, the feasibility of undertaking association analysis in conjunction with germplasm characterization was demonstrated, even when considering low marker density. The high linkage disequilibrium expected in rice lines and cultivars facilitates the detection of marker-trait associations for implementing marker assisted selection, and the mining of alleles related to important traits in germplasm. PMID:21637426

  8. Study on the breeding of japonical gelatinous rice mutant variety Zhenuo 36 with high yield and good grain quality

    Bao Genliang; Zhang Xiaoming; Ye Shenghai; Zuo Xiaoxu; Feng Zuocheng; Lu Wenwu; Katsura Toomita; Asako Kobayasi

    2004-01-01

    The dry seeds of F 2 , which came from the crossing of japonical rice Bing 92-124 x japonical gelatinous rice Shaonuoxuan (SNX), was induced by 200 Gy 60 Co γ-irradiation. A japonical gelatinous rice mutant ZH206 with high yield, large grain size and good grain quality was obtained through several generation selections. It was demonstrated that the average yield was 9.4% higher than controls in two regional tests in successive two years. Its grain size was obviously large as compared with its original parents, 1000-grain weight was above 30 g, 4.1 g and 3.6 g higher than Bing 92-124 and SNX, respectively. Gelatinous characteristic of its rice was better than control Xianghu 84 and also much better than SNX. In 2003, the mutant was denominated as 'Zhenuo 36' by Crop Variety Identification Committee of Zhejiang Province. As an excellent japonical gelatinous variety, Zhenuo 36 had both the largest rate of increasing yield and the highest grain weight in Zhejiang provincial regional tests of japonical rice during last 20 years. The successful breeding of the variety showed that irradiation induction is an effective method to simultaneously improve some characteristics in rice. (authors)

  9. Leaf Senescence, Root Morphology, and Seed Yield of Winter Oilseed Rape (Brassica napus L. at Varying Plant Densities

    Ming Li

    2017-01-01

    Full Text Available In this study, the yield and yield components were studied using a conventional variety Zhongshuang 11 (ZS 11 and a hybrid variety Zhongyouza 12 (ZYZ 12 at varying plant densities. The increase in plant density led to an initial increase in seed yield and pod numbers per unit area, followed by a decrease. The optimal plant density was 58.5 × 104 plants ha−1 in both ZS 11 and ZYZ 12. The further researches on physiological traits showed a rapid decrease in the green leaf area index (GLAI and chlorophyll content and a remarkable increase in malondialdehyde content in high plant density (HPD population than did the low plant density (LPD population, which indicated the rapid leaf senescence. However, HPD had higher values in terms of pod area index (PAI, pod photosynthesis, and radiation use efficiency (RUE after peak anthesis. A significantly higher level of dry matter accumulation and nitrogen utilization efficiency were observed, which resulted in higher yield. HPD resulted in a rapid decrease in root morphological parameters (root length, root tips, root surface area, and root volume. These results suggested that increasing the plant density within a certain range was a promising option for high seed yield in winter rapeseed in China.

  10. Rate and Timing Effects of Growth Regulating Herbicides Applications on Grain Sorghum (Sorghum bicolor Growth and Yield

    Thierry E. Besançon

    2016-01-01

    Full Text Available Dicamba and 2,4-D are among the most common and inexpensive herbicides used to control broadleaf weeds. However, different studies have pointed the risk of crop injury and grain sorghum yield reduction with postemergence applications of 2,4-D. No research data on grain sorghum response to 2,4-D or dicamba exists in the Southeastern United States. Consequently, a study was conducted to investigate crop growth and yield response to 2,4-D (100, 220, and 330 g acid equivalent ha−1 and dicamba (280 g acid equivalent ha−1 applied on 20 to 65 cm tall sorghum. Greater stunting resulted from 2,4-D applied at 330 g acid equivalent ha−1 or below 45 cm tall sorghum whereas lodging prevailed with 2,4-D at 330 g acid equivalent ha−1 and dicamba applied beyond 35 cm tall crop. Regardless of local environmental conditions, 2,4-D applied up to 35 cm tall did not negatively impact grain yield. There was a trend for yields to be somewhat lower when 2,4-D was applied on 45 or 55 cm tall sorghum whereas application on 65 cm tall sorghum systematically decreased yields. More caution should be taken with dicamba since yield reduction has been reported as early as applications made on 35 cm tall sorghum for a potentially dicamba sensitive cultivar.

  11. Effect of Water Stress and Sulfur Fertilizer on Grain Yield, Chlorophyll and Nutrient Status of Black Cumin (Nigella Sativa L.

    M. Heidari

    2011-04-01

    Full Text Available In order to study the effects of water stress and different amounts of sulfur fertilizer on grain yield, nutrient status and chlorophyll content in black cumin (Nigella sativa L. a field experiment as split plot design with three replications was conducted at Ghaen city in 2009. Treatments included three levels of irrigation after 50, 100 and 150 mm evaporation from Class A pan as main plot and four levels of sulfur fertilizer including 0, 75, 150 and 225 kg/ha from bentonite-sulfur source as sub-plot. Statistical analysis of the results showed that water stress has significant effect on grain yield and essential oil of black cumin. At the level of 150 mm evaporation from Class A pan, the grain yield decreased by 22.8% and essential oil by 27.6%. Application of 225 kg/ha sulfur fertilizer increased grain yield up to 7.2%. Water stress and sulfur fertilizer treatments had only significant effect on chlorophyll a content. However, water stress decreased chlorophyll a content, but sulfur fertilizer application up to 225 kg/ha increased the content of chlorophyll a. In this study, water stress decreased potassium content in black cumin leaves, but increased the sodium and calcium accumulation. Although application of sulfur fertilizer affected significantly the potassium and magnesium contents in shoots, but did not have significant effect on sodium and calcium contents.

  12. Canopy temperature depression at grain filling correlates to winter wheat yield in the U.S. southern high plains

    Wheat breeding has improved drought tolerance over the years. However, our knowledge on drought tolerance in relation to the canopy temperature (CT) and grain yield is limited. A three-season wheat field study ending 2012, 2015, and 2016 was conducted at Bushland, Texas to investigate the relationsh...

  13. Winter wheat grain yield and its components in the North China Plain: irrigation management, cultivation, and climate

    Lihua Lv

    2013-09-01

    Full Text Available Irrigation has been identified as the main driving factor of groundwater drawdown in the North China Plain (NCP. In order to develop appropriate irrigation strategies for satisfactory yields of wheat (Triticum aestivum L., grain yield (GY, yield components, and water use efficiency (WUE were studied. A field experiment was conducted with two types of winter wheat, 'Shimai15' and 'Shixin733', and five irrigation treatments, including rainfed and four spring irrigation water applications, in four growing seasons (2005 to 2009. Results showed that maximum GY was achieved with three irrigation treatments in the 2005-2006 and 2008-2009 dry seasons and two irrigation treatments in the 2006-2007 normal season. However, in the 2007-2008 wet season, the four irrigation treatments, especially the additional irrigation event at the reviving stage (28, produced maximum GY. Grain yield was significantly related to seasonal full evapotranspiration (ET and 410 to 530 mm of seasonal full ET, including 143 mm rainfall and 214 mm irrigation water, which led to maximum GY. The two types of cultivars responded differently to irrigation management in different rainfall years. The yield of the water-saving cv. 'Shimai 15' was much higher in the dry seasons than in the other seasons. Variations of yield components were mainly caused by irrigation time and meteorological factors. The higher accumulated temperature during the sowing and tillering stages (24 and irrigation or precipitation at the reviving stage (28 significantly improved tiller growth. The lower average temperature in March and April greatly increased grain number per spike. Sunshine duration played a decisive role in improving grain weight. Our results provide very useful information about irrigation time and frequency of winter wheat in the NCP in order to obtain high yield but reduce the use of underground water.

  14. Assessment of adaptability and stability of grain yield in bread wheat genotypes under different sowing times in Punjab

    Anwar, J.; Hussain, M.; Ali, M.A.; Subhani, G.M.; Munir, M.

    2011-01-01

    Twenty advanced lines/genotypes of wheat including two check varieties were sown under two different sowing times through out the Punjab province at 18 different locations with diverse environments to study their stability and adaptability. Normal sowing was done in second week of November 2007 while the delayed sowing was completed during second week of December 2007 during crop season 2007-08. The pooled analysis of variance showed significant differences among environments and genotypes for grain yield demonstrating the presence of considerable variations (p<0.01) among genotypes as well as diversity of growing environments at various locations for both normal and late sown wheat crops. The highest average grain yield was obtained at Jalandar Seed Farm, Arifwala and Pak. German Farm, Multan for normal and delayed sown crops, respectively. Most of the locations emerged as high yielding in normal sowing compared to late sown crop. Dendrograms of 18 locations based on the average yield of 20 wheat genotypes grown under normal and late sown crop revealed two main clusters. Under both normal and late sowing, none of the varieties exceeded the check Seher-2006, however, the check was followed by the advanced lines V-04022 and V-05066 for normal sown crop and Shafaq-2006, V-05066 and V-04022 under delayed sowing. All the genotypes revealed decline in grain yield for late sown wheat crop. The analysis of stability based on mean grain yield, regression coefficient and deviation from regression advocated that the cultivars V-05066 and V-03BT007 were most stable and adapted to diverse environmental conditions of Punjab. These cultivars revealed unit regression and non-significant deviations from regression. The check variety Seher-2006 produced maximum yield for both sowing times that suggested its consistent and stable performance across the environments. (author)

  15. Produção de forragem e de grãos de aveia branca sob pastejo Forage and grain yield of white oat under grazing

    Patrícia Cambrussi Bortolini

    2005-12-01

    identify the maximum weeks of grazing so as to yield good forage animal grazing without reducing grain yield. In a split plot experimental design 9 treatments with 3 replications were used. The treatments were: no grazing and grazing periods of 1, 2, 3, 4, 5, 6, 7 and 8 weeks. The white oat showed good leaf area recovery after grazing resulting in high dry matter yield provided that grazing period did not last more than 4 weeks. Grazing periods from 1 to 4 weeks allowed grain yield increase as a result of lower apical meristem height and lower number of lodged plants. From 5 to 8 weeks of grazing defoliations the grain yield reduction was the result of reduced spike number per area, reduced spikelets number per spike and reduced grain number per spike. Controlled grazing up to 4 weeks duration for white oat resulted in a good dry matter production which allowed animal and grain production, demonstrating that this cultivar have high potential for double purpose use.

  16. Effects of inter-varietal diversity, biotic stresses and environmental productivity on grain yield of spring barley variety mixtures

    Kiær, Lars Pødenphant; Skovgaard, Ib M.; Østergård, Hanne

    2012-01-01

    than their component varieties when accounting also for the general response to environmental productivity. Hence, most mixtures adapted slightly better to environmental productivity and were less sensitive to environmental stress than their component varieties. We conclude that the efficacy of variety...... mixtures may be enhanced by mixing relatively high-yielding varieties differing in responsiveness to environmental productivity.......Varietal seed mixtures tend to increase and stabilize crop yields, yet their application is sparse. Large-scale cultivation of variety mixtures may require a better understanding of how inter-varietal interactions and their interaction with the environment may influence the grain yield of variety...

  17. Factors Affecting Nitrogen Use Efficiency and Grain Yield of Summer Maize on Smallholder Farms in the North China Plain

    Guangfeng Chen; Hongzhu Cao; Jun Liang; Wenqi Ma; Lufang Guo; Shuhua Zhang; Rongfeng Jiang; Hongyan Zhang; Keith W. T. Goulding; Fusuo Zhang

    2018-01-01

    The summer maize yields and partial factor productivity of nitrogen (N) fertilizer (PFPN, grain yield per unit N fertilizer) on smallholder farms in China are low, and differ between farms due to complex, sub-optimal management practices. We collected data on management practices and yields from smallholder farms in three major summer maize-producing sites—Laoling, Quzhou and Xushui—in the North China Plain (NCP) for two growing seasons, during 2015–2016. Boundary line analysis and a Proc Mix...

  18. Relationship between QTL for grain shape, grain weight, test weight, milling yield, and plant height in the spring wheat cross RL4452/'AC Domain'.

    Cabral, Adrian L; Jordan, Mark C; Larson, Gary; Somers, Daryl J; Humphreys, D Gavin; McCartney, Curt A

    2018-01-01

    Kernel morphology characteristics of wheat are complex and quantitatively inherited. A doubled haploid (DH) population of the cross RL4452/'AC Domain' was used to study the genetic basis of seed shape. Quantitative trait loci (QTL) analyses were conducted on a total of 18 traits: 14 grain shape traits, flour yield (Fyd), and three agronomic traits (Plant height [Plht], 1000 Grain weight [Gwt], Test weight [Twt]), using data from trial locations at Glenlea, Brandon, and Morden in Manitoba, Canada, between 1999 and 2004. Kernel shape was studied through digital image analysis with an Acurum® grain analyzer. Plht, Gwt, Twt, Fyd, and grain shape QTL were correlated with each other and QTL analysis revealed that QTL for these traits often mapped to the same genetic locations. The most significant QTL for the grain shape traits were located on chromosomes 4B and 4D, each accounting for up to 24.4% and 53.3% of the total phenotypic variation, respectively. In addition, the most significant QTL for Plht, Gwt, and Twt were all detected on chromosome 4D at the Rht-D1 locus. Rht-D1b decreased Plht, Gwt, Twt, and kernel width relative to the Rht-D1a allele. A narrow genetic interval on chromosome 4B contained significant QTL for grain shape, Gwt, and Plht. The 'AC Domain' allele reduced Plht, Gwt, kernel length and width traits, but had no detectable effect on Twt. The data indicated that this variation was inconsistent with segregation at Rht-B1. Numerous QTL were identified that control these traits in this population.

  19. Relationship between QTL for grain shape, grain weight, test weight, milling yield, and plant height in the spring wheat cross RL4452/‘AC Domain’

    Cabral, Adrian L.; Jordan, Mark C.; Larson, Gary; Somers, Daryl J.; Humphreys, D. Gavin

    2018-01-01

    Kernel morphology characteristics of wheat are complex and quantitatively inherited. A doubled haploid (DH) population of the cross RL4452/‘AC Domain’ was used to study the genetic basis of seed shape. Quantitative trait loci (QTL) analyses were conducted on a total of 18 traits: 14 grain shape traits, flour yield (Fyd), and three agronomic traits (Plant height [Plht], 1000 Grain weight [Gwt], Test weight [Twt]), using data from trial locations at Glenlea, Brandon, and Morden in Manitoba, Canada, between 1999 and 2004. Kernel shape was studied through digital image analysis with an Acurum® grain analyzer. Plht, Gwt, Twt, Fyd, and grain shape QTL were correlated with each other and QTL analysis revealed that QTL for these traits often mapped to the same genetic locations. The most significant QTL for the grain shape traits were located on chromosomes 4B and 4D, each accounting for up to 24.4% and 53.3% of the total phenotypic variation, respectively. In addition, the most significant QTL for Plht, Gwt, and Twt were all detected on chromosome 4D at the Rht-D1 locus. Rht-D1b decreased Plht, Gwt, Twt, and kernel width relative to the Rht-D1a allele. A narrow genetic interval on chromosome 4B contained significant QTL for grain shape, Gwt, and Plht. The ‘AC Domain’ allele reduced Plht, Gwt, kernel length and width traits, but had no detectable effect on Twt. The data indicated that this variation was inconsistent with segregation at Rht-B1. Numerous QTL were identified that control these traits in this population. PMID:29357369

  20. Drought Stress Effect during Different Growth Stages on Yield, Osmolites and Photosynthetic Pigments Accumulation of Grain Sorghum Genotypes (Sorghum bicolor L.

    A Azari Nasrabad

    2017-12-01

    Full Text Available Introduction Osmotic adjustment in plants can be achieved by the accumulation of compatible solution or metabolites. These compounds are known as compatible metabolites that accumulate naturally in tolerant plants due to non-interference in the normal metabolic response of plants to adapt or supplement. Proline, soluble sugars and other metabolites accumulation that are involved in osmotic adjustment have been reported for various plants. Different studies show that water absorption in sorghum plant, is due to osmotic adjustment and appropriate and fairly extensive root system. Moreover, there are some differences from genotype to genotype regarding the osmolites accumulation under drought stress conditions. Thus, the aim of this study was to investigate the effects of drought in the vegetative and reproductive growth stages on yield, its components and biochemical traits in grain sorghum genotypes. Materials and Methods In order to evaluate the effect of water stress on grain yield and its components and some biochemical traits in grain sorghum genotypes (Sorghum bicolor L., a field experiment as a split plot design was carried out with 3 replications in 2014 at the research farm of the southern Khorasan Agriculture and natural resources research and education center. Water stress treatments including normal irrigation (control, irrigation cut off in vegetative growth stage (emergence of terminal leaf as rolled and irrigation cut off in generative growth stage (50% of plants in start of flowering as the main plot and 10 genotypes of sorghum including KGS29, MGS2, Sepideh, KGFS27, MGS5, KGFS5, KGFS17, KGFS13 and KGFS30 were considered as sub plots. Each plot consists of 4 rows with a length of 6 m and row spacing of 60 cm, between plants on row was 10 cm. In addition, between each plot and the adjacent plot a row was considered to side effect reduction. To determine the yield components of each plot, half a meter in length was harvested and the

  1. Reciprocal combinations of barley and corn grains in oil-supplemented diets: feeding behavior and milk yield of lactating cows.

    Kargar, S; Ghorbani, G R; Khorvash, M; Sadeghi-Sefidmazgi, A; Schingoethe, D J

    2014-11-01

    The effect of barley-based (BBD) or corn-based diets (CBD), or their equal blend (BCBD) on dry matter (DM) intake, feeding and chewing behavior, and production performance of lactating dairy cows was evaluated. Nine multiparous Holstein cows (75.6 ± 11.0 d in milk) were used in a triplicate 3 × 3 Latin square design with 21-d periods. Forage-to-concentrate ratio (40:60), forage neutral detergent fiber (20% of DM), total neutral detergent fiber (>29% of DM), and geometric mean particle size (4.3mm) were similar among treatments. Meal patterns, including meal size and intermeal interval, were not affected by the dietary treatments and DM intake (25.6 kg/d) was not different among treatments. Ether extract intake increased linearly with increasing amount of the corn grain in the diets. Due to similar feed intake, actual milk (48.6 kg/d), 4% fat-corrected milk (36.8 kg/d), and fat- and protein-corrected milk (38.1 kg/d) yields were not affected by treatments. Average milk protein percentage and yield were 2.83% and 1.37 kg/d, respectively, and were not different across treatments. Milk fat percentage increased linearly with increasing amount of corn grain in the diets and was greater in CBD relative to BCBD but not BBD (2.31, 2.28, and 2.57%, for BBD, BCBD, and CBD, respectively). However, milk fat yield tended to show a linear increase as the amount of corn grain included in the diets increased. Results indicated that changing diet fermentability by replacing barley grain for corn grain in oil-supplemented diets did not influence feeding patterns and thereby no changes in feed intake and milk yield occurred. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. What is the Best Model Specification and Earth Observation Product for Predicting Regional Grain Yields in Food Insecure Countries?

    Davenport, F., IV; Harrison, L.; Shukla, S.; Husak, G. J.; Funk, C. C.

    2017-12-01

    We evaluate the predictive accuracy of an ensemble of empirical model specifications that use earth observation data to predict sub-national grain yields in Mexico and East Africa. Products that are actively used for seasonal drought monitoring are tested as yield predictors. Our research is driven by the fact that East Africa is a region where decisions regarding agricultural production are critical to preventing the loss of economic livelihoods and human life. Regional grain yield forecasts can be used to anticipate availability and prices of key staples, which can turn can inform decisions about targeting humanitarian response such as food aid. Our objective is to identify-for a given region, grain, and time year- what type of model and/or earth observation can most accurately predict end of season yields. We fit a set of models to county level panel data from Mexico, Kenya, Sudan, South Sudan, and Somalia. We then examine out of sample predicative accuracy using various linear and non-linear models that incorporate spatial and time varying coefficients. We compare accuracy within and across models that use predictor variables from remotely sensed measures of precipitation, temperature, soil moisture, and other land surface processes. We also examine at what point in the season a given model or product is most useful for determining predictive accuracy. Finally we compare predictive accuracy across a variety of agricultural regimes including high intensity irrigated commercial agricultural and rain fed subsistence level farms.

  3. Lead (Pb) Toxicity; Physio-Biochemical Mechanisms, Grain Yield, Quality, and Pb Distribution Proportions in Scented Rice.

    Ashraf, Umair; Kanu, Adam S; Deng, Quanquan; Mo, Zhaowen; Pan, Shenggang; Tian, Hua; Tang, Xiangru

    2017-01-01

    Lead (Pb) caused interruptions with normal plant metabolism, crop yield losses and quality issues are of great concern. This study assessed the physio-biochemical responses, yield and grain quality traits and Pb distribution proportions in three different fragrant rice cultivars i.e., Meixiangzhan-2, Xinagyaxiangzhan and Basmati-385. Plants were exposed to 400, 800, and 1,200 ppm of Pb while pots without Pb were taken as control (0 ppm). Our results showed that Pb toxicity significantly ( P production of hydrogen peroxide (H 2 O 2 ), malanodialdehyde (MDA) and leaves leachates; while such effects were more apparent in Xinagyaxiangzhan than other two rice cultivars. Pb stress differentially affected the production protein, proline and soluble sugars; however the production rates were higher at heading stage (HS) than maturity stage (MS). Furthermore, Pb stress altered superoxide dismutase (SOD), peroxidases (POD), catalases (CAT) and ascorbate peroxidases (APX) activities and glutathione (GSH) and oxidized glutathione (GSSG) production in all rice cultivars at both HS and MS. All Pb levels reduced the yield and yield components of all rice cultivars; nonetheless such reductions were observed highest in Xinagyaxiangzhan (69.12%) than Meixiangzhan-2 (58.05%) and Basmati-385 (46.27%) and resulted in grain quality deterioration. Significant and positive correlations among rice yields with productive tillers/pot and grains per panicle while negative with sterility percentage were also observed. In addition, all rice cultivars readily taken up the Pb contents from soil to roots and transported upward in different proportions with maximum in roots followed by stemss, leaves, ears and grains. Higher proportions of Pb contents in above ground plant parts in Xinagyaxiangzhan possibly lead to maximum losses in this cultivar than other two cultivars; while less damage in Basmati-385 might be related to strong anti-oxidative defense system and lower proportions of Pb contents in

  4. GGE biplot and AMMI application in the study of adaptability and grain yield stability of durum lines under dryland conditions

    Behzad Sadeghzadeh

    2018-06-01

    Full Text Available Introduction Durum wheat (Triticum turgidum var. durum is grown for human consumption, mainly as pasta products, e.g., spaghetti and macaroni, couscous, bulgur, frike, flat breads, etc. Worldwide, the area annually planted to durum wheat is estimated to be around 17-18 million hectares, i.e., 8 percent of total wheat area, with a production averaging about 30 million tons annually, which is 5.5 percent of total wheat production. Although durum is grown in various regions of the world, the great bulk of durum area and production is concentrated in the Mediterranean basin and North America. Eight countries (Algeria, Canada, Italy, Morocco, Syria, Tunisia, Turkey, and USA account for nearly two thirds (2/3 of world durum area and production. In Iran, the area under durum cultivation is about 400-500 thousands hectares with an annual production of 400-500 thousand tons, which covers about 60% of country demands. In spite of the importance of durum for Iranian rural economies, the country has not all succeeded in its research and development efforts to substantially improve durum productivity. The combinations of increasing demand for durum and durum products, as a result of demographic pressure, and relatively low durum productivity partly due to abiotic stresses (i.e. cold, terminal heat, moisture and nutrient deficiency stresses made the country to an importer of durum. These are frequently exacerbated by biotic stresses, e.g., diseases and insects that may severely inhibit crop growth. Materials and methods The main purpose of this study was to achieve high yielding durum wheat genotypes with higher yield stability in different environmental condition, tolerance to environmental stresses such as cold damage, drought and end of season heat stress. Hence, 17 durum wheat lines were evaluated for grain yeild and morphlogical traits in Maragheh, Sararood, Qamloo, Ardabil and Shirvan agricultural research stations in 2011-14. In each location, the

  5. Influence of irrigation and nitrogen fertilization on grain yield and some baking quality characteristics of spring wheat

    Paavo Elonen

    1975-05-01

    Full Text Available In the years 1967—70 twelve irrigation experiments of spring wheat were carried out in southern Finland (60-62° N, 22-26° E. Sprinkler irrigation (2 X 30 mm increased the grain yields on an average by 1240±470kg/ha (from 2740 to 3980 kg or 45±17 %. The increases in yield were significant on clay soils (9 trials and loam (1 trial but insignificant on fines and (1 trial and mould (1 trial. Additional nitrogen fertilization (from 76 to 143kg/ha N increased the grain yields on an average by 350± 200 kg/ha or 11±6 %. The ripening of wheat was significantly promoted by irrigation in one year but slightly retarded in three years. Nitrogen fertilization slightly retarded ripening every year The falling number of grains tended to be slightly improved by irrigation (from 285 to 321, on an average, but in most trials irrigation and nitrogen fertilization had no significant influence on the falling number. Irrigation decreased the crude protein content of grains in all trials, on an average by 2.2 ± 0.7 %-units (from 16.3 to 14.1%. This unfavourable effect was, however, avoided with additional nitrogen which increased the protein content by 1.9±0.4%-units (from 14,3 to 16.2 %. The effects of irrigation and nitrogen fertilization on those characteristics of wheat that are correlated with protein, were similar to the effects on the protein content. Thus, irrigation decreased the zeleny value (from 64 to 53 ml, cold viscosity (from 214 to 114 seconds, water absorption (from 66.5 to 64.9 % and the valorimeter value (from 68 to 60, while these characteristics were improved by nitrogen fertilization. Irrigation did not decrease the Pelshenke value but increased significantly the ratio of the Pelshenke value/protein content (from 5,1 to 6.1. This indicates that the quality of protein was improved by irrigation, while the effect of nitrogen fertilization was the reverse. In fact, irrigation and additional nitrogen fertilization affected the quantity and

  6. Grain yield and arsenic uptake of upland rice inoculated with arbuscular mycorrhizal fungi in As-spiked soils.

    Wu, Fuyong; Hu, Junli; Wu, Shengchun; Wong, Ming Hung

    2015-06-01

    A pot trial was conducted to investigate the effects of three arbuscular mycorrhizal (AM) fungi species, including Glomus geosporum BGC HUN02C, G. versiforme BGC GD01B, and G. mosseae BGC GD01A, on grain yield and arsenic (As) uptake of upland rice (Zhonghan 221) in As-spiked soils. Moderate levels of AM colonization (24.1-63.1 %) were recorded in the roots of upland rice, and up to 70 mg kg(-1) As in soils did not seem to inhibit mycorrhizal colonization. Positive mycorrhizal growth effects in grain, husk, straw, and root of the upland rice, especially under high level (70 mg kg(-1)) of As in soils, were apparent. Although the effects varied among species of AM fungi, inoculation of AM fungi apparently enhanced grain yield of upland rice without increasing grain As concentrations in As-spiked soils, indicating that AM fungi could alleviate adverse effects on the upland rice caused by As in soils. The present results also show that mycorrhizal inoculation significantly (p rice production when growing in As-contaminated soils.

  7. Effect of the New Plant Growth Biostimulants Based on Amino Acids on Yield and Grain Quality of Winter Wheat.

    Popko, Małgorzata; Michalak, Izabela; Wilk, Radosław; Gramza, Mateusz; Chojnacka, Katarzyna; Górecki, Henryk

    2018-02-21

    Field and laboratory experiments were carried out in 2012-2013, aimed at evaluating the influence of new products stimulating plant growth based on amino acids on crop yield, characteristics of grain and content of macro- and micronutrients in winter wheat ( Triticum aestivum L.). The tests included two formulations produced in cooperation with INTERMAG Co. (Olkusz, Poland)-AminoPrim and AminoHort, containing 15% and 20% amino acids, respectively, and 0.27% and 2.1% microelements, respectively. Field experiments showed that the application of products based on amino acids influenced the increase of grain yield of winter wheat (5.4% and 11%, respectively, for the application of AminoPrim at a dose 1.0 L/ha and AminoHort at dose 1.25 L/ha) when compared to the control group without biostimulant. Laboratory tests showed an increase of technological characteristics of grain such as ash content, Zeleny sedimentation index and content of protein. The use of the tested preparations at different doses also contributed to the increase of the nutrients content in grains, in particular copper (ranging 31-50%), as well as sodium (35-43%), calcium (4.3-7.9%) and molybdenum (3.9-16%). Biostimulants based on amino acids, tested in the present study, can be recommended for an efficient agricultural production.

  8. Significant yield increases from control of leaf diseases in maize - an overlooked problem?!

    Jørgensen, Lise Nistrup

    2012-01-01

    The area of maize has increased in several European countries in recent years. In Denmark, the area has increased from 10,000 ha in 1980 to 185,000 ha in 2011. Initially only silage maize was cultivated in Denmark, but in more recent years the area of grain maize has also increased. Farms growing...

  9. Effect of FYM, potassium and zinc on phenology and grain yield of wheat in rain fed cropping systems

    Nawab, K.; Amanullah; Arif, M.; Shah, P.; Khan, M.A.; Khan, K.

    2011-01-01

    Little work has been done on potassium (K) and zinc (Zn) in combination with farm yard manure (FYM) under rain fed conditions of NWFP. This study was designed to examine the effects of un-irrigated cropping patterns and organic and in-organic fertilizers on wheat crop. Field experiments were conducted to investigate the effect of cropping patterns and farm yard manure, potassium and zinc on phenology and grain yield of wheat under rain fed (barani or un-irrigated) conditions at Agricultural Research Station, Serai Naurang Bannu for two years during 2001-02 and 2002-03. The experiment was designed in RCB design with split arrangements. Two factors were studied in the experiment. Effects of five cropping patterns i.e., fallow-wheat, groundnut-wheat, mungbean-wheat, sorghum-wheat and pigeon pea-wheat and three organic and in-organic fertilizers on subsequent wheat crop were observed. Data revealed that both the cropping patterns and manures/fertilizers had non-significant effect on days to anthesis, seed fill duration and days to maturity of wheat. Highest grain yield (3194 kg ha/sup -1/ wheat following mungbean produced more yield and wheat following groundnut produced less yield under dry land conditions. The present findings revealed that pigeon pea-wheat cropping pattern seems to be more sustainable in terms of yield under rain fed conditions and use of FYM, K and Zn should be included in integrated crop management approaches for sustainable crop production. (Author)

  10. Study of Cytokinin and Auxin Hormones and Planting Pattern Effects on Yield and Yield Components of Grain Maize (Zea mays L. under Saline Conditions

    D Davani

    2016-07-01

    Full Text Available Introduction Maize (Zea mays L. which belongs to the Poaceae family is the third important cereal crop of the world after wheat and rice. Salinity is one of the major environmental factors limiting plant growth and productivity. Maize is sensitive to salinity. Planting method is a crucial factor for improving crop yield. Planting methods in saline and non-saline conditions are different. Kinetin is one of the cytokinins known to significantly improve the growth of crop plants grown under salinity. Indole acetic acid (IAA is also known to play a significant role in plant tolerance to salt stress. However, little information appears to be available on the relationship between salinity tolerance and auxin or cytokinins levels in plants. In this respect, the objective of this study was to study the effects of foliar applications of cytokinin and auxin hormones on yield and yield components of grain maize under different planting patterns in saline conditions. Materials and Methods The experiment was carried out at Bushehr Agricultural and Natural Resources Research Center, Dashtestan station with 29° 16´ E latitude and 51° 31´ N, longitude and 70 m above the see surface during the 2013 growing season. Dashtestan region is a warm-arid region with 250 mm precipitation per year. The field plowed by April 2013 and then prepared and sowed by August 2013. There were five rows with 75 cm distance. The experiment was conducted as a split-plot factorial design based on complete randomized blocks with three replications. Planting pattern (ridge planting, double rows of planting on a ridge in zigzag form and furrow planting as the main factor and time of cytokinin (0 as a control, V5- V6 stage and V8- V10 stage and auxin (0 as a control, silking stage, two weeks after silking stage foliar-applied was considered in a factorial. Cytokinin (Benzyl Adenine, Merck and Auxin (Indole-3-Butiric Acid, Merck were sprayed on the entire plant in the evening with

  11. Effects of kernel weight and source-limitation on wheat grain yield ...

    DRmohammadi

    2012-02-09

    Feb 9, 2012 ... Many regions need wheat cultivars that are capable of high yields when the weather is beneficial but produce stable yields when conditions are adverse. These geno- types should have high yield potential in both favorable and high temperature environments (Yang et al., 2002a;. Ahmed et al., 2011a, b).

  12. The effect of nitrogen fertilizing and fungicide application on the yield and selected parameters of grain quality of winter wheat

    Alena Bezdíčková

    2007-01-01

    Full Text Available In 2001–2004 an influence of gradually increased portions of nitrogen (100–130–160 kg/N.ha–1 applied on the wheat variety Ebi in combination with the modified fungicidal protection in the yield and the selected quality grain parameters were observed within the small-plot field trials. Nitrogenous fertilizers according to the amount of nitrogen contained were applied in 2–4 terms during vegetation in regeneration (55kg/N.ha–1, 1st production (45kg/N.ha–1, 2nd production (30kg/N.ha–1 and qualitative portion (30kg/N.ha–1. The fungicidal protection was based on the equal treatment in the phase of BBCH 37 and with regard to the varieties different treatment in the phase of BBCH 55. The dependence on the year was proved at all observed parameters. Higher intensity of nitrogenous fertilization had no decisive impact on the yields. From the point of view of increased yields, the second production nitrogenous fertilization had the strongest impact; it increased the grain yields by 0.084–0.461 t./ha–1. Higher intensity of nitrogenous fertilization positively influenced the baker’s grain quality. The increased portions of nitrogen decisively increased the volume of N-substances in all trial years. The second production nitrogenous fertilization increased the N-substances volume from 0.1 to 0.8%. Qualitative additional fertilization increased their volume from 0.26 to 1.38%. Higher N portions increased sedimentation in most cases. The falling number was not considerably influenced. The mechanical grain qualities (volume weight, number full grains, and GTW were relatively less influenced than the baker’s quality by the nitrogenous fertilization. The application of fungicides positively influenced not only the yields but also mechanical qualities of the grain, i.e. volume weight, thousand grains weight and portion of Full grains. On the contrary the baker’s quality was not decisively influenced. It was proved that the decisive

  13. Interaction Effect Of Irradiation And Fertilization On Grain Yield, Kernel Weight And Severity Of Wheat To Septoria Tritici Blotch

    Arabi, M. A.; Jawhar, M.

    2004-01-01

    Field research was undertaken, for two growing seasons, to investigate the effects of soil fertilization with potassium (K 2 SO 4 , 36% K) and nitrogen (urea, 46% N), seed irradiation with gamma rays (0, 5, 10 and 15 Gy) and their combinations on the grain yield, 1000-kernel weight and severity of Mycosphaerella graminicola on wheat. Two Syrian wheat cultivars; Bohuth 6 (Triticum aestivum L.) and Bohuth 5 (T. turgidum var durum Desf.) were used in this study. Plants were inoculated with a mixture of 15 virulent isolates of the pathogen at the growth stage (GS) 33-34. Results indicated that the average response to fertilizer application and irradiation treatments was dependent on the susceptibility level of cultivars compared with the control. The level of infection of the combined NK and 15 Gy treatment was reduced by 9 and 46 % in 1998 and by 6 and 42 % in 1999 for Bohuth 5 and Bohuth 6, respectively. This was associated with increased grain yield by 68 and 59% in 1998 and 59 and 33% in 1999, respectively. Highest yield losses from M. graminicola occurred in the treatment of nil fertilization and irradiation. Grain weight was increased by various treatments applied, but such an increase was highest in the combined NK and 15 Gy treatment. This combined treatment appeared to be more effective on calcareous soils, which are typical of Mediterranean environments. (Authors)

  14. Increasing water productivity, nitrogen economy, and grain yield of rice by water saving irrigation and fertilizer-N management.

    Aziz, Omar; Hussain, Saddam; Rizwan, Muhammad; Riaz, Muhammad; Bashir, Saqib; Lin, Lirong; Mehmood, Sajid; Imran, Muhammad; Yaseen, Rizwan; Lu, Guoan

    2018-06-01

    The looming water resources worldwide necessitate the development of water-saving technologies in rice production. An open greenhouse experiment was conducted on rice during the summer season of 2016 at Huazhong Agricultural University, Wuhan, China, in order to study the influence of irrigation methods and nitrogen (N) inputs on water productivity, N economy, and grain yield of rice. Two irrigation methods, viz. conventional irrigation (CI) and "thin-shallow-moist-dry" irrigation (TSMDI), and three levels of nitrogen, viz. 0 kg N ha -1 (N 0 ), 90 kg N ha -1 (N 1 ), and 180 kg N ha -1 (N 2 ), were examined with three replications. Study data indicated that no significant water by nitrogen interaction on grain yield, biomass, water productivity, N uptake, NUE, and fertilizer N balance was observed. Results revealed that TSMDI method showed significantly higher water productivity and irrigation water applications were reduced by 17.49% in TSMDI compared to CI. Thus, TSMDI enhanced root growth and offered significantly greater water saving along with getting more grain yield compared to CI. Nitrogen tracer ( 15 N) technique accurately assessed the absorption and distribution of added N in the soil crop environment and divulge higher nitrogen use efficiency (NUE) influenced by TSMDI. At the same N inputs, the TSMDI was the optimal method to minimize nitrogen leaching loss by decreasing water leakage about 18.63%, which are beneficial for the ecological environment.

  15. Effects of different mycorrhiza species on grain yield, nutrient uptake and oil content of sunflower under water stress

    Mostafa Heidari

    2014-01-01

    Full Text Available The role of arbuscular mycorrhizal fungi in alleviating water stress is well documented. In order to study the effects of water stress and two different mycorrhiza species on grain yield, nutrient uptake and oil content of sunflower, a field experiment as split plot design with three replications was conducted in the Research Field Station, Zabol University, Zabol, Iran in 2011. Water stress treatments included control as 90% of field capacity (W1, 70% field capacity (W2 and 50% field capacity (W3 assigned to the main plots and two different mycorrhiza species, consisting of M1 = control (without any inoculation, M2 = Glumus mossea and M3 = Glumus etanicatum as sub plots. Results showed that by increasing water stress from control (W1 to W3 treatment, grain yield was significantly decreased. The reduction in the level of W3 was 15.05%. The content of potassium in seeds significantly decreased due to water stress but water stress upto W2 treatment increased the content of phosphorus, nitrogen and oil content of seeds. In between two species of mycorrhiza in sunflower plants, Glumus etanicatum had the highest effect on grain yield and these elements in seeds and increased both.

  16. The effects of maxicrop leaf fertilizer on the yield and quality of ...

    STORAGESEVER

    2008-06-17

    Jun 17, 2008 ... doses lead to an increase in seed yield. The highest seed yield ... or small amount of vegetable oil deficit occurs in Turkey. (Arslan et al., 1993). .... Akçin et al. reported that the plant hormone Alar 85, which they applied on four ...

  17. CO₂ enrichment can produce high red leaf lettuce yield while increasing most flavonoid glycoside and some caffeic acid derivative concentrations.

    Becker, Christine; Kläring, Hans-Peter

    2016-05-15

    Carbon dioxide (CO2) enrichment is a common practice in greenhouses to increase crop yields up to 30%. Yet, reports on the effect on foliar phenolic compounds vary. We studied the effect on two red leaf lettuce cultivars, grown for 25 days in growth chambers at CO2 concentrations of 200 or 1,000 ppm, with some plants exchanged between treatments after 11 days. As expected, head mass increased with higher CO2 concentration. Regression analysis, corrected for head mass, showed increased concentrations of most flavonoid glycosides at high CO2 concentrations while only some caffeic acid derivatives were increased, and not uniformly in both cultivars. Sugar concentrations increased with CO2 concentration. Generally, conditions in the 10 days before harvest determined concentrations. We suspect that phenolic compounds were mainly accumulated because plenty of precursors were available. The results indicate that CO2 enrichment can result in high yields of red leaf lettuce rich in phenolic compounds. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Assessing the Impact of Air Pollution on Grain Yield of Winter Wheat - A Case Study in the North China Plain

    Zhang, Xiying; Shao, Liwei; Chen, Suying

    2016-01-01

    The major wheat production region of China the North China Plain (NCP) is seriously affected by air pollution. In this study, yield of winter wheat (Triticum aestivum L.) was analyzed with respect to the potential impact of air pollution index under conditions of optimal crop management in the NCP from 2001 to 2012. Results showed that air pollution was especially serious at the early phase of winter wheat growth significantly influencing various weather factors. However, no significant correlations were found between final grain yield and the weather factors during the early growth phase. In contrast, significant correlations were found between grain yield and total solar radiation gap, sunshine hour gap, diurnal temperature range and relative humidity during the late growing phase. To disentangle the confounding effects of various weather factors, and test the isolated effect of air pollution induced changes in incoming global solar radiation on yield under ceteris paribus conditions, crop model based scenario-analysis was conducted. The simulation results of the calibrated Agricultural Production Systems Simulator (APSIM) model indicated that a reduction in radiation by 10% might cause a yield reduction by more than 10%. Increasing incident radiation by 10% would lead to yield increases of (only) 7%, with the effects being much stronger during the late growing phase compared to the early growing phase. However, there is evidence that APSIM overestimates the effect of air pollution induced changes on radiation, as it does not consider the changes in radiative properties of solar insulation, i.e. the relative increase of diffuse over direct radiation, which may partly alleviate the negative effects of reduced total radiation by air pollution. Concluding, the present study could not detect a significantly negative effect of air pollution on wheat yields in the NCP. PMID:27612146

  19. Assessing the Impact of Air Pollution on Grain Yield of Winter Wheat - A Case Study in the North China Plain.

    Xiuwei Liu

    Full Text Available The major wheat production region of China the North China Plain (NCP is seriously affected by air pollution. In this study, yield of winter wheat (Triticum aestivum L. was analyzed with respect to the potential impact of air pollution index under conditions of optimal crop management in the NCP from 2001 to 2012. Results showed that air pollution was especially serious at the early phase of winter wheat growth significantly influencing various weather factors. However, no significant correlations were found between final grain yield and the weather factors during the early growth phase. In contrast, significant correlations were found between grain yield and total solar radiation gap, sunshine hour gap, diurnal temperature range and relative humidity during the late growing phase. To disentangle the confounding effects of various weather factors, and test the isolated effect of air pollution induced changes in incoming global solar radiation on yield under ceteris paribus conditions, crop model based scenario-analysis was conducted. The simulation results of the calibrated Agricultural Production Systems Simulator (APSIM model indicated that a reduction in radiation by 10% might cause a yield reduction by more than 10%. Increasing incident radiation by 10% would lead to yield increases of (only 7%, with the effects being much stronger during the late growing phase compared to the early growing phase. However, there is evidence that APSIM overestimates the effect of air pollution induced changes on radiation, as it does not consider the changes in radiative properties of solar insulation, i.e. the relative increase of diffuse over direct radiation, which may partly alleviate the negative effects of reduced total radiation by air pollution. Concluding, the present study could not detect a significantly negative effect of air pollution on wheat yields in the NCP.

  20. Assessing the Impact of Air Pollution on Grain Yield of Winter Wheat - A Case Study in the North China Plain.

    Liu, Xiuwei; Sun, Hongyong; Feike, Til; Zhang, Xiying; Shao, Liwei; Chen, Suying

    2016-01-01

    The major wheat production region of China the North China Plain (NCP) is seriously affected by air pollution. In this study, yield of winter wheat (Triticum aestivum L.) was analyzed with respect to the potential impact of air pollution index under conditions of optimal crop management in the NCP from 2001 to 2012. Results showed that air pollution was especially serious at the early phase of winter wheat growth significantly influencing various weather factors. However, no significant correlations were found between final grain yield and the weather factors during the early growth phase. In contrast, significant correlations were found between grain yield and total solar radiation gap, sunshine hour gap, diurnal temperature range and relative humidity during the late growing phase. To disentangle the confounding effects of various weather factors, and test the isolated effect of air pollution induced changes in incoming global solar radiation on yield under ceteris paribus conditions, crop model based scenario-analysis was conducted. The simulation results of the calibrated Agricultural Production Systems Simulator (APSIM) model indicated that a reduction in radiation by 10% might cause a yield reduction by more than 10%. Increasing incident radiation by 10% would lead to yield increases of (only) 7%, with the effects being much stronger during the late growing phase compared to the early growing phase. However, there is evidence that APSIM overestimates the effect of air pollution induced changes on radiation, as it does not consider the changes in radiative properties of solar insulation, i.e. the relative increase of diffuse over direct radiation, which may partly alleviate the negative effects of reduced total radiation by air pollution. Concluding, the present study could not detect a significantly negative effect of air pollution on wheat yields in the NCP.

  1. Agro-Economic Optimization of Fertilizer Level and Rhizobium Strains for Enhanced Grain Yield in Mungbean (Vigna Radiata L.)

    Mansoor, M.; Elahi, M. E.; Islam, Z.; Ali, A.

    2016-01-01

    To explore the effect of PGPR for improvement in grain yield of mungbean, different levels of fertilizer (00:00, 20:50 and 20:70 kg N:P/sub 2/O/sub 5/ kg ha/sup -1/) were tested on four strains (CB 1015 Australia, Vm-L1, Vm-M1 and Vm-M2) at Agricultural Research Institute, Dera Ismail Khan. A Randomized Complete Block Design with split plot arrangement was used to conduct the experiment by keeping three fertilizer levels in the main plot and Rhizobium strains in sub-plot. The data were recorded for different parameters like number of branches plant/sup -1/, number of clusters plant/sup -1/, number of pods plant/sup -1/., number of grain pod/sup -1/, pod length (cm) and grain yield kg ha/sup -1/. The response of fertilizer levels and inoculation with Rhizobium strains were found significant in most of the parameters under study. The strain Vm-M1 produced the highest number of branches plant/sup -1/(5.42), number of clusters plant/sup -1/(22.92), number of pods plant/sup -1/(77.64), pod length (8.37 cm) when applied in combination of N:P/sub 2/O/sub 5/ at the rate of 20:70 and 20:50 kg ha/sup -1/. Although the grain yield (1421 kg ha/sup -1/) recorded in treatment (20:70 kg N:P/sub 2/O/sub 5/ ha/sup -1/ + Inoculation with strain Vm M1) was highest but economically the treatment (20:50 kg N:P/sub 2/O/sub 5/ ha/sup -1/ + inoculation with strain Vm M1) with net return of Rs. 13618 ha/sup -1/ and BCR of 2.52 was on top. (author)

  2. Comparison of sorghum classes for grain and forage yield and forage nutritive value

    Sorghum represents a broad category of plants that includes those grown primarily for forage (FS) or grain. Sorghum sudan crosses (SS) are also considered sorghum. Each of these groups can be further classified as brown midrib (BMR), nonBMR, photoperiod sensitive (PS), and nonPS. In our study, sor...

  3. Corn yield for silage and grains in different integrated crop-livestock systems

    Laíse da Silveira Pontes

    Full Text Available Abstract In this study, the objective was to assess the influence of two doses of N (90 and 180 kg N ha-1, added to the winter pastures, two integrated crop-livestock systems (ICLS, with and without trees and five positions between the tree rows, on the corn (Zea mays L. quality and productivity, for silage and grain. Adopting the complete randomized block design, the treatments included three replicates. In 2006, following the 14 x 3 m spacing (currently with 158 trees ha-1 the trees were planted in 6 out of the 12 paddocks. While the corn was implemented during summer of 2013/2014, cattle grazing on the annual pasture was done during the prior winter, in both ICLS. Corn for silage was reaped at the R5 phenological stage, whereas for grains it was done at 176 days post seeding. For silage, the corn plants were grinded and then stocked in the experimental mini PVC silos. The silage varied slightly in quality along the positions between the tree rows. The differences observed between N levels in the dry matter, crude protein (CP and grain productivity are expressions of the residual effects of the winter fertilization. Silage quality was improved by the shade effect which minimized the acid detergent fiber and raised the CP, although it reduced the corn production for silage and grains by 52%. Some feasible techniques to reduce these losses are discussed.

  4. Grain yield of soybean cultivars using different densities and sowing dates in a high-altitude region of south Brazil

    Vitor Spader

    2015-07-01

    Full Text Available The study aimed to evaluate the performance of soybean cultivars at different sowing dates and plant densities. Two experiments were carried out at FAPA (Fundação Agrária de Pesquisa Agropecuária [Agrarian Foundation for Agricultural and Cattle Research], located at 25?33’ S latitude, 51?29’ W longitude and with 1.100 meters of altitude in Guarapuava, PR [Paraná], Brazil, in two agricultural harvests (2010/2011 and 2011/2012. The experimental design was in randomized blocks and split plots, in which the sowing dates (10/20, 11/18 and 12/10 were allocated by plot, the densities (250, 350 and 450 thousand plants ha-1 by subplot and the cultivars (BMX Energia, BMX Apolo, BMX Ativa, FPS Júpiter, V_Top, NS 6631, TMG 7161 and BRS Tordilha by sub-subplot. The agronomic characteristics, grain yield and yield components were evaluated. Sowing dates and plant densities affected the agronomic characteristics, grain yield and yield components of soybean. The best sowing dates for lodging-tolerant cultivars are 10/20 and 11/18, and the best densities are 350 and 450 thousand plants ha-1, while lodging-susceptible cultivars respond best for sowing dates of 11/18 and 12/10 and densities from 250 to 350 thousand plants ha-1.

  5. Exogenous Cytokinins Increase Grain Yield of Winter Wheat Cultivars by Improving Stay-Green Characteristics under Heat Stress.

    Dongqing Yang

    Full Text Available Stay-green, a key trait of wheat, can not only increase the yield of wheat but also its resistance to heat stress during active photosynthesis. Cytokinins are the most potent general coordinator between the stay-green trait and senescence. The objectives of the present study were to identify and assess the effects of cytokinins on the photosynthetic organ and heat resistance in wheat. Two winter wheat cultivars, Wennong 6 (a stay-green cultivar and Jimai 20 (a control cultivar, were subjected to heat stress treatment from 1 to 5 days after anthesis (DAA. The two cultivars were sprayed daily with 10 mg L-1 of 6-benzylaminopurine (6-BA between 1 and 3 DAA under ambient and elevated temperature conditions. We found that the heat stress significantly decreased the number of kernels per spike and the grain yield (P < 0.05. Heat stress also decreased the zeatin riboside (ZR content, but increased the gibberellin (GA3, indole-3-acetic acid (IAA, and abscisic acid (ABA contents at 3 to 15 DAA. Application of 6-BA significantly (P < 0.05 increased the grain-filling rate, endosperm cell division rate, endosperm cell number, and 1,000-grain weight under heated condition. 6-BA application increased ZR and IAA contents at 3 to 28 DAA, but decreased GA3 and ABA contents. The contents of ZR, ABA, and IAA in kernels were positively and significantly correlated with the grain-filling rate (P < 0.05, whereas GA3 was counter-productive at 3 to 15 DAA. These results suggest that the decrease in grain yield under heat stress was due to a lower ZR content and a higher GA3 content compared to that at elevated temperature during the early development of the kernels, which resulted in less kernel number and lower grain-filling rate. The results also provide essential information for further utilization of the cytokinin substances in the cultivation of heat-resistant wheat.

  6. Effects of Nano-Zinc oxide and Seed Inoculation by Plant Growth Promoting Rhizobacteria (PGPR on Yield, Yield Components and Grain Filling Period of Soybean (Glycine max L.

    R. Seyed Sharifi

    2016-02-01

    promoting rhizobacteria application on yield, yield components and grain filling period of soybean. Materials and Methods In order to study the effects of Nano-Zinc oxide and seed inoculation with Brady rhizobium and plant growth promoting rhizobacteria on yield and some agronomic characteristics of soybean, a factorial experiment based on randomized complete block design with three replications was conducted in 2013 at the research farm of the Islamic Azad University, Ardabil Branch. Factors were included foliar application of Nano-Zinc oxide at four levels (Zero as control, 0.3, 0.6 and 0.9 g l-1 and seed inoculation with Brady rhizobium and plant growth promoting rhizobacteria at five levels (without inoculation as control, seed inoculation with Brady rhizobium japanicum, seed inoculation with Brady rhizobium japanicum+Azosprillum lipoferum strain OF, seed inoculation with Brady rhizobium japanicum+Psedomonas putida, seed inoculation with Brady rhizobium japanicum+ Azosprillum lipoferum strain OF+ Psedomonas putida. Results and Discussion The results of growth indices showed that the maximum total dry matter (530 g m-2, crop growth rate (9.48 g.m-2.day-1 and relative growth rate (0.1 g.g-1.day-1 were obtained at foliar application of 0.9 g l-1 Nano-Zinc oxide×seed inoculation with rhizobium+Azosprillum+ Psedomonas and the least of these indices were obtained without of foliar application Nano-Zinc oxide × seed inoculation. The results showed that plant height, the number of nodules per plant, the number of pod per plant, grain yield and grain 100 weight were significantly affected by Nano-Zinc oxide, seed inoculation and interaction of Nano-Zinc oxide×seed inoculation. Maximum of plant height, grain 100 weight, the number of nodules per plant and grain yield were obtained at foliar application of 0.9 g l-1 of Nano-Zinc oxide×seed inoculation with rhizobium and PGPR. Dry weight of nodules per plant, the number of pod per plant and the number of grains per plant

  7. Climate change and its effect on grain crops yields in the middle belt ...

    user

    impact of climate on the yield on reference crops in Kwara State, Nigeria. Multiple ... As a result, it is recommended that investment should be made to intensify the cultivation of crops on which .... Project (KWADP), Ilorin on maize (Zea mays), sorghum (Sorghum ... crop yield and the evaluation of a decade data is based on.

  8. Assessing the combined effects of climatic factors on spring wheat phenophase and grain yield in Inner Mongolia, China.

    Zhao, Junfang; Pu, Feiyu; Li, Yunpeng; Xu, Jingwen; Li, Ning; Zhang, Yi; Guo, Jianping; Pan, Zhihua

    2017-01-01

    Understanding the regional relationships between climate change and crop production will benefit strategic decisions for future agricultural adaptation in China. In this study, the combined effects of climatic factors on spring wheat phenophase and grain yield over the past three decades in Inner Mongolia, China, were explored based on the daily climate variables from 1981-2014 and detailed observed data of spring wheat from 1981-2014. Inner Mongolia was divided into three different climate type regions, the eastern, central and western regions. The data were gathered from 10 representative agricultural meteorological experimental stations in Inner Mongolia and analysed with the Agricultural Production Systems Simulator (APSIM) model. First, the performance of the APSIM model in the spring wheat planting areas of Inner Mongolia was tested. Then, the key climatic factors limiting the phenophases and yield of spring wheat were identified. Finally, the responses of spring wheat phenophases and yield to climate change were further explored regionally. Our results revealed a general yield reduction of spring wheat in response to the pronounced climate warming from 1981 to 2014, with an average of 3564 kg·ha-1. The regional differences in yields were significant. The maximum potential yield of spring wheat was found in the western region. However, the minimum potential yield was found in the middle region. The air temperature and soil surface temperature were the optimum climatic factors that affected the key phenophases of spring wheat in Inner Mongolia. The influence of the average maximum temperature on the key phenophases of spring wheat was greater than the average minimum temperature, followed by the relative humidity and solar radiation. The most insensitive climatic factors were precipitation, wind speed and reference crop evapotranspiration. As for the yield of spring wheat, temperature, solar radiation and air relative humidity were major meteorological

  9. Assessing the combined effects of climatic factors on spring wheat phenophase and grain yield in Inner Mongolia, China.

    Junfang Zhao

    Full Text Available Understanding the regional relationships between climate change and crop production will benefit strategic decisions for future agricultural adaptation in China. In this study, the combined effects of climatic factors on spring wheat phenophase and grain yield over the past three decades in Inner Mongolia, China, were explored based on the daily climate variables from 1981-2014 and detailed observed data of spring wheat from 1981-2014. Inner Mongolia was divided into three different climate type regions, the eastern, central and western regions. The data were gathered from 10 representative agricultural meteorological experimental stations in Inner Mongolia and analysed with the Agricultural Production Systems Simulator (APSIM model. First, the performance of the APSIM model in the spring wheat planting areas of Inner Mongolia was tested. Then, the key climatic factors limiting the phenophases and yield of spring wheat were identified. Finally, the responses of spring wheat phenophases and yield to climate change were further explored regionally. Our results revealed a general yield reduction of spring wheat in response to the pronounced climate warming from 1981 to 2014, with an average of 3564 kg·ha-1. The regional differences in yields were significant. The maximum potential yield of spring wheat was found in the western region. However, the minimum potential yield was found in the middle region. The air temperature and soil surface temperature were the optimum climatic factors that affected the key phenophases of spring wheat in Inner Mongolia. The influence of the average maximum temperature on the key phenophases of spring wheat was greater than the average minimum temperature, followed by the relative humidity and solar radiation. The most insensitive climatic factors were precipitation, wind speed and reference crop evapotranspiration. As for the yield of spring wheat, temperature, solar radiation and air relative humidity were major

  10. Impact of humic acid and chemical fertilizer application on growth and grain yield of rainfed wheat (triticum aestivum l.)

    Khan, R.U.; Khan, M.S.

    2010-01-01

    The high cost of inorganic fertilizer, use of natural fertilizer resources for increasing crop production on sustainable basis has become imperative. Two field experiments were conducted to study the potential of humic acid (HA) as a low-cost natural fertilizer and to determine its effect on the yield of rainfed wheat crop (Triticum aestivum L. cv. Naseer) at the research farm of Arid Zone Research Institute, Dera Ismail Khan during two successive winter seasons, 2007-08 and 2008-09. The treatments consisted of HA alone (3 kg ha/sup -1/ or 1.5 kg ha/sup -1/) and in combination with full (60:40 kg ha/sup -1/) and half (30:20 kg ha/sup -1/) the recommended rates of NP fertilizers. Results showed that in the first growing season (2007-08), the combination of 3 kg ha/sup -1/ HA with half (30:20 kg ha-1) rate of NP produced the highest grain yield (1314 kg ha/sup -1/) and increased the yield by 46.9% over the control. In the second growing season (2008-09), application of 3 kg ha/sup -1/ HA alone produced significantly (P<0.05) higher grain yield (2999.9 kg ha/sup -1/) and increased the yield by 24% over the control and saved 100% cost of the chemical fertilizer. Results suggested that HA applied alone at 3 kg ha/sup -1/ or in combination with half (30:20 kg ha/sup -1/) rate of NP fertilizers appeared to be the most economical rate to obtain the maximum yield of wheat under the rainfed conditions of Dera Ismail Khan. HA has great potential as a low cost natural fertilizer to improve soil fertility on sustainable basis. (author)

  11. Effect of nitrogen fertilizer application timing on nitrogen use efficiency and grain yield of winter wheat in Ireland

    Efretuei A.

    2016-06-01

    Full Text Available The objectives of this work were to determine the effects of initiating application of fertilizer nitrogen (N to winter wheat at different growth stages (GSs on grain yield and N use efficiency (NUE. A factorial experiment was carried out in two growing seasons (2011 and 2012 with five timings of first N application (GS 24/26 [tillering], GS 30, GS 31, GS 32 or GS 37 and an unfertilized control, two sowing densities (100 and 400 seeds/m2 and a cattle slurry treatment (with or without slurry. The latter was included to simulate variation in soil N supply (SNS. Delaying the first application of N from the tillering stage until GS 30 had no significant effect on grain yield in either year. Further delaying the initial N application until GS 31 caused a significant yield reduction in 2011, in comparison to GS 30 application, but not in 2012. Differences in efficiency of recovery and use of fertilizer N by the crop among the first three application timings were small. There was no evidence to support alteration in the timing of the first application of N in response to low plant density. Slurry application did not influence SNS, so the interaction between SNS and fertilizer N application timing could not be determined. It is concluded that in order to maximise yield and NUE, the first N application should be applied to winter wheat between late tillering and GS 30 and that delaying the first N until GS 31 can lead to yield reductions compared to the yield obtained with earlier application.

  12. Quantitative trait loci for yield and grain plumpness relative to maturity in three populations of barley (Hordeum vulgare L. grown in a low rain-fall environment.

    Bulti Tesso Obsa

    Full Text Available Identifying yield and grain plumpness QTL that are independent of developmental variation or phenology is of paramount importance for developing widely adapted and stable varieties through the application of marker assisted selection. The current study was designed to dissect the genetic basis of yield performance and grain plumpness in southern Australia using three doubled haploid (DH populations developed from crosses between adapted parents that are similar in maturity and overall plant development. Three interconnected genetic populations, Commander x Fleet (CF, Commander x WI4304 (CW, and Fleet x WI4304 (FW developed from crossing of Australian elite barley genotypes, were used to map QTL controlling yield and grain plumpness. QTL for grain plumpness and yield were analysed using genetic linkage maps made of genotyping-by-sequencing markers and major phenology genes, and field trials at three drought prone environments for two growing seasons. Seventeen QTL were detected for grain plumpness. Eighteen yield QTL explaining from 1.2% to 25.0% of the phenotypic variation were found across populations and environments. Significant QTL x environment interaction was observed for all grain plumpness and yield QTL, except QPlum.FW-4H.1 and QYld.FW-2H.1. Unlike previous yield QTL studies in barley, none of the major developmental genes, including Ppd-H1, Vrn-H1, Vrn-H2 and Vrn-H3, that drive barley adaption significantly affected grain plumpness and yield here. Twenty-two QTL controlled yield or grain plumpness independently of known maturity QTL or genes. Adjustment for maturity effects through co-variance analysis had no major effect on these yield QTL indicating that they control yield per se.

  13. Factors Affecting Nitrogen Use Efficiency and Grain Yield of Summer Maize on Smallholder Farms in the North China Plain

    Guangfeng Chen

    2018-01-01

    Full Text Available The summer maize yields and partial factor productivity of nitrogen (N fertilizer (PFPN, grain yield per unit N fertilizer on smallholder farms in China are low, and differ between farms due to complex, sub-optimal management practices. We collected data on management practices and yields from smallholder farms in three major summer maize-producing sites—Laoling, Quzhou and Xushui—in the North China Plain (NCP for two growing seasons, during 2015–2016. Boundary line analysis and a Proc Mixed Model were used to evaluate the contribution of individual factors and their interactions. Summer maize grain yields and PFPN ranged from 6.6 t ha−1 to 14.2 t ha−1 and 15.4 kg kg−1 to 96.1 kg kg−1, respectively, and averaged 10.5 t ha−1 and 49.1 kg kg−1, respectively. The mean total yield gap and PFPN gap were 3.6 t ha−1 and 43.3 kg kg−1 in Laoling, 2.2 t ha−1 and 24.5 kg kg−1 in Xushui, and 2.8 t ha−1 and 41.1 kg kg−1 in Quzhou. A positive correlation was observed between the yield gap and PFPN gap; the PFPN gap could be reduced by 6.0 kg kg−1 (3.6–6.6 kg kg−1 by reducing the yield gap by 1 t ha−1. The high yield and high PFPN (HH fields had a higher plant density and lower N fertilization rate than the low yield and low PFPN (LL fields. Our results show that multiple management factors caused the yield gap, but the relative contribution of plant density is slightly higher than that of other management practices, such as N input, the sowing date, and potassium fertilizer input. The low PFPN was mainly attributed to an over-application of N fertilizer. To enhance the sustainable production of summer maize, the production gaps should be tackled through programs that guide smallholder farmers on the adoption of optimal management practices.

  14. Combining Ability and Heterosis for Grain Yield and its Component Traits in Rice(Oryza sativa L.

    Srikrishna LATHA

    2013-02-01

    Full Text Available The nature and magnitude of heterosis and combining ability was studied in 18 F1 hybrids involving three CMS lines and six testers using line × tester analysis. The analysis of variance for combining ability of all the traits showed that variances due to treatments, parents, hybrids were highly significant. The line ‘CRMS 32A’ and testers viz. ‘Super rice-8’, ‘R 1099-2569-1-1’ and ‘Jitpiti’ were identified as good general combiners. The significant differences between lines x testers interaction indicates that SCA attributed heavily in the expression of these traits and demonstrates the importance of dominance or non additive variances for all the traits. The hybrid ‘CRMS 32A’/‘R 1099-2569-1-1’ and ‘APMS 6A’/‘Super rice-8’ were promising for grain yield. The magnitude of relative heterosis, heterobeltiosis and standard heterosis were also estimated for different characters. A high degree of relative heterosis was observed for grain yield (20.45- 82.37% in the hybrids viz., ‘CRMS 32A’/‘Super rice-8’, ‘APMS 6A’/‘Super rice-8’, ‘APMS 6A’/‘Jitpiti’ and ‘CRMS 32A’/‘R 1099-2569-1-1’. While, a higher degree of: heterobeltiosis (13.60 -68.37% was observed for grain yield in the hybrids viz., ‘CRMS 32A’/‘Super rice-8’, ‘CRMS 32A’/‘R 1099-2569-1-1’, ‘APMS 6A’/’Super rice-8’ and ‘APMS 6A’/’Jitpiti’. A high degree of standard heterosis was observed for grain yield in the hybrid ‘CRMS 32A’/‘R 1099-2569-1-1’. The hybrid ‘CRMS 32A’/ ‘R 1099-2569-1-1’ recorded a high degree of relative heterosis (62.01%, heterobeltiosis (57.35% and standard heterosis (15.05 and 25.51% over check hybrids, ‘Mahamaya’ and ‘Indirasona’, respectively that can be tested on yield trials for its further testing over locations.

  15. The effects of different nitrogen doses on yield, quality and leaf ...

    Nitrogen deficiency is a worldwide problem, causing restrictions in productivity of many horticultural produces. Particularly, the issue is compounded when the greenhouse production is employed. Therefore, reliable knowledge on proper application of nitrogen ensures not only satisfactory yield but also balanced vegetative ...

  16. Accounting for the decrease of photosystem photochemical efficiency with increasing irradiance to estimate quantum yield of leaf photosynthesis.

    Yin, Xinyou; Belay, Daniel W; van der Putten, Peter E L; Struik, Paul C

    2014-12-01

    Maximum quantum yield for leaf CO2 assimilation under limiting light conditions (Φ CO2LL) is commonly estimated as the slope of the linear regression of net photosynthetic rate against absorbed irradiance over a range of low-irradiance conditions. Methodological errors associated with this estimation have often been attributed either to light absorptance by non-photosynthetic pigments or to some data points being beyond the linear range of the irradiance response, both causing an underestimation of Φ CO2LL. We demonstrate here that a decrease in photosystem (PS) photochemical efficiency with increasing irradiance, even at very low levels, is another source of error that causes a systematic underestimation of Φ CO2LL. A model method accounting for this error was developed, and was used to estimate Φ CO2LL from simultaneous measurements of gas exchange and chlorophyll fluorescence on leaves using various combinations of species, CO2, O2, or leaf temperature levels. The conventional linear regression method under-estimated Φ CO2LL by ca. 10-15%. Differences in the estimated Φ CO2LL among measurement conditions were generally accounted for by different levels of photorespiration as described by the Farquhar-von Caemmerer-Berry model. However, our data revealed that the temperature dependence of PSII photochemical efficiency under low light was an additional factor that should be accounted for in the model.

  17. Effect of sowing date and plant density on grain and flower yield of Pot Marigold (Calendula officinalis L.

    mohamad javad seghatol eslami

    2009-06-01

    Full Text Available Pot marigold (Calendula officinalis L. is a medicinal herb whose dried flower heads are used to heal wounds. In order to study the effects of sowing dates and plant density on grain and flower yield of pot marigold, an experiment was conducted at Agricultural Research Center of Islamic Azad University, Birjand Branch in 2005. Three sowing dates (30 March, 14 April and 30 April and three plant densities (plant distances on row were 10, 20 and 30 centimeters were compared in a split- plot experiment based on a randomized complete block design with 3 replications. Seed and flower yields were significantly different at planting dates and plant densities. Sowing date had significant effects on flower and seed harvest index. The latest sowing dates had the highest flower and seed harvest index. Plant density had not significant effect on flower harvest index, but the effect on seed harvest index, was significant. In total our result showed that the first sowing date with 25 plants/m2 had the highest grain and flower yield. Keywords: Marigold, sowing date, plant density, medicinal plant.

  18. GRAIN YIELD AND PROFITABILITY IN CORN AS A FUNCTION OF GENOTYPE, BIOFERTILIZER AND NITROGEN, UNDER WARM CLIMATE

    Cid Aguilar

    2015-08-01

    Full Text Available Corn growth and production depend of the environmental conditions in which it grows and the nitrogen fertilizer that is crucial to increase grain yield. The use of bacteria for nitrogen fixation and mycorrhiza as a complement to the inorganic fertilizer, can be an option to increase yields, reduce production costs and conserve the environment. As an alternative to this problem, the objective of the present study was to determine the production of dry matter (DM, harvest index, grain yield (GY, and its components, and profitability in the genotypes of maize race "Vandeño", synthetic variety VS-535 and hybrids H-562 and H-7573, with and without biofertilizer and 0, 80 and 160 kg N ha-1. The study was conducted in Iguala, Gro. in early sown under irrigation, phenological stages were recorded. Assessments were evaluated at harvest. For the region of study and time of sowing, only differences between cultivars were observed. The differences observed were genotypical, by effect of biofertilizer and nitrogen in the production of DM and GY. The higher DM and GY were achieved with the combination of H-562, biofertilizer and 160 kg N ha-1 (3000 and 924 g m-2, respectively and the lower treatment correspond to H-562, without biofertilizer and nitrogen (1703 and 376 g m-2, respectively. The higher net income was achieved with H-562 and 160 kg N ha-1 regardless of the use of biofertilizer.

  19. Effects Of Spring Herbicide Treatments On Winter Wheat Growth And Grain Yield*

    Hamouz P.

    2015-03-01

    Full Text Available Herbicides provide a low-cost solution for protecting crops from significant yield losses. If weed infestations are below damage thresholds, however, then herbicide application is unnecessary and can even lead to yield loss. A small-plot field trial was conducted to examine the effect of herbicides on winter wheat yields. Weeds were removed manually from the trial area before herbicide application. Twenty-four treatments were tested in four replications. Treatment 1 consisted of an untreated weed-free control, whereas the other treatments comprised applications of the following herbicides and their combinations: metsulfuron-methyl + tribenuron-methyl (4.95 + 9.99 g ha−1, pinoxaden (30 g ha−1, fluroxypyr (175 g ha−1, and clopyralid (120 g ha−1. Water (250 l ha−1 or a urea-ammonium nitrate fertilizer solution (UAN, 120.5 l ha−1 was used as the herbicide carrier. Crop injury 30 days after treatment and yield loss were recorded. Results showed minor crop injury by herbicides and their combinations when applied without UAN and moderate injury caused by UAN in combination with herbicides. Yield losses reached 5.3% and 4.3% in those treatments where all of the tested herbicides were applied with and without UAN, respectively. The effect of all treatments on crop yield was, however, statistically insignificant (P = 0.934.

  20. Nitrogen Fertilization for Optimizing the Quality and Yield of Shade Grown Cuban Cigar Tobacco: Required Nitrogen Amounts, Application Schedules, Adequate Leaf Nitrogen Levels, and Early Season Diagnostic Tests

    Borges A

    2014-12-01

    Full Text Available Nitrogen (N fertilizers have a decisive influence on the yield and quality of tobacco. Yield, percentage of plant N, wrapper leaf quality, and nicotine content are all important quality characteristics in tobacco growing. This work is an attempt to provide a tool for optimizing mineral N nutrition for Cuban cigar tobacco, using a strategy that links N supply with leaf N concentration and wrapper yield. Similar approaches developed worldwide have mainly involved Virginia and Burley tobacco types but not Cuban cigar tobacco. The objective of the current work is to identify the effects of fertilizer N levels and timing of application on each of the mentioned quality factors for shade grown Cuban cigar tobacco. Another purpose is to explore the usefulness of a quick method of assessing the N status of plants based on measuring leaf transmission at two different wavelengths (650 and 940 nm. The experiments were done in the main tobacco growing area of Cuba (Vueltabajo. In each experiment, nine separate treatments were used covering different levels and times of fertilizer N application. The same experiment was carried out in three different years (2005-2006, 2006-2007, 2007-2008 but as the results were similar only one set of data is described (2006-2007. The patterns of response to N fertilizer of all four quality measurements, including yield and wrapper leaf quality, were similar in the different replications of the experiments. The optimal fertilizer level was 140-190 kg N/ha (40% applied on days 8-10 after transplanting and 60% on days 18-20 after transplanting. The optimal N concentration of leaves taken at the central foliar level of the middle stalk position was 4.3-4.7% at harvest time. Leaf transmission measurements by means of the SPAD-502 Chlorophyll Meter in the early stages of growth were correlated with leaf chlorophyll and N concentration and provide an excellent guide for predicting Cuban cigar tobacco wrapper leaf yield.

  1. Grain yield and competitive ability against weeds in modern and heritage common wheat cultivars are differently influenced by sowing density

    Mariateresa Lazzaro

    2017-12-01

    Full Text Available Sowing density can have a strong impact on crop stand development during wheat growing cycle. In organic and low-input agriculture, and therefore with minimum or nil use of chemical herbicides, increased sowing density is expected to affect not only grain yield but also weed suppression. In this study we tested, under Mediterranean conditions, six common wheat cultivars (three modern and three heritage and two three-component mixtures (arranged by combining the three modern or the three heritage cultivars. The different crop stands were tested at sowing densities of 250 (low and 400 (high, similar to standard sowing density used by local farmers viable seeds m–2 for two growing seasons. We did not detect a significant effect of crop stand diversity (single cultivars vs mixtures on grain yield and weed suppression. Differences were ascribed to type of cultivars used (heritage vs modern. Compared to high sowing density, in modern cultivars grain yield did not decrease significantly with low sowing density, whereas in heritage cultivars it increased by 15.6%, possibly also because of 21.5% lower plant lodging. Weed biomass increased with low sowing density both in heritage and modern cultivar crop stand types. However, heritage crop stands had, on average, a lower weed biomass (56% than modern crop stands. Moreover, weed biomass in heritage crop stands at low density (6.82±1.50 g m–2 was lower than that of modern cultivars at the same sowing density (15.54±3.35 g m–2, confirming the higher suppressive potential of the former. We can conclude that lower sowing density can be advisable when using heritage crop stands as it keeps productivity while decreasing plant lodging and maintaining weeds under control.

  2. Copy Number Variation of Cytokinin Oxidase Gene Tackx4 Associated with Grain Weight and Chlorophyll Content of Flag Leaf in Common Wheat.

    Chang, Cheng; Lu, Jie; Zhang, Hai-Ping; Ma, Chuan-Xi; Sun, Genlou

    2015-01-01

    As the main pigment in photosynthesis, chlorophyll significantly affects grain filling and grain weight of crop. Cytokinin (CTK) can effectively increase chlorophyll content and chloroplast stability, but it is irreversibly inactivated by cytokinin oxidase (CKX). In this study, therefore, twenty-four pairs of primers were designed to identify variations of wheat CKX (Tackx) genes associated with flag leaf chlorophyll content after anthesis, as well as grain weight in 169 recombinant inbred lines (RIL) derived from Triticum aestivum Jing 411 × Hongmangchun 21. Results indicated variation of Tackx4, identified by primer pair T19-20, was proven to significantly associate with chlorophyll content and grain weight in the RIL population. Here, two Tackx4 patterns were identified: one with two co-segregated fragments (Tackx4-1/Tackx4-2) containing 618 bp and 620 bp in size (as in Jing 411), and another with no PCR product. The two genotypes were designated as genotype-A and genotype-B, respectively. Grain weight and leaf chlorophyll content at 5~15 days after anthesis (DAA) were significantly higher in genotype-A lines than those in genotype-B lines. Mapping analysis indicated Tackx4 was closely linked to Xwmc169 on chromosome 3AL, as well as co-segregated with a major quantitative trait locus (QTL) for both grain weight and chlorophyll content of flag leaf at 5~15 DAA. This QTL explained 8.9~22.3% phenotypic variations of the two traits across four cropping seasons. Among 102 wheat varieties, a third genotype of Tackx4 was found and designated as genotype-C, also having two co-segregated fragments, Tackx4-2 and Tackx4-3 (615bp). The sequences of three fragments, Tackx4-1, Tackx4-2, and Tackx4-3, showed high identity (>98%). Therefore, these fragments could be considered as different copies at Tackx4 locus on chromosome 3AL. The effect of copy number variation (CNV) of Tackx4 was further validated. In general, genotype-A contains both significantly higher grain weight

  3. Leaf application of silicic acid to upland rice and corn

    Carlos Alexandre Costa Crusciol

    2013-12-01

    Full Text Available This study aimed to evaluate the effect of Si (stabilized silicic acid, Silamol® leaf application on mineral nutrition and yield in upland rice and corn crops. The treatments were the control (without Si and Si foliar split spraying using 2 L ha-1 of the Silamol® commercial product, with 0.8% soluble Si as concentrated stabilized silicic acid. Silicon leaf application increased the concentrations of K, Ca and Si in rice and corn leaves, the number of panicles per m2 of rice and the number of grains per ear of corn; accordingly, the Si leaf application provided a higher grain yield in both crops.

  4. Effect of Water Stress and Sulfur Fertilizer on Grain Yield, Chlorophyll and Nutrient Status of Black Cumin (Nigella Sativa L.)

    M. Heidari; A. R. Rezapor

    2011-01-01

    In order to study the effects of water stress and different amounts of sulfur fertilizer on grain yield, nutrient status and chlorophyll content in black cumin (Nigella sativa L.) a field experiment as split plot design with three replications was conducted at Ghaen city in 2009. Treatments included three levels of irrigation after 50, 100 and 150 mm evaporation from Class A pan as main plot and four levels of sulfur fertilizer including 0, 75, 150 and 225 kg/ha from bentonite-sulfur source a...

  5. TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield.

    Ma, Lin; Li, Tian; Hao, Chenyang; Wang, Yuquan; Chen, Xinhong; Zhang, Xueyong

    2016-05-01

    Grain size is a dominant component of grain weight in cereals. Earlier studies have shown that OsGS5 plays a major role in regulating both grain size and weight in rice via promotion of cell division. In this study, we isolated TaGS5 homoeologues in wheat and mapped them on chromosomes 3A, 3B and 3D. Temporal and spatial expression analysis showed that TaGS5 homoeologues were preferentially expressed in young spikes and developing grains. Two alleles of TaGS5-3A, TaGS5-3A-T and TaGS5-3A-G were identified in wheat accessions, and a functional marker was developed to discriminate them. Association analysis revealed that TaGS5-3A-T was significantly correlated with larger grain size and higher thousand kernel weight. Biochemical assays showed that TaGS5-3A-T possesses a higher enzymatic activity than TaGS5-3A-G. Transgenic rice lines overexpressing TaGS5-3A-T also exhibited larger grain size and higher thousand kernel weight than TaGS5-3A-G lines, and the transcript levels of cell cycle-related genes in TaGS5-3A-T lines were higher than those in TaGS5-3A-G lines. Furthermore, systematic evolution analysis in diploid, tetraploid and hexaploid wheat showed that TaGS5-3A underwent strong artificial selection during wheat polyploidization events and the frequency changes of two alleles demonstrated that TaGS5-3A-T was favoured in global modern wheat cultivars. These results suggest that TaGS5-3A is a positive regulator of grain size and its favoured allele TaGS5-3A-T exhibits a larger potential application in wheat high-yield breeding. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Environment effects for earliness and grain yield traits in F1 diallel populations of maize (Zea mays L.).

    Ali, Sardar; Khan, Naqib Ullah; Khalil, Iftikhar Hussain; Iqbal, Muhammad; Gul, Samrin; Ahmed, Sheraz; Ali, Naushad; Sajjad, Mohammad; Afridi, Khilwat; Ali, Imtiaz; Khan, Shah Masaud

    2017-10-01

    Five maize inbred lines, 20 F 1 diallel hybrids and two check genotypes were evaluated through genotype × environment interaction (GEI) and GGE biplot for earliness and yield traits at four locations. Genotype, environment and GEI showed highly significant differences for all the traits. In total sum of squares, environment and genotype played a primary role, followed by GEI. Larger effects of environment and genotype to total variation influence the earliness and yield traits. However, according to the GGE biplot, the first two principal components (PC1 and PC2) explained 95% of the variation caused by GEI. GGE biplot confirmed the differential response of genotypes across environments. F 1 hybrid SWAJK-1 × FRHW-3 had better stability, with a good yield, and was considered an ideal genotype. F 1 hybrid FRHW-2 × FRHW-1 showed more earliness at CCRI and Haripur, followed by PSEV3 × FRHW-2 and its reciprocal at Swat and Mansehra, respectively. F 1 hybrids FRHW-1 × SWAJK-1, PSEV3 × SWAJK-1 and SWAJK-1 × FRHW-3 at Mansehra and Swat produced maximum grain yield, followed by SWAJK-1 × FRHW-1 and PSEV3 × FRHW-1 at Haripur and CCRI, respectively. Overall, maize genotypes showed early maturity in plain areas (CCRI and Haripur) but higher yield in hilly areas (Mansehra and Swat). © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Evolution of Grain Yield and its Components Relationships in Bread Wheat Genotypes under Full Irrigation and Terminal Water Stress Conditions Using Multivariate Statistical Analysis

    S Mohammadi

    2014-07-01

    Full Text Available To study relationships between effective traits on wheat grain yield, the varieties Zarrin and Alvand, and some promising lines i.e. C-81-4, C-81-10, C-81-14 and C-82-12 were investigated at three sowing dates including 10 October, 1 November and 21 November. The experiment was carried out using strip plot in RCBD with three replications under two different water conditions including full-irrigation and terminal water stress at Miyandoab Agricultural Research Station in 2005-06 and 2006-07 cropping seasons. The results showed that under both full irrigation and terminal water stress conditions, grain yield had positive and significant correlation with days to heading, days to maturity, plant height, number of spikes/m2 and 1000 grain weight. Stepwise regression analysis revealed that 83 percent of yield variation under non-stressed conditions could be determined by days to maturity and number of spikes/m2 (R2 = 83% whereas these traits explained 87% of yield variation under stress conditions (R2= 87%. Path analysis indicated that number of spikes/m2 and days to maturity had the greatest positive direct and indirect effect on grain yield, under both conditions. The results of factor analysis under non-stressed condition showed that three factors explained 77% of total variation; these factors were called grain yield components, grain characteristics and plant phonology. Under non-stressed condition two factors (that were called grain yield and phenology, and plant morphology explained 88% of total variation. Cluster analysis through ward method, classified days to maturity and number of spikes/m2 in the same cluster where the grain yield was put under both conditions. It was concluded that under different sowing dates, selection based on days to maturity and number spikes/m2 could indirectly led to higher yield under both normal and water stress conditions.

  8. Effects of Organic and Chemical Fertilizers on Leaf Yield, Essential Oil Content and Composition of Lemon Verbena (Lippia citriodora Kunth

    Mohammad Taghi Ebadi

    2017-02-01

    Full Text Available Introduction: Organic fertilizers with beneficial effects on soil structure and nutrient availability help maintain yield and quality, and they are less costly than synthetic fertilizers. Vermicompost and vermiwash are two organic fertilizers that they contain a biologically active mixture of bacteria, enzymes and phytohormones, also these organic fertilizers can supply the nutritional needs of plants. Lemon verbena (Lippia citriodora Kunth, Verbenaceae is an evergreen perennial aromatic plant. The lemon-scented essential oil from the lemon verbena has been widely used for its digestive, relaxing, antimalarial and lemony flavor properties. In order to decrease the use of chemical fertilizers for reduction of environmental pollution, this research was undertaken to determine effects of vermicompost and vermiwash in comparison with chemical fertilizer on leaf yield, essential oil content and composition of lemon verbena. Materials and Methods: A pot experiment based on a completely randomized design with six treatments and three replications on Lemon verbena was carried out in the experimental greenhouse of the Department of Horticulture Sciences, Tarbiat Modares University, 2012. Treatments consisted of 10, 20 and 30 % by volume of vermicompost and vermiwash (with an addition to irrigation in three steps, including: two weeks after the establishment of plants in pots, the appearing of branches and three weeks before harvest, complete fertilizer and control without any fertilizer. Each replication contained six pots and each pot contained one plant of Lemon verbena provided from Institute of Medicinal Plants, Karaj, therefore 108 pots were used in this experiment. The pots were filled up by a mixture contained 3/5 soil and 2/5 sand (v/v. After three months, plant aerial parts were harvested concomitantly at starting of the flowering stage. Aerial parts were dried at room temperature for 72 hours and dry weights of dried branches and leaves were

  9. Impacts of irrigation and genotype on yield, protein, starch and oil contents in grain of maize inbred lines

    Josipovic Marko

    2014-01-01

    Full Text Available Four inbred lines of maize (Os 438-95 = C1, Os 30-8 = C2, Os 6 = C3 and Os 1-44 =C4 were grown for 4-year period (2006-2009 in the stationary field experiment on Osijek eutric cambisol. Impact of irrigation, nitrogen fertilization and genotype were tested. Soil moisture was maintained by two irrigation rates from 60-100% and 80-100% of the field water capacity. Two steps of N (0, 100 and 200 kg N ha-1 were applied, while P and K fertilization was equal (500 kg/ha NPK 0:30:20. Eight maize genotypes (four inbred lines and four hybrids were grown on each basic plot of fertilization. The experiment was duplicated for maize - soybean rotation. The experiment was set by split-split plot method according to randomized block design in three replicates. The basic plot areas were 617.2 m2 (irrigation, 313.6 m2 (fertilization and 39.2 m2 (genotype. Selection of N non-fertilized treatment and four inbred lines were made for this study with aim of testing year (A irrigation (B and genotype (C effects under natural N-soil conditions. Average grain yield in level 1809 kg ha-1without N fertilization is indication of very high fertility of the soil. Differences of yield among the years were from 823 (2007 to 2450 (2006 kg ha-1. Excessive drought and high air-temperature stress is responsible for the low maize yield in 2007. Irrigation considerable affected on maize yields (4-year averages: 1500, 1809 and 2118 kg ha-1, for B1, B2 and B3, respectively. Differences of the 4-year average yields among the genotypes were from 1259 (C3 to 2765 (C1 kg ha-1. Differences of yield among the genotypes in the different years were also considerable because the lowest yield was for 71% (A1, 23% (A2, 63% (A3 and 40% (A4 lower in comparison to the highest yield. The genotype effects under different water supplies were less influencing factor because the high-yielding C1 had for 128%, 129% and 106% the higher yield compared to the low-yielding C3, for B1, B2 and B3, respectively

  10. Radiation and nitrogen use at the leaf and canopy level by wheat and oilseed rape during the critical period for grain number definition

    Dreccer, M.F.; Schapendonk, H.C.M.; Oijen, M. van; Pot, C.S.; Rabbinge, R.

    2000-01-01

    During the critical period for grain number definition, the amount of biomass produced per unit absorbed radiation is more sensitive to nitrogen (N) supply in oilseed rape than in wheat, and reaches a higher value at high N. This response was investigated by combining experimental and modelling work. Oilseed rape and wheat were grown at three levels of N supply, combined with two levels of plant density at high N supply. Canopy photosynthesis and daytime radiation use efficiency (RUE A ) were calculated with a model based on observed N-dependent leaf photosynthesis and observed canopy vertical distribution of light and leaf N. In oilseed rape, RUE A was higher than in wheat and, in contrast to wheat, the sensitivity to canopy leaf N content increased from the start to the end of the critical period. These results were partly explained by the higher leaf photosynthesis in oilseed rape vs wheat. In addition, oilseed rape leaves were increasingly shaded by the inflorescence. Thus, RUE A increased because more leaves were operating at non-saturating light levels. In both species, the vertical distribution of leaf N was close to that optimising canopy photosynthesis. The results are discussed in relation to possibilities for improvement of N productivity in these crops. (author)

  11. Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea-barley intercrops

    Jensen, E.S.

    1996-01-01

    g N-15-labeled N m(-2). The effect of intercropping on the dry matter and N yields, competition for inorganic N among the intercrop components, symbiotic fixation in pea and N transfer from pea to barley were determined. As an average of four years the grain yields were similar in monocropped pea...... only 9% of total fertilizer-N recovery in the intercrop. The amount of symbiotic N-2 fixation in the intercrop was less than expected from its composition and the fixation in monocrop. This indicates that the competition from barley had a negative effect on the fixation, perhaps via shading...... by the intercrop components, resulting in reduced competition for inorganic N, rather than a facilitative effect, in which symbiotically fixed N-2 is made available to barley....

  12. 103-110 Grain Yield and Economic Benefit of Intercropping Barley ...

    toshiba

    faba bean are important crops in the southern highlands of Ethiopia. However, rapid population .... faba bean and food barley on the productivity of the crops. Therefore ..... that the yields of cereals and vetch was reduced by about 40 and 20%, ...

  13. Pb and Cd on growth, leaf ultrastructure and essential oil yield mint (Mentha arvensis L.

    Caroline Nery Jezler

    2015-03-01

    Full Text Available Contamination of medicinal plants with heavy metals as Pb and Cd can affect the growth and the essential oil production of the plants and represent a risk to those who consume as medicine. This study aimed to evaluate the effects of absorption and localization of Pb and Cd on growth, ultrastructural aspects of leaves and essential oil yield and composition of Mentha arvensis, applied on the soil with increasing concentrations (8, 16, 32, 64 and 128mg kg-1. There was a differential absorption of Pb and Cd by M. arvensis mainly concentrated in the roots. Pb was found in small amounts in the leaves while Cd largely exceeded the safety limit without symptoms of toxicity. The ultrastructural analysis revealed the metal accumulation on vesicles surrounding the mitochondria and the presence of electron dense deposits surrounding the mitochondria, nucleus and chloroplasts. Little changes caused by Pb and Cd application were not enough to affect the growth and essential oil yield and composition of M. arvensis

  14. Acclimation to higher VPD and temperature minimized negative effects on assimilation and grain yield of wheat

    Rashid, Muhammad Adil; Andersen, Mathias Neumann; Wollenweber, Bernd

    2018-01-01

    Adapting to climate change and minimizing its negative impact on crop production requires detailed understanding of the direct and indirect effects of different climate variables (i.e. temperature, VPD). We investigated the direct (via heat stress) and indirect effects (through increased VPD....... Treatments included hot humid (HH: 36° C; 1.96 kPa VPD), hot dry (HD: 36° C; 3.92 kPa VPD) and normal (NC: 24° C; 1.49 kPa VPD). Difference between HH and HD was considered as the indirect effect of temperature through increased VPD. HD increased transpiration by 2–22% and decreased photosynthetic water......-use efficiency (WUEp) by 24–64% over HH during stress but whole-plant WUE at final harvest was not affected. HD reduced grainfilling duration (3 days), resulted in relatively lower green leaf area (GLA) after the stress and showed a tendency of lower net assimilation rate during the stress compared to HH...

  15. Effects of Texture and Grain Size on the Yield Strength of ZK61 Alloy Rods Processed by Cyclic Extrusion and Compression.

    Zhang, Lixin; Zhang, Wencong; Cao, Biao; Chen, Wenzhen; Duan, Junpeng; Cui, Guorong

    2017-10-26

    The ZK61 alloy rods with different grain sizes and crystallographic texture were successfully fabricated by cyclic extrusion and compression (CEC). Their room-temperature tension & compression yield strength displayed a significant dependence on grain size and texture, essentially attributed to {10-12} twinning. The texture variations were characterized by the angle θ between the c-axis of the grain and the extrusion direction (ED) during the process. The contour map of room-temperature yield strength as a function of grain size and the angle θ was obtained. It showed that both the tension yield strength and the compression yield strength of ZK61 alloy were fully consistent with the Hall-Patch relationship at a certain texture, but the change trends of the tension yield strength and the compression yield strength were completely opposite at the same grain size while texture altered. The friction stresses of different deformation modes calculated based on the texture confirmed the tension yield strength of the CECed ZK61 alloy rods, which was determined by both the basal slip and the tension twinning slip during the tension deformation at room temperature, while the compression yield strength was mainly determined by the basal slip during the compression deformation.

  16. Grain yield and crop N offtake in response to residual fertilizer N in long-term field experiments

    Petersen, Jens; Thomsen, Ingrid Kaag; Mattsson, L.

    2010-01-01

    in four long-term (>35 yr) field experiments, we measured the response of barley (grain yield and N offtake at crop maturity) to six rates (0, 30, 60, 90, 120 and 150 kg N/ha) of mineral fertilizer N (Nnew) applied in subplots replacing the customary long-term plot treatments of fertilizer inputs (Nprev......). Rates of Nprev above 50-100 kg N/ha had no consistent effect on the soil N content, but this was up to 20% greater than that in unfertilized treatments. Long-term unfertilized plots should not be used as control to test the residual value of N in modern agriculture with large production potentials....... Although the effect of mineral Nprev on grain yield and N offtake could be substituted by Nnew within a range of previous inputs, the value of Nprev was not eliminated irrespective of Nnew rate. Provided a sufficient supply of plant nutrients other than N, the use-efficiency of Nnew did not change...

  17. Mining centuries old in-situ conserved Turkish wheat landraces for grain yield and stripe rust resistance genes

    Deepmala Sehgal

    2016-11-01

    Full Text Available Wheat landraces in Turkey are an important genetic resource for wheat improvement. An exhaustive five-year (2009-2014 effort made by the International Winter Wheat Improvement Programme (IWWIP a cooperative program between the Ministry of Food, Agriculture and Livestock of Turkey, the International Center for Maize and Wheat Improvement (CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA, led to the collection and documentation of around 2,000 landrace populations from 55 provinces throughout Turkey. This study reports the genetic characterization of a subset of bread wheat landraces collected in 2010 from 11 diverse provinces using genotyping-by-sequencing (GBS technology. The potential of this collection to identify loci determining grain yield and stripe rust resistance via genome-wide association (GWA analysis was explored. A high genetic diversity (diversity index = 0.260 and a moderate population structure based on highly inherited spike traits was revealed in the panel. The linkage disequilibrium decayed at 10 cM across the whole genome and was slower as compared to other landrace collections. In addition to previously reported QTL, GWA analysis also identified new candidate genomic regions for stripe rust resistance, grain yield and spike productivity components. New candidate genomic regions reflect the potential of this landrace collection to further increase genetic diversity in elite germplasm.

  18. Characterisation of a novel quantitative trait locus, GN4-1, for grain number and yield in rice (Oryza sativa L.).

    Zhou, Yong; Tao, Yajun; Yuan, Yuan; Zhang, Yanzhou; Miao, Jun; Zhang, Ron; Yi, Chuandeng; Gong, Zhiyun; Yang, Zefeng; Liang, Guohua

    2018-03-01

    A novel QTL for grain number, GN4-1, was identified and fine-mapped to an ~ 190-kb region on the long arm of rice chromosome 4. Rice grain yield is primarily determined by three components: number of panicles per plant, grain number per panicle and grain weight. Among these traits, grain number per panicle is the major contributor to grain yield formation and is a crucial trait for yield improvement. In this study, we identified a major quantitative trait locus (QTL) responsible for rice grain number on chromosome 4, designated GN4-1 (a QTL for Grain Number on chromosome 4), using advanced segregating populations derived from the crosses between an elite indica cultivar 'Zhonghui 8006' (ZH8006) and a japonica rice 'Wuyunjing 8' (WYJ8). GN4-1 was delimited to an ~ 190-kb region on chromosome 4. The genetic effect of GN4-1 was estimated using a pair of near-isogenic lines. The GN4-1 gene from WYJ8 promoted accumulation of cytokinins in the inflorescence and increased grain number per panicle by ~ 17%. More importantly, introduction of the WYJ8 GN4-1 gene into ZH8006 increased grain yield by ~ 14.3 and ~ 11.5% in the experimental plots in 2014 and 2015, respectively. In addition, GN4-1 promoted thickening of the culm and may enhance resistance to lodging. These results demonstrate that GN4-1 is a potentially valuable gene for improvement of yield and lodging resistance in rice breeding.

  19. Interrelationship among some yield characters and the productivity of mutants of three grain legumes

    Rubaihayo, P.R.

    1976-01-01

    The effect of gamma-ray irradiation dosage and environmental conditions on yield component correlations was studied on food beans (Phaseolus vulgaris), white haricot beans (Phaseolus vulgaris) and soy beans (Glycine max L.). It was found that in general radiation dosage had no significant effects on these factors. Differences in the relationships in different generations were attributed to the environmental conditions under which the plants were grown during different generations. (author)

  20. Principal coordinate analysis of genotype × environment interaction for grain yield of bread wheat in the semi-arid regions

    Sabaghnia Naser

    2013-01-01

    Full Text Available Multi-environmental trials have significant main effects and significant multiplicative genotype × environment (GE interaction effect. Principal coordinate analysis (PCOA offers a more appropriate statistical analysis to deal with such situations, compared to traditional statistical methods. Eighteen bread wheat genotypes were grown in four semi-arid regions over three year seasons to study the GE interaction and yield stability and obtained data on grain yield were analyzed using PCOA. Combined analysis of variance indicated that all of the studied effects including the main effects of genotype and environments as well as the GE interaction were highly significant. According to grand means and total mean yield, test environments were grouped to two main groups as high mean yield (H and low mean yield (L. There were five H test environments and six L test environments which analyzed in the sequential cycles. For each cycle, both scatter point diagram and minimum spanning tree plot were drawn. The identified most stable genotypes with dynamic stability concept and based on the minimum spanning tree plots and centroid distances were G1 (3310.2 kg ha-1 and G5 (3065.6 kg ha-1, and therefore could be recommended for unfavorable or poor conditions. Also, genotypes G7 (3047.2 kg ha-1 and G16 (3132.3 kg ha-1 were located several times in the vertex positions of high cycles according to the principal coordinates analysis. The principal coordinates analysis provided useful and interesting ways of investigating GE interaction of barley genotypes. Finally, the results of principal coordinates analysis in general confirmed the breeding value of the genotypes, obtained on the basis of the yield stability evaluation.

  1. Influence of Crop Nutrition on Grain Yield, Seed Quality and Water Productivity under Two Rice Cultivation Systems

    Y.V. SINGH

    2013-03-01

    Full Text Available The system of rice intensification (SRI is reported to have advantages like lower seed requirement, less pest attack, shorter crop duration, higher water use efficiency and the ability to withstand higher degree of moisture stress than traditional method of rice cultivation. With this background, SRI was compared with traditional transplanting technique at Indian Agricultural Research Institute, New Delhi, India during two wet seasons (2009–2011. In the experiment laid out in a factorial randomized block design, two methods of rice cultivation [conventional transplanting (CT and SRI] and two rice varieties (Pusa Basmati 1 and Pusa 44 were used under seven crop nutrition treatments, viz. T1, 120 kg/hm2 N, 26.2 kg/hm2 P and 33 kg/hm2 K; T2, 20 t/hm2 farmyard manure (FYM; T3, 10 t/hm2 FYM + 60 kg/hm2 N; T4, 5 t/hm2 FYM + 90 kg/hm2 N; T5, 5 t/hm2 FYM + 60 kg/hm2 N + 1.5 kg/hm2 blue green algae (BGA; T6, 5 t/hm2 FYM + 60 kg/hm2 N + 1.0 t/hm2 Azolla, and T7, N0P0K0 (control, no NPK application to study the effect on seed quality, yield and water use. In SRI, soil was kept at saturated moisture condition throughout vegetative phase and thin layer of water (2–3 cm was maintained during the reproductive phase of rice, however, in CT, standing water was maintained in crop growing season. Results revealed that CT and SRI gave statistically at par grain yield but straw yield was significantly higher in CT as compared to SRI. Seed quality was superior in SRI as compared to CT. Integrated nutrient management (INM resulted in higher plant height with longer leaves than chemical fertilizer alone in both the rice varieties. Grain yield attributes such as number of effective tillers per hill, panicle length and panicle weight of rice in both the varieties were significantly higher in INM as compared to chemical fertilizer alone. Grain yields of both the varieties were the highest in INM followed by the recommended doses of chemical fertilizer. The grain yield

  2. Toasting of cereal grains: effects on in vitro rumen gas production and VFA yield

    Seerp Tamminga

    2010-01-01

    Full Text Available The fermentation properties of the following feeds: pelleted barley (PB, toasted and pelleted barley (TPB, pelleted maize (PM and toasted and pelleted maize (TPM were studied using an in vitro gas production (GP technique. Each feed sample (0.5g was incubated (3 replications, with rumen fluid collected from 3 grazing lactating dairy cows. The kinetics of GP were automatically recorded for 72h. The amounts of DM disappeared (DMd and the volatile fatty acid yields (VFA were measured. On barley, compared to simple pelleting, toasting significantly (P<0.05 reduced DMd (87.5 vs. 86.2%, the asymptotic GP (A, 388 vs. 367ml/g DMd and slightly increased the time of maximum GP rate (TRmax, 2.89 vs. 3.15h. On maize toasting did not affect DMd and A, but significantly reduced T1/2 (9.71 vs. 8.57; P<0.05 and TRmax (5.04 vs. 4.49, P<0.05. Toasting significantly reduced the VFA yields both of barley and maize. These results, in agreement with previous in sacco and in vivo observations, suggest that toasting might reduce the amount of potential fermentable substrate of barley, whereas it might increase the rate of fermentation of maize.

  3. Effect of Sowing Date and Sulfur on Yield, Oil Content and Grain Nitrogen of Safflower (Carthamus tinctorius L. in Autumn Cultivation

    N Safara

    2016-12-01

    Full Text Available Introduction Nowadays oilseed crops are considered as the second most important sources of energy in the diet. In this regard, cultivation of oilseed crops such as safflower (Carthamus tinctorius L. is important due to quality of oil seed and medicinal properties. Different planting dates leads to adaptation of vegetative and reproductive growth of plant to temperature, day-length and various solar radiations and as a result affects plant’s development phase and yield. With delayed planting date , temperature and day length increases and development phase will accelerate. In this condition the crop yield will reduce due to crop growth and developmental period will shorten. Sulfur is an essential element for plant nutrition and its role is greater than Phosphorus. Using sulfur increases the heads per plant and grain yield. In order to investigate the effect of sulfur fertilizer under heat stress condition at the terminal growth stages and its role in reducing the negative effects of high temperature stress on safflower, this research was performed. Materials and Methods In order to study effect of planting date and sulfur manure on yield components, nitrogen and oil percent in safflower, a field experiment was carried out in a randomized complete blocks design with three replications in as split plot arrangement at Ramin Agriculture and Natural Resources University of Khuzestan during 2013-2014. The experimental treatments consisted of four planting dates of 30 November, 21 December, 22 January and 1st February were randomly placed in main plots and four levels of sulfur of 0, 200, 400 and 600 kg ha-1 performed randomly in subplots, Sulfur fertilizer was corporated to soil one week before each planting date. Harvest was performed from the mid-May to early-June, during physiological maturity. To measure the yield on maturity time after the removal of margins, Safflower plants were harvested from one m2 unit area. Nitrogen percent was determined

  4. QTL mapping of root traits in phosphorus-deficient soils reveals important genomic regions for improving NDVI and grain yield in barley.

    Gong, Xue; McDonald, Glenn

    2017-09-01

    Major QTLs for root rhizosheath size are not correlated with grain yield or yield response to phosphorus. Important QTLs were found to improve phosphorus efficiency. Root traits are important for phosphorus (P) acquisition, but they are often difficult to characterize and their breeding values are seldom assessed under field conditions. This has shed doubts on using seedling-based criteria of root traits to select and breed for P efficiency. Eight root traits were assessed under controlled conditions in a barley doubled-haploid population in soils differing in P levels. The population was also phenotyped for grain yield, normalized difference vegetation index (NDVI), grain P uptake and P utilization efficiency at maturity (PutE GY ) under field conditions. Several quantitative traits loci (QTLs) from the root screening and the field trials were co-incident. QTLs for root rhizosheath size and root diameter explained the highest phenotypic variation in comparison to QTLs for other root traits. Shared QTLs were found between root diameter and grain yield, and total root length and PutE GY . A common major QTL for rhizosheath size and NDVI was mapped to the HvMATE gene marker on chromosome 4H. Collocations between major QTLs for NDVI and grain yield were detected on chromosomes 6H and 7H. When results from BIP and MET were combined, QTLs detected for grain yield were also those QTLs found for NDVI. QTLs qGY5H, qGY6H and qGY7Hb on 7H were robust QTLs in improving P efficiency. A selection of multiple loci may be needed to optimize the breeding outcomes due to the QTL x Environment interaction. We suggest that rhizosheath size alone is not a reliable trait to predict P efficiency or grain yield.

  5. Application of Bokashi Botom Ash for Increasing Upland Rice Yield and Decreasing Grain Pb Content in Vitric Hapludans

    Nunung Sondari

    2012-05-01

    Full Text Available Greenhouse experiment was conducted at Agricultural Faculty of Winaya Mukti University Tanjungsari SumedangRegency, from May to October 2009. The objective of this experiment was to study the effect of bokashi bottom ashon the growth, yield, and Pb content of upland rice. The experiment used a Randomized completely Block Design(RBD which consisted of five treatments and five replications. The treatments were level of bokashi bottom ash i.e.0, 5, 10, 15, and 20 Mg ha-1. The results showed that the application of bokashi bottom ash increased the growth andyield of upland rice of Situbagendit variety except plant height at age of 21 days after seedling (DAS. Application15 Mg ha -1 of bokashi bottom ash gave the best effect to the plant height, number of leaves, number of tillers andshoot/root ratio, while applications of 10, 15 and 20 Mg ha -1 increased number of productive tillers, amount of filledgrains, and weight of grains. Bokashi bottom ash did not affect the heavy metal content of upland rice grain ofSitubagendit variety.

  6. Arbuscular Mycorrhizal Fungi Negatively Affect Nitrogen Acquisition and Grain Yield of Maize in a N Deficient Soil.

    Wang, Xin-Xin; Wang, Xiaojing; Sun, Yu; Cheng, Yang; Liu, Shitong; Chen, Xinping; Feng, Gu; Kuyper, Thomas W

    2018-01-01

    Arbuscular mycorrhizal fungi (AMF) play a crucial role in enhancing the acquisition of immobile nutrients, particularly phosphorus. However, because nitrogen (N) is more mobile in the soil solution and easier to access by plants roots, the role of AMF in enhancing N acquisition is regarded as less important for host plants. Because AMF have a substantial N demand, competition for N between AMF and plants particularly under low N condition is possible. Thus, it is necessary to know whether or not AMF affect N uptake of plants and thereby affect plant growth under field conditions. We conducted a 2-year field trial and pot experiments in a greenhouse by using benomyl to suppress colonization of maize roots by indigenous AMF at both low and high N application rates. Benomyl reduced mycorrhizal colonization of maize plants in all experiments. Benomyl-treated maize had a higher shoot N concentration and content and produced more grain under field conditions. Greenhouse pot experiments showed that benomyl also enhanced maize growth and N concentration and N content when the soil was not sterilized, but had no effect on maize biomass and N content when the soil was sterilized but a microbial wash added, providing evidence that increased plant performance is at least partly caused by direct effects of benomyl on AMF. We conclude that AMF can reduce N acquisition and thereby reduce grain yield of maize in N-limiting soils.

  7. Rendimento de grãos de trigo e sua relação com as doenças e variáveis climáticas em Capão Bonito de 1994 a 2001 Wheat grain yield and the relationship with diseases and climatic variations in Capão Bonito, in the period 1994 to 2001

    João Carlos Felicio

    2004-01-01

    Full Text Available A influência do ambiente no rendimento de grãos de genótipos de trigo e sua relação com as doenças causadas pelos fungos causadores da ferrugem-da-folha e das manchas foliares e suas relações com as variáveis climáticas foram avaliadas no período de 1994-2001, no município de Capão Bonito (SP, latitude 24º02' S, longitude 48º 22' W e altitude 702 m. A interação genótipos x anos foi altamente significativa revelando que diferenças climáticas anuais tiveram influência direta no rendimento de grãos. Em 1998, o rendimento médio de grãos foi o melhor do período e em 1994, o pior. Os genótipos IAPAR 60, IAC 60, IAC 120 e BR 18 apresentaram maior rendimento de grãos na média dos anos considerados. IAPAR 60 mostrou instabilidade no rendimento de grãos no período. Os genótipos Anahuac, IAC 120, IAC 356, IAC 342 e IAC 373 foram imunes às raças prevalentes do fungo causador da ferrugem-da-folha. Como as manchas foliares foram favorecidas pelas condições climáticas, sua ocorrência foi generalizada no período. As precipitações pluviais de maio foram as que melhor se correlacionaram com o desenvolvimento dessa doença.The environmental influence on grain yield and its relationship with leaf rust and leaf spots diseases was evaluated in the period 1994-2001, in Capão Bonito, State of São Paulo, Brazil, 24º02' S, 48º 22' W e altitude, 702 m. The genotype x year interaction was highly significant indicating that annual climatic differences have directly affected the grain yield. The averages of grain yield were the highest in 1998 and the lowest in 1994. The genotypes IAPAR 60, IAC 60, IAC 120 and BR 18 showed high grain yield means. IAPAR 60 did not present grain yield stability. The genotypes Anahuac, IAC 120, IAC 356, IAC 342 and IAC 373 are immune to the prevalent races of the fungus causing leaf rust. As the climatic conditions were favorable to the development leaf spot, its occurrence was generalized. Rainfall

  8. Nitrogen Fertilizer Deep Placement for Increased Grain Yield and Nitrogen Recovery Efficiency in Rice Grown in Subtropical China

    Meng Wu

    2017-07-01

    Full Text Available Field plot experiments were conducted over 3 years (from April 2014 to November 2016 in a double-rice (Oryza sativa L. cropping system in subtropical China to evaluate the effects of N fertilizer placement on grain yield and N recovery efficiency (NRE. Different N application methods included: no N application (CK; N broadcast application (NBP; N and NPK deep placement (NDP and NPKDP, respectively. Results showed that grain yield and apparent NRE significantly increased for NDP and NPKDP as compared to NBP. The main reason was that N deep placement (NDP increased the number of productive panicle per m-2. To further evaluate the increase, a pot experiment was conducted to understand the N supply in different soil layers in NDP during the whole rice growing stage and a 15N tracing technique was used in a field experiment to investigate the fate of urea-15N in the rice–soil system during rice growth and at maturity. The pot experiment indicated that NDP could maintain a higher N supply in deep soil layers than N broadcast for 52 days during rice growth. The 15N tracing study showed that NDP could maintain much higher fertilizer N in the 5–20 cm soil layer during rice growth and could induce plant to absorb more N from fertilizer and soil than NBP, which led to higher NRE. One important finding was that NDP and NPKDP significantly increased fertilizer NRE but did not lead to N declined in soil compared to NBP. Compared to NPK, NPKDP induced rice plants to absorb more fertilizer N rather than soil N.

  9. The effect of foliar feeding of potassium salts and urea in spinach on gas exchange, leaf yield and quality

    Edward Borowski

    2012-12-01

    Full Text Available In a pot experiment conducted in a phytotron, the effectiveness of foliar feeding of different potassium salts, with and without the addition of 0.5% CO(NH22, in spinach (Spinacia oleracea L. was investigated. Potassium was applied 3 times in the form of 1% solutions KCl, KNO3, K2SO4 and C6H5K3O7•H2O, compared to water as the control treatment. The obtained results show that foliar feeding of potassium salts in spinach is an efficient method of supplementing the level of K+ in plants during vegetation. Plants fed with KNO3 had the highest content of potassium in leaves, and those fertilized with K2SO4, C6H5K3O7 × H2O and KCl had an only slightly lower potassium content. The application of potassium salts resulted in more intensive gas exchange in leaves (stomatal conductance, photosynthesis, transpiration and, as a consequence of that, increased leaf yield. Potassium nitrate and citrate influenced most effectively the abovementioned processes. The treatment of spinach with potassium salts resulted in an increased content of protein, chlorophyll, carotenoids, nitrates and iron as well as a decreased content of vitamin C and calcium in leaves.

  10. Influence of pre-sowing irradiation of soya seeds with low doses of gamma rays on the yields of grain and on the content of crude protein in the grain

    Nikolov, Ch.V.

    1985-01-01

    Pre-sowing irradiation of air-dry soya seeds of the Hodson variety, calibrated in size and humidity (12%), with gamma rays in the range of relatively low intensities of irradiation of 0.27 to 5 Gy/min and doses of 10 to 20 Gy increases both the yield of grain and the content of crude protein in the grain in relation to the absolute dry matter. The dependence of radiostimulation effect on the factors of the environment cannot be reason for neglecting it as a posssible reserve for increasing the yield of grain from soya and the content of crude protein in the grain. Possible results are exspected from production experiments with pre-sowing irradiation of seeds of Hodson variety using gamma rays in the range of the above intensities and doses

  11. Melhoramento do feijoeiro comum com grão tipo carioca, visando resistência à antracnose e à mancha angular Breeding of common bean with carioca type grain for the resistance to anthracnose and angular leaf spot

    Mansuêmia Alves Couto

    2008-10-01

    Full Text Available Objetivou-se no trabalho, selecionar linhagens de feijoeiro comum que reunissem, além da alta produtividade, porte ereto e grãos do tipo Carioca, também a resistência à antracnose e à mancha angular. O material experimental constituiu-se de 143 linhagens oriundas de três famílias segregantes F1:4RC2 {[(G2333 X ESAL 696 X ESAL 696] X CI 140}. Foram conduzidos quatro experimentos em três localidades da região sul de Minas Gerais, avaliando-se a produção, o tipo de grão, o porte e a reação à mancha angular. A reação à antracnose foi determinada a partir de inoculações de plantas jovens de cada linhagem, com as raças 2047 e 1545, mantidas em câmara de nevoeiro por três dias e transferidas para casa de vegetação com irrigação por aspersão, a cada quatro horas. Selecionaram-se quatro linhagens com alta produtividade, porte mais arbustivo, grãos tipo carioca e com resistência à mancha angular (nota até 4. Uma das linhagens selecionada possui o alelo Co-4², outras duas possuem o alelo Co-7 de resistência à antracnose e a última, embora seja suscetível à antracnose, possui resistência à mancha angular (nota 3,97 e maior produtividade de grãos.Aiming to select common bean lines with high grain yield, Carioca grain type, upright plant habit and resistant to anthracnose and angular leaf spot, 143 lines were selected from three families of the cross F1:4RC2 {[(G2333 X ESAL 696 X ESAL 696] X CI 140}. The promising lines were selected based on the agronomical traits in four field experiments, set up in three places in Southern MG State using the square lattice design. The reaction of each line to the anthracnose was evaluated by inoculating the seedlings using the races 1545 and 2047, and kept in humid chamber during three days, and then moved to greenhouse with sprinkle irrigation every four hours. Four lines with high grain yield, upright plant habit, Carioca grain type, and resistance to angular leaf spot (score up

  12. Using Ridge Regression Models to Estimate Grain Yield from Field Spectral Data in Bread Wheat (Triticum Aestivum L. Grown under Three Water Regimes

    Javier Hernandez

    2015-02-01

    Full Text Available Plant breeding based on grain yield (GY is an expensive and time-consuming method, so new indirect estimation techniques to evaluate the performance of crops represent an alternative method to improve grain yield. The present study evaluated the ability of canopy reflectance spectroscopy at the range from 350 to 2500 nm to predict GY in a large panel (368 genotypes of wheat (Triticum aestivum L. through multivariate ridge regression models. Plants were treated under three water regimes in the Mediterranean conditions of central Chile: severe water stress (SWS, rain fed, mild water stress (MWS; one irrigation event around booting and full irrigation (FI with mean GYs of 1655, 4739, and 7967 kg∙ha−1, respectively. Models developed from reflectance data during anthesis and grain filling under all water regimes explained between 77% and 91% of the GY variability, with the highest values in SWS condition. When individual models were used to predict yield in the rest of the trials assessed, models fitted during anthesis under MWS performed best. Combined models using data from different water regimes and each phenological stage were used to predict grain yield, and the coefficients of determination (R2 increased to 89.9% and 92.0% for anthesis and grain filling, respectively. The model generated during anthesis in MWS was the best at predicting yields when it was applied to other conditions. Comparisons against conventional reflectance indices were made, showing lower predictive abilities. It was concluded that a Ridge Regression Model using a data set based on spectral reflectance at anthesis or grain filling represents an effective method to predict grain yield in genotypes under different water regimes.

  13. Ncl Synchronously Regulates Na+, K+, and Cl- in Soybean and Greatly Increases the Grain Yield in Saline Field Conditions.

    Do, Tuyen Duc; Chen, Huatao; Hien, Vu Thi Thu; Hamwieh, Aladdin; Yamada, Tetsuya; Sato, Tadashi; Yan, Yongliang; Cong, Hua; Shono, Mariko; Suenaga, Kazuhiro; Xu, Donghe

    2016-01-08

    Salt stress inhibits soybean growth and reduces gain yield. Genetic improvement of salt tolerance is essential for sustainable soybean production in saline areas. In this study, we isolated a gene (Ncl) that could synchronously regulate the transport and accumulation of Na(+), K(+), and Cl(-) from a Brazilian soybean cultivar FT-Abyara using map-based cloning strategy. Higher expression of the salt tolerance gene Ncl in the root resulted in lower accumulations of Na(+), K(+), and Cl(-) in the shoot under salt stress. Transfer of Ncl with the Agrobacterium-mediated transformation method into a soybean cultivar Kariyutaka significantly enhanced its salt tolerance. Introgression of the tolerance allele into soybean cultivar Jackson, using DNA marker-assisted selection (MAS), produced an improved salt tolerance line. Ncl could increase soybean grain yield by 3.6-5.5 times in saline field conditions. Using Ncl in soybean breeding through gene transfer or MAS would contribute to sustainable soybean production in saline-prone areas.

  14. Nodulation of soybean cultivars and its effects on grain yield / Nodulação de cultivares de soja e seus efeitos no rendimento de grãos

    Ricardo Ralisch

    2009-10-01

    Full Text Available The adaptations of the soybean crop to a new environment as well as the need of a symbiotic relation among Bradyrhizobium bacteria and the commercial cultivars of soybean impose barriers to the grain productive process. The objective of this work was to evaluate the interaction of nodulation and the morphophysiological components over the final yield of soybean grains in the edaphoclimatical conditions of Recôncavo Baiano Region. The experiment was performed at the Experimental Field of the Federal University of Bahia, Cruz das Almas (BA, with an experimental design of randomized blocks, with nine soybean cultivars and four replications. The evaluations were performed in the stage of full flowering with the quantification of the number and mass of nodules, leaf area, total dry mass; and another evaluation in the full maturation stage, quantifying the grain yield. More than 40% of the grain yield was correlated to the components of nodulation of the soybean cultivars Curió, Conquista and Liderança cultivars presented the best performances in the yield of grain.A adaptação da cultura da soja a um novo ambiente bem como a necessidade da relação simbiótica entre bactéria do gênero Bradyrhizobium e cultivares comerciais de soja, impõe barreiras no processo produtivo de grãos. Como forma de quantificar tais efeitos, este trabalho objetivou avaliar a interação da nodulação e dos componentes morfofisiológicos sobre o rendimento final de grãos de soja nas condições edafoclimáticas do Recôncavo Baiano. O experimento foi conduzido no Campo Experimental da Universidade Federal da Bahia, Cruz das Almas (BA em delineamento de blocos casualizados, com nove cultivares de soja e quatro repetições. As avaliações foram realizadas no estádio de florescimento pleno com quantificação do número e a massa de nódulos, área foliar, massa da matéria seca das folhas; e outra no estádio de maturação plena, quantificando o rendimento de gr

  15. Chemical and Mechanical Weed Control Methods and Their Effects on Photosynthetic Pigments and Grain Yield of Kidney Bean

    A.S Ghatari

    2015-11-01

    Full Text Available To evaluate the integrated management of weeds in red kidney bean, a split-plot experiment using randomized complete block design with three replications was conducted in 2013 in the Damavand County. In this experiment, the mechanical control treatments consisted of two levels (no cultivation and one cultivation asseigned to main plots and controlling chemical treatments consisted of six levels (non-application of herbicides, pre-emergence herbicide application of Pursuit with full dose of 1 liter per hectare, pre-emergence herbicide application of Pursuit a dose decreased 0.5 liters per hectare, post-emergence herbicide application of Pursuit dose reduced to 0.3 liters per hectare + 2 thousand citogate, post-emergence herbicide application of Pursuit with a reduced dose of 0.5 liters per hectare + 2 thousand citogate, post-emergence herbicide application of Pursuit full dose of 1 liter per hectar + 2 thousand citogate to subplots. The results showed that the effects of interaction between herbicide application and cultivation for traits of carotenoids, chlorophyll a, chlorophyll b and total chlorophyll contents, density of weeds and their dry weights were significant at 1 %, and grain yield at the 5% probability levels. The highest bean seed yield with an average of 5461.6 kg.ha-1 and lowest weed dry weight with an average of 345.9 kg.ha-1 were related to pre-emergence herbicide and cultivation with a dose of 1 liter per hectare treatment. The difference between full and reduced doses of chemical weed control was non-significant. It could be concluded that integrated mechanical and chemical weed control not only may increase seed yield but also reduce, environmental hazards.

  16. Stability Performance of Inductively Coupled Plasma Mass Spectrometry-Phenotyped Kernel Minerals Concentration and Grain Yield in Maize in Different Agro-Climatic Zones.

    Mallikarjuna, Mallana Gowdra; Thirunavukkarasu, Nepolean; Hossain, Firoz; Bhat, Jayant S; Jha, Shailendra K; Rathore, Abhishek; Agrawal, Pawan Kumar; Pattanayak, Arunava; Reddy, Sokka S; Gularia, Satish Kumar; Singh, Anju Mahendru; Manjaiah, Kanchikeri Math; Gupta, Hari Shanker

    2015-01-01

    Deficiency of iron and zinc causes micronutrient malnutrition or hidden hunger, which severely affects ~25% of global population. Genetic biofortification of maize has emerged as cost effective and sustainable approach in addressing malnourishment of iron and zinc deficiency. Therefore, understanding the genetic variation and stability of kernel micronutrients and grain yield of the maize inbreds is a prerequisite in breeding micronutrient-rich high yielding hybrids to alleviate micronutrient malnutrition. We report here, the genetic variability and stability of the kernel micronutrients concentration and grain yield in a set of 50 maize inbred panel selected from the national and the international centres that were raised at six different maize growing regions of India. Phenotyping of kernels using inductively coupled plasma mass spectrometry (ICP-MS) revealed considerable variability for kernel minerals concentration (iron: 18.88 to 47.65 mg kg(-1); zinc: 5.41 to 30.85 mg kg(-1); manganese: 3.30 to 17.73 mg kg(-1); copper: 0.53 to 5.48 mg kg(-1)) and grain yield (826.6 to 5413 kg ha(-1)). Significant positive correlation was observed between kernel iron and zinc within (r = 0.37 to r = 0.52, p kernel minerals concentration and grain yield. Most of the variation was contributed by genotype main effect for kernel iron (39.6%), manganese (41.34%) and copper (41.12%), and environment main effects for both kernel zinc (40.5%) and grain yield (37.0%). Genotype main effect plus genotype-by-environment interaction (GGE) biplot identified several mega environments for kernel minerals and grain yield. Comparison of stability parameters revealed AMMI stability value (ASV) as the better representative of the AMMI stability parameters. Dynamic stability parameter GGE distance (GGED) showed strong and positive correlation with both mean kernel concentrations and grain yield. Inbreds (CM-501, SKV-775, HUZM-185) identified from the present investigation will be useful in

  17. Stability Performance of Inductively Coupled Plasma Mass Spectrometry-Phenotyped Kernel Minerals Concentration and Grain Yield in Maize in Different Agro-Climatic Zones.

    Mallana Gowdra Mallikarjuna

    Full Text Available Deficiency of iron and zinc causes micronutrient malnutrition or hidden hunger, which severely affects ~25% of global population. Genetic biofortification of maize has emerged as cost effective and sustainable approach in addressing malnourishment of iron and zinc deficiency. Therefore, understanding the genetic variation and stability of kernel micronutrients and grain yield of the maize inbreds is a prerequisite in breeding micronutrient-rich high yielding hybrids to alleviate micronutrient malnutrition. We report here, the genetic variability and stability of the kernel micronutrients concentration and grain yield in a set of 50 maize inbred panel selected from the national and the international centres that were raised at six different maize growing regions of India. Phenotyping of kernels using inductively coupled plasma mass spectrometry (ICP-MS revealed considerable variability for kernel minerals concentration (iron: 18.88 to 47.65 mg kg(-1; zinc: 5.41 to 30.85 mg kg(-1; manganese: 3.30 to 17.73 mg kg(-1; copper: 0.53 to 5.48 mg kg(-1 and grain yield (826.6 to 5413 kg ha(-1. Significant positive correlation was observed between kernel iron and zinc within (r = 0.37 to r = 0.52, p < 0.05 and across locations (r = 0.44, p < 0.01. Variance components of the additive main effects and multiplicative interactions (AMMI model showed significant genotype and genotype × environment interaction for kernel minerals concentration and grain yield. Most of the variation was contributed by genotype main effect for kernel iron (39.6%, manganese (41.34% and copper (41.12%, and environment main effects for both kernel zinc (40.5% and grain yield (37.0%. Genotype main effect plus genotype-by-environment interaction (GGE biplot identified several mega environments for kernel minerals and grain yield. Comparison of stability parameters revealed AMMI stability value (ASV as the better representative of the AMMI stability parameters. Dynamic stability

  18. Influence of inocula and grains on sclerotia biomass and carotenoid yield of Penicillium sp. PT95 during solid-state fermentation.

    Han, Jian-Rong; Yuan, Jing-Ming

    2003-10-01

    Various inocula and grains were evaluated for carotenoid production by solid-state fermentation using Penicillium sp. PT95. Millet medium was more effective in both sclerotia growth and carotenoid production than other grain media. An inoculum in the form of sclerotia yielded higher sclerotia biomass compared to either a spore inoculum or a mycelial pellet inoculum. Adding wheat bran to grain medium favored the formation of sclerotia. However, neither the inoculum type nor addition of wheat bran resulted in a significant change in the carotenoid content of sclerotia. Among grain media supplemented with wheat bran (wheat bran:grain =1:4 w/w, dry basis), a medium consisting of rice and wheat bran gave the highest sclerotia biomass (15.10 g/100 g grain), a medium consisting of buckwheat and wheat bran gave the highest content of carotenoid in sclerotia (0.826 mg/g dry sclerotia), and a medium consisting of millet and wheat bran gave the highest carotenoid yield (11.457 mg/100 g grain).

  19. Effects of N Fertilizer Sources and Tillage Practices on NH3 Volatilization, Grain Yield, and N Use Efficiency of Rice Fields in Central China.

    Liu, Tianqi; Huang, Jinfeng; Chai, Kaibin; Cao, Cougui; Li, Chengfang

    2018-01-01

    Tillage practices and nitrogen (N) sources are important factors affecting rice production. Few studies, however, have examined the interactions between tillage practices and N fertilizer sources on NH 3 volatilization, nitrogen use efficiency (NUE), and rice grain yield. This study aimed to investigate the effects of N fertilizer sources (no N fertilizer, inorganic N fertilizer, organic N fertilizer alone, organic N fertilizer plus inorganic N fertilizer, and slow-release N fertilizer plus inorganic N fertilizer) and tillage practices (no-tillage [NT] and conventional intensive tillage [CT]) on NH 3 flux, grain yield, and NUE in the rice field of central China. N sources significantly affected NH 3 volatilization, as the cumulative volatilization from the treatments of inorganic N fertilizer, organic N fertilizer, organic N fertilizer plus inorganic N fertilizer, slow-release N fertilizer plus inorganic N fertilizer was 4.19, 2.13, 3.42, and 2.23 folds in 2013, and 2.49, 1.68, 2.08, and 1.85 folds in 2014 compared with that under no N fertilizer treatment, respectively. The organic N fertilizer treatment had the lowest grain yield and NUE among all N fertilizer treatments, while slow-release N fertilizer plus inorganic N fertilizer treatment led to relatively higher grain yield and the greatest N use efficiency. Moreover, NT only markedly increased NH 3 volatilization from basal fertilizer by 10-14% in average compared with CT, but had no obvious effects on total volatilization during the whole seasons. Tillage practices had no significant effects on grain yield and NUE. Our study suggested that the combination of slow-release N fertilizer plus inorganic N fertilizer and NT might be a sustainable method for mitigating greenhouse gas and NH 3 emissions and improving grain yield and NUE in paddy fields of central China.

  20. Effects of N Fertilizer Sources and Tillage Practices on NH3 Volatilization, Grain Yield, and N Use Efficiency of Rice Fields in Central China

    Tianqi Liu

    2018-03-01

    Full Text Available Tillage practices and nitrogen (N sources are important factors affecting rice production. Few studies, however, have examined the interactions between tillage practices and N fertilizer sources on NH3 volatilization, nitrogen use efficiency (NUE, and rice grain yield. This study aimed to investigate the effects of N fertilizer sources (no N fertilizer, inorganic N fertilizer, organic N fertilizer alone, organic N fertilizer plus inorganic N fertilizer, and slow-release N fertilizer plus inorganic N fertilizer and tillage practices (no-tillage [NT] and conventional intensive tillage [CT] on NH3 flux, grain yield, and NUE in the rice field of central China. N sources significantly affected NH3 volatilization, as the cumulative volatilization from the treatments of inorganic N fertilizer, organic N fertilizer, organic N fertilizer plus inorganic N fertilizer, slow-release N fertilizer plus inorganic N fertilizer was 4.19, 2.13, 3.42, and 2.23 folds in 2013, and 2.49, 1.68, 2.08, and 1.85 folds in 2014 compared with that under no N fertilizer treatment, respectively. The organic N fertilizer treatment had the lowest grain yield and NUE among all N fertilizer treatments, while slow-release N fertilizer plus inorganic N fertilizer treatment led to relatively higher grain yield and the greatest N use efficiency. Moreover, NT only markedly increased NH3 volatilization from basal fertilizer by 10–14% in average compared with CT, but had no obvious effects on total volatilization during the whole seasons. Tillage practices had no significant effects on grain yield and NUE. Our study suggested that the combination of slow-release N fertilizer plus inorganic N fertilizer and NT might be a sustainable method for mitigating greenhouse gas and NH3 emissions and improving grain yield and NUE in paddy fields of central China.

  1. Effects of arbuscular mycorrhizal fungi inoculation on carbon and nitrogen distribution and grain yield and nutritional quality in rice (Oryza sativa L.).

    Zhang, Xue; Wang, Li; Ma, Fang; Yang, Jixian; Su, Meng

    2017-07-01

    The importance of arbuscular mycorrhizal fungi (AMF) for nutrient uptake and growth in rice has been widely recognized. However, little is known about the distribution of carbon (C) and nitrogen (N) in rice under AMF inoculation, which can affect grain yield and quality. This study was conducted to investigate the distribution of C and N within rice plants under AMF inoculation and the effects on grain yield and quality. AMF inoculation significantly increased N accumulation and distribution in vegetative tissues at tillering, and N translocation into seeds from heading to maturity. Consequently, AMF inoculation more strongly impacted the distribution of N than that of C in seeds, with significantly reduced C:N ratios and increased protein content (by 7.4%). Additionally, AMF inoculation significantly increased grain yield by 28.2% through increasing the grain:straw ratio by 18.4%. In addition, the roots of inoculated rice exhibited greater change in C distribution, with significantly higher C concentrations, C accumulations, and C:N ratios at tillering and maturity. AMF inoculation affected the distribution of N in seeds and C in roots. As such, AMF inoculation may be a potential method for improving grain yield and quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Produtividade da soja no cerrado influenciada pelas fontes de enxofre Soybean grain yield in cerrado region influenced by sulphur sources

    Dirceu Luiz Broch

    2011-09-01

    Full Text Available O enxofre é um componente de proteínas e aminoácidos em plantas, sendo exigido em boa quantidade por leguminosas, pelo alto acúmulo de proteínas nessas espécies. Com isso, este trabalho teve por objetivo verificar a influência de diferentes fontes de enxofre sobre a produtividade de grãos na cultura da soja. O experimento foi instalado na área experimental da Fundação MS, em Maracajú, MS, em três anos consecutivos no delineamento de blocos ao acaso, com quatro repetições, submetidas à análise de variância conjunta. Foram implantadas as cultivares BRS-133 (2002/03 e 2003/04 e CD 202 (2004/05. Como tratamento foram avaliados: as adições de enxofre na forma de superfosfato simples, MAP sulfurado + Sulfurgran, Sulfurgran, enxofre elementar, gesso granulado, Fosmag 509M6, gesso agrícola a lanço e testemunha, sem a aplicação. A soja responde à aplicação de enxofre em solos das regiões do cerrado brasileiro, sendo necessária, na maioria das vezes, a fertilização com este nutriente para obtenção de altas produtividades. A grande maioria das fontes de enxofre utilizadas foi eficiente em fornecer este nutriente para a soja, com destaque para a aplicação de MAP Sulfurado + Sulfurgran, Formag 509M6 e gesso agrícola a lanço, que promoveram as melhores produtividades de grãos. O enxofre elementar não foi eficiente em disponibilizar S para a cultura.Sulphur is a component of protein and aminoacids in plants, being required in an expressive amount by leguminous, as function of high protein levels in these plants. Then, this work aimed to verify the influence of different sulphur sources on soybean grain yield. The experiment was carried out at the experimental area of Fundação MS, Maracajú, MS, in three consecutive years in a randomized block design with four replications, submitted to variance analysis of group experiments. The cultivars used were BRS-133 (2002/03 and 2003/04 and CD 202 (2004/05. As treatments, it was

  3. Selectivity and stability of herbicides and herbicide combinations for the grain yield of maize (Zea Mays L.

    T. Barakova

    2016-09-01

    Full Text Available Abstract. The research was conducted during 2012 - 2014 on pellic vertisol soil type. Under investigation was cycloxydim tolerant maize hybrid Ultrafox duo (Zea mays L.. Factor A included the years of investigation. Factor B included no treated check and 3 soil-applied herbicides – Adengo 465 SC (isoxaflutol + tiencarbazon – 440 ml/ha, Wing P (pendimethalin + dimethenamid – 4 l/ha and Lumax 538 SC (S-metolachlor + terbuthylazine + mesotrione – 4 l/ha. Factor C included no treated check and 5 foliar-applied herbicides – Stellar 210 SL (topramezon + dicamba – 1 l/ha, Principal plus (nicosulfuron + rimsulfuron + dicamba – 380 g/ha, Ventum WG (foramsulfuron + iodosulfuron – 150 g/ha, Monsun active OD (foramsulfuron + tiencarbazon – 1.5 l/ha and Laudis OD (tembotrione – 2 l/ha. In addition to these variants by conventional technology for maize growing one variant by Duo system technology is also included in the experiment. It includes soil-applied herbicide Merlin flex 480 SC (isoxaflutole – 420 g/ha and tank mixture of antigraminaceous herbicide Focus ultra (cycloxydim - 2 l/ha + antibroadleaved herbicide Kalam (tritosulfuron + dicamba – 300 g/ha. It is found that herbicide combination of soil-applied herbicide Merlin flex with tank mixture Focus ultra + Kalam by Duo system technology leads to obtaining high grain yield. High yields of maize grain are also obtained by herbicide combinations Lumax + Principal plus, Lumax + Laudis and Wing + Principal plus. The most unstable are the non-treated check and single use of soilapplied herbicides Adengo, Wing and Lumax. Technologically the most valuable are herbicide combination Merlin flex + Focus ultra + Kalam by Duo system technology, followed by combinations of foliar-applied herbicides Principal plus and Laudis with soil-applied herbicides Adengo, Wing and Lumax by conventional technology. Single use of herbicides has low estimate due to must to combine soil-applied with foliar

  4. Constitutive overexpression of the TaNF-YB4 gene in transgenic wheat significantly improves grain yield.

    Yadav, Dinesh; Shavrukov, Yuri; Bazanova, Natalia; Chirkova, Larissa; Borisjuk, Nikolai; Kovalchuk, Nataliya; Ismagul, Ainur; Parent, Boris; Langridge, Peter; Hrmova, Maria; Lopato, Sergiy

    2015-11-01

    Heterotrimeric nuclear factors Y (NF-Ys) are involved in regulation of various vital functions in all eukaryotic organisms. Although a number of NF-Y subunits have been characterized in model plants, only a few have been functionally evaluated in crops. In this work, a number of genes encoding NF-YB and NF-YC subunits were isolated from drought-tolerant wheat (Triticum aestivum L. cv. RAC875), and the impact of the overexpression of TaNF-YB4 in the Australian wheat cultivar Gladius was investigated. TaNF-YB4 was isolated as a result of two consecutive yeast two-hybrid (Y2H) screens, where ZmNF-YB2a was used as a starting bait. A new NF-YC subunit, designated TaNF-YC15, was isolated in the first Y2H screen and used as bait in a second screen, which identified two wheat NF-YB subunits, TaNF-YB2 and TaNF-YB4. Three-dimensional modelling of a TaNF-YB2/TaNF-YC15 dimer revealed structural determinants that may underlie interaction selectivity. The TaNF-YB4 gene was placed under the control of the strong constitutive polyubiquitin promoter from maize and introduced into wheat by biolistic bombardment. The growth and yield components of several independent transgenic lines with up-regulated levels of TaNF-YB4 were evaluated under well-watered conditions (T1-T3 generations) and under mild drought (T2 generation). Analysis of T2 plants was performed in large deep containers in conditions close to field trials. Under optimal watering conditions, transgenic wheat plants produced significantly more spikes but other yield components did not change. This resulted in a 20-30% increased grain yield compared with untransformed control plants. Under water-limited conditions transgenic lines maintained parity in yield performance. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Plastic-film mulching and urea types affect soil CO2 emissions and grain yield in spring maize on the Loess Plateau, China.

    Liu, Qiaofei; Chen, Yu; Li, Weiwei; Liu, Yang; Han, Juan; Wen, Xiaoxia; Liao, Yuncheng

    2016-06-22

    A 2-year field experiment was conducted on maize (Zea mays L.) to explore effective ways to decrease soil CO2 emissions and increase grain yield. Treatments established were: (1) no mulching with urea, (2) no mulching with controlled release fertiliser (CRF), (3) transparent plastic-film mulching (PMt) with urea, (4) PMt with CRF, (5) black plastic-film mulching (PMb) with urea, and (6) PMb with CRF. During the early growth stages, soil CO2 emissions were noted as PMt > PMb > no mulching, and this order was reversed in the late growth stages. This trend was the result of topsoil temperature dynamics. There were no significant correlations noted between soil CO2 emissions and soil temperature and moisture. Cumulative soil CO2 emissions were higher for the PMt than for the PMb, and grain yield was higher for the PMb treatments than for the PMt or no mulching treatments. The CRF produced higher grain yield and inhibited soil CO2 emissions. Soil CO2 emissions per unit grain yield were lower for the BC treatment than for the other treatments. In conclusion, the use of black plastic-film mulching and controlled release fertiliser not only increased maize yield, but also reduced soil CO2 emissions.

  6. The influence of benefit microorganisms on yield and quality of soybean grains under conditions of reduced nitrogen fertilization

    Suzana Kristek

    2017-01-01

    Full Text Available The aim of this study was to investigate the possibility to reduce the application of mineral nitrogen fertilizers through the application of beneficial microorganisms (genus Bradyrhizobium, Azotobacter, bacteria Pseudomonas fluorescens, Bacillus spp., etc.. Research was conducted during 2013 and 2014 on Eutric brown soil. The experiment was set up in a split-block scheme with 12 different variants in 4 repetitions: two soybean cultivars were used; two different treatments of nitrogen fertilizers and three different treatments of microbiological preparation were applied. Analysed parameters were soybean grain yield (kg/ha based on 13% moisture, protein content (%, oil content (% and hectolitre mass (kg. Given that the climatic conditions in the second year of research were more favourable than in the first year of research, all the elements of research, including control variants, achieved better results in the second year of research. All variants treated with microbiological preparations, either by application in soil or by application in soil combined with foliar treatments, also achieved statistically significant differences compared to the control variants.

  7. Genetic variations in the dynamics of dry matter accumulation, nitrogen assimilation and translocation in new T. aestivum L. varieties. I. Dynamics of dry matter accumulation. Grain yield and structural elements of yield

    Kostadin, K.; Nonkova, M.; Penchev, E.

    1999-01-01

    The genotype peculiarities in the translocation dynamics of dry matter in relation to wheat yield were studied under vegetation-laboratory and field conditions. The new wheat varieties Enola, Karat and Svilena created at the Institute for Wheat and Sunflower 'Dobroudja' have a high production potential due to their high intensity of dry matter accumulation in grain during the second half of maturation. It was established that in the standard variety Pliska the intensity of dry matter accumulation in reproductive parts was higher during heading-grain filling and then sharply decreased during maturation. This variety was characterized with high translocation of vegetation mass eventually leading to grain yield decrease. Significant genotype variations were established in the vegetation mass translocation in the respective parts during the stages of development. The contribution of the individual organs concerning carbohydrate reutilization to grain was mainly due to stems. An especially important peculiarity of the leaves of cv. Svilena was established: they ensured over 30 of grain yield at optimal nutrition. The complex evaluation of the new varieties revealed their high plasticity, the cultivar Karat showing the best characteristics. Refs. 13 (author)

  8. Effect of elevated [CO2 ] on yield, intra-plant nutrient dynamics, and grain quality of rice cultivars in Eastern India.

    Jena, Usha Rani; Swain, Dillip Kumar; Hazra, K K; Maity, Mrinal K

    2018-05-16

    Climate models predict an increase in global temperature in response to a doubling of atmospheric [CO 2 ] that may impact future rice production and quality. In this study, the effect of elevated [CO 2 ] on yield, nutrient acquisition and utilization, and grain quality of rice genotypes was investigated in subtropical climate of eastern India (Kharagpur). Three environments (open field, ambient, and elevated [CO 2 ]) were tested using four rice cultivars of eastern India. Under elevated [CO 2 ] (25% higher), yield of high yielding cultivars (HYCs) viz. IR 36, Swarna, and Swarna sub1 was significantly reduced (11-13%), whereas the yield increased (6-9%) for Badshabhog, a low-yielding aromatic cultivar. Elevated [CO 2 ] significantly enhanced K uptake (14-21%), but did not influence the uptake of total N and P. The nutrient harvest index and use efficiency values in HYCs were reduced under elevated [CO 2 ] indicating that nutrients translocation from source to sink (grain) was significantly reduced. An increase in alkali spreading value (10%) and reduction in grain protein (2-3%) and iron (5-6%) was also observed upon [CO 2 ] elevation. The study highlights the importance of nutrient management (increasing N rate for HYCs) and selective breeding of tolerant cultivar in minimizing the adverse effect of elevated [CO 2 ] on rice yield and quality. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Evaluation of nutrient status and grain yield of two corn cultivars under different soil aluminum levels after liming

    Volnei Pauletti

    2000-01-01

    Full Text Available This study was conducted to evaluate the effects of decreasing levels of Al saturation through the addition of lime under field conditions in the nutritional status and grain yield of two corn (Zea mays L. cultivars: one tolerant and one non-tolerant to Al. The experiment was conducted on Red Yellow Latosol (Oxisol at the Paraná, Brazil. Control plots received no lime (T0, the treatment T3 received lime to achieve 0% Al saturation and treatments T1 and T2 recieved 33.3% and 66.6%, respectively, of the lime applied to treatment T3. At full bloom stage, representative leaves ("nutritional leaves" were analysed for macro, micronutrients and Al contents, and in treatments T0 and T3 were also analyzed for Al distribution in shoot plants parts (stem, node, internode and leaves. Liming increased concentrations of N, P and Mg and decreased concentrations of Mn and Al in the "nutritional leaves"of both cultivars. The Al distribution in the shoot plant parts showed that its concentration was higher in the leaves than in any other plant part, independent of liming level. Grain yield of the tolerant cultivar was higher, although for both cultivars increase in yield was correlated with decrease in Al saturation.Este estudo teve o objetivo de avaliar o efeito de níveis decrescentes de saturação por Al em função da calagem, em condições de campo, na nutrição e produtividade de grãos de dois cultivares de milho: um tolerante e outro sensível ao Al. O experimento foi conduzido em um Latossolo Vermelho-Amarelo (Oxisol, no estado do Paraná - Brasil. O tratamento T0 não recebeu calagem, o tratamento T3 recebeu calagem para obter 0% de saturação por Al e os tratamentos T1 e T2 receberam 33,3% e 66,6% da quantidade aplicada no T3, respectivamente. No pleno florescimento foram coletadas folhas representativas do estado nutricional ("folhas nutricionais" para análise dos macro e micronutrientes e Al. Nos tratamentos T0 e T3 foi avaliado a distribui

  10. Effects of Bean-Maize Intercropping,Phosphorus and Manure Additions on N2 fixation and Grain Yield of Phaseolus Vulgaris in the Central Kenya Highlands

    Kimani, S.K.; Mwangale, N.; Gathua, K.W.; Delve, R.; Cadisch, G.

    1999-01-01

    Sole bean and intercropped bean crops were studied for four seasons from 1996-1998. Addition of organic P at the recommended rate of 60 kg P 2 O 5 ha -1 increased bean standing biomass and grain yields during the first season. Cattle manure applied at the rate of 12 t ha -1 (25% moisture content), had a negative effect on bean yield during the first season, possibly due to short-term nutrient immobilisation induced by the high C:N ratio of manure. In subsequent seasons, manure additions resulted in higher grain yields compared to inorganic P. Intercropping bean with maize lowered grain yields by 10-100%. N 2 fixed on beans on average from 55 to 69%. Intercropping thus provides a strategy for a better N resource use where the maize competes efficiently for available soil mineral N and the legume replenishes part of the extracted N via atmospheric N 2 fixation. However, the amounts of N 2 fixed appear not to be enough to replenish whole systems N in grain crops and so additional N 2 are needed. Thus more attention needs to be given to manure management and its long-term impact on soil fertility

  11. Meat yield and quality of Tanzania Shorthorn Zebu cattle finished on molasses/maize grain with agro-processing by-products in 90 days feedlot period

    Asimwe, L.; Kimambo, A E; Laswai, G

    2016-01-01

    This study was conducted to evaluate the effects of feeding molasses or maize grain with agro-processing by-products on yield and quality of meat from Tanzania shorthorn zebu (TSZ) cattle. Forty five steers aged 2.5 to 3.0 years with 200 +/- 5.4 kg body weight were allocated into five dietary...

  12. Mode of inheritance and combining abilities for kernel row number, kernel number per row and grain yield in maize (Zea mays L.)

    Bocanski, J.; Sreckov, Z.; Nastasic, A.; Ivanovic, M.; Djalovic, I.; Vukosavljev, M.

    2010-01-01

    Bocanski J., Z. Sreckov, A. Nastasic, M. Ivanovic, I.Djalovic and M. Vukosavljev (2010): Mode of inheritance and combining abilities for kernel row number, kernel number per row and grain yield in maize (Zea mays L.) - Genetika, Vol 42, No. 1, 169- 176. Utilization of heterosis requires the study of

  13. Heritability and correlates of maize yield ( Zea mays L .) under ...

    Heritability and correlates of maize yield ( Zea mays L .) under varying drought conditions. ... Nigeria Agricultural Journal ... Correlation analysis revealed that days to 50% tasseling and silking under non-stress, ASI and leaf senescence under severe stress exhibited negative and significant correlations with grain yield.

  14. Effect of Planting Patterns' and Plant Population on Some of Morphological Traits, Harvest Index and Conservable Grain Yield of Sweet Corn

    M. Nasrolah Alhossini

    2012-04-01

    Full Text Available Sweet corn is one of the most important crops in Iran and due to its short period of growth, it has been an important position after wheat and barley in khorasane Razavi Province. In this study two methods of planting (one raised bed and furrow planting and 3 plant densities (65000, 75000 and 85000 plant/ha was evaluated on some of Morphological Traits, harvest index and conservable grain yield of sweet Corn(Chase and KSC403su Varieties in Torbat-e-Heidarie in saline (4.060ds/m condition on 2009. The experimental design was factorial based on RCBC with 4 replications. The result of ANOVA showed significant differences between Anthesis silking interval (ASI, tassel length, plant height, ear height, stem diameter, harvest index, and conservable grain yield of sweet corn varieties that effected by planting methods. the highest harvest index was belonged to Chase in 75000 Plant/ha on one raised bed planting method with 31.75% and the lowest mean was belonged to KSC403su in 85000 Plant/ha on furrow planting method with 14.93%. In addition the highest grain yield was belonged to chase variety at 75000 plant/ha and furrow planting method with 11.912 ton/ha, while the lowest grain yield was belonged to KSC403su variety at 85000 plant/ha and raised bed planting (3.610 ton/ha. The Chase variety was better than KSC403su Due to its canopy and photo period is shorter than KSC403su. The superiority of Chase variety can be related to better distribution of leaves, highest harvest index, conservable grain yield and plant arrangement in the row.

  15. Flag leaf photosynthesis and stomatal function of grain sorghum as influenced by changing photosynthetic photon flux densities

    Data on physiological parameters of A, gs, Em, Ci, and IWUE in grain sorghum (Sorghum bicolor L. Moench) is limited. Flag leaves from three plants of two hybrids, grown using added N fertilizer rates of 0.0, 112, and 224 kg ha-1 near Elizabeth, MS were field sampled for these parameters at growth s...

  16. Individual and combined (Plus-hybrid effect of cytoplasmic male sterility and xenia on maize grain yield

    Sofija Bozinovic

    2015-06-01

    Full Text Available Plus-hybrid effect refere to a combined effect of cytoplasmic male sterility (CMS and xenia in maize (Zea mays L. It could be used in commercial production by growing a mixture of 80% CMS hybrid and 20% of another fertile hybrid. The aim of this research was to examine individual and combined CMS and xenia effects on two hybrids widely grown in Serbia. Sterile and fertile versions of ZP 1 and ZP 2 hybrids (three-way; Iodent x Lancaster dents were used as females, while ZP 1, ZP 2, ZP 3, ZP 4, and ZP 5 (three-way or single cross; Iodent (BSSS x Lancaster dents were used as pollinators. All of them belong to medium maturity group. The trial was set up at one location in Serbia (Zemun Polje in 2009, 2010, and 2011. Molecular analysis of the five genotypes was done using simple sequence repeat (SSR primers. Plus-hybrid effect on grain yield ranged from -6.2% to 6.2%; on thousand kernel weight from -1.7% to 5.2%; on number of kernels per area from -1.0% to 8.0%. The poor response could be due to a use of three-way instead of single cross hybrids in S type of sterility. Modified Rogers' distance between hybrids was in the range 0.211 to 0.378 and was not relevant for the effect, which depended mostly on the sterile hybrid genotype and the fertile hybrid pollinator ability. This approach should be more suitable for female hybrids with slightly poorer performance, already being produced on a sterile base.

  17. Controlled Release Urea as a Nitrogen Source for Spring Wheat in Western Canada: Yield, Grain N Content, and N Use Efficiency

    Lenz Haderlein

    2001-01-01

    Full Text Available Controlled release nitrogen (N fertilizers have been commonly used in horticultural applications such as turf grasses and container-grown woody perennials. Agrium, a major N manufacturer in North and South America, is developing a low-cost controlled release urea (CRU product for use in field crops such as grain corn, canola, wheat, and other small grain cereals. From 1998 to 2000, 11 field trials were conducted across western Canada to determine if seed-placed CRU could maintain crop yields and increase grain N and N use efficiency when compared to the practice of side-banding of urea N fertilizer. CRU was designed to release timely and adequate, but not excessive, amounts of N to the crop. Crop uptake of N from seed-placed CRU was sufficient to provide yields similar to those of side-banded urea N. Grain N concentrations of the CRU treatments were higher, on average, than those from side-banded urea, resulting in 4.2% higher N use efficiency across the entire N application range from 25 to 100 kg ha-1. Higher levels of removal of N in grain from CRU compared to side-banded urea can result in less residual N remaining in the soil, and limit the possibility of N losses due to denitrification and leaching.

  18. The proportion of nitrate in leaf nitrogen, but not changes in root growth, are associated with decreased grain protein in wheat under elevated [CO2].

    Bahrami, Helale; De Kok, Luit J; Armstrong, Roger; Fitzgerald, Glenn J; Bourgault, Maryse; Henty, Samuel; Tausz, Michael; Tausz-Posch, Sabine

    2017-09-01

    The atmospheric CO 2 concentration ([CO 2 ]) is increasing and predicted to reach ∼550ppm by 2050. Increasing [CO 2 ] typically stimulates crop growth and yield, but decreases concentrations of nutrients, such as nitrogen ([N]), and therefore protein, in plant tissues and grains. Such changes in grain composition are expected to have negative implications for the nutritional and economic value of grains. This study addresses two mechanisms potentially accountable for the phenomenon of elevated [CO 2 ]-induced decreases in [N]: N uptake per unit length of roots as well as inhibition of the assimilation of nitrate (NO 3 - ) into protein are investigated and related to grain protein. We analysed two wheat cultivars from a similar genetic background but contrasting in agronomic features (Triticum aestivum L. cv. Scout and Yitpi). Plants were field-grown within the Australian Grains Free Air CO 2 Enrichment (AGFACE) facility under two atmospheric [CO 2 ] (ambient, ∼400ppm, and elevated, ∼550ppm) and two water treatments (rain-fed and well-watered). Aboveground dry weight (ADW) and root length (RL, captured by a mini-rhizotron root growth monitoring system), as well as [N] and NO 3 - concentrations ([NO 3 - ]) were monitored throughout the growing season and related to grain protein at harvest. RL generally increased under e[CO 2 ] and varied between water supply and cultivars. The ratio of total aboveground N (TN) taken up per RL was affected by CO 2 treatment only later in the season and there was no significant correlation between TN/RL and grain protein concentration across cultivars and [CO 2 ] treatments. In contrast, a greater percentage of N remained as unassimilated [NO 3 - ] in the tissue of e[CO 2 ] grown crops (expressed as the ratio of NO 3 - to total N) and this was significantly correlated with decreased grain protein. These findings suggest that e[CO 2 ] directly affects the nitrate assimilation capacity of wheat with direct negative implications

  19. Effect of Water Stress and Spraying of Potassium Iodide on Agronomic Traits and Grain Yield of Bread Wheat (Tiriticum aistivum L. Genotypes

    N. Pooladsaz

    2011-01-01

    Full Text Available Abstract In order to study the effect of water stress and chemical desiccation (potassium iodide on grain yield and agronomic traits of 8 wheat genotypes, a field experiment was conducted using a split split plot design based on a randomized complete block design with three replications in Torogh Agricultural and Natural Resources Research Station (Mashhad, Iran in 2006-2007 and 2007-2008. Main plots were assigned to two levels of water stress treatments; D1: optimum irrigation, and D2: cessation of watering from anthesis to maturity stages. Sub plots were assigned to eight bread wheat genotypes: 9103, 9116, 9203, 9205, 9207, 9212, C-81-10 and Cross Shahi (drought sensitive; and photosynthetic conditions with two levels: P1: using of current photosynthesis and P2: inhibition of current photosynthesis were in sub-sub plots. The results showed that the effects of water stress and photosynthetic conditions on number of total florets per spike (NTF/S, seed set percentage (SSP, spike harvest index (SHI, duration of grain filling (DGF and grain yield (GY were significant. There was a significant difference between genotypes for spike dry weight at anthesis (SDWA, number of spikletes per spike (NSP/S, NTF/S, SSP, SHI, spike partitioning coefficient (SPC, plant height (PLH, spike length (SL, DGF and GY. 9103 genotype produced the most GY (7870 kg/ha under D1P1 treatment. The least GY ( 1114 kg/ha related to Cross Shahi cultivar under D2P2 treatment. Considering that C-81-10, 9103 and 9116 genotypes showed the highest grain yield, potential for reserves and remobilizations of assimilates under different irrigation conditions thus, these genotypes could be introduced as promising in breeding programs for arid and semi-arid regions. Keywords: Triticum aestivum L., Cessation of watering, Chemical Desiccation, Spike, Grain yield

  20. The Effect of Vermicompost and Mycorrhizal Inoculation on Grain Yield and some Physiological Characteristics of Soybean (Glycine max L. under Water Stress Condition

    Elham Jahangiri nia

    2017-08-01

    Full Text Available Introduction Moisture limitation is considered as one of the important limiting factors in soybean growth. Drought stress affects different aspects of soybean growth through making anatomical, physiological and biochemical changes (Tarumingkeng & Coto, 2003. Under dry tension condition, there will be a disturbance in transmitting nutrients, but some useful soil fungi such as mycorrhiza improve production of crops under stress through forming colonies in the root and boosting water and nutrient absorption (Al-Karaki et al., 2004. Using vermicompost in sustainable agriculture strengthens support and activities of beneficial soil microorganisms (such as mycorrhizal fungi and phosphate solubilizing microorganisms in order to provide nutrients required by plants like nitrogen, phosphorus and soluble potassium as well as improving the growth and performance of the crops (Arancon et al., 2004. Materials and methods In order to investigate the effects of vermicompost and mycorrhiza fertilizers on grain yield and some physiological characteristics of soybean under water stress condition an experiment was conducted at Agricultural Research Center of Khorramabad during 2013. The field experiment was carried out based on a randomized complete blocks design arranged in split-plot with four replications. The experiment treatments including irrigation in three levels (after 60, 120 and 180 mm evaporation from pan class A pan, nutrient management in six levels (non-use of vermicompost and mycorhiza fertilizer, inoculated with mycorrhiza fertilizer, consumption of 5 and 10 t.ha-1 vermicompost, consumption of 5 and 10 t.ha-1 vermicompost with mycorrhiza were respectively as the main plots and sub. In current study, RWC, LAI, SPAD were measured during 59 days after planting at the beginning of podding of the control treatment. The temperature of plant leaves were measured by the thermometer (model TM-958 LUTRON infrared Thermometers. To analyze the growth of

  1. The Effect of Water Deficit stress on Osmotic Metabolites and Anti Oxidant System and Grain and Oil Yield of Amaranth CV. Koniz

    Mehrdad Yarnia

    2015-01-01

    Full Text Available Drought is one of the most important environmental stresses that highly affect crop growth and yield. But the response of crops to stress depending on the timing of crop growth stages is different. The purpose of this study was to investigate effect of different levels of water stress (irrigation after 50, 80, 110, 140 and 170 mm evaporation from pan on different stages of Amaranth growth (establishment, branching, flowering and grain filling. To find the effects of water deficit stress on this plant it was decided to determine its protein percentage, oil and grain yields under drought stress. Evaluation of physiological characteristics as to the extent of osmotic adjustment and antioxidant activity was also carried out. Results showed that water deficit stress,depending on the severity and duration of stress, caused a reduction between between a minimum of 10 to a maximum of 89 percent in yield, 28 to 70 percent in harvest index, 12 to 32 percent in grain protein and 29 to 97 percent in oil yield. This indicates the high sensitivity of grain and oil yields to severe and prolonged drought stresses. Changes in osmotic substances (proline and soluble carbohydrates showed that this crop under water stress conditions increased proline and soluble carbohydrates by 31 and 50 percents, respectively. Thus, if could be said that under severe droughts the ability of crops to cops with drought will be reduced. Similarly, amaranth, to cope with water stress, increases the amount of antioxidant enzymes like catalase, peroxidase and super oxid dismutase up to 53, 23 and 79%, respectively. Higher amount of super oxid dismutase enzyme produce as the result of drought stress may play an important role to cope with reactive oxygen species and oxidative stresses.

  2. Effect of sowing dates and different irrigation regimes on morphological characteristics and grain yield of chickpea (Cicer arietinum L. (cultivar 3279 ILC

    parviz rezvani moghadam

    2009-06-01

    Full Text Available In order to study the effect of different sowing dates and different irrigation regimes on morphological characteristics and grain yield of chickpea (cultivar 3279 ILC (Cicer arietinum L., an experiment was conducted at Agricultural Research-Education Station of Shahid Rejaee, Neyshaboor during 2001-2002. Four irrigation regimes (without irrigation, one time irrigation (at early flowering, two times irrigation (at early flowering and 50% flowering and control (irrigation every 10 days and Four sowing dates early planting (autumn, Entezari, and late planting (spring and delayed were compared in a spilt plot layout based on randomized complete block design with four replications per treatment. The results showed that all chickpea plants with delayed sowing date on combination of without irrigation, one time irrigation (at early flowering and two times irrigation (at early flowering and 50% flowering were dead. By delaying sowing date, duration between the time of starting flowering and maturity became shorter. Plant height, distance of the first pod from earth surface, distance between nods, number of nods per plant, number of stems per plant, number of pods per plant, number of pods with one, two and with no seed per plant, number of seeds per plant, seed weight per plant, 100 seed weight and grain yield were increased when the number of irrigation increased. By increasing the growing season, plant height, distance of the first pod from earth surface, number of nods per plant, number of stems per plant, number of pods per plant, number of pods with two and without seeds per plant, number of seeds per plant and seed weight per plant were increased. The autumn sowing date had the highest and the spring date had the lowest grain yield. The highest plant height, number of nods per plant, number of stems per plant, number of pods per plant, number of pods with one and with no seed per plant, number of seeds per plant and grain yield were obtained at

  3. Influence of rootstocks on growth, yield, fruit quality and leaf mineral element contents of pear cv. 'Santa Maria' in semi-arid conditions

    Ali Ikinci

    2014-01-01

    Full Text Available BACKGROUND: Rootstocks play an essential role to determining orchard performance of fruit trees. Pyrus communisand Cydonia oblonga are widely used rootstocks for European pear cultivars. The lack of rootstocks adapted to different soil conditions and different grafted cultivars is widely acknowledged in pear culture. Cydonia rootstocks (clonal and Pyrus rootstocks (seedling or clonal have their advantages and disadvantages. In each case, site-specific environmental characteristics, specific cultivar response and production objectives must be considered before choosing the best rootstock. In this study, the influence of three Quince (BA 29, Quince A = MA, Quince C = MC and a local European pear seedling rootstocks on the scion yield, some fruit quality characteristics and leaf macro (N, P, K, Ca and Mg and micro element (Fe, Zn, Cu, Mn and B content of 'Santa Maria' pear (Pyrus communis L. were investigated. RESULTS: Trees on seedling rootstock had the highest annual yield, highest cumulative yield (kg tree−1, largest trunk cross-sectional area (TCSA, lowest yield efficiency and lowest cumulative yield (ton ha−1 in the 10th year after planting. The rootstocks had no significant effect on average fruit weight and fruit volume. Significantly higher fruit firmness was obtained on BA 29 and Quince A. The effect of rootstocks on the mineral element accumulation (N, K, Ca, Mg, Fe, Zn, Cu, Mn and B was significant. Leaf analysis showed that rootstocks used had different mineral uptake efficiencies throughout the early season. CONCLUSION: The results showed that the rootstocks strongly affected fruit yield, fruit quality and leaf mineral element uptake of 'Santa Maria' pear cultivar. Pear seedling and BA 29 rootstock found to be more prominent in terms of several characteristics for 'Santa Maria' pear cultivar that is grown in highly calcareous soil in semi-arid climate conditions. We determined the highest N, P (although insignificant, K, Ca, Mg, Fe

  4. Genotypic Correlation and Path Analysis of Some Traits related to Oil Yield and Grain Yield in Canola (Brassica napus L. under Non-stress and Water Deficit Stress Conditions

    A Ismaili

    2017-03-01

    Full Text Available Introduction Obtaining varieties with acceptable yield and tolerant to different arid and semi-arid climate condition of Iran is an important goal in canola breeding programs. Selection of genotypes base on one or more traits without regarding to correlation between them, could biases the expected results. Therefore, identifying of genetic correlation among traits especially in environmental stress condition is very important. The use of genotypic correlation helps evaluating the magnitude and direction of associations between characters facilitating the application of indirect selection, because genetic changes in a given trait may change other traits, leading to faster and larger genetic gains in plant breeding programs. Therefore, the selection for another trait may result in indirect response in the low heritable trait, provided the following conditions are satisfied: the genetic correlation between them is substantial, and the heritability of the secondary trait is greater than that of the primary trait. The purpose of this study was estimating the total genotypic variability, genotypic correlations, and path analysis among some important traits for selection criteria for improving seed and oil yield in canola under water deficit stress condition. Materials and Methods For evaluation of genetic correlation among traits and identifying important affecting traits on grain yield and oil yield in canola genotypes, an experiment was conducted based on a randomized complete blocks design with three replications in two different conditions of water deficit (stress and non-stress. Different traits were measured including seed yield, 1000-seed weight, number of seeds per pod, number of pods per plant, silique length, oil content, days to maturity, protein content, plant height and water use efficiency. Genotypic and phenotypic correlation coefficients were calculated for ten characters during growing seasons. The genotypic correlation coefficients

  5. Effect of high temperature on grain filling period, yield, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice.

    Ahmed, Nisar; Tetlow, Ian J; Nawaz, Sehar; Iqbal, Ahsan; Mubin, Muhammad; Nawaz ul Rehman, Muhammad Shah; Butt, Aisha; Lightfoot, David A; Maekawa, Masahiko

    2015-08-30

    High temperature during grain filling affects yield, starch amylose content and activity of starch biosynthesis enzymes in basmati rice. To investigate the physiological mechanisms underpinning the effects of high temperature on rice grain, basmati rice was grown under two temperature conditions - 32 and 22 °C - during grain filling. High temperature decreased the grain filling period from 32 to 26 days, reducing yield by 6%, and caused a reduction in total starch (3.1%) and amylose content (22%). Measurable activities of key enzymes involved in sucrose to starch conversion, sucrose synthase, ADP-glucose pyrophosphorylase, starch phosphorylase and soluble starch synthase in endosperms developed at 32 °C were lower than those at 22 °C compared with similar ripening stage on an endosperm basis. In particular, granule-bound starch synthase (GBSS) activity was significantly lower than corresponding activity in endosperms developing at 22 °C during all developmental stages analyzed. Results suggest changes in amylose/amylopectin ratio observed in plants grown at 32 °C was attributable to a reduction in activity of GBSS, the sole enzyme responsible for amylose biosynthesis. © 2014 Society of Chemical Industry.

  6. Estimation of rice grain yield from dual-polarization Radarsat-2 SAR data by integrating a rice canopy scattering model and a genetic algorithm

    Zhang, Yuan; Yang, Bin; Liu, Xiaohui; Wang, Cuizhen

    2017-05-01

    Fast and accurate estimation of rice yield plays a role in forecasting rice productivity for ensuring regional or national food security. Microwave synthetic aperture radar (SAR) data has been proved to have a great potential for rice monitoring and parameters retrieval. In this study, a rice canopy scattering model (RCSM) was revised and then was applied to simulate the backscatter of rice canopy. The combination of RCSM and genetic algorithm (GA) was proposed for retrieving two important rice parameters relating to grain yield, ear length and ear number density, from a C-band, dual-polarization (HH and HV) Radarsat-2 SAR data. The stability of retrieved results of GA inversion was also evaluated by changing various parameter configurations. Results show that RCSM can effectively simulate backscattering coefficients of rice canopy at HH and HV mode with an error of <1 dB. Reasonable selection of GA's parameters is essential for stability and efficiency of rice parameter retrieval. Two rice parameters are retrieved by the proposed RCSM-GA technology with better accuracy. The rice ear length are estimated with error of <1.5 cm, and ear number density with error of <23 #/m2. Rice grain yields are effectively estimated and mapped by the retrieved ear length and number density via a simple yield regression equation. This study further illustrates the capability of C-band Radarsat-2 SAR data on retrieval of rice ear parameters and the practicability of radar remote sensing technology for operational yield estimation.

  7. Eco-functional intensification by cereal-grain legume intercropping in organic farming systems for increased yields, reduced weeds and improved grain protein concentration

    Bedoussac, Laurent; Journet, Étienne-Pascal; Hauggaard-Nielsen, Henrik

    2014-01-01

    Intercropping, i.e., simultaneously growing two (or more) species in the same field for a significant period of time but without necessarily concomitant sowing or harvest, is a practice aimed at eco-functional intensification. This chapter integrates a comprehensive amount of original data from...... field experiments conducted since 2001 on spring and winter cereal-grain legume intercrops in experimental and farm contexts in France and Denmark, in an attempt to generalise the findings and draw up common guidelines. We have shown that intercrops appear to be a useful agronomic solution for organic......, structure and manuring strategies. Consequently, it should be emphasized that: (i) the species and varietal traits suited to intercropping and organic farming will make it necessary to reconsider the varietal selection criteria; (ii) further mechanistic understanding of the behaviour of intercropping...

  8. Interactive effects of high temperature and drought stress during stem elongation, anthesis and early grain filling on the yield formation and photosynthesis of winter wheat

    Hlaváčová, Marcela; Klem, Karel; Rapantová, Barbora; Novotná, Kateřina; Urban, Otmar; Hlavinka, Petr; Smutná, P.; Horáková, V.; Škarpa, P.; Pohanková, Eva; Wimmerová, Markéta; Orság, Matěj; Jurečka, František; Trnka, Miroslav

    2018-01-01

    Roč. 221, MAY (2018), s. 182-195 ISSN 0378-4290 R&D Projects: GA MŠk(CZ) LO1415; GA MŠk(CZ) LM2015061; GA MŠk(CZ) EF16_013/0001609 Institutional support: RVO:86652079 Keywords : carbon-isotope discrimination * triticum-aestivum-l. * heat-stress * climate-change * reproductive growth * leaf senescence * gas-exchange * water -stress * durum-wheat * responses * Drought stress * Heat stress * Photosynthesis * Triticum aestivum * Yield formation Subject RIV: GC - Agronomy OBOR OECD: Agronomy, plant breeding and plant protection Impact factor: 3.048, year: 2016

  9. THE EFFECT OF ADDING WHOLE WHEAT GRAIN TO FEED MIXTURE ON SLAUGHTER YIELD AND CARCASS COMPOSITION IN GAME PHEASANTS

    DARIUSZ KOKOSZYŃSKI

    2009-06-01

    Full Text Available The mean body weight of pheasant cocks (1226 g and hens (946.9 g receiving feed mixtures was lower than that of birds fed diets with wheat (♂ 1421.4 g, ♀ 953.2 g. The dressing percentage of both sexes pheasants fed wheat grain also (69.9% was only 0.3% lower than in birds receiving feed mixtures only (70.2%. The carcasses of birds (♂♀ fed the diet with whole wheat grain contained more breast muscles (251.2 g, leg muscles (198.8 g and other carcass components. The carcass percentage of breast muscles, leg muscles, wings and skin with fat was lower, and that of remainders of carcass higher in pheasants receiving wheat grain. In addition, the carcasses of pheasants (♂♀ fed the wheat diets were characterized by a higher weight of meat and fat and lower carcass meat and fat percentage.

  10. Investigating the Effect of Cultivate Lines Direction, Bio-Fertilizer Nitroxin and Superabsorbent Materials on Yield and Yield Components of Broad Leaf Vetch (Vicia narbonensis)

    E Latifinia; N Akbari; F Nazarian Firozabadi; S Heidari

    2017-01-01

    Introduction The excessive use of fertilizers has caused severe damages to the bio-cycle in the fields and has destroyed the sustainable agricultural machinery. These destructive effects have led to the recommended use of bio-fertilizers. Biodiversity is one of the key sources of supplying nutrients in sustainable agriculture. The use of biological fertilizers in a sustainable agricultural system leads to sustained yield in plant production. Biological fertilizer of nitroxin has increased ...

  11. Overexpression of the TaSHN1 transcription factor in bread wheat leads to leaf surface modifications, improved drought tolerance and no yield penalty under controlled growth conditions.

    Bi, Huihui; Shi, Jianxin; Kovalchuk, Natalia; Luang, Sukanya; Bazanova, Natalia; Chirkova, Larissa; Zhang, Dabing; Shavrukov, Yuri; Stepanenko, Anton; Tricker, Penny; Langridge, Peter; Hrmova, Maria; Lopato, Sergiy; Borisjuk, Nikolai

    2018-05-14

    Transcription factors regulate multiple networks, mediating the responses of organisms to stresses, including drought. Here we investigated the role of the wheat transcription factor TaSHN1 in crop growth and drought tolerance. TaSHN1, isolated from bread wheat, was characterised for molecular interactions and functionality. The overexpression of TaSHN1 in wheat was followed by the evaluation of T 2 and T 3 transgenic lines for drought tolerance, growth and yield components. Leaf surface changes were analysed by light microscopy, SEM, TEM and GC-MS/GC-FID. TaSHN1 behaves as a transcriptional activator in a yeast transactivation assay and binds stress-related DNA cis-elements, determinants of which were revealed using 3D molecular modelling. The overexpression of TaSHN1 in transgenic wheat did not result in a yield penalty under the controlled plant growth conditions of a glasshouse. Transgenic lines had significantly lower stomatal density and leaf water loss, and exhibited improved recovery after severe drought, compared to control plants. The comparative analysis of cuticular waxes revealed an increased accumulation of alkanes in leaves of transgenic lines. Our data demonstrate that TaSHN1 may operate as a positive modulator of drought stress tolerance. Positive attributes could be mediated through an enhanced accumulation of alkanes and reduced stomatal density. This article is protected by copyright. All rights reserved.

  12. Silicon treatment to rice (oryza sativa l. cv 'gopumbyeo') plants during different growth periods and its effects on growth and grain yield

    Kim, Y.H.; Waqas, M.; Kamran, M.

    2012-01-01

    Silicon (Si) has been considered a beneficial element for plant growth. We have assessed the effects of Si application on rice (Oryza sativa L.) growth and its grain yield at field level. For this, we performed two experiments. In experiment 1, we applied Si of three different concentrations (liquid Si-10, 25 and 36%) to the seedbed of rice before transplantation into paddy field. The results of this experiment showed that Si application to rice seedbeds did not affected the rice plant height and shoot fresh weight but its application significantly increased the pushing resistance of rice plants from 12.2-16.7% as compared with water applied control plants. The lodging index of Si treated rice plants significantly decreased (13.7% on LS-25) as compared with control. Similarly, Si treated plants had significantly higher yield. Upon Si treatment (LS-36), the grain yield per 10 acre and panicles per plant were 15.1% and 6. 3% higher than the water treated control plants respectively. The best concentration (LS-36%) revealed in the first experiment was foliar applied at 10 days before heading stage, initial tilling stage and panicle initiation stage to the rice leaves and we observed that shoot biomass was not significantly different between control and Si treated plants. However, significantly higher pushing resistance (10.5%-13.8%) and plant height (12.2%-16.7%) were observed while lower lodging index (7.6-7.8%) was recorded for Si treated plants as compared to control plants. Similarly, Si application increased the number of panicles per plant as well as the grain yield per 10 acre as compared to control. In conclusion, the Si application can significantly regulate plant growth and yield if applied at proper time with feasible concentration. (author)

  13. The QTL GNP1 Encodes GA20ox1, Which Increases Grain Number and Yield by Increasing Cytokinin Activity in Rice Panicle Meristems.

    Wu, Yuan; Wang, Yun; Mi, Xue-Fei; Shan, Jun-Xiang; Li, Xin-Min; Xu, Jian-Long; Lin, Hong-Xuan

    2016-10-01

    Cytokinins and gibberellins (GAs) play antagonistic roles in regulating reproductive meristem activity. Cytokinins have positive effects on meristem activity and maintenance. During inflorescence meristem development, cytokinin biosynthesis is activated via a KNOX-mediated pathway. Increased cytokinin activity leads to higher grain number, whereas GAs negatively affect meristem activity. The GA biosynthesis genes GA20oxs are negatively regulated by KNOX proteins. KNOX proteins function as modulators, balancing cytokinin and GA activity in the meristem. However, little is known about the crosstalk among cytokinin and GA regulators together with KNOX proteins and how KNOX-mediated dynamic balancing of hormonal activity functions. Through map-based cloning of QTLs, we cloned a GA biosynthesis gene, Grain Number per Panicle1 (GNP1), which encodes rice GA20ox1. The grain number and yield of NIL-GNP1TQ were significantly higher than those of isogenic control (Lemont). Sequence variations in its promoter region increased the levels of GNP1 transcripts, which were enriched in the apical regions of inflorescence meristems in NIL-GNP1TQ. We propose that cytokinin activity increased due to a KNOX-mediated transcriptional feedback loop resulting from the higher GNP1 transcript levels, in turn leading to increased expression of the GA catabolism genes GA2oxs and reduced GA1 and GA3 accumulation. This rebalancing process increased cytokinin activity, thereby increasing grain number and grain yield in rice. These findings uncover important, novel roles of GAs in rice florescence meristem development and provide new insights into the crosstalk between cytokinin and GA underlying development process.

  14. Improving adaptation to drought stress in white pea bean (Phaseolus vulgaris L): genotypic effects on grain yield, yield components and pod harvest index

    Common bean (Phaseolus vulgaris L.) is the most important food legume crop in Africa and Latin America where rainfall pattern is unpredictable. The objectives were to identify better yielding common bean lines with good canning quality under drought, and to identify traits that could be used as sele...

  15. IMPACT OF LIME, BIOMASS ASH AND COMPOST AS WELL AS PREPARATION OF EM APPLICATIONS ON GRAIN YIELD AND YIELD COMPONENTS OF WHEAT

    Sławomir Stankowski

    2014-10-01

    Full Text Available Field experiment was conducted in 2013 in Duninowo (54o539’ N, 16o830’ E. The experimental factors were: I. factor - 6 variants of fertilization, and II. - two level of EM preparations. The aim of this study was to evaluate the impact of ash from biomass by comparing its effect with the calcium fertilizer and compost BIOTOPE in conjunction with the preparation of microbiological Effective Microorganisms (EM. The impact of ash from biomass introduced into the soil on yield and yield structure and physiological parameters of spring wheat was analyzed No significant impact of the various variants of fertilizer application on the yielding of spring wheat cv.Bombona was confirmed. As a result of the form of compost fertilizer BIOTOPE, an increase in the content of chlorophyll in leaves of wheat cv Bombona (SPAD and the size of canopy assimilation area per unit area of the field (LAI. The application of EM did not affect the physiological parameters (yield, the number of ears per area unit, SPAD, LAI characterizing the spring wheat cv. Bombona.

  16. Green ear yield and grain yield of maize after harvest of the first ear as baby corn Rendimentos de espigas verdes e de grãos de milho após a colheita da primeira espiga como minimilho

    Paulo Sérgio L e Silva

    2006-06-01

    Full Text Available Baby corn (BC consists of the corn ear harvested two or three days after silk emergence. BC is a profitable crop, making possible a diversification of production, aggregation of value and increased income. Removing the first female inflorescence induces corn to produce others, making possible to produce several BC ears or, alternatively, BC (by harvesting the first ear and green ears or grain. The objective of this work was to evaluate green ear yield and grain yield, after harvesting the first ear as BC. Corn cultivar AG 1051 was submitted to the following treatments, in a random block design with ten replicates (52 plants per plot: BC harvesting; green ear harvesting (grain moisture content between 60 and 70%; mature ear harvesting; BC harvesting and harvesting of other ears as green or mature ears. Marketable green ears yield or grain yield produced without removing the first inflorescence were superior to the green ears yield or grain yield produced after removal of the first inflorescence harvested as baby corn. Harvesting only the first ear as baby corn, and then harvesting green ears or the mature ears, provided lower baby corn yields than that obtained by harvesting all ears as baby corn. Economically, the best net revenues would be obtained by exploring the crop for the production of green ears, green ears + baby corn, baby corn, baby corn + grain, and grain, in this order.O minimilho (MM é a espiga do milho colhida dois a três dias após a emergência dos estilo-estigmas. O MM é rentável e propicia diversificação da produção, agregação de valor e ampliação de renda. A remoção da primeira inflorescência feminina induz o milho a produzir outras. Isso possibilita a produção de várias espigas de MM ou, alternativamente, MM (colhendo-se a primeira espiga e espigas verdes ou grãos. O objetivo do trabalho foi avaliar os rendimentos de espigas verdes e de grãos, após a colheita da primeira espiga como MM. A cultivar AG

  17. Physiological analysis of leaf senescence of two rice cultivars with different yield potential Análise fisiológica da senescência foliar de duas cultivares de arroz com diferentes potenciais de produtividade

    Antelmo Ralph Falqueto

    2009-07-01

    Full Text Available The objective of this work was to evaluate the physiological changes that occur in different leaves during the early and late grain-filling stages of two rice genotypes (Oryza sativa subsp. indica , BRS Pelota cultivar, and O. sativa subsp. japonica , BRS Firmeza cultivar, which present differences in grain yield potential. The plants were cultivated in greenhouse. Pigment content, chlorophyll fluorescence, electron transport and oxygen evolution rate were determined in the grain-filling stage, from the first to the forth leaf (top to bottom. Pigment content, photochemical efficiency of photosystem II and electron transport decreased significantly according to the position of leaves in 'BRS Pelota'. The BRS Firmeza cultivar shows higher pigment content and higher activity of the photosynthetic apparatus in comparison to 'BRS Pelota' during the grain-filling stage.O objetivo deste trabalho foi avaliar as mudanças fisiológicas que ocorrem em diferentes folhas durante o início e o final do estádio de enchimento de grãos em dois genótipos de arroz (Oryza sativa subsp. indica cultivar BRS Pelota e O. sativa subsp. japonica cultivar BRS Firmeza que apresentam diferenças no potencial de produção de grãos. As plantas foram cultivadas em casa de vegetação. Os teores de pigmentos, a fluorescência da clorofila e a taxa de liberação de oxigênio foram determinados no estádio de enchimento de grão da primeira à quarta folha (do topo à base. O teor de pigmentos, a eficiência fotoquímica do fotossistema II e o transporte de elétrons decresceram significativamente de acordo com a posição das folhas na cultivar BRS Pelota. A cultivar BRS Firmeza apresentou maior teor de pigmentos e maior atividade do aparato fotossintético em comparação à 'BRS Pelota' durante o estádio de enchimento de grão.

  18. Effects of Row Spacing and Plant Density on Yield and Yield Components of Sweet Corn in Climatic Conditions of Isfahan

    N. Khodaeian

    2013-06-01

    Full Text Available To evaluate the effects of row spacing and plant density on yield and yield components of sweet corn, variety KSC403, an experiment was conducted in Research Farm of Isfahan University of Technology, Isfahan, Iran, in 2007, as randomized complete block design with a split-plot layout and three replications. The main plots were allocated to two row spacing (60 and 75 cm and the sub-plots accommodated four levels of plant density (50000, 70000, 90000 and 110000 plants per ha. There was significant increase in leaf area index, shoot dry weight, 100-grain fresh weight and grain fresh yield, as row width was decreased from 75 to 60 cm but the plant height was decreased. There was no significant effect of row spacing on number of rows per ear, number of grains per row and number of grains per ear. Plant height, leaf area index, shoot dry weight per m2 and number of ears per m2 were increased with an increase in plant density. The number of rows per ear, number of grains per row, number of grains per ear, 100-grain fresh weight and grain fresh yield were significantly higher under plant densities of 90000 and 110000 as compared to 50000 and 70000 plants per ha. There was significant interaction between row spacing and plant density for leaf area index, shoot dry weight, number of grains per ear, 100-grain fresh weight and grain fresh yield. Under all plant densities, the grain fresh yield was higher in 60-cm row width compared to 70-cm row width. However, the difference between these two row spacing was not significant in plant densities of 50000 and 110000 plants per ha. The highest grain fresh yield (33940 kg/ha was achieved under row spacing 60 cm and 70000 plants per ha and the least grain fresh yield (20750 kg/ha was obtained in under 75 cm row width and 110000 plants per ha. Considering the obtained results of this experiment, to have maximum grain fresh yield of sweet corn under Isfahan climate, the row spacing of 60 cm and plant density of

  19. Land usage attributed to corn ethanol production in the United States: sensitivity to technological advances in corn grain yield, ethanol conversion, and co-product utilization.

    Mumm, Rita H; Goldsmith, Peter D; Rausch, Kent D; Stein, Hans H

    2014-01-01

    Although the system for producing yellow corn grain is well established in the US, its role among other biofeedstock alternatives to petroleum-based energy sources has to be balanced with its predominant purpose for food and feed as well as economics, land use, and environmental stewardship. We model land usage attributed to corn ethanol production in the US to evaluate the effects of anticipated technological change in corn grain production, ethanol processing, and livestock feeding through a multi-disciplinary approach. Seven scenarios are evaluated: four considering the impact of technological advances on corn grain production, two focused on improved efficiencies in ethanol processing, and one reflecting greater use of ethanol co-products (that is, distillers dried grains with solubles) in diets for dairy cattle, pigs, and poultry. For each scenario, land area attributed to corn ethanol production is estimated for three time horizons: 2011 (current), the time period at which the 15 billion gallon cap for corn ethanol as per the Renewable Fuel Standard is achieved, and 2026 (15 years out). Although 40.5% of corn grain was channeled to ethanol processing in 2011, only 25% of US corn acreage was attributable to ethanol when accounting for feed co-product utilization. By 2026, land area attributed to corn ethanol production is reduced to 11% to 19% depending on the corn grain yield level associated with the four corn production scenarios, considering oil replacement associated with the soybean meal substituted in livestock diets with distillers dried grains with solubles. Efficiencies in ethanol processing, although producing more ethanol per bushel of processed corn, result in less co-products and therefore less offset of corn acreage. Shifting the use of distillers dried grains with solubles in feed to dairy cattle, pigs, and poultry substantially reduces land area attributed to corn ethanol production. However, because distillers dried grains with solubles

  20. Grain Yield and Fusarium Ear Rot of Maize Hybrids Developed From Lines With Varying Levels of Resistance

    Fusarium ear rot, caused by Fusarium verticillioides and other Fusarium spp. is found in all U.S. maize growing regions. Affected grain often contains carcinogenic mycotoxins called fumonisins. We tested the hypothesis that inbred lines with greater resistance to fumonisin contamination would pro...

  1. To evaluate the efficacy of zinc sulphate mixed with phosphate and potash fertilizer on the grain yield of wheat (tritium aestivum L.)

    Abbas, G.; Abbas, Z.; Ali, M.A.; Hussain, I.

    2009-01-01

    A field experiment was conducted to evaluate yield response of wheat cv, BK-2002 at various fertilizer levels, at farmer, fields of District Mianwali during consecutive years 2006-07 and 2007-08. Six levels of ZnSo/sub 4/ mixed with NPK were evaluated in farmer's fields in Randomized Complete Block Design with three replications. All doses of znSo/sub 4/ along with Departmental recommended dose of NPK (114-84- 62 kg ha/sup-l/) revealed a linear increase in, plant height, number of tillers/m/sup 2/, number of spikelets /spike. number of grains/spike, 1000 grains weight (g) and yield (kg ha/sup-1/) of wheat variety BK-2002 were recorded. Maximum yield of wheat was recorded when it was subjected to 22.5 kg ho/sub -1/ 33% ZnSo/sub 4/ Departmental recommended dose of NPK fertilizer. The study indicated the potential role of ZnSo/sub 4/ in enhancing the growth and yield of wheat in arid climate and that 33% ZnSo/sub 4/ (22.5 kg ha/sub -1/) + Departmental recommended dose of NPK, (fertilizer might be the optimum level (T5) for the production of wheat in arid climate. (author)

  2. Leaf-level carbon isotope discrimination and its relationship with yield components as a tool for cotton phenotyping in unfavorable conditions

    Giovani Greigh Brito

    2014-07-01

    Full Text Available The initial goal of this study was to measure the efficiency of carbon isotope discrimination (Δ in distinguishing between cotton plant genotypes subjected to two water regimes. In addition, ∆ measurements, leaf water potential and gas exchange ratios were monitored. Using Brazilian breeding lines, this study also tested the usability of ∆ as a proxy for selecting high-performing yield components in cotton plants grown in unfavorable conditions, particularly water deficiency. For these experiments, ∆ and yield components were measured and their correlations analyzed. Differences among cotton genotypes for Δ (p < 0.0001 were verified, and it was found that this variable was significantly correlated with gas exchange. There was a significant positive correlation between Δ and seed cotton yield only in the site experiencing severe water deficiency (Santa Helena de Goiás. However, Δ had a significant negative correlation with fiber percentage. Our results indicate that Δ is a suitable tool for cotton phenotyping, and it may be applied in cotton breeding programs that aim to produce high-performing yield components in unfavorable conditions.

  3. The effect of organic fertilizers and different sowing dates on yield and yield components of flower and grain of Pot Marigold (Calendula officinalis L.

    P Rezvani moghaddam

    2016-05-01

    Full Text Available In order to find out suitable organic fertilizers for elimination of chemical fertilizers usage and the optimum sowing date in Pot Marigold cultivation, an experiment was conducted in the Agricultural Research Station, Ferdowsi University of Mashhad, Iran, in 2007 growing season. For this purpose a split plot experiment based on completely randomized block design with three replications was used. The main factor consist of four different fertilizers (50 kg.ha-1 N, 40 t.ha-1 Cow manure, 20 t.ha-1 Compost fertilizer and 10 t.ha-1 Hen manure beside control (without fertilizer and three sowing dates (10th April, 1th May and 21th May were allocated as sub factor. The results showed that the length time of emergence to budding, budding to flowering and flowering to ripening decreased by delay in sowing date, significantly. By delay in sowing date, plant height and dry matter also decreased because of reduction of vegetative growing duration. The various fertilizers had not significant effect on developmental stages and morphological characteristics of Pot Marigold. Nitrogen fertilizer and Hen manure in compare of other treatments had significantly (p≤0.05 higher level in number of inflorescences, yield of inflorescences, yield of petal and seed yield. Thus, Hen manure can be a suitable replacement of chemical fertilizers in Pot Marigold cultivation. The various sowing dates showed significant effect on the most measured characteristics of seed and inflorescences yield components of Pot Marigold. The highest of all studied characteristics were obtained in 10th April and 1th May than 21th May sowing dates.

  4. Effects of sample drying and storage, and choice of extraction solvent and analysis method on the yield of birch leaf hydrolyzable tannins.

    Salminen, Juha-Pekka

    2003-06-01

    In this study, I investigated the effects of different methods of sample drying and storage, and the choice of extraction solvent and analysis method on the concentrations of 14 individual hydrolyzable tannins (HTs), and insoluble ellagitannins in birch (Betula pubescens) leaves. Freeze- and vacuum-drying of birch leaves were found to provide more reliable results than air- or oven-drying. Storage of leaves at -20 degrees C for 3 months before freeze-drying did not cause major changes in tannin content, although levels of 1,2,3,4,6-penta-O-galloylglucose and isostrictinin were altered. Storage of dried leaf material at -20 degrees C is preferred because 1 year storage of freeze-dried leaves at 4 degrees C and at room temperature decreased the concentration of the pedunculagin derivative, one of the main ellagitannins of birch. Furthermore, storage at room temperature increased the levels of isostrictinin and 2,3-(S)-HHDP-glucose, indicating possible HT catabolism. Of the extraction solvents tested, aqueous acetone was superior to pure acetone, or aqueous or pure methanol. The addition of 0.1% ascorbic acid into 70% acetone significantly increased the yield of ellagitannins. presumably by preventing their oxidation. By comparing the conventional rhodanine assay and the HPLC-ESI-MS assay for quantification of leaf galloylglucoses, the former tends to underestimate total concentrations of galloylglucoses in birch leaf extract. On the basis of the outcomes of all the method and solvent comparisons, their suitability for qualitative and quantitative analysis of plant HTs is discussed, emphasizing that each plant species, with its presumably unique HT composition, is likely to have a unique combination of ideal conditions for tissue preservation and extraction.

  5. Effects of timing and severity of salinity stress on rice (Oryza sativa L.) yield, grain composition, and starch functionality.

    Thitisaksakul, Maysaya; Tananuwong, Kanitha; Shoemaker, Charles F; Chun, Areum; Tanadul, Orn-u-ma; Labavitch, John M; Beckles, Diane M

    2015-03-04

    The aim of this work was to examine agronomic, compositional, and functional changes in rice (Oryza sativa L. cv. Nipponbare) grains from plants grown under low-to-moderate salinity stress in the greenhouse. Plants were grown in sodium chloride-containing soil (2 or 4 dS/m(2) electrical conductivity), which was imposed 4-weeks after transplant (called Seedling EC2 and EC4) or after the appearance of the anthers (called Anthesis EC2 and EC4). The former simulates field conditions while the latter permits observation of the isolated effect of salt on grain filling processes. Key findings of this study are the following: (i) Plants showed adaptive responses to prolonged salt treatment with no negative effects on grain weight or fertility. Seedling EC2 plants had more panicles and enhanced caryopsis dimensions, while surprisingly, Seedling EC4 plants did not differ from the control group in the agronomic parameters measured. (ii) Grain starch increased in Seedling EC4 (32.6%) and Anthesis EC2 (39%), respectively, suggesting a stimulatory effect of salt on starch accumulation. (iii) The salinity treatment of 2 dS/m(2) was better tolerated at anthesis than the 4 dS/m(2) treatment as the latter led to reduced grain weight (28.8%) and seed fertility (19.4%) and compensatory increases in protein (20.1%) and nitrogen (19.8%) contents. (iv) Although some salinity treatments led to changes in starch content, these did not alter starch fine structure, morphology, or composition. We observed no differences in reducing sugar and amylose content or starch granule size distribution among any of the treatments. The only alterations in starch were limited to small changes in thermal properties and glucan chain distribution, which were only seen in the Anthesis EC4 treatment. This similarity of compositional and functional features was supported by multivariate analysis of all variables measured, which suggested that differences due to treatments were minimal. Overall, this study

  6. Grain Yield, Dry Weight and Phosphorus Accumulation and Translocation in Two Rice (Oryza sativa L. Varieties as Affected by Salt-Alkali and Phosphorus

    Zhijie Tian

    2017-08-01

    Full Text Available Salt-alkali is the main threat to global crop production. The functioning of phosphorus (P in alleviating damage to crops from saline-alkaline stress may be dependent on the variety of crop but there is little published research on the topic. This pot experiment was conducted to study if P has any effect on rice (Oryza sativa L. yield, dry matter and P accumulation and translocation in salt-alkaline soils. Plant dry weight and P content at heading and harvest stages of two contrasting saline-alkaline tolerant (Dongdao-4 and sensitive (Tongyu-315 rice varieties were examined under two saline-alkaline (light versus severe soils and five P supplements (P0, P50, P100, P150 and P200 kg ha−1. The results were: in light saline-alkaline soil, the optimal P levels were found for P150 for Dongdao-4 and for P100 for Tongyu-315 with the greatest grain dry weight and P content. Two rice varieties obtained relatively higher dry weight and P accumulation and translocation in P0. In severe saline-alkaline soil, however, dry weight and P accumulation and translocation, 1000-grain weight, seed-setting rate and grain yield significantly decreased, but effectively increased with P application for Dongdao-4. Tongyu-315 showed lower sensitivity to P nutrition. Thus, a more tolerant variety could have a stronger capacity to absorb and translocate P for grain filling, especially in severe salt-alkaline soils. This should be helpful for consideration in rice breeding and deciding a reasonable P application in saline-alkaline soil.

  7. Association Analysis of SSR Markers with Phenology, Grain, and Stover-Yield Related Traits in Pearl Millet (Pennisetum glaucum (L. R. Br.

    Baskaran Kannan

    2014-01-01

    Full Text Available Pearl millet is a staple food crop for millions of people living in the arid and semi-arid tropics. Molecular markers have been used to identify genomic regions linked to traits of interest by conventional QTL mapping and association analysis. Phenotypic recurrent selection is known to increase frequencies of favorable alleles and decrease those unfavorable for the traits under selection. This study was undertaken (i to quantify the response to recurrent selection for phenotypic traits during breeding of the pearl millet open-pollinated cultivar “CO (Cu 9” and its four immediate progenitor populations and (ii to assess the ability of simple sequence repeat (SSR marker alleles to identify genomic regions linked to grain and stover yield-related traits in these populations by association analysis. A total of 159 SSR alleles were detected across 34 selected single-copy SSR loci. SSR marker data revealed presence of subpopulations. Association analysis identified genomic regions associated with flowering time located on linkage group (LG 6 and plant height on LG4, LG6, and LG7. Marker alleles on LG6 were associated with stover yield, and those on LG7 were associated with grain yield. Findings of this study would give an opportunity to develop marker-assisted recurrent selection (MARS or marker-assisted population improvement (MAPI strategies to increase the rate of gain for pearl millet populations undergoing recurrent selection.

  8. Determining the most important physiological and agronomic traits contributing to maize grain yield through machine learning algorithms: a new avenue in intelligent agriculture.

    Avat Shekoofa

    Full Text Available Prediction is an attempt to accurately forecast the outcome of a specific situation while using input information obtained from a set of variables that potentially describe the situation. They can be used to project physiological and agronomic processes; regarding this fact, agronomic traits such as yield can be affected by a large number of variables. In this study, we analyzed a large number of physiological and agronomic traits by screening, clustering, and decision tree models to select the most relevant factors for the prospect of accurately increasing maize grain yield. Decision tree models (with nearly the same performance evaluation were the most useful tools in understanding the underlying relationships in physiological and agronomic features for selecting the most important and relevant traits (sowing date-location, kernel number per ear, maximum water content, kernel weight, and season duration corresponding to the maize grain yield. In particular, decision tree generated by C&RT algorithm was the best model for yield prediction based on physiological and agronomical traits which can be extensively employed in future breeding programs. No significant differences in the decision tree models were found when feature selection filtering on data were used, but positive feature selection effect observed in clustering models. Finally, the results showed that the proposed model techniques are useful tools for crop physiologists to search through large datasets seeking patterns for the physiological and agronomic factors, and may assist the selection of the most important traits for the individual site and field. In particular, decision tree models are method of choice with the capability of illustrating different pathways of yield increase in breeding programs, governed by their hierarchy structure of feature ranking as well as pattern discovery via various combinations of features.

  9. Investigation of Water Dynamics and the Effect of Evapotranspiration on Grain Yield of Rainfed Wheat and Barley under a Mediterranean Environment: A Modelling Approach.

    Zhang, Kefeng; Bosch-Serra, Angela D; Boixadera, Jaume; Thompson, Andrew J

    2015-01-01

    Agro-hydrological models have increasingly become useful and powerful tools in optimizing water and fertilizer application, and in studying the environmental consequences. Accurate prediction of water dynamics in such models is essential for models to produce reasonable results. In this study, detailed simulations were performed for water dynamics of rainfed winter wheat and barley grown under a Mediterranean climate over a 10-year period. The model employed (Yang et al., 2009. J. Hydrol., 370, 177-190) uses easily available agronomic data, and takes into consideration of all key soil and plant processes in controlling water dynamics in the soil-crop system, including the dynamics of root growth. The water requirement for crop growth was calculated according to the FAO56, and the soil hydraulic properties were estimated using peto-transfer functions (PTFs) based on soil physical properties and soil organic matter content. Results show that the simulated values of soil water content at the depths of 15, 45 and 75 cm agreed with the measurements well with the root of the mean squared errors of 0.027 cm(3) cm(-3) and the model agreement index of 0.875. The simulated seasonal evapotranspiration (ET) ranged from 208 to 388 mm, and grain yield was found to correlate with the simulated seasonal ET in a linear manner within the studied ET range. The simulated rates of grain yield increase were 17.3 and 23.7 kg ha(-l) for every mm of water evapotranspired for wheat and barley, respectively. The good agreement of soil water content between measurement and simulation and the simulated relationships between grain yield and seasonal ET supported by the data in the literature indicates that the model performed well in modelling water dynamics for the studied soil-crop system, and therefore has the potential to be applied reliably and widely in precision agriculture. Finally, a two-staged approach using inverse modelling techniques to further improve model performance was

  10. Oilseed rape grain yield productivity increases with hybrid varietal types: a first balance sheet with post registration tests in France and in Europe

    Pinochet Xavier

    2000-01-01

    Full Text Available Since 1994 several oilseed rape hybrid types were proposed to farmers. Following registration experiments, Cetiom and different equivalent institutions in European Union have tested them in different post registration national networks. Grain yield productivity increases were demonstrated and a first synthesis could be done to check avantages and difficulties which had occurred. For winter types, Hybrid Composits were widely used, mainly in France and in the United Kingdom. Grain yield increases were important in the South and West part of France where their market shares increased up to 50-80%. Nevertheless, many fecondation problems occurred in several places all over Europe. Reasons of such problems were difficult to identify. Several factors, as cold temperatures, nutritionnal competitions, pollen avaibility may be involved to explain low seed sets. Restored Hybrids made with the NPZ hybridation system were successfully tested widely, and has reached significative market shares during 1999-2000 season. Less experiments were carried out with others hybrid types (Ogu-INRA Restored Hybrids, Mixed Hybrids. Ogu-INRA Restored Hybrids reached the highest grain yield levels but users are waiting for lower glucosinolates seed content hybrids which would come in the next future. Performances comparisons among countries have to be done carefully. Productivity increases with hybrid types could have been over estimated depending of pollinic environments or plot size and possible neighbouring effects. For France, results from field trials networks are coherent with results coming from postal surveys. For spring varieties, Polima restored hybrids and varietal associations have demonstrated a significative advantage compared to classical lines.

  11. Effect of jasmonic acid elicitation on the yield, chemical composition, and antioxidant and anti-inflammatory properties of essential oil of lettuce leaf basil (Ocimum basilicum L.).

    Złotek, Urszula; Michalak-Majewska, Monika; Szymanowska, Urszula

    2016-12-15

    The effect of elicitation with jasmonic acid (JA) on the plant yield, the production and composition of essential oils of lettuce leaf basil was evaluated. JA-elicitation slightly affected the yield of plants and significantly increased the amount of essential oils produced by basil - the highest oil yield (0.78±0.005mL/100gdw) was achieved in plants elicited with 100μM JA. The application of the tested elicitor also influenced the chemical composition of basil essential oils - 100μM JA increased the linalool, eugenol, and limonene levels, while 1μM JA caused the highest increase in the methyl eugenol content. Essential oils from JA-elicited basil (especially 1μM and 100μM) exhibited more effective antioxidant and anti-inflammatory potential; therefore, this inducer may be a very useful biochemical tool for improving production and composition of herbal essential oils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Assessing the effects of soil liming with dolomitic limestone and sugar foam on soil acidity, leaf nutrient contents, grape yield and must quality in a Mediterranean vineyard

    Olego, M.A.; Visconti, F.; Quiroga, M.J.; Paz, J.M. De; Garzón-Jimeno, E.

    2016-11-01

    Aluminium toxicity has been recognized as one of the most common causes of reduced grape yields in vineyard acid soils. The main aim of this study was to evaluate the effect of two liming materials, i.e. dolomitic lime and sugar foam, on a vineyard cultivated in an acid soil. The effects were studied in two soil layers (0-30 and 30-60 cm), as well as on leaf nutrient contents, must quality properties and grape yield, in an agricultural soil dedicated to Vitis vinifera L. cv. ‘Mencía’ cultivation. Data management and analysis were performed using analysis of variance (ANOVA). As liming material, sugar foam was more efficient than dolomitic limestone because sugar foam promoted the highest decrease in soil acidity properties at the same calcium carbonate equivalent dose. However, potassium contents in vines organs, including leaves and berries, seemed to decrease as a consequence of liming, with a concomitant increase in must total acidity. Soil available phosphorus also decreased as a consequence of liming, especially with sugar foam, though no effects were observed in plants. For these reasons fertilization of this soil with K and P is recommended along with liming. Grape yields in limed soils increased, although non-significantly, by 30%. This research has therefore provided an important opportunity to advance in our understanding of the effects of liming on grape quality and production in acid soils. (Author)

  13. Effect of seed treatment with static magnetic field (SMF) and low dose gamma radiation (GR) on grain yield of aerobic rice

    Kumar, Dinesh; Anand, Anjali; Singh, Bhupinder

    2014-01-01

    Aerobic rice cultivation is gaining popularity as it demands less water. However, poor germination of rice is an important issue in this situation. Seed pretreatment with static magnetic field (SMF) and gamma radiation (GR) at prescribed dose is known to influence the germination, seedling vigour and and yield of many crops. There is a possibility to improve the crop establishment under aerobic situation by physical seed treatment with static-magnetic field (SMF) and gamma radiation (GR) prior to sowing. Hence, a field experiment was conducted at the Indian Agricultural Research Institute, New Delhi during kharif 2012 and 2013 to study the effect of SMF and GR-treated seeds on growth and yield of aerobic rice. The five seed treatments were: SMF 50 mT for 2 hrs, SMF 100 mT for 2 hrs, GR 0.0025 kGy, GR 0.10 kGy and an untreated control. The experiment was laid out in a Randomized Block Design with four replications. Crop (variety 'Pusa Basmati-1121') was direct seeded on 25 th and 24 th June during 2012 and 2013, respectively at a spacing of 25 cm. Treatments GR 0.0025 kGy, SMF (50 mT) and SMF (100 mT) resulted in a significant improvement in grain yield of rice over control and GR dose (0.10 kGy) during both the years. Averaged across two years the grain yield increase by treating the rice seeds with GR 0.0025 kGy, SMF (50 mT) and SMF (100 mT) was 20.1, 17.6 and 14.5%, respectively over the control. Increase in GR dose (0.10 kGy ) was not effective in improving the yield, and was found to be similar to control. It is therefore concluded that treatment of rice seeds either with GR (0.0025 kGy) or SMF (50 mT) holds a great promise in increasing the grain yield of aerobic rice. (author)

  14. Winter wheat yield estimation of remote sensing research based on WOFOST crop model and leaf area index assimilation

    Chen, Yanling; Gong, Adu; Li, Jing; Wang, Jingmei

    2017-04-01

    Accurate crop growth monitoring and yield predictive information are significant to improve the sustainable development of agriculture and ensure the security of national food. Remote sensing observation and crop growth simulation models are two new technologies, which have highly potential applications in crop growth monitoring and yield forecasting in recent years. However, both of them have limitations in mechanism or regional application respectively. Remote sensing information can not reveal crop growth and development, inner mechanism of yield formation and the affection of environmental meteorological conditions. Crop growth simulation models have difficulties in obtaining data and parameterization from single-point to regional application. In order to make good use of the advantages of these two technologies, the coupling technique of remote sensing information and crop growth simulation models has been studied. Filtering and optimizing model parameters are key to yield estimation by remote sensing and crop model based on regional crop assimilation. Winter wheat of GaoCheng was selected as the experiment object in this paper. And then the essential data was collected, such as biochemical data and farmland environmental data and meteorological data about several critical growing periods. Meanwhile, the image of environmental mitigation small satellite HJ-CCD was obtained. In this paper, research work and major conclusions are as follows. (1) Seven vegetation indexes were selected to retrieve LAI, and then linear regression model was built up between each of these indexes and the measured LAI. The result shows that the accuracy of EVI model was the highest (R2=0.964 at anthesis stage and R2=0.920 at filling stage). Thus, EVI as the most optimal vegetation index to predict LAI in this paper. (2) EFAST method was adopted in this paper to conduct the sensitive analysis to the 26 initial parameters of the WOFOST model and then a sensitivity index was constructed

  15. Effect of polyethylene and organic mulches in different intervals of irrigation on morphological characteristics and grain yield of sunflower (Helianthus annus L.

    R. Mahdipour Afra

    2016-05-01

    Full Text Available In order to investigate the effects of polyethylene and organic mulches in different Irrigation intervals on morphological characteristics and seed grain of sunflower (Helianthus annus L. hybrid Azrgol, an experiment was conducted in split-plot design based on randomized complete blocks with three replications at research farm of college of Aboureihan, University of Tehran during year of 2009. Main factor was three irrigation interval including of 7, 12 and 17 days and sub-factors were treatments without mulch as control and different types of mulch (polyethylene, cow manure including of 8.5 t.ha-1,17 t.ha-1, 25 t.ha-1, wheat stubble mulch in three levels of 2.5, 5.5 and 7.5 t.ha-1. Plant height, head diameter, seed number in each head, 1000-seed weight, seed yield, oil yield, harvest index were investigated. The results indicated that the effect of irrigation period and the effect of mulches for all measured traits were significant. Highest seed yield with average of 2.965 t.ha-1 was obtained from 7 days irrigation and also polyethylene mulch and stubble mulch level three in different irrigation periods, had the highest yield. The overall results showed that, using mulches by reducing irrigation water use can increases the quality and quantity seed yield. Regarding the results of the study and non-toxic effects of stubble mulches in agriculture, we suggest their usage.

  16. Selection of Common Bean Lines, Recombinant Inbred Lines and Commercial Genotypes Tolerant to Low Phosphorus Availability in an Acrisol Soil on the Basis of Root Traits and Grain Yield

    Garcia, A.; Gomez, L. A.; Morales, A. [Instituto de Suelos, MINAG (Cuba); others, and

    2013-11-15

    Common bean (Phaseolus vulgaris L.) is the most important food legume for human consumption worldwide and especially in Latin America and Africa, but low soil phosphorus (P) availability limits grain production in these areas. For these reason eighty five recombinant inbred lines (RILs) of BAT 477 x DOR 364 and twenty commercial bean genotypes were sown in plots in an Acrisol soil with low P availability to evaluate nine root traits and grain yield. The study was carried out in Pinar del Rio province in Cuba between November 2006 and February 2009. The plots received basal fertilization (N and K) and P fertilization between 15 and 90 kg P{sub 2}O{sub 5} ha{sup -1}. Ten plants were sampled from each plot at R{sub 6} pod fill to evaluate root traits and shoot biomass, and at R{sub 9} physiological maturity to estimate grain yield. The 85 RILs showed great variability for root traits, grain yield and P stress tolerance calculated as relative grain yield. The commercial bean lines also showed large diversity in yield parameters. Principal Component Analysis showed that there were high and significant correlations between root traits (basal root number, primary root depth, adventitious root length and adventitious root number) and grain yield parameters (grain yield at 15 P level and relative grain yields). Adventitious root traits showed the greatest correlation with yield under low P. Promising RILs included 75.1.1, 60.1.1, 38.1.1, 14.1.1 and 38.1.1 and promising commercial bean lines included ICA Pijao, BAT 482, ICA 23, BAT 24 and BAT 832. (author)

  17. Induction of resistance to bacterial leaf blight (Xanthomonas oryzae) disease in the high yielding variety Vijaya (IR 8 x T 90)

    Padmanabhan, S.Y.; Kaur, S.; Rao, M.

    1976-01-01

    The high-yield variety Vijaya ( IR 8 x T 90), susceptible to bacterial leaf blight (Xanthomonas oryzae, Uyeda and Ishiyama Dawson), was treated with EMS to induce resistance. Dehusked seeds were pre-soaked in distilled water for 4 hrs, and subjected to 0.1% and 0.2% EMS for 6 hrs. Seed germination and survival was low in 0.2% EMS. Seedlings of M 1 were raised in pots, and panicles of individual plants harvested separately. The seeds of M 2 (8800 plants) generation were grown in nursery beds, and transplanted in field after 30 days. The plants were inoculated at the boot leaf stage with X.oryzae by the clipping method, and lesion length measured 15 days later. The frequency distribution of controls was bimodal, the EMS-treated population polymodal with new peaks. A wider range of variability was induced on the resistant and susceptible side. In M 2 0.36% resistant and 0.62% moderately resistant plants occurred. The seeds of (11) resistant and (20) moderately resistant plants of M 2 were sown for M 3 generation. These plants also segregated in the range of 0-31 and 0-32 cm lesion length. The frequency distribution curve was polymodal. M 2 from ''R'' showed 1.07% of resistant plants and 0.42% from ''MR'', against, 4.28% of moderately resistant plants from ''R'' and 3.22% from ''MR''. Susceptible plants of M 2 also segregated towards resistance (1.15%) and moderately resistant (6.96%) plants in M 3 generation. Resistant (25) and moderately resistant (147) plants of M 3 were carried forward to M 4 generation, and segregated in the range of 2.1-25 cm lesion length. The frequency curve was polymodal. No resistant plant (up to 2.0 cm lesion length) could be isolated in M 4 . The percentage of moderately resistant plants was 4.44% from ''R'' of M 3 and 4.82% from ''MR'' of M 3 and 4.77% from ''S'' of M 3 generation. The yield of resistant plants was low whereas the yield of moderately resistant plants equalled the parent; the yield of susceptible segregants equalled or

  18. Deferral of leaf senescence and increased productivity in rice

    Biswas, A.K.; Choudhari, M.A.

    1978-01-01

    The effect of spraying of different hormones and nurtient solutions on plants at 3 developmental stages of growth of Jaya rice has been studied. Increased plant growth and leaf longevity have been correlated with increased yield of the crop. 32 P feeding experiments showed that major export of materials took place from flag leaf to grains, while various treatments with hormones and nutrients could modify this export by implicating other leaves as well. These data also support the increased yield and longevity of the top. (author)

  19. Transcriptional analyses of natural leaf senescence in maize.

    Wei Yang Zhang

    Full Text Available Leaf senescence is an important biological process that contributes to grain yield in crops. To study the molecular mechanisms underlying natural leaf senescence, we harvested three different developmental ear leaves of maize, mature leaves (ML, early senescent leaves (ESL, and later senescent leaves (LSL, and analyzed transcriptional changes using RNA-sequencing. Three sets of data, ESL vs. ML, LSL vs. ML, and LSL vs. ESL, were compared, respectively. In total, 4,552 genes were identified as differentially expressed. Functional classification placed these genes into 18 categories including protein metabolism, transporters, and signal transduction. At the early stage of leaf senescence, genes involved in aromatic amino acids (AAAs biosynthetic process and transport, cellular polysaccharide biosynthetic process, and the cell wall macromolecule catabolic process, were up-regulated. Whereas, genes involved in amino acid metabolism, transport, apoptosis, and response to stimulus were up-regulated at the late stage of leaf senescence. Further analyses reveals that the transport-related genes at the early stage of leaf senescence potentially take part in enzyme and amino acid transport and the genes upregulated at the late stage are involved in sugar transport, indicating nutrient recycling mainly takes place at the late stage of leaf senescence. Comparison between the data of natural leaf senescence in this study and previously reported data for Arabidopsis implies that the mechanisms of leaf senescence in maize are basically similar to those in Arabidopsis. A comparison of natural and induced leaf senescence in maize was performed. Athough many basic biological processes involved in senescence occur in both types of leaf senescence, 78.07% of differentially expressed genes in natural leaf senescence were not identifiable in induced leaf senescence, suggesting that differences in gene regulatory network may exist between these two leaf senescence

  20. Effects of Controlled-Release Urea on Grain Yield of Spring Maize, Nitrogen Use Efficiency and Nitrogen Balance

    JI Jing-hong

    2017-03-01

    Full Text Available The effects of mixing controlled-released urea (CRU (release period of resin coated urea is 90 days and urea (U on maize yield, nitrogen use efficiency and nitrogen balance were studied by 4 plot experiments (site:Shuangcheng, Binxian, Harbin and Zhaoyuan in two years (from year 2011 to 2012 to clarify the effect of controlled release urea on spring maize and soil nitrogen balance. Results were as follow:Spring maize yield and nitrogen absorption were increased with the increasing nitrogen fertilizer. Compared with applying urea treatment, applying CRU could increase yield, nitrogen absorption, nitrogen use efficiency, agriculture efficiency of nitrogen and nitrogen contribution rate. Under the same amount of nitrogen (100%, 75%, 50%, compared with 100% U as basic fertilizer treatment, maize yield of 100% CRU treatment increased 391, 427, 291 kg·hm-2, nitrogen use efficiency increased by 5.9%,4.9% and 5.1%, agriculture efficiency of nitrogen increased 2.0, 2.6, 2.6 kg·kg-1, and nitrogen contribution rate increased 2.7%, 3.1% and 2.4%, respectively. The value of maize yield, nitrogen absorption, nitrogen use efficiency and agriculture efficiency of nitrogen between the treatment four (40% urea as basic fertilizer+60% urea as topdressing and treatment five (40% urea plus 60% controlled release urea as basic fertilizer were similar. Apparent profit and loss of nitrogen decreased with the increase of nitrogen nitrogen fertilizer. Nitrogen apparent loss by applying 100% controlled release urea was reduced of 15.0 kg·hm-2 than applying 100% U treatment;Nitrogen apparent loss amount was decreased of 23.9 kg·hm-2 under treatment five. The method of mixing 40% urea and 60% controlled release urea should be applied in maize production in Heilongjiang Province.

  1. Effect of cotton leaf-curl virus on the yield-components and fibre properties of cotton genotypes under varying plant spacing and nitrogen fertilizer

    Ahmad, S.; Hayat, K.; Ashraf, F.; Sadiq, M.A.

    2008-01-01

    Cotton leaf-curl virus (CLCu VB. Wala strain) is one of the major biotic constraints of cotton production in Punjab. Development of resistant cotton genotype is the most feasible, economical and effective method to combat this hazardous problem, but so far no resistant genotype has been reported. Therefore, the objective of this study was to compare yield and yield-components and fiber traits of different genotypes/varieties under different plant spacing and nitrogen fertilizer as a management strategy to cope with this viral disease. Field experiment was conducted during 2006-07 to evaluate the effect of genotype, plant spacing and nitrogen fertilizer on cotton. Five genotypes (MNH-786, MNH-789, MNH- 6070, CIM- 496, and BH-160), three plant-spacings (15, 30 and 45 cm) and three nitrogen fertilizer-levels (6.5, 8.6 and 11 bags Urea / ha) were studied. Results showed that significant differences exist for plant height, no. of bolls/m/sup -2/, seed-cotton yield (kg/ha) due to genotype, interaction of genotype with plant spacing and nitrogen fertilizer level. Whereas boll weight, ginning out-turn, staple length and fiber fineness were not affected significantly by the plant spacing and nitrogen fertilizer, the effect due to genotype was significant for these traits. CLCuV infestation varied significantly with genotypes, while all other factors, i.e., plant spacing and nitrogen fertilizers, have non-significant effect. As the major objective of cotton cultivation is production of lint for the country and seed- cotton yield for the farmers, it is noted that genotypes grown in narrow plant-spacing (15 cm) and higher nitrogen fertilizer level (11.0 bags of urea/ha) produced maximum seed-cotton yield under higher CLCu V infestation in case of CIM-496, MNH-789 and BH-I60, while the new strain MNH-6070 gave maximum yield under 30cm plant-spacing and 8.6 bags of urea/ha has the 2.3% CLCu V infestation was observed in this variety. From the present study, it is concluded that

  2. Effect of Harvesting Frequency, Variety and Leaf Maturity on Nutrient Composition, Hydrogen Cyanide Content and Cassava Foliage Yield

    Khuc Thi Hue

    2012-12-01

    Full Text Available The experiment studied the effect of harvesting frequencies and varieties on yield, chemical composition and hydrogen cyanide content in cassava foliage. Foliage from three cassava varieties, K94 (very bitter, K98-7 (medium bitter and a local (sweet, were harvested in three different cutting cycles, at 3, 6 and 9 months; 6 and 9 months and 9 months after planting, in a 2-yr experiment carried out in Hanoi, Vietnam. Increasing the harvesting frequency increased dry matter (DM and crude protein (CP production in cassava foliage. The K94 variety produced higher foliage yields than the other two varieties. Dry matter, neutral detergent fibre (NDF, acid detergent fibre (ADF and total tannin content increased with months to the first harvest, whereas CP content decreased. Hydrogen cyanide (HCN content was lower at the first harvest than at later harvests for all cutting cycles. At subsequent harvests the content of total tannins tended to decline, while HCN content increased (p<0.05. Chemical composition differed somewhat across varieties except for total tannins and ash. Dry matter, NDF, ADF and total tannins were higher in fully matured leaves, while CP and HCN were lower in developing leaves.

  3. Linking stomatal traits and expression of slow anion channel genes HvSLAH1 2 HvSLAC1 with grain yield for increasing salinity tolerance in barley

    Xiaohui eLiu

    2014-11-01

    Full Text Available Soil salinity is an environmental and agricultural problem in many parts of the world. One of the keys to breeding barley for adaptation to salinity lies in a better understanding of the genetic control of stomatal regulation. We have employed a range of physiological and molecular techniques (stomata assay, gas exchange, phylogenetic analysis, QTL analysis, and gene expression to investigate stomatal behaviour and genotypic variation in barley cultivars and a genetic population in four experimental trials. A set of relatively efficient and reliable methods were developed for the characterisation of stomatal behaviour of large numbers of varieties and genetic lines. Furthermore, we have found a large genetic variation of gas exchange and stomatal traits in barley in response to salinity stress. Salt-tolerant CM72 showed significantly larger stomatal aperture in 200 mM NaCl treatment than that of salt-sensitive Gairdner. Stomatal traits such as aperture width/length were found to significantly correlate with grain yield in salt treatment. Phenotypic characterisation and QTL analysis of a segregating double haploid population of the CM72/Gairdner resulted in the identification of significant stomatal traits-related QTLs for salt tolerance. Moreover, expression analysis of the slow anion channel genes HvSLAH1 and HvSLAC1 demonstrated that their up-regulation is linked to high barley grain yield in the field.

  4. Effect of coated urea and non-coated urea on grain yield, N uptake and N distribution in different parts of maize

    Ren Yi; Li Guihua; Zhao Linping; Zhang Shuxiang

    2011-01-01

    In order to regulate nitrogen metabolism with nitrogen application rate and to increase nitrogen use efficiency, an isotopic method was used to compare grain yield, biomass and nitrogen use efficiency of coated urea (CU) to those of non-coated urea (U) at the N application rates of 0, 100, 150 and 225 kg/hm 2 . Results showed that CU significantly increased maize N uptake from 15 N fertilizer and aboveground biomass. The nitrogen use efficiency ( 15 NUE) of CU was 13.3-21.4% greater than that of U. There was a significant different of fertilizer 15 N uptake between CU and U in maize parts. And N uptake of CU treatment followed the order of seed > leaves > straws > cob > husk, while N uptake of U treatment was in the order of seed > straws > leaves > cob > husk. The N uptake of maize parts by both CU and U followed the same order when non-isotopic method was applied. No significant variations were observed among treatments in N uptake, Nitrogen Harvest Index and grain yield. The reason maybe that low soil temperatures (< 10 ℃) from the fourth week of October to next April reduced N uptake of winter wheat, therefore, residual NO3-N in cultivated soil layer was high after harvest. Thus, maize N uptake was more dependent on the shoot growth potential than fertilizer amount and types under high amount of available nitrogen. (authors)

  5. The Effect of Drought Stress on Grain Yield and Oil Rate and Protein Percentage of Four Varieties Castor in Climatic Conditions of Damghan

    Gh. Laei

    2012-08-01

    Full Text Available In this study theeffect ofdrought stress was investigated on grain yield and oil rate and protein percentage of four varieties of castor in the climatic conditions of Damghan. The experiment was done in the research farm of Damghan Islamic Azad University(Iranin 2011 assplit plots in a randomized complete block design with three replications. The main plots of drought stress were 5, 10 and15 days and another factor included four varities of castor ( one-flower, two- flower, local and red-flower which were performed in stable density of fivebushes per cultured square meter. Therefore, after gremination, the amount of irrigation water was recorded using volumetric meters. The traits evaluated included oil rate,seed protein percentage, andgrainyield. The results show that two-flower variety with 1241 kg per hectare on 5-day drought stress has the most grain yield. Most oil rate was observed in two-flower variety on 5 day drought stress with 496.4 kg/ha.

  6. REML/BLUP and sequential path analysis in estimating genotypic values and interrelationships among simple maize grain yield-related traits.

    Olivoto, T; Nardino, M; Carvalho, I R; Follmann, D N; Ferrari, M; Szareski, V J; de Pelegrin, A J; de Souza, V Q

    2017-03-22

    Methodologies using restricted maximum likelihood/best linear unbiased prediction (REML/BLUP) in combination with sequential path analysis in maize are still limited in the literature. Therefore, the aims of this study were: i) to use REML/BLUP-based procedures in order to estimate variance components, genetic parameters, and genotypic values of simple maize hybrids, and ii) to fit stepwise regressions considering genotypic values to form a path diagram with multi-order predictors and minimum multicollinearity that explains the relationships of cause and effect among grain yield-related traits. Fifteen commercial simple maize hybrids were evaluated in multi-environment trials in a randomized complete block design with four replications. The environmental variance (78.80%) and genotype-vs-environment variance (20.83%) accounted for more than 99% of the phenotypic variance of grain yield, which difficult the direct selection of breeders for this trait. The sequential path analysis model allowed the selection of traits with high explanatory power and minimum multicollinearity, resulting in models with elevated fit (R 2 > 0.9 and ε analysis is effective in the evaluation of maize-breeding trials.

  7. Synergistic effect in carbon coated LiFePO4 for high yield spontaneous grafting of diazonium salt. Structural examination at the grain agglomerate scale.

    Madec, Lénaïc; Robert, Donatien; Moreau, Philippe; Bayle-Guillemaud, Pascale; Guyomard, Dominique; Gaubicher, Joël

    2013-08-07

    Molecular grafting of p-nitrobenzene diazonium salt at the surface of (Li)FePO4-based materials was thoroughly investigated. The grafting yields obtained by FTIR, XPS, and elemental analysis for core shell LiFePO4-C are found to be much higher than the sum of those associated with either the LiFePO4 core or the carbon shell alone, thereby revealing a synergistic effect. Electrochemical, XRD, and EELS experiments demonstrate that this effect stems from the strong participation of the LiFePO4 core that delivers large amounts of electrons to the carbon substrate at a constant energy, above the Fermi level of the diazonium salt. Correspondingly large multilayer anisotropic structures that are associated with outstanding grafting yields could be observed from TEM experiments. Results therefore constitute strong evidence of a grafting mechanism where homolytic cleavage of the N2(+) species occurs together with the formation and grafting of radical nitro-aryl intermediates. Although the oxidation and concomitant Li deintercalation of LiFePO4 grains constitute the main driving force of the functionalization reaction, EFTEM EELS mapping shows a striking lack of spatial correlation between grafted grains and oxidized ones.

  8. Study of Genetic Diversity of grain yield-associated traits in Iranian and Exotic Safflower (Carthamus tinctorius Germplasm

    M. M. Majidi

    2015-09-01

    Full Text Available Safflower (Carthamus tinctorius L. is cultivated in a wide range of geographical conditions in the world from Africa to Europe, India and China. Previous studies have shown that diversity in indigenous Iranian germplasm is limited for some traits therefore germplasm collections from other origins need to be considered. An experiment was conducted to evaluate agronomic and morphological traits of 100 Iranian and exotic safflower genotypes during 2011- 2012 at the Research Farm of Isfahan University of Technology, Isfahan, Iran, using a simple lattice design of 10 × 10. The results of analysis of variance showed that the differences among genotypes were highly significant (p < 0.01 for days to flowering, seed yield, plant height, number of heads per plant, number of seeds per head, 1000-seed weight, oil content and harvest index, indicating high variability in the studied germplasm. The highest and lowest heritabilities were observed for 1000-seed weight and seed yield, respectively, indicating that indirect improving for seed yield would be more beneficial. Genetic and phenotypic correlation coefficients showed that number of heads per plant, number of seeds per head and harvest index had significantly positive correlations with seed yield. The results of stepwise regression and path analysis showed that number of heads per plant, number of seeds per head and 1000-seed weight are the most important components of seed yield, among which, number of heads per plant had the greatest direct positive effect on seed yield. These traits could be used as criteria for indirect selection in safflower breeding programs. Factor analysis recognized three factors which explained 72.56 percent of total variations. These factors were defined as phenological, physiological source and efficiency factors. Cluster analysis based on the agronomic and morphological traits grouped the genotypes into three clusters. Iranian accessions were clearly discriminated from

  9. Grain Yield and Water Use Efficiency in Extremely-Late Sown Winter Wheat Cultivars under Two Irrigation Regimes in the North China Plain.

    Bin Wang

    Full Text Available Wheat production is threatened by water shortages and groundwater over-draft in the North China Plain (NCP. In recent years, winter wheat has been increasingly sown extremely late in early to mid-November after harvesting cotton or pepper. To improve water use efficiency (WUE and guide the extremely late sowing practices, a 3-year field experiment was conducted under two irrigation regimes (W1, one-irrigation, 75 mm at jointing; W2, two-irrigation, 75 mm at jointing and 75 mm at anthesis in 3 cultivars differing in spike size (HS4399, small spike; JM22, medium spike; WM8, large spike. Wheat was sown in early to mid-November at a high seeding rate of 800-850 seeds m(-2. Average yields of 7.42 t ha(-1 and WUE of 1.84 kg m(-3 were achieved with an average seasonal evapotranspiration (ET of 404 mm. Compared with W2, wheat under W1 did not have yield penalty in 2 of 3 years, and had 7.9% lower seasonal ET and 7.5% higher WUE. The higher WUE and stable yield under W1 was associated with higher 1000-grain weight (TGW and harvest index (HI. Among the 3 cultivars, JM22 had 5.9%-8.9% higher yield and 4.2%-9.3% higher WUE than WM8 and HS4399. The higher yield in JM22 was attributed mainly to higher HI and TGW due to increased post-anthesis biomass and deeper seasonal soil water extraction. In conclusion, one-irrigation with a medium-sized spike cultivar JM22 could be a useful strategy to maintain yield and high WUE in extremely late-sown winter wheat at a high seeding rate in the NCP.

  10. Features of Terra MOD11A2DAY in Operational Forecastof Grain Crops Yield in Kazakhstan with AN 8 Day Renewal

    Terekhov, A.

    2011-08-01

    The Kazakhstan, with export capacity of 6-8 million tons, is one of the largest wheat exporter in the world. About 16 million hectares of unirrigated land is used for monocultural cultivation of cereals (wheat and barley). Most of the cropland is located in the steppe and forest steppe zone. The moisture deficit limits the crop productivity and creates a strong dependency of its state of the moisture conditions during vegetation season. In Kazakhstan, the average grain yield variations are sufficiently large, from 0.9 (2010) to 1.4 tonha (2007). Given the high volatility of the gross grain harvest and export potential, respectively, methods of early satellite forecast of grain yield with high frequency of the renewal are of the great interest. In Kazakhstan, the variations in the weather growing season determine the yield of grain crops. By significant weather parameters include: the spring soil moisture, humidity and air temperature, rainfall, and several others. Plants respond to the sum of all parameters through the volume of green biomass. The regional cereal state can be estimated from satellite vegetation indices, which are particularly informative in the period of its seasonal peak. Another satellite parameter closely related to humidity conditions may be the land surface temperature (LST). Product USGS: TERRA MOD11A2DAY represents the 8-days LST composite was tested in the task of estimating of arable lands temperature in Northern Kazakhstan. The description of the temperature conditions of the growing season based on the temperature calibrated index (TCI), which was introduced by Kogan. TCI provides a weighted assessment of the current LST on a scale of 0-100, where 0 - the lowest, respectively, 100 as a high temperature, recorded during the observation period at a given location at a given time window. The monitoring period included 2004-2010 years. During the beginning of the growing season was taken on April 15, season end on 20 August - ripeness stage

  11. Back to Acid Soil Fields: The Citrate Transporter SbMATE Is a Major Asset for Sustainable Grain Yield for Sorghum Cultivated on Acid Soils

    Geraldo Carvalho Jr

    2016-02-01

    Full Text Available Aluminum (Al toxicity damages plant roots and limits crop production on acid soils, which comprise up to 50% of the world’s arable lands. A major Al tolerance locus on chromosome 3, AltSB, controls aluminum tolerance in sorghum [Sorghum bicolor (L. Moench] via SbMATE, an Al-activated plasma membrane transporter that mediates Al exclusion from sensitive regions in the root apex. As is the case with other known Al tolerance genes, SbMATE was cloned based on studies conducted under controlled environmental conditions, in nutrient solution. Therefore, its impact on grain yield on acid soils remains undetermined. To determine the real world impact of SbMATE, multi-trait quantitative trait loci (QTL mapping in hydroponics, and, in the field, revealed a large-effect QTL colocalized with the Al tolerance locus AltSB, where SbMATE lies, conferring a 0.6 ton ha–1 grain yield increase on acid soils. A second QTL for Al tolerance in hydroponics, where the positive allele was also donated by the Al tolerant parent, SC283, was found on chromosome 9, indicating the presence of distinct Al tolerance genes in the sorghum genome, or genes acting in the SbMATE pathway leading to Al-activated citrate release. There was no yield penalty for AltSB, consistent with the highly localized Al regulated SbMATE expression in the root tip, and Al-dependent transport activity. A female effect of 0.5 ton ha–1 independently demonstrated the effectiveness of AltSB in hybrids. Al tolerance conferred by AltSB is thus an indispensable asset for sorghum production and food security on acid soils, many of which are located in developing countries.

  12. Impact of Solid and Hollow Varieties of Winter and Spring Wheat on Severity of Wheat Stem Sawfly (Hymenoptera: Cephidae) Infestations and Yield and Quality of Grain.

    Szczepaniec, Adrianna; Glover, Karl D; Berzonsky, William

    2015-10-01

    Wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae), has recently emerged as a key pest of wheat (Triticum aestivum L.) in the Great Plains and Canadian provinces. The expanding impact of WSS has caused considerable economic losses to wheat production. Solid-stem varieties of wheat remain the only effective measure of suppression of WSS, and the goal of this research was to test whether five solid- and hollow-stem varieties of winter and spring wheat reduce survival of WSS in South Dakota. We reported that solid-stem varieties had significantly lower numbers of WSS larvae, and this effect was especially evident when WSS infestation rates exceeded 15%. We also observed that the yield of solid-stem varieties was significantly lower than hollow-stem varieties when the abundance of WSS was low, but not when populations of WSS were relatively high. We did not observe consistent differences in grain quality between solid- and hollow-stem varieties, however, and in case of protein levels of grain, solid-stem wheat varieties performed better than hollow-stem wheat. We conclude that solid-stem varieties of wheat appear to effectively suppress WSS survival, and reduced yield of these varieties is less apparent when populations of C. cinctus are high enough to affect the yield of hollow-stem wheat. This is the first report to describe the effectiveness of solid-stem varieties of wheat on WSS in South Dakota. More research in the state is necessary before more robust conclusions can be drawn. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Using RPAS Multi-Spectral Imagery to Characterise Vigour, Leaf Development, Yield Components and Berry Composition Variability within a Vineyard

    Clara Rey-Caramés

    2015-10-01

    Full Text Available Implementation of precision viticulture techniques requires the use of emerging sensing technologies to assess the vineyard spatial variability. This work shows the capability of multispectral imagery acquired from a remotely piloted aerial system (RPAS, and the derived spectral indices to assess the vegetative, productive, and berry composition spatial variability within a vineyard (Vitis vinifera L.. Multi-spectral imagery of 17 cm spatial resolution was acquired using a RPAS. Classical vegetation spectral indices and two newly defined normalised indices, NVI1 = (R802 − R531/(R802 + R531 and NVI2 = (R802 − R570/(R802 + R570, were computed. Their spatial distribution and relationships with grapevine vegetative, yield, and berry composition parameters were studied. Most of the spectral indices and field data varied spatially within the vineyard, as showed through the variogram parameters. While the correlations were significant but moderate among the spectral indices and the field variables, the kappa index showed that the spatial pattern of the spectral indices agreed with that of the vegetative variables (0.38–0.70 and mean cluster weight (0.40. These results proved the utility of the multi-spectral imagery acquired from a RPAS to delineate homogeneous zones within the vineyard, allowing the grapegrower to carry out a specific management of each subarea.

  14. Novos genótipos de triticum durum L.: rendimento, adaptabilidade e qualidade tecnológica New genotypes of triticum durum L.: grain yield, adaptability and technological quality

    JOÃO CARLOS FELICIO

    1999-01-01

    wheat and two bread wheat genotypes were evaluated for grain yield, plant height, cycle from emergence to maturity, resistance to leaf spots caused by Helminthosporium sp, adaptability, stability and technological quality, in experiments, under sprinkler irrigation, carried out at different regions of State of São Paulo, Brazil. The bread wheat IAC 24 presented the highest yield but not differing from the durum genotypes ALTAR/STN (12, MEMOS"S"/YAV79/3/SAPIS"S"/TEAL"S"//HUI"S" (17, STN"S"/3/TEZ"S"/YAV79//HUI"S" (6, ALTAR/STN (11 and WIN"S"SBA81A//STIL"S"(14. At Ribeirão Preto site the grain yield mean of the evaluated genotypes was 5,332 kg/ha, in the period. Coefficients of determination for all genotypes were similar with exception for IAC 24 and IAC 1001. The last one, a durum wheat, showed instable in relation to grain yield under not favorable environments, and stable under favorable environments. The bread wheat IAC 24 presented opposite behaviour. The infection of the causal agent of leaf spot was low, but at Tatuí site the occurrence of this disease was more generalized. The best durum wheat genotypes in relation to quality were IAC 1003 (1, SCO"S"/3/BD1814//BD708/BD1543/4/ROK"S"(13, ALTAR 84 (15 and MEMOS"S"/YAV79/3/SAPI"S"/TEAL"S"/HUI"S" (17. The other durum wheat genotypes presented medium to low flour strength producing bad quality dough. Dough development time, sedimentation test, index of mixture tolerance, energy for deformation of the dough, falling number, tenacity versus elasticity (P/L and dough stability were in order of importance the parameters to be considered combined with grain yield and adaptability for the genotype selections.

  15. Seleção de linhagens de feijão rosinha de boa cocção, resistentes à antracnose e mancha angular Selection of pink grain common bean lines with good cooking ability, resistance to anthracnose and angular leaf spot

    Diego Velásquez Faleiro e Silva

    2009-09-01

    Full Text Available Cultivares de feijoeiro com grão rosinha foram de grande importância, no passado, e ainda hoje, mesmo com a preferência pelo grão carioca, há nichos de mercado para feijões do grupo Rosinha. Dessa forma, o objetivo do trabalho foi selecionar linhagens de feijoeiro comum com grão rosinha, alta produção de grãos, rápido cozimento e resistentes à antracnose e à mancha angular. A partir de cinco famílias F8 superiores, provenientes do cruzamento entre os genitores Rosinha Maria da Fé e ESAL 693, foram extraídas 143 linhagens as quais foram avaliadas na safra das águas de 2005/2006 em Lavras (MG. Dessas, manteve-se 99 linhagens que foram avaliadas em Lavras e Lambari (MG, na safra da seca de 2006. As 24 linhagens selecionadas foram novamente avaliadas nos dois locais, no inverno de 2006. Os caracteres avaliados foram produção e tipo de grão, tempo de cocção, reação à mancha angular e também, foi realizado o teste de resistência ao patótipo 65 de Colletotrichum lindemuthianum. Nas linhagens, observaram-se variabilidade genética para todos os caracteres avaliados, altas estimativas dos coeficientes de herdabilidade, assegurando elevados ganhos com a seleção. Foram selecionadas quatro linhagens com alta produção, tipo de grão ideal, com rápido tempo de cocção e resistência à mancha angular e à antracnose.Common bean cultivars with pink grain type used to be very important, although there is still some market spot for them. The objective of the research was to select common bean lines with pink grain, high grain yield with good cooking ability, and resistance to anthracnose and angular leaf spot. One hundred and forty three lines were selected from five F8 segregant families derived from the cross Rosinha Maria da Fé x ESAL 693. Those lines were evaluated in the rainy season of 2005/2006 at Lavras county, MG State. Ninety nine lines were kept and tested in the dry season of 2006 at Lavras and Lambari. The 24

  16. Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice.

    Govindarajan, Munusamy; Balandreau, Jacques; Kwon, Soon-Wo; Weon, Hang-Yeon; Lakshminarasimhan, Cunthipuram

    2008-01-01

    During a survey of endophytic diazotrophic bacteria associated with different rice varieties in Tamilnadu, some "endophytes" were obtained. Thirteen bacterial isolates from surface-sterilized roots and shoots were obtained in pure culture, which produced indole acetic acid (IAA) and reduced acetylene to ethylene. Polymerase chain reaction (PCR) amplification confirmed the presence of nif-H gene in all the isolates. Morphological, biochemical, and molecular characteristics indicated that all of them belonged to the genus Burkholderia One of them, MGK3, was consistently more active in reducing acetylene, and 16S rDNA sequences of isolate MGK3 confirmed its identification as Burkholderia vietnamiensis. Colonization of rice root was confirmed by strain MGK3 marked with gusA gene. The inoculated roots showed a blue color, which was most intense at the points of lateral root emergence and at the root tip. Transverse sections of roots, 15 days after inoculation, revealed beta-glucuronidase (GUS) activity within many of the cortical intercellular spaces next to the stele and within the aerenchyma. Nitrogen fixation was quantified by using (15)N isotope dilution method with two different cultivars grown in pot and field experiments. Higher nitrogen fixation was observed in variety Ponni than in ADT-43, where nearly 42% (field) and 40% (pot) of the nitrogen was derived from the atmosphere (% Ndfa). Isolate MGK3 was used to inoculate rice seedlings in a comparison with four other diazotrophs, viz., Gluconacetobacter diazotrophicus LMG7603, Herbaspirillum seropedicae LMG6513, Azospirillum lipoferum 4B LMG4348, and B. vietnamiensis LMG10929. They were used to conduct two pot and four field inoculation experiments. MGK3 alone, and combined with other diazotrophs, performed best under both pot and field conditions: combined inoculation produced yield increases between 9.5 and 23.6%, while MGK3 alone increased yield by 5.6 to 12.16% over the uninoculated control treatment.

  17. Rendimento do inhame adubado com esterco bovino e biofertilizante no solo e na folha Yam yield fertilized with bovine manure and biofertilizers in the soil and leaf

    Jandiê A. da Silva

    2012-01-01

    Full Text Available Neste trabalho objetivou-se avaliar o rendimento do inhame, cultivar Da Costa, adubado com doses de esterco bovino e biofertilizante. O delineamento experimental utilizado foi o de blocos casualizados, em parcelas subdivididas, 6 x 2 + 1 em três repetições. Nas parcelas foram testadas seis doses de esterco bovino (0; 6; 12; 18; 24 e 30 t ha-1, combinadas fatorialmente com a presença e ausência de biofertilizante e, nas subparcelas, duas formas de aplicação do biofertilizante no solo e na folha e um tratamento adicional com adubação convencional (esterco bovino e NPK. A dose de 30 t ha-1 de esterco bovino e o biofertilizante aplicado no solo e na folha produziram túberas de inhame com peso médio ideal para o comércio. O esterco bovino na dose de 19,2 t ha-1 e na ausência do biofertilizante proporcionou produtividade máxima de 20,3 t ha-1 de túberas comerciais. Nas subparcelas em que o biofertilizante foi aplicado no solo e na folha, a dose de 30 t ha-1 de esterco bovino foi responsável, respectivamente, pelas produtividades máximas de 22,8 e 24 t ha-1 de túberas comerciais. A adubação orgânica e a convencional não causaram alterações significativas no peso médio de túberas; porém, a adubação convencional aumentou a produtividade de túberas comerciais.The objective of this study was to evaluate the yam yield, cultivar Da Costa, fertilized with bovine manure doses and biofertilizer. The experimental design was randomized blocks, in subdivided plots 6 x 2 + 1 with three repetitions. In plots six doses of cattle manure (0; 6; 12; 18; 24 and 30 t ha-1 were tested, factorially combined with the presence and absence of biofertilizer and in subplots, two forms of application of biofertilizer in the soil and by spray on the leaf and an additional treatment with conventional fertilization (animal manure and NPK. The doses of 30 t ha-1 of bovine manure and the biofertilizer which was applied in the soil and leaf produced tubers

  18. Effect of late-season nitrogen fertilization on grain yield and on flour rheological quality and stability in common wheat, under different production situations

    Massimo Blandino

    2016-06-01

    Full Text Available The increasing demand for a high and homogeneous technological quality of common wheat (Triticum aestivum L. points out the necessity of improving wheat with by a higher protein (GPC and gluten content, strength of dough (W and dough stability. Among the current crop practices, late-season nitrogen (N fertilization, from heading to flowering, is generally considered the practice that has the most effects on the storage proteins and technological quality of the grain. In order to explore the influence late-season N application can have on the dough properties and on the formation of homogeneous lots in more detail, a research was set up between 2007 and 2013, over 6 growing seasons at different sites in North West Italy using the Bologna cultivar in each of the trials. Three different late-season N fertilization strategies were compared: T1, control without a late distribution of N; T2, foliar N fertilization at flowering; T3, top-dress granular soil fertilization at the beginning of heading. A randomized complete block experimental design with four replicates was adopted. The grain yield, GPC, W and P/L indexes were analyzed. Moreover, the rheological and enzymatic properties of the samples were studied using a Mixolab® analyser (Chòpin Technologies, Paris, France. Grain yield was found to be unaffected by the fertilization treatments, while the late N application (T2, T3 significantly increased GPC. Only the granular N fertilization (T3 increased the W index compared to T1, while the P/L index was not affected by any of the fertilization strategies. Furthermore, the T3 strategy was always more effective in reducing the variability of the W index than the T2 and the T1 strategies. Water absorption and dough development time were higher in T3, than in T1, while intermediate results were reached for T2. The effect of late-season N fertilization was also significant on the starch behaviour of the dough, as an increase in starch gelatinization and

  19. Evaluation of phosphate-solubilizing bacteria on the growth and grain yield of rice (Oryza sativa L.) cropped in northern Iran.

    Bakhshandeh, E; Rahimian, H; Pirdashti, H; Nematzadeh, G A

    2015-11-01

    This study aimed to evaluate the efficiency of four phosphate-solubilizing bacteria (PSB) on the growth and yield of rice under different soil conditions. Bacterial strains were Rahnella aquatillis (KM977991), Enterobacter sp. (KM977992), Pseudomonas fluorescens and Pseudomonas putida. These studies were conducted on different rice cultivars ('Shiroodi', 'Tarom' and 'Tarom Hashemi') in both pot and field experiments. Measurements started from transplanting and continued throughout the growing season in field experiments. Single PSB inoculations in field trials increased grain yield, biological yield, total number of stems hill(-1) , number of panicles hill(-1) and plant height by 8·50-26·9%, 12·4-30·9%, 20·3-38·7%, 22·1-36·1% and 0·85-3·35% in experiment 1, by 7·74-14·7%, 4·22-12·6%, 6·67-16·7%, 4·0-15·4% and 3·15-4·20% in experiment 2 and by 23·4-37%, 16·1-36·4%, 30·2-39·1%, 28·8-34% and 2·11-4·55% in experiment 3, respectively, compared to the control. Our results indicate that the application of triple super phosphate together with PSB inoculations resulted in reducing the use of chemical fertilizers (about 67%) and increasing fertilizer use efficiency. This study clearly indicates that these PSBs can be used as biofertilizers in ecological rice agricultural systems. To the best of our knowledge, this is first report on the association of Rahnella aquatilis with rice and also the application of a mathematical model to evaluate the effect of PSBs on rice growth. © 2015 The Society for Applied Microbiology.

  20. Influência do ambiente no rendimento e na qualidade de grãos de genótipos de trigo com irrigação por aspersão no Estado de São Paulo Environmental influence on grain yield and grain quality of wheat genotypes with sprinkler irrigation in the State of São paulo, Brazil

    JOÃO CARLOS FELICIO

    2001-01-01

    Votuporanga; and IAC 370 in Ribeirão Preto and Mococa. Under the ideal genotype concept the IAC 370 showed high grain yield capacity, was responsive to the environment improvement and sensitive to the unfavorable environment conditions. Among the diseases, leaf rust presented general occurrence, showing higher incidence in Tatuí. Anahuac, IAC 287, CAL/CHKW//VEE"S" and IAC 370 were the most susceptible to powdery mildew. The genotypes Anahuac, IAC 287, JCAM//EMU"S"/YACO"S", PFAU and IAC 339 were the most sensitive to aluminum toxicity. Anahuac, IAC 24, IAC 287, IAC 289, IAC 334, PFAU, TUI"S", IAC 339, IAC 370 and IAC 351 exhibited flour characteristics with good potential for bread production.

  1. Effects of planting method on agronomic characteristics, yield and yield components of sweet and super sweet corn (Zea mays L. varieties under saline conditions

    F. Faridi

    2016-05-01

    Full Text Available In order to evaluate the effects of planting pattern on morphological, Phonological, yield and yield components of sweet and super sweet corn (Zea mays L. varieties under saline conditions, a field experiment was conducted as split plots based on a randomized complete block design with four replications. Planting pattern in 3 levels included one row in ridge, two row in ridge and furrow planting, as a main plot and varieties in 4 levels sweet corn with 2 types (KSc 403 su, Merit and super sweet with two types (Basin, obsession as sub plots. The results showed that planting pattern had significant differences on plant height, ear height, leaf length, leaf width, number of kernel per row, number of rows per ear and 1000-kernel weight. but had no significant effects on the length of tassel, number of leaf/plant, number of leaf per plant above ear, stem diameter, time of anthesis, time of silking, anthesis silking interval ASI, grain yield, biological yield and harvest index. Different varieties had significant effects on the total characteristics studied except number of leaf above ear and stem diameter. Most of the conservable grain yield and harvest index was in Obsession variety (10 kg and 39%, respectively and the least was seen in Basin (4 kg and 20%, respectively. The result showed that use of furrow planting pattern for sweet and super sweet corn in saline conditions can effects result in higher yield.

  2. Genetic Gains in Grain Yield of a Maize Population Improved through Marker Assisted Recurrent Selection under Stress and Non-stress Conditions in West Africa

    Rekiya O. Abdulmalik

    2017-05-01

    Full Text Available Marker-assisted recurrent selection (MARS is a breeding method used to accumulate favorable alleles that for example confer tolerance to drought in inbred lines from several genomic regions within a single population. A bi-parental cross formed from two parents that combine resistance to Striga hermonthica with drought tolerance, which was improved through MARS, was used to assess changes in the frequency of favorable alleles and its impact on inbred line improvement. A total of 200 testcrosses of randomly selected S1 lines derived from the original (C0 and advanced selection cycles of this bi-parental population, were evaluated under drought stress (DS and well-watered (WW conditions at Ikenne and under artificial Striga infestation at Abuja and Mokwa in Nigeria in 2014 and 2015. Also, 60 randomly selected S1 lines each derived from the four cycles (C0, C1, C2, C3 were genotyped with 233 SNP markers using KASP assay. The results showed that the frequency of favorable alleles increased with MARS in the bi-parental population with none of the markers showing fixation. The gain in grain yield was not significant under DS condition due to the combined effect of DS and armyworm infestation in 2015. Because the parents used for developing the bi-parental cross combined tolerance to drought with resistance to Striga, improvement in grain yield under DS did not result in undesirable changes in resistance to the parasite in the bi-parental maize population improved through MARS. MARS increased the mean number of combinations of favorable alleles in S1 lines from 114 in C0 to 124 in C3. The level of heterozygosity decreased by 15%, while homozygosity increased by 13% due to the loss of some genotypes in the population. This study demonstrated the effectiveness of MARS in increasing the frequency of favorable alleles for tolerance to drought without disrupting the level of resistance to Striga in a bi-parental population targeted as a source of improved

  3. Genetic Gains in Grain Yield of a Maize Population Improved through Marker Assisted Recurrent Selection under Stress and Non-stress Conditions in West Africa.

    Abdulmalik, Rekiya O; Menkir, Abebe; Meseka, Silvestro K; Unachukwu, Nnanna; Ado, Shehu G; Olarewaju, Joseph D; Aba, Daniel A; Hearne, Sarah; Crossa, Jose; Gedil, Melaku

    2017-01-01

    Marker-assisted recurrent selection (MARS) is a breeding method used to accumulate favorable alleles that for example confer tolerance to drought in inbred lines from several genomic regions within a single population. A bi-parental cross formed from two parents that combine resistance to Striga hermonthica with drought tolerance, which was improved through MARS, was used to assess changes in the frequency of favorable alleles and its impact on inbred line improvement. A total of 200 testcrosses of randomly selected S 1 lines derived from the original (C 0 ) and advanced selection cycles of this bi-parental population, were evaluated under drought stress (DS) and well-watered (WW) conditions at Ikenne and under artificial Striga infestation at Abuja and Mokwa in Nigeria in 2014 and 2015. Also, 60 randomly selected S 1 lines each derived from the four cycles (C 0 , C 1 , C 2 , C 3 ) were genotyped with 233 SNP markers using KASP assay. The results showed that the frequency of favorable alleles increased with MARS in the bi-parental population with none of the markers showing fixation. The gain in grain yield was not significant under DS condition due to the combined effect of DS and armyworm infestation in 2015. Because the parents used for developing the bi-parental cross combined tolerance to drought with resistance to Striga , improvement in grain yield under DS did not result in undesirable changes in resistance to the parasite in the bi-parental maize population improved through MARS. MARS increased the mean number of combinations of favorable alleles in S 1 lines from 114 in C 0 to 124 in C 3 . The level of heterozygosity decreased by 15%, while homozygosity increased by 13% due to the loss of some genotypes in the population. This study demonstrated the effectiveness of MARS in increasing the frequency of favorable alleles for tolerance to drought without disrupting the level of resistance to Striga in a bi-parental population targeted as a source of improved

  4. Mapping of quantitative trait loci for grain yield and its components in a US popular winter wheat TAM 111 using 90K SNPs.

    Silvano O Assanga

    Full Text Available Stable quantitative trait loci (QTL are important for deployment in marker assisted selection in wheat (Triticum aestivum L. and other crops. We reported QTL discovery in wheat using a population of 217 recombinant inbred lines and multiple statistical approach including multi-environment, multi-trait and epistatic interactions analysis. We detected nine consistent QTL linked to different traits on chromosomes 1A, 2A, 2B, 5A, 5B, 6A, 6B and 7A. Grain yield QTL were detected on chromosomes 2B.1 and 5B across three or four models of GenStat, MapQTL, and QTLNetwork while the QTL on chromosomes 5A.1, 6A.2, and 7A.1 were only significant with yield from one or two models. The phenotypic variation explained (PVE by the QTL on 2B.1 ranged from 3.3-25.1% based on single and multi-environment models in GenStat and was pleiotropic or co-located with maturity (days to heading and yield related traits (test weight, thousand kernel weight, harvest index. The QTL on 5B at 211 cM had PVE range of 1.8-9.3% and had no significant pleiotropic effects. Other consistent QTL detected in this study were linked to yield related traits and agronomic traits. The QTL on 1A was consistent for the number of spikes m-2 across environments and all the four analysis models with a PVE range of 5.8-8.6%. QTL for kernels spike-1 were found in chromosomes 1A, 2A.1, 2B.1, 6A.2, and 7A.1 with PVE ranged from 5.6-12.8% while QTL for thousand kernel weight were located on chromosomes 1A, 2B.1, 5A.1, 6A.2, 6B.1 and 7A.1 with PVEranged from 2.7-19.5%. Among the consistent QTL, five QTL had significant epistatic interactions (additive × additive at least for one trait and none revealed significant additive × additive × environment interactions. Comparative analysis revealed that the region within the confidence interval of the QTL on 5B from 211.4-244.2 cM is also linked to genes for aspartate-semialdehyde dehydrogenase, splicing regulatory glutamine/lysine-rich protein 1 isoform X1

  5. Soybean growth and yield under cover crops

    Priscila de Oliveira

    2013-04-01

    Full Text Available The use of cover crops in no-tillage systems can provide better conditions for the development of soybean plants with positive effects on grain yield and growth analysis techniques allow researchers to characterize and understand the behavior of soybean plants under different straw covers. Thus, the aim of this study was to characterize, using growth analysis, yield components and agronomic performance of soybean under common bean, Brachiaria brizantha and pearl millet straws. The experiment was performed on a soil under cerrado in the municipality of Santo Antônio de Goiás, GO. The experiment was arranged in a randomized complete block design with three treatments (cover crops and five replications. Soybean grain yield was lower in the B. brizantha straw treatment (3,708 kg ha-1 than both in the pearl millet (4.772 kg ha-1 and common bean straw treatments (5,200 kg ha-1. The soybean growth analysis in B. brizantha, pearl millet and common bean allowed characterizing the variation in the production of dry matter of leaves, stems, pods and total and leaf area index that provided different grain yields. The cover crop directly affects the soybean grain yield.

  6. Thiamine supplementation facilitates thiamine transporter expression in the rumen epithelium and attenuates high-grain-induced inflammation in low-yielding dairy cows.

    Pan, X H; Yang, L; Beckers, Y; Xue, F G; Tang, Z W; Jiang, L S; Xiong, B H

    2017-07-01

    An experiment was conducted to uncover the effects of increasing dietary grain levels on expression of thiamine transporters in ruminal epithelium, and to assess the protective effects of thiamine against high-grain-induced inflammation in dairy cows. Six rumen-fistulated, lactating Holstein dairy cows (627 ± 16.9 kg of body weight, 180 ± 6 d in milk; mean ± standard deviation) were randomly assigned to a replicated 3 × 3 Latin square design trial. Three treatments were control (20% dietary starch, dry matter basis), high-grain diet (HG, 33.2% dietary starch, DM basis), and HG diet supplemented with 180 mg of thiamine/kg of dry matter intake. On d 19 and 20 of each period, milk performance was measured. On d 21, ruminal pH, endotoxic lipopolysaccharide (LPS), and thiamine contents in rumen and blood, and plasma inflammatory cytokines were detected; a rumen papillae biopsy was taken on d 21 to determine the gene and protein expression of toll-like receptor 4 (TLR4) signaling pathways. The HG diet decreased ruminal pH (5.93 vs. 6.49), increased milk yield from 17.9 to 20.2 kg/d, and lowered milk fat and protein from 4.28 to 3.83%, and from 3.38 to 3.11%, respectively. The HG feeding reduced thiamine content in rumen (2.89 vs. 8.97 μg/L) and blood (11.66 vs. 17.63 μg/L), and the relative expression value of thiamine transporter-2 (0.37-fold) and mitochondrial thiamine pyrophosphate transporter (0.33-fold) was downregulated by HG feeding. The HG-fed cows exhibited higher endotoxin LPS in rumen fluid (134,380 vs. 11,815 endotoxin units/mL), and higher plasma concentrations of lipopolysaccharide binding protein and pro-inflammatory cytokines when compared with the control group. The gene and protein expression of tumor necrosis factor α (TNFα), IL1B, and IL6 in rumen epithelium increased when cows were fed the HG diet, indicating that local inflammation occurred. The depressions in ruminal pH, milk fat, and protein of HG-fed cows were reversed by thiamine

  7. Harnessing Diversity in Wheat to Enhance Grain Yield, Climate Resilience, Disease and Insect Pest Resistance and Nutrition Through Conventional and Modern Breeding Approaches

    Mondal, Suchismita; Rutkoski, Jessica E.; Velu, Govindan; Singh, Pawan K.; Crespo-Herrera, Leonardo A.; Guzmán, Carlos; Bhavani, Sridhar; Lan, Caixia; He, Xinyao; Singh, Ravi P.

    2016-01-01

    Current trends in population growth and consumption patterns continue to increase the demand for wheat, a key cereal for global food security. Further, multiple abiotic challenges due to climate change and evolving pathogen and pests pose a major concern for increasing wheat production globally. Triticeae species comprising of primary, secondary, and tertiary gene pools represent a rich source of genetic diversity in wheat. The conventional breeding strategies of direct hybridization, backcrossing and selection have successfully introgressed a number of desirable traits associated with grain yield, adaptation to abiotic stresses, disease resistance, and bio-fortification of wheat varieties. However, it is time consuming to incorporate genes conferring tolerance/resistance to multiple stresses in a single wheat variety by conventional approaches due to limitations in screening methods and the lower probabilities of combining desirable alleles. Efforts on developing innovative breeding strategies, novel tools and utilizing genetic diversity for new genes/alleles are essential to improve productivity, reduce vulnerability to diseases and pests and enhance nutritional quality. New technologies of high-throughput phenotyping, genome sequencing and genomic selection are promising approaches to maximize progeny screening and selection to accelerate the genetic gains in breeding more productive varieties. Use of cisgenic techniques to transfer beneficial alleles and their combinations within related species also offer great promise especially to achieve durable rust resistance. PMID:27458472

  8. Improving yield and nitrogen fixation of grain legumes in the tropics and sub-tropics of Asia. Results of a co-ordinated research programme

    1998-07-01

    The Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture initiated a Co-ordinated Research Project on The Use of Isotopes in Studies to Improve Yield and N 2 Fixation of Grain Legumes with the Aim of Increasing Food Production and Saving N-fertilizer in the Tropics and Sub-Tropics of Asia that was operational from 1990 to 1995. This Project was underpinned by extensive experience in the use of 15 N-labelled fertilizer in quantifying N 2 fixation by food and pasture legumes; the isotope-dilution technique, recognized as the most accurate mode of quantifying fixation, was developed at the IAEA and has been used profitably for over 20 years in co-ordinated research projects that were focused on aspects relevant to the sustainability of agriculture in developing countries in which food security is most under threat. This effort to improve N 2 fixation by food legumes in Asia, and in so doing to increase productivity of cereal-based farming systems as a whole, was timely in terms of regional needs. It was complemented by an overlapping Co-ordinated Research Project entitled ''The Use of Nuclear and Related Techniques in Management of Nitrogen Fixation by trees for Enhancing Soil Fertility and Soil Conservation in Fragile Tropical Soils''. The project involved scientists from Australia, Bangladesh, China, India, Malaysia, Pakistan the Philippines, Sri Lanka, Thailand and Viet Nam

  9. Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield.

    Lee, Kyungjin; Back, Kyoungwhan

    2017-04-01

    While ectopic overexpression of serotonin N-acetyltransferase (SNAT) in plants has been accomplished using animal SNAT genes, ectopic overexpression of plant SNAT genes in plants has not been investigated. Because the plant SNAT protein differs from that of animals in its subcellular localization and enzyme kinetics, its ectopic overexpression in plants would be expected to give outcomes distinct from those observed from overexpression of animal SNAT genes in transgenic plants. Consistent with our expectations, we found that transgenic rice plants overexpressing rice (Oryza sativa) SNAT1 (OsSNAT1) did not show enhanced seedling growth like that observed in ovine SNAT-overexpressing transgenic rice plants, although both types of plants exhibited increased melatonin levels. OsSNAT1-overexpressing rice plants did show significant resistance to cadmium and senescence stresses relative to wild-type controls. In contrast to tomato, melatonin synthesis in rice seedlings was not induced by selenium and OsSNAT1 transgenic rice plants did not show tolerance to selenium. T 2 homozygous OsSNAT1 transgenic rice plants exhibited increased grain yield due to increased panicle number per plant under paddy field conditions. These benefits conferred by ectopic overexpression of OsSNAT1 had not been observed in transgenic rice plants overexpressing ovine SNAT, suggesting that plant SNAT functions differently from animal SNAT in plants. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Response of high yielding rice varieties to NaCl salinity in ...

    STORAGESEVER

    2008-11-05

    Nov 5, 2008 ... the percentage of fertility, stem weight and white grain weight (Kavousi, 1995). ... yield falling in accordance with rising salinity or electrical conduction of ... Due to the effect of salinity on height reduction and its significant effect ..... leaf elongation in maize Is not Mediated by changes in cell wall. Acidification ...

  11. Microwave Synthesis of Fe2 O3 and ZnO Nanoparticles and Evaluation Its Application on Grain Iron and Zinc Concentrations of Wheat (Triticum aestivum L. and their Relationships to Grain Yield

    Shahab Khaghani

    2016-04-01

    Full Text Available Fe2O3 and ZnO nanoparticles were synthesized by a fast microwave method. Nanostructures were characterized by X-ray diffraction  and scanning electron microscopy. The goal of bio-fortification is to develop plants that have an increased content of bioavailable nutrients in their edible parts. The micronutrients magnesium (Mg, manganese (Mn and copper (Cu, boron (B and calcium (Ca are essential for plants and the humans and animals that consume plants. Increasing the micronutrient density of staple crops, will greatly improve human nutrition on a global scale. In order to investigate the effect of Iron and Zinc on nutrient uptake of two line of wheat. The experimental design used for this research was a factorial experiment under complete randomized block design with three replications and two variety of wheat including Roshan back cross (V1 and C-78-14 line (V2, three levels of Iron from Fe-EDDHA (Sequestrene138 including no application (F0, Fe sulphate (F1 and Nano Fe2O3 (F2 and three Levels of  Zinc as zinc sulphate (ZnSO4 including no application (Z0, 25 kg/ha-1 (Z1 and 50 kg/ha-1 (Z2 were used. The result is showed that application of nanoparticles increased the study of parameters such as magnesium, manganese, copper, boron and calcium. Highest levels of grain yield with 5.13 ton/ha-1 was obtained in C-78-14 variety.

  12. Genetic analysis on yield, panicle and grain traits in rice RIL population of long panicle and big grain%水稻长穗大粒RIL群体产量、穗部和谷粒性状的遗传分析

    林志强; 郑燕; 蔡英杰; 黄姗; 李志勇; 沈伟伟; 郑秀娟; 梁康迳

    2011-01-01

    The yield-related traits of rice on an RIL population of long panicle and big grain character was studied for exploring the inheritance of the yield-related traits of rice. We genetically analyzed 18 yield, panicle and grain traits by using the recombinant inbred lines population (RILs) F9 of the 130 lines which were derived from MIYANG 46/FJCD. The FJCD variety was bred by ourselves and had the characteristics of long panicle and big grain. The analytical method was based on the mixed inheritance model of major genes and polygenes of the quantitative traits in plants. The genetic analysis was conducted about 18 traits of the recombinant inbred lines population. The main research results were as follows; grain thickness ( CT) and grain width/grain thickness ( GW/ GT) were controlled only by polygenes, 1000-grain weight (1000 GW) was controlled by a pair of major genes and polygenes, grain width ( GW) was controlled by three pairs of major genes and polygenes, the other yield-related traits of rice were all controlled by two pairs of major genes and polygenes. The traits of grain weight per plant ( GWPP) , rate of seed setting (RSS) , panicles number of per plant (PN) , PL, number of first branch ( NFB) , length of Eirst branch ( LFB) , length of second branch ( LSB) , grain length/grain width ( GL/GW) , GW were controlled by the heritability of major genes. Grain length ( GL) , grain length/grain thickness ( GL/GT) were controlled by the heritability of polygenes. And the major QTLs may be detected in the traits of 1000 GW and GW.Rice ( Oryza saliva L. ) ; recombinant inbred lines population ( RIL) ; quantitative traits; inheritance model; inheritance parametersBased on the meteorological data from 1971 to 2007 at the meteorological stations in Qujing City, climatic feasibility to tobacco growing was evaluated comprehensively by using the method of fuzzy math and multivariate statistical analysis. The method of PCCA (principal component cluster analysis) was used

  13. Comparison of growth, yield and fiber quality of the obsolete SA30 yellow leaf with four sets of modern yellow and green leaf near isogenic cotton (Gossypium hirsutum L.) lines

    The Virescent Yellow leaf cotton line Seed Accession 30 (SA30) was crossed with four modern parental lines (DP5690, DES119, SG747 and MD51ne) to develop four sets of near isogenic lines (NILs) segregating for green and yellow leaves. Comparisons of these lines were made in the field in a two year re...

  14. Sistemas de manejo de plantas daninhas no desenvolvimento e na produtividade da soja Burndown systems on growth and grain yield in soybeans in Paraná State, Brazil

    Jamil Constantin

    2009-01-01

    glyphosate occurred within 48 hours prior to sowing. The trials were developed in 2003/2004 growing season, in six localities in Paraná State: Sertãozinho, Campo Mourão, Iretama, Pitanga, Boa Esperança, and Mamborê, in areas with high density of weeds preceding no-till soybean sowing. Evaluations related to weed control and soybean development and grain yield were performed. MA burndown systems provided improved control of weeds after crop emergence. Soybean plants from AP areas were shorter, in comparison to ME, evidencing a delay in the shoot growth. Reduction of grain yield was verified for all localities when AP burndown system was adopted, with reductions between 15% and 50%.

  15. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes.

    Tuberosa, Roberto; Sanguineti, Maria Corinna; Landi, Pierangelo; Giuliani, Marcella Michela; Salvi, Silvio; Conti, Sergio

    2002-01-01

    We investigated the overlap among quantitative trait loci (QTLs) in maize for seminal root traits measured in hydroponics with QTLs for grain yield under well-watered (GY-WW) and water-stressed (GY-WS) field conditions as well as for a drought tolerance index (DTI) computed as GY-WS/GY-WW. In hydroponics, 11, 7, 9, and 10 QTLs were identified for primary root length (R1L), primary root diameter (R1D), primary root weight (R1W), and for the weight of the adventitious seminal roots (R2W), respectively. In the field, 7, 8, and 9 QTLs were identified for GY-WW, GY-WS, and DTI, respectively. Despite the weak correlation of root traits in hydroponics with GY-WW, GY-WS, and DTI, a noticeable overlap between the corresponding QTLs was observed. QTLs for R2W most frequently and consistently overlapped with QTLs for GY-WW, GY-WS, and/or DTI. At four QTL regions, an increase in R2W was positively associated with GY-WW, GY-WS, and/or DTI. A 10 cM interval on chromosome 1 between PGAMCTA205 and php20644 showed the strongest effect on R1L, R1D, R2W, GY-WW, GY-WS, and DTI. These results indicate the feasibility of using hydroponics in maize to identify QTL regions controlling root traits at an early growth stage and also influencing GY in the field. A comparative analysis of the QTL regions herein identified with those described in previous studies investigating root traits in different maize populations revealed a number of QTLs in common.

  16. pOsNAR2.1:OsNAR2.1 expression enhances nitrogen uptake efficiency and grain yield in transgenic rice plants.

    Chen, Jingguang; Fan, Xiaoru; Qian, Kaiyun; Zhang, Yong; Song, Miaoquan; Liu, Yu; Xu, Guohua; Fan, Xiaorong

    2017-10-01

    The nitrate (NO3-) transporter has been selected as an important gene maker in the process of environmental adoption in rice cultivars. In this work, we transferred another native OsNAR2.1 promoter with driving OsNAR2.1 gene into rice plants. The transgenic lines with exogenous pOsNAR2.1:OsNAR2.1 constructs showed enhanced OsNAR2.1 expression level, compared with wild type (WT), and 15 N influx in roots increased 21%-32% in response to 0.2 mm and 2.5 mm 15NO3- and 1.25 mm 15 NH 4 15 NO 3 . Under these three N conditions, the biomass of the pOsNAR2.1:OsNAR2.1 transgenic lines increased 143%, 129% and 51%, and total N content increased 161%, 242% and 69%, respectively, compared to WT. Furthermore in field experiments we found the grain yield, agricultural nitrogen use efficiency (ANUE), and dry matter transfer of pOsNAR2.1:OsNAR2.1 plants increased by about 21%, 22% and 21%, compared to WT. We also compared the phenotypes of pOsNAR2.1:OsNAR2.1 and pOsNAR2.1:OsNRT2.1 transgenic lines in the field, found that postanthesis N uptake differed significantly between them, and in comparison with the WT. Postanthesis N uptake (PANU) increased approximately 39% and 85%, in the pOsNAR2.1:OsNAR2.1 and pOsNAR2.1:OsNRT2.1 transgenic lines, respectively, possibly because OsNRT2.1 expression was less in the pOsNAR2.1:OsNAR2.1 lines than in the pOsNAR2.1:OsNRT2.1 lines during the late growth stage. These results show that rice NO 3 - uptake, yield and NUE were improved by increased OsNAR2.1 expression via its native promoter. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Study on Yield and Yield Components of Wheat Genotypes under Different Moisture Regimes

    E. Mogtader

    2012-10-01

    Full Text Available In order to study grain yield and yield components of 16 advanced wheat lines under rainfed and supplementary irrigation conditions, this research was conducted in randomized block design with 3 replications at Maragheh Research Station during 2008-09 seasons. Analysis of variance revealed significant differences for date to heading, plant height, 1000 kernel weight, tiller number, spike length, seed number per spike, spikelet number per spike, peduncle length, harvest index, leaf, sheath length and grain yield. Results also showed that the lines No. 4 (91-142 a 61/3/F35.70/MO73//1D13.1/MLT and 16 (Azar2 with 1895 and 1878 Kg/ha, lines No. 4 and 7 (YUMAI13/5/NAI60/3/14.53/ODIN//CI13441 with 2132 and 2285 Kg/ha had highest grain yield under rainfed and supplementary irrigated conditions respectively. Based on results these 16 lines and cultivars were grouped in 4 and 3 distinct classes using Ward’s Method of cluster analysis under rainfed and irrigated conditions. Path analysis indicated that vigor at shooting stage, seed number per spike and HI were positive important traits to select lines for high yielding potential in this study. HI and TKW had also positive effects on grain under supplementary irrigation.

  18. Radiation and nitrogen use at the leaf and canopy level by wheat and oilseed rape during the critical period for grain number definition

    Dreccer, M.F.; Schapendonk, A.H.C.M.; Oijen, van M.; Pot, C.S.; Rabbinge, R.

    2000-01-01

    During the critical period for grain number definition, the amount of biomass produced per unit absorbed radiation is more sensitive to nitrogen (N) supply in oilseed rape than in wheat, and reaches a higher value at high N. This response was investigated by combining experimental and modelling

  19. Weed Population Dynamics, Water Productivity and Grain Yield of Durum Wheat (Triticum durum L. in No-Tillage and Conventional Tillage Systems

    Mehdi Mojab

    2016-09-01

    and broadleaved weed densities were recorded at 30 days after the beginning of crop emergence. Wheat grain yield was calculated at harvest time. Comparison of the means was conducted based on protected LSD (PLSD at 0.05 significant levels. Results and Discussion: Tillage systems indicated a significant effect on wheat density. The average number of crop seedlings in no-tillage plots was 27 % higher than in the conventional tillage plots. Maintaining crop residues on the soil surface provided a better site for crop germination and emergence. The response to tillage system and year effects varied depending on the weed species. Results showed that the effect of tillage systems, year and their interactions were significant on the density of Lolium temulentum and Sinapis arvensis, while in the case of Phalaris minor and Hordeum spontaneum just the tillage regimen significantly influenced the weed density. L. temulentum and S. arvensis plants showed an almost similar pattern in their response to tillage systems and year effects. The density of these two species significantly decreased under no-tillage system compared with conventional tillage operations. Moreover, their densities in conventional tillage plots were significantly greater in the second year of the experiment than the first year. The lower seedling emergence of P. minor and H. spontaneum under no-tillage circumstances is not surprising, as crop residues prevent from reaching the light on the soil surface and the light requirement for germination of these species has been reported in several studies. The water productivity of the no-tillage plots was greater than of the conventional ones at both two years of the experiment. Preservation of wheat residues on the soil surface decreases soil temperature via shading and causes reduces the evaporation rate from the soil surface. Although there was no significant difference between wheat yields in the two growing seasons under conventional tillage environment, wheat

  20. Maize YABBY genes drooping leaf1 and drooping leaf2 affect agronomic traits by regulating leaf architecture

    Leaf architectural traits, such as length, width and angle, directly influence canopy structure and light penetration, photosynthate production and overall yield. We discovered and characterized a maize (Zea mays) mutant with aberrant leaf architecture we named drooping leaf1 (drl1), as leaf blades ...

  1. The Effect of Vesicular Arbuscular Mycorrhizal (VAM on Yield and Yield Components of Three Sorghum (Sorghum bicolor Cultivars

    A. Mehraban

    2012-10-01

    Full Text Available To evaluate the influence of vesicular arbuscular mycorrhizal (VAM on yield and yield components of three sorghum cultivars, a factorial experiment based randomized complete block design with four replications was carried out in 2007, at the Agricultural Research Center of Zahak, Iran. The treatments were different mycorrhiza species in three levels: without mycorrhiza (M1, Glomus etanicatum (M2 and G. mosseae(M3 and three cultivars of sorghum: local cultivars (C1, KGS25 (C2 and KGS29 (C3. The results showed that all of the traits measured were increased by inoculation of cultivars with mycorrhiza. The highest plant height (165.1 cm, stem diameter (1.61 cm, flag leaf length (27.22 cm, flag leaf width (3.67 cm and ear width (5.00 cm was obtained by inoculation of seed with Glumus etanicatum, and highest ear length (19.21 cm, ear number (2.51, seed number per ear (10252.11, 1000-seed weight (17.56 g and grain yield (1967.32 kg/ha by using Glumus mossea. The highest leaf width and length belonged to local cultivar, and the highest seed yield to KGS 29 cultivar. However, differences of other traits among sorghum cultivars were not significant. Based on the experimental results it can be concluded that highest grain yield may be obtained by inoculating seeds of KGS 29 with Glumus mossea.

  2. Independent and combined effects of soil warming and drought stress during anthesis on seed set and grain yield in two spring wheat varieties

    Weldearegay, Dawit Fisseha; Yan, F.; Jiang, D.

    2012-01-01

    irrigation until all of the transpirable soil water had been depleted in the pots. Results showed that, particularly under D treatment, Alora depleted soil water faster than Trappe. In both varieties, flag leaf relative water content (RWC) was significantly lowered, while spikelet abscisic acid (ABA...

  3. Physiological basis of barley yield under near optimal and stress conditions

    Pržulj Novo

    2004-01-01

    Full Text Available Average barley yield fall below its potential due to incidence of stresses. Water stress is the main environmental factor limiting yield. The component a priori more sensitive to most stresses is the amount of radiation absorbed. The effect of stresses influence on the total amount of radiation absorbed by barley crop during its vegetation and the photosynthetic efficiency of radiation conversion. Growth inhibition is accompanied by reductions in leaf and cell wall extensibility. Grain yield under drought conditions is source limited. Supply of assimilates to the developing inflorescence plays a critical role in establishing final grain number and grain size. Grain weight is negatively affected by drought, high temperature, and any other factors that may reduce grain filling duration and grain filling rate. Awns and glaucousness confer better performance of barley under drought stress conditions. Barley responds with an increased accumulation of a number of proteins when subjected to different stress inducing cell dehydration. Screening techniques that are able to identify desirable genotypes based on the evaluation of physiological traits related to stress evasion and stress resistance maybe useful in breeding barley for resistance to stress, particularly drought stress. Crop management and breeding can reduce the incidence of stress on yield. The effect of these practices is sustained by an understanding of their physiology. In this paper the physiological basis of the processes determining barley yield and the incidence of stresses on photosynthetic metabolism that determine grain yield of barley is discussed. .

  4. Evaluation of Chitosan Nanoparticles Effects on Yield and Yield Components of Barley (Hordeum vulgare L. under Late Season Drought Stress

    Faride Behboudi

    2018-01-01

    Full Text Available As a step towards the profitable employment of nanoparticles (NPs in agriculture, effects of chitosan NPs was probed on barley plants under late season drought stress. A factorial experiment was performed based on a randomized complete block design with three replications. The experimental factors included the chitosan NPs concentrations (0 (control, 30, 60 and 90 ppm, application methods (foliar and soil application and irrigation regimes (well-watered and withholding of irrigation for 15 days after pollination. The barley seeds were separately planted in pots. Then, the NPs were added to them through the soil and foliar application at three stages. The results indicated that using the chitosan NPs, especially 60 and 90 ppm, significantly increased the leaf area (LA, the leaf color (SPAD, the number of grain per spike, the grain yield and the harvest index compared to the control. Also, drought stress significantly decreased the yield and yield components compared to the well-watered plants. In contrast, using the chitosan NPs in plants under drought stress significantly increased the relative water content (RWC, the 1000-grain weight, the grain protein, the proline content, the catalase (CAT and the superoxide dismutase (SOD compared to the control. There was no a significant difference between two methods of using NPs in most studied traits. The results highlighted that using the chitosan NPs, especially 60 and 90 ppm, in both irrigation regimes can significantly improve the majority of the studied traits compared to the control and mitigate the harmful effects of drought stress.

  5. Traits in Spring Wheat Cultivars Associated with Yield Loss Caused by a Heat Stress Episode after Anthesis

    Vignjevic, Marija; Wang, Xiao; Olesen, Jørgen E

    2015-01-01

    with heat tolerance. Fifteen spring wheat (Triticum aestivum L.) cultivars were grown in pots under semifield conditions, and heat stress (35/26 °C) and control treatments (20/12 °C) were applied in growth chambers for 5 days starting 14 days after flowering. The heat stress treatment reduced final yield...... in the grain-filling period was negatively correlated with grain nitrogen yield (r = −0.60). A positive correlation (r = 0.73) was found between the treatment effect on green leaf area (GLA) and the reduction in yield resulting from heat stress. The amount of stem water-soluble carbohydrates (WSC...

  6. Yield performance and leaf nutrient levels of coffee cultivars under different plant densities Produtividade e níveis foliares de nutrientes em cultivares de café sob diferentes populações de plantas

    Edison Martins Paulo

    2010-12-01

    Full Text Available Coffee (Coffea Arabica L. plantations using adapted cultivars to regional environmental conditions with optimal plant population density and adequate nutrition are expected to show high yield responses. The triennial production and leaf macronutrient concentrations of four coffee cultivars were studied under different plant population densities. Catuaí Amarelo (IAC 47, Obatã (IAC 1669-20, Acaiá (IAC 474-19 and Icatu Amarelo (IAC 2944 were planted in densities of 2,500; 5,000; 7,519; and 10,000 plants ha-1 with one plant per hole and two plants per hole in the 2,500 plant ha-1. Plants were homogeneously fertilized without liming. As the population density increased the triennial coffee productivity increased, the yield per plant decreased, and leaf concentrations of phosphorus (P, potassium (K and sulfur (S increased. Coffee plants under dense systems presented equal or higher leaf macronutrient concentrations compared to the plants under conventional population. Taller cultivars presented the highest nutrient concentration values, and Obatã, a dwarf cultivar, the lowest values. Higher coffee yields and lower leaf P, Ca and S concentrations were observed in plots with one plant compared to the plots with two plants. In general, the coffee cultivars had leaf N and S concentrations above the reference limits reported in the literature, but leaf concentrations of other macronutrients were within adequate ranges.Cultivares de cafeeiro (Coffea Arabica L. adaptadas às regiões de cultivo, com população de plantas otimizada e adequado estado nutricional são premissas para a obtenção de produções elevadas de café. Estudou-se a produção trienal de café e o teor foliar de macronutrientes de cultivares de cafeeiro em função das densidades de plantio. Foram utilizados os cultivares Catuaí Amarelo (IAC 47, Obatã (IAC 1669-20, Acaiá (IAC 474-19 e Icatu Amarelo (IAC 2944 nas populações de 2.500 plantas ha-1 com duas plantas por cova; e, 5

  7. Drought priming at vegetative growth stages improves tolerance to drought and heat stresses occurring during grain filling in spring wheat

    Wang, Xiao; Vignjevic, Marija; Liu, Fulai

    2015-01-01

    Plants of spring wheat (Triticum aestivum L. cv. Vinjett) were exposed to moderate water deficit at the vegetative growth stages six-leaf and/or stem elongation to investigate drought priming effects on tolerance to drought and heat stress events occurring during the grain filling stage. Compared......Plants of spring wheat (Triticum aestivum L. cv. Vinjett) were exposed to moderate water deficit at the vegetative growth stages six-leaf and/or stem elongation to investigate drought priming effects on tolerance to drought and heat stress events occurring during the grain filling stage...... of abscisic acid in primed plants under drought stress could contribute to higher grain yield compared to the non-primed plants. Taken together, the results indicate that drought priming during vegetative stages improved tolerance to both drought and heat stress events occurring during grain filling in wheat....

  8. NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars.

    Fujita, Daisuke; Trijatmiko, Kurniawan Rudi; Tagle, Analiza Grubanzo; Sapasap, Maria Veronica; Koide, Yohei; Sasaki, Kazuhiro; Tsakirpaloglou, Nikolaos; Gannaban, Ritchel Bueno; Nishimura, Takeshi; Yanagihara, Seiji; Fukuta, Yoshimichi; Koshiba, Tomokazu; Slamet-Loedin, Inez Hortense; Ishimaru, Tsutomu; Kobayashi, Nobuya

    2013-12-17

    Increasing crop production is essential for securing the future food supply in developing countries in Asia and Africa as economies and populations grow. However, although the Green Revolution led to increased grain production in the 1960s, no major advances have been made in increasing yield potential in rice since then. In this study, we identified a gene, SPIKELET NUMBER (SPIKE), from a tropical japonica rice landrace that enhances the grain productivity of indica cultivars through pleiotropic effects on plant architecture. Map-based cloning revealed that SPIKE was identical to NARROW LEAF1 (NAL1), which has been reported to control vein pattern in leaf. Phenotypic analyses of a near-isogenic line of a popular indica cultivar, IR64, and overexpressor lines revealed increases in spikelet number, leaf size, root system, and the number of vascular bundles, indicating the enhancement of source size and translocation capacity as well as sink size. The near-isogenic line achieved 13-36% yield increase without any negative effect on grain appearance. Expression analysis revealed that the gene was expressed in all cell types: panicles, leaves, roots, and culms supporting the pleiotropic effects on plant architecture. Furthermore, SPIKE increased grain yield by 18% in the recently released indica cultivar IRRI146, and increased spikelet number in the genetic background of other popular indica cultivars. The use of SPIKE in rice breeding could contribute to food security in indica-growing regions such as South and Southeast Asia.

  9. Active-Optical Sensors Using Red NDVI Compared to Red Edge NDVI for Prediction of Corn Grain Yield in North Dakota, U.S.A.

    Sharma, Lakesh K; Bu, Honggang; Denton, Anne; Franzen, David W

    2015-11-02

    Active-optical sensor readings from an N non-limiting area standard established within a farm field are used to predict yield in the standard. Lower yield predictions from sensor readings obtained from other parts of the field outside of the N non-limiting standard area indicate a need for supplemental N. Active-optical sensor algorithms for predicting corn (Zea mays, L.) yield to direct in-season nitrogen (N) fertilization in corn utilize red NDVI (normalized differential vegetative index). Use of red edge NDVI might improve corn yield prediction at later growth stages when corn leaves cover the inter-row space resulting in "saturation" of red NDVI readings. The purpose of this study was to determine whether the use of red edge NDVI in two active-optical sensors (GreenSeeker™ and Holland Scientific Crop Circle™) improved corn yield prediction. Nitrogen rate experiments were established at 15 sites in North Dakota (ND). Sensor readings were conducted at V6 and V12 corn. Red NDVI and red edge NDVI were similar in the relationship of readings with yield at V6. At V12, the red edge NDVI was superior to the red NDVI in most comparisons, indicating that it would be most useful in developing late-season N application algorithms.

  10. Active-Optical Sensors Using Red NDVI Compared to Red Edge NDVI for Prediction of Corn Grain Yield in North Dakota, U.S.A.

    Sharma, Lakesh K.; Bu, Honggang; Denton, Anne; Franzen, David W.

    2015-01-01

    Active-optical sensor readings from an N non-limiting area standard established within a farm field are used to predict yield in the standard. Lower yield predictions from sensor readings obtained from other parts of the field outside of the N non-limiting standard area indicate a need for supplemental N. Active-optical sensor algorithms for predicting corn (Zea mays, L.) yield to direct in-season nitrogen (N) fertilization in corn utilize red NDVI (normalized differential vegetative index). Use of red edge NDVI might improve corn yield prediction at later growth stages when corn leaves cover the inter-row space resulting in “saturation” of red NDVI readings. The purpose of this study was to determine whether the use of red edge NDVI in two active-optical sensors (GreenSeeker™ and Holland Scientific Crop Circle™) improved corn yield prediction. Nitrogen rate experiments were established at 15 sites in North Dakota (ND). Sensor readings were conducted at V6 and V12 corn. Red NDVI and red edge NDVI were similar in the relationship of readings with yield at V6. At V12, the red edge NDVI was superior to the red NDVI in most comparisons, indicating that it would be most useful in developing late-season N application algorithms. PMID:26540057

  11. Tillage and straw mulching impacts on grain yield and water use efficiency of spring maize in Northern Huang-Huai-Hai Valley

    Zhiqiang Tao; Congfeng Li; Jingjing Li; Zaisong Ding; Jie Xu; Xuefang Sun; Peilu Zhou; Ming Zhao

    2015-01-01

    A two-year field experiment (2012–2013) was conducted to investigate the effects of two tillage methods and five maize straw mulching patterns on the yield, water consumption, and water use efficiency (WUE) of spring maize (Zea mays L.) in the northern Huang–Huai–Hai valley of China. Compared to rotary tillage, subsoil tillage resulted in decreases in water consumption by 6.3–7.8% and increases in maize yield by 644.5–673.9 kg ha−1, soil water content by 2.9–3.0%, and WUE by 12.7–15.2%. Chopped straw mulching led to higher yield, soil water content, and WUE as well as lower water consumption than prostrate whole straw mulching. Mulching with 50%chopped straw had the largest positive effects on maize yield, soil water content, and WUE among the five mulching treatments. Tillage had greater influence on maize yield than straw mulching, whereas straw mulching had greater influence on soil water content, water consumption, and WUE than tillage. These results suggest that 50%chopped straw mulching with subsoil tillage is beneficial in spring maize production aiming at high yield and high WUE in the Huang–Huai–Hai valley.

  12. Redução da área foliar e o rendimento do pepino japonês Leaf area reduction and the yield of the japanese cucumber

    Edson Shigueaki Nomura

    2000-06-01

    Full Text Available Para verificar o efeito da redução da área foliar sobre a produção e qualidade dos frutos de pepino japonês (híbrido Hokuho nº 2, enxertado sobre abóbora 'Excite Ikky' cultivado em ambiente protegido, foram avaliados seis tratamentos com cinco repetições e cinco plantas por parcela, no delineamento experimental em blocos ao acaso. O tratamento 1 foi constituído por plantas com crescimento livre; no tratamento 2 (padrão as plantas foram conduzidas com desbrotas nos ramos laterais; no tratamento 3 as plantas foram conduzidas semelhante ao padrão, mas com eliminação de frutos tortos ainda jovens (In order to verify the defoliation effect on yield and quality of japanese cucumber ('Hokuho' grafted over 'Excite Ikky' squash under protected cultivation, five replicates of five plants per plot were used to evaluate six treatments in a randomized block design. Treatment 1 consisted of free growth plants; treatment 2 (standard of disprouted plants; treatment 3, young curved fruits (<5 cm removed; treatments 4, 5 and 6, plants removing 25%, 50% and 75% of their leaves, respectively. There were no differences in plant height, but plants of treatments 5 and 6 had greater number of nodes per plant, although they were smaller and less vigorous, presenting a smaller number of sproutings. Despite having plants with higher total yield, in treatment 1, most of them were curved and the harvest was more difficult. Plants of treatment 3 had a greater commercial yield, because all the young curved fruits were removed and the plants compensated their yield, producing other fruits with better quality and plants had better sprouting. The higher the defoliation level the greater was the yield reduction.

  13. Maize growth and yield in Peshawar under changing climate

    Shah, A.; Akmal, M.; Asim, M.

    2012-01-01

    Global climate change is consequence of accumulating greenhouse gases (Carbon) at lower atmosphere which might affects crops growth and yield. Maize is an important summer cereals, grown on considerable area in Pakistan every year. We, therefore, study the delay sowing response with changing climate on maize. Field experiment was conducted at Agronomy Research Farm, Agricultural University Peshawar, Pakistan in a randomized complete block design. Sowing was done from June 8 to July 24, 2010 with ten days intervals. Mazie (cv. Azam) was planted in rows at 0.75 m distance in NS orientations. Crop was raised under the uniform recommended cultural practices. Data regarding days to emergence, tasseling and maturity showed a consecutive decrease when so wing was delayed form June 08 onwards. However, the crop life cycle (i.e. vegetative and reproductive durations) initially remained uniform but expanded for late sowing dates (July). Delay sowing showed an increase in the leaf area index with an abrupt decline for the late sown crop. Nonetheless, plant stand at harvest remained static during the growth for all sowing dates. A stable to moderate reduction was noticed in ear length (cm) when sowings was delayed from Jun 08 onwards. Grain rows cob/-1 did not influence by the delay sowing in the season. Moreover, delay sowing did not show any significant (P<0.05) change for the grain number. However, thousand grains weight was initially remained stable but declined (P<0.05) by delay in sowing. Biological yield, dry matter and grains yield (g m/sup -2/) revealed almost a similar decreasing trend when sowing was delayed. Dry matter to grain yield relationship was linear (r/sup 2/ = 0.95) and revealed a mean loss of 1.65 g m/sup 2/ when sowing delayed from June 08 to July 24 in the season. Radiation use efficiency (RUE), the growth function, was also declined by the delay in sowing. We inferred that losses in leaf area indices, ear length and grain weights were basis of the

  14. Are GM Crops for Yield and Resilience Possible?

    Paul, Matthew J; Nuccio, Michael L; Basu, Shib Sankar

    2018-01-01

    Crop yield improvements need to accelerate to avoid future food insecurity. Outside Europe, genetically modified (GM) crops for herbicide- and insect-resistance have been transformative in agriculture; other traits have also come to market. However, GM of yield potential and stress resilience has yet to impact on food security. Genes have been identified for yield such as grain number, size, leaf growth, resource allocation, and signaling for drought tolerance, but there is only one commercialized drought-tolerant GM variety. For GM and genome editing to impact on yield and resilience there is a need to understand yield-determining processes in a cell and developmental context combined with evaluation in the grower environment. We highlight a sugar signaling mechanism as a paradigm for this approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Critério de seleção indireta para a produtividade de grãos em feijão Indirect selection strategy to grain yield in common bean

    Nerinéia Dalfollo Ribeiro

    2010-04-01

    Full Text Available Com o objetivo de avaliar a associação linear entre a nota geral de adaptação e a produtividade de grãos de feijão como critério para a seleção indireta, foram conduzidos nove experimentos durante os anos de 2000/2001 a 2004/2005, em duas épocas de cultivo, no Estado do Rio Grande do Sul, Brasil (latitude 29°42'S, longitude 53°49'W e 95m de altitude. A nota geral de adaptação, avaliada por uma escala de notas (1: excelente a 9: péssimo, e a produtividade de grãos foram determinadas em 14 cultivares de feijão. Correlação linear negativa foi verificada entre a nota geral de adaptação e a produtividade de grãos (r=-0,6134. A seleção indireta, por meio da nota geral de adaptação, é eficiente para o incremento da produtividade de grãos de feijão em linhas endogâmicas.The objective of this research was to investigate the correlation between general adaptation note and grain yield as indirect selection strategy. Nine experiments were conducted in the agricultural years of 2000/2001 and 2004/2005, in two growing seasons, at Rio Grande do Sul State, Brazil (latitude 29°42'S, longitude 53°49'W and altitude 95m. The general adaptation note was evaluated for the grade scale, where 1 was = excellent and 9 was = very bad, and grain yield was determinate in 14 common bean cultivars. Negative linear correlation was obtained between the general adaptation note and grain yield (r=-0.6134. The indirect selection for the general adaptation note is efficient for increment grain yield in common bean in inbred lines.

  16. Dry matter production, seed yield and water use efficiency of some grain legumes grown under different water regimes using nuclear technique

    Harb, O.M.S.; Salem, M.S.A.; Abdalla, A.A.; Abd-Elwahed, N.M.

    2007-01-01

    Two field experiments were performed in the experimental farm at the Atomic Energy Authority, Inshas, Egypt, during 2002 and 2004 growing seasons to evaluate the responses of dry matter production, seed yield, water use efficiency and root characteristics for three legumes species, i.e. soybean (Glycine max cv. clark), cowpea (Vigna unguiculata cv. Kafr El-Sheikh) and mungbean (Vigna radiate cv. kawmy 1) grown on a new reclaimed sandy soil under different water regimes. The experiments were laid out using a single line source sprinkler irrigation system which allows a gradual variation of irrigation water, i.e. full irrigation (W1), medium water stress (W2) and severe water stress (W3). The obtained results indicated that normal irrigation (W1) gave the highest above ground dry matter production at flowering stage and total dry matter yield at maturity for the tested legumes. Water stress decreased significantly seed yields for all the tested legume seeds. The seed yield of normal watering condition treatment (W1) out yielded seed yield of those irrigated with medium water stress (W2) and severe water stress (W3). Mungbean and cowpea were more adapted to severe water stress than soybean. Most of the reduction in yield arose from a decrease in pod number. Pod number, number of seeds per pod and the thousand seed weight were significantly affected by water stress. The highest water use efficiency based on seed yield or dry matter yield were obtained by exposing the legume plants to medium water stress (W2), while the lowest value was obtained by exposing the plants to severe water stress (W3). There were significant differences in WUE among the tested species, whereas, mungbean showed the highest value in response to water stress, followed by soybean while cowpea showed the lowest value of water use efficiency. Rooting depth was increased under the severe water stress treatment as compared with well watered condition in the tested legume plants. Mungbean had the

  17. Simulating the yield impacts of organ-level quantitative trait loci associated with drought response in maize: a "gene-to-phenotype" modeling approach.

    Chenu, Karine; Chapman, Scott C; Tardieu, François; McLean, Greg; Welcker, Claude; Hammer, Graeme L

    2009-12-01

    Under drought, substantial genotype-environment (G x E) interactions impede breeding progress for yield. Identifying genetic controls associated with yield response is confounded by poor genetic correlations across testing environments. Part of this problem is related to our inability to account for the interplay of genetic controls, physiological traits, and environmental conditions throughout the crop cycle. We propose a modeling approach to bridge this "gene-to-phenotype" gap. For maize under drought, we simulated the impact of quantitative trait loci (QTL) controlling two key processes (leaf and silk elongation) that influence crop growth, water use, and grain yield. Substantial G x E interaction for yield was simulated for hypothetical recombinant inbred lines (RILs) across different seasonal patterns of drought. QTL that accelerated leaf elongation caused an increase in crop leaf area and yield in well-watered or preflowering water deficit conditions, but a reduction in yield under terminal stresses (as such "leafy" genotypes prematurely exhausted the water supply). The QTL impact on yield was substantially enhanced by including pleiotropic effects of these QTL on silk elongation and on consequent grain set. The simulations obtained illustrated the difficulty of interpreting the genetic control of yield for genotypes influenced only by the additive effects of QTL associated with leaf and silk growth. The results highlight the potential of integrative simulation modeling for gene-to-phenotype prediction and for exploiting G x E interactions for complex traits such as drought tolerance.

  18. Use of the Stable Nitrogen Isotope to Reveal the Source-Sink Regulation of Nitrogen Uptake and Remobilization during Grain Filling Phase in Maize.

    Lan Yang

    Full Text Available Although the remobilization of vegetative nitrogen (N and post-silking N both contribute to grain N in maize (Zea mays L., their regulation by grain sink strength is poorly understood. Here we use 15N labeling to analyze the dynamic behaviors of both pre- and post-silking N in relation to source and sink manipulation in maize plants. The results showed that the remobilization of pre-silking N started immediately after silking and the remobilized pre-silking N had a greater contribution to grain N during early grain filling, with post-silking N importance increasing during the later filling stage. The amount of post-silking N uptake was largely driven by post-silking dry matter accumulation in both grain as well as vegetative organs. Prevention of pollination during silking had less effect on post-silking N uptake, as a consequence of compensatory growth of stems, husk + cob and roots. Also, leaves continuously export N even though grain sink was removed. The remobilization efficiency of N in the leaf and stem increased with increasing grain yield (hence N requirement. It is suggested that the remobilization of N in the leaf is controlled by sink strength but not the leaf per se. Enhancing post-silking N uptake rather than N remobilization is more likely to increase grain N accumulation.

  19. Produtividade de grãos e óleo de genótipos de amendoim para o mercado oleoquímico Grain and oil yield of peanut genotypes for the oil chemistry market

    Roseane Cavalcanti dos Santos

    2012-03-01

    Full Text Available Linhagens de elite e cultivares de amendoim rasteiro foram avaliadas quanto às suas produtividades de grãos e de óleo, visando uma posterior indicação ao mercado de óleo comestível ou combustível. Os genótipos foram cultivados no período das águas, durante dois anos, em Barbalha, CE, sob o delineamento experimental de blocos ao acaso, com cinco repetições. A colheita foi efetuada entre 110 e 135 dias após o plantio. As variáveis analisadas foram produtividade em vagens, sementes e óleo. O óleo bruto foi extraído aplicando-se a tecnologia convencional de soxhlet, utilizando-se éter de petróleo como solvente. Posteriormente, procedeu-se às análises dos ácidos graxos por meio de cromatografia gasosa. Baseando-se nos ensaios de produção, os materiais de maior produção de grãos foram LViPE-06 e BRS Pérola Branca, com médias de 3,04 t ha-1 de vagens e 2,13 t ha-1 de sementes. Esses materiais também se destacaram para o segmento oleoquímico, baseando-se no teor de óleo e na relação de ácidos graxos O/L, que se situaram em 51% e 1,9, respectivamente.Top lines and cultivars of runner peanut genotypes were analyzed as to grain and oil yield, aiming further recommendation to edible or combustible oil market. The genotypes were cultivated during wet seasons for two years, at the city of Barbalha, state of Ceará, Brazil, by using a complete randomized block design with five replicates. The harvest took place from 110 to 135 days after planting. Pod, grain and oil yields were registered in each plot. Crude oil was extracted by soxhlet protocol, by using petroleum ether as a solvent. Afterwards, fatty acids were analyzed by gas chromatography. Based on yield tests, LViPE-06 and BRS Pérola Branca showed the highest grain yields, with pod and seed yield averages of 3.04 kg ha-1 and 2.13 kg ha-1, respectively. These genotypes also stood out as to oil chemistry industry, based on oil content and ratio of oleic/ linoleic fatty

  20. HvDep1 Is a Positive Regulator of Culm Elongation and Grain Size in Barley and Impacts Yield in an Environment-Dependent Manner.

    Toni Wendt

    Full Text Available Heterotrimeric G proteins are intracellular membrane-attached signal transducers involved in various cellular processes in both plants and animals. They consist of three subunits denoted as α, β and γ. The γ-subunits of the so-called AGG3 type, which comprise a transmembrane domain, are exclusively found in plants. In model species, these proteins have been shown to participate in the control of plant height, branching and seed size and could therefore impact the harvestable yield of various crop plants. Whether AGG3-type γ-subunits influence yield in temperate cereals like barley and wheat remains unknown. Using a transgenic complementation approach, we show here that the Scottish malting barley cultivar (cv. Golden Promise carries a loss-of-function mutation in HvDep1, an AGG3-type subunit encoding gene that positively regulates culm elongation and seed size in barley. Somewhat intriguingly, agronomic field data collected over a 12-year period reveals that the HvDep1 loss-of-function mutation in cv. Golden Promise has the potential to confer either a significant increase or decrease in harvestable yield depending on the environment. Our results confirm the role of AGG3-type subunit-encoding genes in shaping plant architecture, but interestingly also indicate that the impact HvDep1 has on yield in barley is both genotypically and environmentally sensitive. This may explain why widespread exploitation of variation in AGG3-type subunit-encoding genes has not occurred in temperate cereals while in rice the DEP1 locus is widely exploited to improve harvestable yield.

  1. Effects of shading on dry matter partitioning and yield of field-grown sunflower

    Villalobos, F.J.; Soriano, A.; Fereres, E.

    1992-01-01

    Crop simulation models require quantitative descriptions of the effects of irradiance on dry matter partition and yield. The objective of this work was to quantify the effects of reduced radiation intensity during different phenological stages on the growth, dry matter partitioning and grain numbers of sunflower (Helianthus annuus, L.). A field experiment was carried out in 1990 with 50 per cent shading treatments. The earliest treatment began at crop emergence while the latest ended at first anthesis. Shading had little effect on plant leaf area growth but reduced biomass and yield. The dry matter: radiation quotient and specific leaf area increased with shading. Grain number per head was decreased by shading, with the greatest effect occurring when shading was applied prior to anthesis. All shading treatments increased dry matter partitioning to stems, decreased assimilate partitioning to the heads and had no effect on the partitioning to leaves. (author)

  2. Translational researches on leaf senescence for enhancing plant productivity and quality.

    Guo, Yongfeng; Gan, Su-Sheng

    2014-07-01