WorldWideScience

Sample records for grain number plant

  1. Plant Density Effect on Grain Number and Weight of Two Winter Wheat Cultivars at Different Spikelet and Grain Positions

    OpenAIRE

    Li, Yong; Cui, Zhengyong; Ni, Yingli; Zheng, Mengjing; Yang, Dongqing; Jin, Min; Chen, Jin; Wang, Zhenlin; Yin, Yanping

    2016-01-01

    In winter wheat, grain development is asynchronous. The grain number and grain weight vary significantly at different spikelet and grain positions among wheat cultivars grown at different plant densities. In this study, two winter wheat (Triticum aestivum L.) cultivars, 'Wennong6' and 'Jimai20', were grown under four different plant densities for two seasons, in order to study the effect of plant density on the grain number and grain weight at different spikelet and grain positions. The resul...

  2. Plant Density Effect on Grain Number and Weight of Two Winter Wheat Cultivars at Different Spikelet and Grain Positions

    Science.gov (United States)

    Ni, Yingli; Zheng, Mengjing; Yang, Dongqing; Jin, Min; Chen, Jin; Wang, Zhenlin; Yin, Yanping

    2016-01-01

    In winter wheat, grain development is asynchronous. The grain number and grain weight vary significantly at different spikelet and grain positions among wheat cultivars grown at different plant densities. In this study, two winter wheat (Triticum aestivum L.) cultivars, ‘Wennong6’ and ‘Jimai20’, were grown under four different plant densities for two seasons, in order to study the effect of plant density on the grain number and grain weight at different spikelet and grain positions. The results showed that the effects of spikelet and grain positions on grain weight varied with the grain number of spikelets. In both cultivars, the single-grain weight of the basal and middle two-grain spikelets was higher at the 2nd grain position than that at the 1st grain position, while the opposite occurred in the top two-grain spikelets. In the three-grain spikelets, the distribution of the single-grain weight was different between cultivars. In the four-grain spikelets of Wennong6, the single-grain weight was the highest at the 2nd grain position, followed by the 1st, 3rd, and 4th grain positions. Regardless of the spikelet and grain positions, the single-grain weight was the highest at the 1st and 2nd grain positions and the lowest at the 3rd and 4th grain positions. Overall, plant density affected the yield by controlling the seed-setting characteristics of the tiller spike. Therefore, wheat yield can be increased by decreasing the sterile basal and top spikelets and enhancing the grain weight at the 3rd and 4th grain positions, while maintaining it at the 1st and 2nd grain positions on the spikelet. PMID:27171343

  3. The effect of the Tom Thumb dwarfing gene on grain size and grain number of wheat (Triticum aestivum)

    International Nuclear Information System (INIS)

    Gale, M.D.; Flintham, J.E.

    1984-01-01

    The Tom Thumb dwarfing gene, Rht3, like the related genes Rht1 and Rht2 from Norin 10, has pleiotropic effects on individual ear yields, and grain protein concentrations. An experiment was conducted in which tiller number per plant and grain number per spike were restricted to ascertain whether reduced grain size and protein content are primary or secondary competitive effects in near-isogenic lines. The potential for grain growth was shown to be identical in Rht3 and rht genotypes when grain set was restricted, indicating that the primary effect of the gene is to increase spikelet fertility. Nitrogen accumulation within the grain was also affected by inter-grain competition but decreased nitrogen yields per plant indicated that reduced protein levels are, in part, a primary effect of the gene. Analysis of individual grain yields within Rht3 and rht spikes showed that the gene affected developmental 'dominance' relationships within the spike. (author)

  4. Genetic dissection of grain size and grain number trade-offs in CIMMYT wheat germplasm.

    Science.gov (United States)

    Griffiths, Simon; Wingen, Luzie; Pietragalla, Julian; Garcia, Guillermo; Hasan, Ahmed; Miralles, Daniel; Calderini, Daniel F; Ankleshwaria, Jignaben Bipinchandra; Waite, Michelle Leverington; Simmonds, James; Snape, John; Reynolds, Matthew

    2015-01-01

    Grain weight (GW) and number per unit area of land (GN) are the primary components of grain yield in wheat. In segregating populations both yield components often show a negative correlation among themselves. Here we use a recombinant doubled haploid population of 105 individuals developed from the CIMMYT varieties Weebill and Bacanora to understand the relative contribution of these components to grain yield and their interaction with each other. Weebill was chosen for its high GW and Bacanora for high GN. The population was phenotyped in Mexico, Argentina, Chile and the UK. Two loci influencing grain yield were indicated on 1B and 7B after QTL analysis. Weebill contributed the increasing alleles. The 1B effect, which is probably caused by to the 1BL.1RS rye introgression in Bacanora, was a result of increased GN, whereas, the 7B QTL controls GW. We concluded that increased in GW from Weebill 7B allele is not accompanied by a significant reduction in grain number. The extent of the GW and GN trade-off is reduced. This makes this locus an attractive target for marker assisted selection to develop high yielding bold grain varieties like Weebill. AMMI analysis was used to show that the 7B Weebill allele appears to contribute to yield stability.

  5. Effects of different irrigation intervals and plant density on morphological characteristics, grain and oil yields of sesame (Sesamum indicum

    Directory of Open Access Journals (Sweden)

    parviz rezvani moghadam

    2009-06-01

    Full Text Available In order to study the effects of different irrigation intervals and plant density on morphological characteristics, grain and oil yields of sesame, an experiment was conducted at experimental station, college of agriculture, Ferdowsi University of Mashhad. Four different irrigation intervals (one, two, three and four weeks with four plant densities (20, 30, 40 and 50 plants/m2 were compared in a spilt plot arrangement based on randomized complete block design with four replications. Irrigation intervals and plant densities allocated in main plots and subplots, respectively. Different characteristics such as plant height, distance of first capsule from soil surface, number of branches per plant, number of grains per capsule, number of capsules per plant, grain yield, 1000-seed weight, harvest index and oil yield were recorded. The results showed that there were no significant difference between different irrigation intervals in terms of distance of first capsule from soil surface, number of grains per capsule, 1000-seed weight and harvest index. Different irrigation intervals had significant effects on plant height, number of branches per plant, number of capsules per plant, grain yield and oil yield. There were significant differences between different plant densities in terms of distance of first capsule from soil surface, number of branches per plant, number of graines per capsule, number of capsules per plant, grain yield, harvest index and oil yield. The highest grain yield (798/7 kg/ha and oil yield (412/8 kg/ha were obtained at one week and four weeks irrigation intervals, respectively. Between all treatments, 50 plants/m2 and one week irrigation interval produced the highest grain yield (914/7 kg/ha and oil yield (478/6 kg/ha. Because of shortage of water in Mashhad condition, the results recommended that, 50 plants/m2 and two weeks irrigation interval produced rather acceptable grain yield, with less water consumption.

  6. VARIATION IN GRAIN YIELD, BIOMASS AND GRAIN NUMBER OF BARLEY UNDER DROUGHT

    Directory of Open Access Journals (Sweden)

    Cándido López-Castañeda

    2011-08-01

    Full Text Available Variability in grain yield (GY, aerial biomass (BM and number of grains m-2 (G M-2 in F6 lines and commercial varieties of barley was studied, and the relationship among these characters in full-irrigation (FI, drought (D and rain-fed (RF conditions was determined. Variation in GY, BM and G M-2 among all genotypes, between F6 lines and varieties, and among genotypes of F6 lines and varieties was significant in all the three soil moisture environments. GY, BM and G M-2 in FI were 23, 14 and 21 % greater than the average of the three soil moisture environments; GY, BM and G M-2 in RF were 21, 16 y 24 % lower than this average. F6 lines produced greater GY (380 g m-2, BM (1027 g m-2 and G M-2 (8641 than the commercial varieties (GY=290 g m-2; BM=726 g m-2 y G M-2=7463 in average of the three environments. GY was positive and significantly associated with BM and G M-2; BM and G M-2 were also associated. GY could be improved in either FI, D or RF environments by selecting genotypes with a greater BM and G M-2 or both of them.

  7. EFFECT OF SOME PLANT GROWTH REGULATORS WITH RETARDING ACTIVITY ON SPRING PEA FOR GRAIN

    Directory of Open Access Journals (Sweden)

    Tsenka ZHELYAZKOVA

    2012-12-01

    Full Text Available A field experiment was conducted at Trakia University - Stara Zagora to establish the effect of some growth retardants on morphological and productive parameters in spring pea for grain variety Bogatir. Three combined preparations: Trisalvit (phenylphthalamic acid + chlorocholine chloride + chlorophenoxyacetic acid +salicylic acid at doses of 300 and 400 сmз*ha-1; SM-21 (phenylphthalamic acid + chlorocholine chloride at doses of 300 and 400 сmз*ha-1 and PNSA-44 (phenylphthalamic acid + naphthaleneacetic acid + chlorophenoxyacetic acid at doses of 200 and 300 сmз*ha-1 were applied in the early growth phase of the plant up to a height of 15-20 cm. The study showed that the greatest reduction in the stem height (by 12.8% compared to untreated plants was achieved by applying SM-21 (400 сmз*ha-1. The application of growth regulators Trisalvit and SM-21 had no appreciable effect on the production of spring pea grain. Maximum values of yield structure components (number of pods and grain per plant, grain mass per plant and mass of 1000 grain and the yield were obtained after application of PNSA-44 (300 сmз*ha-1 - up to 5.6% (117.2 kg*ha-1 more grain than the control. The investigation of the influence of tested factors (retardant, dose and year demonstrated that the conditions of the year as a factor had the strongest effect on plant height and grain yield.

  8. IMPACT OF CLIMATE CHANGE ON PLANTS, FRUITS AND GRAINS

    Directory of Open Access Journals (Sweden)

    CRISTHYAN ALEXANDRE CARCIA DE CARVALHO

    2014-01-01

    Full Text Available Over the past few years, the increased use of fossil fuels as well as the unsustainable use of land, through the reduction of native forests has increased the greenhouse gas emissions, contributing defini- tively to the rise in temperature on earth. In this scenario, two environmental factors, directly related to the physiology of crop production, are constantly being changed. The first change is the increase in the partial pres- sure of carbon dioxide (CO2, which directly affects photosynthetic efficiency and the associated metabolic processes. The other change is the temperature increase which affects all the physiological and metabolic proc- esses mediated by enzymes, especially photosynthesis and respiration. Therefore, this review aims to discuss the main effects caused by increased CO2 pressure and the temperature rise in the physiology, productivity and post-harvest quality of plants with photosynthetic metabolism C3, C4 and CAM. Based on physiological evi- dence, the increased atmospheric CO2 concentration will benefit net photosynthesis, stomatal conductance and the transpiration of C3 plants, however in hot, dry and saline environments, the C4 and CAM species present an advantage by having low photorespiration. Studies show controversial conclusions about the productivity of C3 and C4 plants, and the quality of their fruits or grains under different CO2 concentrations or high tempera- tures. Thus, there is a need for more testing with C3 and C4 plants, besides of more researches with CAM plants, in view of the low number of experiments carried out in this type of plants.

  9. Nitrogen dose and plant density effects on popcorn grain yield ...

    African Journals Online (AJOL)

    and plant densities on grain yield and yield-related plant characteristics of popcorn in Hatay, located at Southern Mediterranean region of Turkey, during 2002 and 2003. The experiment was designed in a randomized complete block design with a split-plot arrangement with three replications. Nitrogen doses of 0, 120, 180 ...

  10. Engineering high α-amylase levels in wheat grain lowers Falling Number but improves baking properties.

    Science.gov (United States)

    Ral, Jean-Philippe; Whan, Alex; Larroque, Oscar; Leyne, Emmett; Pritchard, Jeni; Dielen, Anne-Sophie; Howitt, Crispin A; Morell, Matthew K; Newberry, Marcus

    2016-01-01

    Late maturity α-amylase (LMA) and preharvest sprouting (PHS) are genetic defects in wheat. They are both characterized by the expression of specific isoforms of α-amylase in particular genotypes in the grain prior to harvest. The enhanced expression of α-amylase in both LMA and PHS results in a reduction in Falling Number (FN), a test of gel viscosity, and subsequent downgrading of the grain, along with a reduced price for growers. The FN test is unable to distinguish between LMA and PHS; thus, both defects are treated similarly when grain is traded. However, in PHS-affected grains, proteases and other degradative process are activated, and this has been shown to have a negative impact on end product quality. No studies have been conducted to determine whether LMA is detrimental to end product quality. This work demonstrated that wheat in which an isoform α-amylase (TaAmy3) was overexpressed in the endosperm of developing grain to levels of up to 100-fold higher than the wild-type resulted in low FN similar to those seen in LMA- or PHS-affected grains. This increase had no detrimental effect on starch structure, flour composition and enhanced baking quality, in small-scale 10-g baking tests. In these small-scale tests, overexpression of TaAmy3 led to increased loaf volume and Maillard-related browning to levels higher than those in control flours when baking improver was added. These findings raise questions as to the validity of the assumption that (i) LMA is detrimental to end product quality and (ii) a low FN is always indicative of a reduction in quality. This work suggests the need for a better understanding of the impact of elevated expression of specific α-amylase on end product quality. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Fine-grained recognition of plants from images.

    Science.gov (United States)

    Šulc, Milan; Matas, Jiří

    2017-01-01

    Fine-grained recognition of plants from images is a challenging computer vision task, due to the diverse appearance and complex structure of plants, high intra-class variability and small inter-class differences. We review the state-of-the-art and discuss plant recognition tasks, from identification of plants from specific plant organs to general plant recognition "in the wild". We propose texture analysis and deep learning methods for different plant recognition tasks. The methods are evaluated and compared them to the state-of-the-art. Texture analysis is only applied to images with unambiguous segmentation (bark and leaf recognition), whereas CNNs are only applied when sufficiently large datasets are available. The results provide an insight in the complexity of different plant recognition tasks. The proposed methods outperform the state-of-the-art in leaf and bark classification and achieve very competitive results in plant recognition "in the wild". The results suggest that recognition of segmented leaves is practically a solved problem, when high volumes of training data are available. The generality and higher capacity of state-of-the-art CNNs makes them suitable for plant recognition "in the wild" where the views on plant organs or plants vary significantly and the difficulty is increased by occlusions and background clutter.

  12. Leaf nitrogen remobilisation for plant development and grain filling.

    Science.gov (United States)

    Masclaux-Daubresse, C; Reisdorf-Cren, M; Orsel, M

    2008-09-01

    A major challenge of modern agriculture is to reduce the excessive input of fertilisers and, at the same time, to improve grain quality without affecting yield. One way to achieve this goal is to improve plant nitrogen economy through manipulating nitrogen recycling, and especially nitrogen remobilisation, from senescing plant organs. In this review, the contribution of nitrogen remobilisation efficiency (NRE) to global nitrogen use efficiency (NUE), and tools dedicated to the determination of NRE are described. An overall examination of the physiological, metabolic and genetic aspects of nitrogen remobilisation is presented.

  13. Effect of planting density and cutting frequency on forage and grain yields of kochia (Kochia scoparia under saline water irrigation

    Directory of Open Access Journals (Sweden)

    mseou ziyaeii

    2009-06-01

    Full Text Available AField experiment was conducted at Research Farms of Center of Excellence for Special Crops, Ferdowsi University of Mashhad, Mashhad, Iran, in 2006 to evaluate the effect of planting density on forage and grain yield of kochia (Kochia scoparia. Experimental design was a randomized complete block with split-plot arrangement of treatments,with three replications, where different planting densities (10, 20, 30 and 40 plant m-2 were assigned to main plots and number of cutting (including a single cutting, two cutting and no cutting i.e. allowing the crop to grow until maturity allocated to sub-plots. At each harvest date (cutting the biological yield, leaf and stem dry weight, plant height, number of branches and the individual plant biomass were measured. Grain yield and thousand seed weight were also determined at the end of growing season. Result showed the highest biological yield and leaf and stem dry weights for kochia obtaind at 30 plant m-2. The total biomass, leaf and stem dry weights, plant height, number of branches were greater for the first cutting as compared to the second cutting. Planting density and cutting number interacted to affect the leaf dry weight. At physiological maturity stage there were no significant differences among planting densities for plant height and number of branches. The best planting density, in terms of biomass production and leaf and stem dry weight, was found as 30 plant m-2, while for grain production a planting density of 20 plant m-2 could be recommended. Key words: Kochia, planting density, sward, biological yield, grain production.

  14. Responses of Grain Maize to Plant Density at Different Irrigation Regimes

    Directory of Open Access Journals (Sweden)

    Sara SAMADVAND

    2017-12-01

    Full Text Available In order to examine the effects of different plant densities, plant patterns and irrigation regimes on yield, yield components and harvest index of grain maize, a field experiment was conducted at Miyandoab Agricultural Research Station, Iran. A strip split plot experiment was conducted based on randomized complete block design with three replications. The results showed that the effect of plant density was significant on kernel yield, harvest index, 1,000 kernel weight. The highest kernel yield was obtained from 90,000 plants ha-1 density. Maximum grain yield (18.530 t ha-1 was obtained from furrow irrigation. However, there was no significant difference between moisture levels of 100% and 120% of field capacity. The lowest kernel yield was obtained at 80% field capacity. This study also showed that mean kernel weight and the number of kernels per row were the most determinant factors in grain yield formation. The highest and the lowest harvest indices were obtained at 120% and 80% treatments of field capacity treatment, respectively.

  15. Characterisation of a novel quantitative trait locus, GN4-1, for grain number and yield in rice (Oryza sativa L.).

    Science.gov (United States)

    Zhou, Yong; Tao, Yajun; Yuan, Yuan; Zhang, Yanzhou; Miao, Jun; Zhang, Ron; Yi, Chuandeng; Gong, Zhiyun; Yang, Zefeng; Liang, Guohua

    2018-03-01

    A novel QTL for grain number, GN4-1, was identified and fine-mapped to an ~ 190-kb region on the long arm of rice chromosome 4. Rice grain yield is primarily determined by three components: number of panicles per plant, grain number per panicle and grain weight. Among these traits, grain number per panicle is the major contributor to grain yield formation and is a crucial trait for yield improvement. In this study, we identified a major quantitative trait locus (QTL) responsible for rice grain number on chromosome 4, designated GN4-1 (a QTL for Grain Number on chromosome 4), using advanced segregating populations derived from the crosses between an elite indica cultivar 'Zhonghui 8006' (ZH8006) and a japonica rice 'Wuyunjing 8' (WYJ8). GN4-1 was delimited to an ~ 190-kb region on chromosome 4. The genetic effect of GN4-1 was estimated using a pair of near-isogenic lines. The GN4-1 gene from WYJ8 promoted accumulation of cytokinins in the inflorescence and increased grain number per panicle by ~ 17%. More importantly, introduction of the WYJ8 GN4-1 gene into ZH8006 increased grain yield by ~ 14.3 and ~ 11.5% in the experimental plots in 2014 and 2015, respectively. In addition, GN4-1 promoted thickening of the culm and may enhance resistance to lodging. These results demonstrate that GN4-1 is a potentially valuable gene for improvement of yield and lodging resistance in rice breeding.

  16. Short periods of high temperature during meiosis prevent normal meiotic progression and reduce grain number in hexaploid wheat (Triticum aestivum L.).

    Science.gov (United States)

    Draeger, Tracie; Moore, Graham

    2017-09-01

    Exposure of wheat to high temperatures during male meiosis prevents normal meiotic progression and reduces grain number. We define a temperature-sensitive period and link heat tolerance to chromosome 5D. This study assesses the effects of heat on meiotic progression and grain number in hexaploid wheat (Triticum aestivum L. var. Chinese Spring), defines a heat-sensitive stage and evaluates the role of chromosome 5D in heat tolerance. Plants were exposed to high temperatures (30 or 35 °C) in a controlled environment room for 20-h periods during meiosis and the premeiotic interphase just prior to meiosis. Examination of pollen mother cells (PMCs) from immature anthers immediately before and after heat treatment enabled precise identification of the developmental phases being exposed to heat. A temperature-sensitive period was defined, lasting from premeiotic interphase to late leptotene, during which heat can prevent PMCs from progressing through meiosis. PMCs exposed to 35 °C were less likely to progress than those exposed to 30 °C. Grain number per spike was reduced at 30 °C, and reduced even further at 35 °C. Chinese Spring nullisomic 5D-tetrasomic 5B (N5DT5B) plants, which lack chromosome 5D, were more susceptible to heat during premeiosis-leptotene than Chinese Spring plants with the normal (euploid) chromosome complement. The proportion of plants with PMCs progressing through meiosis after heat treatment was lower for N5DT5B plants than for euploids, but the difference was not significant. However, following exposure to 30 °C, in euploid plants grain number was reduced (though not significantly), whereas in N5DT5B plants the reduction was highly significant. After exposure to 35 °C, the reduction in grain number was highly significant for both genotypes. Implications of these findings for the breeding of thermotolerant wheat are discussed.

  17. Identifying loci influencing grain number by microsatellite screening in bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Zhang, Dongling; Hao, Chenyang; Wang, Lanfen; Zhang, Xueyong

    2012-11-01

    Grain number (GN) is one of three major yield-related components in wheat. We used the Chinese wheat mini core collection to undertake a genome-wide association analysis of grain number using 531 SSR markers randomly located on all 21 chromosomes. Grain numbers of all accessions were measured in four trials, i.e. two environments in four growing seasons. Association analysis based on a mixed linear model (MLM) revealed that 27 SSR loci were significantly associated with mean GN (MGN) estimated by the best linear unbiased predictor (BLUP) method. These included numerous breeder favorable alleles with strong positive effects at 23 loci. Significant or extremely significant differences were detected on MGN between varieties conveying favored allele and varieties with other alleles. Moreover, statistical simulation showed that the favored alleles have additive genetic effects. Although modern varieties combined larger numbers of favored alleles, the numbers of favored alleles were not significantly different from those in landraces, especially those alleles contributing mostly to the phenotypic variation. These results indicate that there is still considerable genetic potential for use of markers for genome selection of GN for high yield in wheat.

  18. Effect of solar radiation and temperature on grain number definition in maize

    International Nuclear Information System (INIS)

    Didonet, A.D.; Rodrigues, O.; Mario, J.L.; Ide, F.

    2002-01-01

    The objective of this experiment was to study the effect of solar radiation and temperature regime between emergence and silking on the crop development rate and the number of grain per growing rate unit of the crop, and the relationships of such parameters with the grain yield of corn hybrids. The experiments were carried out in the years 1994/95 to 1996/97, using the commercial hybrids C-901, XL-560, and XL-678 in 1994/95 and the hybrids C-901, XL-212, and XL-370 in the remaining years. The treatments consisted of sowing dates from September to December, in 1994/95, and from August to December, in 1995/96 and 1996/97. High dry matter accumulation was observed when there was high incidence of solar radiation during the period between emergence and flowering. However, as the mean air temperature exerts effect on the duration of that period, the growth rate during such period was more associated to temperature than to solar radiation. The effect of the temperature was inversely proportional to the number of grains per unit of growing rate in this period, possibly due to the longer time for solar radiation interception. As a result of the association between temperature and radiation, the photothermal coefficient was positively associated with the grain yield. (author) [pt

  19. Effect of Plant Growth Promoting Rhizobacteria (PGPR on Phenological Traits, Grain Yield and Yield Components of Three Maize (Zea mays L. Cultivars

    Directory of Open Access Journals (Sweden)

    A Soleimani Fard

    2013-11-01

    Full Text Available To evaluate the effect of bio-fertilize on yield and its components in maize cultivars, an split plot experiment based on randomized complete bock design with three replications in was conducted in Payam-noor University of Ilam, Iran, in 2009-2010. Treatments were cultivar (SC604, SC704 and SC807 assigned to main plots and bio-fertilizer (non- inoculation, inoculation with Azetobacter, Azospirillum and dual inoculation ofAzotobacterand Azospirillum to subplots. The effect of cultivar on days to maturity, plant height, dry matter, ear length, stem diameter, number of grain per ear row, 1000-grain weight, grain yield, biological yield and protein content was significant cultivar. SC 704 had the highest dry matter (259.5 g.m-2, plant height (201.1 cm, number of grain per ear row (42.8 grain, grain yield (10850 kg.m-2, and biological yield (22040 kg.m-2. The effect of plant growth promoting rhizobacteria on all traits expect harvest index was significant. Dual inoculation ofAzotobacterand Azospirillum had the longest days to ear initiation (71.2 days, days to maturity (115.4 day, number of leaves above ear (5.6 ear, dry matter (240.4 g.m-2, ear length (24.3 cm, plant height (212.4 cm, seed number of rows per ear (14.5 row, number of grains per row (44.2 grain, grain yield (10190 kg.m-2, biological yield (21320 kg.m-2 and protein content (10.7%. Interaction effect of cultivar× plant growth promoting rhizobacteria on grain yield was significant. The highest and lowest grain yield was obtained from SC 704 and application of dual inoculation ofAzotobacterand Azospirillum (12320 kg.ha-1 and lowest from SC 604 when inoculation treatments were not used 7570 kg.ha-1 respectively.

  20. Effect of Plant Density and Weed Interference on Yield and Yied Components of Grain Sorghum

    Directory of Open Access Journals (Sweden)

    S. Sarani

    2018-01-01

    Full Text Available Introduction Weed control is an essential part of all crop production systems. Weeds reduce yields by competing with crops for water, nutrients, and sunlight. Weeds also directly reduce profits by hindering harvest operations, lowering crop quality, and producing chemicals which are harmful to crop plants. Plant density is an efficient management tool for maximizing grain yield by increasing the capture of solar radiation within the canopy, which can significantly affect development of crop-weed association. The response of yield and yield components to weed competition varies by crop and weeds species and weeds interference duration. The objective of the present study was to evaluate the effect of weed interference periods and plant density on the yield and yield components of sorghum. Materials and Methods In order to study the effect of plant density and weeds interference on weeds traits, yield and yield components of sorghum (Var. Saravan, an experiment was conducted as in factorial based on a randomized complete block design with three replications at the research field of Islamic Azad University, Birjand Branch in South Khorasan province during year of 2013. Experimental treatments consisted of three plant density (10, 20 and 30 plants m-2 and four weeds interference (weed free until end of growth season, interference until 6-8 leaf stage, interference until stage of panicle emergence, interference until end of growth season. Measuring traits included the panicle length, number of panicle per plant, number of panicle per m2, number of seed per panicle, 1000-seed weight, seed yield, biological yield, number and weight of weeds per m2. Weed sampling in each plot have done manually from a square meter and different weed species counted and oven dried at 72 °C for 48 hours. MSTAT-C statistical software used for data analysis and means compared with Duncan multiple range test at 5% probability level. Results and Discussion Results showed that

  1. Grain and straw for whole plant: implications for crop management and genetic improvement strategies

    OpenAIRE

    Schiere, J.B.; Joshi, A.L.; Seetharam, A.; Oosting, S.J.; Goodchild, A.V.; Deinum, B.; Keulen, van, H.

    2004-01-01

    Straws and stovers are often called `by-products` of grain production even though they are increasingly important, e.g. for animal feed, thatching, soil improvement, mushroom production and industrial use. As a result, plant breeders, agronomists, economists and animal nutritionists have to pay more attention than before to the total value of crops, i.e. whole plant value in which straws and grain both play a part. This paper reviews literature about the technical potential of breeding and/or...

  2. Polycomb Protein OsFIE2 Affects Plant Height and Grain Yield in Rice.

    Directory of Open Access Journals (Sweden)

    Xianbo Liu

    Full Text Available Polycomb group (PcG proteins have been shown to affect growth and development in plants. To further elucidate their role in these processes in rice, we isolated and characterized a rice mutant which exhibits dwarfism, reduced seed setting rate, defective floral organ, and small grains. Map-based cloning revealed that abnormal phenotypes were attributed to a mutation of the Fertilization Independent Endosperm 2 (OsFIE2 protein, which belongs to the PcG protein family. So we named the mutant as osfie2-1. Histological analysis revealed that the number of longitudinal cells in the internodes decreased in osfie2-1, and that lateral cell layer of the internodes was markedly thinner than wild-type. In addition, compared to wild-type, the number of large and small vascular bundles decreased in osfie2-1, as well as cell number and cell size in spikelet hulls. OsFIE2 is expressed in most tissues and the coded protein localizes in both nucleus and cytoplasm. Yeast two-hybrid and bimolecular fluorescence complementation assays demonstrated that OsFIE2 interacts with OsiEZ1 which encodes an enhancer of zeste protein previously identified as a histone methylation enzyme. RNA sequencing-based transcriptome profiling and qRT-PCR analysis revealed that some homeotic genes and genes involved in endosperm starch synthesis, cell division/expansion and hormone synthesis and signaling are differentially expressed between osfie2-1 and wild-type. In addition, the contents of IAA, GA3, ABA, JA and SA in osfie2-1 are significantly different from those in wild-type. Taken together, these results indicate that OsFIE2 plays an important role in the regulation of plant height and grain yield in rice.

  3. Optimal number of coarse-grained sites in different components of large biomolecular complexes.

    Science.gov (United States)

    Sinitskiy, Anton V; Saunders, Marissa G; Voth, Gregory A

    2012-07-26

    The computational study of large biomolecular complexes (molecular machines, cytoskeletal filaments, etc.) is a formidable challenge facing computational biophysics and biology. To achieve biologically relevant length and time scales, coarse-grained (CG) models of such complexes usually must be built and employed. One of the important early stages in this approach is to determine an optimal number of CG sites in different constituents of a complex. This work presents a systematic approach to this problem. First, a universal scaling law is derived and numerically corroborated for the intensity of the intrasite (intradomain) thermal fluctuations as a function of the number of CG sites. Second, this result is used for derivation of the criterion for the optimal number of CG sites in different parts of a large multibiomolecule complex. In the zeroth-order approximation, this approach validates the empirical rule of taking one CG site per fixed number of atoms or residues in each biomolecule, previously widely used for smaller systems (e.g., individual biomolecules). The first-order corrections to this rule are derived and numerically checked by the case studies of the Escherichia coli ribosome and Arp2/3 actin filament junction. In different ribosomal proteins, the optimal number of amino acids per CG site is shown to differ by a factor of 3.5, and an even wider spread may exist in other large biomolecular complexes. Therefore, the method proposed in this paper is valuable for the optimal construction of CG models of such complexes.

  4. Effect of nitrogen fertiliser rates and plant density on grain yield of ...

    African Journals Online (AJOL)

    Low soil fertility has constrained maize production in Sidama district in the Southern region of Ethiopia. The effects of four levels of nitrogen fertiliser (0, 46, 92, 138 kg N ha-1) and four plant populations (44000, 53000, 67000 and 89000 plants ha-1) on grain yield of maize were evaluated over four years (1995-98) at Awassa ...

  5. Making better maize plants for sustainable grain production in a changing climate.

    Science.gov (United States)

    Gong, Fangping; Wu, Xiaolin; Zhang, Huiyong; Chen, Yanhui; Wang, Wei

    2015-01-01

    Achieving grain supply security with limited arable land is a major challenge in the twenty-first century, owing to the changing climate and increasing global population. Maize plays an increasingly vital role in global grain production. As a C4 plant, maize has a high yield potential. Maize is predicted to become the number one cereal in the world by 2020. However, maize production has plateaued in many countries, and hybrid and production technologies have been fully exploited. Thus, there is an urgent need to shape maize traits and architectures for increased stress tolerance and higher yield in a changing climate. Recent achievements in genomics, proteomics, and metabolomics have provided an unprecedented opportunity to make better maize. In this paper, we discuss the current challenges and potential of maize production, particularly in China. We also highlight the need for enhancing maize tolerance to drought and heat waves, summarize the elite shoot and root traits and phenotypes, and propose an ideotype for sustainable maize production in a changing climate. This will facilitate targeted maize improvement through a conventional breeding program combined with molecular techniques.

  6. Plants arrangement and number of seeds per hole in the agroeconomic yield of pea

    Directory of Open Access Journals (Sweden)

    Elissandra Pacito Torales

    2014-12-01

    Full Text Available The aim of this work was to study the ‘luciana 50’ pea, cultivated with different numbers of rows of plants in the plot and with two and three seeds per hill. The work carried out in Dourados-MS, between March-July 2010. Treatments were arranged in 3 x 2 factorial in randomized complete block design with six replicates. Populations corresponding to the sowing with two, three and four rows per plot were 264,000, 396,000 and 528,000 plants ha-1, respectively, with two seeds per hill, and 396,000, 594,000 and 792,000 plants ha-1, respectively, with three seeds per hill. The harvest was done at 108 days after sowing. In cultivation with four rows of plants and two seeds per hill, were obtained the highest yields of fresh and dry weight of grains and pods commercial, with increases of 29.88%, 33.85%, 29.14% and 32.22%, respectively, and higher number of grains and pods commercial, with increases of 28.13% and 27.12%, respectively, over two rows of plants with two seeds per hill. The highest yield of fresh weight of shoots, of bark and of non-commercial pods were with four rows of plants, with increases of 1.75 t ha-1, 0.44 t ha-1 and 0.47 t ha-1 respectively, compared to two rows. Considering the yield of commercial pods and grains and the estimated net income, it can be concluded that sowing of ‘Luciana 50’ pea should be performed with four rows of plants and two seeds per hill.

  7. Mode of inheritance and combining abilities for kernel row number, kernel number per row and grain yield in maize (Zea mays L.)

    NARCIS (Netherlands)

    Bocanski, J.; Sreckov, Z.; Nastasic, A.; Ivanovic, M.; Djalovic, I.; Vukosavljev, M.

    2010-01-01

    Bocanski J., Z. Sreckov, A. Nastasic, M. Ivanovic, I.Djalovic and M. Vukosavljev (2010): Mode of inheritance and combining abilities for kernel row number, kernel number per row and grain yield in maize (Zea mays L.) - Genetika, Vol 42, No. 1, 169- 176. Utilization of heterosis requires the study of

  8. Plant height and grain yield of soybean depending on the year, irrigation and variety

    Directory of Open Access Journals (Sweden)

    Daria Galić Šubašić

    2017-01-01

    Full Text Available Three-year field trials determined the influence of the year, irrigation treatment and varieties on plant height and grain yield of soybeans in the eastern Croatia conditions. All three investigated factors, as well as their interactions, with the exception of irrigation interactions and varieties that were significant at P=0.05, show a statistically significant influence (P=0.01 on the height of soybean plants. Soybean grain yields, as well as all their interactions, affect the significance level P=0.01. The obtained values of soybean grain yields during the study (mostly greater than 3000 kg ha-1 indicate the importance of selecting appropriate varieties and irrigation treatment in adapting soybean production to adverse weather effects of the year.

  9. BRSMG Uai: common bean cultivar with carioca grain type and upright plant architecture

    Directory of Open Access Journals (Sweden)

    Magno Antonio Patto Ramalho

    2016-09-01

    Full Text Available The common bean cultivar with carioca grain type, BRSMG Uai, is recommended for cultivation in Minas Gerais and stands out for its upright plant architecture, which facilitates cultivation and mechanical harvesting. This cultivar has high yield potential and is resistant to the major races of anthracnose that occur in region.

  10. Application of calibrations to hyperspectral images of food grains: example for wheat falling number

    Directory of Open Access Journals (Sweden)

    Nicola Caporaso

    2017-04-01

    Full Text Available The presence of a few kernels with sprouting problems in a batch of wheat can result in enzymatic activity sufficient to compromise flour functionality and bread quality. This is commonly assessed using the Hagberg Falling Number (HFN method, which is a batch analysis. Hyperspectral imaging (HSI can provide analysis at the single grain level with potential for improved performance. The present paper deals with the development and application of calibrations obtained using an HSI system working in the near infrared (NIR region (~900–2500 nm and reference measurements of HFN. A partial least squares regression calibration has been built using 425 wheat samples with a HFN range of 62–318 s, including field and laboratory pre-germinated samples placed under wet conditions. Two different approaches were tested to apply calibrations: i application of the calibration to each pixel, followed by calculation of the average of the resulting values for each object (kernel; ii calculation of the average spectrum for each object, followed by application of the calibration to the mean spectrum. The calibration performance achieved for HFN (R2 = 0.6; RMSEC ~ 50 s; RMSEP ~ 63 s compares favourably with other studies using NIR spectroscopy. Linear spectral pre-treatments lead to similar results when applying the two methods, while non-linear treatments such as standard normal variate showed obvious differences between these approaches. A classification model based on linear discriminant analysis (LDA was also applied to segregate wheat kernels into low (250 s HFN groups. LDA correctly classified 86.4% of the samples, with a classification accuracy of 97.9% when using an HFN threshold of 150 s. These results are promising in terms of wheat quality assessment using a rapid and non-destructive technique which is able to analyse wheat properties on a single-kernel basis, and to classify samples as acceptable or unacceptable for flour production.

  11. Plant Extract Control of the Fungi Associated with Different Egyptian Wheat Cultivars Grains

    Directory of Open Access Journals (Sweden)

    Mohamed Baka Zakaria Awad

    2014-07-01

    Full Text Available Grain samples of 14 Egyptian wheat cultivars were tested for seed-borne fungi. The deep freezing method was used. Five seed-borne fungi viz., Aspergillus flavus, A. niger, Curvularia lunata, Fusarium moniliforme and Penicillium chrysogenum were isolated from the wheat cultivars viz., Bani Suef 4, Bani Suef 5, Gemmiza 7, Gemmiza 9, Gemmiza 10, Giza 168, Misr 1, Misr 2, Sakha 93, Sakha 94, Shandaweel 1, Sids 1, Sids 2 and Sids 3. A. flavus, A. niger and F. moniliforme were the most prevalent fungal species. Their incidence ranged from 21.0-53.5%, 16.0-37.5%, and 12.0-31.0%, respectively. The antifungal potential of water extracts from aerial parts of five wild medicinal plants (Asclepias sinaica, Farsetia aegyptia, Hypericum sinaicum, Phagnalon sinaicum, and Salvia aegyptiaca were collected from the Sinai Peninsula, Egypt. The antifungal potential of water extracts from the aerial parts of these five plants were tested in the laboratory against the dominant fungi isolated from the wheat cultivars. All the aqueous plant extracts significantly (p ≤ 0.05 reduced the incidence of the tested seed-borne fungi. But the extract of Asclepias sinaica exhibited the most antifungal activity on tested fungi at all concentrations used when compared with other plant extracts. Maximum infested grain germination was observed in Giza 168 and minimum in Bani Suef 5. Treating grains with plant extract of A. sinaica (10% enhanced the percentage of grain germination of all cultivars in both laboratory and pot experiments. Maximum root and shoot length of seedlings was recorded in Bani Suef 4 during fungal infestation or treatment by plant extract. For one hour before sowing or storage, the aqueous extract of A. sinaica can be used to treat wheat grains, to reduce the fungal incidence. Aqueous extracts of the aerial parts of selected medicinal plants, particularly A. sinaica, are promising for protecting Egyptian wheat grain cultivars against major seed-borne fungi

  12. a novel gene controlling the number of grains per panicle in rice

    Indian Academy of Sciences (India)

    ual decrease in farmland area, the average annual increase in rice production has .... physical distance was about 81.7 kb (figure 1d). Part of elec- trophoresis ... RING-type protein with E3 ubiquitin ligase activity, which increased 1000-grain ...

  13. Anthocyanin Composition and Content in Rye Plants with Different Grain Color.

    Science.gov (United States)

    Zykin, Pavel A; Andreeva, Elena A; Lykholay, Anna N; Tsvetkova, Natalia V; Voylokov, Anatoly V

    2018-04-19

    The color of grain in cereals is determined mainly by anthocyanin pigments. A large level of genetic diversity for anthocyanin content and composition in the grain of different species was observed. In rye, recessive mutations in six genes (vi1...vi6) lead to the absence of anthocyanins in all parts of the plant. Moreover, dominant genes of anthocyanin synthesis in aleurone (gene C) and pericarp (gene Vs) also affect the color of the grain. Reverse phase high-performance liquid chromatography and mass spectrometry were used to study anthocyanins in 24 rye samples. A lack of anthocyanins in the lines with yellow and brown grain was determined. Delphinidin rutinoside and cyanidin rutinoside were found in the green-seeded lines. Six samples with violet grains significantly varied in terms of anthocyanin composition and content. However, the main aglycone was cyanidin or peonidin in all of them. Monosaccharide glucose and disaccharide rutinose served as the glycoside units. Violet-seeded accession forms differ in the ratio of the main anthocyanins and the range of their acylated derivatives. The acyl groups were presented mainly by radicals of malonic and sinapic acids. For the colored forms, a profile of the revealed anthocyanins with the indication of their contents was given. The obtained results are discussed in connection to similar data in rice, barley, and wheat, which will provide a perspective for future investigations.

  14. Anthocyanin Composition and Content in Rye Plants with Different Grain Color

    Directory of Open Access Journals (Sweden)

    Pavel A. Zykin

    2018-04-01

    Full Text Available The color of grain in cereals is determined mainly by anthocyanin pigments. A large level of genetic diversity for anthocyanin content and composition in the grain of different species was observed. In rye, recessive mutations in six genes (vi1...vi6 lead to the absence of anthocyanins in all parts of the plant. Moreover, dominant genes of anthocyanin synthesis in aleurone (gene C and pericarp (gene Vs also affect the color of the grain. Reverse phase high-performance liquid chromatography and mass spectrometry were used to study anthocyanins in 24 rye samples. A lack of anthocyanins in the lines with yellow and brown grain was determined. Delphinidin rutinoside and cyanidin rutinoside were found in the green-seeded lines. Six samples with violet grains significantly varied in terms of anthocyanin composition and content. However, the main aglycone was cyanidin or peonidin in all of them. Monosaccharide glucose and disaccharide rutinose served as the glycoside units. Violet-seeded accession forms differ in the ratio of the main anthocyanins and the range of their acylated derivatives. The acyl groups were presented mainly by radicals of malonic and sinapic acids. For the colored forms, a profile of the revealed anthocyanins with the indication of their contents was given. The obtained results are discussed in connection to similar data in rice, barley, and wheat, which will provide a perspective for future investigations.

  15. Silicon treatment to rice (oryza sativa l. cv 'gopumbyeo') plants during different growth periods and its effects on growth and grain yield

    International Nuclear Information System (INIS)

    Kim, Y.H.; Waqas, M.; Kamran, M.

    2012-01-01

    Silicon (Si) has been considered a beneficial element for plant growth. We have assessed the effects of Si application on rice (Oryza sativa L.) growth and its grain yield at field level. For this, we performed two experiments. In experiment 1, we applied Si of three different concentrations (liquid Si-10, 25 and 36%) to the seedbed of rice before transplantation into paddy field. The results of this experiment showed that Si application to rice seedbeds did not affected the rice plant height and shoot fresh weight but its application significantly increased the pushing resistance of rice plants from 12.2-16.7% as compared with water applied control plants. The lodging index of Si treated rice plants significantly decreased (13.7% on LS-25) as compared with control. Similarly, Si treated plants had significantly higher yield. Upon Si treatment (LS-36), the grain yield per 10 acre and panicles per plant were 15.1% and 6. 3% higher than the water treated control plants respectively. The best concentration (LS-36%) revealed in the first experiment was foliar applied at 10 days before heading stage, initial tilling stage and panicle initiation stage to the rice leaves and we observed that shoot biomass was not significantly different between control and Si treated plants. However, significantly higher pushing resistance (10.5%-13.8%) and plant height (12.2%-16.7%) were observed while lower lodging index (7.6-7.8%) was recorded for Si treated plants as compared to control plants. Similarly, Si application increased the number of panicles per plant as well as the grain yield per 10 acre as compared to control. In conclusion, the Si application can significantly regulate plant growth and yield if applied at proper time with feasible concentration. (author)

  16. Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield.

    Science.gov (United States)

    Lee, Kyungjin; Back, Kyoungwhan

    2017-04-01

    While ectopic overexpression of serotonin N-acetyltransferase (SNAT) in plants has been accomplished using animal SNAT genes, ectopic overexpression of plant SNAT genes in plants has not been investigated. Because the plant SNAT protein differs from that of animals in its subcellular localization and enzyme kinetics, its ectopic overexpression in plants would be expected to give outcomes distinct from those observed from overexpression of animal SNAT genes in transgenic plants. Consistent with our expectations, we found that transgenic rice plants overexpressing rice (Oryza sativa) SNAT1 (OsSNAT1) did not show enhanced seedling growth like that observed in ovine SNAT-overexpressing transgenic rice plants, although both types of plants exhibited increased melatonin levels. OsSNAT1-overexpressing rice plants did show significant resistance to cadmium and senescence stresses relative to wild-type controls. In contrast to tomato, melatonin synthesis in rice seedlings was not induced by selenium and OsSNAT1 transgenic rice plants did not show tolerance to selenium. T 2 homozygous OsSNAT1 transgenic rice plants exhibited increased grain yield due to increased panicle number per plant under paddy field conditions. These benefits conferred by ectopic overexpression of OsSNAT1 had not been observed in transgenic rice plants overexpressing ovine SNAT, suggesting that plant SNAT functions differently from animal SNAT in plants. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Airborne and Grain Dust Fungal Community Compositions Are Shaped Regionally by Plant Genotypes and Farming Practices.

    Science.gov (United States)

    Pellissier, Loïc; Oppliger, Anne; Hirzel, Alexandre H; Savova-Bianchi, Dessislava; Mbayo, Guilain; Mascher, Fabio; Kellenberger, Stefan; Niculita-Hirzel, Hélène

    2016-01-29

    Chronic exposure to airborne fungi has been associated with different respiratory symptoms and pathologies in occupational populations, such as grain workers. However, the homogeneity in the fungal species composition of these bioaerosols on a large geographical scale and the different drivers that shape these fungal communities remain unclear. In this study, the diversity of fungi in grain dust and in the aerosols released during harvesting was determined across 96 sites at a geographical scale of 560 km(2) along an elevation gradient of 500 m by tag-encoded 454 pyrosequencing of the internal transcribed spacer (ITS) sequences. Associations between the structure of fungal communities in the grain dust and different abiotic (farming system, soil characteristics, and geographic and climatic parameters) and biotic (wheat cultivar and previous crop culture) factors were explored. These analyses revealed a strong relationship between the airborne and grain dust fungal communities and showed the presence of allergenic and mycotoxigenic species in most samples, which highlights the potential contribution of these fungal species to work-related respiratory symptoms of grain workers. The farming system was the major driver of the alpha and beta phylogenetic diversity values of fungal communities. In addition, elevation and soil CaCO3 concentrations shaped the alpha diversity, whereas wheat cultivar, cropping history, and the number of freezing days per year shaped the taxonomic beta diversity of these communities. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Airborne and Grain Dust Fungal Community Compositions Are Shaped Regionally by Plant Genotypes and Farming Practices

    Science.gov (United States)

    Pellissier, Loïc; Oppliger, Anne; Hirzel, Alexandre H.; Savova-Bianchi, Dessislava; Mbayo, Guilain; Mascher, Fabio; Kellenberger, Stefan

    2016-01-01

    Chronic exposure to airborne fungi has been associated with different respiratory symptoms and pathologies in occupational populations, such as grain workers. However, the homogeneity in the fungal species composition of these bioaerosols on a large geographical scale and the different drivers that shape these fungal communities remain unclear. In this study, the diversity of fungi in grain dust and in the aerosols released during harvesting was determined across 96 sites at a geographical scale of 560 km2 along an elevation gradient of 500 m by tag-encoded 454 pyrosequencing of the internal transcribed spacer (ITS) sequences. Associations between the structure of fungal communities in the grain dust and different abiotic (farming system, soil characteristics, and geographic and climatic parameters) and biotic (wheat cultivar and previous crop culture) factors were explored. These analyses revealed a strong relationship between the airborne and grain dust fungal communities and showed the presence of allergenic and mycotoxigenic species in most samples, which highlights the potential contribution of these fungal species to work-related respiratory symptoms of grain workers. The farming system was the major driver of the alpha and beta phylogenetic diversity values of fungal communities. In addition, elevation and soil CaCO3 concentrations shaped the alpha diversity, whereas wheat cultivar, cropping history, and the number of freezing days per year shaped the taxonomic beta diversity of these communities. PMID:26826229

  19. Effect of plant characteristics on the number of personnel

    International Nuclear Information System (INIS)

    Martin, H.D.

    1986-01-01

    Power plant organization and staff categories. Influence of plant size. Influence of plant complexity. Specifics of plant site and infrastructure. Contractual requirements for off-site activities. On-site requirements. Overstaffing, understaffing, promotion and motivation. (orig.)

  20. Effect of Planting Patterns' and Plant Population on Some of Morphological Traits, Harvest Index and Conservable Grain Yield of Sweet Corn

    Directory of Open Access Journals (Sweden)

    M. Nasrolah Alhossini

    2012-04-01

    Full Text Available Sweet corn is one of the most important crops in Iran and due to its short period of growth, it has been an important position after wheat and barley in khorasane Razavi Province. In this study two methods of planting (one raised bed and furrow planting and 3 plant densities (65000, 75000 and 85000 plant/ha was evaluated on some of Morphological Traits, harvest index and conservable grain yield of sweet Corn(Chase and KSC403su Varieties in Torbat-e-Heidarie in saline (4.060ds/m condition on 2009. The experimental design was factorial based on RCBC with 4 replications. The result of ANOVA showed significant differences between Anthesis silking interval (ASI, tassel length, plant height, ear height, stem diameter, harvest index, and conservable grain yield of sweet corn varieties that effected by planting methods. the highest harvest index was belonged to Chase in 75000 Plant/ha on one raised bed planting method with 31.75% and the lowest mean was belonged to KSC403su in 85000 Plant/ha on furrow planting method with 14.93%. In addition the highest grain yield was belonged to chase variety at 75000 plant/ha and furrow planting method with 11.912 ton/ha, while the lowest grain yield was belonged to KSC403su variety at 85000 plant/ha and raised bed planting (3.610 ton/ha. The Chase variety was better than KSC403su Due to its canopy and photo period is shorter than KSC403su. The superiority of Chase variety can be related to better distribution of leaves, highest harvest index, conservable grain yield and plant arrangement in the row.

  1. Rice planted along with accumulators in arsenic amended plots reduced arsenic uptake in grains and shoots.

    Science.gov (United States)

    Praveen, Ashish; Mehrotra, Sonali; Singh, Nandita

    2017-10-01

    An experiment was designed using phytoremadiation technology to obtain grains of rice safe for consumption. Sixteen plots of size 2 × 2 m were prepared (8 plots were treated with 50 mg kg -1 of sodium arsenate and rest 8 without any treatment). The study was done for two plantations (1st and 2nd plantation). Rice was planted with three accumulators (Phragmites australis, Vetiveria zizanioides and Pteris vitatta) in treated and untreated plot. Arsenic in grains of Actr (R + Pt, R + Ph and R + Vt) for 1st plantation was 0.4, 0.2 and 0.2 mg kg -1 where as in the case of wActr (Ras) it was 3 mg kg -1 . In 2nd plantation the concentration of arsenic in grain of Actr (R + Pt, R + Ph and R + Vt) was 0.1, 0.1 and 0.1 mg kg -1 where as in the case of wActr (Ras) it was 2 mg kg -1 . Significant differences in growth and yield parameters of rice between Actr and wActr in 1st plantation, while for 2nd plantation the activity was reduced in combinations except R + Pt and no significant difference was observed between Actr, Acntr and wActr. The study concluded that combinations of accumulators with crops could be useful for the survival and safe grains in As-contaminated soils but with some amendments in long-term remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Relationship between QTL for grain shape, grain weight, test weight, milling yield, and plant height in the spring wheat cross RL4452/'AC Domain'.

    Science.gov (United States)

    Cabral, Adrian L; Jordan, Mark C; Larson, Gary; Somers, Daryl J; Humphreys, D Gavin; McCartney, Curt A

    2018-01-01

    Kernel morphology characteristics of wheat are complex and quantitatively inherited. A doubled haploid (DH) population of the cross RL4452/'AC Domain' was used to study the genetic basis of seed shape. Quantitative trait loci (QTL) analyses were conducted on a total of 18 traits: 14 grain shape traits, flour yield (Fyd), and three agronomic traits (Plant height [Plht], 1000 Grain weight [Gwt], Test weight [Twt]), using data from trial locations at Glenlea, Brandon, and Morden in Manitoba, Canada, between 1999 and 2004. Kernel shape was studied through digital image analysis with an Acurum® grain analyzer. Plht, Gwt, Twt, Fyd, and grain shape QTL were correlated with each other and QTL analysis revealed that QTL for these traits often mapped to the same genetic locations. The most significant QTL for the grain shape traits were located on chromosomes 4B and 4D, each accounting for up to 24.4% and 53.3% of the total phenotypic variation, respectively. In addition, the most significant QTL for Plht, Gwt, and Twt were all detected on chromosome 4D at the Rht-D1 locus. Rht-D1b decreased Plht, Gwt, Twt, and kernel width relative to the Rht-D1a allele. A narrow genetic interval on chromosome 4B contained significant QTL for grain shape, Gwt, and Plht. The 'AC Domain' allele reduced Plht, Gwt, kernel length and width traits, but had no detectable effect on Twt. The data indicated that this variation was inconsistent with segregation at Rht-B1. Numerous QTL were identified that control these traits in this population.

  3. Relationship between QTL for grain shape, grain weight, test weight, milling yield, and plant height in the spring wheat cross RL4452/‘AC Domain’

    Science.gov (United States)

    Cabral, Adrian L.; Jordan, Mark C.; Larson, Gary; Somers, Daryl J.; Humphreys, D. Gavin

    2018-01-01

    Kernel morphology characteristics of wheat are complex and quantitatively inherited. A doubled haploid (DH) population of the cross RL4452/‘AC Domain’ was used to study the genetic basis of seed shape. Quantitative trait loci (QTL) analyses were conducted on a total of 18 traits: 14 grain shape traits, flour yield (Fyd), and three agronomic traits (Plant height [Plht], 1000 Grain weight [Gwt], Test weight [Twt]), using data from trial locations at Glenlea, Brandon, and Morden in Manitoba, Canada, between 1999 and 2004. Kernel shape was studied through digital image analysis with an Acurum® grain analyzer. Plht, Gwt, Twt, Fyd, and grain shape QTL were correlated with each other and QTL analysis revealed that QTL for these traits often mapped to the same genetic locations. The most significant QTL for the grain shape traits were located on chromosomes 4B and 4D, each accounting for up to 24.4% and 53.3% of the total phenotypic variation, respectively. In addition, the most significant QTL for Plht, Gwt, and Twt were all detected on chromosome 4D at the Rht-D1 locus. Rht-D1b decreased Plht, Gwt, Twt, and kernel width relative to the Rht-D1a allele. A narrow genetic interval on chromosome 4B contained significant QTL for grain shape, Gwt, and Plht. The ‘AC Domain’ allele reduced Plht, Gwt, kernel length and width traits, but had no detectable effect on Twt. The data indicated that this variation was inconsistent with segregation at Rht-B1. Numerous QTL were identified that control these traits in this population. PMID:29357369

  4. Copy number ratios determined by two digital polymerase chain reaction systems in genetically modified grains

    Science.gov (United States)

    Pérez Urquiza, M.; Acatzi Silva, A. I.

    2014-02-01

    Three certified reference materials produced from powdered seeds to measure the copy number ratio sequences of p35S/hmgA in maize containing MON 810 event, p35S/Le1 in soybeans containing GTS 40-3-2 event and DREB1A/acc1 in wheat were produced according to the ISO Guides 34 and 35. In this paper, we report digital polymerase chain reaction (dPCR) protocols, performance parameters and results of copy number ratio content of genetically modified organisms (GMOs) in these materials using two new dPCR systems to detect and quantify molecular deoxyribonucleic acid: the BioMark® (Fluidigm) and the OpenArray® (Life Technologies) systems. These technologies were implemented at the National Institute of Metrology in Mexico (CENAM) and in the Reference Center for GMO Detection from the Ministry of Agriculture (CNRDOGM), respectively. The main advantage of this technique against the more-used quantitative polymerase chain reaction (qPCR) is that it generates an absolute number of target molecules in the sample, without reference to standards or an endogenous control, which is very useful when not much information is available for new developments or there are no standard reference materials in the market as in the wheat case presented, or when it was not possible to test the purity of seeds as in the maize case presented here. Both systems reported enhanced productivity, increased reliability and reduced instrument footprint. In this paper, the performance parameters and uncertainty of measurement obtained with both systems are presented and compared.

  5. Processing cereal grains, thin stillage, and cheese whey to fuel ethanol in a farm-scale plant

    Energy Technology Data Exchange (ETDEWEB)

    Gibbons, W R; Westby, C A

    1988-01-01

    Hydrous fuel ethanol (95%) and distiller's wet grain (DWG) were produced in a farm-scale plant from corn, wheat, and grain sorghum particles of various sizes, from corn combined with thin stillage-whey, and from various other cereal grains. These variations were made in a search to find the best set of conditions for maximizing the energy balance and minimizing the cost of ethanol production. We found that the optimum hammermill screen size for corn, wheat, and grain sorghum was 1.59 - 2.38 mm. In tests with thin stillage and whey a higher energy balance (2.91) occurred when one part whey was mixed with three parts stillage, rather than the reverse (2.69). However, the reverse (three parts whey and one part stillage) gave a lower ethanol cost ($0.45 liter/sup -1/) than the original ($0.47 liter/sup -1/). Tests with various cereal grains (corn, oats, wheat, barley, rye, and grain sorghum) gave identical energy balance values (2.26) when 10% (v/v) ethanol beers were produced. However, rye ($0.50 liter/sup -1/), grain sorghum ($0.46 liter/sup -1/), and corn ($0.51 liter/sup -1/) yielded ethanol at the lowest net cost. Recommendations for farm-scale plants are also provided.

  6. Effects of Sowing Date, Planting Pattern and Nitrogen Levels on Leaf and Flower Essential Oil, Yield and Component Yield Grain of Buckwheat (Fagopyroum esculentum Moench

    Directory of Open Access Journals (Sweden)

    M. R Sobhani

    2017-12-01

    distance intervals of 20 cm (P1 and those with the width of 60 cm along with three planting rows which are of the distance intervals of 15 cm (P2. Sowing date and nitrogen treatments were considered as the minor elements are likely to be studied at four levels of dates and weights involving 20th June (D1, 5th July (D2, 20th July (D3 and 5th August (D4 and 0 (N1, 50 (N2, 100 (N3 and 150 kg ha-1 (N4, respectively. With respect to the fixed density of 100 plants per square meter, the distances between the planting lines were specified as four and five cm for treatments of P1 and P2, respectively. Dimensions of each plot for the planting patterns of P1 and P2 have been determined as 1.6×2 and 1.6×2.4 m consisting of four planting rows. Results and Discussion Results showed that the interaction effects of sowing date×planting pattern × nitrogen were significant on grain yield and 1000- grain weight (p≤0.05. the number of seeds in plant, leaf and flower rutin percent also were significant (p≤0.01. But, number of bunch in the plant were non significantly. Maximum grain yield with 2857 kgha-1, 1000- grain weight (29.28 g, and number of the seeds in the plant 434.1 was observed P2D3N3. The highest of number of bunch in the plant with 33.20 was produced P2D2N3. Maximum leaf rutin percent with 1.01 was observed to P2D2N4 treatment also highest flower rutin percent (1.36% observed to P1D3N3 treatment. The lowest rates of grain yield as 1074 kg ha-1, 1000- grain weight as (23.96 g, number of bunch in the plant (11.72, number of seeds (60.18, leaf rutin (0.14% and flower rutin (0.30% have been found for the treatments of P1D3N1, P2D4N2, P2D4N2, P1D4N2, P2D2N1, P2D3N2. Conclusions If application of this plant is just for grain consumption, the treatment P2D3N3 to produce active substances as a medicinal plant should be considered. For the extraction rutin leaves P2D4N4 treatment and flower P1D3N3 treatment is suitable for extraction rutin.

  7. Brassinosteroids Regulate OFP1, a DLT Interacting Protein, to Modulate Plant Architecture and Grain Morphology in Rice

    Directory of Open Access Journals (Sweden)

    Yunhua Xiao

    2017-09-01

    Full Text Available Brassinosteroids (BRs regulate important agronomic traits in rice, including plant height, leaf angle, and grain size. However, the underlying mechanisms remain not fully understood. We previously showed that GSK2, the central negative regulator of BR signaling, targets DLT, the GRAS family protein, to regulate BR responses. Here, we identified Ovate Family Protein 1 (OFP1 as a DLT interacting protein. OFP1 was ubiquitously expressed and the protein was localized in both cytoplasm and nucleus. Overexpression of OFP1 led to enlarged leaf angles, reduced plant height, and altered grain shape, largely resembled DLT overexpression plants. Genetic analysis showed that the regulation of plant architecture by OFP1 depends on DLT function. In addition, we found OFP1 was greatly induced by BR treatment, and OsBZR1, the critical transcription factor of BR signaling, was physically associated with the OFP1 promoter. Moreover, we showed that gibberellin synthesis was greatly repressed in OFP1 overexpression plants, suggesting OFP1 participates in the inhibition of plant growth by high BR or elevated BR signaling. Furthermore, we revealed that OFP1 directly interacts with GSK2 kinase, and inhibition of the kinase activity significantly promotes OFP1 protein accumulation in plant. Taken together, we identified OFP1 as an additional regulator of BR responses and revealed how BRs promote OFP1 at both transcription and protein levels to modulate plant architecture and grain morphology in rice.

  8. Response of rice plants to heat stress during initiation of panicle primordia or grain-filling phases

    Directory of Open Access Journals (Sweden)

    Hermann Restrepo-Diaz

    2013-08-01

    Full Text Available Leaf photosynthesis, a major determinant for yield sustainability in rice, is greatly conditioned by high temperature stress during growth. The effect of short-term high temperatures on leaf photosynthesis, stomatal conductance, Fv/Fm, SPAD readings and yield characteristics was studied in two Colombian rice cultivars. Two genotypes, cv. Fedearroz 50 (F50 and cv. Fedearroz 733 (F733 were used in pot experiments with heat stress treatment (Plants were exposed to 40°C for two and half hours for five consecutive days and natural temperature (control treatment. Heat treatments were carried out at the initiation of panicle primordial (IP or grain-filling (GF phases. The results showed that short-term high temperature stress produced a reduction on the photosynthesis rate in both cultivars either IP or GF phases. Similar trends were found on stomatal conductance in all cases due to high temperatures. Although Fv/Fm and SPAD readings were not affected by high temperatures, these variables diminished significantly among phenological phases. 'F733' rice plants showed higher number spikelet sterility due to heat stress treatments. These results seem to indicate that heat-tolerant cultivars of rice is associated with high levels of photosynthesis rate in leaves.

  9. How Planting Density Affects Number and Yield of Potato Minitubers in a Commercial Glasshouse Production System

    NARCIS (Netherlands)

    Veeken, van der A.J.H.; Lommen, W.J.M.

    2009-01-01

    Commercial potato minituber production systems aim at high tuber numbers per plant. This study investigated by which mechanisms planting density (25.0, 62.5 and 145.8 plants/m2) of in vitro derived plantlets affected minituber yield and minituber number per plantlet. Lowering planting density

  10. Replacement of mineral fertilizers with anaerobically digested pig slurry in paddy fields: assessment of plant growth and grain quality.

    Science.gov (United States)

    Zhang, Jin; Wang, Minyan; Cao, Yucheng; Liang, Peng; Wu, Shengchun; Leung, Anna Oi Wah; Christie, Peter

    2017-04-01

    Rice cultivation requires large quantities of irrigation water and mineral fertilizers. This provides an opportunity for the recycling of the plant nutrients in anaerobically digested pig slurry, large amounts of which are generated in Chinese pig farms. Hence, to promote the sustainable development of livestock and poultry breeding and rice production, a micro-plot field experiment was carried out to assess whether or not slurry can replace mineral fertilizers in rice paddy production in terms of plant tillering, grain quality, and yields. The results indicate that the total N content of the slurry can serve as an alternative source of N when compared to the control (450 kg ha -1 commercial compound fertilizer (N/P 2 O 5 /K 2 O = 15:15:15) as basal fertilizer, 300 kg ha -1 urea (N% = 46), and 150 kg ha -1 commercial compound fertilizer as top-dressed fertilizer). No negative effects on plant growth or grain yield were observed, although there may be a potential risk due to an increase in grain Cu concentration. The amylose content and gel consistency of the rice grains were enhanced significantly by the use of slurry as a basal fertilizer, but the grain protein and total amino acid contents decreased. The results suggest that anaerobically digested pig slurry can replace mineral fertilizers in rice production when applied as a basal dressing together with urea and commercial compound fertilizer as top-dressed fertilizers.

  11. Number of endemic and native plant species in the Galapagos Archipelago in relation to geographical parameters

    DEFF Research Database (Denmark)

    Willerslev, Eske; Hansen, Anders J.; Nielsen, Kirstine Klitgaard

    2002-01-01

    By simple and multiple regression analyses we investigate updated species numbers of endemic and native vascular plants and seed plants in the Galapagos Archipelago in relation to geographical parameters. We find that the best models to describe species numbers are regression models with log......-transformed species numbers as dependent and log-transformed modified area (i.e. area not covered with barren lava) as an independent variable. This holds both for total species number, for native species number, for endemic species number and for total number of seed plants as well as number of endemic seed plants...

  12. Study of Cytokinin and Auxin Hormones and Planting Pattern Effects on Yield and Yield Components of Grain Maize (Zea mays L. under Saline Conditions

    Directory of Open Access Journals (Sweden)

    D Davani

    2016-07-01

    concentration of 50 and 10 g. l-1, respectively. All morphological and yield component traits measured on 10 randomly selected plants of each plot. Yield was measured in 9 m2 for each treatment. Data analyzed using the SAS (Ver.9.1 and comparing of the means was conducted using Duncan’s multiple range test. Results and Discussion Results showed that the planting pattern had a significant effect on plant height, ear (cob length, ear diameter, kernel row number, per ear, kernel number per row, 1000- kernel weight, biological yield, grain yield and harvest index. The highest and the lowest yield obtained through furrow planting and conventional planting, respectively. Applying furrow planting, resulted in water use improvement and reducing side effects of saline soils Cytokinin application in V8- V10 stage produced the highest plant height and row number per ear and the highest 1000- kernel weight and harvest index was belong to the application of cytokinin in V8- V10 stage. The maximum kernel number per row was obtained without cytokinin. Auxin effect on 1000- kernel weight, biological yield, grain yield and harvest index were significant (p≤0.01. The highest grain yield by a mean of 6.57 tons.ha-1 produced by time of auxin foliar-applied in the silking stage. It has been found that both auxin and cytokinin may have a role in mediating cell division in the endosperm during the grain-filling stage. Therefore, these hormones might regulate the grain capacity (sink size for the accumulation of carbohydrates. It has been found that IAA actively participated in the mobilization and accumulation of carbohydrates in seeds. Auxin and cytokinins hormones are also thought to be involved in regulating the sink strength either by mediating the division and enlargement of endosperm cells or by controlling the import of assimilates to the sink. Conclusions The results indicated that the foliar application of cytokinine and auxin hormones counteracted some of the salt induced adverse

  13. Zinc Concentration in Rice (Oryza sativa L.) Grains and Allocation in Plants as Affected by Different Zinc Fertilization Strategies

    NARCIS (Netherlands)

    Yin, Hong Juan; Gao, Xiao Peng; Stomph, Tjeerd Jan; Li, Lu Jiu; Zhang, Fu Suo; Zou, Chun Qin

    2016-01-01

    Concern over the food chain transfer of zinc (Zn) is increasing because of its importance in human health. A field experiment was conducted on a low Zn soil to determine the effect of different Zn fertilization strategies on grain Zn concentration and Zn allocation in different plant tissues of

  14. Systematic NMR Analysis of Stable Isotope Labeled Metabolite Mixtures in Plant and Animal Systems: Coarse Grained Views of Metabolic Pathways

    Science.gov (United States)

    Chikayama, Eisuke; Suto, Michitaka; Nishihara, Takashi; Shinozaki, Kazuo; Hirayama, Takashi; Kikuchi, Jun

    2008-01-01

    Background Metabolic phenotyping has become an important ‘bird's-eye-view’ technology which can be applied to higher organisms, such as model plant and animal systems in the post-genomics and proteomics era. Although genotyping technology has expanded greatly over the past decade, metabolic phenotyping has languished due to the difficulty of ‘top-down’ chemical analyses. Here, we describe a systematic NMR methodology for stable isotope-labeling and analysis of metabolite mixtures in plant and animal systems. Methodology/Principal Findings The analysis method includes a stable isotope labeling technique for use in living organisms; a systematic method for simultaneously identifying a large number of metabolites by using a newly developed HSQC-based metabolite chemical shift database combined with heteronuclear multidimensional NMR spectroscopy; Principal Components Analysis; and a visualization method using a coarse-grained overview of the metabolic system. The database contains more than 1000 1H and 13C chemical shifts corresponding to 142 metabolites measured under identical physicochemical conditions. Using the stable isotope labeling technique in Arabidopsis T87 cultured cells and Bombyx mori, we systematically detected >450 HSQC peaks in each 13C-HSQC spectrum derived from model plant, Arabidopsis T87 cultured cells and the invertebrate animal model Bombyx mori. Furthermore, for the first time, efficient 13C labeling has allowed reliable signal assignment using analytical separation techniques such as 3D HCCH-COSY spectra in higher organism extracts. Conclusions/Significance Overall physiological changes could be detected and categorized in relation to a critical developmental phase change in B. mori by coarse-grained representations in which the organization of metabolic pathways related to a specific developmental phase was visualized on the basis of constituent changes of 56 identified metabolites. Based on the observed intensities of 13C atoms of

  15. Effect of sowing date and plant density on grain and flower yield of Pot Marigold (Calendula officinalis L.

    Directory of Open Access Journals (Sweden)

    mohamad javad seghatol eslami

    2009-06-01

    Full Text Available Pot marigold (Calendula officinalis L. is a medicinal herb whose dried flower heads are used to heal wounds. In order to study the effects of sowing dates and plant density on grain and flower yield of pot marigold, an experiment was conducted at Agricultural Research Center of Islamic Azad University, Birjand Branch in 2005. Three sowing dates (30 March, 14 April and 30 April and three plant densities (plant distances on row were 10, 20 and 30 centimeters were compared in a split- plot experiment based on a randomized complete block design with 3 replications. Seed and flower yields were significantly different at planting dates and plant densities. Sowing date had significant effects on flower and seed harvest index. The latest sowing dates had the highest flower and seed harvest index. Plant density had not significant effect on flower harvest index, but the effect on seed harvest index, was significant. In total our result showed that the first sowing date with 25 plants/m2 had the highest grain and flower yield. Keywords: Marigold, sowing date, plant density, medicinal plant.

  16. Constitutive expression of CaPLA1 conferred enhanced growth and grain yield in transgenic rice plants.

    Science.gov (United States)

    Park, Ki Youl; Kim, Eun Yu; Seo, Young Sam; Kim, Woo Taek

    2016-03-01

    Phospholipids are not only important components of cell membranes, but participate in diverse processes in higher plants. In this study, we generated Capsicum annuum phospholipiase A1 (CaPLA1) overexpressing transgenic rice (Oryza sativa L.) plants under the control of the maize ubiquitin promoter. The T4 CaPLA1-overexpressing rice plants (Ubi:CaPLA1) had a higher root:shoot mass ratio than the wild-type plants in the vegetative stage. Leaf epidermal cells from transgenic plants had more cells than wild-type plants. Genes that code for cyclin and lipid metabolic enzymes were up-regulated in the transgenic lines. When grown under typical paddy field conditions, the transgenic plants produced more tillers, longer panicles and more branches per panicle than the wild-type plants, all of which resulted in greater grain yield. Microarray analysis suggests that gene expressions that are related with cell proliferation, lipid metabolism, and redox state were widely altered in CaPLA1-overexpressing transgenic rice plants. Ubi:CaPLA1 plants had a reduced membrane peroxidation state, as determined by malondialdehyde and conjugated diene levels and higher peroxidase activity than wild-type rice plants. Furthermore, three isoprenoid synthetic genes encoding terpenoid synthase, hydroxysteroid dehydrogenase and 3-hydroxy-3-methyl-glutaryl-CoA reductase were up-regulated in CaPLA1-overexpressing plants. We suggest that constitutive expression of CaPLA1 conferred increased grain yield with enhanced growth in transgenic rice plants by alteration of gene activities related with cell proliferation, lipid metabolism, membrane peroxidation state and isoprenoid biosynthesis.

  17. The damage caused by Callosobruchus maculatus on cowpea grains is dependent on the plant genotype.

    Science.gov (United States)

    Torres, Elida Barros; Nóbrega, Rafaela S A; Fernandes-Júnior, Paulo Ivan; Silva, Luciana Barboza; Dos Santos Carvalho, Gabriel; Marinho, Rita de Cassia Nunes; Pavan, Bruno E

    2016-09-01

    Beans from cowpea cultivars fertilized with mineral N or inoculated with various rhizobium strains may contain different nitrogen concentrations and nitrogen metabolite composition, which affects the beans' defense mechanisms against pests. In this study, the population growth of Callosobruchus maculatus reared on beans from four cowpea cultivars fertilized with different nitrogen sources was evaluated. The factors tested were beans from four cowpea cultivars and seven different nitrogen sources: mineral N fertilization, inoculation with five strains of symbiotic diazotrophic bacteria, and soil nitrogen (absolute control). BRS Tapaihum and BRS Acauã cultivars had lower cumulative emergence and instantaneous rate of population growth of the insects compared with other cultivars, indicating antixenosis resistance against C. maculatus. Inoculation of BRS Acauã cultivar with the diazotrophic bacteria strain BR 3299 resulted in higher mortality of C. maculatus. For BRS Tapaihum cultivar, inoculation with diazotrophic bacteria strains BR3267, BR 3262 and BR 3299, and nitrogen fertilization resulted in higher mortality among C. maculatus. BRS Tapaihum and BRS Acauã cultivars showed the lowest cumulative insect emergence and instantaneous rates of population growth, and the highest insect mortality, mainly when the grains were obtained from plants inoculated with rhizobial strains. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Radiation and nitrogen use at the leaf and canopy level by wheat and oilseed rape during the critical period for grain number definition

    International Nuclear Information System (INIS)

    Dreccer, M.F.; Schapendonk, H.C.M.; Oijen, M. van; Pot, C.S.; Rabbinge, R.

    2000-01-01

    During the critical period for grain number definition, the amount of biomass produced per unit absorbed radiation is more sensitive to nitrogen (N) supply in oilseed rape than in wheat, and reaches a higher value at high N. This response was investigated by combining experimental and modelling work. Oilseed rape and wheat were grown at three levels of N supply, combined with two levels of plant density at high N supply. Canopy photosynthesis and daytime radiation use efficiency (RUE A ) were calculated with a model based on observed N-dependent leaf photosynthesis and observed canopy vertical distribution of light and leaf N. In oilseed rape, RUE A was higher than in wheat and, in contrast to wheat, the sensitivity to canopy leaf N content increased from the start to the end of the critical period. These results were partly explained by the higher leaf photosynthesis in oilseed rape vs wheat. In addition, oilseed rape leaves were increasingly shaded by the inflorescence. Thus, RUE A increased because more leaves were operating at non-saturating light levels. In both species, the vertical distribution of leaf N was close to that optimising canopy photosynthesis. The results are discussed in relation to possibilities for improvement of N productivity in these crops. (author)

  19. Effects of Nano-Zinc oxide and Seed Inoculation by Plant Growth Promoting Rhizobacteria (PGPR on Yield, Yield Components and Grain Filling Period of Soybean (Glycine max L.

    Directory of Open Access Journals (Sweden)

    R. Seyed Sharifi

    2016-02-01

    promoting rhizobacteria application on yield, yield components and grain filling period of soybean. Materials and Methods In order to study the effects of Nano-Zinc oxide and seed inoculation with Brady rhizobium and plant growth promoting rhizobacteria on yield and some agronomic characteristics of soybean, a factorial experiment based on randomized complete block design with three replications was conducted in 2013 at the research farm of the Islamic Azad University, Ardabil Branch. Factors were included foliar application of Nano-Zinc oxide at four levels (Zero as control, 0.3, 0.6 and 0.9 g l-1 and seed inoculation with Brady rhizobium and plant growth promoting rhizobacteria at five levels (without inoculation as control, seed inoculation with Brady rhizobium japanicum, seed inoculation with Brady rhizobium japanicum+Azosprillum lipoferum strain OF, seed inoculation with Brady rhizobium japanicum+Psedomonas putida, seed inoculation with Brady rhizobium japanicum+ Azosprillum lipoferum strain OF+ Psedomonas putida. Results and Discussion The results of growth indices showed that the maximum total dry matter (530 g m-2, crop growth rate (9.48 g.m-2.day-1 and relative growth rate (0.1 g.g-1.day-1 were obtained at foliar application of 0.9 g l-1 Nano-Zinc oxide×seed inoculation with rhizobium+Azosprillum+ Psedomonas and the least of these indices were obtained without of foliar application Nano-Zinc oxide × seed inoculation. The results showed that plant height, the number of nodules per plant, the number of pod per plant, grain yield and grain 100 weight were significantly affected by Nano-Zinc oxide, seed inoculation and interaction of Nano-Zinc oxide×seed inoculation. Maximum of plant height, grain 100 weight, the number of nodules per plant and grain yield were obtained at foliar application of 0.9 g l-1 of Nano-Zinc oxide×seed inoculation with rhizobium and PGPR. Dry weight of nodules per plant, the number of pod per plant and the number of grains per plant

  20. A novel allele of TaGW2-A1 is located in a finely mapped QTL that increases grain weight but decreases grain number in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Zhai, Huijie; Feng, Zhiyu; Du, Xiaofen; Song, Yane; Liu, Xinye; Qi, Zhongqi; Song, Long; Li, Jiang; Li, Linghong; Peng, Huiru; Hu, Zhaorong; Yao, Yingyin; Xin, Mingming; Xiao, Shihe; Sun, Qixin; Ni, Zhongfu

    2018-03-01

    A novel TaGW2-A1 allele was identified from a stable, robust QTL region, which is pleiotropic for thousand grain weight, grain number per spike, and grain morphometric parameters in wheat. Thousand grain weight (TGW) and grain number per spike (GNS) are two crucial determinants of wheat spike yield, and genetic dissection of their relationships can help to fine-tune these two components and maximize grain yield. By evaluating 191 recombinant inbred lines in 11 field trials, we identified five genomic regions on chromosomes 1B, 3A, 3B, 5B, or 7A that solely influenced either TGW or GNS, and a further region on chromosome 6A that concurrently affected TGW and GNS. The QTL of interest on chromosome 6A, which was flanked by wsnp_BE490604A_Ta_2_1 and wsnp_RFL_Contig1340_448996 and designated as QTgw/Gns.cau-6A, was finely mapped to a genetic interval shorter than 0.538 cM using near isogenic lines (NILs). The elite NILs of QTgw/Gns.cau-6A increased TGW by 8.33%, but decreased GNS by 3.05% in six field trials. Grain Weight 2 (TaGW2-A1), a well-characterized gene that negatively regulates TGW and grain width in wheat, was located within the finely mapped interval of QTgw/Gns.cau-6A. A novel and rare TaGW2-A1 allele with a 114-bp deletion in the 5' flanking region was identified in the parent with higher TGW, and it reduced TaGW2-A1 promoter activity and expression. In conclusion, these results expand our knowledge of the genetic and molecular basis of TGW-GNS trade-offs in wheat. The QTLs and the novel TaGW2-A1 allele are likely useful for the development of cultivars with higher TGW and/or higher GNS.

  1. Radiation and nitrogen use at the leaf and canopy level by wheat and oilseed rape during the critical period for grain number definition

    NARCIS (Netherlands)

    Dreccer, M.F.; Schapendonk, A.H.C.M.; Oijen, van M.; Pot, C.S.; Rabbinge, R.

    2000-01-01

    During the critical period for grain number definition, the amount of biomass produced per unit absorbed radiation is more sensitive to nitrogen (N) supply in oilseed rape than in wheat, and reaches a higher value at high N. This response was investigated by combining experimental and modelling

  2. Genome-Wide Association Study for Traits Related to Plant and Grain Morphology, and Root Architecture in Temperate Rice Accessions.

    Science.gov (United States)

    Biscarini, Filippo; Cozzi, Paolo; Casella, Laura; Riccardi, Paolo; Vattari, Alessandra; Orasen, Gabriele; Perrini, Rosaria; Tacconi, Gianni; Tondelli, Alessandro; Biselli, Chiara; Cattivelli, Luigi; Spindel, Jennifer; McCouch, Susan; Abbruscato, Pamela; Valé, Giampiero; Piffanelli, Pietro; Greco, Raffaella

    2016-01-01

    In this study we carried out a genome-wide association analysis for plant and grain morphology and root architecture in a unique panel of temperate rice accessions adapted to European pedo-climatic conditions. This is the first study to assess the association of selected phenotypic traits to specific genomic regions in the narrow genetic pool of temperate japonica. A set of 391 rice accessions were GBS-genotyped yielding-after data editing-57000 polymorphic and informative SNPS, among which 54% were in genic regions. In total, 42 significant genotype-phenotype associations were detected: 21 for plant morphology traits, 11 for grain quality traits, 10 for root architecture traits. The FDR of detected associations ranged from 3 · 10-7 to 0.92 (median: 0.25). In most cases, the significant detected associations co-localised with QTLs and candidate genes controlling the phenotypic variation of single or multiple traits. The most significant associations were those for flag leaf width on chromosome 4 (FDR = 3 · 10-7) and for plant height on chromosome 6 (FDR = 0.011). We demonstrate the effectiveness and resolution of the developed platform for high-throughput phenotyping, genotyping and GWAS in detecting major QTLs for relevant traits in rice. We identified strong associations that may be used for selection in temperate irrigated rice breeding: e.g. associations for flag leaf width, plant height, root volume and length, grain length, grain width and their ratio. Our findings pave the way to successfully exploit the narrow genetic pool of European temperate rice and to pinpoint the most relevant genetic components contributing to the adaptability and high yield of this germplasm. The generated data could be of direct use in genomic-assisted breeding strategies.

  3. Genome-Wide Association Study for Traits Related to Plant and Grain Morphology, and Root Architecture in Temperate Rice Accessions.

    Directory of Open Access Journals (Sweden)

    Filippo Biscarini

    Full Text Available In this study we carried out a genome-wide association analysis for plant and grain morphology and root architecture in a unique panel of temperate rice accessions adapted to European pedo-climatic conditions. This is the first study to assess the association of selected phenotypic traits to specific genomic regions in the narrow genetic pool of temperate japonica. A set of 391 rice accessions were GBS-genotyped yielding-after data editing-57000 polymorphic and informative SNPS, among which 54% were in genic regions.In total, 42 significant genotype-phenotype associations were detected: 21 for plant morphology traits, 11 for grain quality traits, 10 for root architecture traits. The FDR of detected associations ranged from 3 · 10-7 to 0.92 (median: 0.25. In most cases, the significant detected associations co-localised with QTLs and candidate genes controlling the phenotypic variation of single or multiple traits. The most significant associations were those for flag leaf width on chromosome 4 (FDR = 3 · 10-7 and for plant height on chromosome 6 (FDR = 0.011.We demonstrate the effectiveness and resolution of the developed platform for high-throughput phenotyping, genotyping and GWAS in detecting major QTLs for relevant traits in rice. We identified strong associations that may be used for selection in temperate irrigated rice breeding: e.g. associations for flag leaf width, plant height, root volume and length, grain length, grain width and their ratio. Our findings pave the way to successfully exploit the narrow genetic pool of European temperate rice and to pinpoint the most relevant genetic components contributing to the adaptability and high yield of this germplasm. The generated data could be of direct use in genomic-assisted breeding strategies.

  4. Elevated temperature intensity, timing, and duration of exposure affect soybean internode elongation, mainstem node number, and pod number per plant

    Directory of Open Access Journals (Sweden)

    Leon Hartwell Allen, Jr.

    2018-04-01

    Full Text Available A study was conducted in four compartments of a polycarbonate greenhouse at Gainesville, FL, USA to investigate how a soybean (Glycine max L. Merr. cultivar, Maverick (maturity group III, indeterminate, responded to three elevated temperatures, ELT, (day/night of 34/26 °C, 38/30 °C, and 42/34 °C in comparison to a control growth temperature (30/22 °C. Carbon dioxide (CO2 concentration was maintained at 700 μmol mol−1 in each compartment by a processor controlled air-sampling and CO2-injection system. Three sequential experiments were conducted at different times of year (summer, autumn, and early spring to investigate the effect of intensity, timing, and duration of ELT on soybean node number, internode elongation, mainstem length, and number of pods set per plant. At the control temperature, the soybean plants grown in the polycarbonate greenhouse were taller than field-grown plants. When plants were grown under continuous ELT applied soon after sowing or at initial flowering, the number of nodes increased with increasing ELT intensity, whereas the length of individual internodes decreased. When ELT treatment was applied during the beginning of flowering stage (R1–R2 or earlier, more nodes were produced and the length of affected internodes was decreased. When the ELT was imposed later at reproductive stage R5+ just before the beginning of seed filling, effects on node numbers and internode lengths were negligible. Short-term (10-day duration of ELT applied at four stages from V3 to R5+ did not significantly affect final mean numbers of nodes or mean mainstem lengths. Possible mechanisms of elevated temperature effects on soybean internode elongation and node number (internode number are discussed. Total pod numbers per plant increased linearly with mainstem node numbers and mainstem length. Furthermore, total pod numbers per plant were greatest at 34/26 °C rather than at the control temperature of 30/22 °C (and

  5. EFFECT OF PLANT ESSENTIAL OILS ON THE DEVELOPMENT AND FERTILITY OF GRAIN WEEVIL (SITOPHILUS GRANARIUS L.

    Directory of Open Access Journals (Sweden)

    MARIA WAWRZYNIAK

    2010-06-01

    Full Text Available There was analyzed the effect of selected essential oils (orange, lemon, vanilla, linden blossom, thyme, geranium and tea oils on the development and fertility of the most dangerous cereal grain storage pest, grain weevil. Based on the results obtained, it was observed that a strong effect limiting the population of grain weevil was found for vanilla and orange oils. In the experiment combinations which involved essential oils, there was observed a prolonged pest development cycle and a higher mortality of maternal individuals than in the other tests. On the other hand, the lowest fecundity rate was recorded in the combination in which thyme oil was tested.

  6. THE APPLICATION OF STEREOLOGY METHOD FOR ESTIMATING THE NUMBER OF 3D BaTiO3 – CERAMIC GRAINS CONTACT SURFACES

    Directory of Open Access Journals (Sweden)

    Vojislav V Mitić

    2011-05-01

    Full Text Available Methods of stereological study are of great importance for structural research of electronic ceramic materials including BaTiO3-ceramic materials. The broad application of ceramics, based on barium-titanate, in advanced electronics nowadays demands a constant research of its structure, that through the correlation structureproperties, a fundamental in the basic materials properties prognosis triad (technology-structure-properties, leads to further prognosis and properties design of these ceramics. Microstructure properties of BaTiO3- ceramic material, expressed in grains' boundary contact, are of basic importance for electric properties of this material, particularly the capacity. In this paper, a significant step towards establishing control under capacitive properties of BaTiO3-ceramics is being done by estimating the number of grains contact surfaces. Defining an efficient stereology method for estimating the number of BaTiO3-ceramic grains contact surfaces, we have started from a mathematical model of mutual grains distribution in the prescribed volume of BaTiO3-ceramic sample. Since the real microstructure morphology of BaTiO3-ceramics is in some way disordered, spherical shaped grains, using computer-modelling methods, are approximated by polyhedra with a great number of small convex polygons. By dividing the volume of BaTiO3-ceramic sample with the definite number of parallel planes, according to a given pace, into the intersection plane a certain number of grains contact surfaces are identified. According to quantitative estimation of 2D stereological parameters the modelled 3D internal microstructure is obtained. Experiments were made by using the scanning electronic microscopy (SEM method with the ceramic samples prepared under pressing pressures up to 150 MPa and sintering temperature up to 1370°C while the obtained microphotographs were used as a base of confirming the validity of presented stereology method. This paper, by applying

  7. Foliar application with nano-silicon reduced cadmium accumulation in grains by inhibiting cadmium translocation in rice plants.

    Science.gov (United States)

    Chen, Rui; Zhang, Changbo; Zhao, Yanling; Huang, Yongchun; Liu, Zhongqi

    2018-01-01

    Nano-silicon (Si) may be more effective than regular fertilizers in protecting plants from cadmium (Cd) stress. A field experiment was conducted to study the effects of nano-Si on Cd accumulation in grains and other organs of rice plants (Oryza sativa L. cv. Xiangzaoxian 45) grown in Cd-contaminated farmland. Foliar application with 5~25 mM nano-Si at anthesis stage reduced Cd concentrations in grains and rachises at maturity stage by 31.6~64.9 and 36.1~60.8%, respectively. Meanwhile, nano-Si application significantly increased concentrations of potassium (K), magnesium (Mg), and iron (Fe) in grains and rachises, but imposed little effect on concentrations of calcium (Ca), zinc (Zn), and manganese (Mn) in them. Uppermost nodes under panicles displayed much higher Cd concentration (4.50~5.53 mg kg -1 ) than other aerial organs. After foliar application with nano-Si, translocation factors (TFs) of Cd ions from the uppermost nodes to rachises significantly declined, but TFs of K, Mg, and Fe from the uppermost nodes to rachises increased significantly. High dose of nano-Si (25 mM) was more effective than low dose of nano-Si in reducing TFs of Cd from roots to the uppermost nodes and from the uppermost nodes to rachises. These findings indicate that nano-Si supply reduces Cd accumulation in grains by inhibiting translocation of Cd and, meanwhile, promoting translocation of K, Mg, and Fe from the uppermost nodes to rachises in rice plants.

  8. The QTL GNP1 Encodes GA20ox1, Which Increases Grain Number and Yield by Increasing Cytokinin Activity in Rice Panicle Meristems.

    Science.gov (United States)

    Wu, Yuan; Wang, Yun; Mi, Xue-Fei; Shan, Jun-Xiang; Li, Xin-Min; Xu, Jian-Long; Lin, Hong-Xuan

    2016-10-01

    Cytokinins and gibberellins (GAs) play antagonistic roles in regulating reproductive meristem activity. Cytokinins have positive effects on meristem activity and maintenance. During inflorescence meristem development, cytokinin biosynthesis is activated via a KNOX-mediated pathway. Increased cytokinin activity leads to higher grain number, whereas GAs negatively affect meristem activity. The GA biosynthesis genes GA20oxs are negatively regulated by KNOX proteins. KNOX proteins function as modulators, balancing cytokinin and GA activity in the meristem. However, little is known about the crosstalk among cytokinin and GA regulators together with KNOX proteins and how KNOX-mediated dynamic balancing of hormonal activity functions. Through map-based cloning of QTLs, we cloned a GA biosynthesis gene, Grain Number per Panicle1 (GNP1), which encodes rice GA20ox1. The grain number and yield of NIL-GNP1TQ were significantly higher than those of isogenic control (Lemont). Sequence variations in its promoter region increased the levels of GNP1 transcripts, which were enriched in the apical regions of inflorescence meristems in NIL-GNP1TQ. We propose that cytokinin activity increased due to a KNOX-mediated transcriptional feedback loop resulting from the higher GNP1 transcript levels, in turn leading to increased expression of the GA catabolism genes GA2oxs and reduced GA1 and GA3 accumulation. This rebalancing process increased cytokinin activity, thereby increasing grain number and grain yield in rice. These findings uncover important, novel roles of GAs in rice florescence meristem development and provide new insights into the crosstalk between cytokinin and GA underlying development process.

  9. Effect of the New Plant Growth Biostimulants Based on Amino Acids on Yield and Grain Quality of Winter Wheat.

    Science.gov (United States)

    Popko, Małgorzata; Michalak, Izabela; Wilk, Radosław; Gramza, Mateusz; Chojnacka, Katarzyna; Górecki, Henryk

    2018-02-21

    Field and laboratory experiments were carried out in 2012-2013, aimed at evaluating the influence of new products stimulating plant growth based on amino acids on crop yield, characteristics of grain and content of macro- and micronutrients in winter wheat ( Triticum aestivum L.). The tests included two formulations produced in cooperation with INTERMAG Co. (Olkusz, Poland)-AminoPrim and AminoHort, containing 15% and 20% amino acids, respectively, and 0.27% and 2.1% microelements, respectively. Field experiments showed that the application of products based on amino acids influenced the increase of grain yield of winter wheat (5.4% and 11%, respectively, for the application of AminoPrim at a dose 1.0 L/ha and AminoHort at dose 1.25 L/ha) when compared to the control group without biostimulant. Laboratory tests showed an increase of technological characteristics of grain such as ash content, Zeleny sedimentation index and content of protein. The use of the tested preparations at different doses also contributed to the increase of the nutrients content in grains, in particular copper (ranging 31-50%), as well as sodium (35-43%), calcium (4.3-7.9%) and molybdenum (3.9-16%). Biostimulants based on amino acids, tested in the present study, can be recommended for an efficient agricultural production.

  10. Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes.

    Science.gov (United States)

    Sathya, Arumugam; Vijayabharathi, Rajendran; Gopalakrishnan, Subramaniam

    2017-06-01

    Grain legumes are a cost-effective alternative for the animal protein in improving the diets of the poor in South-East Asia and Africa. Legumes, through symbiotic nitrogen fixation, meet a major part of their own N demand and partially benefit the following crops of the system by enriching soil. In realization of this sustainability advantage and to promote pulse production, United Nations had declared 2016 as the "International Year of pulses". Grain legumes are frequently subjected to both abiotic and biotic stresses resulting in severe yield losses. Global yields of legumes have been stagnant for the past five decades in spite of adopting various conventional and molecular breeding approaches. Furthermore, the increasing costs and negative effects of pesticides and fertilizers for crop production necessitate the use of biological options of crop production and protection. The use of plant growth-promoting (PGP) bacteria for improving soil and plant health has become one of the attractive strategies for developing sustainable agricultural systems due to their eco-friendliness, low production cost and minimizing consumption of non-renewable resources. This review emphasizes on how the PGP actinobacteria and their metabolites can be used effectively in enhancing the yield and controlling the pests and pathogens of grain legumes.

  11. Meta-analysis Number of Plants Drugs Used by Characteristics Socioeconomic Factors, Environmental and Geographic

    Directory of Open Access Journals (Sweden)

    Febiola Diah Pratiwi

    2017-09-01

    Full Text Available Ethnobotany is the study of public relations with the use of plants. Use of plants by people influenced by several factors, such as social, cultural, socioeconomic, and geographic. Most of the ethnicities in Indonesia has a high dependence on plants medicine for survival. However, the factors that influence the use of medicinal plants by people in Indonesia have not been studied, so that research is needed to optimize the use of medicinal plants to sustainability benefits. The purpose of this study is to analyze the number of species of plants medicine used by the influence of socio-economic, environmental, and geographic factors using principal component analysis and analyzing patterns of use of plants medicine. The results showed that the economy and infrastructure components (access to electricity, means of education, income level, health facilities, distance from the highway, remoteness, and the fastest time toward the road and the number of people graduating from elementary school affect the number of medicinal plant species used. Based on the results of the study of literature and field observations, the pattern of use of plants medicine in addition to be used as medicine, the plant is used for food, building materials, plant ornamental, ceremonial, wood, wicker and crafts, coloring agents, animal feed, ingredients aromatic, and pesticide. The usage patterns in each region or village has the distinction of which is influenced by the remoteness factor due to the differences in the social, economic, environmental, and geographic.  Keywords: ethnobotany, plants medicine, principal component analysis

  12. Insecticidal and repellant activities of plants oil against stored grain pest, Tribolium castaneum (Herbst (Coleoptera:Tenebrionidae

    Directory of Open Access Journals (Sweden)

    S.R.Pugazhvendan

    2012-05-01

    Full Text Available Objective: The present investigation was aimed to assess the impact of five plants oil for their insecticidal and repellent activity against Tribolium castaneum (Herbst, a stored grain pest and they were tested in the laboratory. Method: Five plants oil Citrus autantium, Cinnamomum zeylanicum, Gaultheria fragrantissima, Lavandula officinalis, and Ocimum sanctum were evaluated for their insecticidal and repellent activities against T. castaneum by adapting the standard protocol in vitro. Results: In Tulsi oil showed powerful repellent against T. castaneum beetles at both the concentration and this property can be clearly seen from the values at 5毺 1 (-0.60 and -0.73 in 1h and 6hr respectively and 10毺 1 (-0.56 and -0.81 in 1h and 6h respectively. Tulsi oil had more repelling property than other oil tested here against T. castaneum. Maximum percentage of mortality (76 and 92% at 48h and 72 hours after treatment respectively in Tulsi oil. Wintergreen oil showed 86% mortality at 72 hours after treatment. Conclusions: The present work for botanical products to control the insect pest of stored grain T. castaneum .These results suggest the presence of actives principles in the plant oils. Further exploration of active principles and their structural elucidations are underway.

  13. Insecticidal and Repellant Activities of Four indigenous medicinal Plants Against Stored Grain Pest, Tribolium castaneum (Herbst (Coleoptera:Tenebrionidae

    Directory of Open Access Journals (Sweden)

    S.R.Pugazhvendan

    2012-05-01

    Full Text Available Objective: The present investigation was aimed to assess the impact of four indigenous plants for their insecticidal and repellent activity against Tribolium castaneum (Herbst, a stored grain pest and they were tested in the laboratory. Methods: Four widely distributed plants (Artemisia vulgaris, Sphaeranthus indicus, Tephrosia purpurea, and Prosopis juliflora were sequentially extracted with increasing polarity of organic solvents such as, hexane, chloroform and ethyl acetate were evaluated for their insecticidal and repellent activities against Tribolium castaneum by adapting the standard protocol in in vitro. Results: Data pertaining to the present investigation clearly revealed that the percentage of mortality was maximum in(72 hr 58% hexane extract of A. vulgaris, chloroform extract (72 hr 34% of S. indicus, and ethyl acetate extract (72 hr 52% of T. purpurea. Repellant activities of plant extracts were tested against T. castaneum, repellent activity was maximum in hexane extract of P. fuliflora, ( EPI value for P. fuliflora in 2.5% was – 0.11 and – 0.33 at 1hr and 6 hr respectively chloroform extract of T. purpurea (2.5% was -0.17 at 6 hr and ethyl acetate extract of S. indicus (2.5% was -0.65 at 6 hr against T. castaneum. Conclusions: The present work for botanical products to control the insect pest of stored grain Tribolium castaneum (Herbst.These results suggest the presence of actives toxic substances acting after consumption or topical application.

  14. Evaluating energy efficient strategies and product quality for distillers' dried grains with solubles (DDGS) in dry-grind ethanol plants

    Science.gov (United States)

    Lan, Tian

    The drying of distillers dried grains with solubles (DDGS), a coproduct of dry-grind corn processing to ethanol utilizes about 30% of the total energy required for the production of a liter of fuel ethanol. Therefore, improving DDGS drying energy efficiency could have significant impact on the economics of the dry-grind corn-to-ethanol process. Drying process improvements must take account into the effects of various drying strategies on the final quality of DDGS which is primarily utilized as a feed ingredient. Previous studies in the literature have shown that physical and chemical properties of DDGS vary according to the ratio of the two primarily feed streams, wet distillers grains (WDG) and condensed distillers solubles (CDS) which make up DDGS. Extensive research using plant-scale and bench-scale experiments have been conducted on the effect of process variables (ratios of WDG, CDS and DDGS add-back) during drying on the physical and chemical properties of DDGS. However, these investigations did not correlate the product characteristics data to drying efficiency. Additionally, it cannot be clearly determined from the literature on DDGS drying that processes used in the industry are optimized for both product quality and energy efficiency. A bench-scale rotary drum dryer heated by an electrically powered heat gun was used to investigate the effects of WDG, CDS and add-back ratios on both energy efficiency, drying performance and DDGS physical and chemical properties. A two stage drying process with the bench-scale rotary dryer was used to simulate the drying of DDGS using ICM (ICM, Inc., Colwich, KS) dry-grind process technology for DDGS drying which uses two rotary drum dryers in series. Effects of drying process variables, CDS content (0, 10, 20 and 40% by mass) and percent DDGS add-back (0, 20, 40 and 60% by mass) on energy performance and product quality were determined. Sixteen different drying strategies based on drying process variable ratios were

  15. DNA microarray revealed and RNAi plants confirmed key genes conferring low Cd accumulation in barley grains

    DEFF Research Database (Denmark)

    Sun, Hongyan; Chen, Zhong-Hua; Chen, Fei

    2015-01-01

    Background Understanding the mechanism of low Cd accumulation in crops is crucial for sustainable safe food production in Cd-contaminated soils. Results Confocal microscopy, atomic absorption spectrometry, gas exchange and chlorophyll fluorescence analyses revealed a distinct difference in Cd...... with a substantial difference between the two genotypes. Cd stress led to higher expression of genes involved in transport, carbohydrate metabolism and signal transduction in the low-grain-Cd-accumulating genotype. Novel transporter genes such as zinc transporter genes were identified as being associated with low Cd...... accumulation. Quantitative RT-PCR confirmed our microarray data. Furthermore, suppression of the zinc transporter genes HvZIP3 and HvZIP8 by RNAi silencing showed increased Cd accumulation and reduced Zn and Mn concentrations in barley grains. Thus, HvZIP3 and HvZIP8 could be candidate genes related to low...

  16. Copy Number Variation of Cytokinin Oxidase Gene Tackx4 Associated with Grain Weight and Chlorophyll Content of Flag Leaf in Common Wheat.

    Science.gov (United States)

    Chang, Cheng; Lu, Jie; Zhang, Hai-Ping; Ma, Chuan-Xi; Sun, Genlou

    2015-01-01

    As the main pigment in photosynthesis, chlorophyll significantly affects grain filling and grain weight of crop. Cytokinin (CTK) can effectively increase chlorophyll content and chloroplast stability, but it is irreversibly inactivated by cytokinin oxidase (CKX). In this study, therefore, twenty-four pairs of primers were designed to identify variations of wheat CKX (Tackx) genes associated with flag leaf chlorophyll content after anthesis, as well as grain weight in 169 recombinant inbred lines (RIL) derived from Triticum aestivum Jing 411 × Hongmangchun 21. Results indicated variation of Tackx4, identified by primer pair T19-20, was proven to significantly associate with chlorophyll content and grain weight in the RIL population. Here, two Tackx4 patterns were identified: one with two co-segregated fragments (Tackx4-1/Tackx4-2) containing 618 bp and 620 bp in size (as in Jing 411), and another with no PCR product. The two genotypes were designated as genotype-A and genotype-B, respectively. Grain weight and leaf chlorophyll content at 5~15 days after anthesis (DAA) were significantly higher in genotype-A lines than those in genotype-B lines. Mapping analysis indicated Tackx4 was closely linked to Xwmc169 on chromosome 3AL, as well as co-segregated with a major quantitative trait locus (QTL) for both grain weight and chlorophyll content of flag leaf at 5~15 DAA. This QTL explained 8.9~22.3% phenotypic variations of the two traits across four cropping seasons. Among 102 wheat varieties, a third genotype of Tackx4 was found and designated as genotype-C, also having two co-segregated fragments, Tackx4-2 and Tackx4-3 (615bp). The sequences of three fragments, Tackx4-1, Tackx4-2, and Tackx4-3, showed high identity (>98%). Therefore, these fragments could be considered as different copies at Tackx4 locus on chromosome 3AL. The effect of copy number variation (CNV) of Tackx4 was further validated. In general, genotype-A contains both significantly higher grain weight

  17. Effet de la bactérisation des graines sur la croissance des plants de Cedrus atlantica Manetti

    Directory of Open Access Journals (Sweden)

    Satrani B.

    2009-01-01

    Full Text Available Bacterization effect of seeds on the growth of Cedrus atlantica Manetti plants. The beneficial effect of five rhizobacterial strains on the growth of Cedrus atlantica plants was evaluated at forest nursery before out-planting. The obtained results showed a significant effect of bacterial strains on cedar seedlings growth and only Pseudomonas fluorescens A6RI and TGI252 significantly increased stem length, neck diameter, root dry weight and number of root tips. It will allow us to adapt this technology for the production of quality plants.

  18. A QTL on the short arm of wheat (Triticum aestivum L.) chromosome 3B affects the stability of grain weight in plants exposed to a brief heat shock early in grain filling.

    Science.gov (United States)

    Shirdelmoghanloo, Hamid; Taylor, Julian D; Lohraseb, Iman; Rabie, Huwaida; Brien, Chris; Timmins, Andy; Martin, Peter; Mather, Diane E; Emebiri, Livinus; Collins, Nicholas C

    2016-04-22

    Molecular markers and knowledge of traits associated with heat tolerance are likely to provide breeders with a more efficient means of selecting wheat varieties able to maintain grain size after heat waves during early grain filling. A population of 144 doubled haploids derived from a cross between the Australian wheat varieties Drysdale and Waagan was mapped using the wheat Illumina iSelect 9,000 feature single nucleotide polymorphism marker array and used to detect quantitative trait loci for heat tolerance of final single grain weight and related traits. Plants were subjected to a 3 d heat treatment (37 °C/27 °C day/night) in a growth chamber at 10 d after anthesis and trait responses calculated by comparison to untreated control plants. A locus for single grain weight stability was detected on the short arm of chromosome 3B in both winter- and autumn-sown experiments, determining up to 2.5 mg difference in heat-induced single grain weight loss. In one of the experiments, a locus with a weaker effect on grain weight stability was detected on chromosome 6B. Among the traits measured, the rate of flag leaf chlorophyll loss over the course of the heat treatment and reduction in shoot weight due to heat were indicators of loci with significant grain weight tolerance effects, with alleles for grain weight stability also conferring stability of chlorophyll ('stay-green') and shoot weight. Chlorophyll loss during the treatment, requiring only two non-destructive readings to be taken, directly before and after a heat event, may prove convenient for identifying heat tolerant germplasm. These results were consistent with grain filling being limited by assimilate supply from the heat-damaged photosynthetic apparatus, or alternatively, accelerated maturation in the grains that was correlated with leaf senescence responses merely due to common genetic control of senescence responses in the two organs. There was no evidence for a role of mobilized stem reserves (water

  19. Plant-plant interactions influence developmental phase transitions, grain productivity and root system architecture in Arabidopsis via auxin and PFT1/MED25 signalling.

    Science.gov (United States)

    Muñoz-Parra, Edith; Pelagio-Flores, Ramón; Raya-González, Javier; Salmerón-Barrera, Guadalupe; Ruiz-Herrera, León Francisco; Valencia-Cantero, Eduardo; López-Bucio, José

    2017-09-01

    Transcriptional regulation of gene expression influences plant growth, environmental interactions and plant-plant communication. Here, we report that population density is a key factor for plant productivity and a major root architectural determinant in Arabidopsis thaliana. When grown in soil at varied densities from 1 to 32 plants, high number of individuals decreased stem growth and accelerated senescence, which negatively correlated with total plant biomass and seed production at the completion of the life cycle. Root morphogenesis was also a major trait modulated by plant density, because an increasing number of individuals grown in vitro showed repression of primary root growth, lateral root formation and root hair development while affecting auxin-regulated gene expression and the levels of auxin transporters PIN1 and PIN2. We also found that mutation of the Mediator complex subunit PFT1/MED25 renders plants insensitive to high density-modulated root traits. Our results suggest that plant density is critical for phase transitions, productivity and root system architecture and reveal a role of Mediator in self-plant recognition. © 2017 John Wiley & Sons Ltd.

  20. Plant and Animal Reproductive Strategies: Lessons from Offspring Size and Number Tradeoffs

    Directory of Open Access Journals (Sweden)

    K. G. Srikanta Dani

    2017-05-01

    Full Text Available The tradeoff between offspring size and number is ubiquitous and manifestly similar in plants and animals despite fundamental differences between the evolutionary histories of these two major life forms. Fecundity (offspring number primarily affects parental fitness, while offspring size underpins the fitness of parents and offspring. We provide an overview of theoretical models dealing with offspring size and fitness relationships. We follow that with a detailed examination of life-history constraints and environmental effects on offspring size and number, separately in plants and animals. The emphasis is on seed plants, but we endeavor to also summarize information from distinct animal groups—insects, fishes, reptiles, birds, and mammals. Furthermore, we analyse genetic controls on offspring size and number in two model organisms—Arabidopsis and Drosophila. Despite the deep evolutionary divergence between plants and animals, we find four trends in reproductive strategy that are common to both lineages: (i offspring size is generally less variable than offspring number, (ii offspring size increases with increasing parent body size, (iii maternal genes restrict offspring size and increase offspring numbers, while zygotic genes act to increase offspring size; such parent-offspring conflicts are enhanced when there is sibling rivalry, and (iv variation in offspring size increases under sub-optimal (harsh environmental conditions. The most salient difference between plants and animals is that the latter tend to produce larger (fewer offspring under sub-optimal conditions while seed plants invest in smaller (many seeds, suggesting that maternal genetic control over offspring size increases in plants but decreases in animals with parental care. The time is ripe for greater experimental exploration of genetic controls on reproductive allocation and parent-offspring conflicts in plants and animals under sub-optimal (harsh environments.

  1. Variations in grain lipophilic phytochemicals, proteins and resistance to Fusarium spp. growth during grain storage as affected by biological plant protection with Aureobasidium pullulans (de Bary).

    Science.gov (United States)

    Wachowska, Urszula; Tańska, Małgorzata; Konopka, Iwona

    2016-06-16

    Modern agriculture relies on an integrated approach, where chemical treatment is reduced to a minimum and replaced by biological control that involves the use of active microorganisms. The effect of the antagonistic yeast-like fungus Aureobasidium pullulans on proteins and bioactive compounds (alkylresorcinols, sterols, tocols and carotenoids) in winter wheat grain and on the colonization of wheat kernels by fungal microbiota, mainly Fusarium spp. pathogens, was investigated. Biological treatment contributed to a slight increase contents of tocols, alkylresorcinols and sterols in grain. At the same time, the variation of wheat grain proteins was low and not significant. Application of A. pullulans enhanced the natural yeast colonization after six months of grain storage and inhibited growth of F. culmorum pathogens penetrating wheat kernel. This study demonstrated that an integrated approach of wheat grain protection with the use of the yeast-like fungus A. pullulans reduced kernel colonization by Fusarium spp. pathogens and increased the content of nutritionally beneficial phytochemicals in wheat grain without a loss of gluten proteins responsible for baking value. Copyright © 2016. Published by Elsevier B.V.

  2. Responses of Rapid Viscoanalyzer Profile and Other Rice Grain Qualities to Exogenously Applied Plant Growth Regulators under High Day and High Night Temperatures.

    Directory of Open Access Journals (Sweden)

    Shah Fahad

    Full Text Available High-temperature stress degrades the grain quality of rice; nevertheless, the exogenous application of plant growth regulators (PGRs might alleviate the negative effects of high temperatures. In the present study, we investigated the responses of rice grain quality to exogenously applied PGRs under high day temperatures (HDT and high night temperatures (HNT under controlled conditions. Four different combinations of ascorbic acid (Vc, alpha-tocopherol (Ve, brassinosteroids (Br, methyl jasmonates (MeJA and triazoles (Tr were exogenously applied to two rice cultivars (IR-64 and Huanghuazhan prior to the high-temperature treatment. A Nothing applied Control (NAC was included for comparison. The results demonstrated that high-temperature stress was detrimental for grain appearance and milling qualities and that both HDT and HNT reduced the grain length, grain width, grain area, head rice percentage and milled rice percentage but increased the chalkiness percentage and percent area of endosperm chalkiness in both cultivars compared with ambient temperature (AT. Significantly higher grain breakdown, set back, consistence viscosity and gelatinization temperature, and significantly lower peak, trough and final viscosities were observed under high-temperature stress compared with AT. Thus, HNT was more devastating for grain quality than HDT. The exogenous application of PGRs ameliorated the adverse effects of high temperature in both rice cultivars, and Vc+Ve+MejA+Br was the best combination for both cultivars under high temperature stress.

  3. Catalytic thermal treatment (catalytic thermolysis) of a rice grain-based biodigester effluent of an alcohol distillery plant.

    Science.gov (United States)

    Prajapati, Abhinesh Kumar; Chaudhari, Parmesh Kumar; Mazumdar, Bidyut; Choudhary, Rumi

    2015-01-01

    The catalytic thermolysis (CT) process is an effective and novel approach to treat rice grain-based biodigester effluent (BDE) of the distillery plant. CT treatment of rice grain-based distillery wastewater was carried out in a 0.5 dm(3) thermolytic batch reactor using different catalysts such as CuO, copper sulphate and ferrous sulphate. With the CuO catalyst, a temperature of 95°C, catalyst loading of 4 g/dm(3) and pH 5 were found to be optimal, obtaining a maximum chemical oxygen demand (COD) and colour removal of 80.4% and 72%, respectively. The initial pH (pHi) was an important parameter to remove COD and colour from BDE. At higher pHi (pH 9.5), less COD and colour reduction were observed. The settling characteristics of CT-treated sludge were also analysed at different temperatures. It was noted that the treated slurry at a temperature of 80°C gave best settling characteristics. Characteristics of residues are also analysed at different pH.

  4. Changes in Whole-Plant Metabolism during the Grain-Filling Stage in Sorghum Grown under Elevated CO2 and Drought.

    Science.gov (United States)

    De Souza, Amanda P; Cocuron, Jean-Christophe; Garcia, Ana Carolina; Alonso, Ana Paula; Buckeridge, Marcos S

    2015-11-01

    Projections indicate an elevation of the atmospheric CO2 concentration ([CO2]) concomitant with an intensification of drought for this century, increasing the challenges to food security. On the one hand, drought is a main environmental factor responsible for decreasing crop productivity and grain quality, especially when occurring during the grain-filling stage. On the other hand, elevated [CO2] is predicted to mitigate some of the negative effects of drought. Sorghum (Sorghum bicolor) is a C4 grass that has important economical and nutritional values in many parts of the world. Although the impact of elevated [CO2] and drought in photosynthesis and growth has been well documented for sorghum, the effects of the combination of these two environmental factors on plant metabolism have yet to be determined. To address this question, sorghum plants (cv BRS 330) were grown and monitored at ambient (400 µmol mol(-1)) or elevated (800 µmol mol(-1)) [CO2] for 120 d and subjected to drought during the grain-filling stage. Leaf photosynthesis, respiration, and stomatal conductance were measured at 90 and 120 d after planting, and plant organs (leaves, culm, roots, prop roots, and grains) were harvested. Finally, biochemical composition and intracellular metabolites were assessed for each organ. As expected, elevated [CO2] reduced the stomatal conductance, which preserved soil moisture and plant fitness under drought. Interestingly, the whole-plant metabolism was adjusted and protein content in grains was improved by 60% in sorghum grown under elevated [CO2]. © 2015 American Society of Plant Biologists. All Rights Reserved.

  5. 9 CFR 355.33 - Plant number to be embossed on metal containers.

    Science.gov (United States)

    2010-01-01

    ... AND VOLUNTARY INSPECTION AND CERTIFICATION CERTIFIED PRODUCTS FOR DOGS, CATS, AND OTHER CARNIVORA... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Plant number to be embossed on metal containers. 355.33 Section 355.33 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT...

  6. [The development of pollen grains and formation of pollen tubes in higher plants : I. Quantitative measurements of the DNA-content of generative and vegetative nuclei in the pollen grain and pollen tube of Petunia hybrida mutants].

    Science.gov (United States)

    Hesemann, C U

    1971-01-01

    The DNA-content of generative and vegetative nuclei in mature pollen grains of four Petunia hybrida mutants was determined by cytophotometry. In addition the DNA-content of generative and vegetative nuclei in the pollen tube of two of these four mutants (virescens-2 n and ustulata-2 n) was cytophotometrically measured.The DNA-values found in the generative nuclei indicate that the DNA-replication continues in the mature pollen grain and comes to an end only after the migration of the nuclei into the pollen tube. These data are in disagreement with the results of DNA-measurements described for a limited number of other species which all show completion of DNA-synthesis during the maturation stage of the pollen grains.The vegetative nuclei of the four Petunia mutants studied show significant differences in the onset of the degenerative phase. Extreme variation is manifested in the ustulata-2 n mutant in which the degeneration of nuclei may reach the final stage in the maturing pollen grain. However in this mutant vegetative nuclei with an unaltered DNA-content may also be demonstrated in the pollen tube. Some of the vegetative nuclei in the pollen tube of ustulata-2 n exhibit an increased amount of DNA which could be the result of differential DNA-replication in the vegetative nuclei. The decrease of the DNA-content in a certain fraction of the vegetative nuclei in the maturing pollen grain does not agree with observations made in other species by several authors who report DNA constancy until the pollen grain is fully mature.The data obtained from the analysis of the four Petunia hybrida mutants point to an important role of the vegetative nucleus in the development of the pollen tube. The Petunia hybrida mutants may be regarded as especially favourable material for investigations concerning the function of the vegetative cell in the development of the pollen grain and pollen tube.

  7. Regulation of chloroplast number and DNA synthesis in higher plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mullet, J.E.

    1995-11-10

    The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focuses on obtaining a detailed description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The grant will also begin analysis of specific biochemical mechanisms by isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

  8. Technical and economical analyses of combined heat and power generation from distillers grains and corn stover in ethanol plants

    International Nuclear Information System (INIS)

    Wang, Lijun; Hanna, Milford A.; Weller, Curtis L.; Jones, David D.

    2009-01-01

    The technical and economical feasibilities of a novel integrated biomass gasification and fuel cell combined heat and power (CHP) system were analyzed for supplying heat and power in an ethanol plant from distillers grains (DG) and corn stover. In a current dry-grind plant with an annual production capacity of 189 million liters (50 million gallons) of ethanol, the energy cost for ethanol production using natural gas at a price of 6.47 US$/GJ for processing heat and commercial grid at a price of 0.062 US$/kWh for electrical power supply was 0.094 US$/liter. If the integrated CHP system using wet DG with 64.7% moisture on a wet basis at 105 US$/dry tonne and corn stover with 20% moisture at 30 US$/dry tonne as feedstock was used to supply heat and power in the ethanol plant, the energy costs for ethanol production would be 0.101 US$/liter and 0.070 US$/liter, which are 107% and 75% of the current energy cost for ethanol production, respectively. To meet the demand of processing heat and power in the ethanol plant, the integrated CHP system required 22.1 dry tonnes of corn stover with 20% moisture or 14.5 dry tonnes of DG with 64.7% moisture on a wet basis per hour, compared with the available 18.8 dry tonnes of DG per hour in the ethanol plant. High-value chemicals such as policosanols, phytosterols and free fatty acids can be extracted out of the raw DG to reduce the cost of DG as a feedstock of the integrated CHP system. The energy cost for ethanol production using the integrated CHP system with corn stover and DG as the feedstock for supplying heat and power can be reduced further by increasing ethanol production scale, decreasing the moisture content of biomass feedstock, and decreasing thermal energy to electricity output ratio of the CHP system. In terms of the energy efficiency of the integrated CHP system and the energy cost for ethanol production, the moisture content of the feedstock going into the integrated CHP should be lower than 70% on a wet basis

  9. A Coarse-Grained Biophysical Model of E. coli and Its Application to Perturbation of the rRNA Operon Copy Number

    Science.gov (United States)

    Tadmor, Arbel

    2009-03-01

    In this work a biophysical model of Escherichia coli is presented that predicts growth rate and an effective cellular composition from an effective, coarse-grained representation of its genome. We assume that E. coli is in a state of balanced exponential steady-state growth, growing in a temporally and spatially constant environment, rich in resources. We apply this model to a series of past measurements, where the growth rate and rRNA-to-protein ratio have been measured for seven E. coli strains with an rRNA operon copy number ranging from one to seven (the wild-type copy number). These experiments show that growth rate markedly decreases for strains with fewer than six copies. Using the model, we were able to reproduce these measurements. We show that the model that best fits these data suggests that the volume fraction of macromolecules inside E. coli is not fixed when the rRNA operon copy number is varied. Moreover, the model predicts that increasing the copy number beyond seven results in a cytoplasm densely packed with ribosomes and proteins. Assuming that under such overcrowded conditions prolonged diffusion times tend to weaken binding affinities, the model predicts that growth rate will not increase substantially beyond the wild-type growth rate, as indicated by other experiments. Our model therefore suggests that changing the rRNA operon copy number of wild-type E. coli cells growing in a constant rich environment does not substantially increase their growth rate. Other observations regarding strains with an altered rRNA operon copy number, such as nucleoid compaction and the rRNA operon feedback response, appear to be qualitatively consistent with this model. In addition, we discuss possible design principles suggested by the model and propose further experiments to test its validity.

  10. EFFECTS OF PLANTING SPACE AND HARVEST TIME ON THE NUMBER, WEIGHT AND DIAMETER OF MARIGOLD (CALENDULA OFFICINALIS L. FLOWERS

    Directory of Open Access Journals (Sweden)

    Nada Parađiković

    2013-06-01

    Full Text Available The study was conducted during 2010 in marigold (Calendula officinalis L. to determine the effects of three plant densities (plant density A - 65 cm x 35 cm; plant density B - 65 cm x 25 cm; plant density C – 55 cm x 25 cm and harvest time on the number, weight and diameter of marigold flowers. The results showed that the plant density significantly influenced the number of flowers per plant and flower weight. The largest number of flowers per plant was recorded in the plant density B (13.2 and the lowest (9.87 in the plant density C. The lowest flower weight was recorded in the plant density C (1.31 g and was statistically lower than the flower weight in the plant densities A (1.42 g and B (1.38 g. The plant density significantly influenced the number of flowers on side branches, being the highest in the plant density B. The diameter of the marigold flower was not significantly influenced by the plant density. During the experiment, a total of 13 harvests were achieved. The greatest number of flowers per plant was harvested in the eighth, ninth and tenth harvest, while the largest flower weight was measured in the fifth and twelfth harvest. On the average, the number of flowers per plant / harvest was 11.63 and the weight of flowers was 1.38 g. Diameter of marigold flowers ranged from 2.89 cm to 3.59 cm in the thirteenth and the third harvest, respectively. The number of flowers on side branches per plant / harvest was 11.61.

  11. Hypothetical requirements on number of personnel in Czechoslovak nuclear power plants

    International Nuclear Information System (INIS)

    Halik, J.

    1990-01-01

    The structural changes of Czechoslovak power prevent prediction of labor force development by extrapolating the existing development trends. Nuclear power demands a different qualification and occupation structure of the labor force than conventional power generation. The prediction of the number of personnel is based on data on the expected installed capacity and on its commissioning. The following organizational structures are envisaged for a nuclear power plant: the divisions of the Director, of production, maintenance, radiation safety and quality control, technology and investment, economics and personnel. A total of 15,654 personnel are envisaged for nuclear power plants in 2005. A brief comparison is submitted of labor demands in nuclear power plants in Czechoslovakia and in the world. (M.D.). 1 fig., 4 tabs., 3 refs

  12. Occurrence of different trichothecenes and deoxynivalenol-3-β-D-glucoside in naturally and artificially contaminated Danish cereal grains and whole maize plants

    DEFF Research Database (Denmark)

    Rasmussen, P. H.; Nielsen, Kristian Fog; Ghorbani, F.

    2012-01-01

    toxin may again be released after hydrolysis in the digestive tracts of animals and humans. Today, our knowledge of the occurrence of these compounds in cereal grains is limited. In this paper, a LC-MS/MS method for the simultaneous determination of DON, deoxynivalenol-3-β-D-glucoside (DON-3-glucoside......), 3 acetyl-DON, nivalenol, fusarenon-X, diacetoxyscirpenol, HT-2 toxin, and T-2 toxin in naturally (n = 48) and artificially (n = 30) contaminated cereal grains (wheat, barley, oat, rye triticale) is reported. The method has also been applied to whole fresh maize plant intended for production of maize...

  13. Analysis of plastid number, size, and distribution in Arabidopsis plants by light and fluorescence microscopy.

    Science.gov (United States)

    Pyke, Kevin

    2011-01-01

    Methods are described which allow one to observe chloroplasts in mesophyll cells from leaves of Arabidopsis, determine their number per cell, measure their area, and determine a value for chloroplast coverage inside mesophyll cells. Non-green plastids can also be imaged either by using staining, or by exploiting fluorescent proteins targeted to the plastid in non-green parts of the plant, such as the roots, in transgenic Arabidopsis.

  14. Optimal number of circulating water pumps in a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Lin [College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, Jiangsu (China); Liu, Deyou, E-mail: liudyhhuc@163.com [College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, Jiangsu (China); Zhou, Ling, E-mail: zlhhu@163.com [College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, Jiangsu (China); Wang, Feng [School of Hydraulic, Energy and Power Engineering, Yangzhou University, Yangzhou 225009, Jiangsu (China); Wang, Pei [College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, Jiangsu (China)

    2015-07-15

    Highlights: • We present a novel method to optimize the number of variable speed pumps. • The economic effect of variable speed pumps number optimization is presented. • We present a novel method to optimize the number of constant speed pumps. • The proposed pumps number optimization method is more accurate than the widely used method. - Abstract: A circulating cooling system that uses variable speed pumps (VSPs) or constant-speed pumps (CSPs) as circulating water pumps (CWPs) is optimized to improve the cycle efficiency of nuclear power plants. This study focused on the optimal number of VSPs and CSPs. A novel method is proposed to optimize the number of VSPs with varying dry-bulb temperature and relative humidity, which could help decrease operation costs by $243,310 per year. This method is also used to optimize the number of CSPs and is compared with another widely used method that optimizes the number of CSPs according to the varying condenser inlet water temperature. A comparison shows that the proposed method is more accurate than the widely used method.

  15. Optimal number of circulating water pumps in a nuclear power plant

    International Nuclear Information System (INIS)

    Xia, Lin; Liu, Deyou; Zhou, Ling; Wang, Feng; Wang, Pei

    2015-01-01

    Highlights: • We present a novel method to optimize the number of variable speed pumps. • The economic effect of variable speed pumps number optimization is presented. • We present a novel method to optimize the number of constant speed pumps. • The proposed pumps number optimization method is more accurate than the widely used method. - Abstract: A circulating cooling system that uses variable speed pumps (VSPs) or constant-speed pumps (CSPs) as circulating water pumps (CWPs) is optimized to improve the cycle efficiency of nuclear power plants. This study focused on the optimal number of VSPs and CSPs. A novel method is proposed to optimize the number of VSPs with varying dry-bulb temperature and relative humidity, which could help decrease operation costs by $243,310 per year. This method is also used to optimize the number of CSPs and is compared with another widely used method that optimizes the number of CSPs according to the varying condenser inlet water temperature. A comparison shows that the proposed method is more accurate than the widely used method

  16. Micro-scale grain-size analysis and magnetic properties of coal-fired power plant fly ash and its relevance for environmental magnetic pollution studies

    Energy Technology Data Exchange (ETDEWEB)

    Blaha, U.; Sapkota, B.; Appel, E.; Stanjek, H.; Rosler, W. [University of Tubingen, Tubingen (Germany). Inst. of Geoscience

    2008-11-15

    Two fly ash samples from a black coal-fired power plant (Bexbach, Germany) were investigated for their magnetic properties, particle structure, grain-size distribution and chemical composition. Grain-size distribution was determined on bulk samples and on magnetic extracts. Magnetic susceptibility of different grain-size fractions was analyzed with respect to the according amount of fractions, high- and low-temperature dependence of magnetic susceptibility and thermal demagnetization of IRM identified magnetite and hematite as magnetic phases. Magnetic spherules were quantitatively extracted from bulk fly ash samples and examined using SEM/EDX analysis. Particle morphology and grain-size analysis on the magnetically extracted material were studied. Individual spherule types were identified and internal structures of selected polished particles were investigated by SEM and EDX analyses. Main element contents of the internal structures which consist of 'magnetite' crystals and 'glassy' matrix were systematically determined and statistically assessed. The chemical data of the micro-scale structures in the magnetic spherules were compared with XRF data from bulk material, revealing the relative element distribution in composed magnetic spherules. Comparison of the bulk sample grain-size (0.5-300 {mu}m) and grain-size spectra from magnetic extracts (1-186.5 {mu}m) shows that strongly magnetic particles mainly occur in the fine fractions of < 63 {mu}m. This study comprises a comprehensive characterization of coal-fired power plant fly ash, using magnetic, chemical, and microscopic methods. The results can serve as reference data for a variety of environmental magnetic studies.

  17. Accurate measurement of transgene copy number in crop plants using droplet digital PCR.

    Science.gov (United States)

    Collier, Ray; Dasgupta, Kasturi; Xing, Yan-Ping; Hernandez, Bryan Tarape; Shao, Min; Rohozinski, Dominica; Kovak, Emma; Lin, Jeanie; de Oliveira, Maria Luiza P; Stover, Ed; McCue, Kent F; Harmon, Frank G; Blechl, Ann; Thomson, James G; Thilmony, Roger

    2017-06-01

    Genetic transformation is a powerful means for the improvement of crop plants, but requires labor- and resource-intensive methods. An efficient method for identifying single-copy transgene insertion events from a population of independent transgenic lines is desirable. Currently, transgene copy number is estimated by either Southern blot hybridization analyses or quantitative polymerase chain reaction (qPCR) experiments. Southern hybridization is a convincing and reliable method, but it also is expensive, time-consuming and often requires a large amount of genomic DNA and radioactively labeled probes. Alternatively, qPCR requires less DNA and is potentially simpler to perform, but its results can lack the accuracy and precision needed to confidently distinguish between one- and two-copy events in transgenic plants with large genomes. To address this need, we developed a droplet digital PCR-based method for transgene copy number measurement in an array of crops: rice, citrus, potato, maize, tomato and wheat. The method utilizes specific primers to amplify target transgenes, and endogenous reference genes in a single duplexed reaction containing thousands of droplets. Endpoint amplicon production in the droplets is detected and quantified using sequence-specific fluorescently labeled probes. The results demonstrate that this approach can generate confident copy number measurements in independent transgenic lines in these crop species. This method and the compendium of probes and primers will be a useful resource for the plant research community, enabling the simple and accurate determination of transgene copy number in these six important crop species. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  18. Enhanced Sucrose Loading Improves Rice Yield by Increasing Grain Size.

    Science.gov (United States)

    Wang, Liang; Lu, Qingtao; Wen, Xiaogang; Lu, Congming

    2015-12-01

    Yield in cereals is a function of grain number and size. Sucrose (Suc), the main carbohydrate product of photosynthesis in higher plants, is transported long distances from source leaves to sink organs such as seeds and roots. Here, we report that transgenic rice plants (Oryza sativa) expressing the Arabidopsis (Arabidopsis thaliana) phloem-specific Suc transporter (AtSUC2), which loads Suc into the phloem under control of the phloem protein2 promoter (pPP2), showed an increase in grain yield of up to 16% relative to wild-type plants in field trials. Compared with wild-type plants, pPP2::AtSUC2 plants had larger spikelet hulls and larger and heavier grains. Grain filling was accelerated in the transgenic plants, and more photoassimilate was transported from the leaves to the grain. In addition, microarray analyses revealed that carbohydrate, amino acid, and lipid metabolism was enhanced in the leaves and grain of pPP2::AtSUC2 plants. Thus, enhancing Suc loading represents a promising strategy to improve rice yield to feed the global population. © 2015 American Society of Plant Biologists. All Rights Reserved.

  19. Multiscale Modeling of Grain Boundary Segregation and Embrittlement in Tungsten for Mechanistic Design of Alloys for Coal Fired Plants

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jian; Tomar, Vikas; Zhou, Naixie; Lee, Hongsuk

    2013-06-30

    Based on a recent discovery of premelting-like grain boundary segregation in refractory metals occurring at high temperatures and/or high alloying levels, this project investigated grain boundary segregation and embrittlement in tungsten (W) based alloys. Specifically, new interfacial thermodynamic models have been developed and quantified to predict high-temperature grain boundary segregation in the W-Ni binary alloy and W-Ni-Fe, W-Ni-Ti, W-Ni-Co, W-Ni-Cr, W-Ni-Zr and W-Ni-Nb ternary alloys. The thermodynamic modeling results have been experimentally validated for selected systems. Furthermore, multiscale modeling has been conducted at continuum, atomistic and quantum-mechanical levels to link grain boundary segregation with embrittlement. In summary, this 3-year project has successfully developed a theoretical framework in combination with a multiscale modeling strategy for predicting grain boundary segregation and embrittlement in W based alloys.

  20. 6 Grain Yield

    African Journals Online (AJOL)

    create a favourable environment for rice ... developing lines adaptable to many ... have stable, not too short crop duration with ..... Analysis of variance of the effect of site and season on maturity, grain yield and plant ..... and yield components.

  1. WIDE AND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice.

    Science.gov (United States)

    Huang, Ke; Wang, Dekai; Duan, Penggen; Zhang, Baolan; Xu, Ran; Li, Na; Li, Yunhai

    2017-09-01

    Grain size and shape are two crucial traits that influence grain yield and grain appearance in rice. Although several factors that affect grain size have been described in rice, the molecular mechanisms underlying the determination of grain size and shape are still elusive. In this study we report that WIDE AND THICK GRAIN 1 (WTG1) functions as an important factor determining grain size and shape in rice. The wtg1-1 mutant exhibits wide, thick, short and heavy grains and also shows an increased number of grains per panicle. WTG1 determines grain size and shape mainly by influencing cell expansion. WTG1 encodes an otubain-like protease, which shares similarity with human OTUB1. Biochemical analyses indicate that WTG1 is a functional deubiquitinating enzyme, and the mutant protein (wtg1-1) loses this deubiquitinating activity. WTG1 is expressed in developing grains and panicles, and the GFP-WTG1 fusion protein is present in the nucleus and cytoplasm. Overexpression of WTG1 results in narrow, thin, long grains due to narrow and long cells, further supporting the role of WTG1 in determining grain size and shape. Thus, our findings identify the otubain-like protease WTG1 to be an important factor that determines grain size and shape, suggesting that WTG1 has the potential to improve grain size and shape in rice. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  2. Minimum number and best combinations of harvests to evaluate accessions of tomato plants from germplasm banks

    Directory of Open Access Journals (Sweden)

    Flávia Barbosa Abreu

    2006-01-01

    Full Text Available This study presents the minimum number and the best combination of tomato harvests needed to compare tomato accessions from germplasm banks. Number and weight of fruit in tomato plants are important as auxiliary traits in the evaluation of germplasm banks and should be studied simultaneously with other desirable characteristics such as pest and disease resistance, improved flavor and early production. Brazilian tomato breeding programs should consider not only the number of fruit but also fruit size because Brazilian consumers value fruit that are homogeneous, large and heavy. Our experiment was a randomized block design with three replicates of 32 tomato accessions from the Vegetable Germplasm Bank (Banco de Germoplasma de Hortaliças at the Federal University of Viçosa, Minas Gerais, Brazil plus two control cultivars (Debora Plus and Santa Clara. Nine harvests were evaluated for four production-related traits. The results indicate that six successive harvests are sufficient to compare tomato genotypes and germplasm bank accessions. Evaluation of genotypes according to the number of fruit requires analysis from the second to the seventh harvest. Evaluation of fruit weight by genotype requires analysis from the fourth to the ninth harvest. Evaluation of both number and weight of fruit require analysis from the second to the ninth harvest.

  3. Diverging temperature responses of CO2 assimilation and plant development explain the overall effect of temperature on biomass accumulation in wheat leaves and grains.

    Science.gov (United States)

    Collins, Nicholas C; Parent, Boris

    2017-01-09

    There is a growing consensus in the literature that rising temperatures influence the rate of biomass accumulation by shortening the development of plant organs and the whole plant and by altering rates of respiration and photosynthesis. A model describing the net effects of these processes on biomass would be useful, but would need to reconcile reported differences in the effects of night and day temperature on plant productivity. In this study, the working hypothesis was that the temperature responses of CO 2 assimilation and plant development rates were divergent, and that their net effects could explain observed differences in biomass accumulation. In wheat (Triticum aestivum) plants, we followed the temperature responses of photosynthesis, respiration and leaf elongation, and confirmed that their responses diverged. We measured the amount of carbon assimilated per "unit of plant development" in each scenario and compared it to the biomass that accumulated in growing leaves and grains. Our results suggested that, up to a temperature optimum, the rate of any developmental process increased with temperature more rapidly than that of CO 2 assimilation and that this discrepancy, summarised by the CO 2 assimilation rate per unit of plant development, could explain the observed reductions in biomass accumulation in plant organs under high temperatures. The model described the effects of night and day temperature equally well, and offers a simple framework for describing the effects of temperature on plant growth. Published by Oxford University Press on behalf of the Annals of Botany Company.

  4. Effect of Plant Growth Regulators on Leaf Number, Leaf Area and Leaf Dry Matter in Grape

    Directory of Open Access Journals (Sweden)

    Zahoor Ahmad BHAT

    2011-03-01

    Full Text Available Influence of phenylureas (CPPU and brassinosteriod (BR along with GA (gibberellic acid were studied on seedless grape vegetative characteristics like leaf number, leaf area and leaf dry matter. Growth regulators were sprayed on the vines either once (7 days after fruit set or 15 days after fruit set or twice (7+15 days after fruit set. CPPU 2 ppm+BR 0.4 ppm+GA 25 ppm produced maximum number of leaves (18.78 while as untreated vines produced least leaf number (16.22 per shoot. Maximum leaf area (129.70 cm2 and dry matter content (26.51% was obtained with higher CPPU (3 ppm and BR (0.4 ppm combination along with GA 25 ppm. Plant growth regulators whether naturally derived or synthetic are used to improve the productivity and quality of grapes. The relatively high value of grapes justifies more expensive inputs. A relatively small improvement in yield or fruit quality can justify the field application of a very costly product. Application of new generation growth regulators like brassinosteroids and phenylureas like CPPU have been reported to increase the leaf number as well as leaf area and dry matter thereby indirectly influencing the fruit yield and quality in grapes.

  5. Giant grains

    International Nuclear Information System (INIS)

    Leitch-Devlin, M.A.; Millar, T.J.; Williams, D.A.

    1976-01-01

    Infrared observations of the Orion nebula have been interpreted by Rowan-Robinson (1975) to imply the existence of 'giant' grains, radius approximately 10 -2 cm, throughout a volume about a parsec in diameter. Although Rowan-Robinson's model of the nebula has been criticized and the presence of such grains in Orion is disputed, the proposition is accepted, that they exist, and in this paper situations in which giant grains could arise are examined. It is found that, while a giant-grain component to the interstellar grain density may exist, it is difficult to understand how giant grains arise to the extent apparently required by the Orion nebula model. (Auth.)

  6. Potential of multiseeded mutant (msd) to boost sorghum grain yield

    Science.gov (United States)

    Seed number per plant is an important determinant of the grain yield in cereal and other crops. We have isolated a class of multiseeded (msd) sorghum (Sorghum bicolor L. Moench) mutants that are capable of producing three times the seed number and twice the seed weight per panicle as compared with t...

  7. Effect of zinc and plant-population on the yield and yield components of maize (zea mays L.)

    International Nuclear Information System (INIS)

    Kakar, K.M.; Sadiq, S.A.; Tariq, M.

    2005-01-01

    A field experiment was conducted during 2001 to study the effect of two levels of zinc (0 and 5 kg Zn ha-J) and three plant-densities (60,000, 80,000 and 100,000 plants ha-J) on the performance of two varieties of maize Azam and Pahari and two hybrids N7989 and Babar, at Malakandher Farm of NWFP Agricultural University, Peshawar. Zinc at the rate of 5 kg ha-J increased the cob yield, grain yield and 1000-grain weight, while increase in plant-density significantly increased the number of grains cob-J, number of cob-plant-J, cob-yield, grain-yield and 1000-grain weight. Results revealed that the highest plant-density of 100,000 plant ha-J decreased the number of cobs plant-J, number of grains cob-J and 1000-grain weight. Maximum number of cobs plant-J (0.87), number of grains cob-J (313), cob yield (4602 kg ha-J), grain yield (4222 kg ha-J) and 1000-grain weight (249 g) were obtained with plant- density of 80,000 plant ha-J. The maximum grain-yield of 4333 kg ha-J was recorded in plots of hybrid variety N7989. (author)

  8. Plant Science. Instructor Guide [and] Student Reference. Volume 24, Numbers 3 and 4.

    Science.gov (United States)

    Humphrey, John Kevin

    This document consists of two separately published guides for a course on plant science: an instructor's guide and a student's reference manual. Each part consists of eight lessons and cover the following topics: (1) importance of plants; (2) classification of plants; (3) plant growth factors; (4) weeds, diseases, insects; (5) germination; (6)…

  9. Sequential Path Model for Grain Yield in Soybean

    Directory of Open Access Journals (Sweden)

    Mohammad SEDGHI

    2010-09-01

    Full Text Available This study was performed to determine some physiological traits that affect soybean,s grain yield via sequential path analysis. In a factorial experiment, two cultivars (Harcor and Williams were sown under four levels of nitrogen and two levels of weed management at the research station of Tabriz University, Iran, during 2004 and 2005. Grain yield, some yield components and physiological traits were measured. Correlation coefficient analysis showed that grain yield had significant positive and negative association with measured traits. A sequential path analysis was done in order to evaluate associations among grain yield and related traits by ordering the various variables in first, second and third order paths on the basis of their maximum direct effects and minimal collinearity. Two first-order variables, namely number of pods per plant and pre-flowering net photosynthesis revealed highest direct effect on total grain yield and explained 49, 44 and 47 % of the variation in grain yield based on 2004, 2005, and combined datasets, respectively. Four traits i.e. post-flowering net photosynthesis, plant height, leaf area index and intercepted radiation at the bottom layer of canopy were found to fit as second-order variables. Pre- and post-flowering chlorophyll content, main root length and intercepted radiation at the middle layer of canopy were placed at the third-order path. From the results concluded that, number of pods per plant and pre-flowering net photosynthesis are the best selection criteria in soybean for grain yield.

  10. Whole-plant dynamic system of nitrogen use for vegetative growth and grain filling in rice plants (Oryza sativa L. as revealed through the production of 350 grains from a germinated seed over 150 days: a review and synthesis

    Directory of Open Access Journals (Sweden)

    Tadakatsu Yoneyama

    2016-08-01

    Full Text Available A single germinated rice (Oryza sativa L seed can produce 350 grains with the sequential development of 15 leaves on the main stem and 7 ‒ 10 leaves on 4 productive tillers (forming 5 panicles in total, using nitrogen (N taken up from the environment over a 150-day growing season. Nitrogen travels from uptake sites to the grain through growing organ-directed cycling among sequentially developed organs. Over the past 40 years, the dynamic system for N allocation during vegetative growth and grain filling has been elucidated through studies on N and 15N transport as well as enzymes and transporters involved. In this review, we synthesize the information obtained in these studies along the following main points: (1 During vegetative growth before grain-filling, about half of the total N in the growing organs, including young leaves, tillers, root tips and differentiating panicles is supplied via phloem from mature source organs such as leaves and roots, after turnover and remobilization of proteins, whereas the other half is newly taken up and supplied via xylem, with an efficient xylem-to-phloem transfer at stem nodes. Thus, the growth of new organs depends equally on both N sources. (2 A large fraction (as much as 80% of the grain N is derived largely from mature organs such as leaves and stems by degradation, including the autophagy pathway of chloroplast proteins (e.g., Rubisco. (3 Mobilized proteinogenic amino acids, including arginine, lysine, proline and valine, are derived mainly from protein degradation, with amino acid transporters playing a role in transferring these amino acids across cell membranes of source and sink organs, and enabling their efficient reutilization in the latter. On the other hand, amino acids such as glutamine, glutamic acid, γ-amino butyric acid, aspartic acid, and alanine are produced by assimilation of newly taken up N by roots and transported via xylem and phloem. The formation of 350 filled grains over 50

  11. Fenton process-affected transformation of roxarsone in paddy rice soils: Effects on plant growth and arsenic accumulation in rice grain.

    Science.gov (United States)

    Qin, Junhao; Li, Huashou; Lin, Chuxia

    2016-08-01

    Batch and greenhouse experiments were conducted to examine the effects of Fenton process on transformation of roxarsone in soils and its resulting impacts on the growth of and As uptake by a rice plant cultivar. The results show that addition of Fenton reagent markedly accelerated the degradation of roxarsone and produced arsenite, which was otherwise absent in the soil without added Fenton reagent. Methylation of arsenate was also enhanced by Fenton process in the earlier part of the experiment due to abundant supply of arsenate from Roxarsone degradation. Overall, addition of Fenton reagent resulted in the predominant presence of arsenate in the soils. Fenton process significantly improved the growth of rice in the maturity stage of the first crop, The concentration of methylated As species in the rice plant tissues among the different growth stages was highly variable. Addition of Fenton reagent into the soils led to reduced uptake of soil-borne As by the rice plants and this had a significant effect on reducing the accumulation of As in rice grains. The findings have implications for understanding As biogeochemistry in paddy rice field receiving rainwater-borne H2O2 and for development of mitigation strategies to reduce accumulation of As in rice grains. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Number of conspecifics and reproduction in the invasive plant Eschscholzia californica (Papaveraceae): is there a pollinator-mediated Allee effect?

    Science.gov (United States)

    Anic, V; Henríquez, C A; Abades, S R; Bustamante, R O

    2015-05-01

    The component Allee effect has been defined as 'a positive relationship between any measure of individual fitness and the number or density of conspecifics'. Larger plant populations or large patches have shown a higher pollinator visitation rate, which may give rise to an Allee effect in reproduction of the plants. We experimentally tested the effect of number of conspecifics on reproduction and pollinator visitation in Eschscholzia californica Cham., an invasive plant in Chile. We then built patches with two, eight and 16 flowering individuals of E. californica (11 replicates per treatment) in an area characterised by dominance of the study species. We found that E. californica exhibits a component Allee effect, as the number of individuals of this species has a positive effect on individual seed set. However, individual fruit production was not affected by the number of plants examined. Pollinator visitation rate was also independent of the number of plants, so this factor would not explain the Allee effect. This rate was positively correlated with the total number of flowers in the patches. We also found that the number of plants did not affect the seed mass or proportion of germinated seeds in the patches. Higher pollen availability in patches with 16 plants and pollination by wind could explain the Allee effect. The component Allee effect identified could lead to a weak demographic Allee effect that might reduce the rate of spread of E. californica. Knowledge of this would be useful for management of this invasive plant in Chile. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. Prospecting plant growth promoting bacteria and cyanobacteria as options for enrichment of macro- and micronutrients in grains in rice–wheat cropping sequence

    Directory of Open Access Journals (Sweden)

    Anuj Rana

    2015-12-01

    Full Text Available The influence of plant growth promoting bacteria (PGPB and cyanobacteria, alone and in combination, was investigated on micronutrient enrichment and yield in rice–wheat sequence, over a period of two years. Analysis of variance (ANOVA in both crops indicated significant differences in soil dehydrogenase activity and micronutrient enrichment in grains (Fe, Zn in rice, and Cu, Mn in wheat. The combined inoculation of Anabaena oscillarioides CR3, Brevundimonas diminuta PR7, and Ochrobactrum anthropi PR10 (T6 significantly increased nitrogen, phosphorus, and potassium (NPK content and improved rice yield by 21.2%, as compared to the application of recommended dose of NPK fertilizers (T2. The treatment T5 (Providencia sp. PR3 + B. diminuta PR7 + O. anthropi PR10 recorded an enhancement of 13–16% in Fe, Zn, Cu, and Mn concentrations, respectively, in rice grains. In wheat, Providencia sp. PW5 (T6 recorded the highest yield (5.23 Mg ha−1 and significantly higher enrichment of Fe and Cu (44–45% in the grains. This study highlighted the promise of combinations of cyanobacteria/bacteria and their synergistic action in biofortification and providing savings of 40–60 kg N ha−1. Future focus needs to be towards integrating such promising environment-friendly and environmentally sustainable options in nutrient management strategies for this cropping sequence.

  14. Mycotoxin and fungicide residues in wheat grains from fungicide-treated plants measured by a validated LC-MS method.

    Science.gov (United States)

    da Luz, Suzane Rickes; Pazdiora, Paulo Cesar; Dallagnol, Leandro José; Dors, Giniani Carla; Chaves, Fábio Clasen

    2017-04-01

    Wheat (Triticum aestivum) is an annual crop, cultivated in the winter and spring and susceptible to several pathogens, especially fungi, which are managed with fungicides. It is also one of the most consumed cereals, and can be contaminated by mycotoxins and fungicides. The objective of this study was to validate an analytical method by LC-MS for simultaneous determination of mycotoxins and fungicide residues in wheat grains susceptible to fusarium head blight treated with fungicides, and to evaluate the relationship between fungicide application and mycotoxin production. All parameters of the validated analytical method were within AOAC and ANVISA limits. Deoxynivalenol was the prevalent mycotoxin in wheat grain and epoxiconazole was the fungicide residue found in the highest concentration. All fungicidal treatments induced an increase in AFB2 production when compared to the control (without application). AFB1 and deoxynivalenol, on the contrary, were reduced in all fungicide treatments compared to the control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Melhoramento do trigo: V. Estimativas da herdabilidade e correlações entre altura, produção de grãos e outros caracteres agronômicos em trigo Wheat breeding: V. Heritability estimates and correlations between plant height, grain yield and other agronomic characteristics in wheat

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Oliveira Camargo

    1983-01-01

    significativamente com maior produção de grãos por planta, de espigas por planta, de espiguetas por espiga, de grãos por espiga, grãos mais pesados e espigas mais longas. Nas populações F2 dos cruzamentos IAC-5 x Olesen e IAC-5 x Tordo, planta alta não se associou significativamente com maior número de grãos por espigueta, o mesmo se observando no F2 dos cruzamentos IAC-5 x Vican-71 e IAC-5 x Olesen para essa característica em relação ao maior comprimento do internódio da raque. Os resultados mostraram também que para a obtenção de plantas de porte médio com alto potencial de produção, qualquer uma das fontes de nanismo estudadas poderia ser utilizada, desde que grandes populações F2 fossem plantadas para assegurar maior freqüência de recombinantes desejáveis.In an experiment carried out at Itararé Experimental Station, a standard height cultivar IAC-5 was crossed with the semidwarf cultivar Siete Cerros and the dwarf cultivars Tordo, Vican-71 and Olesen. Parents, F1s , F2's and reciprocal backcrosses were tested for grain yield, plant height, number of spikes per plant, number of spikelets per spike, number of grain per spike, number of grain per spikelet, 100 grain weight, spike lenght, rachis internode lenght. All data were determined on an individual plant basis. Broad sense heritability estimates were very high for plant height, moderate for number of spikelets per spike, rachis internode lenght, number of grain per spikelet, number of spikes per plant, number of grain per spike and 100 grain weight, low for grain yield and spike lenght. Narrow sense heritability estimates were very high for plant height and moderate to low for the rest of agronomic characteristics under study. Additive effects were the main source of genetic variation for all studied characters except for 100 grain weight. Plant height was significantly correlated in all studied populations with grain yield, number of spikes per plant, number of spikelets per spike, number of grain

  16. Tamanho de parcela para produtividade de grãos de sorgo granífero em diferentes densidades de plantas Experimental plot size in grain sorghum in different plant densities

    Directory of Open Access Journals (Sweden)

    Sidinei José Lopes

    2005-06-01

    Full Text Available O objetivo deste trabalho foi verificar a influência do arranjo de plantas na estimativa do tamanho ótimo de parcela da cultura de sorgo granífero, para a variável produtividade de grãos. O delineamento estatístico utilizado foi o de blocos ao acaso, num esquema fatorial com dois espaçamentos entre linhas (0,50 m e 0,80 m, três densidades de semeadura (100 mil, 160 mil e 220 mil plantas ha-1 e quatro repetições. Cada repetição foi composta, na área útil, por 12 unidades básicas de 0,50 m da linha de cultivo. Foram ajustados modelos, na estimativa do tamanho ótimo de parcela, que relacionam a variância ou o coeficiente de variação com quatro tamanhos simulados das parcelas. O tamanho estimado de parcelas, na cultura de sorgo granífero, é de 3,2 m² para a variável produtividade de grãos. O aumento do número de plantas, na linha, não proporciona incrementos na produtividade de grãos, porém resulta em melhorias da qualidade de experimentos com sorgo. A estimativa do tamanho ótimo de parcela depende do número de plantas utilizadas na unidade básica. O espaçamento entre linhas não influencia na estimativa do tamanho ótimo de parcela.The objective of this work was to establish plant arrangement effect on the optimal plot size estimates of grain sorghum yield experiments. The experimental design was a completely randomized block with factorial combination of two row spacings (0.50 m and 0.80 m, and three plant densities (100 thousand, 160 thousand and 220 thousand plants ha-1, and four replications. The area of each replication was composed by 12 basic units measuring 0.50 m in row length. Models were adjusted in optimum plot size estimates that correlate variance or variation coefficient with four simulated plot sizes. Plot size was 3.2 m² for grain sorghum yield experiments. Increasing number of plants in row did not result in higher seed yields, however it improved sorghum quality experiment. Estimation of the ideal

  17. Effect of Plant Essential Oils and Gamma Irradiation on Growth and Aflatoxin Production by Aspergillus Flavus Isolated from Wheat Grains

    International Nuclear Information System (INIS)

    Salem, E.A.; Shalaby, Kh.

    2016-01-01

    The antifungal potential of essential oils of Thyme (Thymus vulgaris L.) and camphor ( Eucalyptus rostrata L.) was determined on Aspergillus flavus link isolated from wheat grains on Potato dextrose agar (PDA). They inhibited completely mycelia growth of the fungus at 1000 and 2000 ppm, and prevented aflatoxin production at sub lethal dose 500 and 1000 ppm respectively. Gamma radiation was used to control mycelia growth of Aspergillus flavus Link and inhibiting aflatoxin production. A dose level of 3.5 KGy gamma radiation prevented the fungal growth and aflatoxin production by A. flavus link, where a dose of 2.5 K Gy ( the sub lethal dose) prevented about 85% of aflatoxin production

  18. Effect of sowing dates and different irrigation regimes on morphological characteristics and grain yield of chickpea (Cicer arietinum L. (cultivar 3279 ILC

    Directory of Open Access Journals (Sweden)

    parviz rezvani moghadam

    2009-06-01

    Full Text Available In order to study the effect of different sowing dates and different irrigation regimes on morphological characteristics and grain yield of chickpea (cultivar 3279 ILC (Cicer arietinum L., an experiment was conducted at Agricultural Research-Education Station of Shahid Rejaee, Neyshaboor during 2001-2002. Four irrigation regimes (without irrigation, one time irrigation (at early flowering, two times irrigation (at early flowering and 50% flowering and control (irrigation every 10 days and Four sowing dates early planting (autumn, Entezari, and late planting (spring and delayed were compared in a spilt plot layout based on randomized complete block design with four replications per treatment. The results showed that all chickpea plants with delayed sowing date on combination of without irrigation, one time irrigation (at early flowering and two times irrigation (at early flowering and 50% flowering were dead. By delaying sowing date, duration between the time of starting flowering and maturity became shorter. Plant height, distance of the first pod from earth surface, distance between nods, number of nods per plant, number of stems per plant, number of pods per plant, number of pods with one, two and with no seed per plant, number of seeds per plant, seed weight per plant, 100 seed weight and grain yield were increased when the number of irrigation increased. By increasing the growing season, plant height, distance of the first pod from earth surface, number of nods per plant, number of stems per plant, number of pods per plant, number of pods with two and without seeds per plant, number of seeds per plant and seed weight per plant were increased. The autumn sowing date had the highest and the spring date had the lowest grain yield. The highest plant height, number of nods per plant, number of stems per plant, number of pods per plant, number of pods with one and with no seed per plant, number of seeds per plant and grain yield were obtained at

  19. Risk Assessment of Heavy Metals Contamination in Paddy Soil, Plants, and Grains (Oryza sativa L.) at the East Coast of India

    Science.gov (United States)

    Satpathy, Deepmala; Reddy, M. Vikram; Dhal, Soumya Prakash

    2014-01-01

    Heavy metals known to be accumulated in plants adversely affect human health. This study aims to assess the effects of agrochemicals especially chemical fertilizers applied in paddy fields, which release potential toxic heavy metals into soil. Those heavy metals get accumulated in different parts of paddy plant (Oryza sativa L.) including the grains. Concentrations of nonessential toxic heavy metals (Cd, Cr, and Pb) and the micronutrients (Cu, Mn, and Zn) were measured in the paddy field soil and plant parts. Mn and Cd are found to be accumulated more in shoot than in root. The metal transfer factors from soil to rice plant were significant for Pb, Cd, Cu, Cr, Mn, and Zn. The ranking order of bioaccumulation factor (BAF) for heavy metals was Zn > Mn > Cd > Cu > Cr > Pb indicating that the accumulation of micronutrients was more than that of nonessential toxic heavy metals. The concentrations of heavy metals were found to be higher in paddy field soils than that of the nearby control soil but below permissible limits. The higher Health Index (HI) values of rice consuming adults (1.561) and children (1.360) suggest their adverse health effects in the near future. PMID:24995308

  20. LAND JUDGING AND PLANT NUTRITION, A PROGRAMMED INSTRUCTION UNIT, REPORT NUMBER 13.

    Science.gov (United States)

    LONG, GILBERT A.

    A UNIT OF PROGRAMED LEARNING MATERIALS WAS PRESENTED ON THE PRINCIPLES AND PROCEDURES OF LAND JUDGING AND PLANT NUTRITION. IN HIS PREPARATION, THE AUTHOR FIRST IDENTIFIED PRINCIPLES AND FACTS NECESSARY FOR EFFECTIVE LAND CLASSIFICATION AND PLANT NUTRITION BY EXAMINING RELEVANT SCIENTIFIC REPORTS. USING THIS INFORMATION, HE THEN FORMED A TEAM OF 16…

  1. Identifying and Selecting Plants for the Landscape. Volume 23, Number 5.

    Science.gov (United States)

    Rodekohr, Sherie; Harris, Clark Richard

    This handbook on identifying and selecting landscape plants can be used as a reference in landscaping courses or on an individual basis. The first of two sections, Identifying Plants for the Landscape, contains the following tables: shade tree identification; flowering tree identification; evergreen tree identification; flowering shrub…

  2. THE USE OF CHEMICALS AS PLANT REGULATORS. AGRICULTURAL CHEMICALS TECHNOLOGY, NUMBER 8.

    Science.gov (United States)

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    ONE OF A SERIES DESIGNED TO ASSIST TEACHERS IN PREPARING POST-SECONDARY STUDENTS FOR AGRICULTURAL CHEMICAL OCCUPATIONS, THIS MODULE IS SPECIFICALLY CONCERNED WITH CHEMICALS AS PLANT REGULATORS. IT WAS DEVELOPED BY A NATIONAL TASK FORCE ON THE BASIS OF DATA FROM STATE STUDIES. SECTIONS INCLUDE -- (1) CHEMICALS AS MODIFIERS OF PLANT GROWTH, (2)…

  3. Performances of Water Management, Foliage Dressing, and Variation Screening in Controlling the Accumulation of As and Cd and Maintaining the Concentrations of Essential Elements in the Grains of Rice Plant

    Directory of Open Access Journals (Sweden)

    Lei Lei

    2018-03-01

    Full Text Available This study was conducted to understand why and how the technologies of variety screening, foliar dressing, and water management can reduce As/Cd accumulation and affect the concentrations of essential elements in different rice plants. In Trial I (variety screening, the grain As and Cd concentrations in Zhongguyou1361 variety (P3 were both lower than their individual National Food Hygiene Standard of China (NFHSC under insufficient field drying condition. The P3 also had a relatively high yield and high essential element contents among 15 selected rice varieties. In Trial II (foliar dressing, selenite foliar spray showed a better ability than silicate to reduce the grain As content in Guangliangyou1128 variety (P1. However, spraying Se and Si onto the Fengliangyou1 variety (P2 both showed a limited effect on the grain As and Cd contents, suggesting a different effect of Se on grain As content in various rice varieties. The insufficient field drying in Trial II resulted in the grain Cd content being lower but the grain As content being higher than their individual NFHSC in both P1 and Fengliangyou1 (P2 varieties. Se or Si did not affect the yields and the grain contents of most essential elements in P1 and P2. In Trial III (water management, increasing field drying time enhanced the Cd content but reduced the As content in the grains of P1, P2, and P3, and maintained their yields. Similar to the results of Trial II, the changes in soil pH, organic matter concentration and elemental available concentrations could hardly be used to explain why the contents of corresponding essential elements kept approximately constant in the grains of different rice varieties. Foliar dressing with selenite combined with water regulation can simultaneously reduce the As and Cd contents, and maintain the yields and the essential element contents in the grains of rice plants cultivated in As− and Cd− contaminated soil.

  4. Control of Rice Weevil, Sitophilus oryzae (L., in Stored Wheat Grains with Mesquite Plant, Prosopis juliflora (SW, D.C. Seed Extracts

    Directory of Open Access Journals (Sweden)

    N.H. AI-Moajel

    2004-06-01

    Full Text Available The effectiveness of mesquite plant, Prosopis juliflora (SW D.C. (Family: Mimosaceae, seed extracts against rice weevil. Sitophilus oryzae (L, reared on wheat grains was investigated in the laboratory. The tested plant extracts of P. juliflora in petroleum ether, chloroform, and acetone, effectively controlled adults and their toxicity based on LC95 and LC5O values respectively was in order: acetone (12.0, 5.8ml/kg < pet ether (8.0, 4.1ml/kg chloroform (6.3, 2.2ml/kg. A highly significant oviposition deterency effect (P< 0.05 was found for all extracts at LC50 levels, while at LC95 levels, oviposition was nearly completely inhibited. Thus, progeny emergence was completely suppressed at Legs levels, also at LCSC, of acetone extract. Chlorofonn extract indicated a slow rate of degradation alter one month of storage (90% mortality. All tested plant extracts reduced weight loss in wheat grains after 45 days of storage, but chloroform extract was the most effective. Most treatments did not significantly affect water absorption but viability was significantly reduced. Petroleum ether and chloroform extracts caused a significant inhibition effect on acetyl choline esterase (AchE in adults while acetone extract caused a significant activation effect. All three different extracts, caused a significant activation effect on phosphases (AcP and AlkP, except for chloroform and acetone extract treatments which caused significant inhibition of AcP in adults. All extracts caused a significant decrease in protein and carbohydrate contents of adults, except the carbohydrate content of adults treated with acetone extract. There was a significant increase in lipid content in adults treated with all three extracts and significant increase of carbohydrate content only in adults treated with acetone extract.

  5. Seed size-number trade-off in Euterpe edulis in plant communities of the Atlantic Forest

    Directory of Open Access Journals (Sweden)

    Pedro Henrique Santin Brancalion

    2014-06-01

    Full Text Available Investigations of seed size and number differences among plant populations growing in contrasting habitats can provide relevant information about ecological strategies that optimize reproductive effort. This may imply important consequences for biodiversity conservation and restoration. Therefore, we sought to investigate seed size-number trade-off in Euterpe edulis populations growing in plant communities in the Brazilian Atlantic Forest. Seed dry mass and seed number per bunch were evaluated in 2008 and 2009 in large remnants of the Seasonally Dry Forest, Restinga Forest and Atlantic Rainforest in southeastern Brazil, in 20 individuals per site and year. Seed size and seed number varied among forest types, but a seed size-number trade-off was neither observed within nor among populations. Positive association between seed size and number was found in the Atlantic Rainforest, and reduced seed crop was not accompanied by heavier seeds in the Restinga Forest. Seed dry mass declined in 2009 in all three forest types. Compared to seed number in 2008, palms of both the Restinga Forest and the Atlantic Rainforest produced in 2009 higher yields of smaller seeds - evidence of between years seed size-number trade-off -, while the Seasonally Dry Forest population produced a reduced number of smaller seeds. Such a flexible reproductive strategy, involving neutral, positive, and negative associations between seed size and number could enhance the ecological amplitude of this species and their potential to adapt to different environment conditions.

  6. Effect of environmental and genetic factors on the correlation and stability of grain yield components in wheat

    Directory of Open Access Journals (Sweden)

    Hristov Nikola

    2011-01-01

    Full Text Available More effective breeding and development of new wheat genotypes depend on an intricate analysis of the complex relationships among many different traits. The objective of this paper was to determine the interrelationship, direct and indirect effects, and stability of different yield components in wheat. Forty divergent genotypes were analyzed in a three- year study (2005-2007. Highly significant correlations were found between grain yield per plant and all the other traits analyzed except spike length, with the only negative correlation being that with plant height. Path analysis revealed highly significant direct effects of grain number per spike, grain mass per spike and 1000 grain weight on grain yield per plant. Analysis of stability parameters showed that the stability of grain yield per plant depended for the most part on the stability of grain number per spike, grain mass per spike and harvest index. Cluster analysis identified genotypes with a high performance for grain yield per plant and good stability parameters, indicating the possibility of developing wheat varieties with a high potential and high stability for a particular trait.

  7. Effect of fast neutrons and gamma rays treatments on heading date, plant height and tiller number in wheat

    International Nuclear Information System (INIS)

    Arain, M.A.

    1978-01-01

    Homogeneous seeds of six varieties of bread wheat, Triticum aestivum L. (2n = 6x = 42) were treated with fast neutrons and gamma rays. The irradiated seeds along with respective controls were grown in field plots during 1973-74 and heating date, plant height and tiller number studied. Varieties used in the present study varied significantly (P >=0.01) for all the characters. Treatment mean squares were highly significant for plant height and tillers per plant; whereas, the varieties x treatments interaction mean squares were significant only for plant height (P >= 0.05). Irradiated treatments exhibited significant reductions in plant height and tiller number than respective controls. However, heading was delayed among the irradiated material when compared with respective controls. Reduction in plant height was more pronounced after the treatments of gamma rays than the fast neutrons. The maximum and minimum shifts in mean values of these characters were observed in 20 kR (gamma rays) and Nf 300 RADS (fast neutrons) treatments, respectively. (author)

  8. Intraspecific chromosome number variation: a neglected threat to the conservation of rare plants.

    Science.gov (United States)

    Severns, Paul M; Liston, Aaron

    2008-12-01

    The effectiveness of rare plant conservation will increase when life history, demographic, and genetic data are considered simultaneously. Inbreeding depression is a widely recognized genetic concern in rare plant conservation, and the mixing of genetically diverse populations in restoration efforts is a common remedy. Nevertheless, if populations with unrecognized intraspecific chromosome variation are crossed, progeny fitness losses will range from partial to complete sterility, and reintroductions and population augmentation of rare plants may fail. To assess the current state of cytological knowledge of threatened and endangered plants in the continental United States, we searched available resources for chromosome counts. We also reviewed recovery plans to discern whether recovery criteria potentially place listed species at risk by requiring reintroductions or population augmentation in the absence of cytological information. Over half the plants lacked a chromosome count, and when a taxon did have a count it generally originated from a sampling intensity too limited to detect intraspecific chromosome variation. Despite limited past cytological sampling, we found 11 plants with documented intraspecific cytological variation, while 8 others were ambiguous for intraspecific chromosome variation. Nevertheless, only one recovery plan addressed the chromosome differences. Inadequate within-species cytological characterization, incomplete sampling among listed taxa, and the prevalence of interspecific and intraspecific chromosome variation in listed genera, suggests that other rare plants are likely to have intraspecific chromosome variation. Nearly 90% of all recovery plans called for reintroductions or population augmentation as part of recovery criteria despite the dearth of cytological knowledge. We recommend screening rare plants for intraspecific chromosome variation before reintroductions or population augmentation projects are undertaken to safeguard

  9. Interstellar grains

    Energy Technology Data Exchange (ETDEWEB)

    Hoyle, F.; Wickramasinghe, N.C.

    1980-11-01

    Interstellar extinction of starlight was observed and plotted as a function of inverse wavelength. Agreement with the calculated effects of the particle distribution is shown. The main kinds of grain distinguished are: (1) graphite spheres of radius 0.02 microns, making up 10% of the total grain mass (2) small dielectric spheres of radius 0.04 microns making up 25% and (3) hollow dielectric cylinders containing metallic iron, with diameters of 2/3 microns making up 45%. The remaining 20% consists of other metals, metal oxides, and polysiloxanes. Absorption factor evidence suggests that the main dielectric component of the grains is organic material.

  10. Radiation disinfestation of grain

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1962-10-15

    A panel was convened by the International Atomic Energy Agency to consider ways of applying radiation to grain handling and insect control, and to make recommendations on the advisability and nature of any future action in this field. Among other subjects, the panel discussed the use of electron accelerators and gamma radiation for grain disinfestation as well as problems of radiation entomology and wholesomeness of irradiated grain. After reviewing the present state of knowledge regarding radiation disinfestation of grain, the experts agreed that pilot plant operations be initiated as soon as practicable in order to evaluate the use of irradiation plants under practical conditions in their entomological, engineering and economic aspects. They recommended that research effort be directed towards solving certain fundamental problems related to the proposed pilot plant projects; such as rapid methods for differentiation between sterile insects and normal ones; study of the metabolism of irradiated immature stages of insects in relation to the heating of treated grain; research into possible induction of radiation resistance; irradiation susceptibility of insects which show resistance to conventional insecticides; and study of methods of sensitizing insects to irradiation damage. It was also pointed out that the distribution of irradiated food for human consumption was controlled in most countries under present legislative procedures, and no country had yet approved radiation treatment of cereals. The experts recommended that countries in a position to submit evidence to their appropriate authorities regarding the wholesomeness of irradiated cereals should be encouraged to do so as soon as possible. Regarding the engineering aspects of irradiation pilot plant projects, the experts noted that the process could be automated and operated safely. Electron accelerators and cobalt sources could be used for all the throughput rates utilized in most conventional grain

  11. Radiation disinfestation of grain

    International Nuclear Information System (INIS)

    1962-01-01

    A panel was convened by the International Atomic Energy Agency to consider ways of applying radiation to grain handling and insect control, and to make recommendations on the advisability and nature of any future action in this field. Among other subjects, the panel discussed the use of electron accelerators and gamma radiation for grain disinfestation as well as problems of radiation entomology and wholesomeness of irradiated grain. After reviewing the present state of knowledge regarding radiation disinfestation of grain, the experts agreed that pilot plant operations be initiated as soon as practicable in order to evaluate the use of irradiation plants under practical conditions in their entomological, engineering and economic aspects. They recommended that research effort be directed towards solving certain fundamental problems related to the proposed pilot plant projects; such as rapid methods for differentiation between sterile insects and normal ones; study of the metabolism of irradiated immature stages of insects in relation to the heating of treated grain; research into possible induction of radiation resistance; irradiation susceptibility of insects which show resistance to conventional insecticides; and study of methods of sensitizing insects to irradiation damage. It was also pointed out that the distribution of irradiated food for human consumption was controlled in most countries under present legislative procedures, and no country had yet approved radiation treatment of cereals. The experts recommended that countries in a position to submit evidence to their appropriate authorities regarding the wholesomeness of irradiated cereals should be encouraged to do so as soon as possible. Regarding the engineering aspects of irradiation pilot plant projects, the experts noted that the process could be automated and operated safely. Electron accelerators and cobalt sources could be used for all the throughput rates utilized in most conventional grain

  12. Grain Yield, Its Components, Genetic Diversity and Heritability in Chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    M. Kakaei

    2015-09-01

    Full Text Available The current research was carried out to investigate grain yield and components and their genetic diversity and heritability of some important agronomic traits, in 19 chickpea genotypes, based on a randomized complete block design with 3 replications in Research Field of Bu-Ali Sina University, Hamadan, Iran in 2011-2012 growing seasons. The ANOVA results showed that, there were highly significant differences (p < 0.01 among genotypes for the SPAD number, number of sub-branch per plant, pod number per plant, 100-kernel weight, grain yield, biological yield, and harvest index. The mean comparisons results indicated that the genotypes 14, 12, 4 and 19 (with 234.7, 240, 250.3 and 259.4 kilogram of grain yield per ha, respectively and the genotypes 18, 8, 15, and 6 (with 151.01, 167.6, 167.8 and 189 kilogram of grain yield per ha, respectively had the maximum and minimum economic yield, respectively. According to phonotypical correlation results, there were positive and significant (p < 0.01 correlations between grain yield and pod number per plant (0.623**, plant height (0.432**, harvest index (0.425** and biomass (0.349**. Step-wise regression indicated that the pod number per plant, harvest index, biomass, number of sub-branch per plant, and plant height were the most effective traits on economic yield and they explained 84.68 percent of the variation in economic yield. Furthermore, harvest index and seed number per plant had the maximum and minimum heritability, respectively, indicating that they could be hired as sources of variation for improving the grain yield and selecting superior genotypes.

  13. Effect of salinity on grain yield and grain quality of wheat (triticum aestivum l.)

    International Nuclear Information System (INIS)

    Abbas, G.; Saqib, M.; Rafique, Q.; Rahman, A.U.; Akhtar, J.; Haq, M.A.U.

    2013-01-01

    Salinity is one of the important stresses resulting in the reduction of growth and yield of different crops including wheat. In saline soils the concentration of Na/sup +/ and Cl/sup -/ is higher accompanied with the decreased K/sup +/: Na/sup +/ ratio thus severely affecting the growth and yield of crops. The effect of salinity on the growth and yield of wheat is well documented, whereas there is very little information about salinity tolerance and grain quality of wheat. Present study was conducted to assess the effect of salinity on yield components, ionic relations and grain quality and to understand the relationship among these parameters. A pot experiment was conducted using wheat genotype Pasban-90. There were two treatments i.e. non-saline (0.33 dS m/sup -1/) and saline (15 dS m/sup -1/) with five replications. Salinity resulted in a significant reduction of the grain protein, fat and fiber contents. Similarly yield components were significantly reduced. Maximum reduction was noted in case of number of tillers plant/sup -1/, followed by grain weight plant/sup -1/. High Na/sup +/ and low K/sup +/, P concentration and K/sup +/: Na/sup +/ ratio was observed in the shoot, root and grain. This disturbed ionic composition seems to be apparent cause of yield reduction and deterioration of wheat quality under salinity. (author)

  14. Increasing the Control Efficacy of Saw toothed grain beetle, Oryzaephilus surinamensis (L) Using Gamma Irradiation and Essential Plant Oils

    International Nuclear Information System (INIS)

    Sileem, Th.M.; Hassan, R.S.; Sayed, W.A.A

    2017-01-01

    The combination of gamma irradiation and essential oils could potentially be used to control the Saw toothed grain beetle, Oryzaephlius surinamensis (L). Lethal dose of gamma irradiation and six commonly essential oils (Rosemary, Rosmarinus officinalis L., Marjoram, Origanum vulgare and Sesame, Sesamum indicum, Mintha, Mentha pulegium, Basil, Ocimum basilicum, and Pine, Pinus longifolia L) as a fumigants was tested. It was noticed that the O. surinamensis (L) larvae were most susceptible to irradiation where as, the aged adults were most tolerant. The insecticidal activity of the essential oils varied depending on the insect age and the type of essentials oils. The larval stage among the three test ages was more susceptible to the tested oils and the younger adults more sensitive than the older once to the tested essential oils in general. The combined treatment increased the mortality, which was also two times higher than could be expected from the sum of the effects of each of the treatments. The results indicated that synergistic effect was more pronounced in the case of fumigation followed by irradiation than in the case of irradiation followed by fumigation. Also, the total amount of glutathione (GSH+GSSG), thiobarbituric acid reactive substances (TBARS) and acetylcholine esterase (ACHE) were recorded. The findings indicate that the ionizing radiation might be considered as an environmentally compatible alternative or supplement to the essential oils for stored product-pests management

  15. A Plan to Optimize the Management of Weld ID SSN Numbering System for Nuclear Power Plants in Korea

    International Nuclear Information System (INIS)

    Yoo, Hyun Ju; Cho, Chan Hee; Kim, Jin Hoi; Park, Dong Min

    2016-01-01

    Summary Sheet Number(SSN) in the current LTP is an ID which means a weldment in a nuclear power plant. However, the SSN ID, which is unique on in a nuclear power plant, is not unique one if the weldments of entire nuclear power plant in Korea are treated in one system. Therefore, it is hard to manage the data during life time using the existing SSN ID system. It is also hard to configure the characteristics of weldment in mind because IDs implying Alloy600 and overlay weld do not exist in the existing SSN ID System. An optimized SSN numbering system managing weldments for the life time is introduced in this paper. Moreover, it is explained how to manage the SSN numbering system in the computer program system, too. The problem, which the weld is not harmoniously managed, would be solved provided adapting the new SSN ID introduced in this paper. A weld is managed during its life time from creation to extinction. The inquiry of inspection history of a concerned weld and the reference of statistics would be performed easily and rightly because the concerned weld can be accessed from anywhere connected to KHNP network such as KHNP headquater, plants and CRI

  16. Accurate measure of transgene copy number in crop plants using droplet digital PCR

    Science.gov (United States)

    Genetic transformation is a powerful means for the improvement of crop plants, but requires labor- and resource-intensive methods. An efficient method for identifying single-copy transgene insertion events from a population of independent transgenic lines is desirable. Currently, transgene copy numb...

  17. Odd-numbered very-long-chain fatty acids from the microbial, animal and plant kingdoms

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Sigler, Karel

    2009-01-01

    Roč. 48, 3-4 (2009), s. 206-238 ISSN 0163-7827 R&D Projects: GA MŠk 1M0570; GA MŠk 1M06011 Institutional research plan: CEZ:AV0Z50200510 Keywords : microorganism * plants * animals Subject RIV: EE - Microbiology, Virology Impact factor: 8.167, year: 2009

  18. Installation Restoration Program. Phase 1. Records Search, Air Force Plant Number 83, Albuquerque, New Mexico

    Science.gov (United States)

    1983-12-01

    site. The sawples should be collected south of the "green tank" and " swiming pool" tanks along the facility fence line. Samples of soil and asphalt...METALS, Metallic elements, including the transition series, which include many lements required for plant and animal nutrition in trace

  19. CORRELATION ANALYSIS OF AGRONOMIC CHARACTERS AND GRAIN YIELD OF RICE FOR TIDAL SWAMP AREAS

    Directory of Open Access Journals (Sweden)

    Aris Hairmansis

    2013-05-01

    Full Text Available Development of rice varieties for tidal swamp areas is emphasized on the improvement of rice yield potential in specific environment. However, grain yield is a complex trait and highly dependent on the other agronomic characters; while information related to the relationship between agronomic characters and grain yield in the breeding program particularly for tidal swamp areas is very limited. The objective of this study was to investigate relationship between agronomic characters and grain yield of rice as a basis for selection of high yielding rice varieties for tidal swamp areas. Agronomic characters and grain yield of nine advanced rice breeding lines and two rice varieties were evaluated in a series of experiments in tidal swamp areas, Karang Agung Ulu Village, Banyuasin, South Sumatra, for four cropping seasons in dry season (DS 2005, wet season (WS 2005/2006, DS 2006, and DS 2007. Result from path analysis revealed that the following characters had positive direct effect on grain yield, i.e. number of productive tillers per hill (p = 0.356, number of filled grains per panicle (p = 0.544, and spikelet fertility (p = 0.215. Plant height had negative direct effect (p = -0.332 on grain yield, while maturity, number of spikelets per panicle, and 1000-grain weight showed negligible effect on rice grain yield. Present study suggests that indirect selection of high yielding tidal swamp rice can be done by selecting breeding lines which have many product tive tillers, dense filled grains, and high spikelet fertility.

  20. Sugarcane Aphid Population Growth, Plant Injury, and Natural Enemies on Selected Grain Sorghum Hybrids in Texas and Louisiana.

    Science.gov (United States)

    Brewer, Michael J; Gordy, John W; Kerns, David L; Woolley, James B; Rooney, William L; Bowling, Robert D

    2017-10-01

    In response to the 2013 outbreak of sugarcane aphid, Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae), on sorghum, Sorghum bicolor (L.), in North America, experiments were conducted at three southern U.S. grain sorghum production locations (Corpus Christi, TX; Winnsboro, LA; Rosenberg, TX). The objectives were to authenticate yield decline on susceptible hybrids (2014 and 2015) and to measure aphid population growth and natural enemy prevalence on susceptible and resistant hybrids with similar genetic background (2014). Yield decline on susceptible hybrids (Tx 2752/Tx430 and DKS53-67) was more substantial when aphid population growth accelerated quickly and peaked above 300 aphids per leaf (50 to nearly 100% yield decline). Location and year variation in maximum aphid density and cumulative aphid-days was high, with doubling time values on the susceptible hybrids ranging between 3.9 and 7.9 d. On resistant Tx2752/Tx2783, leaf injury and yield decline were not seen or less severe than on its paired susceptible Tx2752/Tx430. Aphids declined on Tx2752/Tx2783 after initial colony establishment (Corpus Christi) or took about 60% longer to double in population size when compared with Tx2572/Tx430 (Winnsboro). The predominant natural enemy taxa were aphelinid mummies (Hymenoptera: Aphelinidae), ladybird beetles (Coleoptera: Coccinellidae), and sryphid flies (Diptera: Syrphidae), and they were more prevalent during flowering than prior to flowering. They were generally responsive to changes in aphid density of both susceptible and resistant hybrids, but variability points to need for further study. In future research, full season observations should continue as well as more detailed study of potential compatibility of sorghum resistance and biological control. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Evaluation Physiological Characteristics and Grain Yield Canola Cultivars under end Seasonal Drought Stress in Weather Condition of Ahvaz

    Directory of Open Access Journals (Sweden)

    A Seyed Ahmadi

    2015-07-01

    Full Text Available To evaluate canola cultivars response to physiological characteristics and grain yield end seasonal drought stress in weather condition of Ahvaz, farm experiments were done at research farm of Khuzestan agriculture and natural resources center. During 2007-2008 and 2008-2009 crop years. Farm test comprised drought stress was done as split plot form with randomize complete block design with four replication, treatments consist of drought stress (main factor including 50, 60 and 70 percent of water use content, which was applied from early heading stage until physiological maturity, and three spring canola cultivar including Shirali, Hayola 401 and R.G.S. were considered as sub plots. Measurements include biological yield, grain yield, harvesting index, number of pod per plant 1000 grain weight, number of grain in pod, plant height, and stem diameter, oil and protein percentage. Results showed that drought stress reduced significantly grain yield, biological yield, harvest index and the average of reduction of them during 2 years for per unit reduce moisture from 50% to 70% were 2, 1.35, and 0.81 percent, respectively. During two years, 1000 grain weight, number of pods per plant and number of grain per pod reduced 27, 36 and 20 percent, respectively. Terminal Drought stress reduced significantly plant height, stem diameter, stem number per plant and pod length, this reduced were 12, 46, 36 and 14 percent, respectively. Stem diameter, and stem number per plant reduced more than other characteristics. In this study oil grain decreased 12 % and protein grain increased 18.5% but oil and protein yield decreased 44.9% and 27.1% respectively..Finally, in weather condition of Khuzestan, terminal drought stress on February and March in which has simultaneous with early flowering stage and filling seed, significantly, reduced yield and compounded yield and affects on stem growth and qualities oil and protein negatively. Therefore, with irrigation

  2. Technology to sort lumber by color and grain for furniture parts

    Science.gov (United States)

    D. Earl Kline; Richard Conners; Philip A. Araman

    2000-01-01

    This paper describes an automatic color and grain sorting system for wood edge-glued panel parts. The color sorting system simultaneously examines both faces of a panel part and then determines which face has the "best" color, and sorts the part into one of a number of color classes at plant production speeds. In-plant test results show that the system...

  3. Characteristic numbers of granular activated carbon for the elimination of micropollutants from effluents of municipal wastewater treatment plants.

    Science.gov (United States)

    Benstoem, F; Pinnekamp, J

    2017-07-01

    Adsorption on granular activated carbon (GAC) is a promising step to extend existing treatment trains in municipal wastewater treatment plants (WWTPs) and, thus, to reduce the concentration of micropollutants (MPs) (e.g. pharmaceuticals) in wastewater. It is common practice to use characteristic numbers when choosing GAC for a specific application. In this study, characteristic numbers were correlated for five different GACs, with measured adsorption capacities of these carbons for three pharmaceutical MPs (carbamazepine, diclofenac and sulfamethoxazole) and dissolved organic carbon of a WWTP effluent. The adsorption capacities were measured using rapid small scale column tests. Density of GAC showed the highest correlation to adsorption of MP. All other characteristic numbers (iodine number, Brunauer-Emmett-Teller (BET) surface and methylene blue titre) are not suitable markers for choosing an appropriate activated carbon product for the elimination of MPs from municipal wastewater.

  4. Contrasting Plasticity in Ovariole Number Induced by A Dietary Effect of the Host Plants between Cactophilic Drosophila Species

    Directory of Open Access Journals (Sweden)

    Daniela Peluso

    2016-05-01

    Full Text Available Under the preference-performance hypothesis, natural selection will favor females that choose oviposition sites that optimize the fitness of their offspring. Such a preference-performance relationship may entail important consequences mainly on fitness-related traits. We used the well-characterized cactus-Drosophila system to investigate the reproductive capacity in the pair of sibling species D. buzzatii and D. koepferae reared in two alternative host plants. According to our hypothesis, ovariole number (as a proxy of reproductive capacity depends on host plant selection. Our results indicate that the capacity of D. buzzatii showed to be mild, only increasing the number of ovarioles by as much as 10% when reared in its preferred host. In contrast, D. koepferae exhibited a similar reproductive capacity across host cacti, even though it showed a preference for its primary host cactus. Our study also revealed that D. buzzatii has a larger genetic variation for phenotypic plasticity than its sibling, although ovariole number did not show clear-cut differences between species. We will discuss the weak preference-performance pattern observed in these cactophilic species in the light of nutritional and toxicological differences found between the natural host plants.

  5. Grain alcohol study: summary

    Energy Technology Data Exchange (ETDEWEB)

    The study has concentrated upon a detailed examination of all considerations involved in the production, use, and marketing of ethyl alcohol (ethanol) as produced from the fermentation of agricultural grains. Each parameter was examined in the light of current energy markets and trends; new sources and technological, and processes for fermentation, the capability of the agricultural industry to support fermentation demand; the optimizaton of value of agricultural crops; and the efficiencies of combining related industries. Ahydrous (200 proof) ethanol makes an excellent blending component for all present automotive fuels and an excellent octane additive for unleaded fuels in proportions up to 35% without requiring modifications to current engines. There is no difference between ethanol produced by fermentation and ethanol produced synthetically from petroleum. The decision to produce ethanol one way or the other is purely economic. The agricultural industry can support a major expansion in the fermentation industry. The residue (distillers grains) from the fermentation of corn for ethanol is an excellent and economical feed for livestock and poultry. A reliable supply of distillers grain can assist in making the large beef feedlot operations more economically viable. The source materials, fuels, products and by-products of an ethanol plant, beef feedlot, gas biodigester plant, municipal waste recovery plant and a steam generated electrical plant are interrelated and mutually beneficial for energy efficiencies and economic gains when co-located. The study concludes that the establishment of such agricultural- environment industrial energy complexes, would provide a broad range of significant benefits to Indiana.

  6. Grain alcohol study: summary

    Energy Technology Data Exchange (ETDEWEB)

    The study has concentrated upon a detailed examination of all considerations involved in the production, use, and marketing of ethyl alcohol (Ethanol) as produced from the fermentation of agricultural grains. Each parameter was examined in the light of current energy markets and trends; new sources and technological, and processes for fermentation, the capability of the agricultural industry to support fermentaton demand; the optimization of value of agricultureal crops; and the efficiencies of combining related industries. Anhydrous (200 proof) ethanol makes an excellent blending component for all present automotive fuels and an excellent octane additive for unleaded fuels in proportions up to 35% without requiring modifications to current engines. There is no difference between ethanol produced by fermentation and ethanol produced synthetically from petroleum. The decision to produce ethanol one way or the other is purely economic. The agricultural industry can support a major expansion in the fermentation industry. The residue (distillers grains) from the fermentation of corn for ethanol is an excellent and economical feed for livestock and poultry. A reliable supply of distillers grains can assist in making the large beef feedlot operations more economically viable. The source materials, fuels, products and by-products of an ethanol plant, beef feedlot, gas biodigester plant, municipal waste recovery plant and a steam generated electrical plant are interrelated and mutually beneficial for energy efficiencies and economic gains when co-located. The study concludes that the establishment of such agricultural-environment industrial energy complexes, would provide a broad range of significant benefits to Indiana.

  7. Exotic plant infestation is associated with decreased modularity and increased numbers of connectors in mixed-grass prairie pollination networks

    Science.gov (United States)

    Larson, Diane L.; Rabie, Paul A.; Droege, Sam; Larson, Jennifer L.; Haar, Milton

    2016-01-01

    The majority of pollinating insects are generalists whose lifetimes overlap flowering periods of many potentially suitable plant species. Such generality is instrumental in allowing exotic plant species to invade pollination networks. The particulars of how existing networks change in response to an invasive plant over the course of its phenology are not well characterized, but may shed light on the probability of long-term effects on plant-pollinator interactions and the stability of network structure. Here we describe changes in network topology and modular structure of infested and non-infested networks during the flowering season of the generalist non-native flowering plant, Cirsium arvense in mixed-grass prairie at Badlands National Park, South Dakota, USA. Objectives were to compare network-level effects of infestation as they propagate over the season in infested and non-infested (with respect to C. arvense) networks. We characterized plant-pollinator networks on 5 non-infested and 7 infested 1-ha plots during 4 sample periods that collectively covered the length of C. arvense flowering period. Two other abundantly-flowering invasive plants were present during this time: Melilotus officinalis had highly variable floral abundance in both C. arvense-infested and non-infested plots andConvolvulus arvensis, which occurred almost exclusively in infested plots and peaked early in the season. Modularity, including roles of individual species, and network topology were assessed for each sample period as well as in pooled infested and non-infested networks. Differences in modularity and network metrics between infested and non-infested networks were limited to the third and fourth sample periods, during flower senescence of C. arvenseand the other invasive species; generality of pollinators rose concurrently, suggesting rewiring of the network and a lag effect of earlier floral abundance. Modularity was lower and number of connectors higher in infested

  8. CO2 dose–response functions for wheat grain, protein and mineral yield based on FACE and open-top chamber experiments

    International Nuclear Information System (INIS)

    Pleijel, Håkan; Högy, Petra

    2015-01-01

    Data from three Swedish open-top chamber and four German FACE experiments were combined to derive response functions for elevated CO 2 (eCO 2 ) effects on Cd, Zn, Mn, protein, grain yield, grain mass and grain number of wheat. Grain yield and grain number were increased by ∼6% and ∼7%, respectively, per 100 ppm CO 2 ; the former effect was linked to plant nitrogen status. Grain mass was not influenced by eCO 2 , whereas Cd concentration was reduced. Unlike Zn, Mn and protein, effects on Cd yield were not related to effects on grain yield. Yields of Mn, Zn and (weakly) protein were positively affected by eCO 2 . For protein, grain yield, grain mass and grain number, the results were consistent among the FACE and OTC experiments. A key conclusion was that yields of essential nutrients were enhanced (Mn > Zn > protein), although less than grain yield, which would not be expected from a simple dilution model. - Highlights: • Grain yield and grain number were positively affected by 6–7% per 100 ppm CO 2 . • Yield stimulation by CO 2 was influenced by plant nitrogen status. • Cd concentration was reduced by elevated CO 2 . • Yields of Zn, Mn and protein were stimulated by CO 2 , but less than grain yield. • A simple dilution model did not explain effects on Zn, Mn and protein. - Yields of Zn, Mn and protein were stimulated less by elevated CO 2 than grain yield, while Cd yield and grain mass were unaffected, in wheat exposed in FACE and open-top chambers

  9. Vascular development of the grapevine (Vitis vinifera L.) inflorescence rachis in response to flower number, plant growth regulators and defoliation.

    Science.gov (United States)

    Gourieroux, Aude M; Holzapfel, Bruno P; McCully, Margaret E; Scollary, Geoffrey R; Rogiers, Suzy Y

    2017-09-01

    The grapevine inflorescence is a determinate panicle and as buds emerge, shoot, flower and rachis development occur simultaneously. The growth and architecture of the rachis is determined by genetic and environmental factors but here we examined the role of flower and leaf number as well as hormones on its elongation and vascular development. The consequences of rachis morphology and vascular area on berry size and composition were also assessed. One week prior to anthesis, Merlot and Cabernet Sauvignon field vines were exposed to manual flower removal, exogenous plant growth regulators or pre-bloom leaf removal. Manual removal of half the flowers along the vertical axis of the inflorescence resulted in a shorter rachis in both cultivars. Conversely, inflorescences treated with gibberellic acid (GA 3 ) and the synthetic cytokinin, 6-benzylaminopurine (BAP) resulted in a longer rachis while pre-bloom removal of all leaves on the inflorescence-bearing shoot did not alter rachis length relative to untreated inflorescences. Across the treatments, the cross-sectional areas of the conducting xylem and phloem in the rachis were positively correlated to rachis girth, flower number at anthesis, bunch berry number, bunch berry fresh mass and bunch sugar content at harvest. Conversely, average berry size and sugar content were not linked to rachis vascular area. These data indicate that the morphological and vascular development of the rachis was more responsive to flower number and plant growth regulators than to leaf removal.

  10. Grain product of 34 soya mutant lines

    International Nuclear Information System (INIS)

    Salmeron E, J.; Mastache L, A. A.; Valencia E, F.; Diaz V, G. E.; Cervantes S, T.; De la Cruz T, E.; Garcia A, J. M.; Falcon B, T.; Gatica T, M. A.

    2009-01-01

    This work was development with the objective of obtaining information of the agronomic behavior of 34 soya mutant lines (R 4 M 18 ) for human consumption and this way to select the 2 better lines. The genetic materials were obtained starting from the variety ISAAEG-B M2 by means of the application of recurrent radiation with Co 60 gammas, to a dose of 350 Gray for the first two generations and both later to 200 Gray and selection during 17 cycles, being obtained the 34 better lines mutants with agronomic characteristic wanted and good flavor. The obtained results were that the mutant lines L 25 and L 32 produced the major quantity in branches/plant number with 7.5 and 7.25, pods/plant number with 171.25 and 167, grains/plant number with 350.89 and 333.07 and grain product (ton/ha) to 15% of humidity 5.15 and 4.68 ton/ha, respectively. (Author)

  11. Moniliformin in Norwegian grain

    NARCIS (Netherlands)

    Uhlig, S.; Torp, M.; Jarp, J.; Parich, A.; Gutleb, A.C.; Krska, R.

    2004-01-01

    Norwegian grain samples (73 oats, 75 barley, 83 wheat) from the 2000-02 growing seasons were examined for contamination with moniliformin, and the association between the fungal metabolite and the number of kernels infected with common Fusaria was investigated. Before quantification of moniliformin

  12. Nuclear safeguard assessment in nuclear power plants (NPPs) using loss function with modified random numbers

    International Nuclear Information System (INIS)

    Woo, Tae Ho

    2012-01-01

    Highlights: ► The safeguard is analyzed by quantification. ► Newly introduced SF is analyzed by the electrical power output. ► The relative value of SF is shown in the month level. ► The better operation could be indicated numerical values. ► There are several secure operation factors to be suggested. - Abstract: The energy production in nuclear power plants (NPPs) is investigated for the safeguard risk management using economic factors. The economic loss function is used for the life quality in the social and natural objects. For the basic event elements, the game theory is applied for the basic elements of the incidents in non-secure situations. The Safeguard Factor (SF) is introduced for the quantifications of simulation. The results are shown by the standard productivity comparisons with the designed power operations, which is obtained as the range of secure life extension in 2000 MW e is between 0.0000 and 9.1985 and the range in 600 MW e is between 0.0000 and 2.7600. So, the highest value in the range of secure power operation increases about 3.33 times higher than that of the interested power operation in this study, which means the safeguard assessment is quantified by the power rate in the life extension of the NPPs. The Nuclear Safeguard Protocol (NSP) is constructed for the safe operation successfully.

  13. Forecasting power plant effects on the coastal zone. EG and G final report number B-4441

    International Nuclear Information System (INIS)

    1976-06-01

    Field methods, data analyses, and calculation are presented exemplifying procedures for oceanic dispersion prediction as a tool for forecasting power plant effects on the coastal zone. Measurements were made of dye, drogues and temperatures near Pilgrim Station's discharge (Plymouth, Massachusetts), and of currents and other variables across Massachusetts Bay. Analysis of current data illustrates separation of tidal, wind-driven and inertial constituents and their significance for dispersion. Dye and temperature dispersion are compared with the currents study, and diffusion coefficients estimated. Current data from coastal sites (New Jersey and Massachusetts) are analyzed to determine field requirements for dispersion estimates. Methods to calculate expected precision of estimates based on brief current records are developed. Model calculations predicting dispersion based on observed ocean currents are described. Formulae are derived to estimate the spatial distribution of impact from a discharge. A numerical model to calculate discharge dispersion in more detail is discussed and used to study time variations of discharge effects. Model predictions are compared with field observations

  14. Decreasing radioactive cesium in lodged buckwheat grain after harvest

    Directory of Open Access Journals (Sweden)

    Katashi Kubo

    2016-01-01

    Full Text Available This study assessed soil contamination with high radioactive cesium (R–Cs concentration in buckwheat grains by lodging, and assessed the possibility of R–Cs reduction in grain through post-harvest preparation. Analysis of buckwheat grain produced in farmers’ fields and reports from farmers indicated that grain from fields that had lodging showed higher R–Cs than grain from fields with no lodging. A field experiment demonstrated that R–Cs in grain after threshing and winnowing (TW was about six times higher in lodged plants than in nonlodged plants. In lodged plants, R–Cs in grain was decreased to about one-fourth by polishing, and was decreased to about one-seventh by ultrasonic cleaning, compared with R–Cs in grain after TW. These results demonstrate that R–Cs of buckwheat grain of lodged plants can be decreased by removing soil from the grain surface by polishing and winnowing.

  15. Rapid, single-step most-probable-number method for enumerating fecal coliforms in effluents from sewage treatment plants

    Science.gov (United States)

    Munoz, E. F.; Silverman, M. P.

    1979-01-01

    A single-step most-probable-number method for determining the number of fecal coliform bacteria present in sewage treatment plant effluents is discussed. A single growth medium based on that of Reasoner et al. (1976) and consisting of 5.0 gr. proteose peptone, 3.0 gr. yeast extract, 10.0 gr. lactose, 7.5 gr. NaCl, 0.2 gr. sodium lauryl sulfate, and 0.1 gr. sodium desoxycholate per liter is used. The pH is adjusted to 6.5, and samples are incubated at 44.5 deg C. Bacterial growth is detected either by measuring the increase with time in the electrical impedance ratio between the innoculated sample vial and an uninnoculated reference vial or by visual examination for turbidity. Results obtained by the single-step method for chlorinated and unchlorinated effluent samples are in excellent agreement with those obtained by the standard method. It is suggested that in automated treatment plants impedance ratio data could be automatically matched by computer programs with the appropriate dilution factors and most probable number tables already in the computer memory, with the corresponding result displayed as fecal coliforms per 100 ml of effluent.

  16. Optimizing the number of progenies and replications in plant breeding experiments

    Directory of Open Access Journals (Sweden)

    João Luís da Silva Filho

    2013-01-01

    Full Text Available A determination criterion was proposed for the number of replications, r, and of evaluated progenies, Nr, given P experimentalplots, with Nr=P/r, and n progenies to be selected; its application was discussed in the selection of progenies of bulk populations,derived from two homozygous parents. For a known heritability at the plot level, h20, there is a critical n below which the gain isgreater with selection evaluating P/(r+1 progenies in r+1 than P/r progenies in r replications. Different h20 scenarios were simulatedin the F2 and F∞ generations, assuming no dominance. It was demonstrated that at any h20 , if n > 18.5% of P, larger gains are obtainedby assuming Nr = P, showing that the augmented block design could be used in the early stages of breeding programs. The higher h20,the higher must be the selection intensity to justify the use of additional replications.

  17. Waste Isolation Pilot Plant Salado hydrology program data report {number_sign}3

    Energy Technology Data Exchange (ETDEWEB)

    Chace, D.A.; Roberts, R.M.; Palmer, J.B.; Kloska, M.B.; Fort, M.D.; Martin, G.J.; Stensrud, W.A. [INTERA, Inc., Albuquerque, NM (United States)

    1998-01-01

    WIPP Salado Hydrology Program Data Report {number_sign}3 presents hydrologic data collected during permeability testing, coupled permeability and hydrofracture testing, and gas-threshold-pressure testing of the Salado Formation performed from November 1991 through October 1995. Fluid-pressure monitoring data representing August 1989 through May 1995 are also included. The report presents data from the drilling and testing of three boreholes associated with the permeability testing program, nine boreholes associated with the coupled permeability and hydrofracture testing program, and three boreholes associated with the gas-threshold-pressure testing program. The purpose of the permeability testing program was to provide data with which to interpret the disturbed and undisturbed permeability and pore pressure characteristics of the different Salado Formation lithologies. The purpose of the coupled permeability and hydrofracture testing program was to provide data with which to characterize the occurrence, propagation, and direction of pressure induced fractures in the Salado Formation lithologies, especially MB139. The purpose of the gas-threshold-pressure testing program was to provide data with which to characterize the conditions under which pressurized gas displaces fluid in the brine-saturated Salado Formation lithologies. All of the holes were drilled from the WIPP underground facility 655 m below ground surface in the Salado Formation.

  18. Waste Isolation Pilot Plant Salado hydrology program data report number 3

    International Nuclear Information System (INIS)

    Chace, D.A.; Roberts, R.M.; Palmer, J.B.; Kloska, M.B.; Fort, M.D.; Martin, G.J.; Stensrud, W.A.

    1998-01-01

    WIPP Salado Hydrology Program Data Report number-sign 3 presents hydrologic data collected during permeability testing, coupled permeability and hydrofracture testing, and gas-threshold-pressure testing of the Salado Formation performed from November 1991 through October 1995. Fluid-pressure monitoring data representing August 1989 through May 1995 are also included. The report presents data from the drilling and testing of three boreholes associated with the permeability testing program, nine boreholes associated with the coupled permeability and hydrofracture testing program, and three boreholes associated with the gas-threshold-pressure testing program. The purpose of the permeability testing program was to provide data with which to interpret the disturbed and undisturbed permeability and pore pressure characteristics of the different Salado Formation lithologies. The purpose of the coupled permeability and hydrofracture testing program was to provide data with which to characterize the occurrence, propagation, and direction of pressure induced fractures in the Salado Formation lithologies, especially MB139. The purpose of the gas-threshold-pressure testing program was to provide data with which to characterize the conditions under which pressurized gas displaces fluid in the brine-saturated Salado Formation lithologies. All of the holes were drilled from the WIPP underground facility 655 m below ground surface in the Salado Formation

  19. Effects of Row Spacing and Plant Density on Yield and Yield Components of Sweet Corn in Climatic Conditions of Isfahan

    Directory of Open Access Journals (Sweden)

    N. Khodaeian

    2013-06-01

    Full Text Available To evaluate the effects of row spacing and plant density on yield and yield components of sweet corn, variety KSC403, an experiment was conducted in Research Farm of Isfahan University of Technology, Isfahan, Iran, in 2007, as randomized complete block design with a split-plot layout and three replications. The main plots were allocated to two row spacing (60 and 75 cm and the sub-plots accommodated four levels of plant density (50000, 70000, 90000 and 110000 plants per ha. There was significant increase in leaf area index, shoot dry weight, 100-grain fresh weight and grain fresh yield, as row width was decreased from 75 to 60 cm but the plant height was decreased. There was no significant effect of row spacing on number of rows per ear, number of grains per row and number of grains per ear. Plant height, leaf area index, shoot dry weight per m2 and number of ears per m2 were increased with an increase in plant density. The number of rows per ear, number of grains per row, number of grains per ear, 100-grain fresh weight and grain fresh yield were significantly higher under plant densities of 90000 and 110000 as compared to 50000 and 70000 plants per ha. There was significant interaction between row spacing and plant density for leaf area index, shoot dry weight, number of grains per ear, 100-grain fresh weight and grain fresh yield. Under all plant densities, the grain fresh yield was higher in 60-cm row width compared to 70-cm row width. However, the difference between these two row spacing was not significant in plant densities of 50000 and 110000 plants per ha. The highest grain fresh yield (33940 kg/ha was achieved under row spacing 60 cm and 70000 plants per ha and the least grain fresh yield (20750 kg/ha was obtained in under 75 cm row width and 110000 plants per ha. Considering the obtained results of this experiment, to have maximum grain fresh yield of sweet corn under Isfahan climate, the row spacing of 60 cm and plant density of

  20. pOsNAR2.1:OsNAR2.1 expression enhances nitrogen uptake efficiency and grain yield in transgenic rice plants.

    Science.gov (United States)

    Chen, Jingguang; Fan, Xiaoru; Qian, Kaiyun; Zhang, Yong; Song, Miaoquan; Liu, Yu; Xu, Guohua; Fan, Xiaorong

    2017-10-01

    The nitrate (NO3-) transporter has been selected as an important gene maker in the process of environmental adoption in rice cultivars. In this work, we transferred another native OsNAR2.1 promoter with driving OsNAR2.1 gene into rice plants. The transgenic lines with exogenous pOsNAR2.1:OsNAR2.1 constructs showed enhanced OsNAR2.1 expression level, compared with wild type (WT), and 15 N influx in roots increased 21%-32% in response to 0.2 mm and 2.5 mm 15NO3- and 1.25 mm 15 NH 4 15 NO 3 . Under these three N conditions, the biomass of the pOsNAR2.1:OsNAR2.1 transgenic lines increased 143%, 129% and 51%, and total N content increased 161%, 242% and 69%, respectively, compared to WT. Furthermore in field experiments we found the grain yield, agricultural nitrogen use efficiency (ANUE), and dry matter transfer of pOsNAR2.1:OsNAR2.1 plants increased by about 21%, 22% and 21%, compared to WT. We also compared the phenotypes of pOsNAR2.1:OsNAR2.1 and pOsNAR2.1:OsNRT2.1 transgenic lines in the field, found that postanthesis N uptake differed significantly between them, and in comparison with the WT. Postanthesis N uptake (PANU) increased approximately 39% and 85%, in the pOsNAR2.1:OsNAR2.1 and pOsNAR2.1:OsNRT2.1 transgenic lines, respectively, possibly because OsNRT2.1 expression was less in the pOsNAR2.1:OsNAR2.1 lines than in the pOsNAR2.1:OsNRT2.1 lines during the late growth stage. These results show that rice NO 3 - uptake, yield and NUE were improved by increased OsNAR2.1 expression via its native promoter. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Productive performance of soybean cultivars grown in different plant densities

    Directory of Open Access Journals (Sweden)

    Augusto Belchior Marchetti Ribeiro

    Full Text Available ABSTRACT: Plants density in soybean cultivation is an important management practice to achieve high grain yield. In this way, the objective was to evaluate the agronomic traits and grain yield in soybean in different plant densities, in two locations in the south of Minas Gerais. The experimental design was in randomized blocks, arranged in a split plot design, with three replications. Plots were composed of four population densities (300, 400, 500 and 600 thousand plants per hectare and the subplots were composed of six cultivars (‘BMX Força RR’, ‘CD 250 RR’, ‘FMT 08 - 60.346/1’, ‘NA 5909 RR’, ‘TMG 7161 RR’ and ‘V - TOP RR’ grown in Lavras and Inconfidentes, both in Minas Gerais. At the time of harvest was determined the plant height, lodging, insertion of the first pod, harvest index, number of pods per plant, number of grains, number of grains per pod and yield. Regardless of the soybean cultivar, the plant density of up to 600,000 per ha does not affect grain yield, plant height, lodging, harvest index, and number of grains per pod. The cultivars ‘V-TOP RR’ and ‘BMX FORÇA RR’ showed high grain yield and good agronomic traits in Lavras and Incofidentes.

  2. Summary of experience from a large number of construction inspections; Wind power plant projects; Erfarenhetsaaterfoering fraan entreprenadbesiktningar

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Bertil; Holmberg, Rikard

    2010-08-15

    This report presents a summary of experience from a large number of construction inspections of wind power projects. The working method is based on the collection of construction experience in form of questionnaires. The questionnaires were supplemented by a number of in-depth interviews to understand more in detail what is perceived to be a problem and if there were suggestions for improvements. The results in this report is based on inspection protocols from 174 wind turbines, which corresponds to about one-third of the power plants built in the time period. In total the questionnaires included 4683 inspection remarks as well as about one hundred free text comments. 52 of the 174 inspected power stations were rejected, corresponding to 30%. It has not been possible to identify any over represented type of remark as a main cause of rejection, but the rejection is usually based on a total number of remarks that is too large. The average number of remarks for a power plant is 27. Most power stations have between 20 and 35 remarks. The most common remarks concern shortcomings in marking and documentation. These are easily adjusted, and may be regarded as less serious. There are, however, a number of remarks which are recurrent and quite serious, mainly regarding gearbox, education and lightning protection. Usually these are also easily adjusted, but the consequences if not corrected can be very large. The consequences may be either shortened life of expensive components, e.g. oil problems in gear boxes, or increased probability of serious accidents, e.g. maladjusted lightning protection. In the report, comparison between power stations with various construction period, size, supplier, geography and topography is also presented. The general conclusion is that the differences are small. The results of the evaluation of questionnaires correspond well with the result of the in-depth interviews with clients. The problem that clients agreed upon as the greatest is the lack

  3. Effects of Foliar Application of Nitrogen, Zinc and Manganese on Yield, Yield Components and Grain Quality of Chickpea in Two Growing Seasons

    Directory of Open Access Journals (Sweden)

    B. Shirani

    2015-09-01

    Full Text Available To study the effects of foliar application of zinc, manganese and nitrogen on yield, yield components and grain quality of chickpea (Cicer arientinum L. two experiments, one in autumn and the other in spring were conducted at Research Farm, Shahrekord University in 2009-2010 growing season each as a randomized complete block design with three replications. The treatments were foliar application of zinc sulfate, manganese sulfate zinc sulfate and manganese sulfate mixture, nitrogen and distilled water (as control. The results showed that planting season had a significant effect on plant height, 100-seed weight and seed yield. All measured traits, except plant height, increased in winter compared to spring growing season. This increase was more than 12% for grain yield. Foliar application of nutrients significantly affected seed yield and seed yield components. Foliar application of nitrogen, presumably, through significant increase in number of pods per plant, number of seeds per plant and 100-seed weight, increased the grain yield by 6.2% compared to control. Foliar application × planting season interactions were significant for plant height and number of pods per plant. Foliar application of nitrogen caused a significant increase in grain yield and protein content. Foliar application of zinc sulphate significantly increased Zn content of grains however it did not affect seed yield. In conclusion, foliar application of nitrogen could be suggested for increasing protein and grain yield in chickpea under similar conditions to that of the present study.

  4. Mass and number size distributions of emitted particulates at five important operation units in a hazardous industrial waste incineration plant.

    Science.gov (United States)

    Lin, Chi-Chi; Huang, Hsiao-Lin; Hsiao, Wen-Yuan

    2016-01-01

    Past studies indicated particulates generated by waste incineration contain various hazardous compounds. The aerosol characteristics are very important for particulate hazard control and workers' protection. This study explores the detailed characteristics of emitted particulates from each important operation unit in a rotary kiln-based hazardous industrial waste incineration plant. A dust size analyzer (Grimm 1.109) and a scanning mobility particle sizer (SMPS) were used to measure the aerosol mass concentration, mass size distribution, and number size distribution at five operation units (S1-S5) during periods of normal operation, furnace shutdown, and annual maintenance. The place with the highest measured PM10 concentration was located at the area of fly ash discharge from air pollution control equipment (S5) during the period of normal operation. Fine particles (PM2.5) constituted the majority of the emitted particles from the incineration plant. The mass size distributions (elucidated) made it clear that the size of aerosols caused by the increased particulate mass, resulting from work activities, were mostly greater than 1.5 μm. Whereas the number size distributions showed that the major diameters of particulates that caused the increase of particulate number concentrations, from work activities, were distributed in the sub micrometer range. The process of discharging fly ash from air pollution control equipment can significantly increase the emission of nanoparticles. The mass concentrations and size distributions of emitted particulates were different at each operation unit. This information is valuable for managers to take appropriate strategy to reduce the particulate emission and associated worker exposure.

  5. Grain dust and the lungs.

    Science.gov (United States)

    Chan-Yeung, M.; Ashley, M. J.; Grzybowski, S.

    1978-01-01

    Grain dust is composed of a large number of materials, including various types of grain and their disintegration products, silica, fungi, insects and mites. The clinical syndromes described in relation to exposure to grain dust are chronic bronchitis, grain dust asthma, extrinsic allergic alveolitis, grain fever and silo-filler's lung. Rhinitis and conjunctivitis are also common in grain workers. While the concentration and the quality of dust influence the frequency and the type of clinical syndrome in grain workers, host factors are also important. Of the latter, smoking is the most important factor influencing the frequency of chronic bronchitis. The role of atopy and of bronchial hyperreactivity in grain dust asthma has yet to be assessed. Several well designed studies are currently being carried out in North America not only to delineate the frequency of the respiratory abnormalities, the pathogenetic mechanisms and the host factors, but also to establish a meaningful threshold limit concentration for grain dust. Images p1272-a PMID:348288

  6. Hormonal changes in the grains of rice subjected to water stress during grain filling.

    Science.gov (United States)

    Yang, J; Zhang, J; Wang, Z; Zhu, Q; Wang, W

    2001-09-01

    Lodging-resistant rice (Oryza sativa) cultivars usually show slow grain filling when nitrogen is applied in large amounts. This study investigated the possibility that a hormonal change may mediate the effect of water deficit that enhances whole plant senescence and speeds up grain filling. Two rice cultivars showing high lodging resistance and slow grain filling were field grown and applied with either normal or high amount nitrogen (HN) at heading. Well-watered and water-stressed (WS) treatments were imposed 9 days post anthesis to maturity. Results showed that WS increased partitioning of fixed (14)CO(2) into grains, accelerated the grain filling rate but shortened the grain filling period, whereas the HN did the opposite way. Cytokinin (zeatin + zeatin riboside) and indole-3-acetic acid contents in the grains transiently increased at early filling stage and WS treatments hastened their declines at the late grain filling stage. Gibberellins (GAs; GA(1) + GA(4)) in the grains were also high at early grain filling but HN enhanced, whereas WS substantially reduced, its accumulation. Opposite to GAs, abscisic acid (ABA) in the grains was low at early grain filling but WS remarkably enhanced its accumulation. The peak values of ABA were significantly correlated with the maximum grain filling rates (r = 0.92**, P water stress during grain filling, especially a decrease in GAs and an increase in ABA, enhances the remobilization of prestored carbon to the grains and accelerates the grain filling rate.

  7. Pressure effect on grain boundary diffusion

    International Nuclear Information System (INIS)

    Smirnova, E.S.; Chuvil'deev, V.N.

    1997-01-01

    The influence of hydrostatic pressure on grain boundary diffusion and grain boundary migration in metallic materials is theoretically investigated. The model is suggested that permits describing changes in activation energy of grain boundary self-diffusion and diffusion permeability of grain boundaries under hydrostatic pressure. The model is based on the ideas about island-type structure of grain boundaries as well as linear relationship of variations in grain boundary free volume to hydrostatic pressure value. Comparison of theoretical data with experimental ones for a number of metals and alloys (α-Zr, Sn-Ge, Cu-In with Co, In, Al as diffusing elements) shows a qualitative agreement

  8. Managing for Multifunctionality in Perennial Grain Crops

    Science.gov (United States)

    Ryan, Matthew R; Crews, Timothy E; Culman, Steven W; DeHaan, Lee R; Hayes, Richard C; Jungers, Jacob M; Bakker, Matthew G

    2018-01-01

    Abstract Plant breeders are increasing yields and improving agronomic traits in several perennial grain crops, the first of which is now being incorporated into commercial food products. Integration strategies and management guidelines are needed to optimize production of these new crops, which differ substantially from both annual grain crops and perennial forages. To offset relatively low grain yields, perennial grain cropping systems should be multifunctional. Growing perennial grains for several years to regenerate soil health before rotating to annual crops and growing perennial grains on sloped land and ecologically sensitive areas to reduce soil erosion and nutrient losses are two strategies that can provide ecosystem services and support multifunctionality. Several perennial cereals can be used to produce both grain and forage, and these dual-purpose crops can be intercropped with legumes for additional benefits. Highly diverse perennial grain polycultures can further enhance ecosystem services, but increased management complexity might limit their adoption. PMID:29662249

  9. Plant-specific Histone Deacetylases HDT½ Regulate GIBBERELLIN 2-OXIDASE 2 Expression to Control Arabidopsis Root Meristem Cell Number

    KAUST Repository

    Li, Huchen

    2017-08-31

    Root growth is modulated by environmental factors and depends on cell production in the root meristem (RM). New cells in the meristem are generated by stem cells and transit-amplifying cells, which together determine RM cell number. Transcription factors and chromatin-remodelling factors have been implicated in regulating the switch from stem cells to transit-amplifying cells. Here we show that two Arabidopsis thaliana paralogs encoding plant-specific histone deacetylases, HDT1 and HDT2, regulate a second switch from transit-amplifying cells to expanding cells. Knockdown of HDT½ (hdt1,2i) results in an earlier switch and causes a reduced RM cell number. Our data show that HDT½ negatively regulate the acetylation level of the C19-GIBBERELLIN 2-OXIDASE 2 (GA2ox2) locus and repress the expression of GA2ox2 in the RM and elongation zone. Overexpression of GA2ox2 in the RM phenocopies the hdt1,2i phenotype. Conversely, knockout of GA2ox2 partially rescues the root growth defect of hdt1,2i. These results suggest that by repressing the expression of GA2ox2, HDT½ likely fine-tune gibberellin metabolism and they are crucial for regulating the switch from cell division to expansion to determine RM cell number. We propose that HDT½ function as part of a mechanism that modulates root growth in response to environmental factors.

  10. Development of Perennial Grain Sorghum

    Directory of Open Access Journals (Sweden)

    Stan Cox

    2018-01-01

    Full Text Available Perennial germplasm derived from crosses between Sorghum bicolor and either S. halepense or S. propinquum is being developed with the goal of preventing and reversing soil degradation in the world’s grain sorghum-growing regions. Perennial grain sorghum plants produce subterranean stems known as rhizomes that sprout to form the next season’s crop. In Kansas, breeding perennial sorghum involves crossing S. bicolor cultivars or breeding lines to S. halepense or perennial S. bicolorn × S. halepense breeding lines, selecting perennial plants from F2 or subsequent populations, crossing those plants with S. bicolor, and repeating the cycle. A retrospective field trial in Kansas showed that selection and backcrossing during 2002–2009 had improved grain yields and seed weights of breeding lines. Second-season grain yields of sorghum lines regrowing from rhizomes were similar to yields in the first season. Further selection cycles have been completed since 2009. Many rhizomatous lines that cannot survive winters in Kansas are perennial at subtropical or tropical locations in North America and Africa. Grain yield in Kansas was not correlated with rhizomatousness in either Kansas or Uganda. Genomic regions affecting rhizome growth and development have been mapped, providing new breeding tools. The S. halepense gene pool may harbor many alleles useful for improving sorghum for a broad range of traits in addition to perenniality.

  11. Physics of dust grains in hot gas

    International Nuclear Information System (INIS)

    Draine, B.T.; Salpeter, E.E.

    1979-01-01

    Charging of dust grains in hot (10 4 --10 9 K) plasma is studied, including photoelectron and secondary electron emission, field emission, and transmission of electrons and ions through the grain; resulting grain potentials are (for T > or approx. = 10 5 K) considerably smaller in magnitude than found by Burke and Silk. Even so, large electrostatic stresses can cause ion field emission and rapid destruction of small grains in very hot gas. Rapid rotation can also disrupt small grains, but damping (by microwave emission) usually limits the centrifugal stress to acceptable values for plasma densities n/sub H/ -3 . Sputtering rates are estimated for grains in hot gas, based upon a semiempirical fit to experimental data. Predicted sputtering rates for possible grain constituents are similar to estimates by Barlow, but in some cases differ significantly. Useful approximation formulae are given for the drag forces acting on a grain with arbitrary Mach number

  12. Espaçamentos entre plantas e número de fileiras no canteiro na produção de ervilha Spacing between plants and number of rows per plot on the yield of pea

    Directory of Open Access Journals (Sweden)

    Rosimeire P Gassi

    2009-12-01

    green grains pea 'Luciana Nº 50' was evaluated when cultivated in four and five rows per plot and three spacings between plants in rows (5,0; 7,5 and 10,0 cm, in Dourados, Mato Grosso State, Brazil. Treatments were arranged as a 2 x 3 factorial scheme, in a randomized-blocks experimental design, with five replications. Plant height was not significantly influenced by the interaction between number of rows per plot and spaces between plants, neither by those isolated factors, with an average of 105,6 cm. The interaction was significant for fresh and dried mass of aerial part and the greatest values (10,49 t ha-1 and 2,31 t ha-1 were those from plants cultivated in four rows and 7,5 cm between plants. The smallest values (7,52 t ha-1 and 1,98 t ha-1, respectively were those from plants under five rows and spaced 5,0 cm between plants for fresh mass and four rows and 10,0 cm between plants for dried mass. Yield of commercial pods obtained under four rows of plants was superior in 1,50 t ha-1 than those under five rows (5,74 t ha-1 and the yield obtained in 10 cm between plants was superior in 2,25 t ha-1 than that under 5,0 cm (5,23 t ha-1. The greatest yield of commercial tender grains (4,27 t ha-1 was obtainded using spaces of 10 cm between plants, which was superior in 1,33 t ha-1 than those with 5,0 cm between plants, which was the smallest one. Considering yield of tender grains and the estimate of gross income, 'Luciana nº 50' must be cultivated with four rows of plants per plot and with 10 cm between plants.

  13. Randomly grain growth in metallic materials

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, A. [Instituto Politecnico Nacional, (SEPI-ESIME), Unidad Profesional Ticoman, Av. Ticoman 600, Del. G.A.M., C.P. 07340 Distrito Federal, Mexico (Mexico); Instituto Politecnico Nacional, (SEPI-ESIQIE), Unidad Profesional Zacatenco, Edif. 6 y Edif. Z planta baja C.P.07300, Distrito Federal, Mexico (Mexico)], E-mail: adaramil@yahoo.com.mx; Chavez, F. [Instituto Politecnico Nacional, (SEPI-ESIQIE), Unidad Profesional Zacatenco, Edif. 6 y Edif. Z planta baja C.P.07300, Distrito Federal, Mexico (Mexico); Demedices, L. [Instituto Politecnico Nacional, (SEPI-ESIME), Unidad Profesional Ticoman, Av. Ticoman 600, Del. G.A.M., C.P. 07340 Distrito Federal, Mexico (Mexico); Instituto Politecnico Nacional, (SEPI-ESIQIE), Unidad Profesional Zacatenco, Edif. 6 y Edif. Z planta baja C.P.07300, Distrito Federal, Mexico (Mexico); Cruz, A.; Macias, M. [Instituto Politecnico Nacional, (SEPI-ESIQIE), Unidad Profesional Zacatenco, Edif. 6 y Edif. Z planta baja C.P.07300, Distrito Federal, Mexico (Mexico)

    2009-10-30

    Computational modeling of grain structures is a very important topic in materials science. In this work, the development of the computational algorithms for a mathematical model to predict grain nucleation and grain growth is presented. The model place a number of nucleated points randomly in a liquid pool according with the solid and liquid fractions (X{sub sol} and X{sub liq}) of metal solute and the local temperature distribution (SS{sub I,J}). Then these points grows isotropically until obtain a grain structure with straight interfaces. Different grain morphologies such as columnar and equiaxed can be obtained as a function of the temperature distributions and growth directions.

  14. Randomly grain growth in metallic materials

    International Nuclear Information System (INIS)

    Ramirez, A.; Chavez, F.; Demedices, L.; Cruz, A.; Macias, M.

    2009-01-01

    Computational modeling of grain structures is a very important topic in materials science. In this work, the development of the computational algorithms for a mathematical model to predict grain nucleation and grain growth is presented. The model place a number of nucleated points randomly in a liquid pool according with the solid and liquid fractions (X sol and X liq ) of metal solute and the local temperature distribution (SS I,J ). Then these points grows isotropically until obtain a grain structure with straight interfaces. Different grain morphologies such as columnar and equiaxed can be obtained as a function of the temperature distributions and growth directions.

  15. Changes in the Chlorophyll Content and Cytokinin Levels in the Top Three Leaves of New Plant Type Rice During Grain Filling

    Czech Academy of Sciences Publication Activity Database

    Rubia, L.; Rangan, L.; Kamínek, Miroslav; Dobrev, Petre; Malbeck, Jiří; Fowler, M.; Khush, G.; Elliott, M.

    2014-01-01

    Roč. 33, č. 1 (2014), s. 66-76 ISSN 0721-7595 R&D Projects: GA MŠk 1M06030 Institutional support: RVO:61389030 Keywords : Chlorophyll * Cytokinins * Grain filling Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.237, year: 2014

  16. The role of arbuscular mycorrhizal fungi in grain production and nutrition of sorghum genotypes: Enhancing sustainability through plant-microbial partnership

    Science.gov (United States)

    The role of arbuscular mycorrhizal (AM) fungi and fertilization in sorghum grain production and quality was assessed for 3 hybrid genotypes, 2 open-pollinated African genotypes, and 1 open-pollinated Latin American genotype. The open-pollinated genotypes produced an average of 206% more vegetative b...

  17. Atividade residual de (imazethapyr+imazapic para sorgo granífero (Sorghum bicolor semeado em rotação com o arroz irrigado Field persistence of (imazethapyr+imazapic to grain sorghum (Sorghum bicolor planted in rotation after irrigated rice

    Directory of Open Access Journals (Sweden)

    J.J.O Pinto

    2009-12-01

    áveis ao sorgo cultivado em safra subsequente ao arroz.The objective of this research was to evaluate the field persistence of the herbicide Only (imazethapyr+imazapic, to grain sorghum, planted in rotation after one, two or three years of Clearfield® (CL rice. The field study was carried out at Universidade Federal de Pelotas, Capão do Leão, state of Rio Grande do Sul. Clearfield rice was established as the main crop, Italian ryegrass as a succession crop and grain sorghum, as a rotation crop after CL rice. Except for the first rice crop, all the other cultures were planted as no-till rice. Ryegrass plants were burned down in every experiment using glyphosate (760 g a.e. ha-1. The experimental design was a factorial with treatments arranged in a complete randomized design, with four replications, where factor A was the number of CL rice seasons and B was the herbicide rate. The rice cultivar was IRGA 422 CL, and the herbicide treatments were Only (imazethapyr+imazapic at 0; (75+25; (112.5+37.5 and (150+50 g ha-1. Adjuvant Dash was added to the herbicide at 0.5% v/v. The experiments were labeled as A1, A2 or A3, respectively, for one, two or three years of CL rice. Grain sorghum, cv. BR 304, was planted as a bioindicator of herbicide residue. The following parameters were evaluated: plant population, plant height; above ground biomass, 1000-grain weight and grain yield. As for grain sorghum plant height and 1000-seed weight, an interaction was observed between the different environments (years of CL rice and herbicide rate (imazethapyr+imazapic. For the other parameters, only effect for herbicide rat was detected. The results suggested that all grain sorghum parameters were affected by the herbicides (imazethapyr+ imazapic in the soil. Grain sorghum injury increased with herbicide rate. In conclusion, grain sorghum, planted in rotation with rice is affected by the residue of the herbicide Only (imazethapyr+imazapic applied to Clearfield® rice.

  18. Sharing a Host Plant (Wheat [Triticum aestivum]) Increases the Fitness of Fusarium graminearum and the Severity of Fusarium Head Blight but Reduces the Fitness of Grain Aphids (Sitobion avenae)

    Science.gov (United States)

    Drakulic, Jassy; Caulfield, John; Woodcock, Christine; Jones, Stephen P. T.; Linforth, Robert; Bruce, Toby J. A.

    2015-01-01

    We hypothesized that interactions between fusarium head blight-causing pathogens and herbivores are likely to occur because they share wheat as a host plant. Our aim was to investigate the interactions between the grain aphid, Sitobion avenae, and Fusarium graminearum on wheat ears and the role that host volatile chemicals play in mediating interactions. Wheat ears were treated with aphids and F. graminearum inoculum, together or separately, and disease progress was monitored by visual assessment and by quantification of pathogen DNA and mycotoxins. Plants exposed to both aphids and F. graminearum inoculum showed accelerated disease progression, with a 2-fold increase in disease severity and 5-fold increase in mycotoxin accumulation over those of plants treated only with F. graminearum. Furthermore, the longer the period of aphid colonization of the host prior to inoculation with F. graminearum, the greater the amount of pathogen DNA that accumulated. Headspace samples of plant volatiles were collected for use in aphid olfactometer assays and were analyzed by gas chromatography-mass spectrometry (GC-MS) and GC-coupled electroantennography. Disease-induced plant volatiles were repellent to aphids, and 2-pentadecanone was the key semiochemical underpinning the repellent effect. We measured aphid survival and fecundity on infected wheat ears and found that both were markedly reduced on infected ears. Thus, interactions between F. graminearum and grain aphids on wheat ears benefit the pathogen at the expense of the pest. Our findings have important consequences for disease epidemiology, because we show increased spread and development of host disease, together with greater disease severity and greater accumulation of pathogen DNA and mycotoxin, when aphids are present. PMID:25769834

  19. Grain Handling and Storage.

    Science.gov (United States)

    Harris, Troy G.; Minor, John

    This text for a secondary- or postecondary-level course in grain handling and storage contains ten chapters. Chapter titles are (1) Introduction to Grain Handling and Storage, (2) Elevator Safety, (3) Grain Grading and Seed Identification, (4) Moisture Control, (5) Insect and Rodent Control, (6) Grain Inventory Control, (7) Elevator Maintenance,…

  20. Grain Grading and Handling.

    Science.gov (United States)

    Rendleman, Matt; Legacy, James

    This publication provides an introduction to grain grading and handling for adult students in vocational and technical education programs. Organized in five chapters, the booklet provides a brief overview of the jobs performed at a grain elevator and of the techniques used to grade grain. The first chapter introduces the grain industry and…

  1. Effect of elevated [CO2 ] on yield, intra-plant nutrient dynamics, and grain quality of rice cultivars in Eastern India.

    Science.gov (United States)

    Jena, Usha Rani; Swain, Dillip Kumar; Hazra, K K; Maity, Mrinal K

    2018-05-16

    Climate models predict an increase in global temperature in response to a doubling of atmospheric [CO 2 ] that may impact future rice production and quality. In this study, the effect of elevated [CO 2 ] on yield, nutrient acquisition and utilization, and grain quality of rice genotypes was investigated in subtropical climate of eastern India (Kharagpur). Three environments (open field, ambient, and elevated [CO 2 ]) were tested using four rice cultivars of eastern India. Under elevated [CO 2 ] (25% higher), yield of high yielding cultivars (HYCs) viz. IR 36, Swarna, and Swarna sub1 was significantly reduced (11-13%), whereas the yield increased (6-9%) for Badshabhog, a low-yielding aromatic cultivar. Elevated [CO 2 ] significantly enhanced K uptake (14-21%), but did not influence the uptake of total N and P. The nutrient harvest index and use efficiency values in HYCs were reduced under elevated [CO 2 ] indicating that nutrients translocation from source to sink (grain) was significantly reduced. An increase in alkali spreading value (10%) and reduction in grain protein (2-3%) and iron (5-6%) was also observed upon [CO 2 ] elevation. The study highlights the importance of nutrient management (increasing N rate for HYCs) and selective breeding of tolerant cultivar in minimizing the adverse effect of elevated [CO 2 ] on rice yield and quality. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Comparison of the developmental response of diploid and tetraploid phalaris following irradiation on the dry seed - : Effect on tiller height, number of branches per tiller and number of tillers per plant

    International Nuclear Information System (INIS)

    Prasad, A.B.; Godward, M.B.E.

    1974-01-01

    The influence of 10 kR and 30 kR soft X-rays applied to dry and dormant seeds of Phalaris canariensis Linn (2n=12) and Phalaris minor Retz (4n - +2 = 28) was studied on tiller height, number of branches per tiller and number of tillers per plant at maturity and it was found that different characters responded differently to irradiation. Variation in response to irradiation in both species has been assigned to their differences in the genotypic constitution. An attempt has also been made to explain the role of inhibitor(s) in controlling the height of the tiller. (author)

  3. "allometry" Deterministic Approaches in Cell Size, Cell Number and Crude Fiber Content Related to the Physical Quality of Kangkong (Ipomoea reptans) Grown Under Different Plant Density Pressures

    Science.gov (United States)

    Selamat, A.; Atiman, S. A.; Puteh, A.; Abdullah, N. A. P.; Mohamed, M. T. M.; Zulkeefli, A. A.; Othman, S.

    Kangkong, especially the upland type (Ipomoea reptans) is popularly consumed as a vegetable dish in the South East Asian countries for its quality related to Vitamins (A and C) and crude fiber contents. Higher fiber contents would prevent from the occurrence of colon cancer and diverticular disease. With young stem edible portion, its cell number and size contribute to the stem crude fiber content. The mathematical approach of allometry of cell size, number, and fiber content of stem could be used in determining the 'best' plant density pressure in producing the quality young stem to be consumed. Basically, allometry is the ratio of relative increment (growth or change) rates of two parameters, or the change rate associated to the log of measured variables relationship. Kangkog grown equal or lower than 55 plants m-2 produced bigger individual plant and good quality (physical) kangkong leafy vegetable, but with lower total yield per unit area as compared to those grown at higher densities.

  4. Grain filling parameters and yield components in wheat

    OpenAIRE

    Brdar Milka; Kobiljski Borislav; Balalić-Kraljević Marija

    2006-01-01

    Grain yield of wheat (Triticum aestivum L.) is influenced by number of grains per unit area and grain weight, which is result of grain filling duration and rate. The aim of the study was to investigate the relationships between grain filling parameters in 4 wheat genotypes of different earliness and yield components. Nonlinear regression estimated and observed parameters were analyzed. Rang of estimated parameters corresponds to rang of observed parameters. Stepwise MANOVA indicated that the ...

  5. High and uneven levels of 45S rDNA site-number variation across wild populations of a diploid plant genus (Anacyclus, Asteraceae).

    Science.gov (United States)

    Rosato, Marcela; Álvarez, Inés; Nieto Feliner, Gonzalo; Rosselló, Josep A

    2017-01-01

    The nuclear genome harbours hundreds to several thousand copies of ribosomal DNA. Despite their essential role in cellular ribogenesis few studies have addressed intrapopulation, interpopulation and interspecific levels of rDNA variability in wild plants. Some studies have assessed the extent of rDNA variation at the sequence and copy-number level with large sampling in several species. However, comparable studies on rDNA site number variation in plants, assessed with extensive hierarchical sampling at several levels (individuals, populations, species) are lacking. In exploring the possible causes for ribosomal loci dynamism, we have used the diploid genus Anacyclus (Asteraceae) as a suitable system to examine the evolution of ribosomal loci. To this end, the number and chromosomal position of 45S rDNA sites have been determined in 196 individuals from 47 populations in all Anacyclus species using FISH. The 45S rDNA site-number has been assessed in a significant sample of seed plants, which usually exhibit rather consistent features, except for polyploid plants. In contrast, the level of rDNA site-number variation detected in Anacyclus is outstanding in the context of angiosperms particularly regarding populations of the same species. The number of 45S rDNA sites ranged from four to 11, accounting for 14 karyological ribosomal phenotypes. Our results are not even across species and geographical areas, and show that there is no clear association between the number of 45S rDNA loci and the life cycle in Anacyclus. A single rDNA phenotype was detected in several species, but a more complex pattern that included intra-specific and intra-population polymorphisms was recorded in A. homogamos, A. clavatus and A. valentinus, three weedy species showing large and overlapping distribution ranges. It is likely that part of the cytogenetic changes and inferred dynamism found in these species have been triggered by genomic rearrangements resulting from contemporary

  6. Evaluation of Large Grained UO{sub 2} Pellet's Manufacturability in a Commercial Plant and Development of its Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jae; Lee, J. N.; Lee, S. J. [Korea Nuclear Fuel Co. Ltd., Daejeon (Korea, Republic of)] (and others)

    2007-02-15

    To apply the various methods for grain growth of the fuel pellet to the commercial manufacturing process, which have been developed through the 'Advanced Fuel Pellet Development Program' in KAERI, it is necessary to conduct the performance test on the mass product line of UO{sub 2} pellets. For this purpose there are two main areas to be evaluated: The first area is the manufacturability of the lab-developed methods on large volume equipment (kg-batch) and commercial manufacturing scale. As a second part the material characteristics should satisfy the specification requirements for the UO{sub 2} pellet design. Above all, the applicability tests for the 'Seed' and 'Micro-doping' technology respectively were performed in the KNFC UO{sub 2} pellet commercial product line. These tests focused on the manufacturability on mass production and acceptable properties of the developed samples on demands of UO{sub 2} pellet design criteria. The tests showed very positive results. Judging from all the test results, the Al micro-doping method is likely to be the best way to enhance the grain size of UO{sub 2} pellet in the KNFC commercial product line without installation of any additional equipment. Through a series of additional reproducibility tests and process optimization, the micro-doping technology will be good applied for X-gen fuel pellet in the near future.

  7. Consumer anxieties about food grain safety in China

    OpenAIRE

    Jackson, P.A.; Zhu, H.; Wang, W.

    2016-01-01

    China has a long history of eating staple plant foods which are mainly derived from food grains, especially rice and wheat. Food grain safety has been a worrying challenge on health and nutrition grounds in China, although evidence clearly suggests that expanding agricultural production is linked to reducing undernourishment. The focus of this study is to investigate consumers' anxieties about food grain safety in China. The nature and extent of consumer anxieties about grain safety, the caus...

  8. [Impacts of drought stress on the growth and development and grain yield of spring maize in Northeast China].

    Science.gov (United States)

    Ji, Rui-Peng; Che, Yu-Sheng; Zhu, Yong-Ning; Liang, Tao; Feng, Rui; Yu, Wen-Ying; Zhang, Yu-Shu

    2012-11-01

    Taking spring maize variety Danyu-39 as test object, an experiment was conducted in a large-scale agricultural water controlling experimental field to study the impacts of drought stress at three key growth stages, i. e. , 3-leaf-jointing, jointing-silking, and silking-milk ripe, on the growth and development and grain yield of spring maize in Northeast China. Two treatments were installed, including moderate drought stress (MS) and re-watering to suitable water (CK). Compared with CK, the MS at 3-leaf-jointing stage postponed the whole growth period of Danyu-39 by 13 d, and the plant height and leaf area at jointing stage were decreased by 29.8% and 41.2%, respectively. After re-watering, the plant height and grain yield recovered obviously, and the differences in ear characteristics and final yield were insignificant. The MS at jointing-silking stage shortened the whole growth period by 7 d, the plant height and leaf area at silking stage were decreased by 18.6% and 14.1%, respectively, the ear length, grain number per ear, ear dry mass, and grain mass per ear decreased by 6.9%, 19.1%, 28.1%, and 29.4%, respectively, and the blank stem rate increased by 13.3%. When the maize suffered from moderate drought stress at silking-milk ripe stage, the whole growth period was shortened by 15 d, the plant height and leaf area at milk ripe stage were decreased by 2.3% and 37.3%, respectively, the ear length, grain number per ear, ear dry mass, and grain mass per ear decreased by 9.2%, 24.1%, 30.8%, and 27.9%, respectively, and the blank stem rate increased by 24.5%. After re-watering at the latter two stages, the recovery of plant height was little, and the grain yield decreased significantly.

  9. Microbiota of kefir grains

    Directory of Open Access Journals (Sweden)

    Tomislav Pogačić

    2013-03-01

    Full Text Available Kefir grains represent the unique microbial community consisting of bacteria, yeasts, and sometimes filamentous moulds creating complex symbiotic community. The complexity of their physical and microbial structures is the reason that the kefir grains are still not unequivocally elucidated. Microbiota of kefir grains has been studied by many microbiological and molecular approaches. The development of metagenomics, based on the identification without cultivation, is opening new possibilities for identification of previously nonisolated and non-identified microbial species from the kefir grains. Considering recent studies, there are over 50 microbial species associated with kefir grains. The aim of this review is to summarise the microbiota composition of kefir grains. Moreover, because of technological and microbiological significance of the kefir grains, the paper provides an insight into the microbiological and molecular methods applied to study microbial biodiversity of kefir grains.

  10. Fractal dust grains in plasma

    International Nuclear Information System (INIS)

    Huang, F.; Peng, R. D.; Liu, Y. H.; Chen, Z. Y.; Ye, M. F.; Wang, L.

    2012-01-01

    Fractal dust grains of different shapes are observed in a radially confined magnetized radio frequency plasma. The fractal dimensions of the dust structures in two-dimensional (2D) horizontal dust layers are calculated, and their evolution in the dust growth process is investigated. It is found that as the dust grains grow the fractal dimension of the dust structure decreases. In addition, the fractal dimension of the center region is larger than that of the entire region in the 2D dust layer. In the initial growth stage, the small dust particulates at a high number density in a 2D layer tend to fill space as a normal surface with fractal dimension D = 2. The mechanism of the formation of fractal dust grains is discussed.

  11. Experiments on Dust Grain Charging

    Science.gov (United States)

    Abbas, M. N.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E. A.

    2004-01-01

    Dust particles in various astrophysical environments are charged by a variety of mechanisms generally involving collisional processes with other charged particles and photoelectric emission with UV radiation from nearby sources. The sign and the magnitude of the particle charge are determined by the competition between the charging processes by UV radiation and collisions with charged particles. Knowledge of the particle charges and equilibrium potentials is important for understanding of a number of physical processes. The charge of a dust grain is thus a fundamental parameter that influences the physics of dusty plasmas, processes in the interplanetary medium and interstellar medium, interstellar dust clouds, planetary rings, cometary and outer atmospheres of planets etc. In this paper we present some results of experiments on charging of dust grains carried out on a laboratory facility capable levitating micron size dust grains in an electrodynamic balance in simulated space environments. The charging/discharging experiments were carried out by exposing the dust grains to energetic electron beams and UV radiation. Photoelectric efficiencies and yields of micron size dust grains of SiO2, and lunar simulates obtained from NASA-JSC will be presented.

  12. Plant-specific Histone Deacetylases HDT½ Regulate GIBBERELLIN 2-OXIDASE 2 Expression to Control Arabidopsis Root Meristem Cell Number

    KAUST Repository

    Li, Huchen; Torres-Garcia, Jesus; latrasse, David; Benhamed, Moussa; Schilderink, Stefan; Zhou, Wenkun; Kulikova, Olga; Hirt, Heribert; Bisseling, Ton

    2017-01-01

    Root growth is modulated by environmental factors and depends on cell production in the root meristem (RM). New cells in the meristem are generated by stem cells and transit-amplifying cells, which together determine RM cell number. Transcription

  13. Agro-Economic Optimization of Fertilizer Level and Rhizobium Strains for Enhanced Grain Yield in Mungbean (Vigna Radiata L.)

    International Nuclear Information System (INIS)

    Mansoor, M.; Elahi, M. E.; Islam, Z.; Ali, A.

    2016-01-01

    To explore the effect of PGPR for improvement in grain yield of mungbean, different levels of fertilizer (00:00, 20:50 and 20:70 kg N:P/sub 2/O/sub 5/ kg ha/sup -1/) were tested on four strains (CB 1015 Australia, Vm-L1, Vm-M1 and Vm-M2) at Agricultural Research Institute, Dera Ismail Khan. A Randomized Complete Block Design with split plot arrangement was used to conduct the experiment by keeping three fertilizer levels in the main plot and Rhizobium strains in sub-plot. The data were recorded for different parameters like number of branches plant/sup -1/, number of clusters plant/sup -1/, number of pods plant/sup -1/., number of grain pod/sup -1/, pod length (cm) and grain yield kg ha/sup -1/. The response of fertilizer levels and inoculation with Rhizobium strains were found significant in most of the parameters under study. The strain Vm-M1 produced the highest number of branches plant/sup -1/(5.42), number of clusters plant/sup -1/(22.92), number of pods plant/sup -1/(77.64), pod length (8.37 cm) when applied in combination of N:P/sub 2/O/sub 5/ at the rate of 20:70 and 20:50 kg ha/sup -1/. Although the grain yield (1421 kg ha/sup -1/) recorded in treatment (20:70 kg N:P/sub 2/O/sub 5/ ha/sup -1/ + Inoculation with strain Vm M1) was highest but economically the treatment (20:50 kg N:P/sub 2/O/sub 5/ ha/sup -1/ + inoculation with strain Vm M1) with net return of Rs. 13618 ha/sup -1/ and BCR of 2.52 was on top. (author)

  14. Nuclear magnetic resonance relaxation characterisation of water status of developing grains of maize (Zea mays L.) grown at different nitrogen levels.

    Science.gov (United States)

    Krishnan, Prameela; Chopra, Usha Kiran; Verma, Ajay Pal Singh; Joshi, Devendra Kumar; Chand, Ishwar

    2014-04-01

    Changes in water status of developing grains of maize (Zea mays L.) grown under different nitrogen levels were characterized by nuclear magnetic resonance (NMR) spectroscopy. There were distinct changes in water status of grains due to the application of different levels of nitrogen (0, 120 and 180 kg N ha(-1)). A comparison of the grain developmental characteristics, composition and physical properties indicated that, not only the developmental characteristics like grain weight, grain number/ear, and rate of grain filling increased, but also bound water characterized by the T2 component of NMR relaxation increased with nitrogen application (50-70%) and developmental stages leading to maturation (10-60%). The consistency in the patterns of responses to free water and intermediate water to increasing levels of nitrogen application and grain maturity suggested that nitrogen application resulted in more proportion of water to both bound- and intermediate states and less in free state. These changes are further corroborated by the concomitant increases in protein and starch contents in grains from higher nitrogen treatments as macromolecules like protein and starch retain more amount of water in the bound state. The results of the changes in T2 showed that water status during grain development was not only affected by developmental processes but also by nitrogen supply to plants. This study strongly indicated a clear nutrient and developmental stage dependence of grain tissue water status in maize. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. DEVELOPMENT OF GRAIN MARKET IN UKRAINE

    Directory of Open Access Journals (Sweden)

    Aleksandr Maslak

    2015-11-01

    Full Text Available The subject of the research is a set of theoretical, methodological and practical fundamentals of organizational and economic functioning are integrated agricultural formations in the grain market of Ukraine. The methodological basis of research is the complex analysis of economic processes in the grain market in Ukraine and the world. During research we used such methods as method of systematization and comparison, statistic, economic, balance, constructive, target-oriented, and the methods of induction and deduction, analogy and comparison. Main aim of this article is the analysis of the situation on the grain market in Ukraine, defining the role of integrated agricultural formations in this market, improving the organizational-economic mechanism of its functioning, identifies ways of improving the competitiveness of Ukraine among world exporters of grain. Using results of the studies we examined trends grain market in Ukraine; influence of businesses in grain production; analysis of constraints to improve production efficiency of grain; defined domestic (internal needs of grain in Ukraine; assessed the status and expediency transformation infrastructure of the grain market of Ukraine; defined priority directions of development of the grain market in Ukraine. As a result of the preparation of articles, it is obtained the following conclusions: Ukraine is the world's largest producers and exporters of grain, the production of integrated agricultural units to a third of the total grain; technical condition of farm does not meet the needs of production; the domestic market is unable to provide the existing demand for grain production, contributing to export growth; Ukraine has a number of problems due to increased grain production, namely the shortage of storage capacity for the storage of grain, limited performance transshipment of grain in port elevators and imperfection and depreciation of transport systems; solving the existing problems is

  16. Analysis of the impact of connecting a larger number of small hydroelectric power plants to the short-circuit currents values and relay protection system of distribution network

    Directory of Open Access Journals (Sweden)

    Sučević Nikola

    2017-01-01

    Full Text Available In this paper the influence of a large number of small hydro power plants on the short-circuit currents is analysed, as well as the operation of the relay protection system within the real distribution network in Serbia. The necessary modification of the existing protection functions, as well as the implementation of the new proposed protection functions, are presented and discussed. Network modeling and analysis are performed using the program tool DIgSILENT PowerFactory.

  17. Non-destructive, high-content analysis of wheat grain traits using X-ray micro computed tomography

    Directory of Open Access Journals (Sweden)

    Nathan Hughes

    2017-11-01

    Full Text Available Abstract Background Wheat is one of the most widely grown crop in temperate climates for food and animal feed. In order to meet the demands of the predicted population increase in an ever-changing climate, wheat production needs to dramatically increase. Spike and grain traits are critical determinants of final yield and grain uniformity a commercially desired trait, but their analysis is laborious and often requires destructive harvest. One of the current challenges is to develop an accurate, non-destructive method for spike and grain trait analysis capable of handling large populations. Results In this study we describe the development of a robust method for the accurate extraction and measurement of spike and grain morphometric parameters from images acquired by X-ray micro-computed tomography (μCT. The image analysis pipeline developed automatically identifies plant material of interest in μCT images, performs image analysis, and extracts morphometric data. As a proof of principle, this integrated methodology was used to analyse the spikes from a population of wheat plants subjected to high temperatures under two different water regimes. Temperature has a negative effect on spike height and grain number with the middle of the spike being the most affected region. The data also confirmed that increased grain volume was correlated with the decrease in grain number under mild stress. Conclusions Being able to quickly measure plant phenotypes in a non-destructive manner is crucial to advance our understanding of gene function and the effects of the environment. We report on the development of an image analysis pipeline capable of accurately and reliably extracting spike and grain traits from crops without the loss of positional information. This methodology was applied to the analysis of wheat spikes can be readily applied to other economically important crop species.

  18. Determination of Flowering Phenology, Number of Flowers, Nectar and Pollen Potential of Oil Rape (Brassica napus L., Plant in Black Sea Coastal Region

    Directory of Open Access Journals (Sweden)

    Necda Çankaya

    2017-11-01

    Full Text Available This research was carried out in 2011 and 2012 in order to determine the flowering phenology, number of flowers, nectar and pollen potential in the Samsun province of the oilseed rape (Brassica napus L., which is widely used in agriculture in our country. In the first year of the study (2011, it was determined that the rapeseed plant was in flower for 44 days, there were 2.694 flowers per plant, 1.89 kg/da nectar per day and 1330 kg/da pollen production. In the second year of the research (2012, it was revealed that the rapeseed plant was in flower for 39 days, there were 701 plants/flower in the plant, 0.38 kg/da nectar secreted daily and 331.57 kg/da pollen. According to the results of two years, the yield of rapeseed was found to be 41.5 days, the daily nectar production was 0.23 mg/flower/day, the nectar dry matter level was 20.25% and the pollen production was 0.48 mg/flower/day. In Samsun province, it was determined that rapeseed plants flowered before the flowering of many plants in the vicinity in the early spring, and provided honey bees, Apis mellifera L., and many other honey bees, nectar and pollen. It has been demonstrated that the cultivation of rapeseed is cultivated in the early spring, and it can be a convenient source of food for honey bees and other dusty insects.

  19. Effect of Sowing Date and Sulfur on Yield, Oil Content and Grain Nitrogen of Safflower (Carthamus tinctorius L. in Autumn Cultivation

    Directory of Open Access Journals (Sweden)

    N Safara

    2016-12-01

    by Kjeltec Analyzer Unit device. Grain oil was measured by PORIM procedure and finally the oil yield was calculated by multiplying oil content and the grain yield. Data from the experiment was analyzed using SAS software and mean comparison was carried out using LSD test at the 5% of probability. Results and Discussion Planting dates significantly affected grain number per head, biological yield, oil yield, grain yield, heads per plant and grain nitrogen. Sulfur fertilizer had a significant effect on grain number per head, oil yield, grain yield, heads per plant and grain nitrogen. There was a significant interaction between planting date and sulfur on grain yield, number of heads in plant and grain oil percentage. The late planting date resulted in plants exposed to high temperature and resulted in decreased safflower yield and yield components. Based on the results, the highest grain yield 4012.66 kg.ha-1 obtained in planting date 21 December. Late planting dates reduced grain yield to 50.28 percent. It was concluded that 200 kg.ha-1 sulfur increased grain yield through increasing the grain number per head and the number of heads in plant. Delayed planting decreased growth period length and resulted in reduced yield and its components. But the application of sulfur fertilizer by increasing yield components can compensate the loss of yield. Sulfur is sub-structure of fatty acid metabolism enzymes in fatty acid and bond formation reactions for the production of oil and involved in fat acids. Planting date and sulfur application in appropriate form increased grain and oil yield. Shortening the growing season due to a delay in planting and plant distance from the right conditions for growth reduced the grain yield. These factors limited the plant grow in optimal conditions, disrupted synthesis of primary and secondary metabolites in plants and had a negative effect on seed oil percent. Conclusions Delay in planting date reduced, flowering, grain filling period

  20. Effect of planting date on yield of wheat genotypes in Sindh

    International Nuclear Information System (INIS)

    Khokhar, Z.; Hussain, I.

    2010-01-01

    Due to reduction in tillering period and increased risk of hot weather during grain filling, late planting results in linear reduction in wheat grain yield. A study was undertaken to determine the effects of planting dates on growth and yield of different wheat genotypes in Sindh. The trial was laid out in RCBD with split plot arrangement having four replications during 2000-01 and 2001-02 at Sakrand, Sindh. Four sowing dates i.e. November 1 and 15, December 1 and 15 were in main plots, whereas six wheat genotypes (V-7001, V-7002, V-7004, MPT-6, Abadgar-93, and Anmol-91) were in sub plots. Because of better tillering, plant growth, growth period, number of grain per unit area and grain weight, November 15 planted wheat had maximum grain yield of 5904 kg ha/sup -1/, followed by November 1 and December 1 which gave 5302 and 4948 kg ha/sup -1 /respectively. Wheat planted on December 15 resulted in minimum grain yield of 4756 kg ha/sup -1/. Wheat genotype, V-7002 had significantly (P<0.05) higher grain yield of 5578 kg ha/sup -1/ in comparison with other genotypes. Whereas genotype MPT-6 had grain yield of 5366 kg ha-1 that was also significantly higher than other genotypes. However, V-7004 had minimum grain yield of 4716 kg ha/sup -1/ in comparison with other genotypes. While evaluating performance of different genotypes on different sowing dates, V-7002 resulted in maximum yield on November 15 and late planting. On the other hand, V-7004 had lower yield on all planting dates. Results from the study revealed that maximum grain yield could be achieved with wheat planted in first fortnight of November and any delay in wheat planting might reduce wheat yield. (author)

  1. Cross-Hedging Distillers Dried Grains: Exploring Corn and Soybean Meal Futures Contracts

    OpenAIRE

    Brinker, Adam J.; Parcell, Joseph L.; Dhuyvetter, Kevin C.

    2007-01-01

    Ethanol mandates and high fuel prices have led to an increase in the number of ethanol plants in the U.S. in recent years. In turn, this has led to an increase in the production of distillers dried grains (DDGs) as a co-product of ethanol production. DDG production in 2006 is estimated to be near 11 million tons. A sharp increase in ethanol production and thus DDGs is expected in 2007 with an increase with the number of ethanol plants. As with most competitive industries, there is some level ...

  2. Evolution of Grain Yield and its Components Relationships in Bread Wheat Genotypes under Full Irrigation and Terminal Water Stress Conditions Using Multivariate Statistical Analysis

    Directory of Open Access Journals (Sweden)

    S Mohammadi

    2014-07-01

    Full Text Available To study relationships between effective traits on wheat grain yield, the varieties Zarrin and Alvand, and some promising lines i.e. C-81-4, C-81-10, C-81-14 and C-82-12 were investigated at three sowing dates including 10 October, 1 November and 21 November. The experiment was carried out using strip plot in RCBD with three replications under two different water conditions including full-irrigation and terminal water stress at Miyandoab Agricultural Research Station in 2005-06 and 2006-07 cropping seasons. The results showed that under both full irrigation and terminal water stress conditions, grain yield had positive and significant correlation with days to heading, days to maturity, plant height, number of spikes/m2 and 1000 grain weight. Stepwise regression analysis revealed that 83 percent of yield variation under non-stressed conditions could be determined by days to maturity and number of spikes/m2 (R2 = 83% whereas these traits explained 87% of yield variation under stress conditions (R2= 87%. Path analysis indicated that number of spikes/m2 and days to maturity had the greatest positive direct and indirect effect on grain yield, under both conditions. The results of factor analysis under non-stressed condition showed that three factors explained 77% of total variation; these factors were called grain yield components, grain characteristics and plant phonology. Under non-stressed condition two factors (that were called grain yield and phenology, and plant morphology explained 88% of total variation. Cluster analysis through ward method, classified days to maturity and number of spikes/m2 in the same cluster where the grain yield was put under both conditions. It was concluded that under different sowing dates, selection based on days to maturity and number spikes/m2 could indirectly led to higher yield under both normal and water stress conditions.

  3. Grain formation in cool stellar envelopes

    International Nuclear Information System (INIS)

    Deguchi, S.

    1980-01-01

    The nucleation and growth of dust grains in the stellar envelope are investigated for the case of oxygen-rich stars, where the mass loss occurs as a result of the radiation pressure on the dust grains. The number density of grains, the final grain sizes, and the final amount of metals remaining in gaseous states are calculated based on the grain-nucleation theory proposed by Yamamoto and Hasegawa and Draine and Salpeter. It is shown that, even if we base our calculations on the Lothe-Pound nucleation rate equation instead of the classical, homogeneous nucleation rate equation, the proposed theory gives a number density of grains quite similar to that based on the classical rate equation. The approximate solution of the flow, in this paper, brings physical insight to the problem of how the formation of grains couples the flow passing the sonic point. The metals in the outer envelope remain in gaseous state by the amount of 1--10% of the initial content for the mass-loss rate of 10 -5 M/sub sun/ yr -1 and by less than 1% for the massloss are less than 3 x 10 -6 M/sub sun/ yr -1 . Species of metals condensed onto the grains are also discussed

  4. Genetic analysis and hybrid vigor study of grain yield and other quantitative traits in auto tetraploid rice

    International Nuclear Information System (INIS)

    Shahid, M.Q.; Xiong, C.Z.; Juan, L.Y.; Ming, X.H.

    2011-01-01

    Genetic analysis and genotype-by-environment interaction for important traits of auto tetraploid rice were evaluated by additive, dominance and additive X additive model. It was show n that genetic effects had more influence on grain yield and other quantitative traits of auto tetraploid rice than genotypic environment interaction. Plant height, panicle length, seed set , grain yield, dry matter production and 1000-grain weight we re mainly regulated by dominance variance. Additive and additive X additive gene action constructed the main proportion of genetic variance for heading date (flowering), number of panicles, grains per panicle, grain length, however grain width was supposed to be affected by additive X additive and dominance variance. Flag leaf length and width, fresh weight, peduncle length, unfilled grains and awn length were greatly influenced by genotypic environment interaction. Heading date produced highly negative heterosis over mid parent (H pm) and better parent ( H pb), whereas H pm and H pb were detected to be highly positive and significant for grain yield, seed set, peduncle length, filled grains and 1000-grain weight in F/sub 1/ and F/sub 2/ generations. The results indicated that auto tetraploid hybrids 96025 X Jackson (indica/japonica), 96025 X Linglun (indica/indica) and Linglun X Jackson (indica/japonica) showed highly significant hybrid vigor with improved seed set percentage and grain yield. These results suggest that intra-specific auto tetraploid rice hybrids have more hybrid vigor as compared to intra-sub specific auto tetraploid rice hybrids and auto tetraploid rice has the potential to be used for further studies and commercial application. (author)

  5. The number of measurements needed to obtain high reliability for traits related to enzymatic activities and photosynthetic compounds in soybean plants infected with Phakopsora pachyrhizi

    Science.gov (United States)

    de Oliveira, Tássia Boeno; Teodoro, Paulo Eduardo; de Alvarenga, Amauri Alves; Bhering, Leonardo Lopes; Campo, Clara Beatriz Hoffmann

    2018-01-01

    Asian rust affects the physiology of soybean plants and causes losses in yield. Repeatability coefficients may help breeders to know how many measurements are needed to obtain a suitable reliability for a target trait. Therefore, the objectives of this study were to determine the repeatability coefficients of 14 traits in soybean plants inoculated with Phakopsora pachyrhizi and to establish the minimum number of measurements needed to predict the breeding value with high accuracy. Experiments were performed in a 3x2 factorial arrangement with three treatments and two inoculations in a random block design. Repeatability coefficients, coefficients of determination and number of measurements needed to obtain a certain reliability were estimated using ANOVA, principal component analysis based on the covariance matrix and the correlation matrix, structural analysis and mixed model. It was observed that the principal component analysis based on the covariance matrix out-performed other methods for almost all traits. Significant differences were observed for all traits except internal CO2 concentration for the treatment effects. For the measurement effects, all traits were significantly different. In addition, significant differences were found for all Treatment x Measurement interaction traits except coumestrol, chitinase and chlorophyll content. Six measurements were suitable to obtain a coefficient of determination higher than 0.7 for all traits based on principal component analysis. The information obtained from this research will help breeders and physiologists determine exactly how many measurements are needed to evaluate each trait in soybean plants infected by P. pachyrhizi with a desirable reliability. PMID:29438380

  6. Nitrogen metabolism in plants using 15N as tracer. Part of a coordinated programme on the use of isotopes in fertilizer efficiency studies on grain legumes

    International Nuclear Information System (INIS)

    Pate, J.; Atkins, C.

    1978-01-01

    Techniques are described for studying the economy of carbon and nitrogen in annual nodulated legumes. Budgets for utilization of net photosynthate are constructed for cowpea (Vigna unguiculata (L) Walp.) and white lupin (Lupinus albus L.), including expenditure in respiration and dry matter accumulation of plant parts, carbon consumption in growth, respiration and export of fixed nitrogen by nodules, and the provision of recent photosynthate and earlier-fixed carbon to fruits. Sources of nitrogen to fruits are defined, and efficiencies of conversion of net photosynthate to protein of above-ground vegetative parts and of seeds are computed. Consideration is given to the timing of events associated with loss of symbiotic activity after flowering. Literature giving estimates of the respiratory requirements of nitrogen fixation by nodules is reviewed. Rates of respiration of nodules of cowpea, white lupin and pea (Pisum sativum L.) are assessed from a theoretical viewpoint, basing the estimates on ATP requirements for assimilation of N 2 into nitrogenous solutes, and published values for respiration costs in plant tissues. Expressed as CO 2 output per unit of nitrogen assimilated, these estimates greatly exceed the experimentally-observed CO 2 efflux of nodules of the species. This discrepancy is examined in relation to the capacity of nodules to fix CO 2 and the uncertainty of the in vivo requirement of nitrogenase for ATP

  7. Compaction of cereal grain

    OpenAIRE

    Wychowaniec, J.; Griffiths, I.; Gay, A.; Mughal, A.

    2013-01-01

    We report on simple shaking experiments to measure the compaction of a column of Firth oat grain. Such grains are elongated anisotropic particles with a bimodal polydispersity. In these experiments, the particle configurations start from an initially disordered, low-packing-fraction state and under vertical shaking evolve to a dense state with evidence of nematic-like structure at the surface of the confining tube. This is accompanied by an increase in the packing fraction of the grain.

  8. Evolution of interstellar grains

    International Nuclear Information System (INIS)

    Greenberg, J.M.

    1984-01-01

    The principal aim of this chapter is to derive the properties of interstellar grains as a probe of local physical conditions and as a basis for predicting such properties as related to infrared emissivity and radiative transfer which can affect the evolution of dense clouds. The first sections will develop the criteria for grain models based directly on observations of gas and dust. A summary of the chemical evolution of grains and gas in diffuse and dense clouds follows. (author)

  9. Microbiota of kefir grains

    OpenAIRE

    Tomislav Pogačić; Sanja Šinko; Šimun Zamberlin; Dubravka Samaržija

    2013-01-01

    Kefir grains represent the unique microbial community consisting of bacteria, yeasts, and sometimes filamentous moulds creating complex symbiotic community. The complexity of their physical and microbial structures is the reason that the kefir grains are still not unequivocally elucidated. Microbiota of kefir grains has been studied by many microbiological and molecular approaches. The development of metagenomics, based on the identification without cultivation, is opening new possibilities f...

  10. Grain boundary migration

    International Nuclear Information System (INIS)

    Dimitrov, O.

    1975-01-01

    Well-established aspects of grain-boundary migration are first briefly reviewed (influences of driving force, temperature, orientation and foreign atoms). Recent developments of the experimental methods and results are then examined, by considering the various driving of resistive forces acting on grain boundaries. Finally, the evolution in the theoretical models of grain-boundary motion is described, on the one hand for ideally pure metals and, on the other hand, in the presence of solute impurity atoms [fr

  11. Effect of Seed Distribution and Population on Maize (Zea mays L. Grain Yield

    Directory of Open Access Journals (Sweden)

    Bee Khim Chim

    2014-01-01

    Full Text Available Maize planting is normally accomplished by hand in the developing world where two or more seeds are placed per hill with a heterogeneous plant spacing and density. To understand the interaction between seed distribution and distance between hills, experiments were established in 2012 and 2013 at Lake Carl Blackwell (LCB and Efaw Agronomy Research Stations, near Stillwater, OK. A randomized complete block design was used with three replications and 9 treatments and a factorial treatment structure of 1, 2, and 3 seeds per hill using interrow spacing of 0.16, 0.32, and 0.48 m. Data for normalized difference vegetation index (NDVI, intercepted photosynthetically active radiation (IPAR, grain yield, and grain N uptake were collected. Results showed that, on average, NDVI and IPAR increased with number of seeds per hill and decreased with increasing plant spacing. In three of four site-years, planting 1 or 2 seeds per hill, 0.16 m apart, increased grain yield and N uptake. Over sites, planting 1 seed, every 0.16 m, increased yields by an average of 1.15 Mg ha−1 (range: 0.33 to 2.46 Mg ha−1 when compared to the farmer practice of placing 2 to 3 seeds per hill, every 0.48 m.

  12. Origins of GEMS Grains

    Science.gov (United States)

    Messenger, S.; Walker, R. M.

    2012-01-01

    Interplanetary dust particles (IDPs) collected in the Earth s stratosphere contain high abundances of submicrometer amorphous silicates known as GEMS grains. From their birth as condensates in the outflows of oxygen-rich evolved stars, processing in interstellar space, and incorporation into disks around new stars, amorphous silicates predominate in most astrophysical environments. Amorphous silicates were a major building block of our Solar System and are prominent in infrared spectra of comets. Anhydrous interplanetary dust particles (IDPs) thought to derive from comets contain abundant amorphous silicates known as GEMS (glass with embedded metal and sulfides) grains. GEMS grains have been proposed to be isotopically and chemically homogenized interstellar amorphous silicate dust. We evaluated this hypothesis through coordinated chemical and isotopic analyses of GEMS grains in a suite of IDPs to constrain their origins. GEMS grains show order of magnitude variations in Mg, Fe, Ca, and S abundances. GEMS grains do not match the average element abundances inferred for ISM dust containing on average, too little Mg, Fe, and Ca, and too much S. GEMS grains have complementary compositions to the crystalline components in IDPs suggesting that they formed from the same reservoir. We did not observe any unequivocal microstructural or chemical evidence that GEMS grains experienced prolonged exposure to radiation. We identified four GEMS grains having O isotopic compositions that point to origins in red giant branch or asymptotic giant branch stars and supernovae. Based on their O isotopic compositions, we estimate that 1-6% of GEMS grains are surviving circumstellar grains. The remaining 94-99% of GEMS grains have O isotopic compositions that are indistinguishable from terrestrial materials and carbonaceous chondrites. These isotopically solar GEMS grains either formed in the Solar System or were completely homogenized in the interstellar medium (ISM). However, the

  13. Grain weight improvement in wheat through irradiation

    International Nuclear Information System (INIS)

    Rasal, P.N.; Gadekar, D.A.; Gavhane, V.N.; Bhoite, K.D.

    2006-01-01

    T. aestivum wheat variety NIAW 34 was developed by Agricultural Research Station, Niphad, and was released by Central Varietal Release Committee, for cultivation under irrigated late sown conditions of Peninsular Zone. The grains of NIAW 34 are medium sized with 40g 1000 grain weight. However, in market the bold sized grains (above 40g 1000 grain weight) are preferred by the traders and consumers. To overcome this lacuna, grains of wheat variety NIAW 34 were irradiated to exploit the possibilities of improvement in test weight. The material was irradiated with 15 and 20 kr dose of gamma rays. In M2 generation, mutants for various morphological characters were observed. The plants showing vigorous growth habit and desirable morphological characters were selected. These selected plants were studied for grain characters after harvest. On the basis of improved test weight as compared to parental line, selections were effected. The material was advanced to M6 generation and found stable for character of interest. The material selected comprised of total 10 lines showing improved test weight having range of 42-46 g i.e. increase of 4-6 g over the parental line NIAW 34. The lines selected are being evaluated in yield evaluation trials during Rabi 2006-07. Amongst the doses used, frequency of desired mutants was higher in treatment, of 15 kr

  14. Deformation inhomogeneity in large-grained AA5754 sheets

    International Nuclear Information System (INIS)

    Zhu Guozhen; Hu Xiaohua; Kang Jidong; Mishra, Raja K.; Wilkinson, David S.

    2011-01-01

    Research highlights: → Microstructure and strain relationship at individual grain level was studied. → 'Hot spots' nucleate early and most keep growing throughout deformation stages. → 'Hot spots' are correlated with 'soft' grains and soft-evolution grains. → Grains with high Schmid factors tend to be 'soft' grains. → Grains with the direction close to tensile axis tend to become softer. - Abstract: Models for deformation and strain localization in polycrystals that incorporate microstructural features including particles are computationally intensive due to the large variation in scale in going from particles to grains to a specimen. As a result such models are generally 2-D in nature. This is an issue for experimental validation. We have therefore studied deformation heterogeneities and strain localization behavior of coarse-grained alloys with only two grains across the sample thickness, therefore mimicking 2-D behavior. Aluminum alloy sheets (AA5754) have been investigated by a number of surface techniques, including digital image correlation, slip trace analysis and electron backscattered diffraction, at the individual grain level. Local strain concentration zones appear from the very beginning of deformation, which then maintain sustained growth and lead, in one of these regions, to localization and final fracture. These 'hot spots' occur in areas with locally soft grains (i.e. grains with or close to the tensile direction) and soft-evolution orientations (i.e. grains with close to the tensile direction). These grains can be correlated with Taylor and/or Schmid factors.

  15. Selection of common bean lines with high grain yield and high grain calcium and iron concentrations

    Directory of Open Access Journals (Sweden)

    Nerinéia Dalfollo Ribeiro

    2014-02-01

    Full Text Available Genetic improvement of common bean nutritional quality has advantages in marketing and can contribute to society as a food source. The objective of this study was to evaluate the genetic variability for grain yield, calcium and iron concentrations in grains of inbred common bean lines obtained by different breeding methods. For this, 136 F7 inbred lines were obtained using the Pedigree method and 136 F7 inbred lines were obtained using the Single-Seed Descent (SSD method. The lines showed genetic variability for grain yield, and concentrations of calcium and iron independently of the method of advancing segregating populations. The Pedigree method allows obtaining a greater number of lines with high grain yield. Selection using the SSD method allows the identification of a larger number of lines with high concentrations of calcium and iron in grains. Weak negative correlations were found between grain yield and calcium concentration (r = -0.0994 and grain yield and iron concentration (r = -0.3926. Several lines show genetic superiority for grain yield and concentrations of calcium and iron in grains and their selection can result in new common bean cultivars with high nutritional quality.

  16. Criticality accident in uranium fuel processing plant. The estimation of the total number of fissions with related reactor physics parameters

    International Nuclear Information System (INIS)

    Nishina, Kojiro; Oyamatsu, Kazuhiro; Kondo, Shunsuke; Sekimoto, Hiroshi; Ishitani, Kazuki; Yamane, Yoshihiro; Miyoshi, Yoshinori

    2000-01-01

    This accident occurred when workers were pouring a uranium solution into a precipitation tank with handy operation against the established procedure and both the cylindrical diameter and the total mass exceeded the limited values. As a result, nuclear fission chain reactor in the solution reached not only a 'criticality' state continuing it independently but also an instantly forming criticality state exceed the criticality and increasing further nuclear fission number. The place occurring the accident at this time was not reactor but a place having not to form 'criticality' called by a processing process of uranium fuel. In such place, as because of relating to mechanism of chain reaction, it is required naturally for knowledge on the reactor physics, it is also necessary to understand chemical reaction in chemical process, and functions of tanks, valves and pumps mounted at the processes. For this purpose, some information on uranium concentration ratio, atomic density of nuclides largely affecting to chain reaction such as uranium, hydrogen, and so forth in the solution, shape, inner structure and size of container for the solution, and its temperature and total volume, were necessary for determining criticality volume of the accident uranium solution by using nuclear physics procedures. Here were described on estimation of energy emission in the JCO accident, estimation from analytical results on neutron and solution, calculation of various nuclear physics property estimation on the JCO precipitation tank at JAERI. (G.K.)

  17. Molecular-Assisted Pollen Grain Analysis Reveals Spatiotemporal Origin of Long-Distance Migrants of a Noctuid Moth

    Directory of Open Access Journals (Sweden)

    Hong Chang

    2018-02-01

    Full Text Available Pollen grains are regularly used as markers to determine an insect’s movement patterns or host (plant feeding behavior, yet conventional morphology-based pollen grain analysis (or palynology encounters a number of important limitations. In the present study, we combine conventional analytical approaches with DNA meta-barcoding to identify pollen grains attached to migrating adults of the turnip moth, Agrotis segetum (Lepidoptera: Noctuidae in Northeast China. More specifically, pollen grains were dislodged from 2566 A. segetum long-distance migrants captured on Beihuang Island (Bohai Sea and identified to many (plant species level. Pollen belonged to 26 families of plants, including Fagaceae, Oleaceae, Leguminosae, Asteraceae, Pinaceae and Rosaceae, including common species such as Citrus sinensis, Olea europaea, Ligustrum lucidum, Robinia pseudoacacia, Castanopsis echinocarpa, Melia azedarach and Castanea henryi. As the above plants are indigenous to southern climes, we deduce that A. segetum forage on plants in those locales prior to engaging in northward spring migration. Our work validates the use of DNA-assisted approaches in lepidopteran pollination ecology research and provides unique and valuable information on the adult feeding range and geographical origin of A. segetum. Our findings also enable targeted (area-wide pest management interventions or guide the future isolation of volatile attractants.

  18. Effect of irrigation frequencies on grain yield of maize

    International Nuclear Information System (INIS)

    Ahmad, M.; Chaudhry, M.H.; Amjed, M.T.

    2008-01-01

    To find out the water requirement and its application frequencies in spring Maize a trial was designed. The trial was comprised of five maize varieties (Ev-5098, EV-6098, EV-1098, Composite-20 and Pack Afgoyee) and five irrigation frequencies (7,8,9,10 and 11). The trial was sown in split plot design with three replication, keeping varieties in main plots and irrigation frequencies in sub plots. The plot size was 5m x 4.5 with 75cm apart rows and plant to plant distance was 15 com to maintain the 88888 plants per hectare. The trial was conducted during spring 2000 and 2001. Data were collected for days to 50% silking. Plant height (cm), cob height (cm) and grain yield per hectare. The data were analyzed and results obtained which revealed highly significant differences among varieties and also among irrigation frequencies in all the characters studied during both the years and in pooled analysis over years. The interaction between varieties and irrigation frequencies was highly significant for grain yield kg ha/sup -1/ and significant for other characters studied in year wise as well as in pooled analysis. Years effect was also high significant which is clear from the table of weather data which shows that temperature remained high during the crop season of 2001 as compared to 2000 along with high temperature more rains were also received in March. April and May in 2001 while in 2000 rain was received only in February. Three was gradual decrease in days to 50% silking with the increase in number of irrigations in all the varieties while plant height, cob height and grain yield increased with every addition of irrigation. Trend of increase or decrease remained the same during both the year. All the varieties separately or in combine showed better results during spring 2001, maximum grain yield was obtained by EV-5098 (full duration variety) with 11 irrigations during both the years 2000 and 2001 i.e. 3511 and 6140 kg ha/sup -1/ while EV-1098 (short duration variety

  19. DOE/Industrial Technologies Program DOE Award Number DE-FG36-05GO15099 Plant Wide Energy Efficiency Assessment Pilgrims Pride Corporation – Mt Pleasant Facility

    Energy Technology Data Exchange (ETDEWEB)

    Paper, Riyaz; Dooley, Bill; Turpish, William J; Symonds, Mark; Carswell, Needham

    2007-04-13

    The U. S. Department of Energy’s (DOE) Industrial Technologies Program (ITP), through Oak Ridge National Laboratory, is supporting plant wide energy efficiency assessments that will lead to substantial improvements in industrial efficiency, waste reduction, productivity, and global competitiveness in industries identified in ITP’s Industries of the Future. The stated goal of the assessments is to develop a comprehensive strategy at manufacturing locations that will significantly increase plant productivity, profitability, and energy efficiency, and reduce environmental emissions. ITP awarded a contract to Pilgrim’s Pride Corporation to conduct a plant wide energy efficiency assessment for their Mt Pleasant Facility in Mt Pleasant, Texas. Pilgrim’s Pride Corporation is the largest poultry company in the U.S. and Mexico producing nearly 9 billion pounds of poultry per year. Pilgrim's Pride products are sold to foodservice, retail and frozen entrée customers. Pilgrim's Pride owns and operates 37 chicken processing plants (34 in the U.S. and three in Mexico), 12 prepared foods plants and one turkey processing plant. Thirty-five feed mills and 49 hatcheries support these plants. Pilgrim's Pride is ranked number 382 on 2006's FORTUNE 500 list and net sales were $7.4 billion. In Mt. Pleasant, Texas, Pilgrim's Pride operates one of the largest prepared foods plants in the United States, with the capability of producing 2,000 different products and the capacity to turn out more than 7 million pounds of finished goods per week. The facility is divided into distinct departments: East Kill, West Kill, Prepared Foods, Protein Conversion, Wastewater Treatment, and Truck Shop. Facility processes include killing, eviscerating, refrigeration, baking, frying, and protein conversion. Pilgrim’s Pride formed a team to complete the plant wide energy efficiency assessment. The scope of work for this project was to: provide the analysis of departmental

  20. Cycling of grain legume residue nitrogen

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1995-01-01

    Symbiotic nitrogen fixation by legumes is the main input of nitrogen in ecological agriculture. The cycling of N-15-labelled mature pea (Pisum sativum L.) residues was studied during three years in small field plots and lysimeters. The residual organic labelled N declined rapidly during the initial...... management methods in order to conserve grain legume residue N sources within the soil-plant system....

  1. Improving detection probabilities for pests in stored grain.

    Science.gov (United States)

    Elmouttie, David; Kiermeier, Andreas; Hamilton, Grant

    2010-12-01

    The presence of insects in stored grain is a significant problem for grain farmers, bulk grain handlers and distributors worldwide. Inspection of bulk grain commodities is essential to detect pests and thereby to reduce the risk of their presence in exported goods. It has been well documented that insect pests cluster in response to factors such as microclimatic conditions within bulk grain. Statistical sampling methodologies for grain, however, have typically considered pests and pathogens to be homogeneously distributed throughout grain commodities. In this paper, a sampling methodology is demonstrated that accounts for the heterogeneous distribution of insects in bulk grain. It is shown that failure to account for the heterogeneous distribution of pests may lead to overestimates of the capacity for a sampling programme to detect insects in bulk grain. The results indicate the importance of the proportion of grain that is infested in addition to the density of pests within the infested grain. It is also demonstrated that the probability of detecting pests in bulk grain increases as the number of subsamples increases, even when the total volume or mass of grain sampled remains constant. This study underlines the importance of considering an appropriate biological model when developing sampling methodologies for insect pests. Accounting for a heterogeneous distribution of pests leads to a considerable improvement in the detection of pests over traditional sampling models. Copyright © 2010 Society of Chemical Industry.

  2. Effects of water deficit and mycorrhizae on grain yield, reproductive and physiological traits of corn hybrids

    Directory of Open Access Journals (Sweden)

    Mikail Nordokht

    2018-06-01

    and draw graphs, respectively. Based on results of this investigation, response of cultivars to drought were different. In irrigation after 70 mm evaporaation from evaporate basin in 704 cultivar highest grain yield observed. In cultivar 704 both irrigation after 110 mm evaporaation from evaporate basin and irrigation after 150 mm evaporaation from evaporate basin decreased grain yield by 19 and 50.6 % in grain yield, but in 640 cultivar that had higher grain yield in control than 704, drought did not had significant effect on grain yield. Mycorrhizae also increased grain yield by 25.2 %. All three factor of drought, Mycorrhizae and cultivar caused changes by changing both yield component of grain number and 100 grain weight. It seems drought caused a decrease in grain number by decreasing number of total floret and increasing unfertile floret number, but Mycorrhizae had opposite effect that this decrease in floret number can caused by gap increase between tasseling and silk emergence. Drought did not had effect on chlorophyll a, but it decreased chlorophyll b, but Mycorrhizae caused an increase in chlorophyll b. Drought and Mycorrhizae increased catalase and Peroxidase content. We then suggest potential areas for future research related to (a the adoption of cropping practices promoting AM colonization and survival; (b the further understanding of AM effects on maize morpho-physiology; and (c the creation of AM-colonized, drought-tolerant maize cultivars through conventional breeding as well as molecular and genomic techniques.

  3. Plant embryogenesis

    NARCIS (Netherlands)

    Vries, de Sacco C.; Weijers, Dolf

    2017-01-01

    Land plants are called ‘embryophytes’ and thus, their collective name is defined by their ability to form embryos. Indeed, embryogenesis is a widespread phenomenon in plants, and much of our diet is composed of embryos (just think of grains, beans or nuts; Figure 1). However, in addition to embryos

  4. A Rare Allele of GS2 Enhances Grain Size and Grain Yield in Rice.

    Science.gov (United States)

    Hu, Jiang; Wang, Yuexing; Fang, Yunxia; Zeng, Longjun; Xu, Jie; Yu, Haiping; Shi, Zhenyuan; Pan, Jiangjie; Zhang, Dong; Kang, Shujing; Zhu, Li; Dong, Guojun; Guo, Longbiao; Zeng, Dali; Zhang, Guangheng; Xie, Lihong; Xiong, Guosheng; Li, Jiayang; Qian, Qian

    2015-10-05

    Grain size determines grain weight and affects grain quality. Several major quantitative trait loci (QTLs) regulating grain size have been cloned; however, our understanding of the underlying mechanism that regulates the size of rice grains remains fragmentary. Here, we report the cloning and characterization of a dominant QTL, grain size on chromosome 2 (GS2), which encodes Growth-Regulating Factor 4 (OsGRF4), a transcriptional regulator. GS2 localizes to the nucleus and may act as a transcription activator. A rare mutation of GS2 affecting the binding site of a microRNA, OsmiR396c, causes elevated expression of GS2/OsGRF4. The increase in GS2 expression leads to larger cells and increased numbers of cells, which thus enhances grain weight and yield. The introduction of this rare allele of GS2/OsGRF4 into rice cultivars could significantly enhance grain weight and increase grain yield, with possible applications in breeding high-yield rice varieties. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  5. Mechanism of secondary recrystallization of Goss grains in grain-oriented electrical steel

    Science.gov (United States)

    Hayakawa, Yasuyuki

    2017-12-01

    Since its invention by Goss in 1934, grain-oriented (GO) electrical steel has been widely used as a core material in transformers. GO exhibits a grain size of over several millimeters attained by secondary recrystallization during high-temperature final batch annealing. In addition to the unusually large grain size, the crystal direction in the rolling direction is aligned with , which is the easy magnetization axis of α-iron. Secondary recrystallization is the phenomenon in which a certain very small number of {110} (Goss) grains grow selectively (about one in 106 primary grains) at the expense of many other primary recrystallized grains. The question of why the Goss orientation is exclusively selected during secondary recrystallization has long been a main research subject in this field. The general criterion for secondary recrystallization is a small and uniform primary grain size, which is achieved through the inhibition of normal grain growth by fine precipitates called inhibitors. This paper describes several conceivable mechanisms of secondary recrystallization of Goss grains mainly based on the selective growth model.

  6. Kansas Agents Study Grain Marketing

    Science.gov (United States)

    Schoeff, Robert W.

    1973-01-01

    Author is an extension specialist in feed and grain marketing for Kansas State University. He describes a tour set up to educate members of the Kansas Grain and Feed Dealers' Association in the area of grain marketing and exporting. (GB)

  7. Whole Grains and Fiber

    Science.gov (United States)

    ... for Physical Activity in Children My Family Health Tree What's that you're drinking? Get Active with ... grains. When grocery shopping, an easy way to identify healthy food choices is to look for the ...

  8. Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms

    Science.gov (United States)

    Fleischmann, Andreas; Michael, Todd P.; Rivadavia, Fernando; Sousa, Aretuza; Wang, Wenqin; Temsch, Eva M.; Greilhuber, Johann; Müller, Kai F.; Heubl, Günther

    2014-01-01

    Background and Aims Some species of Genlisea possess ultrasmall nuclear genomes, the smallest known among angiosperms, and some have been found to have chromosomes of diminutive size, which may explain why chromosome numbers and karyotypes are not known for the majority of species of the genus. However, other members of the genus do not possess ultrasmall genomes, nor do most taxa studied in related genera of the family or order. This study therefore examined the evolution of genome sizes and chromosome numbers in Genlisea in a phylogenetic context. The correlations of genome size with chromosome number and size, with the phylogeny of the group and with growth forms and habitats were also examined. Methods Nuclear genome sizes were measured from cultivated plant material for a comprehensive sampling of taxa, including nearly half of all species of Genlisea and representing all major lineages. Flow cytometric measurements were conducted in parallel in two laboratories in order to compare the consistency of different methods and controls. Chromosome counts were performed for the majority of taxa, comparing different staining techniques for the ultrasmall chromosomes. Key Results Genome sizes of 15 taxa of Genlisea are presented and interpreted in a phylogenetic context. A high degree of congruence was found between genome size distribution and the major phylogenetic lineages. Ultrasmall genomes with 1C values of sections of the genus. The smallest known plant genomes were not found in G. margaretae, as previously reported, but in G. tuberosa (1C ≈ 61 Mbp) and some strains of G. aurea (1C ≈ 64 Mbp). Conclusions Genlisea is an ideal candidate model organism for the understanding of genome reduction as the genus includes species with both relatively large (∼1700 Mbp) and ultrasmall (∼61 Mbp) genomes. This comparative, phylogeny-based analysis of genome sizes and karyotypes in Genlisea provides essential data for selection of suitable species for comparative

  9. Comportamento do sorgo granífero em função de diferentes frações da água disponível no solo Grain sorghum responses under several fractions of plant available water

    Directory of Open Access Journals (Sweden)

    Marcia Xavier Peiter

    1996-04-01

    Full Text Available O comportamento morfológico e fisiológico das plantas de sorgo em relação à diferentes níveis de déficit hídrico tem sido caracterizado extensivamente. Entretanto, as respostas são dependentes do grau de severidade e duração do déficit. O objetivo desse experimento foi analisar o comportamento da cultura do sorgo quando submetida a diferentes frações da água disponível no solo. O experimento foi desenvolvido no ano agrícola de 1993/94, em lisímetros de drenagem, protegidos das precipitações pluviométricas através de uma cobertura móvel. A cultivar Agroceres 3001 foi submetida a quatro tratamentos de irrigação. Irrigações foram aplicadas quando a fração da água disponível (FAD, medida na profundidade do solo explorado pelo sistema radicular das plantas, atingia valores inferiores a 0,95, 0,85, 0,75, e 0,65 da FAD, com três repetições. A altura de plantas e o índice de área foliar foram semelhantes para os tratamentos de 0,75, 0,85 e 0,95 da FAD. O manejo da irrigação com a manutenção da FAD a 0,75 e 0,85 apresentaram valores semelhantes para todas as variáveis analisadas. A manutenção da FAD a 0,65 resultou em um menor crescimento das plantas de sorgo, indicando a ocorrência de déficit hídrico.The morphological and physiological behaviour of grain sorghum plants submitted to different water deficit levels has been extensively characterized. However, plant responses are extremelly dependents of the severity and duration of lhe stress. The objective of this experiment was to evaluate the performance of sorghum crop when submitted to different irrigation management levels. This experiment was conducted during 1993/94 growing season in a set of drainage lysimeters under a rain shelter. The sorghum variety Agroceres 3001 was submitted to four irrigation treatments. Irrigations were aplyied when the fraction of plant available water (PAW were lower than 0.95, 0.85, 0.75 and 0.65, with three replications

  10. Disruption of prefoldin-2 protein synthesis in root-knot nematodes via host-mediated gene silencing efficiently reduces nematode numbers and thus protects plants.

    Science.gov (United States)

    Ajjappala, Hemavathi; Chung, Ha Young; Sim, Joon-Soo; Choi, Inchan; Hahn, Bum-Soo

    2015-03-01

    The aim of this study is to demonstrate the feasibility of down-regulating endogeneous prefoldin-2 root-knot nematode transcripts by expressing dsRNA with sequence identity to the nematode gene in tobacco roots under the influence of strong Arabidopsis ubiquitin (UBQ1) promoter. Root-knot nematodes (RKNs) are sedentary endoparasites infecting a wide range of plant species. They parasitise the root system, thereby disrupting water and nutrient uptake and causing major reductions in crop yields. The most reliable means of controlling RKNs is via the use of soil fumigants such as methyl bromide. With the emergence of RNA interference (RNAi) technology, which permits host-mediated nematode gene silencing, a new strategy to control plant pathogens has become available. In the present study, we investigated host-induced RNAi gene silencing of prefoldin-2 in transgenic Nicotiana benthamiana. Reductions in prefoldin-2 mRNA transcript levels were observed when nematodes were soaked in a dsRNA solution in vitro. Furthermore, nematode reproduction was suppressed in RNAi transgenic lines, as evident by reductions in the numbers of root knots (by 34-60 % in independent RNAi lines) and egg masses (by 33-58 %). Endogenous expression of prefoldin-2, analysed via real-time polymerase chain reaction and Western blotting, revealed that the gene was strongly expressed in the pre-parasitic J2 stage. Our observations demonstrate the relevance and potential importance of targeting the prefoldin gene during the nematode life cycle. The work also suggests that further improvements in silencing efficiency in economically important crops can be accomplished using RNAi directed against plant-parasitic nematodes.

  11. Effect of plant extracts and an essential oil on the control of brown spot disease, tillering, number of panicles and yield increase in rice

    DEFF Research Database (Denmark)

    Nguefack, Julienne; Wulff, Ednar Gadelha; Dongmo, J. Blaise Lekagne

    2013-01-01

    disease, the tillering, the number of panicles and the yield increase in rice were evaluated under laboratory and field conditions. In vitro, the growth of both fungi was completely inhibited by the EO of C. citrinus and C. citratus at 4,520 mu g/ml and 452 mu g/ml, respectively. For solvent extracts...... in the non-treated and treated samples with a low incidence (0-4 of B. oryzae. Under field conditions, the combined use of the essential oil of C. citrinus as a seed treatment and spraying the plants with 2 % ethanol followed by 2 % (w/v) aqueous extracts of C. citrinus or C. citratus increased the emergence......, we concluded that the EO and solvent extracts of C. citrinus and C. citratus have potential as control agents against brown spot and other seed-borne fungal diseases in rice under both conventional and organic farming....

  12. Nutrient Content and Nutritional Water Productivity of Selected Grain Legumes in Response to Production Environment.

    Science.gov (United States)

    Chibarabada, Tendai Polite; Modi, Albert Thembinkosi; Mabhaudhi, Tafadzwanashe

    2017-10-26

    There is a need to incorporate nutrition into aspects of crop and water productivity to tackle food and nutrition insecurity (FNS). The study determined the nutritional water productivity (NWP) of selected major (groundnut, dry bean) and indigenous (bambara groundnut and cowpea) grain legumes in response to water regimes and environments. Field trials were conducted during 2015/16 and 2016/17 at three sites in KwaZulu-Natal, South Africa (Ukulinga, Fountainhill and Umbumbulu). Yield and evapotranspiration (ET) data were collected. Grain was analysed for protein, fat, Ca, Fe and Zn nutrient content (NC). Yield, ET and NC were then used to compute NWP. Overall, the major legumes performed better than the indigenous grain legumes. Groundnut had the highest NWP fat . Groundnut and dry bean had the highest NWP protein . For NWP Fe, Zn and Ca , dry bean and cowpea were more productive. Yield instability caused fluctuations in NWP. Water treatments were not significant ( p > 0.05). While there is scope to improve NWP under rainfed conditions, a lack of crop improvement currently limits the potential of indigenous grain legumes. This provides an initial insight on the nutrient content and NWP of a limited number of selected grain legumes in response to the production environment. There is a need for follow-up research to include cowpea data. Future studies should provide more experimental data and explore effects of additional factors such as management practices (fertiliser levels and plant density), climate and edaphic factors on nutrient content and NWP of crops.

  13. Rising atmospheric CO2 concentration may imply higher risk of Fusarium mycotoxin contamination of wheat grains.

    Science.gov (United States)

    Bencze, Szilvia; Puskás, Katalin; Vida, Gyula; Karsai, Ildikó; Balla, Krisztina; Komáromi, Judit; Veisz, Ottó

    2017-08-01

    Increasing atmospheric CO 2 concentration not only has a direct impact on plants but also affects plant-pathogen interactions. Due to economic and health-related problems, special concern was given thus in the present work to the effect of elevated CO 2 (750 μmol mol -1 ) level on the Fusarium culmorum infection and mycotoxin contamination of wheat. Despite the fact that disease severity was found to be not or little affected by elevated CO 2 in most varieties, as the spread of Fusarium increased only in one variety, spike grain number and/or grain weight decreased significantly at elevated CO 2 in all the varieties, indicating that Fusarium infection generally had a more dramatic impact on the grain yield at elevated CO 2 than at the ambient level. Likewise, grain deoxynivalenol (DON) content was usually considerably higher at elevated CO 2 than at the ambient level in the single-floret inoculation treatment, suggesting that the toxin content is not in direct relation to the level of Fusarium infection. In the whole-spike inoculation, DON production did not change, decreased or increased depending on the variety × experiment interaction. Cooler (18 °C) conditions delayed rachis penetration while 20 °C maximum temperature caused striking increases in the mycotoxin contents, resulting in extremely high DON values and also in a dramatic triggering of the grain zearalenone contamination at elevated CO 2 . The results indicate that future environmental conditions, such as rising CO 2 levels, may increase the threat of grain mycotoxin contamination.

  14. of Effect of different organic materials on plant growth

    Directory of Open Access Journals (Sweden)

    mehrnosh eskandari

    2009-06-01

    Full Text Available Using organic matter, such as, peat and vermicompost as soil amendment, increases aeration, water infiltration, water holding capacity and nutrients of soil . A greenhouse experiment was performed to study the effect of organic materials on plant growth characteristics, total biomass and grain weight of chickpea with four treatments; 1 Soil + 3% peat (PS, 2 Sterile soil + 3% peat (SPS, 3 Soil + vermicompost (1:6 (VCS, 4 control (C in a completely randomized design with four replications. The results showed that the maximum germination percentage, number of branch and number of pod per plant were observed in SPS treatment due to the avoidance of harmful microbial impacts. Plant height in this treatment reduced, whereas, no significant differences in total dry matter per plant and dry weight of chickpea per plant were observed compared to control. Plant growth consist of plant height, number of branch and number of pod per plant in vermicompost and soil + peat treatment reduced in the early stages probably because of plant - microbes interaction effects. Application of vermicompost increased fresh and dry weight, pod dry weight and single grain weight, probably due to more plant nutrient availability in this treatment when compared with other treatments.

  15. Film grain synthesis and its application to re-graining

    Science.gov (United States)

    Schallauer, Peter; Mörzinger, Roland

    2006-01-01

    Digital film restoration and special effects compositing require more and more automatic procedures for movie regraining. Missing or inhomogeneous grain decreases perceived quality. For the purpose of grain synthesis an existing texture synthesis algorithm has been evaluated and optimized. We show that this algorithm can produce synthetic grain which is perceptually similar to a given grain template, which has high spatial and temporal variation and which can be applied to multi-spectral images. Furthermore a re-grain application framework is proposed, which synthesises based on an input grain template artificial grain and composites this together with the original image content. Due to its modular approach this framework supports manual as well as automatic re-graining applications. Two example applications are presented, one for re-graining an entire movie and one for fully automatic re-graining of image regions produced by restoration algorithms. Low computational cost of the proposed algorithms allows application in industrial grade software.

  16. PREDICTION MODELS OF GRAIN YIELD AND CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    Narciso Ysac Avila Serrano

    2009-06-01

    Full Text Available With the objective to characterize the grain yield of five cowpea cultivars and to find linear regression models to predict it, a study was developed in La Paz, Baja California Sur, Mexico. A complete randomized blocks design was used. Simple and multivariate analyses of variance were carried out using the canonical variables to characterize the cultivars. The variables cluster per plant, pods per plant, pods per cluster, seeds weight per plant, seeds hectoliter weight, 100-seed weight, seeds length, seeds wide, seeds thickness, pods length, pods wide, pods weight, seeds per pods, and seeds weight per pods, showed significant differences (P≤ 0.05 among cultivars. Paceño and IT90K-277-2 cultivars showed the higher seeds weight per plant. The linear regression models showed correlation coefficients ≥0.92. In these models, the seeds weight per plant, pods per cluster, pods per plant, cluster per plant and pods length showed significant correlations (P≤ 0.05. In conclusion, the results showed that grain yield differ among cultivars and for its estimation, the prediction models showed determination coefficients highly dependable.

  17. Grain boundary structure and properties

    International Nuclear Information System (INIS)

    Balluffi, R.W.

    1979-01-01

    An attempt is made to distinguish those fundamental aspects of grain boundaries which should be relevant to the problem of the time dependent fracture of high temperature structural materials. These include the basic phenomena which are thought to be associated with cavitation and cracking at grain boundaries during service and with the more general microstructural changes which occur during both processing and service. A very brief discussion of the current state of our knowledge of these fundamentals is given. Included are the following: (1) structure of ideal perfect boundaries; (2) defect structure of grain boundaries; (3) diffusion at grain boundaries; (4) grain boundaries as sources/sinks for point defects; (5) grain boundary migration; (6) dislocation phenomena at grain boundaries; (7) atomic bonding and cohesion at grain boundaries; (8) non-equilibrium properties of grain boundaries; and (9) techniques for studying grain boundaries

  18. SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice.

    Science.gov (United States)

    Duan, Penggen; Rao, Yuchun; Zeng, Dali; Yang, Yaolong; Xu, Ran; Zhang, Baolan; Dong, Guojun; Qian, Qian; Li, Yunhai

    2014-02-01

    Although grain size is one of the most important components of grain yield, little information is known about the mechanisms that determine final grain size in crops. Here we characterize rice small grain1 (smg1) mutants, which exhibit small and light grains, dense and erect panicles and comparatively slightly shorter plants. The short grain and panicle phenotypes of smg1 mutants are caused by a defect in cell proliferation. The smg1 mutations were identified, using a map-based cloning approach, in mitogen-activated protein kinase kinase 4 (OsMKK4). Relatively higher expression of OsMKK4/SMG1 was detected in younger organs than in older ones, consistent with its role in cell proliferation. Green fluorescent protein (GFP)-OsMKK4/SMG1 fusion proteins appear to be distributed ubiquitously in plant cells. Further results revealed that OsMKK4 influenced brassinosteroid (BR) responses and the expression of BR-related genes. Thus, our findings have identified OsMKK4 as a factor for grain size, and suggest a possible link between the MAPK pathways and BRs in grain growth. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  19. The Influence of Abrasion on Martian Dust Grains: Evidence from a Study of Antigorite Grains

    Science.gov (United States)

    Bishop, Janice L.; Drief, Ahmed; Dyar, M. Darby

    2003-01-01

    Grinding was shown to greatly affect the structure and a number of properties of antigorite grains in a study by Drief and Nieto. Grinding is likely to influence the structure of most clay mineral grains and has been shown recently to influence the structure of kaolinite. The antigorite structure includes curved waves of layered silicate as shown by D dony et al.. Our study was performed in order to characterize in detail changes in the mineral grains resulting from grinding and to assess the influence of physical processes on clay minerals on the surface of Mars. This project includes a combination of SEM, reflectance spectroscopy and Moessbauer spectroscopy.

  20. Effect of pre- and post-heading waterlogging on growth and grain yield of four millets

    Directory of Open Access Journals (Sweden)

    Asana Matsuura

    2016-07-01

    Full Text Available Seeds of Panicum miliaceum, Panicum sumatrense, Setaria glauca, and Setaria italica were raised in polyvinylchloride tubes filled with soil to determine interspecific differences in waterlogging tolerance and the effect of pre- and post-heading waterlogging on growth and grain yield. Four treatments were conducted including control (no-waterlogging stress during growth. Pre-heading waterlogging treatment was initiated 17 days after sowing to heading (TC. Post-heading waterlogging treatment was initiated heading till harvest (CT. Waterlogging treatment was initiated 17 days after sowing to harvesting (TT. The grain yield of P. miliaceum, S. glauca, and S. italica decreased 16, 18, and 4%, while that of P. sumatrense increased 210% under TT treatment and this showed P. sumatrense had most waterlogging tolerance. The grain yield was more affected under TC treatment in S. italica and P. miliaceum. However, there was not significant differences the grain yield between TC and CT treatment in P. sumatrense and S. glauca. Total dry weight, total root dry weight, number of crown root, and the proportion of lysigenous aerenchyma of P. sumatrense were significantly higher than those of other millets at harvesting. Plant growth rate, total root dry weight, number of crown root, and the proportion of lysigenous aerenchyma of P. sumatrense were significantly higher than those of other millets at heading. These results suggest that P. sumatrense exhibits waterlogging tolerance by enhancing root growth characterized by a high proportion of lysigenous aerenchyma in the crown root.

  1. Computerized radioautographic grain counting

    International Nuclear Information System (INIS)

    McKanna, J.A.; Casagrande, V.A.

    1985-01-01

    In recent years, radiolabeling techniques have become fundamental assays in physiology and biochemistry experiments. They also have assumed increasingly important roles in morphologic studies. Characteristically, radioautographic analysis of structure has been qualitative rather than quantitative, however, microcomputers have opened the door to several methods for quantifying grain counts and density. The overall goal of this chapter is to describe grain counting using the Bioquant, an image analysis package based originally on the Apple II+, and now available for several popular microcomputers. The authors discuss their image analysis procedures by applying them to a study of development in the central nervous system

  2. Accretion growth of water-ice grains in astrophysically-relevant dusty plasma experiment

    Science.gov (United States)

    Chai, Kil-Byoung; Marshall, Ryan; Bellan, Paul

    2016-10-01

    The grain growth process in the Caltech water-ice dusty plasma experiment has been studied using a high-speed camera equipped with a long-distance microscope lens. It is found that (i) the ice grain number density decreases four-fold as the average grain length increases from 20 to 80 um, (ii) the ice grain length has a log-normal distribution rather than a power-law dependence, and (iii) no collisions between ice grains are apparent. The grains have a large negative charge so the agglomeration growth is prevented by their strong mutual repulsion. It is concluded that direct accretion of water molecules is in good agreement with the observed ice grain growth. The volumetric packing factor of the ice grains must be less than 0.25 in order for the grain kinetic energy to be sufficiently small to prevent collisions between ice grains; this conclusion is consistent with ice grain images showing a fractal character.

  3. Genetic Engineering of Maize (Zea mays L.) with Improved Grain Nutrients.

    Science.gov (United States)

    Guo, Xiaotong; Duan, Xiaoguang; Wu, Yongzhen; Cheng, Jieshan; Zhang, Juan; Zhang, Hongxia; Li, Bei

    2018-02-21

    Cell-wall invertase plays important roles in the grain filling of crop plants. However, its functions in the improvement of grain nutrients have not been investigated. In this work, the stable expression of cell-wall-invertase-encoding genes from different plant species and the contents of total starch, protein, amino acid, nitrogen, lipid, and phosphorus were examined in transgenic maize plants. High expressions of the cell-wall-invertase gene conferred enhanced invertase activity and sugar content in transgenic plants, leading to increased grain yield and improved grain nutrients. Transgenic plants with high expressions of the transgene produced more total starch, protein, nitrogen, and essential amino acids in the seeds. Overall, the results indicate that the cell-wall-invertase gene can be used as a potential candidate for the genetic breeding of grain crops with both improved grain yield and quality.

  4. Populations of Rice Grain Bug, Paraeuscosmetus pallicomis, (Hemiptera: Lygaeidae) in Weed-free Paddy Field, Weedy Paddy Field and Paddy Dykes.

    Science.gov (United States)

    Abdullah, Tamrin; Nasruddin, Andi; Agus, Nurariaty

    2017-07-01

    Research on the populations of rice grain bug Paraeuscosmetus pallicomis Dallas (Hemiptera: Lygaeidae) in paddy field ecosystems was performed with the aim to determine the populations of rice grain bug in weed-free paddy field, weedy paddy field, and paddy dykes. Experiment was carried out in the village of Paccellekang in the district of Patallasang of Gowa Regency in South Sulawesi, Indonesia. Observations were performed during the milky grain stage (85 days after planting), the mature grain stage (105 days after planting), and one day after harvest (115 days after transplanting). Results showed that 85 days after the transplanting, the populations of rice grain bug was significantly higher in the weedy paddy field compared to weed-free field and paddy dykes with total numbers of 1.75, 3.53, and 0.31 insects per 2 hills, respectively. Similarly, 105 days after the transplanting, 2.53, 5.53, and 0.11 insects per hill, respectively. However, one day after the harvest (115 days after transplanting) the number of insects in weed-free field decreased, while in the dykes increased, and the weedy plot still had the highest number of insects per 2 hills. Our results suggested that weeds played an important role in regulating the bug population by providing alternative shelter and foods for the insect.

  5. Towards modeling intergranular stress corrosion cracks on grain size scales

    International Nuclear Information System (INIS)

    Simonovski, Igor; Cizelj, Leon

    2012-01-01

    Highlights: ► Simulating the onset and propagation of intergranular cracking. ► Model based on the as-measured geometry and crystallographic orientations. ► Feasibility, performance of the proposed computational approach demonstrated. - Abstract: Development of advanced models at the grain size scales has so far been mostly limited to simulated geometry structures such as for example 3D Voronoi tessellations. The difficulty came from a lack of non-destructive techniques for measuring the microstructures. In this work a novel grain-size scale approach for modelling intergranular stress corrosion cracking based on as-measured 3D grain structure of a 400 μm stainless steel wire is presented. Grain topologies and crystallographic orientations are obtained using a diffraction contrast tomography, reconstructed within a detailed finite element model and coupled with advanced constitutive models for grains and grain boundaries. The wire is composed of 362 grains and over 1600 grain boundaries. Grain boundary damage initialization and early development is then explored for a number of cases, ranging from isotropic elasticity up to crystal plasticity constitutive laws for the bulk grain material. In all cases the grain boundaries are modeled using the cohesive zone approach. The feasibility of the approach is explored.

  6. Evolution of grain structure in nickel oxide scales

    International Nuclear Information System (INIS)

    Atkinson, H.V.

    1987-01-01

    In systems such as the oxidation of nickel, in which grain-boundary diffusion in the oxide can control the rate of oxidation, understanding of the factors governing the grain structure is of importance. High-purity mechanically polished polycrystalline nickel was oxidized at 700 0 C, 800 0 C, and 1000 0 C for times up to 20 hr in 1 atm O 2 . The scale microstructures were examined by parallel and transverse cross section transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Texture coefficients were found by x-ray diffraction (XRD). Each grain in the transverse section grain boundary networks was systematically analyzed for width parallel to the Ni-NiO interface and perpendicular length, for boundary radius of curvature and for number of sides. The variation of these parameters with depth in the scale was examined. In particular, grains were increasingly columnar (i.e., with ratio of grain length to width > 1) at higher temperatures and longer times. Columnar grain boundaries tended to be fairly static; the columnar grain width was less than the rate controlling grain size predicted from the oxidation rate. The mean boundary curvature per grain provided a guide to the tendency for grain growth, except in the region of the Ni-NiO interface, where the boundaries were thought to be pinned

  7. Charging of dust grains in a plasma with negative ions

    International Nuclear Information System (INIS)

    Mamun, A.A.; Shukla, P.K.

    2003-01-01

    The role of negative ions on the charging of dust grains in a plasma is examined. Two models for negative ion distributions are considered. These are streaming negative ions and Boltzmannian negative ions. It is found that the effects of the negative ion number density, negative ion charge, and negative ion streaming speed significantly affect the dust grain surface potential or the dust grain charge

  8. Why do interstellar grains exist

    International Nuclear Information System (INIS)

    Seab, C.G.; Hollenbach, D.J.; Mckee, C.F.; Tielens, A.G.G.M.

    1986-01-01

    There exists a discrepancy between calculated destruction rates of grains in the interstellar medium and postulated sources of new grains. This problem was examined by modelling the global life cycle of grains in the galaxy. The model includes: grain destruction due to supernovae shock waves; grain injection from cool stars, planetary nebulae, star formation, novae, and supernovae; grain growth by accretion in dark clouds; and a mixing scheme between phases of the interstellar medium. Grain growth in molecular clouds is considered as a mechanism or increasing the formation rate. To decrease the shock destruction rate, several new physical processes, such as partial vaporization effects in grain-grain collisions, breakdown of the small Larmor radius approximation for betatron acceleration, and relaxation of the steady-state shock assumption are included

  9. Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treatment at large pilot scale

    Energy Technology Data Exchange (ETDEWEB)

    Mailler, R., E-mail: romain.mailler@siaap.fr [LEESU (UMR MA 102, Université Paris-Est, AgroParisTech), Université Paris-Est Créteil, 61 avenue du Général de Gaulle, 94010 Créteil Cedex (France); Gasperi, J., E-mail: gasperi@u-pec.fr [LEESU (UMR MA 102, Université Paris-Est, AgroParisTech), Université Paris-Est Créteil, 61 avenue du Général de Gaulle, 94010 Créteil Cedex (France); Coquet, Y. [SAUR, Direction de la Recherche et du Développement, 1 rue Antoine Lavoisier, 78064 Guyancourt (France); Buleté, A.; Vulliet, E. [Université de Lyon, Institut des Sciences Analytiques, UMR5280 CNRS, Université Lyon 1, ENS-Lyon, 5 rue de la Doua, 69100 Villeurbanne (France); Deshayes, S. [LEESU (UMR MA 102, Université Paris-Est, AgroParisTech), Université Paris-Est Créteil, 61 avenue du Général de Gaulle, 94010 Créteil Cedex (France); LCPP (Laboratoire Central de la Préfecture de Police), 39 bis rue de Dantzig, 75015 Paris (France); Zedek, S. [LEESU (UMR MA 102, Université Paris-Est, AgroParisTech), Université Paris-Est Créteil, 61 avenue du Général de Gaulle, 94010 Créteil Cedex (France); and others

    2016-01-15

    Among the solutions to reduce micropollutant discharges into the aquatic environment, activated carbon adsorption is a promising technique and a large scale pilot has been tested at the Seine Centre (240,000 m{sup 3}/d — Paris, France) wastewater treatment plant (WWTP). While most of available works studied fixed bed or contact reactors with a separated separation step, this study assesses a new type of tertiary treatment based on a fluidized bed containing a high mass of activated carbon, continuously renewed. For the first time in the literature, micro-grain activated carbon (μGAC) was studied. The aims were (1) to determine the performances of fluidized bed operating with μCAG on both emerging micropollutants and conventional wastewater quality parameters, and (2) to compare its efficiency and applicability to wastewater to former results obtained with PAC. Thus, conventional wastewater quality parameters (n = 11), pharmaceuticals and hormones (PPHs; n = 62) and other emerging pollutants (n = 57) have been monitored in μGAC configuration during 13 campaigns. A significant correlation has been established between dissolved organic carbon (DOC), PPHs and UV absorbance at 254 nm (UV-254) removals. This confirms that UV-254 could be used as a tertiary treatment performance indicator to monitor the process. This parameter allowed identifying that the removals of UV-254 and DOC reach a plateau from a μGAC retention time (SRT) of 90–100 days. The μGAC configuration substantially improves the overall quality of the WWTP discharges by reducing biological (38–45%) and chemical oxygen demands (21–48%), DOC (13–44%) and UV-254 (22–48%). In addition, total suspended solids (TSS) are retained by the μGAC bed and a biological activity (nitratation) leads to a total elimination of NO{sub 2}{sup −}. For micropollutants, PPHs have a good affinity for μGAC and high (> 60%) or very high (> 80%) removals are observed for most of the quantified compounds (n = 22

  10. Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treatment at large pilot scale

    International Nuclear Information System (INIS)

    Mailler, R.; Gasperi, J.; Coquet, Y.; Buleté, A.; Vulliet, E.; Deshayes, S.; Zedek, S.

    2016-01-01

    Among the solutions to reduce micropollutant discharges into the aquatic environment, activated carbon adsorption is a promising technique and a large scale pilot has been tested at the Seine Centre (240,000 m"3/d — Paris, France) wastewater treatment plant (WWTP). While most of available works studied fixed bed or contact reactors with a separated separation step, this study assesses a new type of tertiary treatment based on a fluidized bed containing a high mass of activated carbon, continuously renewed. For the first time in the literature, micro-grain activated carbon (μGAC) was studied. The aims were (1) to determine the performances of fluidized bed operating with μCAG on both emerging micropollutants and conventional wastewater quality parameters, and (2) to compare its efficiency and applicability to wastewater to former results obtained with PAC. Thus, conventional wastewater quality parameters (n = 11), pharmaceuticals and hormones (PPHs; n = 62) and other emerging pollutants (n = 57) have been monitored in μGAC configuration during 13 campaigns. A significant correlation has been established between dissolved organic carbon (DOC), PPHs and UV absorbance at 254 nm (UV-254) removals. This confirms that UV-254 could be used as a tertiary treatment performance indicator to monitor the process. This parameter allowed identifying that the removals of UV-254 and DOC reach a plateau from a μGAC retention time (SRT) of 90–100 days. The μGAC configuration substantially improves the overall quality of the WWTP discharges by reducing biological (38–45%) and chemical oxygen demands (21–48%), DOC (13–44%) and UV-254 (22–48%). In addition, total suspended solids (TSS) are retained by the μGAC bed and a biological activity (nitratation) leads to a total elimination of NO_2"−. For micropollutants, PPHs have a good affinity for μGAC and high (> 60%) or very high (> 80%) removals are observed for most of the quantified compounds (n = 22/32), i

  11. UO2 Grain Growth: Developing Phase Field Models for Pore Dragging, Solute Dragging and Anisotropic Grain Boundary Energies

    International Nuclear Information System (INIS)

    Ahmed, K.; Tonks, M.; Zhang, Y.; Biner, B.

    2016-01-01

    A detailed phase field model for the effect of pore drag on grain growth kinetics was implemented in MARMOT. The model takes into consideration both the curvature-driven grain boundary motion and pore migration by surface diffusion. As such, the model accounts for the interaction between pore and grain boundary kinetics, which tends to retard the grain growth process. Our 2D and 3D simulations demonstrate that the model capture all possible pore-grain boundary interactions proposed in theoretical models. For high enough surface mobility, the pores move along with the migrating boundary as a quasi-rigid-body, albeit hindering its migration rate compared to the pore-free case. For less mobile pores, the migrating boundary can separate from the pores. For the pore-controlled grain growth kinetics, the model predicts a strong dependence of the growth rate on the number of pores, pore size, and surface diffusivity in agreement with theroretical models. An evolution equation for the grain size that includes these parameters was derived and showed to agree well with numerical solution. It shows a smooth transition from boundary-controlled kinetics to pore-controlled kinetics as the surface diffusivity decreases or the number of pores or their size increases. This equation can be utilized in BISON to give accurate estimate for the grain size evolution. This will be accomplished in the near future. The effect of solute drag and anisotropy of grain boundary on grain growth will be investigated in future studies.

  12. Coarse grained model for semiquantitative lipid simulations

    NARCIS (Netherlands)

    Marrink, SJ; de Vries, AH; Mark, AE

    2004-01-01

    This paper describes the parametrization of a new coarse grained (CG) model for lipid and surfactant systems. Reduction of the number of degrees of freedom together with the use of short range potentials makes it computationally very efficient. Compared to atomistic models a gain of 3-4 orders of

  13. The Martini Coarse-Grained Force Field

    NARCIS (Netherlands)

    Periole, X.; Marrink, S.J.; Monticelli, Luca; Salonen, Emppu

    2013-01-01

    The Martini force field is a coarse-grained force field suited for molecular dynamics simulations of biomolecular systems. The force field has been parameterized in a systematic way, based on the reproduction of partitioning free energies between polar and apolar phases of a large number of chemical

  14. Grain Boundary Segregation in Metals

    CERN Document Server

    Lejcek, Pavel

    2010-01-01

    Grain boundaries are important structural components of polycrystalline materials used in the vast majority of technical applications. Because grain boundaries form a continuous network throughout such materials, their properties may limit their practical use. One of the serious phenomena which evoke these limitations is the grain boundary segregation of impurities. It results in the loss of grain boundary cohesion and consequently, in brittle fracture of the materials. The current book deals with fundamentals of grain boundary segregation in metallic materials and its relationship to the grain boundary structure, classification and other materials properties.

  15. Grain destruction in interstellar shocks

    International Nuclear Information System (INIS)

    Seab, C.G.; Shull, J.M.

    1984-01-01

    One of the principal methods for removing grains from the Interstellar Medium is to destroy them in shock waves. Previous theoretical studies of shock destruction have generally assumed only a single size and type of grain; most do not account for the effect of the grain destruction on the structure of the shock. Earlier calculations have been improved in three ways: first, by using a ''complete'' grain model including a distribution of sizes and types of grains; second, by using a self-consistent shock structure that incorporates the changing elemental depletions as the grains are destroyed; and third, by calculating the shock-processed ultraviolet extinction curves for comparison with observations. (author)

  16. Dust grain charging in a wake of other grains

    International Nuclear Information System (INIS)

    Miloch, W. J.; Block, D.

    2012-01-01

    The charging of dust grain in the wake of another grains in sonic and supersonic collisionless plasma flows is studied by numerical simulations. We consider two grains aligned with the flow, as well as dust chains and multiple grain arrangements. It is found that the dust charge depends significantly on the flow speed, distance between the grains, and the grain arrangement. For two and three grains aligned, the charges on downstream grains depend linearly on the flow velocity and intergrain distance. The simulations are carried out with DiP3D, a three dimensional particle-in-cell code with both electrons and ions represented as numerical particles [W. J. Miloch et al., Phys. Plasmas 17, 103703 (2010)].

  17. Grain legume cultivars derived from induced mutations, and mutations affecting nodulation

    International Nuclear Information System (INIS)

    Bhatia, C.R.; Maluszynski, M.; Nichterlein, K.; Zanten, L. van

    2001-01-01

    Two hundred and sixty-five grain legume cultivars developed using induced mutations have been released in 32 countries. A maximum number of cultivars have been released in soybean (58), followed by common bean (50), groundnut (44), pea (32) and mungbean (14). Gamma or x-ray exposures of seeds led to the direct development of 111 cultivars, while neutron and chemical mutagen treatments resulted in 8 and 36 cultivars respectively. One hundred and three cultivars have been developed using mutants in cross breeding. Attempts have been made to estimate the successful dose range for gamma and x-rays, defined as the dose range, which led to the development, registration and release of a maximum number of mutant cultivars. Exposures to seeds ranging between 100-200 Gy in all grain legumes, except faba bean, resulted in 49 out of 111 cultivars being developed as direct mutants. Successful doses reported for faba bean are lower than 100 Gy. Modified crop plant characters are listed. Besides the development of new cultivars, a large number of induced mutants that show altered nodulation pattern have been isolated in grain legumes. Such mutants have made a significant contribution in basic studies on host-symbiont interactions and towards cloning of plant genes related to symbiosis and nitrogen fixation. Their exploitation in breeding programs for enhancing nitrogen fixation is just beginning. Available information on nodulation mutants in grain legume crops is summarised. Mainly, four types of nodulation mutants have been isolated. They show either: no nodulation (nod -), few nodules (nod +/-), ineffective nodulation (Fix-), hypernodulation (nod ++) or hypernodulation even in the presence of otherwise inhibitory nitrate levels (nts). Hypernodulating and nts mutants are of great interest. A soybean cultivar incorporating nts trait has been released in Australia. (author)

  18. EnviroAtlas - Major Grains and Cotton by 12-digit HUC for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset shows the number of major grains grown, yield in tons, and area in hectares for several major grains and for cotton by 12-digit Hydrologic...

  19. Mycopopulations of grain and flour of wheat, corn and buckwheat

    Directory of Open Access Journals (Sweden)

    Plavšić Dragana V.

    2017-01-01

    Full Text Available According to the nutritive characteristics, whole grain flour is a high quality product, due to its high vitamin, mineral, and dietary fiber content. However, the cereal grains are susceptible to the series of contamination during the ripening, harvesting, processing and storage. The aim of this work was to determine mold presence in grains and flour of wheat, corn and buckwheat. The determination of total number and identification of isolated genera and species of molds were the subject of this research. All samples were contaminated with the molds. The total number of molds per 100 cereal grains was between 60 cfu (wheat and 120 cfu (buckwheat. The total number of molds in the samples of flour ranged from 6.0x101 cfu/g in white wheat flour to 5.0 x102 cfu/g in buckwheat whole grain flour (DG18 medium. Eight fungal genera (Alternaria, Aspergillus, Cladosporium, Chrysonilia, Fusarium, Penicillium, Rhizopus and Scopulariopsis and fifteen species were isolated. The largest number of species of molds was isolated from the genus Aspergillus. About 66.7% of isolated fungi belonged to potentially toxigenic species. The results pointed out the necessity of grain surface treatment, preceding the milling of grains in wheat, corn and whole grain buckwheat flour production.

  20. Investigation of correlation analysis and relationships between grain ...

    African Journals Online (AJOL)

    USER

    2010-04-19

    Apr 19, 2010 ... plant height, distance of first pod from the earth surface, number of sub branch, number of pods per plant, number of seeds ..... condition of Iran and play important role in rotation with .... chickpea starches cultivated in China.

  1. Biaxial magnetic grain alignment

    International Nuclear Information System (INIS)

    Staines, M.; Genoud, J.-Y.; Mawdsley, A.; Manojlovic, V.

    2000-01-01

    Full text: We describe a dynamic magnetic grain alignment technique which can be used to produce YBCO thick films with a high degree of biaxial texture. The technique is, however, generally applicable to preparing ceramics or composite materials from granular materials with orthorhombic or lower crystal symmetry and is therefore not restricted to superconducting applications. Because magnetic alignment is a bulk effect, textured substrates are not required, unlike epitaxial coated tape processes such as RABiTS. We have used the technique to produce thick films of Y-247 on untextured silver substrates. After processing to Y-123 the films show a clear enhancement of critical current density relative to identically prepared untextured or uniaxially textured samples. We describe procedures for preparing materials using magnetic biaxial grain alignment with the emphasis on alignment in epoxy, which can give extremely high texture. X-ray rocking curves with FWHM of as little as 1-2 degrees have been measured

  2. Grain Boundary Complexions

    Science.gov (United States)

    2014-05-01

    Cantwell et al. / Acta Materialia 62 (2014) 1–48 challenging from a scientific perspective, but it can also be very technologically rewarding , given the...energy) is a competing explanation that remains to be explored. Strategies to drive the grain boundary energy toward zero have produced some success...Thompson AM, Soni KK, Chan HM, Harmer MP, Williams DB, Chabala JM, et al. J Am Ceram Soc 1997;80:373. [172] Behera SK. PhD dissertation, Materials Science

  3. Predictive coarse-graining

    Energy Technology Data Exchange (ETDEWEB)

    Schöberl, Markus, E-mail: m.schoeberl@tum.de [Continuum Mechanics Group, Technical University of Munich, Boltzmannstraße 15, 85748 Garching (Germany); Zabaras, Nicholas [Institute for Advanced Study, Technical University of Munich, Lichtenbergstraße 2a, 85748 Garching (Germany); Department of Aerospace and Mechanical Engineering, University of Notre Dame, 365 Fitzpatrick Hall, Notre Dame, IN 46556 (United States); Koutsourelakis, Phaedon-Stelios [Continuum Mechanics Group, Technical University of Munich, Boltzmannstraße 15, 85748 Garching (Germany)

    2017-03-15

    We propose a data-driven, coarse-graining formulation in the context of equilibrium statistical mechanics. In contrast to existing techniques which are based on a fine-to-coarse map, we adopt the opposite strategy by prescribing a probabilistic coarse-to-fine map. This corresponds to a directed probabilistic model where the coarse variables play the role of latent generators of the fine scale (all-atom) data. From an information-theoretic perspective, the framework proposed provides an improvement upon the relative entropy method and is capable of quantifying the uncertainty due to the information loss that unavoidably takes place during the coarse-graining process. Furthermore, it can be readily extended to a fully Bayesian model where various sources of uncertainties are reflected in the posterior of the model parameters. The latter can be used to produce not only point estimates of fine-scale reconstructions or macroscopic observables, but more importantly, predictive posterior distributions on these quantities. Predictive posterior distributions reflect the confidence of the model as a function of the amount of data and the level of coarse-graining. The issues of model complexity and model selection are seamlessly addressed by employing a hierarchical prior that favors the discovery of sparse solutions, revealing the most prominent features in the coarse-grained model. A flexible and parallelizable Monte Carlo – Expectation–Maximization (MC-EM) scheme is proposed for carrying out inference and learning tasks. A comparative assessment of the proposed methodology is presented for a lattice spin system and the SPC/E water model.

  4. Increasing abscisic acid levels by immunomodulation in barley grains induces precocious maturation without changing grain composition.

    Science.gov (United States)

    Staroske, Nicole; Conrad, Udo; Kumlehn, Jochen; Hensel, Götz; Radchuk, Ruslana; Erban, Alexander; Kopka, Joachim; Weschke, Winfriede; Weber, Hans

    2016-04-01

    Abscisic acid (ABA) accumulates in seeds during the transition to the seed filling phase. ABA triggers seed maturation, storage activity, and stress signalling and tolerance. Immunomodulation was used to alter the ABA status in barley grains, with the resulting transgenic caryopses responding to the anti-ABA antibody gene expression with increased accumulation of ABA. Calculation of free versus antibody-bound ABA reveals large excess of free ABA, increasing signficantly in caryopses from 10 days after fertilization. Metabolite and transcript profiling in anti-ABA grains expose triggered and enhanced ABA-functions such as transcriptional up-regulation of sucrose-to-starch metabolism, storage protein synthesis and ABA-related signal transduction. Thus, enhanced ABA during transition phases induces precocious maturation but negatively interferes with growth and development. Anti-ABA grains display broad constitutive gene induction related to biotic and abiotic stresses. Most of these genes are ABA- and/or stress-inducible, including alcohol and aldehyde dehydrogenases, peroxidases, chaperones, glutathione-S-transferase, drought- and salt-inducible proteins. Conclusively, ABA immunomodulation results in precocious ABA accumulation that generates an integrated response of stress and maturation. Repression of ABA signalling, occurring in anti-ABA grains, potentially antagonizes effects caused by overshooting production. Finally, mature grain weight and composition are unchanged in anti-ABA plants, although germination is somewhat delayed. This indicates that anti-ABA caryopses induce specific mechanisms to desensitize ABA signalling efficiently, which finally yields mature grains with nearly unchanged dry weight and composition. Such compensation implicates the enormous physiological and metabolic flexibilities of barley grains to adjust effects of unnaturally high ABA amounts in order to ensure and maintain proper grain development. © The Author 2016. Published by

  5. Final environmental statement related to the operation of Watts Bar Nuclear Plant, Units 1 and 2: Docket Numbers 50-390 and 50-391, Tennessee Valley Authority. Supplement Number 1

    International Nuclear Information System (INIS)

    1995-04-01

    The Final Environmental Statement-Operating License (FES-OL) issued in 1978 represents the Nuclear Regulatory Commission's (NRC's) previous environmental review related to the operation of Watts Bar Nuclear (WBN) Plant. The NRC staff has determined that it is appropriate to re-examine the issues associated with the environmental review before issuance of an operating license. The purpose of this NRC review is to discuss the effects of observed changes in the environment and to evaluate the changes in environmental impacts that have occurred as a result of changes in the WBN Plant design and proposed methods of operations since the last environmental review. A full scope of environmental topics has been evaluated, including regional demography, land and water use, meteorology, terrestrial and aquatic ecology, radiological and non-radiological impacts on humans and the environment, socioeconomic impacts, and environmental justice. The staff concluded that there are no significant changes in the environmental impacts since the NRC 1978 FES-OL from changes in plant design, proposed methods of operations, or changes in the environment. The Tennessee Valley Authority's (TVA's) preoperational and operational monitoring programs were reviewed and found to be appropriate for establishing baseline conditions and ongoing assessments of environmental impacts. The staff also conducted an analysis of plant operation with severe accident mitigation design alternatives (SAMDAs) and concluded that none of the SAMDAs, beyond the three procedural changes that the TVA committed to implement, would be cost-beneficial for further mitigating environmental impacts

  6. Grain preservation in SSSR

    International Nuclear Information System (INIS)

    Trisviatski, L.A.

    1973-01-01

    First the importance of cereals collected in the S.S.S.R., the reason why the government had to put in practice a storage chain, composed of large capacity store houses (200 000 metric tonnes, or more) is reminded. When climatic conditions result in wet harvested grains, cereals are dried either in state enterprise dryers (32 to 50 tonnes/hour) or in kolkhozes' dryers (2 to 16 tonnes/hour). A new type of drying with recycling, has been developped, economizing 10 to 15 p. 100. Then the possibilities offered by the technique of partial drying of very wet grains are studied and the preservation processes using fresh ventilation, or hot ventilation with drying effect are described. The question of silage of wet grains destined to animal consumption is then examined as well as preservation by sodium pyrosulfide; the use of propionic acid, little developped in SSSR, is studied now, just as storage with inert gas. The struggle technics against insects, either with chemical agents, or with irradiation are described. Finally the modalities of technicians formation, specialized in preservation, are discussed [fr

  7. Origins of amorphous interstellar grains

    International Nuclear Information System (INIS)

    Hasegawa, H.

    1984-01-01

    The existence of amorphous interstellar grains has been suggested from infrared observations. Some carbon stars show the far infrared emission with a lambda -1 wavelength dependence. Far infrared emission supposed to be due to silicate grains often show the lambda -1 wavelength dependence. Mid infrared spectra around 10 μm have broad structure. These may be due to the amorphous silicate grains. The condition that the condensed grains from the cosmic gas are amorphous is discussed. (author)

  8. Photoelectric charging of dust grains

    International Nuclear Information System (INIS)

    Ignatov, A. M.

    2009-01-01

    Photoemission from the surface of a dust grain in vacuum is considered. It is shown that the cutoff in the energy spectrum of emitted electrons leads to the formation of a steady-state electron cloud. The equation describing the distribution of the electric potential in the vicinity of a dust grain is solved numerically. The dust grain charge is found as a function of the grain size.

  9. Storing Peanuts in Grain Bags

    Science.gov (United States)

    A study was executed to determine the potential of storing farmers stock peanuts and shelled peanuts for crushing in hermetically sealed grain bags. The objectives of the study were to evaluate equipment for loading and unloading the grain bags, the capacity of the grain bags, and the changes in qu...

  10. Genetics of resistance to stored grain weevil (Sitophilus oryzae L. in maize

    Directory of Open Access Journals (Sweden)

    Rajkumar Zunjare

    2015-12-01

    Full Text Available Stored grain weevil (Sitophilus oryzae has emerged as important storage grain pest of maize, causing substantial economic losses. Owing to high costs and environmental hazards of pesticides, host plant resistance holds promise for effective control of weevils. In the present study, a set of experimental maize hybrids generated using line × tester mating design were evaluated against S. oryzae. Significant variation for grain weight loss (GWL (6.0–49.1%, number of insect progeny emerged (NIP (17.8–203.3, grain hardness (GH (263.1–495.4 N, and pericarp thickness (PT (60.3–161.0 μm was observed. Strong positive association was observed between GWL and NIP. GH and PT did not show any correlation with GWL and NIP. Additive and non-additive gene actions were important for both GWL and NIP. Promising inbreds and experimental crosses identified can be effectively utilized in the resistance breeding programme. In majority of promising crosses having desirable SCA effects, one of the parents had desirable GCA effects, indicating that selection of inbred parents based on per se performance for generating resistant crosses may be possible. The commercial hybrid checks were highly susceptible compared to experimental hybrids. The inbreds and experimental hybrids identified hold promise in developing weevil resistant maize cultivars offering sustainable solution to management of weevils in maize.

  11. Design of Grain Refiners for Aluminium Alloys

    Science.gov (United States)

    Tronche, A.; Greer, A. L.

    The efficiency of a grain refiner can be quantified as the number of grains per nucleant particle in the solidified product. Even for effective refiners in aluminium, such as Al-5Ti-1B, it is known from experiments that efficiencies are very low, at best 10-3 to 102. It is of interest to explore the reasons for such low values, and to assess the prospects for increased efficiency though design of refiners. Recently it has been shown [1] that a simple recalescence-based model can make quantitative predictions of grain size as a function of refiner addition level, cooling rate and solute content. In the model, the initiation of grains is limited by the free growth from nucleant particles, the size distribution of which is very important. The present work uses this model as the basis for discussing the effect of particle size distribution on grain refiner performance. Larger particles (of TiB2 in the case of present interest) promote greater efficiency, as do narrower size distributions. It is shown that even if the size distribution could be exactly specified, compromises would have to be made to balance efficiency (defined as above) with other desirable characteristics of a refiner.

  12. Effect of Mycorrhizal Inoculation and Grain Priming on Some Quantity and Quality Properties of Lentil (Lens culinaris L.

    Directory of Open Access Journals (Sweden)

    mohsen azarnia

    2017-02-01

    Kavous University during 2013 and 2014. Various priming treatments - applied in the laboratory. Then, during planting, mycorrhizal inoculation treatment was kept in the closet place to the grains about 5 g per gram of grain (40 spores per gram. To determine the activity of roots (root length and number of nitrogen fixation nodes 10 seedlings per pot were kept. Measured traits in the field condition were included the concentration and uptake of total phosphorus in aerial parts, concentration and total phosphorus uptake of grain, grain yield, and biological yield. Results and Discussion: Variance analysis showed that different treatments of mycorrhizal inoculation, priming, and their interactions had significant effects on the studied traits such as the root length, number of nitrogen fixation nodules, phosphorus concentration of aerial parts, grain phosphorus concentration, grain phosphorus uptake, biological yield, and grain yield. In this study the highest root length (39.5 cm, nitrogen fixation nodules (114, aerial parts phosphorus uptake (12.1 kg/h were obtained under combined treatment of G. intraradices inoculation+ 100 ppm gibberellic acid. While the aerial parts phosphorus concentration (0.24% and grain phosphorus uptake (22.8 kg/ha were higher due to using combined treatment of mycorrhizal G. Moseae + hydro-priming. Hormonal priming with salicylic acid increased grain yield and biological yield significantly over the other hormonal priming and control. Hydro-priming had a significant and positive effect on grain yield in three levels of bio-fertilizer. Results of salicylic acid treatment were similar to the results of hydropriming. Influence of hormones, especially gibberellic acid in grain causes more activities in some emergence catalytic enzymes, the emergence speed, emergence percentage and root elongation. These effects may be inconspicuous in irrigated cultivation, but it can lead to the survival of plants in the dry farming situation. In this study

  13. Grain yield of corn at different population densities and intercropped with forages

    Directory of Open Access Journals (Sweden)

    José M. do Nascimento

    2015-12-01

    Full Text Available ABSTRACT The no-tillage system optimizes agricultural areas, maintaining the supply of straw and promoting crop rotation and soil conservation. The aim of the present study was to evaluate sowing quality and grain yield of corn intercropped with three forage species of the Urochloa genus associated with two corn population densities. The experiment was conducted at the São Paulo State University (UNESP, in Jaboticabal-SP, Brazil. The experimental design was randomized blocks in a 2 x 3 factorial scheme with four replicates. The treatments consisted of two corn densities (55,000 and 75,000 plants ha-1 intercropped with three forages (Urochloa brizantha, Urochloa decumbens and Urochloa ruziziensis sown between rows of corn in the V4 stage. The following corn variables were analysed: mean number of days for emergence, longitudinal distribution, grain yield, initial population and final population. There were differences between corn populations (p < 0.1 and the intercropping of corn with the species U. brizantha and U. ruziziensis promoted the best results, which permitted concluding that the cultivation of corn at the population density of 75,000 plants ha-1 intercropped U. brizantha and U. ruziziensis promoted better sowing quality and, consequently, higher grain yields.

  14. Advection-diffusion model for normal grain growth and the stagnation of normal grain growth in thin films

    International Nuclear Information System (INIS)

    Lou, C.

    2002-01-01

    An advection-diffusion model has been set up to describe normal grain growth. In this model grains are divided into different groups according to their topological classes (number of sides of a grain). Topological transformations are modelled by advective and diffusive flows governed by advective and diffusive coefficients respectively, which are assumed to be proportional to topological classes. The ordinary differential equations governing self-similar time-independent grain size distribution can be derived analytically from continuity equations. It is proved that the time-independent distributions obtained by solving the ordinary differential equations have the same form as the time-dependent distributions obtained by solving the continuity equations. The advection-diffusion model is extended to describe the stagnation of normal grain growth in thin films. Grain boundary grooving prevents grain boundaries from moving, and the correlation between neighbouring grains accelerates the stagnation of normal grain growth. After introducing grain boundary grooving and the correlation between neighbouring grains into the model, the grain size distribution is close to a lognormal distribution, which is usually found in experiments. A vertex computer simulation of normal grain growth has also been carried out to make a cross comparison with the advection-diffusion model. The result from the simulation did not verify the assumption that the advective and diffusive coefficients are proportional to topological classes. Instead, we have observed that topological transformations usually occur on certain topological classes. This suggests that the advection-diffusion model can be improved by making a more realistic assumption on topological transformations. (author)

  15. Grain Interactions in Crystal Plasticity

    International Nuclear Information System (INIS)

    Boyle, K.P.; Curtin, W.A.

    2005-01-01

    The plastic response of a sheet metal is governed by the collective response of the underlying grains. Intragranular plasticity depends on intrinsic variables such as crystallographic orientation and on extrinsic variables such as grain interactions; however, the role of the latter is not well understood. A finite element crystal plasticity formulation is used to investigate the importance of grain interactions on intragranular plastic deformation in initially untextured polycrystalline aggregates. A statistical analysis reveals that grain interactions are of equal (or more) importance for determining the average intragranular deviations from the applied strain as compared to the orientation of the grain itself. Furthermore, the influence of the surrounding grains is found to extend past nearest neighbor interactions. It is concluded that the stochastic nature of the mesoscale environment must be considered for a proper understanding of the plastic response of sheet metals at the grain-scale

  16. RENDIMENTO DE BENEFÍCIO E DE GRÃOS INTEIROS EM FUNÇÃO DO ESPAÇAMENTO E DA DENSIDADE DE SEMEADURA DO ARROZ DE SEQUEIRO PERCENTAGE OF UNDAMAGED GRAINS AND HULLING YIELD OF DRYLAND RICE AS AFFECTED BY ROW AND PLANT POPULATION

    Directory of Open Access Journals (Sweden)

    Carlos Alexandre Costa Crusciol

    1999-01-01

    Full Text Available O presente trabalho teve por objetivo estudar o efeito do espaçamento entre fileiras (30, 40 e 50 cm e da densidade de semeadura (100, 150 e 200 sementes viáveis/m2 quanto a qualidade industrial de grãos do arroz de sequeiro cv. IAC 201. Dessa forma, foi instalado um experimento em condições de campo, em um Latossolo Vermelho escuro, epi-eutrófico, textura argilosa, em Selvíria, MS. Para tanto, foram avaliados os rendimentos de grãos, no benefício, grãos inteiros e quebrados. A variação do espaçamento e da densidade de semeadura não afetou o rendimento de benefício. O aumento da densidade de semeadura aumentou a porcentagem de grãos quebrados. Os rendimentos de grãos inteiros e quebrados não foram influenciados pela variação do espaçamento entre fileiras.A field experiment was carried out on a clayey Dark Red Latosol in Selvíria, MS, Brazil, to study the effect of three row spacings (30, 40 and 50 cm and three plant densities (100, 150 and 200 viable seeds/m2 on the hulling yield and the percentage of undamaged grains. There was no effect of row spacings and plant densities on hulling yield. Increasing plant population led to an increase of broken grains. The percentage of undamaged and broken grains were not affected by row spacing.

  17. The Effect of Irrigation Intervals and Arbuscular Mycorrhizal Fungi on Chlorophyll Index, Yield and Yield Components of Grain Sorghum

    Directory of Open Access Journals (Sweden)

    J. Hamzei

    2014-08-01

    Full Text Available This experiment was carried out to study the effect of irrigation intervals and arbuscular mycorrhizal fungi on chlorophyll index, yield and yield components of grain sorghum. A factorial experiment was done based on randomized complete block design (RCBD with three replications at the Agriculture Research Station faculty of Agriculture, Bu- Ali Sina University in growing season of 2011. Irrigation intervals (7, 14 and 21 days with three levels of seed inoculation (control without inoculation, inoculation with Glomus mossea and inoculation with G. intraradices were the experimental treatments. Results indicated that the effect of irrigation intervals and mycorrhizal fungi were significant for traits of chlorophyll index, percentage of root symbiosis (PRS, number of grain per panicle, 1000 seed weight, grain yield and harvest index (HI. Maximum value for each trait was observed at G. mossea treatment. G. mossea treatment in comparison with G. intraradices and control treatment can increase the grain yield of sorghum up to 6.80 and 23.10%, respectively. Also, with increasing irrigation interval from 7 to 21 days, PRS increased up to 27.9%. Maximum value for grain yield (755 g m-2 was achieved at irrigation every 14 days and application of G. mossea treatment. But, there was no significant difference between irrigation sorghum plants every 14 days and application of G. mossea and irrigation every 7 days and application of either G. mossea or G. intraradices. In general, irrigation of sorghum plants every 14 days and supplying of G. mossea can produce the highest grain yield, while decreasing water consumption for sorghum production.

  18. Effect of Timing of Potassium Application on Millet (Setaria italica Yield and Grain Protein Content in Different Irrigation Regimes

    Directory of Open Access Journals (Sweden)

    A. Hayati

    2011-05-01

    Full Text Available The research on reducing the water consumption in conventional cropping system is one of the important strategies to improve the water use efficiency in agriculture. In order to investigate the effect of time of potassium application under different irrigation regimes on millet grain yield and protein percent, a field experiment was carried out in Agricultural Research Center of Yasuj, Iran, in 2009. The experiment was conducted as split plot design in a randomized complete blocks design with 3 replications. Irrigation regime included 7, 14 and 21-day intervals as main factor and sub-plots included time of potassium fertilizer application in four stages: planting, tillering, stem development and flowering. The results showed that the effect of irrigation interval was significant on 1000-seed weight, grain and biological yield, number of grains per spike, harvest index, protein content, and chlorophyll a, b and total of leaves. By increasing the irrigation interval, all the above-mentioned traits decreased, except the protein percent that increased. The 1000-seed weight, grain and biological yield, harvest index and protein content were affected significantly by the time of potassium application. Maximum grain yield was obtained by interaction of 7- day irrigation interval and potassium application at the stem development stage. Maximum grain protein content was measured in potassium application at flowering stage. In general, increasing the irrigation interval, and subsequent water stress, reduced plant growth and yield components. Application of potassium fertilizer at early growth stages increased yield and yield components, while in reproductive stages increased seed quality.

  19. Productivity of clay tailings from phosphate mining: 3. Grain crops

    International Nuclear Information System (INIS)

    Mislevy, P.; Blue, W.G.; Roessler, C.E.; Martin, F.G.

    1991-01-01

    A split-fold field experiment was conducted to study forage and grain yield, forage quality, plant nutrient concentrations, changes in soil nutrients, and 226 Ra contents of four grain crops in various rotations. The crop rotations (1) corn (Zea mays L. Jacques 247)-sunflower (Helianthus annuus L. Cargil 205), (2) sunflower-grain sorghum (Sorghum bicolor L, Moench Northrup King Savanna 5), (3) soybean (Glycine max L. Merr. Williams 80)-grain sorghum, and (4) grain sorghum-soybean (University of Florida V-1) were grown on a dry phosphatic clay with and without a 50-mm surface layer of quartz-sand tailings. Results show that corn and grain sorghum produced highest forage yields and highest grain yields per harvest, respectively. Soybean harvested for forage (Crop 1) contained the highest crude protein and in vitro organic matter digestibility. Concentrations of P, K, Ca, Mg, and Fe in most of the forages were adequate for the diets of beef cattle, while those of Mn, Cu and Zn were low. Mehlich I-extractable soil, Ca, and Mg were considered very high and changed little over the 4-yr production period. Application of 50 mm of sand tailings tended to increase Mehlich I-extractable P, Ca, Mn, Cu, Zn, and Fe. Radium-226 concentration in the forage of all grain crops averaged 8.5 Bq kg -1 , which was about 17 times higher than that in the grain of the same crops. Concentrations of 226 Ra in the forage and grain were 1.1% and 0.09% of the concentration in clay respectively. These data indicate that phosphatic clays can be a valuable resource for the production of corn and sorghum grain that contain low concentrations of 226 Ra

  20. Electrons scattered inside small dust grains of various materials

    International Nuclear Information System (INIS)

    Richterova, Ivana; Beranek, Martin; Pavlu, Jiri; Nemecek, Zdenek; Safrankova, Jana

    2010-01-01

    The dust grain charge in an electron beam is given by a difference in numbers of electrons that fall onto the grain and those leaving it. Electrons with energies exceeding 1 keV can penetrate through submicron-sized dust grains. If the grain is small enough, a yield of these electrons reaches unity but they leave a part of their energy inside the grain and this energy excites secondary electrons. The paper presents a hybrid Monte Carlo code that simulates paths of the primary electrons inside a spherical grain and provides the yield of scattered electrons and their energy spectrum as a function of the grain size and material. This code is based on the Richterovaet al. [Phys. Rev. B 74, 235430 (2006)] model but it includes several corrections important for light materials like carbon or ice. The model was verified using experimental results obtained on large planar samples. For spherical samples, we have found that the yield of scattered electrons reaches unity for 50 nm Au grains illuminated by 5 keV electrons, whereas the same effect can be observed on ≅1000 nm carbon grains.

  1. Effect of seeding rate on grain quality of winter wheat

    Directory of Open Access Journals (Sweden)

    Veselinka Zecevic

    2014-03-01

    Full Text Available Planting density is important factor which influence yield and quality of wheat (Triticum aestivum L. For this reason, in scientific investigations is constantly investigated optimization of plant number per unit area. The objective of this study was to determine the influence of seeding rate in grain quality of winter wheat cultivars. The experiment was conducted with four winter wheat genotypes ('Ana Morava', 'Vizija', 'L-3027', and 'Perla' at the Small Grains Research Centre of Kragujevac, Serbia, in 3 yr at two seeding rates (SR1 = 500 and SR2 = 650 germinating seeds m-2. The 1000-kernel weight, Zeleny sedimentation, and wet gluten content in divergent wheat genotypes were investigated depending on the seeding rate and ecological factors. Significant differences in quality components were established between investigated seeding rates. The highest values of all investigated quality traits were established in SR2 variant when applied 650 seeds m-2. Genotypes reacted differently to seeding rate. 'Perla' in average had the highest mean sedimentation value (42.2 mL and wet gluten content (33.76% in SR2 variant and this cultivar responded the best to seeding rate. Significant differences for sedimentation value and wet gluten content were found among cultivars, years, seeding rate, and for all their interactions. Also, ANOVA for 1000-kernel weight showed highly significant differences among investigated varieties, seeding rate and growing seasons, but all their interactions were not significant. In all investigated genotypes, better quality was established in SR2 variant when applied 650 seeds m-2.

  2. NDVI to Detect Sugarcane Aphid Injury to Grain Sorghum.

    Science.gov (United States)

    Elliott, N C; Backoulou, G F; Brewer, M J; Giles, K L

    2015-06-01

    Multispectral remote sensing has potential to provide quick and inexpensive information on sugarcane aphid, Melanaphis sacchari (Zehntner), pest status in sorghum fields. We describe a study conducted to determine if injury caused by sugarcane aphid to sorghum plants in fields of grain sorghum could be detected using multispectral remote sensing from a fixed wing aircraft. A study was conducted in commercial grain sorghum fields in the Texas Gulf Coast region in June 2014. Twenty-six commercial grain sorghum fields were selected and rated for the level of injury to sorghum plants in the field caused by sugarcane aphid. Plant growth stage ranged from 5.0 (watery ripe) to 7.0 (hard dough) among fields; and plant injury rating from sugarcane aphid ranged from 1.0 (little or no injury) to 4.0 (>40% of plants displaying injury) among fields. The normalized differenced vegetation index (NDVI) is calculated from light reflectance in the red and near-infrared wavelength bands in multispectral imagery and is a common index of plant stress. High NDVI indicates low levels of stress and low NDVI indicates high stress. NDVI ranged from -0.07 to 0.26 among fields. The correlation between NDVI and plant injury rating was negative and significant, as was the correlation between NDVI and plant growth stage. The negative correlation of NDVI with injury rating indicated that plant stress increased with increasing plant injury. Reduced NDVI with increasing plant growth probably resulted from reduced photosynthetic activity in more mature plants. The correlation between plant injury rating and plant growth stage was positive and significant indicating that plant injury from sugarcane aphid increased as plants matured. The partial correlation of NDVI with plant injury rating was negative and significant indicating that NDVI decreased with increasing plant injury after adjusting for its association with plant growth stage. We demonstrated that remotely sensed imagery acquired from grain

  3. A spectral analysis of rice grains

    International Nuclear Information System (INIS)

    McIlvaine, M.S.; Cua, F.T.; Navarro, E.F.

    1976-06-01

    With the advent of extensive nuclear testing and the development and use of highly potent pesticides and fertilizers, the hazardous threats of radioactive contamination due to fallout and to the absorption of pesticide residues have been given due consideration. Among the many forms of life exposed to these threats are food crops and among these is rice. Several rice grain samples - Japanese rice samples ''A'' and ''B'' submitted by the National Grains Authority (NGA) for analysis, random samples of rice being sold to the public at local markets, and ''black rice'' which were picked from along the shores of a Mindoro town were subjected to spectral analysis. Results revealed the presence of trace elements normally found in plants, such as; K-42, I-124, Cl-38, Na-24, Br-82, and Mn-56. No mercury was detected in the sample specimen analyzed

  4. Using the ''Epiquant'' automatic analyzer for quantitative estimation of grain size

    Energy Technology Data Exchange (ETDEWEB)

    Tsivirko, E I; Ulitenko, A N; Stetsenko, I A; Burova, N M [Zaporozhskij Mashinostroitel' nyj Inst. (Ukrainian SSR)

    1979-01-01

    Application possibility of the ''Epiquant'' automatic analyzer to estimate qualitatively austenite grain in the 18Kh2N4VA steel has been investigated. Austenite grain has been clarified using the methods of cementation, oxidation and etching of the grain boundaries. Average linear size of grain at the length of 15 mm has been determined according to the total length of grain intersection line and the number of intersections at the boundaries. It is shown that the ''Epiquant'' analyzer ensures quantitative estimation of austenite grain size with relative error of 2-4 %.

  5. Analysis of airborne pollen grains in Konya, Turkey, 2005

    International Nuclear Information System (INIS)

    Altunoglu, M.K.; Bicakci, A.; Temel, M.; Kargioglu, M.

    2010-01-01

    In this study, airborne pollen grains of Konya province were investigated using Durham sampler from January to December 2005. A total of 4420 pollen grains/cm/sup 2/ which belonged to 29 taxa and 9 unidentified pollen grains were recorded. From identified taxa, 19 belong to arboreal and 10 taxa to non-arboreal plants. Total pollen grains consist of 87,49% arboreal, 12,31% non-arboreal plants and 0,20% unidentified pollen grains. In the investigated region, from arboreal plant taxa Pinus spp. (21,63%), Fraxinus spp. (21,13%), Cupressaceae (15,84%), Ailanthus spp. (7,47%), Platanus spp. (3,80%), Acer spp. (3,28%), Populus spp. (1,86%), Sophora spp. (3,85%) and from non-arboreal plant taxa Chenopodiaceae / Amaranthaceae (4,77%), Poaceae (3,67%) were responsible for the greatest amount of pollen. During the study period, the pollen fall reached its highest level in March. (author)

  6. Semi-automated petrographic assessment of coal by coal grain analysis

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, G.; Jenkins, B.; Ofori, P.; Ferguson, K. [CSIRO Exploration and Mining, Pullenvale, Qld. (Australia)

    2007-04-15

    A new classification method, coal grain analysis, which uses optical imaging techniques for the microscopic characterisation of the individual grains present in coal samples is discussed. This differs from other coal petrography imaging methods in that a mask is used to remove the pixels of mounting resin to obtain compositional information of the maceral (vitrinite, inertinite and liptinite) and mineral abundances on each individual grain within each image. Experiments were conducted to establish the density of individual constituents in order to enable the density of each grain to be determined and the results reported on a mass basis. The grains were sorted into eight grain classes of liberated (single component) and composite grains. By analysing all streams (feed, concentrate and tailings) of the flotation circuit at a coal washing plant, the flotation response of the individual grain classes was tracked. This has implications for flotation process diagnostics and optimisation.

  7. Segregation of solute elements at grain boundaries in an ultrafine grained Al-Zn-Mg-Cu alloy

    International Nuclear Information System (INIS)

    Sha, Gang; Yao, Lan; Liao, Xiaozhou; Ringer, Simon P.; Chao Duan, Zhi; Langdon, Terence G.

    2011-01-01

    The solute segregation at grain boundaries (GBs) of an ultrafine grained (UFG) Al-Zn-Mg-Cu alloy processed by equal-channel angular pressing (ECAP) at 200 o C was characterised using three-dimensional atom probe. Mg and Cu segregate strongly to the grain boundaries. In contrast, Zn does not always show clear segregation and may even show depletion near the grain boundaries. Trace element Si selectively segregates at some GBs. An increase in the number of ECAP passes leads to a decrease in the grain size but an increase in solute segregation at the boundaries. The significant segregation of alloying elements at the boundaries of ultrafine-grained alloys implies that less solutes will be available in the matrix for precipitation with a decrease in the average grain size. -- Research Highlights: → Atom probe tomography has been employed successfully to reveal unique segregation of solutes at ultrafine grained material. → Mg and Cu elements segregated strongly at the grain boundary of an ultrafine grained Al-Zn-Mg-Cu alloy processed by 4-pass and 8-pass ECAP at 200 o C. Zn frequently depleted at GBs with a Zn depletion region of 7-15 nm in width on one or both sides of the GBs. Only a small fraction (3/13) of GBs were observed with a low level of Zn segregation where the combined Mg and Cu excess is over 3.1 atom/nm 2 . Si appeared selectively segregated at some of the GBs. → The increase in number of ECAP passes from 4 to 8 correlated with the increase in mean level segregation of Mg and Cu for both solute excess and peak concentration. → The change of plane normal of a grain boundary within 30 o only leads to a slight change in the solute segregation level.

  8. Determination of 137Cs, 90Sr, 40K radionuclides in food grain and commercial food grain products

    International Nuclear Information System (INIS)

    Solecki, J.; Kruk, M.

    2011-01-01

    Following up transfer of strontium from soil to plants requires determination of isotope in the surface layer of soil and a chosen plant. The most endangered food products are plants including commonly grown grain, which constitutes a basic feeding component for both people and animals. Indeed large amounts of 137 Cs, 90 Sr get into organisms of people and animals with the food, therefore determination of radioactivity of elements in food products and animal fodder is very essential. Choice of proper diet allows to limit the level of human organism denaturation. The aim of this paper was to study relocation of 90 Sr, 137 Cs, 40 K isotopes from soil to grain and then from grain to food products. There were investigated soil, wheat, barley, groats, flour, macaroni and breakfast flakes. Based on the obtained results there were calculated effective weighted doses [nSv] from consumption of 1 kg of a product for different age groups. (author)

  9. NRC review of Electric Power Research Institute's advanced light water reactor utility requirements document. Passive plant designs, chapter 1, project number 669

    International Nuclear Information System (INIS)

    1994-08-01

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the open-quotes Advanced Light Water Reactor [ALWR] Utility Requirements Documentclose quotes, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume 1, open-quotes ALWR Policy and Summary of Top-Tier Requirementsclose quotes, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, open-quotes NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document - Program Summaryclose quotes, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff's review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review

  10. NRC review of Electric Power Research Institute's advanced light water reactor utility requirements document. Passive plant designs, chapters 2-13, project number 669

    International Nuclear Information System (INIS)

    1994-08-01

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the open-quotes Advanced Light Water Reactor [ALWR] Utility Requirements Documentclose quotes, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume I, open-quotes ALWR Policy and Summary of Top-Tier Requirementsclose quotes, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, open-quotes NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document - Program Summaryclose quotes, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff's review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review

  11. Grain Flow at High Stresses

    Science.gov (United States)

    McSaveney, M. J.

    2015-12-01

    The transport mechanism of rapid long-runout rock avalanches was a hotly debated topic when I came on the scene in 1967. So how come it is still debated today? My explanation is that it is the expected outcome of peer review, poor comprehension, and technological advances outpacing intellectual advances. Why think about the problem when we can model it! So let us think about the problem. Shreve thought that rock avalanches fell upon and trapped a layer of air. What physics was he thinking about? It is how feathers and tissue papers fall. When my rock avalanches fly, they fly like unlubricated bricks using the physics of projectiles and ballistics. But the main transport mechanism is not flight. The dominant impression from watching a rock avalanche in motion is of fluid flow, as Heim described it in 1882. A rock avalanche is a very large grain flow. Bagnold studied dispersive grain flows, but why should one assume that rock avalanches are dispersive grain flows as many do. The more common grain flow type is a dense grain flow and rock avalanches are dense grain flows in which the weight can and does generate very high stresses at grain contacts. Brittle rock deforms elastically up to its compressive strength, whereupon it breaks, releasing elastic strain as transient elastic strain (seismic energy to a seismologist, acoustic energy to a physicist). Melosh and others have shown that acoustic energy can fluidize a grain mass. There is no exotic physics behind grain flow at high stress. When grains break, the released elastic strain has to go somewhere, and it goes somewhere principally by transmission though grain contacts. Depending on the state of stress at the grain contact, the contact will pass the stress or will slip at conventional values of Coulomb friction. Enough thinking! A physical model of the entire process is too big for any laboratory. So whose numerical model will do it?

  12. Hupa Numbers.

    Science.gov (United States)

    Bennett, Ruth, Ed.; And Others

    An introduction to the Hupa number system is provided in this workbook, one in a series of numerous materials developed to promote the use of the Hupa language. The book is written in English with Hupa terms used only for the names of numbers. The opening pages present the numbers from 1-10, giving the numeral, the Hupa word, the English word, and…

  13. Triangular Numbers

    Indian Academy of Sciences (India)

    Admin

    Triangular number, figurate num- ber, rangoli, Brahmagupta–Pell equation, Jacobi triple product identity. Figure 1. The first four triangular numbers. Left: Anuradha S Garge completed her PhD from. Pune University in 2008 under the supervision of Prof. S A Katre. Her research interests include K-theory and number theory.

  14. Proth Numbers

    Directory of Open Access Journals (Sweden)

    Schwarzweller Christoph

    2015-02-01

    Full Text Available In this article we introduce Proth numbers and prove two theorems on such numbers being prime [3]. We also give revised versions of Pocklington’s theorem and of the Legendre symbol. Finally, we prove Pepin’s theorem and that the fifth Fermat number is not prime.

  15. Sagan numbers

    OpenAIRE

    Mendonça, J. Ricardo G.

    2012-01-01

    We define a new class of numbers based on the first occurrence of certain patterns of zeros and ones in the expansion of irracional numbers in a given basis and call them Sagan numbers, since they were first mentioned, in a special case, by the North-american astronomer Carl E. Sagan in his science-fiction novel "Contact." Sagan numbers hold connections with a wealth of mathematical ideas. We describe some properties of the newly defined numbers and indicate directions for further amusement.

  16. Sputtering of nano-grains by energetic ions

    CERN Document Server

    Bringa, E M

    2002-01-01

    Sputtering from grains with a size of tens of nanometers is important in a number of astrophysical environments having a variety of plasma properties and can have applications in nano-technology. Since energy deposition by incident ions or electrons can create 'hot' regions in a small grain, thermal spike (TS) models have been applied to estimate the sputtering. The excitations produced by a fast ion are often assumed to form a 'hot' cylindrical track. In this paper we use molecular dynamics (MD) calculations to describe the energy transport and sputtering due to the creation of a 'hot' track in a grain with one quarter million atoms. We show the enhancement due to grain size and find that TS models work over a limited range of excitation densities. Discrepancies of several orders of magnitude are found when comparing our MD results for sputtering of small dust grains to those obtained by the astrophysical community using spike models.

  17. Modelling of grain refinement driven by negative grain boundary energy

    Czech Academy of Sciences Publication Activity Database

    Fischer, F. D.; Zickler, G. A.; Svoboda, Jiří

    2017-01-01

    Roč. 97, č. 23 (2017), s. 1963-1977 ISSN 1478-6435 R&D Projects: GA ČR(CZ) GA15-06390S Institutional support: RVO:68081723 Keywords : grain refinement * grain nucleation * distribution concept * jump on distribution function Subject RIV: BJ - Thermodynamics OBOR OECD: Thermodynamics Impact factor: 1.505, year: 2016

  18. Impact of Corn Earworm (Lepidoptera: Noctuidae) on Field Corn (Poales: Poaceae) Yield and Grain Quality.

    Science.gov (United States)

    Bibb, Jenny L; Cook, Donald; Catchot, Angus; Musser, Fred; Stewart, Scott D; Leonard, Billy Rogers; Buntin, G David; Kerns, David; Allen, Tom W; Gore, Jeffrey

    2018-05-28

    Corn earworm, Helicoverpa zea (Boddie), commonly infests field corn, Zea mays (L.). The combination of corn plant biology, corn earworm behavior in corn ecosystems, and field corn value renders corn earworm management with foliar insecticides noneconomical. Corn technologies containing Bacillus thuringiensis (Bt) Berliner (Bacillales: Bacillaceae) were introduced that exhibit substantial efficacy against corn earworm and may reduce mycotoxin contamination in grain. The first generation Bt traits in field corn demonstrated limited activity on corn earworm feeding on grain. The pyramided corn technologies have greater cumulative protein concentrations and higher expression throughout the plant, so these corn traits should provide effective management of this pest. Additionally, reduced kernel injury may affect physical grain quality. Experiments were conducted during 2011-2012 to investigate corn earworm impact on field corn yield and grain quality. Treatments included field corn hybrids expressing the Herculex, YieldGard, and Genuity VT Triple Pro technologies. Supplemental insecticide treatments were applied every 1-2 d from silk emergence until silk senescence to create a range of injured kernels for each technology. No significant relationship between the number of corn earworm damaged kernels and yield was observed for any technology/hybrid. In these studies, corn earworm larvae did not cause enough damage to impact yield. Additionally, no consistent relationship between corn earworm damage and aflatoxin contamination was observed. Based on these data, the economic value of pyramided Bt corn traits to corn producers, in the southern United States, appears to be from management of other lepidopteran insect pests including European and southwestern corn borer.

  19. Ionizing radiation for insect control in grain and grain products

    International Nuclear Information System (INIS)

    Tilton, E.W.; Brower, J.H.

    1987-01-01

    A technical review summarizes and discusses information on various aspects of the use of ionizing radiation for the control of insect infestation in grains and grain products. Topics include: the effects of ionizing radiation on insects infesting stored-grain products; the 2 main types of irradiators (electron accelerators; radioisotopes (e.g.: Co-60; Cs-137); dosimetry systems and methodology; variations in radiation resistance by stored-product pests; the proper selection of radiation dose; the effects of combining various treatments (temperature, infrared/microwave radiation, hypoxia, chemicals) with ionizing radiation; sublethal radiation for controlling bulk grain insects; the feeding capacity of irradiated insects; the susceptibility of insecticide-resistant insects to ionizing radiation; and the possible resistance of insects to ionizing radiation. Practical aspects of removing insects from irradiated grain also are discussed

  20. The grain charging and the dust acoustic wave instability

    International Nuclear Information System (INIS)

    Varma, Ram K.

    2001-01-01

    The stability of the steady charging state of the assembly of dust grains in a plasma is analyzed using, besides the equations of continuity and momentum balance, also the equations of thermal energy balance with the grain charging terms for both the electron and ion species. The grain charging terms account for the energy exchange between the dust grains and the electron and ion fluids. The grains are taken to be immobile for the purpose of this analysis. Two limiting cases are analyzed: (i) f(≡4πn d λ D 2 a) >1 (n d is the dust number density, λ D plasma Debye length, and a, the grain radius). The steady grain charge state is found to be stable in the case f o is unaffected. On the other hand, in the limit f>>1, the state is found to be unstable provided γ q (≡q o e/aT e ) e -T i )/T e (T e , T i are electron and ion temperatures). A coherent charging of the dust grains results as a consequence of this instability until γ q ≅(1/2) (T e -T i )/T i . Next, by letting the grain charges be mobile, so that the perturbation of dust number density is nonzero, we examine the stability of the dust-acoustic wave (DAW). The DAW is found to be unstable, also in the f>>1 case, while stable in the f<<1. The instability of the DAW also implies a concomitant grain charge growth, which would again be of a coherent nature

  1. Eulerian numbers

    CERN Document Server

    Petersen, T Kyle

    2015-01-01

    This text presents the Eulerian numbers in the context of modern enumerative, algebraic, and geometric combinatorics. The book first studies Eulerian numbers from a purely combinatorial point of view, then embarks on a tour of how these numbers arise in the study of hyperplane arrangements, polytopes, and simplicial complexes. Some topics include a thorough discussion of gamma-nonnegativity and real-rootedness for Eulerian polynomials, as well as the weak order and the shard intersection order of the symmetric group. The book also includes a parallel story of Catalan combinatorics, wherein the Eulerian numbers are replaced with Narayana numbers. Again there is a progression from combinatorics to geometry, including discussion of the associahedron and the lattice of noncrossing partitions. The final chapters discuss how both the Eulerian and Narayana numbers have analogues in any finite Coxeter group, with many of the same enumerative and geometric properties. There are four supplemental chapters throughout, ...

  2. What influences the composition of fungi in wheat grains?

    Directory of Open Access Journals (Sweden)

    Biruta Bankina

    2017-12-01

    Full Text Available Wheat grains are inhabited by different fungi, including plant pathogens and fungi – mycotoxin producers. The composition of seed mycobiota can be influenced by different factors, including agronomic practices, but the results are still contradictory. The aim of this study was to evaluate the mycobiota of wheat grains depending on agroecological conditions. Wheat grains were obtained from a two-factorial field trial: A – tillage system (A1 – ploughing at a depth of 22–24 cm; A2 – harrowing at a depth of up to 10 cm; B – crop rotation (B1 – continuous wheat; B2 – oilseed rape and wheat; B3 – crop rotation. The mycobiota of grain were determined by mycological and molecular methods. The most abundant and widespread of the mycobiota were Pyrenophora tritici-repentis, Alternaria spp., Arthrinium spp., and Fusarium avenaceum. Higher amounts of precipitation increased the infection of grains with Fusarium fungi. Seven species of Fusarium were identified in the grain samples: F. avenaceum, F. poae, F. graminearum, F. culmorum, F. acuminatum, F. sporotrichioides, and F. tricinctum. The soil tillage method and crop rotation did not influence the total incidence of Fusarium spp., but the abundance of a particular species differed depending on agronomic practice. The research suggests that continuous wheat sowing under conditions of reduced soil tillage can increase the level of risk of grain infection with F. graminearum and, consequently, the accumulation of mycotoxins.

  3. Ammonium as sole N source improves grain quality in wheat.

    Science.gov (United States)

    Fuertes-Mendizábal, Teresa; González-Torralba, Jon; Arregui, Luis M; González-Murua, Carmen; González-Moro, M Begoña; Estavillo, José M

    2013-07-01

    The skilful handling of N fertilizer, including N source type and its timing, is necessary to obtain maximum profitability in wheat crops in terms of production and quality. Studies on grain yield and quality with ammonium as sole N source have not yet been conducted. The aim of this study was to evaluate the effect of N source management (nitrate vs. ammonium), and splitting it into two or three amendments during the wheat life cycle, on grain yield and quality under irrigated conditions. This experiment demonstrates that Cezanne wheat plants growing with ammonium as exclusive N source are able to achieve the same yield as plants growing with nitrate and that individual wheat plants grown in irrigated pots can efficiently use late N applied in GS37. Ammonium nutrition increased both types of grain reserve proteins (gliadins and glutenins) and also increased the ratio gli/glu with respect to nitrate nutrition. The splitting of the N rate enhanced the ammonium effect on grain protein composition. The application of ammonium N source, especially when split into three amendments, has an analogous effect on grain protein content and composition to applications at a higher N rate, leading to higher N use efficiency. © 2012 Society of Chemical Industry.

  4. Stochastic theory of grain growth

    International Nuclear Information System (INIS)

    Hu Haiyun; Xing Xiusan.

    1990-11-01

    The purpose of this note is to set up a stochastic theory of grain growth and to derive the statistical distribution function and the average value of the grain radius so as to match them with the experiment further. 8 refs, 1 fig

  5. NUTRITIONAL CHARACTERIZATION OF GRAIN AMARANTH ...

    African Journals Online (AJOL)

    IBUKUN

    children; increased body mass index of people formerly wasted by HIV/AIDS; ... and market acceptability of Amaranth cruentus based products in order to ... Peru, grain amaranth also used the grains as food; preparation of local beverage; added ... initiated to know the proximate composition, mineral and vitamin contents of ...

  6. Stress-driven grain growth

    CSIR Research Space (South Africa)

    Nabarro, FRN

    1998-11-13

    Full Text Available of length b (1+ epsilon) is parallel to sigma, embedded in a grain in which the lattice vector b (1+ epsilon) is transverse to sigma. If the embedded grain grows at the expense of its matrix, the source of the stress will do work, and therefore the presence...

  7. Grain product of 34 soya mutant lines;Rendimiento de grano de 34 lineas mutantes de soya

    Energy Technology Data Exchange (ETDEWEB)

    Salmeron E, J.; Mastache L, A. A.; Valencia E, F.; Diaz V, G. E. [Colegio Superior Agropecuario del Estado de Guerrero, Vicente Guerrero No. 81, Col. Centro, 40000 Iguala, Guerrero (Mexico); Cervantes S, T. [Instituto de Recursos Geneticos y Productividad, Colegio de Posgraduados, Carretera Mexico-Texcoco Km. 36.5, Montecillo, 56230 Texcoco, Estado de Mexico (Mexico); De la Cruz T, E.; Garcia A, J. M.; Falcon B, T.; Gatica T, M. A. [ININ, Departamento de Biologia, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2009-07-01

    This work was development with the objective of obtaining information of the agronomic behavior of 34 soya mutant lines (R{sub 4}M{sub 18}) for human consumption and this way to select the 2 better lines. The genetic materials were obtained starting from the variety ISAAEG-B M2 by means of the application of recurrent radiation with Co{sup 60} gammas, to a dose of 350 Gray for the first two generations and both later to 200 Gray and selection during 17 cycles, being obtained the 34 better lines mutants with agronomic characteristic wanted and good flavor. The obtained results were that the mutant lines L{sub 25} and L{sub 32} produced the major quantity in branches/plant number with 7.5 and 7.25, pods/plant number with 171.25 and 167, grains/plant number with 350.89 and 333.07 and grain product (ton/ha) to 15% of humidity 5.15 and 4.68 ton/ha, respectively. (Author)

  8. Aminoacid composition of wheat grain gluten under microbe impact

    Directory of Open Access Journals (Sweden)

    Sokolova М. G.

    2012-11-01

    Full Text Available The study was focused on characteristics of gluten, protein and aminoacids content in wheat grain under the impact of microbe preparations including bacteria of Azotobacter and Bacillus geni, which inhabit plant rhizosphere. The increase of aminoacids leveland particularly the level of essential aminoacids in wheat grain under bacterization was demonstrated, this fact accounting for the quality of grain as an important protein source. Increase of aminoacids content with the use of biopreparations on low-fertile soil ensures acquisition of biologically valuable grain with the decrease of mineral fertilizers dosage and emphasizes the role of biopreparations in the production of ecologically pure high quality products. The latter is due to introdcution of environmentally safe agricultural methods.

  9. Autonomous grain combine control system

    Science.gov (United States)

    Hoskinson, Reed L.; Kenney, Kevin L.; Lucas, James R.; Prickel, Marvin A.

    2013-06-25

    A system for controlling a grain combine having a rotor/cylinder, a sieve, a fan, a concave, a feeder, a header, an engine, and a control system. The feeder of the grain combine is engaged and the header is lowered. A separator loss target, engine load target, and a sieve loss target are selected. Grain is harvested with the lowered header passing the grain through the engaged feeder. Separator loss, sieve loss, engine load and ground speed of the grain combine are continuously monitored during the harvesting. If the monitored separator loss exceeds the selected separator loss target, the speed of the rotor/cylinder, the concave setting, the engine load target, or a combination thereof is adjusted. If the monitored sieve loss exceeds the selected sieve loss target, the speed of the fan, the size of the sieve openings, or the engine load target is adjusted.

  10. Transfinite Numbers

    Indian Academy of Sciences (India)

    Transfinite Numbers. What is Infinity? S M Srivastava. In a series of revolutionary articles written during the last quarter of the nineteenth century, the great Ger- man mathematician Georg Cantor removed the age-old mistrust of infinity and created an exceptionally beau- tiful and useful theory of transfinite numbers. This is.

  11. Measuring the elastic strain of individual grains in polycrystalline materials

    DEFF Research Database (Denmark)

    AllB, which fits centre-of-mass grain positions, orientations and strain tensors from the experimental far-field 3DXRD data, was developed. The program builds on peaksearch, ImageD11 and GrainSpotter and will eventually be implemented in the Fable GUI. By the use of simulated data the presentation will focus...... a careful calibration of the global parameters relating to the experiment (sample-to-detector distance, tilts of detector and sample and beam centre on detector) must be performed. For this purpose the option of fitting the global parameters simultaneously for any number of indexed grains is included in Fit...

  12. Behavior of 14C-BHC residues in rice grain

    International Nuclear Information System (INIS)

    Lee, S.R.; Kim, Y.H.

    1981-01-01

    γ-(U- 14 C)-BHC was applied to rice plants grown in a pot and its fate in the growth, polishing and oil-extraction processes of the grain was investigated. The 14 C-activity was absorbed and translocated widely in the plant and the recovery of applied 14 C-activity in the straw and grain was about 2.8%, of which 9.4% was found in the brown rice. The % partitioning of 14 C-residues in bran and polished rice was 12:88 and that in oil and oilcake was 37:63. Characterization of 14 C-residues the presence of γ-BHC, pentachlorocyclohexene, trichlorobenzene and hydrophilic metabolites, whose proportions were different in the straw and grain. (Author)

  13. Grain centre mapping - 3DXRD measurements of average grain characteristics

    DEFF Research Database (Denmark)

    Oddershede, Jette; Schmidt, Søren; Lyckegaard, Allan

    2014-01-01

    characteristics of each grain (such as their centre-of-mass positions, volumes, phases, orientations and/or elastic strain tensor components), while the exact locations of the grain boundaries are unknown. In the present chapter a detailed description of the setup and software for both grain centre mapping...... and the closely related boxscan method is given. Both validation experiments and applications for in situ studies of microstructural changes during plastic deformation and crack growth are given. Finally an outlook with special emphasis on coupling the measured results with modelling is given....

  14. Methods of assessing grain-size distribution during grain growth

    DEFF Research Database (Denmark)

    Tweed, Cherry J.; Hansen, Niels; Ralph, Brian

    1985-01-01

    This paper considers methods of obtaining grain-size distributions and ways of describing them. In order to collect statistically useful amounts of data, an automatic image analyzer is used, and the resulting data are subjected to a series of tests that evaluate the differences between two related...... distributions (before and after grain growth). The distributions are measured from two-dimensional sections, and both the data and the corresponding true three-dimensional grain-size distributions (obtained by stereological analysis) are collected. The techniques described here are illustrated by reference...

  15. The Genetic Architecture of Barley Plant Stature

    Science.gov (United States)

    Alqudah, Ahmad M.; Koppolu, Ravi; Wolde, Gizaw M.; Graner, Andreas; Schnurbusch, Thorsten

    2016-01-01

    Plant stature in temperate cereals is predominantly controlled by tillering and plant height as complex agronomic traits, representing important determinants of grain yield. This study was designed to reveal the genetic basis of tillering at five developmental stages and plant height at harvest in 218 worldwide spring barley (Hordeum vulgare L.) accessions under greenhouse conditions. The accessions were structured based on row-type classes [two- vs. six-rowed] and photoperiod response [photoperiod-sensitive (Ppd-H1) vs. reduced photoperiod sensitivity (ppd-H1)]. Phenotypic analyses of both factors revealed profound between group effects on tiller development. To further verify the row-type effect on the studied traits, Six-rowed spike 1 (vrs1) mutants and their two-rowed progenitors were examined for tiller number per plant and plant height. Here, wild-type (Vrs1) plants were significantly taller and had more tillers than mutants suggesting a negative pleiotropic effect of this row-type locus on both traits. Our genome-wide association scans further revealed highly significant associations, thereby establishing a link between the genetic control of row-type, heading time, tillering, and plant height. We further show that associations for tillering and plant height are co-localized with chromosomal segments harboring known plant stature-related phytohormone and sugar-related genes. This work demonstrates the feasibility of the GWAS approach for identifying putative candidate genes for improving plant architecture. PMID:27446200

  16. Chocolate Numbers

    OpenAIRE

    Ji, Caleb; Khovanova, Tanya; Park, Robin; Song, Angela

    2015-01-01

    In this paper, we consider a game played on a rectangular $m \\times n$ gridded chocolate bar. Each move, a player breaks the bar along a grid line. Each move after that consists of taking any piece of chocolate and breaking it again along existing grid lines, until just $mn$ individual squares remain. This paper enumerates the number of ways to break an $m \\times n$ bar, which we call chocolate numbers, and introduces four new sequences related to these numbers. Using various techniques, we p...

  17. Number theory

    CERN Document Server

    Andrews, George E

    1994-01-01

    Although mathematics majors are usually conversant with number theory by the time they have completed a course in abstract algebra, other undergraduates, especially those in education and the liberal arts, often need a more basic introduction to the topic.In this book the author solves the problem of maintaining the interest of students at both levels by offering a combinatorial approach to elementary number theory. In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simpl

  18. Fatigue in tension perpendicular to the grain

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben

    1999-01-01

    Traditinally fatigue resistance is quantified as number of cycles to failure at a given stress level. A previous study by the authors showed that fatigue in compression parallel to the grain is governed partly by duration of load and partly by an effect of loading, i.e. a combination of a creep...... mechanism and a mechanism connected to damage introduce in the loading sequences. The purpose of the present study is to disentangle the effect of duration of load from the effect of load oscillation in fatigue in tension perpendicular to the grain. Fatigue experiments are made on small specimens...... and on dowel type joints with slotted in steel plates. In series of ten, the small specimens are taken to fatigue failure in uniform tension at square wave shaped load cycles at 0.01 Hz and 0.1 Hz. In order to test the predictive validity of the result from the small tension specimens, fatigue experiments...

  19. Fatigue In Tension Perpendicular to the Grain

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Uhre; Hoffmeyer, Preben

    2004-01-01

    Traditionally fatigue resistance is quantified as number of cycles to failure at a given stress level. A previous study by the authors showed that fatigue in compression parallel to the grain is governed partly by duration of load and partly by an effect of loading, i.e. a combination of a creep...... mechanism and a mechanism connected to damage introduced in the loading sequences. The purpose of the present study is to disentangle the effect of duration of load from the effect of load oscillation in fatigue in tension perpendicular to the grain. Fatigue experiments are made on small specimens...... and on dowel type joints with slotted in steel plates. In series of ten, the small specimens are taken to fatigue failure in uniform tension at square wave shaped load cycles at 0.01 Hz and 0.1 Hz. In arder to test the predictive validity of the result from the small tension specimens, fatigue experiments...

  20. Prevalence of IgE antibodies to grain and grain dust in grain elevator workers

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, D.M.; Romeo, P.A.; Olenchock, S.A.

    1986-04-01

    IgE-mediated allergic reactions have been postulated to contribute to respiratory reactions seen in workers exposed to grain dusts. In an attempt better to define the prevalence of IgE antibodies in workers exposed to grain dusts, we performed the radioallergosorbent test (RAST) on worker sera using both commercial allergens prepared from grain and worksite allergens prepared from grain dust samples collected at the worksite. We found that the two types of reagents identified different populations with respect to the specificity of IgE antibodies present. The RAST assay performed using worksite allergens correlated well with skin test procedures. These results may allow us to gain better understanding of allergy associated with grain dust exposure, and document the utility of the RAST assay in assessment of occupational allergies.

  1. Prevalence of IgE antibodies to grain and grain dust in grain elevator workers.

    Science.gov (United States)

    Lewis, D M; Romeo, P A; Olenchock, S A

    1986-01-01

    IgE-mediated allergic reactions have been postulated to contribute to respiratory reactions seen in workers exposed to grain dusts. In an attempt better to define the prevalence of IgE antibodies in workers exposed to grain dusts, we performed the radioallergosorbent test (RAST) on worker sera using both commercial allergens prepared from grain and worksite allergens prepared from grain dust samples collected at the worksite. We found that the two types of reagents identified different populations with respect to the specificity of IgE antibodies present. The RAST assay performed using worksite allergens correlated well with skin test procedures. These results may allow us to gain better understanding of allergy associated with grain dust exposure, and document the utility of the RAST assay in assessment of occupational allergies. PMID:3709478

  2. Prevalence of IgE antibodies to grain and grain dust in grain elevator workers

    International Nuclear Information System (INIS)

    Lewis, D.M.; Romeo, P.A.; Olenchock, S.A.

    1986-01-01

    IgE-mediated allergic reactions have been postulated to contribute to respiratory reactions seen in workers exposed to grain dusts. In an attempt better to define the prevalence of IgE antibodies in workers exposed to grain dusts, we performed the radioallergosorbent test (RAST) on worker sera using both commercial allergens prepared from grain and worksite allergens prepared from grain dust samples collected at the worksite. We found that the two types of reagents identified different populations with respect to the specificity of IgE antibodies present. The RAST assay performed using worksite allergens correlated well with skin test procedures. These results may allow us to gain better understanding of allergy associated with grain dust exposure, and document the utility of the RAST assay in assessment of occupational allergies

  3. Effect of grain boundary structures on the behavior of He defects in Ni: An atomistic study

    Institute of Scientific and Technical Information of China (English)

    H F Gong; Y Yan; X S Zhang; W Lv; T Liu; Q S Ren

    2017-01-01

    We investigated the effect of grain boundary structures on the trapping strength of HeN (N is the number of helium atoms) defects in the grain boundaries of nickel.The results suggest that the binding energy of an interstitial helium atom to the grain boundary plane is the strongest among all sites around the plane.The HeN defect is much more stable in nickel bulk than in the grain boundary plane.Besides,the binding energy of an interstitial helium atom to a vacancy is stronger than that to a grain boundary plane.The binding strength between the grain boundary and the HeN defect increases with the defect size.Moreover,the binding strength of the HeN defect to the Σ3 (1 12)[110] grain boundary becomes much weaker than that to other grain boundaries as the defect size increases.

  4. Spatial and temporal aspects of grain accumulation costs for ethanol production: An Australian case study

    International Nuclear Information System (INIS)

    Anderton, Nikki; Kingwell, Ross

    2008-01-01

    Ethanol production is increasingly commonplace in many grain-producing regions. This paper uses the grain-producing region of south-western Australia to illustrate spatial and temporal aspects of grain accumulation costs for ethanol production. Specifically, this study examines how price variability of various wheat grades, combined with spatial and temporal variability in production of those grades, affects the costs of grain accumulation. These costs are the main components of an ethanol plant's operating costs so lessening these costs can offer a comparative advantage for a plant owner. Logistics models based on mathematical programming are constructed for a range of plant sizes and locations for ethanol production. Modelling results identify low-cost sites that generate cost savings, in present value terms, of between 5 and 7.5 per cent, depending on plant size, over the 9-year study period. At all locations, small to medium-sized plants offer advantages of lower and less variable costs of grain accumulation. Yet, all locations and all plant sizes are characterised by marked volatility in the cost of grain accumulation. The profitability of ethanol production based on wheat in this region of Australia is particularly exposed to any prolonged period of high grain prices relative to petroleum prices, given current biofuel-policy settings in Australia. (author)

  5. PRESENCE OF CITRININ IN GRAINS AND ITS POSSIBLE HEALTH EFFECTS.

    Science.gov (United States)

    Čulig, Borna; Bevardi, Martina; Bošnir, Jasna; Serdar, Sonja; Lasić, Dario; Racz, Aleksandar; Galić, Antonija; Kuharić, Željka

    2017-01-01

    Citrinin is a mycotoxin produced by several species of the genera Aspergillus , Penicillium and Monascus and it occurs mainly in stored grain. Citrinin is generally formed after harvest and occurs mainly in stored grains, it also occurs in other plant products. Often, the co-occurrence with other mycotoxins is observed, especially ochratoxin A, which is usually associated with endemic nephropathy. At the European Union level, systematic monitoring of Citrinin in grains began with the aim of determining its highest permissible amount in food. Thus, far the systematic monitoring of the above mentioned mycotoxin in Croatia is yet to begin. The main goal of this study was to determine the presence of Citrinin in grains sampled in the area of Međimurje, Osijek-Baranja, Vukovar-Srijem and Brod-Posavina County. For the purpose of identification and quantification of citrinin, high performance liquid chromatograph (HPLC) with fluorescence was used (Calibration curve k > 0.999; Intra assay CV = 2.1%; Inter assay CV = 4.3%; LOQ possibly indicating a significant intake of citrinin in humans. It must be stated that grains and grain-based products are the basis of everyday diet of all age groups, especially small children, where higher intake of citrinin can occur. Consequently, we emphasize the need for systematic analysis of larger amount of samples, from both large grains and small grains, especially in the area of Brod-Posavina County, in order to obtain more realistic notion of citrinin contamination of grains and to asses the health risk in humans.

  6. Low-frequency electromagnetic iirradiation treatment of grain in harvester

    Directory of Open Access Journals (Sweden)

    E. V. Zhalnin

    2016-01-01

    Full Text Available Treatment of crop seeds by low-frequency electromagnetic field contributes to obtaining high and stable yields. After this treatment in a laboratory environment crop production can increase from 15 to 40 percent. To research an effect of magnetic field on a seed material in the field we developed technological design for a seeds treatment in a combine harvester «Enisey-1200 NМ». Three modules of low frequency electromagnetic waves source were mounted in the design of transporting working elements from the threshing apparatus to the grain tank for the impact they have on the moving of freshly threshed grain portion. Conditions of magnetization of seeds vere varied. Influence of modes of grain treatment at threshing of spring wheat in a harvester on the effectiveness of the stimulation vere researched. A comparative laboratory analysis of quality of grain, magnetic directly in the harvester, and 3 months after thrashing showed that the new technology allows to increase sowing qualities of grain. Electromagnetic irradiation of grain in a harvester increases the germination of seeds from 6 to 20 percent, germination energy about 30 percent, also raises the weight of the plant parts and more qualitatively clears seeds of a peel that promotes best storage. Regime of magnetization determines a germination ability and readiness og seeds. The most pronounced effect of the grain magnetization is observed under irradiation becomes apparent for more than 9 minutes. Irradiation of grain placed in the hopper of the combine is more effective. The optimum parameters of electromagnetic radiation is a frequency equaled to 16 Hz, the value of magnetic induction of 6 mT. We proposed to extend the technology field stimulation of seeds with low-frequency magnetic field in order to increase germination and yield of different crops. An application of the proposed design of the electromagnetic module for any model and size of modern types of grain and rice harvesters

  7. Combining ability for maize grain yield and other agronomic ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... the parameters except plant height, while specific combining ability (sca) and gca x year effects were significant only for grain yield. However, Tze Comp4 ... and days to flowering, with Hei 97 Tze Comp3 C4 combining very well with 3 parents (Acr 90 Pool 16-Dt,. Tze Comp4-Dmr Srbc2 and Tze Comp4 C2).

  8. Heritability of Drought Adaptive Traits and Relationships with Grain ...

    African Journals Online (AJOL)

    Relationships with Grain Yield in Maize Grown under. High Plant ... components and flowering traits observed across all growing conditions in the same ... serious yield instability at farm level (Bolaños and Edmeades, 1996). For this .... factors. Analysis of variance (Table 1) for each trait in each environment was carried.

  9. MATHEMATICAL MODEL OF GRAIN MICRONIZATION

    Directory of Open Access Journals (Sweden)

    V. A. Afanas’ev

    2014-01-01

    Full Text Available Summary. During micronisation grain moisture evaporates mainly in decreasing drying rate period. Grain layer located on the surface of the conveyor micronisers will be regarded as horizontal plate. Due to the fact that the micronisation process the surface of the grain evaporates little moisture (within 2-7 % is assumed constant plate thickness. Because in the process of micronization grain structure is changing, in order to achieve an exact solution of the equations necessary to take into account changes thermophysical, optical and others. Equation of heat transfer is necessary to add a term that is responsible for the infrared heating. Because of the small thickness of the grain, neglecting the processes occurring at the edge of the grain, that is actually consider the problem of an infinite plate. To check the adequacy of the mathematical model of the process of micronisation of wheat grain moisture content must be comparable to the function of time, obtained by solving the system of equations with the measured experimental data of experience. Numerical solution of a system of equations for the period of decreasing drying rate is feasible with the help of the Maple 14, substituting the values of the constants in the system. Calculation of the average relative error does not exceed 7- 10 %, and shows a good agreement between the calculated data and the experimental values.

  10. Nice numbers

    CERN Document Server

    Barnes, John

    2016-01-01

    In this intriguing book, John Barnes takes us on a journey through aspects of numbers much as he took us on a geometrical journey in Gems of Geometry. Similarly originating from a series of lectures for adult students at Reading and Oxford University, this book touches a variety of amusing and fascinating topics regarding numbers and their uses both ancient and modern. The author intrigues and challenges his audience with both fundamental number topics such as prime numbers and cryptography, and themes of daily needs and pleasures such as counting one's assets, keeping track of time, and enjoying music. Puzzles and exercises at the end of each lecture offer additional inspiration, and numerous illustrations accompany the reader. Furthermore, a number of appendices provides in-depth insights into diverse topics such as Pascal’s triangle, the Rubik cube, Mersenne’s curious keyboards, and many others. A theme running through is the thought of what is our favourite number. Written in an engaging and witty sty...

  11. Iron and zinc complexation in wild-type and ferritin-expressing wheat grain: implications for mineral transport into developing grain

    DEFF Research Database (Denmark)

    Neal, Andrew L; Geraki, Kalotina; Borg, Søren

    2013-01-01

    of modified complexation of both metals in transgenic grain overexpressing wheat ferritin. For zinc, there is a consistent doubling of the number of complexing phosphorus atoms. Although there is some EXAFS evidence for iron phytate in ferritin-expressing grain, there is also evidence of a structure lacking......We have used synchrotron-based X-ray fluorescence and absorption techniques to establish both metal distribution and complexation in mature wheat grains. In planta, extended X-ray absorption fine structure (EXAFS) spectroscopy reveals iron phytate and zinc phytate structures in aleurone cells...... of ferritin-expressing grains is quite different from that in wild-type grain. This may explain why the raised levels of minerals transported to the developing grain accumulate within the crease region of the transgenic grain....

  12. Integrated crop management practices for maximizing grain yield of double-season rice crop

    Science.gov (United States)

    Wang, Depeng; Huang, Jianliang; Nie, Lixiao; Wang, Fei; Ling, Xiaoxia; Cui, Kehui; Li, Yong; Peng, Shaobing

    2017-01-01

    Information on maximum grain yield and its attributes are limited for double-season rice crop grown under the subtropical environment. This study was conducted to examine key characteristics associated with high yielding double-season rice crop through a comparison between an integrated crop management (ICM) and farmers’ practice (FP). Field experiments were conducted in the early and late seasons in the subtropical environment of Wuxue County, Hubei Province, China in 2013 and 2014. On average, grain yield in ICM was 13.5% higher than that in FP. A maximum grain yield of 9.40 and 10.53 t ha-1 was achieved under ICM in the early- and late-season rice, respectively. Yield improvement of double-season rice with ICM was achieved with the combined effects of increased plant density and optimized nutrient management. Yield gain of ICM resulted from a combination of increases in sink size due to more panicle number per unit area and biomass production, further supported by the increased leaf area index, leaf area duration, radiation use efficiency, crop growth rate, and total nitrogen uptake compared with FP. Further enhancement in the yield potential of double-season rice should focus on increasing crop growth rate and biomass production through improved and integrated crop management practices.

  13. PESTICIDES USE AMONG GRAIN MERCHANTS IN MUBI GRAIN ...

    African Journals Online (AJOL)

    AGROSEARCH UIL

    pose the greatest threat to increased food production, storage and handling ... are to: assess pest control practices of grain merchants in Mubi markets with a .... This further cements the fact that multiple routes of contaminations are possible.

  14. Why Is It Important to Eat Grains, Especially Whole Grains?

    Science.gov (United States)

    ... Style What Is a Healthy Eating Style? Choosing Foods and Beverages Saturated, Unsaturated, and Trans Fats Sodium Added Sugars ... may reduce the risk of heart disease. Consuming foods containing fiber, ... weight management. Eating grain products fortified with folate before and ...

  15. Plant-specific histone deacetylases HDT1/2 regulate GIBBERELLIN 2-OXIDASE2 expression to control arabidopsis root meristem cell number

    NARCIS (Netherlands)

    Li, Huchen; Torres-Garcia, Jesus; Latrasse, David; Benhamed, Moussa; Schilderink, Stefan; Zhou, Wenkun; Kulikova, Olga; Hirt, Heribert; Bisseling, Ton

    2017-01-01

    Root growth is modulated by environmental factors and depends on cell production in the root meristem (RM). New cells in the meristem are generated by stem cells and transit-amplifying cells, which together determine RM cell number. Transcription factors and chromatin-remodeling factors have been

  16. Chemisputtering of interstellar graphite grains

    International Nuclear Information System (INIS)

    Draine, B.T.

    1979-01-01

    The rate of erosion of interstellar graphite grains as a result of chemical reaction with H, N, and O is estimated using the available experiment evidence. It is argued that ''chemical sputtering'' yields for interstellar graphite grains will be much less than unity, contrary to earlier estimates by Barlow and Silk. Chemical sputtering of graphite grains in evolving H II regions is found to be unimportant, except in extremely compact (n/sub H/> or approx. =10 5 cm -3 ) H II regions. Alternative explanations are considered for the apparent weakness of the lambda=2175 A extinction ''bump'' in the direction of several early type stars

  17. ALARA notes, Number 8

    International Nuclear Information System (INIS)

    Khan, T.A.; Baum, J.W.; Beckman, M.C.

    1993-10-01

    This document contains information dealing with the lessons learned from the experience of nuclear plants. In this issue the authors tried to avoid the 'tyranny' of numbers and concentrated on the main lessons learned. Topics include: filtration devices for air pollution abatement, crack repair and inspection, and remote handling equipment

  18. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species

    International Nuclear Information System (INIS)

    Norton, Gareth J.; Adomako, Eureka E.; Deacon, Claire M.; Carey, Anne-Marie; Price, Adam H.; Meharg, Andrew A.

    2013-01-01

    Arsenic accumulation in rice grain has been identified as a major problem in some regions of Asia. A study was conducted to investigate the effect of increased organic matter in the soil on the release of arsenic into soil pore water and accumulation of arsenic species within rice grain. It was observed that high concentrations of soil arsenic and organic matter caused a reduction in plant growth and delayed flowering time. Total grain arsenic accumulation was higher in the plants grown in high soil arsenic in combination with high organic matter, with an increase in the percentage of organic arsenic species observed. The results indicate that the application of organic matter should be done with caution in paddy soils which have high soil arsenic, as this may lead to an increase in accumulation of arsenic within rice grains. Results also confirm that flooding conditions substantially increase grain arsenic. -- Highlights: ► High soil arsenic and organic matter caused a reduction in plant growth. ► A delayed flowering time was observed in high arsenic and organic matter soil. ► Total grain arsenic increased in high arsenic and organic matter soil. ► Percentage organic arsenic in the grain altered in arsenic and organic matter soil. -- The addition of high amounts of organic matter to soils led to an increase in total rice grain arsenic, as well as alteration in the percentage arsenic species in the rice grains

  19. Effect of increased plant density and fertilizer dose on the yield of rice variety IR-6

    International Nuclear Information System (INIS)

    Amin, M.; Khan, M.A.; Khan, E.A.; Ramazan, M.

    2004-01-01

    An experiment to evaluate the effect of increased plant density and fertilizer dose on yield of rice variety IR-6 was conducted at the farm of Faculty of Agriculture, Gomal University Dera Ismail Khan. Increase plant density significantly increase number of panicles per square meter, sterility and straw yield while increased fertilizer dose of NPK increase plant height, sterility, normal kernels, and 1000 grain weight. Interaction of increased plant density and fertilizer dose was found to be non significant except sterility percentage and straw yield. However efforts are required for increasing yield per unit area of rice. (author)

  20. Grain, milling, and head rice yields as affected by nitrogen rate and bio-fertilizer application

    Directory of Open Access Journals (Sweden)

    Saeed FIROUZI

    2015-11-01

    Full Text Available To evaluate the effects of nitrogen rate and bio-fertilizer application on grain, milling, and head rice yields, a field experiment was conducted at Rice Research Station of Tonekabon, Iran, in 2013. The experimental design was a factorial treatment arrangement in a randomized complete block with three replicates. Factors were three N rates (0, 75, and 150 kg ha-1 and two bio-fertilizer applications (inoculation and uninoculation with Nitroxin, a liquid bio-fertilizer containing Azospirillum spp. and Azotobacter spp. bacteria. Analysis of variance showed that rice grain yield, panicle number per m2, grain number per panicle, flag leaves area, biological yield, grains N concentration and uptake, grain protein concentration, and head rice yield were significantly affected by N rate, while bio-fertilizer application had significant effect on rice grain yield, grain number per panicle, flag leaves area, biological yield, harvest index, grains N concentration and uptake, and grain protein concentration. Results showed that regardless of bio-fertilizer application, rice grain and biological yields were significantly increased as N application rate increased from 0 to 75 kg ha-1, but did not significantly increase at the higher N rate (150 kg ha-1. Grain yield was significantly increased following bio-fertilizer application when averaged across N rates. Grains N concentration and uptake were significantly increased as N rate increased up to 75 kg ha-1, but further increases in N rate had no significant effect on these traits. Bio-fertilizer application increased significantly grains N concentration and uptake, when averaged across N rates. Regardless of bio-fertilizer application, head rice yield was significantly increased from 56 % to 60 % when N rate increased from 0 to 150 kg ha-1. Therefore, this experiment illustrated that rice grain and head yields increased with increasing N rate, while bio-fertilizer application increased only rice grain

  1. Number names and number understanding

    DEFF Research Database (Denmark)

    Ejersbo, Lisser Rye; Misfeldt, Morten

    2014-01-01

    This paper concerns the results from the first year of a three-year research project involving the relationship between Danish number names and their corresponding digits in the canonical base 10 system. The project aims to develop a system to help the students’ understanding of the base 10 syste...... the Danish number names are more complicated than in other languages. Keywords: A research project in grade 0 and 1th in a Danish school, Base-10 system, two-digit number names, semiotic, cognitive perspectives....

  2. The valuation of commercial grain silos

    African Journals Online (AJOL)

    The valuation of grain silos is a complex exercise when one considers all the variables that affect their ... their grains, larger grain-processing companies, traders, importers or exporters that have ..... 2015: personal interview). The percentages ...

  3. Funny Numbers

    Directory of Open Access Journals (Sweden)

    Theodore M. Porter

    2012-12-01

    Full Text Available The struggle over cure rate measures in nineteenth-century asylums provides an exemplary instance of how, when used for official assessments of institutions, these numbers become sites of contestation. The evasion of goals and corruption of measures tends to make these numbers “funny” in the sense of becoming dis-honest, while the mismatch between boring, technical appearances and cunning backstage manipulations supplies dark humor. The dangers are evident in recent efforts to decentralize the functions of governments and corporations using incen-tives based on quantified targets.

  4. Transcendental numbers

    CERN Document Server

    Murty, M Ram

    2014-01-01

    This book provides an introduction to the topic of transcendental numbers for upper-level undergraduate and graduate students. The text is constructed to support a full course on the subject, including descriptions of both relevant theorems and their applications. While the first part of the book focuses on introducing key concepts, the second part presents more complex material, including applications of Baker’s theorem, Schanuel’s conjecture, and Schneider’s theorem. These later chapters may be of interest to researchers interested in examining the relationship between transcendence and L-functions. Readers of this text should possess basic knowledge of complex analysis and elementary algebraic number theory.

  5. Development of new multilocus variable number of tandem repeat analysis (MLVA) for Listeria innocua and its application in a food processing plant.

    Science.gov (United States)

    Takahashi, Hajime; Ohshima, Chihiro; Nakagawa, Miku; Thanatsang, Krittaporn; Phraephaisarn, Chirapiphat; Chaturongkasumrit, Yuphakhun; Keeratipibul, Suwimon; Kuda, Takashi; Kimura, Bon

    2014-01-01

    Listeria innocua is an important hygiene indicator bacterium in food industries because it behaves similar to Listeria monocytogenes, which is pathogenic to humans. PFGE is often used to characterize bacterial strains and to track contamination source. However, because PFGE is an expensive, complicated, time-consuming protocol, and poses difficulty in data sharing, development of a new typing method is necessary. MLVA is a technique that identifies bacterial strains on the basis of the number of tandem repeats present in the genome varies depending on the strains. MLVA has gained attention due to its high reproducibility and ease of data sharing. In this study, we developed a MLVA protocol to assess L. innocua and evaluated it by tracking the contamination source of L. innocua in an actual food manufacturing factory by typing the bacterial strains isolated from the factory. Three VNTR regions of the L. innocua genome were chosen for use in the MLVA. The number of repeat units in each VNTR region was calculated based on the results of PCR product analysis using capillary electrophoresis (CE). The calculated number of repetitions was compared with the results of the gene sequence analysis to demonstrate the accuracy of the CE repeat number analysis. The developed technique was evaluated using 60 L. innocua strains isolated from a food factory. These 60 strains were classified into 11 patterns using MLVA. Many of the strains were classified into ST-6, revealing that this MLVA strain type can contaminate each manufacturing process in the factory. The MLVA protocol developed in this study for L. innocua allowed rapid and easy analysis through the use of CE. This technique was found to be very useful in hygiene control in factories because it allowed us to track contamination sources and provided information regarding whether the bacteria were present in the factories.

  6. Development of new multilocus variable number of tandem repeat analysis (MLVA for Listeria innocua and its application in a food processing plant.

    Directory of Open Access Journals (Sweden)

    Hajime Takahashi

    Full Text Available Listeria innocua is an important hygiene indicator bacterium in food industries because it behaves similar to Listeria monocytogenes, which is pathogenic to humans. PFGE is often used to characterize bacterial strains and to track contamination source. However, because PFGE is an expensive, complicated, time-consuming protocol, and poses difficulty in data sharing, development of a new typing method is necessary. MLVA is a technique that identifies bacterial strains on the basis of the number of tandem repeats present in the genome varies depending on the strains. MLVA has gained attention due to its high reproducibility and ease of data sharing. In this study, we developed a MLVA protocol to assess L. innocua and evaluated it by tracking the contamination source of L. innocua in an actual food manufacturing factory by typing the bacterial strains isolated from the factory. Three VNTR regions of the L. innocua genome were chosen for use in the MLVA. The number of repeat units in each VNTR region was calculated based on the results of PCR product analysis using capillary electrophoresis (CE. The calculated number of repetitions was compared with the results of the gene sequence analysis to demonstrate the accuracy of the CE repeat number analysis. The developed technique was evaluated using 60 L. innocua strains isolated from a food factory. These 60 strains were classified into 11 patterns using MLVA. Many of the strains were classified into ST-6, revealing that this MLVA strain type can contaminate each manufacturing process in the factory. The MLVA protocol developed in this study for L. innocua allowed rapid and easy analysis through the use of CE. This technique was found to be very useful in hygiene control in factories because it allowed us to track contamination sources and provided information regarding whether the bacteria were present in the factories.

  7. Advanced technologies available for future solid propellant grains

    Energy Technology Data Exchange (ETDEWEB)

    Thepenier, J. [SNPE Propulsion, St Medard en Jalles (France); Fonblanc, G. [SNPE Propulsion, Vert le Petit (France). Centre de Recherche de Bouchet

    2001-06-01

    Significant advances have been made during the last decade in several fields of solid propulsion: the advances have enabled new savings in the motor development phase and in recurring costs, because they help limit the number of prototypes and tests. The purpose of the paper is to describe the improvements achieved by SNPE in solid grain technologies, making these technologies available for new developments in more efficient and reliable future SRMs: new energetic molecules, new solid propellants, new processes for grain manufacturing, quick response grain design tools associated with advanced models for grain performance predictions. Using its expertise in chemical synthesis, SNPE develops new molecules to fit new energetic material requirements. Tests based on new propellant formulations have produced good results in the propellant performance/safety behavior ratio. New processes have been developed simultaneously to reduce the manufacturing costs of the new propellants. In addition, the grain design has been optimized by using the latest generation of predictive theoretical tools supported by a large data bank of experimental parameters resulting from over 30 years' experience in solid propulsion: computer-aided method for the preliminary grain design; advanced models for SRM operating and performance predictions. All these technologies are available for industrial applications in future developments of solid propellant grains. (author)

  8. Effect of integrated plant nutrition and irrigation scheduling on yield and yield components of maize (zea mays l.)

    International Nuclear Information System (INIS)

    Randhawa, M.S.; Maqsood, M.; Wajid, S.A.; Haq, A.U.

    2012-01-01

    Effect of three irrigation schedules (4-6 irrigations) and seven integrated plant nutrition levels (control, 125-60-62 kg N-P/sub 2/O/sub 5/-K/sub 2/O ha/sup -1/, 125-60-62 kg N-P/sub 2/O/sub 5/--K/sub 2/O ha/sup -1/ + Farmyard manure at the rate 10 t ha/sup -1/, 125-60-62 kg N-P/sub 2/O/sub 5/-K/sub 2/O ha/sup -1/ + Farm yard manure at the rate 15 t ha-1, 250-120-125 kg N-P/sub 2/O/sub 5/--K/sub 2/O ha-1, 250-120-125 kg N-P/sub 2/O/sub 5/ -K/sub 2/O ha/sup -1/ + Farmyard manure at the rate 10 t ha-1 and 250-120-125 kg N-P/sub 2/O/sub 5/--K/sub 2/O ha/sup -1/ + Farmyard manure at the rate 15 t ha/sup -1/) on grain yield and its components in maize were studied during 2009 and 2010. Plant height, number of cobs plant-1, number of grain rows cob-1, number of grains cob-1, 1000-grain weight, grain weight cob-1, grain yield, stover yield and biological yield were significantly affected by irrigation schedules and integrated plant nutrition levels during both years. The crop applied with six irrigations and fertilized by integrated application of chemical fertilizers (250-120-125 kg N-P/sub 2/O/sub 5/--K/sub 2/O ha/sup -1/) and farmyard manure (15 t ha/sup -1/) produced the highest grain yield of 8.47 t ha/sup -1/ and 8.22 t ha/sup -1/ during 2009 and 2010, respectively. (author)

  9. Transfinite Numbers

    Indian Academy of Sciences (India)

    this is a characteristic difference between finite and infinite sets and created an immensely useful branch of mathematics based on this idea which had a great impact on the whole of mathe- matics. For example, the question of what is a number (finite or infinite) is almost a philosophical one. However Cantor's work turned it ...

  10. Nano grained AZ31 alloy achieved by equal channel angular rolling process

    International Nuclear Information System (INIS)

    Hassani, F.Z.; Ketabchi, M.

    2011-01-01

    Equal channel angular rolling (ECAR) is a severe plastic deformation process which is carried out on large, thin sheets. The grain size could be significantly decreased by this process. The main purpose of this study is to investigate the possibility of grain refinement of AZ31 magnesium alloy sheet by this process to nanometer. The effect of the number of ECAR passes on texture evolution of AZ31 magnesium alloy was investigated. ECAR temperature was controlled to maximize the grain refinement efficiency along with preventing cracking. The initial microstructure of as-received AZ31 sheet showed an average grain size of about 21 μm. The amount of grain refinement increased with increasing the pass number. After 10 passes of the process, significant grain refinement occurred and the field emission scanning electron microscopic (FESEM) micrographs showed that the size of grains were decreased significantly to about 14-70 nm. These grains were formed at the grain boundaries and inside some of the previous larger micrometer grains. Observation of optical microstructures and X-ray diffraction patterns (XRD) showed the formation of twins after ECAR process. Micro-hardness of material was studied at room temperature. There was a continuous enhancement of hardness by increasing the pass number of ECAR process. At the 8th pass, hardness values increased by 53%. At final passes hardness reduced slightly, which was attributed to saturation of strain in high number of passes.

  11. Spring Small Grains Area Estimation

    Science.gov (United States)

    Palmer, W. F.; Mohler, R. J.

    1986-01-01

    SSG3 automatically estimates acreage of spring small grains from Landsat data. Report describes development and testing of a computerized technique for using Landsat multispectral scanner (MSS) data to estimate acreage of spring small grains (wheat, barley, and oats). Application of technique to analysis of four years of data from United States and Canada yielded estimates of accuracy comparable to those obtained through procedures that rely on trained analysis.

  12. Interstellar Grains: 50 Years On

    OpenAIRE

    Wickramasinghe, N. Chandra

    2011-01-01

    Our understanding of the nature of interstellar grains has evolved considerably over the past half century with the present author and Fred Hoyle being intimately involved at several key stages of progress. The currently fashionable graphite-silicate-organic grain model has all its essential aspects unequivocally traceable to original peer-reviewed publications by the author and/or Fred Hoyle. The prevailing reluctance to accept these clear-cut priorities may be linked to our further work tha...

  13. Grain boundary structure and properties

    International Nuclear Information System (INIS)

    Balluffi, R.W.

    1979-05-01

    An attempt is made to distinguish those fundamental aspects of grain boundaries which should be relevant to the problem of the time dependent fracture of high temperature structural materials. These include the basic phenomena which are thought to be associated with cavitation and cracking at grain boundaries during service and with the more general microstructural changes which occur during both processing and service. A very brief discussion of the current state of knowledge of these fundamentals is given

  14. Path Analysis of Grain Yield and Yield Components and Some Agronomic Traits in Bread Wheat

    Directory of Open Access Journals (Sweden)

    Mohsen Janmohammadi

    2014-01-01

    Full Text Available Development of new bread wheat cultivars needs efficient tools to monitor trait association in a breeding program. This investigation was aimed to characterize grain yield components and some agronomic traits related to bread wheat grain yield. The efficiency of a breeding program depends mainly on the direction of the correlation between different traits and the relative importance of each component involved in contributing to grain yield. Correlation and path analysis were carried out in 56 bread wheat genotypes grown under field conditions of Maragheh, Iran. Observations were recorded on 18 wheat traits and correlation coefficient analysis revealed grain yield was positively correlated with stem diameter, spike length, floret number, spikelet number, grain diameter, grain length and 1000 seed weight traits. According to the variance inflation factor (VIF and tolerance as multicollinearity statistics, there are inconsistent relationships among the variables and all traits could be considered as first-order variables (Model I with grain yield as the response variable due to low multicollinearity of all measured traits. In the path coefficient analysis, grain yield represented the dependent variable and the spikelet number and 1000 seed weight traits were the independent ones. Our results indicated that the number of spikelets per spikes and leaf width and 1000 seed weight traits followed by the grain length, grain diameter and grain number per spike were the traits related to higher grain yield. The above mentioned traits along with their indirect causal factors should be considered simultaneously as an effective selection criteria evolving high yielding genotype because of their direct positive contribution to grain yield.

  15. Effects of planting pattern and density on growth indices, yield and yield component of corn (Zea mays in competition with redroot pigweed (Amaranthus retrofelexus(

    Directory of Open Access Journals (Sweden)

    alireza barkhi

    2009-06-01

    Full Text Available An experiment was conducted in 2002-2003 using split-split plot arrangement based on Rondomised Compelete Block Design with three replications at Feiz Abad Agricultural Research Station of Qazvin, in order to study of planting patterns and corn densitis effect in competition with redroot pigweed. Main plots inclouded two planting pattern of corn (P1: single row and P2: double row, sub plots inclouded two corn densities (D1:7 and D2:10 plant/m2 and sub sub plots inclouded 4 weed densities (C1:0, C2:2, C3:6, C4:12 plant/m2. Sampling conducted in 2-weekly intervals and growth indices evaluated. Results indicated that with increasing of weed density CGR, TDW, LAI, number of seeds in row, grain and ear yield decreased but plant height increased. Also LAI, CGR, TDW, number of weed seed and seed,s weight of weed increased. By increasing in corn density LAI, CGR, TDW, ear and grain yield increased, but length and diameter of ear and number of seeds in row decreased. Also LAI and CGR of weed increased, but TDW was decreased. In double row planting pattern just CGR, LAI, TDW of corn were higher significantly than single row planting pattern. But single row planting of weed caused higher LAI, NAR, RGR, CGR and TDW of weed in comparison with double row planting pattern. In 2-way interaction, double row planting pattern and zero densities and 2 weeds/m2 had highest grain yield respectively. There were no significant differences for 3-way interactions but double row planting pattern 10 plant density of corn/m2 zero weed/ m2 had highest grain yield.

  16. Demonstration of natural gas reburn for NO{sub x} emissions reduction at Ohio Edison Company`s cyclone-fired Niles Plant Unit Number 1

    Energy Technology Data Exchange (ETDEWEB)

    Borio, R.W.; Lewis, R.D.; Koucky, R.W. [ABB Power Plant Labs., Windsor, CT (United States); Lookman, A.A. [Energy Systems Associates, Pittsburgh, PA (United States); Manos, M.G.; Corfman, D.W.; Waddingham, A.L. [Ohio Edison, Akron, OH (United States); Johnson, S.A. [Quinapoxet Engineering Solutions, Inc., Windham, NH (United States)

    1996-04-01

    Electric utility power plants account for about one-third of the NO{sub x} and two-thirds of the SO{sub 2} emissions in the US cyclone-fired boilers, while representing about 9% of the US coal-fired generating capacity, emit about 14% of the NO{sub x} produced by coal-fired utility boilers. Given this background, the Environmental Protection Agency, the Gas Research Institute, the Electric Power Research Institute, the Pittsburgh Energy Technology Center, and the Ohio Coal Development Office sponsored a program led by ABB Combustion Engineering, Inc. (ABB-CE) to demonstrate reburning on a cyclone-fired boiler. Ohio Edison provided Unit No. 1 at their Niles Station for the reburn demonstration along with financial assistance. The Niles Unit No. 1 reburn system was started up in September 1990. This reburn program was the first full-scale reburn system demonstration in the US. This report describes work performed during the program. The work included a review of reburn technology, aerodynamic flow model testing of reburn system design concepts, design and construction of the reburn system, parametric performance testing, long-term load dispatch testing, and boiler tube wall thickness monitoring. The report also contains a description of the Niles No. 1 host unit, a discussion of conclusions and recommendations derived from the program, tabulation of data from parametric and long-term tests, and appendices which contain additional tabulated test results.

  17. Safety Evaluation Report related to the operation of Watts Bar Nuclear Plant, Units 1 and 2 (Docket Numbers 50-390 and 50-391)

    International Nuclear Information System (INIS)

    1994-04-01

    This report supplements the Safety Evaluation Report (SER), NUREG-0847 (June 1982), Supplement No. 1 (September 1982), Supplement No. 2 (January 1984), Supplement No. 3 (January 1985), Supplement No. 4 (March 1985), Supplement No. 5 (November 1990), Supplement No. 6 (April 1991), Supplement No. 7 (September 1991), Supplement No. 8 (January 1992), Supplement No. 9 (June 1992), Supplement No. 10 (October 1992), Supplement No. 11 (April 1993), and Supplement No. 12 (October 1993), issued by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by the Tennessee Valley Authority, as applicant and owner, for licenses to operate the Watts Bar Nuclear Plant, Units 1 and 2 (Docket Nos. 50-390 and 50-391). The facility is located in Rhea County, Tennessee, near the Watts Bar Dam on the Tennessee River. This supplement provides recent information regarding resolution of some of the outstanding and confirmatory items, and proposed license conditions identified in the SER. These issues relate to: Design criteria -- structures, components, equipment, and systems; Reactor; Instrumentation and controls; Electrical power systems; Auxiliary systems; Conduct of operations; Accident analysis; and Quality assurance

  18. Uptake of [14C]triadimenol via grain and root after seed treatment of winter barley with a flowable seed dressing: Influence of soil moisture and sowing date on the distribution of radioactivity and active ingredient content in plant and soil

    International Nuclear Information System (INIS)

    Schneider, M.

    1988-12-01

    Winter barley seed of the 'Vogelsander Gold' variety was shown in a total of 7 lysimeters after seed treatment with [benzene ring-U- 14 C]triadimenol in the formulation as [ 14 C]Baytan 075 FS and [ 14 C]Baytan 25 DS at an early (September) and a late date (October). After both dates of sowing, the FS-treated winter barley developed under 3 different soil moisture conditions. The radioactivity and active ingredient contents in plants and soil were recorded until tillering as a function of low, high and natural precipitation after sowing. Details on the uptake of radioactivity via grain and roots were quantitatively and qualitatively studied in two further lysimeters, a pot experiment as well as experiments in the growth chamber. The results are presented and discussed in detail. (orig./MG) [de

  19. Response of rice to inoculation with plant growth promoting rhizobacteria in control lab environment and field experiment

    International Nuclear Information System (INIS)

    Ahmed, B.

    2014-01-01

    The present study was conducted to evaluate the effects of bacterial inoculation on different growth parameters of rice variety JP-5. Three bacterial strains (Azospirillum brasilense R1, Azospirillum lipoferum RSWT1 and Pseudomonas Ky1) were used to inoculate rice varietyJP-5 at control lab environment and field. Plant growth promotion was observed in all inoculated treatments over non-inoculated, which was evident from increase in root area, root length, number of tillers, straw and grain yields and total weight of plant. Azospirillum brasilense R1 was more effective in plant growth promotion than other strains and showed 19% increase in the straw weight and 39.5% increase in grain weight. Inoculation with Azospirillum lipoferum RSWT1 and Pseudomonas Ky1 increased grain weight by 18.5% and 13.8% respectively. The study revealed that beneficial strains of PGPR can be used as biofertilizer for rice. (author)

  20. Algorithm for repairing the damaged images of grain structures obtained from the cellular automata and measurement of grain size

    Science.gov (United States)

    Ramírez-López, A.; Romero-Romo, M. A.; Muñoz-Negron, D.; López-Ramírez, S.; Escarela-Pérez, R.; Duran-Valencia, C.

    2012-10-01

    Computational models are developed to create grain structures using mathematical algorithms based on the chaos theory such as cellular automaton, geometrical models, fractals, and stochastic methods. Because of the chaotic nature of grain structures, some of the most popular routines are based on the Monte Carlo method, statistical distributions, and random walk methods, which can be easily programmed and included in nested loops. Nevertheless, grain structures are not well defined as the results of computational errors and numerical inconsistencies on mathematical methods. Due to the finite definition of numbers or the numerical restrictions during the simulation of solidification, damaged images appear on the screen. These images must be repaired to obtain a good measurement of grain geometrical properties. Some mathematical algorithms were developed to repair, measure, and characterize grain structures obtained from cellular automata in the present work. An appropriate measurement of grain size and the corrected identification of interfaces and length are very important topics in materials science because they are the representation and validation of mathematical models with real samples. As a result, the developed algorithms are tested and proved to be appropriate and efficient to eliminate the errors and characterize the grain structures.

  1. Fine-grained sheet silicate rocks

    International Nuclear Information System (INIS)

    Weaver, C.E.

    1977-09-01

    Considerable interest has been shown in the possibility of using shales as repositories for radioactive waste and a variety of other waste products, and it appears that over the next few years much money and effort will be expended to investigate and test a wide variety of shales. If shales are to be studied in detail by a large number of investigators, it is important that all concerned have the same concept of what constitutes a shale. The term shale and other terms for fine-grained rocks have been used for many years and have been continually redefined. Most definitions predate the development of modern instrumentation and are based on field observations and intuition; however, the main problem is the diversity of definitions. An attempt is made here to develop a simple, rational classification of fine-grained sediments, and it is hoped that this classification will eliminate some of the present ambiguity. In order that the classification be pertinent, mineral composition and textural data were compiled and evaluated. The data on unconsolidated and consolidated sediments were contrasted and the effects of burial diagenesis assessed. It was found necessary to introduce a new term, physil, to describe all sheet silicate minerals. In contrast to the term clay mineral, the term physil has no size connotation. A simple classification is proposed that is based on the percentage of physils and grain size. In Part II the fine-grained physil rocks are classified on the basis of physil type, non-physil minerals, and texture. Formations are listed which have the mineral and textural characteristics of the most important rock types volumetrically. Selected rock types, and the formations in which they can be found, are recommended for laboratory study to determine their suitability for the storage of high-level radioactive waste

  2. Stardust from meteorites an introduction to presolar grains

    CERN Document Server

    Lugaro, Maria

    2005-01-01

    The study of presolar meteoritic grains is a new inter-disciplinary field that brings together topics from nuclear physics to astronomy and chemistry. Traditionally, most of the information about the cosmos has been gathered by observing light through telescopes. However, with the recent discovery that some dust grains extracted from primitive meteorites were produced in stellar environments, we now have the opportunity to gather information about stars and our Galaxy from the laboratory analysis of tiny pieces of stardust. Stellar grains represent a unique and fascinating subject of study. Their analysis is a breakthrough in research on stellar nucleosynthesis and the origin of the elements. While a number of specialized reviews exist on the topic, this book is the first work that brings together in a unified and accessible manner the background knowledge necessary for the study of presolar grains together with up-to-date discoveries in the field. The book includes exercise questions and answers, an extensiv...

  3. Ensuring sustainable grain legume-cereal cropping systems

    DEFF Research Database (Denmark)

    Bedoussac, Laurent; Journet, E-P; Hauggaard-Nielsen, Henrik

    2017-01-01

    health makes them a key rotation crop in the sustainable intensification and diversification of smallholder farming. This makes grain legumes a key food security crop. However, yields in developing countries are low as a result of such factors as the need for improved varieties of seed, poor seed......Grain legumes are widely cultivated, particularly for their dry seeds (known as pulses). Grain legumes are an important crop for a number of reasons. They are a rich source of protein and fibre, minerals and vitamins. In addition, their rapid growth and ability to fix nitrogen and improve soil...... distribution, the impact of pests and diseases, as well as vulnerability to poor soils, drought and other effects of climate change. This chapter summarises data from over 50 field experiments undertaken since 2001 on cereal-grain legume intercropping in 13 sites in southern and western France as well...

  4. Ultraviolet irradiation of maize (Zea Mays L.) pollen grains. Pt. 2

    International Nuclear Information System (INIS)

    Pfahler, P.L.; Linskens, H.F.

    1977-01-01

    Mature pollen grains from two single cross (F 1 ) hybrids, Wf9 x H55 and K64 x K55, were exposed to eleven levels (0 to 6.80 erg/cm 2 x 10 5 at 0.68 intervals) of ultraviolet irradiation and then were used to pollinate their source. Height and kernel characteristics (kernel weight, weight/100 kernels, kernel number) of individual F 2 plants produced by the normal F 2 kernels obtained from these pollinations were measured within each level and population. Highly significant exposure x population interactions were found for all characters, indicating that the effect of irradiation depended on the genetic source of the pollen grains. Increasing exposure increased or did not change the mean of Wf9 x H55 and decreased the mean in K64 x K55 for all characters. For coefficient of variation values, the interaction, exposure x population, was not significant for any character measured, indicating that irradiation-induced variability was unrelated to pollen source. The results indicate that pollen source strongly influenced the effect of ultraviolet irradiation on plant means but had no influence on variability. (orig.) [de

  5. A unit density method of grain analysis used to identify GABEergic neurons for electron microscopic autoradiographs

    International Nuclear Information System (INIS)

    Burry, R.W.

    1982-01-01

    The distribution of electron microscopic autoradiographic grains over neurons in cerebellar cultures incubated with [ 3 H]gamma-aminobutyric acid ([ 3 H]GABA) was examined. With the unit density method of grain analysis, the number of grains over each structure was tested against the total grain density for the entire section. If an individual structure has a grain density higher than the expected grain density, it is considered one of the group of heavily labeled structures. The expected grain density for each structure is calculated based on the area for that structure, the total grain density and the Poisson distribution. A different expected grain density can be calculated for any P value required. The method provides an adequate population of structures for morphological analysis but excludes weakly labeled structures and thus may underestimate the number of labeled structures. The unit density method of grain analysis showed, as expected, a group of cell bodies and synapses that was labeled heavily. Cultures incubated with other [ 3 H]amino acids did not have any heavily labeled synaptic elements. In addition, serial section analysis of sections showed that synapses heavily labeled with [ 3 H]GABA are seen in adjacent sections. The advantage of the unit density method of grain analysis is that it can be used to separate two groups of metabolically different neurons even when no morphological differences are present. (Auth.)

  6. Interpretation of single grain De distributions and calculation of De

    International Nuclear Information System (INIS)

    Jacobs, Z.; Duller, G.A.T.; Wintle, A.G.

    2006-01-01

    Recent development of an instrument for measuring the optically stimulated luminescence signal from individual mineral grains has made it practicable to measure the equivalent dose (D e ) from many hundreds or thousands of single mineral grains from a sample. Such measurements can potentially be used to address issues such as sample integrity, and to make it possible to obtain ages from samples that consist of mixtures of grains, enlarging the range of materials to which luminescence dating can be applied. However, for reliable ages to be obtained, the characteristics of the equipment and the sample being analysed need to be understood. Using sensitised sedimentary quartz grains, the instrumental uncertainty in repeated optically stimulated luminescence measurements made using a single grain laser luminescence unit attached to a conventional luminescence reader was evaluated; a value of 1.2% was obtained. Grains from this sample were then used to investigate the uncertainty in a measured dose distribution obtained using the single aliquot measurement protocol on each grain that had previously received a known laboratory dose; after systematic rejection of grains that did not pass defined acceptance criteria, overdispersion of 7% was found. Additional spread in data was found when uniform aeolian sands were examined, resulting in overdispersion of ∼12%; this was attributed to a combination of factors relating to differences in field and laboratory conditions. A similar value was found for an archaeological horizon below this sand. For another sample from the same section, a significantly larger value was found, ∼29%; on this basis the finite mixture model was applied to obtain the likely dose components. The paper demonstrates the importance of correct assessment of error terms when analysing single grain D e distributions and a number of rejection criteria that are vital to avoid the inclusion of data that could lead to misinterpretation of the degree of

  7. Application of Bokashi Botom Ash for Increasing Upland Rice Yield and Decreasing Grain Pb Content in Vitric Hapludans

    Directory of Open Access Journals (Sweden)

    Nunung Sondari

    2012-05-01

    Full Text Available Greenhouse experiment was conducted at Agricultural Faculty of Winaya Mukti University Tanjungsari SumedangRegency, from May to October 2009. The objective of this experiment was to study the effect of bokashi bottom ashon the growth, yield, and Pb content of upland rice. The experiment used a Randomized completely Block Design(RBD which consisted of five treatments and five replications. The treatments were level of bokashi bottom ash i.e.0, 5, 10, 15, and 20 Mg ha-1. The results showed that the application of bokashi bottom ash increased the growth andyield of upland rice of Situbagendit variety except plant height at age of 21 days after seedling (DAS. Application15 Mg ha -1 of bokashi bottom ash gave the best effect to the plant height, number of leaves, number of tillers andshoot/root ratio, while applications of 10, 15 and 20 Mg ha -1 increased number of productive tillers, amount of filledgrains, and weight of grains. Bokashi bottom ash did not affect the heavy metal content of upland rice grain ofSitubagendit variety.

  8. Grain topology in Ti-6Al-4V welds-Monte Carlo simulation and experiments

    International Nuclear Information System (INIS)

    Mishra, S; DebRoy, T

    2004-01-01

    The importance of topological features of grains in the evolution of grain structure is well recognized in isothermal systems. However, during fusion welding, strong spatial gradients of temperature exist in the heat-affected zone (HAZ), and this region undergoes rapid heating and cooling. The effects of spatial and temporal variations of temperature on the topological class distribution, relationship between size and topology of grains and the interdependence between grain topology and its neighbours are not known. Topological features of grains in the HAZ of Ti-6Al-4V alloy welds were measured for various heat inputs in the range 0.55-4.33 MJ m -1 . The topological class distributions were also calculated using a three-dimensional Monte Carlo model utilizing thermal cycles computed from a well tested numerical heat transfer and fluid flow model. The computed results showed that the topological class distributions were unaffected by the spatial and temporal variations of temperature. Experimental investigations of a few sections confirmed the simulation results. The average grain size for each edge class varied linearly with the edge class number. The local topological environment, i.e. the average number of sides of neighbours, n n , varied linearly with the inverse of the number of sides of grains, 1/n r , at a given location in the HAZ. Locations with the same topological environment showed the same grain size, indicating the significant influence of grain topology on grain growth in the HAZ

  9. Effects of Plant Density on Sweet and Baby Corn (Hybrid KSC 403 Yield and Yield Components

    Directory of Open Access Journals (Sweden)

    H Bavi

    2016-07-01

    GlM procedure. Means of all treatments were comprised using least significant difference (LSD at 5 % probability level. Results and Discussion The effects of plant density on yield components of baby corn was significant. Increasing the plant densities increased the ear number and percentage of non-standard ears. The Highest yield of ear without husk, standard and non-standard were obtained (2649.5, 766.97, and 3043.9 kg.ha-1, respectively with 13 plants.m-2. In sweet corn, increasing plant density from 7 to 13 plants.m-2, decreased row per ear, grain per row and thousand grain weight. Highest grain yield (1232.5 kg ha-1 and green ear (12607.2 kg ha-1 of sweet corn were obtained with plant density of 9.m-2. Conclusions Analysis of correlation showed that in both baby and sweet corn, there were positive and significant correlations between yield and its components. There was the high number of non-standard ears in all experimental treatments. In sweet corn, the standard ear without husk yield has positive and significant correlation with all traits except the percentage of standard ear and sheathed ear weight. In addition, unsuitable climate conditions during silking stage reduced the yield of sweet corn through the high number of aborted florets. Yield of sweet corn yield showed negative and significant correlation with grain row per ear and grain per row. However, increasing the ear number.m-2 increased yield in higher plant densities up to 9 plant.m-2 density. Generally, the baby corn had high yield with good quality in this region, but, standard ear percent of the baby corn of the hybrid KSC 403 was very low. On the other hand, sweet corn grain yield was low due to high air temperatures during pollination and maturity stages.

  10. Determination of region-specific data of yield and quality of alternatives to silage maize in fodder crops – field trails with forage gras and clover grass mixtures, Sorghum as well as whole plant silage of grain

    Directory of Open Access Journals (Sweden)

    Wosnitza, Andrea

    2014-02-01

    Full Text Available This project should generate current regional results over a period of three years about the parameter yield and quality of alternative fodder crops to maize; this includes grass and clover grass mixtures, silage maize, varieties of Sorghum/millets and whole plant silages of wheat, rye and triticale. The tested silage maize showed the highest and most reliable average dry matter yield with 23 tons per hectare, with a very low variance. The Sorghum and millet varieties had dry matter yields of 3 to 5 tons per hectare below the silage maize yield but with individual values fluctuating in a broad range within years and locations. With values far below 28% the dry matter contents were not suitable for ensiling. The grass and clover grass mixtures are good, stable and established alternatives to maize for silage. They achieved high yields comparable with these of Sorghum but stable and with a highly suitable dry matter content for ensiling. The yield of the whole plant silages was up to 22% lower compared with maize. So none of the alternative crops can compete with the high level yield of silage maize in its favoured region, therefore would be a combination of two crops recommended. But some individual locally adapted mixtures or varieties of the alternative crops reached nearly 80% of the maize yield. Silage maize showed the highest level of the net energy content for lactation (NEL, followed by the values of the fodder crops and the whole plant silages. The Sorghum varieties showed the lowest NEL value of all tested cultures. The highest crude protein showed the fodder crops contents. Silage maize, Sorghum and the whole plant silages had values lying nearly around the 50% mark of the fodder crops.

  11. Selection of Common Bean Lines, Recombinant Inbred Lines and Commercial Genotypes Tolerant to Low Phosphorus Availability in an Acrisol Soil on the Basis of Root Traits and Grain Yield

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.; Gomez, L. A.; Morales, A. [Instituto de Suelos, MINAG (Cuba); others, and

    2013-11-15

    Common bean (Phaseolus vulgaris L.) is the most important food legume for human consumption worldwide and especially in Latin America and Africa, but low soil phosphorus (P) availability limits grain production in these areas. For these reason eighty five recombinant inbred lines (RILs) of BAT 477 x DOR 364 and twenty commercial bean genotypes were sown in plots in an Acrisol soil with low P availability to evaluate nine root traits and grain yield. The study was carried out in Pinar del Rio province in Cuba between November 2006 and February 2009. The plots received basal fertilization (N and K) and P fertilization between 15 and 90 kg P{sub 2}O{sub 5} ha{sup -1}. Ten plants were sampled from each plot at R{sub 6} pod fill to evaluate root traits and shoot biomass, and at R{sub 9} physiological maturity to estimate grain yield. The 85 RILs showed great variability for root traits, grain yield and P stress tolerance calculated as relative grain yield. The commercial bean lines also showed large diversity in yield parameters. Principal Component Analysis showed that there were high and significant correlations between root traits (basal root number, primary root depth, adventitious root length and adventitious root number) and grain yield parameters (grain yield at 15 P level and relative grain yields). Adventitious root traits showed the greatest correlation with yield under low P. Promising RILs included 75.1.1, 60.1.1, 38.1.1, 14.1.1 and 38.1.1 and promising commercial bean lines included ICA Pijao, BAT 482, ICA 23, BAT 24 and BAT 832. (author)

  12. Effect of potassium supply on drought resistance in sorghum: plant growth and macronutrient content

    International Nuclear Information System (INIS)

    Asgharipour, M.R.; Heidari, M.

    2011-01-01

    Nowadays, the main limiting natural resource is widely considered to be water. Therefore, research into crop management practices that enhance drought resistance and plant growth when water supply is limited has become increasingly essential. This study was conducted to evaluate the effect of potassium (K) nutritional status on the drought resistance of grain sorghum during 2009. Drought stress by reducing the yield components, especially the number of panicle per plant and one-hundred grain weight reduced grain yield and greatest yield (3499 kg ha/sup -1/) obtained at full irrigation. Potassium sulfate increased grain and biological yield by 28% and 22%, respectively compared to control through improving growth conditions. Drought stress increased the N content, while reduced water availability decreased the K and Na in plant. No K fertilized plants had the lowest leaf K and N and highest Na concentrations. Chlorophyll content increased significantly with increase in K supply and increased frequency of irrigation. Interaction effect of drought stress and potassium sulfate on all studied traits except chlorophyll content was significant and optimum soil K levels protects plants from drought. These observations indicate that adequate K nutrition can improve drought resistance of sorghum. (author)

  13. Repetitive DNA and Plant Domestication: Variation in Copy Number and Proximity to Genes of LTR-Retrotransposons among Wild and Cultivated Sunflower (Helianthus annuus) Genotypes.

    Science.gov (United States)

    Mascagni, Flavia; Barghini, Elena; Giordani, Tommaso; Rieseberg, Loren H; Cavallini, Andrea; Natali, Lucia

    2015-11-24

    The sunflower (Helianthus annuus) genome contains a very large proportion of transposable elements, especially long terminal repeat retrotransposons. However, knowledge on the retrotransposon-related variability within this species is still limited. We used next-generation sequencing (NGS) technologies to perform a quantitative and qualitative survey of intraspecific variation of the retrotransposon fraction of the genome across 15 genotypes--7 wild accessions and 8 cultivars--of H. annuus. By mapping the Illumina reads of the 15 genotypes onto a library of sunflower long terminal repeat retrotransposons, we observed considerable variability in redundancy among genotypes, at both superfamily and family levels. In another analysis, we mapped Illumina paired reads to two sets of sequences, that is, long terminal repeat retrotransposons and protein-encoding sequences, and evaluated the extent of retrotransposon proximity to genes in the sunflower genome by counting the number of paired reads in which one read mapped to a retrotransposon and the other to a gene. Large variability among genotypes was also ascertained for retrotransposon proximity to genes. Both long terminal repeat retrotransposon redundancy and proximity to genes varied among retrotransposon families and also between cultivated and wild genotypes. Such differences are discussed in relation to the possible role of long terminal repeat retrotransposons in the domestication of sunflower. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. Carpel size, grain filling, and morphology determine individual grain weight in wheat

    OpenAIRE

    Xie, Quan; Mayes, Sean; Sparkes, Debbie L.

    2015-01-01

    Individual grain weight is a major yield component in wheat. To provide a comprehensive understanding of grain weight determination, the carpel size at anthesis, grain dry matter accumulation, grain water uptake and loss, grain morphological expansion, and final grain weight at different positions within spikelets were investigated in a recombinant inbred line mapping population of bread wheat (Triticum aestivum L.)?spelt (Triticum spelta L.). Carpel size, grain dry matter and water accumulat...

  15. Dynamics of interplanetary dust grains

    International Nuclear Information System (INIS)

    Lamy, P.L.

    1975-01-01

    The interaction of spherical grains of various materials-three silicates (quartz, obsidian and andesite), water-ice and iron - whose radii lie in the micronic and submicronic range with the interplanetary medium is solved. This includes: the interaction with the solar radiation field which is solved using Mie scattering theory and taking into account the precise dependence of the optical properties of the five materials upon wavelength; the interaction with the solar wind: corpuscular tangential drag is found to be always important and may even be larger than the Poynting-Robertson drag; the interaction with the interplanetary magnetic field is investigated in terms of a diffusion or random walk through a series of electromagnetic scatterings, leading to a Chapman-Komolgorov equation (i.e., a generalized Liouville equation). Numerical results are presented for these interactions spanning the entire solar system with circularity of elliptical orbits, direct or retrograde, with grains of various materials and sizes and giving -probably for the first time - a clear global picture of the interaction of dust grains with the interplanetary medium. The dynamics of the grains is then investigated using the theory of general perturbations and the numerical integration of trajectories of circum-solar grains

  16. Grain growth in UO2

    International Nuclear Information System (INIS)

    Hastings, I.J.; Scoberg, J.A.; Walden, W.

    1979-06-01

    Grain growth studies have been carried out on UO 2 to provide data for the fuel modelling program and to evaluate fuel fabricated in commissioning the Mixed Oxide Fuel Fabrication Laboratory at Chalk River Nuclear Laboratories. Fuel examined includes natural UO 2 commercially fabricated from ADU powder for CANDU reactors; natural UO 2 commercially fabricated from AU powder; natural UO 2 from ADU and AU powder, fabricated in the MOFFL; and commercially fabricated UO 2 enriched 1.7, 4.5, and 9.6 wt. percent U-235 in U. Samples were step-annealed in vacuo at 1870-2070 K for up to 32.5 h. All data fit a (grain size)sup(2.5) versus annealing time relationship. Apparent activation energy for grain growth, Q, depends on fuel type and varies from 150+-10 kJ/mol for early AU powder to 360+-10 kJ/mol for pellets from ADU fabricated in the MOFFL. Grain sizes calculated using the laboratory equation in a fuel performance code tend to be greater than those measured in irradiated natural fuel, suggesting irradiation-induced inhibition of grain growth. However, any inhibition is equivalent to that expected for a systematic 5 percent underpredicition in reactor power. (author)

  17. A comparison of controlled self-pollination and open pollination results based on maize grain quality

    Directory of Open Access Journals (Sweden)

    Hanna Sulewska

    2014-05-01

    Full Text Available Maize (Zea mays L. grain endosperm is triploid (3n, of which 2n come from the male (transferred by pollen and only 1n from the female plant, thus a major impact of the male form can be expected on grain quality parameters. A good example of this relationship is the phenomenon of xenia. The aim of this study was to determine the effect of pollen on grain quality. The field experiment was conducted in 2011; seeds were harvested from eight cultivars: Bosman, Blask, Tur, Kozak, Bielik, Smok, SMH 220 and Kresowiak, derived from free pollination and controlled self-pollination of maize. Analyses of nutrient contents and starch content in the grain were conducted in the laboratory. In addition, 1000 grain weight and the hectoliter weight of all grain samples were recorded. The results confirmed differences in grain quality of maize hybrids obtained by self-pollination and by open pollination. Grain of maize plants obtained by open-pollination was characterised by higher contents of N-free extract and starch, and lower protein content. Undertaking further studies on this subject may indicate specific recommendations for agricultural practice, such as mixtures of hybrids with good combining abilities, which will contribute to improved grain quality without additional costs.

  18. Sustainable production of grain crops for biofuels

    Science.gov (United States)

    Grain crops of the Gramineae are grown for their edible, starchy seeds. Their grain is used directly for human food, livestock feed, and as raw material for many industries, including biofuels. Using grain crops for non-food uses affects the amount of food available to the world. Grain-based biofuel...

  19. Consortium Application of Endophytic Bacteria and Fungi Improves Grain Yield and Physiological Attributes in Advanced Lines of Bread Wheat

    Directory of Open Access Journals (Sweden)

    Ghulam Muhae-Ud-Din

    2018-02-01

    Full Text Available Increasing human population places pressure on agriculture. To feed this population, two time increase in the current wheat production is needed. Today agriculture is becoming input intensive with more reliance on synthetic fertilizers and agrochemicals to fulfil the feed demand of the growing numbers. Use of synthetic fertilizer since last few years is impacting the soil quality. In this scenario, the use of beneficial endophytic microbes is an attractive strategy to overcome the use of synthetic products. To investigate the effect of consortium application of endophytic bacteria and fungus on plant growth, grain yield moisture status, a pot experiment was conducted in different wheat lines. It comprised four treatments like control, application of bacterial strain Bacillus sp. MN54, fungal strain Trichoderma sp. MN6, and their consortium (Bacillus sp. MN54 + Trichoderma sp. MN6. The effect of consortium application was more prominent and significantly different from the sole application of bacteria and fungus. The results showed that with a consortium application of endophytic bacteria and fungus, there was 28.6, 4.3, -6.3 and -3.7% increases in flag leaf area, chlorophyll content, relative membrane permeability and water content respectively. Consortia of endophytic microbes also resulted in the yield enhancement through the betterment of various yield attributes like number of spikelet’s, grains per spike and grain yield per plant (32.2, 25.8 and 30.8%, respectively. So, consortia of endophytic microbes can greatly promote the progress of plants in dry land agriculture and increase the yield in an environmentally sustainable way.

  20. Grain Refinement of Low Carbon Martensitic Steel by Heat Treatment

    Directory of Open Access Journals (Sweden)

    N. V. Kolebina

    2015-01-01

    Full Text Available The low-carbon steels have good corrosion and technological properties. Hot deformation is the main operation in manufacturing the parts from these steels. So one of the important properties of the material is a property of plasticity. The grain size significantly influences on the ductility properties of steel. The grain size of steel depends on the chemical composition of the crystallization process, heat treatment, and steel machining. There are plenty methods to have grain refinement. However, taking into account the large size of the blanks for the hydro turbine parts, the thermal cycling is an advanced method of the grain refinement adaptable to streamlined production. This work experimentally studies the heat treatment influence on the microstructure of the low-carbon 01X13N04 alloy steel and proposes the optimal regime of the heat treatment to provide a significantly reduced grain size. L.M. Kleiner, N.P. Melnikov and I.N. Bogachyova’s works focused both on the microstructure of these steels and on the influence of its parameters on the mechanical properties. The paper focuses mainly on defining an optimal regime of the heat treatment for grain refinement. The phase composition of steel and temperature of phase transformation were defined by the theoretical analysis. The dilatometric experiment was done to determine the precise temperature of the phase transformations. The analysis and comparison of the experimental data with theoretical data and earlier studies have shown that the initial sample has residual stress and chemical heterogeneity. The influence of the heat treatment on the grain size was studied in detail. It is found that at temperatures above 950 ° C there is a high grain growth. It is determined that the optimal number of cycles is two. The postincreasing number of cycles does not cause further reducing grain size because of the accumulative recrystallization process. Based on the results obtained, the thermal cycling

  1. Reduced Height (Rht Alleles Affect Wheat Grain Quality.

    Directory of Open Access Journals (Sweden)

    Richard Casebow

    Full Text Available The effects of dwarfing alleles (reduced height, Rht in near isogenic lines on wheat grain quality are characterised in field experiments and related to effects on crop height, grain yield and GA-sensitivity. Alleles included those that conferred GA-insensitivity (Rht-B1b, Rht-B1c, Rht-D1b, Rht-D1c as well as those that retained GA-sensitivity (rht(tall, Rht8, Rht8 + Ppd-D1a, Rht12. Full characterisation was facilitated by including factors with which the effects of Rht alleles are known to interact for grain yield (i.e. system, [conventional or organic]; tillage intensity [plough-based, minimum or zero]; nitrogen fertilizer level [0-450 kg N/ha]; and genetic backgrounds varying in height [cvs Maris Huntsman, Maris Widgeon, and Mercia]. Allele effects on mean grain weight and grain specific weight were positively associated with final crop height: dwarfing reduced these quality criteria irrespective of crop management or GA-sensitivity. In all but two experiments the effects of dwarfing alleles on grain nitrogen and sulphur concentrations were closely and negatively related to effects on grain yield, e.g. a quadratic relationship between grain yield and crop height manipulated by the GA-insensitive alleles was mirrored by quadratic relationships for nitrogen and sulphur concentrations: the highest yields and most dilute concentrations occurred around 80cm. In one of the two exceptional experiments the GA-insensitive Rht-B1b and Rht-B1c significantly (P<0.05 reduced grain nitrogen concentration in the absence of an effect on yield, and in the remaining experiment the GA-sensitive Rht8 significantly reduced both grain yield and grain nitrogen concentration simultaneously. When Rht alleles diluted grain nitrogen concentration, N:S ratios and SDS-sedimentation volumes were often improved. Hagberg falling number (HFN was negatively related to crop height but benefits from dwarfing were only seen for GA-insensitive alleles. For HFN, therefore, there

  2. Abnormal grain growth: a non-equilibrium thermodynamic model for multi-grain binary systems

    International Nuclear Information System (INIS)

    Svoboda, J; Fischer, F D

    2014-01-01

    Abnormal grain growth as the abrupt growth of a group of the largest grains in a multi-grain system is treated within the context of unequal retardation of grain growth due to the segregation of solute atoms from the bulk of the grains into the grain boundaries. During grain boundary migration, the segregated solute atoms are dragged under a small driving force or left behind the migrating grain boundary under a large driving force. Thus, the solute atoms in the grain boundaries of large grains, exhibiting a large driving force, can be released from the grain boundary. The mobility of these grain boundaries becomes significantly higher and abnormal grain growth is spontaneously provoked. The mean-field model presented here assumes that each grain is described by its grain radius and by its individual segregation parameter. The thermodynamic extremal principle is engaged to obtain explicit evolution equations for the radius and segregation parameter of each grain. Simulations of grain growth kinetics for various conditions of segregation with the same initial setting (100 000 grains with a given radius distribution) are presented. Depending on the diffusion coefficients of the solute in the grain boundaries, abnormal grain growth may be strongly or marginally pronounced. Solute segregation and drag can also significantly contribute to the stabilization of the grain structure. Qualitative agreement with several experimental results is reported. (paper)

  3. Application of binomial and multinomial probability statistics to the sampling design process of a global grain tracing and recall system

    Science.gov (United States)

    Small, coded, pill-sized tracers embedded in grain are proposed as a method for grain traceability. A sampling process for a grain traceability system was designed and investigated by applying probability statistics using a science-based sampling approach to collect an adequate number of tracers fo...

  4. High-throughput volumetric reconstruction for 3D wheat plant architecture studies

    Directory of Open Access Journals (Sweden)

    Wei Fang

    2016-09-01

    Full Text Available For many tiller crops, the plant architecture (PA, including the plant fresh weight, plant height, number of tillers, tiller angle and stem diameter, significantly affects the grain yield. In this study, we propose a method based on volumetric reconstruction for high-throughput three-dimensional (3D wheat PA studies. The proposed methodology involves plant volumetric reconstruction from multiple images, plant model processing and phenotypic parameter estimation and analysis. This study was performed on 80 Triticum aestivum plants, and the results were analyzed. Comparing the automated measurements with manual measurements, the mean absolute percentage error (MAPE in the plant height and the plant fresh weight was 2.71% (1.08cm with an average plant height of 40.07cm and 10.06% (1.41g with an average plant fresh weight of 14.06g, respectively. The root mean square error (RMSE was 1.37cm and 1.79g for the plant height and plant fresh weight, respectively. The correlation coefficients were 0.95 and 0.96 for the plant height and plant fresh weight, respectively. Additionally, the proposed methodology, including plant reconstruction, model processing and trait extraction, required only approximately 20s on average per plant using parallel computing on a graphics processing unit (GPU, demonstrating that the methodology would be valuable for a high-throughput phenotyping platform.

  5. Modification of the grain structure of austenitic welds for improved ultrasonic inspectability

    International Nuclear Information System (INIS)

    Wagner, S.; Dugan, S.; Stubenrauch, S.; Jacobs, O.

    2012-01-01

    Austenitic stainless steel welds, which are widely used for example in nuclear power plants and chemical installations, present major challenges for ultrasonic inspection due to the grain structure of the weld. Large grains in combination with the elastic anisotropy of the material lead to increased scattering and affect sound wave propagation in the weld. This results in a reduced signal-to-noise ratio, and complicates the interpretation of signals and the localization of defects. The aim of this project is to influence grain growth in the weld during the welding process to produce smaller grains, in order to improve sound propagation through the weld, thus improving inspectability. Metallographic sections of the first test welds have shown that a modification of the grain structure can be achieved by influencing the grain growth with magnetic fields. For further optimization, test blocks for ultrasonic testing were manufactured to study sound propagation through the weld and detectability of test flaws.

  6. Water management, rice varieties and mycorrhizal inoculation influence arsenic concentration and speciation in rice grains.

    Science.gov (United States)

    Zhang, Xin; Wu, Songlin; Ren, Baihui; Chen, Baodong

    2016-05-01

    A pot experiment was carried out to investigate the effects of water management and mycorrhizal inoculation on arsenic (As) uptake by two rice varieties, the As-resistant BRRI dhan 47 (B47) and As-sensitive BRRI dhan 29 (B29). Grain As concentration of B47 plants was significantly lower than that of B29, and grain As concentration of B47 was higher under flooding conditions than that under aerobic conditions. In general, mycorrhizal inoculation (Rhizophagus irregularis) had no significant effect on grain As concentrations, but decreased the proportion of inorganic arsenic (iAs) in grains of B47. The proportion of dimethylarsinic acid (DMA) in the total grain As was dramatically higher under flooding conditions. Results demonstrate that rice variety selection and appropriate water management along with mycorrhizal inoculation could be practical countermeasures to As accumulation and toxicity in rice grains, thus reducing health risks of As exposure in rice diets.

  7. Sticking properties of ice grains

    Directory of Open Access Journals (Sweden)

    Jongmanns M.

    2017-01-01

    Full Text Available We study the size dependence of pull-off forces of water ice in laboratory experiments and numerical simulations. To determine the pull-off force in our laboratory experiments, we use a liquid nitrogen cooled centrifuge. Depending on its rotation frequency, spherical ice grains detach due to the centrifugal force which is related to the adhesive properties. Numerical simulations are conducted by means of molecular dynamics simulations of hexagonal ice using a standard coarse-grained water potential. The pull-off force of a single contact between two spherical ice grains is measured due to strain controlled simulations. Both, the experimental study and the simulations reveal a dependence between the pull-off force and the (reduced particle radii, which differ significantly from the linear dependence of common contact theories.

  8. Sticking properties of ice grains

    Science.gov (United States)

    Jongmanns, M.; Kumm, M.; Wurm, G.; Wolf, D. E.; Teiser, J.

    2017-06-01

    We study the size dependence of pull-off forces of water ice in laboratory experiments and numerical simulations. To determine the pull-off force in our laboratory experiments, we use a liquid nitrogen cooled centrifuge. Depending on its rotation frequency, spherical ice grains detach due to the centrifugal force which is related to the adhesive properties. Numerical simulations are conducted by means of molecular dynamics simulations of hexagonal ice using a standard coarse-grained water potential. The pull-off force of a single contact between two spherical ice grains is measured due to strain controlled simulations. Both, the experimental study and the simulations reveal a dependence between the pull-off force and the (reduced) particle radii, which differ significantly from the linear dependence of common contact theories.

  9. Interstellar Grains: 50 Years on

    Science.gov (United States)

    Wickramasinghe, N. C.

    Our understanding of the nature of interstellar grains has evolved considerably over the past half century with the present author and Fred Hoyle being intimately involved at several key stages of progress. The currently fashionable graphite-silicate-organic grain model has all its essential aspects unequivocally traceable to original peer-reviewed publications by the author and/or Fred Hoyle. The prevailing reluctance to accept these clear-cut priorities may be linked to our further work that argued for interstellar grains and organics to have a biological provenance -- a position perceived as heretical. The biological model, however, continues to provide a powerful unifying hypothesis for a vast amount of otherwise disconnected and disparate astronomical data.

  10. Chemical composition and microstructure of Bauhinia grains.

    Science.gov (United States)

    Amonsou, Eric O; Siwela, Muthulisi; Dlamini, Nomusa

    2014-09-01

    Bauhinia is a leguminous plant species found in almost every part of the world, including southern Africa. In this study, grain composition and protein body microstructure of two indigenous southern African Bauhinia species, B. galpinii and B. petersiana were determined. Protein (38 g/100 g) and fat (23 g/100 g) were the major constituents of Bauhinia. Bauhinia grains also contained substantial amounts of zinc (6 mg/100 g) and iron (3 mg/100 g) when compared to FAO/WHO standards. The parenchyma cells of Bauhinia showed spherical protein bodies with globoids inclusions and these were surrounded by lipids. However, the protein bodies of B. petersiana were smaller in size (7 ± 3 μm) than those of B. galpinii (13 ± 4 μm). The microstructure of protein bodies in Bauhinia is very similar to that of soya, suggesting that the processing technology developed for soya protein may be adopted for Bauhinia.

  11. Relationship between fungal contamination and ergosterol content and control of wheat grain spoilage by gamma rays

    International Nuclear Information System (INIS)

    Shahin, A.M.; Mahrous, S.R.; Aziz, N.H.; El-Zeany, S.M.

    2003-01-01

    The fungal flora and the ergosterol content of wheat grains were determined and the effect of gamma-irradiation on some important grain fungi to control mould spoilage of wheat grains was also investigated. At the start of storage, the ergosterol content and the number of moulds of wheat grains were 3.3μg/g and 3x10 3 /g, respectively and the technological values as germinative capacity and fat acidity were wholly satisfactory. After 50 days of storage, the ergosterol content and the number of moulds of the grains were 45.5 μg/g and 80x10 5 /g, respectively and all the germinative capacity and fat acidity values were not satisfactory. The ergosterol content of wheat grains irradiated at a dose level 3 kGy was 0.5 μg/g and the number of moulds were 8x10 2 /g. After 50 days of storage, the ergosterol content of the 3 kGy irradiated grains was 0.90 μg/g and the number of moulds were 15x10 2 /g and all the technological values were satisfactory. The fungal biomass and the ergosterol content of some grains fungi were decreased by increasing the irradiation dose levels. At irradiation dose level 4 kGy, there was no ergosterol in wheat grains and the moulds were completely inhibited and the technological values are wholly satisfactory over 50 days of storage

  12. Physical properties of five grain dust types.

    OpenAIRE

    Parnell, C B; Jones, D D; Rutherford, R D; Goforth, K J

    1986-01-01

    Physical properties of grain dust derived from five grain types (soybean, rice, corn, wheat, and sorghum) were measured and reported. The grain dusts were obtained from dust collection systems of terminal grain handling facilities and were assumed to be representative of grain dust generated during the handling process. The physical properties reported were as follows: particle size distributions and surface area measurements using a Coulter Counter Model TAII; percent dust fractions less tha...

  13. Efficient radiative transfer in dust grain mixtures

    OpenAIRE

    Wolf, S.

    2002-01-01

    The influence of a dust grain mixture consisting of spherical dust grains with different radii and/or chemical composition on the resulting temperature structure and spectral energy distribution of a circumstellar shell is investigated. The comparison with the results based on an approximation of dust grain parameters representing the mean optical properties of the corresponding dust grain mixture reveal that (1) the temperature dispersion of a real dust grain mixture decreases substantially ...

  14. Deformation strain inhomogeneity in columnar grain nickel

    DEFF Research Database (Denmark)

    Wu, G.L.; Godfrey, A.; Juul Jensen, D.

    2005-01-01

    A method is presented for determination of the local deformation strain of individual grains in the bulk of a columnar grain sample. The method, based on measurement of the change in grain area of each grain, is applied to 12% cold rolled nickel. Large variations are observed in the local strain...... associated with each grain. (c) 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved....

  15. Tracer concentration contours in grain lattice and grain boundary diffusion

    International Nuclear Information System (INIS)

    Kim, Y. S.; Olander, D. R.

    1997-01-01

    Grain boundary diffusion plays a significant role in fission gas release, which is one of the crucial processes dominating nuclear fuel performance. Gaseous fission products such as Xe and Kr generated during nuclear fission have to diffuse in the grain lattice and the boundary inside fuel pellets before they reach the open spaces in a fuel rod. These processes can be studied by 'tracer diffusion' techniques, by which grain boundary diffusivity can be estimated and directly used for low burn-up fission gas release analysis. However, only a few models accounting for the both processes are available and mostly handle them numerically due to mathematical complexity. Also the numerical solution has limitations in a practical use. In this paper, an approximate analytical solution in case of stationary grain boundary in a polycrystalline solid is developed for the tracer diffusion techniques. This closed-form solution is compared to available exact and numerical solutions and it turns out that it makes computation not only greatly easier but also more accurate than previous models. It can be applied to theoretical modelings for low burn-up fission gas release phenomena and experimental analyses as well, especially for PIE (post irradiation examination). (author)

  16. [Asthma due to grain dust].

    Science.gov (United States)

    Baur, X; Preisser, A; Wegner, R

    2003-06-01

    The actual literature as well as two case reports described in detail show that grain dust induces asthmatic reactions and ODTS which are obviously not of allergic origin. For diagnosis occupational-type exposure tests are decisive whereas allergological testing usually is not. Endotoxins which are present in the grain dust samples in high concentrations have to be regarded as the major causative components. To avoid irreversible lung function impairment a comprehensive early diagnosis is necessary. Generally, a remarkable reduction of exposure to dust with high levels of airborne endotoxin in agriculture has to be achieved since in many workplaces corresponding exposures are still rather high.

  17. Applied Thermodynamics: Grain Boundary Segregation

    Directory of Open Access Journals (Sweden)

    Pavel Lejček

    2014-03-01

    Full Text Available Chemical composition of interfaces—free surfaces and grain boundaries—is generally described by the Langmuir–McLean segregation isotherm controlled by Gibbs energy of segregation. Various components of the Gibbs energy of segregation, the standard and the excess ones as well as other thermodynamic state functions—enthalpy, entropy and volume—of interfacial segregation are derived and their physical meaning is elucidated. The importance of the thermodynamic state functions of grain boundary segregation, their dependence on volume solid solubility, mutual solute–solute interaction and pressure effect in ferrous alloys is demonstrated.

  18. Effects of microstructures and creep conditions on the fractal dimension of grain boundary fracture in high-temperature creep of heat-resistant alloys

    International Nuclear Information System (INIS)

    Tanaka, Manabu

    1993-01-01

    The effects of microstructural aspects, such as grain size and grain boundary configuration, and creep conditions on the fractal dimension of the grain boundary fracture were examined using several heat-resistant alloys, principally in an analysis scale range between one grain boundary length and specimen size. Grain boundary fracture surface profiles in the heat-resistant alloys exhibited a fractal nature in the scale range between one grain boundary length and specimen size as well as in the scale range below one grain boundary length. The fractal dimension of the grain boundary fracture slightly increased with decreasing grain size and was generally a little larger in the specimens with serrated grain boundaries than in those with straight grain boundaries. The fractal dimension of the grain boundary and the number of grain boundary microcracks which affected the grain boundary fracture patterns were a little larger in the specimen with the smaller grain size, and were also larger in the specimen with serrated grain boundaries. The fractal dimension of the grain boundary fracture increased with decreasing creep stress in the temperature range from 973 to 1422 K in these alloys, since more grain boundary microcracks existed in the specimens ruptured under the lower stresses at the higher temperatures. (orig.) [de

  19. Starch grains reveal early root crop horticulture in the Panamanian tropical forest.

    Science.gov (United States)

    Piperno, D R; Ranere, A J; Holst, I; Hansell, P

    2000-10-19

    Native American populations are known to have cultivated a large number of plants and domesticated them for their starch-rich underground organs. Suggestions that the likely source of many of these crops, the tropical forest, was an early and influential centre of plant husbandry have long been controversial because the organic remains of roots and tubers are poorly preserved in archaeological sediments from the humid tropics. Here we report the occurrence of starch grains identifiable as manioc (Manihot esculenta Crantz), yams (Dioscorea sp.) and arrowroot (Maranta arundinacea L.) on assemblages of plant milling stones from preceramic horizons at the Aguadulce Shelter, Panama, dated between 7,000 and 5,000 years before present (BP). The artefacts also contain maize starch (Zea mays L.), indicating that early horticultural systems in this region were mixtures of root and seed crops. The data provide the earliest direct evidence for root crop cultivation in the Americas, and support an ancient and independent emergence of plant domestication in the lowland Neotropical forest.

  20. The relationship between polyamines and hormones in the regulation of wheat grain filling.

    Directory of Open Access Journals (Sweden)

    Yang Liu

    Full Text Available The grain weight of wheat is strongly influenced by filling. Polyamines (PA are involved in regulating plant growth. However, the effects of PA on wheat grain filling and its mechanism of action are unclear. The objective of the present study was to investigate the relationship between PAs and hormones in the regulation of wheat grain filling. Three PAs, spermidine (Spd, spermine (Spm, and putrescine (Put, were exogenously applied, and the grain filling characteristics and changes in endogenous PA and hormones, i.e., indole-3-acetic acid (IAA, zeatin (Z + zeatin riboside (ZR, abscisic acid (ABA, ethylene (ETH and gibberellin 1+4 (GAs, were quantified during wheat grain filling. Exogenous applications of Spd and Spm significantly increased the grain filling rate and weight, but exogenous Put had no significant effects on these measures. Exogenous Spd and Spm significantly increased the endogenous Spd, Spm, Z+ZR, ABA, and IAA contents and significantly decreased ETH evolution in grains. The endogenous Spd, Spm and Z+ZR contents were positively and significantly correlated with the grain filling rate and weight of wheat, and the endogenous ETH evolution was negatively and significantly correlated with the wheat grain filling rate and weight. Based upon these results, we concluded that PAs were involved in the balance of hormones that regulated the grain filling of wheat.

  1. The Relationship between Polyamines and Hormones in the Regulation of Wheat Grain Filling

    Science.gov (United States)

    Liu, Yang; Gu, Dandan; Wu, Wei; Wen, Xiaoxia; Liao, Yuncheng

    2013-01-01

    The grain weight of wheat is strongly influenced by filling. Polyamines (PA) are involved in regulating plant growth. However, the effects of PA on wheat grain filling and its mechanism of action are unclear. The objective of the present study was to investigate the relationship between PAs and hormones in the regulation of wheat grain filling. Three PAs, spermidine (Spd), spermine (Spm), and putrescine (Put), were exogenously applied, and the grain filling characteristics and changes in endogenous PA and hormones, i.e., indole-3-acetic acid (IAA), zeatin (Z) + zeatin riboside (ZR), abscisic acid (ABA), ethylene (ETH) and gibberellin 1+4 (GAs), were quantified during wheat grain filling. Exogenous applications of Spd and Spm significantly increased the grain filling rate and weight, but exogenous Put had no significant effects on these measures. Exogenous Spd and Spm significantly increased the endogenous Spd, Spm, Z+ZR, ABA, and IAA contents and significantly decreased ETH evolution in grains. The endogenous Spd, Spm and Z+ZR contents were positively and significantly correlated with the grain filling rate and weight of wheat, and the endogenous ETH evolution was negatively and significantly correlated with the wheat grain filling rate and weight. Based upon these results, we concluded that PAs were involved in the balance of hormones that regulated the grain filling of wheat. PMID:24205154

  2. The grain-size lineup: A test of a novel eyewitness identification procedure.

    Science.gov (United States)

    Horry, Ruth; Brewer, Neil; Weber, Nathan

    2016-04-01

    When making a memorial judgment, respondents can regulate their accuracy by adjusting the precision, or grain size, of their responses. In many circumstances, coarse-grained responses are less informative, but more likely to be accurate, than fine-grained responses. This study describes a novel eyewitness identification procedure, the grain-size lineup, in which participants eliminated any number of individuals from the lineup, creating a choice set of variable size. A decision was considered to be fine-grained if no more than 1 individual was left in the choice set or coarse-grained if more than 1 individual was left in the choice set. Participants (N = 384) watched 2 high-quality or low-quality videotaped mock crimes and then completed 4 standard simultaneous lineups or 4 grain-size lineups (2 target-present and 2 target-absent). There was some evidence of strategic regulation of grain size, as the most difficult lineup was associated with a greater proportion of coarse-grained responses than the other lineups. However, the grain-size lineup did not outperform the standard simultaneous lineup. Fine-grained suspect identifications were no more diagnostic than suspect identifications from standard lineups, whereas coarse-grained suspect identifications carried little probative value. Participants were generally reluctant to provide coarse-grained responses, which may have hampered the utility of the procedure. For a grain-size approach to be useful, participants may need to be trained or instructed to use the coarse-grained option effectively. (c) 2016 APA, all rights reserved).

  3. Testing the responses of four wheat crop models to heat stress at anthesis and grain filling.

    Science.gov (United States)

    Liu, Bing; Asseng, Senthold; Liu, Leilei; Tang, Liang; Cao, Weixing; Zhu, Yan

    2016-05-01

    Higher temperatures caused by future climate change will bring more frequent heat stress events and pose an increasing risk to global wheat production. Crop models have been widely used to simulate future crop productivity but are rarely tested with observed heat stress experimental datasets. Four wheat models (DSSAT-CERES-Wheat, DSSAT-Nwheat, APSIM-Wheat, and WheatGrow) were evaluated with 4 years of environment-controlled phytotron experimental datasets with two wheat cultivars under heat stress at anthesis and grain filling stages. Heat stress at anthesis reduced observed grain numbers per unit area and individual grain size, while heat stress during grain filling mainly decreased the size of the individual grains. The observed impact of heat stress on grain filling duration, total aboveground biomass, grain yield, and grain protein concentration (GPC) varied depending on cultivar and accumulated heat stress. For every unit increase of heat degree days (HDD, degree days over 30 °C), grain filling duration was reduced by 0.30-0.60%, total aboveground biomass was reduced by 0.37-0.43%, and grain yield was reduced by 1.0-1.6%, but GPC was increased by 0.50% for cv Yangmai16 and 0.80% for cv Xumai30. The tested crop simulation models could reproduce some of the observed reductions in grain filling duration, final total aboveground biomass, and grain yield, as well as the observed increase in GPC due to heat stress. Most of the crop models tended to reproduce heat stress impacts better during grain filling than at anthesis. Some of the tested models require improvements in the response to heat stress during grain filling, but all models need improvements in simulating heat stress effects on grain set during anthesis. The observed significant genetic variability in the response of wheat to heat stress needs to be considered through cultivar parameters in future simulation studies. © 2016 John Wiley & Sons Ltd.

  4. Heat transfer rate within non-spherical thick grains

    Directory of Open Access Journals (Sweden)

    Huchet Florian

    2017-01-01

    Full Text Available The prediction of the internal heat conduction into non-spherical thick grains constitutes a significant issue for physical modeling of a large variety of application involving convective exchanges between fluid and grains. In that context, the present paper deals with heat rate measurements of various sizes of particles, the thermal sensors being located at the interface fluid/grain and into the granular materials. Their shape is designed as cuboid in order to control the surface exchanges. In enclosed coneshaped apparatus, a sharp temperature gradient is ensured from a hot source releasing the air stream temperature equal to about 400°C. Two orientations of grain related to the air stream are considered: diagonally and straight arrangements. The thermal diffusivity of the grains and the Biot numbers are estimated from an analytical solution established for slab. The thermal kinetics evolution is correlated to the sample granular mass and its orientation dependency is demonstrated. Consequently, a generalized scaling law is proposed which is funded from the effective area of the heat transfer at the grain-scale, the dimensionless time being defined from the calculated diffusional coefficients.

  5. Heat transfer rate within non-spherical thick grains

    Science.gov (United States)

    Huchet, Florian; Richard, Patrick; Joniot, Jules; Le Guen, Laurédan

    2017-06-01

    The prediction of the internal heat conduction into non-spherical thick grains constitutes a significant issue for physical modeling of a large variety of application involving convective exchanges between fluid and grains. In that context, the present paper deals with heat rate measurements of various sizes of particles, the thermal sensors being located at the interface fluid/grain and into the granular materials. Their shape is designed as cuboid in order to control the surface exchanges. In enclosed coneshaped apparatus, a sharp temperature gradient is ensured from a hot source releasing the air stream temperature equal to about 400°C. Two orientations of grain related to the air stream are considered: diagonally and straight arrangements. The thermal diffusivity of the grains and the Biot numbers are estimated from an analytical solution established for slab. The thermal kinetics evolution is correlated to the sample granular mass and its orientation dependency is demonstrated. Consequently, a generalized scaling law is proposed which is funded from the effective area of the heat transfer at the grain-scale, the dimensionless time being defined from the calculated diffusional coefficients.

  6. Flotation process diagnostics and modelling by coal grain analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ofori, P; O' Brien, G.; Firth, B.; Jenkins, B. [CSIRO Energy Technology, Brisbane, Qld. (Australia)

    2006-05-15

    In coal flotation, particles of different components of the coal such as maceral groups and mineral matter and their associations have different hydrophobicities and therefore different flotation responses. By using a new coal grain analysis method for characterising individual grains, more detailed flotation performance analysis and modelling approaches have been developed. The method involves the use of microscopic imaging techniques to obtain estimates of size, compositional and density information on individual grains of fine coal. The density and composition partitioning of coal processed through different flotation systems provides an avenue to pinpoint the actual cause of poor process performance so that corrective action may be initiated. The information on grain size, density and composition is being used as input data to develop more detailed flotation process models to provide better predictions of process performance for both mechanical and column flotation devices. A number of approaches may be taken to flotation modelling such as the probability approach and the kinetic model approach or a combination of the two. In the work reported here, a simple probability approach has been taken, which will be further refined in due course. The use of grain data to map the responses of different types of coal grains through various fine coal cleaning processes provided a more advanced diagnostic capability for fine coal cleaning circuits. This enabled flotation performance curves analogous to partition curves for density separators to be produced for flotation devices.

  7. Effect of wheat gluten proteins on bioethanol yield from grain

    Energy Technology Data Exchange (ETDEWEB)

    Buresova, Iva [Agrotest Fyto, Ltd., Havlickova 2787/121, 767 01 Kromeriz (Czech Republic); Hrivna, Ludek [Mendel University in Brno, Zemedelska 1, 613 00 Brno (Czech Republic)

    2011-04-15

    Bioethanol can be used as motor fuel and/or as a gasoline enhancer. A high yield feedstock for bioethanol production is cereal grain. Cereal grains containing less gluten proteins (glutenin and gliadin), but high starch, are favoured by distillers because they increase the bioethanol conversion. The direct effect of wheat gluten proteins on bioethanol yield was studied on triticale grain. Examined triticale Presto 1R.1D{sub 5+10}-2 and Presto Valdy were developed by introducing selected segments of wheat chromosome 1D into triticale chromosome 1R. Even if the samples analysed in this study do not afford to make definitive assumptions, it can be noticed that in analysed cases the presence of gliadin had more significant effect on investigated parameters than the presence of glutenin. Despite the presence of glutenin subunits did not significantly decrease the investigated parameters - specific weight, Hagberg falling number and starch content in grain met the requirements for grain for bioethanol production - protein content was higher than is optimal. The fermentation experiments demonstrated good bioethanol yields but depression in grain yields caused by the presence of wheat gliadin and glutenin decreased the energy balance of Presto Valdy and Presto 1R.1D{sub 5+10}-2. (author)

  8. Effect of Planting Date and Weed Control Methods on Yield and Agronomic Traits of Sunflower (Helianthus annuus L. in Khoy Region

    Directory of Open Access Journals (Sweden)

    M. Akbari

    2010-12-01

    Full Text Available Effects of planting dates and weed control methods on yield and agronomic traits of sunflower was investigated. A factorial experiment based on a complete randomized blocks design with four replications was conducted in 2009. Treatments consisted of three planting date (April 4th, May5th and Juns5th and five weed control methods, Trifluralin (2 Lit/ha + Fokus (1.5 Lit/ha, Trifluralin+Nabu-s (3Lit/ha, Trifluralin, Hand weeding and without control. Results indicated that planting dates and weed control methods significantly affected head diameter, 100 grain weight, seed number per head and grain yield. Harvest index and oil percent was affected only by planting dates. The highest grain yield (630.1 g/m2, was produced in the second planting date (May 5 by using Trifluralin+Fokus. Delaying sowing date (after May 5 significantly decreased grain yield. The most important weeds in the experimental site were common lambsquarter (Chenopodium album, field bind weed (Convolvulus arvensis, bastard cabbage (Rapistrum rugosum, flower-of-an-hour (Hibiscus trionum, cockspur grass (Echinochloa colorum and green bristle grass (Setaria verticillata. It was observed that the dry matter weight sharply varied in all weed species in different planting dates, that is, in the 4th April the dry matter production of common lambsquarter and bastard cabbage, in June 5th planting date were maximum. Dry matter of broad leaf and narrow leaf weeds in the date of May 5th was lower than the other two planting dates. The interaction of planting date ×control methods on head diameter, seed number per head, grain yield and weeds dry matter was significant.

  9. Identification of Accretion as Grain Growth Mechanism in Astrophysically Relevant Water&ice Dusty Plasma Experiment

    Science.gov (United States)

    Marshall, Ryan S.; Chai, Kil-Byoung; Bellan, Paul M.

    2017-03-01

    The grain growth process in the Caltech water-ice dusty plasma experiment has been studied using a high-speed camera and a long-distance microscope lens. It is observed that (I) the ice grain number density decreases fourfold as the average grain major axis increases from 20 to 80 μm, (II) the major axis length has a log-normal distribution rather than a power-law dependence, and (III) no collisions between ice grains are apparent. The grains have a large negative charge resulting in strong mutual repulsion and this, combined with the fractal character of the ice grains, prevents them from agglomerating. In order for the grain kinetic energy to be sufficiently small to prevent collisions between ice grains, the volumetric packing factor (I.e., ratio of the actual volume to the volume of a circumscribing ellipsoid) of the ice grains must be less than ˜0.1 depending on the exact relative velocity of the grains in question. Thus, it is concluded that direct accretion of water molecules is very likely to dominate the observed ice grain growth.

  10. Identification of Accretion as Grain Growth Mechanism in Astrophysically Relevant Water–Ice Dusty Plasma Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Ryan S.; Chai, Kil-Byoung; Bellan, Paul M. [Applied Physics and Materials Science, Caltech, Pasadena, CA 91125 (United States)

    2017-03-01

    The grain growth process in the Caltech water–ice dusty plasma experiment has been studied using a high-speed camera and a long-distance microscope lens. It is observed that (i) the ice grain number density decreases fourfold as the average grain major axis increases from 20 to 80 μ m, (ii) the major axis length has a log-normal distribution rather than a power-law dependence, and (iii) no collisions between ice grains are apparent. The grains have a large negative charge resulting in strong mutual repulsion and this, combined with the fractal character of the ice grains, prevents them from agglomerating. In order for the grain kinetic energy to be sufficiently small to prevent collisions between ice grains, the volumetric packing factor (i.e., ratio of the actual volume to the volume of a circumscribing ellipsoid) of the ice grains must be less than ∼0.1 depending on the exact relative velocity of the grains in question. Thus, it is concluded that direct accretion of water molecules is very likely to dominate the observed ice grain growth.

  11. Plant and Floret Growth at Distinct Developmental Stages During the Stem Elongation Phase in Wheat

    Directory of Open Access Journals (Sweden)

    Zifeng Guo

    2018-03-01

    Full Text Available Floret development is critical for grain setting in wheat (Triticum aestivum, but more than 50% of grain yield potential (based on the maximum number of floret primordia is lost during the stem elongation phase (SEP, from the terminal spikelet stage to anthesis. Dynamic plant (e.g., leaf area, plant height and floret (e.g., anther and ovary size growth and its connection with grain yield traits (e.g., grain number and width are not clearly understood. In this study, for the first time, we dissected the SEP into seven stages to investigate plant (first experiment and floret (second experiment growth in greenhouse- and field-grown wheat. In the first experiment, the values of various plant growth trait indices at different stages were generally consistent between field and greenhouse and were independent of the environment. However, at specific stages, some traits significantly differed between the two environments. In the second experiment, phenotypic and genotypic similarity analysis revealed that grain number and size corresponded closely to ovary size at anthesis, suggesting that ovary size is strongly associated with grain number and size. Moreover, principal component analysis (PCA showed that the top six principal components PCs explained 99.13, 98.61, 98.41, 98.35, and 97.93% of the total phenotypic variation at the green anther, yellow anther, tipping, heading, and anthesis stages, respectively. The cumulative variance explained by the first PC decreased with floret growth, with the highest value detected at the green anther stage (88.8% and the lowest at the anthesis (50.09%. Finally, ovary size at anthesis was greater in wheat accessions with early release years than in accessions with late release years, and anther/ovary size shared closer connections with grain number/size traits at the late vs. early stages of floral development. Our findings shed light on the dynamic changes in plant and floret growth-related traits in wheat and the

  12. The Effect of Inoculation with Azotobacter and Nitrogen Levels on Grain and Corn Yield Components at Simultaneous Cropping System with Legumes

    Directory of Open Access Journals (Sweden)

    mohammad mirzakhani

    2017-09-01

    Full Text Available Introduction: Corn has been regarded as one of the important crops from the view point of both human and animal feeding resource. Intercropping defined as cultivation of two or more species together. The advantages of intercropping can be included: efficient use of water and sunlight, exchange of nutrients, weed competition reduction, reduction of pathogens and the increase of soil fertility. Research shows that intercropping combinations of legume–grass will increase forage quality. Because, grasses Grains have a lot of carbohydrates and legumes are rich in protein and vitamins. This study was conducted to evaluate the effect of inoculation with azotobacter and nitrogen levels on grain and corn yield components at simultaneous cropping system with legumes under the weather conditions of Markazi province. Materials and methods: This study was carried out at agricultural research field of Payame Noor University, Arak Branch during 2011. A factorial arrangement of treatment in a randomized complete block design with three replications was used. Methods of plant nutrition (M0= inoculation with azotobacter, M1= inoculation with azotobacter + 37/5 Kg ha-1 of rare nitrogen with foliar application method, M2= inoculation with azotobacter + 150 Kg ha-1 of rare nitrogen mix with soil and simultaneous cropping treatment of legumes, [S1= corn + alfalfa (Medicago sativa L., S2= corn + bitter vetch (Lathyrus sativus L., S3= corn + mung bean (Vigna radiata L., S4= corn + chickpea (Cicer arientinum L., S5= corn + vetch (Vicia ervillia L. ] were assigned in plots. Each sub plot consisted of 4 rows, 6 m long with 60 cm between rows space and 20 cm between plants on the rows and S.C Apex hybrid was used. In this study characteristics such as: plant height, earing height, the number of grains per m-2, the number of rows per ear, the number of grains per row, surface of ear leaf, grain yield of corn, 1000 grain weight, harvest index of corn, nitrogen use

  13. Genetic analysis for grain quality traits in pakistani wheat varieties

    International Nuclear Information System (INIS)

    Minhas, N.M.; Ajmal, S.U.; Iqbal, Z.; Munir, M.

    2014-01-01

    A set of eight parental diallel involving seven commercial wheat cultivars and one breeding line was made to investigate the nature of gene action determining inheritance pattern of grain quality characters. Highly significant differences were observed among the genotypes for 1000 grain weight, protein content, wet gluten and lysine content. Adequacy tests were employed to estimate the fitness of data sets to additive dominance model. Both the tests i.e. analysis of uniformity of Wr, Vr and joint regression analysis validated the data of these traits for genetic analysis. Gene actions for grain quality traits were ascertained following Hayman's analysis of variance. Results of the genetic analysis revealed that both additive and dominance genetic components were involved in the manifestation of characters under study. However, additive gene effects were more pronounced in the genetic control of these traits. Non significance of b1, b2 and b3 values revealed the absence of directional dominance, symmetrical distribution of genes among the parental lines and absence of specific genes action respectively in all the traits. Maternal effects were also noted in 1000 grain weight, protein content and wet gluten percentage. It is concluded that additive effects are crucial in the expression of grain quality characters of wheat in germplasm under study and single plant selection may be recommended in segregating generations for effective improvement in these characters. (author)

  14. Grain Filling Characteristics and Their Relations with Endogenous Hormones in Large- and Small-Grain Mutants of Rice.

    Directory of Open Access Journals (Sweden)

    Weiyang Zhang

    Full Text Available This study determined if the variation in grain filling parameters between two different spikelet types of rice (Oryza sativa L. is regulated by the hormonal levels in the grains. Two rice mutants, namely, a large-grain mutant (AZU-M and a small-grain mutant (ZF802-M, and their respective wild types (AZU-WT and ZF802-WT were grown in the field. The endosperm cell division rate, filling rate, and hormonal levels: zeatin + zeatin riboside (Z+ZR, indo-3-acetic acid (IAA, polyamines (PAs, and abscisic acid (ABA were determined. The results showed that there was no significant difference between the filling and endosperm cell division rates. These rates were synchronous between the superior and inferior spikelets for both mutants. However, the abovementioned parameters were significantly different between the two spikelet types for the two wild types. The superior spikelets filled faster and their filling rate was higher compared to the inferior ones. Changes in the concentrations of plant hormones were consistent with the observed endosperm cell division rate and the filling rate for both types of spikelets of mutant and wild type plants. Regression analysis showed a significant positive correlation between cell division and filling rates with the concentrations of the investigated hormones. Exogenous chemical application verified the role of ABA, IAA, and PAs in grain filling. The results indicate that poor filling of inferior spikelets in rice occurs primarily due to the reduced hormone concentrations therein, leading to lower division rate of endosperm cells, fewer endosperm cells, slower filling rate, and smaller grain weight.

  15. Grain Filling Characteristics and Their Relations with Endogenous Hormones in Large- and Small-Grain Mutants of Rice.

    Science.gov (United States)

    Zhang, Weiyang; Cao, Zhuanqin; Zhou, Qun; Chen, Jing; Xu, Gengwen; Gu, Junfei; Liu, Lijun; Wang, Zhiqin; Yang, Jianchang; Zhang, Hao

    2016-01-01

    This study determined if the variation in grain filling parameters between two different spikelet types of rice (Oryza sativa L.) is regulated by the hormonal levels in the grains. Two rice mutants, namely, a large-grain mutant (AZU-M) and a small-grain mutant (ZF802-M), and their respective wild types (AZU-WT and ZF802-WT) were grown in the field. The endosperm cell division rate, filling rate, and hormonal levels: zeatin + zeatin riboside (Z+ZR), indo-3-acetic acid (IAA), polyamines (PAs), and abscisic acid (ABA) were determined. The results showed that there was no significant difference between the filling and endosperm cell division rates. These rates were synchronous between the superior and inferior spikelets for both mutants. However, the abovementioned parameters were significantly different between the two spikelet types for the two wild types. The superior spikelets filled faster and their filling rate was higher compared to the inferior ones. Changes in the concentrations of plant hormones were consistent with the observed endosperm cell division rate and the filling rate for both types of spikelets of mutant and wild type plants. Regression analysis showed a significant positive correlation between cell division and filling rates with the concentrations of the investigated hormones. Exogenous chemical application verified the role of ABA, IAA, and PAs in grain filling. The results indicate that poor filling of inferior spikelets in rice occurs primarily due to the reduced hormone concentrations therein, leading to lower division rate of endosperm cells, fewer endosperm cells, slower filling rate, and smaller grain weight.

  16. Interaction Effects of Planting Date and Weed Competition on Yield and Yield Components of Three white Bean Cultivars in Semirom

    Directory of Open Access Journals (Sweden)

    A. Yadavi

    2012-06-01

    Full Text Available Unsuitable planting and weed competition are the most important factors that greatly reduce the yield of bean. In order to study the effect of planting date on yield and yield components of three white bean cultivars in weed infest and weed free condition a factorial experiment with randomized complete block design and three replications was carried out at Semirom in 2009. The treatments were planting date (May10, May 25 and June 9 and white bean cultivars (Shekofa, Pak and Daneshkade and two levels of weed infestation (weedy and weed free. Results showed that planting date, weed competition and cultivars had significant effects on yield and yield components of white bean. The 30-day delay in planting date reduced the number of pods per plant, seeds per pod, 100 seed weight and biological yield of white bean cultivars, 22.5, 18, 20.1 and 22.5 percent respectively. Also weed competition, reduced the number of seeds per pod, 100 seed weight and biological yield respectively by 13.5, 5.7 and 27.1 percent. Result of planting date and weed competition interaction effects indicated that the weed competition decreased grain yield (53% in third planting date more than others and delay in planting date was companion with increasing weed density and dry weight in flowering stage of bean. Also Shekofa cultivar had highest grain yield (3379 kg/ha at the first planting date and weed free condition.

  17. Numerical and Experimental Investigation of the Influence of Growth Restriction on Grain Size in Binary Cu Alloys

    Directory of Open Access Journals (Sweden)

    Andreas Cziegler

    2017-09-01

    Full Text Available Grain refinement by elemental addition has been extensively investigated within the last decades in Al or Mg alloys. In contrast, in the Cu system, the role of solute on grain size is less investigated. In this study, the grain refinement potency of several alloying elements of the Cu system was examined. To predict grain size depending on the growth restriction factor Q, grain size modelling was performed. The results obtained by the grain size model were compared to variations in the grain size of binary Cu alloys with increasing solute content under defined cooling conditions of the TP-1 grain refiner test of the Aluminium Association©. It was found that the experimental results differed significantly from the predicted grain size values for several alloying elements. A decreasing grain size with increasing alloy concentration was observed independently of the growth restriction potency of the alloying elements. Furthermore, excessive grain coarsening was found for several solutes beyond a transition point. It is assumed that contradictory variations in grain size result from a change in the nucleating particle density of the melt. Significant decreases in grain size are supposed to be due to the in-situ formation of potent nucleation sites. Excessive grain coarsening with increasing solute content may occur due to the removal of nucleating particles. The model shows that the difference in the actual number of particles before and beyond the transition point must be in the range of several orders of magnitude.

  18. Gamma irradiation of rice grains

    International Nuclear Information System (INIS)

    Roy, M.K.; Ghosh, S.K.; Chatterjee, S.R.

    1991-01-01

    Rice grains of the variety, Pusa-33, at 12.0% moisture, were irradiated with doses of 0-150 kGy. The crystallinity of starch, soluble amylose and yellowness of treated grains increased with increment in the dose of radiation but water absorption and volume expansion on cooling decreased. irradiation at doses of 3-5 kGy increased imperceptibly the hardening of rice cooled after cooking, but had no effect on edibility. The off-aroma in irradiated grains was perceptible at doses higher than 5 kGy. The changes in colour and aroma persisted also on cooking. Upto a dose of 5 kGy, the sensory scores of rice, both cooked and uncooked, were at or above acceptable limit of score (5,5). The doses of 3 and 5 kGy were highly effective in reducing fungal population in irradiated grains, but in view of the changes in colour and cooking qualities, 3 kGy is the preferred dose-limit of irradiation. (author). 17 refs., 5 tabs., 1 fig

  19. Cytogenetics of Mimosa bimucronata (DC. O. Kuntze (Mimosoideae, Leguminosae: chromosome number, polysomaty and meiosis.

    Directory of Open Access Journals (Sweden)

    Denise Olkoski

    2011-06-01

    Full Text Available Chromosome numbers (somatic and/or gametic were determined in 50 populations of M. bimucronata (DC. O.Kuntze collected in the species area of distribution in Rio Grande do Sul, south Brazil. All populations were diploid (2n = 2x = 26,n = 13. Polysomatic (mostly tetraploid cells were detected in the seedlings root-tip cells in 39 out of the 41 populations examined,ranging from 3.0 to 28.2 % among populations, but were absent in the root-tips of grown plants. Polysomaty was as well absent inpollen-mother cells. In M. bimucronata pollen-mother cells are joined two-by-two before the onset of meiosis, remaining attachedduring all the meiotic division until the formation of pollen grain polyads, composed of two sets of four pollen grains each, that aredispersed in this way, which, according to previous suggestions would be an adaptation to ensure high seed set after a singlepollination event.

  20. Reduced Height (Rht) Alleles Affect Wheat Grain Quality.

    Science.gov (United States)

    Casebow, Richard; Hadley, Caroline; Uppal, Rajneet; Addisu, Molla; Loddo, Stefano; Kowalski, Ania; Griffiths, Simon; Gooding, Mike

    2016-01-01

    The effects of dwarfing alleles (reduced height, Rht) in near isogenic lines on wheat grain quality are characterised in field experiments and related to effects on crop height, grain yield and GA-sensitivity. Alleles included those that conferred GA-insensitivity (Rht-B1b, Rht-B1c, Rht-D1b, Rht-D1c) as well as those that retained GA-sensitivity (rht(tall), Rht8, Rht8 + Ppd-D1a, Rht12). Full characterisation was facilitated by including factors with which the effects of Rht alleles are known to interact for grain yield (i.e. system, [conventional or organic]; tillage intensity [plough-based, minimum or zero]; nitrogen fertilizer level [0-450 kg N/ha]; and genetic backgrounds varying in height [cvs Maris Huntsman, Maris Widgeon, and Mercia]. Allele effects on mean grain weight and grain specific weight were positively associated with final crop height: dwarfing reduced these quality criteria irrespective of crop management or GA-sensitivity. In all but two experiments the effects of dwarfing alleles on grain nitrogen and sulphur concentrations were closely and negatively related to effects on grain yield, e.g. a quadratic relationship between grain yield and crop height manipulated by the GA-insensitive alleles was mirrored by quadratic relationships for nitrogen and sulphur concentrations: the highest yields and most dilute concentrations occurred around 80cm. In one of the two exceptional experiments the GA-insensitive Rht-B1b and Rht-B1c significantly (Pgrain nitrogen concentration in the absence of an effect on yield, and in the remaining experiment the GA-sensitive Rht8 significantly reduced both grain yield and grain nitrogen concentration simultaneously. When Rht alleles diluted grain nitrogen concentration, N:S ratios and SDS-sedimentation volumes were often improved. Hagberg falling number (HFN) was negatively related to crop height but benefits from dwarfing were only seen for GA-insensitive alleles. For HFN, therefore, there was the strongest evidence for

  1. Effect of Planting Date on Physiological and MorphologicalCharacteristics of Four Canola Cultivars in Yasouj

    Directory of Open Access Journals (Sweden)

    M. H. Fallah Heki

    2012-08-01

    Full Text Available In order to study the physiological and morphological characteristics of canola cultivars at different planting dates, an experiment was carried out in 2008-2009 at the Agriculture Research Station of Yasouj. A factorial with Randomized Complete Block Design with four replications was conducted. Four planting dates (September 12, September 22, October 2 and October 12 and four cultivars (Zarfam, Okapi, Elite and SLM-046 were used in this study. Results showed that cultivars and planting dates had significant effects on more characteristics. In addition, interaction of planting date and cultivar was significant on plant height, height to lowest silique, number of branches, growth indices and grain yield. Zarfam and Elite cultivars had lower initial fluorescence (Fo and higher maximum fluorescence (Fm and photochemical capacity of photosystem II (Fv/Fm than Okapi and SLM-046 cultivars. Elite cultivar at September 12 planting date had the highest plant height (173 cm and height to lowest silique (87.5 cm and Okapi cultivar at October 12 planting date showed the lowest plant height (91 cm and height to lowest silique (43.7 cm. At September 12 planting date, Elite cultivar had the greatest leaf area index (5.21 and grain yield (5231 kg/ha. At other planting dates, Zarfam cultivar because of priority in leaf area index, crop growth rate and total dry matter have the greatest grain yield than other cultivars. In general, seems at September 12 planting date, Elite cultivar and for delayed sowing, Zarfam cultivar had better reaction than other cultivars.

  2. Alignment of dust grains in ionized regions

    Science.gov (United States)

    Anderson, Nels; Watson, William D.

    1993-01-01

    The rate at which charged dust grains in a plasma are torqued by passing ions and electrons is calculated. When photo-emission of electrons is not important, attraction of ions by the grain monopole potential increases the rate at which the grains' spins are dealigned by nearly an order of magnitude. Consequently, the energy density of the magnetic field required to align grains in an H II region may be increased by about an order of magnitude. In contrast, electric dipole and quadrupole moments are unlikely to produce large dealignment rates for grains of modest length-to-width ratio. Nonetheless, for positively charged grains these higher-order moments likely prevent monopole repulsion of ions from reducing the dealignment rate far below that for neutral grains. The presence of positive grain charge therefore does not greatly facilitate grain alignment in an H II region.

  3. Concepts on Low Temperature Mechanical Grain Growth

    Energy Technology Data Exchange (ETDEWEB)

    Sharon, John Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Metallurgy and Materials Joining Dept.; Boyce, Brad Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Metallurgy and Materials Joining Dept.

    2013-11-01

    In metals, as grain size is reduced below 100nm, conventional dislocation plasticity is suppressed resulting in improvements in strength, hardness, and wears resistance. Existing and emerging components use fine grained metals for these beneficial attributes. However, these benefits can be lost in service if the grains undergo growth during the component’s lifespan. While grain growth is traditionally viewed as a purely thermal process that requires elevated temperature exposure, recent evidence shows that some metals, especially those with nanocrystalline grain structure, can undergo grain growth even at room temperature or below due to mechanical loading. This report has been assembled to survey the key concepts regarding how mechanical loads can drive grain coarsening at room temperature and below. Topics outlined include the atomic level mechanisms that facilitate grain growth, grain boundary mobility, and the impact of boundary structure, loading scheme, and temperature.

  4. Impact fracture experiments simulating interstellar grain-grain collisions

    Science.gov (United States)

    Freund, Friedemann; Chang, Sherwood; Dickinson, J. Thomas

    1990-01-01

    Oxide and silicate grains condensing during the early phases of the formation of the solar system or in the outflow of stars are exposed to high partial pressures of the low-z elements H, C, N and O and their simple gaseous compounds. Though refractory minerals are nominally anhydrous and non-carbonate, if they crystallize in the presence of H2O, N2 and CO or CO2 gases, they dissolve traces of the gaseous components. The question arises: How does the presence of dissolved gases or gas components manifest itself when grain-grain collisions occur. What are the gases emitted when grains are shattered during a collision event. Researchers report on fracture experiments in ultrahigh vacuum (UHV, approximately less than 10 to the -8th power mbar) designed to measure (by means of a quadrupole mass spectrometer, QMS, with microns to ms time resolution) the emission of gases and vapors during and after impact (up to 1.5 sec). Two terrestrial materials were chosen which represent structural and compositional extremes: olivine (San Carlos, AZ), a densely packed Mg-Fe(2+) silicate from the upper mantle, available as 6 to 12 mm single crystals, and obsidian (Oregon), a structurally open, alkaline-SiO2-rich volcanic glass. In the olivine crystals OH- groups have been identified spectroscopically, as well as H2 molecules. Obsidian is a water-rich glass containing OH- besides H2O molecules. Olivine from the mantle often contains CO2, either as CO2-rich fluid in fluid inclusions or structurally dissolved or both. By analogy to synthetic glasses CO2 in the obsidian may be present in form of CO2 molecules in voids of molecular dimensions, or as carbonate anions, CO3(2-). No organic molecules have been detected spectroscopically in either material. Results indicate that refractory oxide/silicates which contain dissolved traces of the H2O and CO/CO2 components but no spectroscopically detectable traces of organics may release complex H-C-O (possibly H-C-N-O) molecules upon fracture

  5. The equilibrium and oscillations of dust grains in a discharge

    International Nuclear Information System (INIS)

    Cramer, N.F.; Vladimirov, S.V.

    2000-01-01

    Full text: In a vertically oriented laboratory discharge plasma, dust particles are negatively charged and usually levitate in the sheath or pre-sheath region under the balance of gravitational, electrostatic (due to the sheath electric field) and plasma (such as the ion drag) forces. The ion flow, in addition to a direct (dragging) influence, is also responsible for the generation of associated collective plasma processes which can strongly affect the vertical arrangement of the grains, such as in the case of supersonic flows when a wake field is generated. Under some circumstances, the grains may form into a stable regular structure, the dust-plasma crystal, which can support a variety of lattice waves. The mechanism of formation of the crystal is still not well understood. The charge of the dust particles appears mainly due to electron and ion current onto the grain surfaces. The dependence of the dust particle charge on the sheath parameters has an important effect on the oscillations and equilibrium of dust grains in the vertical plane, leading to a possible disruption of the equilibrium position of the particle. Recent experiments at Sydney have shown the formation of the crystalline and liquid states of arrays of dust grains, and the self-excitation of vertical oscillations of the grains. To model these experiments, we have studied the interaction of dust grains with the plasma, including the charging of the grain, with a number of different models. A fluid model of the plasma to study the dust trapping, disruptions of the equilibrium, and the modes of transverse waves (vertically polarized) in arrays of grains in a dust-plasma crystal. It is found that for a grain radius greater than a critical value, there is no equilibrium position. Possible vertical oscillations about the stable equilibrium may develop high amplitudes, thus leading to a fall of the oscillating grain onto the electrode when the potential barrier is overcome. It is found that the charge

  6. A constitutive model of nanocrystalline metals based on competing grain boundary and grain interior deformation mechanisms

    KAUST Repository

    Gurses, Ercan; El Sayed, Tamer S.

    2011-01-01

    In this work, a viscoplastic constitutive model for nanocrystalline metals is presented. The model is based on competing grain boundary and grain interior deformation mechanisms. In particular, inelastic deformations caused by grain boundary

  7. Dispersal, phenology and predicted abundance of the larger grain ...

    African Journals Online (AJOL)

    The phenology and dispersal of the larger grain borer (LGB) in Africa is described, and comparisons are made between prediction of LGB numbers from laboratory studies and predictions from multiple linear models derived from trapping data in the field. The models were developed in Mexico and Kenya, using ...

  8. The MARTINI force field : Coarse grained model for biomolecular simulations

    NARCIS (Netherlands)

    Marrink, Siewert J.; Risselada, H. Jelger; Yefimov, Serge; Tieleman, D. Peter; de Vries, Alex H.

    2007-01-01

    We present an improved and extended version of our coarse grained lipid model. The new version, coined the MARTINI force field, is parametrized in a systematic way, based on the reproduction of partitioning free energies between polar and apolar phases of a large number of chemical compounds. To

  9. An evolutionarily conserved gene, FUWA, plays a role in determining panicle architecture, grain shape and grain weight in rice.

    Science.gov (United States)

    Chen, Jun; Gao, He; Zheng, Xiao-Ming; Jin, Mingna; Weng, Jian-Feng; Ma, Jin; Ren, Yulong; Zhou, Kunneng; Wang, Qi; Wang, Jie; Wang, Jiu-Lin; Zhang, Xin; Cheng, Zhijun; Wu, Chuanyin; Wang, Haiyang; Wan, Jian-Min

    2015-08-01

    Plant breeding relies on creation of novel allelic combinations for desired traits. Identification and utilization of beneficial alleles, rare alleles and evolutionarily conserved genes in the germplasm (referred to as 'hidden' genes) provide an effective approach to achieve this goal. Here we show that a chemically induced null mutation in an evolutionarily conserved gene, FUWA, alters multiple important agronomic traits in rice, including panicle architecture, grain shape and grain weight. FUWA encodes an NHL domain-containing protein, with preferential expression in the root meristem, shoot apical meristem and inflorescences, where it restricts excessive cell division. Sequence analysis revealed that FUWA has undergone a bottleneck effect, and become fixed in landraces and modern cultivars during domestication and breeding. We further confirm a highly conserved role of FUWA homologs in determining panicle architecture and grain development in rice, maize and sorghum through genetic transformation. Strikingly, knockdown of the FUWA transcription level by RNA interference results in an erect panicle and increased grain size in both indica and japonica genetic backgrounds. This study illustrates an approach to create new germplasm with improved agronomic traits for crop breeding by tapping into evolutionary conserved genes. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  10. Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain

    International Nuclear Information System (INIS)

    Liu Jianguo; Qian Min; Cai Guoliang; Yang Jianchang; Zhu Qingsen

    2007-01-01

    The variations among six rice cultivars in cadmium (Cd) uptake and translocation were investigated with pot soil experiments. The results showed that only a very small portion (0.73%) of Cd absorbed by rice plant was transferred into grain. With regard to plant total Cd uptake, Cd concentrations and quantity accumulations in roots, stems and leaves, the differences among the cultivars (between the largest one and the smallest one) were less than one time. But for Cd concentrations and Cd quantity accumulations in the grains, the differences were more than five and eight times, respectively. With respect to Cd distribution portions in plant organs, the diversities among the cultivars were also small in roots, stems and leaves, but much larger in grains. Grain Cd concentrations correlated positively and significantly (P < 0.01) with Cd quantity accumulations in plant, Cd distribution ratios to aboveground parts, and especially with Cd distribution ratios from aboveground parts to the grain. The results indicated that Cd concentration in rice grain was governed somewhat by plant Cd uptake and the transport of Cd from root to shoot, and in a greater extent, by the transport of Cd from shoot to grain. Cd was not distributed evenly in different products after rice grain processing. The average Cd concentration in cortex (embryo) was five times more than that in chaff and polished rice. With regard to Cd quantity accumulation in the products, near 40% in cortex (embryo), 45% in polished rice and 15% in chaff averagely

  11. Contribution to the study of the effect of a low dose of gamma irradiation on seeds and tubers before planting; Contribution a l'etude de l'effet d'une irradiation gamma a faible dose sur les graines et tubercules avant plantation

    Energy Technology Data Exchange (ETDEWEB)

    Silvy, A. [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1968-07-01

    From 1962 to 1965, 25 tests have been made with carrots (1 variety), radish (3 varieties), spinach (2 var.), tomatoes (2 var.), potatoes (2 var.), barley (2 var.), rice (3 var.) and corn (1 var.), with the object of studying the interest for agriculture of seed and tuber gamma irradiation at low dose before planting. These tests were made in the laboratory, in greenhouses and in the open field, all necessary care being taken for a valuable statistical analysis of- the results. Special attention was paid to the homogeneity of plant material by controlling more particularly moisture content of seeds and the storage conditions of tubers. The observations concerned germination, growth at early stages, development phases and yield of leaves, roots and fruit. Some stimulation cases are observed. For tomatoes, it is found that stimulation cases occur at extreme moisture content and not in the range of mean moisture content which corresponds to maximum radioresistance. The demonstration of these effects is related to varieties, complementary treatments, conditions of cultivation and observation criteria. In most cases, they are short-lived and suitable modifications of seed conditioning produce, upon controls, an effect equivalent to that of irradiation. In conclusion, it seems very unlikely - considering our cultivation methods - that seed and tuber irradiation before planting could be of interest for agriculture. (authors) [French] Dans le but d'etudier l'interet agricole d'une irradiation gamma a faible dose des graines et tubercules avant plantation, 25 essais ont ete mis en place de 1962 a 1965 sur carotte (1 var.), radis (3 var.), epinard (2 var.), tomate (2 var.), pomme de terse (2 var.), orge (2 var.), riz (3 var.) et mais (1 var. ). Les essais ont ete faits au laboratoire, dans les serres et en plein champ avec toutes les precautions requises pour une analyse statistique valable des resultats. On a prete une attention particuliere a l

  12. Contribution to the study of the effect of a low dose of gamma irradiation on seeds and tubers before planting; Contribution a l'etude de l'effet d'une irradiation gamma a faible dose sur les graines et tubercules avant plantation

    Energy Technology Data Exchange (ETDEWEB)

    Silvy, A [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1968-07-01

    From 1962 to 1965, 25 tests have been made with carrots (1 variety), radish (3 varieties), spinach (2 var.), tomatoes (2 var.), potatoes (2 var.), barley (2 var.), rice (3 var.) and corn (1 var.), with the object of studying the interest for agriculture of seed and tuber gamma irradiation at low dose before planting. These tests were made in the laboratory, in greenhouses and in the open field, all necessary care being taken for a valuable statistical analysis of- the results. Special attention was paid to the homogeneity of plant material by controlling more particularly moisture content of seeds and the storage conditions of tubers. The observations concerned germination, growth at early stages, development phases and yield of leaves, roots and fruit. Some stimulation cases are observed. For tomatoes, it is found that stimulation cases occur at extreme moisture content and not in the range of mean moisture content which corresponds to maximum radioresistance. The demonstration of these effects is related to varieties, complementary treatments, conditions of cultivation and observation criteria. In most cases, they are short-lived and suitable modifications of seed conditioning produce, upon controls, an effect equivalent to that of irradiation. In conclusion, it seems very unlikely - considering our cultivation methods - that seed and tuber irradiation before planting could be of interest for agriculture. (authors) [French] Dans le but d'etudier l'interet agricole d'une irradiation gamma a faible dose des graines et tubercules avant plantation, 25 essais ont ete mis en place de 1962 a 1965 sur carotte (1 var.), radis (3 var.), epinard (2 var.), tomate (2 var.), pomme de terse (2 var.), orge (2 var.), riz (3 var.) et mais (1 var. ). Les essais ont ete faits au laboratoire, dans les serres et en plein champ avec toutes les precautions requises pour une analyse statistique valable des resultats. On a prete une attention particuliere a l'homogeneite du materiel

  13. Carpel size, grain filling, and morphology determine individual grain weight in wheat.

    Science.gov (United States)

    Xie, Quan; Mayes, Sean; Sparkes, Debbie L

    2015-11-01

    Individual grain weight is a major yield component in wheat. To provide a comprehensive understanding of grain weight determination, the carpel size at anthesis, grain dry matter accumulation, grain water uptake and loss, grain morphological expansion, and final grain weight at different positions within spikelets were investigated in a recombinant inbred line mapping population of bread wheat (Triticum aestivum L.)×spelt (Triticum spelta L.). Carpel size, grain dry matter and water accumulation, and grain dimensions interacted strongly with each other. Furthermore, larger carpels, a faster grain filling rate, earlier and longer grain filling, more grain water, faster grain water absorption and loss rates, and larger grain dimensions were associated with higher grain weight. Frequent quantitative trait locus (QTL) coincidences between these traits were observed, particularly those on chromosomes 2A, 3B, 4A, 5A, 5DL, and 7B, each of which harboured 16-49 QTLs associated with >12 traits. Analysis of the allelic effects of coincident QTLs confirmed their physiological relationships, indicating that the complex but orderly grain filling processes result mainly from pleiotropy or the tight linkages of functionally related genes. After grain filling, distal grains within spikelets were smaller than basal grains, primarily due to later grain filling and a slower initial grain filling rate, followed by synchronous maturation among different grains. Distal grain weight was improved by increased assimilate availability from anthesis. These findings provide deeper insight into grain weight determination in wheat, and the high level of QTL coincidences allows simultaneous improvement of multiple grain filling traits in breeding. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Effects of planting method on agronomic characteristics, yield and yield components of sweet and super sweet corn (Zea mays L. varieties under saline conditions

    Directory of Open Access Journals (Sweden)

    F. Faridi

    2016-05-01

    Full Text Available In order to evaluate the effects of planting pattern on morphological, Phonological, yield and yield components of sweet and super sweet corn (Zea mays L. varieties under saline conditions, a field experiment was conducted as split plots based on a randomized complete block design with four replications. Planting pattern in 3 levels included one row in ridge, two row in ridge and furrow planting, as a main plot and varieties in 4 levels sweet corn with 2 types (KSc 403 su, Merit and super sweet with two types (Basin, obsession as sub plots. The results showed that planting pattern had significant differences on plant height, ear height, leaf length, leaf width, number of kernel per row, number of rows per ear and 1000-kernel weight. but had no significant effects on the length of tassel, number of leaf/plant, number of leaf per plant above ear, stem diameter, time of anthesis, time of silking, anthesis silking interval ASI, grain yield, biological yield and harvest index. Different varieties had significant effects on the total characteristics studied except number of leaf above ear and stem diameter. Most of the conservable grain yield and harvest index was in Obsession variety (10 kg and 39%, respectively and the least was seen in Basin (4 kg and 20%, respectively. The result showed that use of furrow planting pattern for sweet and super sweet corn in saline conditions can effects result in higher yield.

  15. Effect of freeze-thaw cycling on grain size of biochar.

    Science.gov (United States)

    Liu, Zuolin; Dugan, Brandon; Masiello, Caroline A; Wahab, Leila M; Gonnermann, Helge M; Nittrouer, Jeffrey A

    2018-01-01

    Biochar may improve soil hydrology by altering soil porosity, density, hydraulic conductivity, and water-holding capacity. These properties are associated with the grain size distributions of both soil and biochar, and therefore may change as biochar weathers. Here we report how freeze-thaw (F-T) cycling impacts the grain size of pine, mesquite, miscanthus, and sewage waste biochars under two drainage conditions: undrained (all biochars) and a gravity-drained experiment (mesquite biochar only). In the undrained experiment plant biochars showed a decrease in median grain size and a change in grain-size distribution consistent with the flaking off of thin layers from the biochar surface. Biochar grain size distribution changed from unimodal to bimodal, with lower peaks and wider distributions. For plant biochars the median grain size decreased by up to 45.8% and the grain aspect ratio increased by up to 22.4% after 20 F-T cycles. F-T cycling did not change the grain size or aspect ratio of sewage waste biochar. We also observed changes in the skeletal density of biochars (maximum increase of 1.3%), envelope density (maximum decrease of 12.2%), and intraporosity (porosity inside particles, maximum increase of 3.2%). In the drained experiment, mesquite biochar exhibited a decrease of median grain size (up to 4.2%) and no change of aspect ratio after 10 F-T cycles. We also document a positive relationship between grain size decrease and initial water content, suggesting that, biochar properties that increase water content, like high intraporosity and pore connectivity large intrapores, and hydrophilicity, combined with undrained conditions and frequent F-T cycles may increase biochar breakdown. The observed changes in biochar particle size and shape can be expected to alter hydrologic properties, and thus may impact both plant growth and the hydrologic cycle.

  16. Reactive oxygen species induced by heat stress during grain filling of rice (Oryza sativa L.) are involved in occurrence of grain chalkiness.

    Science.gov (United States)

    Suriyasak, Chetphilin; Harano, Keisuke; Tanamachi, Koichiro; Matsuo, Kazuhiro; Tamada, Aina; Iwaya-Inoue, Mari; Ishibashi, Yushi

    2017-09-01

    Heat stress during grain filling increases rice grain chalkiness due to increased activity of α-amylase, which hydrolyzes starch. In rice and barley seeds, reactive oxygen species (ROS) produced after imbibition induce α-amylase activity via regulation of gibberellin (GA) and abscisic acid (ABA) levels during seed germination. Here, we examined whether ROS is involved in induction of grain chalkiness by α-amylase in developing rice grains under heat stress. To elucidate the role of ROS in grain chalkiness, we grew post-anthesis rice plants (Oryza sativa L. cv. Koshihikari) under control (25°C) or heat stress (30°C) conditions with or without antioxidant (dithiothreitol) treatment. The developing grains were analyzed for expression of NADPH oxidases, GA biosynthesis genes (OsGA3ox1, OsGA20ox1), ABA catabolism genes (OsABA8'OH1, OsABA8'OH2) and an α-amylase gene (OsAmy3E), endogenous H 2 O 2 content and the grain quality. In grains exposed to heat stress, the expression of NADPH oxidase genes (especially, OsRbohB, OsRbohD, OsRbohF and OsRbohI) and the ROS content increased. Heat stress also increased the expression of OsGA3ox1, OsGA20ox1, OsABA8'OH1, OsABA8'OH2 and OsAmy3E. On the other hand, dithiothreitol treatment reduced the effects of heat stress on the expression of these genes and significantly reduced grain chalkiness induced by heat stress. These results suggest that, similar to cereal seed germination mechanism, ROS produced under heat stress is involved in α-amylase induction in maturating rice grains through GA/ABA metabolism, and consequently caused grain chalkiness. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Modelling fungal sink competitiveness with grains for assimilates in wheat infected by a biotrophic pathogen

    Science.gov (United States)

    Bancal, Marie-Odile; Hansart, Amandine; Sache, Ivan; Bancal, Pierre

    2012-01-01

    Background and Aims Experiments have shown that biotrophic fungi divert assimilates for their growth. However, no attempt has been made either to account for this additional sink or to predict to what extent it competes with both grain filling and plant reserve metabolism for carbon. Fungal sink competitiveness with grains was quantified by a mixed experimental–modelling approach based on winter wheat infected by Puccinia triticina. Methods One week after anthesis, plants grown under controlled conditions were inoculated with varying loads. Sporulation was recorded while plants underwent varying degrees of shading, ensuring a range of both fungal sink and host source levels. Inoculation load significantly increased both sporulating area and rate. Shading significantly affected net assimilation, reserve mobilization and sporulating area, but not grain filling or sporulation rates. An existing carbon partitioning (source–sink) model for wheat during the grain filling period was then enhanced, in which two parameters characterize every sink: carriage capacity and substrate affinity. Fungal sink competitiveness with host sources and sinks was modelled by representing spore production as another sink in diseased wheat during grain filling. Key Results Data from the experiment were fitted to the model to provide the fungal sink parameters. Fungal carriage capacity was 0·56 ± 0·01 µg dry matter °Cd−1 per lesion, much less than grain filling capacity, even in highly infected plants; however, fungal sporulation had a competitive priority for assimilates over grain filling. Simulation with virtual crops accounted for the importance of the relative contribution of photosynthesis loss, anticipated reserve depletion and spore production when light level and disease severity vary. The grain filling rate was less reduced than photosynthesis; however, over the long term, yield loss could double because the earlier reserve depletion observed here would shorten the

  18. Effects, tolerance mechanisms and management of salt stress in grain legumes.

    Science.gov (United States)

    Farooq, Muhammad; Gogoi, Nirmali; Hussain, Mubshar; Barthakur, Sharmistha; Paul, Sreyashi; Bharadwaj, Nandita; Migdadi, Hussein M; Alghamdi, Salem S; Siddique, Kadambot H M

    2017-09-01

    Salt stress is an ever-present threat to crop yields, especially in countries with irrigated agriculture. Efforts to improve salt tolerance in crop plants are vital for sustainable crop production on marginal lands to ensure future food supplies. Grain legumes are a fascinating group of plants due to their high grain protein contents and ability to fix biological nitrogen. However, the accumulation of excessive salts in soil and the use of saline groundwater are threatening legume production worldwide. Salt stress disturbs photosynthesis and hormonal regulation and causes nutritional imbalance, specific ion toxicity and osmotic effects in legumes to reduce grain yield and quality. Understanding the responses of grain legumes to salt stress and the associated tolerance mechanisms, as well as assessing management options, may help in the development of strategies to improve the performance of grain legumes under salt stress. In this manuscript, we discuss the effects, tolerance mechanisms and management of salt stress in grain legumes. The principal inferences of the review are: (i) salt stress reduces seed germination (by up to more than 50%) either by inhibiting water uptake and/or the toxic effect of ions in the embryo, (ii) salt stress reduces growth (by more than 70%), mineral uptake, and yield (by 12-100%) due to ion toxicity and reduced photosynthesis, (iii) apoplastic acidification is a good indicator of salt stress tolerance, (iv) tolerance to salt stress in grain legumes may develop through excretion and/or compartmentalization of toxic ions, increased antioxidant capacity, accumulation of compatible osmolytes, and/or hormonal regulation, (v) seed priming and nutrient management may improve salt tolerance in grain legumes, (vi) plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi may help to improve salt tolerance due to better plant nutrient availability, and (vii) the integration of screening, innovative breeding, and the development of

  19. A comparison between corn and grain sorghum fermentation rates, distillers dried grains with solubles composition, and lipid profiles

    Science.gov (United States)

    Interest in utilization of feedstocks other than corn for fuel ethanol production has been increasing due to political as well as environmental reasons. Grain sorghum is an identified alternative that has a number of potential benefits relative to corn in both composition and agronomic traits. Compo...

  20. Effects of Favorable Alleles for Water-Soluble Carbohydrates at Grain Filling on Grain Weight under Drought and Heat Stresses in Wheat

    Science.gov (United States)

    Chang, Xiaoping; Li, Runzhi; Jing, Ruilian

    2014-01-01

    Drought, heat and other abiotic stresses during grain filling can result in reductions in grain weight. Conserved water-soluble carbohydrates (WSC) at early grain filling play an important role in partial compensation of reduced carbon supply. A diverse population of 262 historical winter wheat accessions was used in the present study. There were significant correlations between 1000-grain weight (TGW) and four types of WSC, viz. (1) total WSC at the mid-grain filling stage (14 days after flowering) produced by leaves and non-leaf organs; (2) WSC contributed by current leaf assimilation during the mid-grain filling; (3) WSC in non-leaf organs at the mid-grain filling, excluding the current leaf assimilation; and (4) WSC used for respiration and remobilization during the mid-grain filling. Association and favorable allele analyses of 209 genome-wide SSR markers and the four types of WSC were conducted using a mixed linear model. Seven novel favorable WSC alleles exhibited positive individual contributions to TGW, which were verified under 16 environments. Dosage effects of pyramided favorable WSC alleles and significantly linear correlations between the number of favorable WSC alleles and TGW were observed. Our results suggested that pyramiding more favorable WSC alleles was effective for improving both WSC and grain weight in future wheat breeding programs. PMID:25036550

  1. Composition en vitamines et en minéraux des graines de Pterocarpus santalinoides L'Hér. ex De. (Papilionoideae, une plante alimentaire et médicinale de l'Afrique de l'Ouest

    Directory of Open Access Journals (Sweden)

    Ayéna, AC.

    2017-01-01

    Full Text Available Vitamins and Minerals Composition in Pterocarpus santalinoides L'Hér. ex De (Papilionoideae Seeds: a Food and Medicinal Plant of West Africa. Studies were undertaken in order to contribute to the reduction of deficiencies in vitamins and minerals through the use of natural resources.Vitamins and micronutrients compositions of raw or cooked seeds of P. santalinoides L'Hér. ex De. (Papilionoideae, morphotypes 1 and 2 were determined by standardized methods AFNOR and AOAC. In the dry matter, the pro vitamin A content levels ranged from 7 to 100 µg/g and those of vitamin C from 40.103to 155.103 µg/g. The mean levels of total ash, magnesium, potassium, phosphorus, sodium, calcium, iron and chloride in the dry materials were respectively 3.54%; 0.12%; 0.68% ; 0.26% ; 0.06% ; 0.07% ; 0.05% ; 0.42%. Cooking caused vitamin reductions. Raw and cooked seeds can contribute to improve pro vitamin A and vitamin C intake. The results of this study show the relevance of valorizing of Pterocarpus santalinoide.

  2. Origins of Shear Jamming for Frictional Grains

    Science.gov (United States)

    Wang, Dong; Zheng, Hu; Ren, Jie; Dijksman, Joshua; Bares, Jonathan; Behringer, Robert

    2016-11-01

    Granular systems have been shown to be able to behave like solids, under shear, even when their densities are below the critical packing fraction for frictionless isotropic jamming. To understand such a phenomena, called shear jamming, the question we address here is: how does shear bring a system from a unjammed state to a jammed state, where the coordination number, Z, is no less than 3, the isotropic jamming point for frictional grains? Since Z can be used to distinguish jammed states from unjammed ones, it is vital to understand how shear increases Z. We here propose a set of three particles in contact, denoted as a trimer, as the basic unit to characterize the deformation of the system. Trimers, stabilized by inter-grain friction, fail under a certain amount of shear and bend to make extra contacts to regain stability. By defining a projection operator of the opening angle of the trimer to the compression direction in the shear, O, we see a systematically linear decrease of this quantity with respect to shear strain, demonstrating the bending of trimers as expected. In addition, the average change of O from one shear step to the next shows a good collapse when plotted against Z, indicating a universal behavior in the process of shear jamming. We acknowledge support from NSF DMR1206351, NASA NNX15AD38G, the William M. Keck Foundation and a RT-MRSEC Fellowship.

  3. Analysis of recrystallization and grain growth in ultra low carbon steels using EBSD

    International Nuclear Information System (INIS)

    Novillo, E.; Petite, M. M.; Bocos, J. L.; Gutierrez, I.

    2004-01-01

    This work is focused on the study of recrystallization texture and micro texture in a cold rolled ultra low carbon steel and its relationship with the global texture. Aspects like nucleation, evolution of the volume fraction and grain size were considered. An important grain selection associated with a significant size and number advantages of the recrystallized grains is observed. This grain selection gives rise to the development, at the latest stages of recrystallization, of a strong γ-fibre associated to good drawing properties. (Author) 24 refs

  4. Grain alignment in starless cores

    International Nuclear Information System (INIS)

    Jones, T. J.; Bagley, M.; Krejny, M.; Andersson, B.-G.; Bastien, P.

    2015-01-01

    We present near-IR polarimetry data of background stars shining through a selection of starless cores taken in the K band, probing visual extinctions up to A V ∼48. We find that P K /τ K continues to decline with increasing A V with a power law slope of roughly −0.5. Examination of published submillimeter (submm) polarimetry of starless cores suggests that by A V ≳20 the slope for P versus τ becomes ∼−1, indicating no grain alignment at greater optical depths. Combining these two data sets, we find good evidence that, in the absence of a central illuminating source, the dust grains in dense molecular cloud cores with no internal radiation source cease to become aligned with the local magnetic field at optical depths greater than A V ∼20. A simple model relating the alignment efficiency to the optical depth into the cloud reproduces the observations well.

  5. A grain-boundary diffusion model of dynamic grain growth during superplastic deformation

    International Nuclear Information System (INIS)

    Kim, Byung-Nam; Hiraga, Keijiro; Sakka, Yoshio; Ahn, Byung-Wook

    1999-01-01

    Dynamic grain growth during superplastic deformation is modelled on the basis of a grain-boundary diffusion mechanism. On the grain boundary where a static and a dynamic potential difference coexist, matter transport along the boundary is assumed to contribute to dynamic grain growth through depositing the matter on the grain surface located opposite to the direction of grain-boundary migration. The amount of the diffusive matter during deformation is calculated for an aggregate of spherical grains and is converted to the increment of mean boundary migration velocity. The obtained relationship between the strain rate and the dynamic grain growth rate is shown to be independent of deformation mechanisms, provided that the grain growth is controlled by grain-boundary diffusion. The strain dependence, strain-rate dependence and temperature dependence of grain growth predicted from this model are consistent with those observed in superplastic ZrO 2 -dispersed Al 2 O 3

  6. Applied thermodynamics: Grain boundary segregation

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel; Zheng, L.; Hofmann, S.; Šob, Mojmír

    2014-01-01

    Roč. 16, č. 3 (2014), s. 1462-1484 ISSN 1099-4300 R&D Projects: GA ČR(CZ) GAP108/12/0311; GA ČR GAP108/12/0144; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68378271 ; RVO:68081723 Keywords : interfacial segregation * Gibbs energy of segregation * enthalpy * entropy * volume * grain boundaries * iron Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.502, year: 2014

  7. Ten per cent more grain

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1967-08-15

    At a low estimate, ten per cent of stored grain is lost every year to insect pests. In this article, based on a lecture given earlier this year in Switzerland, Dr. Harry E. Goresline, Food Radiation Specialist of the Food and Agriculture Organisation, now assisting the Joint FAO/IAEA Division of Atomic Energy in Food and Agriculture, explains how use of radiation can help to prevent losses and the research which has taken place to ensure its safety

  8. High Heat Load Properties of Ultra Fine Grain Tungsten

    International Nuclear Information System (INIS)

    Zhou, Z.; Du, J.; Ge, C.; Linke, J.; Pintsuk, G.; Song, S.X.

    2007-01-01

    Full text of publication follows: Tungsten is increasingly considered as a promising candidate armour materials facing the plasma in tokamaks for medium to high heat flux components (EAST, ASDEX, ITER). Fabrication tungsten with ultra fine grain size is considered as an effective way to ameliorate some disadvantages of tungsten, such as its brittleness at room temperature. But the research data on the performance of ultra fine grain tungsten is still very limit. In this work, high heat load properties of pure ultra-fine grain tungsten have been studied. The ultra fine grain tungsten samples with average grain size of 0.2 μm, 1 μm and 3 μm were fabricated by resistance sintering under ultra high pressure. The annealing experiments for the investigation of the material resistance against grain growth have been done by annealing samples in a vacuum furnace at different temperature holding for 2 hours respectively. It is found that recrystallization and grain growth occur at heating temperature of 1250 deg. c. The finer the initial grain sizes of tungsten, the smaller its grain growth grain. The effects of transient high thermal loads (off normal events like disruptions) on tungsten surface morphology have been performed in electron beam test facility JUDITH. The thermal loads tests have been carried out with 4 ms pulses at different power density of 0.22, 0.33, 0.44, 0.55 and 0.88 GW/m 2 respectively. Horizontal cracks formed for all tungsten samples at 0.44 GW/m 2 . Particle erosions occurred for tungsten with 3 μm size at 0.33 GW/m 2 and for tungsten with 0.2 and 1 μm size at 0.55 GW/m 2 . The weight loss of tungsten with 0.2, 1 and 3 μm size are 2,0.1,0.6 mg respectively at 0.88 GW/m 2 . The effects of a large number of very short transient repetitive thermal loads (ELM-like) on tungsten surface morphology also have been performed by using a fundamental wave of a YAG laser. It is found that tungsten with 0.2 μm size has the best performance. (authors)

  9. High Heat Load Properties of Ultra Fine Grain Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.; Du, J.; Ge, C. [Lab. of Special Ceramic and P/M, University of Science and Technology, 100083 Beijing (China); Linke, J.; Pintsuk, G. [FZJ-Forschungszentrum Juelich GmbH, Association Euratom-FZJ, Institut fur Plasmaphysik, Postfach 1913, D-52425 Juelich (Germany); Song, S.X. [Research Center on Fusion Materials (RCFM), University of Science and Technology Beijing (USTB), 100083 Beijing (China)

    2007-07-01

    Full text of publication follows: Tungsten is increasingly considered as a promising candidate armour materials facing the plasma in tokamaks for medium to high heat flux components (EAST, ASDEX, ITER). Fabrication tungsten with ultra fine grain size is considered as an effective way to ameliorate some disadvantages of tungsten, such as its brittleness at room temperature. But the research data on the performance of ultra fine grain tungsten is still very limit. In this work, high heat load properties of pure ultra-fine grain tungsten have been studied. The ultra fine grain tungsten samples with average grain size of 0.2 {mu}m, 1 {mu}m and 3 {mu}m were fabricated by resistance sintering under ultra high pressure. The annealing experiments for the investigation of the material resistance against grain growth have been done by annealing samples in a vacuum furnace at different temperature holding for 2 hours respectively. It is found that recrystallization and grain growth occur at heating temperature of 1250 deg. c. The finer the initial grain sizes of tungsten, the smaller its grain growth grain. The effects of transient high thermal loads (off normal events like disruptions) on tungsten surface morphology have been performed in electron beam test facility JUDITH. The thermal loads tests have been carried out with 4 ms pulses at different power density of 0.22, 0.33, 0.44, 0.55 and 0.88 GW/m{sup 2} respectively. Horizontal cracks formed for all tungsten samples at 0.44 GW/m{sup 2}. Particle erosions occurred for tungsten with 3 {mu}m size at 0.33 GW/m{sup 2} and for tungsten with 0.2 and 1 {mu}m size at 0.55 GW/m{sup 2}. The weight loss of tungsten with 0.2, 1 and 3 {mu}m size are 2,0.1,0.6 mg respectively at 0.88 GW/m{sup 2}. The effects of a large number of very short transient repetitive thermal loads (ELM-like) on tungsten surface morphology also have been performed by using a fundamental wave of a YAG laser. It is found that tungsten with 0.2 {mu}m size has

  10. Current research progress in grain refinement of cast magnesium alloys: A review article

    International Nuclear Information System (INIS)

    Ali, Yahia; Qiu, Dong; Jiang, Bin; Pan, Fusheng; Zhang, Ming-Xing

    2015-01-01

    Grain refinement of cast magnesium alloys, particularly in magnesium–aluminium (Mg–Al) based alloys, has been an active research topic in the past two decades, because it has been considered as one of the most effective approaches to simultaneously increase the strength, ductility and formability. The development of new grain refiners was normally based on the theories/models that were established through comprehensive and considerable studies of grain refinement in cast Al alloys. Generally, grain refinement in cast Al can be achieved through either inoculation treatment, which is a process of adding, or in situ forming, foreign particles to promote heterogeneous nucleation rate, or restricting grain growth by controlling the constitutional supercooling or both. But, the concrete and tangible grain refinement mechanism in cast metals is still not fully understood and there are a number of controversies. Therefore, most of the new developed grain refiners for Mg–Al based alloys are not as efficient as the commercially available ones, such as zirconium in non-Al containing Mg alloys. To facilitate the research in grain refinement of cast magnesium alloys, this review starts with highlighting the theoretical aspects of grain refinement in cast metals, followed by reviewing the latest research progress in grain refinement of magnesium alloys in terms of the solute effect and potent nucleants

  11. Current research progress in grain refinement of cast magnesium alloys: A review article

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Yahia; Qiu, Dong [School of Mechanical and Mining Engineering, University of Queensland, St Lucia, QLD 4072 (Australia); Jiang, Bin; Pan, Fusheng [College of Materials Science and Engineering, Chongqing University, Chongqing 400030 (China); Zhang, Ming-Xing, E-mail: Mingxing.Zhang@uq.edu.au [School of Mechanical and Mining Engineering, University of Queensland, St Lucia, QLD 4072 (Australia)

    2015-01-15

    Grain refinement of cast magnesium alloys, particularly in magnesium–aluminium (Mg–Al) based alloys, has been an active research topic in the past two decades, because it has been considered as one of the most effective approaches to simultaneously increase the strength, ductility and formability. The development of new grain refiners was normally based on the theories/models that were established through comprehensive and considerable studies of grain refinement in cast Al alloys. Generally, grain refinement in cast Al can be achieved through either inoculation treatment, which is a process of adding, or in situ forming, foreign particles to promote heterogeneous nucleation rate, or restricting grain growth by controlling the constitutional supercooling or both. But, the concrete and tangible grain refinement mechanism in cast metals is still not fully understood and there are a number of controversies. Therefore, most of the new developed grain refiners for Mg–Al based alloys are not as efficient as the commercially available ones, such as zirconium in non-Al containing Mg alloys. To facilitate the research in grain refinement of cast magnesium alloys, this review starts with highlighting the theoretical aspects of grain refinement in cast metals, followed by reviewing the latest research progress in grain refinement of magnesium alloys in terms of the solute effect and potent nucleants.

  12. On Presolar Stardust Grains from CO Classical Novae

    Science.gov (United States)

    Iliadis, Christian; Downen, Lori N.; José, Jordi; Nittler, Larry R.; Starrfield, Sumner

    2018-03-01

    About 30%–40% of classical novae produce dust 20–100 days after the outburst, but no presolar stardust grains from classical novae have been unambiguously identified yet. Although several studies claimed a nova paternity for certain grains, the measured and simulated isotopic ratios could only be reconciled, assuming that the grains condensed after the nova ejecta mixed with a much larger amount of close-to-solar matter. However, the source and mechanism of this potential post-explosion dilution of the ejecta remains a mystery. A major problem with previous studies is the small number of simulations performed and the implied poor exploration of the large nova parameter space. We report the results of a different strategy, based on a Monte Carlo technique, that involves the random sampling over the most important nova model parameters: the white dwarf composition; the mixing of the outer white dwarf layers with the accreted material before the explosion; the peak temperature and density; the explosion timescales; and the possible dilution of the ejecta after the outburst. We discuss and take into account the systematic uncertainties for both the presolar grain measurements and the simulation results. Only those simulations that are consistent with all measured isotopic ratios of a given grain are accepted for further analysis. We also present the numerical results of the model parameters. We identify 18 presolar grains with measured isotopic signatures consistent with a CO nova origin, without assuming any dilution of the ejecta. Among these, the grains G270_2, M11-334-2, G278, M11-347-4, M11-151-4, and Ag26 have the highest probability of a CO nova paternity.

  13. Grain nucleation and growth during phase transformations

    DEFF Research Database (Denmark)

    Offerman, S.E.; Dijk, N.H. van; Sietsma, J.

    2002-01-01

    of individual grains. Our measurements show that the activation energy for grain nucleation is at least two orders of magnitude smaller than that predicted by thermodynamic models. The observed growth curves of the newly formed grains confirm the parabolic growth model but also show three fundamentally...... different types of growth. Insight into the grain nucleation and growth mechanisms during phase transformations contributes to the development of materials with optimal mechanical properties....

  14. On the elastic stiffness of grain boundaries

    International Nuclear Information System (INIS)

    Zhang Tongyi; Hack, J.E.

    1992-01-01

    The elastic softening of grain boundaries is evaluated from the starting point of grain boundary energy. Several examples are given to illustrate the relationship between boundary energy and the extent of softening. In general, a high grain boundary energy is associated with a large excess atomic volume in the boundary region. The consequent reduction in grain boundary stiffness can represent a significant fraction of that observed in bulk crystals. (orig.)

  15. Spinodal decomposition in fine grained materials

    Indian Academy of Sciences (India)

    Unknown

    ηηi has a value of unity inside the ith grain, decreases smoothly through the grain boundary region to zero out- side the grain. For a symmetric alloy of composition, c = 0⋅⋅5, our results show that microstructural evolution depends largely on the difference in the grain boundary energies, γγgb, of A-rich (αα) and B-rich (ββ) ...

  16. Conception, definition, measuring procedure of grain size

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    1976-12-01

    The conception, definition, measuring procedure of ''Grain Size'' were surveyed. A concept ''grain diameter'' was introduced after deriving a calculation formula for the grain diameter for using the Comparison (simple) and Intercept(detailed) procedure. As an example and putting into practice, the grain diameter determination was carried out by means of the Comparison procedure for a UO 2 pellet used in a densification experiment. (auth.)

  17. Investigation of grain subdivision at very low plastic strains in a magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hong, X. [Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Godfrey, A., E-mail: awgodfrey@mail.tsinghua.edu.cn [Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Zhang, C.L.; Liu, W. [Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Chapuis, A. [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China)

    2017-05-02

    In-situ tensile loading combined with electron backscatter diffraction (EBSD) measurements has been used to investigate the plastic deformation of a magnesium alloy. A novel EBSD mapping is presented, based on construction of maps showing the rotation axis component in the sample coordinate frame of the misorientation from each pixel to the average grain orientation in the deformed sample. Using this mapping it is shown that the pattern of grain subdivision, even at very low plastic strains, can be revealed simultaneously in a large number of grains. In addition, it is demonstrated how maps of the rotation axis corresponding to the misorientation between each pixel and the initial grain orientation provide complimentary information directly useful for crystal plasticity analysis. A detailed slip system analysis shows that the grain subdivision can be accounted for according to the low energy dislocation structures (LEDS) model of work-hardening by differences in the slip amplitudes within different parts of each grain.

  18. New strategy for evaluating grain cooking quality of progenies in dry bean breeding programs

    Directory of Open Access Journals (Sweden)

    Bruna Line Carvalho

    2017-04-01

    Full Text Available The methodology available for evaluating the cooking quality of dry beans is impractical for assessing a large number of progenies. The aims of this study were to propose a new strategy for evaluating cooking quality of grains and to estimate genetic and phenotypic parameters using a selection index. A total of 256 progenies of the 13thcycle of a recurrent selection program were evaluated at three locations for yield, grain type, and cooked grains. Samples of grains from each progeny were placing in a cooker and the percentage of cooked grains was assessed. The new strategy for evaluating cooking quality was efficient because it allowed a nine-fold increase in the number of progenies evaluated per unit time in comparison to available methods. The absence of association between grain yield and percentage of cooked grains or grain type indicated that it is possible to select high yielding lines with excellent grain aspect and good cooking properties using a selection index.

  19. Características de frutos do meloeiro variando número e posição de frutos na planta Yield and quality of muskmelon varying fruit number and position in the plant, in protected cultivation

    Directory of Open Access Journals (Sweden)

    Roberto Cleiton F de Queiroga

    2009-03-01

    Full Text Available O trabalho foi conduzido em ambiente protegido, em área experimental da Universidade Federal de Viçosa, de 26/09/05 a 24/01/06, onde se objetivou avaliar a produtividade e a qualidade de frutos do meloeiro, variando número e posição de frutos na planta. Os tratamentos constaram de número de frutos por planta (1 e 2 e posição de fixação de frutos na planta (entre 5(0 e 8(0 nós e 15(0 e 18(0 nós. O delineamento experimental utilizado foi de blocos ao acaso no esquema fatorial 2 x 2, com 5 repetições. Utilizou-se a 'Coronado F1', variedade reticulatus do grupo Cantaloupe, cultivada em vasos plásticos de 11,5 dm³ preenchidos com fibra de coco comercial. Plantas com um fruto apresentaram maior duração do período de colheita, área foliar (AF (5(0 - 8(0 nó, massa média de frutos (MMF, reticulação da casca (RC, espessura da polpa (EP, comprimento (CF e diâmetro de frutos (DF, sólidos solúveis totais (SST, açúcares solúveis totais (AST, açúcares não redutores (ANR e menor produtividade comercial (PCF. A condução com frutos fixados entre os 15(0 e 18(0 nós, comparado a frutos fixados entre os 5(0 e 8(0 nós, proporcionou maior número de dias para iniciar e terminar a colheita, AF, MMF, PCF, EP, CF e DF (em plantas com 1 fruto, índice de maturação, AST, ANR e menor RC, acidez total titulável e concentração de açúcares redutores.The study was carried out in a greenhouse of the Universidade Federal de Viçosa, Minas Gerais State, Brazil, from 26/09/05 to 24/01/06, to evaluate the yield and quality of the melon fruit, varying the number and position of fruits on the plant. The treatments consisted of fruit number per plant (1 and 2 and fruit position in the plant (5th - 8th node and 15th - 18th node. A randomized block design was used, in a 2 x 2 factorial scheme, with 5 replications. The 'Coronado F1', variety reticulatus of the Cantaloupe group was cultivated in 11.5 dm³ plastic pots with commercial coconut

  20. Bioactive compounds in whole grain wheat

    NARCIS (Netherlands)

    Mateo Anson, N.

    2010-01-01

    Bread can be healthier! Consuming whole-grain foods can prevent cardiovascular diseases, type-2 diabetes and metabolic syndrome. This is due to bioactive compounds in whole grain, such as antioxidants and anti-inflammatory compounds. We found that the different fractions of a wheat grain vary much

  1. Grain growth studies on nanocrystalline Ni powder

    International Nuclear Information System (INIS)

    Rane, G.K.; Welzel, U.; Mittemeijer, E.J.

    2012-01-01

    The microstructure of nanocrystalline Ni powder produced by ball-milling and its thermal stability were investigated by applying different methods of X-ray diffraction line-profile analysis: single-line analysis, whole powder-pattern modelling and the (modified) Warren–Averbach method were employed. The kinetics of grain growth were investigated by both ex-situ and in-situ X-ray diffraction measurements. With increasing milling time, the grain-size reduction is accompanied by a considerable narrowing of the size distribution and an increase in the microstrain. Upon annealing, initial, rapid grain growth occurs, accompanied by the (almost complete) annihilation of microstrain. For longer annealing times, the grain-growth kinetics depend on the initial microstructure: a smaller microstrain with a broad grain-size distribution leads to linear grain growth, followed by parabolic grain growth, whereas a larger microstrain with a narrow grain-size distribution leads to incessant linear grain growth. These effects have been shown to be incompatible with grain-boundary curvature driven growth. The observed kinetics are ascribed to the role of excess free volume at the grain boundaries of nanocrystalline material and the prevalence of an “abnormal grain-growth” mechanism.

  2. Structure and chemistry of the sorghum grain

    Science.gov (United States)

    Sorghum is grown around the world and often under harsh and variable environmental conditions. Combined with the high degree of genetic diversity present in sorghum, this can result in substantial variability in grain composition and grain quality. While similar to other cereal grains such as maize ...

  3. The use of PCR assay for quality testing of grain of winter wheat cultivated in organic, integrated, conventional system and monoculture in phytopathological aspect

    Directory of Open Access Journals (Sweden)

    Aleksander Łukanowski

    2012-12-01

    Full Text Available The aim of experiments was to evaluate the occurrence of fungi on grain of winter wheat cv. Roma cultivated in four systems on the experimental fields owned by the Institute of Soil Science and Plant Cultivation. Among pathogenic species, fungi from genus Fusarium dominated. Their number was the lowest on grain harvested in organic system and the highest in integrated one. Saprotrophic species were represented mainly by Alternaria alternata, which occurred the most often in organic system. Determination of F. avenaceum, F. culmorum and F. poae with microscope was confirmed with a PCR assay. All isolates of F. culmorum and F. poae gave an amplification product of Tri 5 gene coding the possibility of trichocene production, while none of isolates of F. avenaceum.

  4. Dust grain resonant capture: A statistical study

    Science.gov (United States)

    Marzari, F.; Vanzani, V.; Weidenschilling, S. J.

    1993-01-01

    A statistical approach, based on a large number of simultaneous numerical integrations, is adopted to study the capture in external mean motion resonances with the Earth of micron size dust grains perturbed by solar radiation and wind forces. We explore the dependence of the resonant capture phenomenon on the initial eccentricity e(sub 0) and perihelion argument w(sub 0) of the dust particle orbit. The intensity of both the resonant and dissipative (Poynting-Robertson and wind drag) perturbations strongly depends on the eccentricity of the particle while the perihelion argument determines, for low inclination, the mutual geometrical configuration of the particle's orbit with respect to the Earth's orbit. We present results for three j:j+1 commensurabilities (2:3, 4:5 and 6:7) and also for particle sizes s = 15, 30 microns. This study extends our previous work on the long term orbital evolution of single dust particles trapped into resonances with the Earth.

  5. Testing for entanglement with periodic coarse graining

    Science.gov (United States)

    Tasca, D. S.; Rudnicki, Łukasz; Aspden, R. S.; Padgett, M. J.; Souto Ribeiro, P. H.; Walborn, S. P.

    2018-04-01

    Continuous-variable systems find valuable applications in quantum information processing. To deal with an infinite-dimensional Hilbert space, one in general has to handle large numbers of discretized measurements in tasks such as entanglement detection. Here we employ the continuous transverse spatial variables of photon pairs to experimentally demonstrate entanglement criteria based on a periodic structure of coarse-grained measurements. The periodization of the measurements allows an efficient evaluation of entanglement using spatial masks acting as mode analyzers over the entire transverse field distribution of the photons and without the need to reconstruct the probability densities of the conjugate continuous variables. Our experimental results demonstrate the utility of the derived criteria with a success rate in entanglement detection of ˜60 % relative to 7344 studied cases.

  6. Relationships between Plant Diversity and Grasshopper Diversity and Abundance in the Little Missouri National Grassland

    Directory of Open Access Journals (Sweden)

    David H. Branson

    2011-01-01

    Full Text Available A continuing challenge in orthopteran ecology is to understand what determines grasshopper species diversity at a given site. In this study, the objective was to determine if variation in grasshopper abundance and diversity between 23 sites in western North Dakota (USA could be explained by variation in plant species richness and diversity. In this system with relatively low plant diversity, grasshopper species richness and abundance were not significantly associated with plant species richness in either year. Although a number of significant associations between plant diversity and grasshopper diversity were found through regression analyses, results differed greatly between years indicating that plant species richness and diversity did not lead to strong effects on grasshopper diversity metrics. Plant species richness appears to be too coarse grained to lead to accurate predictions of grasshopper species richness in this system dominated by generalist grasshopper species.

  7. Correlation and path analysis of grain yield and morphological traits in test–cross populations of maize

    NARCIS (Netherlands)

    Sreckov, Z.; Nastasic, A.; Bocanski, J.; Djalovic, I.; Vukosavljev, M.; Jockovic, B.

    2011-01-01

    One of the goals of this paper was to determine correlation between grain yield, like the most important agronomic trait, and traits of the plant and ear that are influencing on the grain yield, in two test-cross populations, which are formed by crossing progenies of NSU(1) population after 17

  8. The Role of Grain Dynamics in the Onset of Sediment Transport

    Science.gov (United States)

    Clark, A., IV; Shattuck, M. D.; Ouellette, N. T.; O'Hern, C.

    2016-12-01

    Despite decades of research, the grain-scale mechanisms that control the onset of sediment transport are still not well understood. A large collection of data, known as the Shields curve, shows that Θ c, which is the minimum dimensionless shear stress at the bed for grains to move, is primarily a function of the shear Reynolds number Re*. To understand this collapse, it is typically assumed that the onset of grain motion is determined by the conditions at which fluid forces violate static equilibrium for surface grains. Re* compares the grain size to the size of the viscous sublayer in the fluid flow, so the relevant fluid lift and drag forces vary with Re*. A complimentary approach, which remains relatively unexplored, is to ask instead when mobilized grains can stop. In this case, Re* is the ratio of two important time scales related to grain motion: (1) the time for a grain to equilibrate to the fluid flow and (2) the time for the shear stress to accelerate a grain over the characteristic bed roughness. Thus, Re* controls whether grains are accelerated significantly between collisions with the bed. To test how this effect relates to the Shields curve, we perform simulations of granular beds sheared by a model fluid flow, where Re* is varied only through the fluid-grain coupling, which alters the grain dynamics. We find good qualitative agreement with the Shields curve, and the quantitative discrepancies are consistent with lift forces calculations at varying Re*. Our results suggest that the onset of sediment transport may be better described as when mobile grains are able to stop, which varies significantly with Re*, and theoretical descriptions that account for this effect may be more successful than those that consider only static equilibrium.

  9. A Review of the Effects of Major Atmospheric Pollutants on Pollen Grains, Pollen Content, and Allergenicity

    Directory of Open Access Journals (Sweden)

    Hélène Sénéchal

    2015-01-01

    Full Text Available This review summarizes the available data related to the effects of air pollution on pollen grains from different plant species. Several studies carried out either on in situ harvested pollen or on pollen exposed in different places more or less polluted are presented and discussed. The different experimental procedures used to monitor the impact of pollution on pollen grains and on various produced external or internal subparticles are listed. Physicochemical and biological effects of artificial pollution (gaseous and particulate on pollen from different plants, in different laboratory conditions, are considered. The effects of polluted pollen grains, subparticles, and derived aeroallergens in animal models, in in vitro cell culture, on healthy human and allergic patients are described. Combined effects of atmospheric pollutants and pollen grains-derived biological material on allergic population are specifically discussed. Within the notion of “polluen,” some methodological biases are underlined and research tracks in this field are proposed.

  10. A Review of the Effects of Major Atmospheric Pollutants on Pollen Grains, Pollen Content, and Allergenicity

    Science.gov (United States)

    Sénéchal, Hélène; Visez, Nicolas; Charpin, Denis; Shahali, Youcef; Peltre, Gabriel; Biolley, Jean-Philippe; Lhuissier, Franck; Couderc, Rémy; Yamada, Ohri; Malrat-Domenge, Audrey; Pham-Thi, Nhân; Poncet, Pascal; Sutra, Jean-Pierre

    2015-01-01

    This review summarizes the available data related to the effects of air pollution on pollen grains from different plant species. Several studies carried out either on in situ harvested pollen or on pollen exposed in different places more or less polluted are presented and discussed. The different experimental procedures used to monitor the impact of pollution on pollen grains and on various produced external or internal subparticles are listed. Physicochemical and biological effects of artificial pollution (gaseous and particulate) on pollen from different plants, in different laboratory conditions, are considered. The effects of polluted pollen grains, subparticles, and derived aeroallergens in animal models, in in vitro cell culture, on healthy human and allergic patients are described. Combined effects of atmospheric pollutants and pollen grains-derived biological material on allergic population are specifically discussed. Within the notion of “polluen,” some methodological biases are underlined and research tracks in this field are proposed. PMID:26819967

  11. Stress-assisted grain growth in nanocrystalline metals: Grain boundary mediated mechanisms and stabilization through alloying

    International Nuclear Information System (INIS)

    Zhang, Yang; Tucker, Garritt J.; Trelewicz, Jason R.

    2017-01-01

    The mechanisms of stress-assisted grain growth are explored using molecular dynamics simulations of nanoindentation in nanocrystalline Ni and Ni-1 at.% P as a function of grain size and deformation temperature. Grain coalescence is primarily confined to the high stress region beneath the simulated indentation zone in nanocrystalline Ni with a grain size of 3 nm. Grain orientation and atomic displacement vector mapping demonstrates that coalescence transpires through grain rotation and grain boundary migration, which are manifested in the grain interior and grain boundary components of the average microrotation. A doubling of the grain size to 6 nm and addition of 1 at.% P eliminates stress-assisted grain growth in Ni. In the absence of grain coalescence, deformation is accommodated by grain boundary-mediated dislocation plasticity and thermally activated in pure nanocrystalline Ni. By adding solute to the grain boundaries, the temperature-dependent deformation behavior observed in both the lattice and grain boundaries inverts, indicating that the individual processes of dislocation and grain boundary plasticity will exhibit different activity based on boundary chemistry and deformation temperature.

  12. Grain-size sorting and slope failure in experimental subaqueous grain flows

    NARCIS (Netherlands)

    Kleinhans, M.G.; Asch, Th.W.J. van

    2005-01-01

    Grain-size sorting in subaqueous grain flows of a continuous range of grain sizes is studied experimentally with three mixtures. The observed pattern is a combination of stratification and gradual segregation. The stratification is caused by kinematic sieving in the grain flow. The segregation is

  13. 75 FR 76254 - Official Performance and Procedural Requirements for Grain Weighing Equipment and Related Grain...

    Science.gov (United States)

    2010-12-08

    ... DEPARTMENT OF AGRICULTURE Grain Inspection, Packers and Stockyards Administration 7 CFR Part 802 [Docket GIPSA-2010-FGIS-0012] RIN 0580-AB19 Official Performance and Procedural Requirements for Grain Weighing Equipment and Related Grain Handling Systems AGENCY: Grain Inspection, Packers and Stockyards...

  14. Computer simulation of grain growth in HAZ

    Science.gov (United States)

    Gao, Jinhua

    Two different models for Monte Carlo simulation of normal grain growth in metals and alloys were developed. Each simulation model was based on a different approach to couple the Monte Carlo simulation time to real time-temperature. These models demonstrated the applicability of Monte Carlo simulation to grain growth in materials processing. A grain boundary migration (GBM) model coupled the Monte Carlo simulation to a first principle grain boundary migration model. The simulation results, by applying this model to isothermal grain growth in zone-refined tin, showed good agreement with experimental results. An experimental data based (EDB) model coupled the Monte Carlo simulation with grain growth kinetics obtained from the experiment. The results of the application of the EDB model to the grain growth during continuous heating of a beta titanium alloy correlated well with experimental data. In order to acquire the grain growth kinetics from the experiment, a new mathematical method was developed and utilized to analyze the experimental data on isothermal grain growth. Grain growth in the HAZ of 0.2% Cu-Al alloy was successfully simulated using the EDB model combined with grain growth kinetics obtained from the experiment and measured thermal cycles from the welding process. The simulated grain size distribution in the HAZ was in good agreement with experimental results. The pinning effect of second phase particles on grain growth was also simulated in this work. The simulation results confirmed that by introducing the variable R, degree of contact between grain boundaries and second phase particles, the Zener pinning model can be modified as${D/ r} = {K/{Rf}}$where D is the pinned grain size, r the mean size of second phase particles, K a constant, f the area fraction (or the volume fraction in 3-D) of second phase.

  15. Effect of Water Stress and Spraying of Potassium Iodide on Agronomic Traits and Grain Yield of Bread Wheat (Tiriticum aistivum L. Genotypes

    Directory of Open Access Journals (Sweden)

    N. Pooladsaz

    2011-01-01

    Full Text Available Abstract In order to study the effect of water stress and chemical desiccation (potassium iodide on grain yield and agronomic traits of 8 wheat genotypes, a field experiment was conducted using a split split plot design based on a randomized complete block design with three replications in Torogh Agricultural and Natural Resources Research Station (Mashhad, Iran in 2006-2007 and 2007-2008. Main plots were assigned to two levels of water stress treatments; D1: optimum irrigation, and D2: cessation of watering from anthesis to maturity stages. Sub plots were assigned to eight bread wheat genotypes: 9103, 9116, 9203, 9205, 9207, 9212, C-81-10 and Cross Shahi (drought sensitive; and photosynthetic conditions with two levels: P1: using of current photosynthesis and P2: inhibition of current photosynthesis were in sub-sub plots. The results showed that the effects of water stress and photosynthetic conditions on number of total florets per spike (NTF/S, seed set percentage (SSP, spike harvest index (SHI, duration of grain filling (DGF and grain yield (GY were significant. There was a significant difference between genotypes for spike dry weight at anthesis (SDWA, number of spikletes per spike (NSP/S, NTF/S, SSP, SHI, spike partitioning coefficient (SPC, plant height (PLH, spike length (SL, DGF and GY. 9103 genotype produced the most GY (7870 kg/ha under D1P1 treatment. The least GY ( 1114 kg/ha related to Cross Shahi cultivar under D2P2 treatment. Considering that C-81-10, 9103 and 9116 genotypes showed the highest grain yield, potential for reserves and remobilizations of assimilates under different irrigation conditions thus, these genotypes could be introduced as promising in breeding programs for arid and semi-arid regions. Keywords: Triticum aestivum L., Cessation of watering, Chemical Desiccation, Spike, Grain yield

  16. Experimental Study of Dust Grain Charging

    Science.gov (United States)

    Spann, James F; Venturini, Catherine C.; Comfort, Richard H.; Mian, Abbas M.

    1999-01-01

    The results of an experimental study of the charging mechanisms of micron size dust grains are presented. Individual dust grains are electrodynamically suspended and exposed to an electron beam of known energy and flux, and to far ultraviolet radiation of known wavelength and intensity. Changes in the charge-to-mass ratio of the grain are directly measured as a function of incident beam (electron and/or photon), grain size and composition. Comparisons of our results to theoretical models that predict the grain response are presented.

  17. Physical properties of five grain dust types.

    Science.gov (United States)

    Parnell, C B; Jones, D D; Rutherford, R D; Goforth, K J

    1986-01-01

    Physical properties of grain dust derived from five grain types (soybean, rice, corn, wheat, and sorghum) were measured and reported. The grain dusts were obtained from dust collection systems of terminal grain handling facilities and were assumed to be representative of grain dust generated during the handling process. The physical properties reported were as follows: particle size distributions and surface area measurements using a Coulter Counter Model TAII; percent dust fractions less than 100 micron of whole dust; bulk density; particle density; and ash content. PMID:3709482

  18. Application of X-ray methods to assess grain vulnerability to damage resulting from multiple loads

    International Nuclear Information System (INIS)

    Zlobecki, A.

    1995-01-01

    The aim of the work is to describe wheat grain behavior under multiple dynamic loads with various multipliers. The experiments were conducted on Almari variety grain. Grain moisture was 11, 16, 21 and 28%. A special ram stand was used for loading the grain. The experiments were carr