WorldWideScience

Sample records for grain yield electronic

  1. Electrons scattered inside small dust grains of various materials

    International Nuclear Information System (INIS)

    Richterova, Ivana; Beranek, Martin; Pavlu, Jiri; Nemecek, Zdenek; Safrankova, Jana

    2010-01-01

    The dust grain charge in an electron beam is given by a difference in numbers of electrons that fall onto the grain and those leaving it. Electrons with energies exceeding 1 keV can penetrate through submicron-sized dust grains. If the grain is small enough, a yield of these electrons reaches unity but they leave a part of their energy inside the grain and this energy excites secondary electrons. The paper presents a hybrid Monte Carlo code that simulates paths of the primary electrons inside a spherical grain and provides the yield of scattered electrons and their energy spectrum as a function of the grain size and material. This code is based on the Richterovaet al. [Phys. Rev. B 74, 235430 (2006)] model but it includes several corrections important for light materials like carbon or ice. The model was verified using experimental results obtained on large planar samples. For spherical samples, we have found that the yield of scattered electrons reaches unity for 50 nm Au grains illuminated by 5 keV electrons, whereas the same effect can be observed on ≅1000 nm carbon grains.

  2. Grain-filling duration and grain yield relationships in wheat mutants

    International Nuclear Information System (INIS)

    Larik, A.S.

    1987-01-01

    Nine stable mutants of bread wheat along with their mother cultivars were investigated for grain-filling characteristics in relation to grain yield. Significant differences among mutants for grain-filling duration and grain-filling index were observed. Inspite of the consistent differences in grain-filling duration there was no significant association between grain-filling duration and grain yield in C-591 and Nayab mutants. Failure to detect an yield advantage due to differences in grain-filling duration in these genotypes suggests that any advantage derived from alteration of grain-filling period may have been outweighed by the coincident changes in length of the vegetative period. Other factors such as synchrony of anthesis may have limited out ability to find an association between grainfilling duration and grain yield. On the contrary, significant association between grain-filling duration and grain yield displayed by indus-66 indus-66 mutants derived from gamma rays, shows the ability of gamma rays to induce functional alternations in the pattern of gene arrangements controlling these traits. Thus, the vaability observed in these physiological traits suggests that selection for these traits could be useful in improving grain yield. (author)

  3. 6 Grain Yield

    African Journals Online (AJOL)

    create a favourable environment for rice ... developing lines adaptable to many ... have stable, not too short crop duration with ..... Analysis of variance of the effect of site and season on maturity, grain yield and plant ..... and yield components.

  4. Slope Controls Grain Yield and Climatic Yield in Mountainous Yunnan province, China

    Science.gov (United States)

    Duan, X.; Rong, L.; Gu, Z.; Feng, D.

    2017-12-01

    Mountainous regions are increasingly vulnerable to food insecurity because of limited arable land, growing population pressure, and climate change. Development of sustainable mountain agriculture will require an increased understanding of the effects of environmental factors on grain and climatic yields. The objective of this study was to explore the relationships between actual grain yield, climatic yield, and environmental factors in a mountainous region in China. We collected data on the average grain yield per unit area in 119 counties in Yunnan province from 1985 to 2012, and chose 17 environmental factors for the same period. Our results showed that actual grain yield ranged from 1.43 to 6.92 t·ha-1, and the climatic yield ranged from -0.15 to -0.01 t·ha-1. Lower climatic yield but higher grain yield was generally found in central areas and at lower slopes and elevations in the western and southwestern counties of Yunnan province. Higher climatic yield but lower grain yield were found in northwestern parts of Yunnan province on steep slopes. Annual precipation and temperature had a weak influence on the climatic yield. Slope explained 44.62 and 26.29% of the variation in grain yield and climatic yield. The effects of topography on grain and climatic yields were greater than climatic factors. Slope was the most important environmental variable for the variability in climatic and grain yields in the mountainous Yunnan province due to the highly heterogeneous topographic conditions. Conversion of slopes to terraces in areas with higher climatic yields is an effective way to maintain grain production in response to climate variability. Additionally, soil amendments and soil and water conservation measures should be considered to maintain soil fertility and aid in sustainable development in central areas, and in counties at lower slopes and elevations in western and southwestern Yunnan province.

  5. Contrasting response of biomass and grain yield to severe drought in Cappelle Desprez and Plainsman V wheat cultivars

    Directory of Open Access Journals (Sweden)

    Kenny Paul

    2016-02-01

    Full Text Available We report a case study of natural variations and correlations of some photosynthetic parameters, green biomass and grain yield in Cappelle Desprez and Plainsman V winter wheat (Triticum aestivum L. cultivars, which are classified as being drought sensitive and tolerant, respectively. We monitored biomass accumulation from secondary leaves in the vegetative phase and grain yield from flag leaves in the grain filling period. Interestingly, we observed higher biomass production, but lower grain yield stability in the sensitive Cappelle cultivar, as compared to the tolerant Plainsman cv. Higher biomass production in the sensitive variety was correlated with enhanced water-use efficiency. Increased cyclic electron flow around PSI was also observed in the Cappelle cv. under drought stress as shown by light intensity dependence of the ratio of maximal quantum yields of Photosystem I and Photosystem II, as well by the plot of the Photosystem I electron transport rate as a function of Photosystem II electron transport rate. Higher CO2 uptake rate in flag leaves of the drought-stressed Plainsman cv. during grain filling period correlates well with its higher grain yield and prolonged transpiration rate through spikes. The increase in drought factor (DFI and performance (PI indices calculated from variable chlorophyll fluorescence parameters of secondary leaves also showed correlation with higher biomass in the Cappelle cultivar during the biomass accumulation period. However, during the grain filling period, DFI and PI parameters of the flag leaves were higher in the tolerant Plainsman V cultivar and showed correlation with grain yield stability. Our results suggest that overall biomass and grain yield may respond differentially to drought stress in different wheat cultivars and therefore phenotyping for green biomass cannot be used as a general approach to predict grain yield. We also conclude that photosynthetic efficiency of flag and secondary leaves

  6. Grain yield and agronomic characteristics of Romanian bread wheat ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... Wheat is adapted to diverse environments, between the ... international collaborative studies many new varieties ... Stability of grain yield and quality characteristics over locations ... grain yield capacity and yield components of twelve .... Analysis of variance for grain yield and yield-related traits over two ...

  7. Path Analysis of Grain Yield and Yield Components and Some Agronomic Traits in Bread Wheat

    Directory of Open Access Journals (Sweden)

    Mohsen Janmohammadi

    2014-01-01

    Full Text Available Development of new bread wheat cultivars needs efficient tools to monitor trait association in a breeding program. This investigation was aimed to characterize grain yield components and some agronomic traits related to bread wheat grain yield. The efficiency of a breeding program depends mainly on the direction of the correlation between different traits and the relative importance of each component involved in contributing to grain yield. Correlation and path analysis were carried out in 56 bread wheat genotypes grown under field conditions of Maragheh, Iran. Observations were recorded on 18 wheat traits and correlation coefficient analysis revealed grain yield was positively correlated with stem diameter, spike length, floret number, spikelet number, grain diameter, grain length and 1000 seed weight traits. According to the variance inflation factor (VIF and tolerance as multicollinearity statistics, there are inconsistent relationships among the variables and all traits could be considered as first-order variables (Model I with grain yield as the response variable due to low multicollinearity of all measured traits. In the path coefficient analysis, grain yield represented the dependent variable and the spikelet number and 1000 seed weight traits were the independent ones. Our results indicated that the number of spikelets per spikes and leaf width and 1000 seed weight traits followed by the grain length, grain diameter and grain number per spike were the traits related to higher grain yield. The above mentioned traits along with their indirect causal factors should be considered simultaneously as an effective selection criteria evolving high yielding genotype because of their direct positive contribution to grain yield.

  8. Sequential Path Model for Grain Yield in Soybean

    Directory of Open Access Journals (Sweden)

    Mohammad SEDGHI

    2010-09-01

    Full Text Available This study was performed to determine some physiological traits that affect soybean,s grain yield via sequential path analysis. In a factorial experiment, two cultivars (Harcor and Williams were sown under four levels of nitrogen and two levels of weed management at the research station of Tabriz University, Iran, during 2004 and 2005. Grain yield, some yield components and physiological traits were measured. Correlation coefficient analysis showed that grain yield had significant positive and negative association with measured traits. A sequential path analysis was done in order to evaluate associations among grain yield and related traits by ordering the various variables in first, second and third order paths on the basis of their maximum direct effects and minimal collinearity. Two first-order variables, namely number of pods per plant and pre-flowering net photosynthesis revealed highest direct effect on total grain yield and explained 49, 44 and 47 % of the variation in grain yield based on 2004, 2005, and combined datasets, respectively. Four traits i.e. post-flowering net photosynthesis, plant height, leaf area index and intercepted radiation at the bottom layer of canopy were found to fit as second-order variables. Pre- and post-flowering chlorophyll content, main root length and intercepted radiation at the middle layer of canopy were placed at the third-order path. From the results concluded that, number of pods per plant and pre-flowering net photosynthesis are the best selection criteria in soybean for grain yield.

  9. Contributions to yield strength in an ultrafine grained 1050 aluminum alloy after DC current annealing

    International Nuclear Information System (INIS)

    Cao, Yiheng; He, Lizi; Zhou, Yizhou; Wang, Ping; Cui, Jianzhong

    2016-01-01

    The ultrafine grained (UFG) 1050 aluminum alloy was prepared by equal channel angular pressing at cryogenic temperature (cryoECAP). The evolution of the yield strength and microstructures of UFG 1050 aluminum alloy after direct electric current (DC current) annealing at 150–400 °C for 1 h were investigated by tensile test, electron back scattering diffraction pattern (EBSD) and transmission electron microscopy (TEM). For the cryoECAPed and annealed samples at 150–250 °C, the predominant boundaries are high angle boundaries (HABs) (>60%), many dislocations accumulate at subgrain and/or grain boundaries, the yield strength (126–159 MPa) mainly comes from the dislocation and grain boundary strengthening contributions. While an unusual increase in the yield strength (by 8.1–11.2%) observed in samples annealed at 150–200 °C is attributed to an additional strengthening contribution from the more HABs having stable structures which can act as effective barriers to dislocation motion during tensile deformation. When annealing at 300–400 °C, the microstructures are free of dislocations, the yield strength (29–45 MPa) comes from the grain boundary strengthening contribution. With the application of DC current, the larger grain size, lower dislocation density and higher fraction of LABs having misorientation angle between 3−7° in samples annealed at 150–250 °C result in the lower yield strength, while the smaller average grain sizes in samples annealed at 300–400 °C cause the higher yield strength.

  10. Contributions to yield strength in an ultrafine grained 1050 aluminum alloy after DC current annealing

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yiheng [Key Lab of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); He, Lizi, E-mail: helizi@epm.neu.edu.cn [Key Lab of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); Zhou, Yizhou [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Ping; Cui, Jianzhong [Key Lab of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China)

    2016-09-30

    The ultrafine grained (UFG) 1050 aluminum alloy was prepared by equal channel angular pressing at cryogenic temperature (cryoECAP). The evolution of the yield strength and microstructures of UFG 1050 aluminum alloy after direct electric current (DC current) annealing at 150–400 °C for 1 h were investigated by tensile test, electron back scattering diffraction pattern (EBSD) and transmission electron microscopy (TEM). For the cryoECAPed and annealed samples at 150–250 °C, the predominant boundaries are high angle boundaries (HABs) (>60%), many dislocations accumulate at subgrain and/or grain boundaries, the yield strength (126–159 MPa) mainly comes from the dislocation and grain boundary strengthening contributions. While an unusual increase in the yield strength (by 8.1–11.2%) observed in samples annealed at 150–200 °C is attributed to an additional strengthening contribution from the more HABs having stable structures which can act as effective barriers to dislocation motion during tensile deformation. When annealing at 300–400 °C, the microstructures are free of dislocations, the yield strength (29–45 MPa) comes from the grain boundary strengthening contribution. With the application of DC current, the larger grain size, lower dislocation density and higher fraction of LABs having misorientation angle between 3−7° in samples annealed at 150–250 °C result in the lower yield strength, while the smaller average grain sizes in samples annealed at 300–400 °C cause the higher yield strength.

  11. Grain filling parameters and yield components in wheat

    OpenAIRE

    Brdar Milka; Kobiljski Borislav; Balalić-Kraljević Marija

    2006-01-01

    Grain yield of wheat (Triticum aestivum L.) is influenced by number of grains per unit area and grain weight, which is result of grain filling duration and rate. The aim of the study was to investigate the relationships between grain filling parameters in 4 wheat genotypes of different earliness and yield components. Nonlinear regression estimated and observed parameters were analyzed. Rang of estimated parameters corresponds to rang of observed parameters. Stepwise MANOVA indicated that the ...

  12. Grain size effect on yield strength of titanium alloy implanted with aluminum ions

    Energy Technology Data Exchange (ETDEWEB)

    Popova, Natalya, E-mail: natalya-popova-44@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk (Russian Federation); Nikonenko, Elena, E-mail: vilatomsk@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); National Research Tomsk Polytechnic University, 30, Lenin Str., 634050, Tomsk (Russian Federation); Yurev, Ivan, E-mail: yiywork@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Kalashnikov, Mark, E-mail: kmp1980@mail.ru [Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk (Russian Federation); Kurzina, Irina, E-mail: kurzina99@mail.ru [National Research Tomsk State University, 36, Lenin Str., 634050, Tomsk (Russian Federation)

    2016-01-15

    The paper presents a transmission electron microscopy (TEM) study of the microstructure and phase state of commercially pure titanium VT1-0 implanted by aluminum ions. This study has been carried out before and after the ion implantation for different grain size, i.e. 0.3 µm (ultra-fine grain condition), 1.5 µm (fine grain condition), and 17 µm (polycrystalline condition). This paper presents details of calculations and analysis of strength components of the yield stress. It is shown that the ion implantation results in a considerable hardening of the entire thickness of the implanted layer in the both grain types. The grain size has, however, a different effect on the yield stress. So, both before and after the ion implantation, the increase of the grain size leads to the decrease of the alloy hardening. Thus, hardening in ultra-fine and fine grain alloys increased by four times, while in polycrystalline alloy it increased by over six times.

  13. Selection of common bean lines with high grain yield and high grain calcium and iron concentrations

    Directory of Open Access Journals (Sweden)

    Nerinéia Dalfollo Ribeiro

    2014-02-01

    Full Text Available Genetic improvement of common bean nutritional quality has advantages in marketing and can contribute to society as a food source. The objective of this study was to evaluate the genetic variability for grain yield, calcium and iron concentrations in grains of inbred common bean lines obtained by different breeding methods. For this, 136 F7 inbred lines were obtained using the Pedigree method and 136 F7 inbred lines were obtained using the Single-Seed Descent (SSD method. The lines showed genetic variability for grain yield, and concentrations of calcium and iron independently of the method of advancing segregating populations. The Pedigree method allows obtaining a greater number of lines with high grain yield. Selection using the SSD method allows the identification of a larger number of lines with high concentrations of calcium and iron in grains. Weak negative correlations were found between grain yield and calcium concentration (r = -0.0994 and grain yield and iron concentration (r = -0.3926. Several lines show genetic superiority for grain yield and concentrations of calcium and iron in grains and their selection can result in new common bean cultivars with high nutritional quality.

  14. Verification of “Channel-Probability Model” of Grain Yield Estimation

    Directory of Open Access Journals (Sweden)

    ZHENG Hong-yan

    2016-07-01

    Full Text Available The "channel-probability model" of grain yield estimation was verified and discussed systematically by using the grain production data from 1949 to 2014 in 16 typical counties, and 6 typical districts, and 31 provinces of China. The results showed as follows:(1Due to the geographical spatial scale was large enough, different climate zones and different meteorological conditions could compensated, and grain yield estimation error was small in the scale of nation. Therefore, it was not necessary to modify the grain yield estimation error by mirco-trend and the climate year types in the scale of nation. However, the grain yield estimation in the scale of province was located at the same of a climate zone,the scale was small, so the impact of the meteorological conditions on grain yield was less complementary than the scale of nation. While the spatial scale of districts and counties was smaller, accordingly the compensation of the impact of the meteorological conditions on grain yield was least. Therefore, it was necessary to use mrico-trend amendment and the climate year types amendment to modify the grain yield estimation in districts and counties.(2Mirco-trend modification had two formulas, generally, when the error of grain yield estimation was less than 10%, it could be modified by Y×(1-K; while the error of grain yield estimation was more than 10%, it could be modified by Y/(1+K.(3Generally, the grain estimation had 5 grades, and some had 7 grades because of large error fluctuation. The parameters modified of super-high yield year and super-low yield year must be depended on the real-time crop growth and the meteorological condition. (4By plenty of demonstration analysis, it was proved that the theory and method of "channel-probability model" was scientific and practical. In order to improve the accuracy of grain yield estimation, the parameters could be modified with micro-trend amendment and the climate year types amendment. If the

  15. A Rare Allele of GS2 Enhances Grain Size and Grain Yield in Rice.

    Science.gov (United States)

    Hu, Jiang; Wang, Yuexing; Fang, Yunxia; Zeng, Longjun; Xu, Jie; Yu, Haiping; Shi, Zhenyuan; Pan, Jiangjie; Zhang, Dong; Kang, Shujing; Zhu, Li; Dong, Guojun; Guo, Longbiao; Zeng, Dali; Zhang, Guangheng; Xie, Lihong; Xiong, Guosheng; Li, Jiayang; Qian, Qian

    2015-10-05

    Grain size determines grain weight and affects grain quality. Several major quantitative trait loci (QTLs) regulating grain size have been cloned; however, our understanding of the underlying mechanism that regulates the size of rice grains remains fragmentary. Here, we report the cloning and characterization of a dominant QTL, grain size on chromosome 2 (GS2), which encodes Growth-Regulating Factor 4 (OsGRF4), a transcriptional regulator. GS2 localizes to the nucleus and may act as a transcription activator. A rare mutation of GS2 affecting the binding site of a microRNA, OsmiR396c, causes elevated expression of GS2/OsGRF4. The increase in GS2 expression leads to larger cells and increased numbers of cells, which thus enhances grain weight and yield. The introduction of this rare allele of GS2/OsGRF4 into rice cultivars could significantly enhance grain weight and increase grain yield, with possible applications in breeding high-yield rice varieties. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  16. Effect of salinity on grain yield and grain quality of wheat (triticum aestivum l.)

    International Nuclear Information System (INIS)

    Abbas, G.; Saqib, M.; Rafique, Q.; Rahman, A.U.; Akhtar, J.; Haq, M.A.U.

    2013-01-01

    Salinity is one of the important stresses resulting in the reduction of growth and yield of different crops including wheat. In saline soils the concentration of Na/sup +/ and Cl/sup -/ is higher accompanied with the decreased K/sup +/: Na/sup +/ ratio thus severely affecting the growth and yield of crops. The effect of salinity on the growth and yield of wheat is well documented, whereas there is very little information about salinity tolerance and grain quality of wheat. Present study was conducted to assess the effect of salinity on yield components, ionic relations and grain quality and to understand the relationship among these parameters. A pot experiment was conducted using wheat genotype Pasban-90. There were two treatments i.e. non-saline (0.33 dS m/sup -1/) and saline (15 dS m/sup -1/) with five replications. Salinity resulted in a significant reduction of the grain protein, fat and fiber contents. Similarly yield components were significantly reduced. Maximum reduction was noted in case of number of tillers plant/sup -1/, followed by grain weight plant/sup -1/. High Na/sup +/ and low K/sup +/, P concentration and K/sup +/: Na/sup +/ ratio was observed in the shoot, root and grain. This disturbed ionic composition seems to be apparent cause of yield reduction and deterioration of wheat quality under salinity. (author)

  17. Experimental Investigation of Charging Properties of Interstellar Type Silica Dust Grains by Secondary Electron Emissions

    Science.gov (United States)

    Tankosic, D.; Abbas, M. M.

    2013-01-01

    The dust charging by electron impact is an important dust charging processes in astrophysical and planetary environments. Incident low energy electrons are reflected or stick to the grains charging the dust grains negatively. At sufficiently high energies electrons penetrate the grains, leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Available classical theoretical models for calculations of SEE yields are generally applicable for neutral, planar, or bulk surfaces. These models, however, are not valid for calculations of the electron impact charging properties of electrostatically charged micron/submicron-size dust grains in astrophysical environments. Rigorous quantum mechanical models are not yet available, and the SEE yields have to be determined experimentally for development of more accurate models for charging of individual dust grains. At the present time, very limited experimental data are available for charging of individual micron-size dust grains, particularly for low energy electron impact. The experimental results on individual, positively charged, micron-size lunar dust grains levitated carried out by us in a unique facility at NASA-MSFC, based on an electrodynamic balance, indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (Abbas et al, 2010, 2012). In this paper, we discuss SEE charging properties of individual micron-size silica microspheres that are believed to be analogs of a class of interstellar dust grains. The measurements indicate charging of the 0.2m silica particles when exposed to 25 eV electron beams and discharging when exposed to higher energy electron beams. Relatively large size silica particles (5.2-6.82m) generally discharge to lower equilibrium potentials at both electron energies

  18. Effects of grain-producing cover crops on rice grain yield in Cabo Delgado, Mozambique

    Directory of Open Access Journals (Sweden)

    Adriano Stephan Nascente

    Full Text Available ABSTRACT Besides providing benefits to the environment such as soil protection, release of nutrients, soil moisture maintenance, and weed control, cover crops can increase food production for grain production. The aim of this study was to evaluate the production of biomass and grain cover crops (and its respective effects on soil chemical and physical attributes, yield components, and grain yield of rice in Mozambique. The study was conducted in two sites located in the province of Cabo Delgado, in Mozambique. The experimental design was a randomized block in a 2 × 6 factorial, with four repetitions. Treatments were carried out in two locations (Cuaia and Nambaua with six cover crops: Millet (Pennisetum glaucum L.; namarra bean (Lablab purpureus (L. Sweet, velvet beans (Mucuna pruriens L., oloco beans (Vigna radiata (L. R. Wilczek, cowpea (Vigna unguiculata L., and fallow. Cover crops provided similar changes in chemical and physical properties of the soil. Lablab purpureus, Vigna unguiculata, and Mucuna pruriens produced the highest dry matter biomass. Vigna unguiculada produced the highest amount of grains. Rice grain yields were similar under all cover crops and higher in Cuaia than Nambaua.

  19. Computing wheat nitrogen requirements from grain yield and protein maps

    Science.gov (United States)

    Optical protein sensors and mass-flow yield monitors provide the opportunity to continuously measure grain quality and quantity during harvesting. This chapter illustrates how yield monitor and grain protein measurements may provide useful postharvest information for evaluating water or nitrogen (N)...

  20. Updated stomatal flux and flux-effect models for wheat for quantifying effects of ozone on grain yield, grain mass and protein yield.

    Science.gov (United States)

    Grünhage, Ludger; Pleijel, Håkan; Mills, Gina; Bender, Jürgen; Danielsson, Helena; Lehmann, Yvonne; Castell, Jean-Francois; Bethenod, Olivier

    2012-06-01

    Field measurements and open-top chamber experiments using nine current European winter wheat cultivars provided a data set that was used to revise and improve the parameterisation of a stomatal conductance model for wheat, including a revised value for maximum stomatal conductance and new functions for phenology and soil moisture. For the calculation of stomatal conductance for ozone a diffusivity ratio between O(3) and H(2)O in air of 0.663 was applied, based on a critical review of the literature. By applying the improved parameterisation for stomatal conductance, new flux-effect relationships for grain yield, grain mass and protein yield were developed for use in ozone risk assessments including effects on food security. An example of application of the flux model at the local scale in Germany shows that negative effects of ozone on wheat grain yield were likely each year and on protein yield in most years since the mid 1980s. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Inheritance of grain yield and its correlation with yield components in ...

    African Journals Online (AJOL)

    SAM

    2014-03-19

    Mar 19, 2014 ... average yield of wheat in China is 4.75 t ha-1, which is low compared to other .... Analysis of variance for combining ability for grain yield plant-1. Source of variation ..... Hayman BI (1954). The theory and analysis of diallel crosses. .... Analysis and prospect of China wheat market in 2011. Food and Oil.

  2. Effect of wheat gluten proteins on bioethanol yield from grain

    Energy Technology Data Exchange (ETDEWEB)

    Buresova, Iva [Agrotest Fyto, Ltd., Havlickova 2787/121, 767 01 Kromeriz (Czech Republic); Hrivna, Ludek [Mendel University in Brno, Zemedelska 1, 613 00 Brno (Czech Republic)

    2011-04-15

    Bioethanol can be used as motor fuel and/or as a gasoline enhancer. A high yield feedstock for bioethanol production is cereal grain. Cereal grains containing less gluten proteins (glutenin and gliadin), but high starch, are favoured by distillers because they increase the bioethanol conversion. The direct effect of wheat gluten proteins on bioethanol yield was studied on triticale grain. Examined triticale Presto 1R.1D{sub 5+10}-2 and Presto Valdy were developed by introducing selected segments of wheat chromosome 1D into triticale chromosome 1R. Even if the samples analysed in this study do not afford to make definitive assumptions, it can be noticed that in analysed cases the presence of gliadin had more significant effect on investigated parameters than the presence of glutenin. Despite the presence of glutenin subunits did not significantly decrease the investigated parameters - specific weight, Hagberg falling number and starch content in grain met the requirements for grain for bioethanol production - protein content was higher than is optimal. The fermentation experiments demonstrated good bioethanol yields but depression in grain yields caused by the presence of wheat gliadin and glutenin decreased the energy balance of Presto Valdy and Presto 1R.1D{sub 5+10}-2. (author)

  3. Investigation of Barely Grain Yield Improvement during the Last Half Century across Golestan Province

    Directory of Open Access Journals (Sweden)

    M Hajipoor

    2017-03-01

    Full Text Available Introduction Barely (Hordeum vulgare is the fourth most important cereal after wheat, corn and rice. Regarding the role of breeding to increase barley grain yield a large number of studies have been done in different countries. However, a few studies have been performed across Golestan Province, in Iran. Therefore, this study was conducted to know what barley traits have changed with grain yield during recent years. How these traits will further improve the barley grain yield in the future breeding programs? Materials and Methods In order to study barely grain yield improvement during the last half century across Golestan Province, this expriment carried out at randomized complete block desing with 4 replications in Gonbad kavous university research field in 2013-2014. Treatments were included nine barley cultivars: Sahra, Dasht, Torkaman, Gorgan4, Nimruz, Mahoor, Khoram, Reyhan and Yousef. We analysed the results using ANOVA in the statistical software package SAS. Step by step regression analysis and pathway analysis was done to evaluate the relative proportion of different traits on yield and direct and indirect impacts of yield components on grain yield, respectively. Results and Discussion The results showed that the values of the studied parameters were significantly different in different cultivars. Results illustrated that the hieghest and the lowest grain weight were related to Mahoor (37.33 mg and Torkaman (22.66 mg, respectively. Due to the high number of rows per spike in barely cultivars, grains are closer together and there are less space for growth and phothosynthetic material storage. In addition, total assimilation was not enough to fill the grain of cultivars which have the more grain numbers per spike and it caused low grain weight. Although thousand grain weight is among the main grain yield components with high heritability, it influenced by other components such as the number of spikes and its length. The highest and the

  4. Enhanced Sucrose Loading Improves Rice Yield by Increasing Grain Size.

    Science.gov (United States)

    Wang, Liang; Lu, Qingtao; Wen, Xiaogang; Lu, Congming

    2015-12-01

    Yield in cereals is a function of grain number and size. Sucrose (Suc), the main carbohydrate product of photosynthesis in higher plants, is transported long distances from source leaves to sink organs such as seeds and roots. Here, we report that transgenic rice plants (Oryza sativa) expressing the Arabidopsis (Arabidopsis thaliana) phloem-specific Suc transporter (AtSUC2), which loads Suc into the phloem under control of the phloem protein2 promoter (pPP2), showed an increase in grain yield of up to 16% relative to wild-type plants in field trials. Compared with wild-type plants, pPP2::AtSUC2 plants had larger spikelet hulls and larger and heavier grains. Grain filling was accelerated in the transgenic plants, and more photoassimilate was transported from the leaves to the grain. In addition, microarray analyses revealed that carbohydrate, amino acid, and lipid metabolism was enhanced in the leaves and grain of pPP2::AtSUC2 plants. Thus, enhancing Suc loading represents a promising strategy to improve rice yield to feed the global population. © 2015 American Society of Plant Biologists. All Rights Reserved.

  5. Grain yield and baking quality of wheat under different sowing dates

    Directory of Open Access Journals (Sweden)

    Raphael Rossi Silva

    2014-04-01

    Full Text Available Choosing the right sowing dates can maximize the outcomes of the interaction between genotype and environment, thus increasing grain yield and baking quality of wheat (Triticum aestivum L.. The present study aimed at determining the most appropriate sowing dates that maximize grain yield and baking quality of wheat cultivars. Seven wheat cultivars (BRS 179, BRS Guamirim, BRS Guabiju, BRS Umbu, Safira, CD 105 and CD 115 were evaluated at four sowing dates (the 1st and the 15th of June and July in two harvesting seasons (2007 and 2008. The study was setup in a completely randomized block design with four repetitions. The effects of the year and sowing date when combined explained 93% of the grain yield variance. In 2007, the CD 105 and Safira cultivars had the highest grain yield (GY for all sowing dates. Only the BRS Guabiju and Safira cultivars possessed high baking quality for all sowing dates assessed. In 2008, the environmental conditions were favorable for superior GY, but the baking quality was inferior. Considering adapted cultivars and sowing dates, it is possible to maximize grain yield and baking quality of wheat.

  6. CORRELATION ANALYSIS OF AGRONOMIC CHARACTERS AND GRAIN YIELD OF RICE FOR TIDAL SWAMP AREAS

    Directory of Open Access Journals (Sweden)

    Aris Hairmansis

    2013-05-01

    Full Text Available Development of rice varieties for tidal swamp areas is emphasized on the improvement of rice yield potential in specific environment. However, grain yield is a complex trait and highly dependent on the other agronomic characters; while information related to the relationship between agronomic characters and grain yield in the breeding program particularly for tidal swamp areas is very limited. The objective of this study was to investigate relationship between agronomic characters and grain yield of rice as a basis for selection of high yielding rice varieties for tidal swamp areas. Agronomic characters and grain yield of nine advanced rice breeding lines and two rice varieties were evaluated in a series of experiments in tidal swamp areas, Karang Agung Ulu Village, Banyuasin, South Sumatra, for four cropping seasons in dry season (DS 2005, wet season (WS 2005/2006, DS 2006, and DS 2007. Result from path analysis revealed that the following characters had positive direct effect on grain yield, i.e. number of productive tillers per hill (p = 0.356, number of filled grains per panicle (p = 0.544, and spikelet fertility (p = 0.215. Plant height had negative direct effect (p = -0.332 on grain yield, while maturity, number of spikelets per panicle, and 1000-grain weight showed negligible effect on rice grain yield. Present study suggests that indirect selection of high yielding tidal swamp rice can be done by selecting breeding lines which have many product tive tillers, dense filled grains, and high spikelet fertility.

  7. Grain, milling, and head rice yields as affected by nitrogen rate and bio-fertilizer application

    Directory of Open Access Journals (Sweden)

    Saeed FIROUZI

    2015-11-01

    Full Text Available To evaluate the effects of nitrogen rate and bio-fertilizer application on grain, milling, and head rice yields, a field experiment was conducted at Rice Research Station of Tonekabon, Iran, in 2013. The experimental design was a factorial treatment arrangement in a randomized complete block with three replicates. Factors were three N rates (0, 75, and 150 kg ha-1 and two bio-fertilizer applications (inoculation and uninoculation with Nitroxin, a liquid bio-fertilizer containing Azospirillum spp. and Azotobacter spp. bacteria. Analysis of variance showed that rice grain yield, panicle number per m2, grain number per panicle, flag leaves area, biological yield, grains N concentration and uptake, grain protein concentration, and head rice yield were significantly affected by N rate, while bio-fertilizer application had significant effect on rice grain yield, grain number per panicle, flag leaves area, biological yield, harvest index, grains N concentration and uptake, and grain protein concentration. Results showed that regardless of bio-fertilizer application, rice grain and biological yields were significantly increased as N application rate increased from 0 to 75 kg ha-1, but did not significantly increase at the higher N rate (150 kg ha-1. Grain yield was significantly increased following bio-fertilizer application when averaged across N rates. Grains N concentration and uptake were significantly increased as N rate increased up to 75 kg ha-1, but further increases in N rate had no significant effect on these traits. Bio-fertilizer application increased significantly grains N concentration and uptake, when averaged across N rates. Regardless of bio-fertilizer application, head rice yield was significantly increased from 56 % to 60 % when N rate increased from 0 to 150 kg ha-1. Therefore, this experiment illustrated that rice grain and head yields increased with increasing N rate, while bio-fertilizer application increased only rice grain

  8. interrelationships between grain yield and other physiological traits

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    Combined analysis of variance, cluster analysis and genotype-by- ... all phenological and morphological traits, except grain yield and associated yield components. ... egg, and other protein-rich foods (Alghali, 1991). ... systematic modelling approach. ... MD IT98 K -132 – 3 .... traits based on Principal Component axes (PC)1.

  9. Common bean grain yield as affected by sulfur fertilization and cultivars

    Directory of Open Access Journals (Sweden)

    Adriano Stephan Nascente

    Full Text Available ABSTRACT A better understanding of the differential growth of common bean cultivars with increasing soil sulfur (S availability can indicate how to improve common bean grain yield in soils of Savannas. The objective of this study was to evaluate the response of sprinkler-irrigated common bean cultivars to sulfur fertilization in a no-tillage system. The experiment was designed as a randomized block in a split-plot scheme with sulfur rates (0, 10, 20, 40, and 60 kg ha-1 as main plots and common bean cultivars (BRS Requinte, BRS Cometa, Diamante Negro, BRS Grafite, BRS Valente, and Corrente as subplots, with three replications. Common bean cultivars did not differ regarding grain yield response to sulfur rates, which fitted to a quadratic equation. Among the cultivars tested, only BRS Requinte and BRS Valente differed in grain yield for S fertilization, the first being more productive. Moreover, S fertilization allows significant increases in common bean grain yield in average of six cultivars and must be considered in cropping systems aiming for high yields.

  10. Factors controlling regional grain yield in China over the last 20 years

    NARCIS (Netherlands)

    wang, Xiaobin; Cai, D.X.; Grant, C.; Hoogmoed, W.B.; Oenema, O.

    2015-01-01

    Food production is highly dependent on regional yields of crops. Regional differences in grain yields could be due to fertilizer management and climate variability. Here, we analyze trends of grain yields in North China, Northeast China, East China, and Central and Southwest China from 1992 to 2012,

  11. Heterosis and combining ability for grain yield and yield component ...

    African Journals Online (AJOL)

    ... ranged from 0 to -13% indicating that the hybrids tend to be earlier in maturity than the parents. The mean squares due to GCA for days to maturity, ear diameter, member of kernels per row, 1000 kernel weight and grain yield were significant, indicating the importance of additive genetic variance in controlling these traits.

  12. Approaches to achieve high grain yield and high resource use efficiency in rice

    Directory of Open Access Journals (Sweden)

    Jianchang YANG

    2015-06-01

    Full Text Available This article discusses approaches to simultaneously increase grain yield and resource use efficiency in rice. Breeding nitrogen efficient cultivars without sacrificing rice yield potential, improving grain fill in later-flowering inferior spikelets and enhancing harvest index are three important approaches to achieving the dual goal of high grain yield and high resource use efficiency. Deeper root distribution and higher leaf photosynthetic N use efficiency at lower N rates could be used as selection criteria to develop N-efficient cultivars. Enhancing sink activity through increasing sugar-spikelet ratio at the heading time and enhancing the conversion efficiency from sucrose to starch though increasing the ratio of abscisic acid to ethylene in grains during grain fill could effectively improve grain fill in inferior spikelets. Several practices, such as post-anthesis controlled soil drying, an alternate wetting and moderate soil drying regime during the whole growing season, and non-flooded straw mulching cultivation, could substantially increase grain yield and water use efficiency, mainly via enhanced remobilization of stored carbon from vegetative tissues to grains and improved harvest index. Further research is needed to understand synergistic interaction between water and N on crop and soil and the mechanism underlying high resource use efficiency in high-yielding rice.

  13. Effect of Plant Growth Promoting Rhizobacteria (PGPR on Phenological Traits, Grain Yield and Yield Components of Three Maize (Zea mays L. Cultivars

    Directory of Open Access Journals (Sweden)

    A Soleimani Fard

    2013-11-01

    Full Text Available To evaluate the effect of bio-fertilize on yield and its components in maize cultivars, an split plot experiment based on randomized complete bock design with three replications in was conducted in Payam-noor University of Ilam, Iran, in 2009-2010. Treatments were cultivar (SC604, SC704 and SC807 assigned to main plots and bio-fertilizer (non- inoculation, inoculation with Azetobacter, Azospirillum and dual inoculation ofAzotobacterand Azospirillum to subplots. The effect of cultivar on days to maturity, plant height, dry matter, ear length, stem diameter, number of grain per ear row, 1000-grain weight, grain yield, biological yield and protein content was significant cultivar. SC 704 had the highest dry matter (259.5 g.m-2, plant height (201.1 cm, number of grain per ear row (42.8 grain, grain yield (10850 kg.m-2, and biological yield (22040 kg.m-2. The effect of plant growth promoting rhizobacteria on all traits expect harvest index was significant. Dual inoculation ofAzotobacterand Azospirillum had the longest days to ear initiation (71.2 days, days to maturity (115.4 day, number of leaves above ear (5.6 ear, dry matter (240.4 g.m-2, ear length (24.3 cm, plant height (212.4 cm, seed number of rows per ear (14.5 row, number of grains per row (44.2 grain, grain yield (10190 kg.m-2, biological yield (21320 kg.m-2 and protein content (10.7%. Interaction effect of cultivar× plant growth promoting rhizobacteria on grain yield was significant. The highest and lowest grain yield was obtained from SC 704 and application of dual inoculation ofAzotobacterand Azospirillum (12320 kg.ha-1 and lowest from SC 604 when inoculation treatments were not used 7570 kg.ha-1 respectively.

  14. Evaluation of early maize genotypes for grain yield and agromorphological traits

    Directory of Open Access Journals (Sweden)

    Bishal Dhakal

    2017-12-01

    Full Text Available The purpose of this study was to assess the variation on agro-morphological traits and grain yield. A set of 14 early maize genotypes were studied at research field of Regional Agricultural Research Station (RARS, Doti, Nepal in summer seasons of 2015 and 2016. The experiment was carried out in Randomized Complete Block Design (RCBD with three replications in each year. The variation among genotypes was observed for grain yield and flowering. The genotype SO3TEY-PO-BM produced the highest grain yield (4.33 t/ha in 2015 whereas Rajahar Local Variety produced the highest grain yield (2.52 t/ha in 2016. The combined analysis over years showed that Farmer’s variety was found earlier in tasseling (36 days and silking (39 days, followed by S97TEYGHAYB(3 in tasseling (45 days and by S97TEYGHAYB(3 and Arun-4 in silking (48 days. EEYC1 produced the highest grain yield (3.17 t/ha, followed by COMPOL-NIBP (3.09 t/ha, SO3TEY-PO-BM (2.90 t/ha, S97TEYGHAYB(3 (2.78 t/ha and Rajahar Local variety (2.77 t/ha, respectively. The information on variation for the agro-morphological traits among studied early maize genotypes will be helpful to plant breeders in constructing their breeding materials and implementing selection strategies.

  15. Genetic Loci Governing Grain Yield and Root Development under Variable Rice Cultivation Conditions

    Directory of Open Access Journals (Sweden)

    Margaret Catolos

    2017-10-01

    Full Text Available Drought is the major abiotic stress to rice grain yield under unpredictable changing climatic scenarios. The widely grown, high yielding but drought susceptible rice varieties need to be improved by unraveling the genomic regions controlling traits enhancing drought tolerance. The present study was conducted with the aim to identify quantitative trait loci (QTLs for grain yield and root development traits under irrigated non-stress and reproductive-stage drought stress in both lowland and upland situations. A mapping population consisting of 480 lines derived from a cross between Dular (drought-tolerant and IR64-21 (drought susceptible was used. QTL analysis revealed three major consistent-effect QTLs for grain yield (qDTY1.1, qDTY1.3, and qDTY8.1 under non-stress and reproductive-stage drought stress conditions, and 2 QTLs for root traits (qRT9.1 for root-growth angle and qRT5.1 for multiple root traits, i.e., seedling-stage root length, root dry weight and crown root number. The genetic locus qDTY1.1 was identified as hotspot for grain yield and yield-related agronomic and root traits. The study identified significant positive correlations among numbers of crown roots and mesocotyl length at the seedling stage and root length and root dry weight at depth at later stages with grain yield and yield-related traits. Under reproductive stage drought stress, the grain yield advantage of the lines with QTLs ranged from 24.1 to 108.9% under upland and 3.0–22.7% under lowland conditions over the lines without QTLs. The lines with QTL combinations qDTY1.3+qDTY8.1 showed the highest mean grain yield advantage followed by lines having qDTY1.1+qDTY8.1 and qDTY1.1+qDTY8.1+qDTY1.3, across upland/lowland reproductive-stage drought stress. The identified QTLs for root traits, mesocotyl length, grain yield and yield-related traits can be immediately deployed in marker-assisted breeding to develop drought tolerant high yielding rice varieties.

  16. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality.

    Science.gov (United States)

    Wang, Shaokui; Li, Shan; Liu, Qian; Wu, Kun; Zhang, Jianqing; Wang, Shuansuo; Wang, Yi; Chen, Xiangbin; Zhang, Yi; Gao, Caixia; Wang, Feng; Huang, Haixiang; Fu, Xiangdong

    2015-08-01

    The deployment of heterosis in the form of hybrid rice varieties has boosted grain yield, but grain quality improvement still remains a challenge. Here we show that a quantitative trait locus for rice grain quality, qGW7, reflects allelic variation of GW7, a gene encoding a TONNEAU1-recruiting motif protein with similarity to C-terminal motifs of the human centrosomal protein CAP350. Upregulation of GW7 expression was correlated with the production of more slender grains, as a result of increased cell division in the longitudinal direction and decreased cell division in the transverse direction. OsSPL16 (GW8), an SBP-domain transcription factor that regulates grain width, bound directly to the GW7 promoter and repressed its expression. The presence of a semidominant GW7(TFA) allele from tropical japonica rice was associated with higher grain quality without the yield penalty imposed by the Basmati gw8 allele. Manipulation of the OsSPL16-GW7 module thus represents a new strategy to simultaneously improve rice yield and grain quality.

  17. Dissecting grain yield pathways and their interactions with grain dry matter content by a two-step correlation approach with maize seedling transcriptome

    Directory of Open Access Journals (Sweden)

    Melchinger Albrecht E

    2010-04-01

    Full Text Available Abstract Background The importance of maize for human and animal nutrition, but also as a source for bio-energy is rapidly increasing. Maize yield is a quantitative trait controlled by many genes with small effects, spread throughout the genome. The precise location of the genes and the identity of the gene networks underlying maize grain yield is unknown. The objective of our study was to contribute to the knowledge of these genes and gene networks by transcription profiling with microarrays. Results We assessed the grain yield and grain dry matter content (an indicator for early maturity of 98 maize hybrids in multi-environment field trials. The gene expression in seedlings of the parental inbred lines, which have four different genetic backgrounds, was assessed with genome-scale oligonucleotide arrays. We identified genes associated with grain yield and grain dry matter content using a newly developed two-step correlation approach and found overlapping gene networks for both traits. The underlying metabolic pathways and biological processes were elucidated. Genes involved in sucrose degradation and glycolysis, as well as genes involved in cell expansion and endocycle were found to be associated with grain yield. Conclusions Our results indicate that the capability of providing energy and substrates, as well as expanding the cell at the seedling stage, highly influences the grain yield of hybrids. Knowledge of these genes underlying grain yield in maize can contribute to the development of new high yielding varieties.

  18. Grain yield stability of early maize genotypes

    Directory of Open Access Journals (Sweden)

    Chitra Bahadur Kunwar

    2016-12-01

    Full Text Available The objective of this study was to estimate grain yield stability of early maize genotypes. Five early maize genotypes namely Pool-17, Arun1EV, Arun-4, Arun-2 and Farmer’s variety were evaluated using Randomized Complete Block Design along with three replications at four different locations namely Rampur, Rajahar, Pakhribas and Kabre districts of Nepal during summer seasons of three consecutive years from 2010 to 2012 under farmer’s fields. Genotype and genotype × environment (GGE biplot was used to identify superior genotype for grain yield and stability pattern. The genotypes Arun-1 EV and Arun-4 were better adapted for Kabre and Pakhribas where as pool-17 for Rajahar environments. The overall findings showed that Arun-1EV was more stable followed by Arun-2 therefore these two varieties can be recommended to farmers for cultivation in both environments.

  19. Study of the Effects of the Electric Field on Charging Measurements on Individual Micron-size Dust Grains by Secondary Electron Emissions

    Science.gov (United States)

    Tankosic, D.; Abbas, M. M.

    2013-01-01

    The dust charging by electron impact is an important dust charging process in Astrophysical, Planetary, and the Lunar environments. Low energy electrons are reflected or stick to the grains charging the dust grains negatively. At sufficiently high energies electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Available theoretical models for the calculation of SEE yield applicable for neutral, planar or bulk surfaces are generally based on Sternglass Equation. However, viable models for charging of individual dust grains do not exist at the present time. Therefore, the SEE yields have to be obtained by some experimental methods at the present time. We have conducted experimental studies on charging of individual micron size dust grains in simulated space environments using an electrodynamic balance (EDB) facility at NASA-MSFC. The results of our extensive laboratory study of charging of individual micron-size dust grains by low energy electron impact indicate that the SEE by electron impact is a very complex process expected to be substantially different from the bulk materials. It was found that the incident electrons may lead to positive or negative charging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration. In this paper we give a more elaborate discussion about the possible effects of the AC field in the EDB on dust charging measurements by comparing the secondary electron emission time-period (tau (sub em) (s/e)) with the time-period (tau (sub ac) (ms)) of the AC field cycle in the EDB that we have briefly addressed in our previous publication.

  20. Grain Yield, Its Components, Genetic Diversity and Heritability in Chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    M. Kakaei

    2015-09-01

    Full Text Available The current research was carried out to investigate grain yield and components and their genetic diversity and heritability of some important agronomic traits, in 19 chickpea genotypes, based on a randomized complete block design with 3 replications in Research Field of Bu-Ali Sina University, Hamadan, Iran in 2011-2012 growing seasons. The ANOVA results showed that, there were highly significant differences (p < 0.01 among genotypes for the SPAD number, number of sub-branch per plant, pod number per plant, 100-kernel weight, grain yield, biological yield, and harvest index. The mean comparisons results indicated that the genotypes 14, 12, 4 and 19 (with 234.7, 240, 250.3 and 259.4 kilogram of grain yield per ha, respectively and the genotypes 18, 8, 15, and 6 (with 151.01, 167.6, 167.8 and 189 kilogram of grain yield per ha, respectively had the maximum and minimum economic yield, respectively. According to phonotypical correlation results, there were positive and significant (p < 0.01 correlations between grain yield and pod number per plant (0.623**, plant height (0.432**, harvest index (0.425** and biomass (0.349**. Step-wise regression indicated that the pod number per plant, harvest index, biomass, number of sub-branch per plant, and plant height were the most effective traits on economic yield and they explained 84.68 percent of the variation in economic yield. Furthermore, harvest index and seed number per plant had the maximum and minimum heritability, respectively, indicating that they could be hired as sources of variation for improving the grain yield and selecting superior genotypes.

  1. The Effect of Irrigation Intervals and Arbuscular Mycorrhizal Fungi on Chlorophyll Index, Yield and Yield Components of Grain Sorghum

    Directory of Open Access Journals (Sweden)

    J. Hamzei

    2014-08-01

    Full Text Available This experiment was carried out to study the effect of irrigation intervals and arbuscular mycorrhizal fungi on chlorophyll index, yield and yield components of grain sorghum. A factorial experiment was done based on randomized complete block design (RCBD with three replications at the Agriculture Research Station faculty of Agriculture, Bu- Ali Sina University in growing season of 2011. Irrigation intervals (7, 14 and 21 days with three levels of seed inoculation (control without inoculation, inoculation with Glomus mossea and inoculation with G. intraradices were the experimental treatments. Results indicated that the effect of irrigation intervals and mycorrhizal fungi were significant for traits of chlorophyll index, percentage of root symbiosis (PRS, number of grain per panicle, 1000 seed weight, grain yield and harvest index (HI. Maximum value for each trait was observed at G. mossea treatment. G. mossea treatment in comparison with G. intraradices and control treatment can increase the grain yield of sorghum up to 6.80 and 23.10%, respectively. Also, with increasing irrigation interval from 7 to 21 days, PRS increased up to 27.9%. Maximum value for grain yield (755 g m-2 was achieved at irrigation every 14 days and application of G. mossea treatment. But, there was no significant difference between irrigation sorghum plants every 14 days and application of G. mossea and irrigation every 7 days and application of either G. mossea or G. intraradices. In general, irrigation of sorghum plants every 14 days and supplying of G. mossea can produce the highest grain yield, while decreasing water consumption for sorghum production.

  2. Determination of ontogenetic selection criteria for grain yield in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... spring barley in cool and short-season environments. Key words: ... Many researchers have used a linear correlation analysis ... of each yield component on grain yield from the indirect ... ANOVA was carried out using the SPSS statistics programme ..... stable characteristic in barley (Gallagher et al., 1975),.

  3. Effects of Foliar Application of Nitrogen, Zinc and Manganese on Yield, Yield Components and Grain Quality of Chickpea in Two Growing Seasons

    Directory of Open Access Journals (Sweden)

    B. Shirani

    2015-09-01

    Full Text Available To study the effects of foliar application of zinc, manganese and nitrogen on yield, yield components and grain quality of chickpea (Cicer arientinum L. two experiments, one in autumn and the other in spring were conducted at Research Farm, Shahrekord University in 2009-2010 growing season each as a randomized complete block design with three replications. The treatments were foliar application of zinc sulfate, manganese sulfate zinc sulfate and manganese sulfate mixture, nitrogen and distilled water (as control. The results showed that planting season had a significant effect on plant height, 100-seed weight and seed yield. All measured traits, except plant height, increased in winter compared to spring growing season. This increase was more than 12% for grain yield. Foliar application of nutrients significantly affected seed yield and seed yield components. Foliar application of nitrogen, presumably, through significant increase in number of pods per plant, number of seeds per plant and 100-seed weight, increased the grain yield by 6.2% compared to control. Foliar application × planting season interactions were significant for plant height and number of pods per plant. Foliar application of nitrogen caused a significant increase in grain yield and protein content. Foliar application of zinc sulphate significantly increased Zn content of grains however it did not affect seed yield. In conclusion, foliar application of nitrogen could be suggested for increasing protein and grain yield in chickpea under similar conditions to that of the present study.

  4. Combining ability for maize grain yield and other agronomic ...

    African Journals Online (AJOL)

    Field experiments were conducted at the University of Ilorin Teaching and Research Farm in 2005 and 2006 cropping seasons with the objective to evaluate the combining ability for maize grain yield and other agronomic characters in 10 open pollinated maize varieties, which have been selected for high yield and stress ...

  5. INFLUENCE OF WEATHER CONDITIONS ON GRAIN YIELD, OIL CONTENT AND OIL YIELD OF NEW OS SUNFLOWER HYBRIDS

    Directory of Open Access Journals (Sweden)

    Anto Mijić

    2017-01-01

    Full Text Available With the purpose of determining the influence of weather conditions on the yield components of sunflower, the results of three-year field trials are analysed in the paper. In the trials sown in Osijek in 2013, 2014 and 2015, there were 15 sunflower hybrids: two foreign hybrids and 13 hybrid combinations of the Agricultural Institute Osijek. In the period before sowing (January – March, the highest amount of precipitation was in 2013 (213.1 mm, then in 2015 (167.9 mm, and the lowest in 2014 (109.5 mm. In the growing period (April – September, the highest amount of precipitation (487.3 mm was in 2014, 475.7 mm in 2013, and in 2015 it was the lowest (251.6 mm. In 2013, during the growing period, the mean monthly air temperature was 19.1°C, in 2015 19.9°C, and in 2014 18.6°C. Of these years, statistically significant at the P=0.05, the highest value of the analysed traits was recorded in 2013: grain yield of 6.47 t ha-1, oil content 51.69% and oil yield 3.05 t ha-1. Grain yield, oil content and oil yield were lower in 2015, and the lowest in 2014. Matej, a newly recognized sunflower hybrid of the Agricultural Institute Osijek had the highest values of grain and oil yield (6.95 and 3.39 t ha-1, and by its oil content of 53.44%, it was in the third place. For high grain and oil yields of sunflower, in addition to the optimal air temperature, the amount and distribution of precipitation before and also during the growing season are very important.

  6. Consequences of diverse use of nitrogen sources on grain yield ...

    African Journals Online (AJOL)

    A two year field experiment was conducted to check the consequences of diverse use of nitrogen sources on grain yield, grain quality and growth attributes of hybrid maize (Zea mays L.) at the Agronomic Research Area, University of Agriculture, Faisalabad during Autumn 2008 and 2009. Experiments were laid out in a ...

  7. Use of optical sensor for in-season nitrogen management and grain yield prediction in maize

    Directory of Open Access Journals (Sweden)

    Bandhu Raj Baral

    2015-12-01

    Full Text Available Precision agriculture technologies have developed optical sensors which can determine plant’s normalized difference vegetation index (NDVI.To evaluate the relationship between maize grain yield and early season NDVI readings, an experiment was conducted at farm land of National Maize Research Program, Rampur, Chitwan during winter season of 2012. Eight different levels of N 0, 30, 60, 90, 120, 150, 180 and 210 kg N/ha were applied for hybrid maize RML 32 × RML 17 to study grain yield response and NDVI measurement. Periodic NDVI was measured at 10 days interval from 55 days after sowing (DAS to 115 DAS by using Green seeker hand held crop sensor. Periodic NDVI measurement taken at a range of growing degree days (GDD was critical for predicting grain yield potential. Poor exponential relationship existed between NDVI from early reading measured before 208 GDD (55 DAS and grain yield. At the 261GDD (65DAS a strong relationship (R2 = 0.70 was achieved between NDVI and grain yield. Later sensor measurements after 571 GDD (95DAS failed to distinguish variation in green biomass as a result of canopy closure. N level had significantly influenced on NDVI reading, measured grain yield, calculated in season estimated yield (INSEY, predicted yield with added N (YPN, response index (RI and grain N demand. Measuring NDVI reading by GDD (261–571 GDD allow a practical window of opportunity for side dress N applications. This study showed that yield potential in maize could be accurately predicted in season with NDVI measured with the Green Seeker crop sensor.

  8. Consequences of diverse use of nitrogen sources on grain yield ...

    African Journals Online (AJOL)

    Muhammad Waseem

    2012-08-28

    Aug 28, 2012 ... sources on grain yield, grain quality and growth attributes of hybrid maize (Zea mays L.) at the. Agronomic Research Area, University ...... rate were found in 2009. Evans et al. (2003) also noted similar interactive effects of hybrid and N sources in maize. In year 2008, contrasts comparison (Table 4) between ...

  9. Dryland Winter Wheat Yield, Grain Protein, and Soil Nitrogen Responses to Fertilizer and Biosolids Applications

    Directory of Open Access Journals (Sweden)

    Richard T. Koenig

    2011-01-01

    Full Text Available Applications of biosolids were compared to inorganic nitrogen (N fertilizer for two years at three locations in eastern Washington State, USA, with diverse rainfall and soft white, hard red, and hard white winter wheat (Triticum aestivum L. cultivars. High rates of inorganic N tended to reduce yields, while grain protein responses to N rate were positive and linear for all wheat market classes. Biosolids produced 0 to 1400 kg ha−1 (0 to 47% higher grain yields than inorganic N. Wheat may have responded positively to nutrients other than N in the biosolids or to a metered N supply that limited vegetative growth and the potential for moisture stress-induced reductions in grain yield in these dryland production systems. Grain protein content with biosolids was either equal to or below grain protein with inorganic N, likely due to dilution of grain N from the higher yields achieved with biosolids. Results indicate the potential to improve dryland winter wheat yields with biosolids compared to inorganic N alone, but perhaps not to increase grain protein concentration of hard wheat when biosolids are applied immediately before planting.

  10. Grain Yield and Quality of Foxtail Millet (Setaria italica L. in Response to Tribenuron-Methyl.

    Directory of Open Access Journals (Sweden)

    Na Ning

    Full Text Available Foxtail millet (Setaria italica L. is cultivated around the world for human and animal consumption. There is no suitable herbicide available for weed control in foxtail millet fields during the post-emergence stage. In this study, we investigated the effect and safety of the post-emergence herbicide tribenuron-methyl (TBM on foxtail millet in terms of grain yield and quality using a split-plot field design. Field experiments were conducted using two varieties in 2013 and 2014, i.e., high-yielding hybrid Zhangzagu 10 and high-quality conventional Jingu 21. TBM treatments at 11.25 to 90 g ai ha(-1 reduced root and shoot biomass and grain yield to varying degrees. In each of the two years, grain yield declined by 50.2% in Zhangzagu 10 with a herbicide dosage of 45 g ai ha(-1 and by 45.2% in Jingu 21 with a herbicide dosage of 22.5 g ai ha(-1 (recommended dosage. Yield reduction was due to lower grains per panicle, 1000-grain weight, panicle length, and panicle diameter. Grain yield was positively correlated with grains per panicle and 1000-grain weight, but not with panicles ha(-1. With respect to grain protein content at 22.5 g ai ha(-1, Zhangzagu 10 was similar to the control, whereas Jingu 21 was markedly lower. An increase in TBM dosage led to a decrease in grain Mn, Cu, Fe, and Zn concentrations. In conclusion, the recommended dosage of TBM was relatively safe for Zhangzagu 10, but not for Jingu 21. Additionally, the hybrid variety Zhangzagu 10 had a greater tolerance to TBM than the conventional variety Jingu 21.

  11. Grain Yield and Quality of Foxtail Millet (Setaria italica L.) in Response to Tribenuron-Methyl.

    Science.gov (United States)

    Ning, Na; Yuan, Xiangyang; Dong, Shuqi; Wen, Yinyuan; Gao, Zhenpan; Guo, Meijun; Guo, Pingyi

    2015-01-01

    Foxtail millet (Setaria italica L.) is cultivated around the world for human and animal consumption. There is no suitable herbicide available for weed control in foxtail millet fields during the post-emergence stage. In this study, we investigated the effect and safety of the post-emergence herbicide tribenuron-methyl (TBM) on foxtail millet in terms of grain yield and quality using a split-plot field design. Field experiments were conducted using two varieties in 2013 and 2014, i.e., high-yielding hybrid Zhangzagu 10 and high-quality conventional Jingu 21. TBM treatments at 11.25 to 90 g ai ha(-1) reduced root and shoot biomass and grain yield to varying degrees. In each of the two years, grain yield declined by 50.2% in Zhangzagu 10 with a herbicide dosage of 45 g ai ha(-1) and by 45.2% in Jingu 21 with a herbicide dosage of 22.5 g ai ha(-1) (recommended dosage). Yield reduction was due to lower grains per panicle, 1000-grain weight, panicle length, and panicle diameter. Grain yield was positively correlated with grains per panicle and 1000-grain weight, but not with panicles ha(-1). With respect to grain protein content at 22.5 g ai ha(-1,) Zhangzagu 10 was similar to the control, whereas Jingu 21 was markedly lower. An increase in TBM dosage led to a decrease in grain Mn, Cu, Fe, and Zn concentrations. In conclusion, the recommended dosage of TBM was relatively safe for Zhangzagu 10, but not for Jingu 21. Additionally, the hybrid variety Zhangzagu 10 had a greater tolerance to TBM than the conventional variety Jingu 21.

  12. Effect of irrigation frequencies on grain yield of maize

    International Nuclear Information System (INIS)

    Ahmad, M.; Chaudhry, M.H.; Amjed, M.T.

    2008-01-01

    To find out the water requirement and its application frequencies in spring Maize a trial was designed. The trial was comprised of five maize varieties (Ev-5098, EV-6098, EV-1098, Composite-20 and Pack Afgoyee) and five irrigation frequencies (7,8,9,10 and 11). The trial was sown in split plot design with three replication, keeping varieties in main plots and irrigation frequencies in sub plots. The plot size was 5m x 4.5 with 75cm apart rows and plant to plant distance was 15 com to maintain the 88888 plants per hectare. The trial was conducted during spring 2000 and 2001. Data were collected for days to 50% silking. Plant height (cm), cob height (cm) and grain yield per hectare. The data were analyzed and results obtained which revealed highly significant differences among varieties and also among irrigation frequencies in all the characters studied during both the years and in pooled analysis over years. The interaction between varieties and irrigation frequencies was highly significant for grain yield kg ha/sup -1/ and significant for other characters studied in year wise as well as in pooled analysis. Years effect was also high significant which is clear from the table of weather data which shows that temperature remained high during the crop season of 2001 as compared to 2000 along with high temperature more rains were also received in March. April and May in 2001 while in 2000 rain was received only in February. Three was gradual decrease in days to 50% silking with the increase in number of irrigations in all the varieties while plant height, cob height and grain yield increased with every addition of irrigation. Trend of increase or decrease remained the same during both the year. All the varieties separately or in combine showed better results during spring 2001, maximum grain yield was obtained by EV-5098 (full duration variety) with 11 irrigations during both the years 2000 and 2001 i.e. 3511 and 6140 kg ha/sup -1/ while EV-1098 (short duration variety

  13. Genotype × environment interaction of quality protein maize grain yield in Nepal

    Directory of Open Access Journals (Sweden)

    Jiban Shrestha

    2016-12-01

    Full Text Available In order to determine G × E interaction of quality protein maize grain yield, six maize genotypes were evaluated under different environments of three Terai (Chitwan, Surkhet and Doti and four mid hill (Dhankuta, Lalitpur, Dolakha and Kaski districts of Nepal during summer seasons of 2014 and 2015. The experiments were conducted using randomized complete block design along with three replications. The genotypes namely S99TLYQ-B, S99TLYQ-HG-AB and S03TLYQ-AB-01 were identified high yielding and better adapted genotypes for Terai environments with grain yield of 4199 kg ha-1, 3715 kg ha-1, and 3336 kg ha-1 respectively and S99TLYQ-B and S03TLYQ-AB-01 for mid hill environments with grain yield of 4547 kg ha-1 and 4365 kg ha-1 respectively. Therefore, these genotypes can be suggested for cultivation in their respective environments in the country.

  14. Corn stover harvest strategy effects on grain yield and soil quality indicators

    International Nuclear Information System (INIS)

    Douglas, K.; Stuart, B.; Adam, W.

    2013-01-01

    Developing strategies to collect and use cellulo sic biomass for bio energy production is important because those materials are not used as human food sources. This study compared corn (Zea mays L.) stover harvest strategies on a 50 ha Clarion- Nicol let-Webster soil Association site near Emmetsburg, Iowa, USA. Surface soil samples (0 to 15 cm) were analyzed after each harvest to monitor soil organic carbon (Soc), ph, phosphorus (P) and potassium (K) changes. Grain yields in 2008, before the stover harvest treatments were imposed, averaged 11.4 Mg ha-1. In 2009, 2010, and 2011 grain yields averaged 10.1, 9.7, and 9.5 Mg ha-1, respectively. Although grain yields after stover harvest strategies imposed were lower than in 2008, there were no significant differences among the treatments. Four-year average stover collection rates ranged 1.0 to 5.2 Mg ha-1 which was 12 to 60% of the above-ground biomass. Soc showed a slight decrease during the study, but the change was not related to any specific stover harvest treatment. Instead, we attribute the Soc decline to the tillage intensity and lower than expected crop yields. Overall, these results are consistent with other Midwestern USA studies that indicate corn stover should not be harvested if average grain yields are less than 11 Mg ha-1

  15. VERMICOMPOST APPLICATION IMPROVING SEMIARID-GROWN CORN GREEN EAR AND GRAIN YIELDS

    Directory of Open Access Journals (Sweden)

    PAULO SÉRGIO LIMA E SILVA

    2017-01-01

    Full Text Available Intensive corn farming quickly depletes soil organic matter in the nutrient-poor soils of the Brazilian semiarid region. Application of vermicompost, an excellent organic fertilizer, could help solve that problem. This study evaluated the effect of applying Eisenia fetida vermicompost in the seeding furrows, at 0, 2, 4, 6, 8, and 10 Mg.ha-1 application rates, on the green ear yield and grain yield of two corn cultivars. Treatments were replicated five times with split-plots (vermicompost application rates within plots in a completely randomized block design. The number of mature ears, number of kernels per ear (cultivar BR 106, and 100-kernel weight (cultivar AG 1051 were not affected by vermicompost application rate. However, vermicompost application increased total number and weight of unhusked and husked marketable green ears as well as grain yield. Total number of green ears was higher in cultivar BR 106 than in cultivar AG 1051. Conversely, grain yield and total ear weight and marketable weight of unhusked and husked green ears was higher in cultivar AG 1051, but responses in the latter two traits were dose-dependent.

  16. PREDICTION MODELS OF GRAIN YIELD AND CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    Narciso Ysac Avila Serrano

    2009-06-01

    Full Text Available With the objective to characterize the grain yield of five cowpea cultivars and to find linear regression models to predict it, a study was developed in La Paz, Baja California Sur, Mexico. A complete randomized blocks design was used. Simple and multivariate analyses of variance were carried out using the canonical variables to characterize the cultivars. The variables cluster per plant, pods per plant, pods per cluster, seeds weight per plant, seeds hectoliter weight, 100-seed weight, seeds length, seeds wide, seeds thickness, pods length, pods wide, pods weight, seeds per pods, and seeds weight per pods, showed significant differences (P≤ 0.05 among cultivars. Paceño and IT90K-277-2 cultivars showed the higher seeds weight per plant. The linear regression models showed correlation coefficients ≥0.92. In these models, the seeds weight per plant, pods per cluster, pods per plant, cluster per plant and pods length showed significant correlations (P≤ 0.05. In conclusion, the results showed that grain yield differ among cultivars and for its estimation, the prediction models showed determination coefficients highly dependable.

  17. Can arbuscular mycorrhizal fungi improve grain yield, As uptake and tolerance of rice grown under aerobic conditions?

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (Hong Kong); Ye, Z.H. [State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Chan, W.F.; Chen, X.W.; Wu, F.Y. [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (Hong Kong); Wu, S.C. [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (Hong Kong); School of Environment and Natural Resources, Zhejiang Agriculture and Forestry University, Lin' an, Zhejiang 311300 (China); Wong, M.H., E-mail: mhwong@hkbu.edu.hk [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (Hong Kong); School of Environment and Natural Resources, Zhejiang Agriculture and Forestry University, Lin' an, Zhejiang 311300 (China)

    2011-10-15

    The effects of arbuscular mycorrhizal fungi (AMF) -Glomus intraradices and G. geosporum on arsenic (As) and phosphorus (P) uptake by lowland (Guangyinzhan) and upland rice (Handao 502) were investigated in soil, spiked with and without 60 mg As kg{sup -1}. In As-contaminated soil, Guangyinzhan inoculated with G. intraradices or Handao 502 inoculated with G. geosporum enhanced As tolerance, grain P content, grain yield. However, Guangyinzhan inoculated with G. geosporum or Handao 502 inoculated with G. intraradices decreased grain P content, grain yield and the molar ratio of grain P/As content, and increased the As concentration and the ratio of grain/straw As concentration. These results show that rice/AMF combinations had significant (p < 0.05) effects on grain As concentration, grain yield and grain P uptake. The variation in the transfer and uptake of As and P reflected strong functional diversity in AM (arbuscular mycorrhizal) symbioses. - Highlights: > Rice/AMF combinations had significant effects on grain As concentration, grain yield and grain P uptake. > Rice colonized with suitable AMF can increase grain yield. > The variation in the transfer and uptake of As and P reflected strong functional diversity in AM symbioses. - Different rice/AMF combinations had very different effects on arsenic and phosphorus uptake.

  18. Can arbuscular mycorrhizal fungi improve grain yield, As uptake and tolerance of rice grown under aerobic conditions?

    International Nuclear Information System (INIS)

    Li, H.; Ye, Z.H.; Chan, W.F.; Chen, X.W.; Wu, F.Y.; Wu, S.C.; Wong, M.H.

    2011-01-01

    The effects of arbuscular mycorrhizal fungi (AMF) -Glomus intraradices and G. geosporum on arsenic (As) and phosphorus (P) uptake by lowland (Guangyinzhan) and upland rice (Handao 502) were investigated in soil, spiked with and without 60 mg As kg -1 . In As-contaminated soil, Guangyinzhan inoculated with G. intraradices or Handao 502 inoculated with G. geosporum enhanced As tolerance, grain P content, grain yield. However, Guangyinzhan inoculated with G. geosporum or Handao 502 inoculated with G. intraradices decreased grain P content, grain yield and the molar ratio of grain P/As content, and increased the As concentration and the ratio of grain/straw As concentration. These results show that rice/AMF combinations had significant (p < 0.05) effects on grain As concentration, grain yield and grain P uptake. The variation in the transfer and uptake of As and P reflected strong functional diversity in AM (arbuscular mycorrhizal) symbioses. - Highlights: → Rice/AMF combinations had significant effects on grain As concentration, grain yield and grain P uptake. → Rice colonized with suitable AMF can increase grain yield. → The variation in the transfer and uptake of As and P reflected strong functional diversity in AM symbioses. - Different rice/AMF combinations had very different effects on arsenic and phosphorus uptake.

  19. CO2 dose–response functions for wheat grain, protein and mineral yield based on FACE and open-top chamber experiments

    International Nuclear Information System (INIS)

    Pleijel, Håkan; Högy, Petra

    2015-01-01

    Data from three Swedish open-top chamber and four German FACE experiments were combined to derive response functions for elevated CO 2 (eCO 2 ) effects on Cd, Zn, Mn, protein, grain yield, grain mass and grain number of wheat. Grain yield and grain number were increased by ∼6% and ∼7%, respectively, per 100 ppm CO 2 ; the former effect was linked to plant nitrogen status. Grain mass was not influenced by eCO 2 , whereas Cd concentration was reduced. Unlike Zn, Mn and protein, effects on Cd yield were not related to effects on grain yield. Yields of Mn, Zn and (weakly) protein were positively affected by eCO 2 . For protein, grain yield, grain mass and grain number, the results were consistent among the FACE and OTC experiments. A key conclusion was that yields of essential nutrients were enhanced (Mn > Zn > protein), although less than grain yield, which would not be expected from a simple dilution model. - Highlights: • Grain yield and grain number were positively affected by 6–7% per 100 ppm CO 2 . • Yield stimulation by CO 2 was influenced by plant nitrogen status. • Cd concentration was reduced by elevated CO 2 . • Yields of Zn, Mn and protein were stimulated by CO 2 , but less than grain yield. • A simple dilution model did not explain effects on Zn, Mn and protein. - Yields of Zn, Mn and protein were stimulated less by elevated CO 2 than grain yield, while Cd yield and grain mass were unaffected, in wheat exposed in FACE and open-top chambers

  20. genotype by environment interaction and grain yield stability

    African Journals Online (AJOL)

    Preferred Customer

    among environments, GXE interaction and Interaction Principal Component Analysis (IPCA-I) but ... value closer to zero, Genotype Selection Index (GSI) of 4 each and AMMI stability value (ASV) of 0.124 and. 0.087 ..... Analysis of variance for grain yield using Additive Mean Effect and Multiple Interactions (AMMI) model.

  1. Nitrogen dose and plant density effects on popcorn grain yield ...

    African Journals Online (AJOL)

    and plant densities on grain yield and yield-related plant characteristics of popcorn in Hatay, located at Southern Mediterranean region of Turkey, during 2002 and 2003. The experiment was designed in a randomized complete block design with a split-plot arrangement with three replications. Nitrogen doses of 0, 120, 180 ...

  2. Effect of environmental and genetic factors on the correlation and stability of grain yield components in wheat

    Directory of Open Access Journals (Sweden)

    Hristov Nikola

    2011-01-01

    Full Text Available More effective breeding and development of new wheat genotypes depend on an intricate analysis of the complex relationships among many different traits. The objective of this paper was to determine the interrelationship, direct and indirect effects, and stability of different yield components in wheat. Forty divergent genotypes were analyzed in a three- year study (2005-2007. Highly significant correlations were found between grain yield per plant and all the other traits analyzed except spike length, with the only negative correlation being that with plant height. Path analysis revealed highly significant direct effects of grain number per spike, grain mass per spike and 1000 grain weight on grain yield per plant. Analysis of stability parameters showed that the stability of grain yield per plant depended for the most part on the stability of grain number per spike, grain mass per spike and harvest index. Cluster analysis identified genotypes with a high performance for grain yield per plant and good stability parameters, indicating the possibility of developing wheat varieties with a high potential and high stability for a particular trait.

  3. Adaptability and stability of soybean cultivars for grain yield and seed quality.

    Science.gov (United States)

    Silva, K B; Bruzi, A T; Zambiazzi, E V; Soares, I O; Pereira, J L A R; Carvalho, M L M

    2017-05-10

    This study aimed at verifying the adaptability and stability of soybean cultivars, considering the grain yield and quality of seeds, adopting univariate and multivariate approaches. The experiments were conducted in two crops, three environments, in 2013/2014 and 2014/2015 crop seasons, in the county of Inconfidentes, Lavras, and Patos de Minas, in the Minas Gerais State, Brazil. We evaluated 17 commercial soybean cultivars. For adaptability and stability evaluations, the Graphic and GGE biplot methods were employed. Previously, a selection index was estimated based on the sum of the standardized variables (Z index). The data relative to grain yield, mass of one thousand grain, uniformity test (sieve retention), and germination test were standardized (Z ij ) per cultivar. With the sum of Z ij , we obtained the selection index for the four traits evaluated together. In the Graphic method evaluation, cultivars NA 7200 RR and CD 2737 RR presented the highest values for selection index Z. By the GGE biplot method, we verified that cultivar NA 7200 RR presented greater stability in both univariate evaluations, for grain yield, and for selection index Z.

  4. PHOTOSYNTHETIC EFFICIENCY IN JUVENILE STAGE AND WINTER BARLEY BREEDING FOR IMPROVED GRAIN YIELD AND STABILITY

    Directory of Open Access Journals (Sweden)

    Josip Kovačević

    2011-06-01

    Full Text Available Photosynthetic efficiency parameters (Fv/Fm, ET0/ABS and PIABS were investigated at the end of tillering stage of winter barley grown in stress environment (21.3% vol. water content of soil and control (water content 30.4% vol. in relation to grain yield per vegetative pot. The trial was conducted in vegetative pots according to the RBD method of two-factorial experiment with 10 winter barley cultivars (7 tworowed and 3 six-rowed and 2 treatments in 3 repetitions. The stressed variant was exposed to water reduction three times (end of tillering stage, flag leaf to beginning of heading stage, grain filling stage. From sowing to maturity, the air temperature varied from -3.9°C to 32.9°C and water content from 16.4 % to 39.0 % of soil volume in vegetative pot. Significant differences were found for grain yield among the cultivars. The short-term drought stress caused significant reductions in grain yield per pot. The photosynthetic efficiency parameters were significant between cultivars, but significant effects for treatments and interaction were only detected for the Fv/Fm parameter. Photosynthetic efficiency parameters did not have significant correlation coefficients with grain yield and its stability in both treatments. Stability indexes of the parameters PIABS and Fv/Fm had positive but not significant correlations with grain yield in stressed variant (0.465 and 0.452 and stability index of grain yield (0.337 and 0.481.

  5. Effect of Fungicide Applications on Grain Sorghum (Sorghum bicolor L. Growth and Yield

    Directory of Open Access Journals (Sweden)

    Dan D. Fromme

    2017-01-01

    Full Text Available Field studies were conducted in the upper Texas Gulf Coast and in central Louisiana during the 2013 through 2015 growing seasons to evaluate the effects of fungicides on grain sorghum growth and development when disease pressure was low or nonexistent. Azoxystrobin and flutriafol at 1.0 L/ha and pyraclostrobin at 0.78 L/ha were applied to the plants of two grain sorghum hybrids (DKS 54-00, DKS 53-67 at 25% bloom and compared with the nontreated check for leaf chlorophyll content, leaf temperature, and plant lodging during the growing season as well as grain mold, test weight, yield, and nitrogen and protein content of the harvested grain. The application of a fungicide had no effect on any of the variables tested with grain sorghum hybrid responses noted. DKS 53-67 produced higher yield, greater test weight, higher percent protein, and N than DKS 54-00. Results of this study indicate that the application of a fungicide when little or no disease is present does not promote overall plant health or increase yield.

  6. Comparison of Grain Yield and Some Characteristics of Hulled, Durum and Bread Wheat Genotypes Varieties

    Directory of Open Access Journals (Sweden)

    Bekir Atar

    2017-02-01

    Full Text Available In spite of the low grain yield they produce, the hulled wheat have become even more important in recent years because of their resistance to negative environmental conditions and healthy nutritional content. The research was carry out in order to comparison the yield and yield characteristics of durum (Kiziltan-91 and C-1252, hulled (Einkorn and Emmer and bread wheat (Tir varieties in Isparta ecological conditions in 2013-14 and 2014-15 vegetation periods. In both years, the highest grain yield was obtained in Kiziltan-91 variety (3992 and 3758 kg ha-1 respectively. The grain yield of hulled wheats in the first year (Einkorn 1269 kg ha-1, Emmer 2125 kg ha-1 was around Turkey averages. However, grain yield decreased of commercial wheat varieties due to the negative effect of high amount of rainfall in June in the second year, but considerably increased in (Einkorn 2150 kg ha-1, Emmer 2533 kg ha-1. N uptake was found to be lower in the than durum wheats. In terms of grain protein content, the highest values were obtained in Emmer variety (16.4%-15.3%.

  7. Weed Competition and its Effects on Pwani Hybrid 1 Maize Grain Yields in Coastal Kenya

    International Nuclear Information System (INIS)

    Kamau, G.M.; Saha, H.M.

    1999-01-01

    Weed competition is a serious constraint to maize production in coastal Kenya. A trial to asses the effects of weed competition on performance of maize was planted at Regional Research Centre-Mtwapa and Msabaha Research Sub-centre-Malindi in 1992. Pwani hybrid 1 maize was used in the trials. Weeding was done at weekly intervals from germination up to the sixth week in an additive weed removal system and plots maintained weed free afterwards. A weedy and a weed free plot were used as checks. Data on plant counts plant heights, weed biomass, weed identification and maize grain yield at 15 % MC were all recorded. There was a significant difference between weed and weedy free plots for grain yield, plant height and weed biomass for both sites. A 53% maize grain yield reduction due to weed competition was recorded. A 3% grain yield reduction equivalent to 1.03 bags for every week's delay in weeding after the first to weeks was realised for both sites. There was a corresponding grain yield loss as delay in weeding increased

  8. Genotype x environment interaction for grain yield of wheat genotypes tested under water stress conditions

    International Nuclear Information System (INIS)

    Sail, M.A.; Dahot, M.U.; Mangrio, S.M.; Memon, S.

    2007-01-01

    Effect of water stress on grain yield in different wheat genotypes was studied under field conditions at various locations. Grain yield is a complex polygenic trait influenced by genotype, environment and genotype x environment (GxE) interaction. To understand the stability among genotypes for grain yield, twenty-one wheat genotypes developed Through hybridization and radiation-induced mutations at Nuclear Institute of Agriculture (NIA) TandoJam were evaluated with four local check varieties (Sarsabz, Thori, Margalla-99 and Chakwal-86) in multi-environmental trails (MET/sub s/). The experiments were conducted over 5 different water stress environments in Sindh. Data on grain yield were recorded from each site and statistically analyzed. Combined analysis of variance for all the environments indicated that the genotype, environment and genotype x environment (GxE) interaction were highly significant (P greater then 0.01) for grain yield. Genotypes differed in their response to various locations. The overall highest site mean yield (4031 kg/ha) recorded at Moro and the lowest (2326 kg/ha) at Thatta. Six genotypes produced significantly (P=0.01) the highest grain yield overall the environments. Stability analysis was applied to estimate stability parameters viz., regression coefficient (b), standard error of regression coefficient and variance due to deviation from regression (S/sub 2/d) genotypes 10/8, BWS-78 produced the highest mean yield over all the environments with low regression coefficient (b=0.68, 0.67 and 0.63 respectively and higher S/sup 2/ d value, showing specific adaptation to poor (un favorable) environments. Genotype 8/7 produced overall higher grain yield (3647 kg/ha) and ranked as third high yielding genotype had regression value close to unity (b=0.9) and low S/sup d/ value, indicating more stability and wide adaptation over the all environments. The knowledge of the presence and magnitude of genotype x environment (GE) interaction is important to

  9. Determination of the compressive yield strength for nano-grained YAG transparent ceramic by XRD analysis

    International Nuclear Information System (INIS)

    Wang, H.M.; Jiang, J.S.; Huang, Z.Y.; Chen, Y.; Liu, K.; Lu, Z.W.; Qi, J.Q.; Li, F.; He, D.W.; Lu, T.C.; Wang, Q.Y.

    2016-01-01

    Nano-grained ceramics have their unique mechanical characteristics that are not commonly found in their coarse-grained counterparts. In this study, nano-grained YAG transparent ceramics (NG-YAG) were prepared by low-temperature high-pressure technique (LTHP). The peak profile analysis of the X-ray diffraction was employed to investigate the compressive yield strength of NG-YAG. During the temperature at 450 °C, the residual micro-strain (RMS) increased with increasing loading pressure. However when the loading pressure was exceeded to 4.0 GPa the RMS exhibited a severe negative slop. The temperature effects on the compressive yield strength were also studied. It shows that the compressive yield strength of NG-YAG is 4.0 GPa and 5.0 GPa respectively at 450 °C and 350 °C. More importantly according to this investigation, a feasible technique to study the nano-grained ceramics is provided. - Graphical abstract: Fig. 2 shows the significant slope changes of calculated residual micro-strain (RMS) associated with five selected pressure-temperature conditions. Another the grain size estimated from Scherrer's formula, especially when it changes with the pressure-temperature condition is also plotted in Fig. 2. - Highlights: • Prepared the nano-grained YAG transparent ceramic by high pressure technique. • Obtained the compressive yield with different temperature. • Obtained the compressive yield of nano-grained YAG transparent ceramic.

  10. A new economic assessment index for the impact of climate change on grain yield

    Science.gov (United States)

    Dong, Wenjie; Chou, Jieming; Feng, Guolin

    2007-03-01

    The impact of climate change on agriculture has received wide attention by the scientific community. This paper studies how to assess the grain yield impact of climate change, according to the climate change over a long time period in the future as predicted by a climate system model. The application of the concept of a traditional “yield impact of meteorological factor (YIMF)” or “yield impact of weather factor” to the grain yield assessment of a decadal or even a longer timescale would be suffocated at the outset because the YIMF is for studying the phenomenon on an interannual timescale, and it is difficult to distinguish between the trend caused by climate change and the one resulting from changes in non-climatic factors. Therefore, the concept of the yield impact of climatic change (YICC), which is defined as the difference in the per unit area yields (PUAY) of a grain crop under a changing and an envisaged invariant climate conditions, is presented in this paper to assess the impact of global climate change on grain yields. The climatic factor has been introduced into the renowned economic Cobb-Douglas model, yielding a quantitative assessment method of YICC using real data. The method has been tested using the historical data of Northeast China, and the results show that it has an encouraging application outlook.

  11. A New Economic Assessment Index for the Impact of Climate Change on Grain Yield

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The impact of climate change on agriculture has received wide attention by the scientific community.This paper studies how to assess the grain yield impact of climate change, according to the climate change over a long time period in the future as predicted by a climate system model. The application of the concept of a traditional "yield impact of meteorological factor (YIMF)" or "yield impact of weather factor" to the grain yield assessment of a decadal or even a longer timescale would be suffocated at the outset because the YIMF is for studying the phenomenon on an interannual timescale, and it is difficult to distinguish between the trend caused by climate change and the one resulting from changes in non-climatic factors. Therefore,the concept of the yield impact of climatic change (YICC), which is defined as the difference in the per unit area yields (PUAY) of a grain crop under a changing and an envisaged invariant climate conditions, is presented in this paper to assess the impact of global climate change on grain yields. The climatic factor has been introduced into the renowned economic Cobb-Douglas model, yielding a quantitative assessment method of YICC using real data. The method has been tested using the historical data of Northeast China,and the results show that it has an encouraging application outlook.

  12. Estimating grain yield losses caused by septoria leaf blotch on durum wheat in Tunisia

    Directory of Open Access Journals (Sweden)

    Samia Berraies

    2014-12-01

    Full Text Available Septoria leaf blotch (SLB, caused by Zymoseptoria tritici (Desm. Quaedvlieg & Crous, 2011 (teleomorph: Mycosphaerella graminicola (Fuckel J. Schrot., is an important wheat disease in the Mediterranean region. In Tunisia, SLB has become a major disease of durum wheat (Triticum turgidum L. subsp. durum [Desf.] Husn. particularly during favorable growing seasons where significant yield losses and increase of fungicides use were recorded over the last three decades. The objectives of this study were to evaluate the effect of SLB severity on grain yield of new elite durum wheat breeding lines and to measure the relative effect of fungicide control on grain yield. Experiments were conducted during 2007-2008 and 2008-2009 cropping seasons. A set of 800 breeding lines were screened for reaction to SLB under natural infection at Beja research station. To estimate the disease effect, correlation between disease severity at early grain filling stage and grain yield was performed. Results showed that susceptible varieties yield was significantly reduced by SLB. Average yield reduction was as high as 384 and 325 kg ha-1 for every increment in disease severity on a 0-9 scale in both seasons, respectively. A negative correlation coefficient varied between -0.61 and -0.66 in both seasons. Treated and untreated trials conducted during 2008-2009 and 2009-2010 showed that yield of treated plots increased by 50% on the commonly cultivated susceptible varieties. The results of this investigation suggested that septoria incidence is related to large grain yield losses particularly on susceptible high yielding cultivars. However, appropriate fungicide application at booting growth stage could be beneficial for farmers. The development and use of more effective fungicide could be sought to alleviate the disease effects and therefore could be considered as a part of the integrated pest management and responsible use strategy on septoria leaf blotch in Tunisia.

  13. Studies on the Effects of Climatic Factors on Dryland Wheat Grain Yield in Maragheh Region

    Directory of Open Access Journals (Sweden)

    V. Feiziasl

    2011-01-01

    Full Text Available Abstract In order to study the effects of climate variables on rainfed wheat grain yield, climate data and wheat yield for 10 years (1995-2005 collected from Dryland Agricultural Research Institute (DARI in Maragheh as the main station in cold and semi-cold areas. Collected data were analyzed by correlation coefficient, simple regression, stepwise regression and path analysis. The results showed that relationships between grain yield with average relative humidity and total rainfall of growing season was positive and significant at 5% and 1% probabilities, respectively. However, evaluation between grain yield with sunny hours and class A pan evaporation was negative and significant (p

  14. Grain yield losses in yellow-rusted durum wheat estimated using digital and conventional parameters under field conditions

    Directory of Open Access Journals (Sweden)

    Omar Vergara-Diaz

    2015-06-01

    Full Text Available The biotrophic fungus Puccinia striiformis f. sp. tritici is the causal agent of the yellow rust in wheat. Between the years 2010–2013 a new strain of this pathogen (Warrior/Ambition, against which the present cultivated wheat varieties have no resistance, appeared and spread rapidly. It threatens cereal production in most of Europe. The search for sources of resistance to this strain is proposed as the most efficient and safe solution to ensure high grain production. This will be helped by the development of high performance and low cost techniques for field phenotyping. In this study we analyzed vegetation indices in the Red, Green, Blue (RGB images of crop canopies under field conditions. We evaluated their accuracy in predicting grain yield and assessing disease severity in comparison to other field measurements including the Normalized Difference Vegetation Index (NDVI, leaf chlorophyll content, stomatal conductance, and canopy temperature. We also discuss yield components and agronomic parameters in relation to grain yield and disease severity. RGB-based indices proved to be accurate predictors of grain yield and grain yield losses associated with yellow rust (R2 = 0.581 and R2 = 0.536, respectively, far surpassing the predictive ability of NDVI (R2 = 0.118 and R2 = 0.128, respectively. In comparison to potential yield, we found the presence of disease to be correlated with reductions in the number of grains per spike, grains per square meter, kernel weight and harvest index. Grain yield losses in the presence of yellow rust were also greater in later heading varieties. The combination of RGB-based indices and days to heading together explained 70.9% of the variability in grain yield and 62.7% of the yield losses.

  15. Integrated crop management practices for maximizing grain yield of double-season rice crop

    Science.gov (United States)

    Wang, Depeng; Huang, Jianliang; Nie, Lixiao; Wang, Fei; Ling, Xiaoxia; Cui, Kehui; Li, Yong; Peng, Shaobing

    2017-01-01

    Information on maximum grain yield and its attributes are limited for double-season rice crop grown under the subtropical environment. This study was conducted to examine key characteristics associated with high yielding double-season rice crop through a comparison between an integrated crop management (ICM) and farmers’ practice (FP). Field experiments were conducted in the early and late seasons in the subtropical environment of Wuxue County, Hubei Province, China in 2013 and 2014. On average, grain yield in ICM was 13.5% higher than that in FP. A maximum grain yield of 9.40 and 10.53 t ha-1 was achieved under ICM in the early- and late-season rice, respectively. Yield improvement of double-season rice with ICM was achieved with the combined effects of increased plant density and optimized nutrient management. Yield gain of ICM resulted from a combination of increases in sink size due to more panicle number per unit area and biomass production, further supported by the increased leaf area index, leaf area duration, radiation use efficiency, crop growth rate, and total nitrogen uptake compared with FP. Further enhancement in the yield potential of double-season rice should focus on increasing crop growth rate and biomass production through improved and integrated crop management practices.

  16. Effect of nitrogen on partitioning and yield in grain sorghum under differing environmental conditions in the semi-arid tropics

    International Nuclear Information System (INIS)

    Muchow, R.C.

    1990-01-01

    The effect of nitrogen (N) supply on the relative contributions of pre- and post-anthesis net above-ground biomass accumulation and N uptake to grain-yield and grain N concentration was examined in four contrasting environments in semi-arid tropical Australia. The four environments had different radiation and temperature regimes, and varying levels of water deficit. The grain-yield achieved under high N supply ranged from 156 to 621 g m −2 (on an oven-dry basis). In all but the lowest-yielding environment, there was substantial biomass accumulation during grain-filling and it increased with N application. Only in the lowest-yielding environment was there substantial mobilization of pre-anthesis biomass to grain. Biomass mobilization was not affected by N application. Nitrogen uptake during grain-filling was unresponsive to N application, and was small relative to total N uptake during the life-cycle. Mobilization of pre-anthesis N to the grain was much more significant. In all but the lowest-yielding environment, N mobilization increased with N application. Grain-yield under variable N supply and differing environmental conditions was not dependent on the proportions of pre- and post-anthesis growth. However, grain-yield was proportional to biomass at maturity over the entire yield range in this study and variability in biomass accounted for 95% of the variance in grain-yield. Similarly, grain N concentration was not related to the proportions of pre- and post-anthesis N uptake, but variability in total N uptake accounted for 92% of the variance in grain N accumulation. Consequently, there was no differential effect of N supply or environmental factors on yield physiology that could not be explained by their effect on biomass and N uptake. (author)

  17. Soil Texture and Cultivar Effects on Rice (Oryza sativa, L. Grain Yield, Yield Components and Water Productivity in Three Water Regimes.

    Directory of Open Access Journals (Sweden)

    Fugen Dou

    Full Text Available The objective of this study was to determine the effects of water regime/soil condition (continuous flooding, saturated, and aerobic, cultivar ('Cocodrie' and 'Rondo', and soil texture (clay and sandy loam on rice grain yield, yield components and water productivity using a greenhouse trial. Rice grain yield was significantly affected by soil texture and the interaction between water regime and cultivar. Significantly higher yield was obtained in continuous flooding than in aerobic and saturated soil conditions but the latter treatments were comparable to each other. For Rondo, its grain yield has decreased with soil water regimes in the order of continuous flooding, saturated and aerobic treatments. The rice grain yield in clay soil was 46% higher than in sandy loam soil averaged across cultivar and water regime. Compared to aerobic condition, saturated and continuous flooding treatments had greater panicle numbers. In addition, panicle number in clay soil was 25% higher than in sandy loam soil. The spikelet number of Cocodrie was 29% greater than that of Rondo, indicating that rice cultivar had greater effect on spikelet number than soil type and water management. Water productivity was significantly affected by the interaction of water regime and cultivar. Compared to sandy loam soil, clay soil was 25% higher in water productivity. Our results indicated that cultivar selection and soil texture are important factors in deciding what water management option to practice.

  18. The Combining Ability of Maize Inbred Lines for Grain Yield and ...

    African Journals Online (AJOL)

    The Combining Ability of Maize Inbred Lines for Grain Yield and Reaction to Grey ... East African Journal of Sciences ... (GLS) to maize production, the national maize research program of Ethiopia ... The information from this study will be useful for the development of high-yielding and GLS disease-resistant maize varieties.

  19. Dry land Winter Wheat Yield, Grain Protein, and Soil Nitrogen Responses to Fertilizer and Bio solids Applications

    International Nuclear Information System (INIS)

    Koenig, R.T.; Cogger, C.G.; Bary, A.I.

    2011-01-01

    Applications of bio solids were compared to inorganic nitrogen (N) fertilizer for two years at three locations in eastern Washington State, USA, with diverse rainfall and soft white, hard red, and hard white winter wheat (Triticum aestivum L.) cultivars. High rates of inorganic N tended to reduce yields, while grain protein responses to N rate were positive and linear for all wheat market classes. Bio solids produced 0 to 1400 kg ha -1 (0 to 47%) higher grain yields than inorganic N. Wheat may have responded positively to nutrients other than N in the bio solids or to a metered N supply that limited vegetative growth and the potential for moisture stress-induced reductions in grain yield in these dry land production systems. Grain protein content with bio solids was either equal to or below grain protein with inorganic N, likely due to dilution of grain N from the higher yields achieved with bio solids. Results indicate the potential to improve dry land winter wheat yields with bio solids compared to inorganic N alone, but perhaps not to increase grain protein concentration of hard wheat when bio solids are applied immediately before planting.

  20. Effects of Low Light on Agronomic and Physiological Characteristics of Rice Including Grain Yield and Quality

    Directory of Open Access Journals (Sweden)

    Qi-hua LIU

    2014-09-01

    Full Text Available Light intensity is one of the most important environmental factors that determine the basic characteristics of rice development. However, continuously cloudy weather or rainfall, especially during the grain-filling stage, induces a significant loss in yield and results in poor grain quality. Stress caused by low light often creates severe meteorological disasters in some rice-growing regions worldwide. This review was based on our previous research and related research regarding the effects of low light on rice growth, yield and quality as well as the formation of grain, and mainly reviewed the physiological metabolism of rice plants, including characteristics of photosynthesis, activities of antioxidant enzymes in rice leaves and key enzymes involved in starch synthesis in grains, as well as the translocations of carbohydrate and nitrogen. These characteristics include various grain yield and rice quality components (milling and appearance as well as cooking, eating and nutritional qualities under different rates of shading imposed at the vegetative or reproductive stages of rice plants. Furthermore, we discussed why grain yield and quality are reduced under the low light environment. Next, we summarized the need for future research that emphasizes methods can effectively improve rice grain yield and quality under low light stress. These research findings can provide a beneficial reference for rice cultivation management and breeding program in low light environments.

  1. Effects of different irrigation intervals and plant density on morphological characteristics, grain and oil yields of sesame (Sesamum indicum

    Directory of Open Access Journals (Sweden)

    parviz rezvani moghadam

    2009-06-01

    Full Text Available In order to study the effects of different irrigation intervals and plant density on morphological characteristics, grain and oil yields of sesame, an experiment was conducted at experimental station, college of agriculture, Ferdowsi University of Mashhad. Four different irrigation intervals (one, two, three and four weeks with four plant densities (20, 30, 40 and 50 plants/m2 were compared in a spilt plot arrangement based on randomized complete block design with four replications. Irrigation intervals and plant densities allocated in main plots and subplots, respectively. Different characteristics such as plant height, distance of first capsule from soil surface, number of branches per plant, number of grains per capsule, number of capsules per plant, grain yield, 1000-seed weight, harvest index and oil yield were recorded. The results showed that there were no significant difference between different irrigation intervals in terms of distance of first capsule from soil surface, number of grains per capsule, 1000-seed weight and harvest index. Different irrigation intervals had significant effects on plant height, number of branches per plant, number of capsules per plant, grain yield and oil yield. There were significant differences between different plant densities in terms of distance of first capsule from soil surface, number of branches per plant, number of graines per capsule, number of capsules per plant, grain yield, harvest index and oil yield. The highest grain yield (798/7 kg/ha and oil yield (412/8 kg/ha were obtained at one week and four weeks irrigation intervals, respectively. Between all treatments, 50 plants/m2 and one week irrigation interval produced the highest grain yield (914/7 kg/ha and oil yield (478/6 kg/ha. Because of shortage of water in Mashhad condition, the results recommended that, 50 plants/m2 and two weeks irrigation interval produced rather acceptable grain yield, with less water consumption.

  2. Response of Barley Double Haploid Lines to the Grain Yield and Morphological Traits under Water Deficit Stress Conditions

    Directory of Open Access Journals (Sweden)

    Maroof Khalily

    2017-04-01

    Full Text Available To study the relationships of grain yield and some of agro-morphological traits in 40 doubled haploid (DH lines along with parental and three check genotypes in a randomized complete block design with two replications under two water regimes (normal and stress were evaluated during 2011-2012 and 2012-2013 growing seasons. Combined analysis of variance showed significant difference for all the traits in terms of the year, water regimes, lines, and and line × year. Comparison of group means, between non-stress and stress conditions, showed that DH lines had the lowest reduction percentage for the number of grains per spike, thousand grain weight, grain yield and biological yield as opposed to check genotypes. The correlation between grain yield with biological yield, harvest index, thousand grain weight, and hectoliter of kernel weight in both conditions, were highly significant and positive. Based on stepwise regression the peduncle length, number of seeds per spike, thousand seed weight, and hectoliter of kernel weight had important effect on increasing seed yield. The result of path analysis showed that these traits had the highest direct effect on grain yield. Based on mean comparisons of morphological characters as well as STI and GMP indices it can be concluded that lines No.11, 13, 14, 24, 29, 30, 35 and 39 were distinguished to be desirable lines for grain yield and their related traits and also tolerant lines in terms of response to drought stress conditions.

  3. Attraction of likely charged nano-sized grains in dust-electron plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Vishnyakov, Vladimir I., E-mail: eksvar@ukr.net [Physical-Chemical Institute for Environmental and Human Protection, Odessa 65082 (Ukraine)

    2016-01-15

    Dust-electron plasma, which contains only the dust grains and electrons, emitted by them, is studied. Assumption of almost uniform spatial electrons distribution, which deviates from the uniformity only near the dust grains, leads to the grain charge division into two parts: first part is the individual for each grain “visible” charge and the second part is the common charge of the neutralized background. The visible grain charge can be both negative and positive, while the total grain charge is only positive. The attraction of likely charged grains is possible, because the grain interaction is determined by the visible charges. The equilibrium state between attraction and repulsion of grains is demonstrated.

  4. Growth, assimilate partitioning and grain yield response of soybean ...

    African Journals Online (AJOL)

    This investigation tested variation in the growth components, assimilate partitioning and grain yield of soybean (Glycine max L. Merrrill) varieties established in CO2 enriched atmosphere when inoculated with mixtures of Arbuscular mycorrhizal fungi (AMF) species in the humid rainforest of Nigeria. A pot and a field ...

  5. Plant height and grain yield of soybean depending on the year, irrigation and variety

    Directory of Open Access Journals (Sweden)

    Daria Galić Šubašić

    2017-01-01

    Full Text Available Three-year field trials determined the influence of the year, irrigation treatment and varieties on plant height and grain yield of soybeans in the eastern Croatia conditions. All three investigated factors, as well as their interactions, with the exception of irrigation interactions and varieties that were significant at P=0.05, show a statistically significant influence (P=0.01 on the height of soybean plants. Soybean grain yields, as well as all their interactions, affect the significance level P=0.01. The obtained values of soybean grain yields during the study (mostly greater than 3000 kg ha-1 indicate the importance of selecting appropriate varieties and irrigation treatment in adapting soybean production to adverse weather effects of the year.

  6. Effects of water deficit and nitrogen levels on grain yield and oil and protein contents of maize

    Directory of Open Access Journals (Sweden)

    Kazem Ghassemi-Golezani

    2015-02-01

    Full Text Available This research was conducted in 2014, to evaluate the effects of water deficit and nitrogen fertilizer on grain yield, oil and protein contents of maize (cv. double Cross 303. The experiment was arranged as split-plot based on Randomized Complete Block design (RCB with three replications. Irrigation treatments (irrigation after 60, 90, 120 and 150 mm evaporation and nitrogen levels (0, 46 and 92 kg N/ha were located in the main and sub plots, respectively. Mean grain yield per unit area decreased with decreasing water availability, but it was improved with increasing nitrogen fertilizer. Grain oil percentage significantly decreased, but protein percentage slightly increased as a result of water deficit. In general, oil and protein yields significantly decreased under moderate and severe water stress, mainly because of decreasing grain yield under these conditions. Nitrogen application decreased oil percentage, but increased protein percentage significantly. Nevertheless, nitrogen fertilizer enhanced oil and protein yields per unit area, with no significant difference between nitrogen rates. These results were positively related with grain yield per unit area in maize.

  7. Yield and grain quality of winter wheat under Southern Steppe of Ukraine growing conditions

    Directory of Open Access Journals (Sweden)

    М. М. Корхова

    2014-12-01

    Full Text Available The results of three years study of the effect of sowing time and seed application rates on yield and grain quality of different varieties of winter wheat under the conditions of South Steppe of Ukraine were presented. It was found that winter wheat provides optimal combination of high yield and grain quality in case of sowing in October 10 with seed application rate of 5,0 million seeds/ha. The highest yield – 4,59 t/ha on average in 2011–2013 was obtained for the variety of Natalka when sowing in October 10 with seed application rate  of 5 million germinable seeds. With increasing seed application rate from 3 to 5 million seeds/ha, protein content in winter wheat was decreased by 0,3%, gluten – by 0,6%. The variety Natalka  formed the highest quality grains when sowing in October 20 with seed application rate of 3 million seeds/ha, in this case protein content was 15,8%, gluten – 32,9%. It is proved that early sowing time  – September 10 leads to yields reduction and grain   quality deterioration for all winter wheat varieties.

  8. Electron scattering at surfaces and grain boundaries in thin Au films

    International Nuclear Information System (INIS)

    Henriquez, Ricardo; Flores, Marcos; Moraga, Luis; Kremer, German; González-Fuentes, Claudio; Munoz, Raul C.

    2013-01-01

    The electron scattering at surfaces and grain boundaries is investigated using polycrystalline Au films deposited onto mica substrates. We vary the three length scales associated with: (i) electron scattering in the bulk, that at temperature T is characterized by the electronic mean free path in the bulk ℓ 0 (T); (ii) electron-surface scattering, that is characterized by the film thickness t; (iii) electron-grain boundary scattering, that is characterized by the mean grain diameter D. We varied independently the film thickness from approximately 50 nm to about 100 nm, and the typical grain size making up the samples from 12 nm to 160 nm. We also varied the scale of length associated with electron scattering in the bulk by measuring the resistivity of each specimen at temperatures T, 4 K 0 (T) by approximately 2 orders of magnitude. Detailed measurements of the grain size distribution as well as surface roughness of each sample were performed with a Scanning Tunnelling Microscope (STM). We compare, for the first time, theoretical predictions with resistivity data employing the two theories available that incorporate the effect of both electron-surface as well as electron-grain boundary scattering acting simultaneously: the theory of A.F. Mayadas and M. Shatzkes, Phys. Rev. 1 1382 (1970) (MS), and that of G. Palasantzas, Phys. Rev. B 58 9685 (1998). We eliminate adjustable parameters from the resistivity data analysis, by using as input the grain size distribution as well as the surface roughness measured with the STM on each sample. The outcome is that both theories provide a fair representation of both the temperature as well as the thickness dependence of the resistivity data, but yet there are marked differences between the resistivity predicted by these theories. In the case of the MS theory, when the average grain diameter D is significantly smaller than ℓ 0 (300) = 37 nm, the electron mean free path in the bulk at 300 K, the effect of electron-grain

  9. Grain yield and agronomic characteristics of Romanian bread wheat ...

    African Journals Online (AJOL)

    In this study, fourteen bread wheat varieties, twelve of which were introduced into Turkey from Romania, were evaluated for grain yield and seven agronomic properties in Biga, Çanakkale in northwest part of Turkey in 2005 - 2006 and 2006 - 2007 growing seasons. The objectives of the research, carried out in a completely ...

  10. Adaptability and phenotypic stability of soybean cultivars for grain yield and oil content.

    Science.gov (United States)

    Silva, K B; Bruzi, A T; Zuffo, A M; Zambiazzi, E V; Soares, I O; de Rezende, P M; Fronza, V; Vilela, G D L; Botelho, F B S; Teixeira, C M; de O Coelho, M A

    2016-04-25

    The aim of this study was to verify the adaptability and stability of soybean cultivars with regards to yield and oil content. Data of soybean yield and oil content were used from experiments set up in six environments in the 2011/12 and 2012/13 crop seasons in the municipalities of Patos de Minas, Uberaba, Lavras, and São Gotardo, Minas Gerais, Brazil, testing 36 commercial soybean cultivars of both conventional and transgenic varieties. The Wricke method and GGE biplot analysis were used to evaluate adaptability and stability of these cultivars. Large variations were observed in grain yield in relation to the different environments studied, showing that these materials are adaptable. The cultivars exhibited significant differences in oil content. The cultivars BRSGO204 (Goiânia) and BRSMG (Garantia) exhibited the greatest average grain yield in the different environments studied, and the cultivar BRSMG 760 SRR had the greatest oil content among the cultivars evaluated. Ecovalence was adopted to identify the most stable cultivars, and the estimates were nearly uniform both for grain yield and oil content, showing a variation of 0.07 and 0.01%, respectively. The GGE biplot was efficient at identifying cultivars with high adaptability and phenotype stability.

  11. Electron scattering at surfaces and grain boundaries in thin Au films

    Energy Technology Data Exchange (ETDEWEB)

    Henriquez, Ricardo [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 110-V, Valparaíso (Chile); Flores, Marcos; Moraga, Luis [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada 2008, Casilla 487-3, Santiago 8370449 (Chile); Kremer, German [Bachillerato, Universidad de Chile, Las Palmeras 3425, Santiago 7800024 (Chile); González-Fuentes, Claudio [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 110-V, Valparaíso (Chile); Munoz, Raul C., E-mail: ramunoz@ing.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada 2008, Casilla 487-3, Santiago 8370449 (Chile)

    2013-05-15

    The electron scattering at surfaces and grain boundaries is investigated using polycrystalline Au films deposited onto mica substrates. We vary the three length scales associated with: (i) electron scattering in the bulk, that at temperature T is characterized by the electronic mean free path in the bulk ℓ{sub 0}(T); (ii) electron-surface scattering, that is characterized by the film thickness t; (iii) electron-grain boundary scattering, that is characterized by the mean grain diameter D. We varied independently the film thickness from approximately 50 nm to about 100 nm, and the typical grain size making up the samples from 12 nm to 160 nm. We also varied the scale of length associated with electron scattering in the bulk by measuring the resistivity of each specimen at temperatures T, 4 K < T < 300 K. Cooling the samples to 4 K increases ℓ{sub 0}(T) by approximately 2 orders of magnitude. Detailed measurements of the grain size distribution as well as surface roughness of each sample were performed with a Scanning Tunnelling Microscope (STM). We compare, for the first time, theoretical predictions with resistivity data employing the two theories available that incorporate the effect of both electron-surface as well as electron-grain boundary scattering acting simultaneously: the theory of A.F. Mayadas and M. Shatzkes, Phys. Rev. 1 1382 (1970) (MS), and that of G. Palasantzas, Phys. Rev. B 58 9685 (1998). We eliminate adjustable parameters from the resistivity data analysis, by using as input the grain size distribution as well as the surface roughness measured with the STM on each sample. The outcome is that both theories provide a fair representation of both the temperature as well as the thickness dependence of the resistivity data, but yet there are marked differences between the resistivity predicted by these theories. In the case of the MS theory, when the average grain diameter D is significantly smaller than ℓ{sub 0}(300) = 37 nm, the electron mean

  12. The influence of climatic conditions changes on grain yield in Winter Triticale (X Triticosecale Wittm.

    Directory of Open Access Journals (Sweden)

    Ionuț RACZ

    2017-05-01

    Full Text Available The aim of this paper is making out the influence of climatic changes on grain yield of winter triticale in relation with applied fertilizer. The influence of environmental conditions on growing and development of triticale plants depends of grow stages and their duration. During five experimental years (2010-2015 the climatic conditions were different year to year, with an accentuated heating trend, influencing plant phenology, accelerating or slowing down some important processes disturbing grain yield formation. The influence of drought is more accentuated by heating stress and prolonging of these conditions during the main phenological processes have a negative influence on plant growth or development with effect on the grain yield formation process.

  13. Effect of Trichoderma harzianum on Wheat (Triticum aestivum L. Grain Yield under Different Levels of Cadmium Nitrate

    Directory of Open Access Journals (Sweden)

    F. Taghavi Ghasemkheyli

    2014-12-01

    Full Text Available A pot experiment was designed to evaluate the effect of Trichoderma spp. on yield and yield components of wheat (cv. N81 under different levels of cadmium nitrate. Experiment was arranged in factorial based on completely randomized design with three replicates. Trichoderma harzianum at two levels (with and without inoculation and four levels of cadmium nitrate (0, 50, 100, 150 mg l-1 were the treatment. Results of ANOVA and mean comparisons showed that inoculation of Trichoderma increased biological yield (46% and straw yield (30% as compared to control. Cadmium pollution has led to significant decrease in harvest index, grain number per spike and partitioning coefficient up to 5, 20, 24 and 38 percent compared to control, respectively. Furthermore, cadmium and fungus interaction were significant in terms of spike number, grain weight per spike, grain yield and tolerance index. Maximum grain yield and tolerance index were recorded in Trichoderma inoculation under cadmium-free plots which nearly increased 65 and 53 percent, respectively. In conclusion, using Trichoderma under cadmium pollution could improve wheat growth, yield and tolerance index

  14. Genetic analysis and hybrid vigor study of grain yield and other quantitative traits in auto tetraploid rice

    International Nuclear Information System (INIS)

    Shahid, M.Q.; Xiong, C.Z.; Juan, L.Y.; Ming, X.H.

    2011-01-01

    Genetic analysis and genotype-by-environment interaction for important traits of auto tetraploid rice were evaluated by additive, dominance and additive X additive model. It was show n that genetic effects had more influence on grain yield and other quantitative traits of auto tetraploid rice than genotypic environment interaction. Plant height, panicle length, seed set , grain yield, dry matter production and 1000-grain weight we re mainly regulated by dominance variance. Additive and additive X additive gene action constructed the main proportion of genetic variance for heading date (flowering), number of panicles, grains per panicle, grain length, however grain width was supposed to be affected by additive X additive and dominance variance. Flag leaf length and width, fresh weight, peduncle length, unfilled grains and awn length were greatly influenced by genotypic environment interaction. Heading date produced highly negative heterosis over mid parent (H pm) and better parent ( H pb), whereas H pm and H pb were detected to be highly positive and significant for grain yield, seed set, peduncle length, filled grains and 1000-grain weight in F/sub 1/ and F/sub 2/ generations. The results indicated that auto tetraploid hybrids 96025 X Jackson (indica/japonica), 96025 X Linglun (indica/indica) and Linglun X Jackson (indica/japonica) showed highly significant hybrid vigor with improved seed set percentage and grain yield. These results suggest that intra-specific auto tetraploid rice hybrids have more hybrid vigor as compared to intra-sub specific auto tetraploid rice hybrids and auto tetraploid rice has the potential to be used for further studies and commercial application. (author)

  15. Charging of Individual Micron-Size Interstellar/Planetary Dust Grains by Secondary Electron Emissions

    Science.gov (United States)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper, we discuss experimental results on dust charging by electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Currently, very limited experimental data are available for charging of individual micron-size dust grains, particularly by low energy electron impact. Available theoretical models based on the Sternglass equation (Sternglass, 1954) are applicable for neutral, planar, and bulk surfaces only. However, charging properties of individual micron-size dust grains are expected to be different from the values measured on bulk materials. Our recent experimental results on individual, positively charged, micron-size lunar dust grains levitated in an electrodynamic balance facility (at NASA-MSFC) indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (e.g. Abbas et al, 2010). Here we discuss the complex nature of SEE charging properties of individual micron-size lunar dust grains and silica microspheres.

  16. Grain yield increase in cereal variety mixtures: A meta-analysis of field trials

    DEFF Research Database (Denmark)

    Kiær, Lars Pødenphant; Skovgaard, Ib; Østergård, Hanne

    2009-01-01

    on grain yield. To investigate the prevalence and preconditions for positive mixing effects, reported grain yields of variety mixtures and pure variety stands were obtained from previously published variety trials, converted into relative mixing effects and combined using meta-analysis. Furthermore...... as meeting the criteria for inclusion in the meta-analysis; on the other hand, nearly 200 studies were discarded. The accepted studies reported results on both winter and spring types of each crop species. Relative mixing effects ranged from 30% to 100% with an overall meta-estimate of at least 2.7% (p

  17. Evaluation Physiological Characteristics and Grain Yield Canola Cultivars under end Seasonal Drought Stress in Weather Condition of Ahvaz

    Directory of Open Access Journals (Sweden)

    A Seyed Ahmadi

    2015-07-01

    Full Text Available To evaluate canola cultivars response to physiological characteristics and grain yield end seasonal drought stress in weather condition of Ahvaz, farm experiments were done at research farm of Khuzestan agriculture and natural resources center. During 2007-2008 and 2008-2009 crop years. Farm test comprised drought stress was done as split plot form with randomize complete block design with four replication, treatments consist of drought stress (main factor including 50, 60 and 70 percent of water use content, which was applied from early heading stage until physiological maturity, and three spring canola cultivar including Shirali, Hayola 401 and R.G.S. were considered as sub plots. Measurements include biological yield, grain yield, harvesting index, number of pod per plant 1000 grain weight, number of grain in pod, plant height, and stem diameter, oil and protein percentage. Results showed that drought stress reduced significantly grain yield, biological yield, harvest index and the average of reduction of them during 2 years for per unit reduce moisture from 50% to 70% were 2, 1.35, and 0.81 percent, respectively. During two years, 1000 grain weight, number of pods per plant and number of grain per pod reduced 27, 36 and 20 percent, respectively. Terminal Drought stress reduced significantly plant height, stem diameter, stem number per plant and pod length, this reduced were 12, 46, 36 and 14 percent, respectively. Stem diameter, and stem number per plant reduced more than other characteristics. In this study oil grain decreased 12 % and protein grain increased 18.5% but oil and protein yield decreased 44.9% and 27.1% respectively..Finally, in weather condition of Khuzestan, terminal drought stress on February and March in which has simultaneous with early flowering stage and filling seed, significantly, reduced yield and compounded yield and affects on stem growth and qualities oil and protein negatively. Therefore, with irrigation

  18. Combining ability for maize grain yield and other agronomic ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... the parameters except plant height, while specific combining ability (sca) and gca x year effects were significant only for grain yield. However, Tze Comp4 ... and days to flowering, with Hei 97 Tze Comp3 C4 combining very well with 3 parents (Acr 90 Pool 16-Dt,. Tze Comp4-Dmr Srbc2 and Tze Comp4 C2).

  19. Simultaneous improvement of grain yield and protein content in durum wheat by different phenotypic indices and genomic selection.

    Science.gov (United States)

    Rapp, M; Lein, V; Lacoudre, F; Lafferty, J; Müller, E; Vida, G; Bozhanova, V; Ibraliu, A; Thorwarth, P; Piepho, H P; Leiser, W L; Würschum, T; Longin, C F H

    2018-06-01

    Simultaneous improvement of protein content and grain yield by index selection is possible but its efficiency largely depends on the weighting of the single traits. The genetic architecture of these indices is similar to that of the primary traits. Grain yield and protein content are of major importance in durum wheat breeding, but their negative correlation has hampered their simultaneous improvement. To account for this in wheat breeding, the grain protein deviation (GPD) and the protein yield were proposed as targets for selection. The aim of this work was to investigate the potential of different indices to simultaneously improve grain yield and protein content in durum wheat and to evaluate their genetic architecture towards genomics-assisted breeding. To this end, we investigated two different durum wheat panels comprising 159 and 189 genotypes, which were tested in multiple field locations across Europe and genotyped by a genotyping-by-sequencing approach. The phenotypic analyses revealed significant genetic variances for all traits and heritabilities of the phenotypic indices that were in a similar range as those of grain yield and protein content. The GPD showed a high and positive correlation with protein content, whereas protein yield was highly and positively correlated with grain yield. Thus, selecting for a high GPD would mainly increase the protein content whereas a selection based on protein yield would mainly improve grain yield, but a combination of both indices allows to balance this selection. The genome-wide association mapping revealed a complex genetic architecture for all traits with most QTL having small effects and being detected only in one germplasm set, thus limiting the potential of marker-assisted selection for trait improvement. By contrast, genome-wide prediction appeared promising but its performance strongly depends on the relatedness between training and prediction sets.

  20. Correlation and path analysis of grain yield and morphological traits in test–cross populations of maize

    NARCIS (Netherlands)

    Sreckov, Z.; Nastasic, A.; Bocanski, J.; Djalovic, I.; Vukosavljev, M.; Jockovic, B.

    2011-01-01

    One of the goals of this paper was to determine correlation between grain yield, like the most important agronomic trait, and traits of the plant and ear that are influencing on the grain yield, in two test-cross populations, which are formed by crossing progenies of NSU(1) population after 17

  1. Laboratory Studies of Charging Properties of Dust Grains in Astrophysical/Planetary Environments

    Science.gov (United States)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper we focus on charging of individual micron/submicron dust grains by processes that include: (a) UV photoelectric emissions involving incident photon energies higher than the work function of the material and b) electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). It is well accepted that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the bulk materials. However, no viable models for calculation of the charging properties of individual micron size dust grains are available at the present time. Therefore, the photoelectric yields, and secondary electron emission yields of micron-size dust grains have to be obtained by experimental methods. Currently, very limited experimental data are available for charging of individual micron-size dust grains. Our experimental results, obtained on individual, micron-size dust grains levitated in an electrodynamic balance facility (at NASA-MSFC), show that: (1) The measured photoelectric yields are substantially higher than the bulk values given in the literature and indicate a particle size dependence with larger particles having order-of-magnitude higher values than for submicron-size grains; (2) dust charging by low energy electron impact is a complex process. Also, our measurements indicate that

  2. Effect of Mulch and Water Stress on Some Physiological Traits, Yield Components and Grain Yield of Red Kidney bean (Phaseolus vulgaris L.

    Directory of Open Access Journals (Sweden)

    R Amini

    2016-02-01

    Full Text Available Introduction Water use in agricultural production as one of the most important environmental factors affecting plant growth and development, especially in arid and semi-arid climatic conditions of Iran is of special importance (21. One of the ways of alleviating water scarcity is by enhancing its use efficiency or productivity. Improving water use efficiency in arid and semi-arid areas depends on effective conservation of moisture and efficient use of limited water. Mulching is one of the management practices for increasing water use efficiency (WUE . Straw mulch is commonly used as mulch. Straw mulching has potential for increasing soil water storage (16. Mulches modify the microclimate and growing conditions of crops (16, conserve more water and increase water use efficiency (34. Red kidney bean (Phaseolus vulgaris L. is the most important food legume (25 and is an important source of proteins and minerals (28. The majority of red kidney bean production is under drought conditions, and thus yield reductions due to drought are very common (29. This research was carried out to evaluate the effect of wheat straw mulch and water stress on physiological traits, yield components and grain yield of red kidney bean cultivars. Materials and Methods A field experiment was conducted in 2012 at the Research Farm of the Faculty of Agriculture, University of Tabriz, Iran (latitude 38°05_N, longitude 46°17_E, altitude 1360 m above sea level. In order to investigate the effect of mulch on grain yield and yield components of red kidney bean (Phaseolus vulgaris L. cultivars at different water stress treatments, a factorial experiment was conducted based on RCB design with three replications. The factors were including water stress treatment (I1 and I2, irrigation after 60 and 120 mm evaporation from class A pan, respectively; mulch application at two levels (M1: (no mulch and M2: 2 ton ha-1 wheat straw mulch and red kidney bean cultivars including Akhtar and

  3. Grain yield of corn at different population densities and intercropped with forages

    Directory of Open Access Journals (Sweden)

    José M. do Nascimento

    2015-12-01

    Full Text Available ABSTRACT The no-tillage system optimizes agricultural areas, maintaining the supply of straw and promoting crop rotation and soil conservation. The aim of the present study was to evaluate sowing quality and grain yield of corn intercropped with three forage species of the Urochloa genus associated with two corn population densities. The experiment was conducted at the São Paulo State University (UNESP, in Jaboticabal-SP, Brazil. The experimental design was randomized blocks in a 2 x 3 factorial scheme with four replicates. The treatments consisted of two corn densities (55,000 and 75,000 plants ha-1 intercropped with three forages (Urochloa brizantha, Urochloa decumbens and Urochloa ruziziensis sown between rows of corn in the V4 stage. The following corn variables were analysed: mean number of days for emergence, longitudinal distribution, grain yield, initial population and final population. There were differences between corn populations (p < 0.1 and the intercropping of corn with the species U. brizantha and U. ruziziensis promoted the best results, which permitted concluding that the cultivation of corn at the population density of 75,000 plants ha-1 intercropped U. brizantha and U. ruziziensis promoted better sowing quality and, consequently, higher grain yields.

  4. Long-term Low Radiation Decreases Leaf Photosynthesis, Photochemical Efficiency and Grain Yield in Winter Wheat

    DEFF Research Database (Denmark)

    Mu, H; Jiang, D; Wollenweber, Bernd

    2010-01-01

    the impact of low radiation on crop growth, photosynthesis and yield. Grain yield losses and leaf area index (LAI) reduction were less than the reduction in solar radiation under both shading treatment in both cultivars. Compared with the control (S0), grain yield only reduced 6.4 % and 9.9 % under 22.......0-22.9 % (S1) and 29.5-49.6 % (S2), which was consistent with the reduction in radiation. The reduction in LAI was partially compensated by increases in the fraction of the top and bottom leaf area to the total leaf area, which facilitated to intercept more solar radiation by the canopy. The decrease......Low radiation reduces wheat grain yield in tree-crop intercropping systems in the major wheat planting area of China. Here, two winter wheat (Triticum aestivum L) cultivars, Yangmai 158 (shading tolerant) and Yangmai 11 (shading sensitive), were shaded from jointing to maturity to evaluate...

  5. Effects of supplemental irrigation on water consumption characteristics and grain yield in different wheat cultivars

    Directory of Open Access Journals (Sweden)

    Meng Weiwei

    2015-06-01

    Full Text Available Shortage of water resources is a major limiting factor for wheat (Triticum aestivum L. production in the North China Plain. The objectives of this study were to evaluate the effects of supplemental irrigation (SI on water use characteristics and grain yield of the wheat cultivars 'Jimai 22'and 'Zhouyuan 9369'. Two supplemental irrigation treatment regimens were designed based on target relative soil moisture contents in 0-140 cm soil layers at jointing rising to 75% of field capacity (FC for each cultivar, and at anthesis rising to 65% and 75% (W1, and 70% and 80% (W2 in 2009-2010 and 2010-2011, respectively. Rain-fed (W0 treatment was used as control. Under W1, grain yield of 'Jimai 22' was 5.22% higher than that of W2, and water use efficiency (WUE of 'Zhouyuan 9369' was 4.0% higher than that under W2. No significant differences in WUE of 'Jimai 22' and grain yield of 'Zhouyuan 9369' were observed for the two treatment regimens in 2009-2010. Grain yield and WUE in W1 were higher than those of W2 for both cultivars in 2010-2011. W1 enhanced soil water consumption compared to W2, especially in the 100-200 cm soil layers, for both cultivars in 2009-2011. Meanwhile, 'Jimai 22' showed higher soil water consumption and ET from anthesis to mature stage, which resulted in increase in grain yield and WUE of 'Jimai 22' by 8.15-21.7% and 7.75-11.73% in 2009-2010 and 2010-2011, respectively, compared with 'Zhouyuan 9369'. Thus, our results showed that SI increased the yield and WUE of 'Jimai 22' and W1 was the better treatment regimen.

  6. The Effect of Zinc Fertilizer Application on Grain Yield of Different Zinc-Efficient Spring and Winter Wheat Cultivars

    Directory of Open Access Journals (Sweden)

    M. Malian

    2014-08-01

    Full Text Available These field trials were carried out to investigate the effect of various zinc (Zn fertilizer application treatments on grain yield of some spring (Isfahan and Neishabour and winter wheat cultivars (Mashhad and Jolge-e-Rokh with different Zn efficiency during 2009-2010 growth seasons. Five Zn fertilizer treatments were applied including: no added Zn (control, soil application of Zn-sulfate, and foliar spray of Zn-sulfate, Omex1, and Omex2. Omex1 and Omex2 contained 4 and 17% Zn, respectively. Foliar spray was performed at the anthesis stage. Both spring and winter wheat genotypes significantly differed in grain yield. The results showed that wheat genotypes largely varied in their grain yield response to different Zn application treatments. Some spring (Sholeh in Isfahan and winter (Sabalan in Jolg-e-Rokh wheat genotypes had greater response to Zn fertilization so that Zn addition increased grain yield of Sholeh by 48% and Sabalan by 17% as compared with no added Zn control. In contrast, Zn addition had no effect on grain yield of some other genotypes. Yield response of wheat genotypes to Zn application treatments significantly varied upon location. According to the results obtained from this study, the efficacy of Zn fertilizer treatments on grain yield of wheat is dependent on the genotype and location. Therefore, this concern should be considered in fertilizer recommendation programs that a specific Zn fertilizer treatment may not be recommended for all wheat cultivars and locations.

  7. Enhanced leaf photosynthesis as a target to increase grain yield: insights from transgenic rice lines with variable Rieske FeS protein content in the cytochrome b6 /f complex.

    Science.gov (United States)

    Yamori, Wataru; Kondo, Eri; Sugiura, Daisuke; Terashima, Ichiro; Suzuki, Yuji; Makino, Amane

    2016-01-01

    Although photosynthesis is the most important source for biomass and grain yield, a lack of correlation between photosynthesis and plant yield among different genotypes of various crop species has been frequently observed. Such observations contribute to the ongoing debate whether enhancing leaf photosynthesis can improve yield potential. Here, transgenic rice plants that contain variable amounts of the Rieske FeS protein in the cytochrome (cyt) b6 /f complex between 10 and 100% of wild-type levels have been used to investigate the effect of reductions of these proteins on photosynthesis, plant growth and yield. Reductions of the cyt b6 /f complex did not affect the electron transport rates through photosystem I but decreased electron transport rates through photosystem II, leading to concomitant decreases in CO2 assimilation rates. There was a strong control of plant growth and grain yield by the rate of leaf photosynthesis, leading to the conclusion that enhancing photosynthesis at the single-leaf level would be a useful target for improving crop productivity and yield both via conventional breeding and biotechnology. The data here also suggest that changing photosynthetic electron transport rates via manipulation of the cyt b6 /f complex could be a potential target for enhancing photosynthetic capacity in higher plants. © 2015 John Wiley & Sons Ltd.

  8. SECONDARY EMISSION FROM NON-SPHERICAL DUST GRAINS WITH ROUGH SURFACES: APPLICATION TO LUNAR DUST

    International Nuclear Information System (INIS)

    Richterová, I.; Němeček, Z.; Beránek, M.; Šafránková, J.; Pavlů, J.

    2012-01-01

    Electrons impinging on a target can release secondary electrons and/or they can be scattered out of the target. It is well established that the number of escaping electrons per primary electron depends on the target composition and dimensions, the energy, and incidence angle of the primary electrons, but there are suggestions that the target's shape and surface roughness also influence the secondary emission. We present a further modification of the model of secondary electron emission from dust grains which is applied to non-spherical grains and grains with defined surface roughness. It is shown that the non-spherical grains give rise to a larger secondary electron yield, whereas the surface roughness leads to a decrease in the yield. Moreover, these effects can be distinguished: the shape effect is prominent for high primary energies, whereas the surface roughness predominantly affects the yield at the low-energy range. The calculations use the Lunar Highlands Type NU-LHT-2M simulant as a grain material and the results are compared with previously published laboratory and in situ measurements.

  9. Genotype variation in grain yield response to basal N fertilizer ...

    African Journals Online (AJOL)

    user

    2012-07-24

    Jul 24, 2012 ... identify the variation of grain yield response to basal fertilizer among 199 rice varieties with different genetic background, and finally choose the suitable rice varieties for us to ... proper timing, rate, placement, and use of modified forms ... sowed in seedling-bed with uniform nutritional conditions until 3-leaf.

  10. Effect of Sowing Date and Sulfur on Yield, Oil Content and Grain Nitrogen of Safflower (Carthamus tinctorius L. in Autumn Cultivation

    Directory of Open Access Journals (Sweden)

    N Safara

    2016-12-01

    Full Text Available Introduction Nowadays oilseed crops are considered as the second most important sources of energy in the diet. In this regard, cultivation of oilseed crops such as safflower (Carthamus tinctorius L. is important due to quality of oil seed and medicinal properties. Different planting dates leads to adaptation of vegetative and reproductive growth of plant to temperature, day-length and various solar radiations and as a result affects plant’s development phase and yield. With delayed planting date , temperature and day length increases and development phase will accelerate. In this condition the crop yield will reduce due to crop growth and developmental period will shorten. Sulfur is an essential element for plant nutrition and its role is greater than Phosphorus. Using sulfur increases the heads per plant and grain yield. In order to investigate the effect of sulfur fertilizer under heat stress condition at the terminal growth stages and its role in reducing the negative effects of high temperature stress on safflower, this research was performed. Materials and Methods In order to study effect of planting date and sulfur manure on yield components, nitrogen and oil percent in safflower, a field experiment was carried out in a randomized complete blocks design with three replications in as split plot arrangement at Ramin Agriculture and Natural Resources University of Khuzestan during 2013-2014. The experimental treatments consisted of four planting dates of 30 November, 21 December, 22 January and 1st February were randomly placed in main plots and four levels of sulfur of 0, 200, 400 and 600 kg ha-1 performed randomly in subplots, Sulfur fertilizer was corporated to soil one week before each planting date. Harvest was performed from the mid-May to early-June, during physiological maturity. To measure the yield on maturity time after the removal of margins, Safflower plants were harvested from one m2 unit area. Nitrogen percent was determined

  11. Effects of split nitrogen fertilization on post-anthesis photoassimilates, nitrogen use efficiency and grain yield in malting barley

    DEFF Research Database (Denmark)

    Cai, Jian; Jiang, Dong; Liu, Fulai

    2011-01-01

    photosynthesis after anthesis, dry matter accumulation and assimilates remobilization, nitrogen use efficiency and grain yield to fraction of topdressed nitrogen treatments were investigated in malting barley. Net photosynthetic rate of the penultimate leaf, leaf area index and light extinction coefficient...... assimilation rate and nitrogen use efficiency resulting in higher grain yields and proper grain protein content in malting barley.......Split nitrogen applications are widely adopted to improve grain yield and enhance nitrogen use effective in crops. In a twoyear field experiment at two eco-sites, five fractions of topdressed nitrogen of 0%, 20%, 30%, 40% and 50% were implemented. Responses of radiation interception and leaf...

  12. Potential of multiseeded mutant (msd) to boost sorghum grain yield

    Science.gov (United States)

    Seed number per plant is an important determinant of the grain yield in cereal and other crops. We have isolated a class of multiseeded (msd) sorghum (Sorghum bicolor L. Moench) mutants that are capable of producing three times the seed number and twice the seed weight per panicle as compared with t...

  13. Investigation of The Relationship Between Grain Yield with Physiological Parameters in Some Bread Wheat Varieties

    Directory of Open Access Journals (Sweden)

    Mehmet KARAMAN

    2015-08-01

    Full Text Available This study was conducted to analyze the relationships between grain yield with physiological parameters in some bread wheat varieties. For this purpose, ten bread wheat genotypes were grown in randomized complete block design with 3 replications under rainfall conditions in the experimental field of GAP International Agricultural Research and Training Center during the 2012-2013 growing season. The most high yielding varieties in this study, Pehlivan, Kate A-1, Cemre and Anapo, were observed as standing out in terms of flag leaf chlorophyll content (SPAD value, flag leaf ash ratio, leaf area index and grain filling period . The correlation analyses of the study showed positive and significant correlations between chlorophyll content of flag leaf at heading stage with chlorophyll content at flowering stage, between chlorophyll content of flag leaf at flowering and heading stages with chlorophyll content of flag leaf at milk stage and between grain filling rate with leaf area index, In addition, positive and significant correlations were identified between flag leaf ash ratio and NDVI reading prior to heading time with grain yield

  14. Measurements of Photoelectric Yield and Physical Properties of Individual Lunar Dust Grains

    Science.gov (United States)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, F. A.; Taylor, L.; Hoover, R.

    2005-01-01

    Micron size dust grains levitated and transported on the lunar surface constitute a major problem for the robotic and human habitat missions for the Moon. It is well known since the Apollo missions that the lunar surface is covered with a thick layer of micron/sub-micron size dust grains. Transient dust clouds over the lunar horizon were observed by experiments during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and the levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics is believed to have a severe impact on the human habitat and the lifetime and operations of a variety of equipment, it is necessary to investigate the phenomena and the charging properties of the lunar dust in order to develop appropriate mitigating strategies. We will present results of some recent laboratory experiments on individual micro/sub-micron size dust grains levitated in electrodynamic balance in simulated space environments. The experiments involve photoelectric emission measurements of individual micron size lunar dust grains illuminated with UV radiation in the 120-160 nm wavelength range. The photoelectric yields are required to determine the charging properties of lunar dust illuminated by solar UV radiation. We will present some recent results of laboratory measurement of the photoelectric yields and the physical properties of individual micron size dust grains from the Apollo and Luna-24 sample returns as well as the JSC-1 lunar simulants.

  15. Effects of nitrogen application rate on dry matter redistribution, grain yield, nitrogen use efficiency and photosynthesis in malting barley

    DEFF Research Database (Denmark)

    Cai, J; Jiang, D; Wollenweber, Bernd

    2012-01-01

    The harmonious combination of malting barley yield, quality and nitrogen (N) use-efficiency under nitrogen (N) rates applications was greatly conducive to production in China. The malting barley cultivar Supi 3 was planted during the growing seasons 2005 and 2006 at two contrasting sites in China....... Five nitrogen (N) application rates (0, 75, 150, 225 and 300 kg ha−1) were applied for research of effects of N rates application on grain yield, protein content and N use-efficiency. At both sites and in both years, grain yield increased with increasing N application rates up to 225 kg N ha−1...... with a quadrant model, the optimum N application rates for high grain yield with high nitrogen use-efficiency in malting barley could be indicated. So, the higher yields could be mainly ascribed to the higher accumulation of photoassimilates between anthesis and maturity. In order to achieve high grain yield...

  16. Post-anthesis nitrate uptake is critical to yield and grain protein content in Sorghum bicolor.

    Science.gov (United States)

    Worland, Belinda; Robinson, Nicole; Jordan, David; Schmidt, Susanne; Godwin, Ian

    2017-09-01

    Crops only use ∼50% of applied nitrogen (N) fertilizer creating N losses and pollution. Plants need to efficiently uptake and utilize N to meet growing global food demands. Here we investigate how the supply and timing of nitrate affects N status and yield in Sorghum bicolor (sorghum). Sorghum was grown in pots with either 10mM (High) or 1mM (Low) nitrate supply. Shortly before anthesis the nitrate supply was either maintained, increased 10-fold or eliminated. Leaf sheaths of sorghum grown with High nitrate accumulated nitrate in concentrations >3-times higher than leaves. Removal of nitrate supply pre-anthesis resulted in the rapid reduction of stored nitrate in all organs. Plants receiving a 10-fold increase in nitrate supply pre-anthesis achieved similar grain yield and protein content and 29% larger grains than those maintained on High nitrate, despite receiving 24% less nitrate over the whole growth period. In sorghum, plant available N is important throughout development, particularly anthesis and grain filling, for grain yield and grain protein content. Nitrate accumulation in leaf sheaths presents opportunities for the genetic analysis of mechanisms behind nitrate storage and remobilization in sorghum to improve N use efficiency. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. 70-79 Effects of Crop Rotation and NP Fertilizer Rate on Grain Yield a

    African Journals Online (AJOL)

    amendment enabled maize yields and soil fertility to be maintained at a higher level. Multiple ... Higher grain yield and high net return of maize were realized following Niger seed, ...... Generation, Transfer and Gap Analysis Workshop. Nekemt ...

  18. Identification of QTL for maize grain yield and kernel-related traits

    Indian Academy of Sciences (India)

    [Yang C., Zhang L., Jia A. and Rong T. 2016 Identification of QTL for maize grain yield and kernel-related traits. ... 2010; Zhang et al. ...... in the structure and evolution of genetic systems. ... 2013 Fine mapping a major QTL for kernel number per.

  19. Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance.

    Science.gov (United States)

    Foulkes, M John; Slafer, Gustavo A; Davies, William J; Berry, Pete M; Sylvester-Bradley, Roger; Martre, Pierre; Calderini, Daniel F; Griffiths, Simon; Reynolds, Matthew P

    2011-01-01

    A substantial increase in grain yield potential is required, along with better use of water and fertilizer, to ensure food security and environmental protection in future decades. For improvements in photosynthetic capacity to result in additional wheat yield, extra assimilates must be partitioned to developing spikes and grains and/or potential grain weight increased to accommodate the extra assimilates. At the same time, improvement in dry matter partitioning to spikes should ensure that it does not increase stem or root lodging. It is therefore crucial that improvements in structural and reproductive aspects of growth accompany increases in photosynthesis to enhance the net agronomic benefits of genetic modifications. In this article, six complementary approaches are proposed, namely: (i) optimizing developmental pattern to maximize spike fertility and grain number, (ii) optimizing spike growth to maximize grain number and dry matter harvest index, (iii) improving spike fertility through desensitizing floret abortion to environmental cues, (iv) improving potential grain size and grain filling, and (v) improving lodging resistance. Since many of the traits tackled in these approaches interact strongly, an integrative modelling approach is also proposed, to (vi) identify any trade-offs between key traits, hence to define target ideotypes in quantitative terms. The potential for genetic dissection of key traits via quantitative trait loci analysis is discussed for the efficient deployment of existing variation in breeding programmes. These proposals should maximize returns in food production from investments in increased crop biomass by increasing spike fertility, grain number per unit area and harvest index whilst optimizing the trade-offs with potential grain weight and lodging resistance.

  20. Effect of gamma irradiation on the grain yield of Nigerian Zea mays and Arachis hypogaea

    International Nuclear Information System (INIS)

    Mokobia, C E; Okpakorese, E M; Analogbei, C; Agbonwanegbe, J

    2006-01-01

    As a follow-up to our earlier investigation on the effect of gamma radiation on the germination and growth of certain Nigerian agricultural crops, the present study sought to determine the effect of gamma radiation on the grain yield of Zea mays (maize) and Arachis hypogaea (groundnut). The seeds were planted after irradiation without the application of fertiliser. The results show that for maize, grain yield for irradiated samples is increased to levels above the unirradiated yield at doses up to about 250 Gy with the optimum yield occurring at 150 Gy. The corresponding increase for groundnut is observed at doses up to about 930 Gy with optimum yield at a dose of 300 Gy. Inhibition in yield was observed to set in at a dose greater than 250 Gy for maize and 930 Gy for groundnut. The actual relationship between mean yield of these crops and gamma radiation dose was obtained using sixth-degree polynomial equations. (note)

  1. Effect of gamma irradiation on the grain yield of Nigerian Zea mays and Arachis hypogaea

    Energy Technology Data Exchange (ETDEWEB)

    Mokobia, C E; Okpakorese, E M; Analogbei, C; Agbonwanegbe, J [Department of Physics, Delta State University, Abraka, Delta State (Nigeria)

    2006-12-15

    As a follow-up to our earlier investigation on the effect of gamma radiation on the germination and growth of certain Nigerian agricultural crops, the present study sought to determine the effect of gamma radiation on the grain yield of Zea mays (maize) and Arachis hypogaea (groundnut). The seeds were planted after irradiation without the application of fertiliser. The results show that for maize, grain yield for irradiated samples is increased to levels above the unirradiated yield at doses up to about 250 Gy with the optimum yield occurring at 150 Gy. The corresponding increase for groundnut is observed at doses up to about 930 Gy with optimum yield at a dose of 300 Gy. Inhibition in yield was observed to set in at a dose greater than 250 Gy for maize and 930 Gy for groundnut. The actual relationship between mean yield of these crops and gamma radiation dose was obtained using sixth-degree polynomial equations. (note)

  2. Electronic and atomic structures of KFe2Se2 grain boundaries

    International Nuclear Information System (INIS)

    Fan, Wei; Liu, Da-Yong; Zeng, Zhi

    2014-01-01

    Highlights: •Twist grain boundary has lower grain-boundary energy. •Twist grain-boundary has similar electronic structure to that in crystal. •Charge and magnetic-moment fluctuations are large within tilt grain boundary. •Bi-collinear AFM is most stable even with existence of grain boundary. •Insulating Fe-vacancy phase is stable with existence of twist grain boundary. -- Abstract: The electronic and atomic structures of the twist and tilt grain boundaries (GB) of the iron-based superconductor KFe 2 Se 2 are studied based on the simulations of the first principles density functional theory. Our results have clarified that the Σ5[0 0 1] twist grain boundary of KFe 2 Se 2 with layered structure has the lower grain-boundary energy. The local structure and the main features of the basic electronic structure within the [0 0 1] twist grain-boundary region have small differences compared with those in KFe 2 Se 2 crystal. The large fluctuations of the charges and magnetic moments are found in the [0 0 1] tilt grain-boundary regions, especially the former are more prominent. The bi-collinear anti-ferromagnetic order is the most stable magnetic order even with grain boundaries in the bulk. The √(5)a×√(5)a superstructure of Fe-vacancies in K 2 Fe 4 Se 5 phase is intrinsically related to the coincident-site lattice of Σ5[0 0 1] twist grain boundary

  3. Meta-analysis of grain yield QTL identified during agricultural drought in grasses showed consensus.

    Science.gov (United States)

    Swamy, B P Mallikarjuna; Vikram, Prashant; Dixit, Shalabh; Ahmed, H U; Kumar, Arvind

    2011-06-16

    In the last few years, efforts have been made to identify large effect QTL for grain yield under drought in rice. However, identification of most precise and consistent QTL across the environments and genetics backgrounds is essential for their successful use in Marker-assisted Selection. In this study, an attempt was made to locate consistent QTL regions associated with yield increase under drought by applying a genome-wide QTL meta-analysis approach. The integration of 15 maps resulted in a consensus map with 531 markers and a total map length of 1821 cM. Fifty-three yield QTL reported in 15 studies were projected on a consensus map and meta-analysis was performed. Fourteen meta-QTL were obtained on seven chromosomes. MQTL1.2, MQTL1.3, MQTL1.4, and MQTL12.1 were around 700 kb and corresponded to a reasonably small genetic distance of 1.8 to 5 cM and they are suitable for use in marker-assisted selection (MAS). The meta-QTL for grain yield under drought coincided with at least one of the meta-QTL identified for root and leaf morphology traits under drought in earlier reports. Validation of major-effect QTL on a panel of random drought-tolerant lines revealed the presence of at least one major QTL in each line. DTY12.1 was present in 85% of the lines, followed by DTY4.1 in 79% and DTY1.1 in 64% of the lines. Comparative genomics of meta-QTL with other cereals revealed that the homologous regions of MQTL1.4 and MQTL3.2 had QTL for grain yield under drought in maize, wheat, and barley respectively. The genes in the meta-QTL regions were analyzed by a comparative genomics approach and candidate genes were deduced for grain yield under drought. Three groups of genes such as stress-inducible genes, growth and development-related genes, and sugar transport-related genes were found in clusters in most of the meta-QTL. Meta-QTL with small genetic and physical intervals could be useful in Marker-assisted selection individually and in combinations. Validation and comparative

  4. High yielding small grain mutant of rice variety Pankaj

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-07-01

    Full text: By treatment with EMS a mutant has been produced from the variety Pankaj which has better tillering, longer panicle and more grains per panicle. In multilocation trials at Burdwan, Suri and Rampurhat in West Bengal it yielded significantly more than Pankaj and Mahsuri at all locations, with a mean 5.2t. The mutant named BU 79 would be a suitable substitute for Pankaj and similar long-duration rices. (author)

  5. Improvement in grain quality characteristics and yield in rice by induced mutation

    International Nuclear Information System (INIS)

    Govindaswami, S.; Ghosh, A.K.; Misra, S.N.

    1975-01-01

    Improvement in grain quality has been obtained in two rice cultures CR.75-83 and CR-75-93 (Rexore X Chianan-8) after gamma irradiation. The culture CR.75-83 and R.75-93 have good field resistance for bacterial leaf blight, but have comparatively low yield potential (4-5 tonns/ha) and have defects in grain quality such as low gelatinization temperature of starch and relatively low amylose content with inferior cooking quality since one of their parents was a 'Ponlai' type (Taiwan japonica). Improvement in fineness of the kernel and cooking quality by mutation of genes especially for higher amylose content and intermediate gelatinization temperature have been achieved in CR.75-83 mutants No.1,4,6,7,8,9,11 and 13 under 15Kr., in CR.75-93 in mutant No.2,4 and 10 under 25 Kr. Yield atributes have also improved with a shortening in the total duration by 10 to 20 days. The feasibility of improving the cooking quality especially the geletinization temperature and amylose content in the high yielding varieties by mutagenesis is discussed. (author)

  6. Usability of a soft-electron (low-energy electron) machine for disinfestation of grains contaminated with insect pests

    International Nuclear Information System (INIS)

    Imamura, Taro; Miyanoshita, Akihiro; Todoriki, Setsuko; Hayashi, Toru

    2004-01-01

    Efficacy of soft-electron treatment for disinfestations of grains was investigated by treating pre-infested brown rice and adzuki bean with a commercial-scale soft-electron machine (soft-electron processor). Soft-electrons at 150 kV efficiently disinfested brown rice grains pre-infested with maize weevil (Stiophilus zeamais Motchulsky) and Indian meal moth (Plodia interpunctella (Huebner)) and adzuki beans with adzuki bean weevil (Callosobruchus chinensis (Linne)), although small numbers of the internal feeders such as C. chinensis in adzuki bean and S. zeamais in brown rice survived. The results indicate that the commercial-scale soft-electron machine can disinfest grains and beans, especially those contaminated with external feeders

  7. Usability of a soft-electron (low-energy electron) machine for disinfestation of grains contaminated with insect pests

    Science.gov (United States)

    Imamura, Taro; Miyanoshita, Akihiro; Todoriki, Setsuko; Hayashi, Toru

    2004-09-01

    Efficacy of soft-electron treatment for disinfestations of grains was investigated by treating pre-infested brown rice and adzuki bean with a commercial-scale soft-electron machine (soft-electron processor). Soft-electrons at 150 kV efficiently disinfested brown rice grains pre-infested with maize weevil ( Stiophilus zeamais Motchulsky) and Indian meal moth ( Plodia interpunctella (Hübner)) and adzuki beans with adzuki bean weevil ( Callosobruchus chinensis (Linne)), although small numbers of the internal feeders such as C. chinensis in adzuki bean and S. zeamais in brown rice survived. The results indicate that the commercial-scale soft-electron machine can disinfest grains and beans, especially those contaminated with external feeders.

  8. Effect of Weed Management on Weeds and Grain Yield of Haricot ...

    African Journals Online (AJOL)

    Weeds are one of the major constraints limiting haricot bean productivity and production. Field experiments were conducted on the effect of weed managements on weeds and grain yield of haricot bean (Phaseolus Vulgaris L.) at Melkassa Agricultural Research Center from 2011 - 2013. The objective was to determine the ...

  9. Analyses of moisture deficit grain yield loss in drought tolerant maize ...

    African Journals Online (AJOL)

    Development of drought tolerant maize cultivars is prerequisite to achieving stable grain yield in drought–prone ecologies of Nigeria's Guinea savanna. However, success has been limited mainly due to lack of maize genotypes that show clear differences in response to well defined moisture deficit condition. Two sets of ...

  10. gge biplot application for adaptability of african yam bean grain yield

    African Journals Online (AJOL)

    ACSS

    However, Ubiaja was most supportive for grain production of AYB. Some of the accessions identified with high yielding, adaptable/stable in the study included. TSs101, TSs111, TSs93, TSs94, TSs57, TSs104B and TSs109. Key Words: Accessions, mega-environment, principal components, Sphenostylis stenocarpa.

  11. Effect of Silicon application on Morpho-physiological Characteristics, Grain Yield and Nutrient Content of Bread Wheat under Water Stress Conditions

    Directory of Open Access Journals (Sweden)

    A. Karmollachaab

    2015-03-01

    Full Text Available In order to investigate the effect of silicon application on some physiological characteristics, yield and yield components, and grain mineral contents of bread wheat (Triticum aestivum under water stress condition, an experiment was conducted in Ramin Agriculture and Natural Resources University, Khuzestan, in 2012. The experiment was arranged in split-plots design in RCBD (Completely Randomized Blocks Design with three replications. Treatments consisted of drought stress (irrigation after 25, 50 and 75% depletion of Available Water Content in main plots and silicon (0, 10, 20 and 30 Kg Si ha-1 arranged in sub-plots. Results showed that the effect of drought stress was significant on most traits and led to the increase of electrolyte leakage (EL, cuticular wax, leaf and grain silicon content and grain nitrogen content. But drought led to negative impacts on grain yield and its components, and leaf potassium content, i.e. moderate and severe stresses reduced yield by 17% and 38% compared to control, respectively. Effect of silicon application was significant on all traits except for spike per square meter. Silicon had the greatest impact on EL and led to 35% decrease in this trait. Also, silicon led to increase in leaf and grain silicon contents and grain K content and grain yield and yield components, when applied at 30 kg ha-1. Generally, application of 30 kg ha-1 of silicon led to 6 and 14% increases of grain yield at the presence of moderate and severe drought stresses, respectively. Thus, given the abundance of silicon it can be used as an ameliorating element for planting bread wheat in drought-prone conditions.

  12. Characterisation of a novel quantitative trait locus, GN4-1, for grain number and yield in rice (Oryza sativa L.).

    Science.gov (United States)

    Zhou, Yong; Tao, Yajun; Yuan, Yuan; Zhang, Yanzhou; Miao, Jun; Zhang, Ron; Yi, Chuandeng; Gong, Zhiyun; Yang, Zefeng; Liang, Guohua

    2018-03-01

    A novel QTL for grain number, GN4-1, was identified and fine-mapped to an ~ 190-kb region on the long arm of rice chromosome 4. Rice grain yield is primarily determined by three components: number of panicles per plant, grain number per panicle and grain weight. Among these traits, grain number per panicle is the major contributor to grain yield formation and is a crucial trait for yield improvement. In this study, we identified a major quantitative trait locus (QTL) responsible for rice grain number on chromosome 4, designated GN4-1 (a QTL for Grain Number on chromosome 4), using advanced segregating populations derived from the crosses between an elite indica cultivar 'Zhonghui 8006' (ZH8006) and a japonica rice 'Wuyunjing 8' (WYJ8). GN4-1 was delimited to an ~ 190-kb region on chromosome 4. The genetic effect of GN4-1 was estimated using a pair of near-isogenic lines. The GN4-1 gene from WYJ8 promoted accumulation of cytokinins in the inflorescence and increased grain number per panicle by ~ 17%. More importantly, introduction of the WYJ8 GN4-1 gene into ZH8006 increased grain yield by ~ 14.3 and ~ 11.5% in the experimental plots in 2014 and 2015, respectively. In addition, GN4-1 promoted thickening of the culm and may enhance resistance to lodging. These results demonstrate that GN4-1 is a potentially valuable gene for improvement of yield and lodging resistance in rice breeding.

  13. Effect of Timing of Potassium Application on Millet (Setaria italica Yield and Grain Protein Content in Different Irrigation Regimes

    Directory of Open Access Journals (Sweden)

    A. Hayati

    2011-05-01

    Full Text Available The research on reducing the water consumption in conventional cropping system is one of the important strategies to improve the water use efficiency in agriculture. In order to investigate the effect of time of potassium application under different irrigation regimes on millet grain yield and protein percent, a field experiment was carried out in Agricultural Research Center of Yasuj, Iran, in 2009. The experiment was conducted as split plot design in a randomized complete blocks design with 3 replications. Irrigation regime included 7, 14 and 21-day intervals as main factor and sub-plots included time of potassium fertilizer application in four stages: planting, tillering, stem development and flowering. The results showed that the effect of irrigation interval was significant on 1000-seed weight, grain and biological yield, number of grains per spike, harvest index, protein content, and chlorophyll a, b and total of leaves. By increasing the irrigation interval, all the above-mentioned traits decreased, except the protein percent that increased. The 1000-seed weight, grain and biological yield, harvest index and protein content were affected significantly by the time of potassium application. Maximum grain yield was obtained by interaction of 7- day irrigation interval and potassium application at the stem development stage. Maximum grain protein content was measured in potassium application at flowering stage. In general, increasing the irrigation interval, and subsequent water stress, reduced plant growth and yield components. Application of potassium fertilizer at early growth stages increased yield and yield components, while in reproductive stages increased seed quality.

  14. Duplication of an upstream silencer of FZP increases grain yield in rice.

    Science.gov (United States)

    Bai, Xufeng; Huang, Yong; Hu, Yong; Liu, Haiyang; Zhang, Bo; Smaczniak, Cezary; Hu, Gang; Han, Zhongmin; Xing, Yongzhong

    2017-11-01

    Transcriptional silencer and copy number variants (CNVs) are associated with gene expression. However, their roles in generating phenotypes have not been well studied. Here we identified a rice quantitative trait locus, SGDP7 (Small Grain and Dense Panicle 7). SGDP7 is identical to FZP (FRIZZY PANICLE), which represses the formation of axillary meristems. The causal mutation of SGDP7 is an 18-bp fragment, named CNV-18bp, which was inserted ~5.3 kb upstream of FZP and resulted in a tandem duplication in the cultivar Chuan 7. The CNV-18bp duplication repressed FZP expression, prolonged the panicle branching period and increased grain yield by more than 15% through substantially increasing the number of spikelets per panicle (SPP) and slightly decreasing the 1,000-grain weight (TGW). The transcription repressor OsBZR1 binds the CGTG motifs in CNV-18bp and thereby represses FZP expression, indicating that CNV-18bp is the upstream silencer of FZP. These findings showed that the silencer CNVs coordinate a trade-off between SPP and TGW by fine-tuning FZP expression, and balancing the trade-off could enhance yield potential.

  15. Effect of induced lodging on grain yield and quality of brewing barley

    Directory of Open Access Journals (Sweden)

    Eduardo Caierão

    2006-01-01

    Full Text Available Lodging is one of the main factors of constraint to grain yield stability in barley. The objective of this study wasto evaluate the effects of lodging on agronomic and qualitative traits, when induced at different stages of the crop development.The trial was carried out in Victor Graeff, RS, using a randomized complete block design with four replications and 3 factors:year, lodging date and lodging intensity. The analyzed parameters were grain yield (GY, kernel plumpness (KP, germination(G, and score of lodging at harvest (SLH. No significant interaction was observed for GY and G. The effects of inducedlodging at the booting and physiologic maturity stages were distinct for GY, KP and G. Unlike G, the variables GY and KPwere not significantly affected by lodging intensity. Quantitative and qualitative losses in barley can be predicted based onlodging.

  16. Zinc, iron, manganese and copper uptake requirement in response to nitrogen supply and the increased grain yield of summer maize.

    Directory of Open Access Journals (Sweden)

    Yanfang Xue

    Full Text Available The relationships between grain yields and whole-plant accumulation of micronutrients such as zinc (Zn, iron (Fe, manganese (Mn and copper (Cu in maize (Zea mays L. were investigated by studying their reciprocal internal efficiencies (RIEs, g of micronutrient requirement in plant dry matter per Mg of grain. Field experiments were conducted from 2008 to 2011 in North China to evaluate RIEs and shoot micronutrient accumulation dynamics during different growth stages under different yield and nitrogen (N levels. Fe, Mn and Cu RIEs (average 64.4, 18.1 and 5.3 g, respectively were less affected by the yield and N levels. ZnRIE increased by 15% with an increased N supply but decreased from 36.3 to 18.0 g with increasing yield. The effect of cultivars on ZnRIE was similar to that of yield ranges. The substantial decrease in ZnRIE may be attributed to an increased Zn harvest index (from 41% to 60% and decreased Zn concentrations in straw (a 56% decrease and grain (decreased from 16.9 to 12.2 mg kg-1 rather than greater shoot Zn accumulation. Shoot Fe, Mn and Cu accumulation at maturity tended to increase but the proportions of pre-silking shoot Fe, Cu and Zn accumulation consistently decreased (from 95% to 59%, 90% to 71% and 91% to 66%, respectively. The decrease indicated the high reproductive-stage demands for Fe, Zn and Cu with the increasing yields. Optimized N supply achieved the highest yield and tended to increase grain concentrations of micronutrients compared to no or lower N supply. Excessive N supply did not result in any increases in yield or micronutrient nutrition for shoot or grain. These results indicate that optimized N management may be an economical method of improving micronutrient concentrations in maize grain with higher grain yield.

  17. BRS FC402: high-yielding common bean cultivar with carioca grain, resistance to anthracnose and fusarium wilt

    Directory of Open Access Journals (Sweden)

    Leonardo Cunha Melo

    2016-12-01

    Full Text Available BRS FC402 is a common bean cultivar of the carioca-grain group with commercial grain quality, suitable for cultivation in 21 Brazilian states. Cultivar has a normal cycle (85-94 days, high yield potential (4479 kg ha-1, 10.1% higher mean yield than the controls (2462 kg ha-1 and resistance to fusarium wilt and anthracnose.

  18. Effect of pre- and post-heading waterlogging on growth and grain yield of four millets

    Directory of Open Access Journals (Sweden)

    Asana Matsuura

    2016-07-01

    Full Text Available Seeds of Panicum miliaceum, Panicum sumatrense, Setaria glauca, and Setaria italica were raised in polyvinylchloride tubes filled with soil to determine interspecific differences in waterlogging tolerance and the effect of pre- and post-heading waterlogging on growth and grain yield. Four treatments were conducted including control (no-waterlogging stress during growth. Pre-heading waterlogging treatment was initiated 17 days after sowing to heading (TC. Post-heading waterlogging treatment was initiated heading till harvest (CT. Waterlogging treatment was initiated 17 days after sowing to harvesting (TT. The grain yield of P. miliaceum, S. glauca, and S. italica decreased 16, 18, and 4%, while that of P. sumatrense increased 210% under TT treatment and this showed P. sumatrense had most waterlogging tolerance. The grain yield was more affected under TC treatment in S. italica and P. miliaceum. However, there was not significant differences the grain yield between TC and CT treatment in P. sumatrense and S. glauca. Total dry weight, total root dry weight, number of crown root, and the proportion of lysigenous aerenchyma of P. sumatrense were significantly higher than those of other millets at harvesting. Plant growth rate, total root dry weight, number of crown root, and the proportion of lysigenous aerenchyma of P. sumatrense were significantly higher than those of other millets at heading. These results suggest that P. sumatrense exhibits waterlogging tolerance by enhancing root growth characterized by a high proportion of lysigenous aerenchyma in the crown root.

  19. Nitrogen efficiency in oats on grain yield with stability

    Directory of Open Access Journals (Sweden)

    José A. G. da Silva

    Full Text Available ABSTRACT Nitrogen (N is the nutrient most absorbed by the oat crop. Unfavorable climate conditions decrease its efficiency, generating instability and reduction in yield. The objective of this study was to improve N use efficiency in oat grain yield by the economic value of the product and of the input and by models that scale the stability, considering systems of succession of high and reduced residual-N release in favorable and unfavorable years for cultivation. The study was conducted in the years 2013, 2014 and 2015 in two systems of succession (soybean/oat, maize/oat in randomized blocks with eight replicates, using the N-fertilizer doses of 0, 30, 60 and 120 kg ha-1. The N-fertilizer dose for maximum economic efficiency in oats should be considered based on the meteorological trends of the cultivation year. N use optimization by models that determine the stability is an innovative proposal to increase fertilization efficiency on the yield. The N-fertilizer dose of 60 kg ha-1 promotes greater efficiency with predictability and yield, regardless of the agricultural year and the system of succession.

  20. The Effect of Different Zinc Application Methods on Yield and Grain Zinc Concentration of Bread Wheat Varieties

    Directory of Open Access Journals (Sweden)

    Hatun Barut

    2017-08-01

    Full Text Available This study was carried out to elucidate the impacts of zinc (Zn treatments on growth, development, quality and yield of commonly sown bread wheat cultivars under field conditions of Çukurova Region. Three different bread wheat cultivars (Adana-99, Ceyhan-99 and Pandas were experimented in randomized complete blocks-split plots experimental design with 3 replications. Field experiments were performed by two different Zn application methods; via soil and via soil+foliage. In the both trials, 0, 5, 10, 20, 30, and 40 kg ha-1 pure Zn doses were applied to the soil. 0.4% ZnSO4.7H2O solution was used for foliar Zn applications. Current findings revealed that Zn treatments had significant effects on grain yield, grain Zn concentration, grain phosphorus (P concentration and thousand grain weight of bread wheat cultivars, but significant effects were not observed on grain protein concentrations. Soil+foliar Zn treatments were more effective in improving grain Zn concentrations. It was concluded that 10- 20 kg ha-1 Zn treatment was quite effective on grain Zn concentrations.

  1. Effect of Seed Distribution and Population on Maize (Zea mays L. Grain Yield

    Directory of Open Access Journals (Sweden)

    Bee Khim Chim

    2014-01-01

    Full Text Available Maize planting is normally accomplished by hand in the developing world where two or more seeds are placed per hill with a heterogeneous plant spacing and density. To understand the interaction between seed distribution and distance between hills, experiments were established in 2012 and 2013 at Lake Carl Blackwell (LCB and Efaw Agronomy Research Stations, near Stillwater, OK. A randomized complete block design was used with three replications and 9 treatments and a factorial treatment structure of 1, 2, and 3 seeds per hill using interrow spacing of 0.16, 0.32, and 0.48 m. Data for normalized difference vegetation index (NDVI, intercepted photosynthetically active radiation (IPAR, grain yield, and grain N uptake were collected. Results showed that, on average, NDVI and IPAR increased with number of seeds per hill and decreased with increasing plant spacing. In three of four site-years, planting 1 or 2 seeds per hill, 0.16 m apart, increased grain yield and N uptake. Over sites, planting 1 seed, every 0.16 m, increased yields by an average of 1.15 Mg ha−1 (range: 0.33 to 2.46 Mg ha−1 when compared to the farmer practice of placing 2 to 3 seeds per hill, every 0.48 m.

  2. Stability Parameters for Grain Yield and its Component Traits in Maize Hybrids of Different FAO Maturity Groups

    Directory of Open Access Journals (Sweden)

    Dragan Djurovic

    2014-12-01

    Full Text Available An objective evaluation of maize hybrids in intensive cropping systems requires identification not only of yield components and other agronomically important traits but also of stability parameters. Grain yield and its components were assessed in 11 maize hybrids with different lengths of growing season (FAO 300-700 maturity groups using analysis of variance and regression analysis at three different locations in Western Serbia. The test hybrids and locations showed significant differences in grain yield, grain moisture content at maturity, 1,000-kernel weight and ear length. A significant interaction was observed between all traits and the environment. The hybrids with higher mean values of the traits, regardless of maturity group, generally exhibited sensitivity i.e. adaptation to more favourable environmental conditions as compared to those having lower mean values. Regression coefficient (bi values for grain yield mostly suggested no significant differences relative to the mean. The medium-season hybrid gave high yields and less favourable values of stability parameters at most locations and in most years, as compared to mediumlate hybrids. As compared to medium-early hybrids, medium-late hybrids (FAO 600 and 700 mostly exhibited unfavourable values of stability parameters i.e. a specific response and better adaptation to favourable environmental conditions, and gave higher average yields. Apart from producing lower average yields, FAO 300 and 400 hybrids showed higher yield stability as compared to the other hybrids tested. Medium-late hybrids had higher yields and showed a better response to favourable environmental conditions compared to early-maturing hybrids. Therefore, they can be recommended for intensive cultural practices and low-stress environments. Due to their more favourable stability parameter values, medium-early hybrids can be recommended for low-intensity cultural practices and stressful environments.

  3. Effects of Texture and Grain Size on the Yield Strength of ZK61 Alloy Rods Processed by Cyclic Extrusion and Compression.

    Science.gov (United States)

    Zhang, Lixin; Zhang, Wencong; Cao, Biao; Chen, Wenzhen; Duan, Junpeng; Cui, Guorong

    2017-10-26

    The ZK61 alloy rods with different grain sizes and crystallographic texture were successfully fabricated by cyclic extrusion and compression (CEC). Their room-temperature tension & compression yield strength displayed a significant dependence on grain size and texture, essentially attributed to {10-12} twinning. The texture variations were characterized by the angle θ between the c-axis of the grain and the extrusion direction (ED) during the process. The contour map of room-temperature yield strength as a function of grain size and the angle θ was obtained. It showed that both the tension yield strength and the compression yield strength of ZK61 alloy were fully consistent with the Hall-Patch relationship at a certain texture, but the change trends of the tension yield strength and the compression yield strength were completely opposite at the same grain size while texture altered. The friction stresses of different deformation modes calculated based on the texture confirmed the tension yield strength of the CECed ZK61 alloy rods, which was determined by both the basal slip and the tension twinning slip during the tension deformation at room temperature, while the compression yield strength was mainly determined by the basal slip during the compression deformation.

  4. LUNAR DUST GRAIN CHARGING BY ELECTRON IMPACT: COMPLEX ROLE OF SECONDARY ELECTRON EMISSIONS IN SPACE ENVIRONMENTS

    International Nuclear Information System (INIS)

    Abbas, M. M.; Craven, P. D.; LeClair, A. C.; Spann, J. F.; Tankosic, D.

    2010-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEEs). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 μm size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEEs discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  5. Lunary Dust Grain Charging by Electron Impact: Complex Role of Secondary Electron Emissions in Space Environments

    Science.gov (United States)

    Abbas, M. M.; Tankosic, D.; Crave, P. D.; LeClair, A.; Spann, J. F.

    2010-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEES). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/ planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEES discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  6. Effects of water deficit and mycorrhizae on grain yield, reproductive and physiological traits of corn hybrids

    Directory of Open Access Journals (Sweden)

    Mikail Nordokht

    2018-06-01

    and draw graphs, respectively. Based on results of this investigation, response of cultivars to drought were different. In irrigation after 70 mm evaporaation from evaporate basin in 704 cultivar highest grain yield observed. In cultivar 704 both irrigation after 110 mm evaporaation from evaporate basin and irrigation after 150 mm evaporaation from evaporate basin decreased grain yield by 19 and 50.6 % in grain yield, but in 640 cultivar that had higher grain yield in control than 704, drought did not had significant effect on grain yield. Mycorrhizae also increased grain yield by 25.2 %. All three factor of drought, Mycorrhizae and cultivar caused changes by changing both yield component of grain number and 100 grain weight. It seems drought caused a decrease in grain number by decreasing number of total floret and increasing unfertile floret number, but Mycorrhizae had opposite effect that this decrease in floret number can caused by gap increase between tasseling and silk emergence. Drought did not had effect on chlorophyll a, but it decreased chlorophyll b, but Mycorrhizae caused an increase in chlorophyll b. Drought and Mycorrhizae increased catalase and Peroxidase content. We then suggest potential areas for future research related to (a the adoption of cropping practices promoting AM colonization and survival; (b the further understanding of AM effects on maize morpho-physiology; and (c the creation of AM-colonized, drought-tolerant maize cultivars through conventional breeding as well as molecular and genomic techniques.

  7. Impact of Corn Earworm (Lepidoptera: Noctuidae) on Field Corn (Poales: Poaceae) Yield and Grain Quality.

    Science.gov (United States)

    Bibb, Jenny L; Cook, Donald; Catchot, Angus; Musser, Fred; Stewart, Scott D; Leonard, Billy Rogers; Buntin, G David; Kerns, David; Allen, Tom W; Gore, Jeffrey

    2018-05-28

    Corn earworm, Helicoverpa zea (Boddie), commonly infests field corn, Zea mays (L.). The combination of corn plant biology, corn earworm behavior in corn ecosystems, and field corn value renders corn earworm management with foliar insecticides noneconomical. Corn technologies containing Bacillus thuringiensis (Bt) Berliner (Bacillales: Bacillaceae) were introduced that exhibit substantial efficacy against corn earworm and may reduce mycotoxin contamination in grain. The first generation Bt traits in field corn demonstrated limited activity on corn earworm feeding on grain. The pyramided corn technologies have greater cumulative protein concentrations and higher expression throughout the plant, so these corn traits should provide effective management of this pest. Additionally, reduced kernel injury may affect physical grain quality. Experiments were conducted during 2011-2012 to investigate corn earworm impact on field corn yield and grain quality. Treatments included field corn hybrids expressing the Herculex, YieldGard, and Genuity VT Triple Pro technologies. Supplemental insecticide treatments were applied every 1-2 d from silk emergence until silk senescence to create a range of injured kernels for each technology. No significant relationship between the number of corn earworm damaged kernels and yield was observed for any technology/hybrid. In these studies, corn earworm larvae did not cause enough damage to impact yield. Additionally, no consistent relationship between corn earworm damage and aflatoxin contamination was observed. Based on these data, the economic value of pyramided Bt corn traits to corn producers, in the southern United States, appears to be from management of other lepidopteran insect pests including European and southwestern corn borer.

  8. Influence of oxidative stress and grains on sclerotial biomass and carotenoid yield of Penicillium sp. PT95.

    Science.gov (United States)

    Chen, Shu-Jun; Wang, Qi; Han, Jian-Rong

    2010-08-01

    Oxidative stress and grains were evaluated for carotenoid production by solid-state fermentation using Penicillium sp. PT95. When the fungus was grown at high oxidative stress, its sclerotial biomass and carotenoid content in sclerotia increased significantly with respect to low oxidative stress (P < 0.01). High oxidative stress also caused a statistically significant increase in carotenoid yield as compared with low oxidative stress (P < 0.01). Both the sclerotial biomass and the amount of carotenoid accumulated in sclerotia of strain PT95 were strongly dependent on the grain medium used. Among the grain media tested under high oxidative stress, buckwheat medium gave the highest content of carotenoid in sclerotia (828 microg/g dry sclerotia), millet medium gave respectively the highest sclerotial biomass (12.69 g/100 g grain) and carotenoid yield (10.152 mg/100 g grain). Copyright 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  9. ESTIMATION OF PEA GRAIN YIELD STABILITY (Pisum sativum L.

    Directory of Open Access Journals (Sweden)

    Tihomir Čupić

    2003-06-01

    Full Text Available The paper aimed to determine yield and estimate pea grain yield stability of newly-created lines JSG-1 (cultivar in recognition process as well as compare with foreign origin cultivars in agroecological area of east Slavonia. The trial was set up by a randomized block design on the experimental field of Agricultural Institute Osijek in four replicates in the five-year period (1998 – 2002. Six (five foreign and one inland cultivars were included by the trial: Eiffil, Erbi, JP-5, JSG-1 (in a recognition process, Torsz and Baccara. Stability parameters were calculated by the grouping method after Francis and Kannenberg (1978 and by the model of individual stability estimation after Eberhart and Russel method (1966. According to Francis and Kannenberg, cultivars Eiffil, Erbi, JSG-1 and Baccara belonged to group I known for high yield and low trait varying coefficient, thus, represent stabile yield cultivars. According to regression coefficient and regression deviation variance the most stabile cultivar appeared to be cultivar JSG-1 (bi =1.06 and S2 di=0.010 and the lowest one was Torsz (bi =0.67 and S2 di =0.160. Cultivar Baccara (bi = 1.22 and S2 di =0.034 was comprised by the group of unstabile and adaptible for high-yielding environments.

  10. Genotype × environment interaction of quality protein maize grain yield in Nepal

    OpenAIRE

    Jiban Shrestha; Chitra Bahadur Kunwar; Jharana Upadhyaya; Maiya Giri; Ram Bahadur Katuwal; Ramesh Acharya; Suk Bahadur Gurung; Bhim Nath Adhikari; Amrit Prasad Paudel; Ram Babu Paneru

    2016-01-01

    In order to determine G × E interaction of quality protein maize grain yield, six maize genotypes were evaluated under different environments of three Terai (Chitwan, Surkhet and Doti) and four mid hill (Dhankuta, Lalitpur, Dolakha and Kaski) districts of Nepal during summer seasons of 2014 and 2015. The experiments were conducted using randomized complete block design along with three replications. The genotypes namely S99TLYQ-B, S99TLYQ-HG-AB and S03TLYQ-AB-01 were identified high yielding ...

  11. Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice.

    Science.gov (United States)

    Wang, Qing; Nian, Jinqiang; Xie, Xianzhi; Yu, Hong; Zhang, Jian; Bai, Jiaoteng; Dong, Guojun; Hu, Jiang; Bai, Bo; Chen, Lichao; Xie, Qingjun; Feng, Jian; Yang, Xiaolu; Peng, Juli; Chen, Fan; Qian, Qian; Li, Jiayang; Zuo, Jianru

    2018-02-21

    In crops, nitrogen directly determines productivity and biomass. However, the improvement of nitrogen utilization efficiency (NUE) is still a major challenge in modern agriculture. Here, we report the characterization of are1, a genetic suppressor of a rice fd-gogat mutant defective in nitrogen assimilation. ARE1 is a highly conserved gene, encoding a chloroplast-localized protein. Loss-of-function mutations in ARE1 cause delayed senescence and result in 10-20% grain yield increases, hence enhance NUE under nitrogen-limiting conditions. Analysis of a panel of 2155 rice varieties reveals that 18% indica and 48% aus accessions carry small insertions in the ARE1 promoter, which result in a reduction in ARE1 expression and an increase in grain yield under nitrogen-limiting conditions. We propose that ARE1 is a key mediator of NUE and represents a promising target for breeding high-yield cultivars under nitrogen-limiting condition.

  12. Rice grain yield as affected by subsoiling, compaction on sowing furrow and seed treatment

    Directory of Open Access Journals (Sweden)

    Veneraldo Pinheiro

    2016-05-01

    Full Text Available ABSTRACT This study aimed to determine the effects of subsoiling, compaction on sowing furrow and seed treatments with insecticides on the grain yield of upland rice cultivated under no-tillage. Two experiments were carried out, one in an area with and the other in an area without subsoiling, in which five seed treatments combined with five compaction pressures on the sowing furrow were compared in a randomized block design, in a factorial scheme, with three replicates. The seed treatments were: T0 - without treatment, T1 - imidacloprid + thiodicarb, T2 - thiamethoxam, T3 - carbofuran, and T4 - fipronil + pyraclostrobin + thiophanate methyl. The compaction pressures were: 25, 42, 126, 268 and 366 kPa. Subsoiling positively affected rice yield in the presence of higher compaction pressures on the sowing furrow. Seed treatment was effective at increasing rice grain yield only at the lowest compaction pressures. Rice yield showed quadratic response to compaction on the sowing furrow, with maximum values obtained at pressures ranging from 238.5 to 280.3 kPa.

  13. Identification of QTLs for grain yield and grain-related traits of maize (Zea mays L.) using an AFLP-map, different testers, and cofactor analysis

    NARCIS (Netherlands)

    Ajimone Marsan, P.; Gorni, C.; Chitto, A.; Redaelli, R.; Vijk, van R.; Stam, P.; Motto, M.

    2001-01-01

    Abstract We exploited the AFLP?1(AFLP? is a registered trademark of Keygene, N.V.) technique to map and characterise quantitative trait loci (QTLs) for grain yield and two grain-related traits of a maize segregating population. Two maize elite inbred lines were crossed to produce 229 F2 individuals

  14. Effects of field high temperature on grain yield and quality of a subtropical type japonica rice—Pon-Lai rice

    Directory of Open Access Journals (Sweden)

    Yi-Chien Wu

    2016-01-01

    Full Text Available Typical japonica type rice is sensitive to high temperature. Pon-Lai rice is a special japonica type with adaptation to the subtropical climate in Taiwan. Facing climate change, rising temperatures would damage the yield and quality of rice production. This research was conducted using Pon-Lai rice in the field of a subtropical climate. We conducted 2 experiments, including a year-round experiment and collection of samples from different districts for building different temperature conditions. We analyzed the correlation between rising temperature and rice yield or quality. In our results, the critical period of temperature effect is 0–15 days after heading (H15. The threshold of high temperature damage in yield and appearance quality was 25–27 °C. Grain weight decreased about 2–6%, while the temperature of H15 was raised 1 °C above the thresholds. Perfect grain ratio and chalky grain ratio decreased and increased, respectively, while the temperature of H15 was raised above the thresholds. However, the high temperature in H15 affected the physicochemical characteristics. In addition, we found positive correlation between grain length to width ratio and perfect grain ratio. Grain length to width ratio could be an index of temperature effects for grain quality. In our study, when the temperature was below 30 °C, a rising temperature of H15 could damage rice yield and appearance quality, and change grain shape. Our results could provide reference for dealing with the warming future in other temperate rice-cultivated countries.

  15. Effects of delaying transplanting on agronomic traits and grain yield of rice under mechanical transplantation pattern.

    Directory of Open Access Journals (Sweden)

    Qihua Liu

    Full Text Available A delay in the mechanical transplantation (MT of rice seedlings frequently occurs in Huanghuai wheat-rice rotation cropping districts of China, due to the late harvest of wheat, the poor weather conditions and the insufficiency of transplanters, missing the optimum transplanting time and causing seedlings to age. To identify how delaying transplanting rice affects the agronomic characteristics including the growth duration, photosynthetic productivity and dry matter remobilization efficiency and the grain yield under mechanical transplanting pattern, an experiment with a split-plot design was conducted over two consecutive years. The main plot includes two types of cultivation: mechanical transplanting and artificial transplanting (AT. The subplot comprises four japonica rice cultivars. The results indicate that the rice jointing, booting, heading and maturity stages were postponed under MT when using AT as a control. The tiller occurrence number, dry matter weight per tiller, accumulative dry matter for the population, leaf area index, crop growth rate, photosynthetic potential, and dry matter remobilization efficiency of the leaf under MT significantly decreased compared to those under AT. In contrast, the reduction rate of the leaf area during the heading-maturity stage was markedly enhanced under MT. The numbers of effective panicles and filled grains per panicle and the grain yield significantly decreased under MT. A significant correlation was observed between the dry matter production, remobilization and distribution characteristics and the grain yield. We infer that, as with rice from old seedlings, the decrease in the tiller occurrence, the photosynthetic productivity and the assimilate remobilization efficiency may be important agronomic traits that are responsible for the reduced grain yield under MT.

  16. Photoemission of Single Dust Grains for Heliospheric Conditions

    Science.gov (United States)

    Spann, James F., Jr.; Venturini, Catherine C.; Abbas, Mian M.; Comfort, Richard H.

    2000-01-01

    Initial results of an experiment to measure the photoemission of single dust grains as a function of far ultraviolet wavelengths are presented. Coulombic forces dominate the interaction of the dust grains in the heliosphere. Knowledge of the charge state of dust grains, whether in a dusty plasma (Debye length grains is primarily determined by primary electron and ion collisions, secondary electron emission and photoemission due to ultraviolet sunlight. We have established a unique experimental technique to measure the photoemission of individual micron-sized dust grains in vacuum. This technique resolves difficulties associated with statistical measurements of dust grain ensembles and non-static dust beams. The photoemission yield of Aluminum Oxide 3-micron grains For wavelengths from 120-300 nm with a spectral resolution of 1 nm FWHM is reported. Results are compared to interplanetary conditions.

  17. VARIATION IN GRAIN YIELD, BIOMASS AND GRAIN NUMBER OF BARLEY UNDER DROUGHT

    Directory of Open Access Journals (Sweden)

    Cándido López-Castañeda

    2011-08-01

    Full Text Available Variability in grain yield (GY, aerial biomass (BM and number of grains m-2 (G M-2 in F6 lines and commercial varieties of barley was studied, and the relationship among these characters in full-irrigation (FI, drought (D and rain-fed (RF conditions was determined. Variation in GY, BM and G M-2 among all genotypes, between F6 lines and varieties, and among genotypes of F6 lines and varieties was significant in all the three soil moisture environments. GY, BM and G M-2 in FI were 23, 14 and 21 % greater than the average of the three soil moisture environments; GY, BM and G M-2 in RF were 21, 16 y 24 % lower than this average. F6 lines produced greater GY (380 g m-2, BM (1027 g m-2 and G M-2 (8641 than the commercial varieties (GY=290 g m-2; BM=726 g m-2 y G M-2=7463 in average of the three environments. GY was positive and significantly associated with BM and G M-2; BM and G M-2 were also associated. GY could be improved in either FI, D or RF environments by selecting genotypes with a greater BM and G M-2 or both of them.

  18. Effect of weed management on weeds and grain yield of haricot bean

    African Journals Online (AJOL)

    Weeds are one of the major constraints limiting haricot bean productivity and production. Field experiments were conducted on the effect of weed managements on weeds and grain yield of haricot bean (Phaseolus Vulgaris L.) at Melkassa Agricultural Research Center from 2011 - 2013. The objective was to determine the ...

  19. Yield and grain quality of spring barley as affected by biomass formation at early growth stages

    Czech Academy of Sciences Publication Activity Database

    Křen, J.; Klem, Karel; Svobodová, I.; Míša, P.; Neudert, L.

    2014-01-01

    Roč. 60, č. 5 (2014), s. 221-227 ISSN 1214-1178 R&D Projects: GA MZe QI111A133 Keywords : Hordeum vulgare L * above-ground biomass * tillering * grain yield formation * grain protein content Subject RIV: EH - Ecology, Behaviour Impact factor: 1.226, year: 2014

  20. Effect of subsoil tillage depth on nutrient accumulation, root distribution, and grain yield in spring maize

    Directory of Open Access Journals (Sweden)

    Hongguang Cai

    2014-10-01

    Full Text Available A four-year field experiment was conducted to investigate the effect of subsoiling depth on root morphology, nitrogen (N, phosphorus (P, and potassium (K uptake, and grain yield of spring maize. The results indicated that subsoil tillage promoted root development, increased nutrient accumulation, and increased yield. Compared with conventional soil management (CK, root length, root surface area, and root dry weight at 0–80 cm soil depth under subsoil tillage to 30 cm (T1 and subsoil tillage to 50 cm (T2 were significantly increased, especially the proportions of roots in deeper soil. Root length, surface area, and dry weight differed significantly among three treatments in the order of T2 > T1 > CK at the 12-leaf and early filling stages. The range of variation of root diameter in different soil layers in T2 treatment was the smallest, suggesting that roots were more likely to grow downwards with deeper subsoil tillage in soil. The accumulation of N, P, and K in subsoil tillage treatment was significantly increased, but the proportions of kernel and straw were different. In a comparison of T1 with T2, the grain accumulated more N and P, while K accumulation in kernel and straw varied in different years. Grain yield and biomass were increased by 12.8% and 14.6% on average in subsoil tillage treatments compared to conventional soil treatment. Although no significant differences between different subsoil tillage depths were observed for nutrient accumulation and grain yield, lodging resistance of plants was significantly improved in subsoil tillage to 50 cm, a characteristic that favors a high and stable yield under extreme environments.

  1. Grain structure evolution in Inconel 718 during selective electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Helmer, H.; Bauereiß, A., E-mail: Andreas.Bauereiss@fau.de; Singer, R.F.; Körner, C.

    2016-06-21

    Selective electron beam melting (SEBM) is an additive manufacturing method where complex parts are built from metal powders in layers of typically 50 µm. An electron beam is used for heating (about 900 °C building temperature) and selective melting of the material. The grain structure evolution is a result of the complex thermal and hydrodynamic conditions in the melt pool. We show how different scanning strategies can be used to produce either a columnar grain structure with a high texture in building direction or an equiaxed fine grained structure. Numerical simulations of the selective melting process are applied to study the fundamental mechanisms responsible for differing grain structures. It is shown, that the direction of the thermal gradient during solidification can be altered by scanning strategies to acquire either epitaxial growth or stray grains. We show that it is possible to locally alter the grain structure of a part, thus allowing tailoring of the mechanical properties.

  2. Winter wheat grain yield and its components in the North China Plain: irrigation management, cultivation, and climate

    Directory of Open Access Journals (Sweden)

    Lihua Lv

    2013-09-01

    Full Text Available Irrigation has been identified as the main driving factor of groundwater drawdown in the North China Plain (NCP. In order to develop appropriate irrigation strategies for satisfactory yields of wheat (Triticum aestivum L., grain yield (GY, yield components, and water use efficiency (WUE were studied. A field experiment was conducted with two types of winter wheat, 'Shimai15' and 'Shixin733', and five irrigation treatments, including rainfed and four spring irrigation water applications, in four growing seasons (2005 to 2009. Results showed that maximum GY was achieved with three irrigation treatments in the 2005-2006 and 2008-2009 dry seasons and two irrigation treatments in the 2006-2007 normal season. However, in the 2007-2008 wet season, the four irrigation treatments, especially the additional irrigation event at the reviving stage (28, produced maximum GY. Grain yield was significantly related to seasonal full evapotranspiration (ET and 410 to 530 mm of seasonal full ET, including 143 mm rainfall and 214 mm irrigation water, which led to maximum GY. The two types of cultivars responded differently to irrigation management in different rainfall years. The yield of the water-saving cv. 'Shimai 15' was much higher in the dry seasons than in the other seasons. Variations of yield components were mainly caused by irrigation time and meteorological factors. The higher accumulated temperature during the sowing and tillering stages (24 and irrigation or precipitation at the reviving stage (28 significantly improved tiller growth. The lower average temperature in March and April greatly increased grain number per spike. Sunshine duration played a decisive role in improving grain weight. Our results provide very useful information about irrigation time and frequency of winter wheat in the NCP in order to obtain high yield but reduce the use of underground water.

  3. Indices to screen for grain yield and grain-zinc mass concentrations in aerobic rice at different soil-Zn levels

    NARCIS (Netherlands)

    Jiang, W.; Struik, P.C.; Zhao, M.; Keulen, van H.; Fan, T.Q.; Stomph, T.J.

    2008-01-01

    Zinc is an important micronutrient for both crop growth and human nutrition. In rice production, yields are often reduced and Zn mass concentrations in the grains are often low when Zn is in short supply to the crop. This may result in malnutrition of people dependent on a rice-based diet. Plant

  4. Agronomic Characteristics Related to Grain Yield and Nutrient Use Efficiency for Wheat Production in China.

    Directory of Open Access Journals (Sweden)

    Limin Chuan

    Full Text Available In order to make clear the recent status and trend of wheat (Triticum aestivum L. production in China, datasets from multiple field experiments and published literature were collected to study the agronomic characteristics related to grain yield, fertilizer application and nutrient use efficiency from the year 2000 to 2011. The results showed that the mean grain yield of wheat in 2000-2011 was 5950 kg/ha, while the N, P2O5 and K2O application rates were 172, 102 and 91 kg/ha on average, respectively. The decrease in N and P2O5 and increase in K2O balanced the nutrient supply and was the main reason for yield increase. The partial factor productivity (PFP, kg grain yield produced per unit of N, P2O5 or K2O applied values of N (PFP-N, P (PFP-P and K (PFP-K were in the ranges of 29.5~39.6, 43.4~74.9 and 44.1~76.5 kg/kg, respectively. While PFP-N showed no significant changes from 2000 to 2010, both PFP-P and PFP-K showed an increased trend over this period. The mean agronomic efficiency (AE, kg grain yield increased per unit of N, P2O5 or K2O applied values of N (AEN, P (AEP and K (AEK were 9.4, 10.2 and 6.5 kg/kg, respectively. The AE values demonstrated marked inter-annual fluctuations, with the amplitude of fluctuation for AEN greater than those for AEP and AEK. The mean fertilizer recovery efficiency (RE, the fraction of nutrient uptake in aboveground plant dry matter to the nutrient of fertilizer application values of N, P and K in the aboveground biomass were 33.1%, 24.3% and 28.4%, respectively. It was also revealed that different wheat ecological regions differ greatly in wheat productivity, fertilizer application and nutrient use efficiency. In summary, it was suggested that best nutrient management practices, i.e. fertilizer recommendation applied based on soil testing or yield response, with strategies to match the nutrient input with realistic yield and demand, or provided with the 4R's nutrient management (right time, right rate, right

  5. Effects of location and year on grain yield and its components in wheat genotypes developed from seed irradiation treatment

    International Nuclear Information System (INIS)

    Amer, I.M.; El-Rassas, H.N.; Abdel-Aleem, M.M.

    1994-01-01

    Eight mutant lines derived from gamma ray treatments and their parental cultivar sokha 69 of bread wheat were evaluated for grain yield per feddan, straw yield per feddan, harvest index, spike length, spike yield and weight of 1000-kernels at two locations (El-Fayoum and Inshas) in two seasons, 1991/92 and 1992/93. Significant effects of location on yield and yield components were found and the year significantly affects all the studied traits except grain yield per feddan. A significant location genotype interaction was detected for spike length, 1000-kernel weight and straw yield per feddan. In addition, year genotype interaction was significant in weight of 1000-kernels, straw yield per feddan and harvest index. The statistical analysis showed a significant difference among genotypes over all environments for spike length, 1000-kernel weight, straw yield per feddan and harvest index. However, these did not reflect significant effect on grain yield per feddan over all environments because it has a highly compensation ability. Meanwhile, mutant L 1 2 -1 exhibited significantly higher straw yield than sokha 69, when averaged over two seasons at El-Fayoum. Mutant L 1 9 -1 gave higher weight of 1000-kernels, spike length and harvest index than the other genotypes at low-yielding location (Inshas). It seems to be stable over a wide range of environments. 3 tabs

  6. [Impacts of drought stress on the growth and development and grain yield of spring maize in Northeast China].

    Science.gov (United States)

    Ji, Rui-Peng; Che, Yu-Sheng; Zhu, Yong-Ning; Liang, Tao; Feng, Rui; Yu, Wen-Ying; Zhang, Yu-Shu

    2012-11-01

    Taking spring maize variety Danyu-39 as test object, an experiment was conducted in a large-scale agricultural water controlling experimental field to study the impacts of drought stress at three key growth stages, i. e. , 3-leaf-jointing, jointing-silking, and silking-milk ripe, on the growth and development and grain yield of spring maize in Northeast China. Two treatments were installed, including moderate drought stress (MS) and re-watering to suitable water (CK). Compared with CK, the MS at 3-leaf-jointing stage postponed the whole growth period of Danyu-39 by 13 d, and the plant height and leaf area at jointing stage were decreased by 29.8% and 41.2%, respectively. After re-watering, the plant height and grain yield recovered obviously, and the differences in ear characteristics and final yield were insignificant. The MS at jointing-silking stage shortened the whole growth period by 7 d, the plant height and leaf area at silking stage were decreased by 18.6% and 14.1%, respectively, the ear length, grain number per ear, ear dry mass, and grain mass per ear decreased by 6.9%, 19.1%, 28.1%, and 29.4%, respectively, and the blank stem rate increased by 13.3%. When the maize suffered from moderate drought stress at silking-milk ripe stage, the whole growth period was shortened by 15 d, the plant height and leaf area at milk ripe stage were decreased by 2.3% and 37.3%, respectively, the ear length, grain number per ear, ear dry mass, and grain mass per ear decreased by 9.2%, 24.1%, 30.8%, and 27.9%, respectively, and the blank stem rate increased by 24.5%. After re-watering at the latter two stages, the recovery of plant height was little, and the grain yield decreased significantly.

  7. Stability Performance of Inductively Coupled Plasma Mass Spectrometry-Phenotyped Kernel Minerals Concentration and Grain Yield in Maize in Different Agro-Climatic Zones.

    Science.gov (United States)

    Mallikarjuna, Mallana Gowdra; Thirunavukkarasu, Nepolean; Hossain, Firoz; Bhat, Jayant S; Jha, Shailendra K; Rathore, Abhishek; Agrawal, Pawan Kumar; Pattanayak, Arunava; Reddy, Sokka S; Gularia, Satish Kumar; Singh, Anju Mahendru; Manjaiah, Kanchikeri Math; Gupta, Hari Shanker

    2015-01-01

    Deficiency of iron and zinc causes micronutrient malnutrition or hidden hunger, which severely affects ~25% of global population. Genetic biofortification of maize has emerged as cost effective and sustainable approach in addressing malnourishment of iron and zinc deficiency. Therefore, understanding the genetic variation and stability of kernel micronutrients and grain yield of the maize inbreds is a prerequisite in breeding micronutrient-rich high yielding hybrids to alleviate micronutrient malnutrition. We report here, the genetic variability and stability of the kernel micronutrients concentration and grain yield in a set of 50 maize inbred panel selected from the national and the international centres that were raised at six different maize growing regions of India. Phenotyping of kernels using inductively coupled plasma mass spectrometry (ICP-MS) revealed considerable variability for kernel minerals concentration (iron: 18.88 to 47.65 mg kg(-1); zinc: 5.41 to 30.85 mg kg(-1); manganese: 3.30 to 17.73 mg kg(-1); copper: 0.53 to 5.48 mg kg(-1)) and grain yield (826.6 to 5413 kg ha(-1)). Significant positive correlation was observed between kernel iron and zinc within (r = 0.37 to r = 0.52, p kernel minerals concentration and grain yield. Most of the variation was contributed by genotype main effect for kernel iron (39.6%), manganese (41.34%) and copper (41.12%), and environment main effects for both kernel zinc (40.5%) and grain yield (37.0%). Genotype main effect plus genotype-by-environment interaction (GGE) biplot identified several mega environments for kernel minerals and grain yield. Comparison of stability parameters revealed AMMI stability value (ASV) as the better representative of the AMMI stability parameters. Dynamic stability parameter GGE distance (GGED) showed strong and positive correlation with both mean kernel concentrations and grain yield. Inbreds (CM-501, SKV-775, HUZM-185) identified from the present investigation will be useful in

  8. QTL mapping of root traits in phosphorus-deficient soils reveals important genomic regions for improving NDVI and grain yield in barley.

    Science.gov (United States)

    Gong, Xue; McDonald, Glenn

    2017-09-01

    Major QTLs for root rhizosheath size are not correlated with grain yield or yield response to phosphorus. Important QTLs were found to improve phosphorus efficiency. Root traits are important for phosphorus (P) acquisition, but they are often difficult to characterize and their breeding values are seldom assessed under field conditions. This has shed doubts on using seedling-based criteria of root traits to select and breed for P efficiency. Eight root traits were assessed under controlled conditions in a barley doubled-haploid population in soils differing in P levels. The population was also phenotyped for grain yield, normalized difference vegetation index (NDVI), grain P uptake and P utilization efficiency at maturity (PutE GY ) under field conditions. Several quantitative traits loci (QTLs) from the root screening and the field trials were co-incident. QTLs for root rhizosheath size and root diameter explained the highest phenotypic variation in comparison to QTLs for other root traits. Shared QTLs were found between root diameter and grain yield, and total root length and PutE GY . A common major QTL for rhizosheath size and NDVI was mapped to the HvMATE gene marker on chromosome 4H. Collocations between major QTLs for NDVI and grain yield were detected on chromosomes 6H and 7H. When results from BIP and MET were combined, QTLs detected for grain yield were also those QTLs found for NDVI. QTLs qGY5H, qGY6H and qGY7Hb on 7H were robust QTLs in improving P efficiency. A selection of multiple loci may be needed to optimize the breeding outcomes due to the QTL x Environment interaction. We suggest that rhizosheath size alone is not a reliable trait to predict P efficiency or grain yield.

  9. The effect of electron scattering from disordered grain boundaries on the resistivity of metallic nanostructures

    International Nuclear Information System (INIS)

    Arenas, Claudio; Henriquez, Ricardo; Moraga, Luis; Muñoz, Enrique; Munoz, Raul C.

    2015-01-01

    Highlights: • Quantum theory of the resistivity arising from electron-grain boundary scattering in nanometric metallic structures. • The resistivity is controlled by the collective properties of the grain assembly, by the allowed Kronig-Penney (KP) bands and by the electron transmission probability across successive grains. • When the grain diameter d is larger than the electron mean free path l, the increase in resistivity arises mainly from a decrease of the number of states at the Fermi surface that are allowed KP bands. • When the grain diameter d is smaller than the electron mean free path l, the increase in resistivity arises primarily from Anderson localization caused by electron transmission across successive grains. - Abstract: We calculate the electrical resistivity of a metallic specimen, under the combined effects of electron scattering by impurities, grain boundaries, and rough surfaces limiting the film, using a quantum theory based upon the Kubo formalism. Grain boundaries are represented by a one-dimensional periodic array of Dirac delta functions separated by a distance “d” giving rise to a Kronig–Penney (KP) potential. We use the Green's function built from the wave functions that are solutions of this KP potential; disorder is included by incorporating into the theory the probability that an electron is transmitted through several successive grain boundaries. We apply this new theory to analyze the resistivity of samples S1, S2, S7 and S8 measured between 4 and 300 K reported in Appl. Surf. Science273, 315 (2013). Although both the classical and the quantum theories predict a resistivity that agrees with experimental data to within a few percent or better, the phenomena giving rise to the increase of resistivity over the bulk are remarkably different. Classically, each grain boundary contributes to the electrical resistance by reflecting a certain fraction of the incoming electrons. In the quantum description, there are states

  10. The effect of electron scattering from disordered grain boundaries on the resistivity of metallic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, Claudio [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada 2008, Casilla 487-3, Santiago 8370449 (Chile); Synopsys Inc., Avenida Vitacura 5250, Oficina 708, Vitacura, Santiago (Chile); Henriquez, Ricardo [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 110-V, Valparaíso (Chile); Moraga, Luis [Universidad Central de Chile, Toesca 1783, Santiago (Chile); Muñoz, Enrique [Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 7820436 (Chile); Munoz, Raul C., E-mail: ramunoz@ing.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada 2008, Casilla 487-3, Santiago 8370449 (Chile)

    2015-02-28

    Highlights: • Quantum theory of the resistivity arising from electron-grain boundary scattering in nanometric metallic structures. • The resistivity is controlled by the collective properties of the grain assembly, by the allowed Kronig-Penney (KP) bands and by the electron transmission probability across successive grains. • When the grain diameter d is larger than the electron mean free path l, the increase in resistivity arises mainly from a decrease of the number of states at the Fermi surface that are allowed KP bands. • When the grain diameter d is smaller than the electron mean free path l, the increase in resistivity arises primarily from Anderson localization caused by electron transmission across successive grains. - Abstract: We calculate the electrical resistivity of a metallic specimen, under the combined effects of electron scattering by impurities, grain boundaries, and rough surfaces limiting the film, using a quantum theory based upon the Kubo formalism. Grain boundaries are represented by a one-dimensional periodic array of Dirac delta functions separated by a distance “d” giving rise to a Kronig–Penney (KP) potential. We use the Green's function built from the wave functions that are solutions of this KP potential; disorder is included by incorporating into the theory the probability that an electron is transmitted through several successive grain boundaries. We apply this new theory to analyze the resistivity of samples S1, S2, S7 and S8 measured between 4 and 300 K reported in Appl. Surf. Science273, 315 (2013). Although both the classical and the quantum theories predict a resistivity that agrees with experimental data to within a few percent or better, the phenomena giving rise to the increase of resistivity over the bulk are remarkably different. Classically, each grain boundary contributes to the electrical resistance by reflecting a certain fraction of the incoming electrons. In the quantum description, there are states

  11. Lead (Pb) Toxicity; Physio-Biochemical Mechanisms, Grain Yield, Quality, and Pb Distribution Proportions in Scented Rice.

    Science.gov (United States)

    Ashraf, Umair; Kanu, Adam S; Deng, Quanquan; Mo, Zhaowen; Pan, Shenggang; Tian, Hua; Tang, Xiangru

    2017-01-01

    Lead (Pb) caused interruptions with normal plant metabolism, crop yield losses and quality issues are of great concern. This study assessed the physio-biochemical responses, yield and grain quality traits and Pb distribution proportions in three different fragrant rice cultivars i.e., Meixiangzhan-2, Xinagyaxiangzhan and Basmati-385. Plants were exposed to 400, 800, and 1,200 ppm of Pb while pots without Pb were taken as control (0 ppm). Our results showed that Pb toxicity significantly ( P production of hydrogen peroxide (H 2 O 2 ), malanodialdehyde (MDA) and leaves leachates; while such effects were more apparent in Xinagyaxiangzhan than other two rice cultivars. Pb stress differentially affected the production protein, proline and soluble sugars; however the production rates were higher at heading stage (HS) than maturity stage (MS). Furthermore, Pb stress altered superoxide dismutase (SOD), peroxidases (POD), catalases (CAT) and ascorbate peroxidases (APX) activities and glutathione (GSH) and oxidized glutathione (GSSG) production in all rice cultivars at both HS and MS. All Pb levels reduced the yield and yield components of all rice cultivars; nonetheless such reductions were observed highest in Xinagyaxiangzhan (69.12%) than Meixiangzhan-2 (58.05%) and Basmati-385 (46.27%) and resulted in grain quality deterioration. Significant and positive correlations among rice yields with productive tillers/pot and grains per panicle while negative with sterility percentage were also observed. In addition, all rice cultivars readily taken up the Pb contents from soil to roots and transported upward in different proportions with maximum in roots followed by stemss, leaves, ears and grains. Higher proportions of Pb contents in above ground plant parts in Xinagyaxiangzhan possibly lead to maximum losses in this cultivar than other two cultivars; while less damage in Basmati-385 might be related to strong anti-oxidative defense system and lower proportions of Pb contents in

  12. Genotypic Correlation and Path Analysis of Some Traits related to Oil Yield and Grain Yield in Canola (Brassica napus L. under Non-stress and Water Deficit Stress Conditions

    Directory of Open Access Journals (Sweden)

    A Ismaili

    2017-03-01

    Full Text Available Introduction Obtaining varieties with acceptable yield and tolerant to different arid and semi-arid climate condition of Iran is an important goal in canola breeding programs. Selection of genotypes base on one or more traits without regarding to correlation between them, could biases the expected results. Therefore, identifying of genetic correlation among traits especially in environmental stress condition is very important. The use of genotypic correlation helps evaluating the magnitude and direction of associations between characters facilitating the application of indirect selection, because genetic changes in a given trait may change other traits, leading to faster and larger genetic gains in plant breeding programs. Therefore, the selection for another trait may result in indirect response in the low heritable trait, provided the following conditions are satisfied: the genetic correlation between them is substantial, and the heritability of the secondary trait is greater than that of the primary trait. The purpose of this study was estimating the total genotypic variability, genotypic correlations, and path analysis among some important traits for selection criteria for improving seed and oil yield in canola under water deficit stress condition. Materials and Methods For evaluation of genetic correlation among traits and identifying important affecting traits on grain yield and oil yield in canola genotypes, an experiment was conducted based on a randomized complete blocks design with three replications in two different conditions of water deficit (stress and non-stress. Different traits were measured including seed yield, 1000-seed weight, number of seeds per pod, number of pods per plant, silique length, oil content, days to maturity, protein content, plant height and water use efficiency. Genotypic and phenotypic correlation coefficients were calculated for ten characters during growing seasons. The genotypic correlation coefficients

  13. Complex Role of Secondary Electron Emissions in Dust Grain Charging in Space Environments: Measurements on Apollo 11 and 17 Dust Grains

    Science.gov (United States)

    Abbas, M. M.; Tankosic, D.; Spann, J. F.; LeClair, A. C.

    2010-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions. Knowledge of the dust grain charges and equilibrium potentials is important for understanding of a variety of physical and dynamical processes in the interstellar medium (ISM), and heliospheric, interplanetary, planetary, and lunar environments. The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. It has been well recognized that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the corresponding values for bulk materials and theoretical models. In this paper we present experimental results on charging of individual dust grains selected from Apollo 11 and Apollo 17 dust samples by exposing them to mono-energetic electron beams in the 10- 400 eV energy range. The charging rates of positively and negatively charged particles of approximately 0.2 to 13 microns diameters are discussed in terms of the secondary electron emission (SEE) process, which is found to be a complex charging process at electron energies as low as 10-25 eV, with strong particle size dependence. The measurements indicate substantial differences between dust charging properties of individual small size dust grains and of bulk materials.

  14. On the room temperature microstrain of vanadium of different grain size

    International Nuclear Information System (INIS)

    Timm, J.; Guttmann, V.

    1977-01-01

    The present work deals with the plastic behaviour of polycrystalline vanadium from the onset of plastic deformation to the upper yield point. The stress-strain relation was found to be omega approximately epsilonsub(p)sup(1/2). The influence of the grain size on stress followed a omega approximately d -1 relationship. The initial yield stress was independent of grain size. By means of optical and electron microscopy it was found, that the first dislocation movement starts at grain boundaries. (orig.) [de

  15. Effect of nitrogen fertiliser rates and plant density on grain yield of ...

    African Journals Online (AJOL)

    Low soil fertility has constrained maize production in Sidama district in the Southern region of Ethiopia. The effects of four levels of nitrogen fertiliser (0, 46, 92, 138 kg N ha-1) and four plant populations (44000, 53000, 67000 and 89000 plants ha-1) on grain yield of maize were evaluated over four years (1995-98) at Awassa ...

  16. CULTIVAR RELEASE - FAEM Carlasul: new white oat cultivar with high grain yield

    Directory of Open Access Journals (Sweden)

    Antônio Costa de Oliveira

    2012-01-01

    Full Text Available The white oat cultivar FAEM Carlasul was developed at the Plant Genomics and Breeding Center, Faculty of Agronomy Eliseu Maciel, Federal University of Pelotas, as a result of the cross between UFRGS 10 and 90SAT-28 (Coronado2/Cortez3/Pendek/ME 1563. It is characterized by high yield and grain quality.

  17. Effect of different N fertilizer forms on antioxidant capacity and grain yield of rice growing under Cd stress

    International Nuclear Information System (INIS)

    Jalloh, Mohamed Alpha; Chen Jinghong; Zhen Fanrong; Zhang Guoping

    2009-01-01

    Cadmium contamination in soil has become a serious issue in sustainable agriculture production and food safety. A pot experiment was conducted to study the influence of four N fertilizer forms on grain yield, Cd concentration in plant tissues and oxidative stress under two Cd levels (0 and 100 mg Cd kg -1 soil). The results showed that both N form and Cd stress affected grain yield, with urea-N and NH 4 + -N treatments having significantly higher grain yields, and Cd addition reducing yield. NO 3 - -N and NH 4 + -N treated plants had the highest and lowest Cd concentration in plant tissues, respectively. Urea-N and NH 4 + -N treatments had significantly higher N accumulation in plant tissues than other two N treatments. Cd addition caused a significant increase in leaf superoxide dismutase (SOD) and peroxidase (POD) activities for all N treatments, except for NO 3 - -N treatment, with urea-N and NH 4 + -N treated plants having more increase than organic-N treated ones. The results indicated that growth inhibition, yield reduction and Cd uptake of rice plants in response to Cd addition varied with the N fertilizer form

  18. Effect of different N fertilizer forms on antioxidant capacity and grain yield of rice growing under Cd stress.

    Science.gov (United States)

    Jalloh, Mohamed Alpha; Chen, Jinghong; Zhen, Fanrong; Zhang, Guoping

    2009-03-15

    Cadmium contamination in soil has become a serious issue in sustainable agriculture production and food safety. A pot experiment was conducted to study the influence of four N fertilizer forms on grain yield, Cd concentration in plant tissues and oxidative stress under two Cd levels (0 and 100 mg Cd kg(-1)soil). The results showed that both N form and Cd stress affected grain yield, with urea-N and NH(4)(+)-N treatments having significantly higher grain yields, and Cd addition reducing yield. NO(3)(-)-N and NH(4)(+)-N treated plants had the highest and lowest Cd concentration in plant tissues, respectively. Urea-N and NH(4)(+)-N treatments had significantly higher N accumulation in plant tissues than other two N treatments. Cd addition caused a significant increase in leaf superoxide dismutase (SOD) and peroxidase (POD) activities for all N treatments, except for NO(3)(-)-N treatment, with urea-N and NH(4)(+)-N treated plants having more increase than organic-N treated ones. The results indicated that growth inhibition, yield reduction and Cd uptake of rice plants in response to Cd addition varied with the N fertilizer form.

  19. Response of barley to grasshopper defoliation in interior Alaska: dry matter and grain yield.

    Science.gov (United States)

    Begna, Sultan H; Fielding, Dennis J

    2005-12-01

    Barley, Hordeum vulgare L., is well adapted to subarctic Alaska growing conditions, but little is known about its response to grasshopper defoliation. A field experiment was conducted to study dry matter and grain yield in response to a combination of grasshopper defoliation and weeds in 2002 and 2003 near Delta Junction, AK (63 degrees 55' N, 145 degrees 20' W). Barley plants at third to fourth leaf stage were exposed to a combination of two levels of weeds (present or absent) and four densities of grasshoppers (equivalent to 0, 25, 50, and 75 grasshoppers per m2) of third to fourth instars of Melanoplus sanguinipes (F). Dry matter accumulation by the barley plants was determined at three times during the growing seasons: approximately 10 d after introduction of the grasshoppers, shortly after anthesis, and at maturity. Dry matter accumulation and grain yield were much lower in 2003 than in 2002, probably due to very low levels of soil moisture early in the growing season of 2003. Head clipping accounted for a greater portion of yield loss in 2003 than in 2002. The percentage of reduction in harvestable yield due to grasshoppers remained fairly constant between years (1.9 and 1.4 g per grasshopper per m2 in 2002 and 2003, respectively) despite a large difference in overall yield. Examination of the yield components suggest that yields were reduced by the early season drought in 2003 primarily through fewer seeds per head, whereas grasshoppers in both years reduced average seed weight, but not numbers of seeds.

  20. Mechanisms of dust grain charging in plasma with allowance for electron emission processes

    Energy Technology Data Exchange (ETDEWEB)

    Mol’kov, S. I.; Savin, V. N., E-mail: moped@onego.ru [Petrozavodsk State University (Russian Federation)

    2017-02-15

    The process of dust grain charging is described with allowance for secondary, ion-induced, photoelectric, and thermal electron emission from the grain surface. The roughness of the grain surface is taken into account. An intermediate charging regime involving ion–atom collisions and electron ionization in the perturbed plasma region is analyzed using the moment equations and Poisson’s equation. A calculation method is proposed that allows one to take into account the influence of all the above effects and determine the radius of the plasma region perturbed by the dust grain.

  1. Multitrait, Random Regression, or Simple Repeatability Model in High-Throughput Phenotyping Data Improve Genomic Prediction for Wheat Grain Yield.

    Science.gov (United States)

    Sun, Jin; Rutkoski, Jessica E; Poland, Jesse A; Crossa, José; Jannink, Jean-Luc; Sorrells, Mark E

    2017-07-01

    High-throughput phenotyping (HTP) platforms can be used to measure traits that are genetically correlated with wheat ( L.) grain yield across time. Incorporating such secondary traits in the multivariate pedigree and genomic prediction models would be desirable to improve indirect selection for grain yield. In this study, we evaluated three statistical models, simple repeatability (SR), multitrait (MT), and random regression (RR), for the longitudinal data of secondary traits and compared the impact of the proposed models for secondary traits on their predictive abilities for grain yield. Grain yield and secondary traits, canopy temperature (CT) and normalized difference vegetation index (NDVI), were collected in five diverse environments for 557 wheat lines with available pedigree and genomic information. A two-stage analysis was applied for pedigree and genomic selection (GS). First, secondary traits were fitted by SR, MT, or RR models, separately, within each environment. Then, best linear unbiased predictions (BLUPs) of secondary traits from the above models were used in the multivariate prediction models to compare predictive abilities for grain yield. Predictive ability was substantially improved by 70%, on average, from multivariate pedigree and genomic models when including secondary traits in both training and test populations. Additionally, (i) predictive abilities slightly varied for MT, RR, or SR models in this data set, (ii) results indicated that including BLUPs of secondary traits from the MT model was the best in severe drought, and (iii) the RR model was slightly better than SR and MT models under drought environment. Copyright © 2017 Crop Science Society of America.

  2. Study on the breeding of japonical gelatinous rice mutant variety Zhenuo 36 with high yield and good grain quality

    International Nuclear Information System (INIS)

    Bao Genliang; Zhang Xiaoming; Ye Shenghai; Zuo Xiaoxu; Feng Zuocheng; Lu Wenwu; Katsura Toomita; Asako Kobayasi

    2004-01-01

    The dry seeds of F 2 , which came from the crossing of japonical rice Bing 92-124 x japonical gelatinous rice Shaonuoxuan (SNX), was induced by 200 Gy 60 Co γ-irradiation. A japonical gelatinous rice mutant ZH206 with high yield, large grain size and good grain quality was obtained through several generation selections. It was demonstrated that the average yield was 9.4% higher than controls in two regional tests in successive two years. Its grain size was obviously large as compared with its original parents, 1000-grain weight was above 30 g, 4.1 g and 3.6 g higher than Bing 92-124 and SNX, respectively. Gelatinous characteristic of its rice was better than control Xianghu 84 and also much better than SNX. In 2003, the mutant was denominated as 'Zhenuo 36' by Crop Variety Identification Committee of Zhejiang Province. As an excellent japonical gelatinous variety, Zhenuo 36 had both the largest rate of increasing yield and the highest grain weight in Zhejiang provincial regional tests of japonical rice during last 20 years. The successful breeding of the variety showed that irradiation induction is an effective method to simultaneously improve some characteristics in rice. (authors)

  3. Grain Yield and Water Use Efficiency of Five Sorghum Cultivars under Different Irrigation Regimes in Kerman

    Directory of Open Access Journals (Sweden)

    H Vahidi

    2016-02-01

    Full Text Available Introduction Reduction of the forage and grain yield of sorghum genotypes under different levels of deficit irrigation has been reported. The plants that have higher water use efficiency (WUE, have a better chance of survival in arid regions. On average, WUE of sorghum in clay, loamy soil has been reported equal to 1.46 kg m-3. Effects of drought stress and different levels of nitrogen on yield of two cultivars of sorghum were investigated and results showed significant effects on plant height, leaf area index, fresh and dry weight of leaf, dry weight of stem and forage yield. The purpose of this research is to investigate the effect of deficit irrigation on grain yield and WUE of sorghum cultivars in Kerman. Materials and Methods This study has been conducted in the research station of Shahid Bahonar University of Kerman with 56o 58' E longitude, 30o 15' N latitude and 1753.8 altitudes. According to the regional information from 1952 to 2005, the average temperature is 17.1 oC, the average rainfall is 154.1 mm, the average annual relative humidity is 32%. The climate of Kerman according to De Martonne method can be classified as semiarid. The experimental design was split-plot based on RCBD with three replications. Three levels of irrigation (after 50, 80 and 110 mm evaporation from class A pan were assigned to the main plots and the five sub-plots of sorghum cultivars (Speedfeed, Pegah, Payam, Sepideh and Kimia. On the 20th of May all sorghum cultivars were planted at the distance of 10 cm from each other on ridges. On the 7th of October, with considering margins, four square meters of the two middle lines were selected to determine the grain and biological yield. The samples were weighed with a digital scale and heated for 48 hours in the degree of 75 oC-and then the dry weight of each samples were measured again. Finally, the data were analyzed by SAS software (v. 9.1. Comparision of the averages attributes was performed using, Duncan

  4. Rate and Timing Effects of Growth Regulating Herbicides Applications on Grain Sorghum (Sorghum bicolor Growth and Yield

    Directory of Open Access Journals (Sweden)

    Thierry E. Besançon

    2016-01-01

    Full Text Available Dicamba and 2,4-D are among the most common and inexpensive herbicides used to control broadleaf weeds. However, different studies have pointed the risk of crop injury and grain sorghum yield reduction with postemergence applications of 2,4-D. No research data on grain sorghum response to 2,4-D or dicamba exists in the Southeastern United States. Consequently, a study was conducted to investigate crop growth and yield response to 2,4-D (100, 220, and 330 g acid equivalent ha−1 and dicamba (280 g acid equivalent ha−1 applied on 20 to 65 cm tall sorghum. Greater stunting resulted from 2,4-D applied at 330 g acid equivalent ha−1 or below 45 cm tall sorghum whereas lodging prevailed with 2,4-D at 330 g acid equivalent ha−1 and dicamba applied beyond 35 cm tall crop. Regardless of local environmental conditions, 2,4-D applied up to 35 cm tall did not negatively impact grain yield. There was a trend for yields to be somewhat lower when 2,4-D was applied on 45 or 55 cm tall sorghum whereas application on 65 cm tall sorghum systematically decreased yields. More caution should be taken with dicamba since yield reduction has been reported as early as applications made on 35 cm tall sorghum for a potentially dicamba sensitive cultivar.

  5. Measurements of Charging of Apollo 17 Lunar Dust Grains by Electron Impact

    Science.gov (United States)

    Abbas, Mian M.; Tankosic, Dragana; Spann, James F.; Dube, Michael J.

    2008-01-01

    It is well known since the Apollo missions that the lunar surface is covered with a thick layer of micron size dust grains with unusually high adhesive characteristics. The dust grains observed to be levitated and transported on the lunar surface are believed to have a hazardous impact on the robotic and human missions to the Moon. The observed dust phenomena are attributed to the lunar dust being charged positively during the day by UV photoelectric emissions, and negatively during the night by the solar wind electrons. The current dust charging and the levitation models, however, do not fully explain the observed phenomena, with the uncertainty of dust charging processes and the equilibrium potentials of the individual dust grains. It is well recognized that the charging properties of individual dust grains are substantially different from those determined from measurements made on bulk materials that are currently available. An experimental facility has been developed in the Dusty Plasma Laboratory at MSFC for investigating the charging and optical properties of individual micron/sub-micron size positively or negatively charged dust grains by levitating them in an electrodynamic balance in simulated space environments. In this paper, we present the laboratory measurements on charging of Apollo 17 individual lunar dust grains by a low energy electron beam. The charging rates and the equilibrium potentials produced by direct electron impact and by secondary electron emission process are discussed.

  6. Assessment of adaptability and stability of grain yield in bread wheat genotypes under different sowing times in Punjab

    International Nuclear Information System (INIS)

    Anwar, J.; Hussain, M.; Ali, M.A.; Subhani, G.M.; Munir, M.

    2011-01-01

    Twenty advanced lines/genotypes of wheat including two check varieties were sown under two different sowing times through out the Punjab province at 18 different locations with diverse environments to study their stability and adaptability. Normal sowing was done in second week of November 2007 while the delayed sowing was completed during second week of December 2007 during crop season 2007-08. The pooled analysis of variance showed significant differences among environments and genotypes for grain yield demonstrating the presence of considerable variations (p<0.01) among genotypes as well as diversity of growing environments at various locations for both normal and late sown wheat crops. The highest average grain yield was obtained at Jalandar Seed Farm, Arifwala and Pak. German Farm, Multan for normal and delayed sown crops, respectively. Most of the locations emerged as high yielding in normal sowing compared to late sown crop. Dendrograms of 18 locations based on the average yield of 20 wheat genotypes grown under normal and late sown crop revealed two main clusters. Under both normal and late sowing, none of the varieties exceeded the check Seher-2006, however, the check was followed by the advanced lines V-04022 and V-05066 for normal sown crop and Shafaq-2006, V-05066 and V-04022 under delayed sowing. All the genotypes revealed decline in grain yield for late sown wheat crop. The analysis of stability based on mean grain yield, regression coefficient and deviation from regression advocated that the cultivars V-05066 and V-03BT007 were most stable and adapted to diverse environmental conditions of Punjab. These cultivars revealed unit regression and non-significant deviations from regression. The check variety Seher-2006 produced maximum yield for both sowing times that suggested its consistent and stable performance across the environments. (author)

  7. Stability Performance of Inductively Coupled Plasma Mass Spectrometry-Phenotyped Kernel Minerals Concentration and Grain Yield in Maize in Different Agro-Climatic Zones.

    Directory of Open Access Journals (Sweden)

    Mallana Gowdra Mallikarjuna

    Full Text Available Deficiency of iron and zinc causes micronutrient malnutrition or hidden hunger, which severely affects ~25% of global population. Genetic biofortification of maize has emerged as cost effective and sustainable approach in addressing malnourishment of iron and zinc deficiency. Therefore, understanding the genetic variation and stability of kernel micronutrients and grain yield of the maize inbreds is a prerequisite in breeding micronutrient-rich high yielding hybrids to alleviate micronutrient malnutrition. We report here, the genetic variability and stability of the kernel micronutrients concentration and grain yield in a set of 50 maize inbred panel selected from the national and the international centres that were raised at six different maize growing regions of India. Phenotyping of kernels using inductively coupled plasma mass spectrometry (ICP-MS revealed considerable variability for kernel minerals concentration (iron: 18.88 to 47.65 mg kg(-1; zinc: 5.41 to 30.85 mg kg(-1; manganese: 3.30 to 17.73 mg kg(-1; copper: 0.53 to 5.48 mg kg(-1 and grain yield (826.6 to 5413 kg ha(-1. Significant positive correlation was observed between kernel iron and zinc within (r = 0.37 to r = 0.52, p < 0.05 and across locations (r = 0.44, p < 0.01. Variance components of the additive main effects and multiplicative interactions (AMMI model showed significant genotype and genotype × environment interaction for kernel minerals concentration and grain yield. Most of the variation was contributed by genotype main effect for kernel iron (39.6%, manganese (41.34% and copper (41.12%, and environment main effects for both kernel zinc (40.5% and grain yield (37.0%. Genotype main effect plus genotype-by-environment interaction (GGE biplot identified several mega environments for kernel minerals and grain yield. Comparison of stability parameters revealed AMMI stability value (ASV as the better representative of the AMMI stability parameters. Dynamic stability

  8. Evolution of Grain Yield and its Components Relationships in Bread Wheat Genotypes under Full Irrigation and Terminal Water Stress Conditions Using Multivariate Statistical Analysis

    Directory of Open Access Journals (Sweden)

    S Mohammadi

    2014-07-01

    Full Text Available To study relationships between effective traits on wheat grain yield, the varieties Zarrin and Alvand, and some promising lines i.e. C-81-4, C-81-10, C-81-14 and C-82-12 were investigated at three sowing dates including 10 October, 1 November and 21 November. The experiment was carried out using strip plot in RCBD with three replications under two different water conditions including full-irrigation and terminal water stress at Miyandoab Agricultural Research Station in 2005-06 and 2006-07 cropping seasons. The results showed that under both full irrigation and terminal water stress conditions, grain yield had positive and significant correlation with days to heading, days to maturity, plant height, number of spikes/m2 and 1000 grain weight. Stepwise regression analysis revealed that 83 percent of yield variation under non-stressed conditions could be determined by days to maturity and number of spikes/m2 (R2 = 83% whereas these traits explained 87% of yield variation under stress conditions (R2= 87%. Path analysis indicated that number of spikes/m2 and days to maturity had the greatest positive direct and indirect effect on grain yield, under both conditions. The results of factor analysis under non-stressed condition showed that three factors explained 77% of total variation; these factors were called grain yield components, grain characteristics and plant phonology. Under non-stressed condition two factors (that were called grain yield and phenology, and plant morphology explained 88% of total variation. Cluster analysis through ward method, classified days to maturity and number of spikes/m2 in the same cluster where the grain yield was put under both conditions. It was concluded that under different sowing dates, selection based on days to maturity and number spikes/m2 could indirectly led to higher yield under both normal and water stress conditions.

  9. Impact of integrated nutrient management on growth and grain yield of wheat under irrigated cropping system

    International Nuclear Information System (INIS)

    Nawab, K.; Amanullah, A.; Shah, P.; Arif, M.; Khan, A.M.

    2011-01-01

    Field study was conducted during 2001-02 and 2002-03 to investigate the effect of cropping patterns and farm yard manure, potassium and zinc on the grain yield of wheat. Trials were conducted at Agricultural Research Farm, KPK Agricultural University Peshawar, Pakistan. Two factors cropping patterns and manures/fertilizers were studied in the experiment. Randomized complete block design was used with split plot arrangements and four replications having net plot size of 12 m/sup 2/. Wheat variety Ghaznavi-98 was sown in November soon after ploughing the soil at proper moisture level suitable for wheat seed germination. Five cropping patterns were allotted to main plots and the eight combinations of FYM, K and Zn to the sub-plots. Same plots were used for next year sowing. Effects of five cropping patterns i.e., rice-wheat, maize-wheat, sunflower-wheat, sorghum-wheat and pigeon pea-wheat and three organic and in-organic fertilizers (Farmyard Manure, Potassium and Zinc) on subsequent wheat crop were observed. Highest grain yield was obtained when wheat was planted after pigeon pea. Manures/fertilizer application (Farmyard Manure, Potassium and Zinc) produced significantly higher grain yield than the control plots. The findings of the present study revealed that leguminous crops can significantly increase the yield of succeeding crops. Thus use of Farmyard Manure, Potassium and Zinc should be included in integrated crop management approaches for sustainable agriculture. (author)

  10. The plus-hybrid effect on the grain yield of two ZP maize hybrids

    Directory of Open Access Journals (Sweden)

    Božinović Sofija

    2010-01-01

    Full Text Available The combined effect of cytoplasmic male sterility and xenia on maize hybrid traits is referred to as the plus-hybrid effect. Two studied ZP hybrids differently responded to this effect for grain yield. All plus-hybrid combinations of the firstly observed hybrid had a higher yield than their fertile counterparts, but not significantly, while only one combination of the second hybrid positively responded, also without statistical significance. It seems that the observed effect mostly depended on the genotype of the female component.

  11. Precession electron diffraction for SiC grain boundary characterization in unirradiated TRISO fuel

    International Nuclear Information System (INIS)

    Lillo, T.M.; Rooyen, I.J. van; Wu, Y.Q.

    2016-01-01

    Highlights: • SiC grain orientation determined by TEM-based precession electron diffraction. • Orientation data improved with increasing TEM sample thickness. • Fraction of low angle grain boundaries lower from PED data than EBSD data. • Fractions of high angle and CSL-related boundaries similar to EBSD data. - Abstract: Precession electron diffraction (PED), a transmission electron microscopy-based technique, has been evaluated for the suitability for evaluating grain boundary character in the SiC layer of tristructural isotropic (TRISO) fuel. This work reports the effect of transmission electron microscope (TEM) lamella thickness on the quality of data and establishes a baseline comparison to SiC grain boundary characteristics, in an unirradiated TRISO particle, determined previously using a conventional electron backscatter diffraction (EBSD) scanning electron microscope (SEM)-based technique. In general, it was determined that the lamella thickness produced using the standard focused ion beam (FIB) fabrication process (∼80 nm), is sufficient to provide reliable PED measurements, although thicker lamellae (∼120 nm) were found to produce higher quality orientation data. Also, analysis of SiC grain boundary character from the TEM-based PED data showed a much lower fraction of low-angle grain boundaries compared to SEM-based EBSD data from the SiC layer of a TRISO-coated particle made using the same fabrication parameters and a SiC layer deposited at a slightly lower temperature from a surrogate TRISO particle. However, the fractions of high-angle and coincident site lattice (CSL)-related grain boundaries determined by PED are similar to those found using SEM-based EBSD. Since the grain size of the SiC layer of TRSIO fuel can be as small as 250 nm (Kirchhofer et al., 2013), depending on the fabrication parameters, and since grain boundary fission product precipitates in irradiated TRISO fuel can be nano-sized, the TEM-based PED orientation data

  12. Influence of inocula and grains on sclerotia biomass and carotenoid yield of Penicillium sp. PT95 during solid-state fermentation.

    Science.gov (United States)

    Han, Jian-Rong; Yuan, Jing-Ming

    2003-10-01

    Various inocula and grains were evaluated for carotenoid production by solid-state fermentation using Penicillium sp. PT95. Millet medium was more effective in both sclerotia growth and carotenoid production than other grain media. An inoculum in the form of sclerotia yielded higher sclerotia biomass compared to either a spore inoculum or a mycelial pellet inoculum. Adding wheat bran to grain medium favored the formation of sclerotia. However, neither the inoculum type nor addition of wheat bran resulted in a significant change in the carotenoid content of sclerotia. Among grain media supplemented with wheat bran (wheat bran:grain =1:4 w/w, dry basis), a medium consisting of rice and wheat bran gave the highest sclerotia biomass (15.10 g/100 g grain), a medium consisting of buckwheat and wheat bran gave the highest content of carotenoid in sclerotia (0.826 mg/g dry sclerotia), and a medium consisting of millet and wheat bran gave the highest carotenoid yield (11.457 mg/100 g grain).

  13. Influence of pre-sowing irradiation of soya seeds with low doses of gamma rays on the yields of grain and on the content of crude protein in the grain

    International Nuclear Information System (INIS)

    Nikolov, Ch.V.

    1985-01-01

    Pre-sowing irradiation of air-dry soya seeds of the Hodson variety, calibrated in size and humidity (12%), with gamma rays in the range of relatively low intensities of irradiation of 0.27 to 5 Gy/min and doses of 10 to 20 Gy increases both the yield of grain and the content of crude protein in the grain in relation to the absolute dry matter. The dependence of radiostimulation effect on the factors of the environment cannot be reason for neglecting it as a posssible reserve for increasing the yield of grain from soya and the content of crude protein in the grain. Possible results are exspected from production experiments with pre-sowing irradiation of seeds of Hodson variety using gamma rays in the range of the above intensities and doses

  14. Effect of different N fertilizer forms on antioxidant capacity and grain yield of rice growing under Cd stress

    Energy Technology Data Exchange (ETDEWEB)

    Jalloh, Mohamed Alpha; Chen Jinghong; Zhen Fanrong [Department of Agronomy, Huajiachi Campus, Zhejiang University, Hangzhou 310029 (China); Zhang Guoping [Department of Agronomy, Huajiachi Campus, Zhejiang University, Hangzhou 310029 (China)], E-mail: zhanggp@zju.edu.cn

    2009-03-15

    Cadmium contamination in soil has become a serious issue in sustainable agriculture production and food safety. A pot experiment was conducted to study the influence of four N fertilizer forms on grain yield, Cd concentration in plant tissues and oxidative stress under two Cd levels (0 and 100 mg Cd kg{sup -1} soil). The results showed that both N form and Cd stress affected grain yield, with urea-N and NH{sub 4}{sup +}-N treatments having significantly higher grain yields, and Cd addition reducing yield. NO{sub 3}{sup -}-N and NH{sub 4}{sup +}-N treated plants had the highest and lowest Cd concentration in plant tissues, respectively. Urea-N and NH{sub 4}{sup +}-N treatments had significantly higher N accumulation in plant tissues than other two N treatments. Cd addition caused a significant increase in leaf superoxide dismutase (SOD) and peroxidase (POD) activities for all N treatments, except for NO{sub 3}{sup -}-N treatment, with urea-N and NH{sub 4}{sup +}-N treated plants having more increase than organic-N treated ones. The results indicated that growth inhibition, yield reduction and Cd uptake of rice plants in response to Cd addition varied with the N fertilizer form.

  15. Quantitative trait loci for yield and grain plumpness relative to maturity in three populations of barley (Hordeum vulgare L. grown in a low rain-fall environment.

    Directory of Open Access Journals (Sweden)

    Bulti Tesso Obsa

    Full Text Available Identifying yield and grain plumpness QTL that are independent of developmental variation or phenology is of paramount importance for developing widely adapted and stable varieties through the application of marker assisted selection. The current study was designed to dissect the genetic basis of yield performance and grain plumpness in southern Australia using three doubled haploid (DH populations developed from crosses between adapted parents that are similar in maturity and overall plant development. Three interconnected genetic populations, Commander x Fleet (CF, Commander x WI4304 (CW, and Fleet x WI4304 (FW developed from crossing of Australian elite barley genotypes, were used to map QTL controlling yield and grain plumpness. QTL for grain plumpness and yield were analysed using genetic linkage maps made of genotyping-by-sequencing markers and major phenology genes, and field trials at three drought prone environments for two growing seasons. Seventeen QTL were detected for grain plumpness. Eighteen yield QTL explaining from 1.2% to 25.0% of the phenotypic variation were found across populations and environments. Significant QTL x environment interaction was observed for all grain plumpness and yield QTL, except QPlum.FW-4H.1 and QYld.FW-2H.1. Unlike previous yield QTL studies in barley, none of the major developmental genes, including Ppd-H1, Vrn-H1, Vrn-H2 and Vrn-H3, that drive barley adaption significantly affected grain plumpness and yield here. Twenty-two QTL controlled yield or grain plumpness independently of known maturity QTL or genes. Adjustment for maturity effects through co-variance analysis had no major effect on these yield QTL indicating that they control yield per se.

  16. Study of Cytokinin and Auxin Hormones and Planting Pattern Effects on Yield and Yield Components of Grain Maize (Zea mays L. under Saline Conditions

    Directory of Open Access Journals (Sweden)

    D Davani

    2016-07-01

    Full Text Available Introduction Maize (Zea mays L. which belongs to the Poaceae family is the third important cereal crop of the world after wheat and rice. Salinity is one of the major environmental factors limiting plant growth and productivity. Maize is sensitive to salinity. Planting method is a crucial factor for improving crop yield. Planting methods in saline and non-saline conditions are different. Kinetin is one of the cytokinins known to significantly improve the growth of crop plants grown under salinity. Indole acetic acid (IAA is also known to play a significant role in plant tolerance to salt stress. However, little information appears to be available on the relationship between salinity tolerance and auxin or cytokinins levels in plants. In this respect, the objective of this study was to study the effects of foliar applications of cytokinin and auxin hormones on yield and yield components of grain maize under different planting patterns in saline conditions. Materials and Methods The experiment was carried out at Bushehr Agricultural and Natural Resources Research Center, Dashtestan station with 29° 16´ E latitude and 51° 31´ N, longitude and 70 m above the see surface during the 2013 growing season. Dashtestan region is a warm-arid region with 250 mm precipitation per year. The field plowed by April 2013 and then prepared and sowed by August 2013. There were five rows with 75 cm distance. The experiment was conducted as a split-plot factorial design based on complete randomized blocks with three replications. Planting pattern (ridge planting, double rows of planting on a ridge in zigzag form and furrow planting as the main factor and time of cytokinin (0 as a control, V5- V6 stage and V8- V10 stage and auxin (0 as a control, silking stage, two weeks after silking stage foliar-applied was considered in a factorial. Cytokinin (Benzyl Adenine, Merck and Auxin (Indole-3-Butiric Acid, Merck were sprayed on the entire plant in the evening with

  17. The effect of nitrogen fertilizing and fungicide application on the yield and selected parameters of grain quality of winter wheat

    Directory of Open Access Journals (Sweden)

    Alena Bezdíčková

    2007-01-01

    Full Text Available In 2001–2004 an influence of gradually increased portions of nitrogen (100–130–160 kg/N.ha–1 applied on the wheat variety Ebi in combination with the modified fungicidal protection in the yield and the selected quality grain parameters were observed within the small-plot field trials. Nitrogenous fertilizers according to the amount of nitrogen contained were applied in 2–4 terms during vegetation in regeneration (55kg/N.ha–1, 1st production (45kg/N.ha–1, 2nd production (30kg/N.ha–1 and qualitative portion (30kg/N.ha–1. The fungicidal protection was based on the equal treatment in the phase of BBCH 37 and with regard to the varieties different treatment in the phase of BBCH 55. The dependence on the year was proved at all observed parameters. Higher intensity of nitrogenous fertilization had no decisive impact on the yields. From the point of view of increased yields, the second production nitrogenous fertilization had the strongest impact; it increased the grain yields by 0.084–0.461 t./ha–1. Higher intensity of nitrogenous fertilization positively influenced the baker’s grain quality. The increased portions of nitrogen decisively increased the volume of N-substances in all trial years. The second production nitrogenous fertilization increased the N-substances volume from 0.1 to 0.8%. Qualitative additional fertilization increased their volume from 0.26 to 1.38%. Higher N portions increased sedimentation in most cases. The falling number was not considerably influenced. The mechanical grain qualities (volume weight, number full grains, and GTW were relatively less influenced than the baker’s quality by the nitrogenous fertilization. The application of fungicides positively influenced not only the yields but also mechanical qualities of the grain, i.e. volume weight, thousand grains weight and portion of Full grains. On the contrary the baker’s quality was not decisively influenced. It was proved that the decisive

  18. Evaluation of short stature mutants of Basmati-370 for yield and grain quality characteristics

    International Nuclear Information System (INIS)

    Awan, M.A.; Ahmad, M.; Cheema, A.A.

    1982-01-01

    Three short stature mutants were induced in an indica rice cultivar by gamma irradiation. The mutants were assessed for their yielding ability and grain quality characteristics. All the mutants out yielded the parent variety, Basmati-370. The increase in yield of the mutants ranged from 19.37% to 29.66%. DM-2 gave the highest yield (3587.96 kg/ha) among the mutants. As regards physical, cooking and eating quality characteristics, there was no significant difference in water absorption, volume expansion ratios and stickiness among the mutants and Basmati-370. However, Basmati-370 was scored best for flavour as this variety had strong aroma as compared to its mutants which were scored for moderately strong aroma. (authors)

  19. Influence of irrigation and nitrogen fertilization on grain yield and some baking quality characteristics of spring wheat

    Directory of Open Access Journals (Sweden)

    Paavo Elonen

    1975-05-01

    Full Text Available In the years 1967—70 twelve irrigation experiments of spring wheat were carried out in southern Finland (60-62° N, 22-26° E. Sprinkler irrigation (2 X 30 mm increased the grain yields on an average by 1240±470kg/ha (from 2740 to 3980 kg or 45±17 %. The increases in yield were significant on clay soils (9 trials and loam (1 trial but insignificant on fines and (1 trial and mould (1 trial. Additional nitrogen fertilization (from 76 to 143kg/ha N increased the grain yields on an average by 350± 200 kg/ha or 11±6 %. The ripening of wheat was significantly promoted by irrigation in one year but slightly retarded in three years. Nitrogen fertilization slightly retarded ripening every year The falling number of grains tended to be slightly improved by irrigation (from 285 to 321, on an average, but in most trials irrigation and nitrogen fertilization had no significant influence on the falling number. Irrigation decreased the crude protein content of grains in all trials, on an average by 2.2 ± 0.7 %-units (from 16.3 to 14.1%. This unfavourable effect was, however, avoided with additional nitrogen which increased the protein content by 1.9±0.4%-units (from 14,3 to 16.2 %. The effects of irrigation and nitrogen fertilization on those characteristics of wheat that are correlated with protein, were similar to the effects on the protein content. Thus, irrigation decreased the zeleny value (from 64 to 53 ml, cold viscosity (from 214 to 114 seconds, water absorption (from 66.5 to 64.9 % and the valorimeter value (from 68 to 60, while these characteristics were improved by nitrogen fertilization. Irrigation did not decrease the Pelshenke value but increased significantly the ratio of the Pelshenke value/protein content (from 5,1 to 6.1. This indicates that the quality of protein was improved by irrigation, while the effect of nitrogen fertilization was the reverse. In fact, irrigation and additional nitrogen fertilization affected the quantity and

  20. Grain yield and arsenic uptake of upland rice inoculated with arbuscular mycorrhizal fungi in As-spiked soils.

    Science.gov (United States)

    Wu, Fuyong; Hu, Junli; Wu, Shengchun; Wong, Ming Hung

    2015-06-01

    A pot trial was conducted to investigate the effects of three arbuscular mycorrhizal (AM) fungi species, including Glomus geosporum BGC HUN02C, G. versiforme BGC GD01B, and G. mosseae BGC GD01A, on grain yield and arsenic (As) uptake of upland rice (Zhonghan 221) in As-spiked soils. Moderate levels of AM colonization (24.1-63.1 %) were recorded in the roots of upland rice, and up to 70 mg kg(-1) As in soils did not seem to inhibit mycorrhizal colonization. Positive mycorrhizal growth effects in grain, husk, straw, and root of the upland rice, especially under high level (70 mg kg(-1)) of As in soils, were apparent. Although the effects varied among species of AM fungi, inoculation of AM fungi apparently enhanced grain yield of upland rice without increasing grain As concentrations in As-spiked soils, indicating that AM fungi could alleviate adverse effects on the upland rice caused by As in soils. The present results also show that mycorrhizal inoculation significantly (p rice production when growing in As-contaminated soils.

  1. On the role of electron quantum tunneling in charging of dust grains in complex plasma

    International Nuclear Information System (INIS)

    Tyshetskiy, Yu.O.; Vladimirov, S.V.

    2011-01-01

    The aim of this work is calculate ion additional current associated with the quantum tunneling of plasma electrons, that are classically forbidden to overcome the repulsive potential barrier, onto the negatively charged grain. We compare this additional quantum tunneling current with the classical electron current from plasma onto the grain and analyze how this additional current affects the self-consistent equilibrium grain charge for different plasma parameters and grain sizes.

  2. Grain Yield Observations Constrain Cropland CO2 Fluxes Over Europe

    Science.gov (United States)

    Combe, M.; de Wit, A. J. W.; Vilà-Guerau de Arellano, J.; van der Molen, M. K.; Magliulo, V.; Peters, W.

    2017-12-01

    Carbon exchange over croplands plays an important role in the European carbon cycle over daily to seasonal time scales. A better description of this exchange in terrestrial biosphere models—most of which currently treat crops as unmanaged grasslands—is needed to improve atmospheric CO2 simulations. In the framework we present here, we model gross European cropland CO2 fluxes with a crop growth model constrained by grain yield observations. Our approach follows a two-step procedure. In the first step, we calculate day-to-day crop carbon fluxes and pools with the WOrld FOod STudies (WOFOST) model. A scaling factor of crop growth is optimized regionally by minimizing the final grain carbon pool difference to crop yield observations from the Statistical Office of the European Union. In a second step, we re-run our WOFOST model for the full European 25 × 25 km gridded domain using the optimized scaling factors. We combine our optimized crop CO2 fluxes with a simple soil respiration model to obtain the net cropland CO2 exchange. We assess our model's ability to represent cropland CO2 exchange using 40 years of observations at seven European FluxNet sites and compare it with carbon fluxes produced by a typical terrestrial biosphere model. We conclude that our new model framework provides a more realistic and strongly observation-driven estimate of carbon exchange over European croplands. Its products will be made available to the scientific community through the ICOS Carbon Portal and serve as a new cropland component in the CarbonTracker Europe inverse model.

  3. Laboratory Measurements of Charging of Apollo 17 Lunar Dust Grains by Low Energy Electrons

    Science.gov (United States)

    Abbas, Mian M.; Tankosic, Dragana; Spann, James F.; Dube, Michael J.; Gaskin, Jessica

    2007-01-01

    It is well recognized that the charging properties of individual micron/sub-micron size dust grains by various processes are expected to be substantially different from the currently available measurements made on bulk materials. Solar UV radiation and the solar wind plasma charge micron size dust grains on the lunar surface with virtually no atmosphere. The electrostatically charged dust grains are believed to be levitated and transported long distances over the lunar terminator from the day to the night side. The current models do not fully explain the lunar dust phenomena and laboratory measurements are needed to experimentally determine the charging properties of lunar dust grains. An experimental facility has been developed in the Dusty Plasma Laboratory at NASA Marshall Space Flight Center MSFC for investigating the charging properties of individual micron/sub-micron size positively or negatively charged dust grains by levitating them in an electrodynamic balance in simulated space environments. In this paper, we present laboratory measurements on charging of Apollo 17 individual lunar dust grains by low energy electron beams in the 5-100 eV energy range. The measurements are made by levitating Apollo 17 dust grains of 0.2 to 10 micrometer diameters, in an electrodynamic balance and exposing them to mono-energetic electron beams. The charging rates and the equilibrium potentials produced by direct electron impact and by secondary electron emission processes are discussed.

  4. Direct imaging of grain boundaries

    International Nuclear Information System (INIS)

    Gronsky, R.

    1979-09-01

    There are currently two types of microscopes which, in principle, are capable of imaging atom positions at grain boundaries. One, the field ion microscope (FIM), yields a projection of the specimen surface (approximately stereographic) by field ionization of an imaging gas at protruding atom sites, and provides topographic information in high-index pole regions which may be interpreted atom-by-atom. The other, a transmission electron microscope (TEM), yields a projection (approximately linear) of the entire specimen thickness by electron optical imaging, and provides atomic resolution detail throughout the illuminated area. In this paper, both methods are described and compared, using examples from practical materials systems

  5. Automated grain mapping using wide angle convergent beam electron diffraction in transmission electron microscope for nanomaterials.

    Science.gov (United States)

    Kumar, Vineet

    2011-12-01

    The grain size statistics, commonly derived from the grain map of a material sample, are important microstructure characteristics that greatly influence its properties. The grain map for nanomaterials is usually obtained manually by visual inspection of the transmission electron microscope (TEM) micrographs because automated methods do not perform satisfactorily. While the visual inspection method provides reliable results, it is a labor intensive process and is often prone to human errors. In this article, an automated grain mapping method is developed using TEM diffraction patterns. The presented method uses wide angle convergent beam diffraction in the TEM. The automated technique was applied on a platinum thin film sample to obtain the grain map and subsequently derive grain size statistics from it. The grain size statistics obtained with the automated method were found in good agreement with the visual inspection method.

  6. Using Ridge Regression Models to Estimate Grain Yield from Field Spectral Data in Bread Wheat (Triticum Aestivum L. Grown under Three Water Regimes

    Directory of Open Access Journals (Sweden)

    Javier Hernandez

    2015-02-01

    Full Text Available Plant breeding based on grain yield (GY is an expensive and time-consuming method, so new indirect estimation techniques to evaluate the performance of crops represent an alternative method to improve grain yield. The present study evaluated the ability of canopy reflectance spectroscopy at the range from 350 to 2500 nm to predict GY in a large panel (368 genotypes of wheat (Triticum aestivum L. through multivariate ridge regression models. Plants were treated under three water regimes in the Mediterranean conditions of central Chile: severe water stress (SWS, rain fed, mild water stress (MWS; one irrigation event around booting and full irrigation (FI with mean GYs of 1655, 4739, and 7967 kg∙ha−1, respectively. Models developed from reflectance data during anthesis and grain filling under all water regimes explained between 77% and 91% of the GY variability, with the highest values in SWS condition. When individual models were used to predict yield in the rest of the trials assessed, models fitted during anthesis under MWS performed best. Combined models using data from different water regimes and each phenological stage were used to predict grain yield, and the coefficients of determination (R2 increased to 89.9% and 92.0% for anthesis and grain filling, respectively. The model generated during anthesis in MWS was the best at predicting yields when it was applied to other conditions. Comparisons against conventional reflectance indices were made, showing lower predictive abilities. It was concluded that a Ridge Regression Model using a data set based on spectral reflectance at anthesis or grain filling represents an effective method to predict grain yield in genotypes under different water regimes.

  7. Climatic warming increases winter wheat yield but reduces grain nitrogen concentration in east China.

    Directory of Open Access Journals (Sweden)

    Yunlu Tian

    Full Text Available Climatic warming is often predicted to reduce wheat yield and grain quality in China. However, direct evidence is still lacking. We conducted a three-year experiment with a Free Air Temperature Increase (FATI facility to examine the responses of winter wheat growth and plant N accumulation to a moderate temperature increase of 1.5°C predicted to prevail by 2050 in East China. Three warming treatments (AW: all-day warming; DW: daytime warming; NW: nighttime warming were applied for an entire growth period. Consistent warming effects on wheat plant were recorded across the experimental years. An increase of ca. 1.5°C in daily, daytime and nighttime mean temperatures shortened the length of pre-anthesis period averagely by 12.7, 8.3 and 10.7 d (P<0.05, respectively, but had no significant impact on the length of the post-anthesis period. Warming did not significantly alter the aboveground biomass production, but the grain yield was 16.3, 18.1 and 19.6% (P<0.05 higher in the AW, DW and NW plots than the non-warmed plot, respectively. Warming also significantly increased plant N uptake and total biomass N accumulation. However, warming significantly reduced grain N concentrations while increased N concentrations in the leaves and stems. Together, our results demonstrate differential impacts of warming on the depositions of grain starch and protein, highlighting the needs to further understand the mechanisms that underlie warming impacts on plant C and N metabolism in wheat.

  8. Fluctuations of the charge on a dust grain in a plasma

    International Nuclear Information System (INIS)

    Cui, C.; Goree, J.

    1994-01-01

    A dust grain in a plasma acquires an electric charge by collecting electron and ion currents. These currents consist of discrete charges, causing the charge to fluctuate around an equilibrium value (Q). Electrons and ions are collected at random intervals and in a random sequence, with probabilities that depend on the grain's potential. The authors developed a model for these probabilities and implemented it in a numerical simulation of the collection of individual ions and electrons, yielding a time series Q(t) for the grain's charge. Electron emission from the grain is not included, although it could be added easily to the method. They obtained the power spectrum and the rms fluctuation level, as well as the distribution function of the charge. Most of the power in the spectrum lies at frequencies much lower than 1/τ, the inverse charging time. The rms fractional fluctuation level varies as 0.5 |left-angle N right-angle | -1/2 , where left-angle N right-angle = left-angle Q right-angle/e is the average number of electron charges on the grain. This inverse square-root scaling means that fluctuations are most important for small grains. They also show that very small grains can experience fluctuations to neutral and positive polarities, even in the absence of electron emission

  9. Combining Ability and Heterosis for Grain Yield and its Component Traits in Rice(Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Srikrishna LATHA

    2013-02-01

    Full Text Available The nature and magnitude of heterosis and combining ability was studied in 18 F1 hybrids involving three CMS lines and six testers using line × tester analysis. The analysis of variance for combining ability of all the traits showed that variances due to treatments, parents, hybrids were highly significant. The line ‘CRMS 32A’ and testers viz. ‘Super rice-8’, ‘R 1099-2569-1-1’ and ‘Jitpiti’ were identified as good general combiners. The significant differences between lines x testers interaction indicates that SCA attributed heavily in the expression of these traits and demonstrates the importance of dominance or non additive variances for all the traits. The hybrid ‘CRMS 32A’/‘R 1099-2569-1-1’ and ‘APMS 6A’/‘Super rice-8’ were promising for grain yield. The magnitude of relative heterosis, heterobeltiosis and standard heterosis were also estimated for different characters. A high degree of relative heterosis was observed for grain yield (20.45- 82.37% in the hybrids viz., ‘CRMS 32A’/‘Super rice-8’, ‘APMS 6A’/‘Super rice-8’, ‘APMS 6A’/‘Jitpiti’ and ‘CRMS 32A’/‘R 1099-2569-1-1’. While, a higher degree of: heterobeltiosis (13.60 -68.37% was observed for grain yield in the hybrids viz., ‘CRMS 32A’/‘Super rice-8’, ‘CRMS 32A’/‘R 1099-2569-1-1’, ‘APMS 6A’/’Super rice-8’ and ‘APMS 6A’/’Jitpiti’. A high degree of standard heterosis was observed for grain yield in the hybrid ‘CRMS 32A’/‘R 1099-2569-1-1’. The hybrid ‘CRMS 32A’/ ‘R 1099-2569-1-1’ recorded a high degree of relative heterosis (62.01%, heterobeltiosis (57.35% and standard heterosis (15.05 and 25.51% over check hybrids, ‘Mahamaya’ and ‘Indirasona’, respectively that can be tested on yield trials for its further testing over locations.

  10. Regulatory role of OsMADS34 in the determination of glumes fate, grain yield and quality in rice

    Directory of Open Access Journals (Sweden)

    Deyong Ren

    2016-12-01

    Full Text Available Grasses produce seeds on spikelets, a unique type of inflorescence. Despite the importance of grass crops for food, the genetic mechanisms that control spikelet development remain poorly understood. In this study, we used m34-z, a new mutant allele of the rice (Oryza sativa E-class gene OsMADS34, to examine OsMADS34 function in determining the identities of glumes (rudimentary glume and sterile lemma and grain size. In the m34-z mutant, both the rudimentary glume and sterile lemma were homeotically converted to the lemma-like organs and acquired the lemma identity, suggesting that OsMADS34 plays important roles in the development of glumes. In the m34-z mutant, most of the grains from the secondary panicle branches were decreased in size, compared with grains from wild type, but no differences were observed in the grains from the primary panicle branches. The amylose content and gel consistency, and a seed-setting rate from the secondary panicle branches were reduced in the m34-z mutant. Interesting, transcriptional activity analysis revealed that OsMADS34 protein was a transcription repressor and it may influence grain yield by suppressing the expressions of BG1, GW8, GW2 and GL7 in the m34-z mutant. These findings revealed that OsMADS34 largely affects grain yield by affecting the size of grains from the secondary branches.

  11. Secondary Electron Emission Yields from PEP-II Accelerator Materials

    International Nuclear Information System (INIS)

    Kirby, Robert E.

    2000-01-01

    The PEP-II B-Factory at SLAC operates with aluminum alloy and copper vacuum chambers, having design positron and electron beam currents of 2 and 1 A, respectively. Titanium nitride coating of the aluminum vacuum chamber in the arcs of the positron ring is needed in order to reduce undesirable electron-cloud effects. The total secondary electron emission yield of TiN-coated aluminum alloy has been measured after samples of beam chamber material were exposed to air and again after electron-beam bombardment, as a function of incident electron beam angle and energy. The results may be used to simulate and better understand electron-cloud effects under actual operating conditions. We also present yield measurements for other accelerator materials because new surface effects are expected to arise as beam currents increase. Copper, in particular, is growing in popularity for its good thermal conductivity and self-radiation-shielding properties. The effect of electron bombardment, ''conditioning'', on the yield of TiN and copper is shown

  12. Genetic variations in the dynamics of dry matter accumulation, nitrogen assimilation and translocation in new T. aestivum L. varieties. I. Dynamics of dry matter accumulation. Grain yield and structural elements of yield

    International Nuclear Information System (INIS)

    Kostadin, K.; Nonkova, M.; Penchev, E.

    1999-01-01

    The genotype peculiarities in the translocation dynamics of dry matter in relation to wheat yield were studied under vegetation-laboratory and field conditions. The new wheat varieties Enola, Karat and Svilena created at the Institute for Wheat and Sunflower 'Dobroudja' have a high production potential due to their high intensity of dry matter accumulation in grain during the second half of maturation. It was established that in the standard variety Pliska the intensity of dry matter accumulation in reproductive parts was higher during heading-grain filling and then sharply decreased during maturation. This variety was characterized with high translocation of vegetation mass eventually leading to grain yield decrease. Significant genotype variations were established in the vegetation mass translocation in the respective parts during the stages of development. The contribution of the individual organs concerning carbohydrate reutilization to grain was mainly due to stems. An especially important peculiarity of the leaves of cv. Svilena was established: they ensured over 30 of grain yield at optimal nutrition. The complex evaluation of the new varieties revealed their high plasticity, the cultivar Karat showing the best characteristics. Refs. 13 (author)

  13. Exogenous Cytokinins Increase Grain Yield of Winter Wheat Cultivars by Improving Stay-Green Characteristics under Heat Stress.

    Directory of Open Access Journals (Sweden)

    Dongqing Yang

    Full Text Available Stay-green, a key trait of wheat, can not only increase the yield of wheat but also its resistance to heat stress during active photosynthesis. Cytokinins are the most potent general coordinator between the stay-green trait and senescence. The objectives of the present study were to identify and assess the effects of cytokinins on the photosynthetic organ and heat resistance in wheat. Two winter wheat cultivars, Wennong 6 (a stay-green cultivar and Jimai 20 (a control cultivar, were subjected to heat stress treatment from 1 to 5 days after anthesis (DAA. The two cultivars were sprayed daily with 10 mg L-1 of 6-benzylaminopurine (6-BA between 1 and 3 DAA under ambient and elevated temperature conditions. We found that the heat stress significantly decreased the number of kernels per spike and the grain yield (P < 0.05. Heat stress also decreased the zeatin riboside (ZR content, but increased the gibberellin (GA3, indole-3-acetic acid (IAA, and abscisic acid (ABA contents at 3 to 15 DAA. Application of 6-BA significantly (P < 0.05 increased the grain-filling rate, endosperm cell division rate, endosperm cell number, and 1,000-grain weight under heated condition. 6-BA application increased ZR and IAA contents at 3 to 28 DAA, but decreased GA3 and ABA contents. The contents of ZR, ABA, and IAA in kernels were positively and significantly correlated with the grain-filling rate (P < 0.05, whereas GA3 was counter-productive at 3 to 15 DAA. These results suggest that the decrease in grain yield under heat stress was due to a lower ZR content and a higher GA3 content compared to that at elevated temperature during the early development of the kernels, which resulted in less kernel number and lower grain-filling rate. The results also provide essential information for further utilization of the cytokinin substances in the cultivation of heat-resistant wheat.

  14. Effects of arbuscular mycorrhizal fungi inoculation on carbon and nitrogen distribution and grain yield and nutritional quality in rice (Oryza sativa L.).

    Science.gov (United States)

    Zhang, Xue; Wang, Li; Ma, Fang; Yang, Jixian; Su, Meng

    2017-07-01

    The importance of arbuscular mycorrhizal fungi (AMF) for nutrient uptake and growth in rice has been widely recognized. However, little is known about the distribution of carbon (C) and nitrogen (N) in rice under AMF inoculation, which can affect grain yield and quality. This study was conducted to investigate the distribution of C and N within rice plants under AMF inoculation and the effects on grain yield and quality. AMF inoculation significantly increased N accumulation and distribution in vegetative tissues at tillering, and N translocation into seeds from heading to maturity. Consequently, AMF inoculation more strongly impacted the distribution of N than that of C in seeds, with significantly reduced C:N ratios and increased protein content (by 7.4%). Additionally, AMF inoculation significantly increased grain yield by 28.2% through increasing the grain:straw ratio by 18.4%. In addition, the roots of inoculated rice exhibited greater change in C distribution, with significantly higher C concentrations, C accumulations, and C:N ratios at tillering and maturity. AMF inoculation affected the distribution of N in seeds and C in roots. As such, AMF inoculation may be a potential method for improving grain yield and quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Path coefficient and correlation of yield and yield associated traits in candidate bread wheat (triticum aestivum l)lines

    International Nuclear Information System (INIS)

    Muhammad, T.; Haider, S.; Qureshi, M. J.; Shah, G. S.; Zamir, R.

    2005-01-01

    Yield and yield contributing traits were studied in candidate bread wheat lines to find out the genetic contribution of the different characters towards grain yield at NIFA, Peshawar during 2001-02. All the characteristics studied differed significantly from each other. Days to heading showed negative and significant correlation with harvest index and grain yield but was negative and non-significant with the biological yield. Days to maturity were negatively correlated at both genotypic and phenotypic levels with biological yield; harvest index and grain yield and level of correlations were significant with harvest index and grain yield. Plant height showed negative genotypic and phenotypic correlation with harvest index and grain yield. Biological yield had positive and significant genotypic and phenotypic correlations with harvest index and grain yield. Harvest index had positive and highly significant genotypic and phenotypic correlation with grain yield. Genotypic and phenotypic correlation coefficients revealed that important characters influencing grain yield are harvest index and biological yield. Path analysis showed the importance in order of harvest index, biological yield, plant height, days to maturity and days to heading with grain yield. (author)

  16. Bistable intrinsic charge fluctuations of a dust grain subject to secondary electron emission in a plasma.

    Science.gov (United States)

    Shotorban, B

    2015-10-01

    A master equation was formulated to study intrinsic charge fluctuations of a grain in a plasma as ions and primary electrons are attached to the grain through collisional collection, and secondary electrons are emitted from the grain. Two different plasmas with Maxwellian and non-Maxwellian distributions were considered. The fluctuations could be bistable in either plasma when the secondary electron emission is present, as two stable macrostates, associated with two stable roots of the charge net current, may exist. Metastablity of fluctuations, manifested by the passage of the grain charge between two macrostates, was shown to be possible.

  17. Effect of Water Stress and Sulfur Fertilizer on Grain Yield, Chlorophyll and Nutrient Status of Black Cumin (Nigella Sativa L.

    Directory of Open Access Journals (Sweden)

    M. Heidari

    2011-04-01

    Full Text Available In order to study the effects of water stress and different amounts of sulfur fertilizer on grain yield, nutrient status and chlorophyll content in black cumin (Nigella sativa L. a field experiment as split plot design with three replications was conducted at Ghaen city in 2009. Treatments included three levels of irrigation after 50, 100 and 150 mm evaporation from Class A pan as main plot and four levels of sulfur fertilizer including 0, 75, 150 and 225 kg/ha from bentonite-sulfur source as sub-plot. Statistical analysis of the results showed that water stress has significant effect on grain yield and essential oil of black cumin. At the level of 150 mm evaporation from Class A pan, the grain yield decreased by 22.8% and essential oil by 27.6%. Application of 225 kg/ha sulfur fertilizer increased grain yield up to 7.2%. Water stress and sulfur fertilizer treatments had only significant effect on chlorophyll a content. However, water stress decreased chlorophyll a content, but sulfur fertilizer application up to 225 kg/ha increased the content of chlorophyll a. In this study, water stress decreased potassium content in black cumin leaves, but increased the sodium and calcium accumulation. Although application of sulfur fertilizer affected significantly the potassium and magnesium contents in shoots, but did not have significant effect on sodium and calcium contents.

  18. Plastic-film mulching and urea types affect soil CO2 emissions and grain yield in spring maize on the Loess Plateau, China.

    Science.gov (United States)

    Liu, Qiaofei; Chen, Yu; Li, Weiwei; Liu, Yang; Han, Juan; Wen, Xiaoxia; Liao, Yuncheng

    2016-06-22

    A 2-year field experiment was conducted on maize (Zea mays L.) to explore effective ways to decrease soil CO2 emissions and increase grain yield. Treatments established were: (1) no mulching with urea, (2) no mulching with controlled release fertiliser (CRF), (3) transparent plastic-film mulching (PMt) with urea, (4) PMt with CRF, (5) black plastic-film mulching (PMb) with urea, and (6) PMb with CRF. During the early growth stages, soil CO2 emissions were noted as PMt > PMb > no mulching, and this order was reversed in the late growth stages. This trend was the result of topsoil temperature dynamics. There were no significant correlations noted between soil CO2 emissions and soil temperature and moisture. Cumulative soil CO2 emissions were higher for the PMt than for the PMb, and grain yield was higher for the PMb treatments than for the PMt or no mulching treatments. The CRF produced higher grain yield and inhibited soil CO2 emissions. Soil CO2 emissions per unit grain yield were lower for the BC treatment than for the other treatments. In conclusion, the use of black plastic-film mulching and controlled release fertiliser not only increased maize yield, but also reduced soil CO2 emissions.

  19. Reciprocal combinations of barley and corn grains in oil-supplemented diets: feeding behavior and milk yield of lactating cows.

    Science.gov (United States)

    Kargar, S; Ghorbani, G R; Khorvash, M; Sadeghi-Sefidmazgi, A; Schingoethe, D J

    2014-11-01

    The effect of barley-based (BBD) or corn-based diets (CBD), or their equal blend (BCBD) on dry matter (DM) intake, feeding and chewing behavior, and production performance of lactating dairy cows was evaluated. Nine multiparous Holstein cows (75.6 ± 11.0 d in milk) were used in a triplicate 3 × 3 Latin square design with 21-d periods. Forage-to-concentrate ratio (40:60), forage neutral detergent fiber (20% of DM), total neutral detergent fiber (>29% of DM), and geometric mean particle size (4.3mm) were similar among treatments. Meal patterns, including meal size and intermeal interval, were not affected by the dietary treatments and DM intake (25.6 kg/d) was not different among treatments. Ether extract intake increased linearly with increasing amount of the corn grain in the diets. Due to similar feed intake, actual milk (48.6 kg/d), 4% fat-corrected milk (36.8 kg/d), and fat- and protein-corrected milk (38.1 kg/d) yields were not affected by treatments. Average milk protein percentage and yield were 2.83% and 1.37 kg/d, respectively, and were not different across treatments. Milk fat percentage increased linearly with increasing amount of corn grain in the diets and was greater in CBD relative to BCBD but not BBD (2.31, 2.28, and 2.57%, for BBD, BCBD, and CBD, respectively). However, milk fat yield tended to show a linear increase as the amount of corn grain included in the diets increased. Results indicated that changing diet fermentability by replacing barley grain for corn grain in oil-supplemented diets did not influence feeding patterns and thereby no changes in feed intake and milk yield occurred. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Calibration of Soil Available Nitrogen and Water Content with Grain Yield of Dry land Wheat

    Directory of Open Access Journals (Sweden)

    V. Feiziasl

    2017-01-01

    Full Text Available Introduction: Nitrogen (N is one of the most important growth-limiting nutrients for dryland wheat. Mineral nitrogen or ammonium (NH4+ and nitrate (NO3− are two common forms of inorganic nitrogen that can serve as limiting factors for plant growth. Nitrogen fertilization in dryland area can increase the use of soil moisture, and improve wheat yields to some extent. Many researchers have been confirmed interactions between water stress and nitrogen fertilizers on wheat, especially under field conditions. Because of water stress affects forms of nitrogen uptake that leads to disorder in plant metabolism, reduction in grain yield and crop quality in dryland condition. On the other hand, use of suitable methods for determining nitrogen requirement can increase dryland wheat production. However, nitrogen recommendations should be based on soil profile content or precipitation. An efficient method for nitrogen fertilizer recommendation involves choosing an effective soil extractant and calibrating soil nitrogen (Total N, NO3− andNH4+ tests against yield responses to applied nitrogen in field experiments. Soil testing enables initial N supply to be measured and N supply throughout the season due to mineralization to be estimated. This study was carried out to establish relationship between nitrogen forms (Total N, NO3− andNH4+ in soil and soil profile water content with plant response for recommendation of nitrogen fertilizer. Materials and Methods: This study was carried out in split-split plot in a RCBD in Dryland Agricultural Research Institute (DARI, Maragheh, Iranwhere N application times (fall, 2/3 in fall and 1/3 in spring were assigned to the main plots, N rates to sub plot (0, 30, 60 and 90 kg/ha, and 7 dryland wheat genotypes to sub-sub plots (Azar2, Ohadi, Rasad and 1-4 other genotypes in three replications in 2010-2011. Soil samples were collected from 0-20, 20-40, 40-60 and 60-80 cm in sub-sub plots in shooting stage (ZGS32. Ammonium

  1. Effect of Planting Patterns' and Plant Population on Some of Morphological Traits, Harvest Index and Conservable Grain Yield of Sweet Corn

    Directory of Open Access Journals (Sweden)

    M. Nasrolah Alhossini

    2012-04-01

    Full Text Available Sweet corn is one of the most important crops in Iran and due to its short period of growth, it has been an important position after wheat and barley in khorasane Razavi Province. In this study two methods of planting (one raised bed and furrow planting and 3 plant densities (65000, 75000 and 85000 plant/ha was evaluated on some of Morphological Traits, harvest index and conservable grain yield of sweet Corn(Chase and KSC403su Varieties in Torbat-e-Heidarie in saline (4.060ds/m condition on 2009. The experimental design was factorial based on RCBC with 4 replications. The result of ANOVA showed significant differences between Anthesis silking interval (ASI, tassel length, plant height, ear height, stem diameter, harvest index, and conservable grain yield of sweet corn varieties that effected by planting methods. the highest harvest index was belonged to Chase in 75000 Plant/ha on one raised bed planting method with 31.75% and the lowest mean was belonged to KSC403su in 85000 Plant/ha on furrow planting method with 14.93%. In addition the highest grain yield was belonged to chase variety at 75000 plant/ha and furrow planting method with 11.912 ton/ha, while the lowest grain yield was belonged to KSC403su variety at 85000 plant/ha and raised bed planting (3.610 ton/ha. The Chase variety was better than KSC403su Due to its canopy and photo period is shorter than KSC403su. The superiority of Chase variety can be related to better distribution of leaves, highest harvest index, conservable grain yield and plant arrangement in the row.

  2. Effect of planting density and cutting frequency on forage and grain yields of kochia (Kochia scoparia under saline water irrigation

    Directory of Open Access Journals (Sweden)

    mseou ziyaeii

    2009-06-01

    Full Text Available AField experiment was conducted at Research Farms of Center of Excellence for Special Crops, Ferdowsi University of Mashhad, Mashhad, Iran, in 2006 to evaluate the effect of planting density on forage and grain yield of kochia (Kochia scoparia. Experimental design was a randomized complete block with split-plot arrangement of treatments,with three replications, where different planting densities (10, 20, 30 and 40 plant m-2 were assigned to main plots and number of cutting (including a single cutting, two cutting and no cutting i.e. allowing the crop to grow until maturity allocated to sub-plots. At each harvest date (cutting the biological yield, leaf and stem dry weight, plant height, number of branches and the individual plant biomass were measured. Grain yield and thousand seed weight were also determined at the end of growing season. Result showed the highest biological yield and leaf and stem dry weights for kochia obtaind at 30 plant m-2. The total biomass, leaf and stem dry weights, plant height, number of branches were greater for the first cutting as compared to the second cutting. Planting density and cutting number interacted to affect the leaf dry weight. At physiological maturity stage there were no significant differences among planting densities for plant height and number of branches. The best planting density, in terms of biomass production and leaf and stem dry weight, was found as 30 plant m-2, while for grain production a planting density of 20 plant m-2 could be recommended. Key words: Kochia, planting density, sward, biological yield, grain production.

  3. Root growth, soil water variation, and grain yield response of winter wheat to supplemental irrigation

    Directory of Open Access Journals (Sweden)

    Jianguo Man

    2016-04-01

    Full Text Available Water shortage threatens agricultural sustainability in the Huang-Huai-Hai Plain of China. Thus, we investigated the effect of supplemental irrigation (SI on the root growth, soil water variation, and grain yield of winter wheat in this region by measuring the moisture content in different soil layers. Prior to SI, the soil water content (SWC at given soil depths was monitored to calculate amount of irritation water that can rehydrate the soil to target SWC. The SWC before SI was monitored to depths of 20, 40, and 60 cm in treatments of W20, W40, and W60, respectively. Rainfed treatment with no irrigation as the control (W0. The mean root weight density (RWD, triphenyl tetrazolium chloride reduction activity (TTC reduction activity, soluble protein (SP concentrations as well as catalase (CAT, and superoxide dismutase (SOD activities in W40 and W60 treatments were significantly higher than those in W20. The RWD in 60–100 cm soil layers and the root activity, SP concentrations, CAT and SOD activities in 40–60 cm soil layers in W40 treatment were significantly higher than those in W20 and W60. W40 treatment is characterized by higher SWC in the upper soil layers but lower SWC in the 60–100-cm soil layers during grain filling. The soil water consumption (SWU in the 60–100 cm soil layers from anthesis after SI to maturity was the highest in W40. The grain yield, water use efficiency (WUE, and irrigation water productivity were the highest in W40, with corresponding mean values of 9169 kg ha−1, 20.8 kg ha−1 mm−1, and 35.5 kg ha−1 mm−1. The RWD, root activities, SP concentrations, CAT and SOD activities, and SWU were strongly positively correlated with grain yield and WUE. Therefore, the optimum soil layer for SI of winter wheat after jointing is 0–40 cm.

  4. Average L-shell fluorescence, Auger, and electron yields

    International Nuclear Information System (INIS)

    Krause, M.O.

    1980-01-01

    The dependence of the average L-shell fluorescence and Auger yields on the initial vacancy distribution is shown to be small. By contrast, the average electron yield pertaining to both Auger and Coster-Kronig transitions is shown to display a strong dependence. Numerical examples are given on the basis of Krause's evaluation of subshell radiative and radiationless yields. Average yields are calculated for widely differing vacancy distributions and are intercompared graphically for 40 3 subshell yields in most cases of inner-shell ionization

  5. Synergistic effect in carbon coated LiFePO4 for high yield spontaneous grafting of diazonium salt. Structural examination at the grain agglomerate scale.

    Science.gov (United States)

    Madec, Lénaïc; Robert, Donatien; Moreau, Philippe; Bayle-Guillemaud, Pascale; Guyomard, Dominique; Gaubicher, Joël

    2013-08-07

    Molecular grafting of p-nitrobenzene diazonium salt at the surface of (Li)FePO4-based materials was thoroughly investigated. The grafting yields obtained by FTIR, XPS, and elemental analysis for core shell LiFePO4-C are found to be much higher than the sum of those associated with either the LiFePO4 core or the carbon shell alone, thereby revealing a synergistic effect. Electrochemical, XRD, and EELS experiments demonstrate that this effect stems from the strong participation of the LiFePO4 core that delivers large amounts of electrons to the carbon substrate at a constant energy, above the Fermi level of the diazonium salt. Correspondingly large multilayer anisotropic structures that are associated with outstanding grafting yields could be observed from TEM experiments. Results therefore constitute strong evidence of a grafting mechanism where homolytic cleavage of the N2(+) species occurs together with the formation and grafting of radical nitro-aryl intermediates. Although the oxidation and concomitant Li deintercalation of LiFePO4 grains constitute the main driving force of the functionalization reaction, EFTEM EELS mapping shows a striking lack of spatial correlation between grafted grains and oxidized ones.

  6. Notes on representing grain size distributions obtained by electron backscatter diffraction

    International Nuclear Information System (INIS)

    Toth, Laszlo S.; Biswas, Somjeet; Gu, Chengfan; Beausir, Benoit

    2013-01-01

    Grain size distributions measured by electron backscatter diffraction are commonly represented by histograms using either number or area fraction definitions. It is shown here that they should be presented in forms of density distribution functions for direct quantitative comparisons between different measurements. Here we make an interpretation of the frequently seen parabolic tales of the area distributions of bimodal grain structures and a transformation formula between the two distributions are given in this paper. - Highlights: • Grain size distributions are represented by density functions. • The parabolic tales corresponds to equal number of grains in a bin of the histogram. • A simple transformation formula is given to number and area weighed distributions. • The particularities of uniform and lognormal distributions are examined

  7. Effect of elevated [CO2 ] on yield, intra-plant nutrient dynamics, and grain quality of rice cultivars in Eastern India.

    Science.gov (United States)

    Jena, Usha Rani; Swain, Dillip Kumar; Hazra, K K; Maity, Mrinal K

    2018-05-16

    Climate models predict an increase in global temperature in response to a doubling of atmospheric [CO 2 ] that may impact future rice production and quality. In this study, the effect of elevated [CO 2 ] on yield, nutrient acquisition and utilization, and grain quality of rice genotypes was investigated in subtropical climate of eastern India (Kharagpur). Three environments (open field, ambient, and elevated [CO 2 ]) were tested using four rice cultivars of eastern India. Under elevated [CO 2 ] (25% higher), yield of high yielding cultivars (HYCs) viz. IR 36, Swarna, and Swarna sub1 was significantly reduced (11-13%), whereas the yield increased (6-9%) for Badshabhog, a low-yielding aromatic cultivar. Elevated [CO 2 ] significantly enhanced K uptake (14-21%), but did not influence the uptake of total N and P. The nutrient harvest index and use efficiency values in HYCs were reduced under elevated [CO 2 ] indicating that nutrients translocation from source to sink (grain) was significantly reduced. An increase in alkali spreading value (10%) and reduction in grain protein (2-3%) and iron (5-6%) was also observed upon [CO 2 ] elevation. The study highlights the importance of nutrient management (increasing N rate for HYCs) and selective breeding of tolerant cultivar in minimizing the adverse effect of elevated [CO 2 ] on rice yield and quality. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Effects of different mycorrhiza species on grain yield, nutrient uptake and oil content of sunflower under water stress

    Directory of Open Access Journals (Sweden)

    Mostafa Heidari

    2014-01-01

    Full Text Available The role of arbuscular mycorrhizal fungi in alleviating water stress is well documented. In order to study the effects of water stress and two different mycorrhiza species on grain yield, nutrient uptake and oil content of sunflower, a field experiment as split plot design with three replications was conducted in the Research Field Station, Zabol University, Zabol, Iran in 2011. Water stress treatments included control as 90% of field capacity (W1, 70% field capacity (W2 and 50% field capacity (W3 assigned to the main plots and two different mycorrhiza species, consisting of M1 = control (without any inoculation, M2 = Glumus mossea and M3 = Glumus etanicatum as sub plots. Results showed that by increasing water stress from control (W1 to W3 treatment, grain yield was significantly decreased. The reduction in the level of W3 was 15.05%. The content of potassium in seeds significantly decreased due to water stress but water stress upto W2 treatment increased the content of phosphorus, nitrogen and oil content of seeds. In between two species of mycorrhiza in sunflower plants, Glumus etanicatum had the highest effect on grain yield and these elements in seeds and increased both.

  9. Selection of Common Bean Lines, Recombinant Inbred Lines and Commercial Genotypes Tolerant to Low Phosphorus Availability in an Acrisol Soil on the Basis of Root Traits and Grain Yield

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.; Gomez, L. A.; Morales, A. [Instituto de Suelos, MINAG (Cuba); others, and

    2013-11-15

    Common bean (Phaseolus vulgaris L.) is the most important food legume for human consumption worldwide and especially in Latin America and Africa, but low soil phosphorus (P) availability limits grain production in these areas. For these reason eighty five recombinant inbred lines (RILs) of BAT 477 x DOR 364 and twenty commercial bean genotypes were sown in plots in an Acrisol soil with low P availability to evaluate nine root traits and grain yield. The study was carried out in Pinar del Rio province in Cuba between November 2006 and February 2009. The plots received basal fertilization (N and K) and P fertilization between 15 and 90 kg P{sub 2}O{sub 5} ha{sup -1}. Ten plants were sampled from each plot at R{sub 6} pod fill to evaluate root traits and shoot biomass, and at R{sub 9} physiological maturity to estimate grain yield. The 85 RILs showed great variability for root traits, grain yield and P stress tolerance calculated as relative grain yield. The commercial bean lines also showed large diversity in yield parameters. Principal Component Analysis showed that there were high and significant correlations between root traits (basal root number, primary root depth, adventitious root length and adventitious root number) and grain yield parameters (grain yield at 15 P level and relative grain yields). Adventitious root traits showed the greatest correlation with yield under low P. Promising RILs included 75.1.1, 60.1.1, 38.1.1, 14.1.1 and 38.1.1 and promising commercial bean lines included ICA Pijao, BAT 482, ICA 23, BAT 24 and BAT 832. (author)

  10. Effect of zinc and plant-population on the yield and yield components of maize (zea mays L.)

    International Nuclear Information System (INIS)

    Kakar, K.M.; Sadiq, S.A.; Tariq, M.

    2005-01-01

    A field experiment was conducted during 2001 to study the effect of two levels of zinc (0 and 5 kg Zn ha-J) and three plant-densities (60,000, 80,000 and 100,000 plants ha-J) on the performance of two varieties of maize Azam and Pahari and two hybrids N7989 and Babar, at Malakandher Farm of NWFP Agricultural University, Peshawar. Zinc at the rate of 5 kg ha-J increased the cob yield, grain yield and 1000-grain weight, while increase in plant-density significantly increased the number of grains cob-J, number of cob-plant-J, cob-yield, grain-yield and 1000-grain weight. Results revealed that the highest plant-density of 100,000 plant ha-J decreased the number of cobs plant-J, number of grains cob-J and 1000-grain weight. Maximum number of cobs plant-J (0.87), number of grains cob-J (313), cob yield (4602 kg ha-J), grain yield (4222 kg ha-J) and 1000-grain weight (249 g) were obtained with plant- density of 80,000 plant ha-J. The maximum grain-yield of 4333 kg ha-J was recorded in plots of hybrid variety N7989. (author)

  11. GGE biplot and AMMI application in the study of adaptability and grain yield stability of durum lines under dryland conditions

    Directory of Open Access Journals (Sweden)

    Behzad Sadeghzadeh

    2018-06-01

    Full Text Available Introduction Durum wheat (Triticum turgidum var. durum is grown for human consumption, mainly as pasta products, e.g., spaghetti and macaroni, couscous, bulgur, frike, flat breads, etc. Worldwide, the area annually planted to durum wheat is estimated to be around 17-18 million hectares, i.e., 8 percent of total wheat area, with a production averaging about 30 million tons annually, which is 5.5 percent of total wheat production. Although durum is grown in various regions of the world, the great bulk of durum area and production is concentrated in the Mediterranean basin and North America. Eight countries (Algeria, Canada, Italy, Morocco, Syria, Tunisia, Turkey, and USA account for nearly two thirds (2/3 of world durum area and production. In Iran, the area under durum cultivation is about 400-500 thousands hectares with an annual production of 400-500 thousand tons, which covers about 60% of country demands. In spite of the importance of durum for Iranian rural economies, the country has not all succeeded in its research and development efforts to substantially improve durum productivity. The combinations of increasing demand for durum and durum products, as a result of demographic pressure, and relatively low durum productivity partly due to abiotic stresses (i.e. cold, terminal heat, moisture and nutrient deficiency stresses made the country to an importer of durum. These are frequently exacerbated by biotic stresses, e.g., diseases and insects that may severely inhibit crop growth. Materials and methods The main purpose of this study was to achieve high yielding durum wheat genotypes with higher yield stability in different environmental condition, tolerance to environmental stresses such as cold damage, drought and end of season heat stress. Hence, 17 durum wheat lines were evaluated for grain yeild and morphlogical traits in Maragheh, Sararood, Qamloo, Ardabil and Shirvan agricultural research stations in 2011-14. In each location, the

  12. Interpreting genotype × environment interactions for grain yield of rainfed durum wheat in Iran

    Directory of Open Access Journals (Sweden)

    Reza Mohammadi

    2015-12-01

    Full Text Available Clustering genotype × environment (GE interactions and understanding the causes of GE interactions are among the most important tasks in crop breeding programs. Pattern analysis (cluster and ordination techniques was applied to analyze GE interactions for grain yield of 24 durum wheat (Triticum turgidum L. var. durum genotypes (breeding lines and old and new cultivars along with a popular bread wheat (Triticum aestivum cultivar grown in 21 different rainfed environments during the 2010–2013 cropping seasons. To investigate the causes of GE interaction, several genotypic and environmental covariables were used. In a combined ANOVA, environment was the predominant source of variation, accounting for 81.2% of the total sum of squares (TSS, and the remaining TSS due to the GE interaction effect was almost seven times that of the genetic effect. Cluster analysis separated the environments into four groups with similar discriminating ability among genotypes, and genotypes into five groups with similar patterns in yield performance. Pattern analysis confirmed two major environmental clusters (cold and warm, and allowed the discrimination and characterization of genotype adaptation. Within the cold-environment cluster, several subclusters were identified. The breeding lines were most adapted to moderate and warm environments, whereas the old varieties were adapted to cold environments. The results indicated that winter rainfall and plant height were among the environmental and genotypic covariables, respectively, that contributed most to GE interaction for grain yield in rainfed durum wheat.

  13. Laboratory Measurements on Charging of Individual Micron-Size Apollo-11 Dust Grains by Secondary Electron Emissions

    Science.gov (United States)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Observations made during Apollo missions, as well as theoretical models indicate that the lunar surface and dust grains are electrostatically charged, levitated and transported. Lunar dust grains are charged by UV photoelectric emissions on the lunar dayside and by the impact of the solar wind electrons on the nightside. The knowledge of charging properties of individual lunar dust grains is important for developing appropriate theoretical models and mitigating strategies. Currently, very limited experimental data are available for charging of individual micron-size size lunar dust grains in particular by low energy electron impact. However, experimental results based on extensive laboratory measurements on the charging of individual 0.2-13 micron size lunar dust grains by the secondary electron emissions (SEE) have been presented in a recent publication. The SEE process of charging of micron-size dust grains, however, is found to be very complex phenomena with strong particle size dependence. In this paper we present some examples of the complex nature of the SEE properties of positively charged individual lunar dust grains levitated in an electrodynamic balance (EDB), and show that they remain unaffected by the variation of the AC field employed in the above mentioned measurements.

  14. Effects of N Fertilizer Sources and Tillage Practices on NH3 Volatilization, Grain Yield, and N Use Efficiency of Rice Fields in Central China

    Directory of Open Access Journals (Sweden)

    Tianqi Liu

    2018-03-01

    Full Text Available Tillage practices and nitrogen (N sources are important factors affecting rice production. Few studies, however, have examined the interactions between tillage practices and N fertilizer sources on NH3 volatilization, nitrogen use efficiency (NUE, and rice grain yield. This study aimed to investigate the effects of N fertilizer sources (no N fertilizer, inorganic N fertilizer, organic N fertilizer alone, organic N fertilizer plus inorganic N fertilizer, and slow-release N fertilizer plus inorganic N fertilizer and tillage practices (no-tillage [NT] and conventional intensive tillage [CT] on NH3 flux, grain yield, and NUE in the rice field of central China. N sources significantly affected NH3 volatilization, as the cumulative volatilization from the treatments of inorganic N fertilizer, organic N fertilizer, organic N fertilizer plus inorganic N fertilizer, slow-release N fertilizer plus inorganic N fertilizer was 4.19, 2.13, 3.42, and 2.23 folds in 2013, and 2.49, 1.68, 2.08, and 1.85 folds in 2014 compared with that under no N fertilizer treatment, respectively. The organic N fertilizer treatment had the lowest grain yield and NUE among all N fertilizer treatments, while slow-release N fertilizer plus inorganic N fertilizer treatment led to relatively higher grain yield and the greatest N use efficiency. Moreover, NT only markedly increased NH3 volatilization from basal fertilizer by 10–14% in average compared with CT, but had no obvious effects on total volatilization during the whole seasons. Tillage practices had no significant effects on grain yield and NUE. Our study suggested that the combination of slow-release N fertilizer plus inorganic N fertilizer and NT might be a sustainable method for mitigating greenhouse gas and NH3 emissions and improving grain yield and NUE in paddy fields of central China.

  15. Effects of N Fertilizer Sources and Tillage Practices on NH3 Volatilization, Grain Yield, and N Use Efficiency of Rice Fields in Central China.

    Science.gov (United States)

    Liu, Tianqi; Huang, Jinfeng; Chai, Kaibin; Cao, Cougui; Li, Chengfang

    2018-01-01

    Tillage practices and nitrogen (N) sources are important factors affecting rice production. Few studies, however, have examined the interactions between tillage practices and N fertilizer sources on NH 3 volatilization, nitrogen use efficiency (NUE), and rice grain yield. This study aimed to investigate the effects of N fertilizer sources (no N fertilizer, inorganic N fertilizer, organic N fertilizer alone, organic N fertilizer plus inorganic N fertilizer, and slow-release N fertilizer plus inorganic N fertilizer) and tillage practices (no-tillage [NT] and conventional intensive tillage [CT]) on NH 3 flux, grain yield, and NUE in the rice field of central China. N sources significantly affected NH 3 volatilization, as the cumulative volatilization from the treatments of inorganic N fertilizer, organic N fertilizer, organic N fertilizer plus inorganic N fertilizer, slow-release N fertilizer plus inorganic N fertilizer was 4.19, 2.13, 3.42, and 2.23 folds in 2013, and 2.49, 1.68, 2.08, and 1.85 folds in 2014 compared with that under no N fertilizer treatment, respectively. The organic N fertilizer treatment had the lowest grain yield and NUE among all N fertilizer treatments, while slow-release N fertilizer plus inorganic N fertilizer treatment led to relatively higher grain yield and the greatest N use efficiency. Moreover, NT only markedly increased NH 3 volatilization from basal fertilizer by 10-14% in average compared with CT, but had no obvious effects on total volatilization during the whole seasons. Tillage practices had no significant effects on grain yield and NUE. Our study suggested that the combination of slow-release N fertilizer plus inorganic N fertilizer and NT might be a sustainable method for mitigating greenhouse gas and NH 3 emissions and improving grain yield and NUE in paddy fields of central China.

  16. Determination of low-energy ion-induced electron yields from thin carbon foils

    International Nuclear Information System (INIS)

    Allegrini, Frederic; Wimmer-Schweingruber, Robert F.; Wurz, Peter; Bochsler, Peter

    2003-01-01

    Ion beams crossing thin carbon foils can cause electron emission from the entrance and exit surface. Thin carbon foils are used in various types of time-of-flight (TOF) mass spectrometers to produce start pulses for TOF measurements. The yield of emitted electrons depends, among other parameters, on the energy of the incoming ion and its mass, and it has been experimentally determined for a few projectile elements. The electron emission yield is of great importance for deriving abundance ratios of elements and isotopes in space plasmas using TOF mass spectrometers. We have developed a detector for measuring ion-induced electron yields, and we have extended the electron yield measurements for oxygen to energies relevant for solar wind research. We also present first measurements of the carbon foil electron emission yield for argon and iron in the solar wind energy range

  17. Consortium Application of Endophytic Bacteria and Fungi Improves Grain Yield and Physiological Attributes in Advanced Lines of Bread Wheat

    Directory of Open Access Journals (Sweden)

    Ghulam Muhae-Ud-Din

    2018-02-01

    Full Text Available Increasing human population places pressure on agriculture. To feed this population, two time increase in the current wheat production is needed. Today agriculture is becoming input intensive with more reliance on synthetic fertilizers and agrochemicals to fulfil the feed demand of the growing numbers. Use of synthetic fertilizer since last few years is impacting the soil quality. In this scenario, the use of beneficial endophytic microbes is an attractive strategy to overcome the use of synthetic products. To investigate the effect of consortium application of endophytic bacteria and fungus on plant growth, grain yield moisture status, a pot experiment was conducted in different wheat lines. It comprised four treatments like control, application of bacterial strain Bacillus sp. MN54, fungal strain Trichoderma sp. MN6, and their consortium (Bacillus sp. MN54 + Trichoderma sp. MN6. The effect of consortium application was more prominent and significantly different from the sole application of bacteria and fungus. The results showed that with a consortium application of endophytic bacteria and fungus, there was 28.6, 4.3, -6.3 and -3.7% increases in flag leaf area, chlorophyll content, relative membrane permeability and water content respectively. Consortia of endophytic microbes also resulted in the yield enhancement through the betterment of various yield attributes like number of spikelet’s, grains per spike and grain yield per plant (32.2, 25.8 and 30.8%, respectively. So, consortia of endophytic microbes can greatly promote the progress of plants in dry land agriculture and increase the yield in an environmentally sustainable way.

  18. Effects of Nano-Zinc oxide and Seed Inoculation by Plant Growth Promoting Rhizobacteria (PGPR on Yield, Yield Components and Grain Filling Period of Soybean (Glycine max L.

    Directory of Open Access Journals (Sweden)

    R. Seyed Sharifi

    2016-02-01

    promoting rhizobacteria application on yield, yield components and grain filling period of soybean. Materials and Methods In order to study the effects of Nano-Zinc oxide and seed inoculation with Brady rhizobium and plant growth promoting rhizobacteria on yield and some agronomic characteristics of soybean, a factorial experiment based on randomized complete block design with three replications was conducted in 2013 at the research farm of the Islamic Azad University, Ardabil Branch. Factors were included foliar application of Nano-Zinc oxide at four levels (Zero as control, 0.3, 0.6 and 0.9 g l-1 and seed inoculation with Brady rhizobium and plant growth promoting rhizobacteria at five levels (without inoculation as control, seed inoculation with Brady rhizobium japanicum, seed inoculation with Brady rhizobium japanicum+Azosprillum lipoferum strain OF, seed inoculation with Brady rhizobium japanicum+Psedomonas putida, seed inoculation with Brady rhizobium japanicum+ Azosprillum lipoferum strain OF+ Psedomonas putida. Results and Discussion The results of growth indices showed that the maximum total dry matter (530 g m-2, crop growth rate (9.48 g.m-2.day-1 and relative growth rate (0.1 g.g-1.day-1 were obtained at foliar application of 0.9 g l-1 Nano-Zinc oxide×seed inoculation with rhizobium+Azosprillum+ Psedomonas and the least of these indices were obtained without of foliar application Nano-Zinc oxide × seed inoculation. The results showed that plant height, the number of nodules per plant, the number of pod per plant, grain yield and grain 100 weight were significantly affected by Nano-Zinc oxide, seed inoculation and interaction of Nano-Zinc oxide×seed inoculation. Maximum of plant height, grain 100 weight, the number of nodules per plant and grain yield were obtained at foliar application of 0.9 g l-1 of Nano-Zinc oxide×seed inoculation with rhizobium and PGPR. Dry weight of nodules per plant, the number of pod per plant and the number of grains per plant

  19. Onset of turbulence induced by electron nonthermality in a complex plasma in presence of positively charged dust grains

    Directory of Open Access Journals (Sweden)

    Susmita Sarkar

    2018-03-01

    Full Text Available In this paper onset of turbulence has been detected from the study of non linear dust acoustic wave propagation in a complex plasma considering electrons nonthermal and equilibrium dust charge positive. Dust grains are charged by secondary electron emission process. Our analysis shows that increase in electron nonthermality makes the grain charging process faster by reducing the magnitude of the nonadiabaticity induced pseudo viscosity. Consequently nature of dust charge variation changes from nonadiabatic to adiabatic one. For further increase of electron nonthermality, this pseudo viscosity becomes negative and hence generates a turbulent grain charging behaviour. This turbulent grain charging phenomenon is exclusively the outcome of this nonlinear study which was not found in linear analysis.

  20. Relationships between early spring wheat streak mosaic severity levels and grain yield: Implications for management decisions

    Science.gov (United States)

    Wheat streak mosaic (WSM) caused by Wheat streak mosaic virus, which is transmitted by the wheat curl mite (Aceria tosichella), is a major yield-limiting disease in the Texas High Plains. In addition to its impact on grain production, the disease reduces water-use efficiency by affecting root develo...

  1. yield and yield componemts of extra early maize (zea mays l.)

    African Journals Online (AJOL)

    SHARIFAI

    maize crop and improve the soil structures and chemical nutrients of the soil. The significant interaction between intra-row spacing and poultry manure on cob diameter, 100 grain weight and grain yield showed the importance of poultry manure on yield and yield components of maize crop. Poultry manure increases both ...

  2. Effect of different forms of nitrogen fertlizers applied in the end of tillering on yield and quality of winter wheat grain

    Directory of Open Access Journals (Sweden)

    Ladislav Ducsay

    2005-01-01

    Full Text Available In the years 1999 to 2001 in conditions of small-plot field experiments was carried out on loamy degraded chernozems at the Plant Breeding Station of Sládkovičovo-Nový Dvor to solve the problems of topdressing winter wheat (Triticum aestivum, L., variety Astella, with different forms of nitrogenous fertilizers. Nitrogenous fertilizers were applied at the growth phase of the 6th leaf (Zadoks = 29. Four various forms of fertilizers were exemined: urea solution, DAM-390, DAM-390 + Dumag, DASA. Different weather conditions statistically highly significantly influenced grain yield in respective experimental years. Topdressing with nitrogen (30 kg N.ha–1 caused statistically highly significant increase of grain yield in all fertilized variants ranging from +0.29 t.ha–1 (applied of DAM-390 to +0.69 t.ha–1 (applied of DASA according to respective treatments. Average grain yield in unfertilized control variant represented 7.23 t.ha–1. Nitrogen nutrition showed positive effect on the main macroelements offtake (N, P, K, Ca, Mg, S by winter wheat grain in all fertilized variants. Nitrogen fertilizing positively influenced formation of wet gluten and crude protein with highest increment in variant with DASA and variant with DAM-390 + Dumag.

  3. Additive recovery at lateral boundaries of grains under electronic exposure

    International Nuclear Information System (INIS)

    Plotnikov, S.V.; Postnikov, D.V.

    2000-01-01

    The experimental investigation of additive re-distribution under electronic beam revealed a recovery of the additive at grain boundaries. Additive accumulation mainly takes place at the boundaries that are perpendicular to material surface, whereas there is no an observed recovery of additive at the boundaries that are parallel to the surface. To construe the processes of additive recovery at grain boundaries, we may use the kinetic diffusion equation describing the mass transfer processes in the presence of temperature gradients and non-equilibrium vacancies. The additive recovery is caused by spot fault gradients near the grain boundary. The grain boundary is an intensive run-off region of vacancies. Therefore, the average vacancy distribution profile near the grain boundary changes its pattern. The above case indicates that there are two additive fluxes. One of them is vectored perpendicular to the surface, and the other one is parallel to it, i.e. it is vectored to the grain boundary. A study of the perpendicular and parallel boundaries shows that there is no additive settling at the boundaries that are parallel to the surface, since the general flux is vectored to the parallel boundaries. There is no such kind of phenomenon at the grain boundaries that are perpendicular to the surface. Besides, the perpendicular boundaries are more effective run-off regions for vacancies, since there is a slower build-up of the region with vacancies due to displacement of the vacancies to the surface

  4. What is the Best Model Specification and Earth Observation Product for Predicting Regional Grain Yields in Food Insecure Countries?

    Science.gov (United States)

    Davenport, F., IV; Harrison, L.; Shukla, S.; Husak, G. J.; Funk, C. C.

    2017-12-01

    We evaluate the predictive accuracy of an ensemble of empirical model specifications that use earth observation data to predict sub-national grain yields in Mexico and East Africa. Products that are actively used for seasonal drought monitoring are tested as yield predictors. Our research is driven by the fact that East Africa is a region where decisions regarding agricultural production are critical to preventing the loss of economic livelihoods and human life. Regional grain yield forecasts can be used to anticipate availability and prices of key staples, which can turn can inform decisions about targeting humanitarian response such as food aid. Our objective is to identify-for a given region, grain, and time year- what type of model and/or earth observation can most accurately predict end of season yields. We fit a set of models to county level panel data from Mexico, Kenya, Sudan, South Sudan, and Somalia. We then examine out of sample predicative accuracy using various linear and non-linear models that incorporate spatial and time varying coefficients. We compare accuracy within and across models that use predictor variables from remotely sensed measures of precipitation, temperature, soil moisture, and other land surface processes. We also examine at what point in the season a given model or product is most useful for determining predictive accuracy. Finally we compare predictive accuracy across a variety of agricultural regimes including high intensity irrigated commercial agricultural and rain fed subsistence level farms.

  5. Transmission Electron Microscopy of Itokawa Regolith Grains

    Science.gov (United States)

    Keller, Lindsay P.; Berger, E. L.

    2013-01-01

    Introduction: In a remarkable engineering achievement, the JAXA space agency successfully recovered the Hayabusa space-craft in June 2010, following a non-optimal encounter and sur-face sampling mission to asteroid 25143 Itokawa. These are the first direct samples ever obtained and returned from the surface of an asteroid. The Hayabusa samples thus present a special op-portunity to directly investigate the evolution of asteroidal sur-faces, from the development of the regolith to the study of the effects of space weathering. Here we report on our preliminary TEM measurements on two Itokawa samples. Methods: We were allocated particles RA-QD02-0125 and RA-QD02-0211. Both particles were embedded in low viscosity epoxy and thin sections were prepared using ultramicrotomy. High resolution images and electron diffraction data were ob-tained using a JEOL 2500SE 200 kV field-emission scanning-transmission electron microscope. Quantitative maps and anal-yses were obtained using a Thermo thin-window energy-dispersive x-ray (EDX) spectrometer. Results: Both particles are olivine-rich (Fo70) with µm-sized inclusions of FeS and have microstructurally complex rims. Par-ticle RA-QD02-0125 is rounded and has numerous sub-µm grains attached to its surface including FeS, albite, olivine, and rare melt droplets. Solar flare tracks have not been observed, but the particle is surrounded by a continuous 50 nm thick, stuctur-ally disordered rim that is compositionally similar to the core of the grain. One of the surface adhering grains is pyrrhotite show-ing a S-depleted rim (8-10 nm thick) with nanophase Fe metal grains (<5 nm) decorating the outermost surface. The pyrrhotite displays a complex superstructure in its core that is absent in the S-depleted rim. Particle RA-QD02-0211 contains solar flare particle tracks (2x109 cm-2) and shows a structurally disordered rim 100 nm thick. The track density corresponds to a surface exposure of 103-104 years based on the track production rate

  6. EFFECT OF NITROGEN-FIXING BACTERIA ON GRAIN YIELD AND DEVELOPMENT OF FLOODED IRRIGATED RICE

    Directory of Open Access Journals (Sweden)

    AMAURI NELSON BEUTLER

    2016-01-01

    Full Text Available This study aimed at evaluating the effect of Azospirillum brasilense , a nitrogen - fixing bacterium, on flooded irrigated rice yield. Evaluations were carried out in a shaded nursery, with seedlings grown on an Alfisol. Were performed two sets of experiments. In the first, were carried out four experiments using the flooded rice cultivars INIA Olimar, Puitá Inta - CL, Br Irga 409 and Irga 424; these trials were set up as completely randomized design in a 5x4 factorial scheme, with four replications. Treatments consisted of five nitrogen rates (0, 40, 80, 120 and 160 kg ha - 1 and four levels of liquid inoculant Ab - V5 and Ab - V6 - A. brasilense (0, 1, 2 and 4 times the manufacturer's recommendation without seed treatment. In second set, were performed two experiments using the cultivars Puitá Inta - CL and Br Irga 409, arranged in the same design, but using a 4x2 factorial. In this set, treatments were composed of four levels of Ab - V5 and Ab - V6 - A. brasilense liquid inoculant (0, 1, 2 and 4 times the recommendation of 100 mL ha - 1 , using rice seeds with and without insecticide and fungicide treatment. Shoot dry matter, number of panicles, and rice grain yield per pot were the assessed variables. The results showed that rice seed inoculation with A. brasilense had no effects on rice grain yield of the cultivars INIA Olimar, Puitá Inta - CL, Br Irga 409 and Irga 424.

  7. Effects of Bean-Maize Intercropping,Phosphorus and Manure Additions on N2 fixation and Grain Yield of Phaseolus Vulgaris in the Central Kenya Highlands

    International Nuclear Information System (INIS)

    Kimani, S.K.; Mwangale, N.; Gathua, K.W.; Delve, R.; Cadisch, G.

    1999-01-01

    Sole bean and intercropped bean crops were studied for four seasons from 1996-1998. Addition of organic P at the recommended rate of 60 kg P 2 O 5 ha -1 increased bean standing biomass and grain yields during the first season. Cattle manure applied at the rate of 12 t ha -1 (25% moisture content), had a negative effect on bean yield during the first season, possibly due to short-term nutrient immobilisation induced by the high C:N ratio of manure. In subsequent seasons, manure additions resulted in higher grain yields compared to inorganic P. Intercropping bean with maize lowered grain yields by 10-100%. N 2 fixed on beans on average from 55 to 69%. Intercropping thus provides a strategy for a better N resource use where the maize competes efficiently for available soil mineral N and the legume replenishes part of the extracted N via atmospheric N 2 fixation. However, the amounts of N 2 fixed appear not to be enough to replenish whole systems N in grain crops and so additional N 2 are needed. Thus more attention needs to be given to manure management and its long-term impact on soil fertility

  8. Yield and acidity indices of sunflower and soybean oils in function of grain drying and storage

    Directory of Open Access Journals (Sweden)

    Paulo Carteri Coradi

    2017-04-01

    Full Text Available The aim of this study was to identify the best conditions for drying and storing soybeans and sunflower grains to maintain their quality. In the first experiment, the soybeans were found to have initial moisture contents of 25 and 19% (w.b. at different drying air temperatures (75, 90, 105, and 120°C. In the second step, the soybeans were evaluated after they were stored in paper bags and plastic polyethylene at temperatures of 3, 10 and 23°C for six months. In the third experiment, sunflower grains were tested after exposure to drying air temperatures of 45, 55, 65, and 75°C, and under storage conditions of 25°C and 50%, 20°C and 60%, 30°C and 40% RH over six months in paper bags and raffia. Drying the sunflower seeds at 45°C and storing them at 30°C and 40% RH led to higher oil yields and lower acid numbers. The oil that was extracted from the acid number was higher for soybean grains that were dried down from initial concentrations of 25% water at a drying air temperature of 120°C. The air temperature in storage at 3°C favored for yield and reduction of the soybean oil acidity.

  9. Genetic dissection of grain size and grain number trade-offs in CIMMYT wheat germplasm.

    Science.gov (United States)

    Griffiths, Simon; Wingen, Luzie; Pietragalla, Julian; Garcia, Guillermo; Hasan, Ahmed; Miralles, Daniel; Calderini, Daniel F; Ankleshwaria, Jignaben Bipinchandra; Waite, Michelle Leverington; Simmonds, James; Snape, John; Reynolds, Matthew

    2015-01-01

    Grain weight (GW) and number per unit area of land (GN) are the primary components of grain yield in wheat. In segregating populations both yield components often show a negative correlation among themselves. Here we use a recombinant doubled haploid population of 105 individuals developed from the CIMMYT varieties Weebill and Bacanora to understand the relative contribution of these components to grain yield and their interaction with each other. Weebill was chosen for its high GW and Bacanora for high GN. The population was phenotyped in Mexico, Argentina, Chile and the UK. Two loci influencing grain yield were indicated on 1B and 7B after QTL analysis. Weebill contributed the increasing alleles. The 1B effect, which is probably caused by to the 1BL.1RS rye introgression in Bacanora, was a result of increased GN, whereas, the 7B QTL controls GW. We concluded that increased in GW from Weebill 7B allele is not accompanied by a significant reduction in grain number. The extent of the GW and GN trade-off is reduced. This makes this locus an attractive target for marker assisted selection to develop high yielding bold grain varieties like Weebill. AMMI analysis was used to show that the 7B Weebill allele appears to contribute to yield stability.

  10. The Effect of Inoculation with Azotobacter and Nitrogen Levels on Grain and Corn Yield Components at Simultaneous Cropping System with Legumes

    Directory of Open Access Journals (Sweden)

    mohammad mirzakhani

    2017-09-01

    Full Text Available Introduction: Corn has been regarded as one of the important crops from the view point of both human and animal feeding resource. Intercropping defined as cultivation of two or more species together. The advantages of intercropping can be included: efficient use of water and sunlight, exchange of nutrients, weed competition reduction, reduction of pathogens and the increase of soil fertility. Research shows that intercropping combinations of legume–grass will increase forage quality. Because, grasses Grains have a lot of carbohydrates and legumes are rich in protein and vitamins. This study was conducted to evaluate the effect of inoculation with azotobacter and nitrogen levels on grain and corn yield components at simultaneous cropping system with legumes under the weather conditions of Markazi province. Materials and methods: This study was carried out at agricultural research field of Payame Noor University, Arak Branch during 2011. A factorial arrangement of treatment in a randomized complete block design with three replications was used. Methods of plant nutrition (M0= inoculation with azotobacter, M1= inoculation with azotobacter + 37/5 Kg ha-1 of rare nitrogen with foliar application method, M2= inoculation with azotobacter + 150 Kg ha-1 of rare nitrogen mix with soil and simultaneous cropping treatment of legumes, [S1= corn + alfalfa (Medicago sativa L., S2= corn + bitter vetch (Lathyrus sativus L., S3= corn + mung bean (Vigna radiata L., S4= corn + chickpea (Cicer arientinum L., S5= corn + vetch (Vicia ervillia L. ] were assigned in plots. Each sub plot consisted of 4 rows, 6 m long with 60 cm between rows space and 20 cm between plants on the rows and S.C Apex hybrid was used. In this study characteristics such as: plant height, earing height, the number of grains per m-2, the number of rows per ear, the number of grains per row, surface of ear leaf, grain yield of corn, 1000 grain weight, harvest index of corn, nitrogen use

  11. Effect of different fertilizer resources on yield and yield components of grain maize (Zea mays L. affected by tillage managements

    Directory of Open Access Journals (Sweden)

    Ahmad Ghasemi

    2016-03-01

    maturity, 10 plants were randomly selected and the plant height, the number of kernels per row, the number of rows per ear, the seed weight, the harvest index, and the ear length were measured, separately. Results and discussion The results showed that in comparison with the first year, in the second year a significant increase was observed in plant height, ear length, number of kernel per row, weight of 100 seed weight, harvest index, and seed yield. The highest grain yield was obtained from the conventional tillage systems (mixing the fertilizer with the soil with the mean of 4494.85 kg.ha-1. Other characteristics, except the number of row per ear, increased more in the conventional tillage than in the no tillage. Fertilizer sources were significant for plant height, ear length, number of kernel per row, weight of 100 kernels, harvest index, and seed yield. The highest grain yield was obtained from the sixth treatment (mix of animal, chemical and green manures with the mean of 7018.5 kg.ha-1. The interaction of year, tillage and fertilizer sources indicated that the highest grain yield and 100 seed weight were obtained from the conventional tillage systems and from the 6th treatment (mix of animal, chemical and green manures with the means of 9400.33 kg.ha-1 and 246 g, respectively. In the conventional tillage, microbial decomposition occurs faster than in the no tillage. Nutrients are released in vicinity of the plant roots and it can be placed conveniently at the disposal plant. In this way, the sixth treatment will achieve higher yield and better quality, because it can create diverse sources of essential nutrients for the plant; moreover, it can increase absorption capacity in corn. Conclusion In conventional tillage systems, where the sources of fertilizer are mixed with soil, the plant is placed in direct contact with the soil degrading bacteria, accelerating the fertilizers’ mineralization, and ultimately, improving the plant growth. Due to high soil density

  12. Additive recovery of lateral boundaries of grains under electronic exposure

    International Nuclear Information System (INIS)

    Postnikov, D.V.; Plotnikov, S.V.

    2002-01-01

    The experimental investigation of additive re-distribution under electronic beam revealed a recovery of the additive at grain boundaries. Additive accumulation mainly takes place at the boundaries that are perpendicular to material surface, whereas there is no an observed recovery of additive at the boundaries that are parallel to the surface. The additive recovery is caused by spot fault gradients near the grain boundary. The grain boundary is an intensive run-off region of vacancies. Therefore, the average vacancy distribution profile near the grain boundary changes its pattern. The above case indicates that there are two additive fluxes. One of them is vectored perpendicular to the surface, and the other one is parallel to it, i. e. it is vectored to the grain boundary. A study of the perpendicular and parallel boundaries shows that there is no additive settling at the boundaries that are parallel to the surface, since the general flux is vectored to the parallel boundaries. There is no such kind of phenomenon at the grain boundaries that are perpendicular to the surface. Besides, the perpendicular boundaries are more effective run-off regions for vacancies, since there is a slower build-up of the region with vacancies due to displacement of the vacancies to the surface. To compute concentration of vacancies we will consider a grain of the surface as a model. The computations indicate the presence of vacancy gradients vectored to the surface and grain boundaries, which are perpendicular to the surface. Comparison of the experimental and theoretical outcomes shows a good agreement between the theoretical model and actual processes occurring under the exposure. This theory disclose wide potentials for application of diffusion processes in alloys

  13. Effect of sowing date and plant density on grain and flower yield of Pot Marigold (Calendula officinalis L.

    Directory of Open Access Journals (Sweden)

    mohamad javad seghatol eslami

    2009-06-01

    Full Text Available Pot marigold (Calendula officinalis L. is a medicinal herb whose dried flower heads are used to heal wounds. In order to study the effects of sowing dates and plant density on grain and flower yield of pot marigold, an experiment was conducted at Agricultural Research Center of Islamic Azad University, Birjand Branch in 2005. Three sowing dates (30 March, 14 April and 30 April and three plant densities (plant distances on row were 10, 20 and 30 centimeters were compared in a split- plot experiment based on a randomized complete block design with 3 replications. Seed and flower yields were significantly different at planting dates and plant densities. Sowing date had significant effects on flower and seed harvest index. The latest sowing dates had the highest flower and seed harvest index. Plant density had not significant effect on flower harvest index, but the effect on seed harvest index, was significant. In total our result showed that the first sowing date with 25 plants/m2 had the highest grain and flower yield. Keywords: Marigold, sowing date, plant density, medicinal plant.

  14. Application of carbon extraction replicas in grain-size measurements of high-strength steels using TEM

    International Nuclear Information System (INIS)

    Poorhaydari, Kioumars; Ivey, Douglas G.

    2007-01-01

    In this paper, the application of carbon extraction replicas in grain-size measurements is introduced and discussed. Modern high-strength microalloyed steels, used as structural or pipeline materials, have very small grains with substructures. Replicas used in transmission electron microscopes can resolve the grain boundaries and can be used for systematic measurement of grain size in cases where the small size of the grains pushes the resolution of conventional optical microscopes. The grain-size variations obtained from replicas are compared with those obtained from optical and scanning electron microscopy. An emphasis is placed on the importance of using the correct technique for imaging and the optimal magnification. Grain-size measurements are used for estimation of grain-boundary strengthening contribution to yield strength. The variation in grain size is also correlated with hardness in the base metal of several microalloyed steels, as well as the fine-grained heat-affected zone of a weld structure with several heat inputs

  15. Agro-Economic Optimization of Fertilizer Level and Rhizobium Strains for Enhanced Grain Yield in Mungbean (Vigna Radiata L.)

    International Nuclear Information System (INIS)

    Mansoor, M.; Elahi, M. E.; Islam, Z.; Ali, A.

    2016-01-01

    To explore the effect of PGPR for improvement in grain yield of mungbean, different levels of fertilizer (00:00, 20:50 and 20:70 kg N:P/sub 2/O/sub 5/ kg ha/sup -1/) were tested on four strains (CB 1015 Australia, Vm-L1, Vm-M1 and Vm-M2) at Agricultural Research Institute, Dera Ismail Khan. A Randomized Complete Block Design with split plot arrangement was used to conduct the experiment by keeping three fertilizer levels in the main plot and Rhizobium strains in sub-plot. The data were recorded for different parameters like number of branches plant/sup -1/, number of clusters plant/sup -1/, number of pods plant/sup -1/., number of grain pod/sup -1/, pod length (cm) and grain yield kg ha/sup -1/. The response of fertilizer levels and inoculation with Rhizobium strains were found significant in most of the parameters under study. The strain Vm-M1 produced the highest number of branches plant/sup -1/(5.42), number of clusters plant/sup -1/(22.92), number of pods plant/sup -1/(77.64), pod length (8.37 cm) when applied in combination of N:P/sub 2/O/sub 5/ at the rate of 20:70 and 20:50 kg ha/sup -1/. Although the grain yield (1421 kg ha/sup -1/) recorded in treatment (20:70 kg N:P/sub 2/O/sub 5/ ha/sup -1/ + Inoculation with strain Vm M1) was highest but economically the treatment (20:50 kg N:P/sub 2/O/sub 5/ ha/sup -1/ + inoculation with strain Vm M1) with net return of Rs. 13618 ha/sup -1/ and BCR of 2.52 was on top. (author)

  16. Effect of the New Plant Growth Biostimulants Based on Amino Acids on Yield and Grain Quality of Winter Wheat.

    Science.gov (United States)

    Popko, Małgorzata; Michalak, Izabela; Wilk, Radosław; Gramza, Mateusz; Chojnacka, Katarzyna; Górecki, Henryk

    2018-02-21

    Field and laboratory experiments were carried out in 2012-2013, aimed at evaluating the influence of new products stimulating plant growth based on amino acids on crop yield, characteristics of grain and content of macro- and micronutrients in winter wheat ( Triticum aestivum L.). The tests included two formulations produced in cooperation with INTERMAG Co. (Olkusz, Poland)-AminoPrim and AminoHort, containing 15% and 20% amino acids, respectively, and 0.27% and 2.1% microelements, respectively. Field experiments showed that the application of products based on amino acids influenced the increase of grain yield of winter wheat (5.4% and 11%, respectively, for the application of AminoPrim at a dose 1.0 L/ha and AminoHort at dose 1.25 L/ha) when compared to the control group without biostimulant. Laboratory tests showed an increase of technological characteristics of grain such as ash content, Zeleny sedimentation index and content of protein. The use of the tested preparations at different doses also contributed to the increase of the nutrients content in grains, in particular copper (ranging 31-50%), as well as sodium (35-43%), calcium (4.3-7.9%) and molybdenum (3.9-16%). Biostimulants based on amino acids, tested in the present study, can be recommended for an efficient agricultural production.

  17. Increasing water productivity, nitrogen economy, and grain yield of rice by water saving irrigation and fertilizer-N management.

    Science.gov (United States)

    Aziz, Omar; Hussain, Saddam; Rizwan, Muhammad; Riaz, Muhammad; Bashir, Saqib; Lin, Lirong; Mehmood, Sajid; Imran, Muhammad; Yaseen, Rizwan; Lu, Guoan

    2018-06-01

    The looming water resources worldwide necessitate the development of water-saving technologies in rice production. An open greenhouse experiment was conducted on rice during the summer season of 2016 at Huazhong Agricultural University, Wuhan, China, in order to study the influence of irrigation methods and nitrogen (N) inputs on water productivity, N economy, and grain yield of rice. Two irrigation methods, viz. conventional irrigation (CI) and "thin-shallow-moist-dry" irrigation (TSMDI), and three levels of nitrogen, viz. 0 kg N ha -1 (N 0 ), 90 kg N ha -1 (N 1 ), and 180 kg N ha -1 (N 2 ), were examined with three replications. Study data indicated that no significant water by nitrogen interaction on grain yield, biomass, water productivity, N uptake, NUE, and fertilizer N balance was observed. Results revealed that TSMDI method showed significantly higher water productivity and irrigation water applications were reduced by 17.49% in TSMDI compared to CI. Thus, TSMDI enhanced root growth and offered significantly greater water saving along with getting more grain yield compared to CI. Nitrogen tracer ( 15 N) technique accurately assessed the absorption and distribution of added N in the soil crop environment and divulge higher nitrogen use efficiency (NUE) influenced by TSMDI. At the same N inputs, the TSMDI was the optimal method to minimize nitrogen leaching loss by decreasing water leakage about 18.63%, which are beneficial for the ecological environment.

  18. Influence of Crop Nutrition on Grain Yield, Seed Quality and Water Productivity under Two Rice Cultivation Systems

    Directory of Open Access Journals (Sweden)

    Y.V. SINGH

    2013-03-01

    Full Text Available The system of rice intensification (SRI is reported to have advantages like lower seed requirement, less pest attack, shorter crop duration, higher water use efficiency and the ability to withstand higher degree of moisture stress than traditional method of rice cultivation. With this background, SRI was compared with traditional transplanting technique at Indian Agricultural Research Institute, New Delhi, India during two wet seasons (2009–2011. In the experiment laid out in a factorial randomized block design, two methods of rice cultivation [conventional transplanting (CT and SRI] and two rice varieties (Pusa Basmati 1 and Pusa 44 were used under seven crop nutrition treatments, viz. T1, 120 kg/hm2 N, 26.2 kg/hm2 P and 33 kg/hm2 K; T2, 20 t/hm2 farmyard manure (FYM; T3, 10 t/hm2 FYM + 60 kg/hm2 N; T4, 5 t/hm2 FYM + 90 kg/hm2 N; T5, 5 t/hm2 FYM + 60 kg/hm2 N + 1.5 kg/hm2 blue green algae (BGA; T6, 5 t/hm2 FYM + 60 kg/hm2 N + 1.0 t/hm2 Azolla, and T7, N0P0K0 (control, no NPK application to study the effect on seed quality, yield and water use. In SRI, soil was kept at saturated moisture condition throughout vegetative phase and thin layer of water (2–3 cm was maintained during the reproductive phase of rice, however, in CT, standing water was maintained in crop growing season. Results revealed that CT and SRI gave statistically at par grain yield but straw yield was significantly higher in CT as compared to SRI. Seed quality was superior in SRI as compared to CT. Integrated nutrient management (INM resulted in higher plant height with longer leaves than chemical fertilizer alone in both the rice varieties. Grain yield attributes such as number of effective tillers per hill, panicle length and panicle weight of rice in both the varieties were significantly higher in INM as compared to chemical fertilizer alone. Grain yields of both the varieties were the highest in INM followed by the recommended doses of chemical fertilizer. The grain yield

  19. Grain yield and crop N offtake in response to residual fertilizer N in long-term field experiments

    DEFF Research Database (Denmark)

    Petersen, Jens; Thomsen, Ingrid Kaag; Mattsson, L.

    2010-01-01

    in four long-term (>35 yr) field experiments, we measured the response of barley (grain yield and N offtake at crop maturity) to six rates (0, 30, 60, 90, 120 and 150 kg N/ha) of mineral fertilizer N (Nnew) applied in subplots replacing the customary long-term plot treatments of fertilizer inputs (Nprev......). Rates of Nprev above 50-100 kg N/ha had no consistent effect on the soil N content, but this was up to 20% greater than that in unfertilized treatments. Long-term unfertilized plots should not be used as control to test the residual value of N in modern agriculture with large production potentials....... Although the effect of mineral Nprev on grain yield and N offtake could be substituted by Nnew within a range of previous inputs, the value of Nprev was not eliminated irrespective of Nnew rate. Provided a sufficient supply of plant nutrients other than N, the use-efficiency of Nnew did not change...

  20. Performance of organic grain legumes in Tuscany

    Directory of Open Access Journals (Sweden)

    Valentina Moschini

    2014-03-01

    Full Text Available In 2005-2007 growing season, few varieties of field bean, high protein pea and white lupin were compared in an organic farm of Central Italy (Mugello area, Tuscany, to evaluate their agronomic performance in terms of grain yield, nutritional quality and competitive ability against weeds. The experiment was performed under rain-fed conditions. Furthermore, grain legumes features were compared between two different sowing seasons (autumnal vs late-winter for two years, in order to get information on the best time of sowing of these species, and the stability of yields of different genotypes in those climatic and soil conditions. These legumes could be an alternative protein source to external soybean, a high-risk alimentary source of genetically modified organisms, in the organic livestock sector. The main findings indicate that higher yields in grain and crude protein were obtained with the pea species and in particular with cultivars Hardy (4.0 t/ha grain yield; 626 kg/ha crude protein yield and Classic (3.1 t/ha grain yield; 557 kg/ha crude protein yield; followed by field bean cv. Chiaro di Torre Lama (2.9 t/ha grain yield; 624 kg/ha crude protein yield and cv. Vesuvio (2.5 t/ha grain yield; 549 kg/ha crude protein yield. Furthermore the field bean is interesting for the stability of yield in both years despite climatic conditions rather different. The white lupin has showed the lower yield but the best values of grain quality, with higher values in lupin Multitalia for dry matter, crude protein and ether extract and in lupin Luxe also for crude fibre, respect to the other legumes analysed. Among lupin varieties, lupin Multitalia showed the best yield results for the pedo-climatic conditions of Mugello area (0.9 t/ha lupin Multitalia; 0.2 t/ha lupin Luxe. The total yield of organic grain legumes, in the experimental site, is resulted higher with an autumnal seeding respect to the late-winter seeding (2.8 t/ha vs 1.9 t/ha.

  1. Factors Affecting Nitrogen Use Efficiency and Grain Yield of Summer Maize on Smallholder Farms in the North China Plain

    OpenAIRE

    Guangfeng Chen; Hongzhu Cao; Jun Liang; Wenqi Ma; Lufang Guo; Shuhua Zhang; Rongfeng Jiang; Hongyan Zhang; Keith W. T. Goulding; Fusuo Zhang

    2018-01-01

    The summer maize yields and partial factor productivity of nitrogen (N) fertilizer (PFPN, grain yield per unit N fertilizer) on smallholder farms in China are low, and differ between farms due to complex, sub-optimal management practices. We collected data on management practices and yields from smallholder farms in three major summer maize-producing sites—Laoling, Quzhou and Xushui—in the North China Plain (NCP) for two growing seasons, during 2015–2016. Boundary line analysis and a Proc Mix...

  2. Evaluation of Yield and Yield Components of Some Pinto bean (Phaseolus vulgaris L. Genotypes under Late Season Water Deficit Conditions

    Directory of Open Access Journals (Sweden)

    somayyeh soheili movahhed

    2017-10-01

    Full Text Available Introduction Drought or water deficit stress is the most important environmental factor which has severe negative impacts on crop yields, especially when the water stress occurs in the flowering stage. Iran is located in arid and semi-arid areas, therefore, attention to the effects of water deficit stress in different stages of plants growth seems necessary. Bean (Phaseolus vulgaris L. is one of the most important legumes that has a major contribution to human diet and provides an important part of the human protein. According to studies, cultivation areas of legumes in Iran are about 97300 hectares and its total production is about 208350 tons of grain. Bean is a fast-growing plant (Tran and Singh, 2002, thus soil water must be sufficiently available to ensure its desirable growth and yield. The aim of this study was to investigate the effect of drought stress on yield and yield components of some pinto bean (Phaseolus vulgaris L. cultivated in Zanjan province. Materials and methods An experiment was conducted as spilt plot based on randomized complete block design with four replications in Zanjan university research farm. Irrigation levels (control and drought stress and genotypes (Local khomein, Sadri, Ks21193 and Ks21189 were set in the main and subplot, respectively. Water deficit stress was applied during flowering stage (50% of the plants were at anthesis. Sampling was performed to measure yield and yield components at the end of the growth period and final maturity. In this experiment number of pod per Plant, numberof grain per pod, 100 grain weight, grain yield, biological yield and harvest index were measured. Results and Discussion In this experiment it was observed that drought stress, genotype and interact irrigation×genotyps were significantly for all traits except biological yield. Drought stress reduced number of pod perplant, number of grain per pod, 100 grain weight, grain yield, biological yield and Harvest Index. Results

  3. Effect of different methods of soil fertility increasing via application of organic, chemical and biological fertilizers on grain yield and quality of canola (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    K. Mohammadi

    2016-05-01

    Full Text Available Different resource of fertilizers had an effect on grain yield, oil and grain quality. Information regarding the effect of simultaneous application of organic, chemical and biological fertilizers on canola (Brassica napus L. traits is not available. In order to study the effect of different systems of soil fertility on grain yield and quality of canola (Talayeh cultivar, an experiment was conducted at experimental farm of Agricultural Research Center of Sanandaj, Iran, during two growing seasons of 2007-2008 and 2008-2009. The experimental units were arranged as split plots based on randomized complete blocks design with three replications. Main plots consisted of five methods for obtaining the basal fertilizers requirement including (N1: farm yard manure; (N2: compost; (N3: chemical fertilizers; (N4: farm yard manure + compost and (N5: farm yard manure + compost + chemical fertilizers; and control (N6. Sub plots consisted four levels of biofertilizers were (B1: Bacillus lentus and Pseudomonas putida; (B2: Trichoderma harzianum; (B3: Bacillus lentus and Pseudomonas putida and Trichoderma harzianum; and (B4: control, (without biofertilizers. Results showed that basal fertilizers and biofertilizers have a significant effect on grain yield. The highest grain yield was obtained from N5 treatment in which organic and chemical fertilizers were applied simultaneously applied. Basal fertilizers, biofertilizers have a significant effect on leaf chlorophyll. The highest nitrogen content (42.85 mg.g-1 and least amount of (N/S were obtained from N5 treatment. The highest oil percent was obtained from N1 and N2 treatments and highest oil yield was obtained from N5 treatment. Finally, application of organic manure and biofertilizers with chemical fertilizer led to an increase in yield and quality of canola grain.

  4. Grain sorghum stillage recycling: Effect on ethanol yield and stillage quality.

    Science.gov (United States)

    Egg, R P; Sweeten, J M; Coble, C G

    1985-12-01

    Stillage obtained from ethanol production of grain sorghum was separated into two fractions: thin stillage and wet solids. A portion of the thin stillage was recycled as cooking water in subsequent fermentation runs using both bench- and full-scale ethanol production plants. When thin stillage replaced 50-75% of the cooking water, large increases occurred in solids content, COD, and EC of the resulting thin stillage. It was found that while the volume of thin stillage requiring treatment or disposal was reduced, there was little reduction in the total pollutant load. Stillage rcycling had little effect on the quality of the stillage wet solids fraction. At the high levels of stillage recycle used, ethanol yield was reduced after three to five runs of consecutive recycling.

  5. Genetic, Genomic, and Breeding Approaches to Further Explore Kernel Composition Traits and Grain Yield in Maize

    Science.gov (United States)

    Da Silva, Helena Sofia Pereira

    2009-01-01

    Maize ("Zea mays L.") is a model species well suited for the dissection of complex traits which are often of commercial value. The purpose of this research was to gain a deeper understanding of the genetic control of maize kernel composition traits starch, protein, and oil concentration, and also kernel weight and grain yield. Germplasm with…

  6. Interaction Effect Of Irradiation And Fertilization On Grain Yield, Kernel Weight And Severity Of Wheat To Septoria Tritici Blotch

    International Nuclear Information System (INIS)

    Arabi, M. A.; Jawhar, M.

    2004-01-01

    Field research was undertaken, for two growing seasons, to investigate the effects of soil fertilization with potassium (K 2 SO 4 , 36% K) and nitrogen (urea, 46% N), seed irradiation with gamma rays (0, 5, 10 and 15 Gy) and their combinations on the grain yield, 1000-kernel weight and severity of Mycosphaerella graminicola on wheat. Two Syrian wheat cultivars; Bohuth 6 (Triticum aestivum L.) and Bohuth 5 (T. turgidum var durum Desf.) were used in this study. Plants were inoculated with a mixture of 15 virulent isolates of the pathogen at the growth stage (GS) 33-34. Results indicated that the average response to fertilizer application and irradiation treatments was dependent on the susceptibility level of cultivars compared with the control. The level of infection of the combined NK and 15 Gy treatment was reduced by 9 and 46 % in 1998 and by 6 and 42 % in 1999 for Bohuth 5 and Bohuth 6, respectively. This was associated with increased grain yield by 68 and 59% in 1998 and 59 and 33% in 1999, respectively. Highest yield losses from M. graminicola occurred in the treatment of nil fertilization and irradiation. Grain weight was increased by various treatments applied, but such an increase was highest in the combined NK and 15 Gy treatment. This combined treatment appeared to be more effective on calcareous soils, which are typical of Mediterranean environments. (Authors)

  7. Atomic structures and electronic properties of phosphorene grain boundaries

    International Nuclear Information System (INIS)

    Guo, Yu; Zhou, Si; Bai, Yizhen; Zhao, Jijun; Zhang, Junfeng

    2016-01-01

    Grain boundary (GB) is one main type of defects in two-dimensional (2D) crystals, and has significant impact on the physical properties of 2D materials. Phosphorene, a recently synthesized 2D semiconductor, possesses a puckered honeycomb lattice and outstanding electronic properties. It is very interesting to know the possible GBs present in this novel material, and how their properties differ from those in the other 2D materials. Based on first-principles calculations, we explore the atomic structure, thermodynamic stability, and electronic properties of phosphorene GBs. A total of 19 GBs are predicted and found to be energetically stable with formation energies much lower than those in graphene. These GBs do not severely affect the electronic properties of phosphorene: the band gap of perfect phosphorene is preserved, and the electron mobilities are only moderately reduced in these defective systems. Our theoretical results provide vital guidance for experimental tailoring the electronic properties of phosphorene as well as the device applications using phosphorene materials. (paper)

  8. Methods for measurement of electron emission yield under low energy electron-irradiation by collector method and Kelvin probe method

    Energy Technology Data Exchange (ETDEWEB)

    Tondu, Thomas; Belhaj, Mohamed; Inguimbert, Virginie [Onera, DESP, 2 Avenue Edouard Belin, 31400 Toulouse (France); Onera, DESP, 2 Avenue Edouard Belin, 31400 Toulouse, France and Fondation STAE, 4 allee Emile Monso, BP 84234-31432, Toulouse Cedex 4 (France); Onera, DESP, 2 Avenue Edouard Belin, 31400 Toulouse (France)

    2010-09-15

    Secondary electron emission yield of gold under electron impact at normal incidence below 50 eV was investigated by the classical collector method and by the Kelvin probe method. The authors show that biasing a collector to ensure secondary electron collection while keeping the target grounded can lead to primary electron beam perturbations. Thus reliable secondary electron emission yield at low primary electron energy cannot be obtained with a biased collector. The authors present two collector-free methods based on current measurement and on electron pulse surface potential buildup (Kelvin probe method). These methods are consistent, but at very low energy, measurements become sensitive to the earth magnetic field (below 10 eV). For gold, the authors can extrapolate total emission yield at 0 eV to 0.5, while a total electron emission yield of 1 is obtained at 40{+-}1 eV.

  9. Methods for measurement of electron emission yield under low energy electron-irradiation by collector method and Kelvin probe method

    International Nuclear Information System (INIS)

    Tondu, Thomas; Belhaj, Mohamed; Inguimbert, Virginie

    2010-01-01

    Secondary electron emission yield of gold under electron impact at normal incidence below 50 eV was investigated by the classical collector method and by the Kelvin probe method. The authors show that biasing a collector to ensure secondary electron collection while keeping the target grounded can lead to primary electron beam perturbations. Thus reliable secondary electron emission yield at low primary electron energy cannot be obtained with a biased collector. The authors present two collector-free methods based on current measurement and on electron pulse surface potential buildup (Kelvin probe method). These methods are consistent, but at very low energy, measurements become sensitive to the earth magnetic field (below 10 eV). For gold, the authors can extrapolate total emission yield at 0 eV to 0.5, while a total electron emission yield of 1 is obtained at 40±1 eV.

  10. Simulation of grain boundary effects on electronic transport in metals, and detailed causes of scattering

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, Baruch [Process Technology Modeling, Design and Technology Solutions, Technology and Manufacturing Group, Intel Corporation, Santa Clara, CA 95052 (United States); Department of Physics, University of Washington, Seattle, WA 98195 (United States); Park, Seongjun; Haverty, Michael; Shankar, Sadasivan [Process Technology Modeling, Design and Technology Solutions, Technology and Manufacturing Group, Intel Corporation, Santa Clara, CA 95052 (United States); Dunham, Scott T. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Department of Electrical Engineering, University of Washington, Seattle, WA 98195 (United States)

    2010-07-15

    We present first-principles simulations of single grain boundary reflectivity of electrons in noble metals, Cu and Ag. We examine twin and non-twin grain boundaries using non-equilibrium Green's function and first principles methods. We also investigate the determinants of reflectivity in grain boundaries by modeling atomic vacancies, disorder, and orientation and find that both the change in grain orientation and disorder in the boundary itself contribute significantly to reflectivity. We find that grain boundary reflectivity may vary widely depending on the grain boundary structure, consistent with published experimental results. Finally, we examine the reflectivity from multiple grain boundaries and find that grain boundary reflectivity may depend on neighboring grain boundaries. This study raises some potential limitations in the independent grain boundary assumptions of the Mayadas-Shatzkes (MS) model. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  11. Effect of Water Stress and Spraying of Potassium Iodide on Agronomic Traits and Grain Yield of Bread Wheat (Tiriticum aistivum L. Genotypes

    Directory of Open Access Journals (Sweden)

    N. Pooladsaz

    2011-01-01

    Full Text Available Abstract In order to study the effect of water stress and chemical desiccation (potassium iodide on grain yield and agronomic traits of 8 wheat genotypes, a field experiment was conducted using a split split plot design based on a randomized complete block design with three replications in Torogh Agricultural and Natural Resources Research Station (Mashhad, Iran in 2006-2007 and 2007-2008. Main plots were assigned to two levels of water stress treatments; D1: optimum irrigation, and D2: cessation of watering from anthesis to maturity stages. Sub plots were assigned to eight bread wheat genotypes: 9103, 9116, 9203, 9205, 9207, 9212, C-81-10 and Cross Shahi (drought sensitive; and photosynthetic conditions with two levels: P1: using of current photosynthesis and P2: inhibition of current photosynthesis were in sub-sub plots. The results showed that the effects of water stress and photosynthetic conditions on number of total florets per spike (NTF/S, seed set percentage (SSP, spike harvest index (SHI, duration of grain filling (DGF and grain yield (GY were significant. There was a significant difference between genotypes for spike dry weight at anthesis (SDWA, number of spikletes per spike (NSP/S, NTF/S, SSP, SHI, spike partitioning coefficient (SPC, plant height (PLH, spike length (SL, DGF and GY. 9103 genotype produced the most GY (7870 kg/ha under D1P1 treatment. The least GY ( 1114 kg/ha related to Cross Shahi cultivar under D2P2 treatment. Considering that C-81-10, 9103 and 9116 genotypes showed the highest grain yield, potential for reserves and remobilizations of assimilates under different irrigation conditions thus, these genotypes could be introduced as promising in breeding programs for arid and semi-arid regions. Keywords: Triticum aestivum L., Cessation of watering, Chemical Desiccation, Spike, Grain yield

  12. Controlled Release Urea as a Nitrogen Source for Spring Wheat in Western Canada: Yield, Grain N Content, and N Use Efficiency

    Directory of Open Access Journals (Sweden)

    Lenz Haderlein

    2001-01-01

    Full Text Available Controlled release nitrogen (N fertilizers have been commonly used in horticultural applications such as turf grasses and container-grown woody perennials. Agrium, a major N manufacturer in North and South America, is developing a low-cost controlled release urea (CRU product for use in field crops such as grain corn, canola, wheat, and other small grain cereals. From 1998 to 2000, 11 field trials were conducted across western Canada to determine if seed-placed CRU could maintain crop yields and increase grain N and N use efficiency when compared to the practice of side-banding of urea N fertilizer. CRU was designed to release timely and adequate, but not excessive, amounts of N to the crop. Crop uptake of N from seed-placed CRU was sufficient to provide yields similar to those of side-banded urea N. Grain N concentrations of the CRU treatments were higher, on average, than those from side-banded urea, resulting in 4.2% higher N use efficiency across the entire N application range from 25 to 100 kg ha-1. Higher levels of removal of N in grain from CRU compared to side-banded urea can result in less residual N remaining in the soil, and limit the possibility of N losses due to denitrification and leaching.

  13. Effects of nitrogen application method and weed control on corn yield and yield components.

    Science.gov (United States)

    Sepahvand, Pariya; Sajedi, Nurali; Mousavi, Seyed Karim; Ghiasvand, Mohsen

    2014-04-01

    The effects of nitrogen fertilizer application and different methods for weed control on yield and yield components of corn was evaluated in Khorramabad in 2011. The experiment was conducted as a split plot based on randomized complete block design in 3 replications. Nitrogen application was as main plot in 4 levels (no nitrogen, broadcasting nitrogen, banding nitrogen and sprayed nitrogen) and methods of weed control were in 4 levels (non-control weeds, application Equip herbicide, once hand control of weeds and application Equip herbicide+once time weeding) was as subplots. Result illustrated that effects of nitrogen fertilizer application were significant on grain and forage yield, 100 seeds weight, harvest index, grain number per row and cob weight per plant. Grain yield increased by 91.4 and 3.9% in application banding and broadcasting for nitrogen fertilizer, respectively, compared to the no fertilizer treatment. The results show improved efficiency of nitrogen utilization by banding application. Grain yield, harvest index, seed rows per cob, seeds per row and cob weight were increased by weed control. In the application of Equip herbicide+ hand weeding treatment corn grain yield was increased 126% in comparison to weedy control. It represents of the intense affects of weed competition with corn. The highest corn grain yield (6758 kg h(-1)) was related to the application banding of nitrogen fertilizer and Equip herbicide+once hand weeding.

  14. Experiments on Dust Grain Charging

    Science.gov (United States)

    Abbas, M. N.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E. A.

    2004-01-01

    Dust particles in various astrophysical environments are charged by a variety of mechanisms generally involving collisional processes with other charged particles and photoelectric emission with UV radiation from nearby sources. The sign and the magnitude of the particle charge are determined by the competition between the charging processes by UV radiation and collisions with charged particles. Knowledge of the particle charges and equilibrium potentials is important for understanding of a number of physical processes. The charge of a dust grain is thus a fundamental parameter that influences the physics of dusty plasmas, processes in the interplanetary medium and interstellar medium, interstellar dust clouds, planetary rings, cometary and outer atmospheres of planets etc. In this paper we present some results of experiments on charging of dust grains carried out on a laboratory facility capable levitating micron size dust grains in an electrodynamic balance in simulated space environments. The charging/discharging experiments were carried out by exposing the dust grains to energetic electron beams and UV radiation. Photoelectric efficiencies and yields of micron size dust grains of SiO2, and lunar simulates obtained from NASA-JSC will be presented.

  15. Effect of sowing dates and different irrigation regimes on morphological characteristics and grain yield of chickpea (Cicer arietinum L. (cultivar 3279 ILC

    Directory of Open Access Journals (Sweden)

    parviz rezvani moghadam

    2009-06-01

    Full Text Available In order to study the effect of different sowing dates and different irrigation regimes on morphological characteristics and grain yield of chickpea (cultivar 3279 ILC (Cicer arietinum L., an experiment was conducted at Agricultural Research-Education Station of Shahid Rejaee, Neyshaboor during 2001-2002. Four irrigation regimes (without irrigation, one time irrigation (at early flowering, two times irrigation (at early flowering and 50% flowering and control (irrigation every 10 days and Four sowing dates early planting (autumn, Entezari, and late planting (spring and delayed were compared in a spilt plot layout based on randomized complete block design with four replications per treatment. The results showed that all chickpea plants with delayed sowing date on combination of without irrigation, one time irrigation (at early flowering and two times irrigation (at early flowering and 50% flowering were dead. By delaying sowing date, duration between the time of starting flowering and maturity became shorter. Plant height, distance of the first pod from earth surface, distance between nods, number of nods per plant, number of stems per plant, number of pods per plant, number of pods with one, two and with no seed per plant, number of seeds per plant, seed weight per plant, 100 seed weight and grain yield were increased when the number of irrigation increased. By increasing the growing season, plant height, distance of the first pod from earth surface, number of nods per plant, number of stems per plant, number of pods per plant, number of pods with two and without seeds per plant, number of seeds per plant and seed weight per plant were increased. The autumn sowing date had the highest and the spring date had the lowest grain yield. The highest plant height, number of nods per plant, number of stems per plant, number of pods per plant, number of pods with one and with no seed per plant, number of seeds per plant and grain yield were obtained at

  16. Genetic variations in the dynamics of dry matter accumulation, nitrogen assimilation and translocation in new T. aestivum L. varieties. II. Nitrogen assimilation and translocation in relation to grain yield and protein content

    International Nuclear Information System (INIS)

    Nankova, M.; Kostov, K.; Penchev, E.

    1999-01-01

    The study was carried out under greenhouse and field conditions and showed considerable genotype differences between the vrs. Enola, Karat, Svilena and Pliska (T. aestivum L.) with regard to N assimilation during heading, which played an important role in grain yield formation (0.852). Grain yield depends considerably on N translocation (NT) in the period heading-full maturity (0.864) and on its part affects the intensity of N uptake in grain during grain filling-full maturity. In both experiments cv. Svilena demonstrated high NR from the leaves, which was the reason for more than 52 % of N in grain. In the field experiment cv. Svilena confirmed this tendency, the NR being highest in the 2-3 leaf stage, followed by the flag leaf and the down leaves. The intensity of N uptake in grain during grain filling-full maturity was highest in the vrs. Enola and Karat. This intensity was in strong correlation with NA during heading, and with NT in V m during heading-full maturity. It also affected to a high degree the protein content in grain, as well as grain yield. In both experiments a strong negative correlation was established between the NHI/GHI ratio, and grain yield and nitrogen assimilation during heading; a positive correlation was determined with grain NHI. Under the conditions of increasing N dressing, the vrs. Enola, Karat, and Svilena had higher N expense for formation of a production unit, 63 up to 91 % of the N being used for formation of grain with high protein content. Protein yield correlated strongly not only with protein in grain, but also with the intensity of uptake in grain during grain filling - full maturity. The highest protein yield was registered in cv. Karat. By their N expense for production of 100 kg protein, the new varieties did not differ from the standard variety Pliska. The results from the study showed a higher genetic potential of the agrochemically promising varieties Karat, Enola and Svilena than the standard variety Pliska. Refs. 10

  17. Effect of Plant Density and Weed Interference on Yield and Yied Components of Grain Sorghum

    Directory of Open Access Journals (Sweden)

    S. Sarani

    2018-01-01

    Full Text Available Introduction Weed control is an essential part of all crop production systems. Weeds reduce yields by competing with crops for water, nutrients, and sunlight. Weeds also directly reduce profits by hindering harvest operations, lowering crop quality, and producing chemicals which are harmful to crop plants. Plant density is an efficient management tool for maximizing grain yield by increasing the capture of solar radiation within the canopy, which can significantly affect development of crop-weed association. The response of yield and yield components to weed competition varies by crop and weeds species and weeds interference duration. The objective of the present study was to evaluate the effect of weed interference periods and plant density on the yield and yield components of sorghum. Materials and Methods In order to study the effect of plant density and weeds interference on weeds traits, yield and yield components of sorghum (Var. Saravan, an experiment was conducted as in factorial based on a randomized complete block design with three replications at the research field of Islamic Azad University, Birjand Branch in South Khorasan province during year of 2013. Experimental treatments consisted of three plant density (10, 20 and 30 plants m-2 and four weeds interference (weed free until end of growth season, interference until 6-8 leaf stage, interference until stage of panicle emergence, interference until end of growth season. Measuring traits included the panicle length, number of panicle per plant, number of panicle per m2, number of seed per panicle, 1000-seed weight, seed yield, biological yield, number and weight of weeds per m2. Weed sampling in each plot have done manually from a square meter and different weed species counted and oven dried at 72 °C for 48 hours. MSTAT-C statistical software used for data analysis and means compared with Duncan multiple range test at 5% probability level. Results and Discussion Results showed that

  18. Effect of FYM, potassium and zinc on phenology and grain yield of wheat in rain fed cropping systems

    International Nuclear Information System (INIS)

    Nawab, K.; Amanullah; Arif, M.; Shah, P.; Khan, M.A.; Khan, K.

    2011-01-01

    Little work has been done on potassium (K) and zinc (Zn) in combination with farm yard manure (FYM) under rain fed conditions of NWFP. This study was designed to examine the effects of un-irrigated cropping patterns and organic and in-organic fertilizers on wheat crop. Field experiments were conducted to investigate the effect of cropping patterns and farm yard manure, potassium and zinc on phenology and grain yield of wheat under rain fed (barani or un-irrigated) conditions at Agricultural Research Station, Serai Naurang Bannu for two years during 2001-02 and 2002-03. The experiment was designed in RCB design with split arrangements. Two factors were studied in the experiment. Effects of five cropping patterns i.e., fallow-wheat, groundnut-wheat, mungbean-wheat, sorghum-wheat and pigeon pea-wheat and three organic and in-organic fertilizers on subsequent wheat crop were observed. Data revealed that both the cropping patterns and manures/fertilizers had non-significant effect on days to anthesis, seed fill duration and days to maturity of wheat. Highest grain yield (3194 kg ha/sup -1/ wheat following mungbean produced more yield and wheat following groundnut produced less yield under dry land conditions. The present findings revealed that pigeon pea-wheat cropping pattern seems to be more sustainable in terms of yield under rain fed conditions and use of FYM, K and Zn should be included in integrated crop management approaches for sustainable crop production. (Author)

  19. Effects of inter-varietal diversity, biotic stresses and environmental productivity on grain yield of spring barley variety mixtures

    DEFF Research Database (Denmark)

    Kiær, Lars Pødenphant; Skovgaard, Ib M.; Østergård, Hanne

    2012-01-01

    than their component varieties when accounting also for the general response to environmental productivity. Hence, most mixtures adapted slightly better to environmental productivity and were less sensitive to environmental stress than their component varieties. We conclude that the efficacy of variety...... mixtures may be enhanced by mixing relatively high-yielding varieties differing in responsiveness to environmental productivity.......Varietal seed mixtures tend to increase and stabilize crop yields, yet their application is sparse. Large-scale cultivation of variety mixtures may require a better understanding of how inter-varietal interactions and their interaction with the environment may influence the grain yield of variety...

  20. Impacts of irrigation and genotype on yield, protein, starch and oil contents in grain of maize inbred lines

    Directory of Open Access Journals (Sweden)

    Josipovic Marko

    2014-01-01

    Full Text Available Four inbred lines of maize (Os 438-95 = C1, Os 30-8 = C2, Os 6 = C3 and Os 1-44 =C4 were grown for 4-year period (2006-2009 in the stationary field experiment on Osijek eutric cambisol. Impact of irrigation, nitrogen fertilization and genotype were tested. Soil moisture was maintained by two irrigation rates from 60-100% and 80-100% of the field water capacity. Two steps of N (0, 100 and 200 kg N ha-1 were applied, while P and K fertilization was equal (500 kg/ha NPK 0:30:20. Eight maize genotypes (four inbred lines and four hybrids were grown on each basic plot of fertilization. The experiment was duplicated for maize - soybean rotation. The experiment was set by split-split plot method according to randomized block design in three replicates. The basic plot areas were 617.2 m2 (irrigation, 313.6 m2 (fertilization and 39.2 m2 (genotype. Selection of N non-fertilized treatment and four inbred lines were made for this study with aim of testing year (A irrigation (B and genotype (C effects under natural N-soil conditions. Average grain yield in level 1809 kg ha-1without N fertilization is indication of very high fertility of the soil. Differences of yield among the years were from 823 (2007 to 2450 (2006 kg ha-1. Excessive drought and high air-temperature stress is responsible for the low maize yield in 2007. Irrigation considerable affected on maize yields (4-year averages: 1500, 1809 and 2118 kg ha-1, for B1, B2 and B3, respectively. Differences of the 4-year average yields among the genotypes were from 1259 (C3 to 2765 (C1 kg ha-1. Differences of yield among the genotypes in the different years were also considerable because the lowest yield was for 71% (A1, 23% (A2, 63% (A3 and 40% (A4 lower in comparison to the highest yield. The genotype effects under different water supplies were less influencing factor because the high-yielding C1 had for 128%, 129% and 106% the higher yield compared to the low-yielding C3, for B1, B2 and B3, respectively

  1. Hardening by ion implantation of VT1-0 alloy having different grain size

    Energy Technology Data Exchange (ETDEWEB)

    Nikonenko, Alisa, E-mail: aliska-nik@mail.ru; Kurzina, Irina, E-mail: kurzina99@mail.ru [National Research Tomsk State University, 36, Lenin Str., 634050, Tomsk (Russian Federation); Popova, Natalya, E-mail: natalya-popova-44@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk Russia (Russian Federation); Nikonenko, Elena, E-mail: vilatomsk@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); National Research Tomsk Polytechnic University, 30, Lenin Str., 634050, Tomsk (Russian Federation); Kalashnikov, Mark, E-mail: kmp1980@mail.ru [Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk Russia (Russian Federation)

    2016-01-15

    The paper presents a transmission electron microscopy (TEM) study of the structural and phase state of commercially pure titanium implanted by aluminum ions. TEM study has been carried out for two types of grains, namely coarse (0.4 µm) and small (0.5 µm). This paper presents details of the yield stress calculations and the analysis of strength components for the both grain types in two areas of the modified layer: at a distance of 0-150 nm (surface area I) and ∼300 nm (central area II) from the irradiated surface. It is shown that the ion implantation results in a considerable hardening of the entire thickness of the implanted layer in the both grain types. The grain size has, however, a different effect on the yield stress in areas I and II. Thus, near the ion-alloyed layer, the yield stress decreases with the increase of the grain size, whilst area II demonstrates its increase. Moreover, the contribution to the general hardening of the alloy made by certain hardening mechanisms differs from contributions made by each of these mechanisms in each certain case.

  2. The Effect of Water Deficit stress on Osmotic Metabolites and Anti Oxidant System and Grain and Oil Yield of Amaranth CV. Koniz

    Directory of Open Access Journals (Sweden)

    Mehrdad Yarnia

    2015-01-01

    Full Text Available Drought is one of the most important environmental stresses that highly affect crop growth and yield. But the response of crops to stress depending on the timing of crop growth stages is different. The purpose of this study was to investigate effect of different levels of water stress (irrigation after 50, 80, 110, 140 and 170 mm evaporation from pan on different stages of Amaranth growth (establishment, branching, flowering and grain filling. To find the effects of water deficit stress on this plant it was decided to determine its protein percentage, oil and grain yields under drought stress. Evaluation of physiological characteristics as to the extent of osmotic adjustment and antioxidant activity was also carried out. Results showed that water deficit stress,depending on the severity and duration of stress, caused a reduction between between a minimum of 10 to a maximum of 89 percent in yield, 28 to 70 percent in harvest index, 12 to 32 percent in grain protein and 29 to 97 percent in oil yield. This indicates the high sensitivity of grain and oil yields to severe and prolonged drought stresses. Changes in osmotic substances (proline and soluble carbohydrates showed that this crop under water stress conditions increased proline and soluble carbohydrates by 31 and 50 percents, respectively. Thus, if could be said that under severe droughts the ability of crops to cops with drought will be reduced. Similarly, amaranth, to cope with water stress, increases the amount of antioxidant enzymes like catalase, peroxidase and super oxid dismutase up to 53, 23 and 79%, respectively. Higher amount of super oxid dismutase enzyme produce as the result of drought stress may play an important role to cope with reactive oxygen species and oxidative stresses.

  3. Relationship between QTL for grain shape, grain weight, test weight, milling yield, and plant height in the spring wheat cross RL4452/'AC Domain'.

    Science.gov (United States)

    Cabral, Adrian L; Jordan, Mark C; Larson, Gary; Somers, Daryl J; Humphreys, D Gavin; McCartney, Curt A

    2018-01-01

    Kernel morphology characteristics of wheat are complex and quantitatively inherited. A doubled haploid (DH) population of the cross RL4452/'AC Domain' was used to study the genetic basis of seed shape. Quantitative trait loci (QTL) analyses were conducted on a total of 18 traits: 14 grain shape traits, flour yield (Fyd), and three agronomic traits (Plant height [Plht], 1000 Grain weight [Gwt], Test weight [Twt]), using data from trial locations at Glenlea, Brandon, and Morden in Manitoba, Canada, between 1999 and 2004. Kernel shape was studied through digital image analysis with an Acurum® grain analyzer. Plht, Gwt, Twt, Fyd, and grain shape QTL were correlated with each other and QTL analysis revealed that QTL for these traits often mapped to the same genetic locations. The most significant QTL for the grain shape traits were located on chromosomes 4B and 4D, each accounting for up to 24.4% and 53.3% of the total phenotypic variation, respectively. In addition, the most significant QTL for Plht, Gwt, and Twt were all detected on chromosome 4D at the Rht-D1 locus. Rht-D1b decreased Plht, Gwt, Twt, and kernel width relative to the Rht-D1a allele. A narrow genetic interval on chromosome 4B contained significant QTL for grain shape, Gwt, and Plht. The 'AC Domain' allele reduced Plht, Gwt, kernel length and width traits, but had no detectable effect on Twt. The data indicated that this variation was inconsistent with segregation at Rht-B1. Numerous QTL were identified that control these traits in this population.

  4. Low Secondary Electron Yield Carbon Coatings for Electron Cloud Mitigation in Modern Particle Accelerators

    CERN Document Server

    Yin Vallgren, Christina; Taborelli, Mauro

    2011-01-01

    In order to upgrade the Large Hadron Collider (LHC) performance to be oriented towards higher energies and higher intensities in the future, a series of improvements of the existing LHC injectors is planned to take place over the next few years. Electron cloud effects are expected to be enhanced and play a central role in limiting the performance of the machines of the CERN complex. Electron cloud phenomena in beam pipes are based on electron multiplication and can be sufficiently suppressed if the Secondary Electron Yield (SEY) of the surface of the beam pipes is lower than unity. The goal of this work is to find and study a thin film coating with reliably low initial Secondary Electron Yield (SEY), which does not require bake-out or conditioning in situ with photons, is robust again air exposure and can easily be applied in the beam pipes of accelerators. In this work, amorphous carbon (a-C) thin films have been prepared by DC magnetron sputtering for electron cloud mitigation and antimultipactor applicatio...

  5. Carpel size, grain filling, and morphology determine individual grain weight in wheat

    OpenAIRE

    Xie, Quan; Mayes, Sean; Sparkes, Debbie L.

    2015-01-01

    Individual grain weight is a major yield component in wheat. To provide a comprehensive understanding of grain weight determination, the carpel size at anthesis, grain dry matter accumulation, grain water uptake and loss, grain morphological expansion, and final grain weight at different positions within spikelets were investigated in a recombinant inbred line mapping population of bread wheat (Triticum aestivum L.)?spelt (Triticum spelta L.). Carpel size, grain dry matter and water accumulat...

  6. Determining the sputter yields of molybdenum in low-index crystal planes via electron backscattered diffraction, focused ion beam and atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.S., E-mail: 160184@mail.csc.com.tw [New Materials Research and Development Department, China Steel Corporation, 1 Chung Kang Road, Hsiao Kang, Kaohsiung 812, Taiwan, ROC (China); Chiu, C.H.; Hong, I.T.; Tung, H.C. [New Materials Research and Development Department, China Steel Corporation, 1 Chung Kang Road, Hsiao Kang, Kaohsiung 812, Taiwan, ROC (China); Chien, F.S.-S. [Department of Physics, Tunghai University, 1727, Sec. 4, Xitun Dist., Taiwan Boulevard, Taichung 407, Taiwan, ROC (China)

    2013-09-15

    Previous literature has used several monocrystalline sputtering targets with various crystalline planes, respectively, to investigate the variations of the sputter yield of materials in different crystalline orientations. This study presents a method to measure the sputtered yields of Mo for the three low-index planes (100), (110), and (111), through using an easily made polycrystalline target. The procedure was firstly to use electron backscattered diffraction to identify the grain positions of the three crystalline planes, and then use a focused ion beam to perform the micro-milling of each identified grain, and finally the sputter yields were calculated from the removed volumes, which were measured by atomic force microscope. Experimental results showed that the sputter yield of the primary orientations for Mo varied as Y{sub (110)} > Y{sub (100)} > Y{sub (111)}, coincidental with the ranking of their planar atomic packing densities. The concept of transparency of ion in the crystalline substance was applied to elucidate these results. In addition, the result of (110) orientation exhibiting higher sputter yield is helpful for us to develop a Mo target with a higher deposition rate for use in industry. By changing the deformation process from straight rolling to cross rolling, the (110) texture intensity of the Mo target was significantly improved, and thus enhanced the deposition rate. - Highlights: • We used EBSD, FIB and AFM to measure the sputter yields of Mo in low-index planes. • The sputter yield of the primary orientations for Mo varied as Y{sub (110)} > Y{sub (100)} > Y{sub (111)}. • The transparency of ion was used to elucidate the differences in the sputter yield. • We improved the sputter rate of polycrystalline Mo target by adjusting its texture.

  7. Ionization yield from electron tracks in liquid xenon

    International Nuclear Information System (INIS)

    Voronova, T.Ya.; Kipsanov, M.A.; Kruglov, A.A.; Obodovskij, I.M.; Pokachalov, S.G.; Shilov, V.A.; Khristich, E.B.

    1989-01-01

    Methods for calculating coefficients K β , characterizing ionization yield from electron track in liquid xenon are considered. K β calculation is conducted on the base of experimental data on K parameter characterizing ionization yield from a certain combination of photo-, Compton-and Auger electron tracks. K parameter measurements are conducted in liquid xenon at 170 K temperature within 10-30 keV gamma- and X radiation energy ranges. Calculated dependence of K β and K coefficients on the energy in a wide (5-500 keV) range is presented. K β values obtained can be applied for calculating the energy resolution of a gamma-spectrometer and linearity of its calibration characteristics if the electric field intensity in the spectrometer does not exceed some kV/cm

  8. Canopy temperature depression at grain filling correlates to winter wheat yield in the U.S. southern high plains

    Science.gov (United States)

    Wheat breeding has improved drought tolerance over the years. However, our knowledge on drought tolerance in relation to the canopy temperature (CT) and grain yield is limited. A three-season wheat field study ending 2012, 2015, and 2016 was conducted at Bushland, Texas to investigate the relationsh...

  9. Effect of nitrogen fertilizer application timing on nitrogen use efficiency and grain yield of winter wheat in Ireland

    Directory of Open Access Journals (Sweden)

    Efretuei A.

    2016-06-01

    Full Text Available The objectives of this work were to determine the effects of initiating application of fertilizer nitrogen (N to winter wheat at different growth stages (GSs on grain yield and N use efficiency (NUE. A factorial experiment was carried out in two growing seasons (2011 and 2012 with five timings of first N application (GS 24/26 [tillering], GS 30, GS 31, GS 32 or GS 37 and an unfertilized control, two sowing densities (100 and 400 seeds/m2 and a cattle slurry treatment (with or without slurry. The latter was included to simulate variation in soil N supply (SNS. Delaying the first application of N from the tillering stage until GS 30 had no significant effect on grain yield in either year. Further delaying the initial N application until GS 31 caused a significant yield reduction in 2011, in comparison to GS 30 application, but not in 2012. Differences in efficiency of recovery and use of fertilizer N by the crop among the first three application timings were small. There was no evidence to support alteration in the timing of the first application of N in response to low plant density. Slurry application did not influence SNS, so the interaction between SNS and fertilizer N application timing could not be determined. It is concluded that in order to maximise yield and NUE, the first N application should be applied to winter wheat between late tillering and GS 30 and that delaying the first N until GS 31 can lead to yield reductions compared to the yield obtained with earlier application.

  10. Effects of Cd2+ on chlorophyll content in flag and grain yield of wheats

    International Nuclear Information System (INIS)

    Zhu Zhiyong; Li Youjun; Liu Yingjie; Duan Youqiang; Li Qiang; Hao Yufen; Guo Jia

    2011-01-01

    A field experiment was conducted with wheat cultivars Luohan 6 and Yumai 18 to investigate the effects of Cd 2+ stress on chlorophyll contents in flag leaves, flag leave area, thousand kernel weight, kernel filling velocity and yield of wheat. Results indicated that, under low Cd 2+ stress (10 mg/kg), the average contents of chlorophyll a + b of Luohan 6 reduced by 1.6%, however, its average area of flag leave and yield increased by 3.8% and 1.6%, respectively. At the same time, the average content of chlorophyll a + b, area of flag leave yield of Yumai 18 reduced 8.0%, 9.6% and 5.4%. Under high Cd 2+ stress (100 mg/kg), the average contents of chlorophyll a + b, areas of flag leaves and yields of Luohan 6 and Yumai 18 reduced by 29.2% and 30.5%, 6.3% and 17.4%, 16.7% and 36.7%, respectively. The results demonstrated that Cd 2+ restrained synthesis and accumulation of chlorophyll and its components. This study even showed that within a range of Cd 2+ concentration could promote the growth of flag leaves, and it also had an equal positive effect on yield of wheat if the Cd 2+ concentration in grains were not out of limit. The growth of flag leave and yield of wheat would be limited when Cd 2+ concentration exceed that range. Overall, Yumai 18 bore more poison from Cd 2+ than Luohan 6. (authors)

  11. The destruction and growth of dust grains in interstellar space

    International Nuclear Information System (INIS)

    Barlow, M.J.

    1978-01-01

    The processes governing the destruction and growth of dust grains in interstellar space are investigated with a view to establishing the conditions required for the existence of ice mantles. In this paper sputtering by particles with energies in the eV to GeV range is considered. Previous sputtering yield estimates which were based on theoretical considerations are shown to be greatly in error for incident particle energies of less than 1 keV. Empirical formulae for the sputtering threshold energy and the sputtering yield are derived from the extensive experimental data available. The sputtering of grains in H II regions, in the inter-cloud medium, and in shock waves produced by cloud-cloud collisions and by supernova remnants, is investigated. Of these, supernova remnants are shown to be the most important, leading to lifetimes of approximately 2 x 10 8 yr for ice grains and between 5 to 20 x 10 8 yr for refractory grains. Destruction rates are estimated for grains bombarded by MeV and GeV cosmic rays. It is shown that collision cascade sputtering dominates evaporative sputtering produced by thermal spikes. It is also shown that even if all electron excitation energy loss in a grain material could be transferred to the lattice particles, the observed cosmic ray flux spectrum could not cause significant destruction of ice grains. (author)

  12. Drought Stress Effect during Different Growth Stages on Yield, Osmolites and Photosynthetic Pigments Accumulation of Grain Sorghum Genotypes (Sorghum bicolor L.

    Directory of Open Access Journals (Sweden)

    A Azari Nasrabad

    2017-12-01

    Full Text Available Introduction Osmotic adjustment in plants can be achieved by the accumulation of compatible solution or metabolites. These compounds are known as compatible metabolites that accumulate naturally in tolerant plants due to non-interference in the normal metabolic response of plants to adapt or supplement. Proline, soluble sugars and other metabolites accumulation that are involved in osmotic adjustment have been reported for various plants. Different studies show that water absorption in sorghum plant, is due to osmotic adjustment and appropriate and fairly extensive root system. Moreover, there are some differences from genotype to genotype regarding the osmolites accumulation under drought stress conditions. Thus, the aim of this study was to investigate the effects of drought in the vegetative and reproductive growth stages on yield, its components and biochemical traits in grain sorghum genotypes. Materials and Methods In order to evaluate the effect of water stress on grain yield and its components and some biochemical traits in grain sorghum genotypes (Sorghum bicolor L., a field experiment as a split plot design was carried out with 3 replications in 2014 at the research farm of the southern Khorasan Agriculture and natural resources research and education center. Water stress treatments including normal irrigation (control, irrigation cut off in vegetative growth stage (emergence of terminal leaf as rolled and irrigation cut off in generative growth stage (50% of plants in start of flowering as the main plot and 10 genotypes of sorghum including KGS29, MGS2, Sepideh, KGFS27, MGS5, KGFS5, KGFS17, KGFS13 and KGFS30 were considered as sub plots. Each plot consists of 4 rows with a length of 6 m and row spacing of 60 cm, between plants on row was 10 cm. In addition, between each plot and the adjacent plot a row was considered to side effect reduction. To determine the yield components of each plot, half a meter in length was harvested and the

  13. Effects of Sowing Date, Planting Pattern and Nitrogen Levels on Leaf and Flower Essential Oil, Yield and Component Yield Grain of Buckwheat (Fagopyroum esculentum Moench

    Directory of Open Access Journals (Sweden)

    M. R Sobhani

    2017-12-01

    Full Text Available Introduction Buckwheat which has been scientifically named Fagopyrum esculentum can be considered as a yearling broad-leaved plant belonging to the family of Polygonaceae which is known as false Cereal. Its seeds are in use as a nutritional and medicinal product that is due to the rutin content of them. As the population is rapidly increasing worldwide, a solution must be found to supply necessary food. What agriculture science is responsible for is to produce more products with better quality in order to meet this increasing population’s needs so that food poverty and starvation are more likely to be removed and keep food safety. Considering the fact that buckwheat is of a variety of medical, industrial and food applications and in our country and some other ones, it has not been seriously cultivated, this plant must be used as a new plant and it should be extensively applied in multiple planting systems (summer planting for commercial goals through producing seeds while its nutritional value is more than grain and it can be regarded as a rich source of high quality protein, amino acid necessary for lysine, high starch percent, minerals and vitamins for different applications involving cake flour, frumenty and soup and improving the optimal rate of rutin as a secondary metabolite having effective medical features concerning our country’s climatic conditions. Materials and Methods In order to investigate the effects of sowing date, planting patterns and nitrogen on leaf and flower rutin, yield and yield component of Buckwheat plant, a field study was conducted during 2010 and 2011 in Agricultural Research Institute of Arak, Iran. The experimental design was regarded as the randomized complete block design in the form of split plot factorial with three replications. Planting treatments as the fundamental elements may be implemented at two levels including the mounds with the width of 50 cm associated with two planting rows regarding the

  14. Initial vibrational and rotational yields from subexcitation electrons in molecular hydrogen

    International Nuclear Information System (INIS)

    Douthat, D.A.

    1987-01-01

    As the energy of a single source electron injected into a molecular gas is degraded through collisions, initial products include secondary electrons, ions, and excited molecules. Electrons with kinetic energies less than the minimum required for excitation of the lowest electronic state are given the designation subexcitation electrons. These electrons are still capable of exciting vibrational and rotational states of molecular gases. In this calculation, the initial numbers of vibrational and rotational excitations (yields) produced as the subexcitation electrons undergo further energy degradation are determined for molecular hydrogen. The calculation requires a complete set of cross section data for numerical solution of the Boltzmann equation. The initial energy distribution of electrons is taken to be the subexcitation distribution which was determined previously. The initial yields are tabulated for gas temperatures from 50 K to 1500 K for a source electron with initial energy 10 keV. 26 references

  15. Sequential Path Analysis for Determination of Relationship Between Yield and Yield Components in Bread Wheat (Triticum aestivum.L.

    Directory of Open Access Journals (Sweden)

    Mohtasham MOHAMMADI

    2014-03-01

    Full Text Available An experiment was conducted to evaluate 295 wheat genotypes in Alpha-Lattice design with two replications. The arithmetic mean and standard deviation of grain yield was 2706 and 950 (kg/ha,respectively. The results of correlation coefficients indicated that grain yield had significant and positive association with plant height, spike length, early growth vigor and agronomic score. Whereas there were negative correlation coefficients between grain yield and days to physiological maturity and canopy temperature before and during anthesis. Path analysis indicated agronomic score and plant height had high positive direct effects on grain yield, while canopy temperature before and during anthesis, and days to maturity, wes another trait having negative direct effect on grain yield. The results of sequential path analysis showed the traits that accounted as a criteria variable for high grain yield were agronomic score, plant height, canopy temperature, spike length, chlorophyll content and early growth vigor, which were determined as first, second and third order variables and had strong effects on grain yield via one or more paths. More important, as canopy temperature, agronomic score and early growth vigor can be evaluated quickly and easily, these traits may be used for evaluation of large populations.

  16. On the strengthening behavior of ultrafine-grained nickel processed from nanopowders

    International Nuclear Information System (INIS)

    Bui, Q.H.; Dirras, G.; Ramtani, S.; Gubicza, J.

    2010-01-01

    Bulk ultrafine-grained nickel specimens having grain sizes in the range of 0.25-5 μm were processed by a spark plasma sintering method. The resulting microstructures were characterized by electron backscattering diffraction, transmission electron microscopy and X-ray diffraction analysis. Compression tests were carried out at room temperature and at a strain rate of 1.6 x 10 -4 s -1 . It was found that the fine-grained microstructure and the presence of NiO phase were the main strengthening factors in the as-processed bulk materials. The contribution of the oxide phase to strengthening was even more pronounced for lower grain sizes. This contribution was calculated as the difference between the measured strength and the value obtained from a Hall-Petch plot of oxide-free samples, and this yielded a flow stress increment of about 635 MPa for the lowest grain size studied here. In addition, a transition from work-hardening to -softening occurred for materials having a mean grain size smaller than about 300 nm and having boundaries that could have been weakened by the presence of a high amount of NiO phase.

  17. Comparison of the target-thickness dependence of the convoy electron yield and the Rydberg electron yield measured in coincidence with exit charge states in fast ion-solid collisions

    International Nuclear Information System (INIS)

    Gaither, C.C. III; Breinig, M.; Freyou, J.; Underwood, T.A.

    1988-01-01

    We have simultaneously measured the yield of convoy electrons and the yield of electrons in high Rydberg states of the projectile (n /approx gt/ 70), produced by 2MeV/u C projectiles passing through C foils, whose thicknesses range from 4--10 ug/cm 2 , for incident charge states q/sub i/ = 4--6 and exit charge states q/sub e/ = 4--6. We have found that these yields exhibit similar trends as a function of foil thickness, but that, nevertheless, the ratio of the number of convoy electrons detected in coincidence with ions of exit charge state q/sub e/ to the number of electrons detected in high Rydberg states of ions with the same exit charge state is a function of foil thickness. This may be due to a broadening of the convoy electron energy spectrum with increasing foil thickness. 6 refs., 3 figs

  18. Relationship between QTL for grain shape, grain weight, test weight, milling yield, and plant height in the spring wheat cross RL4452/‘AC Domain’

    Science.gov (United States)

    Cabral, Adrian L.; Jordan, Mark C.; Larson, Gary; Somers, Daryl J.; Humphreys, D. Gavin

    2018-01-01

    Kernel morphology characteristics of wheat are complex and quantitatively inherited. A doubled haploid (DH) population of the cross RL4452/‘AC Domain’ was used to study the genetic basis of seed shape. Quantitative trait loci (QTL) analyses were conducted on a total of 18 traits: 14 grain shape traits, flour yield (Fyd), and three agronomic traits (Plant height [Plht], 1000 Grain weight [Gwt], Test weight [Twt]), using data from trial locations at Glenlea, Brandon, and Morden in Manitoba, Canada, between 1999 and 2004. Kernel shape was studied through digital image analysis with an Acurum® grain analyzer. Plht, Gwt, Twt, Fyd, and grain shape QTL were correlated with each other and QTL analysis revealed that QTL for these traits often mapped to the same genetic locations. The most significant QTL for the grain shape traits were located on chromosomes 4B and 4D, each accounting for up to 24.4% and 53.3% of the total phenotypic variation, respectively. In addition, the most significant QTL for Plht, Gwt, and Twt were all detected on chromosome 4D at the Rht-D1 locus. Rht-D1b decreased Plht, Gwt, Twt, and kernel width relative to the Rht-D1a allele. A narrow genetic interval on chromosome 4B contained significant QTL for grain shape, Gwt, and Plht. The ‘AC Domain’ allele reduced Plht, Gwt, kernel length and width traits, but had no detectable effect on Twt. The data indicated that this variation was inconsistent with segregation at Rht-B1. Numerous QTL were identified that control these traits in this population. PMID:29357369

  19. Field establishment and grain yield of maize affected by hydro-priming of differentially aged seeds

    Directory of Open Access Journals (Sweden)

    Kazem Ghassemi-Golezani

    2017-02-01

    Full Text Available A sub-sample of maize seeds (cv. SC-AR68 with a 100% germination was kept as control, and two other sub-samples were artificially deteriorated at 40 °C for 2 and 3 days, reducing normal germination to 98% and 93%, respectively. Consequently, three seed lots of maize with different levels of vigor were provided. Each seed lot was then divided into four sub-samples, one unprimed and the other three lots were primed in distilled water at 15 °C for 7, 14 and 21 hours, and then dried back to initial moisture content (about 20% at a room temperature of 20–22 °C for 24 hours. The field experiment was arranged as factorial based on randomized complete block design with three replications. Although germination percentage of seed lots was not significantly affected by hydro-priming, germination rate and seedling dry weight were considerably enhanced as a result of seed priming. Hydro-priming for 21 hours enhanced seedling emergence rate of all seed lots with different levels of vigor. This hydro-priming duration also increased grain yield of maize by about 32%, although this superiority was not statistically significant. This advantage in grain yield of plants from primed seeds was related with rapid germination and seedling growth and early emergence in the field.

  20. Effects of Row Spacing and Plant Density on Yield and Yield Components of Sweet Corn in Climatic Conditions of Isfahan

    Directory of Open Access Journals (Sweden)

    N. Khodaeian

    2013-06-01

    Full Text Available To evaluate the effects of row spacing and plant density on yield and yield components of sweet corn, variety KSC403, an experiment was conducted in Research Farm of Isfahan University of Technology, Isfahan, Iran, in 2007, as randomized complete block design with a split-plot layout and three replications. The main plots were allocated to two row spacing (60 and 75 cm and the sub-plots accommodated four levels of plant density (50000, 70000, 90000 and 110000 plants per ha. There was significant increase in leaf area index, shoot dry weight, 100-grain fresh weight and grain fresh yield, as row width was decreased from 75 to 60 cm but the plant height was decreased. There was no significant effect of row spacing on number of rows per ear, number of grains per row and number of grains per ear. Plant height, leaf area index, shoot dry weight per m2 and number of ears per m2 were increased with an increase in plant density. The number of rows per ear, number of grains per row, number of grains per ear, 100-grain fresh weight and grain fresh yield were significantly higher under plant densities of 90000 and 110000 as compared to 50000 and 70000 plants per ha. There was significant interaction between row spacing and plant density for leaf area index, shoot dry weight, number of grains per ear, 100-grain fresh weight and grain fresh yield. Under all plant densities, the grain fresh yield was higher in 60-cm row width compared to 70-cm row width. However, the difference between these two row spacing was not significant in plant densities of 50000 and 110000 plants per ha. The highest grain fresh yield (33940 kg/ha was achieved under row spacing 60 cm and 70000 plants per ha and the least grain fresh yield (20750 kg/ha was obtained in under 75 cm row width and 110000 plants per ha. Considering the obtained results of this experiment, to have maximum grain fresh yield of sweet corn under Isfahan climate, the row spacing of 60 cm and plant density of

  1. Factors Affecting Nitrogen Use Efficiency and Grain Yield of Summer Maize on Smallholder Farms in the North China Plain

    Directory of Open Access Journals (Sweden)

    Guangfeng Chen

    2018-01-01

    Full Text Available The summer maize yields and partial factor productivity of nitrogen (N fertilizer (PFPN, grain yield per unit N fertilizer on smallholder farms in China are low, and differ between farms due to complex, sub-optimal management practices. We collected data on management practices and yields from smallholder farms in three major summer maize-producing sites—Laoling, Quzhou and Xushui—in the North China Plain (NCP for two growing seasons, during 2015–2016. Boundary line analysis and a Proc Mixed Model were used to evaluate the contribution of individual factors and their interactions. Summer maize grain yields and PFPN ranged from 6.6 t ha−1 to 14.2 t ha−1 and 15.4 kg kg−1 to 96.1 kg kg−1, respectively, and averaged 10.5 t ha−1 and 49.1 kg kg−1, respectively. The mean total yield gap and PFPN gap were 3.6 t ha−1 and 43.3 kg kg−1 in Laoling, 2.2 t ha−1 and 24.5 kg kg−1 in Xushui, and 2.8 t ha−1 and 41.1 kg kg−1 in Quzhou. A positive correlation was observed between the yield gap and PFPN gap; the PFPN gap could be reduced by 6.0 kg kg−1 (3.6–6.6 kg kg−1 by reducing the yield gap by 1 t ha−1. The high yield and high PFPN (HH fields had a higher plant density and lower N fertilization rate than the low yield and low PFPN (LL fields. Our results show that multiple management factors caused the yield gap, but the relative contribution of plant density is slightly higher than that of other management practices, such as N input, the sowing date, and potassium fertilizer input. The low PFPN was mainly attributed to an over-application of N fertilizer. To enhance the sustainable production of summer maize, the production gaps should be tackled through programs that guide smallholder farmers on the adoption of optimal management practices.

  2. Effect of high temperature on grain filling period, yield, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice.

    Science.gov (United States)

    Ahmed, Nisar; Tetlow, Ian J; Nawaz, Sehar; Iqbal, Ahsan; Mubin, Muhammad; Nawaz ul Rehman, Muhammad Shah; Butt, Aisha; Lightfoot, David A; Maekawa, Masahiko

    2015-08-30

    High temperature during grain filling affects yield, starch amylose content and activity of starch biosynthesis enzymes in basmati rice. To investigate the physiological mechanisms underpinning the effects of high temperature on rice grain, basmati rice was grown under two temperature conditions - 32 and 22 °C - during grain filling. High temperature decreased the grain filling period from 32 to 26 days, reducing yield by 6%, and caused a reduction in total starch (3.1%) and amylose content (22%). Measurable activities of key enzymes involved in sucrose to starch conversion, sucrose synthase, ADP-glucose pyrophosphorylase, starch phosphorylase and soluble starch synthase in endosperms developed at 32 °C were lower than those at 22 °C compared with similar ripening stage on an endosperm basis. In particular, granule-bound starch synthase (GBSS) activity was significantly lower than corresponding activity in endosperms developing at 22 °C during all developmental stages analyzed. Results suggest changes in amylose/amylopectin ratio observed in plants grown at 32 °C was attributable to a reduction in activity of GBSS, the sole enzyme responsible for amylose biosynthesis. © 2014 Society of Chemical Industry.

  3. Substrate dependence of electron-stimulated O - yields from dissociative electron attachment to physisorbed O2

    Science.gov (United States)

    Huels, M. A.; Parenteau, L.; Sanche, L.

    1994-03-01

    We present measurements of O- electron stimulated desorption yields obtained under identical experimental conditions from 0.15 monolayers (ML) of O2 deposited onto disordered substrates consisting of 4 ML of either Kr, Xe, C2H6, C2H4, N2O, CH3Cl, or H2O, all condensed on Pt (polycrystalline). The resulting O- yield functions, for incident electron energies below 20 eV, are compared to that obtained from the O2/Kr solid; this allows us to assess the order of magnitude effects of the local substrate environment on dissociative electron attachment (DEA) via the 2Πu and gas phase forbidden 2Σ+g,u resonances of O-2. We note that, in addition to electron energy losses in the substrate prior to DEA to O2 and post-dissociation interactions of the O- with the substrate molecules, charge or energy transfer from the O-2 transient anion to a substrate molecule, and capture of the incident electron into a dissociative anion resonance of the substrate molecule may contribute to a reduced O- yield from the physisorbed O2. In the case of O2 deposited on amorphous ice, we find that the O- signal from DEA to O2 is completely absent for electron energies below 14 eV; we attribute this to a complete quenching of the dissociative O-2(2Πu, 2Σ+) resonances by the adjacent water molecules.

  4. Enhancement of Growth and Grain Yield of Rice in Nutrient Deficient Soils by Rice Probiotic Bacteria

    Institute of Scientific and Technical Information of China (English)

    Md Mohibul Alam KHAN; Effi HAQUE; Narayan Chandra PAUL; Md Abdul KHALEQUE; Saleh M. S. AL-GARNI; Mahfuzur RAHMAN; Md Tofazzal ISLAM

    2017-01-01

    Plant associated bacteria are promising alternatives to chemical fertilizers for plant growth and yield improvement in an eco-friendly manner. In this study, rice associated bacteria were isolated and assessed for mineral phosphate solubilization and indole-3-acetic acid (IAA) production activity in vitro. Six promising strains, which were tentatively identified as phylotaxon Pseudochrobactrum sp. (BRRh-1), Burkholderia sp. (BRRh-2), Burkholderia sp. (BRRh-3), Burkholderia sp. (BRRh-4), Pseudomonas aeruginosa (BRRh-5 and BRRh-6) based on their 16S rRNA gene phylogeny, exhibited significant phosphate solubilizing activity in National Botanical Research Institute phosphate growth medium, and BRRh-4 displayed the highest phosphate solubilizing activity, followed by BRRh-5. The pH of the culture broth declined, resulting in increase of growth rate of bacteria at pH 7, which might be due to organic acid secretion by the strains. In presence of L-tryptophan, five isolates synthesized IAA and the maximum IAA was produced by BRRh-2, followed by BRRh-1. Application of two most efficient phosphate solubilizing isolates BRRh-4 and BRRh-5 by root dipping (colonization) of seedling and spraying at the flowering stage significantly enhanced the growth and grain yield of rice variety BRRI dhan-29. Interestingly, application of both strains with 50% of recommended nitrogen, phosphorus and potassium fertilizers produced equivalent or higher grain yield of rice compared to the control grown with full recommended fertilizer doses, which suggests that these strains may have the potential to be used as bioinoculants for sustainable rice production.

  5. The Effect of Vermicompost and Mycorrhizal Inoculation on Grain Yield and some Physiological Characteristics of Soybean (Glycine max L. under Water Stress Condition

    Directory of Open Access Journals (Sweden)

    Elham Jahangiri nia

    2017-08-01

    Full Text Available Introduction Moisture limitation is considered as one of the important limiting factors in soybean growth. Drought stress affects different aspects of soybean growth through making anatomical, physiological and biochemical changes (Tarumingkeng & Coto, 2003. Under dry tension condition, there will be a disturbance in transmitting nutrients, but some useful soil fungi such as mycorrhiza improve production of crops under stress through forming colonies in the root and boosting water and nutrient absorption (Al-Karaki et al., 2004. Using vermicompost in sustainable agriculture strengthens support and activities of beneficial soil microorganisms (such as mycorrhizal fungi and phosphate solubilizing microorganisms in order to provide nutrients required by plants like nitrogen, phosphorus and soluble potassium as well as improving the growth and performance of the crops (Arancon et al., 2004. Materials and methods In order to investigate the effects of vermicompost and mycorrhiza fertilizers on grain yield and some physiological characteristics of soybean under water stress condition an experiment was conducted at Agricultural Research Center of Khorramabad during 2013. The field experiment was carried out based on a randomized complete blocks design arranged in split-plot with four replications. The experiment treatments including irrigation in three levels (after 60, 120 and 180 mm evaporation from pan class A pan, nutrient management in six levels (non-use of vermicompost and mycorhiza fertilizer, inoculated with mycorrhiza fertilizer, consumption of 5 and 10 t.ha-1 vermicompost, consumption of 5 and 10 t.ha-1 vermicompost with mycorrhiza were respectively as the main plots and sub. In current study, RWC, LAI, SPAD were measured during 59 days after planting at the beginning of podding of the control treatment. The temperature of plant leaves were measured by the thermometer (model TM-958 LUTRON infrared Thermometers. To analyze the growth of

  6. Grain yield of soybean cultivars using different densities and sowing dates in a high-altitude region of south Brazil

    Directory of Open Access Journals (Sweden)

    Vitor Spader

    2015-07-01

    Full Text Available The study aimed to evaluate the performance of soybean cultivars at different sowing dates and plant densities. Two experiments were carried out at FAPA (Fundação Agrária de Pesquisa Agropecuária [Agrarian Foundation for Agricultural and Cattle Research], located at 25?33’ S latitude, 51?29’ W longitude and with 1.100 meters of altitude in Guarapuava, PR [Paraná], Brazil, in two agricultural harvests (2010/2011 and 2011/2012. The experimental design was in randomized blocks and split plots, in which the sowing dates (10/20, 11/18 and 12/10 were allocated by plot, the densities (250, 350 and 450 thousand plants ha-1 by subplot and the cultivars (BMX Energia, BMX Apolo, BMX Ativa, FPS Júpiter, V_Top, NS 6631, TMG 7161 and BRS Tordilha by sub-subplot. The agronomic characteristics, grain yield and yield components were evaluated. Sowing dates and plant densities affected the agronomic characteristics, grain yield and yield components of soybean. The best sowing dates for lodging-tolerant cultivars are 10/20 and 11/18, and the best densities are 350 and 450 thousand plants ha-1, while lodging-susceptible cultivars respond best for sowing dates of 11/18 and 12/10 and densities from 250 to 350 thousand plants ha-1.

  7. The effect of the Tom Thumb dwarfing gene on grain size and grain number of wheat (Triticum aestivum)

    International Nuclear Information System (INIS)

    Gale, M.D.; Flintham, J.E.

    1984-01-01

    The Tom Thumb dwarfing gene, Rht3, like the related genes Rht1 and Rht2 from Norin 10, has pleiotropic effects on individual ear yields, and grain protein concentrations. An experiment was conducted in which tiller number per plant and grain number per spike were restricted to ascertain whether reduced grain size and protein content are primary or secondary competitive effects in near-isogenic lines. The potential for grain growth was shown to be identical in Rht3 and rht genotypes when grain set was restricted, indicating that the primary effect of the gene is to increase spikelet fertility. Nitrogen accumulation within the grain was also affected by inter-grain competition but decreased nitrogen yields per plant indicated that reduced protein levels are, in part, a primary effect of the gene. Analysis of individual grain yields within Rht3 and rht spikes showed that the gene affected developmental 'dominance' relationships within the spike. (author)

  8. Mid-Season Leaf Glutamine Predicts End-Season Maize Grain Yield and Nitrogen Content in Response to Nitrogen Fertilization under Field Conditions

    Directory of Open Access Journals (Sweden)

    Travis Goron

    2017-06-01

    Full Text Available After uptake in cereal crops, nitrogen (N is rapidly assimilated into glutamine (Gln and other amino acids for transport to sinks. Therefore Gln has potential as an improved indicator of soil N availability compared to plant N demand. Gln has primarily been assayed to understand basic plant physiology, rather than to measure plant/soil-N under field conditions. It was hypothesized that leaf Gln at early-to-mid season could report the N application rate and predict end-season grain yield in field-grown maize. A three-year maize field experiment was conducted with N application rates ranging from 30 to 218 kg ha−1. Relative leaf Gln was assayed from leaf disk tissue using a whole-cell biosensor for Gln (GlnLux at the V3-V14 growth stages. SPAD (Soil Plant Analysis Development and NDVI (Normalized Difference Vegetation Index measurements were also performed. When sampled at V6 or later, GlnLux glutamine output consistently correlated with the N application rate, end-season yield, and grain N content. Yield correlation outperformed GreenSeekerTM NDVI, and was equivalent to SPAD chlorophyll, indicating the potential for yield prediction. Additionally, depleting soil N via overplanting increased GlnLux resolution to the earlier V5 stage. The results of the study are discussed in the context of luxury N consumption, leaf N remobilization, senescence, and grain fill. The potential and challenges of leaf Gln and GlnLux for the study of crop N physiology, and future N management are also discussed.

  9. Quantitative Genetic Analysis for Yield and Yield Components in Boro Rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Supriyo CHAKRABORTY

    2010-03-01

    Full Text Available Twenty-nine genotypes of boro rice (Oryza sativa L. were grown in a randomized block design with three replications in plots of 4m x 1m with a crop geometry of 20 cm x 20 cm between November-April, in Regional Agricultural Research Station, Nagaon, India. Quantitative data were collected on five randomly selected plants of each genotype per replication for yield/plant, and six other yield components, namely plant height, panicles/plant, panicle length, effective grains/panicle, 100 grain weight and harvest index. Mean values of the characters for each genotype were used for analysis of variance and covariance to obtain information on genotypic and phenotypic correlation along with coheritability between two characters. Path analyses were carried out to estimate the direct and indirect effects of boro rice�s yield components. The objective of the study was to identify the characters that mostly influence the yield for increasing boro rice productivity through breeding program. Correlation analysis revealed significant positive genotypic correlation of yield/plant with plant height (0.21, panicles/plant (0.53, panicle length (0.53, effective grains/panicle (0.57 and harvest index (0.86. Path analysis based on genotypic correlation coefficients elucidated high positive direct effect of harvest index (0.8631, panicle length (0.2560 and 100 grain weight (0.1632 on yield/plant with a residual effect of 0.33. Plant height and panicles/plant recorded high positive indirect effect on yield/plant via harvest index whereas effective grains/panicle on yield/plant via harvest index and panicle length. Results of the present study suggested that five component characters, namely harvest index, effective grains/plant, panicle length, panicles/plant and plant height influenced the yield of boro rice. A genotype with higher magnitude of these component characters could be either selected from the existing genotypes or evolved by breeding program for genetic

  10. Effect of Drought Stress at Different Growth Stages on Yield and Yield Components of Six Rice (Oryza sativa L. Genotypes

    Directory of Open Access Journals (Sweden)

    Sharifunnessa Moonmoon

    2017-12-01

    Full Text Available Drought stress affects plant growth and development and ultimately, reduced grain yield of rice. But stress at different growth stages may respond differently which is still unclear. Therefore, a pot experiment was carried out with six rice genotypes to determine the critical growth stage where drought stress effect on yield reduction and to find stress tolerance mechanism in rice genotypes. Drought stress (control i.e. no stress and 40% field capacity, FC was imposed on Binadhan-13, Kalizira, BRRI dhan34, Ukunimodhu, RM-100-16 and NERICA mutant rice genotypes at maximum tillering, panicle initiation and grain filling stages and discontinued when the specific stage was over. The experiment was laid out in a complete randomized design with three replications. Drought stress affected number of effective tiller hill-1, number of spikelets panicle-1, filled grains hill-1, 1000-grain weight and grain yield. Binadhan-13 produced the highest grain yield and the lowest sterility under drought stress at grain filling stage. Percentage of spikelet sterility increased under drought stress (40% FC especially at the panicle initiation stage resulting low grain yield. Among the tested genotypes Binadhan-13 performed well by reducing spikelet sterility under drought stress condition. For 1000-grain weight and grain yield, grain filling stage was found more crucial. From the current research, drought tolerance mechanism was found in genotypes Binadhan-13 and NERICA mutant. [Fundam Appl Agric 2017; 2(3.000: 285-289

  11. Inheritance of grain yield and its correlation with yield components in ...

    African Journals Online (AJOL)

    SAM

    2014-03-19

    Mar 19, 2014 ... 7 × 7 incomplete diallel cross of seven wheat parents during the crop season of 2009 to 2010. Mean square of general ... Genetic background and yield traits of the seven parents. Parent. Pedigree. Released year ..... Correlation and path analysis for yield and yield contributing characters in wheat (Triticum ...

  12. Study of thermal stability of ultrafine-grained copper by means of electron back scattering diffraction

    Czech Academy of Sciences Publication Activity Database

    Man, O.; Pantělejev, L.; Kunz, Ludvík

    2010-01-01

    Roč. 51, č. 2 (2010), s. 209-213 ISSN 1345-9678 R&D Projects: GA AV ČR 1QS200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : ultra-fine grained copper * thermal stability of microstructure * electron back scattering diffraction * grain size * texture Subject RIV: JG - Metallurgy Impact factor: 0.779, year: 2010

  13. Performance, carcass yield, and meat quality of free-range broilers fed wet grain corn silage

    Directory of Open Access Journals (Sweden)

    ESPB Saldanha

    2006-06-01

    Full Text Available This study aimed at evaluating the effect of total replacement of dry corn by wet grain corn silage (WGCS in the feed of label broilers older than 28 days of age on performance, mortality, carcass, parts, breast meat and thighs meat yields, and meat quality. A mixed-sex flock of 448 ISA S 757-N (naked-neck ISA JA Label day-old chicks was randomly distributed in to randomized block experimental design with four treatments (T1 - with no WGCS; T2 - WGCS between 28 and 83 days; T3 - WGCS between 42 and 83 days; and T4 - WGCS between 63 and 83 days and four replicates of 28 birds each. Birds were raised under the same management and feeding conditions until 28 days of age, when they started to have free access to paddock with pasture (at least 3m²/bird and to be fed the experimental diets. Feed and water were offered ad libitum throughout the rearing period, which was divided in three stages: starter (1 to 28 days, grower (29 to 63 days, and finisher (64 to 83 days according to the feeding schedule. During the short periods of WGCS use (group T2 during grower stage and T4 during the finisher stage, performance and mortality results were similar as to those of the control group (T1. At the end of the experiment, it was observed that the extended use of WGCS (T2 and T3 determined a negative effect on feed conversion ratio. However, the best results of breast meat yield were observed with birds fed WGCS since 28 days (T2. It was concluded that WGCS can replace dry corn grain for short periods during the grower and finisher stages with no impairment of meat quality and yield in slow growth broilers.

  14. Effective Use of Water and Increased Dry Matter Partitioned to Grain Contribute to Yield of Common Bean Improved for Drought Resistance

    Directory of Open Access Journals (Sweden)

    Jose A. Polania

    2016-05-01

    Full Text Available Common bean (Phaseolus vulgaris L. is the most important food legume in the diet of poor people in the tropics. Drought causes severe yield loss in this crop. Identification of traits associated with drought resistance contributes to improving the process of generating bean genotypes adapted to these conditions. Field studies were conducted at the International Center for Tropical Agriculture (CIAT, Palmira, Colombia, to determine the relationship between grain yield and different parameters such as effective use of water (EUW, canopy biomass and dry partitioning indices (pod partitioning index, harvest index and pod harvest index in elite lines selected for drought resistance over the past decade. Carbon isotope discrimination (CID was used for estimation of water use efficiency (WUE. The main objectives were: (i to identify specific morpho-physiological traits that contribute to improved resistance to drought in lines developed over several cycles of breeding and that could be useful as selection criteria in breeding; and (ii to identify genotypes with desirable traits that could serve as parents in the corresponding breeding programs. A set of 36 bean genotypes belonging to the Middle American gene pool were evaluated under field conditions with two levels of water supply (irrigated and drought over two seasons. Eight bean lines (NCB 280, NCB 226, SEN 56, SCR 2, SCR 16, SMC 141, RCB 593 and BFS 67 were identified as resistant to drought stress. Resistance to terminal drought stress was positively associated with EUW combined with increased dry matter partitioned to pod and seed production and negatively associated with days to flowering and days to physiological maturity. Differences in genotypic response were observed between grain CID and grain yield under irrigated and drought stress. Based on phenotypic differences in CID, leaf stomatal conductance, canopy biomass and grain yield under drought stress, the lines tested were classified into

  15. GRAIN YIELD AND PROFITABILITY IN CORN AS A FUNCTION OF GENOTYPE, BIOFERTILIZER AND NITROGEN, UNDER WARM CLIMATE

    Directory of Open Access Journals (Sweden)

    Cid Aguilar

    2015-08-01

    Full Text Available Corn growth and production depend of the environmental conditions in which it grows and the nitrogen fertilizer that is crucial to increase grain yield. The use of bacteria for nitrogen fixation and mycorrhiza as a complement to the inorganic fertilizer, can be an option to increase yields, reduce production costs and conserve the environment. As an alternative to this problem, the objective of the present study was to determine the production of dry matter (DM, harvest index, grain yield (GY, and its components, and profitability in the genotypes of maize race "Vandeño", synthetic variety VS-535 and hybrids H-562 and H-7573, with and without biofertilizer and 0, 80 and 160 kg N ha-1. The study was conducted in Iguala, Gro. in early sown under irrigation, phenological stages were recorded. Assessments were evaluated at harvest. For the region of study and time of sowing, only differences between cultivars were observed. The differences observed were genotypical, by effect of biofertilizer and nitrogen in the production of DM and GY. The higher DM and GY were achieved with the combination of H-562, biofertilizer and 160 kg N ha-1 (3000 and 924 g m-2, respectively and the lower treatment correspond to H-562, without biofertilizer and nitrogen (1703 and 376 g m-2, respectively. The higher net income was achieved with H-562 and 160 kg N ha-1 regardless of the use of biofertilizer.

  16. Effect of low doses of X-rays on grain and straw yield of Setaria italica

    International Nuclear Information System (INIS)

    Joshi, R.K.; Bhattacharya, S.; Fendrik, I.

    1976-01-01

    Dry or pre-soaked seeds were irradiated with 250-1,500 R/h of X-rays at a dose rate of 1,000 R/h and sown into pots. Till harvest normal cultural practices were employed. A stimulation of grain and straw yield was only obtained by irradiation of dry seeds. Irradiation of pre-soaked seeds was ineffective or somewhat harmful. The absence of any effects in post-soaked seeds indicated that early hydration of seeds after irradiation results in a stabilization of the damage. (MG) [de

  17. Effects of sowing dates and different fertilizers on yield, yield components, and oil percentage of castor bean (Ricinus communis L.

    Directory of Open Access Journals (Sweden)

    parviz rezvani moghadam

    2009-06-01

    Full Text Available In order to study the effects of sowing dates and different fertilizers on yield, yield components, and oil percentage of castor bean, an experiment was conducted at Experimental station, College of Agriculture, Ferdowsi University of Mashhad, Iran in years 2004-2005. The experimental treatments comprised all combinations of four sowing dates (11 April, 25 April, 8 May and 22 May and three different fertilizers (cow manure (30 tons/ha, compost (30 tons/ha, chemical fertilizers (100 kg/ha N and 250 kg/ha of super phosphate and no fertilizer as control. Different characteristics such as plant height, main inflorescence height, number of inflorescence per plant, number of secondary stems per plant, number of capsules per plant, number of grain per plant, grain weight per plant, 100 seed weight, grain yield, oil percentage and oil yield were recorded. A factorial arrangement based on a randomized complete block design with three replications was used. The results showed by delaying sowing date grain yield, seed oil percentage and oil yield were decreased, but there was no significant differences between 25 April, 8 May and 22 May sowing dates. Harvest index and 100 seed weight did not affect by neither sowing dates nor fertilizer treatments. The highest number of branches per plant, number of fertile inflorescences per plant, number of fertile capsules per plant, number of grain per plant, grain weight per plant and biological yield were obtained at 8 May sowing date on chemical fertilizer. Percentage of seed oil, grain yield and oil yield was higher at the first sowing date (11 April in compost and chemical fertilizer treatments. Keywords: Castor bean, sowing date, fertilizer, grain yield, oil percentage.

  18. Evaluation of the Effect of Crop Rotations on Yield and Yield Components of Bread Wheat (Triticum aestivum L. cv. Darya)

    OpenAIRE

    H. A. Fallahi; U. Mahmadyarov; H. Sabouri; M. Ezat-Ahmadi4

    2013-01-01

    Grain yield in wheat is influenced directly and indirectly by other plant characteristics. One of the main goals in wheat breeding programs is increase of grain yield. Considering the role of crop rotation in increasing grain yield, and in order to study the difference between crop rotations for wheat yield and yield components (Darya cultivar), an experiment was conducted with six rotation treatments (wheat-chickpea-wheat, wheat-cotton-wheat, wheat-watermelon-wheat, wheat-wheat-wheat, wheat-...

  19. Calculations of secondary electron yield of graphene coated copper for vacuum electronic applications

    Directory of Open Access Journals (Sweden)

    H. K. A. Nguyen

    2018-01-01

    Full Text Available The suppression of secondary electron yield (SEY which can possibly lead to multipactor is an important goal for several applications. Though some techniques have focused on geometric modifications to lower the SEY, the use of graphene coatings as thin as a few monolayers is a promising new development that deserves attention either as a standalone technique or in concert with geometric alterations. Here we report on Monte Carlo based numerical studies of SEY on graphene coated copper with comparisons to recent experimental data. Our predicted values are generally in good agreement with reported measurements. Suppression of the secondary electron yield by as much as 50 percent (over copper with graphene coating is predicted at energies below 125 eV, and bodes well for multipactor suppression in radio frequency applications.

  20. Reduced Height (Rht) Alleles Affect Wheat Grain Quality.

    Science.gov (United States)

    Casebow, Richard; Hadley, Caroline; Uppal, Rajneet; Addisu, Molla; Loddo, Stefano; Kowalski, Ania; Griffiths, Simon; Gooding, Mike

    2016-01-01

    The effects of dwarfing alleles (reduced height, Rht) in near isogenic lines on wheat grain quality are characterised in field experiments and related to effects on crop height, grain yield and GA-sensitivity. Alleles included those that conferred GA-insensitivity (Rht-B1b, Rht-B1c, Rht-D1b, Rht-D1c) as well as those that retained GA-sensitivity (rht(tall), Rht8, Rht8 + Ppd-D1a, Rht12). Full characterisation was facilitated by including factors with which the effects of Rht alleles are known to interact for grain yield (i.e. system, [conventional or organic]; tillage intensity [plough-based, minimum or zero]; nitrogen fertilizer level [0-450 kg N/ha]; and genetic backgrounds varying in height [cvs Maris Huntsman, Maris Widgeon, and Mercia]. Allele effects on mean grain weight and grain specific weight were positively associated with final crop height: dwarfing reduced these quality criteria irrespective of crop management or GA-sensitivity. In all but two experiments the effects of dwarfing alleles on grain nitrogen and sulphur concentrations were closely and negatively related to effects on grain yield, e.g. a quadratic relationship between grain yield and crop height manipulated by the GA-insensitive alleles was mirrored by quadratic relationships for nitrogen and sulphur concentrations: the highest yields and most dilute concentrations occurred around 80cm. In one of the two exceptional experiments the GA-insensitive Rht-B1b and Rht-B1c significantly (Pgrain nitrogen concentration in the absence of an effect on yield, and in the remaining experiment the GA-sensitive Rht8 significantly reduced both grain yield and grain nitrogen concentration simultaneously. When Rht alleles diluted grain nitrogen concentration, N:S ratios and SDS-sedimentation volumes were often improved. Hagberg falling number (HFN) was negatively related to crop height but benefits from dwarfing were only seen for GA-insensitive alleles. For HFN, therefore, there was the strongest evidence for

  1. Effect of seed treatment with static magnetic field (SMF) and low dose gamma radiation (GR) on grain yield of aerobic rice

    International Nuclear Information System (INIS)

    Kumar, Dinesh; Anand, Anjali; Singh, Bhupinder

    2014-01-01

    Aerobic rice cultivation is gaining popularity as it demands less water. However, poor germination of rice is an important issue in this situation. Seed pretreatment with static magnetic field (SMF) and gamma radiation (GR) at prescribed dose is known to influence the germination, seedling vigour and and yield of many crops. There is a possibility to improve the crop establishment under aerobic situation by physical seed treatment with static-magnetic field (SMF) and gamma radiation (GR) prior to sowing. Hence, a field experiment was conducted at the Indian Agricultural Research Institute, New Delhi during kharif 2012 and 2013 to study the effect of SMF and GR-treated seeds on growth and yield of aerobic rice. The five seed treatments were: SMF 50 mT for 2 hrs, SMF 100 mT for 2 hrs, GR 0.0025 kGy, GR 0.10 kGy and an untreated control. The experiment was laid out in a Randomized Block Design with four replications. Crop (variety 'Pusa Basmati-1121') was direct seeded on 25 th and 24 th June during 2012 and 2013, respectively at a spacing of 25 cm. Treatments GR 0.0025 kGy, SMF (50 mT) and SMF (100 mT) resulted in a significant improvement in grain yield of rice over control and GR dose (0.10 kGy) during both the years. Averaged across two years the grain yield increase by treating the rice seeds with GR 0.0025 kGy, SMF (50 mT) and SMF (100 mT) was 20.1, 17.6 and 14.5%, respectively over the control. Increase in GR dose (0.10 kGy ) was not effective in improving the yield, and was found to be similar to control. It is therefore concluded that treatment of rice seeds either with GR (0.0025 kGy) or SMF (50 mT) holds a great promise in increasing the grain yield of aerobic rice. (author)

  2. Plasticity mechanisms in ultrafine grained freestanding aluminum thin films revealed by in-situ transmission electron microscopy nanomechanical testing

    International Nuclear Information System (INIS)

    Idrissi, Hosni; Kobler, Aaron; Amin-Ahmadi, Behnam; Schryvers, Dominique; Coulombier, Michael; Pardoen, Thomas; Galceran, Montserrat; Godet, Stéphane; Raskin, Jean-Pierre; Kübel, Christian

    2014-01-01

    In-situ bright field transmission electron microscopy (TEM) nanomechanical tensile testing and in-situ automated crystallographic orientation mapping in TEM were combined to unravel the elementary mechanisms controlling the plasticity of ultrafine grained Aluminum freestanding thin films. The characterizations demonstrate that deformation proceeds with a transition from grain rotation to intragranular dislocation glide and starvation plasticity mechanism at about 1% deformation. The grain rotation is not affected by the character of the grain boundaries. No grain growth or twinning is detected

  3. Plasticity mechanisms in ultrafine grained freestanding aluminum thin films revealed by in-situ transmission electron microscopy nanomechanical testing

    Energy Technology Data Exchange (ETDEWEB)

    Idrissi, Hosni, E-mail: hosni.idrissi@ua.ac.be [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Place Sainte Barbe 2, B-1348 Louvain-La-Neuve (Belgium); Kobler, Aaron [Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology - KIT, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Joint Research Laboratory Nanomaterials (KIT and TUD) at Technische Universität Darmstadt (TUD), Petersenstr. 32, 64287 Darmstadt (Germany); Amin-Ahmadi, Behnam; Schryvers, Dominique [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Coulombier, Michael; Pardoen, Thomas [Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Place Sainte Barbe 2, B-1348 Louvain-La-Neuve (Belgium); Galceran, Montserrat; Godet, Stéphane [Matters and Materials Department, Université Libre de Bruxelles, 50 Av. FD Roosevelt CP194/03, 1050 Brussels (Belgium); Raskin, Jean-Pierre [Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Microwave Laboratory, Université catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Kübel, Christian [Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology - KIT, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-03-10

    In-situ bright field transmission electron microscopy (TEM) nanomechanical tensile testing and in-situ automated crystallographic orientation mapping in TEM were combined to unravel the elementary mechanisms controlling the plasticity of ultrafine grained Aluminum freestanding thin films. The characterizations demonstrate that deformation proceeds with a transition from grain rotation to intragranular dislocation glide and starvation plasticity mechanism at about 1% deformation. The grain rotation is not affected by the character of the grain boundaries. No grain growth or twinning is detected.

  4. Seed priming with iron and zinc in bread wheat: effects in germination, mitosis and grain yield.

    Science.gov (United States)

    Reis, Sara; Pavia, Ivo; Carvalho, Ana; Moutinho-Pereira, José; Correia, Carlos; Lima-Brito, José

    2018-07-01

    Currently, the biofortification of crops like wheat with micronutrients such as iron (Fe) and zinc (Zn) is extremely important due to the deficiencies of these micronutrients in the human diet and in soils. Agronomic biofortification with Fe and Zn can be done through different exogenous strategies such as soil application, foliar spraying, and seed priming. However, the excess of these micronutrients can be detrimental to the plants. Therefore, in the last decade, a high number of studies focused on the evaluation of their phytotoxic effects to define the best strategies for biofortification of bread wheat. In this study, we investigated the effects of seed priming with different dosages (1 mg L -1 to 8 mg L -1 ) of Fe and/or Zn in germination, mitosis and yield of bread wheat cv. 'Jordão' when compared with control. Overall, our results showed that: micronutrient dosages higher than 4 mg L -1 negatively affect the germination; Fe and/or Zn concentrations higher than 2 mg L -1 significantly decrease the mitotic index and increase the percentage of dividing cells with anomalies; treatments performed with 8 mg L -1 of Fe and/or 8 mg L -1 Zn caused negative effects in germination, mitosis and grain yield. Moreover, seed priming with 2 mg L -1 Fe + 2 mg L -1 Zn has been shown to be non-cytotoxic, ensuring a high rate of germination (80%) and normal dividing cells (90%) as well as improving tillering and grain yield. This work revealed that seed priming with Fe and Zn micronutrients constitutes a useful and alternative approach for the agronomic biofortification of bread wheat.

  5. Genetic basis of yield and some yield related traits in basmati rice

    International Nuclear Information System (INIS)

    Saleem, M.Y.; Haq, M.A.; Mirza, J.I.

    2010-01-01

    Additive, dominance and epistasis components of genetic variation for yield and some yield related traits were assessed through modified triple test cross technique in Basmati rice. Epistasis was found an important part of genetic variation for plant height, tillers per plant, secondary branches per panicle, grains per panicle, 1000-grain weight and yield per plant except primary branches per panicle and panicle length. Bifurcation of epistasis showed that additive x additive (i) type and additive x dominance + dominance x dominance (j + l) types of non-allelic interactions were involved in the expression of these traits. Additive and dominance type of gene action influenced the expression of primary branches per panicle and panicle length. No evidence of directional dominance was observed for these two traits. For plant height, tillers per plant, secondary branches per panicle, grains per panicle, 1000-grain weight and yield per plant, recurrent selection or bi parental mating may be exercised in F2 and following generations however, selection of desired plants may be postponed till F5 or F6 generations to permit maximum obsession of epistatic effects to develop desired cultivar(s) in Basmati rice.(author)

  6. Reduced Height (Rht Alleles Affect Wheat Grain Quality.

    Directory of Open Access Journals (Sweden)

    Richard Casebow

    Full Text Available The effects of dwarfing alleles (reduced height, Rht in near isogenic lines on wheat grain quality are characterised in field experiments and related to effects on crop height, grain yield and GA-sensitivity. Alleles included those that conferred GA-insensitivity (Rht-B1b, Rht-B1c, Rht-D1b, Rht-D1c as well as those that retained GA-sensitivity (rht(tall, Rht8, Rht8 + Ppd-D1a, Rht12. Full characterisation was facilitated by including factors with which the effects of Rht alleles are known to interact for grain yield (i.e. system, [conventional or organic]; tillage intensity [plough-based, minimum or zero]; nitrogen fertilizer level [0-450 kg N/ha]; and genetic backgrounds varying in height [cvs Maris Huntsman, Maris Widgeon, and Mercia]. Allele effects on mean grain weight and grain specific weight were positively associated with final crop height: dwarfing reduced these quality criteria irrespective of crop management or GA-sensitivity. In all but two experiments the effects of dwarfing alleles on grain nitrogen and sulphur concentrations were closely and negatively related to effects on grain yield, e.g. a quadratic relationship between grain yield and crop height manipulated by the GA-insensitive alleles was mirrored by quadratic relationships for nitrogen and sulphur concentrations: the highest yields and most dilute concentrations occurred around 80cm. In one of the two exceptional experiments the GA-insensitive Rht-B1b and Rht-B1c significantly (P<0.05 reduced grain nitrogen concentration in the absence of an effect on yield, and in the remaining experiment the GA-sensitive Rht8 significantly reduced both grain yield and grain nitrogen concentration simultaneously. When Rht alleles diluted grain nitrogen concentration, N:S ratios and SDS-sedimentation volumes were often improved. Hagberg falling number (HFN was negatively related to crop height but benefits from dwarfing were only seen for GA-insensitive alleles. For HFN, therefore, there

  7. Impact of humic acid and chemical fertilizer application on growth and grain yield of rainfed wheat (triticum aestivum l.)

    International Nuclear Information System (INIS)

    Khan, R.U.; Khan, M.S.

    2010-01-01

    The high cost of inorganic fertilizer, use of natural fertilizer resources for increasing crop production on sustainable basis has become imperative. Two field experiments were conducted to study the potential of humic acid (HA) as a low-cost natural fertilizer and to determine its effect on the yield of rainfed wheat crop (Triticum aestivum L. cv. Naseer) at the research farm of Arid Zone Research Institute, Dera Ismail Khan during two successive winter seasons, 2007-08 and 2008-09. The treatments consisted of HA alone (3 kg ha/sup -1/ or 1.5 kg ha/sup -1/) and in combination with full (60:40 kg ha/sup -1/) and half (30:20 kg ha/sup -1/) the recommended rates of NP fertilizers. Results showed that in the first growing season (2007-08), the combination of 3 kg ha/sup -1/ HA with half (30:20 kg ha-1) rate of NP produced the highest grain yield (1314 kg ha/sup -1/) and increased the yield by 46.9% over the control. In the second growing season (2008-09), application of 3 kg ha/sup -1/ HA alone produced significantly (P<0.05) higher grain yield (2999.9 kg ha/sup -1/) and increased the yield by 24% over the control and saved 100% cost of the chemical fertilizer. Results suggested that HA applied alone at 3 kg ha/sup -1/ or in combination with half (30:20 kg ha/sup -1/) rate of NP fertilizers appeared to be the most economical rate to obtain the maximum yield of wheat under the rainfed conditions of Dera Ismail Khan. HA has great potential as a low cost natural fertilizer to improve soil fertility on sustainable basis. (author)

  8. Genotypic Variation in Yield, Yield Components, Root Morphology and Architecture, in Soybean in Relation to Water and Phosphorus Supply

    Science.gov (United States)

    He, Jin; Jin, Yi; Du, Yan-Lei; Wang, Tao; Turner, Neil C.; Yang, Ru-Ping; Siddique, Kadambot H. M.; Li, Feng-Min

    2017-01-01

    Water shortage and low phosphorus (P) availability limit yields in soybean. Roots play important roles in water-limited and P-deficient environment, but the underlying mechanisms are largely unknown. In this study we determined the responses of four soybean [Glycine max (L.) Merr.] genotypes [Huandsedadou (HD), Bailudou (BLD), Jindou 21 (J21), and Zhonghuang 30 (ZH)] to three P levels [applied 0 (P0), 60 (P60), and 120 (P120) mg P kg-1 dry soil to the upper 0.4 m of the soil profile] and two water treatment [well-watered (WW) and water-stressed (WS)] with special reference to root morphology and architecture, we compared yield and its components, root morphology and root architecture to find out which variety and/or what kind of root architecture had high grain yield under P and drought stress. The results showed that water stress and low P, respectively, significantly reduced grain yield by 60 and 40%, daily water use by 66 and 31%, P accumulation by 40 and 80%, and N accumulation by 39 and 65%. The cultivar ZH with the lowest daily water use had the highest grain yield at P60 and P120 under drought. Increased root length was positively associated with N and P accumulation in both the WW and WS treatments, but not with grain yield under water and P deficits. However, in the WS treatment, high adventitious and lateral root densities were associated with high N and P uptake per unit root length which in turn was significantly and positively associated with grain yield. Our results suggest that (1) genetic variation of grain yield, daily water use, P and N accumulation, and root morphology and architecture were observed among the soybean cultivars and ZH had the best yield performance under P and water limited conditions; (2) water has a major influence on nutrient uptake and grain yield, while additional P supply can modestly increase yields under drought in some soybean genotypes; (3) while conserved water use plays an important role in grain yield under drought

  9. Analysis of Yield and Yield Related Traits Variability of Winter Wheat (Triticum aestivum L. Cv. Izolda and Double Haploid Lines

    Directory of Open Access Journals (Sweden)

    Kozdój Janusz

    2015-12-01

    Full Text Available The yield-forming potential of winter wheat is determined by several factors, namely total number of shoots per plant and total number of spikelets per spike. The field experiments were conducted during three vegetation seasons at the Plant Breeding and Acclimatization Institute – National Research Institute (PBAI–NRI, located in Radzików, Poland. The objective of this study was a comparative analysis of the structural yield-forming factor levels, which determine grain yield per spike and per plant of the DH lines and standard Izolda cultivar. Results indicate that several DH lines showed some differences in tested morphological structures of plant, yield factor levels and in grain yield per spike and per plant in comparison to standard Izolda, regardless of the year. Mean grain yield per plant of DH lines was 26.5% lower in comparison to standard Izolda only in the second year of study. It was caused by a reduction of productive tillers number. Structural yield-forming potential of DH lines was used in 38% and 59% and in case of Izolda in 47% and 61% (the second and the third year of experiment, respectively. The mean grain yield per spike of DH lines was 14.8% lower than Izolda cultivar only in third year of experiment and it was caused by about 12% lower number of grains per spike. Structural yield-forming potential of DH spikes was used in 82.4%, 85.4% and 84.9% and in case of Izolda in 83.8%, 87% and 89.5% (the first, the second and the third year of experiment, respectively. The grain yield per winter wheat plant (both DH lines and standard Izolda was significantly correlated with the number of productive tillers per plant (r = 0.80. The grain yield per winter wheat spike (both DH lines and Izolda cultivar was significantly and highly correlated with the number of grains per spike (r = 0.96, number of fertile spikelets per spike (r = 0.87 and the spike length (r = 0.80. Variation of spike and plant structural yield-forming factors

  10. Enhanced electromagnetic emission from plasmas containing positive dust grains and electrons

    International Nuclear Information System (INIS)

    Shukla, P.K.; Shukla, Nitin; Stenflo, L.

    2007-01-01

    Large amplitude high-frequency (HF) electromagnetic (EM) waves can scatter off dust-acoustic waves in plasmas containing positive dust grains and electrons, and can thus be responsible for HF enhanced electromagnetic emissions (EEE). An expression for the ensemble average of the squared HF-EEE vector potential is therefore derived, following the standard parametric interaction formalism and adopting the Rostoker superposition principle. The results should be useful for deducing the dust plasma parameters (e.g. the dust number density and dust charge) in situ, and HF intense EM beams can thus be used for diagnosis of positive dust-electron plasmas in space and laboratories

  11. Secondary Electron Yield on Cryogenic Surfaces as a Function of Physisorbed Gases

    CERN Document Server

    Kuzucan, Asena; Taborelli, Mauro

    2011-01-01

    In LHC the electron cloud induced by photoelectrons, gas ionization and secondary electrons emitted from the beam pipe walls could be a limitation of the performance. The electron cloud induce heat load on the cryogenic system, cause pressure rise, emittance growth and beam instabilities, which in the end will limit the beam’s lifetime. Beam- induced multipacting, which can arise through oscillatory motion of photoelectrons and low-energy secondary electrons bouncing back and forth between opposite walls of the vacuum chamber during successive passage of proton bunches, represent therefore a potential problem for the machine. The secondary electron yield (SEY) is one of the key parameters for the electron cloud build up and multipacting phenomenon. An electron cloud occurs if the metal surface secondary electron yield is high enough for electron multiplication. This parameter has been extensively studied on room temperature samples but uncertainties remain for samples at cryogenic temperature. Indeed, at l...

  12. A comparison of grain boundary evolution during grain growth in fcc metals

    International Nuclear Information System (INIS)

    Brons, J.G.; Thompson, G.B.

    2013-01-01

    Grain growth of Cu and Ni thin films, subjected to in situ annealing within a transmission electron microscope, has been quantified using a precession-enhanced electron diffraction technique. The orientation of each grain and its misorientation with respect to its neighboring grains were calculated. The Cu underwent grain growth that maintained a monomodal grain size distribution, with its low-angle grain boundaries being consumed, and the Ni exhibited grain size distributions in stages, from monomodal to bimodal to monomodal. The onset of Ni’s abnormal grain growth was accompanied by a sharp increase in the Σ3 and Σ9 boundary fractions, which is attributed to simulation predictions of their increased mobility. These Σ3 and Σ9 fractions then dropped to their room temperature values during the third stage of grain growth. In addition to the Σ3 and Σ9 boundaries, the Σ5 and Σ7 boundaries also underwent an increase in total boundary fraction with increasing temperature in both metals

  13. Silicon treatment to rice (oryza sativa l. cv 'gopumbyeo') plants during different growth periods and its effects on growth and grain yield

    International Nuclear Information System (INIS)

    Kim, Y.H.; Waqas, M.; Kamran, M.

    2012-01-01

    Silicon (Si) has been considered a beneficial element for plant growth. We have assessed the effects of Si application on rice (Oryza sativa L.) growth and its grain yield at field level. For this, we performed two experiments. In experiment 1, we applied Si of three different concentrations (liquid Si-10, 25 and 36%) to the seedbed of rice before transplantation into paddy field. The results of this experiment showed that Si application to rice seedbeds did not affected the rice plant height and shoot fresh weight but its application significantly increased the pushing resistance of rice plants from 12.2-16.7% as compared with water applied control plants. The lodging index of Si treated rice plants significantly decreased (13.7% on LS-25) as compared with control. Similarly, Si treated plants had significantly higher yield. Upon Si treatment (LS-36), the grain yield per 10 acre and panicles per plant were 15.1% and 6. 3% higher than the water treated control plants respectively. The best concentration (LS-36%) revealed in the first experiment was foliar applied at 10 days before heading stage, initial tilling stage and panicle initiation stage to the rice leaves and we observed that shoot biomass was not significantly different between control and Si treated plants. However, significantly higher pushing resistance (10.5%-13.8%) and plant height (12.2%-16.7%) were observed while lower lodging index (7.6-7.8%) was recorded for Si treated plants as compared to control plants. Similarly, Si application increased the number of panicles per plant as well as the grain yield per 10 acre as compared to control. In conclusion, the Si application can significantly regulate plant growth and yield if applied at proper time with feasible concentration. (author)

  14. Effect of ageing on tensile behavior of ultrafine grained Al 6061 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Rao, P. Nageswara [Department of Metallurgical and Materials Engineering & Centre of Nanotechnology, IIT Roorkee, Roorkee 247667 (India); Singh, Dharmendra [Department of Mechanical Engineering, Government Engineering College, Bikaner 304001 (India); Brokmeier, Heinz-Günter [Helmholtz Zentrum Geesthacht, Max Planck Straße 1, Geb 33, D-21502 Geesthacht (Germany); Jayaganthan, R., E-mail: rjayafmt@iitr.ernet.in [Department of Metallurgical and Materials Engineering & Centre of Nanotechnology, IIT Roorkee, Roorkee 247667 (India)

    2015-08-12

    In the present investigation, the ageing behavior of ultrafine grained (UFG) Al 6061 alloy, processed through multi-directional forging (MDF) at cryogenic temperature was investigated. The evolution of microstructure was investigated through transmission electron microscopy and electron back scattered diffraction technique. The results indicate that homogeneous microstructure with an ultrafine grain morphology (average size 250 nm) was achieved through cryogenic forging of the alloy subjected to prior solutionising treatment. Tensile testing at room temperature revealed that MDFed material after ageing led to significant improvement in work hardening and its tensile ductility. Strengthening of the matrix through various mechanisms has been quantified with the existing models to estimate the yield strength of the as forged and peak aged material. The precipitation hardening response in UFG material is found to be 35% lower than that of the coarse grained material as observed in the present work.

  15. Study on Yield and Yield Components of Wheat Genotypes under Different Moisture Regimes

    Directory of Open Access Journals (Sweden)

    E. Mogtader

    2012-10-01

    Full Text Available In order to study grain yield and yield components of 16 advanced wheat lines under rainfed and supplementary irrigation conditions, this research was conducted in randomized block design with 3 replications at Maragheh Research Station during 2008-09 seasons. Analysis of variance revealed significant differences for date to heading, plant height, 1000 kernel weight, tiller number, spike length, seed number per spike, spikelet number per spike, peduncle length, harvest index, leaf, sheath length and grain yield. Results also showed that the lines No. 4 (91-142 a 61/3/F35.70/MO73//1D13.1/MLT and 16 (Azar2 with 1895 and 1878 Kg/ha, lines No. 4 and 7 (YUMAI13/5/NAI60/3/14.53/ODIN//CI13441 with 2132 and 2285 Kg/ha had highest grain yield under rainfed and supplementary irrigated conditions respectively. Based on results these 16 lines and cultivars were grouped in 4 and 3 distinct classes using Ward’s Method of cluster analysis under rainfed and irrigated conditions. Path analysis indicated that vigor at shooting stage, seed number per spike and HI were positive important traits to select lines for high yielding potential in this study. HI and TKW had also positive effects on grain under supplementary irrigation.

  16. To evaluate the efficacy of zinc sulphate mixed with phosphate and potash fertilizer on the grain yield of wheat (tritium aestivum L.)

    International Nuclear Information System (INIS)

    Abbas, G.; Abbas, Z.; Ali, M.A.; Hussain, I.

    2009-01-01

    A field experiment was conducted to evaluate yield response of wheat cv, BK-2002 at various fertilizer levels, at farmer, fields of District Mianwali during consecutive years 2006-07 and 2007-08. Six levels of ZnSo/sub 4/ mixed with NPK were evaluated in farmer's fields in Randomized Complete Block Design with three replications. All doses of znSo/sub 4/ along with Departmental recommended dose of NPK (114-84- 62 kg ha/sup-l/) revealed a linear increase in, plant height, number of tillers/m/sup 2/, number of spikelets /spike. number of grains/spike, 1000 grains weight (g) and yield (kg ha/sup-1/) of wheat variety BK-2002 were recorded. Maximum yield of wheat was recorded when it was subjected to 22.5 kg ho/sub -1/ 33% ZnSo/sub 4/ Departmental recommended dose of NPK fertilizer. The study indicated the potential role of ZnSo/sub 4/ in enhancing the growth and yield of wheat in arid climate and that 33% ZnSo/sub 4/ (22.5 kg ha/sub -1/) + Departmental recommended dose of NPK, (fertilizer might be the optimum level (T5) for the production of wheat in arid climate. (author)

  17. Assessing the Impact of Air Pollution on Grain Yield of Winter Wheat - A Case Study in the North China Plain

    Science.gov (United States)

    Zhang, Xiying; Shao, Liwei; Chen, Suying

    2016-01-01

    The major wheat production region of China the North China Plain (NCP) is seriously affected by air pollution. In this study, yield of winter wheat (Triticum aestivum L.) was analyzed with respect to the potential impact of air pollution index under conditions of optimal crop management in the NCP from 2001 to 2012. Results showed that air pollution was especially serious at the early phase of winter wheat growth significantly influencing various weather factors. However, no significant correlations were found between final grain yield and the weather factors during the early growth phase. In contrast, significant correlations were found between grain yield and total solar radiation gap, sunshine hour gap, diurnal temperature range and relative humidity during the late growing phase. To disentangle the confounding effects of various weather factors, and test the isolated effect of air pollution induced changes in incoming global solar radiation on yield under ceteris paribus conditions, crop model based scenario-analysis was conducted. The simulation results of the calibrated Agricultural Production Systems Simulator (APSIM) model indicated that a reduction in radiation by 10% might cause a yield reduction by more than 10%. Increasing incident radiation by 10% would lead to yield increases of (only) 7%, with the effects being much stronger during the late growing phase compared to the early growing phase. However, there is evidence that APSIM overestimates the effect of air pollution induced changes on radiation, as it does not consider the changes in radiative properties of solar insulation, i.e. the relative increase of diffuse over direct radiation, which may partly alleviate the negative effects of reduced total radiation by air pollution. Concluding, the present study could not detect a significantly negative effect of air pollution on wheat yields in the NCP. PMID:27612146

  18. Assessing the Impact of Air Pollution on Grain Yield of Winter Wheat - A Case Study in the North China Plain.

    Directory of Open Access Journals (Sweden)

    Xiuwei Liu

    Full Text Available The major wheat production region of China the North China Plain (NCP is seriously affected by air pollution. In this study, yield of winter wheat (Triticum aestivum L. was analyzed with respect to the potential impact of air pollution index under conditions of optimal crop management in the NCP from 2001 to 2012. Results showed that air pollution was especially serious at the early phase of winter wheat growth significantly influencing various weather factors. However, no significant correlations were found between final grain yield and the weather factors during the early growth phase. In contrast, significant correlations were found between grain yield and total solar radiation gap, sunshine hour gap, diurnal temperature range and relative humidity during the late growing phase. To disentangle the confounding effects of various weather factors, and test the isolated effect of air pollution induced changes in incoming global solar radiation on yield under ceteris paribus conditions, crop model based scenario-analysis was conducted. The simulation results of the calibrated Agricultural Production Systems Simulator (APSIM model indicated that a reduction in radiation by 10% might cause a yield reduction by more than 10%. Increasing incident radiation by 10% would lead to yield increases of (only 7%, with the effects being much stronger during the late growing phase compared to the early growing phase. However, there is evidence that APSIM overestimates the effect of air pollution induced changes on radiation, as it does not consider the changes in radiative properties of solar insulation, i.e. the relative increase of diffuse over direct radiation, which may partly alleviate the negative effects of reduced total radiation by air pollution. Concluding, the present study could not detect a significantly negative effect of air pollution on wheat yields in the NCP.

  19. Assessing the Impact of Air Pollution on Grain Yield of Winter Wheat - A Case Study in the North China Plain.

    Science.gov (United States)

    Liu, Xiuwei; Sun, Hongyong; Feike, Til; Zhang, Xiying; Shao, Liwei; Chen, Suying

    2016-01-01

    The major wheat production region of China the North China Plain (NCP) is seriously affected by air pollution. In this study, yield of winter wheat (Triticum aestivum L.) was analyzed with respect to the potential impact of air pollution index under conditions of optimal crop management in the NCP from 2001 to 2012. Results showed that air pollution was especially serious at the early phase of winter wheat growth significantly influencing various weather factors. However, no significant correlations were found between final grain yield and the weather factors during the early growth phase. In contrast, significant correlations were found between grain yield and total solar radiation gap, sunshine hour gap, diurnal temperature range and relative humidity during the late growing phase. To disentangle the confounding effects of various weather factors, and test the isolated effect of air pollution induced changes in incoming global solar radiation on yield under ceteris paribus conditions, crop model based scenario-analysis was conducted. The simulation results of the calibrated Agricultural Production Systems Simulator (APSIM) model indicated that a reduction in radiation by 10% might cause a yield reduction by more than 10%. Increasing incident radiation by 10% would lead to yield increases of (only) 7%, with the effects being much stronger during the late growing phase compared to the early growing phase. However, there is evidence that APSIM overestimates the effect of air pollution induced changes on radiation, as it does not consider the changes in radiative properties of solar insulation, i.e. the relative increase of diffuse over direct radiation, which may partly alleviate the negative effects of reduced total radiation by air pollution. Concluding, the present study could not detect a significantly negative effect of air pollution on wheat yields in the NCP.

  20. The ultrastructure of pollen grain surface in allotetraploid petunia (Petunia hybrida hort. superbissima as revealed by scanning electron microscopy

    Directory of Open Access Journals (Sweden)

    S. Muszyński

    2015-01-01

    Full Text Available The ultrastructure of pollen grain surface in allotetraploid petunias was analyzed by scanning electron microscopy. The pollen grain wall is developed into characteristic pattern of convulations.

  1. Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea-barley intercrops

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1996-01-01

    g N-15-labeled N m(-2). The effect of intercropping on the dry matter and N yields, competition for inorganic N among the intercrop components, symbiotic fixation in pea and N transfer from pea to barley were determined. As an average of four years the grain yields were similar in monocropped pea...... only 9% of total fertilizer-N recovery in the intercrop. The amount of symbiotic N-2 fixation in the intercrop was less than expected from its composition and the fixation in monocrop. This indicates that the competition from barley had a negative effect on the fixation, perhaps via shading...... by the intercrop components, resulting in reduced competition for inorganic N, rather than a facilitative effect, in which symbiotically fixed N-2 is made available to barley....

  2. Photoelectric charging of dust grains

    International Nuclear Information System (INIS)

    Ignatov, A. M.

    2009-01-01

    Photoemission from the surface of a dust grain in vacuum is considered. It is shown that the cutoff in the energy spectrum of emitted electrons leads to the formation of a steady-state electron cloud. The equation describing the distribution of the electric potential in the vicinity of a dust grain is solved numerically. The dust grain charge is found as a function of the grain size.

  3. Capability of crop water content for revealing variability of winter wheat grain yield and soil moisture under limited irrigation.

    Science.gov (United States)

    Zhang, Chao; Liu, Jiangui; Shang, Jiali; Cai, Huanjie

    2018-08-01

    Winter wheat (Triticum aestivum L.) is a major crop in the Guanzhong Plain, China. Understanding its water status is important for irrigation planning. A few crop water indicators, such as the leaf equivalent water thickness (EWT: g cm -2 ), leaf water content (LWC: %) and canopy water content (CWC: kg m -2 ), have been estimated using remote sensing techniques for a wide range of crops, yet their suitability and utility for revealing winter wheat growth and soil moisture status have not been well studied. To bridge this knowledge gap, field-scale irrigation experiments were conducted over two consecutive years (2014 and 2015) to investigate relationships of crop water content with soil moisture and grain yield, and to assess the performance of four spectral process methods for retrieving these three crop water indicators. The result revealed that the water indicators were more sensitive to soil moisture variation before the jointing stage. All three water indicators were significantly correlated with soil moisture during the reviving stage, and the correlations were stronger for leaf water indicators than that of the canopy water indicator at the jointing stage. No correlation was observed after the heading stage. All three water indicators showed good capabilities of revealing grain yield variability in jointing stage, with R 2 up to 0.89. CWC had a consistent relationship with grain yield over different growing seasons, but the performances of EWT and LWC were growing-season specific. The partial least squares regression was the most accurate method for estimating LWC (R 2 =0.72; RMSE=3.6%) and comparable capability for EWT and CWC. Finally, the work highlights the usefulness of crop water indicators to assess crop growth, productivity, and soil water status and demonstrates the potential of various spectral processing methods for retrieving crop water contents from canopy reflectance spectrums. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Dust grain charging in a wake of other grains

    International Nuclear Information System (INIS)

    Miloch, W. J.; Block, D.

    2012-01-01

    The charging of dust grain in the wake of another grains in sonic and supersonic collisionless plasma flows is studied by numerical simulations. We consider two grains aligned with the flow, as well as dust chains and multiple grain arrangements. It is found that the dust charge depends significantly on the flow speed, distance between the grains, and the grain arrangement. For two and three grains aligned, the charges on downstream grains depend linearly on the flow velocity and intergrain distance. The simulations are carried out with DiP3D, a three dimensional particle-in-cell code with both electrons and ions represented as numerical particles [W. J. Miloch et al., Phys. Plasmas 17, 103703 (2010)].

  5. REML/BLUP and sequential path analysis in estimating genotypic values and interrelationships among simple maize grain yield-related traits.

    Science.gov (United States)

    Olivoto, T; Nardino, M; Carvalho, I R; Follmann, D N; Ferrari, M; Szareski, V J; de Pelegrin, A J; de Souza, V Q

    2017-03-22

    Methodologies using restricted maximum likelihood/best linear unbiased prediction (REML/BLUP) in combination with sequential path analysis in maize are still limited in the literature. Therefore, the aims of this study were: i) to use REML/BLUP-based procedures in order to estimate variance components, genetic parameters, and genotypic values of simple maize hybrids, and ii) to fit stepwise regressions considering genotypic values to form a path diagram with multi-order predictors and minimum multicollinearity that explains the relationships of cause and effect among grain yield-related traits. Fifteen commercial simple maize hybrids were evaluated in multi-environment trials in a randomized complete block design with four replications. The environmental variance (78.80%) and genotype-vs-environment variance (20.83%) accounted for more than 99% of the phenotypic variance of grain yield, which difficult the direct selection of breeders for this trait. The sequential path analysis model allowed the selection of traits with high explanatory power and minimum multicollinearity, resulting in models with elevated fit (R 2 > 0.9 and ε analysis is effective in the evaluation of maize-breeding trials.

  6. Magnetism in grain-boundary phase of a NdFeB sintered magnet studied by spin-polarized scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kohashi, Teruo, E-mail: teruo.kohashi.fc@hitachi.com; Motai, Kumi [Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan); Nishiuchi, Takeshi; Hirosawa, Satoshi [Magnetic Materials Research Laboratory, Hitachi Metals Ltd., Osaka 618-0013 (Japan)

    2014-06-09

    The magnetism in the grain-boundary phase of a NdFeB sintered magnet was measured by spin-polarized scanning electron microscopy (spin SEM). A sample magnet was fractured in the ultra-high-vacuum chamber to avoid oxidation, and its magnetizations in the exposed grain-boundary phase on the fracture surface were evaluated through the spin polarization of secondary electrons. Spin-SEM images were taken as the fracture surface was milled gradually by argon ions, and the magnetization in the grain-boundary phase was quantitatively obtained separately from that of the Nd{sub 2}Fe{sub 14}B phase. The obtained magnetization shows that the grain-boundary phase of this magnet has substantial magnetization, which was confirmed to be ferromagnetic.

  7. The yield gap of global grain production: A spatial analysis

    NARCIS (Netherlands)

    Neumann, K.; Verburg, P.H.; Stehfest, E.; Muller, C.

    2010-01-01

    Global grain production has increased dramatically during the past 50 years, mainly as a consequence of intensified land management and introduction of new technologies. For the future, a strong increase in grain demand is expected, which may be fulfilled by further agricultural intensification

  8. Neutron yield of medical electron accelerators

    International Nuclear Information System (INIS)

    McCall, R.C.

    1988-01-01

    Shielding calculations for medical electron accelerators above about 10 MeV require some knowledge of the neutron emission from the machine. This knowledge might come from the manufacturer's specifications or from published measurements of the neutron leakage of that particular model and energy of accelerator. In principle, the yield can be calculated if details of the accelerator design are known. These details are often not available because the manufacturer considers them proprietary. A broader knowledge of neutron emission would be useful and it is the purpose of this paper to present such information

  9. Localized electronic states at grain boundaries on the surface of graphene and graphite

    DEFF Research Database (Denmark)

    Luican-Mayer, Adina; Barrios-Vargas, Jose E.; Falkenberg, Jesper Toft

    2016-01-01

    ecent advances in large-scale synthesis of graphene and other 2D materials have underscored the importance of local defects such as dislocations and grain boundaries (GBs), and especially their tendency to alter the electronic properties of the material. Understanding how the polycrystalline morp...

  10. Neutron yield from thick lead target by the action of high-energy electrons

    International Nuclear Information System (INIS)

    Noga, V.I.; Ranyuk, Yu.N.; Telegin, Yu.N.; Sorokin, P.V.

    1978-01-01

    The results are presented of studying the complete neutron yield from a lead target bombarded by high-energy electrons. Neutrons were recorded by the method of radio-active indicators. The dependence of the neutron yield on the target thickness varying from 0.2 to 8 cm was obtained at the energies of electrons of 230 and 1200 MeV. The neutron yield for the given energies with the target of 6 cm in thickness is in the range of saturation and is 0.1 +-0.03 and 0.65+-0.22 (neutr./MeV.el.), respectively. The neutron angular distributions were measured for different thicknesses of targets at the 201, 230 and 1200 MeV electrons. Within the error limits the angular distributions are isotropic. The dependence of neutron yield on the electron energy was examined for a 3 cm thick target. In the energy range of 100-1200 MeV these values are related by a linear dependence with the proportionality coefficient C=3x10 -4 (neutr./MeV.el.)

  11. Accurate electron channeling contrast analysis of a low angle sub-grain boundary

    International Nuclear Information System (INIS)

    Mansour, H.; Crimp, M.A.; Gey, N.; Maloufi, N.

    2015-01-01

    High resolution selected area channeling pattern (HR-SACP) assisted accurate electron channeling contrast imaging (A-ECCI) was used to unambiguously characterize the structure of a low angle grain boundary in an interstitial-free-steel. The boundary dislocations were characterized using TEM-style contrast analysis. The boundary was determined to be tilt in nature with a misorientation angle of 0.13° consistent with the HR-SACP measurements. The results were verified using high accuracy electron backscatter diffraction (EBSD), confirming the approach as a discriminating tool for assessing low angle boundaries

  12. Development of Perennial Grain Sorghum

    Directory of Open Access Journals (Sweden)

    Stan Cox

    2018-01-01

    Full Text Available Perennial germplasm derived from crosses between Sorghum bicolor and either S. halepense or S. propinquum is being developed with the goal of preventing and reversing soil degradation in the world’s grain sorghum-growing regions. Perennial grain sorghum plants produce subterranean stems known as rhizomes that sprout to form the next season’s crop. In Kansas, breeding perennial sorghum involves crossing S. bicolor cultivars or breeding lines to S. halepense or perennial S. bicolorn × S. halepense breeding lines, selecting perennial plants from F2 or subsequent populations, crossing those plants with S. bicolor, and repeating the cycle. A retrospective field trial in Kansas showed that selection and backcrossing during 2002–2009 had improved grain yields and seed weights of breeding lines. Second-season grain yields of sorghum lines regrowing from rhizomes were similar to yields in the first season. Further selection cycles have been completed since 2009. Many rhizomatous lines that cannot survive winters in Kansas are perennial at subtropical or tropical locations in North America and Africa. Grain yield in Kansas was not correlated with rhizomatousness in either Kansas or Uganda. Genomic regions affecting rhizome growth and development have been mapped, providing new breeding tools. The S. halepense gene pool may harbor many alleles useful for improving sorghum for a broad range of traits in addition to perenniality.

  13. GENETIC ANALYSIS OF YIELD AND YIELD COMPONENTS IN ...

    African Journals Online (AJOL)

    ACSS

    2017-11-16

    Nov 16, 2017 ... used different genotypes and the environmental conditions under which their ... and Jinks (1971):. Y = m + aa + βd + a2aa + 2aβad +β2dd … .... /plant, 100-grain weight per plant and Grain yield per plant (g) of six generations in IET6279 X IR70445-146-3-. 3 cross. Traits. Generation. Mean. Standard. Range.

  14. Direct observation of densification and grain growth in a W--Ni alloy

    International Nuclear Information System (INIS)

    Riegger, H.; Pask, J.A.; Exner, H.E.

    1979-04-01

    Densification and grain growth in a tungsten--nickel alloy containing 32 vol % of liquid at 1550 0 C were studied by conventional methods aided by hot stage scanning electron microscopy and cinematography. This technique yields important additional qualitative information on the mechanisms. Two stages can be discerned. In stage 1, essentially complete pore elimination, rapid grain growth and adjustment of microstructural geometry take place. In the second stage, microstructure coarsening occurs which is characterized by geometric similarity. Columnar grain growth at the surface is observed due to squeezing out of Ni--W liquid, flooding of surface grains and fast evaporation of the Ni. The driving forces for these processes are discussed showing that a high ratio of grain boundary energy to liquid surface energy is essential. A W--Cu alloy with 32 vol % liquid at 1100 0 C did not show any grain growth due to essentially no solubility of W in Cu at this temperature

  15. Green ear yield and grain yield of maize after harvest of the first ear as baby corn Rendimentos de espigas verdes e de grãos de milho após a colheita da primeira espiga como minimilho

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio L e Silva

    2006-06-01

    Full Text Available Baby corn (BC consists of the corn ear harvested two or three days after silk emergence. BC is a profitable crop, making possible a diversification of production, aggregation of value and increased income. Removing the first female inflorescence induces corn to produce others, making possible to produce several BC ears or, alternatively, BC (by harvesting the first ear and green ears or grain. The objective of this work was to evaluate green ear yield and grain yield, after harvesting the first ear as BC. Corn cultivar AG 1051 was submitted to the following treatments, in a random block design with ten replicates (52 plants per plot: BC harvesting; green ear harvesting (grain moisture content between 60 and 70%; mature ear harvesting; BC harvesting and harvesting of other ears as green or mature ears. Marketable green ears yield or grain yield produced without removing the first inflorescence were superior to the green ears yield or grain yield produced after removal of the first inflorescence harvested as baby corn. Harvesting only the first ear as baby corn, and then harvesting green ears or the mature ears, provided lower baby corn yields than that obtained by harvesting all ears as baby corn. Economically, the best net revenues would be obtained by exploring the crop for the production of green ears, green ears + baby corn, baby corn, baby corn + grain, and grain, in this order.O minimilho (MM é a espiga do milho colhida dois a três dias após a emergência dos estilo-estigmas. O MM é rentável e propicia diversificação da produção, agregação de valor e ampliação de renda. A remoção da primeira inflorescência feminina induz o milho a produzir outras. Isso possibilita a produção de várias espigas de MM ou, alternativamente, MM (colhendo-se a primeira espiga e espigas verdes ou grãos. O objetivo do trabalho foi avaliar os rendimentos de espigas verdes e de grãos, após a colheita da primeira espiga como MM. A cultivar AG

  16. Structure and electronic properties of boron nitride sheet with grain boundaries

    International Nuclear Information System (INIS)

    Wang Zhiguo

    2012-01-01

    Using first-principles calculations, the structure, stability, and electronic properties of BN sheets with grain boundaries (GBs) are investigated. Two types of GBs, i.e., zigzag- and armchair-oriented GBs, are considered. Simulation results reveal that the zigzag-oriented GBs are more stable than the armchair-oriented ones. The GBs induce defect levels located within the band gap, which must be taken into account when building nanoelectronic devices.

  17. Effect of Drought Stress onYield and Yield Components of Sesame cultivars under Kerman conditions (Sesamum indicum L.

    Directory of Open Access Journals (Sweden)

    S Farahbakhsh

    2015-04-01

    Full Text Available To investigate effects of drought stress on yield and yield components of sesame in Kerman region a split-plot experiment based onn compelet randomised block design with three replications was carried out in 1388. Irrigation levels (Normal irrigation in all growth stages, witholding water after 50% flowering, witholding water after 50% pod setting and differen t sesame landraces (Jiroft, Shiraz, Ardestan, Dezful, Shahr babak, Gorgan, Sirjan, Markazi, Birjand and Orzueieh were considered as main plots and sub-plots respectively. Plant height, the biggest pod length, noumber of grain per pod, noumber of pod per plant, grain weight per plant, thousand grain weight and grain yield were the measured traits. Results showed all the measured traits were significantly affected by the irrigation treatments. The effects of different landraces on all traits except noumber of grain per plant were significant. Irrigation × landraces interaction affected all measured traits except the biggest pod length significantly. The highest grain yield was recorde for Markezi landrace (845.2 kg –ha under normal irrigation and the lowest one was obtained from Jiroft landrace (104.8 kg –ha with witholding irrigation after 50% flowering.

  18. Effects of sowing date and plant density on morphological triats, yield and yield components of sweet corn (Zea mays L.

    Directory of Open Access Journals (Sweden)

    A. Rahmani

    2016-04-01

    Full Text Available In order to evaluate the effect of sowing date and plant density on the morphological triats, yield and yield components of sweet corn (Zea mays L. var SC. 403 an experiment was conducted at the Khorasan Razavi Agricultural Research and Natural Resources Center, Mashhad, Iran during 2008. This experiment was carried out as split plot based on RCBD with four replications. The sowing date (14th June, 3th July and 24th July and plant densities (66600, 83300 and 111000 plants.ha-1 were arranged in main and sub plots, respectively. The results showed significant differences between different sowing dates for plant height, ear height, and no. of leaves/plant, no. of leaves above ear, stem diameter, dehusked ear yield, can grains yield, no. of grain rows/ear, ear length, ear diameter, kernel depth, no. of ear.plant-1, 1000 kernel weight, ear harvest index and plant harvest index. The highest and the lowest can grains yield with 18.27 and 0.930 ton ha-1 was belonged to 14th June and 24th July sowing date, respectively. Although, delay in sowing date, led to decrease of growth period and also decrease of temperature can lead to improper transfer of photosynthetic materials and cause to grains yield decrease. The plant density had significant effects on husked ear yield, dehusked ear yield and forage yield. The highest can grains yield was harvested from the highest plant density (8.862 t.ha-1 and the lowest can grains yield derived from the lowest plant density (66600 plants.ha-1 with 7.692 t.ha-1. Finally, the interaction of sowing date and plant density was significant only for harvest index. Therefore, the sowing date 14th June and the highest plant density (111000 plants.ha-1, is recommended for summer sowing date of sweet corn in Mashhad with maximum and better can grains production.

  19. Engineered Surfaces to Control Secondary Electron Yield for Multipactor Suppression

    Science.gov (United States)

    2017-09-14

    Air Force Institute of Technology AFIT Scholar Theses and Dissertations 9-14-2017 Engineered Surfaces to Control Secondary Electron Yield for...Multipactor Suppression James M. Sattler Follow this and additional works at: https://scholar.afit.edu/etd Part of the Electrical and Electronics Commons... TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

  20. Mining centuries old in-situ conserved Turkish wheat landraces for grain yield and stripe rust resistance genes

    Directory of Open Access Journals (Sweden)

    Deepmala Sehgal

    2016-11-01

    Full Text Available Wheat landraces in Turkey are an important genetic resource for wheat improvement. An exhaustive five-year (2009-2014 effort made by the International Winter Wheat Improvement Programme (IWWIP a cooperative program between the Ministry of Food, Agriculture and Livestock of Turkey, the International Center for Maize and Wheat Improvement (CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA, led to the collection and documentation of around 2,000 landrace populations from 55 provinces throughout Turkey. This study reports the genetic characterization of a subset of bread wheat landraces collected in 2010 from 11 diverse provinces using genotyping-by-sequencing (GBS technology. The potential of this collection to identify loci determining grain yield and stripe rust resistance via genome-wide association (GWA analysis was explored. A high genetic diversity (diversity index = 0.260 and a moderate population structure based on highly inherited spike traits was revealed in the panel. The linkage disequilibrium decayed at 10 cM across the whole genome and was slower as compared to other landrace collections. In addition to previously reported QTL, GWA analysis also identified new candidate genomic regions for stripe rust resistance, grain yield and spike productivity components. New candidate genomic regions reflect the potential of this landrace collection to further increase genetic diversity in elite germplasm.

  1. Effect of irrigation water salinity and zinc application on yield, yield components and zinc accumulation of wheat

    Directory of Open Access Journals (Sweden)

    mohamad ahmadi

    2009-06-01

    Full Text Available Salinity stress is one of the most important problems of agriculture in crop production in arid and semi arid regions. Under these conditions, in addition to management strategies, proper and adequate nutrition also has an important role in crop improvement. A greenhouse experiment was conducted to study the effect of 4 different irrigation water salinities (blank, 4, 8 and 12 dS m-1, prepared with 1:1 molar ratio of chlorides of calcium and sodium and magnesium sulphate salts. and 5 different zinc applications (0, 10, 20, 30 mg Kg-1 soil and foliar application of salt of zinc sulphate on yield, yield components and zinc concentration of wheat, using a completely randomized design, factorial with three replications. Plant height, spike length, 1000 grain weight, number of grain per spike, grain and straw yield was decreased by Irrigation water salinity. And all of these parameters were improved by zinc application except 1000 grain weight. Zinc absorption and concentration in straw and grain was decreased by Saline water compared to blank. And concentration of zinc significantly was increased in straw and grain by increase zinc application. The results indicated that, zinc application under low to medium salinity conditions improved growth and yield of wheat due to decreasing the impacts salinity.

  2. A unit density method of grain analysis used to identify GABEergic neurons for electron microscopic autoradiographs

    International Nuclear Information System (INIS)

    Burry, R.W.

    1982-01-01

    The distribution of electron microscopic autoradiographic grains over neurons in cerebellar cultures incubated with [ 3 H]gamma-aminobutyric acid ([ 3 H]GABA) was examined. With the unit density method of grain analysis, the number of grains over each structure was tested against the total grain density for the entire section. If an individual structure has a grain density higher than the expected grain density, it is considered one of the group of heavily labeled structures. The expected grain density for each structure is calculated based on the area for that structure, the total grain density and the Poisson distribution. A different expected grain density can be calculated for any P value required. The method provides an adequate population of structures for morphological analysis but excludes weakly labeled structures and thus may underestimate the number of labeled structures. The unit density method of grain analysis showed, as expected, a group of cell bodies and synapses that was labeled heavily. Cultures incubated with other [ 3 H]amino acids did not have any heavily labeled synaptic elements. In addition, serial section analysis of sections showed that synapses heavily labeled with [ 3 H]GABA are seen in adjacent sections. The advantage of the unit density method of grain analysis is that it can be used to separate two groups of metabolically different neurons even when no morphological differences are present. (Auth.)

  3. Grain yield and competitive ability against weeds in modern and heritage common wheat cultivars are differently influenced by sowing density

    Directory of Open Access Journals (Sweden)

    Mariateresa Lazzaro

    2017-12-01

    Full Text Available Sowing density can have a strong impact on crop stand development during wheat growing cycle. In organic and low-input agriculture, and therefore with minimum or nil use of chemical herbicides, increased sowing density is expected to affect not only grain yield but also weed suppression. In this study we tested, under Mediterranean conditions, six common wheat cultivars (three modern and three heritage and two three-component mixtures (arranged by combining the three modern or the three heritage cultivars. The different crop stands were tested at sowing densities of 250 (low and 400 (high, similar to standard sowing density used by local farmers viable seeds m–2 for two growing seasons. We did not detect a significant effect of crop stand diversity (single cultivars vs mixtures on grain yield and weed suppression. Differences were ascribed to type of cultivars used (heritage vs modern. Compared to high sowing density, in modern cultivars grain yield did not decrease significantly with low sowing density, whereas in heritage cultivars it increased by 15.6%, possibly also because of 21.5% lower plant lodging. Weed biomass increased with low sowing density both in heritage and modern cultivar crop stand types. However, heritage crop stands had, on average, a lower weed biomass (56% than modern crop stands. Moreover, weed biomass in heritage crop stands at low density (6.82±1.50 g m–2 was lower than that of modern cultivars at the same sowing density (15.54±3.35 g m–2, confirming the higher suppressive potential of the former. We can conclude that lower sowing density can be advisable when using heritage crop stands as it keeps productivity while decreasing plant lodging and maintaining weeds under control.

  4. Response of Yield and Yield Components of Tef [Eragrostis Tef ...

    African Journals Online (AJOL)

    The partial budget analysis also indicates that applications of 46 kg. N ha-1 and 10 kg P ha-1 are ..... (1994) indicated that where the grain yield response is negative, yield reduction is primarily caused by a .... An Economic Training. Manual.

  5. Features of Terra MOD11A2DAY in Operational Forecastof Grain Crops Yield in Kazakhstan with AN 8 Day Renewal

    Science.gov (United States)

    Terekhov, A.

    2011-08-01

    The Kazakhstan, with export capacity of 6-8 million tons, is one of the largest wheat exporter in the world. About 16 million hectares of unirrigated land is used for monocultural cultivation of cereals (wheat and barley). Most of the cropland is located in the steppe and forest steppe zone. The moisture deficit limits the crop productivity and creates a strong dependency of its state of the moisture conditions during vegetation season. In Kazakhstan, the average grain yield variations are sufficiently large, from 0.9 (2010) to 1.4 tonha (2007). Given the high volatility of the gross grain harvest and export potential, respectively, methods of early satellite forecast of grain yield with high frequency of the renewal are of the great interest. In Kazakhstan, the variations in the weather growing season determine the yield of grain crops. By significant weather parameters include: the spring soil moisture, humidity and air temperature, rainfall, and several others. Plants respond to the sum of all parameters through the volume of green biomass. The regional cereal state can be estimated from satellite vegetation indices, which are particularly informative in the period of its seasonal peak. Another satellite parameter closely related to humidity conditions may be the land surface temperature (LST). Product USGS: TERRA MOD11A2DAY represents the 8-days LST composite was tested in the task of estimating of arable lands temperature in Northern Kazakhstan. The description of the temperature conditions of the growing season based on the temperature calibrated index (TCI), which was introduced by Kogan. TCI provides a weighted assessment of the current LST on a scale of 0-100, where 0 - the lowest, respectively, 100 as a high temperature, recorded during the observation period at a given location at a given time window. The monitoring period included 2004-2010 years. During the beginning of the growing season was taken on April 15, season end on 20 August - ripeness stage

  6. Effect of planting date on yield of wheat genotypes in Sindh

    International Nuclear Information System (INIS)

    Khokhar, Z.; Hussain, I.

    2010-01-01

    Due to reduction in tillering period and increased risk of hot weather during grain filling, late planting results in linear reduction in wheat grain yield. A study was undertaken to determine the effects of planting dates on growth and yield of different wheat genotypes in Sindh. The trial was laid out in RCBD with split plot arrangement having four replications during 2000-01 and 2001-02 at Sakrand, Sindh. Four sowing dates i.e. November 1 and 15, December 1 and 15 were in main plots, whereas six wheat genotypes (V-7001, V-7002, V-7004, MPT-6, Abadgar-93, and Anmol-91) were in sub plots. Because of better tillering, plant growth, growth period, number of grain per unit area and grain weight, November 15 planted wheat had maximum grain yield of 5904 kg ha/sup -1/, followed by November 1 and December 1 which gave 5302 and 4948 kg ha/sup -1 /respectively. Wheat planted on December 15 resulted in minimum grain yield of 4756 kg ha/sup -1/. Wheat genotype, V-7002 had significantly (P<0.05) higher grain yield of 5578 kg ha/sup -1/ in comparison with other genotypes. Whereas genotype MPT-6 had grain yield of 5366 kg ha-1 that was also significantly higher than other genotypes. However, V-7004 had minimum grain yield of 4716 kg ha/sup -1/ in comparison with other genotypes. While evaluating performance of different genotypes on different sowing dates, V-7002 resulted in maximum yield on November 15 and late planting. On the other hand, V-7004 had lower yield on all planting dates. Results from the study revealed that maximum grain yield could be achieved with wheat planted in first fortnight of November and any delay in wheat planting might reduce wheat yield. (author)

  7. The QTL GNP1 Encodes GA20ox1, Which Increases Grain Number and Yield by Increasing Cytokinin Activity in Rice Panicle Meristems.

    Science.gov (United States)

    Wu, Yuan; Wang, Yun; Mi, Xue-Fei; Shan, Jun-Xiang; Li, Xin-Min; Xu, Jian-Long; Lin, Hong-Xuan

    2016-10-01

    Cytokinins and gibberellins (GAs) play antagonistic roles in regulating reproductive meristem activity. Cytokinins have positive effects on meristem activity and maintenance. During inflorescence meristem development, cytokinin biosynthesis is activated via a KNOX-mediated pathway. Increased cytokinin activity leads to higher grain number, whereas GAs negatively affect meristem activity. The GA biosynthesis genes GA20oxs are negatively regulated by KNOX proteins. KNOX proteins function as modulators, balancing cytokinin and GA activity in the meristem. However, little is known about the crosstalk among cytokinin and GA regulators together with KNOX proteins and how KNOX-mediated dynamic balancing of hormonal activity functions. Through map-based cloning of QTLs, we cloned a GA biosynthesis gene, Grain Number per Panicle1 (GNP1), which encodes rice GA20ox1. The grain number and yield of NIL-GNP1TQ were significantly higher than those of isogenic control (Lemont). Sequence variations in its promoter region increased the levels of GNP1 transcripts, which were enriched in the apical regions of inflorescence meristems in NIL-GNP1TQ. We propose that cytokinin activity increased due to a KNOX-mediated transcriptional feedback loop resulting from the higher GNP1 transcript levels, in turn leading to increased expression of the GA catabolism genes GA2oxs and reduced GA1 and GA3 accumulation. This rebalancing process increased cytokinin activity, thereby increasing grain number and grain yield in rice. These findings uncover important, novel roles of GAs in rice florescence meristem development and provide new insights into the crosstalk between cytokinin and GA underlying development process.

  8. Evolution of orientations and deformation structures within individual grains in cold rolled columnar grained nickel

    DEFF Research Database (Denmark)

    Wu, G.L.; Godfrey, A.; Winther, Grethe

    2011-01-01

    Columnar grained Ni is used as a model material allowing simultaneous non-surface investigations of the evolution of crystallographic orientations and deformation microstructures within individual grains as a function of rolling strain up to ε=0.7. Electron channelling contrast and electron...... backscattered diffraction are used to visualise microstructures and crystallographic orientations. It is found that both the microstructural and the textural development depend strongly on the initial grain orientation. A grain size effect is observed on the deformation-induced orientation scatter within...

  9. Inheritance of culm height and grain yield in durum wheat

    International Nuclear Information System (INIS)

    Filev, K.

    1984-01-01

    Results from a study of GA sensitive and GA insensitive durum wheat mutants and cultivars in relation with their culm height and 1000 grain weight are presented. With increasing culm height, the GA response also increased. A positive correlation between plant height and GA response was found. Crosses were made between durum wheats and the F 1 and F 2 progenies were analysed. A different inheritance in F 1 and segregation in F 2 was obtained in crosses of a semi-dwarf, GA insensitive [1] line with GA sensitive (S) lines differing in height, medium (93.2cm) and tall (133.5cm). In a reciprocal cross, semi-dwarf - I with medium - S, the semi-dwarf type was dominant in F 1 , suggesting that their semi-dwarfing genes were not allelic. When the semi-dwarf - I and tall - S were crossed an intermediate inheritance in F 1 was observed. In the F 2 generation from crosses semi-dwarf - I with medium - S with semi-dwarf - I, a phenotypic dihybred segregation 9:3:3:1 was observed. In crosses semi-dwarf - I with tall - S different variation curves were obtained. Semi-dwarfs with high productivity were observed in F 2 , a fact indicating that lodging resistant lines with high yields could be selected. (author)

  10. Effects of municipal sewage sludge doses on the yield, some yield ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-03

    Sep 3, 2008 ... Whereas grain yield, which was the highest component was ... land application, many studies have been performed ... grain. Analysis of variance was used to compare treatment ... een 17.0 - 164.0 cm depending on the environmental .... municipal sewage sludge for the stabilization of soil contaminated by.

  11. Effects of low doses of gamma rays on yield, yield components, and other characters of two maize varieties

    International Nuclear Information System (INIS)

    Yousif, Z. B.; Jabbo, N. F.; Khalaf, M. Z.; Majid, A. H.; Ali, H. J.

    1994-01-01

    The study was conducted during the fall of 1991 and 1992 at Al-Latyfia Experimental Station to determine the effect of low doses of gamma rays on yield, yield components, and other characters of two maize varieties. Five doses were used in addition to control. A factorial experiment with randomized complete block design in three replications was used in the study. Results revealed that there was significant difference between varieties in plant and ear height in 1992. However, differences between varieties were also significantly affected by most yield component characters. Low doses significantly affected plant height, weight of 500 kernels in 1991, and kernel row number in 1992. Grain yield was affected significantly in 1991 and 1992 by low doses. Results showed that 2.0 krad was the most useful low dose to increase grain yield, whereas there was no significant effect between varieties in grain yield. 7 refs., 6 tabs

  12. Constitutive expression of CaPLA1 conferred enhanced growth and grain yield in transgenic rice plants.

    Science.gov (United States)

    Park, Ki Youl; Kim, Eun Yu; Seo, Young Sam; Kim, Woo Taek

    2016-03-01

    Phospholipids are not only important components of cell membranes, but participate in diverse processes in higher plants. In this study, we generated Capsicum annuum phospholipiase A1 (CaPLA1) overexpressing transgenic rice (Oryza sativa L.) plants under the control of the maize ubiquitin promoter. The T4 CaPLA1-overexpressing rice plants (Ubi:CaPLA1) had a higher root:shoot mass ratio than the wild-type plants in the vegetative stage. Leaf epidermal cells from transgenic plants had more cells than wild-type plants. Genes that code for cyclin and lipid metabolic enzymes were up-regulated in the transgenic lines. When grown under typical paddy field conditions, the transgenic plants produced more tillers, longer panicles and more branches per panicle than the wild-type plants, all of which resulted in greater grain yield. Microarray analysis suggests that gene expressions that are related with cell proliferation, lipid metabolism, and redox state were widely altered in CaPLA1-overexpressing transgenic rice plants. Ubi:CaPLA1 plants had a reduced membrane peroxidation state, as determined by malondialdehyde and conjugated diene levels and higher peroxidase activity than wild-type rice plants. Furthermore, three isoprenoid synthetic genes encoding terpenoid synthase, hydroxysteroid dehydrogenase and 3-hydroxy-3-methyl-glutaryl-CoA reductase were up-regulated in CaPLA1-overexpressing plants. We suggest that constitutive expression of CaPLA1 conferred increased grain yield with enhanced growth in transgenic rice plants by alteration of gene activities related with cell proliferation, lipid metabolism, membrane peroxidation state and isoprenoid biosynthesis.

  13. PATH COEFFICIENT ANALYSIS OF SEVERAL COMPONENTS OIL YIELD IN SUNFLOWER (HELIANTHUS ANNUUS L.

    Directory of Open Access Journals (Sweden)

    A. MIjić

    2006-06-01

    Full Text Available The objective of investigation was to analyse oil yield components and their relations by simple coefficient correlations as well as direct and indirect effects to oil yield by path analysis. Twenty-four sunflower hybrids were included in the investigation and their seven traits (plant height, head diameter, 1000 seed weight, hec- tolitar mass, grain yield, oil content and oil yield. Very strong positive correlation was estimated between grain yield and oil yield, strong positive correlation between hectolitar mass and oil yield, and middle corre- lation among oil yield and: 1000 seed weight, plaint height and oil content. There was no correlation between grain yields and oil content. Grain yield showed the strongest effect to oil yield. Oil content had lower effect to oil yield. Other traits showed no significant effect to oil yield, and their effect to oil yield was covered by indirect effect of grain yield.

  14. The Role of Carbon in Grain Refinement of Cast CrFeCoNi High-Entropy Alloys

    Science.gov (United States)

    Liu, X. W.; Liu, L.; Liu, G.; Wu, X. X.; Lu, D. H.; Yao, J. Q.; Jiang, W. M.; Fan, Z. T.; Zhang, W. B.

    2018-06-01

    As a promising engineering material, high-entropy alloys (HEAs) CrFeCoNi system has attracted extensive attention worldwide. Their cast alloys are of great importance because of their great formability of complex components, which can be further improved through the transition of the columnar to equiaxed grains and grain refinement. In the current work, the influence of C contents on the grain structures and mechanical properties of the as-cast high-entropy alloy CrFeCoNi was chosen as the target and systematically studied via a hybrid approach of the experiments and thermodynamic calculations. The alloys with various C additions were prepared by arc melting and drop cast. The as-cast macrostructure and microstructure were characterized using optical microscopy, scanning electron microscopy, and transmission electron microscopy. The cast HEAs transform from coarse columnar grains into equiaxed grains with the C level increased to ≥ 2 at. pct and the size of equiaxed grains is further decreased with the increasing C addition. It is revealed that the interdendritic segregation of Cr and C results in grain boundary precipitation of M23C6 carbides. The grain refinement is attributed to the additional constitutional supercoiling from the C addition. The yield stress and tensile strength at room temperature are improved due to the transition of columnar to equiaxed grains and grain refinement.

  15. TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield.

    Science.gov (United States)

    Ma, Lin; Li, Tian; Hao, Chenyang; Wang, Yuquan; Chen, Xinhong; Zhang, Xueyong

    2016-05-01

    Grain size is a dominant component of grain weight in cereals. Earlier studies have shown that OsGS5 plays a major role in regulating both grain size and weight in rice via promotion of cell division. In this study, we isolated TaGS5 homoeologues in wheat and mapped them on chromosomes 3A, 3B and 3D. Temporal and spatial expression analysis showed that TaGS5 homoeologues were preferentially expressed in young spikes and developing grains. Two alleles of TaGS5-3A, TaGS5-3A-T and TaGS5-3A-G were identified in wheat accessions, and a functional marker was developed to discriminate them. Association analysis revealed that TaGS5-3A-T was significantly correlated with larger grain size and higher thousand kernel weight. Biochemical assays showed that TaGS5-3A-T possesses a higher enzymatic activity than TaGS5-3A-G. Transgenic rice lines overexpressing TaGS5-3A-T also exhibited larger grain size and higher thousand kernel weight than TaGS5-3A-G lines, and the transcript levels of cell cycle-related genes in TaGS5-3A-T lines were higher than those in TaGS5-3A-G lines. Furthermore, systematic evolution analysis in diploid, tetraploid and hexaploid wheat showed that TaGS5-3A underwent strong artificial selection during wheat polyploidization events and the frequency changes of two alleles demonstrated that TaGS5-3A-T was favoured in global modern wheat cultivars. These results suggest that TaGS5-3A is a positive regulator of grain size and its favoured allele TaGS5-3A-T exhibits a larger potential application in wheat high-yield breeding. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Experimental Study of Dust Grain Charging

    Science.gov (United States)

    Spann, James F; Venturini, Catherine C.; Comfort, Richard H.; Mian, Abbas M.

    1999-01-01

    The results of an experimental study of the charging mechanisms of micron size dust grains are presented. Individual dust grains are electrodynamically suspended and exposed to an electron beam of known energy and flux, and to far ultraviolet radiation of known wavelength and intensity. Changes in the charge-to-mass ratio of the grain are directly measured as a function of incident beam (electron and/or photon), grain size and composition. Comparisons of our results to theoretical models that predict the grain response are presented.

  17. Managing for Multifunctionality in Perennial Grain Crops

    Science.gov (United States)

    Ryan, Matthew R; Crews, Timothy E; Culman, Steven W; DeHaan, Lee R; Hayes, Richard C; Jungers, Jacob M; Bakker, Matthew G

    2018-01-01

    Abstract Plant breeders are increasing yields and improving agronomic traits in several perennial grain crops, the first of which is now being incorporated into commercial food products. Integration strategies and management guidelines are needed to optimize production of these new crops, which differ substantially from both annual grain crops and perennial forages. To offset relatively low grain yields, perennial grain cropping systems should be multifunctional. Growing perennial grains for several years to regenerate soil health before rotating to annual crops and growing perennial grains on sloped land and ecologically sensitive areas to reduce soil erosion and nutrient losses are two strategies that can provide ecosystem services and support multifunctionality. Several perennial cereals can be used to produce both grain and forage, and these dual-purpose crops can be intercropped with legumes for additional benefits. Highly diverse perennial grain polycultures can further enhance ecosystem services, but increased management complexity might limit their adoption. PMID:29662249

  18. Phenotyping of field-grown wheat in the UK highlights contribution of light response of photosynthesis and flag leaf longevity to grain yield.

    Science.gov (United States)

    Carmo-Silva, Elizabete; Andralojc, P John; Scales, Joanna C; Driever, Steven M; Mead, Andrew; Lawson, Tracy; Raines, Christine A; Parry, Martin A J

    2017-06-15

    Improving photosynthesis is a major target for increasing crop yields and ensuring food security. Phenotyping of photosynthesis in the field is critical to understand the limits to crop performance in agricultural settings. Yet, detailed phenotyping of photosynthetic traits is relatively scarce in field-grown wheat, with previous studies focusing on narrow germplasm selections. Flag leaf photosynthetic traits, crop development, and yield traits were compared in 64 field-grown wheat cultivars in the UK. Pre-anthesis and post-anthesis photosynthetic traits correlated significantly and positively with grain yield and harvest index (HI). These traits included net CO2 assimilation measured at ambient CO2 concentrations and a range of photosynthetic photon flux densities, and traits associated with the light response of photosynthesis. In most cultivars, photosynthesis decreased post-anthesis compared with pre-anthesis, and this was associated with decreased Rubisco activity and abundance. Heritability of photosynthetic traits suggests that phenotypic variation can be used to inform breeding programmes. Specific cultivars were identified with traits relevant to breeding for increased crop yields in the UK: pre-anthesis photosynthesis, post-anthesis photosynthesis, light response of photosynthesis, and Rubisco amounts. The results indicate that flag leaf longevity and operating photosynthetic activity in the canopy can be further exploited to maximize grain filling in UK bread wheat. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. The Effect of Silicon on some Morpho-physiological Characteristics and Grain Yield of Sorghum (Sorghum bicolor L. under Salt Stress

    Directory of Open Access Journals (Sweden)

    S Hasibi

    2016-12-01

    Full Text Available Introduction Nowadays, salinity is one of the limiting factors for crop production in arid and semi-arid regions. On the other hand, sorghum (Sorghum bicolor L. is a self-pollinated and short-day plant, which partly has been adapted to salinity and water stress conditions; also play an important role in humans, livestock and poultry nourishments. All studies have showed the positive effects of Silicon on growth and yield of plants in both normal and stress conditions. The aim of this experiment was to improve salinity tolerance of Sorghum by application of Silicon. Materials and Methods A split plot experiment based on randomized complete block design with three replications in both normal and salt stress conditions was carried out at research farm of Shahid Bahonar University of Kerman in 2013. Silicon treatments (0 and 6 mM were considered as main plot and various sorghum genotypes (payam, sepideh, TN-4-70, TN-04-71, TN-04-39, TN-04-107, TN-04-100, TN-04-37, TN-04-68, TN-04-83, TN-04-62 and TN-04-95 were assigned to sub plots. The sodium silicate was used as silica source. The data were analyzed by SAS software using combine analysis. Means comparisons were accomplished by Duncan multiple range test at 5% probability level. Some of the measured traits were as follow: Relative water content (Ritchie and Nguyen, 1990, Relative permeability (33, leaf area index and chlorophyll index (by SPAD. Results and Discussion According to the results, use of silicon led to increase of RWC under salinity stress, while RWC decreased by 13% when no silicon applied. Salinity significantly decreased 1000-grain weight. Maximum grain yield obtained from TN-04-37 (987.6 g m-2 under normal condition with foliar application of silicon. Application of silicon under stress condition led to 38% increase in grain yield of Sepideh compared to control. Under salt stress, silicon also increased shoot dry weight in TN-04-107, TN-04-70, TN-04-37, Payam and Sepideh genotypes

  20. DIFFERENCES BETWEEN WHEAT CULTIVARS IN GRAIN PARAMETERS RELATED TO ETHANOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Daniela Mikulíková

    2011-12-01

    Full Text Available Wheat grain samples from sixteen winter cultivars originated from four localities were evaluated and compared in traits related to ethanol production as grain yield, grain hardness, content of protein, starch and amylose, and α-amylase activity. Results obtained indicate significant differences between cultivars in amylose content, α-amylase activity, and grain hardness compared to grain yield, protein content, and starch content where differences were not significant. The amylose content, α-amylase activity, and grain hardness were affected by cultivar. Both testing methods for starch fermentation - separated hydrolysis and fermentation (SHF and simultaneous saccharification and fermentation (SSF revealed difference between cultivars in ethanol yield.

  1. The Effect of Crop Residue and Different NPK Fertilizer Rates on yield Components and Yield of Wheat

    Directory of Open Access Journals (Sweden)

    fatemeh khamadi

    2017-08-01

    Full Text Available Introduction Integrated nutrient management involving crop residue/green manures and chemical fertilizer is potential alternative to provide a balanced supply of nutrients, enhance soil quality and thereby sustain higher productivity. The present experiment was undertaken to evaluate the effect of different crop residue management practices and NPK levels on yield components and yield of wheat. Materials and methods Field experiments were conducted during 2012-2014 at department of agronomy, Chamran University. Experiment was laid out in a randomized block designs in split plot arrangement. With three replications. Crop residues were assigned to main plot consistent CR1: wheat residue; CR2: rape residue; CR3: barley residue; CR4: barley residue + vetch; CR5: wheat straw + mungbean; CR6: vetch residue; CR7: mungbean residue; CR8: No residue incorporation as main plot and three NPK fertilizer rates: F1: (180N-120P-100K kg.ha-1; F2: (140N-90P-80K kg.ha-1; F3: (90N-60P-40K kg.ha-1 as sub plots. Twelve hills were collected at physiological maturity for measuring yield components from surrounding area of grain yield harvest area. Yield components, viz. number of spike per m2, seed per spike, 1000- grain weight, plant height were measured. Grain and straw yields were recorded from the central 5 m2 grain yield harvest area of each treatment and harvest index was calculated. Data were subjected to analysis by SAS and mean companions were performed using the Duncan multiple range test producer. Also, graphs were drawn in Excel software. Results and discussion The result of analysis variance showed significant difference between crop residues for evaluated traits. The result indicated that the highest biological and grain yield was obtained when wheat treated with CR5: wheat straw + mungbean (green manure and CR4: barley straw + vetch (green manure. Biological and grain yield increased 31 and 26% respectively by CR5 comparing with control. The highest

  2. Structure and electronic properties of grain boundaries in earth-abundant photovoltaic absorber Cu2ZnSnSe4.

    Science.gov (United States)

    Li, Junwen; Mitzi, David B; Shenoy, Vivek B

    2011-11-22

    We have studied the atomic and electronic structure of Cu(2)ZnSnSe(4) and CuInSe(2) grain boundaries using first-principles calculations. We find that the constituent atoms at the grain boundary in Cu(2)ZnSnSe(4) create localized defect states that promote the recombination of photon-excited electron and hole carriers. In distinct contrast, significantly lower density of defect states is found at the grain boundaries in CuInSe(2), which is consistent with the experimental observation that CuInSe(2) solar cells exhibit high conversion efficiency without the need for deliberate passivation. Our investigations suggest that it is essential to effectively remove these defect states in order to improve the conversion efficiency of solar cells with Cu(2)ZnSnSe(4) as photovoltaic absorber materials. © 2011 American Chemical Society

  3. Determination of grain boundary mobility during recrystallization by statistical evaluation of electron backscatter diffraction measurements

    International Nuclear Information System (INIS)

    Basu, I.; Chen, M.; Loeck, M.; Al-Samman, T.; Molodov, D.A.

    2016-01-01

    One of the key aspects influencing microstructural design pathways in metallic systems is grain boundary motion. The present work introduces a method by means of which direct measurement of grain boundary mobility vs. misorientation dependence is made possible. The technique utilizes datasets acquired by means of serial electron backscatter diffraction (EBSD) measurements. The experimental EBSD measurements are collectively analyzed, whereby datasets were used to obtain grain boundary mobility and grain aspect ratio with respect to grain boundary misorientation. The proposed method is further validated using cellular automata (CA) simulations. Single crystal aluminium was cold rolled and scratched in order to nucleate random orientations. Subsequent annealing at 300 °C resulted in grains growing, in the direction normal to the scratch, into a single deformed orientation. Growth selection was observed, wherein the boundaries with misorientations close to Σ7 CSL orientation relationship (38° 〈111〉) migrated considerably faster. The obtained boundary mobility distribution exhibited a non-monotonic behavior with a maximum corresponding to misorientation of 38° ± 2° about 〈111〉 axes ± 4°, which was 10–100 times higher than the mobility values of random high angle boundaries. Correlation with the grain aspect ratio values indicated a strong growth anisotropy displayed by the fast growing grains. The observations have been discussed in terms of the influence of grain boundary character on grain boundary motion during recrystallization. - Highlights: • Statistical microstructure method to measure grain boundary mobility during recrystallization • Method implementation independent of material or crystal structure • Mobility of the Σ7 boundaries in 5N Al was calculated as 4.7 × 10"–"8 m"4/J ⋅ s. • Pronounced growth selection in the recrystallizing nuclei in Al • Boundary mobility values during recrystallization 2–3 orders of magnitude

  4. Detection and quantification of ochratoxin A and deoxynivalenol in barley grains by GC-MS and electronic nose.

    Science.gov (United States)

    Olsson, J; Börjesson, T; Lundstedt, T; Schnürer, J

    2002-02-05

    Mycotoxin contamination of cereal grains can be detected and quantified using complex extraction procedures and analytical techniques. Normally, the grain odour, i.e. the presence of non-grain volatile metabolites, is used for quality classification of grain. We have investigated the possibility of using fungal volatile metabolites as indicators of mycotoxins in grain. Ten barley samples with normal odour, and 30 with some kind of off-odour were selected from Swedish granaries. The samples were evaluated with regard to moisture content, fungal contamination, ergosterol content, and levels of ochratoxin A (OA) and deoxynivalenol (DON). Volatile compounds were also analysed using both an electronic nose and gas chromatography combined with mass spectrometry (GC-MS). Samples with normal odour had no detectable ochratoxin A and average DON contents of 16 microg kg(-1) (range 0-80), while samples with off-odour had average OA contents of 76 microg kg(-1) (range 0-934) and DON contents of 69 microg kg(-1) (range 0-857). Data were evaluated by multivariate data analysis using projection methods such as principal component analysis (PCA) and partial least squares (PLS). The results show that it was possible to classify the OA level as below or above the maximum limit of 5 microg kg(-1) cereal grain established by the Swedish National Food Administration, and that the DON level could be estimated using PLS. Samples with OA levels below 5 microg kg(-1) had higher concentration of aldehydes (nonanal, 2-hexenal) and alcohols (1-penten-3-ol, 1-octanol). Samples with OA levels above 5 microg kg(-1) had higher concentrations of ketones (2-hexanone, 3-octanone). The GC-MS system predicted OA concentrations with a higher accuracy than the electronic nose, since the GC-MS misclassified only 3 of 37 samples and the electronic nose 7 of 37 samples. No correlation was found between odour and OA level, as samples with pronounced or strong off-odours had OA levels both below and above 5

  5. Estimation of rice grain yield from dual-polarization Radarsat-2 SAR data by integrating a rice canopy scattering model and a genetic algorithm

    Science.gov (United States)

    Zhang, Yuan; Yang, Bin; Liu, Xiaohui; Wang, Cuizhen

    2017-05-01

    Fast and accurate estimation of rice yield plays a role in forecasting rice productivity for ensuring regional or national food security. Microwave synthetic aperture radar (SAR) data has been proved to have a great potential for rice monitoring and parameters retrieval. In this study, a rice canopy scattering model (RCSM) was revised and then was applied to simulate the backscatter of rice canopy. The combination of RCSM and genetic algorithm (GA) was proposed for retrieving two important rice parameters relating to grain yield, ear length and ear number density, from a C-band, dual-polarization (HH and HV) Radarsat-2 SAR data. The stability of retrieved results of GA inversion was also evaluated by changing various parameter configurations. Results show that RCSM can effectively simulate backscattering coefficients of rice canopy at HH and HV mode with an error of <1 dB. Reasonable selection of GA's parameters is essential for stability and efficiency of rice parameter retrieval. Two rice parameters are retrieved by the proposed RCSM-GA technology with better accuracy. The rice ear length are estimated with error of <1.5 cm, and ear number density with error of <23 #/m2. Rice grain yields are effectively estimated and mapped by the retrieved ear length and number density via a simple yield regression equation. This study further illustrates the capability of C-band Radarsat-2 SAR data on retrieval of rice ear parameters and the practicability of radar remote sensing technology for operational yield estimation.

  6. Simulation study on the growth of grains in dusty plasmas

    International Nuclear Information System (INIS)

    Sato, Tetsuya; Watanabe, Kunihiko

    1997-01-01

    A new particle simulation code is developed for studying the dynamics of the grains which are exposed to charging by the background plasma particles. Effects of regular attachment of electrons and ions, effects of secondary electron emission, and coagulation of grains are included in this code. Simulation results show that grains randomly change their charges from negative to positive, or from positive to negative in a 'flip-flop' fashion as a result of competition between the electron attachment and secondary electron emission. It is found that the flip-flop effect becomes remarkable when the radius of grains is of the order of 10 nm, because the attachment of a single electron to a grain is less effective on the surface potential for larger grains, while the average probability of electron attachment is smaller for smaller grains. Grains with opposite charges attract each other to coagulate, so that grains of size of 10 nm are likely to grow in size. The flip-flop effect is found to be essential to the growth of grains. (author)

  7. Estimation of heterosis in yield and yield attributing traits in single cross hybrids of maize

    Directory of Open Access Journals (Sweden)

    Hari Prasad Sharma

    2016-12-01

    Full Text Available A field experiment was conducted at National Maize Research Program, Rampur, Chitwan, Nepal during winter season from 6th October, 2015 to 5th March 2016 to estimate different heterosis on single cross maize hybrids . Thirteen maize hybrids were tested randomized complete block design with three replications. Hybrid namely RML-98/RL-105 gave the highest standard heterosis (57.5% for grain yield over CP-666 followed by RML-4/NML-2 (32.6%, RML-95/RL-105 (29% and RML-5/RL-105 (20.6%. The hybrid RML-98/RL-105 produced the highest standard heterosis (75.1% for grain yield over Rajkumar followed by RML-4/NML-2(50.2%, RML-95/RL-105(46.6%, RML-5/RL-105 and (35.7%. Mid and better parent heterosis were significantly higher for yield and yield attributes viz. ear length, ear diameter, no of kernel row per ear, no of kernel per row and test weight. The highest positive mid-parent heterosis for grain yield was found in RML-98/RL-105 followed by RML-5/RL-105, RML-95/RL-105, and RML-4/NML-2. For the grain yield the better parent heterosis was the highest in RML-98/RL-105, followed by RML-5/RL-105, RML-95/RL-105, and RML-4/NML-2. These results suggested that maize production can be maximized by cultivating hybrids namely RML-98/RL-105, RML-5/RL-105, RML-95/RL-105, and RML-4/NML-2 .

  8. Oilseed rape grain yield productivity increases with hybrid varietal types: a first balance sheet with post registration tests in France and in Europe

    Directory of Open Access Journals (Sweden)

    Pinochet Xavier

    2000-01-01

    Full Text Available Since 1994 several oilseed rape hybrid types were proposed to farmers. Following registration experiments, Cetiom and different equivalent institutions in European Union have tested them in different post registration national networks. Grain yield productivity increases were demonstrated and a first synthesis could be done to check avantages and difficulties which had occurred. For winter types, Hybrid Composits were widely used, mainly in France and in the United Kingdom. Grain yield increases were important in the South and West part of France where their market shares increased up to 50-80%. Nevertheless, many fecondation problems occurred in several places all over Europe. Reasons of such problems were difficult to identify. Several factors, as cold temperatures, nutritionnal competitions, pollen avaibility may be involved to explain low seed sets. Restored Hybrids made with the NPZ hybridation system were successfully tested widely, and has reached significative market shares during 1999-2000 season. Less experiments were carried out with others hybrid types (Ogu-INRA Restored Hybrids, Mixed Hybrids. Ogu-INRA Restored Hybrids reached the highest grain yield levels but users are waiting for lower glucosinolates seed content hybrids which would come in the next future. Performances comparisons among countries have to be done carefully. Productivity increases with hybrid types could have been over estimated depending of pollinic environments or plot size and possible neighbouring effects. For France, results from field trials networks are coherent with results coming from postal surveys. For spring varieties, Polima restored hybrids and varietal associations have demonstrated a significative advantage compared to classical lines.

  9. Effect of integrated plant nutrition and irrigation scheduling on yield and yield components of maize (zea mays l.)

    International Nuclear Information System (INIS)

    Randhawa, M.S.; Maqsood, M.; Wajid, S.A.; Haq, A.U.

    2012-01-01

    Effect of three irrigation schedules (4-6 irrigations) and seven integrated plant nutrition levels (control, 125-60-62 kg N-P/sub 2/O/sub 5/-K/sub 2/O ha/sup -1/, 125-60-62 kg N-P/sub 2/O/sub 5/--K/sub 2/O ha/sup -1/ + Farmyard manure at the rate 10 t ha/sup -1/, 125-60-62 kg N-P/sub 2/O/sub 5/-K/sub 2/O ha/sup -1/ + Farm yard manure at the rate 15 t ha-1, 250-120-125 kg N-P/sub 2/O/sub 5/--K/sub 2/O ha-1, 250-120-125 kg N-P/sub 2/O/sub 5/ -K/sub 2/O ha/sup -1/ + Farmyard manure at the rate 10 t ha-1 and 250-120-125 kg N-P/sub 2/O/sub 5/--K/sub 2/O ha/sup -1/ + Farmyard manure at the rate 15 t ha/sup -1/) on grain yield and its components in maize were studied during 2009 and 2010. Plant height, number of cobs plant-1, number of grain rows cob-1, number of grains cob-1, 1000-grain weight, grain weight cob-1, grain yield, stover yield and biological yield were significantly affected by irrigation schedules and integrated plant nutrition levels during both years. The crop applied with six irrigations and fertilized by integrated application of chemical fertilizers (250-120-125 kg N-P/sub 2/O/sub 5/--K/sub 2/O ha/sup -1/) and farmyard manure (15 t ha/sup -1/) produced the highest grain yield of 8.47 t ha/sup -1/ and 8.22 t ha/sup -1/ during 2009 and 2010, respectively. (author)

  10. Evaluation of Relationship Between Auxin and Cytokinine Hormones on Yield and Yield Components of Maize under Drought Stress Condition

    Directory of Open Access Journals (Sweden)

    A Mahrokh

    2016-10-01

    Full Text Available Introduction Drought is one of the major environmental conditions that adversely affects plant growth and crop yield. In the face of a global scarcity of water resources, water stress has already become a primary factor in limiting crop production worldwide. Drought is the major restriction in maize production. The plant growth reduction under drought stress conditions could be an outcome of altered hormonal balance and hence the exogenous application of growth regulators under stress conditions could be the possible means for reversing the effects of abiotic stress. Phytohormones such as auxine and cytokinine are known to be involved in the regulation of plant response to the adverse effects of stress conditions. Previous studies have shown that endogenous hormones are essential regulators for translocation and partitioning of photoassimilates for grain filling in cereal crops, and therefore could be involved in the regulation of grain weight and yield. Materials and Methods The experiment was carried out in three separately environments included non-drought stress environment (irrigation after soil moisture reached to 75% field capacity, drought stress in vegetative stage (irrigation after soil moisture reached to 50% field capacity in V4 to tasseling stage, but irrigation after soil moisture reached to 75% field capacity in pollination to physiological maturity stage and drought stress in reproductive stage (irrigation after soil moisture reached to 75% field capacity in V4 to tasseling stage and irrigation after soil moisture reached to 50% field capacity in pollination to physiological maturity stage. Cytokinin hormone in three levels (control, spraying in V5 –V6 and V8-V10 stages and auxin hormone in three levels (control, spraying in silk emergence stage and 15 days after that were laid out as a factorial design based on randomized complete block with three replications in each environment at Seed and Plant Improvement Institute (SPII

  11. Mode of inheritance and combining abilities for kernel row number, kernel number per row and grain yield in maize (Zea mays L.)

    NARCIS (Netherlands)

    Bocanski, J.; Sreckov, Z.; Nastasic, A.; Ivanovic, M.; Djalovic, I.; Vukosavljev, M.

    2010-01-01

    Bocanski J., Z. Sreckov, A. Nastasic, M. Ivanovic, I.Djalovic and M. Vukosavljev (2010): Mode of inheritance and combining abilities for kernel row number, kernel number per row and grain yield in maize (Zea mays L.) - Genetika, Vol 42, No. 1, 169- 176. Utilization of heterosis requires the study of

  12. Soybean growth and yield under cover crops

    Directory of Open Access Journals (Sweden)

    Priscila de Oliveira

    2013-04-01

    Full Text Available The use of cover crops in no-tillage systems can provide better conditions for the development of soybean plants with positive effects on grain yield and growth analysis techniques allow researchers to characterize and understand the behavior of soybean plants under different straw covers. Thus, the aim of this study was to characterize, using growth analysis, yield components and agronomic performance of soybean under common bean, Brachiaria brizantha and pearl millet straws. The experiment was performed on a soil under cerrado in the municipality of Santo Antônio de Goiás, GO. The experiment was arranged in a randomized complete block design with three treatments (cover crops and five replications. Soybean grain yield was lower in the B. brizantha straw treatment (3,708 kg ha-1 than both in the pearl millet (4.772 kg ha-1 and common bean straw treatments (5,200 kg ha-1. The soybean growth analysis in B. brizantha, pearl millet and common bean allowed characterizing the variation in the production of dry matter of leaves, stems, pods and total and leaf area index that provided different grain yields. The cover crop directly affects the soybean grain yield.

  13. Structural evolution of a deformed Σ=9 (122) grain boundary in silicon. A high resolution electron microscopy study

    International Nuclear Information System (INIS)

    Putaux, Jean-Luc

    1991-01-01

    This research thesis addresses the study by high resolution electron microscopy of the evolution of a silicon bi-crystal under deformation at different temperatures. The author notably studied the structural evolution of the boundary as well as that of grains at the vicinity of the boundary. Two observation scales have been used: the evolution of sub-structures of dislocations induced by deformation in grains and in boundary, and the structure of all defects at an atomic scale. After a presentation of experimental tools (the necessary perfect quality of the electronic optics is outlined), the author recalls some descriptive aspects of grain boundaries (geometric network concepts to describe coinciding networks, concepts of delimiting boundaries and of structural unit to describe grain boundary atomic structure), recalls the characteristics of the studied bi-crystal, and the conditions under which it is deformed. He presents the structures of all perfectly coinciding boundaries, describes defects obtained by deformation at the vicinity of the boundary, describes the entry of dissociated dislocations into the boundaries, and discusses the characterization of boundary dislocations (the notion of Burgers vector is put into question again), and the atomic mechanism of displacement of dislocations in boundaries [fr

  14. Plant Density Effect on Grain Number and Weight of Two Winter Wheat Cultivars at Different Spikelet and Grain Positions

    Science.gov (United States)

    Ni, Yingli; Zheng, Mengjing; Yang, Dongqing; Jin, Min; Chen, Jin; Wang, Zhenlin; Yin, Yanping

    2016-01-01

    In winter wheat, grain development is asynchronous. The grain number and grain weight vary significantly at different spikelet and grain positions among wheat cultivars grown at different plant densities. In this study, two winter wheat (Triticum aestivum L.) cultivars, ‘Wennong6’ and ‘Jimai20’, were grown under four different plant densities for two seasons, in order to study the effect of plant density on the grain number and grain weight at different spikelet and grain positions. The results showed that the effects of spikelet and grain positions on grain weight varied with the grain number of spikelets. In both cultivars, the single-grain weight of the basal and middle two-grain spikelets was higher at the 2nd grain position than that at the 1st grain position, while the opposite occurred in the top two-grain spikelets. In the three-grain spikelets, the distribution of the single-grain weight was different between cultivars. In the four-grain spikelets of Wennong6, the single-grain weight was the highest at the 2nd grain position, followed by the 1st, 3rd, and 4th grain positions. Regardless of the spikelet and grain positions, the single-grain weight was the highest at the 1st and 2nd grain positions and the lowest at the 3rd and 4th grain positions. Overall, plant density affected the yield by controlling the seed-setting characteristics of the tiller spike. Therefore, wheat yield can be increased by decreasing the sterile basal and top spikelets and enhancing the grain weight at the 3rd and 4th grain positions, while maintaining it at the 1st and 2nd grain positions on the spikelet. PMID:27171343

  15. Measurements of Lunar Dust Charging Properties by Electron Impact

    Science.gov (United States)

    Abbas, Mian M.; Tankosic, Dragana; Craven, Paul D.; Schneider, Todd A.; Vaughn, Jason A.; LeClair, Andre; Spann, James F.; Norwood, Joseph K.

    2009-01-01

    Dust grains in the lunar environment are believed to be electrostatically charged predominantly by photoelectric emissions resulting from solar UV radiation on the dayside, and on the nightside by interaction with electrons in the solar wind plasma. In the high vacuum environment on the lunar surface with virtually no atmosphere, the positive and negative charge states of micron/submicron dust grains lead to some unusual physical and dynamical dust phenomena. Knowledge of the electrostatic charging properties of dust grains in the lunar environment is required for addressing their hazardous effect on the humans and mechanical systems. It is well recognized that the charging properties of individual small micron size dust grains are substantially different from the measurements on bulk materials. In this paper we present the results of measurements on charging of individual Apollo 11 and Apollo 17 dust grains by exposing them to mono-energetic electron beams in the 10-100 eV energy range. The charging/discharging rates of positively and negatively charged particles of approx. 0.1 to 5 micron radii are discussed in terms of the sticking efficiencies and secondary electron yields. The secondary electron emission process is found to be a complex and effective charging/discharging mechanism for incident electron energies as low as 10-25 eV, with a strong dependence on particle size. Implications of the laboratory measurements on the nature of dust grain charging in the lunar environment are discussed.

  16. The Effect of Drought Stress on Grain Yield and Oil Rate and Protein Percentage of Four Varieties Castor in Climatic Conditions of Damghan

    Directory of Open Access Journals (Sweden)

    Gh. Laei

    2012-08-01

    Full Text Available In this study theeffect ofdrought stress was investigated on grain yield and oil rate and protein percentage of four varieties of castor in the climatic conditions of Damghan. The experiment was done in the research farm of Damghan Islamic Azad University(Iranin 2011 assplit plots in a randomized complete block design with three replications. The main plots of drought stress were 5, 10 and15 days and another factor included four varities of castor ( one-flower, two- flower, local and red-flower which were performed in stable density of fivebushes per cultured square meter. Therefore, after gremination, the amount of irrigation water was recorded using volumetric meters. The traits evaluated included oil rate,seed protein percentage, andgrainyield. The results show that two-flower variety with 1241 kg per hectare on 5-day drought stress has the most grain yield. Most oil rate was observed in two-flower variety on 5 day drought stress with 496.4 kg/ha.

  17. Grain Yield, Dry Weight and Phosphorus Accumulation and Translocation in Two Rice (Oryza sativa L. Varieties as Affected by Salt-Alkali and Phosphorus

    Directory of Open Access Journals (Sweden)

    Zhijie Tian

    2017-08-01

    Full Text Available Salt-alkali is the main threat to global crop production. The functioning of phosphorus (P in alleviating damage to crops from saline-alkaline stress may be dependent on the variety of crop but there is little published research on the topic. This pot experiment was conducted to study if P has any effect on rice (Oryza sativa L. yield, dry matter and P accumulation and translocation in salt-alkaline soils. Plant dry weight and P content at heading and harvest stages of two contrasting saline-alkaline tolerant (Dongdao-4 and sensitive (Tongyu-315 rice varieties were examined under two saline-alkaline (light versus severe soils and five P supplements (P0, P50, P100, P150 and P200 kg ha−1. The results were: in light saline-alkaline soil, the optimal P levels were found for P150 for Dongdao-4 and for P100 for Tongyu-315 with the greatest grain dry weight and P content. Two rice varieties obtained relatively higher dry weight and P accumulation and translocation in P0. In severe saline-alkaline soil, however, dry weight and P accumulation and translocation, 1000-grain weight, seed-setting rate and grain yield significantly decreased, but effectively increased with P application for Dongdao-4. Tongyu-315 showed lower sensitivity to P nutrition. Thus, a more tolerant variety could have a stronger capacity to absorb and translocate P for grain filling, especially in severe salt-alkaline soils. This should be helpful for consideration in rice breeding and deciding a reasonable P application in saline-alkaline soil.

  18. Effects of Mineral N and P Fertilizers on Yield and Yield Components of Flooded Lowland Rice on Vertisols of Fogera Plain, Ethiopia

    Directory of Open Access Journals (Sweden)

    Heluf Gebrekidan

    2006-10-01

    Full Text Available Despite its very recent history of cultivation in Ethiopia, rice is one of the potential grain crops that could contribute to the efforts for the realization of food security in the country. However, the scientific information available with regards to the response of flooded rice to N and P fertilizers for its optimum production on Vertisols of Fogera Plain is very limited. Therefore, a field experiment was conducted on Vertisols of Fogera plain, northern Ethiopia to study the yield and yield components response of rice and to establish the optimum N and P fertilizer levels required for improved grain yield of flooded rice. Six levels of N (0, 30, 60, 90, 120 and 150 kg ha−1 and five levels of P (0, 13.2, 26.4, 39.6 and 52.8 kg ha−1 laid down in a randomized complete block design with four replications were used as treatments. Nitrogen was applied in two equal splits (50% basal and 50% at maximum tillering as urea and the entire dose of P was applied basal as triple super phosphate at sowing. The main effects of N and P fertilizer levels showed significant differences (P ≤ 0.01 for all yield and yield components studied. The effects of N by P interaction were significant only for grain yield (P ≤ 0.05, number of panicles per m2 (P ≤ 0.01, number of spikelets per panicle (P ≤ 0.05 and plant height (P ≤ 0.01 among the different yield and yield components studied. Application of N and P significantly (P ≤ 0.01 increased grain yield of rice up to the levels of 60 kg N and 13.2 kg P ha−1. However, maximum grain yield (4282 kg ha−1 was obtained with the combined application of 60 kg N and 13.2 kg P ha−1, and the yield advantage over the control was 38.49% (1190 kg ha−1. Moreover, application of both N and P fertilizers have increased the magnitudes of the important yield attributes including number of panicles per m2, number of spikelets per panicle, panicle length, dry matter accumulation, straw yield and plant height

  19. Combining ability studies on yield related traits in wheat under normal and water stress conditions

    International Nuclear Information System (INIS)

    Saeed, A.; Khan, A.S.; Khaliq, I.

    2010-01-01

    Six diverse wheat cultivars/lines viz; Baviacore, Nesser, 9247, 9252, 9258 and 9267 were crossed in a complete diallel fashion to develop 30 F1 crosses, which were tested along with their parents under normal and water stress conditions. Numerical analysis was made for spike density, number of grains per spike, 100-grain weight, biological yield, grain yield and harvest index. Significant differences among genotypic mean were observed in all of the traits under both conditions. GCA and SCA differences were significant for all the traits under study except spike density and 100-grain weight in both conditions. Wheat variety Nesser showed maximum general combining ability value for spike density under water stress conditions and maximum GCA value for biological yield and grain yield under irrigated condition. The variety Baviacore proved best general combiner for number of grains per spike and harvest index under both conditions while biological yield and grain yield under water stress condition. Variety 9252 found best general combiner for 100-grain weight under both condition. The cross 9252 x Nesser showed maximum specific combining ability value for spike density and biological yield under irrigated while for 100-grain weight under water stress condition. 9258 x 9252 exhibited maximum SCA for number of grains per spike under irrigated while 9258 x Nesser under water stress condition. 9267 x Nesser showed maximum SCA for 100-grain weight under irrigated condition while spike density under water stress condition. 9258 x 9247 was proved best combiner for grain yield and harvest index irrigated while 9267 x 9258 for biological yield, grain yield and harvest index under water stress condition. (author)

  20. Study by electron spin resonance (ESR) of 60 Co irradiated grains and farinaceous derivatives

    International Nuclear Information System (INIS)

    Catanni, Marta Mattos.

    1995-01-01

    The electron spin resonance (ESR) spectroscopy is being pointed out as one of the most promising techniques to determine whether a food has been irradiated. In this work, the ESR spectrum of paramagnetic radicals produced by gamma irradiation of grains and flour derivatives using a 60 Co source was investigated. Samples of grains (wheat and barley), flours (wheat, maniac, rye, soy bean and maize), bran and starch have been irradiated with doses between 0.2 and 70 KGy. It was shown that all varieties of grains and flours presented similar ESR spectra with variation in the free radicals signal intensity. Measurements at 9.5 and 34.5 GHz shown that spectra were composed probably by the superposition of four paramagnetic species with g-factors closed to that of the free electron (2 triplets, 1 doublet and 1 singlet). Hyperfine interactions and the correspondingly line widths were estimated through an spectrum computer simulation. It was established that ESR signal intensities increased with the irradiation dose for all samples. Up to the commercial admissible dose limit (1 kGy), the increase of ESR signal shown a linear behavior with the dose. The signal stability varied significantly with storage conditions and sample humidity. For 1 kGy-irradiated samples stored at room temperature and 14% humidity, the ESR radiation signals were possible to be detected up to 5 days after irradiation. When the same samples were stored at low temperatures (0 0 C) or freeze-dried (almost 0% humidity) the ESR signals were detected until 6 months after irradiation. Similar ESR spectrum found for grains and flours was obtained for diverse starchy food products. It was verified that it is possible to identify for a long time irradiated starchy foods when they are commercialized dehydrated or frozen. (author). 66 refs., 35 figs., 17 tabs

  1. The Effect of Plant Growth Promoting Rhizobacteria (PGPR and Phosphate Solubilizing Microorganism (PSM on Yield and Yield Components of Wheat (cv. N80 under Different Nitrogen and Phosphorous Fertilizers Levels in Greenhouse Condition

    Directory of Open Access Journals (Sweden)

    S. H Bahari saravi

    2013-04-01

    Full Text Available In order to evaluate the effect of plant growth promoting rhizobacteria (PGPR and phosphate solubilizing microorganism (PSM on yield and yield components of wheat a pot experiment was conducted at Sari Agricultural Sciences and Natural Resources University during 2009. Experiment was arranged in factorial based on completely randomized design in three replicates. Treatments were included bio-fertilizer in four levels (non-inoculation control, Phosphate Barvare 2 (Pseudomonas fluorescens+Bacillus subtilis, Supernitroplus (Azotobacter brasilense+Azospirillum lipoferum and Nitroxine (Azospirillum + Pseudomona + Bacillus, three levels of chemical nitrogen fertilizer (0, 75 and 150 kg urea/ha and three levels of phosphorus fertilizer (0, 60 and 120 kg super phosphate triple/ha. Results showed that the studied treatments (biofertilizer, nitrogen and phosphate inorganic fertilizers had significant effect on grain number per spike, 1000 grain weight, grain yield, straw yield, biological yield and harvest index. Interaction effect between biofertilizer and chemical fertilizers was significant in terms of grain yield. The maximum grain yield was resulted from simultaneously applying of Nitroxine and 75 kg ha-1 nitrogen fertilizer. By contrast, the highest straw yield was obtained when 150 kg nitrogen fertilizer was used. Grain yield had the maximum correlation with biological yield (r=0.85**. Grain yield positively and significantly correlated with grain number per spike (r=0.73**, 1000 grain weight (r=0.68**, straw yield (r=0.56** and harvest index (r=0.69**. In conclusion biofertilizer inoculations could reduce application of nitrogen and phosphorus chemical fertilizers and increase plant performance.

  2. Yield performance and stability of CMS-based triticale hybrids.

    Science.gov (United States)

    Mühleisen, Jonathan; Piepho, Hans-Peter; Maurer, Hans Peter; Reif, Jochen Christoph

    2015-02-01

    CMS-based triticale hybrids showed only marginal midparent heterosis for grain yield and lower dynamic yield stability compared to inbred lines. Hybrids of triticale (×Triticosecale Wittmack) are expected to possess outstanding yield performance and increased dynamic yield stability. The objectives of the present study were to (1) examine the optimum choice of the biometrical model to compare yield stability of hybrids versus lines, (2) investigate whether hybrids exhibit a more pronounced grain yield performance and yield stability, and (3) study optimal strategies to predict yield stability of hybrids. Thirteen female and seven male parental lines and their 91 factorial hybrids as well as 30 commercial lines were evaluated for grain yield in up to 20 environments. Hybrids were produced using a cytoplasmic male sterility (CMS)-inducing cytoplasm that originated from Triticumtimopheevii Zhuk. We found that the choice of the biometrical model can cause contrasting results and concluded that a group-by-environment interaction term should be added to the model when estimating stability variance of hybrids and lines. midparent heterosis for grain yield was on average 3 % with a range from -15.0 to 11.5 %. No hybrid outperformed the best inbred line. Hybrids had, on average, lower dynamic yield stability compared to the inbred lines. Grain yield performance of hybrids could be predicted based on midparent values and general combining ability (GCA)-predicted values. In contrast, stability variance of hybrids could be predicted only based on GCA-predicted values. We speculated that negative effects of the used CMS cytoplasm might be the reason for the low performance and yield stability of the hybrids. For this purpose a detailed study on the reasons for the drawback of the currently existing CMS system in triticale is urgently required comprising also the search of potentially alternative hybridization systems.

  3. The Effect of Nitroxin Biofertilizer and Foliar Applicatin of Micronutrients Time Consumption on Yield and Yield Components of New Wheat Cultivars under Khorramabad Climatic Conditions

    Directory of Open Access Journals (Sweden)

    A. Vaez

    2016-02-01

    Full Text Available Introduction In order to study the effects of Nitroxin biofertilizer and foliar application of micronutrients time consumption on yield and yield components of new wheat cultivars (Triticum aestivum & T. durum under Khorramabad climatic conditions, an experiment was conducted as factorial based on a randomized complete block design with three replications at the research farm khorramabad during growing season of 2012-2013. Considering the positive effect of inoculation with bio-fertilizer and foliar Nitroxin micronutrients and reaction of cultivars to this type of fertilizer instead of chemical fertilizers and the importance of wheat as one of the main crops, this study aims to determine the most appropriate time for foliar and Nitroxin application of micronutrients at the different stages of plant growth and bio-fertilizer application on yield and yield components. Materials and Methods The first factor was considered in six levels: N0: The lack of the seed insemination with nitroxin biofertilizer and without the foliar application of micronutrients (control, N1: the seed inoculation with the nitroxin biofertilizer, N2: the foliar application of micronutrients at the jointing stage, N3: the foliar application of micronutrients at the heading stage, N4: the seed insemination with nitroxin biofertilizer and foliar application of micronutrients at the jointing stage, N5: the seed insemination with nitroxin biofertilizer and foliar application of micronutrients at the heading stage. The second factor was considered at two levels, consisting: V1: Parsi cultivar and V2: Dena cultivar. MSTATC Software was used for data analysis and means were compared by Duncan's multiple range test at the 5% level. Results and Discussion In this experiment the grain yield, biological yield, harvest index, 1000- grain weight, spike number per m-2, grain number per spike and spikelet number per spike of wheat were studied. The results of the data variance analysis has

  4. Effects of Plant Density on Sweet and Baby Corn (Hybrid KSC 403 Yield and Yield Components

    Directory of Open Access Journals (Sweden)

    H Bavi

    2016-07-01

    Full Text Available Introduction Sweet corn is the one of the most important types of corn. There is a high amount of sugar in the endosperm of sweet corn than dent corn. Baby corn is the ear of corn that is being harvested in the silking stage before the end of pollination. This crop has an interesting using methods as salad, conserve production and vegetative consumption. Both two sweet and baby corn is obtained from one plant in different growth stages and could be harvested from one corn hybrid. Best yield and quality of baby corn is obtained from sweet corn hybrids, because of high amounts of sugar in the grains and ears. Sweet corn and baby corn could be harvested at early dough stage (with about 30 % of humidity and early silking stage before the pollination is completed, respectively. Plant density is the most important factor in growing corn, especially in sweet and baby corn. Khuzestan province is one of the main regions of corn production in Iran. In Khuzestan, forage and silage corn have the most production among the summer crops. Corn is planted in two planting date in Khuzestan: early spring and early summer. Spring corn planting produces little grain yield due to Simultaneity of silking stage with hot early summer days. Because of little production and little research about sweet and baby corn, this study was performed and designed. Materials and Methods In order to investigate the effects of plant density and harvesting method on sweet corn and baby corn yield, an experiment was performed during 2012-13, in research farm of Ramin Agriculture and Natural Resources University of Khuzestan, located in southwest of Iran. In this experiment, four plant densities (7, 9, 11 and 13 plants.m-2 and two harvesting methods (baby corn and sweet corn were investigated in an RCB statistical design with four replications. The KSC 403 hybrid was used and investigated in the experiment, as a sweet corn hybrid. Statistical analysis was performed using SAS 9.1 through

  5. Secondary electron emission yield on poled silica based thick films

    DEFF Research Database (Denmark)

    Braga, D.; Poumellec, B.; Cannas, V.

    2004-01-01

    Studies on the distribution of the electric field produced by a thermal poling process in a layer of Ge-doped silica on silicon substrate, by using secondary electron emission yield (SEEY) measurements () are presented. Comparing 0 between poled and unpoled areas, the SEEY at the origin of electr...

  6. Leaf gas exchange, carbon isotope discrimination, and grain yield in contrasting rice genotypes subjected to water deficits during the reproductive stage.

    Science.gov (United States)

    Centritto, Mauro; Lauteri, Marco; Monteverdi, Maria Cristina; Serraj, Rachid

    2009-01-01

    Genotypic variations in leaf gas exchange and yield were analysed in five upland-adapted and three lowland rice cultivars subjected to a differential soil moisture gradient, varying from well-watered to severely water-stressed conditions. A reduction in the amount of water applied resulted in a significant decrease in leaf gas exchange and, subsequently, in above-ground dry mass and grain yield, that varied among genotypes and distance from the line source. The comparison between the variable J and the Delta values in recently synthesized sugars methods, yielded congruent estimations of mesophyll conductance (g(m)), confirming the reliability of these two techniques. Our data demonstrate that g(m) is a major determinant of photosynthesis (A), because rice genotypes with inherently higher g(m) were capable of keeping higher A in stressed conditions. Furthermore, A, g(s), and g(m) of water-stressed genotypes rapidly recovered to the well-watered values upon the relief of water stress, indicating that drought did not cause any lasting metabolic limitation to photosynthesis. The comparisons between the A/C(i) and corresponding A/C(c) curves, measured in the genotypes that showed intrinsically higher and lower instantaneous A, confirmed this finding. Moreover, the effect of drought stress on grain yield was correlated with the effects on both A and total diffusional limitations to photosynthesis. Overall, these data indicate that genotypes which showed higher photosynthesis and conductances were also generally more productive across the entire soil moisture gradient. The analysis of Delta revealed a substantial variation of water use efficiency among the genotypes, both on the long-term (leaf pellet analysis) and short-term scale (leaf soluble sugars analysis).

  7. Nanocompositional Electron Microscopic Analysis and Role of Grain Boundary Phase of Isotropically Oriented Nd-Fe-B Magnets

    Directory of Open Access Journals (Sweden)

    Gregor A. Zickler

    2017-01-01

    Full Text Available Nanoanalytical TEM characterization in combination with finite element micromagnetic modelling clarifies the impact of the grain misalignment and grain boundary nanocomposition on the coercive field and gives guidelines how to improve coercivity in Nd-Fe-B based magnets. The nanoprobe electron energy loss spectroscopy measurements obtained an asymmetric composition profile of the Fe-content across the grain boundary phase in isotropically oriented melt-spun magnets and showed an enrichment of iron up to 60 at% in the Nd-containing grain boundaries close to Nd2Fe14B grain surfaces parallel to the c-axis and a reduced iron content up to 35% close to grain surfaces perpendicular to the c-axis. The numerical micromagnetic simulations on isotropically oriented magnets using realistic model structures from the TEM results reveal a complex magnetization reversal starting at the grain boundary phase and show that the coercive field increases compared to directly coupled grains with no grain boundary phase independently of the grain boundary thickness. This behaviour is contrary to the one in aligned anisotropic magnets, where the coercive field decreases compared to directly coupled grains with an increasing grain boundary thickness, if Js value is > 0.2 T, and the magnetization reversal and expansion of reversed magnetic domains primarily start as Bloch domain wall at grain boundaries at the prismatic planes parallel to the c-axis and secondly as Néel domain wall at the basal planes perpendicular to the c-axis. In summary our study shows an increase of coercive field in isotropically oriented Nd-Fe-B magnets for GB layer thickness > 5 nm and an average Js value of the GB layer < 0.8 T compared to the magnet with perfectly aligned grains.

  8. Carpel size, grain filling, and morphology determine individual grain weight in wheat.

    Science.gov (United States)

    Xie, Quan; Mayes, Sean; Sparkes, Debbie L

    2015-11-01

    Individual grain weight is a major yield component in wheat. To provide a comprehensive understanding of grain weight determination, the carpel size at anthesis, grain dry matter accumulation, grain water uptake and loss, grain morphological expansion, and final grain weight at different positions within spikelets were investigated in a recombinant inbred line mapping population of bread wheat (Triticum aestivum L.)×spelt (Triticum spelta L.). Carpel size, grain dry matter and water accumulation, and grain dimensions interacted strongly with each other. Furthermore, larger carpels, a faster grain filling rate, earlier and longer grain filling, more grain water, faster grain water absorption and loss rates, and larger grain dimensions were associated with higher grain weight. Frequent quantitative trait locus (QTL) coincidences between these traits were observed, particularly those on chromosomes 2A, 3B, 4A, 5A, 5DL, and 7B, each of which harboured 16-49 QTLs associated with >12 traits. Analysis of the allelic effects of coincident QTLs confirmed their physiological relationships, indicating that the complex but orderly grain filling processes result mainly from pleiotropy or the tight linkages of functionally related genes. After grain filling, distal grains within spikelets were smaller than basal grains, primarily due to later grain filling and a slower initial grain filling rate, followed by synchronous maturation among different grains. Distal grain weight was improved by increased assimilate availability from anthesis. These findings provide deeper insight into grain weight determination in wheat, and the high level of QTL coincidences allows simultaneous improvement of multiple grain filling traits in breeding. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Calculation of the total electron excitation cross section in the Born approximation using Slater wave functions for the Li (2s yields 2p), Li (2s yields 3p), Na (3s yields 4p), Mg (3p yields 4s), Ca (4s yields 4p) and K (4s yields 4p) excitations. M.S. Thesis

    Science.gov (United States)

    Simsic, P. L.

    1974-01-01

    Excitation of neutral atoms by inelastic scattering of incident electrons in gaseous nebulae were investigated using Slater Wave functions to describe the initial and final states of the atom. Total cross sections using the Born Approximation are calculated for: Li(2s yields 2p), Na(3s yields 4p), k(4s yields 4p). The intensity of emitted radiation from gaseous nebulae is also calculated, and Maxwell distribution is employed to average the kinetic energy of electrons.

  10. Association Analysis of SSR Markers with Phenology, Grain, and Stover-Yield Related Traits in Pearl Millet (Pennisetum glaucum (L. R. Br.

    Directory of Open Access Journals (Sweden)

    Baskaran Kannan

    2014-01-01

    Full Text Available Pearl millet is a staple food crop for millions of people living in the arid and semi-arid tropics. Molecular markers have been used to identify genomic regions linked to traits of interest by conventional QTL mapping and association analysis. Phenotypic recurrent selection is known to increase frequencies of favorable alleles and decrease those unfavorable for the traits under selection. This study was undertaken (i to quantify the response to recurrent selection for phenotypic traits during breeding of the pearl millet open-pollinated cultivar “CO (Cu 9” and its four immediate progenitor populations and (ii to assess the ability of simple sequence repeat (SSR marker alleles to identify genomic regions linked to grain and stover yield-related traits in these populations by association analysis. A total of 159 SSR alleles were detected across 34 selected single-copy SSR loci. SSR marker data revealed presence of subpopulations. Association analysis identified genomic regions associated with flowering time located on linkage group (LG 6 and plant height on LG4, LG6, and LG7. Marker alleles on LG6 were associated with stover yield, and those on LG7 were associated with grain yield. Findings of this study would give an opportunity to develop marker-assisted recurrent selection (MARS or marker-assisted population improvement (MAPI strategies to increase the rate of gain for pearl millet populations undergoing recurrent selection.

  11. Alignment of dust grains in ionized regions

    Science.gov (United States)

    Anderson, Nels; Watson, William D.

    1993-01-01

    The rate at which charged dust grains in a plasma are torqued by passing ions and electrons is calculated. When photo-emission of electrons is not important, attraction of ions by the grain monopole potential increases the rate at which the grains' spins are dealigned by nearly an order of magnitude. Consequently, the energy density of the magnetic field required to align grains in an H II region may be increased by about an order of magnitude. In contrast, electric dipole and quadrupole moments are unlikely to produce large dealignment rates for grains of modest length-to-width ratio. Nonetheless, for positively charged grains these higher-order moments likely prevent monopole repulsion of ions from reducing the dealignment rate far below that for neutral grains. The presence of positive grain charge therefore does not greatly facilitate grain alignment in an H II region.

  12. Effect of seed rate on growth, yield components and yield of mash bean grown under irrigated conditions of arid uplands of Balochistan, Pakistan

    International Nuclear Information System (INIS)

    Aachakzai, A.K.K.; Taran, S.A.

    2011-01-01

    A field experiment was carried out to investigate the effects of six different seed rates viz., 15, 17.5, 20, 22.5, 25 and 27.5 kg ha/sup -1/ on the growth, yield and yield attributes of mash bean Vigna mungo (L.) Hepper). This study was conducted for two consecutive years at the Agriculture Research Institute (ARI) under the existing semi-arid climatic, edaphic and water conditions of Quetta, Balochistan. Results revealed that plant population, pods plant/sup -1/, grain yield plant/sup -1/ and grain yield ha/sup -1/ were significantly (p<0.05 influenced by varying seed rates. However, other mentioned growth and yield attributes did not respond significantly. Statistically and numerically a maximum yield plant/sup -1/ (20.98 g) and yield ha/sup -1/ (3120 kg) were obtained in applied seed at the rate of 20 kg ha/sup -1/. Whereas, the same was obtained for plant population and plant height in applied seed rate of 25 kg ha/sup -1/. However, maximum number of branches plant/sup -1/ (4.22) was received for applied seeds at the rate of 15 kg ha/sup -1/. Therefore, seed at the rate of 20 kg ha/sup -1/ seems optimum which could be due to the most desirable population or planting density in the existing environmental conditions of Quetta. Results further revealed that only plant population plot/sup -1/ (r=0.481), and yield plant/sup -1/ (r=0.569) were significantly and positively correlated with grain yield ha/sup -1/, while all other remaining growth and yield attributes exhibited insignificant association with grain yield ha/sup -1/. Hence these two parameters i.e., planting density and grain yield plant/sup -1/ should be given more consideration while deciding about selection criteria for mash bean under irrigated conditions of arid uplands of Balochistan. (author)

  13. Effect of electron emission on the charge and shielding of a dust grain in a plasma: A continuum theory

    International Nuclear Information System (INIS)

    D'yachkov, L. G.; Khrapak, A. G.; Khrapak, S. A.

    2008-01-01

    The continuum approximation is used to analyze the effect of electron emission from the surface of a spherical dust grain immersed in a plasma on the grain charge by assuming negligible ionization and recombination in the disturbed plasma region around the grain. A parameter is introduced that quantifies the emission intensity regardless of the emission mechanism (secondary, photoelectric, or thermionic emission). An analytical expression for the grain charge Z d is derived, and a criterion for change in the charge sign is obtained. The case of thermionic emission is examined in some detail. It is shown that the long-distance asymptotic behavior of the grain potential follows the Coulomb law with a negative effective charge Z eff , regardless of the sign of Z d . Thus, the potential changes sign and has a minimum if Z d > 0, which implies that attraction is possible between positively charged dust grains

  14. Microstructure, plastic deformation and strengthening mechanisms of an Al–Mg–Si alloy with a bimodal grain structure

    International Nuclear Information System (INIS)

    Shakoori Oskooie, M.; Asgharzadeh, H.; Kim, H.S.

    2015-01-01

    Highlights: • Al6063 with bimodal grain structures was fabricated by a powder metallurgy route. • The bimodal alloys showed a reasonable ductility together with a high strength. • Grain boundary strengthening was reduced at higher fraction of coarse grains. • The enhanced tensile ductility was attributed to crack blunting and delamination. - Abstract: Al6063 alloys with bimodal grain size distributions comprised of ultrafine-grained (UFG) and coarse-grained (CG) regions were produced via mechanical milling followed by hot extrusion. High-energy planetary ball milling for 22.5 h with a rotational speed of 350 rpm was employed for the synthesis of nanocrystalline Al6063 powders. The as-milled Al6063 powders were mixed with 15, 30, and 45 vol.% of the unmilled powders and then the powder mixtures were consolidated via extrusion at 450 °C with an extrusion ratio of 9:1. The microstructure of the bimodal extrudates was investigated using optical microscope, transmission electron microscope (TEM) and field emission scanning electron microscope equipped with an electron backscattered diffraction (EBSD) detector. The deformation behavior was investigated by means of uniaxial tensile tests. The bimodal Al6063 exhibited balanced mechanical properties, including high yield stress and ultimate tensile strength resulting from the UFG regions together with reasonable ductility attained from the CG areas. The fracture surfaces demonstrated a ductile fracture mode, in which the dimple size was correlated with the grain structure. The strengthening mechanisms are discussed based on the dislocation models and the functions of the CGs in the deformation behavior and ductility enhancement of bimodal Al6063 are explored

  15. Application of Electron Backscattered Diffraction (EBSD) and Atomic Force Microscopy (AFM) to Determine Texture, Mesotexture, and Grain Boundary Energies in Ceramics

    International Nuclear Information System (INIS)

    Glass, S.J.; Rohrer, G.S.; Saylor, D.M.; Vedula, V.R.

    1999-01-01

    Crystallographic orientations in alumina (Al 2 0 3 ) and magnesium aluminate spinel (MgAl 2 0 4 ) were obtained using electron backscattered diffraction (EBSD) patterns. The texture and mesotexture (grain boundary mis-orientations) were random and no special boundaries were observed. The relative grain boundary energies were determined by thermal groove geometries using atomic force microscopy (AFM) to identify relationships between the grain boundary energies and mis-orientations

  16. Evaluation of Grain Quality in Bread Wheat Recombinant Inbred Lines Under Drought Stress Conditions

    Directory of Open Access Journals (Sweden)

    H. Shahbazi

    2014-04-01

    Full Text Available To study drought stress effect on grain quality properties of wheat, an experiment was conductedusing 169 recombinant inbreed lines (RILS under water stress and non-stress condition and with two separated lattice designs. Grain yield, protein yield, protein content, volume of Zeleny sediment, grain hardness, water absorption, grain moisture content and grain dry matter were evaluated. Analysis of variance showed that there were significant differences among the lines for all traits. Moreover, comparison between two lines in two environmental conditions showed, the quality in bread wheat under drought stress conditions due to increment of protein yield is improved. Protein yield in both irrigation regimes has a significant and negative correlation with grain moisture and in the other hand, significant and positive correlation with the grain hardiness dry matter, Zeleny sedimentation and water intake in both conditions. The results showed that the identification of favorable quality characteristics in optimum and stressed conditions were possible and the lines with high grain quality can be used in breeding programs for improving of baking quality. Although some drought sensitive genotypes possessed a favorable baking quality but their grain yield was low.

  17. Grain yields and disease resistance as selection criteria for introduction of new varieties of small grain cereal in Lubumbashi, D.R. Congo.

    Science.gov (United States)

    Mukobo, M R P; Ngongo, L M; Haesaert, G

    2014-01-01

    Wheat production in African countries is a major challenge for their development, considering their increasing consumption of wheat flour products. In the Democratic Republic of Congo, wheat and wheat-based products are the important imported food products although there is a potential for the cultivation of small grain cereals such as durum wheat, wheat and triticale. Trials done in Lubumbashi in the Katanga Province have shown that Septoria Leaf Blotch, Septoria Glume Blotch and Fusarium head blight are the main constraints to the efficient development of these cultures. Some varieties of Elite Spring Wheat, High Rainfall Wheat, Triticale and Durum Wheat from CIMMYT were followed during 4 growing seasons and agronomic characteristics and their levels of disease resistance were recorded. Correlations of agronomic characteristics with yields showed that in most cases, thousand kernel weight is the parameter that has the most influence on the yield level (p < 0.0001). The analysis of variance for all diseases showed that there were significant effects related to the year, the species and the interaction years x species. Triticale varieties seem to have a better resistance against the two forms of Septoria compared to wheat varieties but, they seem to be more sensitive to Fusarium Head Blight than wheat varieties. However, the Fusarium Head Blight has a rather low incidence in Lubumbashi.

  18. Effect of nanoprecipitates and grain size on the mechanical properties of advanced structural steels

    International Nuclear Information System (INIS)

    Suarez, M.A.; Alvarez-Perez, M.A.; Alvarez-Fregoso, O.; Juarez-Islas, J.A.

    2011-01-01

    Highlights: → The composition of the steel responded positively to the thermomechanical processing. → Yield strength was increased due to micrometric grain size of 2.2 μm. → Mechanical properties were improved due to nanometric precipitates of 5 nm. → Yield strength values of the API steel were improved up to 877.9 MPa. - Abstract: The microstructure and nanometric precipitates present in advanced structured steel have been studied by high resolution transmission electron microscopy equipped with energy dispersion X-ray microanalysis, in order to relate the nanometric precipitates and grain size with the improvement of the yield strength value of the API steel. The microstructure and nanometric precipitates of the advanced steel were obtained by a combination of thermo-mechanical controlled hot rolling and accelerated cooling procedures. The API steel composition consisted of hot rolled Nb-Ti microalloyed with: 0.07C, 1.40Mn, 0.24Si, 0.020Al, 0.009P, 0.001S, 0.05Mo, 0.5Cr, 0.05Nb, 0.25Ni, 0.10Cu, 0.012Ti, 0.05N in wt%. As a result, this hot rolled steel tested at a strain rate of 5 x 10 -3 s -1 showed an improved yield strength from 798 MPa to 878 MPa due to the micrometric grain size of 2.2 μm and to the nanometric precipitates with a size of around 5 nm in the microstructure of the steel studied.

  19. Produção de forragem e de grãos de aveia branca sob pastejo Forage and grain yield of white oat under grazing

    Directory of Open Access Journals (Sweden)

    Patrícia Cambrussi Bortolini

    2005-12-01

    Full Text Available Os objetivos neste estudo foram quantificar os efeitos da desfolhação resultante de diferentes períodos de pastejo em aveia branca (Avena sativa L., avaliar os potenciais forrageiro e granífero do cultivar FAPA 2 e determinar o período máximo de permanência dos animais em pastejo para possibilitar colheita de forragem sem afetar a produção de grãos. Os tratamentos (sem pastejo, 1, 2, 3, 4, 5, 6, 7 e 8 semanas de pastejo foram distribuídos em delineamento experimental de blocos ao acaso, com três repetições, em subparcelas, nas quais foram avaliados os períodos de pastejo. O cultivar de aveia branca avaliado demonstrou adequada recuperação à desfolhação para produção de altas quantidades de matéria seca, desde que a duração de pastejo não ultrapasse quatro semanas. Em pastejos prolongados (cinco, seis, sete e oito semanas, ocorre queda na produção de matéria seca e lenta recuperação de área foliar. O aumento no rendimento de grãos de aveia branca ocorre em períodos de 1 a 4 semanas de pastejo, em decorrência da redução do acamamento e da menor altura do meristema apical. Em desfolhações de 5 a 8 semanas de pastejo, a redução no rendimento de grãos acompanha o declínio do número de espigas por área, de espiguetas por espiga e de grãos por espiga. O pastejo controlado até quatro semanas estimula a produção de matéria seca e permite a produção de grãos, além de promover oportunidade para produção animal, demonstrando a alta aptidão desse cultivar ao sistema de duplo propósito.To quantify defoliation effects resulting from several grazing periods with cattle on white oat (Avena sativa L. an experiment was run at Experimental Station of Fundação Agrária de Pesquisa Agropecuária in Guarapuava, Paraná State, Brazil, from April to November of 1999. The specific objectives were to evaluate potential forage and grain yield of white oat cv. FAPA 2 after different grazing periods as well as to

  20. Influences of nitrogen and potassium top dressing on yield and yield ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-03

    May 3, 2010 ... (K) top dressing on grain yield and yield components of rice (Oryza sativa cv. Tarrom) and to ... positive reciprocal effect on crops, and was an important approach in ..... dressing fertilization (Figures 2a, b and c), but nitrogen levels of upper fully .... (Brassica napus L.)–rice (Oryza sativa L.) rotation. Plant Soil ...

  1. Evolution of mechanical properties of ultrafine grained 1050 alloy annealing with electric current

    International Nuclear Information System (INIS)

    Cao, Yiheng; He, Lizi; Zhang, Lin; Zhou, Yizhou; Wang, Ping; Cui, Jianzhong

    2016-01-01

    The tensile properties and microstructures of 1050 aluminum alloy prepared by equal channel angular pressing at cryogenic temperature (cryoECAP) after electric current annealing at 90–210 °C for 3 h were investigated by tensile test, electron back scattering diffraction (EBSD) and transmission electron microscopy (TEM). An unexpected annealing-induced strengthening phenomenon occurs at 90–210 °C, due to a significant decrease in the density of mobile dislocations after annealing, and thus a higher yield stress is required to nucleate alternative dislocation sources during tensile test. The electric current can enhance the motion of dislocations, lead to a lower dislocation density at 90–150 °C, and thus shift the peak annealing temperature from 150 °C to 120 °C. Moreover, the electric current can promote the migration of grain boundaries at 150–210 °C, result in a larger grain size at 150 °C and 210 °C, and thus causes a lower yield stress. The sample annealed with electric current has a lower uniform elongation at 90–120 °C, and the deviation in the uniform elongation between samples annealed without and with electric current becomes smaller at 150–210 °C. - Highlights: • An unexpected annealing-induced strengthening phenomenon occurs at 90–210 °C. • The d. c. current can enhance the motion of dislocations at 90–150 °C, and thus shift the peak annealing temperature from 150 °C to 120 °C. • The d. c. current can promote the grain growth at 150–210 °C, and thus cause a lower yield stress. • The DC annealed sample has a lower uniform elongation at 90–120 °C.

  2. High-resolution transmission electron microscopy of grain-refining particles in amorphous aluminum alloys

    International Nuclear Information System (INIS)

    Schumacher, P.; Greer, A.L.

    1996-01-01

    The nucleation mechanism of Al-Ti-B grain refiners is studied in an Al-based amorphous alloy. The ability to limit growth of α-Al in the amorphous alloy permits the microscopical observation of nucleation events on boride particles. Earlier studies of this kind are extended by using high-resolution electron microscopy. This shows that the efficient nucleation α-Al depends on the TiB 2 particles being coated with a thin layer of Al 3 Ti, which can form only when there is some excess titanium in the melt. The aluminide layer, stabilized by adsorption effects, can be as little as a few monolayers thick, and is coherent with the boride. The nature of this layer, and its importance for the nucleation mechanism are discussed. The fading of the grain refinement action is also considered

  3. The effects of vermicompost and chemical fertilizers on yield and yield components of marshmallow (Altheae officinalis L.

    Directory of Open Access Journals (Sweden)

    A.A. Sadeghi

    2016-05-01

    Full Text Available In order to investigate the effects of vermicompost and chemical fertilizers on growth characteristics, yield and yield components of marshmallow (Altheaeofficinalis L., a field experiment was conducted as factorial layout based on a randomized complete block design with three replications at Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, during growing season of 2012. Experimental treatments were designed based on 3 levels of vermicompost (0, 5 and 10 t ha-1 and 5 levels of nitrogen fertilizer (0, 25, 50, 75 and 100% of 200 kg N ha-1. Results indicated that applied vermicompost had significant effects on increasing leaf area, flower weight per plant and grain yield of marshmallow. Flower weight per plant and grain yield of marshmallow was increased by 2 to 3 times by applying vermicompost at 10 t. ha-1, as compared to control treatment. In addition, nitrogen fertilizer had a significant effect on increasing flower weight per plant and grain, mucilage and oil yields of marshmallow. It seems that applying vermicompost can be suitable strategy in reducing the problems caused by excessive using of chemical fertilizers.

  4. Ionizing radiation for insect control in grain and grain products

    International Nuclear Information System (INIS)

    Tilton, E.W.; Brower, J.H.

    1987-01-01

    A technical review summarizes and discusses information on various aspects of the use of ionizing radiation for the control of insect infestation in grains and grain products. Topics include: the effects of ionizing radiation on insects infesting stored-grain products; the 2 main types of irradiators (electron accelerators; radioisotopes (e.g.: Co-60; Cs-137); dosimetry systems and methodology; variations in radiation resistance by stored-product pests; the proper selection of radiation dose; the effects of combining various treatments (temperature, infrared/microwave radiation, hypoxia, chemicals) with ionizing radiation; sublethal radiation for controlling bulk grain insects; the feeding capacity of irradiated insects; the susceptibility of insecticide-resistant insects to ionizing radiation; and the possible resistance of insects to ionizing radiation. Practical aspects of removing insects from irradiated grain also are discussed

  5. Environment effects for earliness and grain yield traits in F1 diallel populations of maize (Zea mays L.).

    Science.gov (United States)

    Ali, Sardar; Khan, Naqib Ullah; Khalil, Iftikhar Hussain; Iqbal, Muhammad; Gul, Samrin; Ahmed, Sheraz; Ali, Naushad; Sajjad, Mohammad; Afridi, Khilwat; Ali, Imtiaz; Khan, Shah Masaud

    2017-10-01

    Five maize inbred lines, 20 F 1 diallel hybrids and two check genotypes were evaluated through genotype × environment interaction (GEI) and GGE biplot for earliness and yield traits at four locations. Genotype, environment and GEI showed highly significant differences for all the traits. In total sum of squares, environment and genotype played a primary role, followed by GEI. Larger effects of environment and genotype to total variation influence the earliness and yield traits. However, according to the GGE biplot, the first two principal components (PC1 and PC2) explained 95% of the variation caused by GEI. GGE biplot confirmed the differential response of genotypes across environments. F 1 hybrid SWAJK-1 × FRHW-3 had better stability, with a good yield, and was considered an ideal genotype. F 1 hybrid FRHW-2 × FRHW-1 showed more earliness at CCRI and Haripur, followed by PSEV3 × FRHW-2 and its reciprocal at Swat and Mansehra, respectively. F 1 hybrids FRHW-1 × SWAJK-1, PSEV3 × SWAJK-1 and SWAJK-1 × FRHW-3 at Mansehra and Swat produced maximum grain yield, followed by SWAJK-1 × FRHW-1 and PSEV3 × FRHW-1 at Haripur and CCRI, respectively. Overall, maize genotypes showed early maturity in plain areas (CCRI and Haripur) but higher yield in hilly areas (Mansehra and Swat). © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Effect of reversion annealing on the formation of nano/ultrafine grained structure in 201 austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Moallemi, Mohammad; Najafizadeh, Abbas; Kermanpur, Ahmad [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Rezaee, Ahad, E-mail: a.rezaee@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The secondary increase in the martensite content after reversion annealing. Black-Right-Pointing-Pointer Formation of thermally induced martensite due to carbide precipitation. Black-Right-Pointing-Pointer The smallest average grain size of 70 nm is achieved by annealing at 850 Degree-Sign C for 15 s. Black-Right-Pointing-Pointer A fully austenitic structure with grain size of 100 nm and 1370 MPa yield strength. - Abstract: The formation of nano/ultrafine grain structure in a 201 austenitic stainless steel was investigated by the martensite thermomechanical treatment. Cast ingots were first homogenized, then hot-forged and solution-annealed to reduce the initial grain size. Cold rolling was then conducted down to 90% reduction in thickness, followed by reversion annealing at a temperature in the range of 1023-1173 K for 15-1800 s. The effect of reversion parameters on grain refinement was investigated. The resulting microstructures were characterized by a scanning electron microscopy equipped with X-ray energy-dispersive spectrometer, an X-ray diffractometer and a Feritscope. The hardness was measured by the Vickers method. The results show that a nano/ultrafine-grained structure formed in the initial stages of the reversion, but significant grain growth took place during the entire course of reversion. Initially lowered, the volume fraction of martensite increased again during the reversion treatment due to carbide precipitation. A fully austenitic nano grained 201 stainless steel with the average grain size of 100 nm was produced, possessing a yield strength of about 1370 MPa.

  7. Yield strength prediction in Ni-base alloy 718Plus based on thermo-kinetic precipitation simulation

    International Nuclear Information System (INIS)

    Ahmadi, M.R.; Povoden-Karadeniz, E.; Whitmore, L.; Stockinger, M.; Falahati, A.; Kozeschnik, E.

    2014-01-01

    The yield strength of Allvac ® 718Plus ™ during aging is computed using integrated physical models that take into account intrinsic, grain boundary, solid solution and precipitate strengthening contributions. Precipitation strengthening of γ′ has the main effect on the final yield strength in this alloy during aging, with the coherency and anti-phase boundary effects providing the major strengthening contributions. We utilize transmission electron microscopy to obtain the unknown physical parameters entering the strengthening models and compare precipitate size and distribution with the simulation results

  8. Application of Bokashi Botom Ash for Increasing Upland Rice Yield and Decreasing Grain Pb Content in Vitric Hapludans

    Directory of Open Access Journals (Sweden)

    Nunung Sondari

    2012-05-01

    Full Text Available Greenhouse experiment was conducted at Agricultural Faculty of Winaya Mukti University Tanjungsari SumedangRegency, from May to October 2009. The objective of this experiment was to study the effect of bokashi bottom ashon the growth, yield, and Pb content of upland rice. The experiment used a Randomized completely Block Design(RBD which consisted of five treatments and five replications. The treatments were level of bokashi bottom ash i.e.0, 5, 10, 15, and 20 Mg ha-1. The results showed that the application of bokashi bottom ash increased the growth andyield of upland rice of Situbagendit variety except plant height at age of 21 days after seedling (DAS. Application15 Mg ha -1 of bokashi bottom ash gave the best effect to the plant height, number of leaves, number of tillers andshoot/root ratio, while applications of 10, 15 and 20 Mg ha -1 increased number of productive tillers, amount of filledgrains, and weight of grains. Bokashi bottom ash did not affect the heavy metal content of upland rice grain ofSitubagendit variety.

  9. Physiological basis of barley yield under near optimal and stress conditions

    Directory of Open Access Journals (Sweden)

    Pržulj Novo

    2004-01-01

    Full Text Available Average barley yield fall below its potential due to incidence of stresses. Water stress is the main environmental factor limiting yield. The component a priori more sensitive to most stresses is the amount of radiation absorbed. The effect of stresses influence on the total amount of radiation absorbed by barley crop during its vegetation and the photosynthetic efficiency of radiation conversion. Growth inhibition is accompanied by reductions in leaf and cell wall extensibility. Grain yield under drought conditions is source limited. Supply of assimilates to the developing inflorescence plays a critical role in establishing final grain number and grain size. Grain weight is negatively affected by drought, high temperature, and any other factors that may reduce grain filling duration and grain filling rate. Awns and glaucousness confer better performance of barley under drought stress conditions. Barley responds with an increased accumulation of a number of proteins when subjected to different stress inducing cell dehydration. Screening techniques that are able to identify desirable genotypes based on the evaluation of physiological traits related to stress evasion and stress resistance maybe useful in breeding barley for resistance to stress, particularly drought stress. Crop management and breeding can reduce the incidence of stress on yield. The effect of these practices is sustained by an understanding of their physiology. In this paper the physiological basis of the processes determining barley yield and the incidence of stresses on photosynthetic metabolism that determine grain yield of barley is discussed. .

  10. Polycomb Protein OsFIE2 Affects Plant Height and Grain Yield in Rice.

    Directory of Open Access Journals (Sweden)

    Xianbo Liu

    Full Text Available Polycomb group (PcG proteins have been shown to affect growth and development in plants. To further elucidate their role in these processes in rice, we isolated and characterized a rice mutant which exhibits dwarfism, reduced seed setting rate, defective floral organ, and small grains. Map-based cloning revealed that abnormal phenotypes were attributed to a mutation of the Fertilization Independent Endosperm 2 (OsFIE2 protein, which belongs to the PcG protein family. So we named the mutant as osfie2-1. Histological analysis revealed that the number of longitudinal cells in the internodes decreased in osfie2-1, and that lateral cell layer of the internodes was markedly thinner than wild-type. In addition, compared to wild-type, the number of large and small vascular bundles decreased in osfie2-1, as well as cell number and cell size in spikelet hulls. OsFIE2 is expressed in most tissues and the coded protein localizes in both nucleus and cytoplasm. Yeast two-hybrid and bimolecular fluorescence complementation assays demonstrated that OsFIE2 interacts with OsiEZ1 which encodes an enhancer of zeste protein previously identified as a histone methylation enzyme. RNA sequencing-based transcriptome profiling and qRT-PCR analysis revealed that some homeotic genes and genes involved in endosperm starch synthesis, cell division/expansion and hormone synthesis and signaling are differentially expressed between osfie2-1 and wild-type. In addition, the contents of IAA, GA3, ABA, JA and SA in osfie2-1 are significantly different from those in wild-type. Taken together, these results indicate that OsFIE2 plays an important role in the regulation of plant height and grain yield in rice.

  11. Electron mobility and saturation of ion yield in 2,2,4,4-tetramethylpentane

    International Nuclear Information System (INIS)

    Poffenberger, P.R.; Astbury, A.; Fincke-Keeler, M.; Keeler, R.K.; Li, Y.; Robertson, L.P.; Rosvick, M.; Schenk, P.; Oram, C.; Sobie, R.

    1993-01-01

    The electron drift mobility μ and zero field free ion yield G fi 0 have been measured for liquid 2,2,4,4-tetramethylpentane using a waveform analysis. The saturation of the ion yield for highly ionizing radiation has also been investigated and parameterized using the Birks' equation. The results obtained are μ=26.3±0.8 cm 2 /V s, G fi 0 =0.743±0.029 electrons/100 eV, and a Birks' factor ranging from kB=0.222±0.014 cm/MeV at 604 V/cm to kB=0.141±0.021 cm/MeV at 3625 V/cm. (orig.)

  12. High day- and night-time temperatures affect grain growth dynamics in contrasting rice genotypes.

    Science.gov (United States)

    Shi, Wanju; Yin, Xinyou; Struik, Paul C; Solis, Celymar; Xie, Fangming; Schmidt, Ralf C; Huang, Min; Zou, Yingbin; Ye, Changrong; Jagadish, S V Krishna

    2017-11-02

    Rice grain yield and quality are predicted to be highly vulnerable to global warming. Five genotypes including heat-tolerant and susceptible checks, a heat-tolerant near-isogenic line and two hybrids were exposed to control (31 °C/23 °C, day/night), high night-time temperature (HNT; 31 °C/30 °C), high day-time temperature (HDT; 38 °C/23 °C) and high day- and night-time temperature (HNDT; 38 °C/30 °C) treatments for 20 consecutive days during the grain-filling stage. Grain-filling dynamics, starch metabolism enzymes, temporal starch accumulation patterns and the process of chalk formation were quantified. Compensation between the rate and duration of grain filling minimized the impact of HNT, but irreversible impacts on seed-set, grain filling and ultimately grain weight were recorded with HDT and HNDT. Scanning electron microscopy demonstrated irregular and smaller starch granule formation affecting amyloplast build-up with HDT and HNDT, while a quicker but normal amylopast build-up was recorded with HNT. Our findings revealed temporal variation in the starch metabolism enzymes in all three stress treatments. Changes in the enzymatic activity did not derail starch accumulation under HNT when assimilates were sufficiently available, while both sucrose supply and the conversion of sucrose into starch were affected by HDT and HNDT. The findings indicate differential mechanisms leading to high day and high night temperature stress-induced loss in yield and quality. Additional genetic improvement is needed to sustain rice productivity and quality under future climates. © Society for Experimental Biology 2017.

  13. Effect of Salicylic Acid on Yield, Component Yield and Essential Oil of Black Cumin (Nigella sativa L. under Water Deficit Stress

    Directory of Open Access Journals (Sweden)

    E. Rezaei Chiyaneh

    2014-12-01

    Full Text Available Since the production of medicinal plants can be influenced by environmental factors such as water limitation. In other hand salicylic acid as a plant regulator can enhance drought resistance in plants. In order to investigate the effect of different irrigation intervals on yield, yield components and essential oil of black cumin (Nigella sativa L., a field experiment was conducted a farm located in West Azerbaijan province- city Nagadeh, West- Azerbaijan, during growing season of 2011- 2012. The experiment was arranged as split plot based on a randomized complete block design with three replications. Irrigation intervals (6, 12 and 18 days and three levels of salicylic acid concentration (0, 0.5 and 1 mM considered as in main plots and sub-plots, respectively. Results showed that irrigation had significant effects on all characteristics such as Plant height, number of follicule per plant, number of seed per follicule, biological yield, grain yield, essential oil content and essential oil yield with the exception of 1000- seed weight. With increasing irrigation intervals from 6 to 18 days, plant height, number of follicule per plant, number of seed per follicule, biological yield, grain yield, essential oil percentage and essential oil yield were decreased up to 49, 52, 40, 35, 43, 20 and 55 %, respectively. In contrast, yield components and yield were enhanced up to treatments 0.5 mM of salicylic acid. Grain yield and essential oil yield with application of 0.5 mM salicylic acid increased up to 13 and 11 % compared to control, respectively. It seems that due to the limited sources of water in the region irrigation after 12 days and 0.5 mM salicylic acid concentration are suitable for black cumin grain production.

  14. Variation in Yield and Physicochemical Quality Traits among Mutants of Japonica Rice Cultivar Wuyujing 3

    OpenAIRE

    Abacar, Jose Daniel; Zhao-miao, Lin; Xin-cheng, Zhang; Cheng-qiang, Ding; She, Tang; Zheng-hui, Liu; Shao-hua, Wang; Yan-feng, Ding

    2016-01-01

    To select elite germplasms, 112 mutants derived from japonica rice cultivar Wuyujing 3 were evaluated. The yield components such as panicle number per square meter, grain number per panicle, and grain weight were measured. The quality traits such as percentage of chalky grains (PCG), brown rice yield (BRY), milled rice yield (MRY), degree of milling (DM), amylose content (AC), protein content (PC), and relationships among traits were inverstigated. Results showed that grain yield ranged from ...

  15. Effects of Irrigation and Nitrogen Application Rates on Yield and Yield Components of Corn, Sesame and Sugar beet in Mashhad Climatic Condition

    Directory of Open Access Journals (Sweden)

    R Heydari Pour

    2015-07-01

    Full Text Available In many crops, incorrect management of nitrogen and water is one of the most important factors in the resources productivity such as water and nitrogen. In order to evaluate the effects of different nitrogen levels (zero, 50, 100 and 150 kg ha-1 and irrigation application rates (100, 75 and 50% of water requirement per species on corn, sesame and sugar beet, three separate experiments was conducted in Agricultural Research Station of Ferdowsi University of Mashhad, Iran, in 2009-2010 growing season. Three separate experiments were arranged by strip plots in randomized complete block design, with three replications. The results showed that effect of irrigation application rates on biological yield and grain number per ear and interaction effects of water × nitrogen on plant height, 100 grain weight and grain yield of corn was significant. With decreasing irrigation over 25 % water requirements, the highest grain yield (4.93 ton ha-1 in corn observed by applying nitrogen equal to 50 kg.ha-1. In addition, the highest maize yield (9.41 ton.ha-1 in mentioned was obtained by supplying 100 % water requirements. Effects of Irrigation levels on plant height and the interaction effects of water × nitrogen on 1000 grain weight in sesame was significant. Under no water stress, the highest grain yield (1.22 ton ha-1 in sesame was obtained with applying 50kg nitrogen per ha. With supplying 75% water requirements plus 50 kg nitrogen per hactar, maximum yield of sesame (820 kg ha-1 was obtained. Results of this study indicated that interaction between studied factors had insignificant effect on economic and biological yield in sugar beet. With supplying 25% water requirements plus 50 kg nitrogen per ha, maximum yield of sugar beet (58.37 ton ha-1 was achieved. It seems that suitable nitrogen management can be considered as approach in optimize the water consuming.

  16. Yield Stability of Sorghum Hybrids and Parental Lines | Kenga ...

    African Journals Online (AJOL)

    Seventy-five sorghum hybrids and twenty parental lines were evaluated for two consecutive years at two locations. Our objective was to compare relative stability of grain yields among hybrids and parental lines. Mean grain yields and stability analysis of variance, which included linear regression coefficient (bi) and ...

  17. Photoelectric Emission Measurements on the Analogs of Individual Cosmic Dust Grains

    Science.gov (United States)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.; Weingartner, J. C.; Tielens, A. G. G. M.; Nuth, J. a.; Camata, R. P.

    2006-01-01

    The photoelectric emission process is considered to be the dominant mechanism for charging of cosmic dust grains in many astrophysical environments. The grain charge and equilibrium potentials play an important role in the dynamical and physical processes that include heating of the neutral gas in the interstellar medium, coagulation processes in the dust clouds, and levitation and dynamical processes in the interplanetary medium and planetary surfaces and rings. An accurate evaluation of photoelectric emission processes requires knowledge of the photoelectric yields of individual dust grains of astrophysical composition as opposed to the values obtained from measurements on flat surfaces of bulk materials, as it is generally assumed on theoretical considerations that the yields for the small grains are much different from the bulk values. We present laboratory measurements of the photoelectric yields of individual dust grains of silica, olivine, and graphite of approx. 0.09-5 micrometer radii levitated in an electrodynamic balance and illuminated with ultraviolet radiation at 120-160 nm wavelengths. The measured yields are found to be substantially higher than the bulk values given in the literature and indicate a size dependence with larger particles having order-of-magnitude higher values than for submicron-size grains.

  18. First-Principles Calculations of Electronic States and Self-Doping Effects at a 45° Grain Boundary in the High Temperature YBa2Cu3O7 Superconductor

    KAUST Repository

    Schwingenschlö gl, Udo; Schuster, Cosima

    2009-01-01

    The charge redistribution at grain boundaries determines the applicability of high-Tc superconductors in electronic devices because the transport across the grains can be hindered considerably. We investigate the local charge transfer and the modification of the electronic states in the vicinity of the grain-grain interface by ab initio calculations for a (normal-state) 45°-tilted [001] grain boundary in YBa2Cu3O7. Our results explain the suppressed interface transport and the influence of grain boundary doping in a quantitative manner, in accordance with the experimental situation. The charge redistribution is found to be strongly inhomogeneous, which has a substantial effect on transport properties since it gives rise to a self-doping of 0.10±0.02 holes per Cu atom.

  19. First-Principles Calculations of Electronic States and Self-Doping Effects at a 45° Grain Boundary in the High Temperature YBa2Cu3O7 Superconductor

    KAUST Repository

    Schwingenschlögl, Udo

    2009-06-03

    The charge redistribution at grain boundaries determines the applicability of high-Tc superconductors in electronic devices because the transport across the grains can be hindered considerably. We investigate the local charge transfer and the modification of the electronic states in the vicinity of the grain-grain interface by ab initio calculations for a (normal-state) 45°-tilted [001] grain boundary in YBa2Cu3O7. Our results explain the suppressed interface transport and the influence of grain boundary doping in a quantitative manner, in accordance with the experimental situation. The charge redistribution is found to be strongly inhomogeneous, which has a substantial effect on transport properties since it gives rise to a self-doping of 0.10±0.02 holes per Cu atom.

  20. Determining the most important physiological and agronomic traits contributing to maize grain yield through machine learning algorithms: a new avenue in intelligent agriculture.

    Directory of Open Access Journals (Sweden)

    Avat Shekoofa

    Full Text Available Prediction is an attempt to accurately forecast the outcome of a specific situation while using input information obtained from a set of variables that potentially describe the situation. They can be used to project physiological and agronomic processes; regarding this fact, agronomic traits such as yield can be affected by a large number of variables. In this study, we analyzed a large number of physiological and agronomic traits by screening, clustering, and decision tree models to select the most relevant factors for the prospect of accurately increasing maize grain yield. Decision tree models (with nearly the same performance evaluation were the most useful tools in understanding the underlying relationships in physiological and agronomic features for selecting the most important and relevant traits (sowing date-location, kernel number per ear, maximum water content, kernel weight, and season duration corresponding to the maize grain yield. In particular, decision tree generated by C&RT algorithm was the best model for yield prediction based on physiological and agronomical traits which can be extensively employed in future breeding programs. No significant differences in the decision tree models were found when feature selection filtering on data were used, but positive feature selection effect observed in clustering models. Finally, the results showed that the proposed model techniques are useful tools for crop physiologists to search through large datasets seeking patterns for the physiological and agronomic factors, and may assist the selection of the most important traits for the individual site and field. In particular, decision tree models are method of choice with the capability of illustrating different pathways of yield increase in breeding programs, governed by their hierarchy structure of feature ranking as well as pattern discovery via various combinations of features.

  1. Ultrastructure of Withania Somnifera (L.) Dunal pollen grains

    International Nuclear Information System (INIS)

    Alwadie, H.M.

    2002-01-01

    Light, scanning and transmission electron microscopy were used to study the morphology and ultrastructure of Withania Somnifera (L.) Dunall pollen grains. Light microscopic examination revealed that the pollen grains are tri- or tetrazonocoplate grains, approximately as long as broad, measuring 29-um. Scanning electron microscopic observation showed that surface sculpturing of the pollen is scarbate-granulate. Ultrathin sections as examined by transmission electron microscope showed that the pollen contained numerous starch grains, lipid droplets, endoplasmic reticulum and vesicles of dictyosomes. Two layers of the pollen wall were also distinguished, the outer wall (exine) divided into ektexine and endexine as well as the inner layer (intine). The nutritive values of Withania pollen are discussed. The importance of studying the ultrastructure of pollen grains as a new tool in palynology is also discussed. (author)

  2. Electron beam irradiation enhances the digestibility and fermentation yield of water-soaked lignocellulosic biomass

    Directory of Open Access Journals (Sweden)

    Jin Seop Bak

    2014-12-01

    Full Text Available In order to overcome the limitation of commercial electron beam irradiation (EBI, lignocellulosic rice straw (RS was pretreated using water soaking-based electron beam irradiation (WEBI. This environment-friendly pretreatment, without the formation (or release of inhibitory compounds (especially hydroxymethylfurfural and furfural, significantly increased the enzymatic hydrolysis and fermentation yields of RS. Specifically, when water-soaked RS (solid:liquid ratio of 100% was treated with WEBI doses of 1 MeV at 80 kGy, 0.12 mA, the glucose yield after 120 h of hydrolysis was 70.4% of the theoretical maximum. This value was predominantly higher than the 29.5% and 52.1% measured from untreated and EBI-treated RS, respectively. Furthermore, after simultaneous saccharification and fermentation for 48 h, the ethanol concentration, production yield, and productivity were 9.3 g/L, 57.0% of the theoretical maximum, and 0.19 g/L h, respectively. Finally, scanning electron microscopy images revealed that WEBI induced significant ultrastructural changes to the surface of lignocellulosic fibers.

  3. Effects of Sowing Date and Limited Irrigation on Yield and Yield Components of Five Rainfed Wheat Varieties in Maragheh Region

    Directory of Open Access Journals (Sweden)

    A. R. Tavakkoli

    2013-03-01

    Full Text Available In order to investigate the effects of sowing date (SD and single irrigation (SI amounts on yield and yield components of rainfed wheat varieties, a field experiment was conducted as split-split plots arranged in a randomized complete blocks design with three replications during 2002-2004 at main station of Dryland Agricultural Research Institute in Maragheh, Iran. Treatments included three sowing dates (early, normal and late, three levels of single irrigation (rainfed, 50 mm and 100 mm only at planting time and five wheat varieties (three numbered lines, Azar2 and double-cross Shahi. Results revealed that interactions of SD, SI and wheat varieties were significant for grain yield, number of kernels per spike and water productivity (P≤0.01. Single irrigation at normal planting time increased grain yield, straw, biomass, harvest index, and water productivity. Grain yield and water productivity were increased by 131% and 84.8%, respectively. Single irrigation at late planting time was not significant on agronomic traits and produced low water productivity. Regarding the reaction of wheat to planting date and single irrigation, results showed that normal single irrigation can improve yield, yield components and water productivity index. The effectiveness of single irrigation under dryland conditions can be observed in all wheat cultivars. Although this effectiveness on yield and yield components is observable, but it is necessary to select the time of irrigation properly.

  4. Meat yield and quality of Tanzania Shorthorn Zebu cattle finished on molasses/maize grain with agro-processing by-products in 90 days feedlot period

    DEFF Research Database (Denmark)

    Asimwe, L.; Kimambo, A E; Laswai, G

    2016-01-01

    This study was conducted to evaluate the effects of feeding molasses or maize grain with agro-processing by-products on yield and quality of meat from Tanzania shorthorn zebu (TSZ) cattle. Forty five steers aged 2.5 to 3.0 years with 200 +/- 5.4 kg body weight were allocated into five dietary...

  5. Physics of dust grains in hot gas

    International Nuclear Information System (INIS)

    Draine, B.T.; Salpeter, E.E.

    1979-01-01

    Charging of dust grains in hot (10 4 --10 9 K) plasma is studied, including photoelectron and secondary electron emission, field emission, and transmission of electrons and ions through the grain; resulting grain potentials are (for T > or approx. = 10 5 K) considerably smaller in magnitude than found by Burke and Silk. Even so, large electrostatic stresses can cause ion field emission and rapid destruction of small grains in very hot gas. Rapid rotation can also disrupt small grains, but damping (by microwave emission) usually limits the centrifugal stress to acceptable values for plasma densities n/sub H/ -3 . Sputtering rates are estimated for grains in hot gas, based upon a semiempirical fit to experimental data. Predicted sputtering rates for possible grain constituents are similar to estimates by Barlow, but in some cases differ significantly. Useful approximation formulae are given for the drag forces acting on a grain with arbitrary Mach number

  6. Effect of grain size on yield strength of Ni3Al and other alloys

    International Nuclear Information System (INIS)

    Takeyama, M.; Liu, C.T.

    1988-01-01

    This paper analyzes the effect of grain size on yield stress of ordered Ni 3 Al and Zr 3 Al, and mild steels that show Lueders band propagation after yielding, using the Hall--Petch relation, σ/sub y/ = σ 0 +k/sub y/ d -1 /sup // 2 , and the new relation proposed by Schulson et al., σ/sub y/ = σ 0 +kd/sup -(//sup p//sup +1)/2/ [Schulson et al., Acta Metall. 33, 1587 (1985)]. The major emphasis is placed on the analysis of Ni 3 Al data obtained from published and new results, with a careful consideration of the alloy stoichiometry effect. All data, except for binary stoichiometric Ni 3 Al prepared by powder extrusion, fit the Hall--Petch relation, whereas the data from boron-doped Ni 3 Al and mild steels do not follow the Schulson relation. However, no conclusion can be made simply from the curve fitting using either relation. The results are also discussed in terms of Lueders strain and alloy preparation methods. On the basis of the Hall--Petch analysis, the small slope k/sub y/ is obtained only for hypostoichiometric Ni 3 Al with boron, which would be related to a stronger segregation of boron in nickel-rich Ni 3 Al. In addition, the potency for the solid solution strengthening effect of boron is found to be much higher for stoichiometric Ni 3 Al than for hypostoichiometric alloys

  7. Effect of replacing maize grain and soybean meal with a xylose-treated wheat grain on feed intake and performance of dairy cows.

    Science.gov (United States)

    Benninghoff, Jens; Hamann, Gregor; Steingaß, Herbert; Romberg, Franz-Josef; Landfried, Karl; Südekum, Karl-Heinz

    2017-06-01

    This study evaluated wheat grain which was treated with xylose in aqueous Ca-Mg lignosulphonate solution at elevated temperatures (WeiPass®) in order to reduce ruminal degradation of starch and crude protein. The two tested isoenergetic and isonitrogenous diets contained on dry matter (DM) basis either 16% maize grain and 6.4% soybean meal (Diet CON) or 17.8% xylose-treated wheat and 4.6% soybean meal (Diet Wheat). Thirty-six German Holstein dairy cows were assigned to one of the two groups according to parity, body weight after calving, and milk yield during the previous lactation. Data collection started at 21 d before the expected calving date until 120 d in milk. The average of DM intake, energy-corrected milk (ECM) yield, and milk fat and protein yields (all given as kg/d) were 18.9, 28.7, 1.25, and 1.02 for Diet CON and 19.3, 32.5, 1.36, and 1.11 for Diet Wheat, respectively. Only ECM and milk protein yields were greater (p < 0.05) for cows receiving Diet Wheat. In conclusion, the xylose-treated wheat grain can replace maize grain and part of soybean meal in diets for lactating dairy cows and may be an alternative feedstuff depending on overall ration composition and availability and costs of grain sources.

  8. Analysis of Strengthening Mechanisms in an Artificially Aged Ultrafine Grain 6061 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Rezaei

    2017-12-01

    Full Text Available The current study adopted a quantitative approach to investigating the mechanical properties, and their relationship to the microstructural features, of precipitation-strengthened 6061 aluminum alloy processed through accumulative roll bonding (ARB and aging heat treatment.  To serve this purpose, the contributions of different strengthening mechanisms including grain refinement, precipitation, dislocation and solid-solution strengthening to the yield strength of five-cycle ARB samples processed under pre-aged (ARBed and aged (ARBed+Aged conditions were examined and compared. Microstructural characterizations were performed on the samples through the transmission electron microscope (TEM and X-ray diffraction (XRD. Also, the mechanical properties of the samples were investigated through the tensile test. The obtained results showed that an equiaxed ultrafine grain structure with nano-sized precipitates was created in the both ARBed and ARBed+Aged samples. The grain refinement was the predominant strengthening mechanism which was estimated to contribute 151 and 226 MPa to the ARBed and ARBed+Aged samples, respectively, while the dislocation and Orowan strengthening mechanisms were ranked second with regard to their contributions to the ARBed and ARBed+Aged samples, respectively. The overall yield strength, calculated through the root mean square summation method, was found to be in good agreement with the experimentally determined yield strength. It was also found that the presence of non-shearable precipitates, which interfered with the movement of the dislocations, would be effective for the simultaneous improvement of the strength and ductility of the ARBed+Agedsample .

  9. Nodulation of soybean cultivars and its effects on grain yield / Nodulação de cultivares de soja e seus efeitos no rendimento de grãos

    Directory of Open Access Journals (Sweden)

    Ricardo Ralisch

    2009-10-01

    Full Text Available The adaptations of the soybean crop to a new environment as well as the need of a symbiotic relation among Bradyrhizobium bacteria and the commercial cultivars of soybean impose barriers to the grain productive process. The objective of this work was to evaluate the interaction of nodulation and the morphophysiological components over the final yield of soybean grains in the edaphoclimatical conditions of Recôncavo Baiano Region. The experiment was performed at the Experimental Field of the Federal University of Bahia, Cruz das Almas (BA, with an experimental design of randomized blocks, with nine soybean cultivars and four replications. The evaluations were performed in the stage of full flowering with the quantification of the number and mass of nodules, leaf area, total dry mass; and another evaluation in the full maturation stage, quantifying the grain yield. More than 40% of the grain yield was correlated to the components of nodulation of the soybean cultivars Curió, Conquista and Liderança cultivars presented the best performances in the yield of grain.A adaptação da cultura da soja a um novo ambiente bem como a necessidade da relação simbiótica entre bactéria do gênero Bradyrhizobium e cultivares comerciais de soja, impõe barreiras no processo produtivo de grãos. Como forma de quantificar tais efeitos, este trabalho objetivou avaliar a interação da nodulação e dos componentes morfofisiológicos sobre o rendimento final de grãos de soja nas condições edafoclimáticas do Recôncavo Baiano. O experimento foi conduzido no Campo Experimental da Universidade Federal da Bahia, Cruz das Almas (BA em delineamento de blocos casualizados, com nove cultivares de soja e quatro repetições. As avaliações foram realizadas no estádio de florescimento pleno com quantificação do número e a massa de nódulos, área foliar, massa da matéria seca das folhas; e outra no estádio de maturação plena, quantificando o rendimento de gr

  10. Effect of Foliar Application of Phosphorus and Water Deficit on Yield and Yield Components of Winter Wheat (Cultivar Alvand

    Directory of Open Access Journals (Sweden)

    M. Vafapour

    2011-04-01

    Full Text Available In order to study the effects of foliar application of phosphorus (P and water deficit on yield and yield components of winter wheat (Triticum aestivum L., cv. Alvand, a split-plot experiment, with completely randomized blocks design and three replications, was carried out at the Research Farm of Boyer Ahmad Agricultural and Natural Resources Research Station, 13 km west of Yasouj, in 2008-2009. The main plots were irrigation at three levels (1- full irrigation (control, 2- deficit irrigation from the stem elongation to booting stage, and 3- deficit irrigation from booting stage to the end of growth period and the subplots were five levels of foliar application of P fertilizer (0, 3, 6, 9 and 12 kg/ha KH2PO4. The results showed that the effects of different irrigation regimes and foliar application of P were significant on all traits, and their interaction was significant on plant height, number of grain per spike, grain yield and biological yield. Full irrigation and foliar application of 6 kg/ha P produced the highest grain and biological yield (6000 and 14170 kg/ha, respectively and deficit irrigation from the stem elongation to booting stage without foliar application of P produced the lowest grain and biological yield (2920 and 8219 kg/ha, respectively. Foliar application of P affects significantly the evaluated traits only in drought-stress treatments and its effect was not significant in full irrigation treatment. In general, foliar application of 9 kg/ha P compensated the losses in wheat due to drought stress.

  11. The Effect of Different Fertilizer Management on Yield and Yield Components of Black Seed (Nigella sativa L.

    Directory of Open Access Journals (Sweden)

    P rezvani moghaddam

    2017-08-01

    , manure + nitroxin + mycorrhizae, manure + biosulfur and control. Plots were designed with 4 m long and 2 m width (8 m2, 0.5 m apart each other. Seed sowing was done at 18th March on both sides of the furrows. Final plant density was determined equal to 200 plants m-2. At maturity stage, number of branch per plant, number of follicle per plant, seed weight per follicle and 1000- seed weight were determined based on randomly selection of eight plant. Moreover, grain and biological yields as well as harvest index of black seed were measured by considering the side effects. For statistical analysis, Duncan multiple range test (p≤0.05 was used to separate the experimental means using SAS 9.1 software. Results and discussion According to the results, effects of urea and cow manure treatments on grain and biological yields of black seed were significant. However, cow manure, in comparison with urea fertilizer, had more significant effects in increasing mentioned traits of black seed. For instance, cow manure treatment increased grain yield by 25%, compared with urea treatment. Generally, advantages of manure in comparison with chemical fertilizer can be related to the slow and more balanced release of nutrient contents as well as improving the physical and chemical soil characteristics over growing season. On the other hand, the results showed that biological fertilizers had no effects in increasing grain and biological yields of black seed, except biosulfur treatment. From the results, there was a positive correlation between 1000- seed weight with grain yield. Moreover, similar correlations were found between number of branch per plant and grain yield, number of follicle per plant and grain yield as well as seed weight per follicle and grain yield. Nonetheless, relationship between harvest index and grain yield was determined as a negative correlation. These results are in agreement with those of Moradi et al. (2010 who found a significant decrease in harvest index of

  12. Nitrogen Fertilizer Deep Placement for Increased Grain Yield and Nitrogen Recovery Efficiency in Rice Grown in Subtropical China

    Directory of Open Access Journals (Sweden)

    Meng Wu

    2017-07-01

    Full Text Available Field plot experiments were conducted over 3 years (from April 2014 to November 2016 in a double-rice (Oryza sativa L. cropping system in subtropical China to evaluate the effects of N fertilizer placement on grain yield and N recovery efficiency (NRE. Different N application methods included: no N application (CK; N broadcast application (NBP; N and NPK deep placement (NDP and NPKDP, respectively. Results showed that grain yield and apparent NRE significantly increased for NDP and NPKDP as compared to NBP. The main reason was that N deep placement (NDP increased the number of productive panicle per m-2. To further evaluate the increase, a pot experiment was conducted to understand the N supply in different soil layers in NDP during the whole rice growing stage and a 15N tracing technique was used in a field experiment to investigate the fate of urea-15N in the rice–soil system during rice growth and at maturity. The pot experiment indicated that NDP could maintain a higher N supply in deep soil layers than N broadcast for 52 days during rice growth. The 15N tracing study showed that NDP could maintain much higher fertilizer N in the 5–20 cm soil layer during rice growth and could induce plant to absorb more N from fertilizer and soil than NBP, which led to higher NRE. One important finding was that NDP and NPKDP significantly increased fertilizer NRE but did not lead to N declined in soil compared to NBP. Compared to NPK, NPKDP induced rice plants to absorb more fertilizer N rather than soil N.

  13. Photoperiod shift effects on yield characteristics of rice

    Science.gov (United States)

    Volk, G. M.; Mitchell, C. A.

    1995-01-01

    Edible yield must be maximized for each crop species selected for inclusion in the Controlled Ecological Life-Support System (CELSS) proposed by NASA to support long-term manned space missions. In a greenhouse study aimed at increasing biomass partitioning to rice (Oryza sativa L.) grain, plants of the high yielding semi-dwarf rice cultivar Ai-Nan-Tsao were started in pots under 8-h photoperiods at a density of 212 plants m-2. After different periods of time under 8-h photoperiods, pots were switched to continuous light for the remainder of the cropping cycle. Continuous light did not delay time to first panicle emergence (60 d) or time to harvest (83 d). There was a positive correlation between the length of continuous light treatments and nongrain biomass. Grain yield (1.6 +/- 0.2 g plant-1) did not increase in continuous light. Yield-efficiency rate (grain weight per length of cropping cycle, canopy volume, and weight of nongrain shoot biomass) was used to compare treatments. Small Ai-Nan-Tsao rice canopies grown under 8-h photoperiods were more efficient producers of grain than canopies grown under continuous light for a portion of the rice cropping cycle.

  14. Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field

    KAUST Repository

    Schilling, Rhiannon K.

    2013-11-22

    Cereal varieties with improved salinity tolerance are needed to achieve profitable grain yields in saline soils. The expression of AVP1, an Arabidopsis gene encoding a vacuolar proton pumping pyrophosphatase (H+-PPase), has been shown to improve the salinity tolerance of transgenic plants in greenhouse conditions. However, the potential for this gene to improve the grain yield of cereal crops in a saline field has yet to be evaluated. Recent advances in high-throughput nondestructive phenotyping technologies also offer an opportunity to quantitatively evaluate the growth of transgenic plants under abiotic stress through time. In this study, the growth of transgenic barley expressing AVP1 was evaluated under saline conditions in a pot experiment using nondestructive plant imaging and in a saline field trial. Greenhouse-grown transgenic barley expressing AVP1 produced a larger shoot biomass compared to segregants, as determined by an increase in projected shoot area, when grown in soil with 150 mm NaCl. This increase in shoot biomass of transgenic AVP1 barley occurred from an early growth stage and also in nonsaline conditions. In a saline field, the transgenic barley expressing AVP1 also showed an increase in shoot biomass and, importantly, produced a greater grain yield per plant compared to wild-type plants. Interestingly, the expression of AVP1 did not alter barley leaf sodium concentrations in either greenhouse- or field-grown plants. This study validates our greenhouse-based experiments and indicates that transgenic barley expressing AVP1 is a promising option for increasing cereal crop productivity in saline fields. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field

    KAUST Repository

    Schilling, Rhiannon K.; Marschner, Petra; Shavrukov, Yuri N.; Berger, Bettina; Tester, Mark A.; Roy, Stuart John; Plett, Darren Craig

    2013-01-01

    Cereal varieties with improved salinity tolerance are needed to achieve profitable grain yields in saline soils. The expression of AVP1, an Arabidopsis gene encoding a vacuolar proton pumping pyrophosphatase (H+-PPase), has been shown to improve the salinity tolerance of transgenic plants in greenhouse conditions. However, the potential for this gene to improve the grain yield of cereal crops in a saline field has yet to be evaluated. Recent advances in high-throughput nondestructive phenotyping technologies also offer an opportunity to quantitatively evaluate the growth of transgenic plants under abiotic stress through time. In this study, the growth of transgenic barley expressing AVP1 was evaluated under saline conditions in a pot experiment using nondestructive plant imaging and in a saline field trial. Greenhouse-grown transgenic barley expressing AVP1 produced a larger shoot biomass compared to segregants, as determined by an increase in projected shoot area, when grown in soil with 150 mm NaCl. This increase in shoot biomass of transgenic AVP1 barley occurred from an early growth stage and also in nonsaline conditions. In a saline field, the transgenic barley expressing AVP1 also showed an increase in shoot biomass and, importantly, produced a greater grain yield per plant compared to wild-type plants. Interestingly, the expression of AVP1 did not alter barley leaf sodium concentrations in either greenhouse- or field-grown plants. This study validates our greenhouse-based experiments and indicates that transgenic barley expressing AVP1 is a promising option for increasing cereal crop productivity in saline fields. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Effect of Water Stress and Sulfur Fertilizer on Grain Yield, Chlorophyll and Nutrient Status of Black Cumin (Nigella Sativa L.)

    OpenAIRE

    M. Heidari; A. R. Rezapor

    2011-01-01

    In order to study the effects of water stress and different amounts of sulfur fertilizer on grain yield, nutrient status and chlorophyll content in black cumin (Nigella sativa L.) a field experiment as split plot design with three replications was conducted at Ghaen city in 2009. Treatments included three levels of irrigation after 50, 100 and 150 mm evaporation from Class A pan as main plot and four levels of sulfur fertilizer including 0, 75, 150 and 225 kg/ha from bentonite-sulfur source a...

  17. The Pinning by Particles of Low and High Angle Grain Boundaries during Grain Growth

    DEFF Research Database (Denmark)

    Tweed, C.J.; Ralph, B.; Hansen, Niels

    1984-01-01

    A study has been made using transmission electron microscopy of the pinning of grain boundaries in aluminium during grain growth by fine dispersions of alumina particles. The boundary parameters have been determined with precision and the pinning effects measured using an approach due to Ashby...

  18. New strategy for evaluating grain cooking quality of progenies in dry bean breeding programs

    Directory of Open Access Journals (Sweden)

    Bruna Line Carvalho

    2017-04-01

    Full Text Available The methodology available for evaluating the cooking quality of dry beans is impractical for assessing a large number of progenies. The aims of this study were to propose a new strategy for evaluating cooking quality of grains and to estimate genetic and phenotypic parameters using a selection index. A total of 256 progenies of the 13thcycle of a recurrent selection program were evaluated at three locations for yield, grain type, and cooked grains. Samples of grains from each progeny were placing in a cooker and the percentage of cooked grains was assessed. The new strategy for evaluating cooking quality was efficient because it allowed a nine-fold increase in the number of progenies evaluated per unit time in comparison to available methods. The absence of association between grain yield and percentage of cooked grains or grain type indicated that it is possible to select high yielding lines with excellent grain aspect and good cooking properties using a selection index.

  19. New market opportunities for rice grains

    Science.gov (United States)

    Breeding efforts for rice have been focusing on increasing yield and improving quality (milling yield and grain quality), while maintaining cooked rice sensory properties to meet consumer preferences. These breeding targets will no doubt continue as the main foci for the rice industry. However, the ...

  20. Structure, electronic properties, and oxygen incorporation/diffusion characteristics of the Σ 5 TiN(310)[001] tilt grain boundary

    Science.gov (United States)

    McKenna, Keith P.

    2018-02-01

    First principles calculations are employed to investigate the structure, electronic properties, and oxygen incorporation/diffusion characteristics of the Σ 5 TiN(310) tilt grain boundary with relevance to applications of polycrystalline TiN in microelectronics and protective coatings. We show that the grain boundary does not significantly modify electronic states near the Fermi energy but does induce an upward shift of up to 0.6 eV in a number of deeper occupied bands. We also show that oxygen is preferentially incorporated into the TiN grain boundary (GB) but must overcome relatively high activation energies for further diffusion. These predictions are consistent with the "stuffed barrier model" proposed to explain the good barrier characteristics of TiN. We also show that while the oxidizing power of TiN GBs is not sufficient to reduce HfO2 (a prototypical gate dielectric material), they can act as a scavenger for interstitial oxygen. Altogether, these results provide the much needed atomistic insights into the properties of a model GB in TiN and suggest a number of directions for future investigation.

  1. Yield and Yield Components of Safflower (Carthamus tinctorius L. as Affected by Micronutrient Application and Vermicompost in Two Kerman and Bardsir Regions

    Directory of Open Access Journals (Sweden)

    Alireza Karimi Gogheri

    2017-10-01

    triplet combinations of the 3 micronutrients. A factorial experiment based on randomized block design (RCBD was used. Vermicompost and S were used before planting as soil apply, while Zn and B were applied as foliar application. Dry forage at the flowering early and branch number per plant, head number per plant, grain number per head, weight of 1000 grains and grain yield at final ripening were determined. Analysis of variance, means comparisons (LSD at 5% probability level and correlation coefficient were done in SAS software. Results and Discussion The results showed that application of vermicompost and micronutrient had positive and significant effect on head number per plant, grain number per head, weight of 1000 grains, dry forage and grain yield in both places. These could be attributed to improved soil porosity, water holding capacity and aeration caused by vermicompost. Vermicompost are also known as sources of plant nutrients and can improve soil physicochemical characteristics. Growth and yield of safflower plants in Kerman was significantly more than those in Bardsir, which was probably due to better conditions of soil in Kerman. Kerman had greater amount of nitrogen, potassium and phosphorous as well as higher level of soil organic matter. On average, vermicompost application at 6 t ha-1 was associated with 347 and 54 kg.ha-1 increasing in dry forage and grain yield, respectively. In the other hand, the highest dry forage and grain yield were obtained from plants treated with 200 kg ha-1 S, Zn and B as 2104 and 1433 and 1433 kg ha-1, respectively. Stimulated photosynthetic activity and synthesis of chloroplast and protein in result of micronutrient application might be reason of greater yield in these treatments. The grain number had the highest correlation with forage production and yield. Conclusion In general, the result of this study revealed that in both places, vermicompost and micronutrient application had positive interaction, so that the greatest

  2. Effect of Mycorrhizal Fungus (Glomus spp on Wheat (Triticumaestivum Yield and Yield Components with Regard to Irrigation Water Quality

    Directory of Open Access Journals (Sweden)

    S Habibi

    2016-02-01

    reflect saline stress on mycorrhizal symbiosis than on wheat plants. Results and Discussion The results showed that salinity decreased colonization percentage and grain number per spike but it did not affect yield and yield components significantly. In non- inoculated soil, the formed mycorrhizal symbiosis by indigenous fungi improved colonization percentage, while it did not result in significant differences of the yield and its components. The inoculation with mycorrhiza fungi was successful. Mycorrhizal colonization rates of 15-32% and mycorrhizal dependency rates of 7-13% were observed in the inoculated treatments, and this effect led to significantly higher grain yield, spike number and grain number per plant in compare with control. Furthermore, there was a significant interaction on colonization percentage and whole yield components between AMF inoculation and salinity except for spike number. Spike per plant, grain number per spike and colonization percentage affected by mycorrhizal inoculation in interaction with soil sterilization. Colonization percentage was positively correlated with spike number, grain number per plant and grain yield (significant at α=1%. Conclusions Enhanced yield under all mycorrhizal treatments related to higher grain number per plant, whereas there was no significant difference between these treatments for grain weight. Although the colonization levels of individual mycorrhizal treatments were generally lower, the fostering of grain yield was even strongly more pronounced than with mixed mycorrhizal treat (significant at α=1%. Effects of salinity and soil sterilization varied depending on the species of fungi and water quality. In comparison with other mycorrhizal treatment, G. geosporum showed higher salt tolerant relatively on display of superior colonization percentage and grain number per plant in salinity with tap water; and the colonization percentage by G. mosseae was not affected by soil indigenous fungi. The results showed

  3. Genotype x environment interaction and stability analysis for yield ...

    African Journals Online (AJOL)

    etc

    2015-05-06

    . Combined analysis of variance (ANOVA) for yield and yield components revealed highly significant .... yield stability among varieties, multi-location trials with ... Mean grain yield (kg/ha) of 17 Kabuli-type chickpea genotypes ...

  4. The characteristics of high-yield genotype of early-mature mutant lines in barley

    International Nuclear Information System (INIS)

    Chen Xiulan; Han Yuepeng; He Zhentian; Yang Hefeng

    2000-01-01

    The correlation and genetic parameters of eight agronomic traits of 36 early mature mutant lines induced from barley Sunong 9052 were studied by stepwise regression and path analysis. The results showed that: (1) the growing period of early mutants was shortened 2-13 days from that of their parent and the trait of yield had a great mutation range; (2) the number of grain per panicle significantly correlated with the days from sowing to heading; (3) according to direct path coefficients, the main characters related with individual plant-yield were in order of productive panicle per plant > 1000-grain-weight > number of grain per panicle > fertility, the high-yield genotype had more productive panicle and higher 10000-grain-weight, and to increase the yield in the breeding of early mature mutation was to select the lines with more tillers and productive panicles, higher 1000-grain-weight and lower number of grain per panicle; (4) the higher broad-sense heritability and genetic variation coefficient were found in 1000-grain-weight and the days from sowing to heading

  5. Spring Barley Yield Parameters after Lignite, Sodium Humate and Nitrogen Utilization

    Directory of Open Access Journals (Sweden)

    Kováčik Peter

    2016-10-01

    Full Text Available The existence of a small number of publications dealing with the impact of solid sodium humate and lignite on the quantity and quality of grown crops was the reason for establishing the field experiment. The objective of this experiment was to detect the impact of solid lignite and solid sodium humate on the quantity and quality of spring barley yield. These substances were applied into the soil either independently or along with nitrogen fertiliser. The next objective was to determine the impact of foliar application of sodium humate water solution applied either independently or along with nitrogen fertiliser on the quality and quantity of spring barley yield. The achieved results showed that the autumn application of solid lignite and the presowing application of solid sodium humate into the soil tended to decrease the yield of both grain and straw of spring barley, crude protein content in grain, proportion of the first-class grains and volume weight of grain, whereas the impact of humate was more negative. Lignite and sodium humate in the solid form should be used along with nitrogen fertiliser. The application of sodium humate in liquid form during the growth season of barley tended to increase the yield of both grain and straw. The joint application of nitrogen and liquid sodium humate during the growth season of barley increased the grain yield of barley significantly. A lower dose of nitrogen, applied during the growth season of barley (growth season BBCH 23, increased the grain yield of barley considerably more than a higher N dose, applied into the soil before barley sowing.

  6. A note on dust grain charging in space plasmas

    Science.gov (United States)

    Rosenberg, M.; Mendis, D. A.

    1992-01-01

    Central to the study of dust-plasma interactions in the solar system is the electrostatic charging of dust grains. While previous calculations have generally assumed that the distributions of electrons and ions in the plasma are Maxwellian, most space plasmas are observed to have non-Maxwellian tails and can often be fit by a generalized Lorentzian (kappa) distribution. Here we use such a distribution to reevaluate the grain potential, under the condition that the dominant currents to the grain are due to electron and ion collection, as is the case in certain regions of space. The magnitude of the grain potential is found to be larger than that in a Maxwellian plasma as long as the electrons are described by a kappa distribution: this enhancement increased with ion mass and decreasing electron kappa. The modification of the grain potential in generalized Lorentzian plasmas has implications for both the physics (e.g., grain growth and disruption) and the dynamics of dust in space plasmas. These are also briefly discussed.

  7. Mean secondary electron yield of avalanche electrons in the channels of a microchannel plate detector

    International Nuclear Information System (INIS)

    Funsten, H.O.; Suszcynsky, D.M.; Harper, R.W.

    1996-01-01

    By modeling the statistical evolution of an avalanche created by 20 keV protons impacting the input surface of a z-stack microchannel plate (MCP) detector, the mean secondary electron yield γ C of avalanche electrons propagating through a MCP channel is measured to equal 1.37 for 760 V per MCP in the z stack. This value agrees with other studies that used MCP gain measurements to infer γ C . The technique described here to measure γ C is independent of gain saturation effects and simplifying assumptions used in the segmented dynode model, both of which can introduce errors when inferring γ C through gain measurements. copyright 1996 American Institute of Physics

  8. Boron Application Improves Growth, Yield and Net Economic Return of Rice

    Directory of Open Access Journals (Sweden)

    Mubshar HUSSAIN

    2012-09-01

    Full Text Available A field trial was conducted to evaluate the role of boron (B application at different growth stages in improving the growth, yield and net economic return of rice at farmer's fields during summer season, 2009. Boron was soil applied (1.5 kg/hm2 at the transplanting, tillering, flowering and grain formation stages of rice; foliar applied (1.5% B solution at the tillering, flowering and grain formation stages of rice, and dipped seedling roots in 1.5% B solution before transplanting; while control plots did not apply any B. Boron application (except dipping of seedling roots in B solution, which caused toxicity and reduced the number of tillers and straw yield than control substantially improved the rice growth and yield. However, soil application was better in improving the number of grains per panicle, 1000-grain weight, grain yield, harvest index, net economic income and ratio of benefit to cost compared with the rest of treatments. Overall, for improving rice performance and maximizing the net economic returns, B might be applied as soil application at flowering.

  9. Phototelectric Emission Measurements on the Analogs of Individual Cosmic Dust Grains

    Science.gov (United States)

    Abbas, Mian M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.; Weingartner, J. C.; Tielens, A. G. G. M.; Nuth, J. A.; Camata, R. P.; hide

    2005-01-01

    The photoelectric emission process is considered to be the dominant mechanism for charging of cosmic dust grains in many astrophysical environments. The grain charge and the equilibrium potentials play an important role in the dynamical and physical processes that include heating of the neutral gas in the interstellar medium, coagulation processes in the dust clouds, and levitation and dynamical processes in the interplanetary medium and planetary surfaces and rings. An accurate evaluation of photoelectric emission processes requires knowledge of the photoelectric yields of individual dust grains of astrophysical composition as opposed to the values obtained from measurements on flat surfaces of bulk materials, as it is generally assumed on theoretical considerations that the yields for the small grains are much higher than the bulk values. We present laboratory measurements of the photoelectric yields of individual dust grains of silica, olivine, and graphite of approximately 0.09 to 8 microns radii levitated in an electrodynamic balance and illuminated with W radiation at 120 to 160 nm wavelengths. The measured values and the size dependence of the yields are found to be substantially different from the bulk values given in the literature.

  10. Effect of strengthening mechanisms on cold workability and instantaneous strain hardening behavior during grain refinement of AA 6061-10 wt.% TiO2 composite prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Sivasankaran, S.; Sivaprasad, K.; Narayanasamy, R.; Iyer, Vijay Kumar

    2010-01-01

    Research highlights: → Various strengthening mechanisms such as solid solution, grain size, precipitate, dislocation and dispersion strengthening promoted yield strength of the composites → The 5 h sintered composite yielded a large plastic strain (23%) at ambient temperature. → The domination of interparticle friction effects, grain size and dislocation strengthening diminished the deformation capacity of the composites greater than 5 h of milling. → Ultra-fine grained composite (40 h) yielded a high strength (>1000 MPa). → The proposed instantaneous new Poisson's ratio and the instantaneous strain hardening index used to study the extent of plastic zone and strain levels of the composite. - Abstract: The mechanical alloying (MA) of AA 6061 alloy reinforced with 10 wt.% fine anatase-titania composites powder milled with different timings (1, 5, 10, 20, 30, and 40 h) was cold consolidated and sintered. The main purpose of this study is to investigate the effect of microstructure and the various strengthening mechanisms such as solid solution, grain size, precipitate, dislocation and dispersion strengthening during grain refinement of AA 6061-10 wt.% TiO 2 composite via MA on cold working and strain hardening behavior. The sintered composite preforms were characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscope. The strengthening mechanisms were estimated by using simplified models available in the literatures. The evaluation of cold deformation behavior under triaxial stress condition through room temperature cold-upsetting tests (incremental loads) was studied by correlating the strengthening mechanisms. Among the developed strengthening mechanisms the grain size and dislocation strengthening mechanisms diminished the deformation capacity of the composites. The strain hardening behavior was also examined by proposing instantaneous strain hardening index (n i ). The value of maximum instantaneous strain

  11. Effect of Zeolite, Selenium and Silicon on Yield, Yield Components and Some Physiological Traits of Canola under Salt Stress Conditions

    Directory of Open Access Journals (Sweden)

    A Bybordi

    2016-07-01

    chlorophyll, relative water content, catalase, peroxidase and superoxide dismutase activity, as well as malondialdehyde, sodium and potassium content in the leaves. The samples were immediately frozen in liquid nitrogen and kept in -80° C freezer. At the end of the growing season, agronomic traits such as silique number, seed number on silique, 1000- grain weight, grain yield, biological yield and harvest index were recorded. Total oil percentage and fatty acids (oleic, linolenic and linoleic percentage were measured. Results and Discussion The combined analysis of variance indicated that the effect of year was significant on all studied traits, except for silique number, grain number in silique, linoleic acid, chlorophyll content and peroxidase activity. In addition, the results showed that the main effect of zeolite, selenium and silicon were significant on all canola studied traits. However, relative water content and peroxidase activity were not affected by silicon application. Comparison of means indicated that triple interaction was significant at 1000- grain weight, grain yield, biological yield, chlorophyll content, photosynthesis rate, relative water content and antioxidant enzyme activity. Some traits such as 1000- grain weight, grain yield, biological yield, harvest index, oil percentage, linolenic percentage and superoxide dismutase activity as well as sodium content in leaves were found to be higher in the second year compared with the first year. Zeolite significantly increased silique number and grain number in silique. Furthermore, harvest index increased with the increase of zeolite level. According to the results, selenium increased silique number, grain number in silique and harvest index in canola plants. Silicon foliar application also significantly increased silique number, grain number in silique and harvest index. The highest chlorophyll contents, photosynthesis rate and relative water content were registered when zeolite was applied at 10% w: w and

  12. Development of a new ultrafine grained dual phase steel and examination of the effect of grain size on tensile deformation behavior

    Energy Technology Data Exchange (ETDEWEB)

    Saeidi, N., E-mail: navidsae@gmail.com; Ashrafizadeh, F.; Niroumand, B.

    2014-04-01

    Ultrafine grained dual phase (DP) steels are among the newest grades of DP steels that incorporate the uniform distribution of fine martensite particles (in the order of 1–2 μm) within a ferrite matrix. These new grades of steels have been developed in response to the world's demand for decreasing the fuel consumption in automobiles by increasing the strength to weight ratio. In the present research, a new kind of ultrafine grained DP (UFG-DP) steel with an average grain size of about 2 μm as well as a coarse grained DP (CG-DP) steel with an average grain size of about 5.4 μm was produced by consecutive intercritical annealing and cold rolling of low carbon AISI 8620 steel. The martensite volume fraction for both microstructures was the same and about 50 percent. Scanning electron microscopy (SEM) microstructural examination and room temperature tensile deformation analyses were performed on both UFG-DP and CG-DP steels and their deformation behavior in terms of strength, elongation and strain hardening was studied and compared. Room-temperature uniaxial tensile tests revealed that for a given martensite volume fraction, yield and tensile strengths were not very sensitive to martensite morphology. However, uniform and total elongation values were noticeably affected by refining martensite particles. The higher plasticity of fine martensite particles as well as the more uniform strain distribution within the UFG-DP microstructure resulted in higher strain hardenability and, finally, the higher ductility of the UFG-DP steel.

  13. Spring Small Grains Area Estimation

    Science.gov (United States)

    Palmer, W. F.; Mohler, R. J.

    1986-01-01

    SSG3 automatically estimates acreage of spring small grains from Landsat data. Report describes development and testing of a computerized technique for using Landsat multispectral scanner (MSS) data to estimate acreage of spring small grains (wheat, barley, and oats). Application of technique to analysis of four years of data from United States and Canada yielded estimates of accuracy comparable to those obtained through procedures that rely on trained analysis.

  14. Cumulative effect of sulfur and calcium on wheat growth and yield under saline-sodic soils

    International Nuclear Information System (INIS)

    Arshadullah, M.; Hyder, S.I.

    2013-01-01

    A field experiment was carried out to investigate the effect of three rates of gypsum on growth and ionic concentration of wheat variety (Saher) sown in saline-sodic soil (ECe=5.32 dS m , pH=8.52 and SAR=18.87) at Soil Salinity Research Institute (SSRI) Farm, Pindi Bhattian during rabi 2009-10. Treatments were arranged using randomized complete block design (RCBD) with three replications. The crop was harvested at maturity, data on tillering, plant height, spike length, number of grains spike , 1000-grain weight, straw and paddy yields were recorded. Potassium (K), Na, Ca, S and Mg concentrations in grain were estimated using atomic absorption spectroscopy. Tillering, grains spike , 1000-grain weight and paddy yield significantly (P = 0.05) enhanced by increasing the rate of gypsum (CaSO/sub 4/). The maximum 4 number of grains spike (60), 1000-grain weight (47 g) and grain yields (4.01 t ha ) were recorded with CaSO application at the rate 150 kg ha . Grain 4 yield was 43% more than control treatment. Positive correlations (r2+ + 0.96), (r=0.96) and (r=0.91) between Ca , K , S and negative correlation r+ (-0.99) between Na contents in grain and wheat grain yield, respectively. It indicates presence of significantly higher Ca , K contents in grain receiving CaSO/sub 4/ help plants to attain more Ca/sup 2+/ , K and S to avoid Na 4 uptake. (author)

  15. Ncl Synchronously Regulates Na+, K+, and Cl- in Soybean and Greatly Increases the Grain Yield in Saline Field Conditions.

    Science.gov (United States)

    Do, Tuyen Duc; Chen, Huatao; Hien, Vu Thi Thu; Hamwieh, Aladdin; Yamada, Tetsuya; Sato, Tadashi; Yan, Yongliang; Cong, Hua; Shono, Mariko; Suenaga, Kazuhiro; Xu, Donghe

    2016-01-08

    Salt stress inhibits soybean growth and reduces gain yield. Genetic improvement of salt tolerance is essential for sustainable soybean production in saline areas. In this study, we isolated a gene (Ncl) that could synchronously regulate the transport and accumulation of Na(+), K(+), and Cl(-) from a Brazilian soybean cultivar FT-Abyara using map-based cloning strategy. Higher expression of the salt tolerance gene Ncl in the root resulted in lower accumulations of Na(+), K(+), and Cl(-) in the shoot under salt stress. Transfer of Ncl with the Agrobacterium-mediated transformation method into a soybean cultivar Kariyutaka significantly enhanced its salt tolerance. Introgression of the tolerance allele into soybean cultivar Jackson, using DNA marker-assisted selection (MAS), produced an improved salt tolerance line. Ncl could increase soybean grain yield by 3.6-5.5 times in saline field conditions. Using Ncl in soybean breeding through gene transfer or MAS would contribute to sustainable soybean production in saline-prone areas.

  16. Principal coordinate analysis of genotype × environment interaction for grain yield of bread wheat in the semi-arid regions

    Directory of Open Access Journals (Sweden)

    Sabaghnia Naser

    2013-01-01

    Full Text Available Multi-environmental trials have significant main effects and significant multiplicative genotype × environment (GE interaction effect. Principal coordinate analysis (PCOA offers a more appropriate statistical analysis to deal with such situations, compared to traditional statistical methods. Eighteen bread wheat genotypes were grown in four semi-arid regions over three year seasons to study the GE interaction and yield stability and obtained data on grain yield were analyzed using PCOA. Combined analysis of variance indicated that all of the studied effects including the main effects of genotype and environments as well as the GE interaction were highly significant. According to grand means and total mean yield, test environments were grouped to two main groups as high mean yield (H and low mean yield (L. There were five H test environments and six L test environments which analyzed in the sequential cycles. For each cycle, both scatter point diagram and minimum spanning tree plot were drawn. The identified most stable genotypes with dynamic stability concept and based on the minimum spanning tree plots and centroid distances were G1 (3310.2 kg ha-1 and G5 (3065.6 kg ha-1, and therefore could be recommended for unfavorable or poor conditions. Also, genotypes G7 (3047.2 kg ha-1 and G16 (3132.3 kg ha-1 were located several times in the vertex positions of high cycles according to the principal coordinates analysis. The principal coordinates analysis provided useful and interesting ways of investigating GE interaction of barley genotypes. Finally, the results of principal coordinates analysis in general confirmed the breeding value of the genotypes, obtained on the basis of the yield stability evaluation.

  17. Radiation disinfestation of grain

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1962-10-15

    A panel was convened by the International Atomic Energy Agency to consider ways of applying radiation to grain handling and insect control, and to make recommendations on the advisability and nature of any future action in this field. Among other subjects, the panel discussed the use of electron accelerators and gamma radiation for grain disinfestation as well as problems of radiation entomology and wholesomeness of irradiated grain. After reviewing the present state of knowledge regarding radiation disinfestation of grain, the experts agreed that pilot plant operations be initiated as soon as practicable in order to evaluate the use of irradiation plants under practical conditions in their entomological, engineering and economic aspects. They recommended that research effort be directed towards solving certain fundamental problems related to the proposed pilot plant projects; such as rapid methods for differentiation between sterile insects and normal ones; study of the metabolism of irradiated immature stages of insects in relation to the heating of treated grain; research into possible induction of radiation resistance; irradiation susceptibility of insects which show resistance to conventional insecticides; and study of methods of sensitizing insects to irradiation damage. It was also pointed out that the distribution of irradiated food for human consumption was controlled in most countries under present legislative procedures, and no country had yet approved radiation treatment of cereals. The experts recommended that countries in a position to submit evidence to their appropriate authorities regarding the wholesomeness of irradiated cereals should be encouraged to do so as soon as possible. Regarding the engineering aspects of irradiation pilot plant projects, the experts noted that the process could be automated and operated safely. Electron accelerators and cobalt sources could be used for all the throughput rates utilized in most conventional grain

  18. Radiation disinfestation of grain

    International Nuclear Information System (INIS)

    1962-01-01

    A panel was convened by the International Atomic Energy Agency to consider ways of applying radiation to grain handling and insect control, and to make recommendations on the advisability and nature of any future action in this field. Among other subjects, the panel discussed the use of electron accelerators and gamma radiation for grain disinfestation as well as problems of radiation entomology and wholesomeness of irradiated grain. After reviewing the present state of knowledge regarding radiation disinfestation of grain, the experts agreed that pilot plant operations be initiated as soon as practicable in order to evaluate the use of irradiation plants under practical conditions in their entomological, engineering and economic aspects. They recommended that research effort be directed towards solving certain fundamental problems related to the proposed pilot plant projects; such as rapid methods for differentiation between sterile insects and normal ones; study of the metabolism of irradiated immature stages of insects in relation to the heating of treated grain; research into possible induction of radiation resistance; irradiation susceptibility of insects which show resistance to conventional insecticides; and study of methods of sensitizing insects to irradiation damage. It was also pointed out that the distribution of irradiated food for human consumption was controlled in most countries under present legislative procedures, and no country had yet approved radiation treatment of cereals. The experts recommended that countries in a position to submit evidence to their appropriate authorities regarding the wholesomeness of irradiated cereals should be encouraged to do so as soon as possible. Regarding the engineering aspects of irradiation pilot plant projects, the experts noted that the process could be automated and operated safely. Electron accelerators and cobalt sources could be used for all the throughput rates utilized in most conventional grain

  19. Engineering Mixed Ionic Electronic Conduction in La 0.8 Sr 0.2 MnO 3+ δ Nanostructures through Fast Grain Boundary Oxygen Diffusivity

    KAUST Repository

    Saranya, Aruppukottai M.; Pla, Dolors; Morata, Alex; Cavallaro, Andrea; Canales-Vá zquez, Jesú s; Kilner, John A.; Burriel, Mó nica; Tarancó n, Albert

    2015-01-01

    to implement in nanostructures. Here, an artificial mixed ionic electronic conducting oxide is fabricated by grain boundary (GB) engineering thin films of La0.8Sr0.2MnO3+δ. This electronic conductor is converted into a good mixed ionic electronic conductor

  20. Microstructure of warm rolling and pearlitic transformation of ultrafine-grained GCr15 steel

    International Nuclear Information System (INIS)

    Sun, Jun-Jie; Lian, Fu-Liang; Liu, Hong-Ji; Jiang, Tao; Guo, Sheng-Wu; Du, Lin-Xiu; Liu, Yong-Ning

    2014-01-01

    Pearlitic transformation mechanisms have been investigated in ultra-fine grained GCr15 steel. The ultrafine-grained steel, whose grain size was less than 1 μm, was prepared by thermo-mechanical treatment at 873 K and then annealing at 923 K for 2 h. Pearlitic transformation was conducted by reheating the ultra-fine grained samples at 1073 K and 1123 K for different periods of time and then cooling in air. Scanning electron microscope observation shows that normal lamellar pearlite, instead of granular cementite and ferrite, cannot be formed when the grain size is approximately less than 4(± 0.6) μm, which yields a critical grain size for normal lamellar pearlitic transformations in this chromium alloyed steel. The result confirms that grain size has a great influence on pearlitic transformation by increasing the diffusion rate of carbon atoms in the ultra-fine grained steel, and the addition of chromium element doesn't change this pearlitic phase transformation rule. Meanwhile, the grain growth rate is reduced by chromium alloying, which is beneficial to form fine grains during austenitizing, thus it facilitating pearlitic transformation by divorced eutectoid transformation. Moreover, chromium element can form a relatively high gradient in the frontier of the undissolved carbide, which promotes carbide formation in the frontier of the undissolved carbide, i.e., chromium promotes divorced eutectoid transformation. - Highlights: • Ultrafine-grained GCr15 steel was obtained by warm rolling and annealing technology. • Reduction of grain size makes pearlite morphology from lamellar to granular. • Adding Cr does not change normal pearlitic phase transformation rule in UFG steel. • Cr carbide resists grain growth and facilitates pearlitic transformation by DET

  1. Predicting spring barley yield from variety-specific yield potential, disease resistance and straw length, and from environment-specific disease loads and weed pressure

    DEFF Research Database (Denmark)

    Østergård, Hanne; Kristensen, Kristian; Pinnschmidt, Hans O.

    2008-01-01

    For low-input crop production, well-characterised varieties increase the possibilities of managing diseases and weeds. This analysis aims at developing a framework for analyzing grain yield using external varietal information about disease resistance, weed competitiveness and yield potential and ...... growth habit. Higher grain yield was thus predicted for taller plants under weed pressure. The results are discussed in relation to the model framework, impact of the considered traits and use of information from conventional variety testing in organic cropping systems....

  2. Secondary scintillation yield from GEM and THGEM gaseous electron multipliers for direct dark matter search

    Science.gov (United States)

    Monteiro, C. M. B.; Fernandes, L. M. P.; Veloso, J. F. C. A.; Oliveira, C. A. B.; dos Santos, J. M. F.

    2012-07-01

    The search for alternatives to PMTs as photosensors in optical TPCs for rare event detection has significantly increased in the last few years. In particular, in view of the next generation large volume detectors, the use of photosensors with lower natural radioactivity, such as large area APDs or GM-APDs, with the additional possibility of sparse surface coverage, triggered the intense study of secondary scintillation production in micropattern electron multipliers, such as GEMs and THGEMs, as alternatives to the commonly used uniform electric field region between two parallel meshes. The much higher scintillation output obtained from the electron avalanches in such microstructures presents an advantage in those situations. The accurate knowledge of the amount of such scintillation is important for correct detector simulation and optimization. It will also serve as a benchmark for software tools developed and/or under development for the calculation of the amount of such scintillation.The secondary scintillation yield, or electroluminescence yield, in the electron avalanches of GEMs and THGEMs operating in gaseous xenon and argon has been determined for different gas pressures. At 1 bar, THGEMs deliver electroluminescence yields that are more than one order of magnitude higher when compared to those achieved in GEMs and two orders of magnitude when compared to those achieved in a uniform field gap. The THGEM electroluminescence yield presents a faster decrease with pressure when comparing to the GEM electroluminescence yield, reaching similar values to what is achieved in GEMs for xenon pressures of 2.5 bar, but still one order of magnitude higher than that produced in a uniform field gap. Another exception is the GEM operating in argon, which presents an electroluminescence yield similar to that produced in a uniform electric field gap, while the THGEM achieves yields that are more than one order of magnitude higher.

  3. Bake hardening of ultra-fine grained low carbon steel produced by constrained groove pressing

    International Nuclear Information System (INIS)

    Alihosseini, H.; Dehghani, K.

    2012-01-01

    Highlights: ► BH of UFG low carbon steel sheets was studied. ► Three passes of CGP are used for producing of UFG sheets. ► Maximum BH was achieved to the UFG specimen pre-strained 8% by baking at 250 °C. - Abstract: In the present work, the bake hardening of ultra-fine grained low carbon steel was compared with that of its coarse-grain counterpart. The ultra-fine grained sheets were produced by applying three passes of constrained groove pressing resulting the grains of 260–270 nm. The microstructure of ultra-fine grain specimens were characterized using electron back-scatter diffraction technique. Then, the bake hardenability of ultra-fine grain and coarse-grain samples were compared by pre-straining to 4, 6 and 8% followed by baking at 150 °C and 250 °C for 20 min. The results show that in case of baking at 250 °C, there was an increase about 108%, 93%, and 72% in the bake hardening for 4%, 6% and 8% pre-strain, respectively. As for baking at 150 °C, these values were 170%, 168%, and 100%, respectively for 4%, 6% and 8% pre-strain. The maximum in bake hardenability (103 MPa) and final yield stress (563 MPa) were pertaining to the ultra-fine grain specimen pre-strained 8% followed by baking at 250 °C.

  4. Tillage and NPK Effect on growth and yield of spring maize in islamabad, pakistan

    International Nuclear Information System (INIS)

    Memon, S.Q.; Mughal, A.Q.; Amjad, N.; Javed, H.I.

    2013-01-01

    Tillage is a very important crop production practice which affect crop performance. An experiment was conducted during the spring crop season 2009 to compare the effect of three different tillage regimes i.e. deep, conventional and zero and four fertilizer levels viz., control 100-50-50, 150-75-75 and 200-100-100 NPK kg ha. The randomized complete block design was used with three replications. There was significant differences in maize emergence percentage, plant height, grains cob, 1000-grain weight and grain yield due to tillage practices and various fertilizer levels, between tillage practices. However, the NPK at the rate 200-100-100 kg ha and deep tillage produced the highest emergence percentage, plant height, grains per cob, 1000-grain weight and grain yield followed by other fertilizer levels and conventional tillage. The zero tillage plots produced the low emergence percentage, plant height, grains cob, 1000-grain weight and grain yield. Therefore, considering the environ-mental conditions, the deep tillage with recommended dose of NPK performed best and provided more vegetative growth and grain yield in maize. However, poor-resource farmers can use the medium level of NPK at the rate 150-75-75 kg ha for getting an economical and successful maize crop. (author)

  5. Evaluation of the Effect of Different Irrigation Levels of Drip Irrigation (Tape on Yield and Yield Components of Corn

    Directory of Open Access Journals (Sweden)

    mohammad karimi

    2016-02-01

    irrigation water in drip tape systems in one and two rows planting patterns with different plant densities. The experiment was conducted on randomized complete blocks as a split plot (Split block design with 3 replicates in the Qazvin region. Four levels of irrigation including: 80, 100 and 120 percent of water requirement with drip irrigation (tape and 100% water requirement with furrow irrigation (control treatment as main plots and method of planting (one and two rows with three levels of crop density including: 75000, 90000 and 105000 as subplots were considered. After harvesting, grain yield, number of rows per ear, number of kernels per ear row, number of grains per ear and 1000-kernel weigh were measured. Results and Discussion: The results of simple variance analysis of attributes showed that the method of planting has a significant difference on the level of 5% for grain yield, but on the other the measured attributes did not have any significant effect. The respective effect of planting method and crop density showed a significant difference on the level of 5% for grain yield, number of kernels per ear and the 1000-grain weight, whereas it did not have any significant effect on the other measured attributes. The respective effects of irrigation method, planting method and crop density showed a significant difference on the level of 1% for the attributes of the number of kernels per ear. The planting in one row resulted in significantly higher grain yields than the other planting patterns. In mean comparisons of the interactions between irrigation methods, crop density and planting method, grain yield in drip irrigation at a level of 120% water requirement in the two rows planting pattern and crop density equal to 75000 plants was shown in the lead on the level of 10%. The results showed that the yields of the treatments were only affected by the method of planting and planting of one row lead the planting of two rows. According to means comparison and water use

  6. Evolution of twinning in extruded AZ31 alloy with bimodal grain structure

    Energy Technology Data Exchange (ETDEWEB)

    Garcés, G., E-mail: ggarces@cenim.csic.es [Department of Physical Metallurgy, National Centre for Metallurgical Research CENIM-CSIC, Av. De Gregorio del Amo 8, 28040 Madrid (Spain); Oñorbe, E. [CIEMAT, Division of Structural Materials, Avenida Complutense, 40, 28040 Madrid (Spain); Gan, W. [German Engineering Materials Science Centre at MLZ, Helmholtz-Zentrum Geesthacht, Lichtebergstr. 1, D-85747 Garching (Germany); Máthis, K. [Department of Physics of Materials, Faculty of Mathematics and Physics, Charles University, KeKarlovu 5, 121 16 Praha 2 (Czech Republic); Tolnai, D. [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, 21502 Geesthacht (Germany); Horváth, K. [Department of Physics of Materials, Faculty of Mathematics and Physics, Charles University, KeKarlovu 5, 121 16 Praha 2 (Czech Republic); Pérez, P.; Adeva, P. [Department of Physical Metallurgy, National Centre for Metallurgical Research CENIM-CSIC, Av. De Gregorio del Amo 8, 28040 Madrid (Spain)

    2017-04-15

    Twinning in extruded AZ31 alloy with a bimodal grain structure is studied under compression along the extrusion direction. This study has combined in-situ measurements during the compression tests by Synchrotron Radiation Diffraction and Acoustic Emission techniques and the evaluation of the microstructure and texture in post-mortem compression samples deformed at different strains. The microstructure of the alloy is characterized by the coexistence of large areas of fine dynamic recrystallized grains and coarse non-recrystallized grains elongated along extrusion direction. Twinning occurs initially in large elongated grains before the macroscopic yield stress which is controlled by the twinning in equiaxed dynamically recrystallized grains. - Highlights: • The AZ31 extruded at low temperature exhibits a bimodal grains structure. • Twinning takes place before macroscopic yielding in coarse non-DRXed grains. • DRXed grains controls the beginning of plasticity in magnesium alloys with bimodal grain structure.

  7. The secondary electron yield of noble metal surfaces

    Directory of Open Access Journals (Sweden)

    L. A. Gonzalez

    2017-11-01

    Full Text Available Secondary electron yield (SEY curves in the 0-1000 eV range were measured on polycrystalline Ag, Au and Cu samples. The metals were examined as introduced in the ultra-high vacuum chamber and after having been cleaned by Ar+ ion sputtering. The comparison between the curves measured on the clean samples and in the presence of contaminants, due to the permanence in atmosphere, confirmed that the SEY behavior is strongly influenced by the chemical state of the metal surface. We show that when using very slow primary electrons the sample work function can be determined with high accuracy from the SEY curves. Moreover we prove that SEY is highly sensitive to the presence of adsorbates even at submonolayer coverage. Results showing the effect of small quantities of CO adsorbed on copper are presented. Our findings demonstrate that SEY, besides being an indispensable mean to qualify technical materials in many technological fields, can be also used as a flexible and advantageous diagnostics to probe surfaces and interfaces.

  8. Responses of Grain Maize to Plant Density at Different Irrigation Regimes

    Directory of Open Access Journals (Sweden)

    Sara SAMADVAND

    2017-12-01

    Full Text Available In order to examine the effects of different plant densities, plant patterns and irrigation regimes on yield, yield components and harvest index of grain maize, a field experiment was conducted at Miyandoab Agricultural Research Station, Iran. A strip split plot experiment was conducted based on randomized complete block design with three replications. The results showed that the effect of plant density was significant on kernel yield, harvest index, 1,000 kernel weight. The highest kernel yield was obtained from 90,000 plants ha-1 density. Maximum grain yield (18.530 t ha-1 was obtained from furrow irrigation. However, there was no significant difference between moisture levels of 100% and 120% of field capacity. The lowest kernel yield was obtained at 80% field capacity. This study also showed that mean kernel weight and the number of kernels per row were the most determinant factors in grain yield formation. The highest and the lowest harvest indices were obtained at 120% and 80% treatments of field capacity treatment, respectively.

  9. Critério de seleção indireta para a produtividade de grãos em feijão Indirect selection strategy to grain yield in common bean

    Directory of Open Access Journals (Sweden)

    Nerinéia Dalfollo Ribeiro

    2010-04-01

    Full Text Available Com o objetivo de avaliar a associação linear entre a nota geral de adaptação e a produtividade de grãos de feijão como critério para a seleção indireta, foram conduzidos nove experimentos durante os anos de 2000/2001 a 2004/2005, em duas épocas de cultivo, no Estado do Rio Grande do Sul, Brasil (latitude 29°42'S, longitude 53°49'W e 95m de altitude. A nota geral de adaptação, avaliada por uma escala de notas (1: excelente a 9: péssimo, e a produtividade de grãos foram determinadas em 14 cultivares de feijão. Correlação linear negativa foi verificada entre a nota geral de adaptação e a produtividade de grãos (r=-0,6134. A seleção indireta, por meio da nota geral de adaptação, é eficiente para o incremento da produtividade de grãos de feijão em linhas endogâmicas.The objective of this research was to investigate the correlation between general adaptation note and grain yield as indirect selection strategy. Nine experiments were conducted in the agricultural years of 2000/2001 and 2004/2005, in two growing seasons, at Rio Grande do Sul State, Brazil (latitude 29°42'S, longitude 53°49'W and altitude 95m. The general adaptation note was evaluated for the grade scale, where 1 was = excellent and 9 was = very bad, and grain yield was determinate in 14 common bean cultivars. Negative linear correlation was obtained between the general adaptation note and grain yield (r=-0.6134. The indirect selection for the general adaptation note is efficient for increment grain yield in common bean in inbred lines.

  10. Microstructural characteristics and toughness of the simulated coarse grained heat affected zone of high strength low carbon bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Lan Liangyun, E-mail: lly.liangyun@gmail.com [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China); Qiu Chunlin; Zhao Dewen; Gao Xiuhua; Du Linxiu [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China)

    2011-11-25

    Highlights: {yields} Total toughness can be separated into crack initiation energy and crack propagation energy. {yields} Small effective grain size of lath martensite can improve the crack propagation energy. {yields} MA constituent is mainly responsible for the low toughness of coarse bainite specimens. {yields} High angle packet boundary in coarser bainite has few contributions to improving crack propagation energy. - Abstract: The correlation of microstructural characteristics and toughness of the simulated coarse grained heat affected zone (CGHAZ) of low carbon bainitic steel was investigated in this study. The toughness of simulated specimens was examined by using an instrumented Charpy impact tester after the simulation welding test was conducted with different cooling times. Microstructure observation and crystallographic feature analysis were conducted by means of optical microscope and scanning electron microscope equipped with electron back scattered diffraction (EBSD) system, respectively. The main microstructure of simulated specimen changes from lath martensite to coarse bainite with the increase in cooling time. The deterioration of its toughness occurs when the cooling time ranges from 10 to 50 s compared with base metal toughness, and the toughness becomes even worse when the cooling time increases to 90 s or more. The MA (martensite-austenite) constituent is primary responsible for the low toughness of simulated CGHAZ with high values of cooling time because the large MA constituent reduces the crack initiation energy significantly. For crack propagation energy, the small effective grain size of lath martensite plays an important role in improving the crack propagation energy. By contrast, high misorientation packet boundary in coarse bainite seems to have few contributions to the improvement of the toughness because cleavage fracture micromechanism of coarse bainite is mainly controlled by crack initiation.

  11. Plant Density Effect in Different Planting Dates on Growth Indices, Yield and

    Directory of Open Access Journals (Sweden)

    F Azizi

    2013-04-01

    Full Text Available In order to determine the appropriate plant density in different planting dates for sweet corn cultivar KSC403su, an experiment was conducted using a randomized complete block design in split plot lay out with three replications at Seed and Plant Improvement Institute in Karaj in 2006. Three planting dates (22 May, 5 June and 22 June were assigned as main plots and three plant densities (65000, 75000 and 85000 plants per hectare were considered as sub plots. Effect of planting date on row/ear, 1000 kernels weight, biological yield and harvest index was significant at 1% probability level and it was significant at 5% probability level for kernels/ear row and grain yield. All traits decreased with postponement of planting date to 5 June except for row/ear, kernels/row and grain yield. More delay in planting from 22 May to 22 June caused that grain yield was decreased significantly about 32.5% (from 14.45 to 9.78 ton/ha. Effect of plant density was significant at 1% probability level for all the traits. All of the traits decreased significantly with increasing plant density except for biological yield. The highest grain yield was resulted from 65000 plants per hectare density (14.20 ton/ha. Interaction effect of planting date and plant density was significant at 5% probability level for biological yield and harvest index but it wasn’t significant for the other traits. Growth indices decreased with delay in planting date and increasing plant density. Only leaf area index increased in more plant densities. From the results of this experiment it might be resulted that appropriate planting date to produce the highest grain yield is 22 May to 5 June for sweet corn cultivar KSC403su and also the highest grain yield can obtain from 65000 plants per hectare density.

  12. Viscoelastic sliding and diffusive relaxation along grain boundaries in polycrystalline boron nitride

    International Nuclear Information System (INIS)

    Pezzotti, G.; Nishida, Toshihiko; Kleebe, H.J.; Ota, Kenichi

    1997-01-01

    Dense hexagonal boron nitride (BN) materials were prepared via two different processing routes: (1) hot-pressing with the addition of a Ca/B-containing glass and (2) chemical vapor deposition (CVD). The resulting microstructure of both materials was studied by scanning and transmission electron microscopy. While the hot-pressed BN material shows, apart from large BN matrix grains, an inhomogeneous distribution of residual glass at room temperature, the CVD deposition yields a homogeneous fine grained microstructure with no amorphous residue detectable. Internal-friction experiments were performed to study the micromechanical response of the materials when exposed to high temperatures. The CVD material revealed no relaxation peak during testing up to 2,300 C, while the glass-doped sample showed a pronounced relaxation peak at a peak-top temperature of about 600 C. This temperature corresponds to the softening temperature known for bulk Ca/B-glasses and it is, therefore, concluded that the glass homogeneously wets the BN grains at elevated temperatures. The results presented are seen as the first clear evidence that the internal friction peak monitored for various glass-containing ceramics is indeed related to a viscous sliding process along grain boundaries

  13. Improved Electron Yield and Spin-Polarization from III-V Photocathodes Via Bias Enhanced Carrier Drift

    International Nuclear Information System (INIS)

    Mulhollan, Gregory A.; Bierman, John; Brachmann, Axel; Clendenin, James E.; Garwin, Edward; Kirby, Robert; Luh, Dah-An

    2005-01-01

    Spin-polarized electrons are commonly used in high energy physics. Future work will benefit from greater polarization. Polarizations approaching 90% have been achieved at the expense of yield. The primary paths to higher polarization are material design and electron transport. Our work addresses the latter. Photoexcited electrons may be preferentially emitted or suppressed by an electric field applied across the active region. We are tuning this forward bias for maximum polarization and yield, together with other parameters, e.g., doping profile. Preliminary measurements have been carried out on bulk and thin film GaAs. As expected, the yield change far from the bandgap is quite large for bulk material. The bias is applied to the bottom (non-activated) side of the cathode so that the accelerating potential as measured with respect to the ground potential chamber walls is unchanged for different front-to-back cathode bias values. The size of the bias to cause an appreciable effect is rather small reflecting the low drift kinetic energy in the zero bias case

  14. Yield asymmetry design of magnesium alloys by integrated computational materials engineering

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dongsheng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Khaleel, Mohammad [Qatar Foundation Research adn Development (Qatar); Ahzi, Said [Univ. of Strasbourg (France)

    2013-11-01

    Deformation asymmetry of magnesium alloys is an important factor on machine design in the automobile industry. Represented by the ratio of compressive yield stress (CYS) against tensile yield stress (TYS), deformation asymmetry is strongly related to texture and grain size. A polycrystalline viscoplasticity model, modified intermediate Φ-model, is used to predict the deformation behavior of magnesium alloys with different grain sizes. Validated with experimental results, integrated computational materials engineering is applied to find out the route in achieving desired asymmetry via thermomechanical processing. For example, CYS/TYS in rolled texture is smaller than 1 under different loading directions. In other textures, such as extruded texture, CYS/TYS is large along the normal direction. Starting from rolled texture, asymmetry will increase to close to 1 along the rolling direction after being compressed to a strain of 0.2. Our modified Φ-model also shows that grain refinement increases CYS/TYS. Along with texture control, grain refinement also can optimize the yield asymmetry. After the grain size decreases to a critical value, CYS/TYS reaches to 1 because CYS increases much faster than TYS. By tailoring the microstructure using texture control and grain refinement, it is achievable to optimize yield asymmetry in wrought magnesium alloys.

  15. Secondary Electron Yield Measurements and Groove Chambers Tests in the PEP-II Beam Line Straights Sections

    International Nuclear Information System (INIS)

    Pivi, M

    2008-01-01

    Beam instability caused by the electron cloud has been observed in positron and proton storage rings and it is expected to be a limiting factor in the performance of the positron Damping Ring (DR) of future Linear Colliders such as ILC and CLIC [1, 2]. In the Positron Low Energy Ring (LER) of the PEP-II accelerator, we have installed vacuum chambers with rectangular grooves in a straight magnetic-free section to test this promising possible electron cloud mitigation technique. We have also installed a special chamber to monitor the secondary electron yield of TiN and TiZrV (NEG) coating, Copper, Stainless Steel and Aluminum under the effect of electron and photon conditioning in situ in the beam line. In this paper, we describe the ongoing R and D effort to mitigate the electron cloud effect for the ILC damping ring, the latest results on in situ secondary electron yield conditioning and recent update on the groove tests in PEP-II

  16. Spatially resolved analytical electron microscopy at grain boundaries of {alpha}-Al{sub 2}O{sub 3}; Ortsaufgeloeste analytische Elektronenmikroskopie an Korngrenzen in {alpha}Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Nufer, S.

    2001-10-01

    Aluminum oxide, {alpha}-Al{sub 2}O{sub 3}, is a common structural ceramic material. The most technologically important properties are either determined or strongly influenced by the polycrystalline microstructure. For instance, the grain boundaries control the mechanical behavior (e.g. plasticity, creep, and fracture) or various transport phenomena (e.g. ion diffusion, segregation, and electrical resistivity). In order to understand the structure-properties relationships, it is therefore important to characterize the structure and chemistry of grain boundaries, both experimentally and theoretically. In this work the electronic structure of the basal and rhombohedral twin grain boundaries and the impurity excess at different tilt grain boundaries in bicrystals were investigated, using electron energy-loss spectroscopy (EELS) and energy dispersive X-ray spectroscopy (EDXS). The electronic structure of the rhombohedral twin grain boundary was determined by comparing spatially resolved EELS measurements of the O-K ionisation edge with the theoretical density of states (DOS), obtained from local density functional theory (LDFT) calculations. The interface excess of impurities was quantitatively analysed at grain boundaries with and without Y-doping. (orig.)

  17. Grain size and temperature influence on the toughness of a CuAlBe shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, Victor Hugo C. de, E-mail: victor.albuquerque@fe.up.pt [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Laboratorio de Solidificacao Rapida LSR, Cidade Universitaria, S/N 58059-900 Joao Pessoa, PB (Brazil); Melo, Tadeu Antonio de A, E-mail: tadeu@lsr.ct.ufpb.br [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Laboratorio de Solidificacao Rapida LSR, Cidade Universitaria, S/N 58059-900 Joao Pessoa, PB (Brazil); Gomes, Rodinei M., E-mail: gomes@lsr.ct.ufpb.br [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Laboratorio de Solidificacao Rapida LSR, Cidade Universitaria, S/N 58059-900 Joao Pessoa, PB (Brazil); Lima, Severino Jackson G. de, E-mail: jackson@lsr.ct.ufpb.br [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Laboratorio de Solidificacao Rapida LSR, Cidade Universitaria, S/N 58059-900 Joao Pessoa, PB (Brazil); Tavares, Joao Manuel R.S., E-mail: tavares@fe.up.pt [Faculdade de Engenharia da Universidade do Porto (FEUP), Departamento de Engenharia Mecanica (DEMec)/Instituto de Engenharia Mecanica e Gestao Industrial INEGI, Rua Dr. Roberto Frias, S/N 4200-465 Porto (Portugal)

    2010-11-25

    Research highlights: {yields} This work evaluated the capacity of a CuAlBe alloy to absorb energy until rupture. {yields} The V-notch Charpy test was adopted at -150, -100, -50, 0, 50, 100 and 150 deg. C. {yields} Charpy tests were complemented by DSC, DSC with optical microscope and by SEM. {yields} First work to analyze the toughness of a CuAlBe alloy based on the Charpy test. {yields} The results are of relevant value to enhance the understanding of the CuAlBe alloy. - Abstract: This work is a study of the influence of grain size and temperature on the toughness of CuAlBe shape memory alloys with (CuAlBeNbNi) and without NbNi (CuAlBe) grain refiner elements. The toughness analysis was based on the V-notch Charpy impact test under temperatures of -150, -100, -50, 0, 50, 100 and 150 deg. C. A statistical analysis of the results led to the conclusion that the toughness of both alloys was influenced by temperature and grain size. The CuAlBeNbNi alloy absorbed higher impact energy than the CuAlBe alloy showing that the refining elements improved the toughness of the alloy. To confirm and complement these findings, the fracture surfaces were evaluated by stereomicroscopy. Smooth homogeneous surfaces and rough heterogonous surfaces were detected for the CuAlBeNbNi and CuAlBe alloys, respectively. Predominately brittle zones were confirmed by scanning electron microscopy in both alloys. Furthermore, to determine the phase transformation temperatures and the associated microstructures, the alloys were assessed by conventional differential scanning calorimetry (DSC) and DSC with optical microscopy.

  18. Validation of crop weather models for crop assessment arid yield ...

    African Journals Online (AJOL)

    IRSIS and CRPSM models were used in this study to see how closely they could predict grain yields for selected stations in Tanzania. Input for the models comprised of weather, crop and soil data collected from five selected stations. Simulation results show that IRSIS model tends to over predict grain yields of maize, ...

  19. Productivity of clay tailings from phosphate mining: 3. Grain crops

    International Nuclear Information System (INIS)

    Mislevy, P.; Blue, W.G.; Roessler, C.E.; Martin, F.G.

    1991-01-01

    A split-fold field experiment was conducted to study forage and grain yield, forage quality, plant nutrient concentrations, changes in soil nutrients, and 226 Ra contents of four grain crops in various rotations. The crop rotations (1) corn (Zea mays L. Jacques 247)-sunflower (Helianthus annuus L. Cargil 205), (2) sunflower-grain sorghum (Sorghum bicolor L, Moench Northrup King Savanna 5), (3) soybean (Glycine max L. Merr. Williams 80)-grain sorghum, and (4) grain sorghum-soybean (University of Florida V-1) were grown on a dry phosphatic clay with and without a 50-mm surface layer of quartz-sand tailings. Results show that corn and grain sorghum produced highest forage yields and highest grain yields per harvest, respectively. Soybean harvested for forage (Crop 1) contained the highest crude protein and in vitro organic matter digestibility. Concentrations of P, K, Ca, Mg, and Fe in most of the forages were adequate for the diets of beef cattle, while those of Mn, Cu and Zn were low. Mehlich I-extractable soil, Ca, and Mg were considered very high and changed little over the 4-yr production period. Application of 50 mm of sand tailings tended to increase Mehlich I-extractable P, Ca, Mn, Cu, Zn, and Fe. Radium-226 concentration in the forage of all grain crops averaged 8.5 Bq kg -1 , which was about 17 times higher than that in the grain of the same crops. Concentrations of 226 Ra in the forage and grain were 1.1% and 0.09% of the concentration in clay respectively. These data indicate that phosphatic clays can be a valuable resource for the production of corn and sorghum grain that contain low concentrations of 226 Ra

  20. Electronic coarse graining enhances the predictive power of molecular simulation allowing challenges in water physics to be addressed

    Energy Technology Data Exchange (ETDEWEB)

    Cipcigan, Flaviu S., E-mail: flaviu.cipcigan@ed.ac.uk [School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD (United Kingdom); National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Sokhan, Vlad P. [National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Crain, Jason [School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD (United Kingdom); National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Martyna, Glenn J. [IBM T. J. Watson Research Center, Yorktown Heights, NY 10598 (United States)

    2016-12-01

    One key factor that limits the predictive power of molecular dynamics simulations is the accuracy and transferability of the input force field. Force fields are challenged by heterogeneous environments, where electronic responses give rise to biologically important forces such as many-body polarisation and dispersion. The importance of polarisation in the condensed phase was recognised early on, as described by Cochran in 1959 [Philosophical Magazine 4 (1959) 1082–1086] [32]. Currently in molecular simulation, dispersion forces are treated at the two-body level and in the dipole limit, although the importance of three-body terms in the condensed phase was demonstrated by Barker in the 1980s [Phys. Rev. Lett. 57 (1986) 230–233] [72]. One approach for treating both polarisation and dispersion on an equal basis is to coarse grain the electrons surrounding a molecular moiety to a single quantum harmonic oscillator (cf. Hirschfelder, Curtiss and Bird 1954 [The Molecular Theory of Gases and Liquids (1954)] [37]). The approach, when solved in strong coupling beyond the dipole limit, gives a description of long-range forces that includes two- and many-body terms to all orders. In the last decade, the tools necessary to implement the strong coupling limit have been developed, culminating in a transferable model of water with excellent predictive power across the phase diagram. Transferability arises since the environment automatically identifies the important long range interactions, rather than the modeler through a limited set of expressions. Here, we discuss the role of electronic coarse-graining in predictive multiscale materials modelling and describe the first implementation of the method in a general purpose molecular dynamics software: QDO-MD. - Highlights: • Electronic coarse graining unites many-body dispersion and polarisation beyond the dipole limit. • It consists of replacing the electrons of a molecule using a quantum harmonic oscillator, called a