Monte Carlo simulation of grain growth
Directory of Open Access Journals (Sweden)
Paulo Blikstein
1999-07-01
Full Text Available Understanding and predicting grain growth in Metallurgy is meaningful. Monte Carlo methods have been used in computer simulations in many different fields of knowledge. Grain growth simulation using this method is especially attractive as the statistical behavior of the atoms is properly reproduced; microstructural evolution depends only on the real topology of the grains and not on any kind of geometric simplification. Computer simulation has the advantage of allowing the user to visualize graphically the procedures, even dynamically and in three dimensions. Single-phase alloy grain growth simulation was carried out by calculating the free energy of each atom in the lattice (with its present crystallographic orientation and comparing this value to another one calculated with a different random orientation. When the resulting free energy is lower or equal to the initial value, the new orientation replaces the former. The measure of time is the Monte Carlo Step (MCS, which involves a series of trials throughout the lattice. A very close relationship between experimental and theoretical values for the grain growth exponent (n was observed.
Stochastic theory of grain growth
International Nuclear Information System (INIS)
Hu Haiyun; Xing Xiusan.
1990-11-01
The purpose of this note is to set up a stochastic theory of grain growth and to derive the statistical distribution function and the average value of the grain radius so as to match them with the experiment further. 8 refs, 1 fig
Kinetics of Grain Growth in 718 Ni-Base Superalloy
Directory of Open Access Journals (Sweden)
Huda Z.
2014-10-01
Full Text Available The Haynes® 718 Ni-base superalloy has been investigated by use of modern material characterization, metallographic and heat treatment equipment. Grain growth annealing experiments at temperatures in the range of 1050 – 1200 oC (1323–1473K for time durations in the range of 20 min-22h have been conducted. The kinetic equations and an Arrhenius-type equation have been applied to compute the grain-growth exponent n and the activation energy for grain growth, Qg, for the investigated alloy. The grain growth exponent, n, was computed to be in the range of 0.066-0.206; and the n values have been critically discussed in relation to the literature. The activation energy for grain growth, Qg, for the investigated alloy has been computed to be around 440 kJ/mol; and the Qg data for the investigated alloy has been compared with other metals and alloys and ceramics; and critically analyzed in relation to our results.
International Nuclear Information System (INIS)
Hastings, I.J.; Scoberg, J.A.; Walden, W.
1979-06-01
Grain growth studies have been carried out on UO 2 to provide data for the fuel modelling program and to evaluate fuel fabricated in commissioning the Mixed Oxide Fuel Fabrication Laboratory at Chalk River Nuclear Laboratories. Fuel examined includes natural UO 2 commercially fabricated from ADU powder for CANDU reactors; natural UO 2 commercially fabricated from AU powder; natural UO 2 from ADU and AU powder, fabricated in the MOFFL; and commercially fabricated UO 2 enriched 1.7, 4.5, and 9.6 wt. percent U-235 in U. Samples were step-annealed in vacuo at 1870-2070 K for up to 32.5 h. All data fit a (grain size)sup(2.5) versus annealing time relationship. Apparent activation energy for grain growth, Q, depends on fuel type and varies from 150+-10 kJ/mol for early AU powder to 360+-10 kJ/mol for pellets from ADU fabricated in the MOFFL. Grain sizes calculated using the laboratory equation in a fuel performance code tend to be greater than those measured in irradiated natural fuel, suggesting irradiation-induced inhibition of grain growth. However, any inhibition is equivalent to that expected for a systematic 5 percent underpredicition in reactor power. (author)
Grain growth of metal uranium; Rast zrna kod metalnog urana
Energy Technology Data Exchange (ETDEWEB)
Cerovic, D [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)
1965-11-15
In order to study the grain growth, uranium samples were deformed by molding up to 50% and then by rolling at 600 deg C for recrystallization. Grains obtained by recrystallization having diameter 10 - 15 {mu} were heated at different temperatures and during different time intervals to record the changes of grain size. Characteristic grain growth values, rate constants, time exponent and activation energy, were calculated by using the obtained data. U cilju proucavanja rasta zrna uzorci urana deformisani su valjanjem do 50%, a zatim zareni na 600 deg C da rekristalisu. Rekristalizacijom su dobijena sitna zrna, precnika 10-15 {mu} koja su zatim podvrgavana zarenju pri raznim temperaturama i razlicitm vremenskim intervalima, pri cemu je pracena promena velicine zrna. Na osnovu dobijenih podataka izracunate su karakteristicne velicine rasta zrna: konstante brzine, vremenski eksponent i energija aktivacije (author)
Grain Growth in Nanocrystalline Mg-Al Thin Films
Energy Technology Data Exchange (ETDEWEB)
Kruska, Karen; Rohatgi, Aashish; Vemuri, Venkata Rama Ses; Kovarik, Libor; Moser, Trevor H.; Evans, James E.; Browning, Nigel D.
2017-10-05
An improved understanding of grain growth kinetics in nanocrystalline materials, and in metals and alloys in general, is of continuing interest to the scientific community. In this study, Mg - Al thin films containing ~10 wt.% Al and with 14.5 nm average grain size were produced by magnetron-sputtering and subjected to heat-treatments. The grain growth evolution in the early stages of heat treatment at 423 K (150 °C), 473 K (200 °C) and 573K (300 °C) was observed with transmission electron microscopy and analyzed based upon the classical equation developed by Burke and Turnbull. The grain growth exponent was found to be 7±2 and the activation energy for grain growth was 31.1±13.4 kJ/mol, the latter being significantly lower than in bulk Mg-Al alloys. The observed grain growth kinetics are explained by the Al supersaturation in the matrix and the pinning effects of the rapidly forming beta precipitates and possibly shallow grain boundary grooves. The low activation energy is attributed to the rapid surface diffusion which is dominant in thin film systems.
Grain nucleation and growth during phase transformations
DEFF Research Database (Denmark)
Offerman, S.E.; Dijk, N.H. van; Sietsma, J.
2002-01-01
of individual grains. Our measurements show that the activation energy for grain nucleation is at least two orders of magnitude smaller than that predicted by thermodynamic models. The observed growth curves of the newly formed grains confirm the parabolic growth model but also show three fundamentally...... different types of growth. Insight into the grain nucleation and growth mechanisms during phase transformations contributes to the development of materials with optimal mechanical properties....
Concepts on Low Temperature Mechanical Grain Growth
Energy Technology Data Exchange (ETDEWEB)
Sharon, John Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Metallurgy and Materials Joining Dept.; Boyce, Brad Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Metallurgy and Materials Joining Dept.
2013-11-01
In metals, as grain size is reduced below 100nm, conventional dislocation plasticity is suppressed resulting in improvements in strength, hardness, and wears resistance. Existing and emerging components use fine grained metals for these beneficial attributes. However, these benefits can be lost in service if the grains undergo growth during the component’s lifespan. While grain growth is traditionally viewed as a purely thermal process that requires elevated temperature exposure, recent evidence shows that some metals, especially those with nanocrystalline grain structure, can undergo grain growth even at room temperature or below due to mechanical loading. This report has been assembled to survey the key concepts regarding how mechanical loads can drive grain coarsening at room temperature and below. Topics outlined include the atomic level mechanisms that facilitate grain growth, grain boundary mobility, and the impact of boundary structure, loading scheme, and temperature.
Lyapunov Exponent and Out-of-Time-Ordered Correlator's Growth Rate in a Chaotic System.
Rozenbaum, Efim B; Ganeshan, Sriram; Galitski, Victor
2017-02-24
It was proposed recently that the out-of-time-ordered four-point correlator (OTOC) may serve as a useful characteristic of quantum-chaotic behavior, because, in the semiclassical limit ℏ→0, its rate of exponential growth resembles the classical Lyapunov exponent. Here, we calculate the four-point correlator C(t) for the classical and quantum kicked rotor-a textbook driven chaotic system-and compare its growth rate at initial times with the standard definition of the classical Lyapunov exponent. Using both quantum and classical arguments, we show that the OTOC's growth rate and the Lyapunov exponent are, in general, distinct quantities, corresponding to the logarithm of the phase-space averaged divergence rate of classical trajectories and to the phase-space average of the logarithm, respectively. The difference appears to be more pronounced in the regime of low kicking strength K, where no classical chaos exists globally. In this case, the Lyapunov exponent quickly decreases as K→0, while the OTOC's growth rate may decrease much slower, showing a higher sensitivity to small chaotic islands in the phase space. We also show that the quantum correlator as a function of time exhibits a clear singularity at the Ehrenfest time t_{E}: transitioning from a time-independent value of t^{-1}lnC(t) at ttime at t>t_{E}. We note that the underlying physics here is the same as in the theory of weak (dynamical) localization [Aleiner and Larkin, Phys. Rev. B 54, 14423 (1996)PRBMDO0163-182910.1103/PhysRevB.54.14423; Tian, Kamenev, and Larkin, Phys. Rev. Lett. 93, 124101 (2004)PRLTAO0031-900710.1103/PhysRevLett.93.124101] and is due to a delay in the onset of quantum interference effects, which occur sharply at a time of the order of the Ehrenfest time.
Grain growth kinetics for B2O3-doped ZnO ceramics
Directory of Open Access Journals (Sweden)
Yuksel Berat
2015-06-01
Full Text Available Grain growth kinetics in 0.1 to 2 mol % B2O3-added ZnO ceramics was studied by using a simplified phenomenological grain growth kinetics equation Gn = K0 · t · exp(-Q/RT together with the physical properties of sintered samples. The samples, prepared by conventional ceramics processing techniques, were sintered at temperatures between 1050 to 1250 °C for 1, 2, 3, 5 and 10 hours in air. The kinetic grain growth exponent value (n and the activation energy for the grain growth of the 0.1 mol % B2O3-doped ZnO ceramics were found to be 2.8 and 332 kJ/mol, respectively. By increasing B2O3 content to 1 mol %, the grain growth exponent value (n and the activation energy decreased to 2 and 238 kJ/mol, respectively. The XRD study revealed the presence of a second phase, Zn3B2O6 formed when the B2O3 content was > 1 mol %. The formation of Zn3B2O6 phase gave rise to an increase of the grain growth kinetic exponent and the grain growth activation energy. The kinetic grain growth exponent value (n and the activation energy for the grain growth of the 2 mol % B2O3-doped ZnO ceramics were found to be 3 and 307 kJ/mol, respectively. This can be attributed to the second particle drag (pinning mechanism in the liquid phase sintering.
Grain growth studies on nanocrystalline Ni powder
International Nuclear Information System (INIS)
Rane, G.K.; Welzel, U.; Mittemeijer, E.J.
2012-01-01
The microstructure of nanocrystalline Ni powder produced by ball-milling and its thermal stability were investigated by applying different methods of X-ray diffraction line-profile analysis: single-line analysis, whole powder-pattern modelling and the (modified) Warren–Averbach method were employed. The kinetics of grain growth were investigated by both ex-situ and in-situ X-ray diffraction measurements. With increasing milling time, the grain-size reduction is accompanied by a considerable narrowing of the size distribution and an increase in the microstrain. Upon annealing, initial, rapid grain growth occurs, accompanied by the (almost complete) annihilation of microstrain. For longer annealing times, the grain-growth kinetics depend on the initial microstructure: a smaller microstrain with a broad grain-size distribution leads to linear grain growth, followed by parabolic grain growth, whereas a larger microstrain with a narrow grain-size distribution leads to incessant linear grain growth. These effects have been shown to be incompatible with grain-boundary curvature driven growth. The observed kinetics are ascribed to the role of excess free volume at the grain boundaries of nanocrystalline material and the prevalence of an “abnormal grain-growth” mechanism.
Computer simulation of grain growth in HAZ
Gao, Jinhua
Two different models for Monte Carlo simulation of normal grain growth in metals and alloys were developed. Each simulation model was based on a different approach to couple the Monte Carlo simulation time to real time-temperature. These models demonstrated the applicability of Monte Carlo simulation to grain growth in materials processing. A grain boundary migration (GBM) model coupled the Monte Carlo simulation to a first principle grain boundary migration model. The simulation results, by applying this model to isothermal grain growth in zone-refined tin, showed good agreement with experimental results. An experimental data based (EDB) model coupled the Monte Carlo simulation with grain growth kinetics obtained from the experiment. The results of the application of the EDB model to the grain growth during continuous heating of a beta titanium alloy correlated well with experimental data. In order to acquire the grain growth kinetics from the experiment, a new mathematical method was developed and utilized to analyze the experimental data on isothermal grain growth. Grain growth in the HAZ of 0.2% Cu-Al alloy was successfully simulated using the EDB model combined with grain growth kinetics obtained from the experiment and measured thermal cycles from the welding process. The simulated grain size distribution in the HAZ was in good agreement with experimental results. The pinning effect of second phase particles on grain growth was also simulated in this work. The simulation results confirmed that by introducing the variable R, degree of contact between grain boundaries and second phase particles, the Zener pinning model can be modified as${D/ r} = {K/{Rf}}$where D is the pinned grain size, r the mean size of second phase particles, K a constant, f the area fraction (or the volume fraction in 3-D) of second phase.
Archie's Saturation Exponent for Natural Gas Hydrate in Coarse-Grained Reservoirs
Cook, Ann E.; Waite, William F.
2018-03-01
Accurately quantifying the amount of naturally occurring gas hydrate in marine and permafrost environments is important for assessing its resource potential and understanding the role of gas hydrate in the global carbon cycle. Electrical resistivity well logs are often used to calculate gas hydrate saturations, Sh, using Archie's equation. Archie's equation, in turn, relies on an empirical saturation parameter, n. Though n = 1.9 has been measured for ice-bearing sands and is widely used within the hydrate community, it is highly questionable if this n value is appropriate for hydrate-bearing sands. In this work, we calibrate n for hydrate-bearing sands from the Canadian permafrost gas hydrate research well, Mallik 5L-38, by establishing an independent downhole Sh profile based on compressional-wave velocity log data. Using the independently determined Sh profile and colocated electrical resistivity and bulk density logs, Archie's saturation equation is solved for n, and uncertainty is tracked throughout the iterative process. In addition to the Mallik 5L-38 well, we also apply this method to two marine, coarse-grained reservoirs from the northern Gulf of Mexico Gas Hydrate Joint Industry Project: Walker Ridge 313-H and Green Canyon 955-H. All locations yield similar results, each suggesting n ≈ 2.5 ± 0.5. Thus, for the coarse-grained hydrate bearing (Sh > 0.4) of greatest interest as potential energy resources, we suggest that n = 2.5 ± 0.5 should be applied in Archie's equation for either marine or permafrost gas hydrate settings if independent estimates of n are not available.
Archie’s saturation exponent for natural gas hydrate in coarse-grained reservoirs
Cook, Ann E.; Waite, William F.
2018-01-01
Accurately quantifying the amount of naturally occurring gas hydrate in marine and permafrost environments is important for assessing its resource potential and understanding the role of gas hydrate in the global carbon cycle. Electrical resistivity well logs are often used to calculate gas hydrate saturations, Sh, using Archie's equation. Archie's equation, in turn, relies on an empirical saturation parameter, n. Though n = 1.9 has been measured for ice‐bearing sands and is widely used within the hydrate community, it is highly questionable if this n value is appropriate for hydrate‐bearing sands. In this work, we calibrate n for hydrate‐bearing sands from the Canadian permafrost gas hydrate research well, Mallik 5L‐38, by establishing an independent downhole Sh profile based on compressional‐wave velocity log data. Using the independently determined Sh profile and colocated electrical resistivity and bulk density logs, Archie's saturation equation is solved for n, and uncertainty is tracked throughout the iterative process. In addition to the Mallik 5L‐38 well, we also apply this method to two marine, coarse‐grained reservoirs from the northern Gulf of Mexico Gas Hydrate Joint Industry Project: Walker Ridge 313‐H and Green Canyon 955‐H. All locations yield similar results, each suggesting n ≈ 2.5 ± 0.5. Thus, for the coarse‐grained hydrate bearing (Sh > 0.4) of greatest interest as potential energy resources, we suggest that n = 2.5 ± 0.5 should be applied in Archie's equation for either marine or permafrost gas hydrate settings if independent estimates of n are not available.
Monte carlo simulation of anisotropic grain growth in liquid phase sintering
International Nuclear Information System (INIS)
Han, Yoon Soo; Kim, Do Kyung
2003-01-01
One of the key techniques in modern engineering ceramic system is microstructural control of anisotropic grain growth because grain orientation and shape proved to have an influence on mechanic, dielectric and electric behavior of ceramics. But until now, computer simulation for grain growth has not sufficiently addressed to this subject. The reason is that simulation algorithm was laborious because it has to contain mass transfer through liquid phase and especially anisotropic grain growth has to be considered based on interfacial properties in real system. The goal of present study is simulation of anisotropic grain growth in liquid phase by Q-states model. To give anisotropic inherency to grains, constraint on mobility to specific boundaries was applied. For comparison, we measured grain size distribution and deduced grain growth kinetics from relation ship between average grain size and time. As a result, the grain size distribution functions become broader and the peak height decreases as the anisotropy is increased. The growth exponent 0.67 and 0.47 found by linear fitting have slightly different values in comparison with work of Grest et al. but similar is trend to the decrease of exponent with anisotropy
Randomly grain growth in metallic materials
Energy Technology Data Exchange (ETDEWEB)
Ramirez, A. [Instituto Politecnico Nacional, (SEPI-ESIME), Unidad Profesional Ticoman, Av. Ticoman 600, Del. G.A.M., C.P. 07340 Distrito Federal, Mexico (Mexico); Instituto Politecnico Nacional, (SEPI-ESIQIE), Unidad Profesional Zacatenco, Edif. 6 y Edif. Z planta baja C.P.07300, Distrito Federal, Mexico (Mexico)], E-mail: adaramil@yahoo.com.mx; Chavez, F. [Instituto Politecnico Nacional, (SEPI-ESIQIE), Unidad Profesional Zacatenco, Edif. 6 y Edif. Z planta baja C.P.07300, Distrito Federal, Mexico (Mexico); Demedices, L. [Instituto Politecnico Nacional, (SEPI-ESIME), Unidad Profesional Ticoman, Av. Ticoman 600, Del. G.A.M., C.P. 07340 Distrito Federal, Mexico (Mexico); Instituto Politecnico Nacional, (SEPI-ESIQIE), Unidad Profesional Zacatenco, Edif. 6 y Edif. Z planta baja C.P.07300, Distrito Federal, Mexico (Mexico); Cruz, A.; Macias, M. [Instituto Politecnico Nacional, (SEPI-ESIQIE), Unidad Profesional Zacatenco, Edif. 6 y Edif. Z planta baja C.P.07300, Distrito Federal, Mexico (Mexico)
2009-10-30
Computational modeling of grain structures is a very important topic in materials science. In this work, the development of the computational algorithms for a mathematical model to predict grain nucleation and grain growth is presented. The model place a number of nucleated points randomly in a liquid pool according with the solid and liquid fractions (X{sub sol} and X{sub liq}) of metal solute and the local temperature distribution (SS{sub I,J}). Then these points grows isotropically until obtain a grain structure with straight interfaces. Different grain morphologies such as columnar and equiaxed can be obtained as a function of the temperature distributions and growth directions.
Randomly grain growth in metallic materials
International Nuclear Information System (INIS)
Ramirez, A.; Chavez, F.; Demedices, L.; Cruz, A.; Macias, M.
2009-01-01
Computational modeling of grain structures is a very important topic in materials science. In this work, the development of the computational algorithms for a mathematical model to predict grain nucleation and grain growth is presented. The model place a number of nucleated points randomly in a liquid pool according with the solid and liquid fractions (X sol and X liq ) of metal solute and the local temperature distribution (SS I,J ). Then these points grows isotropically until obtain a grain structure with straight interfaces. Different grain morphologies such as columnar and equiaxed can be obtained as a function of the temperature distributions and growth directions.
A new treatment of transient grain growth
Czech Academy of Sciences Publication Activity Database
Svoboda, Jiří; Fratzl, P.; Zickler, G. A.; Fischer, F. D.
2016-01-01
Roč. 115, AUG (2016), s. 442-447 ISSN 1359-6454 R&D Projects: GA ČR(CZ) GA15-06390S Institutional support: RVO:68081723 Keywords : Grain size distribution * Grain growth * Growth kinetics * Thermodynamic modelling * Numerical solution of integro-differential equations Subject RIV: BJ - Thermodynamic s Impact factor: 5.301, year: 2016
Methods of assessing grain-size distribution during grain growth
DEFF Research Database (Denmark)
Tweed, Cherry J.; Hansen, Niels; Ralph, Brian
1985-01-01
This paper considers methods of obtaining grain-size distributions and ways of describing them. In order to collect statistically useful amounts of data, an automatic image analyzer is used, and the resulting data are subjected to a series of tests that evaluate the differences between two related...... distributions (before and after grain growth). The distributions are measured from two-dimensional sections, and both the data and the corresponding true three-dimensional grain-size distributions (obtained by stereological analysis) are collected. The techniques described here are illustrated by reference...
CSIR Research Space (South Africa)
Nabarro, FRN
1998-11-13
Full Text Available of length b (1+ epsilon) is parallel to sigma, embedded in a grain in which the lattice vector b (1+ epsilon) is transverse to sigma. If the embedded grain grows at the expense of its matrix, the source of the stress will do work, and therefore the presence...
Statistical Theory of Normal Grain Growth Revisited
International Nuclear Information System (INIS)
Gadomski, A.; Luczka, J.
2002-01-01
In this paper, we discuss three physically relevant problems concerning the normal grain growth process. These are: Infinite vs finite size of the system under study (a step towards more realistic modeling); conditions of fine-grained structure formation, with possible applications to thin films and biomembranes, and interesting relations to superplasticity of materials; approach to log-normality, an ubiquitous natural phenomenon, frequently reported in literature. It turns out that all three important points mentioned are possible to be included in a Mulheran-Harding type behavior of evolving grains-containing systems that we have studied previously. (author)
Abnormal Grain Growth Suppression in Aluminum Alloys
Hales, Stephen J. (Inventor); Claytor, Harold Dale (Inventor); Alexa, Joel A. (Inventor)
2015-01-01
The present invention provides a process for suppressing abnormal grain growth in friction stir welded aluminum alloys by inserting an intermediate annealing treatment ("IAT") after the welding step on the article. The IAT may be followed by a solution heat treatment (SHT) on the article under effectively high solution heat treatment conditions. In at least some embodiments, a deformation step is conducted on the article under effective spin-forming deformation conditions or under effective superplastic deformation conditions. The invention further provides a welded article having suppressed abnormal grain growth, prepared by the process above. Preferably the article is characterized with greater than about 90% reduction in area fraction abnormal grain growth in any friction-stir-welded nugget.
Einstein, T. L.; Morales-Cifuentes, Josue; Pimpinelli, Alberto
2015-03-01
Analyzing capture-zone distributions (CZD) using the generalized Wigner distribution (GWD) has proved a powerful way to access the critical nucleus size i. Of the several systems to which the GWD has been applied, we consider 6P on mica, for which Winkler's group found i ~ 3 . Subsequently they measured the growth exponent α (island density ~Fα , for flux F) of this system and found good scaling but different values at small and large F, which they attributed to DLA and ALA dynamics, but with larger values of i than found from the CZD analysis. We investigate this result in some detail. The third talk of this group describes a new universal relation between α and the characteristic exponent β of the GWD. The second talk reports the results of a proposed model that takes long-known transient ballistic adsorption into account, for the first time in a quantitative way. We find several intermediate scaling regimes, with distinctive values of α and an effective activation energy. One of these, rather than ALA, gives the best fit of the experimental data and a value of i consistent with the CZD analysis. Work at UMD supported by NSF CHE 13-05892.
Abnormal grain growth: a non-equilibrium thermodynamic model for multi-grain binary systems
International Nuclear Information System (INIS)
Svoboda, J; Fischer, F D
2014-01-01
Abnormal grain growth as the abrupt growth of a group of the largest grains in a multi-grain system is treated within the context of unequal retardation of grain growth due to the segregation of solute atoms from the bulk of the grains into the grain boundaries. During grain boundary migration, the segregated solute atoms are dragged under a small driving force or left behind the migrating grain boundary under a large driving force. Thus, the solute atoms in the grain boundaries of large grains, exhibiting a large driving force, can be released from the grain boundary. The mobility of these grain boundaries becomes significantly higher and abnormal grain growth is spontaneously provoked. The mean-field model presented here assumes that each grain is described by its grain radius and by its individual segregation parameter. The thermodynamic extremal principle is engaged to obtain explicit evolution equations for the radius and segregation parameter of each grain. Simulations of grain growth kinetics for various conditions of segregation with the same initial setting (100 000 grains with a given radius distribution) are presented. Depending on the diffusion coefficients of the solute in the grain boundaries, abnormal grain growth may be strongly or marginally pronounced. Solute segregation and drag can also significantly contribute to the stabilization of the grain structure. Qualitative agreement with several experimental results is reported. (paper)
Einstein, Theodore L.; Pimpinelli, Alberto; González, Diego Luis; Morales-Cifuentes, Josue R.
2015-09-01
In studies of epitaxial growth, analysis of the distribution of the areas of capture zones (i.e. proximity polygons or Voronoi tessellations with respect to island centers) is often the best way to extract the critical nucleus size i. For non-random nucleation the normalized areas s of these Voronoi cells are well described by the generalized Wigner distribution (GWD) Pβ(s) = asβ exp(-bs2), particularly in the central region 0.5 < s < 2 where data are least noisy. Extensive Monte Carlo simulations reveal inadequacies of our earlier mean field analysis, suggesting β = i + 2 for diffusion-limited aggregation (DLA). Since simulations generate orders of magnitude more data than experiments, they permit close examination of the tails of the distribution, which differ from the simple GWD form. One refinement is based on a fragmentation model. We also compare island-size distributions. We compare analysis by island-size distribution and by scaling of island density with flux. Modifications appear for attach-limited aggregation (ALA). We focus on the experimental system para-hexaphenyl on amorphous mica, comparing the results of the three analysis techniques and reconciling their results via a novel model of hot precursors based on rate equations, pointing out the existence of intermediate scaling regimes between DLA and ALA.
A grain-boundary diffusion model of dynamic grain growth during superplastic deformation
International Nuclear Information System (INIS)
Kim, Byung-Nam; Hiraga, Keijiro; Sakka, Yoshio; Ahn, Byung-Wook
1999-01-01
Dynamic grain growth during superplastic deformation is modelled on the basis of a grain-boundary diffusion mechanism. On the grain boundary where a static and a dynamic potential difference coexist, matter transport along the boundary is assumed to contribute to dynamic grain growth through depositing the matter on the grain surface located opposite to the direction of grain-boundary migration. The amount of the diffusive matter during deformation is calculated for an aggregate of spherical grains and is converted to the increment of mean boundary migration velocity. The obtained relationship between the strain rate and the dynamic grain growth rate is shown to be independent of deformation mechanisms, provided that the grain growth is controlled by grain-boundary diffusion. The strain dependence, strain-rate dependence and temperature dependence of grain growth predicted from this model are consistent with those observed in superplastic ZrO 2 -dispersed Al 2 O 3
Mesoscopic simulation of recrystallization and grain growth
International Nuclear Information System (INIS)
Rollett, A.D.
2000-01-01
A brief summary of simulation techniques for recrystallization and grain growth is given. The available methods include surface evolver, front tracking (including finite element methods and vertex methods), networks of curves, phase field, cellular automata, and Monte Carlo. Two of the models that use a regular lattice, the Potts model and the Cellular Automaton (CA) model, have proved to be very useful. Microstructure is represented on a discrete lattice where the value of the field at each point represents the local orientation of the material and boundaries exist between points of unlike orientation. Two issues are discussed: one is a hybrid approach to combining the standard Monte Carlo and cellular automata algorithms for recrystallization modeling. The second is adaptation of the MC method for modeling grain growth (and recrystallization) with physically based boundary properties. Both models have significant limitations in their standard forms. The CA model is very useful and efficient for simulating recrystallization with deterministic motion of the recrystallization fronts. It can be adapted to simulate curvature driven migration provided that multiple sub-lattices are used with a probabilistic switching rule. The Potts model is very successful in modeling curvature driven boundary migration and grain growth. It does not simulate the proportionality between boundary velocity and a stored energy driving force, however, unless rather restricted conditions of stored energy (in relation to the grain boundary energy) and lattice temperature are satisfied. A new approach based on a hybrid of the Potts model (MC) and the Cellular Automaton (CA) model has been developed to obtain the desired limiting behavior for both curvature-driven and stored energy-driven grain boundary migration. The combination of methods is achieved by interleaving the two different types of reorientation event in time. The results show that the hybrid algorithm models the Gibbs
Crauel, Hans; Eckmann, Jean-Pierre
1991-01-01
Since the predecessor to this volume (LNM 1186, Eds. L. Arnold, V. Wihstutz)appeared in 1986, significant progress has been made in the theory and applications of Lyapunov exponents - one of the key concepts of dynamical systems - and in particular, pronounced shifts towards nonlinear and infinite-dimensional systems and engineering applications are observable. This volume opens with an introductory survey article (Arnold/Crauel) followed by 26 original (fully refereed) research papers, some of which have in part survey character. From the Contents: L. Arnold, H. Crauel: Random Dynamical Systems.- I.Ya. Goldscheid: Lyapunov exponents and asymptotic behaviour of the product of random matrices.- Y. Peres: Analytic dependence of Lyapunov exponents on transition probabilities.- O. Knill: The upper Lyapunov exponent of Sl (2, R) cocycles:Discontinuity and the problem of positivity.- Yu.D. Latushkin, A.M. Stepin: Linear skew-product flows and semigroups of weighted composition operators.- P. Baxendale: Invariant me...
Mitigating Abnormal Grain Growth for Friction Stir Welded Al-Li 2195 Spun Formed Domes
Chen, Po-Shou; Russell, Carolyn
2012-01-01
Formability and abnormal grain growth (AGG) are the two major issues that have been encountered for Al alloy spun formed dome development using friction stir welded blanks. Material properties that have significant influence on the formability include forming range and strain hardening exponent. In this study, tensile tests were performed for two 2195 friction stir weld parameter sets at 400 F to study the effects of post weld anneal on the forming range and strain hardening exponent. It was found that the formability can be enhanced by applying a newly developed post weld anneal to heat treat the friction stir welded panels. This new post weld anneal leads to a higher forming range and much improved strain hardening exponent. AGG in the weld nugget is known to cause a significant reduction of ductility and fracture toughness. This study also investigated how AGG may be influenced by the heating rate to the solution heat treatment temperature. After post-weld annealing, friction stir welds were strained to 15% and 39% by compression at 400 F before they were subjected to SHT at 950 F for 1 hour. Salt bath SHT is very effective in reducing the grain size as it helps arrest the onset of AGG and promote normal recrystallization and grain growth. However, heat treating a 18 ft dome using a salt bath is not practical. Efforts are continuing at Marshall Space Flight Center to identify the welding parameters and heat treating parameters that can help mitigate the AGG in the friction stir welds.
Grain-growth law during Stage 1 sintering of materials
International Nuclear Information System (INIS)
He Zeming; Ma, J.
2002-01-01
This work investigates the grain-growth behaviour of powder compact during Stage 1 sintering (<90{%} theoretical density). It is widely accepted that grain size is an important state variable in the constitutive modelling in material sintering. However, it is noted that all the existing grain-growth laws proposed in the literature do not incorporate the effect of externally applied stress independently. In this work, a grain-growth law with externally applied stress as a variable was proposed. Alumina powders were forge-sintered at different applied stresses to examine the proposed grain-growth relationship. The proposed grain-growth law was then applied to model the grain-growth process on the sinter forging of tool steel. It is shown that the present proposed grain-growth law provides a good description on the experimental results. (author)
Short-time beta grain growth kinetics for a conventional titanium alloy
International Nuclear Information System (INIS)
Semiatin, S.L.; Sukonnik, I.M.
1996-01-01
The kinetics of beta grain growth during short-time, supertransus heat treatment of Ti-5Al-4V were determined using a salt-pot technique. The finite-time, subtransus temperature transient during salt-pot heating was quantified through measurements of the heat transfer coefficient characterizing conduction across the salt-titanium interface and a simple heat conduction analysis which incorporated this heat transfer coefficient. Grain size versus time data adjusted to account for the subtransus temperature transient were successfully fit to the parabolic grain growth law d n - d 0 n = kt exp(-Q/RT) using an exponent n equal to 2.0. Comparison of the present results to rapid, continuous heat treatment data in the literature for a similar titanium alloy revealed a number of semi-quantitative similarities
Abnormal grain growth: a non-equilibrium thermodynamic model for multi-grain binary systems
Czech Academy of Sciences Publication Activity Database
Svoboda, Jiří; Fischer, F. D.
2014-01-01
Roč. 22, č. 1 (2014), Art . No. 015013 ISSN 0965-0393 Institutional support: RVO:68081723 Keywords : grain boundary segregation * abnormal grain growth * theory * modelling * solute drag Subject RIV: BJ - Thermodynamics Impact factor: 2.167, year: 2014
Grain-boundary engineering applied to grain growth in a high temperature material
International Nuclear Information System (INIS)
Huda, Z.
1993-01-01
Crystallography of grain boundaries are determined for a high temperature material, before and after grain growth processes, so as to study the induction of special properties useful for application in components of a gas-turbine engine. The philosophy of grain-boundary engineering is applied to grain growth in APK-6, a powder formed nickel-base superalloy so as to establish the possible structure/property relationships. The alloy in the as received condition is shown to possess a strong texture and contained coincident site lattices (CSL) boundaries with most boundaries having sigma values in the range of 3 > sigma > 25. A normal grain-growth heat treatment result in a good population of low angle grain boundaries, and drastically reduces the proportion of CSL boundaries. A strong [011] annealing texture is observed after an intermediate grain growth; most grain boundaries, here, tend to be high angle indicating a possibility of possessing special properties. (author)
International Nuclear Information System (INIS)
Zhang, Yang; Tucker, Garritt J.; Trelewicz, Jason R.
2017-01-01
The mechanisms of stress-assisted grain growth are explored using molecular dynamics simulations of nanoindentation in nanocrystalline Ni and Ni-1 at.% P as a function of grain size and deformation temperature. Grain coalescence is primarily confined to the high stress region beneath the simulated indentation zone in nanocrystalline Ni with a grain size of 3 nm. Grain orientation and atomic displacement vector mapping demonstrates that coalescence transpires through grain rotation and grain boundary migration, which are manifested in the grain interior and grain boundary components of the average microrotation. A doubling of the grain size to 6 nm and addition of 1 at.% P eliminates stress-assisted grain growth in Ni. In the absence of grain coalescence, deformation is accommodated by grain boundary-mediated dislocation plasticity and thermally activated in pure nanocrystalline Ni. By adding solute to the grain boundaries, the temperature-dependent deformation behavior observed in both the lattice and grain boundaries inverts, indicating that the individual processes of dislocation and grain boundary plasticity will exhibit different activity based on boundary chemistry and deformation temperature.
Phase field simulation of grain growth in porous uranium dioxide
International Nuclear Information System (INIS)
Ahmed, Karim; Pakarinen, Janne; Allen, Todd; El-Azab, Anter
2014-01-01
Graphical abstract: Display Omitted -- Abstract: A novel phase field model has been developed to investigate grain growth in porous polycrystalline UO 2 . Based on a system of Cahn–Hilliard and Allen–Cahn equations, the model takes into consideration both the curvature driven grain boundary motion and pore migration by surface diffusion. As such, the model accounts for the interaction between pore and grain boundary kinetics, which tends to retard the growth process. The phase field model parameters are found in terms of measurable material properties. Hence, quantitative results that can be compared with experiments were obtained. The model has been used to investigate the effect of porosity on the kinetics of grain growth in UO 2 . It is found that, as the amount of porosity increases, grain growth in UO 2 gradually changes from boundary controlled growth to pore controlled growth. For high porosity levels, the grain growth completely stops after a short evolution time. It is also found that the inhomogeneous distribution of pores leads to abnormal grain growth even without taking into account the anisotropy in grain boundary energy and mobility. The effects of porosity, temperature and initial microstructure on grain growth were thoroughly investigated. The model predictions are in good agreement with published experimental results of grain growth in UO 2
Nanoscale abnormal grain growth in (001) epitaxial ceria
International Nuclear Information System (INIS)
Solovyov, Vyacheslav F.; Develos-Bagarinao, Katherine; Nykypanchuk, Dmytro
2009-01-01
X-ray reciprocal-space mapping and atomic force microscopy (AFM) are used to study kinetics and mechanisms of lateral grain growth in epitaxial (001) ceria (CeO 2 ) deposited by pulsed laser deposition on (001) yttria-stabilized zirconia (YSZ) and (12 lowbar 10) (r-cut) sapphire. Rate and character of the grain growth during postannealing at 1050 deg. C are found to be strongly dependent on the type of the epitaxial substrate. Films deposited on YSZ exhibit signatures of normal grain growth, which stagnated after the lateral grain size reaches 40 nm, consistent with the grain-boundary pinning by the thermal grooving. In contrast, when r-cut sapphire substrate was used, abnormal (secondary) grain growth is observed. A small population of grains grow to well over 100 nm consuming smaller, 100 nm large (001) terminations and rendering the sample single-crystalline quality. The grain growth is accompanied by reduction in lateral rms strain, resulting in a universal grain size--rms strain dependence. Analysis of the AFM and x-ray diffraction data leads to the conclusion that bimodal initial grain population consisting of grains with very different sizes is responsible for initiation of the abnormal growth in (001) CeO 2 films on r-cut sapphire. Due to different surface chemistry, when a YSZ substrate is used, the initial grain distribution is monomodal, therefore only normal growth is active. We demonstrate that a 2.2 deg. miscut of the sapphire substrate eliminates the large-grain population, thus suppressing abnormal grain growth. It is concluded that utilization of abnormal grain growth is a promising way for synthesis of large (001) ceria terminations.
International Nuclear Information System (INIS)
He Yizhu; Ding Hanlin; Liu Liufa; Shin, Keesam
2006-01-01
The morphology, topology and kinetics of normal grain growth in two-dimension were studied by computer simulation using a cellular automata (Canada) model based on the lowest energy principle. The thermodynamic energy that follows Maxwell-Boltzmann statistics has been introduced into this model for the calculation of energy change. The transition that can reduce the system energy to the lowest level is chosen to occur when there is more than one possible transition direction. The simulation results show that the kinetics of normal grain growth follows the Burke equation with the growth exponent m = 2. The analysis of topology further indicates that normal grain growth can be simulated fairly well by the present CA model. The vanishing of grains with different number of sides is discussed in the simulation
Barreira, Luís
2017-01-01
This book offers a self-contained introduction to the theory of Lyapunov exponents and its applications, mainly in connection with hyperbolicity, ergodic theory and multifractal analysis. It discusses the foundations and some of the main results and main techniques in the area, while also highlighting selected topics of current research interest. With the exception of a few basic results from ergodic theory and the thermodynamic formalism, all the results presented include detailed proofs. The book is intended for all researchers and graduate students specializing in dynamical systems who are looking for a comprehensive overview of the foundations of the theory and a sample of its applications.
Effects of grain size distribution on the interstellar dust mass growth
Hirashita, Hiroyuki; Kuo, Tzu-Ming
2011-01-01
Grain growth by the accretion of metals in interstellar clouds (called `grain growth') could be one of the dominant processes that determine the dust content in galaxies. The importance of grain size distribution for the grain growth is demonstrated in this paper. First, we derive an analytical formula that gives the grain size distribution after the grain growth in individual clouds for any initial grain size distribution. The time-scale of the grain growth is very sensitive to grain size di...
Computer-aided analysis of grain growth in metals
DEFF Research Database (Denmark)
Klimanek, P.; May, C.; Richter, H.
1993-01-01
Isothermal grain growth in aluminium, copper and alpha-iron was investigated experimentally at elevated temperatures and quantitatively interpreted by computer simulation on the base of a statistical model described in [4,5,6]. As it is demonstrated for the grain growth kinetics, the experimental...... data can be fitted satisfactorly....
Equi-axed and columnar grain growth in UO2
International Nuclear Information System (INIS)
White, R.J.
1997-01-01
The grain size of UO 2 is an important parameter in the actual performance and the modelling of the performance of reactor fuel elements. Many processes depend critically on the grain size, for example, the degree of initial densification, the evolution rate of stable fission gases, the release rates of radiologically hazardous fission products, the fission gas bubble swelling rates and the fuel creep. Many of these processes are thermally activated and further impact on the fuel thermal behavior thus creating complex feedback processes. In order to model the fuel performance accurately it is necessary to model the evolution of the fuel grain radius. When UO 2 is irradiated, the fission gases xenon and krypton are created from the fissioning uranium nucleus. At high temperatures these gases diffuse rapidly to the grain boundaries where they nucleate immobile lenticular shaped fission gas bubbles. In this paper the Hillert grain growth model is adapted to account for the inhibiting ''Zener'' effects of grain boundary fission gas porosity on grain boundary mobility and hence grain growth. It is shown that normal grain growth ceases at relatively low levels of irradiation. At high burnups, high temperatures and in regions of high temperature gradients, columnar grain growth is often observed, in some cases extending over more than fifty percent of the fuel radius. The model is further extended to account for the de-pinning of grains in the radial direction by the thermal gradient induced force on a fission gas grain boundary bubble. The observed columnar/equi-axed boundary is in fair agreement with the predictions of an evaporation/condensation model. The grain growth model described in this paper requires information concerning the scale of grain boundary porosity, the local fuel temperature and the local temperature gradient. The model is currently used in the Nuclear Electric version of the ENIGMA fuel modelling code. (author). 14 refs, 3 figs, 1 tab
Correlation of thermodynamics and grain growth kinetics in nanocrystalline metals
International Nuclear Information System (INIS)
Song Xiaoyan; Zhang Jiuxing; Li Lingmei; Yang Keyong; Liu Guoquan
2006-01-01
We investigated the correlation of thermodynamics and grain growth kinetics of nanocrystalline metals both theoretically and experimentally. A model was developed to describe the thermodynamic properties of nanograin boundaries, which could give reliable predictions in the destabilization characteristics of nanograin structures and the slowing down of grain growth kinetics at a constant temperature. Both the temperature-varying and isothermal nanograin growth behaviors in pure nanocrystalline Co were studied to verify the thermodynamic predictions. The experimental results showing that discontinuous nanograin growth takes place at a certain temperature and grain growth rate decreases monotonically with time confirm our thermodynamics-based description of nanograin growth characteristics. Therefore, we propose a thermodynamic viewpoint to explain the deviation of grain growth kinetics in nanocrystalline metals from those of polycrystalline materials
A comparison of grain boundary evolution during grain growth in fcc metals
International Nuclear Information System (INIS)
Brons, J.G.; Thompson, G.B.
2013-01-01
Grain growth of Cu and Ni thin films, subjected to in situ annealing within a transmission electron microscope, has been quantified using a precession-enhanced electron diffraction technique. The orientation of each grain and its misorientation with respect to its neighboring grains were calculated. The Cu underwent grain growth that maintained a monomodal grain size distribution, with its low-angle grain boundaries being consumed, and the Ni exhibited grain size distributions in stages, from monomodal to bimodal to monomodal. The onset of Ni’s abnormal grain growth was accompanied by a sharp increase in the Σ3 and Σ9 boundary fractions, which is attributed to simulation predictions of their increased mobility. These Σ3 and Σ9 fractions then dropped to their room temperature values during the third stage of grain growth. In addition to the Σ3 and Σ9 boundaries, the Σ5 and Σ7 boundaries also underwent an increase in total boundary fraction with increasing temperature in both metals
International Nuclear Information System (INIS)
Roca, R. Alvarez; Guerrero, F.; Botero, E. R.; Garcia, D.; Eiras, J. A.; Guerra, J. D. S.
2009-01-01
The influence of the microstructural characteristics on the dielectric and electrical properties has been investigated for Nd 3+ doped lanthanum modified lead zirconate titanate ferroelectric ceramics, obtained by the conventional solid-state reaction method, by taking into account different sintering conditions. The grain growth mechanism has been investigated and a cubic-type grain growth law was observed for samples with grain size varying from 1.00 up to 2.35 μm. The porosity and grain size dependences of the phase transition parameters, such as the maximum dielectric permittivity and its corresponding temperature (ε m and T m , respectively) were also investigated. The ac conductivity analyses followed the universal Jonscher law. The behavior of the frequency exponent (s) was analyzed through the correlated barrier hopping model. Both ac and dc conductivity results have been correlated with the observed microstructural features
The Pinning by Particles of Low and High Angle Grain Boundaries during Grain Growth
DEFF Research Database (Denmark)
Tweed, C.J.; Ralph, B.; Hansen, Niels
1984-01-01
A study has been made using transmission electron microscopy of the pinning of grain boundaries in aluminium during grain growth by fine dispersions of alumina particles. The boundary parameters have been determined with precision and the pinning effects measured using an approach due to Ashby...
Modelling grain growth in the framework of Rational Extended Thermodynamics
International Nuclear Information System (INIS)
Kertsch, Lukas; Helm, Dirk
2016-01-01
Grain growth is a significant phenomenon for the thermomechanical processing of metals. Since the mobility of the grain boundaries is thermally activated and energy stored in the grain boundaries is released during their motion, a mutual interaction with the process conditions occurs. To model such phenomena, a thermodynamic framework for the representation of thermomechanical coupling phenomena in metals including a microstructure description is required. For this purpose, Rational Extended Thermodynamics appears to be a useful tool. We apply an entropy principle to derive a thermodynamically consistent model for grain coarsening due to the growth and shrinkage of individual grains. Despite the rather different approaches applied, we obtain a grain growth model which is similar to existing ones and can be regarded as a thermodynamic extension of that by Hillert (1965) to more general systems. To demonstrate the applicability of the model, we compare our simulation results to grain growth experiments in pure copper by different authors, which we are able to reproduce very accurately. Finally, we study the implications of the energy release due to grain growth on the energy balance. The present unified approach combining a microstructure description and continuum mechanics is ready to be further used to develop more elaborate material models for complex thermo-chemo-mechanical coupling phenomena. (paper)
Modelling grain growth in the framework of Rational Extended Thermodynamics
Kertsch, Lukas; Helm, Dirk
2016-05-01
Grain growth is a significant phenomenon for the thermomechanical processing of metals. Since the mobility of the grain boundaries is thermally activated and energy stored in the grain boundaries is released during their motion, a mutual interaction with the process conditions occurs. To model such phenomena, a thermodynamic framework for the representation of thermomechanical coupling phenomena in metals including a microstructure description is required. For this purpose, Rational Extended Thermodynamics appears to be a useful tool. We apply an entropy principle to derive a thermodynamically consistent model for grain coarsening due to the growth and shrinkage of individual grains. Despite the rather different approaches applied, we obtain a grain growth model which is similar to existing ones and can be regarded as a thermodynamic extension of that by Hillert (1965) to more general systems. To demonstrate the applicability of the model, we compare our simulation results to grain growth experiments in pure copper by different authors, which we are able to reproduce very accurately. Finally, we study the implications of the energy release due to grain growth on the energy balance. The present unified approach combining a microstructure description and continuum mechanics is ready to be further used to develop more elaborate material models for complex thermo-chemo-mechanical coupling phenomena.
International Nuclear Information System (INIS)
Lou, C.
2002-01-01
An advection-diffusion model has been set up to describe normal grain growth. In this model grains are divided into different groups according to their topological classes (number of sides of a grain). Topological transformations are modelled by advective and diffusive flows governed by advective and diffusive coefficients respectively, which are assumed to be proportional to topological classes. The ordinary differential equations governing self-similar time-independent grain size distribution can be derived analytically from continuity equations. It is proved that the time-independent distributions obtained by solving the ordinary differential equations have the same form as the time-dependent distributions obtained by solving the continuity equations. The advection-diffusion model is extended to describe the stagnation of normal grain growth in thin films. Grain boundary grooving prevents grain boundaries from moving, and the correlation between neighbouring grains accelerates the stagnation of normal grain growth. After introducing grain boundary grooving and the correlation between neighbouring grains into the model, the grain size distribution is close to a lognormal distribution, which is usually found in experiments. A vertex computer simulation of normal grain growth has also been carried out to make a cross comparison with the advection-diffusion model. The result from the simulation did not verify the assumption that the advective and diffusive coefficients are proportional to topological classes. Instead, we have observed that topological transformations usually occur on certain topological classes. This suggests that the advection-diffusion model can be improved by making a more realistic assumption on topological transformations. (author)
Search for grain growth toward the center of L1544
Chacón-Tanarro, A.; Caselli, P.; Bizzocchi, L.; Pineda, J. E.; Harju, J.; Spaans, M.; Désert, F.-X.
2017-01-01
In dense and cold molecular clouds dust grains are surrounded by thick icy mantles. It is not clear, however, if dust growth and coagulation take place before the protostar switches on. This is an important issue as the presence of large grains may affect the chemical structure of dense cloud cores,
Grain Growth in Samples of Aluminum Containing Alumina Particles
DEFF Research Database (Denmark)
Tweed, C. J.; Hansen, Niels; Ralph, B.
1983-01-01
A study of the two-dimensional and three-dimensional grain size distributions before and after grain growth treatments has been made in samples having a range of oxide contents. In order to collect statistically useful amounts of data, an automatic image analyzer was used and the resulting data w...
The Relationship Between Debris and Grain Growth in Polycrystalline Ice
Rivera, A.; McCarthy, C.
2017-12-01
An understanding of the mechanisms of ice flow, as well as the factors that affect it, must be improved in order to make more accurate predictions of glacial melting rates, and hence, sea level rise. Both field and laboratory studies have made an association between smaller grain sizes of ice and more rapid deformation. Therefore, it is essential to understand the different factors that affect grain size. Observations from ice cores have shown a correlation between debris content in layers of ice with smaller grain sizes, whereas layers with very little debris have larger grain sizes. Static grain growth rates for both pure ice and ice containing bubbles are well constrained, but the effect of small rock/dust particles has received less attention. We tested the relationship between debris and grain growth in polycrystalline ice with controlled annealing at -5°C and microstructural characterization. Three samples, two containing fine rock powder and one without, were fabricated, annealed, and imaged over time. The samples containing powder had different initial grain sizes due to solidification temperature during fabrication. Microstructural analysis was done on all samples after initial fabrication and at various times during the anneal using a light microscope housed in a cold room. Microstructural images were analyzed by the linear-intercept method. When comparing average grain size over time between pure ice and ice with debris, it was found that the rate of growth for the pure ice was larger than the rate of growth for the ice with debris at both initial grain sizes. These results confirm the observations seen in nature, and suggest that small grain size is indeed influenced by debris content. By understanding this, scientists could gain a more in-depth understanding of internal ice deformation and the mechanisms of ice flow. This, in turn, helps improve the accuracy of glacial melting predictions, and sea level rise in the future.
Simulation study on the growth of grains in dusty plasmas
International Nuclear Information System (INIS)
Sato, Tetsuya; Watanabe, Kunihiko
1997-01-01
A new particle simulation code is developed for studying the dynamics of the grains which are exposed to charging by the background plasma particles. Effects of regular attachment of electrons and ions, effects of secondary electron emission, and coagulation of grains are included in this code. Simulation results show that grains randomly change their charges from negative to positive, or from positive to negative in a 'flip-flop' fashion as a result of competition between the electron attachment and secondary electron emission. It is found that the flip-flop effect becomes remarkable when the radius of grains is of the order of 10 nm, because the attachment of a single electron to a grain is less effective on the surface potential for larger grains, while the average probability of electron attachment is smaller for smaller grains. Grains with opposite charges attract each other to coagulate, so that grains of size of 10 nm are likely to grow in size. The flip-flop effect is found to be essential to the growth of grains. (author)
Grain growth in ultrafine titanium powders during sintering
International Nuclear Information System (INIS)
Panigrahi, B.B.; Godkhindi, M.M.
2006-01-01
Grain growth behaviour of fine (∼3 μm) and attrition milled nanocrystalline (∼32 nm) titanium powers during sintering have been studied. The activation energies of grain growth (Q g ) in fine titanium were found to be 192.9 and 142.4 kJ/mol at lower and higher temperature ranges, respectively. The nanocrystalline titanium showed very low values of Q g (54.6 kJ/mol) at lower temperatures and it increased to 273.2 kJ/mol at higher temperatures. The constant (n) in nano Ti system was found to have unusually very high values of 6.5-8.2. The grain boundary rotation along with the diffusional processes could be the grain growth mechanism in nanocrystalline and in fine titanium powders
A grain boundary sliding model for cavitation, crack growth and ...
African Journals Online (AJOL)
A model is presented for cavity growth, crack propagation and fracture resulting from grain boundary sliding (GBS) during high temperature creep deformation. The theory of cavity growth by GBS was based on energy balance criteria on the assumption that the matrix is sufficiently plastic to accommodate misfit strains ...
Grain growth behavior of Li{sub 4}SiO{sub 4} pebbles fabricated by agar method for tritium breeder
Energy Technology Data Exchange (ETDEWEB)
Xiang, Maoqiao [School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Zhang, Yingchun, E-mail: zycustb@126.com [School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Zhang, Yun; Wang, Chaofu; Liu, Wei [School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Yu, Yonghong [Department of Physics, Renmin University of China, Beijing, 100872 (China)
2016-11-15
Highlights: • Grain sizes of Li{sub 4}SiO{sub 4} were adjusted by different silicon sources. • Grain growth exponent of Li{sub 4}SiO{sub 4} was about 3. • Grain growth activation energy of Li{sub 4}SiO{sub 4} was about 125.54 kJ/mol. • Grain growth of Li{sub 4}SiO{sub 4} pebble was controlled by vapor transport. - Abstract: The Li{sub 4}SiO{sub 4} tritium breeding pebbles will be filled in the blanket and used for 2 years or more at high temperatures, which would increase the grain size and affect tritium release. Hence, grain sizes of the Li{sub 4}SiO{sub 4} pebbles fabricated by agar method were investigated, and two kinds of different silicon sources (crystal and amorphous SiO{sub 2}) with different particle sizes were used. The particle size of SiO{sub 2} could affect grain size and density of the Li{sub 4}SiO{sub 4} pebble. And the isothermal sintering was carried out to study the grain growth kinetics of Li{sub 4}SiO{sub 4}. The grain growth exponent (n) and the activation energy (Q) were calculated by the phenomenological kinetic equation. The calculated n values were 4.10, 3.98, 3.34 and 2.96, and corresponding Q values were 152.15, 147.99, 125.54 and 110.58 kJ/mol, respectively. At the higher sintering temperatures (950 and 1000 °C), the grain growth of Li{sub 4}SiO{sub 4} was controlled by vapor transport.
Grain growth in uranium nitride prepared by spark plasma sintering
Johnson, Kyle D.; Lopes, Denise Adorno
2018-05-01
Uranium mononitride (UN) has long been considered a potential high density, high performance fuel candidate for light water reactor (LWR) and fast reactor (FR) applications. However, deployability of this fuel has been limited by the notable resistance to sintering and subsequent difficulty in producing a desirable microstructure, the high costs associated with 15N enrichment, as well as the known proclivity to oxidation and interaction with steam. In this study, the stimulation of grain growth in UN pellets sintered using SPS has been investigated. The results reveal that by using SPS and controlling temperature, time, and holding pressure, grain growth can be stimulated and controlled to produce a material featuring both a desired porosity and grain size, at least within the range of interest for nuclear fuel candidates. Grain sizes up to 31 μm were obtained using temperatures of 1650 °C and hold times of 15 min. Evaluation by EBSD reveal grain rotation and coalescence as the dominant mechanism in grain growth, which is suppressed by the application of higher external pressure. Moreover, complete closure of the porosity of the material was observed at relative densities of 96% TD, resulting in a material with sufficient porosity to accommodate LWR burnup. These results indicate that a method exists for the economic fabrication of an 15N-bearing uranium mononitride fuel with favorable microstructural characteristics compatible with use in a light water-cooled nuclear reactor.
B2 Grain Growth Behavior of a Ti-22Al-25Nb Alloy Fabricated by Hot Pressing Sintering
Jia, Jianbo; Liu, Wenchao; Xu, Yan; Chen, Chen; Yang, Yue; Luo, Junting; Zhang, Kaifeng
2018-05-01
Grain growth behavior of a powder metallurgy (P/M) Ti-22Al-25Nb alloy was investigated by applying a series of isothermal treatment tests over a wide range of temperatures and holding times. An isothermal treatment scheme was conducted in the B2 phase region (1070-1110 °C) and α 2 + B2 phase region (1010-1050 °C) at holding times of 10, 30 min, 1, 2, and 3 h, respectively. The effects of temperature and holding time on the microstructure evolution and microhardness of the P/M Ti-22Al-25Nb alloy at elevated temperatures were evaluated using optical microscope, scanning electron microscope, x-ray diffraction, and Vickers hardness test techniques. The results revealed that the alloy's treated microstructure was closely linked to temperature and holding time, respectively. The change law of B2 grain growth with holding time and temperature can be well interpreted by the Beck equation and Hillert equation, respectively. The B2 grain growth exponent n and activation energy Q were acquired based on experimental data in the α 2 + B2 and B2 phase regions. In addition, the grain growth contour map for the P/M Ti-22Al-25Nb alloy was constructed to depict variations in B2 grain size based on holding time and temperature.
Boutz, M.M.R.; Boutz, M.M.R.; Winnubst, Aloysius J.A.; Burggraaf, Anthonie; Burggraaf, A.J.
1994-01-01
An analysis is presented of grain growth and densification of yttria-ceria stabilized tetragonal zirconia polycrystals (Y, Ce-TZPs) using both isothermal and non-isothermal techniques. The characteristics of Y, Ce-TZPs are compared to those of Y-TZP and Ce-TZP and the effect of increasing ceria
The destruction and growth of dust grains in interstellar space
International Nuclear Information System (INIS)
Barlow, M.J.
1978-01-01
The processes governing the destruction and growth of dust grains in interstellar space are investigated with a view to establishing the conditions required for the existence of ice mantles. In this paper sputtering by particles with energies in the eV to GeV range is considered. Previous sputtering yield estimates which were based on theoretical considerations are shown to be greatly in error for incident particle energies of less than 1 keV. Empirical formulae for the sputtering threshold energy and the sputtering yield are derived from the extensive experimental data available. The sputtering of grains in H II regions, in the inter-cloud medium, and in shock waves produced by cloud-cloud collisions and by supernova remnants, is investigated. Of these, supernova remnants are shown to be the most important, leading to lifetimes of approximately 2 x 10 8 yr for ice grains and between 5 to 20 x 10 8 yr for refractory grains. Destruction rates are estimated for grains bombarded by MeV and GeV cosmic rays. It is shown that collision cascade sputtering dominates evaporative sputtering produced by thermal spikes. It is also shown that even if all electron excitation energy loss in a grain material could be transferred to the lattice particles, the observed cosmic ray flux spectrum could not cause significant destruction of ice grains. (author)
Microstructural characterization and grain growth kinetics of atomized Fe-6%Si alloy
Energy Technology Data Exchange (ETDEWEB)
Florio Filho, A.; Bolfarini, C.; Kiminami, C.S. [Dept. de Engenharia de Materiais, Univ. Federal de Sao Carlos, Sao Carlos SP (Brazil)
2001-07-01
The microstructural characterization of the overspray powders is considered an important step to evaluate the as-cast microstructure of preforms fabricated by spray forming process. The particles generated during the high pressure gas atomization fly toward a substrate located at the middle height into the atomization chamber and consolidate to a dense deposit. The solidification process begins already during the flight of the droplets and high cooling rate can be achieved by the droplets of the molten metal during the atomization step. Consequently, the microstructure of the preform has some typical features presented by rapidly solidified metals as low level of porosity and segregation and it is strongly influenced by the thermal history of the droplets during flight. In the present work the microstructure of the particles of the Fe-6%Si alloy was analysed by light microscopy and scanning electron microscopy (SEM). The experimental determination of the kinetic exponent n for grain boundary migration in both powder and preform was determined by isothermal treatment under argon atmosphere. It has been stated that the larger the particle size the greater the grain size in Fe-6%Si alloy. It was observed also that the interface morphology is strongly related to the particle size. Furthermore, the grain growth kinetic in the preform seems to not obey the migration mechanism where the self diffusion of elemental Fe drive the boundary displacement. (orig.)
Giant secondary grain growth in Cu films on sapphire
Directory of Open Access Journals (Sweden)
David L. Miller
2013-08-01
Full Text Available Single crystal metal films on insulating substrates are attractive for microelectronics and other applications, but they are difficult to achieve on macroscopic length scales. The conventional approach to obtaining such films is epitaxial growth at high temperature using slow deposition in ultrahigh vacuum conditions. Here we describe a different approach that is both simpler to implement and produces superior results: sputter deposition at modest temperatures followed by annealing to induce secondary grain growth. We show that polycrystalline as-deposited Cu on α-Al2O3(0001 can be transformed into Cu(111 with centimeter-sized grains. Employing optical microscopy, x-ray diffraction, and electron backscatter diffraction to characterize the films before and after annealing, we find a particular as-deposited grain structure that promotes the growth of giant grains upon annealing. To demonstrate one potential application of such films, we grow graphene by chemical vapor deposition on wafers of annealed Cu and obtain epitaxial graphene grains of 0.2 mm diameter.
Grain growth kinetics in uranium-plutonium mixed oxides
International Nuclear Information System (INIS)
Sari, C.
1986-01-01
Grain growth rates were investigated in uranium-plutonium mixed oxide specimens with oxygen-to-metal ratios 1.97 and 2.0. The specimens in the form of cylindrical pellets were heated in a temperature gradient similar to that existing in a fast reactor. The results are in agreement with the cubic rate law. The mean grain size D(μm) after annealing for time t (min) is represented by D 3 -D 0 3 =1.11x10 12 . exp(-445870/RT).t and D 3 -D 0 3 =2.55x10 9 .exp(-319240/RT).t for specimens with overall oxygen-to-metal ratios 1.97 and 2.0, respectively (activation energies expressed in J/mol). An example for the influence of the oxygen-to-metal ratio on the grain growth in mixed oxide fuel during operation in a fast reactor is also given. (orig.)
Grain boundary cavity growth under applied stress and internal pressure
International Nuclear Information System (INIS)
Mancuso, J.F.
1977-08-01
The growth of grain boundary cavities under applied stress and internal gas pressure was investigated. Methane gas filled cavities were produced by the C + 4H reversible CH4 reaction in the grain boundaries of type 270 nickel by hydrogen charging in an autoclave at 500 0 C with a hydrogen pressure of either 3.4 or 14.5 MPa. Intergranular fracture of nickel was achieved at a charging temperature of 300 0 C and 10.3 MPa hydrogen pressure. Cavities on the grain boundaries were observed in the scanning electron microscope after fracture. Photomicrographs of the cavities were produced in stereo pairs which were analyzed so as to correct for perspective distortion and also to determine the orientational dependence of cavity growth under an applied tensile stress
Constantinescu, Adi; Golubović, Leonardo; Levandovsky, Artem
2013-09-01
Long range dewetting forces acting across thin films, such as the fundamental van der Waals interactions, may drive the formation of large clusters (tall multilayer islands) and pits, observed in thin films of diverse materials such as polymers, liquid crystals, and metals. In this study we further develop the methodology of the nonequilibrium statistical mechanics of thin films coarsening within continuum interface dynamics model incorporating long range dewetting interactions. The theoretical test bench model considered here is a generalization of the classical Mullins model for the dynamics of solid film surfaces. By analytic arguments and simulations of the model, we study the coarsening growth laws of clusters formed in thin films due to the dewetting interactions. The ultimate cluster growth scaling laws at long times are strongly universal: Short and long range dewetting interactions yield the same coarsening exponents. However, long range dewetting interactions, such as the van der Waals forces, introduce a distinct long lasting early time scaling behavior characterized by a slow growth of the cluster height/lateral size aspect ratio (i.e., a time-dependent Young angle) and by effective coarsening exponents that depend on cluster size. In this study, we develop a theory capable of analytically calculating these effective size-dependent coarsening exponents characterizing the cluster growth in the early time regime. Such a pronounced early time scaling behavior has been indeed seen in experiments; however, its physical origin has remained elusive to this date. Our theory attributes these observed phenomena to ubiquitous long range dewetting interactions acting across thin solid and liquid films. Our results are also applicable to cluster growth in initially very thin fluid films, formed by depositing a few monolayers or by a submonolayer deposition. Under this condition, the dominant coarsening mechanism is diffusive intercluster mass transport while the
Nanoscale grain growth behaviour of CoAl intermetallic synthesized ...
Indian Academy of Sciences (India)
Grain growth behaviour of the nanocrystalline CoAl intermetallic compound synthesized by mechanical alloying has been studied by isothermal annealing at different temperatures and durations. X-ray diffraction method was employed to investigate structural evolutions during mechanical alloying and annealing processes.
Growth, assimilate partitioning and grain yield response of soybean ...
African Journals Online (AJOL)
This investigation tested variation in the growth components, assimilate partitioning and grain yield of soybean (Glycine max L. Merrrill) varieties established in CO2 enriched atmosphere when inoculated with mixtures of Arbuscular mycorrhizal fungi (AMF) species in the humid rainforest of Nigeria. A pot and a field ...
Nanoscale grain growth behaviour of CoAl intermetallic synthesized ...
Indian Academy of Sciences (India)
Administrator
Abstract. Grain growth behaviour of the nanocrystalline CoAl intermetallic compound synthesized by mechanical alloying has been studied by isothermal annealing at different temperatures and durations. X-ray diffraction method was employed to investigate structural evolutions during mechanical alloying and anneal-.
Growth rate of YBCO-Ag superconducting single grains
Congreve, J. V. J.; Shi, Y. H.; Dennis, A. R.; Durrell, J. H.; Cardwell, D. A.
2017-12-01
The large scale use of (RE)Ba2Cu3O7 bulk superconductors, where RE=Y, Gd, Sm, is, in part, limited by the relatively poor mechanical properties of these inherently brittle ceramic materials. It is reported that alloying of (RE)Ba2Cu3O7 with silver enables a significant improvement in the mechanical strength of bulk, single grain samples without any detrimental effect on their superconducting properties. However, due to the complexity and number of inter-related variables involved in the top seeded melt growth (TSMG) process, the growth of large single grains is difficult and the addition of silver makes it even more difficult to achieve successful growth reliably. The key processing variables in the TSMG process include the times and temperatures of the stages within the heating profile, which can be derived from the growth rate during the growth process. To date, the growth rate of the YBa2Cu3O7-Ag system has not been reported in detail and it is this lacuna that we have sought to address. In this work we measure the growth rate of the YBCO-Ag system using a method based on continuous cooling and isothermal holding (CCIH). We have determined the growth rate by measuring the side length of the crystallised region for a number of samples for specified isothermal hold temperatures and periods. This has enabled the growth rate to be modelled and from this an optimized heating profile for the successful growth of YBCO-Ag single grains to be derived.
International Nuclear Information System (INIS)
Bai, Qin; Zhao, Qing; Xia, Shuang; Wang, Baoshun; Zhou, Bangxin; Su, Cheng
2017-01-01
Grain boundary engineering (GBE) of nickel-based alloy 825 tubes was carried out with different cold drawing deformations by using a draw-bench on a factory production line and subsequent annealing at various temperatures. The microstructure evolution of alloy 825 during thermal-mechanical processing (TMP) was characterized by means of the electron backscatter diffraction (EBSD) technique to study the TMP effects on the grain boundary network and the evolution of grain boundary character distributions during high temperature annealing. The results showed that the proportion of ∑ 3 n coincidence site lattice (CSL) boundaries of alloy 825 tubes could be increased to > 75% by the TMP of 5% cold drawing and subsequent annealing at 1050 °C for 10 min. The microstructures of the partially recrystallized samples and the fully recrystallized samples suggested that the proportion of low ∑ CSL grain boundaries depended on the annealing time. The frequency of low ∑ CSL grain boundaries increases rapidly with increasing annealing time associating with the formation of large-size highly-twinned grains-cluster microstructure during recrystallization. However, upon further increasing annealing time, the frequency of low ∑ CSL grain boundaries decreased markedly during grain growth. So it is concluded that grain boundary engineering is achieved through recrystallization rather than grain growth. - Highlights: •The grain boundary engineering (GBE) is applicable to 825 tubes. •GBE is achieved through recrystallization rather than grain growth. •The low ∑ CSL grain boundaries in 825 tubes can be increased to > 75%.
Constitutive modeling of stress-driven grain growth in nanocrystalline metals
Gürses, Ercan
2013-02-08
In this work, we present a variational multiscale model for grain growth in face-centered cubic nanocrystalline (nc) metals. In particular, grain-growth-induced stress softening and the resulting relaxation phenomena are addressed. The behavior of the polycrystal is described by a conventional Taylor-type averaging scheme in which the grains are treated as two-phase composites consisting of a grain interior phase and a grain boundary-affected zone. Furthermore, a grain-growth law that captures the experimentally observed characteristics of the grain coarsening phenomena is proposed. To this end, the grain size is not taken as constant and varies according to the proposed stress-driven growth law. Several parametric studies are conducted to emphasize the influence of the grain-growth rule on the overall macroscopic response. Finally, the model is shown to provide a good description of the experimentally observed grain-growth-induced relaxation in nc-copper. © 2013 IOP Publishing Ltd.
International Nuclear Information System (INIS)
Ahmed, K.; Tonks, M.; Zhang, Y.; Biner, B.
2016-01-01
A detailed phase field model for the effect of pore drag on grain growth kinetics was implemented in MARMOT. The model takes into consideration both the curvature-driven grain boundary motion and pore migration by surface diffusion. As such, the model accounts for the interaction between pore and grain boundary kinetics, which tends to retard the grain growth process. Our 2D and 3D simulations demonstrate that the model capture all possible pore-grain boundary interactions proposed in theoretical models. For high enough surface mobility, the pores move along with the migrating boundary as a quasi-rigid-body, albeit hindering its migration rate compared to the pore-free case. For less mobile pores, the migrating boundary can separate from the pores. For the pore-controlled grain growth kinetics, the model predicts a strong dependence of the growth rate on the number of pores, pore size, and surface diffusivity in agreement with theroretical models. An evolution equation for the grain size that includes these parameters was derived and showed to agree well with numerical solution. It shows a smooth transition from boundary-controlled kinetics to pore-controlled kinetics as the surface diffusivity decreases or the number of pores or their size increases. This equation can be utilized in BISON to give accurate estimate for the grain size evolution. This will be accomplished in the near future. The effect of solute drag and anisotropy of grain boundary on grain growth will be investigated in future studies.
Manufacturing process to reduce large grain growth in zirconium alloys
International Nuclear Information System (INIS)
Rosecrans, P.M.
1987-01-01
A method is described of treating cold worked zirconium alloys to reduce large grain growth during thermal treatment above its recrystallization temperature. The method comprises heating the zirconium alloy at a temperature of about 1300 0 F. to 1350 0 F. for about 1 to 3 hours subsequent to cold working the zirconium alloy and prior to the thermal treatment at a temperature of between 1450 0 -1550 0 F., the thermal treatment temperature being above the recrystallization temperature
Energy Technology Data Exchange (ETDEWEB)
Zhao, Xinbao [National Energy R and D Center of Clean and High-Efficiency Fossil-Fired Power Generation Technology, Xi' an Thermal Power Research Institute Co. Ltd., Xi' an (China); Northwestern Polytechnical University, State Key Laboratory of Solidification Processing, Xi' an (China); Liu, Lin; Zhang, Jun [Northwestern Polytechnical University, State Key Laboratory of Solidification Processing, Xi' an (China)
2015-08-15
Grain competitive growth of nickel-based single-crystal superalloys during directional solidification was investigated. A detailed characterization of bi-crystals' competitive growth was performed to explore the competitive grain evolution. It was found that high withdrawal rate improved the efficiency of grain competitive growth. The overgrowth rate was increased when the misorientation increased. Four patterns of grain competitive growth with differently oriented dispositions were characterized. The results indicated that the positive branching of the dendrites played a significant role in the competitive growth process. The effect of crystal orientation and heat flow on the competitive growth can be attributed to the blocking mechanism between the adjacent grains. (orig.)
Accretion growth of water-ice grains in astrophysically-relevant dusty plasma experiment
Chai, Kil-Byoung; Marshall, Ryan; Bellan, Paul
2016-10-01
The grain growth process in the Caltech water-ice dusty plasma experiment has been studied using a high-speed camera equipped with a long-distance microscope lens. It is found that (i) the ice grain number density decreases four-fold as the average grain length increases from 20 to 80 um, (ii) the ice grain length has a log-normal distribution rather than a power-law dependence, and (iii) no collisions between ice grains are apparent. The grains have a large negative charge so the agglomeration growth is prevented by their strong mutual repulsion. It is concluded that direct accretion of water molecules is in good agreement with the observed ice grain growth. The volumetric packing factor of the ice grains must be less than 0.25 in order for the grain kinetic energy to be sufficiently small to prevent collisions between ice grains; this conclusion is consistent with ice grain images showing a fractal character.
Ultra-large single crystals by abnormal grain growth.
Kusama, Tomoe; Omori, Toshihiro; Saito, Takashi; Kise, Sumio; Tanaka, Toyonobu; Araki, Yoshikazu; Kainuma, Ryosuke
2017-08-25
Producing a single crystal is expensive because of low mass productivity. Therefore, many metallic materials are being used in polycrystalline form, even though material properties are superior in a single crystal. Here we show that an extraordinarily large Cu-Al-Mn single crystal can be obtained by abnormal grain growth (AGG) induced by simple heat treatment with high mass productivity. In AGG, the sub-boundary energy introduced by cyclic heat treatment (CHT) is dominant in the driving pressure, and the grain boundary migration rate is accelerated by repeating the low-temperature CHT due to the increase of the sub-boundary energy. With such treatment, fabrication of single crystal bars 70 cm in length is achieved. This result ensures that the range of applications of shape memory alloys will spread beyond small-sized devices to large-scale components and may enable new applications of single crystals in other metallic and ceramics materials having similar microstructural features.Growing large single crystals cheaply and reliably for structural applications remains challenging. Here, the authors combine accelerated abnormal grain growth and cyclic heat treatments to grow a superelastic shape memory alloy single crystal to 70 cm.
The diffusional growth of a grain boundary crack
International Nuclear Information System (INIS)
Puls, M.P.; Dutton, R.
1977-10-01
This report considers the possibility of high temperature rupture occurring by a grain boundary diffusional mechanism. It is assumed that a pre-existing, intergranular crack grows by loss of atoms from the crack tip to the grain boundary. Rupture occurs when the crack has grown to a critical length. A theoretical treatment of the kinetics of crack growth is presented and equations are derived for the crack velocity and time to rupture. A comparison is made with a previous theoretical model developed by Charles, together with rupture data obtained experimentally for the nickel-based alloy, Nimonic 80A. We conclude that experimental verification of the theoretical models requires a comparison with crack velocity data rather than time to rupture data. (author)
Effect of Time-Dependent Pinning Pressure on Abnormal Grain Growth: Phase Field Simulation
Kim, Jeong Min; Min, Guensik; Shim, Jae-Hyeok; Lee, Kyung Jong
2018-05-01
The effect of the time-dependent pinning pressure of precipitates on abnormal grain growth has been investigated by multiphase field simulation with a simple precipitation model. The application of constant pinning pressure is problematic because it always induces abnormal grain growth or no grain growth, which is not reasonable considering the real situation. To produce time-dependent pinning pressure, both precipitation kinetics and precipitate coarsening kinetics have been considered with two rates: slow and fast. The results show that abnormal grain growth is suppressed at the slow precipitation rate. At the slow precipitation rate, the overall grain growth caused by the low pinning pressure in the early stage indeed plays a role in preventing abnormal grain growth by reducing the mobility advantage of abnormal grains. In addition, the fast precipitate coarsening rate tends to more quickly transform abnormal grain growth into normal grain growth by inducing the active growth of grains adjacent to the abnormal grains in the early stage. Therefore, the present study demonstrates that the time dependence of the pinning pressure of precipitates is a critical factor that determines the grain growth mode.
Austenite Grain Growth Behavior of AISI 4140 Alloy Steel
Directory of Open Access Journals (Sweden)
Lin Wang
2013-01-01
Full Text Available AISI 4140 alloy steel is widely applied in the manufacture of various parts such as gears, rams, and spindles due to its good performance of strength, toughness, and wear resistance. The former researches most focused on its deformation and recrystallization behaviors under high temperature. However, the evolution laws of austenite grain growth were rarely studied. This behavior also plays an important role in the mechanical properties of parts made of this steel. In this study, samples are heated to a certain temperature of 1073 K, 1173 K, 1273 K, and 1373 K at a heating rate of 5 K per second and hold for different times of 0 s, 120 s, 240 s, 360 s, and 480 s before being quenched with water. The experimental results suggest that the austenite grains enlarge with increasing temperature and holding time. A mathematical model and an application developed in Matlab environment are established on the basis of previous works and experimental results to predict austenite grains size in hot deformation processes. The predicted results are in good agreement with experimental results which indicates that the model and the application are reliable.
The growth mechanism of grain boundary carbide in Alloy 690
International Nuclear Information System (INIS)
Li, Hui; Xia, Shuang; Zhou, Bangxin; Peng, Jianchao
2013-01-01
The growth mechanism of grain boundary M 23 C 6 carbides in nickel base Alloy 690 after aging at 715 °C was investigated by high resolution transmission electron microscopy. The grain boundary carbides have coherent orientation relationship with only one side of the matrix. The incoherent phase interface between M 23 C 6 and matrix was curved, and did not lie on any specific crystal plane. The M 23 C 6 carbide transforms from the matrix phase directly at the incoherent interface. The flat coherent phase interface generally lies on low index crystal planes, such as (011) and (111) planes. The M 23 C 6 carbide transforms from a transition phase found at curved coherent phase interface. The transition phase has a complex hexagonal crystal structure, and has coherent orientation relationship with matrix and M 23 C 6 : (111) matrix //(0001) transition //(111) carbide , ¯ > matrix // ¯ 10> transition // ¯ > carbide . The crystal lattice constants of transition phase are c transition =√(3)×a matrix and a transition =√(6)/2×a matrix . Based on the experimental results, the growth mechanism of M 23 C 6 and the formation mechanism of transition phase are discussed. - Highlights: • A transition phase was observed at the coherent interfaces of M 23 C 6 and matrix. • The transition phase has hexagonal structure, and is coherent with matrix and M 23 C 6 . • The M 23 C 6 transforms from the matrix directly at the incoherent phase interface
Subcritical crack growth and power law exponent of Y-Si-Al-O (-N) glasses in aqueous environment
Graaf, de D.; Hintzen, H.T.J.M.; With, de G.
2006-01-01
The subcritical crack growth resistance in water of a Y–Si–Al–O and Y–Si–Al–O–N glasses has been investigated with three point bending experiments. It has been shown that the SCG behaviour of the Y–Si–Al–O–N glass is superior to that of the Y–Si–Al–O glass. This is reflected by the power law
Grain growth in thoria and thoria-base fuel pellets (LWBR development program)
Energy Technology Data Exchange (ETDEWEB)
Smid, R.J.
1976-01-01
The kinetics of grain growth in ThO/sub 2/-base sintered compacts were investigated to determine the cause of a nonuniform microstructural cross section. It was concluded that trace impurities which inhibit continuous grain growth at the pellet interior were removed by vaporization at the pellet exterior. This resulted in relatively normal grain growth at the pellet surface and discontinuous grain growth at the pellet interior. Calcining the starting ThO/sub 2/ powder to a slightly higher temperature removed inhibiting impurities but also decreased the driving force for grain growth by reducing the surface area of the powder. Mixing high and low temperature calcined ThO/sub 2/ resulted in improved grain growth. Increased oxygen partial pressure and temperature during sintering increased grain boundary mobility in spite of the inhibiting impurity. The specific inhibiting impurity was not isolated during this investigation.
International Nuclear Information System (INIS)
Li, D.Z.; Xiao, N.M.; Lan, Y.J.; Zheng, C.W.; Li, Y.Y.
2007-01-01
The mesoscale deterministic cellular automaton (CA) method and probabilistic Q-state Potts-based Monte Carlo (MC) model have been adopted to investigate independently the individual growth behavior of ferrite grain during the austenite (γ)-ferrite (α) transformation. In these models, the γ-α phase transformation and ferrite grain coarsening induced by α/α grain boundary migration could be simulated simultaneously. The simulations demonstrated that both the hard impingement (ferrite grain coarsening) and the soft impingement (overlapping carbon concentration field) have a great influence on the individual ferrite growth behavior. Generally, ferrite grains displayed six modes of growth behavior: parabolic growth, delayed nucleation and growth, temporary shrinkage, partial shrinkage, complete shrinkage and accelerated growth in the transformation. Some modes have been observed before by the synchrotron X-ray diffraction experiment. The mesoscopic simulation provides an alternative tool for investigating both the individual grain growth behavior and the overall transformation behavior simultaneously during transformation
Anisotropic atomic packing model for abnormal grain growth mechanism of WC-25 wt.% Co alloy
International Nuclear Information System (INIS)
Ryoo, H.S.; Hwang, S.K.
1998-01-01
During liquid phase sintering, cemented carbide particles grow into either faceted or non-faceted grain shapes depending on ally system. In case of WC-Co alloy, prism-shape faceted grains with (0001) planes and {1 bar 100} planes on each face are observed, and furthermore an abnormal grain growth has been reported to occur. When abnormal grain growth occurs in WC crystals, dimension ratio, R, of the length of the side of the triangular prism face to the height of the prism is higher than 4 whereas that for normal grains is approximately 2. Abnormal grain growth in this alloy is accelerated by the fineness of starting powders and by high sintering temperature. To account for the mechanism of the abnormal grain growth, there are two proposed models which drew much research attention: nucleation and subsequent carburization and transformation of η (W 3 Co 3 C) phase into WC, and coalescence of coarse WC grains through dissolution and re-precipitation. Park et al. proposed a two-dimensional nucleation theory to explain the abnormal grain growth of faceted grains. There are questions, however, on the role of η phase on abnormal grain growth. The mechanism of coalescence of spherical grains as proposed by Kingery is also unsuitable for faceted grains. So far theories on abnormal grain growth do not provide a satisfactory explanation on the change of R value during the growth process. In the present work a new mechanism of nucleation and growth of faceted WC grains is proposed on the ground of anisotropic packing sequence of each atom
Growth order and activation energies for grain growth of Ti-6Al-4V alloy in β phase
International Nuclear Information System (INIS)
Gil, F.J.; Planell, J.A.
1991-01-01
This paper reports that one of the reasons usually stated for avoiding annealing treatments and hot working of Ti-6Al-4V alloy at temperatures over the β transus is the large grain growth which takes place at such temperatures. The aim of the present work is to quantify the grain growth kinetics when the alloy is heat treated in its β phase. It is well known that the driving force for grain growth comes from the surface energy of the grain boundaries. When thermal energy is given to the material, diffusion takes place which leads to grain selection. This means that the number of grains decreases, their size increases, the area of the grain boundaries decreases with the total energy stored in them and consequently a state of higher thermodynamic stability is reached
Nuclear multifragmentation critical exponents
International Nuclear Information System (INIS)
Bauer, W.; Friedman, W.A.; Univ. of Wisconsin, Madison, WI
1995-01-01
In a recent Letter, cited in a reference, the EoS collaboration presented data of fragmentation of 1 A GeV gold nuclei incident on carbon. By analyzing moments of the fragment charge distribution, the authors claim to determine the values of the critical exponents γ, β, and τ for finite nuclei. These data represent a crucial step forward in the understanding of the physics of nuclear fragmentation. However, as shown in this paper, the analysis presented in the cited reference is not sufficient to support the claim that the critical exponents for nuclear fragmentation have been unambiguously determined
Direct observation of densification and grain growth in a W--Ni alloy
International Nuclear Information System (INIS)
Riegger, H.; Pask, J.A.; Exner, H.E.
1979-04-01
Densification and grain growth in a tungsten--nickel alloy containing 32 vol % of liquid at 1550 0 C were studied by conventional methods aided by hot stage scanning electron microscopy and cinematography. This technique yields important additional qualitative information on the mechanisms. Two stages can be discerned. In stage 1, essentially complete pore elimination, rapid grain growth and adjustment of microstructural geometry take place. In the second stage, microstructure coarsening occurs which is characterized by geometric similarity. Columnar grain growth at the surface is observed due to squeezing out of Ni--W liquid, flooding of surface grains and fast evaporation of the Ni. The driving forces for these processes are discussed showing that a high ratio of grain boundary energy to liquid surface energy is essential. A W--Cu alloy with 32 vol % liquid at 1100 0 C did not show any grain growth due to essentially no solubility of W in Cu at this temperature
On the fission gas release from oxide fuels during normal grain growth
International Nuclear Information System (INIS)
Paraschiv, M.C.; Paraschiv, A.; Glodeanu, F.
1997-01-01
A mathematical formalism for calculating the fission gas release from oxide fuels considering an arbitrary distribution of fuel grain size with only zero boundary condition for gas diffusion at the grain boundary is proposed. It has also been proved that it becomes unnecessary to consider the grain volume distribution function for fission products diffusion when the grain boundary gas resolution is considered, if thermodynamic forces on grain boundaries are only time dependent. In order to highlight the effect of the normal grain growth on fission gas release from oxide fuels Hillert's and Lifshitz and Slyozov's theories have been selected. The last one was used to give an adequate treatment of normal grain growth for the diffusion-controlled grain boundary movement in oxide fuels. It has been shown that during the fuel irradiation, the asymptotic form of the grain volume distribution functions given by Hillert and Lifshitz and Slyozov models can be maintained but the grain growth rate constant becomes time dependent itself. Experimental results have been used to correlate the two theoretical models of normal grain growth to the fission gas release from oxide fuels. (orig.)
Lyapunov, attractors and exponents
International Nuclear Information System (INIS)
Oliveira, C.R. de.
1987-01-01
Based on the fundamental principles of statistical mechanics and ergodic theory a definition is given to atractor, as an invariant measure. Many results which reinforce this definition are demonstrated. Chaos is related to the presence of an atractor with entropy above zero. The role of Lyapunov exponents is analyzed. (A.C.A.S.) [pt
Constitutive modeling of stress-driven grain growth in nanocrystalline metals
Gü rses, Ercan; Wafai, Husam; El Sayed, Tamer S.
2013-01-01
the influence of the grain-growth rule on the overall macroscopic response. Finally, the model is shown to provide a good description of the experimentally observed grain-growth-induced relaxation in nc-copper. © 2013 IOP Publishing Ltd.
Equi-axed and columnar grain growth in UO{sub 2}
Energy Technology Data Exchange (ETDEWEB)
White, R J [Berkely Technology Centre, Nuclear Electric plc, Berkeley (United Kingdom)
1997-08-01
The grain size of UO{sub 2} is an important parameter in the actual performance and the modelling of the performance of reactor fuel elements. Many processes depend critically on the grain size, for example, the degree of initial densification, the evolution rate of stable fission gases, the release rates of radiologically hazardous fission products, the fission gas bubble swelling rates and the fuel creep. Many of these processes are thermally activated and further impact on the fuel thermal behavior thus creating complex feedback processes. In order to model the fuel performance accurately it is necessary to model the evolution of the fuel grain radius. When UO{sub 2} is irradiated, the fission gases xenon and krypton are created from the fissioning uranium nucleus. At high temperatures these gases diffuse rapidly to the grain boundaries where they nucleate immobile lenticular shaped fission gas bubbles. In this paper the Hillert grain growth model is adapted to account for the inhibiting ``Zener`` effects of grain boundary fission gas porosity on grain boundary mobility and hence grain growth. It is shown that normal grain growth ceases at relatively low levels of irradiation. At high burnups, high temperatures and in regions of high temperature gradients, columnar grain growth is often observed, in some cases extending over more than fifty percent of the fuel radius. The model is further extended to account for the de-pinning of grains in the radial direction by the thermal gradient induced force on a fission gas grain boundary bubble. The observed columnar/equi-axed boundary is in fair agreement with the predictions of an evaporation/condensation model. The grain growth model described in this paper requires information concerning the scale of grain boundary porosity, the local fuel temperature and the local temperature gradient. The model is currently used in the Nuclear Electric version of the ENIGMA fuel modelling code. (author). 14 refs, 3 figs, 1 tab.
Dynamic grain growth in superplastic Y-TZP and Al2O3/YTZ
International Nuclear Information System (INIS)
Nieh, T.G.; Tomasello, C.M.; Wadsworth, J.
1990-01-01
This paper reports that both static and dynamic grain growth have been studied during superplastic deformation of fine-grained yttria-stabilized tetragonal zirconia (Y-TZP) and alumina reinforced yttria-stabilized tetragonal zirconia (Al 2 O 3 /YTZ). Grain growth was observed in both materials at temperatures above 1350 degrees C. In the case of Y-TZP, both static and dynamic grain growth were found to obey a similar equation of the form: D 3 -D 0 3 = kt where D is the instantaneous grain size, D 0 is the initial grain size, t is the time, and k is a kinetic constant which depends primarily on temperature and grain boundary energy. The activation energies for Y-TZP were approximately 580 and 520 kJ/mol, for static and dynamic grain growth, respectively. In the case of Al 2 O 3 /YTZ, it was found that the grain growth rate for the Al 2 O 3 phase was slower than that for the ZrO 2 phase. The growth rate of the ZrO 2 phase in Al 2 O 3 /YTZ is, however, similar to that in monolithic ZrO 2 i.e., Y-TZP
Growth of preexisting abnormal grains in molybdenum under static and dynamic conditions
Energy Technology Data Exchange (ETDEWEB)
Noell, Philip J. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-0889 (United States); Worthington, Daniel L. [Verily Life Sciences, 269 E. Grand Ave., South San Francisco, CA 94080, USA (United States); Taleff, Eric M., E-mail: taleff@utexas.edu [The University of Texas at Austin, Department of Mechanical Engineering, 204 East Dean Keeton St., Stop C2200, Austin, TX 78712 (United States)
2017-04-24
This investigation compares the growth rates of preexisting abnormal grains under both static and dynamic conditions. Abnormal grains several millimeters in length were produced in two commercial-purity molybdenum (Mo) materials by tensile straining at temperatures from 1923 to 2073 K (1650–1800 °C). This process is termed dynamic abnormal grain growth (DAGG) because it produces abnormal grains during concurrent plastic straining. DAGG creates abnormal grains at much lower temperatures than does static abnormal grain growth (SAGG). Abnormal grains created through DAGG were characterized with their surrounding microstructures and were then subjected to annealing treatments. Only one-third of the preexisting abnormal grains subsequently grew by SAGG. Among these, SAGG occurred only in those specimens that required the largest strains to initiate DAGG when creating the abnormal grain(s). The rates of boundary migration observed for SAGG were approximately two orders of magnitude slower than those for DAGG. When DAGG in one specimen was interrupted by extended static annealing, it did not recur when straining resumed. The dislocation substructure developed during hot deformation, which includes subgrains typical of five-power creep, is critically important to both DAGG and SAGG of preexisting abnormal grains under the conditions examined.
International Nuclear Information System (INIS)
Ng, Felix S.L.
2016-01-01
We develop a statistical-mechanical model of one-dimensional normal grain growth that does not require any drift-velocity parameterization for grain size, such as used in the continuity equation of traditional mean-field theories. The model tracks the population by considering grain sizes in neighbour pairs; the probability of a pair having neighbours of certain sizes is determined by the size-frequency distribution of all pairs. Accordingly, the evolution obeys a partial integro-differential equation (PIDE) over ‘grain size versus neighbour grain size’ space, so that the grain-size distribution is a projection of the PIDE's solution. This model, which is applicable before as well as after statistically self-similar grain growth has been reached, shows that the traditional continuity equation is invalid outside this state. During statistically self-similar growth, the PIDE correctly predicts the coarsening rate, invariant grain-size distribution and spatial grain size correlations observed in direct simulations. The PIDE is then reducible to the standard continuity equation, and we derive an explicit expression for the drift velocity. It should be possible to formulate similar parameterization-free models of normal grain growth in two and three dimensions.
Dynamic recrystallization and grain growth in olivine rocks
Kellermann Slotemaker, A.
2006-01-01
A mechanism based description of the rheology of olivine is essential for modeling of upper mantle geodynamics. Previously, mantle flow has been investigated using flow laws for grain size insensitive (GSI) dislocation creep and/or grain size sensitive (GSS) diffusion creep of olivine. Generally,
Strain-induced grain growth of cryomilled nanocrystalline Al in trimodal composites during forging
International Nuclear Information System (INIS)
Yao, B.; Simkin, B.; Majumdar, B.; Smith, C.; Bergh, M. van den; Cho, K.; Sohn, Y.H.
2012-01-01
Highlights: ► Grain growth of cryomilled nanocrystalline aluminum during hot forging. ► Use of hollow cone dark field imaging technique in TEM for grain size measurement. ► Grain growth model of strain, strain rate and temperature for forging optimization. - Abstract: Grain growth of nanocrystalline aluminum ( nc Al) in trimodal Al metal-matrix-composites (MMCs) during hot forging was investigated. The nc Al phase formed through cryomilling of inert gas-atomized powders in liquid nitrogen has an average grain size down to 21 nm, exhibits excellent thermal stability. However, substantial grain growth of nc Al up to 63 nm was observed when the Al MMCs were thermo-mechanically processed even at relatively low temperatures. Grain growth of the cryomilled nc Al phase in trimodal Al MMCs after hot forging was documented with respect to temperature ranging from 175 °C to 287 °C, true strain ranging from 0.4 to 1.35 and strain rate ranging from 0.1 to 0.5 s −1 . Hollow cone dark field imaging technique was employed to provide statistically confident measurements of nc Al grain size that ranged from 21 to 63 nm. An increase in forging temperature and an increase in true strain were correlated with an increase in grain size of nc Al. Results were correlated to devise a phenomenological grain growth model for forging that takes strain, strain rate and temperature into consideration. Activation energy for the grain growth during thermo-mechanical hot-forging was determined to be 35 kJ/mol, approximately a quarter of activation energy for bulk diffusion of Al and a half of activation energy for static recrystallization.
Abnormal grain growth in Eurofer-97 steel in the ferrite phase field
Energy Technology Data Exchange (ETDEWEB)
Oliveira, V.B. [Lorena School of Engineering, University of Sao Paulo, Lorena, SP, 12602-810 (Brazil); Sandim, H.R.Z., E-mail: hsandim@demar.eel.usp.br [Lorena School of Engineering, University of Sao Paulo, Lorena, SP, 12602-810 (Brazil); Raabe, D. [Max-Planck-Institut für Eisenforschung, Düsseldorf, D-40237 (Germany)
2017-03-15
Reduced-activation ferritic-martensitic (RAFM) Eurofer-97 steel is a candidate material for structural applications in future fusion reactors. Depending on the amount of prior cold rolling strain and annealing temperature, important solid-state softening reactions such as recovery, recrystallization, and grain growth occur. Eurofer-97 steel was cold rolled up to 70, 80 and 90% reductions in thickness and annealed in the ferrite phase field (below ≈ 800 °C). Changes in microstructure, micro-, and mesotexture were followed by orientation mappings provided by electron backscatter diffraction (EBSD). Eurofer-97 steel undergoes abnormal grain growth above 650 °C and this solid-state reaction seems to be closely related to the high mobility of a few special grain boundaries that overcome pinning effects caused by fine particles. This solid-state reaction promotes important changes in the microstructure and microtexture of this steel. Abnormal grain growth kinetics for each condition was determined by means of quantitative metallography. - Highlights: • Abnormal grain growth (AGG) occurs in Eurofer-97 steel deformed to several strains. • Kinetics of abnormal grain growth has been determined at 750 and 800 °C. • Significant changes in crystallographic texture take place during AGG. • Grain boundaries with misorientations above 45° may explain abnormal grain growth. • Local microstructural instabilities (coarsening of M23C6 carbides) also explain AGG.
Quantum critical Hall exponents
Lütken, C A
2014-01-01
We investigate a finite size "double scaling" hypothesis using data from an experiment on a quantum Hall system with short range disorder [1-3]. For Hall bars of width w at temperature T the scaling form is w(-mu)T(-kappa), where the critical exponent mu approximate to 0.23 we extract from the data is comparable to the multi-fractal exponent alpha(0) - 2 obtained from the Chalker-Coddington (CC) model [4]. We also use the data to find the approximate location (in the resistivity plane) of seven quantum critical points, all of which closely agree with the predictions derived long ago from the modular symmetry of a toroidal sigma-model with m matter fields [5]. The value nu(8) = 2.60513 ... of the localisation exponent obtained from the m = 8 model is in excellent agreement with the best available numerical value nu(num) = 2.607 +/- 0.004 derived from the CC-model [6]. Existing experimental data appear to favour the m = 9 model, suggesting that the quantum Hall system is not in the same universality class as th...
International Nuclear Information System (INIS)
Chen, Z.; Liu, F.; Yang, X.Q.; Fan, Y.; Shen, C.J.
2012-01-01
Highlights: → We compared pure kinetic, pure thermodynamic and extended thermo-kinetic models. → An initial saturated GB segregation condition of nanoscale Fe-B alloys was determined. → The controlled-mechanism was proposed using two characteristic times (t 1 and t 2 ). - Abstract: A grain growth process in the melt spun low-solid-solubility Fe-B alloys was analyzed under the initial saturated grain boundary (GB) segregation condition. Applying melt spinning technique, single-phase supersaturated nanograins were prepared. Grain growth behavior of the single-phase supersaturated nanograins was investigated by performing isothermal annealing at 700 deg. C. Combined with the effect of GB segregation on the initial GB excess amount, the thermo-kinetic model [Chen et al., Acta Mater. 57 (2009) 1466] was extended to describe the initial GB segregation condition of nanoscale Fe-B alloys. In comparison of pure kinetic model, pure thermodynamic model and the extended thermo-kinetic model, an initial saturated GB segregation condition was determined. The controlled-mechanism of grain growth under initial saturated GB segregation condition was proposed using two characteristic annealing times (t 1 and t 2 ), which included a mainly kinetic-controlled process (t ≤ t 1 ), a transition from kinetic-mechanism to thermodynamic-mechanism (t 1 2 ) and pure thermodynamic-controlled process (t ≥ t 2 ).
Marshall, Ryan S.; Chai, Kil-Byoung; Bellan, Paul M.
2017-03-01
The grain growth process in the Caltech water-ice dusty plasma experiment has been studied using a high-speed camera and a long-distance microscope lens. It is observed that (I) the ice grain number density decreases fourfold as the average grain major axis increases from 20 to 80 μm, (II) the major axis length has a log-normal distribution rather than a power-law dependence, and (III) no collisions between ice grains are apparent. The grains have a large negative charge resulting in strong mutual repulsion and this, combined with the fractal character of the ice grains, prevents them from agglomerating. In order for the grain kinetic energy to be sufficiently small to prevent collisions between ice grains, the volumetric packing factor (I.e., ratio of the actual volume to the volume of a circumscribing ellipsoid) of the ice grains must be less than ˜0.1 depending on the exact relative velocity of the grains in question. Thus, it is concluded that direct accretion of water molecules is very likely to dominate the observed ice grain growth.
Energy Technology Data Exchange (ETDEWEB)
Marshall, Ryan S.; Chai, Kil-Byoung; Bellan, Paul M. [Applied Physics and Materials Science, Caltech, Pasadena, CA 91125 (United States)
2017-03-01
The grain growth process in the Caltech water–ice dusty plasma experiment has been studied using a high-speed camera and a long-distance microscope lens. It is observed that (i) the ice grain number density decreases fourfold as the average grain major axis increases from 20 to 80 μ m, (ii) the major axis length has a log-normal distribution rather than a power-law dependence, and (iii) no collisions between ice grains are apparent. The grains have a large negative charge resulting in strong mutual repulsion and this, combined with the fractal character of the ice grains, prevents them from agglomerating. In order for the grain kinetic energy to be sufficiently small to prevent collisions between ice grains, the volumetric packing factor (i.e., ratio of the actual volume to the volume of a circumscribing ellipsoid) of the ice grains must be less than ∼0.1 depending on the exact relative velocity of the grains in question. Thus, it is concluded that direct accretion of water molecules is very likely to dominate the observed ice grain growth.
Appraisal on Textured Grain Growth and Photoconductivity of ZnO Thin Film SILAR
Directory of Open Access Journals (Sweden)
Deepu Thomas
2014-01-01
Full Text Available ZnO thin films were prepared by successive ionic layer adsorption reaction (SILAR method. The textured grain growth along c-axis in pure ZnO thin films and doped with Sn was studied. The structural analysis of the thin films was done by X-ray diffraction and surface morphology by scanning electron microscopy. Textured grain growth of the samples was measured by comparing the peak intensities. Textured grain growth and photo current in ZnO thin films were found to be enhanced by doping with Sn. ZnO thin film having good crystallinity with preferential (002 orientation is a semiconductor with photonic properties of potential benefit to biophotonics. From energy dispersive X-ray analysis, it is inferred that oxygen vacancy creation is responsible for the enhanced textured grain growth in ZnO thin films.
New 3DXRD results on recrystallization and grain growth
DEFF Research Database (Denmark)
Juul Jensen, Dorte; West, Stine; Poulsen, Stefan Othmar
2012-01-01
New in-situ 3DXRD results obtained since the last Rex&GG conference are presented and discussed. This includes: Documentation of the formation of nuclei with new orientations, determination of apparent activation energies for individual bulk grains during recrystallization and evolution in the 3D...
Ma, Ning
2005-11-01
To accurately predict microstructure evolution and, hence, to synthesis metal and ceramic alloys with desirable properties involves many fundamental as well as practical issues. In the present study, novel theoretical and phase field approaches have been developed to address some of these issues including solute drag and segregation transition at grain boundaries and dislocations, grain growth in systems of anisotropic boundary properties, and precipitate microstructure development in polycrystalline materials. The segregation model has allowed for the prediction of a first-order segregation transition, which could be related to the sharp transition of solute concentration of grain boundary as a function of temperature. The incorporating of interfacial energy and mobility as functions of misorientation and inclination in the phase field model has allowed for the study of concurrent grain growth and texture evolution. The simulation results were analyzed using the concept of local grain boundary energy density, which simplified significantly the development of governing equations for texture controlled grain growth in Ti-6Al-4V. Quantitative phase field modeling techniques have been developed by incorporating thermodynamic and diffusivity databases. The models have been validated against DICTRA simulations in simple 1D problems and applied to simulate realistic microstructural evolutions in Ti-6Al-4V, including grain boundary a and globular a growth and sideplate development under both isothermal aging and continuous cooling conditions. The simulation predictions agree well with experimental observations.
Competitive grain growth in directional solidification investigated by phase field simulation
International Nuclear Information System (INIS)
Li Junjie; Wang Zhijun; Wang Jincheng; Yang Yujuan
2012-01-01
During directional solidification, the competitive dendritic growth between various oriented grains is a key factor to obtain desirable texture. In order to understand the mechanism of competitive dendritic growth, the phase field method was adopted to simulate the microstructure evolution of bicrystal samples. The simulation has well reproduced the whole competitive growth process for both diverging and converging dendrites. In converging case, besides the block of the unfavorably oriented dendrite by the favorably oriented one, the unfavorably oriented dendrite is also able to overgrow the favorable one under the condition of relatively low pulling velocity. This unusual overgrowth is dictated by the solute interaction of the converging dendrite tips. In diverging case, it was found that the grain boundary can be either inclined or parallel to the favorably oriented grain depending on the disposition of two grains.
International Nuclear Information System (INIS)
Bachman, S.
1973-01-01
Disinfestation doses of 20 to 100 krad may cause changes in the biological systems of barley grain and, therefore, may influence undesirably the technological quality of malted grain. The effect of some growth regulators on irradiated grain has been investigated. The experiments have been carried out on brewery barley var. Visa Breuns. Following growth-regulators were used: gibberellic acid (Polish preparation ''Gibrescol''), kinetin (6-furfurylo-aminopurin), CCC (2-chloroethyl trimethyl ammonium chloride), and betaine hydrochloride. By treating the irradiated barley with solutions of growth regulators it was possible to diminish the loss of enzyme activity. A ''regenerating'' effect of growth substances, mainly gibberellic acid and betain hydrochloride in 10 -4 M solutions, was observed. Amylolytic activity decreased immediately after irradiation but in samples treated with growth regulators it was higher than in those without regulators. The results may have a practical importance since gibberellic acid has just been introduced into the brewery industry. (F.J.)
Abnormal growth of faceted (WC) grains in a (Co) liquid matrix
International Nuclear Information System (INIS)
Park, Y.J.; Yoon, D.Y.
1996-01-01
If the grains dispersed in a liquid matrix are spherical, their surface atomic structure is expected to be rough (diffuse), and their coarsening has been observed to be controlled by diffusion in the matrix. They do not, furthermore, undergo abnormal growth. On the other hand, in some compound material systems, the grains in liquid matrices are faceted and often show abnormal coarsening behavior. Their faceted surface planes are expected to be singular (atomically flat) and therefore grow by a defect-assisted process and two-dimensional (2-D) nucleation. Contrary to the usual coarsening theories, their growth velocity is not linearly dependent on the driving force arising from the grain size difference. If the growth of the faceted grains occurs by 2-D nucleation, the rate is expected to increase abruptly at a critical supersaturation, as has been observed in crystal growth in melts and solutions. It is proposed that this growth mechanism leads to the abnormal grain coarsening. The 2-D nucleation theory predicts that there is a threshold initial grain size for the abnormal grain growth (AGG), and the propensity for AGG will increase with the heat-treatment temperature. The AGG behavior will also vary with the defects in the grains. These predictions are qualitatively confirmed in the sintered WC-Co alloy prepared from fine (0.85-microm) and coarse (5.48-microm) WC powders and their mixtures. The observed dependence of the AGG behavior on the sintering temperature and the milling of the WC powder is also qualitatively consistent with the predicted behavior
Large scale statistics for computational verification of grain growth simulations with experiments
International Nuclear Information System (INIS)
Demirel, Melik C.; Kuprat, Andrew P.; George, Denise C.; Straub, G.K.; Misra, Amit; Alexander, Kathleen B.; Rollett, Anthony D.
2002-01-01
It is known that by controlling microstructural development, desirable properties of materials can be achieved. The main objective of our research is to understand and control interface dominated material properties, and finally, to verify experimental results with computer simulations. We have previously showed a strong similarity between small-scale grain growth experiments and anisotropic three-dimensional simulations obtained from the Electron Backscattered Diffraction (EBSD) measurements. Using the same technique, we obtained 5170-grain data from an Aluminum-film (120 (micro)m thick) with a columnar grain structure. Experimentally obtained starting microstructure and grain boundary properties are input for the three-dimensional grain growth simulation. In the computational model, minimization of the interface energy is the driving force for the grain boundary motion. The computed evolved microstructure is compared with the final experimental microstructure, after annealing at 550 C. Characterization of the structures and properties of grain boundary networks (GBN) to produce desirable microstructures is one of the fundamental problems in interface science. There is an ongoing research for the development of new experimental and analytical techniques in order to obtain and synthesize information related to GBN. The grain boundary energy and mobility data were characterized by Electron Backscattered Diffraction (EBSD) technique and Atomic Force Microscopy (AFM) observations (i.e., for ceramic MgO and for the metal Al). Grain boundary energies are extracted from triple junction (TJ) geometry considering the local equilibrium condition at TJ's. Relative boundary mobilities were also extracted from TJ's through a statistical/multiscale analysis. Additionally, there are recent theoretical developments of grain boundary evolution in microstructures. In this paper, a new technique for three-dimensional grain growth simulations was used to simulate interface migration
EFFECT OF SOME PLANT GROWTH REGULATORS WITH RETARDING ACTIVITY ON SPRING PEA FOR GRAIN
Directory of Open Access Journals (Sweden)
Tsenka ZHELYAZKOVA
2012-12-01
Full Text Available A field experiment was conducted at Trakia University - Stara Zagora to establish the effect of some growth retardants on morphological and productive parameters in spring pea for grain variety Bogatir. Three combined preparations: Trisalvit (phenylphthalamic acid + chlorocholine chloride + chlorophenoxyacetic acid +salicylic acid at doses of 300 and 400 сmз*ha-1; SM-21 (phenylphthalamic acid + chlorocholine chloride at doses of 300 and 400 сmз*ha-1 and PNSA-44 (phenylphthalamic acid + naphthaleneacetic acid + chlorophenoxyacetic acid at doses of 200 and 300 сmз*ha-1 were applied in the early growth phase of the plant up to a height of 15-20 cm. The study showed that the greatest reduction in the stem height (by 12.8% compared to untreated plants was achieved by applying SM-21 (400 сmз*ha-1. The application of growth regulators Trisalvit and SM-21 had no appreciable effect on the production of spring pea grain. Maximum values of yield structure components (number of pods and grain per plant, grain mass per plant and mass of 1000 grain and the yield were obtained after application of PNSA-44 (300 сmз*ha-1 - up to 5.6% (117.2 kg*ha-1 more grain than the control. The investigation of the influence of tested factors (retardant, dose and year demonstrated that the conditions of the year as a factor had the strongest effect on plant height and grain yield.
Understanding and Tailoring Grain Growth of Lead-Halide Perovskite for Solar Cell Application.
Ma, Yongchao; Liu, Yanliang; Shin, Insoo; Hwang, In-Wook; Jung, Yun Kyung; Jeong, Jung Hyun; Park, Sung Heum; Kim, Kwang Ho
2017-10-04
The fundamental mechanism of grain growth evolution in the fabrication process from the precursor phase to the perovskite phase is not fully understood despite its importance in achieving high-quality grains in organic-inorganic hybrid perovskites, which are strongly affected by processing parameters. In this work, we investigate the fundamental conversion mechanism from the precursor phase of perovskite to the complete perovskite phase and how the intermediate phase promotes growth of the perovskite grains during the fabrication process. By monitoring the morphological evolution of the perovskite during the film fabrication process, we observed a clear rod-shaped intermediate phase in the highly crystalline perovskite and investigated the role of the nanorod intermediate phase on the growth of the grains of the perovskite film. Furthermore, on the basis of these findings, we developed a simple and effective method to tailor grain properties including the crystallinity, size, and number of grain boundaries, and then utilized the film with the tailored grains to develop perovskite solar cells.
Finite-time braiding exponents
Budišić, Marko; Thiffeault, Jean-Luc
2015-08-01
Topological entropy of a dynamical system is an upper bound for the sum of positive Lyapunov exponents; in practice, it is strongly indicative of the presence of mixing in a subset of the domain. Topological entropy can be computed by partition methods, by estimating the maximal growth rate of material lines or other material elements, or by counting the unstable periodic orbits of the flow. All these methods require detailed knowledge of the velocity field that is not always available, for example, when ocean flows are measured using a small number of floating sensors. We propose an alternative calculation, applicable to two-dimensional flows, that uses only a sparse set of flow trajectories as its input. To represent the sparse set of trajectories, we use braids, algebraic objects that record how trajectories exchange positions with respect to a projection axis. Material curves advected by the flow are represented as simplified loop coordinates. The exponential rate at which a braid stretches loops over a finite time interval is the Finite-Time Braiding Exponent (FTBE). We study FTBEs through numerical simulations of the Aref Blinking Vortex flow, as a representative of a general class of flows having a single invariant component with positive topological entropy. The FTBEs approach the value of the topological entropy from below as the length and number of trajectories is increased; we conjecture that this result holds for a general class of ergodic, mixing systems. Furthermore, FTBEs are computed robustly with respect to the numerical time step, details of braid representation, and choice of initial conditions. We find that, in the class of systems we describe, trajectories can be re-used to form different braids, which greatly reduces the amount of data needed to assess the complexity of the flow.
Energy Technology Data Exchange (ETDEWEB)
Kim, C.J.; Gee, Y.A.; Hong, G.W. [Korea Atomic Energy Research Institute, Taejon (Korea); Kim, H.J.; Joo, J.H. [Sungkyunkwan University, Suwon (Korea); Han, S.C.; Han, Y.H.; Sung, T.H.; Kim, S.J. [Korea Electric Power Research Institute, Taejon (Korea)
2000-06-01
Multiseeding with (100)/(100) grain junctions of top-seeded melt growth (TSMG) processed YBCO superconductors was studied. Multiple seeding shortened the processing time for the fabrication of TSMG-processed YBCO superconductors. The relationship among the number of seeds, the levitation forces and the trapped magnetic fields of the TSMG-processed YBCO samples is reported. The characteristic of the (100)/(100) grain junction is discussed in terms of a wetting angle of a melt. (author). 25 refs., 7 figs.
International Nuclear Information System (INIS)
Vieira, R.R.; Arruda Camargo, L.M. de; Oliveira Junior, G.G. de; Dias Filho, A.G.C.
1983-01-01
The austenitic grain growth and hardenability of SAE 86XX and 5120 steels modified with 0,001 to 0,20 per-cent niobium content were studied when submitted to case hardening and quenching heat treatments. The results show that niobium controlS the austenite grain size better than molybdenum up to 950 0 C austenitization temperature. The hardenability, evaluated by the Jominy test which the modified SAE 8640 steels, is more strongly inflencied by the grain refining resulting from niobium addition than by any other supposed effect. (Author) [pt
Wu, Yan; Huang, Yuan-yuan
2018-03-01
Abnormal grain growth of single phase AZ31 Mg alloy in the spatio-temporal process has been simulated by phase field models, and the influencing factors of abnormal grain growth are studied in order to find the ways to control secondary recrystallization in the microstructure. The study aims to find out the mechanisms for abnormal grain growth in real alloys. It is shown from the simulated results that the abnormal grain growth can be controlled by the strain restored energy. Secondary recrystallization after an annealing treatment can be induced if there are grains of a certain orientation in the microstructure with local high restored energy. However, if the value of the local restored energy at a certain grain orientation is not greater than 1.1E 0, there may be no abnormal grain growth in the microstructure.
Meyers, C. D.; Kohlstedt, D. L.; Zimmerman, M. E.
2017-12-01
Experiments on laboratory-synthesized olivine-rich rocks form the starting material for many investigations of physical processes in the Earth's upper mantle (e.g., creep behavior, ionic diffusion, and grain growth). Typically, a fit of a constitutive law to experimental data provides a description of the kinetics of a process needed to extrapolate across several orders of magnitude from laboratory to geological timescales. Although grain-size is a critical parameter in determining physical properties such as viscosity, broad disagreement persists amongst the results of various studies of grain growth kinetics in olivine-rich rocks. Small amounts of impurities or porosity dramatically affect the kinetics of grain growth. In this study, we developed an improved method for densifying olivine-rich rocks fabricated from powdered, gem-quality single crystals that involves evacuating the pore space, with the aim of refining measurements of the kinetics of mantle materials. In previous studies, olivine powders were sealed in a metal can and hydrostatically annealed at roughly 300 MPa and 1250 °C. These samples, which appear opaque and milky-green, typically retain a small amount of porosity. Consequently, when annealed at 1 atm, extensive pore growth occurs, inhibiting grain growth. In addition, Fourier-transform infrared and confocal Raman spectroscopy reveal absorption peaks characteristic of CO2 in the pores of conventionally hot-pressed material. To avoid trapping of adsorbed contaminants, we developed an evacuated hot-pressing method, wherein the pore space of powder compacts is vented to vacuum during heating and pressurization. This method produces a highly dense, green-tinted, transparent material. No CO2 absorptions peaks exist in evacuated hot-pressed material. When reheated to annealing temperatures at 1 atm, the evacuated hot-pressed material undergoes limited pore growth and dramatically enhanced grain-growth rates. High-strain deformation experiments on
Energy Technology Data Exchange (ETDEWEB)
Zhang, Lei [Department of Machine Tools and Factory Management, Technical University of Berlin, Pascalstraße 8 – 9, 10587, Berlin (Germany); Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin (Germany); Kannengiesser, Thomas [Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin (Germany); Institute of Materials and Joining Technology, Otto von Guericke University Magdeburg, Universitetsplatz 2, 39106, Magdeburg (Germany)
2014-09-08
The roles of microalloying niobium, titanium and vanadium for controlling austenite grain growth, microstructure evolution and hardness were investigated at different simulated heat affected zones (HAZ) for high strength low alloy (HSLA) S690QL steel. High resolution FEG-SEM has been used to characterize fine bainitic ferrite, martensite and nanosized second phases at simulated coarse and fine grain HAZs. It was found that for Ti bearing steel (Ti/N ratio is 2) austenite grain had the slowest growth rate due to the presence of most stable TiN. The fine cuboidal particles promoted intragranular acicular ferrite (IGF) formation. Nb bearing steel exhibited relatively weaker grain growth retardation compared with titanium bearing steels and a mixed microstructure of bainite and martensite was present for all simulated HAZs. IGF existed at coarse grain HAZ of Ti+V bearing steel but it was totally replaced by bainite at fine grain HAZs. Hardness result was closely related to the morphology of bainitic ferrite, intragranular ferrite and second phases within ferrite. The microstructure and hardness results of different simulated HAZs were in good agreement with welded experimental results.
Explosive anisotropic grain growth of delta-NiMo by solid-state diffusion
International Nuclear Information System (INIS)
Chou, T.C.; Nieh, T.G.
1991-01-01
Anomalous, anisotropic grain growth has been observed in delta(δ)-NiMo intermetallic compound during the annealings of Mo/Ni thin-film diffusion couples at 700 and 800 degree C. Two layered microstructures showing median-sized, equiaxed grains and large columnar single crystalline grains were generated. The growth direction of the columnar grains was parallel to the direction of Ni diffusion flux. Electron diffraction indicated that both the median-sized and the columnar grains were δ-NiMo. The composition of δ-NiMo was determined to be Ni48-Mo52 (at.%). According to the thickness of reaction-formed δ-NiMo, the apparent interdiffusion coefficient was measured to be about 10 -10 cm 2 /s which is 4 to 5 orders of magnitude greater than literature data. The enhanced diffusion rate in Ni-Mo, and the anomalous anisotropic grain growth of δ-NiMo compound are discussed on the basis of exothermic reactions between Ni and Mo during diffusional intermixing. The enthalpy of the formation of δ-NiMo is calculated and demonstrated to be sufficient to cause melting/solidification of the compound
Analysis of controlled-mechanism of grain growth in undercooled Fe-Cu alloy
International Nuclear Information System (INIS)
Chen Zheng; Liu Feng; Yang Xiaoqin; Shen Chengjin; Fan Yu
2011-01-01
Highlights: → In terms of a thermo-kinetic model applicable for micro-scale undercooled Fe-4 at.% Cu alloy, grain growth behavior of the single-phase supersaturated granular grain was investigated. → In comparison of pure kinetic model, pure thermodynamic model and the extended thermo-kinetic model, two characteristic annealing time were determined. → The controlled-mechanism of grain growth in undercooled Fe-Cu alloy was proposed, including a mainly kinetic-controlled process, a transition from kinetic-mechanism to thermodynamic-mechanism and purely thermodynamic-controlled process. - Abstract: An analysis of controlled-mechanism of grain growth in the undercooled Fe-4 at.% Cu immiscible alloy was presented. Grain growth behavior of the single-phase supersaturated granular grains prepared in Fe-Cu immiscible alloy melt was investigated by performing isothermal annealings at 500-800 deg. C. The thermo-kinetic model [Chen et al., Acta Mater. 57 (2009) 1466] applicable for nano-scale materials was extended to the system of micro-scale undercooled Fe-4 at.% Cu alloy. In comparison of pure kinetic model, pure thermodynamic model and the extended thermo-kinetic model, two characteristic annealing time (t 1 and t 2 ) were determined. The controlled-mechanism of grain growth in undercooled Fe-Cu alloy was proposed, including a mainly kinetic-controlled process (t ≤ t 1 ), a transition from kinetic-mechanism to thermodynamic-mechanism (t 1 2 ) and purely thermodynamic-controlled process (t ≥ t 2 ).
International Nuclear Information System (INIS)
Liu, Yangyang; Li, Jiheng; Gao, Xuexu
2017-01-01
Highlights: • Texture of primary IA sample was dominated by γ-fiber with a peak at {1 1 1}<1 1 0>. • Texture of primary CR sample was dominated by {1 1 3}<1 1 4> texture. • Inhomogeneous microstructure was significantly improved in primary IA sample. • Strong Goss texture was obtained in final IA sample without surface energy control. - Abstract: Magnetostrictive Fe 82 Ga 4.5 Al 13.5 sheets with 0.1 at% NbC were prepared from directional solidified alloys with <0 0 1> preferred orientation. The slabs were hot rolled at 650 °C and warm rolled at 500 °C. Then some warm-rolled sheets were annealed intermediately at 850 °C for 5 min but the others not. After that, all the sheets were cold rolled to a final thickness of ∼0.3 mm. The microstructures, the textures and the distributions of second phase particles in the primary recrystallized samples were investigated. With intermediate annealing, the inhomogeneous microstructure was improved remarkably and strong Goss ({1 1 0}<0 0 1>) and γ-fiber (<1 1 1>//normal direction [ND]) textures were produced in the primary recrystallized samples. But, an evident disadvantage in size and quantity was observed for Goss grains in the primary recrystallized sample without intermediate annealing. After a final annealing, the final textures and magnetostrictions of samples with and without intermediate annealing were characterized. For samples without intermediate annealing, abnormal growth of {1 1 3} grains occurred and deteriorated the magnetostriction. In contrast, abnormal Goss grain growth occurred completely in samples with intermediate annealing and led to saturation magnetostriction as high as 156 ppm.
Energy Technology Data Exchange (ETDEWEB)
Liu, Yangyang; Li, Jiheng; Gao, Xuexu, E-mail: gaox@skl.ustb.edu.cn
2017-08-01
Highlights: • Texture of primary IA sample was dominated by γ-fiber with a peak at {1 1 1}<1 1 0>. • Texture of primary CR sample was dominated by {1 1 3}<1 1 4> texture. • Inhomogeneous microstructure was significantly improved in primary IA sample. • Strong Goss texture was obtained in final IA sample without surface energy control. - Abstract: Magnetostrictive Fe{sub 82}Ga{sub 4.5}Al{sub 13.5} sheets with 0.1 at% NbC were prepared from directional solidified alloys with <0 0 1> preferred orientation. The slabs were hot rolled at 650 °C and warm rolled at 500 °C. Then some warm-rolled sheets were annealed intermediately at 850 °C for 5 min but the others not. After that, all the sheets were cold rolled to a final thickness of ∼0.3 mm. The microstructures, the textures and the distributions of second phase particles in the primary recrystallized samples were investigated. With intermediate annealing, the inhomogeneous microstructure was improved remarkably and strong Goss ({1 1 0}<0 0 1>) and γ-fiber (<1 1 1>//normal direction [ND]) textures were produced in the primary recrystallized samples. But, an evident disadvantage in size and quantity was observed for Goss grains in the primary recrystallized sample without intermediate annealing. After a final annealing, the final textures and magnetostrictions of samples with and without intermediate annealing were characterized. For samples without intermediate annealing, abnormal growth of {1 1 3} grains occurred and deteriorated the magnetostriction. In contrast, abnormal Goss grain growth occurred completely in samples with intermediate annealing and led to saturation magnetostriction as high as 156 ppm.
International Nuclear Information System (INIS)
Paraschiv, M.; Paraschiv, A.
1991-01-01
A method to rewrite Fick's second law for a region with a moving boundary when the moving law in time of this boundary is known, has been proposed. This method was applied to Booth's sphere model for radioactive and stable fission product diffusion from the oxide fuel grain in order to take into account the grain growth. The solution of this new equation was presented in the mathematical formulation for power histories from ANS 5.4 model for the stable species. It is very simple to apply and very accurate. The results obtained with this solution for constant and transient temperatures show that the fission gas release (FGR) at grain boundary is strongly dependent on kinetics of grain growth. The utilization of two semiempirical grain growth laws, from published information, shows that the fuel microstructural properties need to be multicitly considered in the fission gas release for every manufacturer of fuel. (orig.)
Directory of Open Access Journals (Sweden)
Dutra J.C.
2002-01-01
Full Text Available The continuing development of stainless steels has resulted in complex steel compositions with substantial amounts of alloying elements. The benefits of such additions invariably come attached to unavoidable disadvantages. One of the most critical item is the potential microstructural instability of the material. Alloying elements may be in a supersaturated solid solution, in which the precipitation of carbides, nitrides, borides and intermetallic phases occurs in a wide range of temperatures. In order to dissolve the mentioned precipitates, solution annealing is commonly performed. However, at the temperature range in which this treatment is carried out, the onset of abnormal grain growth can occur. The interaction between the dissolution of these second-phase particles and the occurrence of abnormal grain growth is investigated in this work. This study also shows that the thermodynamics and the kinetics of dissolution of precipitates may be used to predict whether abnormal grain growth takes place.
Directory of Open Access Journals (Sweden)
Carmen Rodica Pop
2014-11-01
Full Text Available The purpose of this study was to optimize the kefir grains biomass production, using milk as culture media. The kefir grains were cultured at different changed conditions (temperature, time, shaker rotating speed, culture media supplemented to evaluate their effects. Results showed that optimal culture conditions were using the organic skim milk, incubated at 25°C for 24 hours with a rotation rate of 125 rpm. According to results, the growth rate was 38.9 g/L for 24 h, at 25°C using the organic milk - OSM, 36.87 g/L during 24 hours, optimal time for propagation process gave 37.93 g/L kefir grains biomass when the effect of temperature level was tested. The homogenization of medium with shaker rotating induced a greater growth rate, it was obtained 38.9 g/L for 24 h, at 25°C using rotation rate at 125 rpm. The growing medium (conventional milk supplemented with different minerals and vitamins may lead to improve the growth conditions of kefir grains biomass. The optimization of the growth environment is very important for achieving the maximum production of kefir grains biomass, substrate necessary to obtain the polysaccharide kefiran
Effect of additives on enhanced sintering and grain growth in uranium dioxide
International Nuclear Information System (INIS)
Bourgeois, L.
1992-06-01
The use of sintering additives has been the most effective way of promoting grain growth of uranium dioxide. We have established a same mechanism for additives which belongs to corundum structure: chromium, aluminium, vanadium and titanium sesquioxides. Study of thermodynamical stabilities of dopants has lead to define suitable sintering atmospheres in order to enhance grain growth. Low solubility limits have been defined at T=1700 deg C for four additives, from variations of final grain size versus initial dopant concentration Identification of second phase after cooling has been done from electronic diffraction patterns. It appears that these solubilities decrease sharply as positive deviation from stoichiometry of uranium dioxide increases. Dilatometric analysis of sintering of doped uranium dioxide has shown in certain cases some enhancement in densification rates, at the point of onset of abnormal grain growth, which is believed to be the source. Nevertheless, the following growth is accompanied with pores coalescence mechanisms and pores entrapment inside grains. Increased thermal stability, during standard annealing, is expected, limiting thereby redensification of nuclear fuel in reactors. Finally, from investigations of additives vaporizations, Al 2 O 3 and Cr 2 O 3 , oxygen exchanges between additives and matrix are believed to occur, which should lead to enhance pore mobility. (Author)., refs., figs., tabs
Stochastic simulation of grain growth during continuous casting
Energy Technology Data Exchange (ETDEWEB)
Ramirez, A. [Department of Aerounatical Engineering, S.E.P.I., E.S.I.M.E., IPN, Instituto Politecnico Nacional (Unidad Profesional Ticoman), Av. Ticoman 600, Col. Ticoman, C.P.07340 (Mexico)]. E-mail: adalop123@mailbanamex.com; Carrillo, F. [Department of Processing Materials, CICATA-IPN Unidad Altamira Tamps (Mexico); Gonzalez, J.L. [Department of Metallurgy and Materials Engineering, E.S.I.Q.I.E.-IPN (Mexico); Lopez, S. [Department of Molecular Engineering of I.M.P., AP 14-805 (Mexico)
2006-04-15
The evolution of microstructure is a very important topic in material science engineering because the solidification conditions of steel billets during continuous casting process affect directly the properties of the final products. In this paper a mathematical model is described in order to simulate the dendritic growth using data of real casting operations; here a combination of deterministic and stochastic methods was used as a function of the solidification time of every node in order to create a reconstruction about the morphology of cast structures.
Stochastic simulation of grain growth during continuous casting
International Nuclear Information System (INIS)
Ramirez, A.; Carrillo, F.; Gonzalez, J.L.; Lopez, S.
2006-01-01
The evolution of microstructure is a very important topic in material science engineering because the solidification conditions of steel billets during continuous casting process affect directly the properties of the final products. In this paper a mathematical model is described in order to simulate the dendritic growth using data of real casting operations; here a combination of deterministic and stochastic methods was used as a function of the solidification time of every node in order to create a reconstruction about the morphology of cast structures
Lian, Yanping; Lin, Stephen; Yan, Wentao; Liu, Wing Kam; Wagner, Gregory J.
2018-01-01
In this paper, a parallelized 3D cellular automaton computational model is developed to predict grain morphology for solidification of metal during the additive manufacturing process. Solidification phenomena are characterized by highly localized events, such as the nucleation and growth of multiple grains. As a result, parallelization requires careful treatment of load balancing between processors as well as interprocess communication in order to maintain a high parallel efficiency. We give a detailed summary of the formulation of the model, as well as a description of the communication strategies implemented to ensure parallel efficiency. Scaling tests on a representative problem with about half a billion cells demonstrate parallel efficiency of more than 80% on 8 processors and around 50% on 64; loss of efficiency is attributable to load imbalance due to near-surface grain nucleation in this test problem. The model is further demonstrated through an additive manufacturing simulation with resulting grain structures showing reasonable agreement with those observed in experiments.
Lian, Yanping; Lin, Stephen; Yan, Wentao; Liu, Wing Kam; Wagner, Gregory J.
2018-05-01
In this paper, a parallelized 3D cellular automaton computational model is developed to predict grain morphology for solidification of metal during the additive manufacturing process. Solidification phenomena are characterized by highly localized events, such as the nucleation and growth of multiple grains. As a result, parallelization requires careful treatment of load balancing between processors as well as interprocess communication in order to maintain a high parallel efficiency. We give a detailed summary of the formulation of the model, as well as a description of the communication strategies implemented to ensure parallel efficiency. Scaling tests on a representative problem with about half a billion cells demonstrate parallel efficiency of more than 80% on 8 processors and around 50% on 64; loss of efficiency is attributable to load imbalance due to near-surface grain nucleation in this test problem. The model is further demonstrated through an additive manufacturing simulation with resulting grain structures showing reasonable agreement with those observed in experiments.
Suslova, A.; El-Atwani, O.; Sagapuram, D.; Harilal, S. S.; Hassanein, A.
2014-11-01
Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten.
A Model of Silicate Grain Nucleation and Growth in Circumstellar Outflows
Paquette, John A.; Ferguson, Frank T.; Nuth, Joseph A., III
2011-01-01
Based on its abundance, high bond energy, and recent measurements of its vapor pressure SiO is a natural candidate for dust nucleation in circumstellar outflows around asymptotic giant branch stars. In this paper, we describe a model of the nucleation and growth of silicate dust in such outflows. The sensitivity of the model to varying choices of poorly constrained chemical parameters is explored, and the merits of using scaled rather than classical nucleation theory are briefly considered, An elaboration of the model that includes magnesium and iron as growth species is then presented and discussed. The composition of the bulk of the grains derived from the model is consistent with olivines and pyroxenes, but somewhat metal-rich grains and very small, nearly pure SiO grains are also produced,
Multiple oxide content media for columnar grain growth in L10 FePt thin films
International Nuclear Information System (INIS)
Ho, Hoan; Yang, En; Laughlin, David E.; Zhu, Jian-Gang
2013-01-01
An approach to enhance the height-to-diameter ratio of FePt grains in heat-assisted magnetic recording media is proposed. The FePt-SiO x thin films are deposited with a decrease of the SiO x percentage along the film growth direction. When bi-layer and tri-layer media are sputtered at 410 °C, we observe discontinuities in the FePt grains at interfaces between layers, which lead to poor epitaxial growth. Due to increased atomic diffusion, the bi-layer media sputtered at 450 °C is shown to (1) grow into continuous columnar grains with similar size as single-layer media but much higher aspect ratio, (2) have better L1 0 ordering and larger coercivity.
Grain Growth and Precipitation Behavior of Iridium Alloy DOP-26 During Long Term Aging
Energy Technology Data Exchange (ETDEWEB)
Pierce, Dean T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Muralidharan, Govindarajan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fox, Ethan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cox, Victoria A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Geer, Tom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2017-05-01
The influence of long term aging on grain growth and precipitate sizes and spatial distribution in iridium alloy DOP-26 was studied. Samples of DOP-26 were fabricated using the new process, recrystallized for 1 hour (h) at 1375 C, then aged at either 1300, 1400, or 1500 C for times ranging from 50 to 10,000 h. Grain size measurements (vertical and horizontal mean linear intercept and horizontal and vertical projection) and analyses of iridium-thorium precipitates (size and spacing) were made on the longitudinal, transverse, and rolling surfaces of the as-recrystallized and aged specimens from which the two-dimensional spatial distribution and mean sizes of the precipitates were obtained. The results obtained from this study are intended to provide input to grain growth models.
International Nuclear Information System (INIS)
Pushkareva, Marina; Adrien, Jérôme; Maire, Eric; Segurado, Javier; Llorca, Javier; Weck, Arnaud
2016-01-01
The fracture process of commercially pure titanium was visualized in model materials containing artificial holes. These model materials were fabricated using a femtosecond laser coupled with a diffusion bonding technique to obtain voids in the interior of titanium samples. Changes in void dimensions during in-situ straining were recorded in three dimensions using x-ray computed tomography. Void growth obtained experimentally was compared with the Rice and Tracey model which predicted well the average void growth. A large scatter in void growth data was explained by differences in grain orientation which was confirmed by crystal plasticity simulations. It was also shown that grain orientation has a stronger effect on void growth than intervoid spacing and material strength. Intervoid spacing, however, appears to control whether the intervoid ligament failure is ductile or brittle.
Energy Technology Data Exchange (ETDEWEB)
Pushkareva, Marina [Department of Mechanical Engineering, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); Adrien, Jérôme; Maire, Eric [Université de Lyon, INSA-Lyon, MATEIS CNRS UMR5510, 7 Avenue Jean Capelle, F-69621 Villeurbanne (France); Segurado, Javier; Llorca, Javier [IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain); Department of Materials Science, Polytechnic University of Madrid, E. T. S. de Ingenieros de Caminos, 28040 Madrid (Spain); Weck, Arnaud, E-mail: aweck@uottawa.ca [Department of Mechanical Engineering, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, Canada K1N 6N5 (Canada); Centre for Research in Photonics at the University of Ottawa, 800 King Edward Ave., Ottawa, ON, Canada K1N 6N5 (Canada)
2016-08-01
The fracture process of commercially pure titanium was visualized in model materials containing artificial holes. These model materials were fabricated using a femtosecond laser coupled with a diffusion bonding technique to obtain voids in the interior of titanium samples. Changes in void dimensions during in-situ straining were recorded in three dimensions using x-ray computed tomography. Void growth obtained experimentally was compared with the Rice and Tracey model which predicted well the average void growth. A large scatter in void growth data was explained by differences in grain orientation which was confirmed by crystal plasticity simulations. It was also shown that grain orientation has a stronger effect on void growth than intervoid spacing and material strength. Intervoid spacing, however, appears to control whether the intervoid ligament failure is ductile or brittle.
Directory of Open Access Journals (Sweden)
Andreas Cziegler
2017-09-01
Full Text Available Grain refinement by elemental addition has been extensively investigated within the last decades in Al or Mg alloys. In contrast, in the Cu system, the role of solute on grain size is less investigated. In this study, the grain refinement potency of several alloying elements of the Cu system was examined. To predict grain size depending on the growth restriction factor Q, grain size modelling was performed. The results obtained by the grain size model were compared to variations in the grain size of binary Cu alloys with increasing solute content under defined cooling conditions of the TP-1 grain refiner test of the Aluminium Association©. It was found that the experimental results differed significantly from the predicted grain size values for several alloying elements. A decreasing grain size with increasing alloy concentration was observed independently of the growth restriction potency of the alloying elements. Furthermore, excessive grain coarsening was found for several solutes beyond a transition point. It is assumed that contradictory variations in grain size result from a change in the nucleating particle density of the melt. Significant decreases in grain size are supposed to be due to the in-situ formation of potent nucleation sites. Excessive grain coarsening with increasing solute content may occur due to the removal of nucleating particles. The model shows that the difference in the actual number of particles before and beyond the transition point must be in the range of several orders of magnitude.
Watching the growth of bulk grains during recrystallization of deformed metals
DEFF Research Database (Denmark)
Schmidt, Søren; Fæster Nielsen, Søren; Gundlach, C.
2004-01-01
, contradicting the classical assumption of smooth and spherical growth of new grains during recrystallization. This type of in situ bulk measurement opens up the possibility of obtaining experimental data on scientific topics that before could only be analyzed theoretically on the basis of the statistical...
Grain growth kinetics of textured-BaTiO3 ceramics
Indian Academy of Sciences (India)
Administrator
3Department of Physics and Materials Science, City University of Hong Kong, Hong Kong ... Abstract. Textured BaTiO3 (BT) ceramics were fabricated by templated grain growth method. Effects of ... approaches to improve electrical properties of lead-free ceramics. ... modification methods to enhance the piezoelectric pro-.
Effect of pre- and post-heading waterlogging on growth and grain yield of four millets
Directory of Open Access Journals (Sweden)
Asana Matsuura
2016-07-01
Full Text Available Seeds of Panicum miliaceum, Panicum sumatrense, Setaria glauca, and Setaria italica were raised in polyvinylchloride tubes filled with soil to determine interspecific differences in waterlogging tolerance and the effect of pre- and post-heading waterlogging on growth and grain yield. Four treatments were conducted including control (no-waterlogging stress during growth. Pre-heading waterlogging treatment was initiated 17 days after sowing to heading (TC. Post-heading waterlogging treatment was initiated heading till harvest (CT. Waterlogging treatment was initiated 17 days after sowing to harvesting (TT. The grain yield of P. miliaceum, S. glauca, and S. italica decreased 16, 18, and 4%, while that of P. sumatrense increased 210% under TT treatment and this showed P. sumatrense had most waterlogging tolerance. The grain yield was more affected under TC treatment in S. italica and P. miliaceum. However, there was not significant differences the grain yield between TC and CT treatment in P. sumatrense and S. glauca. Total dry weight, total root dry weight, number of crown root, and the proportion of lysigenous aerenchyma of P. sumatrense were significantly higher than those of other millets at harvesting. Plant growth rate, total root dry weight, number of crown root, and the proportion of lysigenous aerenchyma of P. sumatrense were significantly higher than those of other millets at heading. These results suggest that P. sumatrense exhibits waterlogging tolerance by enhancing root growth characterized by a high proportion of lysigenous aerenchyma in the crown root.
International Nuclear Information System (INIS)
Hur, Tae-Bong; Kim, Hong Koo; Perello, David; Yun, Minhee; Kulovits, Andreas; Wiezorek, Joerg
2008-01-01
Epitaxial nanocrystalline Ag films were grown on initially native-oxide-covered Si(001) substrates using radio-frequency magnetron sputtering. Mechanisms of grain growth and morphology evolution were investigated. An epitaxially oriented Ag layer (∼5 nm thick) formed on the oxide-desorbed Si surface during the initial growth phase. After a period of growth instability, characterized as kinetic roughening, grain growth stagnation, and increase of step-edge density, a layer of nanocrystalline Ag grains with a uniform size distribution appeared on the quasi-two-dimensional layer. This hierarchical process of film formation is attributed to the dynamic interplay between incoming energetic Ag particles and native oxide. The cyclic interaction (desorption and migration) of the oxide with the growing Ag film is found to play a crucial role in the characteristic evolution of grain growth and morphology change involving an interval of grain growth stagnation
Energy Technology Data Exchange (ETDEWEB)
Bittner, F., E-mail: f.bittner@ifw-dresden.de [IFW Dresden, Institute for Metallic Materials, PO Box 270116, 01171 Dresden (Germany); Technische Universität Dresden, Institute of Materials Science, 01062 Dresden (Germany); Woodcock, T.G. [IFW Dresden, Institute for Metallic Materials, PO Box 270116, 01171 Dresden (Germany); Schultz, L. [IFW Dresden, Institute for Metallic Materials, PO Box 270116, 01171 Dresden (Germany); Technische Universität Dresden, Institute of Materials Science, 01062 Dresden (Germany); Schwöbel, C. [Technische Universität Darmstadt, Materialwissenschaft, Alarich-Weiß-Str. 16, 64287 Darmstadt (Germany); Gutfleisch, O. [Technische Universität Darmstadt, Materialwissenschaft, Alarich-Weiß-Str. 16, 64287 Darmstadt (Germany); Fraunhofer ISC, Projektgruppe für Werkstoffkreisläufe und Ressourcenstrategie IWKS, Rodenbacher Chaussee 4, 63457 Hanau (Germany); Zickler, G.A.; Fidler, J. [Technische Universität Wien, Institute of Solid State Physics, Wiedner Hauptstr. 8-10, 1040 Wien (Austria); Üstüner, K.; Katter, M. [Vacuumschmelze GmbH & Co. KG, 63412 Hanau (Germany)
2017-03-15
Fine-grained, heavy rare earth free Nd-Fe-B sintered magnets were prepared from He jet milled powders with an average particle size of 1.5 µm by low temperature sintering at 920 °C or 980 °C. A coercivity of >1600 kA/m was achieved for an average grain size of 1.68 µm. Transmission electron microscopy showed that the distribution and composition of intergranular and grain boundary junction phases was similar to that in conventionally processed magnets. Microstructural analysis on different length scales revealed the occurrence of abnormal grain growth, which is unexpected for sintering temperatures below 1000 °C. A larger area fraction of abnormal grains was observed in the sample sintered at 920 °C compared to that sintered at 980 °C. Microtexture investigation showed a better crystallographic alignment of the abnormal grains compared to the fine-grained matrix, which is explained by a size dependent alignment of the powder particles during magnetic field alignment prior to sintering. Slightly larger particles in the initial powder show a better alignment and will act as nucleation sites for abnormal grain growth. Magneto-optical Kerr investigations confirmed the lower switching field of the abnormal grains compared to the fine-grained matrix. The demagnetisation curve of the sample sintered at 920 °C showed reduced rectangularity and this was attributed to a cooperative effect of the larger fraction of abnormal grains with low switching field and, as a minor effect, a reduced degree of crystallographic texture in this sample compared to the material sintered at 980 °C, which did not show the reduced rectangularity of the demagnetisation curve. - Highlights: • He Jet milling to reduce Nd-Fe-B grain size and to enhance coercivity. • Normal and abnormal grain growth observed for low temperature sintering. • Well oriented abnormal grown grains explained by size dependent field alignment. • Poor rectangularity is caused by low nucleation field of
International Nuclear Information System (INIS)
Bittner, F.; Woodcock, T.G.; Schultz, L.; Schwöbel, C.; Gutfleisch, O.; Zickler, G.A.; Fidler, J.; Üstüner, K.; Katter, M.
2017-01-01
Fine-grained, heavy rare earth free Nd-Fe-B sintered magnets were prepared from He jet milled powders with an average particle size of 1.5 µm by low temperature sintering at 920 °C or 980 °C. A coercivity of >1600 kA/m was achieved for an average grain size of 1.68 µm. Transmission electron microscopy showed that the distribution and composition of intergranular and grain boundary junction phases was similar to that in conventionally processed magnets. Microstructural analysis on different length scales revealed the occurrence of abnormal grain growth, which is unexpected for sintering temperatures below 1000 °C. A larger area fraction of abnormal grains was observed in the sample sintered at 920 °C compared to that sintered at 980 °C. Microtexture investigation showed a better crystallographic alignment of the abnormal grains compared to the fine-grained matrix, which is explained by a size dependent alignment of the powder particles during magnetic field alignment prior to sintering. Slightly larger particles in the initial powder show a better alignment and will act as nucleation sites for abnormal grain growth. Magneto-optical Kerr investigations confirmed the lower switching field of the abnormal grains compared to the fine-grained matrix. The demagnetisation curve of the sample sintered at 920 °C showed reduced rectangularity and this was attributed to a cooperative effect of the larger fraction of abnormal grains with low switching field and, as a minor effect, a reduced degree of crystallographic texture in this sample compared to the material sintered at 980 °C, which did not show the reduced rectangularity of the demagnetisation curve. - Highlights: • He Jet milling to reduce Nd-Fe-B grain size and to enhance coercivity. • Normal and abnormal grain growth observed for low temperature sintering. • Well oriented abnormal grown grains explained by size dependent field alignment. • Poor rectangularity is caused by low nucleation field of
The evolution of grain mantles and silicate dust growth at high redshift
Ceccarelli, Cecilia; Viti, Serena; Balucani, Nadia; Taquet, Vianney
2018-05-01
In dense molecular clouds, interstellar grains are covered by mantles of iced molecules. The formation of the grain mantles has two important consequences: it removes species from the gas phase and promotes the synthesis of new molecules on the grain surfaces. The composition of the mantle is a strong function of the environment that the cloud belongs to. Therefore, clouds in high-zeta galaxies, where conditions - like temperature, metallicity, and cosmic ray flux - are different from those in the Milky Way, will have different grain mantles. In the last years, several authors have suggested that silicate grains might grow by accretion of silicon-bearing species on smaller seeds. This would occur simultaneously with the formation of the iced mantles and be greatly affected by its composition as a function of time. In this work, we present a numerical study of the grain mantle formation in high-zeta galaxies, and we quantitatively address the possibility of silicate growth. We find that the mantle thickness decreases with increasing redshift, from about 120 to 20 layers for z varying from 0 to 8. Furthermore, the mantle composition is also a strong function of the cloud redshift, with the relative importance of CO, CO2, ammonia, methane, and methanol highly varying with z. Finally, being Si-bearing species always a very minor component of the mantle, the formation of silicates in molecular clouds is practically impossible.
Directory of Open Access Journals (Sweden)
Yuan Jin
2015-12-01
Full Text Available Grain growth experiments were performed on Inconel™ 718 to investigate the possible correlation of the annealing twin density with grain size and with annealing temperature. Those experiments were conducted at different temperatures in the δ supersolvus domain and under such conditions that only capillarity forces were involved in the grain boundary migration process. In the investigated range, there is a strong inverse correlation of the twin density with the average grain size. On the other hand, the twin density at a given average grain size is not sensitive to annealing temperature. Consistent with previous results for pure nickel, the twin density evolution in Inconel™ 718 is likely to be mainly controlled by the propagation of the pre-existing twins of the growing grains; i.e., the largest ones of the initial microstructure. Almost no new twin boundaries are created during the grain growth process itself. Therefore, the twin density at a given average grain size is mainly dependent on the twin density in the largest grains of the initial microstructure and independent of the temperature at which grains grow. Based on the observations, a mean field model is proposed to predict annealing twin density as a function of grain size during grain growth.
International Nuclear Information System (INIS)
Moelans, N.; Blanpain, B.; Wollants, P.
2008-01-01
A phase-field approach for quantitative simulations of grain growth in anisotropic systems is introduced, together with a new methodology to derive appropriate model parameters that reproduce given misorientation and inclination dependent grain boundary energy and mobility in the simulations. The proposed model formulation and parameter choice guarantee a constant diffuse interface width and consequently give high controllability of the accuracy in grain growth simulations
Front tracking based modeling of the solid grain growth on the adaptive control volume grid
Seredyński, Mirosław; Łapka, Piotr
2017-07-01
The paper presents the micro-scale model of unconstrained solidification of the grain immersed in under-cooled liquid, based on the front tracking approach. For this length scale, the interface tracked through the domain is meant as the solid-liquid boundary. To prevent generation of huge meshes the energy transport equation is discretized on the adaptive control volume (c.v.) mesh. The coupling of dynamically changing mesh and moving front position is addressed. Preliminary results of simulation of a test case, the growth of single grain, are presented and discussed.
International Nuclear Information System (INIS)
Muccillo, R.; Campos, L.L.
1979-01-01
Depolarization Current Spectra resulting from the destruction of the thermoelectret state in polycrystalline ThO 2 samples have been detected in the temperature range 100K-350K. The induced polarization is found to be due to migration of charge carriers over microscopic distances in the bulk of the specimens with trapping at grain boundaries. Moreover the density of charge carriers released from trapping sites, upon heating the cooled previously dc biased specimen decreases for increasing sintering temperature, suggesting the use of the technique to the study of grain growth in the bulk of ceramic oxides. (Author) [pt
Critical exponents of extremal Kerr perturbations
Gralla, Samuel E.; Zimmerman, Peter
2018-05-01
We show that scalar, electromagnetic, and gravitational perturbations of extremal Kerr black holes are asymptotically self-similar under the near-horizon, late-time scaling symmetry of the background metric. This accounts for the Aretakis instability (growth of transverse derivatives) as a critical phenomenon associated with the emergent symmetry. We compute the critical exponent of each mode, which is equivalent to its decay rate. It follows from symmetry arguments that, despite the growth of transverse derivatives, all generally covariant scalar quantities decay to zero.
Effect of Deforming Temperature and Strain on Abnormal Grain Growth of Extruded FGH96 Superalloy
Directory of Open Access Journals (Sweden)
WANG Chaoyuan
2016-10-01
Full Text Available Based on the experiments of isothermal forging wedge-shaped samples, Deform-3D numerical simulation software was used to confirm the strain distribution in the wedge-shaped samples. The effect of deforming temperature and strain on abnormal grain growth(AGG in extruded FGH96 superalloy was examined. It is found that when the forging speed is 0.04 mm/s,the critical AGG occurring temperature is 1100℃,and the critical strain is 2%.AGG does not occur within 1000-1070℃,but still shows the feature of ‘critical strain’,and the region with strain of 5%-10% has the largest average grain size.AGG can be avoided and the uniform fine grains can be gained when the strain is not less than 15%.
Creep crack growth by grain boundary cavitation under monotonic and cyclic loading
Wen, Jian-Feng; Srivastava, Ankit; Benzerga, Amine; Tu, Shan-Tung; Needleman, Alan
2017-11-01
Plane strain finite deformation finite element calculations of mode I crack growth under small scale creep conditions are carried out. Attention is confined to isothermal conditions and two time histories of the applied stress intensity factor: (i) a monononic increase to a plateau value subsequently held fixed; and (ii) a cyclic time variation. The crack growth calculations are based on a micromechanics constitutive relation that couples creep deformation and damage due to grain boundary cavitation. Grain boundary cavitation, with cavity growth due to both creep and diffusion, is taken as the sole failure mechanism contributing to crack growth. The influence on the crack growth rate of loading history parameters, such as the magnitude of the applied stress intensity factor, the ratio of the applied minimum to maximum stress intensity factors, the loading rate, the hold time and the cyclic loading frequency, are explored. The crack growth rate under cyclic loading conditions is found to be greater than under monotonic creep loading with the plateau applied stress intensity factor equal to its maximum value under cyclic loading conditions. Several features of the crack growth behavior observed in creep-fatigue tests naturally emerge, for example, a Paris law type relation is obtained for cyclic loading.
Effect of Fungicide Applications on Grain Sorghum (Sorghum bicolor L. Growth and Yield
Directory of Open Access Journals (Sweden)
Dan D. Fromme
2017-01-01
Full Text Available Field studies were conducted in the upper Texas Gulf Coast and in central Louisiana during the 2013 through 2015 growing seasons to evaluate the effects of fungicides on grain sorghum growth and development when disease pressure was low or nonexistent. Azoxystrobin and flutriafol at 1.0 L/ha and pyraclostrobin at 0.78 L/ha were applied to the plants of two grain sorghum hybrids (DKS 54-00, DKS 53-67 at 25% bloom and compared with the nontreated check for leaf chlorophyll content, leaf temperature, and plant lodging during the growing season as well as grain mold, test weight, yield, and nitrogen and protein content of the harvested grain. The application of a fungicide had no effect on any of the variables tested with grain sorghum hybrid responses noted. DKS 53-67 produced higher yield, greater test weight, higher percent protein, and N than DKS 54-00. Results of this study indicate that the application of a fungicide when little or no disease is present does not promote overall plant health or increase yield.
Rotation-limited growth of three-dimensional body-centered-cubic crystals.
Tarp, Jens M; Mathiesen, Joachim
2015-07-01
According to classical grain growth laws, grain growth is driven by the minimization of surface energy and will continue until a single grain prevails. These laws do not take into account the lattice anisotropy and the details of the microscopic rearrangement of mass between grains. Here we consider coarsening of body-centered-cubic polycrystalline materials in three dimensions using the phase field crystal model. We observe, as a function of the quenching depth, a crossover between a state where grain rotation halts and the growth stagnates and a state where grains coarsen rapidly by coalescence through rotation and alignment of the lattices of neighboring grains. We show that the grain rotation per volume change of a grain follows a power law with an exponent of -1.25. The scaling exponent is consistent with theoretical considerations based on the conservation of dislocations.
Fission gas release and grain growth in THO2-UO2 fuel irradiated at high temperature
International Nuclear Information System (INIS)
Goldberg, I.; Waldman, L.A.; Giovengo, J.F.; Campbell, W.R.
1979-01-01
Data are presented on fission gas release and grain growth in ThO 2 -UO 2 fuels irradiated as part of the LWBR fuel element development program. These data for rods that experienced peak linear power outputs ranging from 15 to 22 KW/ft supplement fission gas release data previously reported for 51 rods containing ThO 2 and ThO 2 -UO 2 fuel irradiated at peak linear powers predominantly below 14 KW/ft. Fission gas release was relatively high (up to 15.0 percent) for the rods operated at high power in contrast to the relatively low fission gas release (0.1 to 5.2 percent) measured for the rods operated at lower power. Metallographic examination revealed extensive equiaxed grain growth in the fuel at the high power axial locations of the three rods
Irreversible thermodynamics, parabolic law and self-similar state in grain growth
International Nuclear Information System (INIS)
Rios, P.R.
2004-01-01
The formalism of the thermodynamic theory of irreversible processes is applied to grain growth to investigate the nature of the self-similar state and its corresponding parabolic law. Grain growth does not reach a steady state in the sense that the entropy production remains constant. However, the entropy production can be written as a product of two factors: a scale factor that tends to zero for long times and a scaled entropy production. It is suggested that the parabolic law and the self-similar state may be associated with the minimum of this scaled entropy production. This result implies that the parabolic law and the self-similar state have a sound irreversible thermodynamical basis
Grain growth: The key to understand solid-state dewetting of silver thin films
International Nuclear Information System (INIS)
Jacquet, P.; Podor, R.; Ravaux, J.; Teisseire, J.; Gozhyk, I.; Jupille, J.; Lazzari, R.
2016-01-01
The dynamics of solid-state dewetting of polycrystalline silver thin films in oxygen atmosphere was investigated with in situ and real-time environmental Scanning Electron Microscopy at high temperature combined with Atomic Force Microscopy. Three steps were identified during dewetting: induction, hole propagation without specific rim and sintering. Moreover, it was observed that a very selective grain growth, promoted by surface diffusion, plays a key role all along the process.
Determination of Sintered (Th,U)O2 Pellet at the Grain Growth Step
International Nuclear Information System (INIS)
Indrati-Y, Tundjung; Pristi-Hartati, Murdani; Ari-Handayani; Ginting, Aslina Br
2000-01-01
The determination of sintered (Th,U)O 2 pellet at the grain growth stephave been done by dilatometer and Scanning Electron Microscope (SEM). Thecalculation method based on the densification curve and quantitativemetallurgy. The green pellet be produced by single action compaction. Itspellet was heated on the dilatometer with heating rate 11 o C/minute and inthe argon atmosphere, 2 liters/hour. The activation energy at thedensification step can be calculated by densification curve only, but theactivation energy at the grain growth step can be calculated by densificationcurve or quantitative metallurgy. The capability of the dilatometer can beoperated until 1200 o C, so the densification curve based on the experiencecan be used to calculate activation energy at the densification step, 4.492kcal/mole. The activation energy at the grain growth step, which is 25.277kcal/mole, can be predicted by trial and error on n value. That activationenergy is almost the same with activation energy that based on thequantitative metallurgy method 25.042 kcal/mole. All of the activation energyfor the (Th,U)O 2 pellet sintering process is 29.769 kcal/mole. (author)
A new exponent in self-avoiding walks
International Nuclear Information System (INIS)
Srivastava, V.
1983-06-01
Existence of a new exponent is reported in the problem of nonintersecting self-avoiding random walks. It is connected with the asymptotic behaviour of the growth of number of such walks of larger and larger length. The value of the exponent is found to be nearly 0.90 for all two-dimensional and nearly 0.96 for all three-dimensional lattices studied here. (author)
Contribution to the study of the creep of uranium dioxide. Role of grain growth promoters
International Nuclear Information System (INIS)
Vivant-Duguay, Christelle
1998-01-01
Improvement of nuclear fuel performances involves enhancing the plasticity of uranium dioxide UO 2 , in order to reduce the stress applied by the pellet to the cladding during a power ramp. The objective of this work is to identify and to formulate the effects produced by the nature and the concentration of additives of corundum structure, Cr 2 O 3 or Al 2 O 3 , which are grain growth promoters for UO 2 . The review of literature data establishes that oxygen content, grain size or porosity markedly affect the mechanical properties of uranium dioxide. On the other hand, there is relatively little reported work on the influence of doping. Prepared samples have been deformed by uniaxial compression. In the case of standard undoped UO 2 , two distinct preponderant creep mechanisms occur depending on stress level: a grain boundary diffusional creep, as per Coble, for stresses below the transition stress and a dislocation creep above. The doped materials have a large grained microstructure, which allows a dislocation creep only. In the range of temperature and stress investigated here, doping significantly improves the plasticity of standard UO 2 . This common effect of dopants is characterized by a decrease in the flow stress for tests with constant strain rate and by enhanced steady-state creep rates. Cr 2 O 3 doping is the more effective. The apparent benefit of doping results from the gain due to the increased grain size, but it is compensated by the strengthening effect of the additive. The creep law used to describe the behavior of standard UO 2 , has been modified to account for the influence of the dopant, by including either the concentration or the grain size. (author) [fr
Energy Technology Data Exchange (ETDEWEB)
Miao, Yinbin [Argonne National Lab. (ANL), Argonne, IL (United States); Mo, Kun [Argonne National Lab. (ANL), Argonne, IL (United States); Jamison, Laura M. [Argonne National Lab. (ANL), Argonne, IL (United States); Lian, Jie [Rensselaer Polytechnic Inst., Troy, NY (United States); Yao, Tiankai [Rensselaer Polytechnic Inst., Troy, NY (United States); Bhattacharya, Sumit [Argonne National Lab. (ANL), Argonne, IL (United States); Northwestern Univ., Evanston, IL (United States)
2016-01-01
This activity is supported by the US Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Product Line (FPL) and aims at providing experimental data for the validation of the mesoscale simulation code MARMOT. MARMOT is a mesoscale multiphysics code that predicts the coevolution of microstructure and properties within reactor fuel during its lifetime in the reactor. It is an important component of the Moose-Bison-Marmot (MBM) code suite that has been developed by Idaho National Laboratory (INL) to enable next generation fuel performance modeling capability as part of the NEAMS Program FPL. In order to ensure the accuracy of the microstructure-based materials models being developed within the MARMOT code, extensive validation efforts must be carried out. In this report, we summarize the experimental efforts in FY16 including the following important experiments: (1) in-situ grain growth measurement of nano-grained UO_{2}; (2) investigation of surface morphology in micrograined UO_{2}; (3) Nano-indentation experiments on nano- and micro-grained UO_{2}. The highlight of this year is: we have successfully demonstrated our capability to in-situ measure grain size development while maintaining the stoichiometry of nano-grained UO_{2} materials; the experiment is, for the first time, using synchrotron X-ray diffraction to in-situ measure grain growth behavior of UO_{2}.
Gao, Libo; Ren, Wencai; Xu, Huilong; Jin, Li; Wang, Zhenxing; Ma, Teng; Ma, Lai-Peng; Zhang, Zhiyong; Fu, Qiang; Peng, Lian-Mao; Bao, Xinhe; Cheng, Hui-Ming
2012-02-28
Large single-crystal graphene is highly desired and important for the applications of graphene in electronics, as grain boundaries between graphene grains markedly degrade its quality and properties. Here we report the growth of millimetre-sized hexagonal single-crystal graphene and graphene films joined from such grains on Pt by ambient-pressure chemical vapour deposition. We report a bubbling method to transfer these single graphene grains and graphene films to arbitrary substrate, which is nondestructive not only to graphene, but also to the Pt substrates. The Pt substrates can be repeatedly used for graphene growth. The graphene shows high crystal quality with the reported lowest wrinkle height of 0.8 nm and a carrier mobility of greater than 7,100 cm(2) V(-1) s(-1) under ambient conditions. The repeatable growth of graphene with large single-crystal grains on Pt and its nondestructive transfer may enable various applications.
Modeling Nucleation and Grain Growth in the Solar Nebula: Initial Progress Report
Nuth, Joseph A.; Paquette, J. A.; Ferguson, F. T.
2010-01-01
The primitive solar nebula was a violent and chaotic environment where high energy collisions, lightning, shocks and magnetic re-connection events rapidly vaporized some fraction of nebular dust, melted larger particles while leaving the largest grains virtually undisturbed. At the same time, some tiny grains containing very easily disturbed noble gas signatures (e.g., small, pre-solar graphite or SiC particles) never experienced this violence, yet can be found directly adjacent to much larger meteoritic components (chondrules or CAIs) that did. Additional components in the matrix of the most primitive carbonaceous chondrites and in some chondritic porous interplanetary dust particles include tiny nebular condensates, aggregates of condensates and partially annealed aggregates. Grains formed in violent transient events in the solar nebula did not come to equilibrium with their surroundings. To understand the formation and textures of these materials as well as their nebular abundances we must rely on Nucleation Theory and kinetic models of grain growth, coagulation and annealing. Such models have been very uncertain in the past: we will discuss the steps we are taking to increase their reliability.
CONSTRAINTS ON THE RADIAL VARIATION OF GRAIN GROWTH IN THE AS 209 CIRCUMSTELLAR DISK
International Nuclear Information System (INIS)
Pérez, Laura M.; Carpenter, John M.; Isella, Andrea; Ricci, Luca; Sargent, Anneila I.; Chandler, Claire J.; Andrews, Sean M.; Harris, Robert J.; Calvet, Nuria; Corder, Stuartt A.; Deller, Adam T.; Dullemond, Cornelis P.; Linz, Hendrik; Greaves, Jane S.; Henning, Thomas; Kwon, Woojin; Lazio, Joseph; Mundy, Lee G.; Storm, Shaye; Testi, Leonardo
2012-01-01
We present dust continuum observations of the protoplanetary disk surrounding the pre-main-sequence star AS 209, spanning more than an order of magnitude in wavelength from 0.88 to 9.8 mm. The disk was observed with subarcsecond angular resolution (0.''2-0.''5) to investigate radial variations in its dust properties. At longer wavelengths, the disk emission structure is notably more compact, providing model-independent evidence for changes in the grain properties across the disk. We find that physical models which reproduce the disk emission require a radial dependence of the dust opacity κ ν . Assuming that the observed wavelength-dependent structure can be attributed to radial variations in the dust opacity spectral index (β), we find that β(R) increases from β 1.5 for R ∼> 80 AU, inconsistent with a constant value of β across the disk (at the 10σ level). Furthermore, if radial variations of κ ν are caused by particle growth, we find that the maximum size of the particle-size distribution (a max ) increases from submillimeter-sized grains in the outer disk (R ∼> 70 AU) to millimeter- and centimeter-sized grains in the inner disk regions (R ∼ max (R) with predictions from physical models of dust evolution in protoplanetary disks. For the dust composition and particle-size distribution investigated here, our observational constraints on a max (R) are consistent with models where the maximum grain size is limited by radial drift.
Effects of seed orientation on the growth behavior of single grain REBCO bulk superconductors
Energy Technology Data Exchange (ETDEWEB)
Lee, Hee Gyoun [Korea Polytechnic University, Siheung (Korea, Republic of)
2017-06-15
This study presents a simple method to control the seed orientation which leads to the various growth characteristics of a single grain REBCO (RE: rare-earth elements) bulk superconductors. Seed orientation was varied systematically from c-axis to a-axis with every 30 degree rotation around b-axis. Orientations of a REBCO single grain was successfully controlled by placing the seed with various angles on the prismatic indent prepared on the surface of REBCO powder compacts. Growth pattern was changed from cubic to rectangular when the seed orientation normal to compact surface was varied from c-axis to a-axis. Macroscopic shape change has been explained by the variation of the wetting angle of un-reacted melt depending on the interface energy between YBa2Cu3O7-y (Y123) grain and melt. Higher magnetic levitation force was obtained for the specimen prepared using tilted seed with an angle of 30 degree rotation around b-axis.
International Nuclear Information System (INIS)
Rest, J.
1985-01-01
The theoretical FASTGRASS-VFP model has been used in the interpretation of fission gas, iodine, and cesium release from (1) irradiated high-burnup LWR fuel in a flowing steam atmosphere during high-temperature, in-cell heating tests (performed at Oak Ridge National Laboratory) and (2) trace-irratiated LWR fuel during severe-fuel-damage (SFD) tests (performed in the PBF reactor in Idaho). A theory of grain boundary sweeping of gas bubbles has been included within the FASTGRASS-VFP formalism. This theory considers the interaction between the moving grain boundary and two distinct size classes of bubbles, those on grain faces and on grain edges, and provides a means of determining whether gas bubbles are caught up and moved along by a moving grain boundary or whether the grain boundary is only temporarily retarded by the bubbles and then breaks away. In addition, as FASTGRASS-VFP provides for a mechanistic calculation of intra- and intergranular fission product behavior, the coupled calculation between fission gas behavior and grain growth is kinetically comprehensive. Results of the analyses demonstrate that intragranular fission product behavior during both types of tests can be interpreted in terms of a grain-growth/grain-boundary-sweeping mechanism that enhances the flow of fission products from within the grains to the grain boundaries. The effect of fuel oxidation by steam on fission product and grain growth behavior is also considered. The FASTGRASS-VFP predictions, measured release rates from the above tests, and previously published release rates are compared and differences between fission product behavior in trace-irradiated and in high-burnup fuel are highlighted. (orig.)
Ezad, I.; Dobson, D. P.; Brodholt, J. P.; Thomson, A.; Hunt, S.
2017-12-01
The grain size of the transition zone is a poorly known but important geophysical parameter. Among others, the grain size may control the rheology, seismic attenuation and radiative thermal conductivity of the mantle. However, the grain size of the transition zone minerals ringwoodite (Mg,Fe)2SiO4 and majorite garnet MgSiO3 under appropriate zone conditions is currently unknown and there are very few experiments with which to constrain it. In order to determine the grain size of the transition zone, the grain growth kinetics must be determined for a range of mantle compositions. We have, therefore, experimentally determined the grain growth kinetics of the lowermost transition zone minerals through multi anvil experiments at University College London (UCL). This is achieved through a comprehensive set of time series experiments at pressures of 21 GPa and temperatures relevant to the transition zone. We have also determined the effect of varying water content, oxygen fugacity, iron content and aluminium content also discussed by Dobson and Mariani., (2014). Our initial grain growth experiments conducted at 1200°C and 1400°C at 18 GPa show extremely slow grain growth kinetics; time series experiments extended to 105.8 seconds are unable to produce grains larger than 100 nm. This suggests that fine-grained material at the base of the transition zone will persist on geological timescales. Such small grains size suggests that diffusion creep might be the dominant deformation mechanism in this region. Reference: Dobson, D.P., Mariani, E., 2014. The kinetics of the reaction of majorite plus ferropericlase to ringwoodite: Implications for mantle upwellings crossing the 660 km discontinuity. Earth Planet. Sci. Lett. 408, 110-118. doi:10.1016/j.epsl.2014.10.009
DEFF Research Database (Denmark)
Rios, P.R.; Godiksen, R.B.; Schmidt, Søren
2006-01-01
This paper shows that interfacial area density between transformed grains during nucleation and growth transformations and the contiguity are useful descriptors of microstructural evolution. These descriptors are evaluated analytically and compared with results from computer simulation. Usage...
Wachowska, Urszula; Tańska, Małgorzata; Konopka, Iwona
2016-06-16
Modern agriculture relies on an integrated approach, where chemical treatment is reduced to a minimum and replaced by biological control that involves the use of active microorganisms. The effect of the antagonistic yeast-like fungus Aureobasidium pullulans on proteins and bioactive compounds (alkylresorcinols, sterols, tocols and carotenoids) in winter wheat grain and on the colonization of wheat kernels by fungal microbiota, mainly Fusarium spp. pathogens, was investigated. Biological treatment contributed to a slight increase contents of tocols, alkylresorcinols and sterols in grain. At the same time, the variation of wheat grain proteins was low and not significant. Application of A. pullulans enhanced the natural yeast colonization after six months of grain storage and inhibited growth of F. culmorum pathogens penetrating wheat kernel. This study demonstrated that an integrated approach of wheat grain protection with the use of the yeast-like fungus A. pullulans reduced kernel colonization by Fusarium spp. pathogens and increased the content of nutritionally beneficial phytochemicals in wheat grain without a loss of gluten proteins responsible for baking value. Copyright © 2016. Published by Elsevier B.V.
Large-scale grain growth in the solid-state process: From "Abnormal" to "Normal"
Jiang, Minhong; Han, Shengnan; Zhang, Jingwei; Song, Jiageng; Hao, Chongyan; Deng, Manjiao; Ge, Lingjing; Gu, Zhengfei; Liu, Xinyu
2018-02-01
Abnormal grain growth (AGG) has been a common phenomenon during the ceramic or metallurgy processing since prehistoric times. However, usually it had been very difficult to grow big single crystal (centimeter scale over) by using the AGG method due to its so-called occasionality. Based on the AGG, a solid-state crystal growth (SSCG) method was developed. The greatest advantages of the SSCG technology are the simplicity and cost-effectiveness of the technique. But the traditional SSCG technology is still uncontrollable. This article first summarizes the history and current status of AGG, and then reports recent technical developments from AGG to SSCG, and further introduces a new seed-free, solid-state crystal growth (SFSSCG) technology. This SFSSCG method allows us to repeatedly and controllably fabricate large-scale single crystals with appreciable high quality and relatively stable chemical composition at a relatively low temperature, at least in (K0.5Na0.5)NbO3(KNN) and Cu-Al-Mn systems. In this sense, the exaggerated grain growth is no longer 'Abnormal' but 'Normal' since it is able to be artificially controllable and repeated now. This article also provides a crystal growth model to qualitatively explain the mechanism of SFSSCG for KNN system. Compared with the traditional melt and high temperature solution growth methods, the SFSSCG method has the advantages of low energy consumption, low investment, simple technique, composition homogeneity overcoming the issues with incongruent melting and high volatility. This SFSSCG could be helpful for improving the mechanical and physical properties of single crystals, which should be promising for industrial applications.
Directory of Open Access Journals (Sweden)
Thierry E. Besançon
2016-01-01
Full Text Available Dicamba and 2,4-D are among the most common and inexpensive herbicides used to control broadleaf weeds. However, different studies have pointed the risk of crop injury and grain sorghum yield reduction with postemergence applications of 2,4-D. No research data on grain sorghum response to 2,4-D or dicamba exists in the Southeastern United States. Consequently, a study was conducted to investigate crop growth and yield response to 2,4-D (100, 220, and 330 g acid equivalent ha−1 and dicamba (280 g acid equivalent ha−1 applied on 20 to 65 cm tall sorghum. Greater stunting resulted from 2,4-D applied at 330 g acid equivalent ha−1 or below 45 cm tall sorghum whereas lodging prevailed with 2,4-D at 330 g acid equivalent ha−1 and dicamba applied beyond 35 cm tall crop. Regardless of local environmental conditions, 2,4-D applied up to 35 cm tall did not negatively impact grain yield. There was a trend for yields to be somewhat lower when 2,4-D was applied on 45 or 55 cm tall sorghum whereas application on 65 cm tall sorghum systematically decreased yields. More caution should be taken with dicamba since yield reduction has been reported as early as applications made on 35 cm tall sorghum for a potentially dicamba sensitive cultivar.
Energy Technology Data Exchange (ETDEWEB)
Chen, I-Wei [Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. of Materials Science & Engineering
2018-02-02
Solid oxide fuel cells and solid oxide electrolysis cells rely on solid electrolytes in which a large ionic current dominates. This project was initiated to investigate microstructural changes in such devices under electrochemical forces, because nominally insignificant processes may couple to the large ionic current to yield non-equilibrium phenomena that alter the microstructure. Our studies had focused on yttria-stabilized cubic zirconia (YSZ) widely used in these devices. The experiments have revealed enhanced grain growth at higher temperatures, pore and gas bubble migration at all temperatures, and the latter also lead to enhanced sintering of highly porous ceramics into fully dense ceramics at unprecedentedly low temperatures. These results have shed light on kinetic processes that fall completely outside the realm of classical ceramic processing. Other fast-oxygen oxide ceramics closely related to, and often used in conjunction with zirconia ceramics, have also be investigated, as are closely related scientific problems in zirconia ceramics. These include crystal structures, defects, diffusion kinetics, oxygen potentials, low temperature sintering, flash sintering, and coarsening theory, and all have resulted in greater clarity in scientific understanding. The knowledge is leveraged to provide new insight to electrode kinetics and near-electrode mixed conductivity and to new materials. In the following areas, our research has resulted in completely new knowledge that defines the state-of-the-art of the field. (a) Electrical current driven non-equilibrium phenomena, (b) Enhanced grain growth under electrochemically reducing conditions, (c) Development of oxygen potential polarization in electrically loaded electrolyte, (d) Low temperature sintering and grain growth, and (e) Structure, defects and cation kinetics of fluorite-structured oxides. Our research has also contributed to synthesis of new energy-relevant electrochemical materials and new understanding
Anomalous grain growth in nanocrystalline Fe73.5Cu1Nb3Su13.5B9 alloys
DEFF Research Database (Denmark)
Jiang, Jianzhong
1997-01-01
The grain growth of the FeSi phase during the crystallization process of the amorphous Fe73.5Cu1Nb3Si13.5B9 alloy was studied using transmission electron microscopy and x-ray diffractometry. An anomalous grain growth behaviour of the FeSi phase in the samples annealed in temperature range from 743...... to 823 K for one hour was observed, i.e. the grain size of the FeSi phase slightly decreases when the annealing temperature increases from 743 K ot 823 K. The mechanism of the anomalous grain growth may be due to the different nucleation and volume diffusion rates in the samples anneales at low and high...
Energy Technology Data Exchange (ETDEWEB)
Jamshidian, M., E-mail: jamshidian@cc.iut.ac.ir [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Institute of Structural Mechanics, Bauhaus-University Weimar, Marienstrasse 15, 99423 Weimar (Germany); Thamburaja, P., E-mail: prakash.thamburaja@gmail.com [Department of Mechanical & Materials Engineering, Universiti Kebangsaan Malaysia (UKM), Bangi 43600 (Malaysia); Rabczuk, T., E-mail: timon.rabczuk@tdt.edu.vn [Division of Computational Mechanics, Ton Duc Thang University, Ho Chi Minh City (Viet Nam); Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City (Viet Nam)
2016-12-15
A previously-developed finite-deformation- and crystal-elasticity-based constitutive theory for stressed grain growth in cubic polycrystalline bodies has been augmented to include a description of excess surface energy and grain-growth stagnation mechanisms through the use of surface effect state variables in a thermodynamically-consistent manner. The constitutive theory was also implemented into a multiscale coupled finite-element and phase-field computational framework. With the material parameters in the constitutive theory suitably calibrated, our three-dimensional numerical simulations show that the constitutive model is able to accurately predict the experimentally-determined evolution of crystallographic texture and grain size statistics in polycrystalline copper thin films deposited on polyimide substrate and annealed at high-homologous temperatures. In particular, our numerical analyses show that the broad texture transition observed in the annealing experiments of polycrystalline thin films is caused by grain growth stagnation mechanisms. - Graphical abstract: - Highlights: • Developing a theory for stressed grain growth in polycrystalline thin films. • Implementation into a multiscale coupled finite-element and phase-field framework. • Quantitative reproduction of the experimental grain growth data by simulations. • Revealing the cause of texture transition to be due to the stagnation mechanisms.
Stochastic modeling of columnar dendritic grain growth in weld pool of Al-Cu alloy
Energy Technology Data Exchange (ETDEWEB)
Dong, Z.B.; Tian, N. [The State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin (China); Wei, Y.H. [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing (China); The State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin (China); Zhan, X.H.
2009-04-15
A multi-scale model is used to simulate columnar dendritic growth in TIG (tungsten inert-gas) weld molten pool of Al-Cu alloy. The grain morphologies at the edge of the weld pool are studied. The simulated results indicate that the average primary dendrite spacing changes during the solidification process in the weld pool because of the complicated thermal field, solute diffusion field and competitive growth. And it is shown that the secondary dendrite arms grow insufficiently in the space between dendrite trunks if the primary dendrite spacing is small. And the phenomenon has been explained by analyzing the influence of the solute accumulation on the constitutional undercooling and undercooling gradient when there are two different opposite solute diffusion fields. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Energy Technology Data Exchange (ETDEWEB)
Riedel, Hermann, E-mail: hermann.riedel@iwm.fraunhofer.de [Fraunhofer Institute for Materials Mechanics, Wöhlerstr. 11, 79108 Freiburg (Germany); Svoboda, Jiri, E-mail: svobj@ipm.cz [Institute of Physics of Materials, Academy of Science of the Czech Republic, Zizkova 22, Brno (Czech Republic)
2016-05-17
An ensemble of n spherical grains is considered, each of which is characterized by its radius r{sub i} and by a hardening variable a{sub i}. The hardening variable obeys a Chaboche-type evolution equation with dynamic and static recovery. The grain growth law includes the usual contribution of the grain boundary energy, a term for the stored energy associated with the hardening variable, and the Zener pinning force exerted by particles on the migrating grain boundaries. New grains develop by recrystallization in grains whose stored energy density exceeds a critical value. The growth or shrinkage of the particles, which restrain grain boundary migration, obeys a thermodynamic/kinetic evolution equation. This set of first order differential equations for r{sub i}, a{sub i} and the particle radius is integrated numerically. Fictitious model parameters for a virtual nickel base alloy are used to demonstrate the properties and capabilities of the model. For a real nickel alloy, model parameters are adjusted using measured stress-strain curves, as well as recrystallized volume fractions and grain size distributions. Finally the model with adjusted parameters is applied to a forming process with complex temperature-strain rate histories.
Lojasiewicz exponents and Newton polyhedra
International Nuclear Information System (INIS)
Pham Tien Son
2006-07-01
In this paper we obtain the exact value of the Lojasiewicz exponent at the origin of analytic map germs on K n (K = R or C under the Newton non-degeneracy condition, using information from their Newton polyhedra. We also give some conclusions on Newton non-degenerate analytic map germs. As a consequence, we obtain a link between Newton non-degenerate ideals and their integral closures, thus leading to a simple proof of a result of Saia. Similar results are also considered to polynomial maps which are Newton non-degenerate at infinity. (author)
Enhancement of Growth and Grain Yield of Rice in Nutrient Deficient Soils by Rice Probiotic Bacteria
Institute of Scientific and Technical Information of China (English)
Md Mohibul Alam KHAN; Effi HAQUE; Narayan Chandra PAUL; Md Abdul KHALEQUE; Saleh M. S. AL-GARNI; Mahfuzur RAHMAN; Md Tofazzal ISLAM
2017-01-01
Plant associated bacteria are promising alternatives to chemical fertilizers for plant growth and yield improvement in an eco-friendly manner. In this study, rice associated bacteria were isolated and assessed for mineral phosphate solubilization and indole-3-acetic acid (IAA) production activity in vitro. Six promising strains, which were tentatively identified as phylotaxon Pseudochrobactrum sp. (BRRh-1), Burkholderia sp. (BRRh-2), Burkholderia sp. (BRRh-3), Burkholderia sp. (BRRh-4), Pseudomonas aeruginosa (BRRh-5 and BRRh-6) based on their 16S rRNA gene phylogeny, exhibited significant phosphate solubilizing activity in National Botanical Research Institute phosphate growth medium, and BRRh-4 displayed the highest phosphate solubilizing activity, followed by BRRh-5. The pH of the culture broth declined, resulting in increase of growth rate of bacteria at pH 7, which might be due to organic acid secretion by the strains. In presence of L-tryptophan, five isolates synthesized IAA and the maximum IAA was produced by BRRh-2, followed by BRRh-1. Application of two most efficient phosphate solubilizing isolates BRRh-4 and BRRh-5 by root dipping (colonization) of seedling and spraying at the flowering stage significantly enhanced the growth and grain yield of rice variety BRRI dhan-29. Interestingly, application of both strains with 50% of recommended nitrogen, phosphorus and potassium fertilizers produced equivalent or higher grain yield of rice compared to the control grown with full recommended fertilizer doses, which suggests that these strains may have the potential to be used as bioinoculants for sustainable rice production.
SPECTROSCOPIC INFRARED EXTINCTION MAPPING AS A PROBE OF GRAIN GROWTH IN IRDCs
Energy Technology Data Exchange (ETDEWEB)
Lim, Wanggi [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Carey, Sean J. [Infrared Processing Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Tan, Jonathan C. [Departments of Astronomy and Physics, University of Florida, Gainesville, FL 32611 (United States)
2015-11-20
We present spectroscopic tests of MIR to FIR extinction laws in IRDC G028.36+00.07, a potential site of massive star and star cluster formation. Lim and Tan developed methods of FIR extinction mapping of this source using Spitzer-MIPS 24 μm and Herschel-PACS 70 μm images, and by comparing to MIR Spitzer-IRAC 3–8 μm extinction maps, found tentative evidence for grain growth in the highest mass surface density regions. Here we present results of spectroscopic infrared extinction mapping using Spitzer-IRS (14–38 μm) data of the same Infrared dark cloud (IRDC). These methods allow us to first measure the SED of the diffuse Galactic interstellar medium that is in the foreground of the IRDC. We then carry out our primary investigation of measuring the MIR to FIR opacity law and searching for potential variations as a function of mass surface density within the IRDC. We find relatively flat, featureless MIR–FIR opacity laws that lack the ∼12 and ∼35 μm features associated with the thick water ice mantle models of Ossenkopf and Henning. Their thin ice mantle models and the coagulating aggregate dust models of Ormel et al. are a generally better match to the observed opacity laws. We also find evidence for generally flatter MIR to FIR extinction laws as mass surface density increases, strengthening the evidence for grain and ice mantle growth in higher density regions.
SPECTROSCOPIC INFRARED EXTINCTION MAPPING AS A PROBE OF GRAIN GROWTH IN IRDCs
International Nuclear Information System (INIS)
Lim, Wanggi; Carey, Sean J.; Tan, Jonathan C.
2015-01-01
We present spectroscopic tests of MIR to FIR extinction laws in IRDC G028.36+00.07, a potential site of massive star and star cluster formation. Lim and Tan developed methods of FIR extinction mapping of this source using Spitzer-MIPS 24 μm and Herschel-PACS 70 μm images, and by comparing to MIR Spitzer-IRAC 3–8 μm extinction maps, found tentative evidence for grain growth in the highest mass surface density regions. Here we present results of spectroscopic infrared extinction mapping using Spitzer-IRS (14–38 μm) data of the same Infrared dark cloud (IRDC). These methods allow us to first measure the SED of the diffuse Galactic interstellar medium that is in the foreground of the IRDC. We then carry out our primary investigation of measuring the MIR to FIR opacity law and searching for potential variations as a function of mass surface density within the IRDC. We find relatively flat, featureless MIR–FIR opacity laws that lack the ∼12 and ∼35 μm features associated with the thick water ice mantle models of Ossenkopf and Henning. Their thin ice mantle models and the coagulating aggregate dust models of Ormel et al. are a generally better match to the observed opacity laws. We also find evidence for generally flatter MIR to FIR extinction laws as mass surface density increases, strengthening the evidence for grain and ice mantle growth in higher density regions
Energy Technology Data Exchange (ETDEWEB)
Kim, Se-Jong [Korea Institute of Material Science, 66 Sangnam-dong, C-si, Gyeongnam 641-831 (Korea, Republic of); Kim, Daeyong, E-mail: daeyong@kims.re.kr [Korea Institute of Material Science, 66 Sangnam-dong, C-si, Gyeongnam 641-831 (Korea, Republic of); Lee, Keunho; Cho, Hoon-Hwe; Han, Heung Nam [Department of Materials Science and Engineering and RIAM, Seoul National University, Seoul 151-744 (Korea, Republic of)
2015-11-15
A magnesium alloy sheet was subjected to in-plane compression along with a vertical load to avoid buckling during compression. Pre-compressed specimens machined from the sheet were annealed at different temperatures and the changes in microstructure and texture were observed using electron back scattered diffraction (EBSD). Twinned grains preferentially grew during annealing at 300 °C, so that a strong texture with the < 0001 > direction parallel to the transverse direction developed. EBSD analysis confirmed that the friction caused by the vertical load induced inhomogeneous distribution of residual stress, which acted as an additional driving force for preferential grain growth of twinned grain during annealing. The annealed specimen showed excellent formability. - Highlights: • A magnesium alloy sheet subjected to in-plane compression under a vertical load • The vertical load induced inhomogeneous distribution of the residual stress. • The residual stress acted as an additional driving force for grain growth. • The annealed specimen with strong non-basal texture showed excellent formability.
DEFF Research Database (Denmark)
Horsewell, Andy; Rahman, F. A.; Singh, Bachu Narain
1983-01-01
and growth occurs in a zone extending up to 10 mu m from grain boundaries in annealed material. In polygonized material, the presence of dislocation cell walls leads to cell size dependent void formation and growth; the swelling rate in the large cells is substantially higher than in the annealed material....
DEFF Research Database (Denmark)
Wang, Xiao; Vignjevic, Marija; Liu, Fulai
2015-01-01
Plants of spring wheat (Triticum aestivum L. cv. Vinjett) were exposed to moderate water deficit at the vegetative growth stages six-leaf and/or stem elongation to investigate drought priming effects on tolerance to drought and heat stress events occurring during the grain filling stage. Compared......Plants of spring wheat (Triticum aestivum L. cv. Vinjett) were exposed to moderate water deficit at the vegetative growth stages six-leaf and/or stem elongation to investigate drought priming effects on tolerance to drought and heat stress events occurring during the grain filling stage...... of abscisic acid in primed plants under drought stress could contribute to higher grain yield compared to the non-primed plants. Taken together, the results indicate that drought priming during vegetative stages improved tolerance to both drought and heat stress events occurring during grain filling in wheat....
Laureys, David; Van Jean, Amandine; Dumont, Jean; De Vuyst, Luc
2017-04-01
A poorly performing industrial water kefir production process consisting of a first fermentation process, a rest period at low temperature, and a second fermentation process was characterized to elucidate the causes of its low water kefir grain growth and instability. The frozen-stored water kefir grain inoculum was thawed and reactivated during three consecutive prefermentations before the water kefir production process was started. Freezing and thawing damaged the water kefir grains irreversibly, as their structure did not restore during the prefermentations nor the production process. The viable counts of the lactic acid bacteria and yeasts on the water kefir grains and in the liquors were as expected, whereas those of the acetic acid bacteria were high, due to the aerobic fermentation conditions. Nevertheless, the fermentations progressed slowly, which was caused by excessive substrate concentrations resulting in a high osmotic stress. Lactobacillus nagelii, Lactobacillus paracasei, Lactobacillus hilgardii, Leuconostoc mesenteroides, Bifidobacterium aquikefiri, Gluconobacter roseus/oxydans, Gluconobacter cerinus, Saccharomyces cerevisiae, and Zygotorulaspora florentina were the most prevalent microorganisms. Lb. hilgardii, the microorganism thought to be responsible for water kefir grain growth, was not found culture-dependently, which could explain the low water kefir grain growth of this industrial process.
Ji, Rui-Peng; Che, Yu-Sheng; Zhu, Yong-Ning; Liang, Tao; Feng, Rui; Yu, Wen-Ying; Zhang, Yu-Shu
2012-11-01
Taking spring maize variety Danyu-39 as test object, an experiment was conducted in a large-scale agricultural water controlling experimental field to study the impacts of drought stress at three key growth stages, i. e. , 3-leaf-jointing, jointing-silking, and silking-milk ripe, on the growth and development and grain yield of spring maize in Northeast China. Two treatments were installed, including moderate drought stress (MS) and re-watering to suitable water (CK). Compared with CK, the MS at 3-leaf-jointing stage postponed the whole growth period of Danyu-39 by 13 d, and the plant height and leaf area at jointing stage were decreased by 29.8% and 41.2%, respectively. After re-watering, the plant height and grain yield recovered obviously, and the differences in ear characteristics and final yield were insignificant. The MS at jointing-silking stage shortened the whole growth period by 7 d, the plant height and leaf area at silking stage were decreased by 18.6% and 14.1%, respectively, the ear length, grain number per ear, ear dry mass, and grain mass per ear decreased by 6.9%, 19.1%, 28.1%, and 29.4%, respectively, and the blank stem rate increased by 13.3%. When the maize suffered from moderate drought stress at silking-milk ripe stage, the whole growth period was shortened by 15 d, the plant height and leaf area at milk ripe stage were decreased by 2.3% and 37.3%, respectively, the ear length, grain number per ear, ear dry mass, and grain mass per ear decreased by 9.2%, 24.1%, 30.8%, and 27.9%, respectively, and the blank stem rate increased by 24.5%. After re-watering at the latter two stages, the recovery of plant height was little, and the grain yield decreased significantly.
Phase transformation and grain growth behavior of a nanocrystalline 18/8 stainless steel
Energy Technology Data Exchange (ETDEWEB)
Kotan, Hasan, E-mail: hasankotan@gmail.com [Konya Necmettin Erbakan University, Department of Metallurgical & Materials Engineering, Konya 42090 (Turkey); Darling, Kris A. [US Army Research Laboratory, Weapons and Materials Research Directorate, RDRL-WMM-F, Aberdeen Proving Ground, MD 21005-5069 (United States)
2017-02-16
Fe-18Cr-8Ni and Fe-18Cr-8Ni-1Y (at%) stainless steel powders were nanostructured by mechanical alloying from elemental powders and subjected to 90 min annealing treatments at various temperatures. The microstructural evolutions as a function of alloy compositions and temperatures were investigated by in-situ and ex-situ x-ray diffraction experiments, transmission electron microscopy and focused ion beam microscopy. The dependence of hardness on the microstructure was utilized to study the mechanical changes. It was found that the resulting microstructures by mechanical alloying were bcc solid solution, the so-called α’-martensite structure. The high temperature in-situ x-ray diffraction experiments showed that the martensite-to-austenite reverse phase transformation was completed above 800 and 900 °C for Fe-18Cr-8Ni and Fe-18Cr-8Ni-1Y steels, respectively. A partial or complete retransformation to martensite was observed upon cooling to room temperature. Annealing of nanocrystalline Fe-18Cr-8Ni steel yielded grain growth reaching to micron sizes at 1100 °C while addition of 1 at% yttrium stabilized the microstructure around 160 nm grain size and 6 GPa hardness after 90 min annealing at 1200 °C.
GROWTH PERFORMANCE AND CARCASS COMPOSITION OF RABBITS FED ON DIETS OF GRADUAL LEVELS OF BARLEY GRAIN
Directory of Open Access Journals (Sweden)
M.M. El-Adawy
2012-05-01
Full Text Available Forty-eight male New Zealand White rabbits of 6 weeks age (BW 875 Â± 28.3 g were randomly allocated among six groups in different levels of barley grains (BG; 0 (B0, 5 (B5, 10 (B10, 15 (B15, 20 (B20, 25% (B25 of the total diet on growth performance and carcass composition of rabbits . The highest live BW value (P < 0.05 was obtained in B20 rabbits, whereas the highest feed intake (P < 0.05 value was obtained in B25 rabbits followed by those fed on the other diets. The better-feed conversion ratio (FCR was obtained in B20 rabbits followed by those of B15 and B25. Animals of B20 had better FCR than those of the other experimental diets. The relative contribution of soft feces to dry matter or crude protein intake differed (P < 0.05 among the experimental diets. The caecal turnover rate was increased (P < 0.05 in B15 and B20 rabbits than those other diets. The per-slaughter weight, hot and cold carcass weight and dressing percentage were differed (P < 0.05 among the experimental groups and highest values were recorded in B20 rabbits. Data suggested that a partial replacement of corn grains (CG by 20% BG in rabbit diets was increased live body weight, feed intake and feed conversion ratio.
Nonlinear anisotropic elliptic equations with variable exponents and degenerate coercivity
Directory of Open Access Journals (Sweden)
Hocine Ayadi
2018-02-01
Full Text Available In this article, we prove the existence and the regularity of distributional solutions for a class of nonlinear anisotropic elliptic equations with $p_i(x$ growth conditions, degenerate coercivity and $L^{m(\\cdot}$ data, with $m(\\cdot$ being small, in appropriate Lebesgue-Sobolev spaces with variable exponents. The obtained results extend some existing ones [8,10].
Growth behavior of fatigue cracks in ultrafine grained Cu smooth specimens with a small hole
Directory of Open Access Journals (Sweden)
Masahiro Goto
2015-10-01
Full Text Available In order to study the growth mechanism of fatigue cracks in ultrafine grained copper, stresscontrolled fatigue tests of round-bar specimens with a small blind hole as a crack starter were conducted. The hole was drilled on the surface where an intersection between the shear plane of the final ECAP processing and the specimen surface makes an angle of 45° or 90° with respect to the loading axis. At a low stress ( a = 90 MPa, the direction of crack paths was nearly perpendicular to the loading direction regardless of the location of the hole. Profile of crack face was examined, showing the aspect ratio (b/a of b/a = 0.82. At a high stress ( a = 240 MPa, although the growth directions inclined 45° and 90° to the loading-axis were observed depending on the location of the drilling hole, crack faces in these cracks were extended along one set of maximum shear stress planes, corresponding to the final ECAP shear plane. The value of aspect ratios was b/a = 0.38 and 1.10 for the cracks with 45° and 90° inclined path directions, respectively. The role of deformation mode at the crack tip areas on crack growth behavior were discussed in terms of the mixed-mode stress intensity factor. The crack path formation at high stress amplitudes was affected by the in-plane shear-mode deformation at the crack tip.
Nanocrystalline growth and grain-size effects in Au-Cu electrodeposits
International Nuclear Information System (INIS)
Jankowski, Alan F.; Saw, Cheng K.; Harper, Jennifer F.; Vallier, Bobby F.; Ferreira, James L.; Hayes, Jeffrey P.
2006-01-01
The processing-structure-property relationship is investigated for electrodeposited foils of the gold-copper alloy system. A model is presented that relates the deposition process parameters to the nanocrystalline grain size. An activation energy of 1.52 eV atom -1 for growth is determined for a long-pulse (> 10 msec) mode, and is 0.16 eV atom -1 for short pulses ( 6 nm) is observed for Au-Cu samples with 1-12 wt.% Cu as tested in cross-section. The hardness increases three-fold from a rule-of-mixtures value < 1 GPa to a maximum of 2.9 GPa
Energy Technology Data Exchange (ETDEWEB)
Lee, Hwi Joo; Lee, Hee Gyoun [Korea Polytechnic University, Siheung (Korea, Republic of); Park, Soon Dong; Jun, Bung Hyack; Kim, Chan Joong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2017-09-15
This study presents that the orientation and the geometry of seed affect on the growth behavior of melt processed single grain REBCO bulk superconductor and its magnetic properties. The effects of seed geometry have been investigated for thin 30mm x 30mm rectangular powder compacts. Single grain REBCO bulk superconductors have been grown successfully by a top seed melt growth method for 8-mm thick vertical thin REBCO slab. Asymmetric structures have been developed at the front surface and at the rear surface of the specimen. Higher magnetic properties have been obtained for the specimen that c-axis is normal to the specimen surface. The relationships between microstructure, grain growth and magnetic properties have been discussed.
Directory of Open Access Journals (Sweden)
Jianguo Man
2016-04-01
Full Text Available Water shortage threatens agricultural sustainability in the Huang-Huai-Hai Plain of China. Thus, we investigated the effect of supplemental irrigation (SI on the root growth, soil water variation, and grain yield of winter wheat in this region by measuring the moisture content in different soil layers. Prior to SI, the soil water content (SWC at given soil depths was monitored to calculate amount of irritation water that can rehydrate the soil to target SWC. The SWC before SI was monitored to depths of 20, 40, and 60 cm in treatments of W20, W40, and W60, respectively. Rainfed treatment with no irrigation as the control (W0. The mean root weight density (RWD, triphenyl tetrazolium chloride reduction activity (TTC reduction activity, soluble protein (SP concentrations as well as catalase (CAT, and superoxide dismutase (SOD activities in W40 and W60 treatments were significantly higher than those in W20. The RWD in 60–100 cm soil layers and the root activity, SP concentrations, CAT and SOD activities in 40–60 cm soil layers in W40 treatment were significantly higher than those in W20 and W60. W40 treatment is characterized by higher SWC in the upper soil layers but lower SWC in the 60–100-cm soil layers during grain filling. The soil water consumption (SWU in the 60–100 cm soil layers from anthesis after SI to maturity was the highest in W40. The grain yield, water use efficiency (WUE, and irrigation water productivity were the highest in W40, with corresponding mean values of 9169 kg ha−1, 20.8 kg ha−1 mm−1, and 35.5 kg ha−1 mm−1. The RWD, root activities, SP concentrations, CAT and SOD activities, and SWU were strongly positively correlated with grain yield and WUE. Therefore, the optimum soil layer for SI of winter wheat after jointing is 0–40 cm.
Effect of continuous change of sintering atmosphere on the grain growth of Cr-doped UO2 pellets
International Nuclear Information System (INIS)
Yang, Jae Ho; Nam, Ik Hui; Kim, Jong Hun; Rhee, Young Woo; Kim, Dong Joo; Kim, Keon Sik; Song, Kun Woo
2010-01-01
Cr-doped UO 2 pellet is one of the promising candidates for the high burn-up fuel in commercial LWRs. Major nuclear fuel vendors of such as AREVA or Westinghouse initiated the development of Cr-doped or Cr-containing additives doped UO 2 pellets since at the mid of 90's. Now, qualification programs are on-going to provide these pellets commercially. The main characteristics of the Cr-doped pellets are large-grain and visco-plasticity. Large grain pellet can reduce the corrosive fission gas release at high burn up. Viscoplastic soft pellets can lower the pressure to a cladding caused by a thermal expansion of a pellet at an elevated temperature during transient operations. Those advantages can provide room for additional power uprates and high burnup limits. Especially, PCI resistance improvement can be achieved by enlarging the pellet grain size and enhancing the fuel deformation at an elevated temperature. In this paper, to study the effect of oxygen partial pressure on grain growth in Cr-doped UO 2 pellets, Cr- doped UO 2 samples have been sintered with and without a step-wise change of sintering atmospheres. An introduction of a step-wise variation of oxygen partial pressure during the sintering enhances the grain growth of UO 2 pellets greatly. This step-wise sintering effect has been explained in terms of a continuous increase of Cr concentration along the grain boundary. The observed grain growth behavior under step-wisely changed sintering atmospheres demonstrates the possibility of reducing the amount of Cr 2 O 3 to minimum via control of oxygen partial pressure while keeping the large grain size
Swamy, H V L N; Smith, T K; Karrow, N A; Boermans, H J
2004-04-01
An experiment was conducted to investigate the effects of feeding grains naturally contaminated with Fusarium mycotoxins on growth and immunological parameters of broiler chickens. Three hundred sixty, 1-d-old male broiler chicks were fed 1 of 4 diets containing grains naturally contaminated with Fusarium mycotoxins for 56 d. The diets included (1) control; (2) low level of contaminated grains (5.9 mg/kg deoxynivalenol (DON), 19.1 mg/kg fusaric acid (FA), 0.4 mg/kg zearalenone, and 0.3 mg/kg 15-acetyldeoxynivalenol; (3) high level of contaminated grains (9.5 mg/kg DON, 21.4 mg/kg FA, 0.7 mg/kg zearalenone, and 0.5 mg/kg 15-acetyldeoxynivalenol); and (4) high level of contaminated grains + 0.2% polymeric glucomannan mycotoxin adsorbent (GM polymer). Body weight gains and feed consumption of chickens fed contaminated grains decreased linearly with the inclusion of contaminated grains during the grower phase (d 21 to 42). Efficiency of feed utilization, however, was not affected by diet. Production parameters were not significantly affected by the supplementation of GM polymer to the contaminated grains. Peripheral blood monocytes decreased linearly in birds fed contaminated grains. The feeding of contaminated diets linearly reduced the B-cell count at the end of the experiment, whereas the T-cell count on d 28 responded quadratically to the contaminated diets. The feeding of contaminated diets did not significantly alter serum or bile immunoglobulin concentrations, contact hypersensitivity to dinitrochlorobenzene, or antibody response to SRBC. Supplementation with GM polymer in the contaminated diet nonspecifically increased white blood cell count and lymphocyte count, while preventing mycotoxin-induced decreases in B-cell counts. It was concluded that broiler chickens are susceptible during extended feeding of grains naturally contaminated with Fusarium mycotoxins.
International Nuclear Information System (INIS)
Tourret, D.; Song, Y.; Clarke, A.J.; Karma, A.
2017-01-01
We present the results of a comprehensive phase-field study of columnar grain growth competition in bi-crystalline samples in two dimensions (2D) and in three dimensions (3D) for small sample thicknesses allowing a single row of dendrites to form. We focus on the selection of grain boundary (GB) orientation during directional solidification in the steady-state dendritic regime, and study its dependence upon the orientation of two competing grains. In 2D, we map the entire orientation range for both grains, performing several simulations for each configuration to account for the stochasticity of GB orientation selection and to assess the average GB behavior. We find that GB orientation selection depends strongly on whether the primary dendrite growth directions have lateral components (i.e. components perpendicular to the axis of the temperature gradient) that point in the same or opposite directions in the two grains. We identify a range of grain orientations in which grain selection follows the classical description of Walton and Chalmers. We also identify conditions that favor unusual overgrowth of favorably-oriented dendrites at a converging GB. We propose a simple analytical description that reproduces the average GB orientation selection from 2D simulations within statistical fluctuations of a few degrees. In 3D, we find a similar GB orientation selection as in 2D when secondary branches grow in planes parallel and perpendicular to the sample walls. Remarkably, quasi-2D behavior is also observed even when those perpendicular sidebranching planes are rotated by a finite azimuthal angle about the primary dendrite growth axis as long as the absolute values of those azimuthal angles are equal in both grains. In contrast, when the absolute values of those azimuthal angles differ markedly, we find that unusual overgrowth events at a converging GB are promoted by a high azimuthal angle in the least-favorably-oriented grain. We also find that diverging GBs can be
A review on the factors affecting mite growth in stored grain commodities.
Collins, D A
2012-03-01
A thorough review of the literature has identified the key factors and interactions that affect the growth of mite pests on stored grain commodities. Although many factors influence mite growth, the change and combinations of the physical conditions (temperature, relative humidity and/or moisture content) during the storage period are likely to have the greatest impact, with biological factors (e.g. predators and commodity) playing an important role. There is limited information on the effects of climate change, light, species interactions, local density dependant factors, spread of mycotoxins and action thresholds for mites. A greater understanding of these factors may identify alternative control techniques. The ability to predict mite population dynamics over a range of environmental conditions, both physical and biological, is essential in providing an early warning of mite infestations, advising when appropriate control measures are required and for evaluating control measures. This information may provide a useful aid in predicting and preventing mite population development as part of a risk based decision support system.
Error exponents for entanglement concentration
International Nuclear Information System (INIS)
Hayashi, Masahito; Koashi, Masato; Matsumoto, Keiji; Morikoshi, Fumiaki; Winter, Andreas
2003-01-01
Consider entanglement concentration schemes that convert n identical copies of a pure state into a maximally entangled state of a desired size with success probability being close to one in the asymptotic limit. We give the distillable entanglement, the number of Bell pairs distilled per copy, as a function of an error exponent, which represents the rate of decrease in failure probability as n tends to infinity. The formula fills the gap between the least upper bound of distillable entanglement in probabilistic concentration, which is the well-known entropy of entanglement, and the maximum attained in deterministic concentration. The method of types in information theory enables the detailed analysis of the distillable entanglement in terms of the error rate. In addition to the probabilistic argument, we consider another type of entanglement concentration scheme, where the initial state is deterministically transformed into a (possibly mixed) final state whose fidelity to a maximally entangled state of a desired size converges to one in the asymptotic limit. We show that the same formula as in the probabilistic argument is valid for the argument on fidelity by replacing the success probability with the fidelity. Furthermore, we also discuss entanglement yield when optimal success probability or optimal fidelity converges to zero in the asymptotic limit (strong converse), and give the explicit formulae for those cases
Growth, Structure and Firm Dynamics in Grain Markets: The Case of ...
African Journals Online (AJOL)
Optiplex 7010 Pro
In this paper we consider the microeconomic evidence on the determinants of firm performance in Ethiopia, with a focus on grain traders. We analyse both internal and external factors, and the relative impacts of these factors on the performance of grain traders. Different economic indicators seem to suggest that grain ...
International Nuclear Information System (INIS)
Yuan, Y.; Greuner, H.; Böswirth, B.; Krieger, K.; Luo, G.-N.; Xu, H.Y.; Fu, B.Q.; Li, M.; Liu, W.
2013-01-01
Highlights: ► Recrystallization temperature of a rolled W was ∼2480 °C under applied HHF loads. ► Fine grains were obtained under HHF loads with appropriate short pulse length. ► With increasing pulse length, the recrystallized grains significantly grew larger. ► A linear relationship between ln d and 1/T max was found. ► Activation energy for grain growth in T evolution up to T max in 1.5 s was obtained. -- Abstract: Short pulse heat loads expected for vertical displacement events (VDEs) in ITER were applied in the high heat flux (HHF) test facility GLADIS at IPP-Garching onto samples of rolled W. Pulsed neutral beams with the central heat flux of 23 MW/m 2 were applied for 0.5, 1.0 and 1.5 s, respectively. Rapid recrystallization of the adiabatically loaded 3 mm thick samples was observed when the pulse duration was up to 1.0 s. Grains grew markedly following recrystallization with increasing pulse length. The recrystallization temperature and temperature dependence of the recrystallized grain size were also investigated. The results showed that the recrystallization temperature of the W grade was around 2480 °C under the applied heat loading condition, which was nearly 1150 °C higher than the conventional recrystallization temperature, and the grains were much finer. A linear relationship between the logarithm of average grain size (ln d) and the inverse of maximum surface temperature (1/T max ) was found and accordingly the activation energy for grain growth in temperature evolution up to T max in 1.5 s of the short pulse HHF load was deduced to be 4.1 eV. This provided an effective clue to predict the structure evolution under short pulse HHF loads
A highly efficient 3D level-set grain growth algorithm tailored for ccNUMA architecture
Mießen, C.; Velinov, N.; Gottstein, G.; Barrales-Mora, L. A.
2017-12-01
A highly efficient simulation model for 2D and 3D grain growth was developed based on the level-set method. The model introduces modern computational concepts to achieve excellent performance on parallel computer architectures. Strong scalability was measured on cache-coherent non-uniform memory access (ccNUMA) architectures. To achieve this, the proposed approach considers the application of local level-set functions at the grain level. Ideal and non-ideal grain growth was simulated in 3D with the objective to study the evolution of statistical representative volume elements in polycrystals. In addition, microstructure evolution in an anisotropic magnetic material affected by an external magnetic field was simulated.
Directory of Open Access Journals (Sweden)
Stoyka, V.
2008-01-01
Full Text Available The relations between regimes of dynamic annealing, state of secondary particles system and the onset temperature of abnormal grain growth are investigated. Two distinguish types of Fe-3%Si grain-oriented steels, after one and two stage cold rolling, were studied. The second phase particles remain unaffected in first type of steel during the heat treatment. Vice versa, the increased density of second phases was observed after annealing in the second type of the investigated materials. It is shown that start/onset of abnormal grain growth strongly depends on both volume fraction of second phase particles and annealing temperature. Texture and magnetic properties of the investigated samples are investigated within the current study.
Multiscale Lyapunov exponent for 2-microlocal functions
International Nuclear Information System (INIS)
Dhifaoui, Zouhaier; Kortas, Hedi; Ammou, Samir Ben
2009-01-01
The Lyapunov exponent is an important indicator of chaotic dynamics. Using wavelet analysis, we define a multiscale representation of this exponent which we demonstrate the scale-wise dependence for functions belonging to C x 0 s,s ' spaces. An empirical study involving simulated processes and financial time series corroborates the theoretical findings.
Cryptanalysis of 'less short' RSA secret exponents
Verheul, E.R.; Tilborg, van H.C.A.
1997-01-01
In some applications of RSA, it is desirable to have a short secret exponent d. Wiener [6], describes a technique to use continued fractions (CF) in a cryptanalytic attack on an RSA cryptosystem having a ‘short’ secret exponent. Let n=p¿·¿q be the modulus of the system. In the typical case that
Diophantine exponents for mildly restricted approximation
DEFF Research Database (Denmark)
Bugeaud, Yann; Kristensen, Simon
We are studying the Diophantine exponent defined for integers and a vector by letting , where is the scalar product and denotes the distance to the nearest integer and is the generalised cone consisting of all vectors with the height attained among the first coordinates. We show that the exponent...
Grain Nucleation and Growth in Deformed NiTi Shape Memory Alloys: An In Situ TEM Study
Burow, J.; Frenzel, J.; Somsen, C.; Prokofiev, E.; Valiev, R.; Eggeler, G.
2017-12-01
The present study investigates the evolution of nanocrystalline (NC) and ultrafine-grained (UFG) microstructures in plastically deformed NiTi. Two deformed NiTi alloys were subjected to in situ annealing in a transmission electron microscope (TEM) at 400 and 550 °C: an amorphous material state produced by high-pressure torsion (HPT) and a mostly martensitic partly amorphous alloy produced by wire drawing. In situ annealing experiments were performed to characterize the microstructural evolution from the initial nonequilibrium states toward energetically more favorable microstructures. In general, the formation and evolution of nanocrystalline microstructures are governed by the nucleation of new grains and their subsequent growth. Austenite nuclei which form in HPT and wire-drawn microstructures have sizes close to 10 nm. Grain coarsening occurs in a sporadic, nonuniform manner and depends on the physical and chemical features of the local environment. The mobility of grain boundaries in NiTi is governed by the local interaction of each grain with its microstructural environment. Nanograin growth in thin TEM foils seems to follow similar kinetic laws to those in bulk microstructures. The present study demonstrates the strength of in situ TEM analysis and also highlights aspects which need to be considered when interpreting the results.
Factors affecting the grain growth of austenite in low alloy steel
International Nuclear Information System (INIS)
Parker, J.D.; Storer, S.M.
1995-01-01
The performance of steels is linked to the metallurgical transformations which occur during manufacture. Clearly then the optimization of a fabrication procedure must be based on fundamental relationships linking specific thermal treatments with transformation behaviour. Optimized manufacture of thick-section, multipass welds is therefore particularly complex since the thermal cycles associated with fusion welding result in the formation of heterogeneous microstructures. Moreover, these transformations will take place under rapid heating and cooling conditions so that standard data based on equilibrium behaviour may not be directly relevant. The present study is part of an integrated research programme aimed at establishing the basic microstructural relationships required to optimize the manufacture and performance of weldments. Work to date demonstrates that utilization of a computer controlled Gleeble simulation system allows a wider range of heating and cooling rates to be applied than is possible with traditional heat treatment techniques. Additional advantages of this system include precise control of time at peak temperature and uniform temperatures within a defined work zone. Results presented for a CrMoV creep resistant low alloy steel indicate that grain growth behaviour in the range 955-1390 C can be related to the time at peak temperature. The effect of this transformation behaviour on weldment behaviour is discussed. (orig.)
International Nuclear Information System (INIS)
McKamey, C.G.; Gubbi, A.N.; Lin, Y.; Cohron, J.W.; Lee, E.H.; George, E.P.
1998-04-01
This report summarizes results of studies conducted to date under the Iridium Alloy Characterization and Development subtask of the Radioisotope Power System Materials Production and Technology Program to characterize the properties of the new-process iridium-based DOP-26 alloy used for the Cassini space mission. This alloy was developed at Oak Ridge National Laboratory (ORNL) in the early 1980's and is currently used by NASA for cladding and post-impact containment of the radioactive fuel in radioisotope thermoelectric generator (RTG) heat sources which provide electric power for interplanetary spacecraft. Included within this report are data generated on grain growth in vacuum or low-pressure oxygen environments; a comparison of grain growth in vacuum of the clad vent set cup material with sheet material; effect of grain size, test temperature, and oxygen exposure on high-temperature high-strain-rate tensile ductility; and grain growth in vacuum and high-temperature high-strain-rate tensile ductility of welded DOP-26. The data for the new-process material is compared to available old-process data
The free growth criterion for grain initiation in TiB 2 inoculated γ-titanium aluminide based alloys
Gosslar, D.; Günther, R.
2014-02-01
γ-titanium aluminide (γ-TiAl) based alloys enable for the design of light-weight and high-temperature resistant engine components. This work centers on a numerical study of the condition for grain initiation during solidification of TiB2 inoculated γ-TiAl based alloys. Grain initiation is treated according to the so-called free growth criterion. This means that the free growth barrier for grain initiation is determined by the maximum interfacial mean curvature between a nucleus and the melt. The strategy presented in this paper relies on iteratively increasing the volume of a nucleus, which partially wets a hexagonal TiB2 crystal, minimizing the interfacial energy and calculating the corresponding interfacial curvature. The hereby obtained maximum curvature yields a scaling relation between the size of TiB2 crystals and the free growth barrier. Comparison to a prototypical TiB2 crystal in an as cast γ-TiAl based alloy allowed then to predict the free growth barrier prevailing under experimental conditions. The validity of the free growth criterion is discussed by an interfacial energy criterion.
Analysis of recrystallization and grain growth in ultra low carbon steels using EBSD
International Nuclear Information System (INIS)
Novillo, E.; Petite, M. M.; Bocos, J. L.; Gutierrez, I.
2004-01-01
This work is focused on the study of recrystallization texture and micro texture in a cold rolled ultra low carbon steel and its relationship with the global texture. Aspects like nucleation, evolution of the volume fraction and grain size were considered. An important grain selection associated with a significant size and number advantages of the recrystallized grains is observed. This grain selection gives rise to the development, at the latest stages of recrystallization, of a strong γ-fibre associated to good drawing properties. (Author) 24 refs
International Nuclear Information System (INIS)
Salem, E.A.; Shalaby, Kh.
2016-01-01
The antifungal potential of essential oils of Thyme (Thymus vulgaris L.) and camphor ( Eucalyptus rostrata L.) was determined on Aspergillus flavus link isolated from wheat grains on Potato dextrose agar (PDA). They inhibited completely mycelia growth of the fungus at 1000 and 2000 ppm, and prevented aflatoxin production at sub lethal dose 500 and 1000 ppm respectively. Gamma radiation was used to control mycelia growth of Aspergillus flavus Link and inhibiting aflatoxin production. A dose level of 3.5 KGy gamma radiation prevented the fungal growth and aflatoxin production by A. flavus link, where a dose of 2.5 K Gy ( the sub lethal dose) prevented about 85% of aflatoxin production
Energy Technology Data Exchange (ETDEWEB)
Kotan, Hasan, E-mail: hkotan@ncsu.edu [Department of Materials Science and Engineering, NC State University, 911 Partners Way, Room 3078, Raleigh, NC 27606-7907 (United States); Darling, Kris A. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, RDRL-WMM-F, Aberdeen Proving Ground, MD 21005-5069 (United States); Saber, Mostafa; Koch, Carl C.; Scattergood, Ronald O. [Department of Materials Science and Engineering, NC State University, 911 Partners Way, Room 3078, Raleigh, NC 27606-7907 (United States)
2013-02-25
Highlights: Black-Right-Pointing-Pointer Pure Fe, Fe{sub 92}Ni{sub 8}, and Fe{sub 91}Ni{sub 8}Zr{sub 1} powders were hardened up to 10 GPa by ball milling. Black-Right-Pointing-Pointer Annealing of Fe and Fe{sub 92}Ni{sub 8} leads to reduced hardness and extensive grain growth. Black-Right-Pointing-Pointer The addition of Zr to Fe{sub 92}Ni{sub 8} increases its stability and strength by second phases. Black-Right-Pointing-Pointer The second phases are found to promote the stability of Fe{sub 91}Ni{sub 8}Zr{sub 1} by Zener pinning. Black-Right-Pointing-Pointer The Zr-containing precipitates contribute to the overall strength of the material. - Abstract: Grain growth of ball-milled pure Fe, Fe{sub 92}Ni{sub 8}, and Fe{sub 91}Ni{sub 8}Zr{sub 1} alloys has been studied using X-ray diffractometry (XRD), focused ion beam (FIB) microscopy and transmission electron microscopy (TEM). Mechanical properties with respect to compositional changes and annealing temperatures have been investigated using microhardness and shear punch tests. We found the rate of grain growth of the Fe{sub 91}Ni{sub 8}Zr{sub 1} alloy to be much less than that of pure Fe and the Fe{sub 92}Ni{sub 8} alloy at elevated temperatures. The microstructure of the ternary Fe{sub 91}Ni{sub 8}Zr{sub 1} alloy remains nanoscale up to 700 Degree-Sign C where only a few grains grow abnormally whereas annealing of pure iron and the Fe{sub 92}Ni{sub 8} alloy leads to extensive grain growth. The grain growth of the ternary alloy at high annealing temperatures is coupled with precipitation of Fe{sub 2}Zr. A fine dispersion of precipitated second phase is found to promote the microstructural stability at high annealing temperatures and to increase the hardness and ultimate shear strength of ternary Fe{sub 91}Ni{sub 8}Zr{sub 1} alloy drastically when the grain size is above nanoscale.
Grain growth across protoplanetary discs: 10 μm silicate feature versus millimetre slope
Lommen, D.J.P.; van Dishoeck, E.F.; Wright, C.M.; Min, M.
2010-01-01
Context. Young stars are formed with dusty discs around them. The dust grains in the disc are originally of the same size as interstellar dust, i.e., of the order of 0.1 μm. Models predict that these grains will grow in size through coagulation. Observations of the silicate features around 10 and 20
Yield and grain quality of spring barley as affected by biomass formation at early growth stages
Czech Academy of Sciences Publication Activity Database
Křen, J.; Klem, Karel; Svobodová, I.; Míša, P.; Neudert, L.
2014-01-01
Roč. 60, č. 5 (2014), s. 221-227 ISSN 1214-1178 R&D Projects: GA MZe QI111A133 Keywords : Hordeum vulgare L * above-ground biomass * tillering * grain yield formation * grain protein content Subject RIV: EH - Ecology, Behaviour Impact factor: 1.226, year: 2014
Zhang, Jin; Wang, Minyan; Cao, Yucheng; Liang, Peng; Wu, Shengchun; Leung, Anna Oi Wah; Christie, Peter
2017-04-01
Rice cultivation requires large quantities of irrigation water and mineral fertilizers. This provides an opportunity for the recycling of the plant nutrients in anaerobically digested pig slurry, large amounts of which are generated in Chinese pig farms. Hence, to promote the sustainable development of livestock and poultry breeding and rice production, a micro-plot field experiment was carried out to assess whether or not slurry can replace mineral fertilizers in rice paddy production in terms of plant tillering, grain quality, and yields. The results indicate that the total N content of the slurry can serve as an alternative source of N when compared to the control (450 kg ha -1 commercial compound fertilizer (N/P 2 O 5 /K 2 O = 15:15:15) as basal fertilizer, 300 kg ha -1 urea (N% = 46), and 150 kg ha -1 commercial compound fertilizer as top-dressed fertilizer). No negative effects on plant growth or grain yield were observed, although there may be a potential risk due to an increase in grain Cu concentration. The amylose content and gel consistency of the rice grains were enhanced significantly by the use of slurry as a basal fertilizer, but the grain protein and total amino acid contents decreased. The results suggest that anaerobically digested pig slurry can replace mineral fertilizers in rice production when applied as a basal dressing together with urea and commercial compound fertilizer as top-dressed fertilizers.
Yuan, Y.; Greuner, H.; Böswirth, B.; Krieger, K.; Luo, G.-N.; Xu, H. Y.; Fu, B. Q.; Li, M.; Liu, W.
2013-02-01
Short pulse heat loads expected for vertical displacement events (VDEs) in ITER were applied in the high heat flux (HHF) test facility GLADIS at IPP-Garching onto samples of rolled W. Pulsed neutral beams with the central heat flux of 23 MW/m2 were applied for 0.5, 1.0 and 1.5 s, respectively. Rapid recrystallization of the adiabatically loaded 3 mm thick samples was observed when the pulse duration was up to 1.0 s. Grains grew markedly following recrystallization with increasing pulse length. The recrystallization temperature and temperature dependence of the recrystallized grain size were also investigated. The results showed that the recrystallization temperature of the W grade was around 2480 °C under the applied heat loading condition, which was nearly 1150 °C higher than the conventional recrystallization temperature, and the grains were much finer. A linear relationship between the logarithm of average grain size (ln d) and the inverse of maximum surface temperature (1/Tmax) was found and accordingly the activation energy for grain growth in temperature evolution up to Tmax in 1.5 s of the short pulse HHF load was deduced to be 4.1 eV. This provided an effective clue to predict the structure evolution under short pulse HHF loads.
On nonlinear evolution variational inequalities involving variable exponent
Directory of Open Access Journals (Sweden)
Mingqi Xiang
2013-12-01
Full Text Available In this paper, we discuss a class of quasilinear evolution variational inequalities with variable exponent growth conditions in a generalized Sobolev space. We obtain the existence of weak solutions by means of penalty method. Moreover, we study the extinction properties of weak solutions to parabolic inequalities and provide a sufficient condition that makes the weak solutions vanish in a finite time. The existence of global attractors for weak solutions is also obtained via the theories of multi-valued semiflow.
Texturing of sodium bismuth titanate-barium titanate ceramics by templated grain growth
Yilmaz, Huseyin
2002-01-01
Sodium bismuth titanate modified with barium titanate, (Na1/2Bi 1/2)TiO3-BaTiO3 (NBT-BT), is a candidate lead-free piezoelectric material which has been shown to have comparatively high piezoelectric response. In this work, textured (Na1/2Bi1/2)TiO 3-BaTiO3 (5.5mol% BaTiO3) ceramics with pc (where pc denotes the pseudocubic perovskite cell) orientation were fabricated by Templated Grain Growth (TGG) or Reactive Templated Grain Growth (RTGG) using anisotropically shaped template particles. In the case of TGG, molten salt synthesized SrTiO3 platelets were tape cast with a (Na1/2Bi1/2)TiO3-5.5mol%BaTiO3 powder and sintered at 1200°C for up to 12 hours. For the RTGG approach, Bi4Ti3O12 (BiT) platelets were tape cast with a Na2CO3, Bi2O3, TiO 2, and BaCO3 powder mixture and reactively sintered. The TGG approach using SrTiO3 templates gave stronger texture along [001] compared to the RTGG approach using BiT templates. The textured ceramics were characterized by X-ray and electron backscatter diffraction for the quality of texture. The texture function was quantified by the Lotgering factor, rocking curve, pole figures, inverse pole figures, and orientation imaging microscopy. Electrical and electromechanical property characterization of randomly oriented and pc textured (Na1/2Bi1/2)TiO 3-5.5 mol% BaTiO3 rhombohedral ceramics showed 0.26% strain at 70 kV/cm, d33 coefficients over 500 pC/N have been obtained for highly textured samples (f ˜ 90%). The piezoelectric coefficient from Berlincourt was d33 ˜ 200 pC/N. The materials show considerable hysteresis. The presence of hysteresis in the unipolar-electric field curve is probably linked to the ferroelastic phase transition seen in the (Na 1/2Bi1/2)TiO3 system on cooling from high temperature at ˜520°C. The macroscopic physical properties (remanent polarization, dielectric constant, and piezoelectric coefficient) of random and textured ([001] pc) rhombohedral perovskites were estimated by linear averaging of single
Monte Carlo-based tail exponent estimator
Barunik, Jozef; Vacha, Lukas
2010-11-01
In this paper we propose a new approach to estimation of the tail exponent in financial stock markets. We begin the study with the finite sample behavior of the Hill estimator under α-stable distributions. Using large Monte Carlo simulations, we show that the Hill estimator overestimates the true tail exponent and can hardly be used on samples with small length. Utilizing our results, we introduce a Monte Carlo-based method of estimation for the tail exponent. Our proposed method is not sensitive to the choice of tail size and works well also on small data samples. The new estimator also gives unbiased results with symmetrical confidence intervals. Finally, we demonstrate the power of our estimator on the international world stock market indices. On the two separate periods of 2002-2005 and 2006-2009, we estimate the tail exponent.
Critical exponents from the effective average action
International Nuclear Information System (INIS)
Tetradis, N.; Wetterich, C.
1993-07-01
We compute the critical behaviour of three-dimensional scalar theories using a new exact non-perturbative evolution equation. Our values for the critical exponents agree well with previous precision estimates. (orig.)
Directory of Open Access Journals (Sweden)
Chuan Du
2012-06-01
Full Text Available New approach is presented for growth of pentacene crystalline thin film with large grain size. Modification of dielectric surfaces using a monolayer of small molecule results in the formation of pentacene thin films with well ordered large crystalline domain structures. This suggests that pentacene molecules may have significantly large diffusion constant on the modified surface. An average hole mobility about 1.52 cm2/Vs of pentacene based organic thin film transistors (OTFTs is achieved with good reproducibility.
Numerical study of the grain growth and the thermal properties of ceramics
International Nuclear Information System (INIS)
Shahtahmasebi, N.; Shariaty ghleno, A.M.; Hosaini, M.
2000-04-01
The physical properties of ceramics strongly depends on the grain size, which itself depends on the sintering process. In this work we propose a model for sintering based on the gross features known experimental and the preform numerical study
Effect of surface roughness on grain growth and sintering of alumina
Indian Academy of Sciences (India)
Administrator
Variation in surface roughness properties are also correlated with grain size. Rz ... ceramic product having accurate size and shape with per- fect flatness .... Figure 1. Variation in Ra with temperature: (a) fine, (b) intermediate and (c) coarse.
International Nuclear Information System (INIS)
Rheinheimer, Wolfgang; Bäurer, Michael; Handwerker, Carol A.; Blendell, John E.; Hoffmann, Michael J.
2015-01-01
We present a suite of measurements and combined analyses of grain growth in SrTiO 3 for oriented single crystals into polycrystals. The growth distance and standard deviation and the microstructure evolution along the single crystal–matrix interface are used to locally characterize the change in migration behavior as a function of temperature, time and interface orientation. The relative grain boundary mobility was determined between 1250 °C and 1600 °C for four crystallographic orientations {1 0 0}, {1 1 0}, {1 1 1} and {3 1 0}. An absolute mobility of these orientations is estimated. Under fast growth conditions the morphology of single crystals shows macroscopic stepping with parts of the interface rotating to low mobility orientations. This effect represents a kinetic influence on the grain boundary morphology. The results also indicate dragging effects on microstructure coarsening, which indicate the existence of a critical driving force for grain growth. This critical driving force seems to be related to an ‘intrinsic’ interface drag similar to the solute drag, but based on intrinsic defects. At 1460 °C the growth of single crystals was significantly faster than expected from the mobility of the polycrystal and was identified as exaggerated grain growth. The findings give new insights into the recently published grain growth anomaly of strontium titanate, leading to a hypothesis based on the temperature dependent relative mobility of {1 0 0} oriented grain boundaries
An Overview of Grain Growth Theories for Pure Single Phase Systems,
1986-10-01
the fundamental causes for these distributions. This Blanc and Mocellin (1979) and Carnal and Mocellin (1981j set out to do. 7.1 Monte-Carlo Simulations...termed event B) (in 2-D) of 3-sided grains. (2) Neighbour-switching (termed event C). Blanc and Mocellin (1979) dealt with 2-D sections through...Kurtz and Carpay (1980a). 7.2 Analytical Method to Obtain fn Carnal and Mocellin (1981) obtained the distribution of grain coordination numbers in
Cendoya, Eugenia; Monge, María Del Pilar; Chiacchiera, Stella Maris; Farnochi, María Cecilia; Ramirez, María Laura
2018-02-02
Wheat is the most important cereal consumed by the Argentine population. In previous studies performed in durum and common wheat grains in this country it has been observed fumonisin contamination as well as high incidence of Fusarium proliferatum. Fumonisins are toxic fungal metabolites, and consumption of fumonisin-contaminated maize has been epidemiologically associated with oesophageal cancer and neural tube defects in some human populations. Using irradiated wheat-grains, the effects of abiotic factors, temperature (15, 25, and 30°C) and water activity (a W ; 0.995, 0.98, 0.96, 0.94, 0.92, and 0.88), on mycelial growth and fumonisin biosynthesis were compared for three F. proliferatum strains isolated from wheat grains in Argentina. Although all isolates showed similar profiles of growth, the fumonisin production profiles were slightly different. Maximum growth rates were obtained at the highest a W (0.995) and 25°C, with growth decreasing as the a W of the medium was reduced. Maximum amounts of total fumonisins (FB 1 , FB 2 and FB 3 ) were produced at 0.995 a W and 15°C for 2 strains, and at 25°C and 0.995 a W for the third one. Fumonisins concentrations varied considerably depending on the a W and temperature interactions assayed. Studied strains showed different fumonisin production profiles. Two-dimensional profiles of a W by temperature interactions were developed from these data to identify areas where conditions indicate a significant risk of fumonisins accumulation on wheat. As a result, temperature and a W conditions that resulted in fumonisins production are those found during wheat grain development (especially milk and dough stages) in the field. This is the first study made using irradiated wheat grains and provides useful baseline data on conditions representing a low or a high risk for fumonisins contamination of wheat grains which is of concern because this cereal is destined mainly for human consumption. Copyright © 2017 Elsevier B.V. All
Energy Technology Data Exchange (ETDEWEB)
Hu, Dianyin [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191 (China); Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191 (China); Mao, Jianxing [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Song, Jun, E-mail: jun.song2@mcgill.ca [Mining and Materials Engineering, McGill University, Montreal, QC, Canada H3A 0C5 (Canada); Meng, Fanchao [Mining and Materials Engineering, McGill University, Montreal, QC, Canada H3A 0C5 (Canada); Shan, Xiaoming [China Aviation Powerplant Research Institute, Zhuzhou 412002 (China); Wang, Rongqiao, E-mail: wangrq@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191 (China); Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191 (China)
2016-07-04
Systematic experiments for fatigue crack growth (FCG) rate on compact tension (CT) specimens have been conducted in nickel-based superalloy GH4169 at a broad range of temperatures with a frequency of 10 Hz and a stress ratio of 0.1. In order to investigate the crack closure behavior, FCG experiments at stress ratio of 0.5 were also performed by comparing with the results at stress ration of 0.1. CT specimens were cut from three typical locations of an actual forged turbine disc to investigate the effect of grain size on the FCG behaviors. The grain size distribution, precipitates and fracture surface characteristics at different locations of the turbine disc were examined through optical microscope, transmission electron microscope (TEM) and scanning electronic microscope (SEM) analyses. Digital image correlation (DIC), optical interferometry and oxide film measurements were carried out to investigate the presence and inducement of the crack closure. Then a modified FCG model, with a distribution factor that evaluates the scattering in the FCG rate, was formulated to describe the dependence of FCG rate on grain size. Finally, the possible microscopic mechanisms to explain the grain size effect on the FCG behaviors based on crack deflection and blockage, and the crack closure inducements involving plasticity and oxide were discussed in this study.
Popko, Małgorzata; Michalak, Izabela; Wilk, Radosław; Gramza, Mateusz; Chojnacka, Katarzyna; Górecki, Henryk
2018-02-21
Field and laboratory experiments were carried out in 2012-2013, aimed at evaluating the influence of new products stimulating plant growth based on amino acids on crop yield, characteristics of grain and content of macro- and micronutrients in winter wheat ( Triticum aestivum L.). The tests included two formulations produced in cooperation with INTERMAG Co. (Olkusz, Poland)-AminoPrim and AminoHort, containing 15% and 20% amino acids, respectively, and 0.27% and 2.1% microelements, respectively. Field experiments showed that the application of products based on amino acids influenced the increase of grain yield of winter wheat (5.4% and 11%, respectively, for the application of AminoPrim at a dose 1.0 L/ha and AminoHort at dose 1.25 L/ha) when compared to the control group without biostimulant. Laboratory tests showed an increase of technological characteristics of grain such as ash content, Zeleny sedimentation index and content of protein. The use of the tested preparations at different doses also contributed to the increase of the nutrients content in grains, in particular copper (ranging 31-50%), as well as sodium (35-43%), calcium (4.3-7.9%) and molybdenum (3.9-16%). Biostimulants based on amino acids, tested in the present study, can be recommended for an efficient agricultural production.
The effects of particle size distribution and induced unpinning during grain growth
International Nuclear Information System (INIS)
Thompson, G.S.; Rickman, J.M.; Harmer, M.P.; Holm, E.A.
1996-01-01
The effect of a second-phase particle size distribution on grain boundary pinning was studied using a Monte Carlo simulation technique. Simulations were run using a constant number density of both whisker and rhombohedral particles, and the effect of size distribution was studied by varying the standard deviation of the distribution around a constant mean particle size. The results of present simulations indicate that, in accordance with the stereological assumption of the topological pinning model, changes in distribution width had no effect on the pinned grain size. The effect of induced unpinning of particles on microstructure was also studied. In contrast to predictions of the topological pinning model, a power law dependence of pinned grain size on particle size was observed at T=0.0. Based on this, a systematic deviation to the stereological predictions of the topological pinning model is observed. The results of simulations at higher temperatures indicate an increasing power law dependence of pinned grain size on particle size, with the slopes of the power law dependencies fitting an Arrhenius relation. The effect of induced unpinning of particles was also studied in order to obtain a correlation between particle/boundary concentration and equilibrium grain size. The results of simulations containing a constant number density of monosized rhombohedral particles suggest a strong power law correlation between the two parameters. copyright 1996 Materials Research Society
Columnar grain growth of FePt(L10) thin films
International Nuclear Information System (INIS)
Yang En; Ho Hoan; Laughlin, David E.; Zhu Jiangang
2012-01-01
An experimental approach for obtaining perpendicular FePt-SiOx thin films with a large height to diameter ratio FePt(L1 0 ) columnar grains is presented in this work. The microstructure for FePt-SiOx composite thin films as a function of oxide volume fraction, substrate temperature, and film thickness is studied by plan view and cross section TEM. The relations between processing, microstructure, epitaxial texture, and magnetic properties are discussed. By tuning the thickness of the magnetic layer and the volume fraction of oxide in the film at a sputtering temperature of 410 deg. C, a 16 nm thick perpendicular FePt film with ∼8 nm diameter of FePt grains was obtained. The height to diameter ratio of the FePt grains was as large as 2. Ordering at lower temperature can be achieved by introducing a Ag sacrificial layer.
Evaluating Lyapunov exponent spectra with neural networks
International Nuclear Information System (INIS)
Maus, A.; Sprott, J.C.
2013-01-01
Highlights: • Cross-correlation is employed to remove spurious Lyapunov exponents from a spectrum. • Neural networks are shown to accurately model Lyapunov exponent spectra. • Neural networks compare favorably to local linear fits in modeling Lyapunov exponents. • Numerical experiments are performed with time series of varying length and noise. • Methods perform reasonably well on discrete time series. -- Abstract: A method using discrete cross-correlation for identifying and removing spurious Lyapunov exponents when embedding experimental data in a dimension greater than the original system is introduced. The method uses a distribution of calculated exponent values produced by modeling a single time series many times or multiple instances of a time series. For this task, global models are shown to compare favorably to local models traditionally used for time series taken from the Hénon map and delayed Hénon map, especially when the time series are short or contaminated by noise. An additional merit of global modeling is its ability to estimate the dynamical and geometrical properties of the original system such as the attractor dimension, entropy, and lag space, although consideration must be taken for the time it takes to train the global models
High day- and night-time temperatures affect grain growth dynamics in contrasting rice genotypes.
Shi, Wanju; Yin, Xinyou; Struik, Paul C; Solis, Celymar; Xie, Fangming; Schmidt, Ralf C; Huang, Min; Zou, Yingbin; Ye, Changrong; Jagadish, S V Krishna
2017-11-02
Rice grain yield and quality are predicted to be highly vulnerable to global warming. Five genotypes including heat-tolerant and susceptible checks, a heat-tolerant near-isogenic line and two hybrids were exposed to control (31 °C/23 °C, day/night), high night-time temperature (HNT; 31 °C/30 °C), high day-time temperature (HDT; 38 °C/23 °C) and high day- and night-time temperature (HNDT; 38 °C/30 °C) treatments for 20 consecutive days during the grain-filling stage. Grain-filling dynamics, starch metabolism enzymes, temporal starch accumulation patterns and the process of chalk formation were quantified. Compensation between the rate and duration of grain filling minimized the impact of HNT, but irreversible impacts on seed-set, grain filling and ultimately grain weight were recorded with HDT and HNDT. Scanning electron microscopy demonstrated irregular and smaller starch granule formation affecting amyloplast build-up with HDT and HNDT, while a quicker but normal amylopast build-up was recorded with HNT. Our findings revealed temporal variation in the starch metabolism enzymes in all three stress treatments. Changes in the enzymatic activity did not derail starch accumulation under HNT when assimilates were sufficiently available, while both sucrose supply and the conversion of sucrose into starch were affected by HDT and HNDT. The findings indicate differential mechanisms leading to high day and high night temperature stress-induced loss in yield and quality. Additional genetic improvement is needed to sustain rice productivity and quality under future climates. © Society for Experimental Biology 2017.
Grain growth control and transparency in spark plasma sintered self-doped alumina materials
International Nuclear Information System (INIS)
Suarez, M.; Fernandez, A.; Menendez, J.L.; Torrecillas, R.
2009-01-01
Doping alumina particles with aluminum alkoxides allows dense spark plasma sintered (SPSed) materials to be obtained that have a refined grain size compared to pure materials, which is critical for their transparency. An optical model considering pore and grain size distributions has been developed to obtain information about porosity in dense materials. This work suggests that the atomic diffusion mechanisms do not depend on the sintering technique. A reduction in the activation energy by a factor of 2 has been found in SPSed materials.
Transitional grain-size-sensitive flow of milky quartz aggregates
Fukuda, J. I.; Holyoke, C. W., III; Kronenberg, A. K.
2014-12-01
Fine-grained (~15 μm) milky quartz aggregates exhibit reversible flow strengths in triaxial compression experiments conducted at T = 800-900oC, Pc = 1.5 GPa when strain rates are sequentially decreased (typically from 10-3.5 to 10-4.5 and 10-5.5 s-1), and then returned to the original rate (10-3.5 s-1), while samples that experience grain growth at 1000oC (to 35 μm) over the same sequence of strain rates exhibit an irreversible increase in strength. Polycrystalline quartz aggregates have been synthesized from natural milky quartz powders (ground to 5 μm) by HIP methods at T = 1000oC, Pc = 1.5 GPa and t = 24 hours, resulting in dense, fine-grained aggregates of uniform water content of ~4000 ppm (H/106Si), as indicated by a broad OH absorption band at 3400 cm-1. In experiments performed at 800o and 900oC, grain sizes of the samples are essentially constant over the duration of each experiment, though grain shapes change significantly, and undulatory extinction and deformation lamellae indicate that much of the sample shortening (to 50%) is accomplished, over the four strain-rate steps, by dislocation creep. Differential stresses measured at T = 800oC decrease from 160 to 30 MPa as strain rate is reduced from 10-4.6 to 10-5.5 s-1, and a stress of 140 MPa is measured when strain rate is returned to 10-4.5 s-1. Samples deformed at 1000o and 1100oC experience normal grain growth, with grain boundary energy-driven grain-coarsening textures superposed by undulatory extinction and deformation lamellae. Differential stresses measured at 1000oC and strain rates of 10-3.6, 10-4.6, and 10-5.5 s-1 are 185, 80, and 80 MPa, respectively, while an increased flow stress of 260 MPa is measured (following ~28 hours of prior high temperature deformation and grain growth) when strain rate is returned to 10-3.6 s-1. While all samples exhibit lattice preferred orientations, the stress exponent n inferred for the fine-grained 800oC sample is 1.5 and the stress exponent of the coarse-grained
Lyapunov exponents and smooth ergodic theory
Barreira, Luis
2001-01-01
This book is a systematic introduction to smooth ergodic theory. The topics discussed include the general (abstract) theory of Lyapunov exponents and its applications to the stability theory of differential equations, stable manifold theory, absolute continuity, and the ergodic theory of dynamical systems with nonzero Lyapunov exponents (including geodesic flows). The authors consider several non-trivial examples of dynamical systems with nonzero Lyapunov exponents to illustrate some basic methods and ideas of the theory. This book is self-contained. The reader needs a basic knowledge of real analysis, measure theory, differential equations, and topology. The authors present basic concepts of smooth ergodic theory and provide complete proofs of the main results. They also state some more advanced results to give readers a broader view of smooth ergodic theory. This volume may be used by those nonexperts who wish to become familiar with the field.
High day- and night-time temperatures affect grain growth dynamics in contrasting rice genotypes
Shi, Wanju; Yin, Xinyou; Struik, Paul C.; Solis, Celymar; Xie, Fangming; Schmidt, Ralf C.; Huang, Min; Zou, Yingbin; Ye, Changrong; Jagadish, S.V.K.
2017-01-01
Rice grain yield and quality are predicted to be highly vulnerable to global warming. Five genotypes including heat-tolerant and susceptible checks, a heat-tolerant near-isogenic line and two hybrids were exposed to control (31 °C/23 °C, day/night), high night-time temperature (HNT; 31 °C/30 °C),
Heat stress in wheat (Triticum aestivum L.): Effects on grain growth and quality traits
Spiertz, J.H.J.; Hamer, R.J.; Xu, H.; Primo-Martin, C.; Don, C.; Putten, P.E.L. van der
2006-01-01
Heat stress effects on grain dry mass and quality were studied in spring wheat genotypes (Triticum aestivum L.). Three cultivars were chosen with respect to heat tolerance: Lavett (genotype 1), selected for temperate growing conditions and two CIMMYT cultivars, Ciano-79 (genotype 2) and Attila
Modeling the effect of neighboring grains on twin growth in HCP polycrystals
Kumar, M. Arul; Beyerlein, I. J.; Lebensohn, R. A.; Tomé, C. N.
2017-09-01
In this paper, we study the dependence of neighboring grain orientation on the local stress state around a deformation twin in a hexagonal close packed (HCP) crystal and its effects on the resistance against twin thickening. We use a recently developed, full-field elasto-visco-plastic formulation based on fast Fourier transforms that account for the twinning shear transformation imposed by the twin lamella. The study is applied to Mg, Zr and Ti, since these HCP metals tend to deform by activation of different types of slip modes. The analysis shows that the local stress along the twin boundary are strongly controlled by the relative orientation of the easiest deformation modes in the neighboring grain with respect to the twin lamella in the parent grain. A geometric expression that captures this parent-neighbor relationship is proposed and incorporated into a larger scale, mean-field visco-plastic self-consistent model to simulate the role of neighboring grain orientation on twin thickening. We demonstrate that the approach improves the prediction of twin area fraction distribution when compared with experimental observations.
Growth, Structure and Firm Dynamics in Grain Markets: The Case of ...
African Journals Online (AJOL)
Optiplex 7010 Pro
market, firms faced with a U-shaped average cost curve will grow until they reach the ... Regulation and institutional challenges may also deter firm owners from making .... owners/managers account for only 10% of the grain traders. Women ...
Na-assisted grain growth in CZTS nanoparticle thin films for solar cell applications
DEFF Research Database (Denmark)
Engberg, Sara Lena Josefin; Crovetto, Andrea; Hansen, Ole
2017-01-01
signal increased by a factor of 200 after Na-inclusion. Without Na, the grains were very difficult to sinter, the film was porous, and the photoluminescence was low. A concentration of Na/(Cu+Zn+Sn)=30% was necessary for the densification of the absorber, which is significantly higher than that used...
Lyapunov exponents for infinite dimensional dynamical systems
Mhuiris, Nessan Mac Giolla
1987-01-01
Classically it was held that solutions to deterministic partial differential equations (i.e., ones with smooth coefficients and boundary data) could become random only through one mechanism, namely by the activation of more and more of the infinite number of degrees of freedom that are available to such a system. It is only recently that researchers have come to suspect that many infinite dimensional nonlinear systems may in fact possess finite dimensional chaotic attractors. Lyapunov exponents provide a tool for probing the nature of these attractors. This paper examines how these exponents might be measured for infinite dimensional systems.
Energy Technology Data Exchange (ETDEWEB)
McClure, M. K.; Calvet, N.; Hartmann, L.; Ingleby, L. [Department of Astronomy, The University of Michigan, 500 Church Street, 830 Dennison Building., Ann Arbor, MI 48109 (United States); D' Alessio, P. [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, 58089 Morelia, Michoacán (Mexico); Espaillat, C. [Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Sargent, B. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Watson, D. M. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Hernández, J., E-mail: melisma@umich.edu, E-mail: ncalvet@umich.edu, E-mail: lhartm@umich.edu, E-mail: lingleby@umich.edu, E-mail: p.dalessio@astrosmo.unam.mx, E-mail: cespaillat@cfa.harvard.edu, E-mail: baspci@rit.edu, E-mail: dmw@pas.rochester.edu, E-mail: hernandj@cida.ve [Centro de Investigaciones de Astronomía (CIDA), Mérida 5101-A (Venezuela, Bolivarian Republic of)
2013-10-01
The dust sublimation walls of disks around T Tauri stars represent a directly observable cross-section through the disk atmosphere and midplane. Their emission properties can probe the grain size distribution and composition of the innermost regions of the disk, where terrestrial planets form. Here we calculate the inner dust sublimation wall properties for four classical T Tauri stars with a narrow range of spectral types and inclination angles and a wide range of mass accretion rates to determine the extent to which the walls are radially curved. Best fits to the near- and mid-IR excesses are found for curved, two-layer walls in which the lower layer contains larger, hotter, amorphous pyroxene grains with Mg/(Mg+Fe) = 0.6 and the upper layer contains submicron, cooler, mixed amorphous olivine and forsterite grains. As the mass accretion rates decrease from 10{sup –8} to 10{sup –10} M{sub ☉} yr{sup –1}, the maximum grain size in the lower layer decreases from ∼3 to 0.5 μm. We attribute this to a decrease in fragmentation and turbulent support for micron-sized grains with decreasing viscous heating. The atmosphere of these disks is depleted of dust with dust-gas mass ratios 1 × 10{sup –4} of the interstellar medium (ISM) value, while the midplane is enhanced to eight times the ISM value. For all accretion rates, the wall contributes at least half of the flux in the optically thin 10 μm silicate feature. Finally, we find evidence for an iron gradient in the disk, suggestive of that found in our solar system.
International Nuclear Information System (INIS)
McClure, M. K.; Calvet, N.; Hartmann, L.; Ingleby, L.; D'Alessio, P.; Espaillat, C.; Sargent, B.; Watson, D. M.; Hernández, J.
2013-01-01
The dust sublimation walls of disks around T Tauri stars represent a directly observable cross-section through the disk atmosphere and midplane. Their emission properties can probe the grain size distribution and composition of the innermost regions of the disk, where terrestrial planets form. Here we calculate the inner dust sublimation wall properties for four classical T Tauri stars with a narrow range of spectral types and inclination angles and a wide range of mass accretion rates to determine the extent to which the walls are radially curved. Best fits to the near- and mid-IR excesses are found for curved, two-layer walls in which the lower layer contains larger, hotter, amorphous pyroxene grains with Mg/(Mg+Fe) = 0.6 and the upper layer contains submicron, cooler, mixed amorphous olivine and forsterite grains. As the mass accretion rates decrease from 10 –8 to 10 –10 M ☉ yr –1 , the maximum grain size in the lower layer decreases from ∼3 to 0.5 μm. We attribute this to a decrease in fragmentation and turbulent support for micron-sized grains with decreasing viscous heating. The atmosphere of these disks is depleted of dust with dust-gas mass ratios 1 × 10 –4 of the interstellar medium (ISM) value, while the midplane is enhanced to eight times the ISM value. For all accretion rates, the wall contributes at least half of the flux in the optically thin 10 μm silicate feature. Finally, we find evidence for an iron gradient in the disk, suggestive of that found in our solar system
Effect of V-Nd co-doping on phase transformation and grain growth process of TiO2
Khatun, Nasima; Amin, Ruhul; Anita, Sen, Somaditya
2018-05-01
The pure and V-Nd co-doped TiO2 samples are prepared by the modified sol-gel process. The phase formation is confirmed by XRD spectrum. Phase transformation is delayed in V-Nd co-doped TiO2 (TVN) samples compared to pure TiO2. The particle size is comparatively small in TVN samples at both the temperature 450 °C and 900 °C. Hence the effect of Nd doping is dominated over V doping in both phase transformation and grain growth process of TiO2.
Box-scan: A novel 3DXRD method for studies of recrystallization and grain growth
DEFF Research Database (Denmark)
Lyckegaard, Allan; Poulsen, Henning Friis; Ludwig, Wolfgang
2012-01-01
Within the last decade a number of x-ray diffraction methods have been presented for non-destructive 3D characterization of polycrystalline materials. 3DXRD [1] and Diffraction Contrast Tomography [2,3,4] are examples of such methods providing full spatial and crystallographic information...... of the individual grains. Both methods rely on specially designed high-resolution near-field detectors for acquire the shape of the illuminated grains, and therefore the spatial resolution is for both methods limited by the resolution of the detector, currently ~2 micrometers. Applying these methods using...... for dynamic studies requiring high temporal resolution and set-ups involving bulky sample environments (e.g. furnaces, stress-rigs etc.)...
Statistical-mechanical formulation of Lyapunov exponents
International Nuclear Information System (INIS)
Tanase-Nicola, Sorin; Kurchan, Jorge
2003-01-01
We show how the Lyapunov exponents of a dynamic system can, in general, be expressed in terms of the free energy of a (non-Hermitian) quantum many-body problem. This puts their study as a problem of statistical mechanics, whose intuitive concepts and techniques of approximation can hence be borrowed
International Nuclear Information System (INIS)
Nawab, K.; Amanullah, A.; Shah, P.; Arif, M.; Khan, A.M.
2011-01-01
Field study was conducted during 2001-02 and 2002-03 to investigate the effect of cropping patterns and farm yard manure, potassium and zinc on the grain yield of wheat. Trials were conducted at Agricultural Research Farm, KPK Agricultural University Peshawar, Pakistan. Two factors cropping patterns and manures/fertilizers were studied in the experiment. Randomized complete block design was used with split plot arrangements and four replications having net plot size of 12 m/sup 2/. Wheat variety Ghaznavi-98 was sown in November soon after ploughing the soil at proper moisture level suitable for wheat seed germination. Five cropping patterns were allotted to main plots and the eight combinations of FYM, K and Zn to the sub-plots. Same plots were used for next year sowing. Effects of five cropping patterns i.e., rice-wheat, maize-wheat, sunflower-wheat, sorghum-wheat and pigeon pea-wheat and three organic and in-organic fertilizers (Farmyard Manure, Potassium and Zinc) on subsequent wheat crop were observed. Highest grain yield was obtained when wheat was planted after pigeon pea. Manures/fertilizer application (Farmyard Manure, Potassium and Zinc) produced significantly higher grain yield than the control plots. The findings of the present study revealed that leguminous crops can significantly increase the yield of succeeding crops. Thus use of Farmyard Manure, Potassium and Zinc should be included in integrated crop management approaches for sustainable agriculture. (author)
Sathya, Arumugam; Vijayabharathi, Rajendran; Gopalakrishnan, Subramaniam
2017-06-01
Grain legumes are a cost-effective alternative for the animal protein in improving the diets of the poor in South-East Asia and Africa. Legumes, through symbiotic nitrogen fixation, meet a major part of their own N demand and partially benefit the following crops of the system by enriching soil. In realization of this sustainability advantage and to promote pulse production, United Nations had declared 2016 as the "International Year of pulses". Grain legumes are frequently subjected to both abiotic and biotic stresses resulting in severe yield losses. Global yields of legumes have been stagnant for the past five decades in spite of adopting various conventional and molecular breeding approaches. Furthermore, the increasing costs and negative effects of pesticides and fertilizers for crop production necessitate the use of biological options of crop production and protection. The use of plant growth-promoting (PGP) bacteria for improving soil and plant health has become one of the attractive strategies for developing sustainable agricultural systems due to their eco-friendliness, low production cost and minimizing consumption of non-renewable resources. This review emphasizes on how the PGP actinobacteria and their metabolites can be used effectively in enhancing the yield and controlling the pests and pathogens of grain legumes.
Texture development due to preferential grain growth of Ho--Ba--Cu--O in 1.6-T magnetic field
International Nuclear Information System (INIS)
Holloway, A.; McCallum, R.W.; Arrasmith, S.R.
1993-01-01
It has been experimentally observed that the application of even a relatively weak magnetic field of 1.6-T during sintering of HoBa 2 Cu 3 O 7-δ (hereafter HoBCO) results in a significant degree of grain alignment. The orientation of grains is found to be controlled by the direction and magnitude of a magnetic field. The degree of alignment was monitored by x-ray diffraction measurements on the flat surface of the samples and by metallography. It has been observed that the degree of alignment grows as the magnitude of the field increases between 0 and 1.6 T for a fixed temperature and processing time. The degree of alignment also increases when the processing temperature changes from 930 degree C to 965 degree C for a fixed field and time. It has also been observed that for both a fixed field and processing temperature, the alignment grows when the processing time increases between 16 and 72 hours. Metallography measurements on the flat and cross-sectional parts of the samples showed that the texture propagates into the bulk of the samples. In the presence of a sufficient amount of the liquid phase, the enhancement of the grain growth in the direction favorable to the magnetic field produces rather large single-crystals (0.3 to 0.5 mm linear size) within the sample
International Nuclear Information System (INIS)
Kim, Y.H.; Waqas, M.; Kamran, M.
2012-01-01
Silicon (Si) has been considered a beneficial element for plant growth. We have assessed the effects of Si application on rice (Oryza sativa L.) growth and its grain yield at field level. For this, we performed two experiments. In experiment 1, we applied Si of three different concentrations (liquid Si-10, 25 and 36%) to the seedbed of rice before transplantation into paddy field. The results of this experiment showed that Si application to rice seedbeds did not affected the rice plant height and shoot fresh weight but its application significantly increased the pushing resistance of rice plants from 12.2-16.7% as compared with water applied control plants. The lodging index of Si treated rice plants significantly decreased (13.7% on LS-25) as compared with control. Similarly, Si treated plants had significantly higher yield. Upon Si treatment (LS-36), the grain yield per 10 acre and panicles per plant were 15.1% and 6. 3% higher than the water treated control plants respectively. The best concentration (LS-36%) revealed in the first experiment was foliar applied at 10 days before heading stage, initial tilling stage and panicle initiation stage to the rice leaves and we observed that shoot biomass was not significantly different between control and Si treated plants. However, significantly higher pushing resistance (10.5%-13.8%) and plant height (12.2%-16.7%) were observed while lower lodging index (7.6-7.8%) was recorded for Si treated plants as compared to control plants. Similarly, Si application increased the number of panicles per plant as well as the grain yield per 10 acre as compared to control. In conclusion, the Si application can significantly regulate plant growth and yield if applied at proper time with feasible concentration. (author)
International Nuclear Information System (INIS)
Mitrašinović, A.M.; Robles Hernández, F.C.
2012-01-01
Highlights: ► A new method to determine the growth restricting factor. (Q) is proposed ► The proposed method is highly accurate (R 2 = 0.99) and simple. ► A major novelty of this method is the determination of Q for non-dilute samples. ► The method proposed herein is based on quasi-binary phase diagrams and composition. ► This method can be easily implemented industrially or as a research tool. - Abstract: In the present research paper is suggested a new methodology to determine the growth restricting factor (Q) and grain size (GS) for various Al-alloys. The present method combines a thermodynamical component based on the liquidus behavior of each alloying element that is later incorporated into the well known growth restricting models for multi-component alloys. This approach that can be used to determine Q and/or GS based on the chemical composition and the slope of the liquidus temperature of any Al-alloy solidified in close to equilibrium conditions. This method can be modified further in order to assess the effect of cooling rate or thermomechanical processing on growth restricting factor and grain size. In the present paper is proposed a highly accurate (R 2 = 0.99) and validated model for Al–Si alloys, but it can be modified for any other Al–X alloying system. The present method can be used for alloys with relatively high solute content and due to the use of the thermodynamics of liquidus this system considers the poisoning effects of single and multi-component alloying elements.
Directory of Open Access Journals (Sweden)
A Soleimani Fard
2013-11-01
Full Text Available To evaluate the effect of bio-fertilize on yield and its components in maize cultivars, an split plot experiment based on randomized complete bock design with three replications in was conducted in Payam-noor University of Ilam, Iran, in 2009-2010. Treatments were cultivar (SC604, SC704 and SC807 assigned to main plots and bio-fertilizer (non- inoculation, inoculation with Azetobacter, Azospirillum and dual inoculation ofAzotobacterand Azospirillum to subplots. The effect of cultivar on days to maturity, plant height, dry matter, ear length, stem diameter, number of grain per ear row, 1000-grain weight, grain yield, biological yield and protein content was significant cultivar. SC 704 had the highest dry matter (259.5 g.m-2, plant height (201.1 cm, number of grain per ear row (42.8 grain, grain yield (10850 kg.m-2, and biological yield (22040 kg.m-2. The effect of plant growth promoting rhizobacteria on all traits expect harvest index was significant. Dual inoculation ofAzotobacterand Azospirillum had the longest days to ear initiation (71.2 days, days to maturity (115.4 day, number of leaves above ear (5.6 ear, dry matter (240.4 g.m-2, ear length (24.3 cm, plant height (212.4 cm, seed number of rows per ear (14.5 row, number of grains per row (44.2 grain, grain yield (10190 kg.m-2, biological yield (21320 kg.m-2 and protein content (10.7%. Interaction effect of cultivar× plant growth promoting rhizobacteria on grain yield was significant. The highest and lowest grain yield was obtained from SC 704 and application of dual inoculation ofAzotobacterand Azospirillum (12320 kg.ha-1 and lowest from SC 604 when inoculation treatments were not used 7570 kg.ha-1 respectively.
Growth and sedimentation of dust grains in the primitive solar nebular
International Nuclear Information System (INIS)
Battaglia, A.
1987-01-01
Formation of the planets in the solar system is envisioned to occur via a gravitational instability in a thin layer of dust located at the midplane of the primitive solar nebula. The break-up of the dust layer gives rise to seed plants (planetesimals) that, through successive collisions, eventually form the present-day planets. This thesis addresses the problem of the formation of the dust layer, beginning with a configuration in which the dust particles are uniformly mixed with the nebula's turbulent gas. To describe the properties of turbulence in the primitive solar nebula, models by Canuto et al. (1987) and by Cabot et al. (1987) are used. The available results concerning calculation of the velocity of particles embedded in a turbulent fluid were found to be unsatisfactory; therefore, a new formalism was developed to express the latter quantity in terms of the properties of the turbulence in the fluid. Following the space-time evolution of the grains, formalism was developed that simulates the simultaneous processes of collisions and sedimentation of the dust grains in the primitive solar nebula. It is concluded that, for the model of the primitive solar nebula considered, the formation of a dust layer at midplane is very unlikely
Intermetallic Growth and Interfacial Properties of the Grain Refiners in Al Alloys
Li, Chunmei; Cheng, Nanpu; Chen, Zhiqian; Xie, Zhongjing; Hui, Liangliang
2018-01-01
Al3TM(TM = Ti, Zr, Hf, Sc) particles acting as effective grain refiners for Al alloys have been receiving extensive attention these days. In order to judge their nucleation behaviors, first-principles calculations are used to investigate their intermetallic and interfacial properties. Based on energy analysis, Al3Zr and Al3Sc are more suitable for use as grain refiners than the other two intermetallic compounds. Interfacial properties show that Al/Al3TM(TM = Ti, Zr, Hf, Sc) interfaces in I-ter interfacial mode exhibit better interface wetting effects due to larger Griffith rupture work and a smaller interface energy. Among these, Al/Al3Sc achieves the lowest interfacial energy, which shows that Sc atoms should get priority for occupying interfacial sites. Additionally, Sc-doped Al/Al3(Zr, Sc) interfacial properties show that Sc can effectively improve the Al/Al3(Zr, Sc) binding strength with the Al matrix. By combining the characteristics of interfaces with the properties of intermetallics, the core-shell structure with Al3Zr-core or Al3Zr(Sc1-1)-core encircled with an Sc-rich shell forms. PMID:29677155
Relating Lagrangian passive scalar scaling exponents to Eulerian scaling exponents in turbulence
Schmitt , François G
2005-01-01
Intermittency is a basic feature of fully developed turbulence, for both velocity and passive scalars. Intermittency is classically characterized by Eulerian scaling exponent of structure functions. The same approach can be used in a Lagrangian framework to characterize the temporal intermittency of the velocity and passive scalar concentration of a an element of fluid advected by a turbulent intermittent field. Here we focus on Lagrangian passive scalar scaling exponents, and discuss their p...
Intermittency exponent of the turbulent energy cascade
International Nuclear Information System (INIS)
Cleve, J.; Greiner, M.; Pearson, B.R.; Sreenivasan, K.R.
2006-12-01
We consider the turbulent energy dissipation from one-dimensional records in experiments using air and gaseous helium at cryogenic temperatures, and obtain the intermittency exponent via the two-point correlation function of the energy dissipation. The air data are obtained in a number of flows in a wind tunnel and the atmospheric boundary layer at a height of about 35 m above the ground. The helium data correspond to the centerline of a jet exhausting into a container. The air data on the intermittency exponent are consistent with each other and with a trend that increases with the Taylor microscale Reynolds number, R λ , of up to about 1000 and saturates thereafter. On the other hand, the helium data cluster around a constant value at nearly all R λ , this being about half of the asymptotic value for the air data. Some possible explanation is offered for this anomaly. (author)
Local Lyapunov exponents for dissipative continuous systems
International Nuclear Information System (INIS)
Grond, Florian; Diebner, Hans H.
2005-01-01
We analyze a recently proposed algorithm for computing Lyapunov exponents focusing on its capability to calculate reliable local values for chaotic attractors. The averaging process of local contributions to the global measure becomes interpretable, i.e. they are related to the local topological structure in phase space. We compare the algorithm with the commonly used Wolf algorithm by means of analyzing correlations between coordinates of the chaotic attractor and local values of the Lyapunov exponents. The correlations for the new algorithm turn out to be significantly stronger than those for the Wolf algorithm. Since the usage of scalar measures to capture complex structures can be questioned we discuss these entities along with a more phenomenological description of scatter plots
Monte Carlo-Based Tail Exponent Estimator
Czech Academy of Sciences Publication Activity Database
Baruník, Jozef; Vácha, Lukáš
2010-01-01
Roč. 2010, č. 6 (2010), s. 1-26 R&D Projects: GA ČR GA402/09/0965; GA ČR GD402/09/H045; GA ČR GP402/08/P207 Institutional research plan: CEZ:AV0Z10750506 Keywords : Hill estimator * α-stable distributions * tail exponent estimation Subject RIV: AH - Economics http://library.utia.cas.cz/separaty/2010/E/barunik-0342493.pdf
Energy Technology Data Exchange (ETDEWEB)
Boogert, A. C. A. [IPAC, NASA Herschel Science Center, Mail Code 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Chiar, J. E. [SETI Institute, Carl Sagan Center, 189 Bernardo Avenue, Mountain View, CA 94043 (United States); Knez, C.; Mundy, L. G. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Öberg, K. I. [Departments of Chemistry and Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Pendleton, Y. J. [Solar System Exploration Research Virtual Institute, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Tielens, A. G. G. M.; Van Dishoeck, E. F., E-mail: aboogert@ipac.caltech.edu [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)
2013-11-01
Infrared photometry and spectroscopy (1-25 μm) of background stars reddened by the Lupus molecular cloud complex are used to determine the properties of grains and the composition of ices before they are incorporated into circumstellar envelopes and disks. H{sub 2}O ices form at extinctions of A{sub K} = 0.25 ± 0.07 mag (A{sub V} = 2.1 ± 0.6). Such a low ice formation threshold is consistent with the absence of nearby hot stars. Overall, the Lupus clouds are in an early chemical phase. The abundance of H{sub 2}O ice (2.3 ± 0.1 × 10{sup –5} relative to N{sub H}) is typical for quiescent regions, but lower by a factor of three to four compared to dense envelopes of young stellar objects. The low solid CH{sub 3}OH abundance (<3%-8% relative to H{sub 2}O) indicates a low gas phase H/CO ratio, which is consistent with the observed incomplete CO freeze out. Furthermore it is found that the grains in Lupus experienced growth by coagulation. The mid-infrared (>5 μm) continuum extinction relative to A{sub K} increases as a function of A{sub K}. Most Lupus lines of sight are well fitted with empirically derived extinction curves corresponding to R{sub V} ∼ 3.5 (A{sub K} = 0.71) and R{sub V} ∼ 5.0 (A{sub K} = 1.47). For lines of sight with A{sub K} > 1.0 mag, the τ{sub 9.7}/A{sub K} ratio is a factor of two lower compared to the diffuse medium. Below 1.0 mag, values scatter between the dense and diffuse medium ratios. The absence of a gradual transition between diffuse and dense medium-type dust indicates that local conditions matter in the process that sets the τ{sub 9.7}/A{sub K} ratio. This process is likely related to grain growth by coagulation, as traced by the A{sub 7.4}/A{sub K} continuum extinction ratio, but not to ice mantle formation. Conversely, grains acquire ice mantles before the process of coagulation starts.
International Nuclear Information System (INIS)
Boogert, A. C. A.; Chiar, J. E.; Knez, C.; Mundy, L. G.; Öberg, K. I.; Pendleton, Y. J.; Tielens, A. G. G. M.; Van Dishoeck, E. F.
2013-01-01
Infrared photometry and spectroscopy (1-25 μm) of background stars reddened by the Lupus molecular cloud complex are used to determine the properties of grains and the composition of ices before they are incorporated into circumstellar envelopes and disks. H 2 O ices form at extinctions of A K = 0.25 ± 0.07 mag (A V = 2.1 ± 0.6). Such a low ice formation threshold is consistent with the absence of nearby hot stars. Overall, the Lupus clouds are in an early chemical phase. The abundance of H 2 O ice (2.3 ± 0.1 × 10 –5 relative to N H ) is typical for quiescent regions, but lower by a factor of three to four compared to dense envelopes of young stellar objects. The low solid CH 3 OH abundance ( 2 O) indicates a low gas phase H/CO ratio, which is consistent with the observed incomplete CO freeze out. Furthermore it is found that the grains in Lupus experienced growth by coagulation. The mid-infrared (>5 μm) continuum extinction relative to A K increases as a function of A K . Most Lupus lines of sight are well fitted with empirically derived extinction curves corresponding to R V ∼ 3.5 (A K = 0.71) and R V ∼ 5.0 (A K = 1.47). For lines of sight with A K > 1.0 mag, the τ 9.7 /A K ratio is a factor of two lower compared to the diffuse medium. Below 1.0 mag, values scatter between the dense and diffuse medium ratios. The absence of a gradual transition between diffuse and dense medium-type dust indicates that local conditions matter in the process that sets the τ 9.7 /A K ratio. This process is likely related to grain growth by coagulation, as traced by the A 7.4 /A K continuum extinction ratio, but not to ice mantle formation. Conversely, grains acquire ice mantles before the process of coagulation starts
de la Cruz, Roberto; Guerrero, Pilar; Calvo, Juan; Alarcón, Tomás
2017-12-01
The development of hybrid methodologies is of current interest in both multi-scale modelling and stochastic reaction-diffusion systems regarding their applications to biology. We formulate a hybrid method for stochastic multi-scale models of cells populations that extends the remit of existing hybrid methods for reaction-diffusion systems. Such method is developed for a stochastic multi-scale model of tumour growth, i.e. population-dynamical models which account for the effects of intrinsic noise affecting both the number of cells and the intracellular dynamics. In order to formulate this method, we develop a coarse-grained approximation for both the full stochastic model and its mean-field limit. Such approximation involves averaging out the age-structure (which accounts for the multi-scale nature of the model) by assuming that the age distribution of the population settles onto equilibrium very fast. We then couple the coarse-grained mean-field model to the full stochastic multi-scale model. By doing so, within the mean-field region, we are neglecting noise in both cell numbers (population) and their birth rates (structure). This implies that, in addition to the issues that arise in stochastic-reaction diffusion systems, we need to account for the age-structure of the population when attempting to couple both descriptions. We exploit our coarse-graining model so that, within the mean-field region, the age-distribution is in equilibrium and we know its explicit form. This allows us to couple both domains consistently, as upon transference of cells from the mean-field to the stochastic region, we sample the equilibrium age distribution. Furthermore, our method allows us to investigate the effects of intracellular noise, i.e. fluctuations of the birth rate, on collective properties such as travelling wave velocity. We show that the combination of population and birth-rate noise gives rise to large fluctuations of the birth rate in the region at the leading edge of
International Nuclear Information System (INIS)
Cruz, Roberto de la; Guerrero, Pilar; Calvo, Juan; Alarcón, Tomás
2017-01-01
The development of hybrid methodologies is of current interest in both multi-scale modelling and stochastic reaction–diffusion systems regarding their applications to biology. We formulate a hybrid method for stochastic multi-scale models of cells populations that extends the remit of existing hybrid methods for reaction–diffusion systems. Such method is developed for a stochastic multi-scale model of tumour growth, i.e. population-dynamical models which account for the effects of intrinsic noise affecting both the number of cells and the intracellular dynamics. In order to formulate this method, we develop a coarse-grained approximation for both the full stochastic model and its mean-field limit. Such approximation involves averaging out the age-structure (which accounts for the multi-scale nature of the model) by assuming that the age distribution of the population settles onto equilibrium very fast. We then couple the coarse-grained mean-field model to the full stochastic multi-scale model. By doing so, within the mean-field region, we are neglecting noise in both cell numbers (population) and their birth rates (structure). This implies that, in addition to the issues that arise in stochastic-reaction diffusion systems, we need to account for the age-structure of the population when attempting to couple both descriptions. We exploit our coarse-graining model so that, within the mean-field region, the age-distribution is in equilibrium and we know its explicit form. This allows us to couple both domains consistently, as upon transference of cells from the mean-field to the stochastic region, we sample the equilibrium age distribution. Furthermore, our method allows us to investigate the effects of intracellular noise, i.e. fluctuations of the birth rate, on collective properties such as travelling wave velocity. We show that the combination of population and birth-rate noise gives rise to large fluctuations of the birth rate in the region at the leading edge
Technological barriers to the growth of the export potential of Russian grain industry
Directory of Open Access Journals (Sweden)
O. A. Eremchenko
2017-01-01
Full Text Available Russia is the world's largest wheat exporter. The sales volume on foreign markets in 2015 amounted to $3.9 billion, or 10.1% of global exports. By the end of 2015, the volume of exports of agricultural products exceeded revenues from sales of arms in foreign markets. However, in dollar terms, wheat exports correspond to only a fifth place in the world. The article analyzes the reasons for a significant gap in the volume of exports and revenue, barriers to the development of export of agricultural deep processed products. The assumption is made that the development of technologies for deep processing of grain crops will increase the share of exports of Russian products with high added value.
International Nuclear Information System (INIS)
Sicilia-Aguilar, Aurora; Henning, Thomas; Dullemond, Cornelis P.; Bouwman, Jeroen; Sturm, Bernhard; Patel, Nimesh; Juhász, Attila
2011-01-01
We present Spitzer/Infrared Spectrograph spectra of 31 T Tauri stars (TTS) and IRAM/1.3 mm observations for 34 low- and intermediate-mass stars in the Cep OB2 region. Including our previously published data, we analyze 56 TTS and 3 intermediate-mass stars with silicate features in Tr 37 (∼4 Myr) and NGC 7160 (∼12 Myr). The silicate emission features are well reproduced with a mixture of amorphous (with olivine, forsterite, and silica stoichiometry) and crystalline grains (forsterite, enstatite). We explore grain size and disk structure using radiative transfer disk models, finding that most objects have suffered substantial evolution (grain growth, settling). About half of the disks show inside-out evolution, with either dust-cleared inner holes or a radially dependent dust distribution, typically with larger grains and more settling in the innermost disk. The typical strong silicate features nevertheless require the presence of small dust grains, and could be explained by differential settling according to grain size, anomalous dust distributions, and/or optically thin dust populations within disk gaps. M-type stars tend to have weaker silicate emission and steeper spectral energy distributions than K-type objects. The inferred low dust masses are in a strong contrast with the relatively high gas accretion rates, suggesting global grain growth and/or an anomalous gas-to-dust ratio. Transition disks in the Cep OB2 region display strongly processed grains, suggesting that they are dominated by dust evolution and settling. Finally, the presence of rare but remarkable disks with strong accretion at old ages reveals that some very massive disks may still survive to grain growth, gravitational instabilities, and planet formation.
Investigation of fatigue crack growth rate of Al 5484 ultrafine grained alloy after ECAP process
Energy Technology Data Exchange (ETDEWEB)
Brynk, Tomasz; Rasinski, Marcin; Pakiela, Zbigniew; Kurzydlowski, Krzysztof J. [Faculty of Materials Science and Engineering, Warsaw University of Technology (Poland); Olejnik, Lech [Faculty of Production Engineering, Warsaw University of Technology (Poland)
2010-05-15
During the last decade equal-channel angular pressing (ECAP) has emerged as a widely used fabrication route of ultrafine-grained (UFG) metals and alloys. Enhanced mechanical properties of UFG materials produced by severe plastic deformation, with a grain size smaller than 1 {mu}m, have been reported in a large number of publications. However, the higher strength does not imply higher resistance to fatigue both high- and low-cyclic. In fact, due to reduced plasticity, higher fatigue crack propagation rates are reported for UFG materials, particularly in low-amplitude range. The aim of this work was to investigate fatigue crack propagation in samples of Al 5483 alloy subjected to ECAP treatment. Because of small dimensions of the coupons processed by ECAP, non-standard, mini-samples were used in a crack propagation tests. Two test procedures were used to estimate stress intensity factor (K). The first was based on optical measurements of crack length from images recorded during the test. The second method was based on digital image correlation (DIC), which was used to determine K value directly from displacement field near the crack tip. Comparison of these two methods is made and the relationship between the intensity of ECAP process (measured in terms of the number of ECAP passes) and fatigue crack propagation rates proposed. In addition to fatigue resistance, the results of tensile tests carried out with mini-samples are presented. Applicability of such samples in the investigations of the mechanical properties of UFG materials is discussed. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
Syazwan, M. M.; Hapishah, A. N.; Azis, R. S.; Abbas, Z.; Hamidon, M. N.
2018-06-01
The effect of grain growth via sintering temperature on some magnetic properties is reported in this research. Ni0.6Zn0.4Fe2O4 nanoparticles were mechanically alloyed for 6 h and the sintering process starting from 600 to 1200 °C with 25 °C increment with only one sample subjected to all sintering scheme. The resulting change in the material was observed after each sintering. Single phase has been formed at 600 °C and above and the intensity peaks increased with sintering temperature as well as crystallinity increment. The morphological studies showed grain size increment as the sintering temperature increased. Moreover, the density increased while the porosity decreased with increasing sintering temperature. The saturation induction, Bs increased with the increased of grain size. On the other hand, the coercivity-vs-grain size plot reveals the critical single-domain-to-multidomain grain size to be about ∼400 nm. The initial permeability, μi value was increased with grain size enhancement. The microstructural grain growth, as exposed for the first time by this research, is shown as a process of multiple activation energy barriers.
Effect of sintering condition on the grain growth of Cr{sub 2}O{sub 3} doped UO{sub 2} pellets
Energy Technology Data Exchange (ETDEWEB)
Oh, Jang Soo; Kim, Keon Sik; Kim, Dong Joo; Kim, Jong Hun; Yang, Jae Ho [KAERI, Daejeon (Korea, Republic of)
2016-05-15
In this paper, Cr{sub 2}O{sub 3} doped UO{sub 2} pellets were fabricated by two-step sintering process. The grain growth of pellet is related to dwell time in a hydrogen atmosphere during sintering process. A large grain pellet can minimize fission gas release and deform easily at an elevated temperature. So, the recent development of nuclear fuel pellet materials is mainly focused on the large grain pellets. The various methods of fabrication processes for large grain UO{sub 2} pellets have been investigated extensively. Those parameters include the additives, sintering temperature, sintering time, sintering atmosphere, and so on. Cr-doped UO{sub 2} pellet is one of the promising candidates for PCI remedy. It was shown that the grain size and softness of UO{sub 2} pellets could be enhanced by doping Cr or Cr compound in UO{sub 2}. Various in-pile test results revealed that the PCI properties were enhanced considerably [4]. In the sintering process of Cr-doped UO{sub 2} pellet, it was known that tight adjusting of sintering atmosphere is most important to achieve large grain pellet. The relevant research revealed that the doped Cr{sub 2}O{sub 3} became liquid phase in optimized oxygen potential and that liquid phase promoted the grain growth. Recently, KAERI has shown that grain size of Cr-doped UO{sub 2} pellet could be more enlarged by adjusting process parameters. In this paper, we introduced a sintering process which can form a liquid phase for a large grain growth in Cr{sub 2}O{sub 3} doped UO{sub 2} pellet. The study on the effect of dwell time in H{sub 2} atmosphere during sintering process on the grain structure of sintered pellet is also a part of this work. In order to obtain large grain in pellet, it is important to increase amount of Cr that can form a liquid phase for grain growth by increasing dwell time in a hydrogen atmosphere during sintering process.
Energy Technology Data Exchange (ETDEWEB)
Oh, Jang Soo; Yang, Jae Ho; Kim, Dong Joo; Kim, Jong Hun; Nam, Ik Hui; Rhee, Young Woo; Kim, Keon Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2012-10-15
Recent development of advanced UO{sub 2} pellet materials for commercial reactors is mainly focused on the large grain pellet which can deform easily at an elevated temperature. Cr{sub 2}O{sub 3}-doped UO{sub 2} pellet is one of the promising candidates. To increase the grain size effectively, it is important to control the additive content and sintering atmosphere. Relevant research on the Cr{sub 2}O{sub 3} doped UO{sub 2} system revealed that the doped Cr{sub 2}O{sub 3} formed a liquid phase under optimized oxygen potential, and those liquid phases promoted the grain growth. Recent work also showed that step-wise variation of sintering atmosphere during the isothermal annealing step significantly increased the grain size of Cr{sub 2}O{sub 3} doped UO{sub 2} pellet. In this paper, we investigated effect of oxygen potential change at the beginning of isothermal sintering stage on the grain growth in metallic Cr dispersed UO{sub 2} pellets. The study on the milling effect of powder mixture on the grain growth is also a part of this work.
An evaluation on fatigue crack growth in a fine-grained isotropic graphite
Energy Technology Data Exchange (ETDEWEB)
Wang Hongtao; Sun Libin [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Li Chenfeng [College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom); Shi Li [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Wang Haitao, E-mail: wanght@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)
2012-09-15
Highlights: Black-Right-Pointing-Pointer The propagation of micro- and macro-fatigue cracks in IG-11 graphite was studied. Black-Right-Pointing-Pointer The curves of the fatigue crack growth rate versus the SIF range show three stages. Black-Right-Pointing-Pointer The fatigue microcrack propagation is very sensitive to graphite's microstructures. Black-Right-Pointing-Pointer Graphite's microstructures have no significant impact on fatigue macrocrack growth. Black-Right-Pointing-Pointer The fatigue fracture surface indicates the fracture mechanism of the IG-11 graphite. - Abstract: The aim of this paper is to investigate the mechanism of fatigue crack propagation in IG-11 graphite, and determine the crack growth rate in relation to the stress level. Experimental studies were performed at both micro and macro scales. For fatigue microcrack propagation, single-edge-notch specimens were chosen for testing and the fatigue crack growth was measured in situ with a scanning electron microscope. For fatigue macrocrack propagation, CT specimens were used and the fatigue crack growth was measured with a high-accuracy optic microscope. Combining the two groups of experimental results, the following conclusions are derived: (1) The heterogeneous microstructures of the graphite material have significant impact on the fatigue microcrack growth, while their influence on fatigue macrocrack growth is very limited. (2) The relationship between the fatigue crack growth rate and the crack-tip stress intensity factor range can be expressed in the form of Paris formulae, which contains three stages: an initial rising part with a small slope, an abrupt rise with a very large acceleration, and a short final part with a small slope. (3) The fatigue fracture surface of the graphite material contains considerable sliding of leaf-shape graphite flakes combined with small cotton-shape plastic deformations. These sliding traces are approximately aligned at 45 Degree-Sign , showing the
An evaluation on fatigue crack growth in a fine-grained isotropic graphite
International Nuclear Information System (INIS)
Wang Hongtao; Sun Libin; Li Chenfeng; Shi Li; Wang Haitao
2012-01-01
Highlights: ► The propagation of micro- and macro-fatigue cracks in IG-11 graphite was studied. ► The curves of the fatigue crack growth rate versus the SIF range show three stages. ► The fatigue microcrack propagation is very sensitive to graphite's microstructures. ► Graphite's microstructures have no significant impact on fatigue macrocrack growth. ► The fatigue fracture surface indicates the fracture mechanism of the IG-11 graphite. - Abstract: The aim of this paper is to investigate the mechanism of fatigue crack propagation in IG-11 graphite, and determine the crack growth rate in relation to the stress level. Experimental studies were performed at both micro and macro scales. For fatigue microcrack propagation, single-edge-notch specimens were chosen for testing and the fatigue crack growth was measured in situ with a scanning electron microscope. For fatigue macrocrack propagation, CT specimens were used and the fatigue crack growth was measured with a high-accuracy optic microscope. Combining the two groups of experimental results, the following conclusions are derived: (1) The heterogeneous microstructures of the graphite material have significant impact on the fatigue microcrack growth, while their influence on fatigue macrocrack growth is very limited. (2) The relationship between the fatigue crack growth rate and the crack-tip stress intensity factor range can be expressed in the form of Paris formulae, which contains three stages: an initial rising part with a small slope, an abrupt rise with a very large acceleration, and a short final part with a small slope. (3) The fatigue fracture surface of the graphite material contains considerable sliding of leaf-shape graphite flakes combined with small cotton-shape plastic deformations. These sliding traces are approximately aligned at 45°, showing the main cause of the fatigue fracture is the shear stress. There are also a large amount of secondary cracks inside unit cells and on cell walls
Directory of Open Access Journals (Sweden)
Shah Fahad
Full Text Available High-temperature stress degrades the grain quality of rice; nevertheless, the exogenous application of plant growth regulators (PGRs might alleviate the negative effects of high temperatures. In the present study, we investigated the responses of rice grain quality to exogenously applied PGRs under high day temperatures (HDT and high night temperatures (HNT under controlled conditions. Four different combinations of ascorbic acid (Vc, alpha-tocopherol (Ve, brassinosteroids (Br, methyl jasmonates (MeJA and triazoles (Tr were exogenously applied to two rice cultivars (IR-64 and Huanghuazhan prior to the high-temperature treatment. A Nothing applied Control (NAC was included for comparison. The results demonstrated that high-temperature stress was detrimental for grain appearance and milling qualities and that both HDT and HNT reduced the grain length, grain width, grain area, head rice percentage and milled rice percentage but increased the chalkiness percentage and percent area of endosperm chalkiness in both cultivars compared with ambient temperature (AT. Significantly higher grain breakdown, set back, consistence viscosity and gelatinization temperature, and significantly lower peak, trough and final viscosities were observed under high-temperature stress compared with AT. Thus, HNT was more devastating for grain quality than HDT. The exogenous application of PGRs ameliorated the adverse effects of high temperature in both rice cultivars, and Vc+Ve+MejA+Br was the best combination for both cultivars under high temperature stress.
International Nuclear Information System (INIS)
Zhang, Shu; Wu, Lu; Yue, Ruoyu; Yan, Zongkai; Zhan, Haoran; Xiang, Yong
2013-01-01
To investigate the effects of Sb doping on the kinetics of grain growth in Cu(In,Ga)Se 2 (CIGS) thin films during annealing, CIGS thin films were sputtered onto Mo coated substrates from a single CIGS alloy target, followed by chemical bath deposition of Sb 2 S 3 thin layers on top of CIGS layers and subsequent annealing at different temperatures for 30 min in Se vapors. X-ray diffraction results showed that CIGS thin films were obtained directly using the single-target sputtering method. After annealing, the In/Ga ratio in Sb-doped CIGS thin films remained stable compared to undoped film, possibly because Sb can promote the incorporation of Ga into CIGS. The grain growth in CIGS thin films was enhanced after Sb doping, exhibiting significantly larger grains after annealing at 400 °C or 450 °C compared to films without Sb. In particular, the effect was strikingly significant in grain growth across the film thickness, resulting in columnar grain structure in Sb-doped films. This grain growth improvement may be led by the diffusion of Sb from the front surface to the CIGS-Mo back interface, which promoted the mass transport process in CIGS thin films. - Highlights: ► Cu(In,Ga)Se 2 (CIGS) thin films made by sputtering from a single CIGS target. ► Chemical bath deposition used to introduce antimony into CIGS absorber layers. ► In/Ga ratio decreases in Sb-doped annealed films, comparatively to undoped films. ► Sb-doped CIGS films are superior to undoped films in terms of grain-growth kinetics
Surfactant-assisted growth of anodic nanoporous niobium oxide with a grained surface
Energy Technology Data Exchange (ETDEWEB)
Yoo, Jeong Eun [Department of Chemical Engineering, Inha University, 253 Yonghyun Dong, Nam-Gu, Incheon 402-751 (Korea, Republic of); Choi, Jinsub, E-mail: jinsub@inha.ac.k [Department of Chemical Engineering, Inha University, 253 Yonghyun Dong, Nam-Gu, Incheon 402-751 (Korea, Republic of)
2010-07-15
Nanoporous niobium oxide film with a maximum thickness of 520 nm was prepared by anodizing niobium in a mixture of 1 wt% HF, 1 M H{sub 3}PO{sub 4}, and a small amount of Sodium Dodecyl Sulfate (SDS) surfactant. The porosity of the anodic niobium oxide prepared without SDS is irregular with the surface of the oxide suggesting a grained surface pattern rather than an ordered porous structure. A proper amount of SDS addition can prepare a pore arrangement with stripe patterns. The pore depth and surface pattern were strongly affected by the concentration of SDS and bath temperature. We found that the addition of SDS surfactant facilitated improvement in the chemical resistance of niobium oxide, leading to the formation of pores with a longer length compared to those prepared without a SDS surfactant. This can be in part ascribed to the protection of the surface by the physical adsorption of SDS on the surface due to a charge-charge interaction and be in part attributed to the formation of Nb=O bonding on the outermost oxide layer by SDS. When anodization was carried out for 4 h, the surface dissolution of niobium oxide was observed, which means that the maximum tolerance time against chemical dissolution was less than 4 h.
Beyond Critical Exponents in Neuronal Avalanches
Friedman, Nir; Butler, Tom; Deville, Robert; Beggs, John; Dahmen, Karin
2011-03-01
Neurons form a complex network in the brain, where they interact with one another by firing electrical signals. Neurons firing can trigger other neurons to fire, potentially causing avalanches of activity in the network. In many cases these avalanches have been found to be scale independent, similar to critical phenomena in diverse systems such as magnets and earthquakes. We discuss models for neuronal activity that allow for the extraction of testable, statistical predictions. We compare these models to experimental results, and go beyond critical exponents.
Directory of Open Access Journals (Sweden)
Xuejun Dong
2016-05-01
Full Text Available High air temperatures during the crop growing season can reduce harvestable yields in major agronomic crops worldwide. Repeated and prolonged high night air temperature stress may compromise plant growth and yield. Crop varieties with improved heat tolerance traits as well as crop management strategies at the farm scale are thus needed for climate change mitigation. Crop yield is especially sensitive to night-time warming trends. Current studies are mostly directed to the elevated night-time air temperature and its impact on crop growth and yield, but less attention is given to the understanding of night-time soil temperature management. Delivering irrigation water through drip early evening may reduce soil temperature and thus improve plant growth. In addition, corn growers typically use high-stature varieties that inevitably incur excessive respiratory carbon loss from roots and transpiration water loss under high night temperature conditions. The main objective of this study was to see if root-zone soil temperature can be reduced through drip irrigation applied at night-time, vs. daytime, using three corn hybrids of different above-ground architecture in Uvalde, TX where day and night temperatures during corn growing season are above U.S. averages. The experiment was conducted in 2014. Our results suggested that delivering well-water at night-time through drip irrigation reduced root-zone soil temperature by 0.6 °C, increase root length five folds, plant height 2%, and marginally increased grain yield by 10%. However, irrigation timing did not significantly affect leaf chlorophyll level and kernel crude protein, phosphorous, fat and starch concentrations. Different from our hypothesis, the shorter, more compact corn hybrid did not exhibit a higher yield and growth as compared with taller hybrids. As adjusting irrigation timing would not incur an extra cost for farmers, the finding reported here had immediate practical implications for farm
Riemannian theory of Hamiltonian chaos and Lyapunov exponents
Casetti, Lapo; Clementi, Cecilia; Pettini, Marco
1996-12-01
A nonvanishing Lyapunov exponent λ1 provides the very definition of deterministic chaos in the solutions of a dynamical system; however, no theoretical mean of predicting its value exists. This paper copes with the problem of analytically computing the largest Lyapunov exponent λ1 for many degrees of freedom Hamiltonian systems as a function of ɛ=E/N, the energy per degree of freedom. The functional dependence λ1(ɛ) is of great interest because, among other reasons, it detects the existence of weakly and strongly chaotic regimes. This aim, the analytic computation of λ1(ɛ), is successfully reached within a theoretical framework that makes use of a geometrization of Newtonian dynamics in the language of Riemannian differential geometry. An alternative point of view about the origin of chaos in these systems is obtained independently of the standard explanation based on homoclinic intersections. Dynamical instability (chaos) is here related to curvature fluctuations of the manifolds whose geodesics are natural motions and is described by means of the Jacobi-Levi-Civita equation (JLCE) for geodesic spread. In this paper it is shown how to derive from the JLCE an effective stability equation. Under general conditions, this effective equation formally describes a stochastic oscillator; an analytic formula for the instability growth rate of its solutions is worked out and applied to the Fermi-Pasta-Ulam β model and to a chain of coupled rotators. Excellent agreement is found between the theoretical prediction and numeric values of λ1(ɛ) for both models.
Energy Technology Data Exchange (ETDEWEB)
Singh, Om Pal; Gour, Kuldeep Singh [Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Academy of Scientific and Innovative Research, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Parmar, Rahul [Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Singh, Vidya Nand, E-mail: singhvn@nplindia.org [Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Academy of Scientific and Innovative Research, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India)
2016-07-01
Sodium diffusion from soda lime glass (SLG) during high temperature annealing is known to play a crucial role in affecting the grain growth and defect passivation in chalocogenide/kesterite solar cells. Additional sodium is required when low temperature or short term annealing is used. Although this fact is known, a systematic comparative study for kesterite films is seldom reported. In the present study, Cu{sub 2}ZnSnS{sub 4} thin films were deposited on SLG and Mo coated SLG using stacked layer reactive sputtering. Na was deposited over the CZTS thin film and the film was annealed in N{sub 2} atmosphere in order to enhance the grain growth. This resulted in the shift in the XRD peak towards lower diffraction angle. The optical bandgap shifted from 1.45 eV to 1.38 eV with Na addition. Significant grain growth from hundreds of nanometer to micrometer was observed in samples with Na. Device fabricated in SLG/Mo/CZTS/CdS/ZnO/ITO configuration with Al front contact shows increase in efficiencies values from 1.50% to 2.84%. - Highlights: • Reactive sputtering with reduced annealing time have been used for the growth of CZTS thin film. • NaF has been deposited over precursor film before annealing. • Na addition resulted in grain growth, improved compactness and reduction in band gap. • An enhancement in the photovoltaic characteristics have been observed with addition of Na.
Directory of Open Access Journals (Sweden)
Terry J. Rose
2016-01-01
Full Text Available Enhanced efficiency nitrogen (N fertilizers (EEFs may improve crop recovery of fertilizer-N, but there is evidence that some EEFs cause a lag in crop growth compared to growth with standard urea. Biomass and mineral nutrient accumulation was investigated in rice fertilized with urea, urea-3,4-dimethylpyrazole phosphate (DMPP and polymer-coated urea (PCU to determine whether any delays in biomass production alter the accumulation patterns, and subsequent grain concentrations, of key mineral nutrients. Plant growth and mineral accumulation and partitioning to grains did not differ significantly between plants fertilized with urea or urea-DMPP. In contrast, biomass accumulation and the accumulation of phosphorus, potassium, calcium, magnesium, copper, zinc and manganese were delayed during the early growth phase of plants fertilized with PCU. However, plants in the PCU treatment ultimately compensated for this by increasing growth and nutrient uptake during the latter vegetative stages so that no differences in biomass or nutrient accumulation generally existed among N fertilizer treatments at anthesis. Delayed biomass accumulation in rice fertilized with PCU does not appear to reduce the total accumulation of mineral nutrients, nor to have any impact on grain mineral nutrition when biomass and grain yields are equal to those of rice grown with urea or urea-DMPP.
Directory of Open Access Journals (Sweden)
Yichen Wang
2016-03-01
Full Text Available This paper presents a numerical and infrared experimental study of thermal and grain growth behavior during argon tungsten arc welding of 443 stainless steel. A 3D finite element model was proposed to simulate the welding process. The simulations were carried out via the Ansys Parametric Design Language (APDL available in the finite-element code, ANSYS. To validate the simulation accuracy, a series of experiments using a fully-automated welding process was conducted. The results of the numerical analysis show that the simulation weld bead size and the experiment results have good agreement. The grain growth in the heat-affected zone of 443 stainless steel is influenced via three factors: (1 the thermal cycle experienced; (2 grain boundary migration; and (3 particle precipitation. Grain boundary migration is the main factor. The modified coefficient k of the grain growth index is calculated. The value is 1.16. Moreover, the microhardness of the weld bead softened slightly compared to the base metal.
Yao, Zhibo; Wang, Wenli; Shen, Heping; Zhang, Ye; Luo, Qiang; Yin, Xuewen; Dai, Xuezeng; Li, Jianbao; Lin, Hong
2017-12-01
Although the two-step deposition (TSD) method is widely adopted for the high performance perovskite solar cells (PSCs), the CH3NH3PbI3 perovskite crystal growth mechanism during the TSD process and the photo-generated charge recombination dynamics in the mesoporous-TiO2 (mp-TiO2)/CH3NH3PbI3/hole transporting material (HTM) system remains unexploited. Herein, we modified the concentration of PbI2 (C(PbI2)) solution to control the perovskite crystal properties, and observed an abnormal CH3NH3PbI3 grain growth phenomenon atop mesoporous TiO2 film. To illustrate this abnormal grain growth mechanism, we propose that a grain ripening process is taking place during the transformation from PbI2 to CH3NH3PbI3, and discuss the PbI2 nuclei morphology, perovskite grain growing stage, as well as Pb:I atomic ratio difference among CH3NH3PbI3 grains with different morphology. These C(PbI2)-dependent perovskite morphologies resulted in varied charge carrier transfer properties throughout the mp-TiO2/CH3NH3PbI3/HTM hybrid, as illustrated by photoluminescence measurement. Furthermore, the effect of CH3NH3PbI3 morphology on light absorption and interfacial properties is investigated and correlated with the photovoltaic performance of PSCs.
Czech Academy of Sciences Publication Activity Database
Lejček, Pavel; Hofmann, S.
2015-01-01
Roč. 107, Sep (2015), s. 235-237 ISSN 0927-0256 R&D Projects: GA ČR GBP108/12/G043 Institutional support: RVO:68378271 Keywords : nanocrystalline materials * grain size * grain boundary energy * grain boundary segregation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.086, year: 2015
Directory of Open Access Journals (Sweden)
Naveen Kumar eKalagatur
2015-09-01
Full Text Available The present study was aimed to establish the antagonistic effects of Ocimum sanctum L. essential oil (OSEO on growth and zearalenone (ZEA production of Fusarium graminearum. GC-MS chemical profiling of OSEO revealed the existence of 43 compounds and the major compound was found to be eugenol (34.7%. DPPH free radical scavenging activity (IC50 of OSEO was determined to be 8.5µg/mL. Minimum inhibitory concentration (MIC and minimum fungicidal concentration (MFC of OSEO on F. graminearum were recorded as 1250 µg/mL and 1800 µg/mL, respectively. Scanning electron microscope observations showed significant micro morphological damage in OSEO exposed mycelia and spores compared to untreated control culture. Quantitative UHPLC studies revealed that OSEO negatively effected the production of ZEA; the concentration of toxin production was observed to be insignificant at 1500 µg/mL concentration of OSEO. On other hand ZEA concentration was quantified as 3.23 µg/mL in OSEO untreated control culture. Reverse transcriptase qPCR analysis of ZEA metabolic pathway genes (PKS4 and PKS13 revealed that increase in OSEO concentration (250 µg/mL to 1500 µg/mL significantly downregulated the expression of PKS4 and PKS13. These results were in agreement with the artificially contaminated maize grains as well. In conlusion, the antifungal and antimycotoxic effects of OSEO on F. graminearum in the present study reiterated that, the essential oil of O. sanctum could be a promising herbal fungicide in food processing industries as well as grain storage centers.
Park, Ki Youl; Kim, Eun Yu; Seo, Young Sam; Kim, Woo Taek
2016-03-01
Phospholipids are not only important components of cell membranes, but participate in diverse processes in higher plants. In this study, we generated Capsicum annuum phospholipiase A1 (CaPLA1) overexpressing transgenic rice (Oryza sativa L.) plants under the control of the maize ubiquitin promoter. The T4 CaPLA1-overexpressing rice plants (Ubi:CaPLA1) had a higher root:shoot mass ratio than the wild-type plants in the vegetative stage. Leaf epidermal cells from transgenic plants had more cells than wild-type plants. Genes that code for cyclin and lipid metabolic enzymes were up-regulated in the transgenic lines. When grown under typical paddy field conditions, the transgenic plants produced more tillers, longer panicles and more branches per panicle than the wild-type plants, all of which resulted in greater grain yield. Microarray analysis suggests that gene expressions that are related with cell proliferation, lipid metabolism, and redox state were widely altered in CaPLA1-overexpressing transgenic rice plants. Ubi:CaPLA1 plants had a reduced membrane peroxidation state, as determined by malondialdehyde and conjugated diene levels and higher peroxidase activity than wild-type rice plants. Furthermore, three isoprenoid synthetic genes encoding terpenoid synthase, hydroxysteroid dehydrogenase and 3-hydroxy-3-methyl-glutaryl-CoA reductase were up-regulated in CaPLA1-overexpressing plants. We suggest that constitutive expression of CaPLA1 conferred increased grain yield with enhanced growth in transgenic rice plants by alteration of gene activities related with cell proliferation, lipid metabolism, membrane peroxidation state and isoprenoid biosynthesis.
This study evaluated the effects of the inclusion of wheat distiller’s dried grains with solubles (WDDGS) at levels of 0 (control), 10, 20, 30 and 40% without (diets 2-5) and with (diets 6-9) lysine supplementation, as substitutes of soybean meal and corn meal mixture on growth, body composition, he...
DEFF Research Database (Denmark)
He, Zeming; Yuan, Hao; Glasscock, Julie
2010-01-01
The present work investigates the processes of densification and grain growth of Ce0.9Gd0.1O1.95-δ (CGO10) during sintering in reducing atmosphere. Sintering variables were experimentally characterized and analyzed using defect chemistry and sintering constitutive laws. Based on the achieved...
This study evaluated dairy heifer growth performance and total tract nutrient digestion when fed diets high in dried distillers grains with solubles (DDGS) with different forage particle size. An 8-wk randomized complete block design study was conducted utilizing twenty-two Holstein heifers (123 ±...
Geodesic stability, Lyapunov exponents, and quasinormal modes
International Nuclear Information System (INIS)
Cardoso, Vitor; Miranda, Alex S.; Berti, Emanuele; Witek, Helvi; Zanchin, Vilson T.
2009-01-01
Geodesic motion determines important features of spacetimes. Null unstable geodesics are closely related to the appearance of compact objects to external observers and have been associated with the characteristic modes of black holes. By computing the Lyapunov exponent, which is the inverse of the instability time scale associated with this geodesic motion, we show that, in the eikonal limit, quasinormal modes of black holes in any dimensions are determined by the parameters of the circular null geodesics. This result is independent of the field equations and only assumes a stationary, spherically symmetric and asymptotically flat line element, but it does not seem to be easily extendable to anti-de Sitter spacetimes. We further show that (i) in spacetime dimensions greater than four, equatorial circular timelike geodesics in a Myers-Perry black-hole background are unstable, and (ii) the instability time scale of equatorial null geodesics in Myers-Perry spacetimes has a local minimum for spacetimes of dimension d≥6.
Critical exponents for diluted resistor networks.
Stenull, O; Janssen, H K; Oerding, K
1999-05-01
An approach by Stephen [Phys. Rev. B 17, 4444 (1978)] is used to investigate the critical properties of randomly diluted resistor networks near the percolation threshold by means of renormalized field theory. We reformulate an existing field theory by Harris and Lubensky [Phys. Rev. B 35, 6964 (1987)]. By a decomposition of the principal Feynman diagrams, we obtain diagrams which again can be interpreted as resistor networks. This interpretation provides for an alternative way of evaluating the Feynman diagrams for random resistor networks. We calculate the resistance crossover exponent phi up to second order in epsilon=6-d, where d is the spatial dimension. Our result phi=1+epsilon/42+4epsilon(2)/3087 verifies a previous calculation by Lubensky and Wang, which itself was based on the Potts-model formulation of the random resistor network.
Directory of Open Access Journals (Sweden)
John G Koland
2014-01-01
Full Text Available Upon the ligand-dependent dimerization of the epidermal growth factor receptor (EGFR, the intrinsic protein tyrosine kinase (PTK activity of one receptor monomer is activated, and the dimeric receptor undergoes self-phosphorylation at any of eight candidate phosphorylation sites (P-sites in either of the two C-terminal (CT domains. While the structures of the extracellular ligand binding and intracellular PTK domains are known, that of the ∼225-amino acid CT domain is not, presumably because it is disordered. Receptor phosphorylation on CT domain P-sites is critical in signaling because of the binding of specific signaling effector molecules to individual phosphorylated P-sites. To investigate how the combination of conventional substrate recognition and the unique topological factors involved in the CT domain self-phosphorylation reaction lead to selectivity in P-site phosphorylation, we performed coarse-grained molecular simulations of the P-site/catalytic site binding reactions that precede EGFR self-phosphorylation events. Our results indicate that self-phosphorylation of the dimeric EGFR, although generally believed to occur in trans, may well occur with a similar efficiency in cis, with the P-sites of both receptor monomers being phosphorylated to a similar extent. An exception was the case of the most kinase-proximal P-site-992, the catalytic site binding of which occurred exclusively in cis via an intramolecular reaction. We discovered that the in cis interaction of P-site-992 with the catalytic site was facilitated by a cleft between the N-terminal and C-terminal lobes of the PTK domain that allows the short CT domain sequence tethering P-site-992 to the PTK core to reach the catalytic site. Our work provides several new mechanistic insights into the EGFR self-phosphorylation reaction, and demonstrates the potential of coarse-grained molecular simulation approaches for investigating the complexities of self-phosphorylation in
Directory of Open Access Journals (Sweden)
Tadakatsu Yoneyama
2016-08-01
Full Text Available A single germinated rice (Oryza sativa L seed can produce 350 grains with the sequential development of 15 leaves on the main stem and 7 ‒ 10 leaves on 4 productive tillers (forming 5 panicles in total, using nitrogen (N taken up from the environment over a 150-day growing season. Nitrogen travels from uptake sites to the grain through growing organ-directed cycling among sequentially developed organs. Over the past 40 years, the dynamic system for N allocation during vegetative growth and grain filling has been elucidated through studies on N and 15N transport as well as enzymes and transporters involved. In this review, we synthesize the information obtained in these studies along the following main points: (1 During vegetative growth before grain-filling, about half of the total N in the growing organs, including young leaves, tillers, root tips and differentiating panicles is supplied via phloem from mature source organs such as leaves and roots, after turnover and remobilization of proteins, whereas the other half is newly taken up and supplied via xylem, with an efficient xylem-to-phloem transfer at stem nodes. Thus, the growth of new organs depends equally on both N sources. (2 A large fraction (as much as 80% of the grain N is derived largely from mature organs such as leaves and stems by degradation, including the autophagy pathway of chloroplast proteins (e.g., Rubisco. (3 Mobilized proteinogenic amino acids, including arginine, lysine, proline and valine, are derived mainly from protein degradation, with amino acid transporters playing a role in transferring these amino acids across cell membranes of source and sink organs, and enabling their efficient reutilization in the latter. On the other hand, amino acids such as glutamine, glutamic acid, γ-amino butyric acid, aspartic acid, and alanine are produced by assimilation of newly taken up N by roots and transported via xylem and phloem. The formation of 350 filled grains over 50
Merit exponents and control area diagrams in materials selection
International Nuclear Information System (INIS)
Zander, Johan; Sandstroem, Rolf
2011-01-01
Highlights: → Merit exponents are introduced to generalise the merit indices commonly used in materials selection. → The merit exponents can rank materials in general design situations. → To allow identification of the active merit exponent(s), control area diagrams are used. → Principles for generating the control area diagrams are presented. -- Abstract: Merit indices play a fundamental role in materials selection, since they enable ranking of materials. However, the conventional formulation of merit indices is associated with severe limitations. They are dependent on the explicit solution of the variables in the equations for the constraints from the design criteria. Furthermore, it is not always easy to determine which the controlling merit index is. To enable the ranking of materials in more general design cases, merit exponents are introduced as generalisations of the merit indices. Procedures are presented for how to compute the merit exponents numerically without having to solve equations algebraically. Merit exponents (and indices) are only valid in a certain range of property values. To simplify the identification of the controlling merit exponent, it is suggested that so called control area diagrams are used. These diagrams consist of a number of domains, each showing the active constraints and the controlling merit exponent. It is shown that the merit exponents play a crucial role when the control area diagram (CAD) is set up. The principles in the paper are developed for mechanically loaded components and are illustrated for engineering beams with two or three geometric variables.
Energy Technology Data Exchange (ETDEWEB)
Lin, M., E-mail: linm@nimte.ac.c [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering Chinese Academy of Science, Ningbo 315201 (China); Wang, H.J. [Division of Functional Materials, Central Iron and Steel Research Institute, Beijing 100081 (China); Yi, P.P.; Yan, A.R. [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering Chinese Academy of Science, Ningbo 315201 (China)
2010-08-15
The magnetic and mechanical properties of rare-earth magnets hot-deformed at temperature range 750-950 deg. C have been investigated. The grains tended to grow excessively from dozens of nanometers to several microns at the temperatures above 850 deg. C. The alignment of grains was disrupted by the hot deformation at the high temperatures. The Nd-rich phase was extruded at the temperatures which are higher than 850 deg. C. The Nd-rich phase extrusion resulted in the reduction of density by 1% and the reduction of remanence from 1.42 to 0.72 T. The reduction of grain boundaries caused by flat platelet-shaped grains changing to spherical grains and the weak binding strength among large grains of Nd{sub 2}Fe{sub 14}B phase may be the main reasons for the low mechanical strength of hot-deformed magnets.
Brewer, Michael J; Gordy, John W; Kerns, David L; Woolley, James B; Rooney, William L; Bowling, Robert D
2017-10-01
In response to the 2013 outbreak of sugarcane aphid, Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae), on sorghum, Sorghum bicolor (L.), in North America, experiments were conducted at three southern U.S. grain sorghum production locations (Corpus Christi, TX; Winnsboro, LA; Rosenberg, TX). The objectives were to authenticate yield decline on susceptible hybrids (2014 and 2015) and to measure aphid population growth and natural enemy prevalence on susceptible and resistant hybrids with similar genetic background (2014). Yield decline on susceptible hybrids (Tx 2752/Tx430 and DKS53-67) was more substantial when aphid population growth accelerated quickly and peaked above 300 aphids per leaf (50 to nearly 100% yield decline). Location and year variation in maximum aphid density and cumulative aphid-days was high, with doubling time values on the susceptible hybrids ranging between 3.9 and 7.9 d. On resistant Tx2752/Tx2783, leaf injury and yield decline were not seen or less severe than on its paired susceptible Tx2752/Tx430. Aphids declined on Tx2752/Tx2783 after initial colony establishment (Corpus Christi) or took about 60% longer to double in population size when compared with Tx2572/Tx430 (Winnsboro). The predominant natural enemy taxa were aphelinid mummies (Hymenoptera: Aphelinidae), ladybird beetles (Coleoptera: Coccinellidae), and sryphid flies (Diptera: Syrphidae), and they were more prevalent during flowering than prior to flowering. They were generally responsive to changes in aphid density of both susceptible and resistant hybrids, but variability points to need for further study. In future research, full season observations should continue as well as more detailed study of potential compatibility of sorghum resistance and biological control. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Adam, Khaled; Zöllner, Dana; Field, David P.
2018-04-01
Modeling the microstructural evolution during recrystallization is a powerful tool for the profound understanding of alloy behavior and for use in optimizing engineering properties through annealing. In particular, the mechanical properties of metallic alloys are highly dependent upon evolved microstructure and texture from the softening process. In the present work, a Monte Carlo (MC) Potts model was used to model the primary recrystallization and grain growth in cold rolled single-phase Al alloy. The microstructural representation of two kinds of dislocation densities, statistically stored dislocations and geometrically necessary dislocations were quantified based on the ViscoPlastic Fast Fourier transform method. This representation was then introduced into the MC Potts model to identify the favorable sites for nucleation where orientation gradients and entanglements of dislocations are high. Additionally, in situ observations of non-isothermal microstructure evolution for single-phase aluminum alloy 1100 were made to validate the simulation. The influence of the texture inhomogeneity is analyzed from a theoretical point of view using an orientation distribution function for deformed and evolved texture.
Energy Technology Data Exchange (ETDEWEB)
Bruemmer, S. M.; Olszta, M. J.; Toloczko, M. B.; Schreiber, D. K.
2018-02-01
The effects of alloying elements in Ni-5at%X binary alloys on intergranular (IG) corrosion and stress corrosion cracking (SCC) have been assessed in 300-360°C hydrogenated water at the Ni/NiO stability line. Alloys with Cr or Al additions exhibited grain boundary oxidation and IGSCC, while localized degradation was not observed for pure Ni, Ni-Cu or Ni-Fe alloys. Environment-enhanced crack growth was determined by comparing the response in water and N2 gas. Results demonstrate that selective grain boundary oxidation of Cr and Al promoted IGSCC of these Ni alloys in hydrogenated water.
Stochastic model of Zipf's law and the universality of the power-law exponent.
Yamamoto, Ken
2014-04-01
We propose a stochastic model of Zipf's law, namely a power-law relation between rank and size, and clarify as to why a specific value of its power-law exponent is quite universal. We focus on the successive total of a multiplicative stochastic process. By employing properties of a well-known stochastic process, we concisely show that the successive total follows a stationary power-law distribution, which is directly related to Zipf's law. The formula of the power-law exponent is also derived. Finally, we conclude that the universality of the rank-size exponent is brought about by symmetry between an increase and a decrease in the random growth rate.
Can the bivariate Hurst exponent be higher than an average of the separate Hurst exponents?
Czech Academy of Sciences Publication Activity Database
Krištoufek, Ladislav
2015-01-01
Roč. 431, č. 1 (2015), s. 124-127 ISSN 0378-4371 R&D Projects: GA ČR(CZ) GP14-11402P Institutional support: RVO:67985556 Keywords : Correlations * Power- law cross-correlations * Bivariate Hurst exponent * Spectrum coherence Subject RIV: AH - Economics Impact factor: 1.785, year: 2015 http://library.utia.cas.cz/separaty/2015/E/kristoufek-0452314.pdf
Saegusa, A; Inouchi, K; Ueno, M; Inabu, Y; Koike, S; Sugino, T; Oba, M
2017-08-01
The objective of this study was to evaluate effects of partial replacement of dry ground corn with lactose in calf starters on dry matter intake, growth rate, ruminal pH, and volatile fatty acid profile. Sixty Holstein bull calves were raised on a high plane of nutrition program until 55 d of age. Calves were fed texturized calf starters containing 30.1% steam-flaked grains and lactose at 0 (control), 5, or 10% (n = 20 for each treatment) on a dry matter basis. All calves were fed treatment calf starters ad libitum from d 7 and kleingrass hay from d 35. Ruminal pH was measured continuously immediately after weaning (d 55-62) for 15 calves (n = 5 per treatment), and 3 wk after weaning (d 77 to 80) for the other 45 calves (n = 15 per treatment). Dry matter intake, growth performance, and ruminal pH variables were not affected by treatment. However, according to Spearman's correlation coefficient (r s ) analyses, lactose intake was positively correlated with dairy minimum ruminal pH (r s = 0.306) for the data collected from d 77 to 80. Similarly, hay intake was not affected by treatment, but positively correlated with daily mean (r s = 0.338) and maximum ruminal pH (r s = 0.408) and negatively correlated with duration pH lactose than control (35.3 vs. 40.2%) for ruminal fluid collected on d 80; however, molar ratio of butyrate was not affected by treatment. These results indicate that lactose inclusion in calf starters up to 10% of dry matter might not affect dry matter intake and growth performance of calves, but that greater lactose and hay intake might be associated with higher ruminal pH. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
The Critical Exponent is Computable for Automatic Sequences
Directory of Open Access Journals (Sweden)
Jeffrey Shallit
2011-08-01
Full Text Available The critical exponent of an infinite word is defined to be the supremum of the exponent of each of its factors. For k-automatic sequences, we show that this critical exponent is always either a rational number or infinite, and its value is computable. This generalizes or recovers previous results of Krieger and others. Our technique is applicable to other situations; e.g., the computation of the optimal recurrence constant for a linearly recurrent k-automatic sequence.
The Hurst exponent in energy futures prices
Serletis, Apostolos; Rosenberg, Aryeh Adam
2007-07-01
This paper extends the work in Elder and Serletis [Long memory in energy futures prices, Rev. Financial Econ., forthcoming, 2007] and Serletis et al. [Detrended fluctuation analysis of the US stock market, Int. J. Bifurcation Chaos, forthcoming, 2007] by re-examining the empirical evidence for random walk type behavior in energy futures prices. In doing so, it uses daily data on energy futures traded on the New York Mercantile Exchange, over the period from July 2, 1990 to November 1, 2006, and a statistical physics approach-the ‘detrending moving average’ technique-providing a reliable framework for testing the information efficiency in financial markets as shown by Alessio et al. [Second-order moving average and scaling of stochastic time series, Eur. Phys. J. B 27 (2002) 197-200] and Carbone et al. [Time-dependent hurst exponent in financial time series. Physica A 344 (2004) 267-271; Analysis of clusters formed by the moving average of a long-range correlated time series. Phys. Rev. E 69 (2004) 026105]. The results show that energy futures returns display long memory and that the particular form of long memory is anti-persistence.
Bahrami, Helale; De Kok, Luit J; Armstrong, Roger; Fitzgerald, Glenn J; Bourgault, Maryse; Henty, Samuel; Tausz, Michael; Tausz-Posch, Sabine
2017-09-01
The atmospheric CO 2 concentration ([CO 2 ]) is increasing and predicted to reach ∼550ppm by 2050. Increasing [CO 2 ] typically stimulates crop growth and yield, but decreases concentrations of nutrients, such as nitrogen ([N]), and therefore protein, in plant tissues and grains. Such changes in grain composition are expected to have negative implications for the nutritional and economic value of grains. This study addresses two mechanisms potentially accountable for the phenomenon of elevated [CO 2 ]-induced decreases in [N]: N uptake per unit length of roots as well as inhibition of the assimilation of nitrate (NO 3 - ) into protein are investigated and related to grain protein. We analysed two wheat cultivars from a similar genetic background but contrasting in agronomic features (Triticum aestivum L. cv. Scout and Yitpi). Plants were field-grown within the Australian Grains Free Air CO 2 Enrichment (AGFACE) facility under two atmospheric [CO 2 ] (ambient, ∼400ppm, and elevated, ∼550ppm) and two water treatments (rain-fed and well-watered). Aboveground dry weight (ADW) and root length (RL, captured by a mini-rhizotron root growth monitoring system), as well as [N] and NO 3 - concentrations ([NO 3 - ]) were monitored throughout the growing season and related to grain protein at harvest. RL generally increased under e[CO 2 ] and varied between water supply and cultivars. The ratio of total aboveground N (TN) taken up per RL was affected by CO 2 treatment only later in the season and there was no significant correlation between TN/RL and grain protein concentration across cultivars and [CO 2 ] treatments. In contrast, a greater percentage of N remained as unassimilated [NO 3 - ] in the tissue of e[CO 2 ] grown crops (expressed as the ratio of NO 3 - to total N) and this was significantly correlated with decreased grain protein. These findings suggest that e[CO 2 ] directly affects the nitrate assimilation capacity of wheat with direct negative implications
Directory of Open Access Journals (Sweden)
Živković Lj.M.
2006-01-01
Full Text Available La/Mn-codoped BaTiO3 systems, obtained by solid state reactions, were investigated regarding their microstructure characteristics and ferroelectric properties. Different concentrations of La2O3 were used for doping, ranging from 0.1 to 5.0 at% La, while a content of Mn was constant at 0.05 at%. For all samples sintered below the eutectic temperature (1332°C, a uniform microstructure was formed with average grain size from 1-3 μm. The appearance of secondary abnormal grains with (111 double twins grains with curved or faceted grain boundaries were observed in La/Mn BaTiO3 ceramics after sintering at temperatures above the eutectic temperature. All sintered samples exhibited a high electrical resistivity. Better dielectric performances were obtained for low doped samples (0.1 at% La sintered at 1350°C. For samples with La content above 1.0 at% a lower value in dielectric permittivity at higher sintering temperature is due to secondary abnormal grain growth, and to the presence of a non-ferroelectric phase rich in La. The Curie constant together with other dielectric parameters were also calculated.
Kassen, Aaron G.; White, Emma M. H.; Hu, Liangfa; Tang, Wei; Zhou, Lin; Kramer, Matthew J.; Anderson, Iver E.
2018-05-01
An estimated 750,000 new hybrid electric and plug-in battery vehicles, most with permanent magnet synchronous alternating current (PMAC) drive motors, took to the road in 2016 alone. Accompanied by 40% year over year growth in the EV market significant challenges exist in producing large quantities of permanent magnets (on the order of tens of millions) for reliable, low-cost traction motors [IE Agency, Energy Technology Perspectives (2017)]. Since the rare earth permanent magnet (REPM) market is essentially 100% net import reliant in the United States and has proven to have an unstable cost and supply structure in recent years, a replacement RE-free PM material must be designed or selected, fully developed, and implemented. Alnico, with its high saturation magnetization and excellent thermal stability, appears to be uniquely suited for this task. Further, while alnico typically has been considered a relatively low coercivity hard magnet, strides have been made to increase the coercivity to levels suitable for traction drive motors [W Tang, IEEE Trans. Magn., 51 (2015)]. If a simple non-cast approach for achieving near [001] easy axis grain aligned permanent magnets can be found, this would allow mass-produced final-shape anisotropic high energy product magnets suitable for usage in compact high RPM rotor designs. Therefore, a powder metallurgical approach is being explored that uses classic compression molding with "de-bind and sinter" methods, where a novel applied uniaxial loading, and an applied magnetic field may create final-shape magnets with highly textured resulting microstructures by two different mechanisms. Results indicate a positive correlation between applied uniaxial load and resulting texture (Fig. 1), along with benefits from using an applied magnetic field for improved texture, as well. The apparent mechanisms and resulting properties will be described using closed loop hysteresisgraph measurements, EBSD orientation mapping, and high
How We Tend To Overestimate Powerlaw Tail Exponents
Nassim N. Taleb
2012-01-01
In the presence of a layer of metaprobabilities (from uncertainty concerning the parameters), the asymptotic tail exponent corresponds to the lowest possible tail exponent regardless of its probability. The problem explains "Black Swan" effects, i.e., why measurements tend to chronically underestimate tail contributions, rather than merely deliver imprecise but unbiased estimates.
Energy Technology Data Exchange (ETDEWEB)
Hackenberg, Robert E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McCabe, Rodney J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Montalvo, Joel D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clarke, Kester D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dvornak, Matthew J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Edwards, Randall L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Crapps, Justin M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trujillo, R. Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aikin, Beverly [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vargas, Victor D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hollis, Kendall J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lienert, Thomas J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Forsyth, Robert T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Harada, Kiichi L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2013-05-06
Grain penetration across aluminum-aluminum cladding interfaces in research reactor fuel plates is desirable and was obtained by a legacy roll-bonding process, which attained 20-80% grain penetration. Significant grain penetration in monolithic fuel plates produced by Hot Isostatic Press (HIP) fabrication processing is equally desirable but has yet to be attained. The goal of this study was to modify the 6061-Al in such a way as to promote a much greater extent of crossinterface grain penetration in monolithic fuel plates fabricated by the HIP process. This study documents the outcomes of several strategies attempted to attain this goal. The grain response was characterized using light optical microscopy (LOM) electron backscatter diffraction (EBSD) as a function of these prospective process modifications done to the aluminum prior to the HIP cycle. The strategies included (1) adding macroscopic gaps in the sandwiches to enhance Al flow, (2) adding engineering asperities to enhance Al flow, (3) adding stored energy (cold work), and (4) alternative cleaning and coating. Additionally, two aqueous cleaning methods were compared as baseline control conditions. The results of the preliminary scoping studies in all the categories are presented. In general, none of these approaches were able to obtain >10% grain penetration. Recommended future work includes further development of macroscopic grooving, transferred-arc cleaning, and combinations of these with one another and with other processes.
Tang, C. J.; Fernandes, A. J. S.; Girão, A. V.; Pereira, S.; Shi, Fa-Nian; Soares, M. R.; Costa, F.; Neves, A. J.; Pinto, J. L.
2014-03-01
In this work, we study the growth habit of nanocrystalline diamond (NCD) films by exploring the very high power regime, up to 4 kW, in a 5 kW microwave plasma chemical vapour deposition (MPCVD) reactor, through addition of a small amount of nitrogen and oxygen (0.24%) into 4% CH4 in H2 plasma. The coupled effect of high microwave power and substrate temperature on NCD growth behaviour is systematically investigated by varying only power, while fixing the remaining operating parameters. When the power increases from 2 kW to 4 kW, resulting also in rise of the Si substrate temperature higher than 150 °C, the diamond films obtained maintain the NCD habit, while the growth rate increases significantly. The highest growth rate of 4.6 μm/h is achieved for the film grown at 4 kW, which represents a growth rate enhancement of about 15 times compared with that obtained when using 2 kW power. Possible factors responsible for such remarkable growth rate enhancement of the NCD films are discussed. The evolution of NCD growth characteristics such as morphology, microstructure and texture is studied by growing thick films and comparing it with that of large grain polycrystalline (PCD) films. One important characteristic of the NCD films obtained, in contrast to PCD films, is that irrespective of deposition time (i.e. film thickness), their grain size and surface roughness remain in the nanometer range throughout the growth. Finally, based on our present and previous experimental results, a potential parameter window is established for fast growth of NCD films under high power conditions.
International Nuclear Information System (INIS)
Nicula, R.; Crisan, O.; Crisan, A.D.; Mercioniu, I.; Stir, M.; Vasiliu, F.
2015-01-01
Highlights: • Formation of the L10 FePt hard-magnetic phase (>90%) directly in the as-cast state. • Specific alternating hard/soft nanostructure is stable to 600 °C without grain growth. • Anisotropic and non-linear thermal expansion effects. • The FePtAgB alloy behaves like a single magnetic phase (full exchange coupling). - Abstract: Rare-earth free (RE-free) exchange coupling nanocomposite magnets are intensively studied nowadays due to their potential use in applications demanding stable high-temperature operation and corrosion resistance. In this respect, the FePt alloy system is one of the most actively addressed potential permanent magnet solutions. In FePt alloys, promising magnetic features arise from the co-existence of hard magnetic L1 0 FePt and soft magnetic L1 2 Fe 3 Pt phases emerged from the same metastable precursor. The present work deals with an in-situ temperature-resolved synchrotron radiation study of the thermal stability, thermal expansion and microstructure evolution in exchange-coupled FePtAgB alloys. The as-cast microstructural state as well as the optimized magnetic behavior are given as reference and correlated to the observed microstructural evolution with temperature. The melt-spun Fe 48 Pt 28 Ag 6 B 18 alloy ribbons were examined in situ by synchrotron X-ray powder diffraction from ambient temperature up to 600 °C. The FePt-Fe 3 Pt exchange-coupled microstructure achieved by rapid solidification is not significantly altered during the high temperature exposure. The thermal expansion of the FePt L1 0 unit cell has been found to be strongly anisotropic, being essentially an in-plane expansion which may be seen as an anisotropic invar effect. For the FePt L1 0 phase, a significant deviation from linear thermal expansion is observed at the Curie temperature T C = 477 °C. This non-linear behavior above T C is tentatively linked to a diffusion/segregation mechanism of Ag. The promising hard magnetic properties as well as the
Directory of Open Access Journals (Sweden)
Ondřej Šťastník
2017-01-01
Full Text Available The feeding effect of of three spring wheat genotypes (Vánek, Konini and UC66049 with different grain colour on growth performance, body composition and meat quality parameters of broiler chickens was tested. Ninety chickens were divided into three groups (control, Konini and UC with 30 chickens in each. The tested genotypes were compares with standard variety Vánek (control with common (red grain colour. The two experimental groups received feed mixtures containing 38.2% of wheats with different grain colour: groups Konini (n = 30 and UC (n = 30 with. The third group (n = 30 had 38.2% of common wheat Vánek cultivar (Control group. The live weight of chickens between the experimental groups and control group was not significant different, as well as body composition and chemical analysis of breast and thigh meat of chickens. The feeding of wheat with different grain colour had no effect on performance parameters of broiler chickens. Breast meat tenderness according to the Razor Blade Shear Force was higher in control group against experimental groups. The colour change was not significantly different in all coordinates. pH values (measured after 1-hour post mortem were found significantly higher in the group fattening with Konini wheat than control and UC groups. Chickens meat from the experimental group was characterised by steady overall quality. The effect of various feeding had no effect on meat quality in terms of relevance to consumers.
Why do interstellar grains exist
International Nuclear Information System (INIS)
Seab, C.G.; Hollenbach, D.J.; Mckee, C.F.; Tielens, A.G.G.M.
1986-01-01
There exists a discrepancy between calculated destruction rates of grains in the interstellar medium and postulated sources of new grains. This problem was examined by modelling the global life cycle of grains in the galaxy. The model includes: grain destruction due to supernovae shock waves; grain injection from cool stars, planetary nebulae, star formation, novae, and supernovae; grain growth by accretion in dark clouds; and a mixing scheme between phases of the interstellar medium. Grain growth in molecular clouds is considered as a mechanism or increasing the formation rate. To decrease the shock destruction rate, several new physical processes, such as partial vaporization effects in grain-grain collisions, breakdown of the small Larmor radius approximation for betatron acceleration, and relaxation of the steady-state shock assumption are included
Tayon, Wesley A.; Domack, Marcia S.; Hoffman, Eric K.; Hales, Stephen J.
2013-01-01
In order to improve manufacturing efficiency and reduce structural mass and costs in the production of launch vehicle structures, NASA is pursuing a wide-range of innovative, near-net shape manufacturing technologies. A technology that combines friction stir welding (FSW) and spin-forming has been applied to manufacture a single-piece crew module using Aluminum-Lithium (AL-Li) Alloy 2195. Plate size limitations for Al-Li alloy 2195 require that two plates be FSW together to produce a spin-forming blank of sufficient size to form the crew module. Subsequent forming of the FSW results in abnormal grain growth (AGG) within the weld region upon solution heat treatment (SHT), which detrimentally impacts strength, ductility, and fracture toughness. The current study seeks to identify microstructural factors that contribute to the development of AGG. Electron backscatter diffraction (EBSD) was used to correlate driving forces for AGG, such as stored energy, texture, and grain size distributions, with the propensity for AGG. Additionally, developmental annealing treatments prior to SHT are examined to reduce or eliminate the occurrence of AGG by promoting continuous, or uniform, grain growth
On the Lojasiewicz exponent at infinity of real polynomials
International Nuclear Information System (INIS)
Ha Huy Vui; Pham Tien Son
2007-07-01
Let f : R n → R be a nonconstant polynomial function. In this paper, using the information from 'the curve of tangency' of f, we provide a method to determine the Lojasiewicz exponent at infinity of f. As a corollary, we give a computational criterion to decide if the Lojasiewicz exponent at infinity is finite or not. Then, we obtain a formula to calculate the set of points at which the polynomial f is not proper. Moreover, a relation between the Lojasiewicz exponent at infinity of f with the problem of computing the global optimum of f is also established. (author)
Energy Technology Data Exchange (ETDEWEB)
Ouerghi, A [Systems and Applied Mechanics Laboratory LASMAP, Polytechnic School of Tunisia, Rue El Kawarezmi La Marsa 743, Université de Carthage Tunis (Tunisia); Moutalbi, N., E-mail: nahed.moutalbi@yahoo.fr [Systems and Applied Mechanics Laboratory LASMAP, Polytechnic School of Tunisia, Rue El Kawarezmi La Marsa 743, Université de Carthage Tunis (Tunisia); Noudem, J.G. [CRISMAT-ENSICAEN (UMR-CNRS 6508), Université de Caen-Basse-Normandie, F-14050 Caen (France); LUSAC, Université de Caen-Basse-Normandie F-50130 Cherbourg-Octeville (France); M' chirgui, A. [Systems and Applied Mechanics Laboratory LASMAP, Polytechnic School of Tunisia, Rue El Kawarezmi La Marsa 743, Université de Carthage Tunis (Tunisia)
2017-03-15
Highlights: • YBCO bulk superconductors are produced by optimized Seeded Infiltration and Growth process. • The slow cooling time, in a fixed slow cooling temperature window, affects considerably the surface morphology and the bulk’s microstructure. • The Y211 particle’s size and content depend on the slow cooling time and its distribution behavior changes from one position to another. • There is an optimum slow cooling time, estimated to 88h, over which the shrinkage for both the liquid phase and the Y211 pellet is maximal, without any improvement of the crystal grain growth. • The magnetic trapped flux distribution for a given sample brings out the single grain characteristic. - Abstract: Highly textured YBa{sub 2}Cu{sub 3}O{sub 7-δ} (Y123) superconductors were produced using modified Textured Top Seeded Infiltration Growth (TSIG) process. The liquid source is made of only Y123 powder whereas the solid source is composed of Y{sub 2}BaCuO{sub 5} (Y211) powder. We aim to control the amount of liquid that infiltrates the solid pellet, which in turn controls the final amount of Y{sub 2}BaCuO{sub 5} particles in Y123 matrix. The effect of the slow cooling kinetics on sample morphology, on grain growth and on final microstructure was too investigated. It is shown that appropriate slow cooling time may also contribute to the control of the amount of Y211 inclusions in the final structure of Y123 bulk. We report herein the Y211 particle size and density distribution in the whole Y123 matrix. The present work proves that finest Y211 particles locate under the seed and that their size and density increase with distance from the seed.
Boogert, A.; Chiar, J.; Knez, C.; Öberg, K.; Mundy, L.; Pendleton, Y.; Tielens, A.G.G.M.; Dishoeck, van E.F.
2013-01-01
Infrared photometry and spectroscopy (1-25 {$μ$}m) of background stars reddened by the Lupus molecular cloud complex are used to determine the properties of grains and the composition of ices before they are incorporated into circumstellar envelopes and disks. H$_{2}$O ices form at extinctions of A
DEFF Research Database (Denmark)
Engberg, Sara Lena Josefin; Crovetto, Andrea; Hansen, Ole
. In addition, the photoluminescence signal increased by a factor of 200 after Na-inclusion. Without Na, the grains were very difficult to sinter, the film was porous, and the photoluminescence was low. This suggests that including Na reduces interface recombination in CZTS nanoparticle absorber layers...
Mirzaei, M; Khorvash, M; Ghorbani, G R; Kazemi-Bonchenari, M; Ghaffari, M H
2017-02-01
The objective of this study was to investigate the effects of grain sources and forage provision on growth performance, blood metabolites, and feeding behaviors of dairy calves. Sixty 3-d-old Holstein dairy calves (42.2 ± 2.5 kg of body weight) were used in a 2 × 3 factorial arrangement with the factors being grain sources (barley and corn) and forage provision (no forage, alfalfa hay, and corn silage). Individually housed calves were randomly assigned (n = 10 calves per treatment: 5 males and 5 females) to 6 treatments: (1) barley grain (BG) without forage supplement, (2) BG with alfalfa hay (AH) supplementation, (3) BG with corn silage (CS) supplementation, (4) corn grain (CG) without forage supplement, (5) CG with AH supplementation, and (6) CG with CS supplementation. All calves had ad libitum access to water and starter feed throughout the experiment. All calves were weaned on d 49 and remained in the study until d 63. Starter feed intake and average daily gain (ADG) was greater for calves fed barley than those fed corn during the preweaning and overall periods. Calves supplemented with CS had greater final body weight and postweaning as well as overall starter feed intake than AH and non-forage-supplemented calves. During the preweaning and overall periods, feeding of CS was found to increase ADG compared with feeding AH and nonforage diets. However, feed efficiency was not affected by dietary treatments. Calves supplemented with CS spent more time ruminating compared with AH and control groups; nonnutritive oral behaviors were the greatest in non-forage-supplemented calves. Regardless of the grain sources, the rumen pH value was greater for AH calves compared with CS and non-forage-supplemented calves. Blood concentration of BHB was greater for CS-supplemented calves compared with AH and non-forage-supplemented calves. Furthermore, body length and heart girth were greater for calves fed barley compared with those fed corn, and also in forage
DEFF Research Database (Denmark)
Syha, Melanie; Baürer, Michael; Rheinheimer, Wolfgang
2013-01-01
Motivated by the recently reported a growth anomaly in strontium titatate bulk samples1, the microstructure of bulk strontium titanate has been investigated by an integrated approach comprising conventional metallography, three dimensional X-ray diffraction contrast tomography (DCT)2, and the obs......Motivated by the recently reported a growth anomaly in strontium titatate bulk samples1, the microstructure of bulk strontium titanate has been investigated by an integrated approach comprising conventional metallography, three dimensional X-ray diffraction contrast tomography (DCT)2......, and the observation of pore shapes in combination with mesoscale grain growth simulations. The microstructural evolution in strontium titanate has been characterized alternating ex-situ annealing and high energy X-ray DCT measurements, resulting in three dimensional microstructure reconstructions which...
ACCURATE ESTIMATES OF CHARACTERISTIC EXPONENTS FOR SECOND ORDER DIFFERENTIAL EQUATION
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
In this paper, a second order linear differential equation is considered, and an accurate estimate method of characteristic exponent for it is presented. Finally, we give some examples to verify the feasibility of our result.
A MONTE-CARLO METHOD FOR ESTIMATING THE CORRELATION EXPONENT
MIKOSCH, T; WANG, QA
We propose a Monte Carlo method for estimating the correlation exponent of a stationary ergodic sequence. The estimator can be considered as a bootstrap version of the classical Hill estimator. A simulation study shows that the method yields reasonable estimates.
On some properties of the discrete Lyapunov exponent
International Nuclear Information System (INIS)
Amigo, Jose M.; Kocarev, Ljupco; Szczepanski, Janusz
2008-01-01
One of the possible by-products of discrete chaos is the application of its tools, in particular of the discrete Lyapunov exponent, to cryptography. In this Letter we explore this question in a very general setting
Full spectrum of Lyapunov exponents in gauge field theories
International Nuclear Information System (INIS)
Biro, T.S.; Markum, H.; Pullirsch, R.
2003-01-01
Full text: Results are presented for the full spectrum of Lyapunov exponents of the compact U(1) gauge system in classical field theory. Instead of the determination of the largest Lyapunov exponent by the rescaling method we now use the monodromy matrix approach. The Lyapunov spectrum L i is expressed in terms of the eigenvalues Λ i of the monodromy matrix M. In the confinement phase the eigenvalues lie on either the real or on the imaginary axes. This is a nice illustration of a strange attractor of a chaotic system. Positive Lyapunov exponents eject the trajectories from oscillating orbits provided by the imaginary eigenvalues. Negative Lyapunov exponents attract the trajectories keeping them confined in the basin. Latest studies concern the time (in)dependence of the monodromy matrix. Further, we show that monopoles are created and annihilated in pairs as a function of real time in access to a fixed average monopole number. (author)
What is the cementation exponent? A new differential interpretation
Glover, P. W. J.
2009-04-01
Between 1950 and 2002 the total volume of reserves discovered has run to over 1500 Bbbl. for oil and 7.5 Tcf. for gas. Over half of these resources has already been produced, and has driven the global economy for the last fifty years. All of the assessments of the volume of hydrocarbon reserves were made using Archie's relationships (1942). It would be difficult, therefore, to overestimate the impact of either the petrophysical techniques or Archie's relationships on the worldwide economy. Archie's laws link the electrical resistivity of a rock to its porosity, to the resistivity of the water that saturates its pores, and to the fractional saturation of the pore space with the water, and are used to calculate the hydrocarbon saturation of the reservoir rock from which the reserves are then calculated. Archie's laws contain two exponents, m and n, which Archie called the cementation exponent and the saturation exponent, respectively. The conductivity of the hydrocarbon saturated rock is highly sensitive to changes in either exponent. However, despite the importance of the cementation exponent, few petrophysicists, commercial or academic, are able to describe its real physical meaning. The purpose of this contribution is to investigate the elusive physical meaning of the cementation exponent. We review the traditional interpretation of the cementation exponent and consider the extension of Archie's first law to two conducting phases. Consequently, we develop a new differential interpretation of the cementation exponent that is based on a new definition for the connectedness of the conducting phases in a porous medium. In this interpretation the connectedness of a porous medium is defined as the availability of pathways for transport, where the connectedness is the inverse of the formation resistivity factor, G = σo σw = 1 F (and may also be called the conductivity formation factor). Porosity is defined as the fractional amount of pore space in the usual manner
Non-universal spreading exponents in a catalytic reaction model
International Nuclear Information System (INIS)
De Andrade, Marcelo F; Figueiredo, W
2011-01-01
We investigated the dependence of the spreading critical exponents and the ultimate survival probability exponent on the initial configuration of a nonequilibrium catalytic reaction model. The model considers the competitive reactions between two different monomers, A and B, where we take into account the energy couplings between nearest neighbor monomers, and the adsorption energies, as well as the temperature T of the catalyst. For each value of T the model shows distinct absorbing states, with different concentrations of the two monomers. Employing an epidemic analysis, we established the behavior of the spreading exponents as we started the Monte Carlo simulations with different concentrations of the monomers. The exponents were determined as a function of the initial concentration ρ A, ini of A monomers. We have also considered initial configurations with correlations for a fixed concentration of A monomers. From the determination of three spreading exponents, and the ultimate survival probability exponent, we checked the validity of the generalized hyperscaling relation for a continuous set of initial states, random and correlated, which are dependent on the temperature of the catalyst
Qin, Junhao; Li, Huashou; Lin, Chuxia
2016-08-01
Batch and greenhouse experiments were conducted to examine the effects of Fenton process on transformation of roxarsone in soils and its resulting impacts on the growth of and As uptake by a rice plant cultivar. The results show that addition of Fenton reagent markedly accelerated the degradation of roxarsone and produced arsenite, which was otherwise absent in the soil without added Fenton reagent. Methylation of arsenate was also enhanced by Fenton process in the earlier part of the experiment due to abundant supply of arsenate from Roxarsone degradation. Overall, addition of Fenton reagent resulted in the predominant presence of arsenate in the soils. Fenton process significantly improved the growth of rice in the maturity stage of the first crop, The concentration of methylated As species in the rice plant tissues among the different growth stages was highly variable. Addition of Fenton reagent into the soils led to reduced uptake of soil-borne As by the rice plants and this had a significant effect on reducing the accumulation of As in rice grains. The findings have implications for understanding As biogeochemistry in paddy rice field receiving rainwater-borne H2O2 and for development of mitigation strategies to reduce accumulation of As in rice grains. Copyright © 2016 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Leitch-Devlin, M.A.; Millar, T.J.; Williams, D.A.
1976-01-01
Infrared observations of the Orion nebula have been interpreted by Rowan-Robinson (1975) to imply the existence of 'giant' grains, radius approximately 10 -2 cm, throughout a volume about a parsec in diameter. Although Rowan-Robinson's model of the nebula has been criticized and the presence of such grains in Orion is disputed, the proposition is accepted, that they exist, and in this paper situations in which giant grains could arise are examined. It is found that, while a giant-grain component to the interstellar grain density may exist, it is difficult to understand how giant grains arise to the extent apparently required by the Orion nebula model. (Auth.)
Directory of Open Access Journals (Sweden)
Yijun Li
2018-04-01
Full Text Available The abnormal grain growth in the heat affected zone of the friction stir welded joint of 32Mn-7Cr-1Mo-0.3N steel after post-weld heat treatment was confirmed by physical simulation experiments. The microstructural stability of the heat affected zone can be weakened by the welding thermal cycle. It was speculated to be due to the variation of the non-equilibrium segregation state of solute atoms at the grain boundaries. In addition, the pressure stress in the welding process can promote abnormal grain growth in the post-weld heat treatment.
Directory of Open Access Journals (Sweden)
R. Seyed Sharifi
2016-02-01
promoting rhizobacteria application on yield, yield components and grain filling period of soybean. Materials and Methods In order to study the effects of Nano-Zinc oxide and seed inoculation with Brady rhizobium and plant growth promoting rhizobacteria on yield and some agronomic characteristics of soybean, a factorial experiment based on randomized complete block design with three replications was conducted in 2013 at the research farm of the Islamic Azad University, Ardabil Branch. Factors were included foliar application of Nano-Zinc oxide at four levels (Zero as control, 0.3, 0.6 and 0.9 g l-1 and seed inoculation with Brady rhizobium and plant growth promoting rhizobacteria at five levels (without inoculation as control, seed inoculation with Brady rhizobium japanicum, seed inoculation with Brady rhizobium japanicum+Azosprillum lipoferum strain OF, seed inoculation with Brady rhizobium japanicum+Psedomonas putida, seed inoculation with Brady rhizobium japanicum+ Azosprillum lipoferum strain OF+ Psedomonas putida. Results and Discussion The results of growth indices showed that the maximum total dry matter (530 g m-2, crop growth rate (9.48 g.m-2.day-1 and relative growth rate (0.1 g.g-1.day-1 were obtained at foliar application of 0.9 g l-1 Nano-Zinc oxide×seed inoculation with rhizobium+Azosprillum+ Psedomonas and the least of these indices were obtained without of foliar application Nano-Zinc oxide × seed inoculation. The results showed that plant height, the number of nodules per plant, the number of pod per plant, grain yield and grain 100 weight were significantly affected by Nano-Zinc oxide, seed inoculation and interaction of Nano-Zinc oxide×seed inoculation. Maximum of plant height, grain 100 weight, the number of nodules per plant and grain yield were obtained at foliar application of 0.9 g l-1 of Nano-Zinc oxide×seed inoculation with rhizobium and PGPR. Dry weight of nodules per plant, the number of pod per plant and the number of grains per plant
Directory of Open Access Journals (Sweden)
Hung-Ngoc Dang
2018-04-01
Full Text Available Effects of subculture conditions on the mycelium growth and antioxidant capacity assessment of Cordyceps militaris trains AG-1 and PSJ-1 were carried out in laboratory during the autumn-winter season of 2015. Different temperature regimes and nutrition, vitamins levels, grain in substrate were evaluated for optimization on mycelium growth. The results showed that two strains AG-1 and PSJ-1 can grow the maximum mycelium radial at the temperature of 24 °C. The mycelium growth was improved by carbon sources such as glucose, dextrose, fructose, and maltose at 30 g/L concentration. Whereas glucose achieved the highest value of mycelium colony diameter in strains AG-1 and PSJ-1. Vitamins B1 concentrations at 0.03 g/L also gave the great values in mycelium colony diameter of both strains AG-1 and PSJ-1. The studies depicted that a substrate mixed with various grains sources (brown rice, white rice, and wheat, black glutinous rice Vietnam, and corn cultured at 24 °C, for 12 days supported maximum mycelia growth of the two strains AG-1 and PSJ-1 of C. militaris. The effect of liquid culture medium (MYPS and PD with mycelium on the anti-oxidation capacity was assessed. The results showed that the increasing of DPPH radical scavenging capacity with the extract concentration exist a proportional relation and Fe2+-chelating capacity as well. The cultured Cordyceps mycelium of two strains AG-1 and PSJ-1had the equally strong antioxidant capacity. Keywords: Cordyceps militaris, Mycelium growth, Nutritional condition, Temperature, Vitamins, Anti-oxidation activity
Directory of Open Access Journals (Sweden)
Anuj Rana
2015-12-01
Full Text Available The influence of plant growth promoting bacteria (PGPB and cyanobacteria, alone and in combination, was investigated on micronutrient enrichment and yield in rice–wheat sequence, over a period of two years. Analysis of variance (ANOVA in both crops indicated significant differences in soil dehydrogenase activity and micronutrient enrichment in grains (Fe, Zn in rice, and Cu, Mn in wheat. The combined inoculation of Anabaena oscillarioides CR3, Brevundimonas diminuta PR7, and Ochrobactrum anthropi PR10 (T6 significantly increased nitrogen, phosphorus, and potassium (NPK content and improved rice yield by 21.2%, as compared to the application of recommended dose of NPK fertilizers (T2. The treatment T5 (Providencia sp. PR3 + B. diminuta PR7 + O. anthropi PR10 recorded an enhancement of 13–16% in Fe, Zn, Cu, and Mn concentrations, respectively, in rice grains. In wheat, Providencia sp. PW5 (T6 recorded the highest yield (5.23 Mg ha−1 and significantly higher enrichment of Fe and Cu (44–45% in the grains. This study highlighted the promise of combinations of cyanobacteria/bacteria and their synergistic action in biofortification and providing savings of 40–60 kg N ha−1. Future focus needs to be towards integrating such promising environment-friendly and environmentally sustainable options in nutrient management strategies for this cropping sequence.
Influence of porosity on densification and grain growth kinetics of Ce_{0.9}Gd_{0.1}O_{1.95} tape
DEFF Research Database (Denmark)
Ni, De Wei; Esposito, Vincenzo; Foghmoes, Søren Preben Vagn
porous layer allowing gas flow is necessary in catalytic and in gas purification devices. During the sintering with shrinkage, the total solid volume is maintained to be a constant value but the shape and size of each particle change with the formation of grain boundaries. This change in solid particles...... is accompanied by the change of shape, size and fraction of pores in a given volume. Therefore, porosity can be treated as an extra phase during sintering study. In this work, we presented the densification and grain growth behaviour of Ce0.9Gd0.1O1.95 tape cast layers with different percentage of porosity....... The emphasis was put on the effect of porosity on densification and grain growth kinetics. Derived from the sintering constitutive laws, the densification and grain growth kinetics were experimentally characterized and analyzed. Furthermore, the activation energies for viscous flow were determined from master...
DEFF Research Database (Denmark)
Ni, De Wei; Schmidt, Cristine Grings; Teocoli, Francesca
2013-01-01
The sintering behavior of porous Ce0.9Gd0.1O1.95(CGO10) tape cast layers was systematically investigated to establish fundamental kinetic parameters associated to densification and grain growth. Densification and grain growth were characterized by a set of different methods to determine the domin...... and grain boundary mobility in the porous body was estimated around 10−18–10−16m3N−1s−1 at the investigated temperature range.© 2013 Elsevier Ltd. All rights reserved.......The sintering behavior of porous Ce0.9Gd0.1O1.95(CGO10) tape cast layers was systematically investigated to establish fundamental kinetic parameters associated to densification and grain growth. Densification and grain growth were characterized by a set of different methods to determine...... the dominant sintering mechanisms and kinetics, both in isothermal and at constant heating rate (iso-rate) conditions. Densification of porous CGO10 tape is thermally activated with typical activation energy which was estimated around 440–470 kJ mol−1. Grain growth showed similar thermal activation energy...
Application of the Lyapunov exponent to detect noise-induced chaos in oscillating microbial cultures
International Nuclear Information System (INIS)
Patnaik, P.R.
2005-01-01
Oscillating microbial processes can, under certain conditions, gravitate into chaotic behavior induced by external noise. Detection and control of chaos are important for the survival of the microorganisms and to operate a process usefully. In this study the largest Lyapunov exponent is recommended as a convenient and reliable index of chaos in continuous oscillating cultures. For the growth of Saccharomyces cerevisiae as a model system, the exponents increase with the oxygen mass transfer coefficient and decrease as the dilution rate increases. By comparing with the corresponding time-domain oscillations determined earlier, it is inferred that weakly oscillating cultures are less likely to be driven to chaotic behavior. The main carbon source, glucose, is quite robust to chaotic destabilization, thus enhancing its suitability as a manipulated variable for bioreactor control
A new theoretical interpretation of Archie's saturation exponent
Directory of Open Access Journals (Sweden)
P. W. J. Glover
2017-07-01
Full Text Available This paper describes the extension of the concepts of connectedness and conservation of connectedness that underlie the generalized Archie's law for n phases to the interpretation of the saturation exponent. It is shown that the saturation exponent as defined originally by Archie arises naturally from the generalized Archie's law. In the generalized Archie's law the saturation exponent of any given phase can be thought of as formally the same as the phase (i.e. cementation exponent, but with respect to a reference subset of phases in a larger n-phase medium. Furthermore, the connectedness of each of the phases occupying a reference subset of an n-phase medium can be related to the connectedness of the subset itself by Gi = GrefSini. This leads naturally to the idea of the term Sini for each phase i being a fractional connectedness, where the fractional connectednesses of any given reference subset sum to unity in the same way that the connectednesses sum to unity for the whole medium. One of the implications of this theory is that the saturation exponent of any phase can be now be interpreted as the rate of change of the fractional connectedness with saturation and connectivity within the reference subset.
OBSERVING LYAPUNOV EXPONENTS OF INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS.
Ott, William; Rivas, Mauricio A; West, James
2015-12-01
Can Lyapunov exponents of infinite-dimensional dynamical systems be observed by projecting the dynamics into ℝ N using a 'typical' nonlinear projection map? We answer this question affirmatively by developing embedding theorems for compact invariant sets associated with C 1 maps on Hilbert spaces. Examples of such discrete-time dynamical systems include time- T maps and Poincaré return maps generated by the solution semigroups of evolution partial differential equations. We make every effort to place hypotheses on the projected dynamics rather than on the underlying infinite-dimensional dynamical system. In so doing, we adopt an empirical approach and formulate checkable conditions under which a Lyapunov exponent computed from experimental data will be a Lyapunov exponent of the infinite-dimensional dynamical system under study (provided the nonlinear projection map producing the data is typical in the sense of prevalence).
Lyapunov exponent and criticality in the Hamiltonian mean field model
Filho, L. H. Miranda; Amato, M. A.; Rocha Filho, T. M.
2018-03-01
We investigate the dependence of the largest Lyapunov exponent (LLE) of an N-particle self-gravitating ring model at equilibrium with respect to the number of particles and its dependence on energy. This model has a continuous phase-transition from a ferromagnetic to homogeneous phase, and we numerically confirm with large scale simulations the existence of a critical exponent associated to the LLE, although at variance with the theoretical estimate. The existence of strong chaos in the magnetized state evidenced by a positive Lyapunov exponent is explained by the coupling of individual particle oscillations to the diffusive motion of the center of mass of the system and also results in a change of the scaling of the LLE with the number of particles. We also discuss thoroughly for the model the validity and limits of the approximations made by a geometrical model for their analytic estimate.
Anisotropies in magnetic field evolution and local Lyapunov exponents
International Nuclear Information System (INIS)
Tang, X.Z.; Boozer, A.H.
2000-01-01
The natural occurrence of small scale structures and the extreme anisotropy in the evolution of a magnetic field embedded in a conducting flow is interpreted in terms of the properties of the local Lyapunov exponents along the various local characteristic (un)stable directions for the Lagrangian flow trajectories. The local Lyapunov exponents and the characteristic directions are functions of Lagrangian coordinates and time, which are completely determined once the flow field is specified. The characteristic directions that are associated with the spatial anisotropy of the problem, are prescribed in both Lagrangian and Eulerian frames. Coordinate transformation techniques are employed to relate the spatial distributions of the magnetic field, the induced current density, and the Lorentz force, which are usually followed in Eulerian frame, to those of the local Lyapunov exponents, which are naturally defined in Lagrangian coordinates
Duran, Cihangir
Sr0.53Ba0.47Nb2O6 (SBN53) ceramics were textured by the templated grain growth (TGG), in a matrix of SrNb2O6 and BaNb2O6 powders. Acicular KSr2Nb5O15 (KSN) template particles, synthesized by a molten salt process, were used to texture the samples in the c direction (i.e., [001]). Template growth was assisted by adding V2O5 as a liquid phase former for some compositions. The texture fraction also increased with higher sintering temperatures or times and with initial template concentration due to the preferential growth of the template particles. When V2O5 was present, SBN53 phase formation initiated on the KSN templates and texture development started at temperatures as low as 950°C. Phase formation in the V2O5-free samples, however, initiated in the matrix (i.e., independent of the KSN templates). The liquid phase adversely affected the template growth by favoring anisotropic grain growth in the matrix, which caused lower texture fraction and broader texture distribution in [001] at low template concentrations. Increased template-template interaction (e.g., tangling) during tape casting also resulted in broader texture distribution. Therefore, an optimum template content was found to be ˜10--15 wt%. However, a texture fraction of 0.93 to 0.98 was obtained using only 5 wt% templates when anisotropic matrix grain growth was prevented. Phase evolution was studied in the randomly oriented samples as a function of quenching temperature, heating rate, and liquid phase, using KSN powder (rather than acicular particles) as a seed material. The formation temperature for SBN53 was lowered substantially by adding more seeds, decreasing the heating rate, and introducing a liquid. The temperature decreased from 1260°C for the samples with no seeds to 1130°C for the samples with 15.4 wt% seeds + 0.8 mol% V2O5 at a heating rate of 4°C/min. For the V2O5-free samples, the activation energy was considerably lowered from 554 +/- 15 kJ/mol for the samples with no seeds to 241
The hurst exponent and long-time correlation
International Nuclear Information System (INIS)
Wang, G.; Antar, G.; Devynck, P.
1999-10-01
The rescaled range statistics (R/S) method is applied to the ion saturation current fluctuations measured by Langmuir probe at edge on Tore Supra to evaluate the Hurst exponent. Data block randomization is carried out to the data sets in order to investigate the relationship between the Hurst exponent and long time correlation. It is observed that h is well above 0.5 in the long time self-similar range. However, it is found that the information which leads to H > 0.5 is totally contained in the short-time correlation and no link to long times is found. (authors)
Quantum computation of multifractal exponents through the quantum wavelet transform
International Nuclear Information System (INIS)
Garcia-Mata, Ignacio; Giraud, Olivier; Georgeot, Bertrand
2009-01-01
We study the use of the quantum wavelet transform to extract efficiently information about the multifractal exponents for multifractal quantum states. We show that, combined with quantum simulation algorithms, it enables to build quantum algorithms for multifractal exponents with a polynomial gain compared to classical simulations. Numerical results indicate that a rough estimate of fractality could be obtained exponentially fast. Our findings are relevant, e.g., for quantum simulations of multifractal quantum maps and of the Anderson model at the metal-insulator transition.
Lyapunov exponent of the random frequency oscillator: cumulant expansion approach
International Nuclear Information System (INIS)
Anteneodo, C; Vallejos, R O
2010-01-01
We consider a one-dimensional harmonic oscillator with a random frequency, focusing on both the standard and the generalized Lyapunov exponents, λ and λ* respectively. We discuss the numerical difficulties that arise in the numerical calculation of λ* in the case of strong intermittency. When the frequency corresponds to a Ornstein-Uhlenbeck process, we compute analytically λ* by using a cumulant expansion including up to the fourth order. Connections with the problem of finding an analytical estimate for the largest Lyapunov exponent of a many-body system with smooth interactions are discussed.
Grain-Size Dynamics Beneath Mid-Ocean Ridges: Implications for Permeability and Melt Extraction
Turner, A. J.; Katz, R. F.; Behn, M. D.
2014-12-01
The permeability structure of the sub-ridge mantle plays an important role in how melt is focused and extracted at mid-ocean ridges. Permeability is controlled by porosity and the grain size of the solid mantle matrix, which is in turn controlled by the deformation conditions. To date, models of grain size evolution and mantle deformation have not been coupled to determine the influence of spatial variations in grain-size on the permeability structure at mid-ocean ridges. Rather, current models typically assume a constant grain size for the whole domain [1]. Here, we use 2-D numerical models to evaluate the influence of grain-size variability on the permeability structure beneath a mid-ocean ridge and use these results to speculate on the consequences for melt focusing and extraction. We construct a two-dimensional, single phase model for the steady-state grain size beneath a mid-ocean ridge. The model employs a composite rheology of diffusion creep, dislocation creep, dislocation accommodated grain boundary sliding, and a brittle stress limiter. Grain size is calculated using the "wattmeter" model of Austin and Evans [2]. We investigate the sensitivity of the model to global variations in grain growth exponent, potential temperature, spreading-rate, and grain boundary sliding parameters [3,4]. Our model predicts that permeability varies by two orders of magnitude due to the spatial variability of grain size within the expected melt region of a mid-ocean ridge. The predicted permeability structure suggests grain size may promote focusing of melt towards the ridge axis. Furthermore, the calculated grain size structure should focus melt from a greater depth than models that exclude grain-size variability. Future work will involve evaluating this hypothesis by implementing grain-size dynamics within a two-phase mid-ocean ridge model. The developments of such a model will be discussed. References: [1] R. F. Katz, Journal of Petrology, volume 49, issue 12, page 2099
International Nuclear Information System (INIS)
Khan, R.U.; Khan, M.S.
2010-01-01
The high cost of inorganic fertilizer, use of natural fertilizer resources for increasing crop production on sustainable basis has become imperative. Two field experiments were conducted to study the potential of humic acid (HA) as a low-cost natural fertilizer and to determine its effect on the yield of rainfed wheat crop (Triticum aestivum L. cv. Naseer) at the research farm of Arid Zone Research Institute, Dera Ismail Khan during two successive winter seasons, 2007-08 and 2008-09. The treatments consisted of HA alone (3 kg ha/sup -1/ or 1.5 kg ha/sup -1/) and in combination with full (60:40 kg ha/sup -1/) and half (30:20 kg ha/sup -1/) the recommended rates of NP fertilizers. Results showed that in the first growing season (2007-08), the combination of 3 kg ha/sup -1/ HA with half (30:20 kg ha-1) rate of NP produced the highest grain yield (1314 kg ha/sup -1/) and increased the yield by 46.9% over the control. In the second growing season (2008-09), application of 3 kg ha/sup -1/ HA alone produced significantly (P<0.05) higher grain yield (2999.9 kg ha/sup -1/) and increased the yield by 24% over the control and saved 100% cost of the chemical fertilizer. Results suggested that HA applied alone at 3 kg ha/sup -1/ or in combination with half (30:20 kg ha/sup -1/) rate of NP fertilizers appeared to be the most economical rate to obtain the maximum yield of wheat under the rainfed conditions of Dera Ismail Khan. HA has great potential as a low cost natural fertilizer to improve soil fertility on sustainable basis. (author)
Lyapunov exponent for aging process in induction motor
Bayram, Duygu; Ünnü, Sezen Yıdırım; Şeker, Serhat
2012-09-01
Nonlinear systems like electrical circuits and systems, mechanics, optics and even incidents in nature may pass through various bifurcations and steady states like equilibrium point, periodic, quasi-periodic, chaotic states. Although chaotic phenomena are widely observed in physical systems, it can not be predicted because of the nature of the system. On the other hand, it is known that, chaos is strictly dependent on initial conditions of the system [1-3]. There are several methods in order to define the chaos. Phase portraits, Poincaré maps, Lyapunov Exponents are the most common techniques. Lyapunov Exponents are the theoretical indicator of the chaos, named after the Russian mathematician Aleksandr Lyapunov (1857-1918). Lyapunov Exponents stand for the average exponential divergence or convergence of nearby system states, meaning estimating the quantitive measure of the chaotic attractor. Negative numbers of the exponents stand for a stable system whereas zero stands for quasi-periodic systems. On the other hand, at least if one of the exponents is positive, this situation is an indicator of the chaos. For estimating the exponents, the system should be modeled by differential equation but even in that case mathematical calculation of Lyapunov Exponents are not very practical and evaluation of these values requires a long signal duration [4-7]. For experimental data sets, it is not always possible to acquire the differential equations. There are several different methods in literature for determining the Lyapunov Exponents of the system [4, 5]. Induction motors are the most important tools for many industrial processes because they are cheap, robust, efficient and reliable. In order to have healthy processes in industrial applications, the conditions of the machines should be monitored and the different working conditions should be addressed correctly. To the best of our knowledge, researches related to Lyapunov exponents and electrical motors are mostly
First-passage exponents of multiple random walks
International Nuclear Information System (INIS)
Ben-Naim, E; Krapivsky, P L
2010-01-01
We investigate first-passage statistics of an ensemble of N noninteracting random walks on a line. Starting from a configuration in which all particles are located in the positive half-line, we study S n (t), the probability that the nth rightmost particle remains in the positive half-line up to time t. This quantity decays algebraically, S n (t)∼t -β n , in the long-time limit. Interestingly, there is a family of nontrivial first-passage exponents, β 1 2 N-1 ; the only exception is the two-particle case where β 1 = 1/3. In the N → ∞ limit, however, the exponents attain a scaling form, β n (N) → β(z) with z=(n-N/2)/√N. We also demonstrate that the smallest exponent decays exponentially with N. We deduce these results from first-passage kinetics of a random walk in an N-dimensional cone and confirm them using numerical simulations. Additionally, we investigate the family of exponents that characterizes leadership statistics of multiple random walks and find that in this case, the cone provides an excellent approximation.
Density-scaling exponents and virial potential-energy correlation ...
Indian Academy of Sciences (India)
This paper investigates the relation between the density-scaling exponent γ and the virial potential energy correlation coefficient R at several thermodynamic state points in three dimensions for the generalized (2n, n) Lennard-Jones (LJ) system for n = 4, 9, 12, 18, as well as for the standard n = 6 LJ system in two,three, and ...
Nature of exponents found in the critical regime of YBCO
International Nuclear Information System (INIS)
Marhas, Manmeet Kaur; Saravanan, P.; Balakrishnan, K.; Srinivasan, R.; Kanjilal, D.; Metha, G.K.; Pai, S.P.; Pinto, R.; Vedvyas, M.; Ogale, S.B.; Mohan Rao, G.; Nathan, Senthil; Mohan, S.
1997-01-01
Full text: Fluctuation effects in electrical conductivity near T c is an important tool for studying the nature of phase transition in high T c ceramics. Probing critical regime by way of experiments demand data of good precision. Measurements were carried out on well characterised high T c films prepared by laser ablation and high pressure oxygen sputtering. High energy ion irradiation carried out to see the effect of disorder. Precise electrical resistivity measurements were carried out near T c with a temperature control accuracy better than 10 mK and large number of data points were collected in this regime. 100 MeV oxygen and 200 MeV Ag ions were used with varying fluences for irradiation at 77K. The data was analysed using existing models of critical fluctuation effects. The exponent of electrical conductivity in laser ablated thin films whose transition widths are less than 1 K was 1.33 and is independent of disorder caused by high energy ion irradiation and this could be identified as the exponent for excess conductivity in the critical intermediate charged fluctuation regime as proposed by Fisher. The exponent is around 2.7 in those films whose transition widths are greater than 1 K and also was independent of disorder and this could be identified as exponent in the para coherence regime
Analysis of Human Standing Balance by Largest Lyapunov Exponent
Directory of Open Access Journals (Sweden)
Kun Liu
2015-01-01
Full Text Available The purpose of this research is to analyse the relationship between nonlinear dynamic character and individuals’ standing balance by the largest Lyapunov exponent, which is regarded as a metric for assessing standing balance. According to previous study, the largest Lyapunov exponent from centre of pressure time series could not well quantify the human balance ability. In this research, two improvements were made. Firstly, an external stimulus was applied to feet in the form of continuous horizontal sinusoidal motion by a moving platform. Secondly, a multiaccelerometer subsystem was adopted. Twenty healthy volunteers participated in this experiment. A new metric, coordinated largest Lyapunov exponent was proposed, which reflected the relationship of body segments by integrating multidimensional largest Lyapunov exponent values. By using this metric in actual standing performance under sinusoidal stimulus, an obvious relationship between the new metric and the actual balance ability was found in the majority of the subjects. These results show that the sinusoidal stimulus can make human balance characteristics more obvious, which is beneficial to assess balance, and balance is determined by the ability of coordinating all body segments.
Inverted rank distributions: Macroscopic statistics, universality classes, and critical exponents
Eliazar, Iddo; Cohen, Morrel H.
2014-01-01
An inverted rank distribution is an infinite sequence of positive sizes ordered in a monotone increasing fashion. Interlacing together Lorenzian and oligarchic asymptotic analyses, we establish a macroscopic classification of inverted rank distributions into five “socioeconomic” universality classes: communism, socialism, criticality, feudalism, and absolute monarchy. We further establish that: (i) communism and socialism are analogous to a “disordered phase”, feudalism and absolute monarchy are analogous to an “ordered phase”, and criticality is the “phase transition” between order and disorder; (ii) the universality classes are characterized by two critical exponents, one governing the ordered phase, and the other governing the disordered phase; (iii) communism, criticality, and absolute monarchy are characterized by sharp exponent values, and are inherently deterministic; (iv) socialism is characterized by a continuous exponent range, is inherently stochastic, and is universally governed by continuous power-law statistics; (v) feudalism is characterized by a continuous exponent range, is inherently stochastic, and is universally governed by discrete exponential statistics. The results presented in this paper yield a universal macroscopic socioeconophysical perspective of inverted rank distributions.
Bayesian Estimation of the Logistic Positive Exponent IRT Model
Bolfarine, Heleno; Bazan, Jorge Luis
2010-01-01
A Bayesian inference approach using Markov Chain Monte Carlo (MCMC) is developed for the logistic positive exponent (LPE) model proposed by Samejima and for a new skewed Logistic Item Response Theory (IRT) model, named Reflection LPE model. Both models lead to asymmetric item characteristic curves (ICC) and can be appropriate because a symmetric…
Fermat's Last Theorem for Factional and Irrational Exponents
Morgan, Frank
2010-01-01
Fermat's Last Theorem says that for integers n greater than 2, there are no solutions to x[superscript n] + y[superscript n] = z[superscript n] among positive integers. What about rational exponents? Irrational n? Negative n? See what an undergraduate senior seminar discovered.
Directory of Open Access Journals (Sweden)
A Azari Nasrabad
2017-12-01
Full Text Available Introduction Osmotic adjustment in plants can be achieved by the accumulation of compatible solution or metabolites. These compounds are known as compatible metabolites that accumulate naturally in tolerant plants due to non-interference in the normal metabolic response of plants to adapt or supplement. Proline, soluble sugars and other metabolites accumulation that are involved in osmotic adjustment have been reported for various plants. Different studies show that water absorption in sorghum plant, is due to osmotic adjustment and appropriate and fairly extensive root system. Moreover, there are some differences from genotype to genotype regarding the osmolites accumulation under drought stress conditions. Thus, the aim of this study was to investigate the effects of drought in the vegetative and reproductive growth stages on yield, its components and biochemical traits in grain sorghum genotypes. Materials and Methods In order to evaluate the effect of water stress on grain yield and its components and some biochemical traits in grain sorghum genotypes (Sorghum bicolor L., a field experiment as a split plot design was carried out with 3 replications in 2014 at the research farm of the southern Khorasan Agriculture and natural resources research and education center. Water stress treatments including normal irrigation (control, irrigation cut off in vegetative growth stage (emergence of terminal leaf as rolled and irrigation cut off in generative growth stage (50% of plants in start of flowering as the main plot and 10 genotypes of sorghum including KGS29, MGS2, Sepideh, KGFS27, MGS5, KGFS5, KGFS17, KGFS13 and KGFS30 were considered as sub plots. Each plot consists of 4 rows with a length of 6 m and row spacing of 60 cm, between plants on row was 10 cm. In addition, between each plot and the adjacent plot a row was considered to side effect reduction. To determine the yield components of each plot, half a meter in length was harvested and the
Kim, Youngwoo; Moyen, Eric; Yi, Hemian; Avila, José; Chen, Chaoyu; Asensio, Maria C.; Lee, Young Hee; Pribat, Didier
2018-07-01
We propose a novel growth technique, in which graphene is synthesized on capped Cu thin films deposited on c-plane sapphire. The cap is another sapphire plate which is just laid upon the Cu thin film, in direct contact with it. Thanks to this ‘contact cap’, Cu evaporation can be suppressed at high temperature and the 400 nm-thick Cu films can be annealed above 1000 °C, resulting in (1 1 1)-oriented grains of millimeter size. Following this high temperature annealing, graphene is grown by chemical vapor deposition during the same pump-down operation, without removing the contact cap. The orientation and doping type of the as-grown graphene were first studied, using low energy electron diffraction, as well as high resolution angle-resolved photoemission spectroscopy. In particular, the orientation relationships between the graphene and copper thin film with respect to the sapphire substrate were precisely determined. We find that the graphene sheets exhibit a minimal rotational disorder, with ~90% of the grains aligned along the copper high symmetry direction. Detailed transport measurements were also performed using field-effect transistor structures. Carrier mobility values as high as 8460 cm2 V‑1 s‑1 have been measured on top gate transistors fabricated directly on the sapphire substrate, by etching the Cu film from underneath the graphene sheets. This is by far the best carrier mobility value obtained to date for graphene sheets synthesized on a thin film-type metal substrate.
Directory of Open Access Journals (Sweden)
Gontijo Guilherme L.
2017-01-01
Full Text Available We report results concerning the fractal dimension of a air/fluid interface formed during the capillary rising of a fluid into a dense granular media. The system consists in a modified Hele-Shaw cell filled with grains at different granulometries and confined in a narrow gap between the glass plates. The system is then placed onto a water reservoir, and the liquid penetrates the medium due to capillary forces. We measure the Hurst exponent of the liquid/air interface with help of image processing, and follow the temporal evolution of the profiles. We observe that the Hurst exponent can be related with the granulometry, but the range of values are odd to the predicted values from models or theory.
International Nuclear Information System (INIS)
Sanders, Sören; Holthaus, Martin
2017-01-01
We study the connection between the exponent of the order parameter of the Mott insulator-to-superfluid transition occurring in the two-dimensional Bose–Hubbard model, and the divergence exponents of its one- and two-particle correlation functions. We find that at the multicritical points all divergence exponents are related to each other, allowing us to express the critical exponent in terms of one single divergence exponent. This approach correctly reproduces the critical exponent of the three-dimensional XY universality class. Because divergence exponents can be computed in an efficient manner by hypergeometric analytic continuation, our strategy is applicable to a wide class of systems. (paper)
Sanders, Sören; Holthaus, Martin
2017-10-01
We study the connection between the exponent of the order parameter of the Mott insulator-to-superfluid transition occurring in the two-dimensional Bose-Hubbard model, and the divergence exponents of its one- and two-particle correlation functions. We find that at the multicritical points all divergence exponents are related to each other, allowing us to express the critical exponent in terms of one single divergence exponent. This approach correctly reproduces the critical exponent of the three-dimensional XY universality class. Because divergence exponents can be computed in an efficient manner by hypergeometric analytic continuation, our strategy is applicable to a wide class of systems.
Effects of MnO-Al2O3 on the grain growth and high-temperature deformation strain of UO2 fuel pellets
International Nuclear Information System (INIS)
Kang, Ki Won; Yang, Jae Ho; Kim, Jong Hun; Rhee, Young Woo; Kim, Dong Joo; Kim, Keon Sik; Song, Kun Woo
2010-01-01
The fabrication and high-temperature deformation strain of MnO-Al 2 O 3 -doped UO 2 pellets were studied. The effects of additive composition and amount on the microstructure evolution of a UO 2 pellet were investigated. The compressive creep behaviors of MnO-Al 2 O 3 -doped UO 2 pellets were examined. The results indicated that a MnO-Al 2 O 3 binary additive can effectively promote the grain growth of UO 2 pellets. In addition, the high-temperature deformation strain of the UO 2 pellet can be improved significantly with 1,000 ppm 95MnO-5Al 2 O 3 (mol%). The developed MnO-Al 2 O 3 -additive-containing UO 2 pellets can be a potential candidate for a high-burn-up fuel and a pellet-cladding interaction (PCI) remedy. (author)
Directory of Open Access Journals (Sweden)
Šárka Hošková
2010-01-01
Full Text Available The effect of distillers dried grains with solubles (DDGS in broiler feed mixtures on the performance was studied in an experiment with 1000 male broiler chickens Ross 308 from 12 to 35 days of age. DDGS were produced from wheat (90 % and triticale (10 %. Cockerels were divided into 5 groups and were housed on deep litter. Experimental feed mixtures were formulated to contain: 0, 10, 15, 20 and 25 % DDGS and were calculated as iso-nitrogenous. Weighing of chickens was realized at the 12th, 26th and 35th day of age. Control group of cockerels (0 % DDGS had the highest final live weight and its average daily weight gain was significantly higher (P < 0.01 than in birds from groups with 10, 15 and 25 % DDGS. Broilers from control group (0 % DDGS had the highest consumption of dry matter of feed mixture per bird. There were no significantly differences in feed consumption per bird and in feed conversion between groups. The results show that incorporation from 10 to 25 % DDGS decreased final weights and weight gains however there were no significantly differences in feed consumption and feed conversion.
Some existence results for a fourth order equation involving critical exponent
Ben-Ayed, M; Hammami, M
2003-01-01
In this paper a fourth order equation involving critical growth is considered under the Navier boundary condition: DELTA sup 2 u = Ku sup p , u > 0 in OMEGA, u = DELTA u = 0 on partial deriv OMEGA, where K is a positive function, OMEGA is a bounded smooth domain in R sup n , n >= 5 and p + 1 2n/(n - 4) is the critical Sobolev exponent. We give some topological conditions on K to ensure the existence of solutions. Our methods involve the study of the critical points at infinity and their contribution to the topology of the level sets of the associated Euler Lagrange functional.
Modulational estimate for the maximal Lyapunov exponent in Fermi-Pasta-Ulam chains
Dauxois, Thierry; Ruffo, Stefano; Torcini, Alessandro
1997-12-01
In the framework of the Fermi-Pasta-Ulam (FPU) model, we show a simple method to give an accurate analytical estimation of the maximal Lyapunov exponent at high energy density. The method is based on the computation of the mean value of the modulational instability growth rates associated to unstable modes. Moreover, we show that the strong stochasticity threshold found in the β-FPU system is closely related to a transition in tangent space, the Lyapunov eigenvector being more localized in space at high energy.
Bengoa, Ana A; Llamas, M Goretti; Iraporda, Carolina; Dueñas, M Teresa; Abraham, Analía G; Garrote, Graciela L
2018-02-01
EPS-producing LAB are widely used in the dairy industry since these polymers improve the viscosity and texture of the products. Besides, EPS might be responsible for several health benefits attributed to probiotic strains. However, growth conditions (culture media, temperature, pH) could modify EPS production affecting both technological and probiotic properties. In this work, the influence of growth temperature on EPS production was evaluated, as well as the consequences of these changes in the probiotic properties of the strains. All Lactobacillus paracasei strains used in the study showed changes in EPS production caused by growth temperature, evidenced by the appearance of a high molecular weight fraction and an increment in the total amount of produced EPS at lower temperature. Nevertheless, these changes do not affect the probiotic properties of the strains; L. paracasei strains grown at 20 °C, 30 °C and 37 °C were able to survive in simulated gastrointestinal conditions, to adhere to Caco-2 cells after that treatment and to modulate the epithelial innate immune response. The results suggest that selected L. paracasei strains are new probiotic candidates that can be used in a wide range of functional foods in which temperature could be used as a tool to improve the technological properties of the product. Copyright © 2017 Elsevier Ltd. All rights reserved.
Manthey, A K; Anderson, J L
2018-01-01
The objective of this study was to determine the effects of feeding a corn- and soybean-product-based concentrate mix or distillers dried grains with solubles concentrate mix with ad libitum grass hay to dairy heifers. A 16-wk randomized complete block design study was conducted using 24 heifers [18 Holstein and 6 Brown Swiss; 219 ± 2 d of age (±standard deviation); 230 ± 4 kg of body weight] to evaluate the effect of diet on dry matter intake (DMI), growth performance, rumen fermentation, metabolic profile, and nutrient digestibility. Treatments were (1) corn and soybean product concentrate mix, and (2) distillers-dried-grains-with-solubles-based concentrate mix (DDG). Both concentrate mixes were limit-fed at 0.8% of body weight and grass hay was offered ad libitum. Heifers were individually fed using Calan gates and orts were recorded daily at feeding. Heifers were weighed every 2 wk and ration concentrate mix offered was adjusted accordingly. Frame measurements and body condition score were recorded every 2 wk. Rumen fluid was collected via esophageal tubing during wk 12 and 16 for pH, ammonia N, and volatile fatty acid analysis. Jugular blood samples were collected every 4 wk for metabolite and metabolic hormone analysis. Total-tract digestibility of nutrients was evaluated during wk 16 by fecal grab sampling. No treatment by week interactions were observed for any of the growth measurements and growth measurements and DMI did not differ between treatments. A treatment by time interaction was observed for rumen butyrate percentage with heifers fed DDG having a greater percentage. Total volatile fatty acid concentration, acetate molar percentage, and acetate:propionate decreased with the DDG treatment, whereas propionate molar percentage increased. No treatment by week interactions were observed for any of the metabolites or metabolic hormones measured. A tendency was observed for glucose and plasma urea nitrogen concentration to decrease with DDG. Plasma
GRAIN GROWTH IN THE CIRCUMSTELLAR DISKS OF THE YOUNG STARS CY Tau AND DoAr 25
Energy Technology Data Exchange (ETDEWEB)
Pérez, Laura M.; Chandler, Claire J. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Isella, Andrea [Rice University, 6100 Main Street, Houston, TX 77005 (United States); Carpenter, John M.; Sargent, Anneila I. [California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125 (United States); Andrews, Sean M.; Ricci, Luca [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Calvet, Nuria [University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Corder, Stuartt A. [Joint ALMA Observatory, Av. Alonso de Córdova 3107, Vitacura, Santiago (Chile); Deller, Adam T. [The Netherlands Institute for Radio Astronomy (ASTRON), 7990-AA Dwingeloo (Netherlands); Dullemond, Cornelis P. [Heidelberg University, Center for Astronomy, Albert Ueberle Str 2, Heidelberg (Germany); Greaves, Jane S. [University of St. Andrews, Physics and Astronomy, North Haugh, St. Andrews KY16 9SS (United Kingdom); Harris, Robert J. [University of Illinois, 1002 West Green St., Urbana, IL 61801 (United States); Henning, Thomas; Linz, Hendrik [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Kwon, Woojin [Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 34055 (Korea, Republic of); Lazio, Joseph [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91106 (United States); Mundy, Lee G.; Storm, Shaye [University of Maryland, College Park, MD 20742 (United States); Tazzari, Marco [European Southern Observatory, Karl Schwarzschild str. 2, D-85748 Garching (Germany); and others
2015-11-01
We present new results from the Disks@EVLA program for two young stars: CY Tau and DoAr 25. We trace continuum emission arising from their circusmtellar disks from spatially resolved observations, down to tens of AU scales, at λ = 0.9, 2.8, 8.0, 9.8 mm for DoAr 25 and at λ = 1.3, 2.8, 7.1 mm for CY Tau. Additionally, we constrain the amount of emission whose origin is different from thermal dust emission from 5 cm observations. Directly from interferometric data, we find that observations at 7 mm and 1 cm trace emission from a compact disk while millimeter-wave observations trace an extended disk structure. From a physical disk model, where we characterize the disk structure of CY Tau and DoAr 25 at wavelengths shorter than 5 cm, we find that (1) dust continuum emission is optically thin at the observed wavelengths and over the spatial scales studied, (2) a constant value of the dust opacity is not warranted by our observations, and (3) a high-significance radial gradient of the dust opacity spectral index, β, is consistent with the observed dust emission in both disks, with low-β in the inner disk and high-β in the outer disk. Assuming that changes in dust properties arise solely due to changes in the maximum particle size (a{sub max}), we constrain radial variations of a{sub max} in both disks, from cm-sized particles in the inner disk (R < 40 AU) to millimeter sizes in the outer disk (R > 80 AU). These observational constraints agree with theoretical predictions of the radial-drift barrier, however, fragmentation of dust grains could explain our a{sub max}(R) constraints if these disks have lower turbulence and/or if dust can survive high-velocity collisions.
Energy Technology Data Exchange (ETDEWEB)
Hoyle, F.; Wickramasinghe, N.C.
1980-11-01
Interstellar extinction of starlight was observed and plotted as a function of inverse wavelength. Agreement with the calculated effects of the particle distribution is shown. The main kinds of grain distinguished are: (1) graphite spheres of radius 0.02 microns, making up 10% of the total grain mass (2) small dielectric spheres of radius 0.04 microns making up 25% and (3) hollow dielectric cylinders containing metallic iron, with diameters of 2/3 microns making up 45%. The remaining 20% consists of other metals, metal oxides, and polysiloxanes. Absorption factor evidence suggests that the main dielectric component of the grains is organic material.
Lyapunov exponents a tool to explore complex dynamics
Pikovsky, Arkady
2016-01-01
Lyapunov exponents lie at the heart of chaos theory, and are widely used in studies of complex dynamics. Utilising a pragmatic, physical approach, this self-contained book provides a comprehensive description of the concept. Beginning with the basic properties and numerical methods, it then guides readers through to the most recent advances in applications to complex systems. Practical algorithms are thoroughly reviewed and their performance is discussed, while a broad set of examples illustrate the wide range of potential applications. The description of various numerical and analytical techniques for the computation of Lyapunov exponents offers an extensive array of tools for the characterization of phenomena such as synchronization, weak and global chaos in low and high-dimensional set-ups, and localization. This text equips readers with all the investigative expertise needed to fully explore the dynamical properties of complex systems, making it ideal for both graduate students and experienced researchers...
Critical exponents for the Reggeon quantum spin model
International Nuclear Information System (INIS)
Brower, R.C.; Furman, M.A.
1978-01-01
The Reggeon quantum spin (RQS) model on the transverse lattice in D dimensional impact parameter space has been conjectured to have the same critical behaviour as the Reggeon field theory (RFT). Thus from a high 'temperature' series of ten (D=2) and twenty (D=1) terms for the RQS model the authors extrapolate to the critical temperature T=Tsub(c) by Pade approximants to obtain the exponents eta=0.238 +- 0.008, z=1.16 +- 0.01, γ=1.271 +- 0.007 for D=2 and eta=0.317 +- 0.002, z=1.272 +- 0.007, γ=1.736 +- 0.001, lambda=0.57 +- 0.03 for D=1. These exponents naturally interpolate between the D=0 and D=4-epsilon results for RFT as expected on the basis of the universality conjecture. (Auth.)
Scaling exponents for fracture surfaces in opal glass
International Nuclear Information System (INIS)
Chavez-Guerrero, L.; Garza, F.J.; Hinojosa, M.
2010-01-01
We have investigated the scaling properties of fracture surfaces in opal glass. Specimens with two different opacifying particle sizes (1 μm and 0.4 μm) were broken by three-point bending test and the resulting fracture surfaces were analyzed using Atomic Force Microscopy. The analysis of the self-affine behavior was performed using the Variable Bandwidth and Height-Height Correlation Methods, and both the roughness exponent, ζ, and the correlation length, ξ, were determined. It was found that the roughness exponent obtained in both samples is ζ ∼ 0.8; whereas the correlation length in both fractures is of the order of the particle size, demonstrating the dependence of this self-affine parameter on the microstructure of opal glass.
Scaling exponents for fracture surfaces in opal glass
Energy Technology Data Exchange (ETDEWEB)
Chavez-Guerrero, L., E-mail: guerreroleo@hotmail.com [Facultad de Ingenieria Mecanica y Electrica. Cd. Universitaria s/n, C.P. 66450, Universidad Autonoma de Nuevo Leon, Nuevo Leon (Mexico); Center of Innovation, Research and Development on Engineering and Technology, Universidad Autonoma de Nuevo Leon Monterrey, C.P. 66600, Apodaca, Nuevo Leon (Mexico); Garza, F.J., E-mail: fjgarza@gama.fime.uanl.mx [Facultad de Ciencias Quimicas, Cd. Universitaria s/n, C.P. 66450, Universidad Autonoma de Nuevo Leon, Nuevo Leon (Mexico); Hinojosa, M., E-mail: hinojosa@gama.fime.uanl.mx [Facultad de Ingenieria Mecanica y Electrica. Cd. Universitaria s/n, C.P. 66450, Universidad Autonoma de Nuevo Leon, Nuevo Leon (Mexico); Center of Innovation, Research and Development on Engineering and Technology, Universidad Autonoma de Nuevo Leon Monterrey, C.P. 66600, Apodaca, Nuevo Leon (Mexico)
2010-09-25
We have investigated the scaling properties of fracture surfaces in opal glass. Specimens with two different opacifying particle sizes (1 {mu}m and 0.4 {mu}m) were broken by three-point bending test and the resulting fracture surfaces were analyzed using Atomic Force Microscopy. The analysis of the self-affine behavior was performed using the Variable Bandwidth and Height-Height Correlation Methods, and both the roughness exponent, {zeta}, and the correlation length, {xi}, were determined. It was found that the roughness exponent obtained in both samples is {zeta} {approx} 0.8; whereas the correlation length in both fractures is of the order of the particle size, demonstrating the dependence of this self-affine parameter on the microstructure of opal glass.
On generalized scaling laws with continuously varying exponents
International Nuclear Information System (INIS)
Sittler, Lionel; Hinrichsen, Haye
2002-01-01
Many physical systems share the property of scale invariance. Most of them show ordinary power-law scaling, where quantities can be expressed as a leading power law times a scaling function which depends on scaling-invariant ratios of the parameters. However, some systems do not obey power-law scaling, instead there is numerical evidence for a logarithmic scaling form, in which the scaling function depends on ratios of the logarithms of the parameters. Based on previous ideas by Tang we propose that this type of logarithmic scaling can be explained by a concept of local scaling invariance with continuously varying exponents. The functional dependence of the exponents is constrained by a homomorphism which can be expressed as a set of partial differential equations. Solving these equations we obtain logarithmic scaling as a special case. The other solutions lead to scaling forms where logarithmic and power-law scaling are mixed
Estimation of Hurst Exponent for the Financial Time Series
Kumar, J.; Manchanda, P.
2009-07-01
Till recently statistical methods and Fourier analysis were employed to study fluctuations in stock markets in general and Indian stock market in particular. However current trend is to apply the concepts of wavelet methodology and Hurst exponent, see for example the work of Manchanda, J. Kumar and Siddiqi, Journal of the Frankline Institute 144 (2007), 613-636 and paper of Cajueiro and B. M. Tabak. Cajueiro and Tabak, Physica A, 2003, have checked the efficiency of emerging markets by computing Hurst component over a time window of 4 years of data. Our goal in the present paper is to understand the dynamics of the Indian stock market. We look for the persistency in the stock market through Hurst exponent and fractal dimension of time series data of BSE 100 and NIFTY 50.
Determination of critical exponents of inhomogeneous Gd films
Energy Technology Data Exchange (ETDEWEB)
Rosales-Rivera, A., E-mail: arosalesr@unal.edu.co [Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Sede Manizales, Manizales (Colombia); Salazar, N.A. [Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Sede Manizales, Manizales (Colombia); Hovorka, O.; Idigoras, O.; Berger, A. [CIC nanoGUNE Consolider, Tolosa Hiribidea 76, E-20018 Donostia-San Sebastian (Spain)
2012-08-15
The role of inhomogeneity on the critical behavior is studied for non-epitaxial Gd films. For this purpose, the film inhomogeneity was varied experimentally by annealing otherwise identical samples at different temperatures T{sub AN}=200, 400, and 500 Degree-Sign C. Vibrating sample magnetometry (VSM) was used for magnetization M vs. T measurements at different external fields H. A method based upon the linear superposition of different sample parts having different Curie temperatures T{sub C} was used to extract the critical exponents and the intrinsic distribution of Curie temperatures. We found that this method allows extracting reliable values of the critical exponents for all annealing temperatures, which enabled us to study the effects of disorder onto the universality class of Gd films.
Determination of critical exponents of inhomogeneous Gd films
International Nuclear Information System (INIS)
Rosales-Rivera, A.; Salazar, N.A.; Hovorka, O.; Idigoras, O.; Berger, A.
2012-01-01
The role of inhomogeneity on the critical behavior is studied for non-epitaxial Gd films. For this purpose, the film inhomogeneity was varied experimentally by annealing otherwise identical samples at different temperatures T AN =200, 400, and 500 °C. Vibrating sample magnetometry (VSM) was used for magnetization M vs. T measurements at different external fields H. A method based upon the linear superposition of different sample parts having different Curie temperatures T C was used to extract the critical exponents and the intrinsic distribution of Curie temperatures. We found that this method allows extracting reliable values of the critical exponents for all annealing temperatures, which enabled us to study the effects of disorder onto the universality class of Gd films.
New relation for critical exponents in the Ising model
International Nuclear Information System (INIS)
Pishtshev, A.
2007-01-01
The Ising model in a transverse field is considered at T=0. From the analysis of the power low behaviors of the energy gap and the order parameter as functions of the field a new relation between the respective critical exponents, β>=1/(8s 2 ), is derived. By using the Suzuki equivalence from this inequality a new relation for critical exponents in the Ising model, β>=1/(8ν 2 ), is obtained. A number of numerical examples for different cases illustrates the generality and validity of the relation. By applying this relation the estimation ν=(1/4) 1/3 ∼0.62996 for the 3D-Ising model is proposed
International Nuclear Information System (INIS)
Depinoy, Sylvain
2015-01-01
This work aims at optimizing tensile and toughness properties of a 2.25Cr - 1Mo steel by controlling its microstructure through heat treatments. To this aim, phase transformations during austenitization, quenching and tempering have to be understood. Quantitative microstructural analyses were performed by means of SEM, TEM and XRD to characterize and model metallurgical evolution of the steel at each step of the heat treatment. The evolution of austenite during the austenitization stage, and its influence on the resulting as-quenched microstructure were thoroughly investigated. Austenite grain growth was modelled in order to understand its mechanisms, including the limited growth phenomenon observed at lower temperatures. The effect of austenitization conditions on further decomposition of austenite and on mechanical properties after quenching + tempering was experimentally determined. An optimal austenitization condition was selected and applied to study the tempering stage. Carbide precipitation was studied for various tempering temperatures and amounts of time. M3C carbides precipitate first, followed by M2C and M7C3; M23C6 are the equilibrium carbides. The influence of carbide precipitation on mechanical properties was studied. Tensile properties are closely linked to the tempering conditions in the range investigated, while impact toughness remains stable. (author) [fr
Lyapunov exponent and topological entropy plateaus in piecewise linear maps
International Nuclear Information System (INIS)
Botella-Soler, V; Oteo, J A; Ros, J; Glendinning, P
2013-01-01
We consider a two-parameter family of piecewise linear maps in which the moduli of the two slopes take different values. We provide numerical evidence of the existence of some parameter regions in which the Lyapunov exponent and the topological entropy remain constant. Analytical proof of this phenomenon is also given for certain cases. Surprisingly however, the systems with that property are not conjugate as we prove by using kneading theory. (paper)
Spectrum-based estimators of the bivariate Hurst exponent
Czech Academy of Sciences Publication Activity Database
Krištoufek, Ladislav
2014-01-01
Roč. 90, č. 6 (2014), art. 062802 ISSN 1539-3755 R&D Projects: GA ČR(CZ) GP14-11402P Institutional support: RVO:67985556 Keywords : bivariate Hurst exponent * power- law cross-correlations * estimation Subject RIV: AH - Economics Impact factor: 2.288, year: 2014 http://library.utia.cas.cz/separaty/2014/E/kristoufek-0436818.pdf
On Hurst exponent estimation under heavy-tailed distributions
Czech Academy of Sciences Publication Activity Database
Baruník, Jozef; Krištoufek, Ladislav
2010-01-01
Roč. 389, č. 18 (2010), s. 3844-3855 ISSN 0378-4371 R&D Projects: GA ČR GA402/09/0965 Grant - others:GA UK(CZ) 118310; GA UK(CZ) 46108 Institutional research plan: CEZ:AV0Z10750506 Keywords : high frequency data analysis * heavy tails * Hurst exponent Subject RIV: AH - Economics Impact factor: 1.521, year: 2010 http://library.utia.cas.cz/separaty/2010/E/barunik-0343525.pdf
International Nuclear Information System (INIS)
Wu, Bing-Rui; Lo, Shih-Yung; Wuu, Dong-Sing; Ou, Sin-Liang; Mao, Hsin-Yuan; Wang, Jui-Hao; Horng, Ray-Hua
2012-01-01
Large grain polycrystalline silicon (poly-Si) films on glass substrates have been deposited on an aluminum-induced crystallization (AIC) seed layer using hot-wire chemical vapor deposition (HWCVD). A poly-Si seed layer was first formed by the AIC process and a thicker poly-Si film was subsequently deposited upon the seed layer using HWCVD. The effects of AIC annealing parameters on the structural and electrical properties of the poly-Si seed layers were characterized by Raman scattering spectroscopy, field-emission scanning electron microscopy, and Hall measurements. It was found that the crystallinity of seed layer was enhanced with increasing the annealing duration and temperature. The poly-Si seed layer formed at optimum annealing parameters can reach a grain size of 700 nm, hole concentration of 3.5 × 10 18 cm −3 , and Hall mobility of 22 cm 2 /Vs. After forming the seed layer, poly-Si films with good crystalline quality and high growth rate (> 1 nm/s) can be obtained using HWCVD. These results indicated that the HWCVD-deposited poly-Si film on an AIC seed layer could be a promising candidate for thin-film Si photovoltaic applications. - Highlights: ►Poly-Si seed layers are formed by aluminum-induced crystallization (AIC) process. ►Poly-Si on AIC seed layers are prepared by hot-wire chemical vapor deposition. ►AIC process parameters affect structural properties of poly-Si films. ►Increasing the annealing duration and temperature increases the film crystallinity.
Schroeder, A R; Duckworth, M J; Shike, D W; Schoonmaker, J P; Felix, T L
2014-10-01
The objectives of this study were to determine the effects of feeding dried corn distillers grains (DDGS) or modified wet corn distillers grains (MDGS) with or without CaO treatment to feedlot steers on 1) growth performance and carcass characteristics and 2) diet digestibility, pattern of intake, and meal distribution. In Exp. 1, steers (n = 139; average initial BW = 336 ± 75 kg) were used in a randomized complete block design. Treatments were arranged in a 2 × 2 factorial design, and pens were randomly allotted to 1 of the 4 dietary treatments (DM basis): 1) 50% DDGS untreated, 2) 48.8% DDGS treated with 1.2% CaO, 3) 50% MDGS untreated, or 4) 48.8% MDGS treated with 1.2% CaO. The remainder of the diet was corn husklage, dry rolled corn, and vitamin and mineral supplement. In Exp. 2, fistulated steers (n = 8; average initial BW = 540 ± 250 kg) were used in a replicated 4 × 4 Latin square design with the same dietary treatments as in Exp. 1. There was no interaction (P ≥ 0.14) between distillers grains plus solubles (DGS) and CaO inclusion for DMI, ADG, final BW, or USDA yield and quality grades. However, steers fed CaO-treated DGS had decreased (P < 0.01) DMI, regardless of DGS type. Because CaO treatment decreased DMI without affecting (P = 0.66) ADG, steers fed CaO-treated DGS had increased (P < 0.01) G:F compared to steers not fed CaO. The variation in DMI found in this experiment could be explained by differences in meal size and distribution. Steers fed CaO-treated DGS ate a similar (P = 0.36) number of meals but ate smaller (P < 0.01) meals. No effects (P ≥ 0.55) of CaO treatment or its interaction with DGS type were found for apparent total tract DM or NDF digestibility. However, steers fed MDGS had increased (P < 0.01) NDF digestibility compared to steers fed DDGS. In conclusion, CaO treatment of DGS improved feed efficiency when DGS-based diets were fed but did not improve digestibility.
Lipid peroxidation in animal feed can negatively affect growth performance and meat quality. Weanling pigs (n = 432; BW = 6.6 ± 0.4 kg) were used to evaluate the effects of feeding a peroxidized dried distillers grains with solubles (DDGS) source with three levels of vitamin E (a-tocopheryl acetate)...
The ability of enzymes, direct fed microbials, or yeast to enhance nutrient utilization or growth performance in nursery or finishing pigs fed diets containing increased levels of corn fiber from dried distillers grains with solubles (DDGS) is largely unknown. Ten commercially available feed additiv...
Makarava, Natallia; Menz, Stephan; Theves, Matthias; Huisinga, Wilhelm; Beta, Carsten; Holschneider, Matthias
2014-10-01
Amoebae explore their environment in a random way, unless external cues like, e.g., nutrients, bias their motion. Even in the absence of cues, however, experimental cell tracks show some degree of persistence. In this paper, we analyzed individual cell tracks in the framework of a linear mixed effects model, where each track is modeled by a fractional Brownian motion, i.e., a Gaussian process exhibiting a long-term correlation structure superposed on a linear trend. The degree of persistence was quantified by the Hurst exponent of fractional Brownian motion. Our analysis of experimental cell tracks of the amoeba Dictyostelium discoideum showed a persistent movement for the majority of tracks. Employing a sliding window approach, we estimated the variations of the Hurst exponent over time, which allowed us to identify points in time, where the correlation structure was distorted ("outliers"). Coarse graining of track data via down-sampling allowed us to identify the dependence of persistence on the spatial scale. While one would expect the (mode of the) Hurst exponent to be constant on different temporal scales due to the self-similarity property of fractional Brownian motion, we observed a trend towards stronger persistence for the down-sampled cell tracks indicating stronger persistence on larger time scales.
Gordon, L J; DeVries, T J
2016-08-01
This study was designed to determine the effect of adding a molasses-based liquid feed (LF) supplement to a high-grain mixed ration on the feed sorting behavior and growth of grain-fed veal calves. Twenty-four Holstein bull veal calves (90.2 ± 2.6 d of age, weighing 137.5 ± 16.9 kg) were split into groups of 4 and exposed, in a crossover design with 35-d periods, to each of 2 treatment diets: 1) control diet (76.0% high-moisture corn, 19.0% protein supplement, and 5.0% alfalfa/grass haylage) and 2) LF diet (68.4% corn, 17.1% protein supplement, 9.0% molasses-based LF, and 4.5% alfalfa/grass haylage). Diets were designed to support 1.5 kg/d of growth. Data were collected for the final 3 wk of each treatment period. Feed intakes were recorded daily and calves were weighed 2 times/wk. Feed samples of fresh feed and refusals were collected 3 times/wk for particle size analysis. The particle size separator had 3 screens (19, 8, and 1.18 mm) and a bottom pan, resulting in 4 fractions (long, medium, short, and fine). Sorting was calculated as the actual intake of each fraction expressed as a percent of its predicted intake. Calves tended ( = 0.08) to sort for long particles on the control diet (110.5%) and did not sort these particles on the LF diet (96.8%). Sorting for medium particles (102.6%) was similar ( = 0.9) across diets. Calves sorted against short particles on the LF diet (97.5%; = 0.04) but did not sort this fraction on the control diet (99.4%). Calves sorted against fine particles (79.3%) to a similar extent ( = 0.2) on both diets. Dry matter intake was similar across diets (6.1 kg/d; = 0.9), but day-to-day variability in DMI was greater (0.5 vs. 0.4 kg/d; = 0.04) when calves were fed the control compared with the LF diet. Calves on both diets had similar ADG (1.6 kg/d; = 0.8) as well as within-pen variability in ADG (0.4 kg/d; = 0.7). The feed-to-gain ratio was also similar between control and LF diets (4.3 vs. 3.9 kg DM/kg gain; = 0.4). The results suggest
Bakhshandeh, E; Rahimian, H; Pirdashti, H; Nematzadeh, G A
2015-11-01
This study aimed to evaluate the efficiency of four phosphate-solubilizing bacteria (PSB) on the growth and yield of rice under different soil conditions. Bacterial strains were Rahnella aquatillis (KM977991), Enterobacter sp. (KM977992), Pseudomonas fluorescens and Pseudomonas putida. These studies were conducted on different rice cultivars ('Shiroodi', 'Tarom' and 'Tarom Hashemi') in both pot and field experiments. Measurements started from transplanting and continued throughout the growing season in field experiments. Single PSB inoculations in field trials increased grain yield, biological yield, total number of stems hill(-1) , number of panicles hill(-1) and plant height by 8·50-26·9%, 12·4-30·9%, 20·3-38·7%, 22·1-36·1% and 0·85-3·35% in experiment 1, by 7·74-14·7%, 4·22-12·6%, 6·67-16·7%, 4·0-15·4% and 3·15-4·20% in experiment 2 and by 23·4-37%, 16·1-36·4%, 30·2-39·1%, 28·8-34% and 2·11-4·55% in experiment 3, respectively, compared to the control. Our results indicate that the application of triple super phosphate together with PSB inoculations resulted in reducing the use of chemical fertilizers (about 67%) and increasing fertilizer use efficiency. This study clearly indicates that these PSBs can be used as biofertilizers in ecological rice agricultural systems. To the best of our knowledge, this is first report on the association of Rahnella aquatilis with rice and also the application of a mathematical model to evaluate the effect of PSBs on rice growth. © 2015 The Society for Applied Microbiology.
Opheim, T L; Campanili, P R B; Lemos, B J M; Ovinge, L A; Baggerman, J O; McCuistion, K C; Galyean, M L; Sarturi, J O; Trojan, S J
2016-01-01
Crossbred steers (British × Continental; = 192; initial BW 391 ± 28 kg) were used to evaluate the effects of feeding ethanol coproducts on feedlot cattle growth performance, apparent nutrient digestibility, and carcass characteristics. Steers were blocked by initial BW and assigned randomly to 1 of 6 dietary treatments within block. Treatments (replicated in 8 pens with 4 steers/pen) included 1) control, steam-flaked corn-based diet (CTL), 2) corn dried distillers grains with solubles (DGS; DRY-C), 3) deoiled corn dried DGS (DRY-CLF), 4) blended 50/50 corn/sorghum dried DGS (DRY-C/S), 5) sorghum dried DGS (DRY-S), and 6) sorghum wet DGS (WET-S). Inclusion of DGS was 25% (DM basis). The DGS diets were isonitrogenous, CTL was formulated for 13.5% CP, and all diets were balanced for ether extract. Final shrunk BW, ADG, and DMI did not differ among CTL and DGS treatments ( ≥ 0.19). Overall G:F did not differ from CTL for DRY-C, DRY-CLF, or WET-S ( ≥ 0.12); however, G:F was 9.6% less for DRY-S compared with CTL ( carcass-adjusted G:F vs. DRY-S. For WET-S, final BW and ADG were greater ( Carcass weight, dressing percent, and marbling score did not differ between CTL and DGS diets ( ≥ 0.23). For DRY-S, HCW was lower than for DRY-C ( = 0.02); however, compared with DRY-S, HCW tended to be greater for DRY-C/S ( = 0.10) and WET-S ( = 0.07). At a moderately high (25% DM) inclusion, blending C/S or feeding WET-S resulted in cattle growth performance and carcass characteristics similar to those of CTL and corn-based coproducts.
Duttlinger, A J; Derouchey, J M; Tokach, M D; Dritz, S S; Goodband, R D; Nelssen, J L; Houser, T A; Sulabo, R C
2012-03-01
This study was conducted to determine the effects of dietary crude glycerol and dried distillers grains with solubles (DDGS) on growing-finishing pig performance, carcass characteristics, and carcass fat quality. We hypothesized that because dietary crude glycerol has been observed to increase carcass SFA, it might ameliorate the negative effects of DDGS on fat quality. The 97-d study was conducted at a commercial swine research facility in southwestern Minnesota with 1,160 barrows (initial BW = 31.0 ± 1.1 kg). Pigs were blocked by initial BW, and pens were randomly allotted to 1 of 6 dietary treatments with 7 replications per treatment. Treatments were arranged in a 2 × 3 factorial with main effects of crude glycerol (0, 2.5, or 5%) and DDGS (0 or 20%). All corn-soybean meal-based diets contained 3% added fat (choice white grease). There were no glycerol × DDGS interactions for any response criteria evaluated. Increasing dietary glycerol did not affect finishing pig growth performance. Adding 20% DDGS to the diet did not affect ADG; however, finishing pigs fed diets with added DDGS had greater (2.47 vs. 2.41 kg/d; P = 0.02) ADFI and poorer (0.39 vs. 0.40; P = 0.01) G:F than pigs not fed DDGS. Feeding increasing dietary glycerol or 20% DDGS did not affect carcass characteristics. For carcass fat quality, feeding 20% DDGS resulted in decreased (P carcass fat iodine value, whereas feeding crude glycerol did not influence growth performance, carcass characteristics, and had a minor influence on fatty acids of carcass fat. Both of these biofuel coproducts can be used in combination without affecting finishing pig performance or carcass traits; however, feeding crude glycerol did not fully mitigate the increased unsaturation of carcass fat observed when feeding DDGS.
Zipf exponent of trajectory distribution in the hidden Markov model
Bochkarev, V. V.; Lerner, E. Yu
2014-03-01
This paper is the first step of generalization of the previously obtained full classification of the asymptotic behavior of the probability for Markov chain trajectories for the case of hidden Markov models. The main goal is to study the power (Zipf) and nonpower asymptotics of the frequency list of trajectories of hidden Markov frequencys and to obtain explicit formulae for the exponent of the power asymptotics. We consider several simple classes of hidden Markov models. We prove that the asymptotics for a hidden Markov model and for the corresponding Markov chain can be essentially different.
Zipf exponent of trajectory distribution in the hidden Markov model
International Nuclear Information System (INIS)
Bochkarev, V V; Lerner, E Yu
2014-01-01
This paper is the first step of generalization of the previously obtained full classification of the asymptotic behavior of the probability for Markov chain trajectories for the case of hidden Markov models. The main goal is to study the power (Zipf) and nonpower asymptotics of the frequency list of trajectories of hidden Markov frequencys and to obtain explicit formulae for the exponent of the power asymptotics. We consider several simple classes of hidden Markov models. We prove that the asymptotics for a hidden Markov model and for the corresponding Markov chain can be essentially different
Adaptive control of nonlinear in parameters chaotic system via Lyapunov exponents placement
Energy Technology Data Exchange (ETDEWEB)
Ayati, Moosa [Department of Electrical Engineering, K.N. Toosi University of Technology, Sayyed Khandan Bridge, Shariati Street, Tehran (Iran, Islamic Republic of)], E-mail: Ayati@dena.kntu.ac.ir; Khaki-Sedigh, Ali [Department of Electrical Engineering, K.N. Toosi University of Technology, Sayyed Khandan Bridge, Shariati Street, Tehran (Iran, Islamic Republic of)], E-mail: sedigh@kntu.ac.ir
2009-08-30
This paper proposes a new method for the adaptive control of nonlinear in parameters (NLP) chaotic systems. A method based on Lagrangian of a cost function is used to identify the parameters of the system. Estimation results are used to calculate the Lyapunov exponents adaptively. Finally, the Lyapunov exponents placement method is used to assign the desired Lyapunov exponents of the closed loop system.
Adaptive control of nonlinear in parameters chaotic system via Lyapunov exponents placement
International Nuclear Information System (INIS)
Ayati, Moosa; Khaki-Sedigh, Ali
2009-01-01
This paper proposes a new method for the adaptive control of nonlinear in parameters (NLP) chaotic systems. A method based on Lagrangian of a cost function is used to identify the parameters of the system. Estimation results are used to calculate the Lyapunov exponents adaptively. Finally, the Lyapunov exponents placement method is used to assign the desired Lyapunov exponents of the closed loop system.
Exponent and scrambling index of double alternate circular snake graphs
Rahmayanti, Sri; Pasaribu, Valdo E.; Nasution, Sawaluddin; Liani Salnaz, Sishi
2018-01-01
A graph is primitive if it contains a cycle of odd length. The exponent of a primitive graph G, denoted by exp(G), is the smallest positive integer k such that for each pair of vertices u and v in G there is a uv-walk length k. The scrambling index of a primitive graph G, denoted by k(G), is the smallest positive integer k such that for each pair of vertices u and v in G there is a uv-walk of length 2k. For an even positive integer n and an odd positive integer r, a (n,r)-double alternate circular snake graph, denoted by DA(C r,n ), is a graph obtained from a path u 1 u 2 ... u n by replacing each edge of the form u 2i u 2i+1 by two different r-cycles. We study the exponent and scrambling index of DA(C r,n ) and show that exp(DA(C r,n )) = n + r - 4 and k(DA(C r,n )) = (n + r - 3)/2.
Truncatable bootstrap equations in algebraic form and critical surface exponents
Energy Technology Data Exchange (ETDEWEB)
Gliozzi, Ferdinando [Dipartimento di Fisica, Università di Torino andIstituto Nazionale di Fisica Nucleare - sezione di Torino,Via P. Giuria 1, Torino, I-10125 (Italy)
2016-10-10
We describe examples of drastic truncations of conformal bootstrap equations encoding much more information than that obtained by a direct numerical approach. A three-term truncation of the four point function of a free scalar in any space dimensions provides algebraic identities among conformal block derivatives which generate the exact spectrum of the infinitely many primary operators contributing to it. In boundary conformal field theories, we point out that the appearance of free parameters in the solutions of bootstrap equations is not an artifact of truncations, rather it reflects a physical property of permeable conformal interfaces which are described by the same equations. Surface transitions correspond to isolated points in the parameter space. We are able to locate them in the case of 3d Ising model, thanks to a useful algebraic form of 3d boundary bootstrap equations. It turns out that the low-lying spectra of the surface operators in the ordinary and the special transitions of 3d Ising model form two different solutions of the same polynomial equation. Their interplay yields an estimate of the surface renormalization group exponents, y{sub h}=0.72558(18) for the ordinary universality class and y{sub h}=1.646(2) for the special universality class, which compare well with the most recent Monte Carlo calculations. Estimates of other surface exponents as well as OPE coefficients are also obtained.
Faucitano, L; Chouinard, P Y; Fortin, J; Mandell, I B; Lafrenière, C; Girard, C L; Berthiaume, R
2008-07-01
Five beef cattle management regimens were evaluated for their effect on meat quality, fatty acid composition, and overall palatability of the longis-simus dorsi (LD) muscle in Angus cross steers. A 98-d growing phase was conducted using grass silage with or without supplementation of growth promotants (Revalor G and Rumensin) or soybean meal. Dietary treatments in the finishing phase were developed with or without supplementation of growth promotants based on exclusive feeding of forages with no grain supplementation, or the feeding of grain:forage (70:30) diets. Growth promotants increased (P forages increased the proportion of cis-9, cis-12, cis-15 C18:3 as well as several other isomers of the n-3 family and decreased in the ratio of n-6 to n-3 fatty acids in the LD muscle as compared with supplementing grain (P forage-based diet increased (P Forage feeding also increased the proportion of cis-9, trans-11 C18:2 (P forage-finishing and growth promotants-free beef production system.
Growth of some varieties of Lie superalgebras
International Nuclear Information System (INIS)
Zaicev, M V; Mishchenko, S P
2007-01-01
We study numerical characteristics of varieties of Lie superalgebras and, in particular, the growth of codimensions. An example of an insoluble variety of almost polynomial growth is constructed. We prove that the exponent of this variety is equal to three and calculate the growth exponents for two earlier known soluble varieties
Shee, C N; Lemenager, R P; Schoonmaker, J P
2016-01-01
Multiparous Angus×Simmental cows (n=54, 5.22±2.51 years) with male progeny were fed one of two diets supplemented with either dried distillers grains with solubles (DDGS) or soybean meal (CON), from calving until day 129 postpartum (PP) to determine effects of excess protein and fat on cow performance, milk composition and calf growth. Diets were formulated to be isocaloric and consisted of rye hay and DDGS (19.4% CP; 8.76% fat), or corn silage, rye hay and soybean meal (11.7% CP; 2.06% fat). Cow-calf pairs were allotted by cow and calf age, BW and breed. Cow BW and body condition score (BCS; P⩾0.13) were similar throughout the experiment. A weigh-suckle-weigh was performed on day 64 and day 110±10 PP to determine milk production. Milk was collected on day 68 and day 116±10 PP for analysis of milk components. Milk production was unaffected (P⩾0.75) by dietary treatments. Milk urea nitrogen was increased at both time points in DDGS compared with CON cows (Pcows on day 68 PP. Compared to CON, DDGS decreased medium chain FA (Pcows, which resulted in an increase (Pcows fed DDGS compared with cows fed CON (Pcows did not change cow BW or BCS, but did improve TAI rates and altered milk composition compared with CON. As a result, male progeny from cows fed DDGS during lactation had greater average daily gain and were heavier at day 129 and at weaning compared with male progeny from cows fed a control diet.
Shee, C N; Lemenager, R P; Schoonmaker, J P
2018-04-01
Feeding dried distillers grains with solubles (DDGS), a feed high in fat and protein, to lactating beef cows can alter milk production and composition, resulting in improved pre-weaning growth of progeny. This alteration in milk profile may consequently alter the growth and carcass composition of the offspring after weaning. Therefore, Angus×Simmental steers (n=48) whose dams were fed one of two diets supplemented with either DDGS or soybean meal (CON) from calving to mid-lactation were placed in a feedlot to determine the effects of maternal nutrition during lactation on progeny development and carcass composition. Cow-calf pairs were allotted to two treatments at birth based on cow and calf BW, breed and age. Maternal diets were isocaloric (3.97 MJ/kg NEg) and consisted of rye hay supplemented with DDGS at 1% of BW (19.4% CP; 8.76% fat) or rye hay and corn silage supplemented with CON (11.7% CP; 2.06% fat). After conclusion of the treatments at 129 days postpartum, cow-calf pairs were comingled and managed as one group until weaning at 219 days postpartum. Steers were then transitioned to a common diet composed of 60% DDGS, 34% corn silage and 6% vitamin/mineral supplement and were placed indoors in individual pens with slatted floors. An intravenous glucose tolerance test (IVGTT) was performed 134 days after feedlot entry on 16 steers (CON, n=7; DDGS, n=9) to determine the effect of maternal diet on glucose and insulin sensitivity. Steers were slaughtered at a target BW of 645 kg. Categorical and continuous data were analyzed using the GLIMMIX and MIXED procedures of SAS, respectively. Steers from DDGS dams tended to be heavier on day 85 of feedlot finishing (P=0.09) compared with steers from CON dams. However, there were no differences in final weight, average daily gain, dry matter intake or efficiency (gain:feed, P⩾0.18). Maternal treatments did not affect progeny days on feed (P=0.15), despite a mean difference of 9 days in favor of DDGS. Glucose and
Dynamic dilution exponent in monodisperse entangled polymer solutions
DEFF Research Database (Denmark)
Shahid, T.; Huang, Qian; Oosterlinck, F.
2017-01-01
of concentration but also depends on the molar mass of the chains. While the proposed approach successfully explains the viscoelastic properties of a large number of semi-dilute solutions of polymers in their own oligomers, important discrepancies are found for semi-dilute entangled polymers in small-molecule......We study and model the linear viscoelastic properties of several entangled semi-dilute and concentrated solutions of linear chains of different molar masses and at different concentrations dissolved in their oligomers. We discuss the dilution effect of the oligomers on the entangled long chains....... In particular, we investigate the influence of both concentration and molar mass on the value of the effective dynamic dilution exponent determined from the level of the storage plateau at low and intermediate frequencies. We show that the experimental results can be quantitatively explained by considering...
Hybrid Percolation Transition in Cluster Merging Processes: Continuously Varying Exponents
Cho, Y. S.; Lee, J. S.; Herrmann, H. J.; Kahng, B.
2016-01-01
Consider growing a network, in which every new connection is made between two disconnected nodes. At least one node is chosen randomly from a subset consisting of g fraction of the entire population in the smallest clusters. Here we show that this simple strategy for improving connection exhibits a more unusual phase transition, namely a hybrid percolation transition exhibiting the properties of both first-order and second-order phase transitions. The cluster size distribution of finite clusters at a transition point exhibits power-law behavior with a continuously varying exponent τ in the range 2 power-law behavior of the avalanche size distribution arising in models with link-deleting processes in interdependent networks.
A Hyperchaotic Attractor with Multiple Positive Lyapunov Exponents
International Nuclear Information System (INIS)
Guo-Si, Hu
2009-01-01
There are many hyperchaotic systems, but few systems can generate hyperchaotic attractors with more than three PLEs (positive Lyapunov exponents). A new hyperchaotic system, constructed by adding an approximate time-delay state feedback to a five-dimensional hyperchaotic system, is presented. With the increasing number of phase-shift units used in this system, the number of PLEs also steadily increases. Hyperchaotic attractors with 25 PLEs can be generated by this system with 32 phase-shift units. The sum of the PLEs will reach the maximum value when 23 phase-shift units are used. A simple electronic circuit, consisting of 16 operational amplifiers and two analogy multipliers, is presented for confirming hyperchaos of order 5, i.e., with 5 PLEs
Generalized Hurst exponent approach to efficiency in MENA markets
Sensoy, A.
2013-10-01
We study the time-varying efficiency of 15 Middle East and North African (MENA) stock markets by generalized Hurst exponent analysis of daily data with a rolling window technique. The study covers a time period of six years from January 2007 to December 2012. The results reveal that all MENA stock markets exhibit different degrees of long-range dependence varying over time and that the Arab Spring has had a negative effect on market efficiency in the region. The least inefficient market is found to be Turkey, followed by Israel, while the most inefficient markets are Iran, Tunisia, and UAE. Turkey and Israel show characteristics of developed financial markets. Reasons and implications are discussed.
Nonlinearity exponent of ac conductivity in disordered systems
International Nuclear Information System (INIS)
Nandi, U N; Sircar, S; Karmakar, A; Giri, S
2012-01-01
We measured the real part of ac conductance Σ(x,f) or Σ(T,f) of iron-doped mixed-valent polycrystalline manganite oxides LaMn 1-x Fe x O 3 as a function of frequency f by varying initial conductance Σ 0 by quenched disorder x at a fixed temperature T (room) and by temperature T at a fixed quenched disorder x. At a fixed temperature T, Σ(x,f) of a sample with fixed x remains almost constant at its zero-frequency dc value Σ 0 at lower frequency. With increase in f, Σ(x,f) increases slowly from Σ 0 and finally increases rapidly following a power law with an exponent s at high frequency. Scaled appropriately, the data for Σ(T,f) and Σ(x,f) fall on the same universal curve, indicating the existence of a general scaling formalism for the ac conductivity in disordered systems. The characteristic frequency f c at which Σ(x,f) or Σ(T,f) increases for the first time from Σ 0 scales with initial conductance Σ 0 as f c ∼ Σ 0 x f , where x f is the onset exponent. The value of x f is nearly equal to one and is found to be independent of x and T. Further, an inverse relationship between x f and s provides a self-consistency check of the systematic description of Σ(x,f) or Σ(T,f). This apparent universal value of x f is discussed within the framework of existing theoretical models and scaling theories. The relevance to other similar disordered systems is also highlighted. (paper)
Grain centre mapping - 3DXRD measurements of average grain characteristics
DEFF Research Database (Denmark)
Oddershede, Jette; Schmidt, Søren; Lyckegaard, Allan
2014-01-01
characteristics of each grain (such as their centre-of-mass positions, volumes, phases, orientations and/or elastic strain tensor components), while the exact locations of the grain boundaries are unknown. In the present chapter a detailed description of the setup and software for both grain centre mapping...... and the closely related boxscan method is given. Both validation experiments and applications for in situ studies of microstructural changes during plastic deformation and crack growth are given. Finally an outlook with special emphasis on coupling the measured results with modelling is given....
Directory of Open Access Journals (Sweden)
Maryam Jamshidnejad
2011-01-01
Full Text Available In this paper, a 2D stimulation model, FACET, is used for investigation of the relation between micro structure and deposition conditions such as substrate temperature, deposition rate and deposition angle of Ag thin films. It is observed that by increasing the deposition rate in standard conditions providing that the temperature of substrate is low, the average of final grain size is decreased. While, in deposition with angle flux the average of final grain size is increased.
Directory of Open Access Journals (Sweden)
Jamil Constantin
2009-01-01
glyphosate occurred within 48 hours prior to sowing. The trials were developed in 2003/2004 growing season, in six localities in Paraná State: Sertãozinho, Campo Mourão, Iretama, Pitanga, Boa Esperança, and Mamborê, in areas with high density of weeds preceding no-till soybean sowing. Evaluations related to weed control and soybean development and grain yield were performed. MA burndown systems provided improved control of weeds after crop emergence. Soybean plants from AP areas were shorter, in comparison to ME, evidencing a delay in the shoot growth. Reduction of grain yield was verified for all localities when AP burndown system was adopted, with reductions between 15% and 50%.
Liseau, R.; Larsson, B.; Lunttila, T.; Olberg, M.; Rydbeck, G.; Bergman, P.; Justtanont, K.; Olofsson, G.; de Vries, B. L.
2015-06-01
Aims: We aim at determining the spatial distribution of the gas and dust in star-forming regions and address their relative abundances in quantitative terms. We also examine the dust opacity exponent β for spatial and/or temporal variations. Methods: Using mapping observations of the very dense ρ Oph A core, we examined standard 1D and non-standard 3D methods to analyse data of far-infrared and submillimetre (submm) continuum radiation. The resulting dust surface density distribution can be compared to that of the gas. The latter was derived from the analysis of accompanying molecular line emission, observed with Herschel from space and with APEX from the ground. As a gas tracer we used N2H+, which is believed to be much less sensitive to freeze-out than CO and its isotopologues. Radiative transfer modelling of the N2H+ (J = 3-2) and (J = 6-5) lines with their hyperfine structure explicitly taken into account provides solutions for the spatial distribution of the column density N(H2), hence the surface density distribution of the gas. Results: The gas-to-dust mass ratio is varying across the map, with very low values in the central regions around the core SM 1. The global average, = 88, is not far from the canonical value of 100, however. In ρ Oph A, the exponent β of the power-law description for the dust opacity exhibits a clear dependence on time, with high values of 2 for the envelope-dominated emission in starless Class -1 sources to low values close to 0 for the disk-dominated emission in Class III objects. β assumes intermediate values for evolutionary classes in between. Conclusions: Since β is primarily controlled by grain size, grain growth mostly occurs in circumstellar disks. The spatial segregation of gas and dust, seen in projection toward the core centre, probably implies that, like C18O, also N2H+ is frozen onto the grains. Based on observations with APEX, which is a 12 m diameter submillimetre telescope at 5100 m altitude on Llano Chajnantor
Wilson, T B; Schroeder, A R; Ireland, F A; Faulkner, D B; Shike, D W
2015-10-01
Fall-calving, mature Angus and Simmental × Angus cows ( = 251 total) and their progeny were used to evaluate the effects of late gestation dried distillers grains plus solubles (DDGS) supplementation on cow performance and progeny growth and carcass characteristics. Cows were blocked by breed and allotted to 12 tall fescue pastures (6.8 ha average). Pastures were randomly assigned to 1 of 2 treatments: cows were offered 2.1 kg DM DDGS·cow·d (SUP; CP = 23%, fat = 7%; = 6 pastures) or were not offered a supplement (CON; = 6 pastures) 69 ± 9 d before expected calving date. Cows remained on treatments until calving. Once weekly, cows that had calved were removed from treatment pastures and were moved to new tall fescue pastures (21.6 ha average) where cows from both treatments were comingled without further supplementation. Cows ( = 74) were removed from study for calving more than 30 d after expected calving date, calf loss and injury, or euthanasia. Cow BW and BCS were recorded at the beginning of the supplementation period, after calving, and at breeding. Calf BW was taken at birth and early weaning (82 ± 14 d of age). After weaning, 71 steer progeny (representative of dam breed and treatment pastures) were transitioned to a common feedlot diet with individual feed intake monitored using the GrowSafe feeding system. Steers were slaughtered at 47 ± 4 d after a minimum 12th rib fat thickness (back fat) estimation of 0.6 cm, with cattle being shipped in 3 groups. Forage availability was not different between treatments ( = 0.69). Cows offered SUP gained more BW and BCS ( ≤ 0.02) during the supplementation period. There were no differences ( ≥ 0.12) in calving date, calf birth or weaning BW, or preweaning ADG. Cow BW at breeding was not different ( = 0.19); however, BCS at breeding was greater ( milk production, AI conception, or overall pregnancy rate were detected. For steer progeny, initial feedlot BW, final BW, and days on feed were not different ( ≥ 0
Sarturi, J O; Erickson, G E; Klopfenstein, T J; Vasconcelos, J T; Griffin, W A; Rolfe, K M; Benton, J R; Bremer, V R
2013-10-01
Effects of S from wet or dry distillers grains with solubles (DGS) containing 0.82 or 1.16% S on animal growth performance, carcass characteristics, apparent total tract digestibility, and ruminal parameters were evaluated. In Exp. 1, crossbred beef steers (n = 120; 345 ± 34 kg BW) were individually fed ad libitum using Calan gates. Treatments were applied as a 2 × 2 × 3 + 1 factorial treatment arrangement with factors of DGS type (wet or dry), S content in DGS (0.82 or 1.16% DM basis), and DGS inclusion (20, 30, and 40%, DM basis), as well as a corn control diet (no DGS). In Exp. 2, ruminally cannulated crossbred beef steers (n = 6; 381 ± 31 kg BW) were assigned to 1 of 5 diets in a 5 × 6 unbalanced Latin Square design and fed ad libitum through five 14-d periods. A 2 × 2 + 1 factorial treatment arrangement was used with the factors of DGS type and S content in DGS (similar to Exp. 1). Inclusion of DGS was 40%, except for a MATCH diet containing wet 1.16% S DGS included at 31.4% (DM basis). Intake of DM decreased linearly (P content (P = 0.52). Feeding diets with wet 1.16% S DGS linearly decreased (P = 0.03) HCW. In Exp. 2, molar proportion of propionate declined (P = 0.01) 9% and A:P ratio tended (P = 0.13) to be greater when 1.16 compared with 0.82% S DGS was fed. Apparent total tract DMD was not affected (P > 0.16) and only subtle changes (P ruminal pH parameters were observed. Greater (P = 0.02) ruminal H2S concentration for steers fed wet compared with dry DGS was observed, while 1.16% S DGS tended (P = 0.12) to produce greater ruminal H2S than 0.82% S. Sulfur in wet DGS appears to be more prone to be converted to ruminal H2S, because feeding 1.16% S as wet DGS had a greater impact on ADG, DMI, and ruminal H2S compared with dry DGS.
Spacetime dependence of the anomalous exponent of electric transport in the disorder model
International Nuclear Information System (INIS)
Egami, Takeshi; Suzuki, Koshiro; Watanabe, Katsuhiro
2012-01-01
Spacetime dependence of the anomalous exponent of electric transport in the disorder model is investigated. We show that the anomalous exponent evolves with time, according to the time evolution of the number of the effective neighbouring sites. Transition from subdiffusive to normal transport is recovered at macroscopic timescales. Plateaus appear in the history of the anomalous exponent due to the discreteness of the hopping sites, which is compatible with the conventional treatment to regard the anomalous exponent as a constant. We also show that, among various microscopic spatial structures, the number of the effective neighbouring sites is the only element which determines the anomalous exponent. This is compatible with the mesoscopic model of Scher–Montroll. These findings are verified by means of Monte Carlo simulation. The well-known expression of the anomalous exponent in the conventional multiple trapping model is derived by deducing it as a special case of the disorder model. (paper)
Numata, Youhei; Kogo, Atsushi; Udagawa, Yosuke; Kunugita, Hideyuki; Ema, Kazuhiro; Sanehira, Yoshitaka; Miyasaka, Tsutomu
2017-06-07
We developed a new and simple solvent vapor-assisted thermal annealing (VA) procedure which can reduce grain boundaries in a perovskite film for fabricating highly efficient perovskite solar cells (PSCs). By recycling of solvent molecules evaporated from an as-prepared perovskite film as a VA vapor source, named the pot-roast VA (PR-VA) method, finely controlled and reproducible device fabrication was achieved for formamidinium (FA) and methylammonium (MA) mixed cation-halide perovskite (FAPbI 3 ) 0.85 (MAPbBr 3 ) 0.15 . The mixed perovskite was crystallized on a low-temperature prepared brookite TiO 2 mesoporous scaffold. When exposed to very dilute solvent vapor, small grains in the perovskite film gradually unified into large grains, resulting in grain boundaries which were highly reduced and improvement of photovoltaic performance in PSC. PR-VA-treated large grain perovskite absorbers exhibited stable photocurrent-voltage performance with high fill factor and suppressed hysteresis, achieving the best conversion efficiency of 18.5% for a 5 × 5 mm 2 device and 15.2% for a 1.0 × 1.0 cm 2 device.
A new combined approach on Hurst exponent estimate and its applications in realized volatility
Luo, Yi; Huang, Yirong
2018-02-01
The purpose of this paper is to propose a new estimator of Hurst exponent based on the combined information of the conventional rescaled range methods. We demonstrate the superiority of the proposed estimator by Monte Carlo simulations, and the applications in estimating the Hurst exponent of daily volatility series in Chinese stock market. Moreover, we indicate the impact of the type of estimator and structural break on the estimating results of Hurst exponent.
Partial differential equations with variable exponents variational methods and qualitative analysis
Radulescu, Vicentiu D
2015-01-01
Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis provides researchers and graduate students with a thorough introduction to the theory of nonlinear partial differential equations (PDEs) with a variable exponent, particularly those of elliptic type. The book presents the most important variational methods for elliptic PDEs described by nonhomogeneous differential operators and containing one or more power-type nonlinearities with a variable exponent. The authors give a systematic treatment of the basic mathematical theory and constructive meth
Microscopic processes controlling the Herschel-Bulkley exponent
Lin, Jie; Wyart, Matthieu
2018-01-01
The flow curve of various yield stress materials is singular as the strain rate vanishes and can be characterized by the so-called Herschel-Bulkley exponent n =1 /β . A mean-field approximation due to Hebraud and Lequeux (HL) assumes mechanical noise to be Gaussian and leads to β =2 in rather good agreement with observations. Here we prove that the improved mean-field model where the mechanical noise has fat tails instead leads to β =1 with logarithmic correction. This result supports that HL is not a suitable explanation for the value of β , which is instead significantly affected by finite-dimensional effects. From considerations on elastoplastic models and on the limitation of speed at which avalanches of plasticity can propagate, we argue that β =1 +1 /(d -df) , where df is the fractal dimension of avalanches and d the spatial dimension. Measurements of df then supports that β ≈2.1 and β ≈1.7 in two and three dimensions, respectively. We discuss theoretical arguments leading to approximations of β in finite dimensions.
Regularized semiclassical limits: Linear flows with infinite Lyapunov exponents
Athanassoulis, Agissilaos; Katsaounis, Theodoros; Kyza, Irene
2016-01-01
Semiclassical asymptotics for Schrödinger equations with non-smooth potentials give rise to ill-posed formal semiclassical limits. These problems have attracted a lot of attention in the last few years, as a proxy for the treatment of eigenvalue crossings, i.e. general systems. It has recently been shown that the semiclassical limit for conical singularities is in fact well-posed, as long as the Wigner measure (WM) stays away from singular saddle points. In this work we develop a family of refined semiclassical estimates, and use them to derive regularized transport equations for saddle points with infinite Lyapunov exponents, extending the aforementioned recent results. In the process we answer a related question posed by P.L. Lions and T. Paul in 1993. If we consider more singular potentials, our rigorous estimates break down. To investigate whether conical saddle points, such as -|x|, admit a regularized transport asymptotic approximation, we employ a numerical solver based on posteriori error control. Thus rigorous upper bounds for the asymptotic error in concrete problems are generated. In particular, specific phenomena which render invalid any regularized transport for -|x| are identified and quantified. In that sense our rigorous results are sharp. Finally, we use our findings to formulate a precise conjecture for the condition under which conical saddle points admit a regularized transport solution for the WM. © 2016 International Press.
Regularized semiclassical limits: Linear flows with infinite Lyapunov exponents
Athanassoulis, Agissilaos
2016-08-30
Semiclassical asymptotics for Schrödinger equations with non-smooth potentials give rise to ill-posed formal semiclassical limits. These problems have attracted a lot of attention in the last few years, as a proxy for the treatment of eigenvalue crossings, i.e. general systems. It has recently been shown that the semiclassical limit for conical singularities is in fact well-posed, as long as the Wigner measure (WM) stays away from singular saddle points. In this work we develop a family of refined semiclassical estimates, and use them to derive regularized transport equations for saddle points with infinite Lyapunov exponents, extending the aforementioned recent results. In the process we answer a related question posed by P.L. Lions and T. Paul in 1993. If we consider more singular potentials, our rigorous estimates break down. To investigate whether conical saddle points, such as -|x|, admit a regularized transport asymptotic approximation, we employ a numerical solver based on posteriori error control. Thus rigorous upper bounds for the asymptotic error in concrete problems are generated. In particular, specific phenomena which render invalid any regularized transport for -|x| are identified and quantified. In that sense our rigorous results are sharp. Finally, we use our findings to formulate a precise conjecture for the condition under which conical saddle points admit a regularized transport solution for the WM. © 2016 International Press.
Nastac, Gabriel; Labahn, Jeffrey W.; Magri, Luca; Ihme, Matthias
2017-09-01
Metrics used to assess the quality of large-eddy simulations commonly rely on a statistical assessment of the solution. While these metrics are valuable, a dynamic measure is desirable to further characterize the ability of a numerical simulation for capturing dynamic processes inherent in turbulent flows. To address this issue, a dynamic metric based on the Lyapunov exponent is proposed which assesses the growth rate of the solution separation. This metric is applied to two turbulent flow configurations: forced homogeneous isotropic turbulence and a turbulent jet diffusion flame. First, it is shown that, despite the direct numerical simulation (DNS) and large-eddy simulation (LES) being high-dimensional dynamical systems with O (107) degrees of freedom, the separation growth rate qualitatively behaves like a lower-dimensional dynamical system, in which the dimension of the Lyapunov system is substantially smaller than the discretized dynamical system. Second, a grid refinement analysis of each configuration demonstrates that as the LES filter width approaches the smallest scales of the system the Lyapunov exponent asymptotically approaches a plateau. Third, a small perturbation is superimposed onto the initial conditions of each configuration, and the Lyapunov exponent is used to estimate the time required for divergence, thereby providing a direct assessment of the predictability time of simulations. By comparing inert and reacting flows, it is shown that combustion increases the predictability of the turbulent simulation as a result of the dilatation and increased viscosity by heat release. The predictability time is found to scale with the integral time scale in both the reacting and inert jet flows. Fourth, an analysis of the local Lyapunov exponent is performed to demonstrate that this metric can also determine flow-dependent properties, such as regions that are sensitive to small perturbations or conditions of large turbulence within the flow field. Finally
DEFF Research Database (Denmark)
Syha, Melanie; Rheinheimer, Wolfgang; Bäurer, Michael
2012-01-01
3D x-ray diffraction contrast tomography (DCT) is a non-destructive technique for the determination of grain shape and crystallography in polycrystalline bulk materials. Using this technique, a strontium titanate specimen was repeatedly measured between annealing steps.. A systematic analysis...
Fujita Exponent for a Nonlinear Degenerate Parabolic Equation with Localized Source
Directory of Open Access Journals (Sweden)
Yulan Wang
2014-01-01
Full Text Available This paper is devoted to understand the blow-up properties of reaction-diffusion equations which combine a localized reaction term with nonlinear diffusion. In particular, we study the critical exponent of a p-Laplacian equation with a localized reaction. We obtain the Fujita exponent qc of the equation.
Grain Boundary Engineering of Electrodeposited Thin Films
DEFF Research Database (Denmark)
Alimadadi, Hossein
is not yet well-understood. This, at least partly, owes to the lack of robust characterization methods for analyzing the nature of grain boundaries including the grain boundary plane characteristics, until recently. In the past decade, significant improvements in the 2-dimensional and 3-dimensional analysis...... of the favorable boundaries that break the network of general grain boundaries. Successful dedicated synthesis of a textured nickel film fulfilling the requirements of grain boundary engineered materials, suggests improved boundary specific properties. However, the textured nickel film shows fairly low...... thermal stability and growth twins annihilate by thermal treatment at 600 degree C. In contrast, for oriented grains, growth nano-twins which are enveloped within columnar grains show a high thermal stability even after thermal treatment at 600 degree C. In order to exploit the high thermal...
International Nuclear Information System (INIS)
Huang, F.; Peng, R. D.; Liu, Y. H.; Chen, Z. Y.; Ye, M. F.; Wang, L.
2012-01-01
Fractal dust grains of different shapes are observed in a radially confined magnetized radio frequency plasma. The fractal dimensions of the dust structures in two-dimensional (2D) horizontal dust layers are calculated, and their evolution in the dust growth process is investigated. It is found that as the dust grains grow the fractal dimension of the dust structure decreases. In addition, the fractal dimension of the center region is larger than that of the entire region in the 2D dust layer. In the initial growth stage, the small dust particulates at a high number density in a 2D layer tend to fill space as a normal surface with fractal dimension D = 2. The mechanism of the formation of fractal dust grains is discussed.
Variation of Zipf's exponent in one hundred live languages: A study of the Holy Bible translations
Mehri, Ali; Jamaati, Maryam
2017-08-01
Zipf's law, as a power-law regularity, confirms long-range correlations between the elements in natural and artificial systems. In this article, this law is evaluated for one hundred live languages. We calculate Zipf's exponent for translations of the holy Bible to several languages, for this purpose. The results show that, the average of Zipf's exponent in studied texts is slightly above unity. All studied languages in some families have Zipf's exponent lower/higher than unity. It seems that geographical distribution impresses the communication between speakers of different languages in a language family, and affect similarity between their Zipf's exponent. The Bible has unique concept regardless of its language, but the discrepancy in grammatical rules and syntactic regularities in applying stop words to make sentences and imply a certain concept, lead to difference in Zipf's exponent for various languages.
Hurst exponent and prediction based on weak-form efficient market hypothesis of stock markets
Eom, Cheoljun; Choi, Sunghoon; Oh, Gabjin; Jung, Woo-Sung
2008-07-01
We empirically investigated the relationships between the degree of efficiency and the predictability in financial time-series data. The Hurst exponent was used as the measurement of the degree of efficiency, and the hit rate calculated from the nearest-neighbor prediction method was used for the prediction of the directions of future price changes. We used 60 market indexes of various countries. We empirically discovered that the relationship between the degree of efficiency (the Hurst exponent) and the predictability (the hit rate) is strongly positive. That is, a market index with a higher Hurst exponent tends to have a higher hit rate. These results suggested that the Hurst exponent is useful for predicting future price changes. Furthermore, we also discovered that the Hurst exponent and the hit rate are useful as standards that can distinguish emerging capital markets from mature capital markets.
Critical behavior of the Lyapunov exponent in type-III intermittency
Energy Technology Data Exchange (ETDEWEB)
Alvarez-Llamoza, O. [Departamento de Fisica, FACYT, Universidad de Carabobo, Valencia (Venezuela); Centro de Fisica Fundamental, Grupo de Caos y Sistemas Complejos, Universidad de Los Andes, Merida 5251, Merida (Venezuela)], E-mail: llamoza@ula.ve; Cosenza, M.G. [Centro de Fisica Fundamental, Grupo de Caos y Sistemas Complejos, Universidad de Los Andes, Merida 5251, Merida (Venezuela); Ponce, G.A. [Departamento de Fisica, Universidad Nacional Autonoma de Honduras (Honduras); Departamento de Ciencias Naturales, Universidad Pedagogica Nacional Francisco Morazan, Tegucigalpa (Honduras)
2008-04-15
The critical behavior of the Lyapunov exponent near the transition to robust chaos via type-III intermittency is determined for a family of one-dimensional singular maps. Critical boundaries separating the region of robust chaos from the region where stable fixed points exist are calculated on the parameter space of the system. A critical exponent {beta} expressing the scaling of the Lyapunov exponent is calculated along the critical curve corresponding to the type-III intermittent transition to chaos. It is found that {beta} varies on the interval 0 {<=} {beta} < 1/2 as a function of the order of the singularity of the map. This contrasts with earlier predictions for the scaling behavior of the Lyapunov exponent in type-III intermittency. The variation of the critical exponent {beta} implies a continuous change in the nature of the transition to chaos via type-III intermittency, from a second-order, continuous transition to a first-order, discontinuous transition.
DEFF Research Database (Denmark)
Asimwe, I.; Kimambo, A. E.; Laswai, G. H.
2015-01-01
Forty five steers (2.5–3.0 years of age and 200±5 (SEM) kg body weight) were allotted randomly into five diets to assess the effects of finishing Tanzania Shorthorn Zebu (TSZ) cattle in feedlot using diets based on either molasses or maize grain combined with maize or rice by-products. The diets...... were hay and concentrate mixtures of hominy feed with molasses (HFMO), rice polishing with molasses (RPMO), hominy feed with maize meal (HFMM), rice polishing with maize meal (RPMM) and a control of maize meal with molasses (MMMO). All concentrate mixtures contained cotton seed cake, mineral mixture.......35 for HFMO) than in maize grain based diets (6.94, 6.73 and 6.19 for RPMM, MMMO and HFMM, respectively). Energy intake was highest (P
Lai, Ying-Cheng; Harrison, Mary Ann F; Frei, Mark G; Osorio, Ivan
2004-09-01
Lyapunov exponents are a set of fundamental dynamical invariants characterizing a system's sensitive dependence on initial conditions. For more than a decade, it has been claimed that the exponents computed from electroencephalogram (EEG) or electrocorticogram (ECoG) signals can be used for prediction of epileptic seizures minutes or even tens of minutes in advance. The purpose of this paper is to examine the predictive power of Lyapunov exponents. Three approaches are employed. (1) We present qualitative arguments suggesting that the Lyapunov exponents generally are not useful for seizure prediction. (2) We construct a two-dimensional, nonstationary chaotic map with a parameter slowly varying in a range containing a crisis, and test whether this critical event can be predicted by monitoring the evolution of finite-time Lyapunov exponents. This can thus be regarded as a "control test" for the claimed predictive power of the exponents for seizure. We find that two major obstacles arise in this application: statistical fluctuations of the Lyapunov exponents due to finite time computation and noise from the time series. We show that increasing the amount of data in a moving window will not improve the exponents' detective power for characteristic system changes, and that the presence of small noise can ruin completely the predictive power of the exponents. (3) We report negative results obtained from ECoG signals recorded from patients with epilepsy. All these indicate firmly that, the use of Lyapunov exponents for seizure prediction is practically impossible as the brain dynamical system generating the ECoG signals is more complicated than low-dimensional chaotic systems, and is noisy. Copyright 2004 American Institute of Physics
Zheng, Yan-Zhen; Li, Xi-Tao; Zhao, Er-Fei; Lv, Xin-Ding; Meng, Fan-Li; Peng, Chao; Lai, Xue-Sen; Huang, Meilan; Cao, Guozhong; Tao, Xia; Chen, Jian-Feng
2018-02-01
Simultaneously achieving the long-term device stability and reproducibility has proven challenging in perovskite solar cells because solution-processing produced perovskite film with grain boundary is sensitive to moisture. Herein, we develop a hexamethylenetetramine (HMTA)-mediated one-step solution-processing deposition strategy that leads to the formation of high-purity and grain-boundary-passivation CH3NH3PbI3 film and thereby advances cell optoelectronic performance. Through morphological and structural characterizations and theoretical calculations, we demonstrate that HMTA fully occupies the moisture-exposed surface to build a bridge across grain boundary and coordinates with Pb ions to inhibit the formation of detrimental PbI2. Such HMTA-mediated grown CH3NH3PbI3 films achieves a decent augmentation of power conversion efficiency (PCE) from 12.70% to 17.87%. A full coverage of PbI2-free CH3NH3PbI3 surface on ZnO also boosts the device's stability and reproducibility.
John R. Jones; George A. Schier
1985-01-01
This chapter considers aspen growth as a process, and discusses some characteristics of the growth and development of trees and stands. For the most part, factors affecting growth are discussed elsewhere, particularly in the GENETICS AND VARIATION chapter and in chapters in PART 11. ECOLOGY. Aspen growth as it relates to wood production is examined in the WOOD RESOURCE...
Study of rapid grain boundary migration in a nanocrystalline Ni thin film
International Nuclear Information System (INIS)
Kacher, Josh; Robertson, I.M.; Nowell, Matt; Knapp, J.; Hattar, Khalid
2011-01-01
Research highlights: → Abnormal growth is distributed randomly in the foil and initiates at different times. → Growth occurs from seemingly uncorrelated regions of the grain boundary. → Growth twins are created during all stages of abnormal grain growth. → Grain growth patterns are qualitatively similar to a vacancy diffusion model. → Grain boundaries and orientations evolve during growth to minimize system energy. - Abstract: Grain boundary migration associated with abnormal grain growth in pulsed-laser deposited Ni was studied in real time by annealing electron transparent films in situ in the transmission electron microscope. The resulting texture evolution and grain boundary types produced were evaluated by ex situ electron backscatter diffraction of interrupted anneals. The combination of these two techniques allowed for the investigation of grain growth rates, grain morphologies, and the evolution of the orientation and grain boundary distributions. Grain boundaries were found to progress in a sporadic, start/stop fashion with no evidence of a characteristic grain growth rate. The orientations of the abnormally growing grains were found to be predominately //ND throughout the annealing process. A high fraction of twin boundaries developed during the annealing process. The intermittent growth from different locations of the grain boundary is discussed in terms of a vacancy diffusion model for grain growth.
Grain boundary corrosion of copper canister material
International Nuclear Information System (INIS)
Fennell, P.A.H.; Graham, A.J.; Smart, N.R.; Sofield, C.J.
2001-03-01
The proposed design for a final repository for spent fuel and other long-lived residues in Sweden is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast inner container fitted inside a corrosion-resistant copper canister. During fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow they will tend to concentrate impurities within the copper at the new grain boundaries. The work described in this report was undertaken to determine whether there is any possibility of enhanced corrosion at grain boundaries within the copper canister. The potential for grain boundary corrosion was investigated by exposing copper specimens, which had undergone different heat treatments and hence had different grain sizes, to aerated artificial bentonite-equilibrated groundwater with two concentrations of chloride, for increasing periods of time. The degree of grain boundary corrosion was determined by atomic force microscopy (AFM) and optical microscopy. AFM showed no increase in grain boundary 'ditching' for low chloride groundwater. In high chloride groundwater the surface was covered uniformly with a fine-grained oxide. No increases in oxide thickness were observed. No significant grain boundary attack was observed using optical microscopy either. The work suggests that in aerated artificial groundwaters containing chloride ions, grain boundary corrosion of copper is unlikely to adversely affect SKB's copper canisters
The Evolution of the Exponent of Zipf's Law in Language Ontogeny
Baixeries, Jaume; Elvevåg, Brita; Ferrer-i-Cancho, Ramon
2013-01-01
It is well-known that word frequencies arrange themselves according to Zipf's law. However, little is known about the dependency of the parameters of the law and the complexity of a communication system. Many models of the evolution of language assume that the exponent of the law remains constant as the complexity of a communication systems increases. Using longitudinal studies of child language, we analysed the word rank distribution for the speech of children and adults participating in conversations. The adults typically included family members (e.g., parents) or the investigators conducting the research. Our analysis of the evolution of Zipf's law yields two main unexpected results. First, in children the exponent of the law tends to decrease over time while this tendency is weaker in adults, thus suggesting this is not a mere mirror effect of adult speech. Second, although the exponent of the law is more stable in adults, their exponents fall below 1 which is the typical value of the exponent assumed in both children and adults. Our analysis also shows a tendency of the mean length of utterances (MLU), a simple estimate of syntactic complexity, to increase as the exponent decreases. The parallel evolution of the exponent and a simple indicator of syntactic complexity (MLU) supports the hypothesis that the exponent of Zipf's law and linguistic complexity are inter-related. The assumption that Zipf's law for word ranks is a power-law with a constant exponent of one in both adults and children needs to be revised. PMID:23516390
Fine-grained zirconium-base material
Van Houten, G.R.
1974-01-01
A method is described for making zirconium with inhibited grain growth characteristics, by the process of vacuum melting the zirconium, adding 0.3 to 0.5% carbon, stirring, homogenizing, and cooling. (Official Gazette)
Spike solutions in Gierer#x2013;Meinhardt model with a time dependent anomaly exponent
Nec, Yana
2018-01-01
Experimental evidence of complex dispersion regimes in natural systems, where the growth of the mean square displacement in time cannot be characterised by a single power, has been accruing for the past two decades. In such processes the exponent γ(t) in ⟨r2⟩ ∼ tγ(t) at times might be approximated by a piecewise constant function, or it can be a continuous function. Variable order differential equations are an emerging mathematical tool with a strong potential to model these systems. However, variable order differential equations are not tractable by the classic differential equations theory. This contribution illustrates how a classic method can be adapted to gain insight into a system of this type. Herein a variable order Gierer-Meinhardt model is posed, a generic reaction- diffusion system of a chemical origin. With a fixed order this system possesses a solution in the form of a constellation of arbitrarily situated localised pulses, when the components' diffusivity ratio is asymptotically small. The pattern was shown to exist subject to multiple step-like transitions between normal diffusion and sub-diffusion, as well as between distinct sub-diffusive regimes. The analytical approximation obtained permits qualitative analysis of the impact thereof. Numerical solution for typical cross-over scenarios revealed such features as earlier equilibration and non-monotonic excursions before attainment of equilibrium. The method is general and allows for an approximate numerical solution with any reasonably behaved γ(t).
Directory of Open Access Journals (Sweden)
Igino Andrighetto
2010-01-01
Full Text Available Two different feeding plans for veal calves were compared in the study: a traditional liquid diet supplemented with 250 g/calf/d of barley grain or with 250 g/calf/d of ground wheat straw. The two solid feeds had different chemical composi- tion but a similar particle size obtained by grinding the straw in a mill with an 8-mm mesh screen. Twenty-four Polish Friesian male calves were used in the study and they were housed in individual wooden stalls (0.83 x 1.80 m. The health status of all the calves was satisfactory for the entire fattening period and no specific medical treatment was required during the trial. Calves fed wheat straw showed a greater intake of solid feed (196 vs. 139 g/d; P average daily gain (1288 vs. 1203 g/d; P not affected by the type of solid feed and no milk refusal episodes were detected. The haemoglobin concentration was similar in calves receiving the two feeding treatments despite the higher iron intake provided by the wheat straw through- out the fattening period (2.12 vs. 1.15 g; P calves’ metabolism. Feeding behaviour was affected by the provision of solid feeds. Eating and chewing were prolonged in calves receiving ground wheat straw and the same solid feed reduced the frequency of oral stereotypies at the end of the fattening period. At the slaughterhouse, no differences were observed between the feeding treatments as regards carcass weight and dressing percentage. The calves fed ground wheat straw had a heavier weight of the empty omasum (518 vs. 341 g; P fed barley grain. The incidence of abomasal erosions, ulcers and scars was similar in both treatments; however the index of abomasal damage, which considers the number and the seriousness of different type of lesions, was higher in calves receiving barley grain. Therefore, the grinding of straw particles, as opposed to barley grain, can reduce the abrasive- ness of roughage at the abomasum level. Visual evaluation of the
High-accuracy critical exponents for O(N) hierarchical 3D sigma models
International Nuclear Information System (INIS)
Godina, J. J.; Li, L.; Meurice, Y.; Oktay, M. B.
2006-01-01
The critical exponent γ and its subleading exponent Δ in the 3D O(N) Dyson's hierarchical model for N up to 20 are calculated with high accuracy. We calculate the critical temperatures for the measure δ(φ-vector.φ-vector-1). We extract the first coefficients of the 1/N expansion from our numerical data. We show that the leading and subleading exponents agree with Polchinski equation and the equivalent Litim equation, in the local potential approximation, with at least 4 significant digits
Condensation and critical exponents of an ideal non-Abelian gas
Talaei, Zahra; Mirza, Behrouz; Mohammadzadeh, Hosein
2017-11-01
We investigate an ideal gas obeying non-Abelian statistics and derive the expressions for some thermodynamic quantities. It is found that thermodynamic quantities are finite at the condensation point where their derivatives diverge and, near this point, they behave as \\vert T-Tc\\vert^{-ρ} in which Tc denotes the condensation temperature and ρ is a critical exponent. The critical exponents related to the heat capacity and compressibility are obtained by fitting numerical results and others are obtained using the scaling law hypothesis for a three-dimensional non-Abelian ideal gas. This set of critical exponents introduces a new universality class.
Harris, Troy G.; Minor, John
This text for a secondary- or postecondary-level course in grain handling and storage contains ten chapters. Chapter titles are (1) Introduction to Grain Handling and Storage, (2) Elevator Safety, (3) Grain Grading and Seed Identification, (4) Moisture Control, (5) Insect and Rodent Control, (6) Grain Inventory Control, (7) Elevator Maintenance,…
Rendleman, Matt; Legacy, James
This publication provides an introduction to grain grading and handling for adult students in vocational and technical education programs. Organized in five chapters, the booklet provides a brief overview of the jobs performed at a grain elevator and of the techniques used to grade grain. The first chapter introduces the grain industry and…
Sample and population exponents of generalized Taylor’s law
Czech Academy of Sciences Publication Activity Database
Giometto, A.; Formentin, Marco; Rinaldo, A.; Cohen, J.; Maritan, A.
2015-01-01
Roč. 112, č. 25 (2015), s. 7755-7760 ISSN 0027-8424 R&D Projects: GA ČR GAP201/12/2613 Institutional support: RVO:67985556 Keywords : fluctuation scaling * multiplicative growth * power law * environmental stochasticity * Markovian environment Subject RIV: BA - General Mathematics Impact factor: 9.423, year: 2015 http://library.utia.cas.cz/separaty/2015/SI/formentin-0444162.pdf
Berthiaume, R; Mandell, I; Faucitano, L; Lafrenière, C
2006-08-01
Forty Angus-cross steers were used to evaluate 5 beef cattle management regimens for their effect on growth performance, carcass characteristics, and cost of production. A 98-d growing phase was incorporated using grass silage with or without growth promotants (trenbolone acetate + estradiol implants, and monensin in the feed) or soybean meal. Dietary treatments in the finishing phase were developed, with or without addition of the same growth promotants, based on exclusive feeding of forages with minimal supplementation or the feeding of barley-based diets. Overall, ADG for animals treated with growth promotants or fed supplemented diets (soybean meal and barley) was increased (P forage produced a heavier HCW (P forage-fed, nonimplanted beef market would need to garner a 16% premium to be economically competitive with cattle finished conventionally.
The anomalous scaling exponents of turbulence in general dimension from random geometry
Energy Technology Data Exchange (ETDEWEB)
Eling, Christopher [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Oz, Yaron [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel)
2015-09-22
We propose an analytical formula for the anomalous scaling exponents of inertial range structure functions in incompressible fluid turbulence. The formula is a Knizhnik-Polyakov-Zamolodchikov (KPZ)-type relation and is valid in any number of space dimensions. It incorporates intermittency in a novel way by dressing the Kolmogorov linear scaling via a coupling to a lognormal random geometry. The formula has one real parameter γ that depends on the number of space dimensions. The scaling exponents satisfy the convexity inequality, and the supersonic bound constraint. They agree with the experimental and numerical data in two and three space dimensions, and with numerical data in four space dimensions. Intermittency increases with γ, and in the infinite γ limit the scaling exponents approach the value one, as in Burgers turbulence. At large n the nth order exponent scales as √n. We discuss the relation between fluid flows and black hole geometry that inspired our proposal.
Variation of CRE with exponents of time and number of fractions
International Nuclear Information System (INIS)
Supe, S.J.; Rao, S.M.; Sawant, S.G.; Bisht, J.S.
1976-01-01
The concept of NSD has been modified into TDF's by Orton and Ellis and CRE's by Kirk et al. It was aimed to study the variability of these new concepts on the exponents of time and number of fractions. It was found that TDF has larger variation with the exponents compared to that of CRE. The use of CRE and NSD for solving the treatment scheduling problems or for intercomparison of various regimes has been simplified by providing readymade estimation of CRE for various doses/fraction with increasing number of fractions. As there is increasing evidence for the change of exponents J and H, nomograms are presented to determine the CRE for various values of J and H. The variation of decay correction factors with the exponent H is also evaluated and is presented. This will help various radiotherapists to use CRE and the decay correction factors consistent with their clinical findings. (orig.) [de
A comment on measuring the Hurst exponent of financial time series
Couillard, Michel; Davison, Matt
2005-03-01
A fundamental hypothesis of quantitative finance is that stock price variations are independent and can be modeled using Brownian motion. In recent years, it was proposed to use rescaled range analysis and its characteristic value, the Hurst exponent, to test for independence in financial time series. Theoretically, independent time series should be characterized by a Hurst exponent of 1/2. However, finite Brownian motion data sets will always give a value of the Hurst exponent larger than 1/2 and without an appropriate statistical test such a value can mistakenly be interpreted as evidence of long term memory. We obtain a more precise statistical significance test for the Hurst exponent and apply it to real financial data sets. Our empirical analysis shows no long-term memory in some financial returns, suggesting that Brownian motion cannot be rejected as a model for price dynamics.
Behaviour of Lyapunov exponents near crisis points in the dissipative standard map
Pompe, B.; Leven, R. W.
1988-11-01
We numerically study the behaviour of the largest Lyapunov characteristic exponent λ1 in dependence on a control parameter in the 2D standard map with dissipation. In order to investigate the system's motion in parameter intervals slightly above crisis points we introduce "partial" Lyapunov exponents which characterize the average exponential divergence of nearby orbits on a semi-attractor at a boundary crisis and on distinct parts of a "large" chaotic attractor near an interior crisis. In the former case we find no significant difference between λ1 in the pre-crisis regime and the partial Lyapunov exponent describing transient chaotic motions slightly above the crisis. For the latter case we give a quantitative description of the drastic increase of λ1. Moreover, a formula which connects the critical exponent of a chaotic transient above a boundary crisis with a pointwise dimension is derived.
Numerical difficulties to obtain 3-d critical exponents from platonic solids
International Nuclear Information System (INIS)
Alcaraz, F.C.; Herrmann, H.J.
1985-01-01
The possibility to extract critical exponents of 3-d systems exploring the mass gap amplitudes of platonic solids is tested. For the Ising model the proposed method does not work for numerical reasons. (Author) [pt
High-resolution satellite image segmentation using Hölder exponents
Indian Academy of Sciences (India)
Keywords. High resolution image; texture analysis; segmentation; IKONOS; Hölder exponent; cluster. ... are that. • it can be used as a tool to measure the roughness ... uses reinforcement learning to learn the reward values of ..... The numerical.
Hyperchaos of four state autonomous system with three positive Lyapunov exponents
International Nuclear Information System (INIS)
Ge Zhengming; Yang, C-H.
2009-01-01
This Letter gives the results of numerical simulations of Quantum Cellular Neural Network (Quantum-CNN) autonomous system with four state variables. Three positive Lyapunov exponents confirm hyperchaotic nature of its dynamics
Thickness dependence of effective critical exponents in three-dimensional Ising plates
International Nuclear Information System (INIS)
Marques, M.I.; Gonzalo, J.A.
2000-01-01
Phase transitions in ising plates of equal area and different thickness have been studied by the Monte Carlo approach. The evolution of the critical temperature and of the effective critical exponents with the thickness of the lattice has been numerically determined. The thickness dependence of the maximum value of the effective critical exponents is well described by an exponential decay towards the respective three-dimensional value. (author)
Development of Perennial Grain Sorghum
Directory of Open Access Journals (Sweden)
Stan Cox
2018-01-01
Full Text Available Perennial germplasm derived from crosses between Sorghum bicolor and either S. halepense or S. propinquum is being developed with the goal of preventing and reversing soil degradation in the world’s grain sorghum-growing regions. Perennial grain sorghum plants produce subterranean stems known as rhizomes that sprout to form the next season’s crop. In Kansas, breeding perennial sorghum involves crossing S. bicolor cultivars or breeding lines to S. halepense or perennial S. bicolorn × S. halepense breeding lines, selecting perennial plants from F2 or subsequent populations, crossing those plants with S. bicolor, and repeating the cycle. A retrospective field trial in Kansas showed that selection and backcrossing during 2002–2009 had improved grain yields and seed weights of breeding lines. Second-season grain yields of sorghum lines regrowing from rhizomes were similar to yields in the first season. Further selection cycles have been completed since 2009. Many rhizomatous lines that cannot survive winters in Kansas are perennial at subtropical or tropical locations in North America and Africa. Grain yield in Kansas was not correlated with rhizomatousness in either Kansas or Uganda. Genomic regions affecting rhizome growth and development have been mapped, providing new breeding tools. The S. halepense gene pool may harbor many alleles useful for improving sorghum for a broad range of traits in addition to perenniality.
Das, Debajyoti; Samanta, Subhashis
2018-01-01
A systematic development of undoped nc-SiOx:H thin films from (SiH4 + CO2) plasma diluted by a combination of H2 and He has been investigated through structural, optical and electrical characterization and correlation. Gradual inclusion of O into a highly crystalline silicon network progressively produces a two-phase structure where Si-nanocrystals (Si-nc) are embedded into the a-SiOx:H matrix. However, at the intermediate grain boundary region the growth of ultra-nanocrystallites controls the effectiveness of the material. The ultra-nanocrystallites are the part and portion of crystallinity accommodating the dominant fraction of thermodynamically preferred 〈220〉 crystallographic orientation, most favourable for stacked layer device performance. Atomic H plays a dominant role in maintaining an improved nanocrystalliny in the network even during O inclusion, while He in its excited state (He*) maintains a good energy balance at the grain boundary and produces a significant fraction of ultra-nanocrystalline component which has been demonstrated to organize the energetically favourable 〈220〉 crystallographic orientation in the network. The nc-SiOx:H films, maintaining proportionally good electrical conductivity over an wide range of optical band gap, remarkably low microstructure factor and simultaneous high crystalline volume fraction dominantly populated by ultra-nanocrystallites of 〈220〉 crystallographic orientation mostly at the grain boundary, have been obtained in technologically most popular 13.56 MHz PECVD SiH4 plasma even at a low substrate temperature ∼250 °C, convenient for device fabrication.
1981-07-15
of high-strength steel ), and a host of microstructural types (ferritic, martensitic, pearlitic, bainitic , austenitic). Accession For NTIS GRA&l DTIC...IN STEELS , : RPRNGO.RPRTNMR 1~A Tw.R CONTRACT OA4A&XMUt8~ G/~ ! R./koderl L.A./Cooleyad T.W./Crooker 2 .{I 9PERFORMING ORGANIZATION NAME AND A10R4SI...growth Steels Microstructure Ferrous alloys Structure-sensitive crack growth 20 ABSTRACT (Con~tinue an r*,er.. side it necesar and Identity by black
DEVELOPMENT OF GRAIN MARKET IN UKRAINE
Directory of Open Access Journals (Sweden)
Aleksandr Maslak
2015-11-01
Full Text Available The subject of the research is a set of theoretical, methodological and practical fundamentals of organizational and economic functioning are integrated agricultural formations in the grain market of Ukraine. The methodological basis of research is the complex analysis of economic processes in the grain market in Ukraine and the world. During research we used such methods as method of systematization and comparison, statistic, economic, balance, constructive, target-oriented, and the methods of induction and deduction, analogy and comparison. Main aim of this article is the analysis of the situation on the grain market in Ukraine, defining the role of integrated agricultural formations in this market, improving the organizational-economic mechanism of its functioning, identifies ways of improving the competitiveness of Ukraine among world exporters of grain. Using results of the studies we examined trends grain market in Ukraine; influence of businesses in grain production; analysis of constraints to improve production efficiency of grain; defined domestic (internal needs of grain in Ukraine; assessed the status and expediency transformation infrastructure of the grain market of Ukraine; defined priority directions of development of the grain market in Ukraine. As a result of the preparation of articles, it is obtained the following conclusions: Ukraine is the world's largest producers and exporters of grain, the production of integrated agricultural units to a third of the total grain; technical condition of farm does not meet the needs of production; the domestic market is unable to provide the existing demand for grain production, contributing to export growth; Ukraine has a number of problems due to increased grain production, namely the shortage of storage capacity for the storage of grain, limited performance transshipment of grain in port elevators and imperfection and depreciation of transport systems; solving the existing problems is
Directory of Open Access Journals (Sweden)
Tomislav Pogačić
2013-03-01
Full Text Available Kefir grains represent the unique microbial community consisting of bacteria, yeasts, and sometimes filamentous moulds creating complex symbiotic community. The complexity of their physical and microbial structures is the reason that the kefir grains are still not unequivocally elucidated. Microbiota of kefir grains has been studied by many microbiological and molecular approaches. The development of metagenomics, based on the identification without cultivation, is opening new possibilities for identification of previously nonisolated and non-identified microbial species from the kefir grains. Considering recent studies, there are over 50 microbial species associated with kefir grains. The aim of this review is to summarise the microbiota composition of kefir grains. Moreover, because of technological and microbiological significance of the kefir grains, the paper provides an insight into the microbiological and molecular methods applied to study microbial biodiversity of kefir grains.
Czech Academy of Sciences Publication Activity Database
Brányik, T.; Vicente, A. A.; Kuncová, Gabriela; Podrazký, Ondřej; Dostálek, P.; Teixeira, J. A.
2004-01-01
Roč. 6, č. 20 (2004), s. 1733-1740 ISSN 8756-7938. [International Congress of Chemical and Process Engineering CHISA 2004 /16./. Praha, 22.08.2004-26.08.2004] Grant - others:SFRH(PT) BPD/3541/2000 Institutional research plan: CEZ:AV0Z4072921 Keywords : growth model * beer fermentation * immobilized cells Subject RIV: CE - Biochemistry Impact factor: 1.635, year: 2004
Laminar Flame Velocity and Temperature Exponent of Diluted DME-Air Mixture
Naseer Mohammed, Abdul; Anwar, Muzammil; Juhany, Khalid A.; Mohammad, Akram
2017-03-01
In this paper, the laminar flame velocity and temperature exponent diluted dimethyl ether (DME) air mixtures are reported. Laminar premixed mixture of DME-air with volumetric dilutions of carbon dioxides (CO2) and nitrogen (N2) are considered. Experiments were conducted using a preheated mesoscale high aspect-ratio diverging channel with inlet dimensions of 25 mm × 2 mm. In this method, flame velocities are extracted from planar flames that were stabilized near adiabatic conditions inside the channel. The flame velocities are then plotted against the ratio of mixture temperature and the initial reference temperature. A non-linear power law regression is observed suitable. This regression analysis gives the laminar flame velocity at the initial reference temperature and temperature exponent. Decrease in the laminar flame velocity and increase in temperature exponent is observed for CO2 and N2 diluted mixtures. The addition of CO2 has profound influence when compared to N2 addition on both flame velocity and temperature exponent. Numerical prediction of the similar mixture using a detailed reaction mechanism is obtained. The computational mechanism predicts higher magnitudes for laminar flame velocity and smaller magnitudes of temperature exponent compared to experimental data.
The Multivariate Largest Lyapunov Exponent as an Age-Related Metric of Quiet Standing Balance
Directory of Open Access Journals (Sweden)
Kun Liu
2015-01-01
Full Text Available The largest Lyapunov exponent has been researched as a metric of the balance ability during human quiet standing. However, the sensitivity and accuracy of this measurement method are not good enough for clinical use. The present research proposes a metric of the human body’s standing balance ability based on the multivariate largest Lyapunov exponent which can quantify the human standing balance. The dynamic multivariate time series of ankle, knee, and hip were measured by multiple electrical goniometers. Thirty-six normal people of different ages participated in the test. With acquired data, the multivariate largest Lyapunov exponent was calculated. Finally, the results of the proposed approach were analysed and compared with the traditional method, for which the largest Lyapunov exponent and power spectral density from the centre of pressure were also calculated. The following conclusions can be obtained. The multivariate largest Lyapunov exponent has a higher degree of differentiation in differentiating balance in eyes-closed conditions. The MLLE value reflects the overall coordination between multisegment movements. Individuals of different ages can be distinguished by their MLLE values. The standing stability of human is reduced with the increment of age.
Subdiffusive master equation with space-dependent anomalous exponent and structural instability
Fedotov, Sergei; Falconer, Steven
2012-03-01
We derive the fractional master equation with space-dependent anomalous exponent. We analyze the asymptotic behavior of the corresponding lattice model both analytically and by Monte Carlo simulation. We show that the subdiffusive fractional equations with constant anomalous exponent μ in a bounded domain [0,L] are not structurally stable with respect to the nonhomogeneous variations of parameter μ. In particular, the Gibbs-Boltzmann distribution is no longer the stationary solution of the fractional Fokker-Planck equation whatever the space variation of the exponent might be. We analyze the random distribution of μ in space and find that in the long-time limit, the probability distribution is highly intermediate in space and the behavior is completely dominated by very unlikely events. We show that subdiffusive fractional equations with the nonuniform random distribution of anomalous exponent is an illustration of a “Black Swan,” the low probability event of the small value of the anomalous exponent that completely dominates the long-time behavior of subdiffusive systems.
Magnetic entropy change and critical exponents in double perovskite Y2NiMnO6
Sharma, G.; Tripathi, T. S.; Saha, J.; Patnaik, S.
2014-11-01
We report the magnetic entropy change (ΔSM) and the critical exponents in the double perovskite manganite Y2NiMnO6 with a ferromagnetic to paramagnetic transition TC~85 K. For a magnetic field change ΔH=80 kOe, a maximum magnetic entropy change ΔSM=-6.57 J/kg K is recorded around TC. The critical exponents β=0.363±0.05 and γ=1.331±0.09 obtained from power law fitting to spontaneous magnetization MS(T) and the inverse initial susceptibility χ0-1(T) satisfy well to values derived for a 3D-Heisenberg ferromagnet. The critical exponent δ=4.761±0.129 is determined from the isothermal magnetization at TC. The scaling exponents corresponding to second order phase transition are consistent with the exponents from Kouvel-Fisher analysis and satisfy Widom's scaling relation δ=1+(γ/β). Additionally, they also satisfy the single scaling equation M(H,ɛ)=ɛβf±(H/ɛ) according to which the magnetization-field-temperature data around TC should collapse into two curves for temperatures below and above TC.
Critical behavior of the Lyapunov exponent in type-III intermittency
International Nuclear Information System (INIS)
Alvarez-Llamoza, O.; Cosenza, M.G.; Ponce, G.A.
2008-01-01
The critical behavior of the Lyapunov exponent near the transition to robust chaos via type-III intermittency is determined for a family of one-dimensional singular maps. Critical boundaries separating the region of robust chaos from the region where stable fixed points exist are calculated on the parameter space of the system. A critical exponent β expressing the scaling of the Lyapunov exponent is calculated along the critical curve corresponding to the type-III intermittent transition to chaos. It is found that β varies on the interval 0 ≤ β < 1/2 as a function of the order of the singularity of the map. This contrasts with earlier predictions for the scaling behavior of the Lyapunov exponent in type-III intermittency. The variation of the critical exponent β implies a continuous change in the nature of the transition to chaos via type-III intermittency, from a second-order, continuous transition to a first-order, discontinuous transition
Mechanism of secondary recrystallization of Goss grains in grain-oriented electrical steel
Hayakawa, Yasuyuki
2017-12-01
Since its invention by Goss in 1934, grain-oriented (GO) electrical steel has been widely used as a core material in transformers. GO exhibits a grain size of over several millimeters attained by secondary recrystallization during high-temperature final batch annealing. In addition to the unusually large grain size, the crystal direction in the rolling direction is aligned with , which is the easy magnetization axis of α-iron. Secondary recrystallization is the phenomenon in which a certain very small number of {110} (Goss) grains grow selectively (about one in 106 primary grains) at the expense of many other primary recrystallized grains. The question of why the Goss orientation is exclusively selected during secondary recrystallization has long been a main research subject in this field. The general criterion for secondary recrystallization is a small and uniform primary grain size, which is achieved through the inhibition of normal grain growth by fine precipitates called inhibitors. This paper describes several conceivable mechanisms of secondary recrystallization of Goss grains mainly based on the selective growth model.
Spatial Price Discovery, Dynamics, and Leadership in Evolving Distiller’s Grain Markets
Van Winkle, Tyler W.; Schroeder, Ted C.
2008-01-01
Recent dramatic growth in corn-based bio-refining has generated considerable growth in the by-product of this process, distiller’s grains. Distiller’s grains are rapidly becoming important livestock feed ingredient sources. However, little public market information is available on distiller’s grain. This study determines spatial and temporal price relationships among distiller’s grain markets. Results indicate spatial distiller’s grain markets operate somewhat independently suggesting potenti...
International Nuclear Information System (INIS)
Zhikov, Vasilii V; Pastukhova, Svetlana E
2008-01-01
Elliptic equations of p(x)-Laplacian type are investigated. There is a well-known logarithmic condition on the modulus of continuity of the nonlinearity exponent p(x), which ensures that a Laplacian with variable order of nonlinearity inherits many properties of the usual p-Laplacian of constant order. One of these is the so-called improved integrability of the gradient of the solution. It is proved in this paper that this property holds also under a slightly more general condition on the exponent p(x), although then the improvement of integrability is logarithmic rather than power-like. The method put forward is based on a new generalization of Gehring's lemma, which relies upon the reverse Hoelder inequality 'with increased support and exponent on the right-hand side'. A counterexample is constructed that reveals the extent to which the condition on the modulus of continuity obtained is sharp. Bibliography: 28 titles.
Four-loop critical exponents for the Gross-Neveu-Yukawa models
International Nuclear Information System (INIS)
Zerf, Nikolai; Mihaila, Luminita N.; Herbut, Igor F.; Scherer, Michael M.
2017-09-01
We study the chiral Ising, the chiral XY and the chiral Heisenberg models at four-loop order with the perturbative renormalization group in 4-ε dimensions and compute critical exponents for the Gross-Neveu-Yukawa fixed points to order O(ε 4 ). Further, we provide Pade estimates for the correlation length exponent, the boson and fermion anomalous dimension as well as the leading correction to scaling exponent in 2+1 dimensions. We also confirm the emergence of supersymmetric field theories at four loops for the chiral Ising and the chiral XY models with N=1/4 and N=1/2 fermions, respectively. Furthermore, applications of our results relevant to various quantum transitions in the context of Dirac and Weyl semimetals are discussed, including interaction-induced transitions in graphene and surface states of topological insulators.
Critical exponents predicted by grouping of Feynman diagrams in φ4 model
International Nuclear Information System (INIS)
Kaupuzs, J.
2001-01-01
Different perturbation theory treatments of the Ginzburg-Landau phase transition model are discussed. This includes a criticism of the perturbative renormalization group (RG) approach and a proposal of a novel method providing critical exponents consistent with the known exact solutions in two dimensions. The usual perturbation theory is reorganized by appropriate grouping of Feynman diagrams of φ 4 model with O(n) symmetry. As a result, equations for calculation of the two-point correlation function are obtained which allow to predict possible exact values of critical exponents in two and three dimensions by proving relevant scaling properties of the asymptotic solution at (and near) the criticality. The new values of critical exponents are discussed and compared to the results of numerical simulations and experiments. (orig.)
Four-loop critical exponents for the Gross-Neveu-Yukawa models
Energy Technology Data Exchange (ETDEWEB)
Zerf, Nikolai; Mihaila, Luminita N. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Herbut, Igor F. [Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Physics; Scherer, Michael M. [Koeln Univ. (Germany). Inst. for Theoretical Physics
2017-09-15
We study the chiral Ising, the chiral XY and the chiral Heisenberg models at four-loop order with the perturbative renormalization group in 4-ε dimensions and compute critical exponents for the Gross-Neveu-Yukawa fixed points to order O(ε{sup 4}). Further, we provide Pade estimates for the correlation length exponent, the boson and fermion anomalous dimension as well as the leading correction to scaling exponent in 2+1 dimensions. We also confirm the emergence of supersymmetric field theories at four loops for the chiral Ising and the chiral XY models with N=1/4 and N=1/2 fermions, respectively. Furthermore, applications of our results relevant to various quantum transitions in the context of Dirac and Weyl semimetals are discussed, including interaction-induced transitions in graphene and surface states of topological insulators.
International Nuclear Information System (INIS)
Kari, R.E.; Mezey, P.G.; Csizmadia, I.G.
1975-01-01
Expressions are given for calculating the energy gradient vector in the exponent space of Gaussian basis sets and a technique to optimize orbital exponents using the method of conjugate gradients is described. The method is tested on the (9/sups/5/supp/) Gaussian basis space and optimum exponents are determined for the carbon atom. The analysis of the results shows that the calculated one-electron properties converge more slowly to their optimum values than the total energy converges to its optimum value. In addition, basis sets approximating the optimum total energy very well can still be markedly improved for the prediction of one-electron properties. For smaller basis sets, this improvement does not warrant the necessary expense
Effect of density of state on isotope effect exponent of two-band superconductors
International Nuclear Information System (INIS)
Udomsamuthirun, P.; Kumvongsa, C.; Burakorn, A.; Changkanarth, P.; Yoksan, S.
2005-01-01
The exact formula of T c 's equation and the isotope effect exponent of two-band s-wave superconductors in weak-coupling limit are derived by considering the influence of two kinds of density of state: constant and van Hove singularity. The paring interaction in each band consisted of two parts: the electron-phonon interaction and non-electron-phonon interaction are included in our model. We find that the interband interaction of electron-phonon show more effect on isotope exponent than the intraband interaction and the isotope effect exponent with constant density of state can fit to experimental data, MgB 2 and high-T c superconductor, better than van Hove singularity density of state
Identification of exponent from load-deformation relation for soft materials from impact tests
Ciornei, F. C.; Alaci, S.; Romanu, I. C.; Ciornei, M. C.; Sopon, G.
2018-01-01
When two bodies are brought into contact, the magnitude of occurring reaction forces increase together with the amplitude of deformations. The load-deformation dependency of two contacting bodies is described by a function having the form F = Cxα . An accurate illustration of this relationship assumes finding the precise coefficient C and exponent α. This representation proved to be very useful in hardness tests, in dynamic systems modelling or in considerations upon the elastic-plastic ratio concerning a Hertzian contact. The classical method for identification of the exponent consists in finding it from quasi-static tests. The drawback of the method is the fact that the accurate estimation of the exponent supposes precise identification of the instant of contact initiation. To overcome this aspect, the following observation is exploited: during an impact process, the dissipated energy is converted into heat released by internal friction in the materials and energy for plastic deformations. The paper is based on the remark that for soft materials the hysteresis curves obtained for a static case are similar to the ones obtained for medium velocities. Furthermore, utilizing the fact that for the restitution phase the load-deformation dependency is elastic, a method for finding the α exponent for compression phase is proposed. The maximum depth of the plastic deformations obtained for a series of collisions, by launching, from different heights, a steel ball in free falling on an immobile prism made of soft material, is evaluated by laser profilometry method. The condition that the area of the hysteresis loop equals the variation of kinetical energy of the ball is imposed and two tests are required for finding the exponent. Five collisions from different launching heights of the ball were taken into account. For all the possible impact-pair cases, the values of the exponent were found and close values were obtained.
DEFF Research Database (Denmark)
Zhou, Qin; Ravnskov, Sabine; Jiang, Dong
2015-01-01
Drought is a major abiotic factor limiting agricultural crop production. One of the effective ways to increase drought resistance in plants could be to optimize the exploitation of symbiosis with arbuscular mycorrhizal fungi (AMF). Hypothesizing that alleviation of water deficits by AMF in wheat...... will help maintain photosynthetic carbon-use, we studied the role of AMF on gas-exchange, light-use efficiencies, carbon/nitrogen ratios and growth and yield parameters in the contrasting wheat (Triticum aestivum L.) cultivars ‘Vinjett’ and ‘1110’ grown with/without AMF symbiosis. Water deficits applied...... at the floret initiation stage significantly decreased rates of photosynthetic carbon gain, transpiration and stomatal conductance in the two wheat cultivars. AMF increased the rates of photosynthesis, transpiration and stomatal conductance under drought conditions. Water deficits decreased electron transport...
Relation between the Hurst Exponent and the Efficiency of Self-organization of a Deformable System
Alfyorova, E. A.; Lychagin, D. V.
2018-04-01
We have established the degree of self-organization of a system under plastic deformation at different scale levels. Using fractal analysis, we have determined the Hurst exponent and correlation lengths in the region of formation of a corrugated (wrinkled) structure in [111] nickel single crystals under compression. This has made it possible to single out two (micro-and meso-) levels of self-organization in the deformable system. A qualitative relation between the values of the Hurst exponent and the stages of the stress-strain curve has been established.
Hunt, Allen G.
2016-04-01
Percolation theory can be used to find water flow paths of least resistance. Application of percolation theory to drainage networks allows identification of the range of exponent values that describe the tortuosity of rivers in real river networks, which is then used to generate the observed scaling between drainage basin area and channel length, a relationship known as Hack's law. Such a theoretical basis for Hack's law may allow interpretation of the range of exponent values based on an assessment of the heterogeneity of the substrate.
Explanation of the values of Hack's drainage basin, river length scaling exponent
Hunt, A. G.
2015-08-01
Percolation theory can be used to find water flow paths of least resistance. The application of percolation theory to drainage networks allows identification of the range of exponent values that describe the tortuosity of rivers in real river networks, which is then used to generate the observed scaling between drainage basin area and channel length, a relationship known as Hack's law. Such a theoretical basis for Hack's law allows interpretation of the range of exponent values based on an assessment of the heterogeneity of the substrate.
Power-law Exponent in Multiplicative Langevin Equation with Temporally Correlated Noise
Morita, Satoru
2018-05-01
Power-law distributions are ubiquitous in nature. Random multiplicative processes are a basic model for the generation of power-law distributions. For discrete-time systems, the power-law exponent is known to decrease as the autocorrelation time of the multiplier increases. However, for continuous-time systems, it is not yet clear how the temporal correlation affects the power-law behavior. Herein, we analytically investigated a multiplicative Langevin equation with colored noise. We show that the power-law exponent depends on the details of the multiplicative noise, in contrast to the case of discrete-time systems.
International Nuclear Information System (INIS)
Gauzzi, A.
1993-01-01
The Aslamazov-Larkin paraconductivity term is calculated in the case of sufficiently small superconducting coherence length. It is found that the critical exponent of paraconductivity depends on the short-wavelength cut-off of the fluctuation spectrum in the whole Ginzburg-Landau mean-field region. Hence, it is predicted that the Aslamazov-Larkin universal relation between the critical exponent of paraconductivity and the dimensionality of the superconducting state is no longer valid in short-coherence-length superconductors. This prediction is confirmed by paraconductivity measurements on cuprate superconductors. (orig.)
An Isomorphism between Lyapunov Exponents and Shannon's Channel Capacity
Energy Technology Data Exchange (ETDEWEB)
Friedland, Gerald [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Metere, Alfredo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-06-07
We demonstrate that discrete Lyapunov exponents are isomorphic to numeric overflows of the capacity of an arbitrary noiseless and memoryless channel in a Shannon communication model with feedback. The isomorphism allows the understanding of Lyapunov exponents in terms of Information Theory, rather than the traditional definitions in chaos theory. The result also implies alternative approaches to the calculation of related quantities, such as the Kolmogorov Sinai entropy which has been linked to thermodynamic entropy. This work provides a bridge between fundamental physics and information theory. It suggests, among other things, that machine learning and other information theory methods can be employed at the core of physics simulations.
New prediction of chaotic time series based on local Lyapunov exponent
International Nuclear Information System (INIS)
Zhang Yong
2013-01-01
A new method of predicting chaotic time series is presented based on a local Lyapunov exponent, by quantitatively measuring the exponential rate of separation or attraction of two infinitely close trajectories in state space. After reconstructing state space from one-dimensional chaotic time series, neighboring multiple-state vectors of the predicting point are selected to deduce the prediction formula by using the definition of the local Lyapunov exponent. Numerical simulations are carried out to test its effectiveness and verify its higher precision over two older methods. The effects of the number of referential state vectors and added noise on forecasting accuracy are also studied numerically. (general)
On the relation between Lyapunov exponents and exponential decay of correlations
International Nuclear Information System (INIS)
Slipantschuk, Julia; Bandtlow, Oscar F; Just, Wolfram
2013-01-01
Chaotic dynamics with sensitive dependence on initial conditions may result in exponential decay of correlation functions. We show that for one-dimensional interval maps the corresponding quantities, that is, Lyapunov exponents and exponential decay rates, are related. More specifically, for piecewise linear expanding Markov maps observed via piecewise analytic functions, we show that the decay rate is bounded above by twice the Lyapunov exponent, that is, we establish lower bounds for the subleading eigenvalue of the corresponding Perron–Frobenius operator. In addition, we comment on similar relations for general piecewise smooth expanding maps. (paper)
International Nuclear Information System (INIS)
Kiskis, J.; Narayanan, R.; Vranas, P.
1993-01-01
The authors study the random walk representation of the two-point function in statistical mechanics models near the critical point. Using standard scaling arguments, the authors show that the critical exponent v describing the vanishing of the physical mass at the critical point is equal to v θ /d w , where d w is the Hausdorff dimension of the walk, and v θ = var-phi, where var-phi is the crossover exponent known in the context of field theory. This implies that the Hausdorff dimension of the walk is var-phi/v for O(N) models. 3 refs
Deformation inhomogeneity in large-grained AA5754 sheets
International Nuclear Information System (INIS)
Zhu Guozhen; Hu Xiaohua; Kang Jidong; Mishra, Raja K.; Wilkinson, David S.
2011-01-01
Research highlights: → Microstructure and strain relationship at individual grain level was studied. → 'Hot spots' nucleate early and most keep growing throughout deformation stages. → 'Hot spots' are correlated with 'soft' grains and soft-evolution grains. → Grains with high Schmid factors tend to be 'soft' grains. → Grains with the direction close to tensile axis tend to become softer. - Abstract: Models for deformation and strain localization in polycrystals that incorporate microstructural features including particles are computationally intensive due to the large variation in scale in going from particles to grains to a specimen. As a result such models are generally 2-D in nature. This is an issue for experimental validation. We have therefore studied deformation heterogeneities and strain localization behavior of coarse-grained alloys with only two grains across the sample thickness, therefore mimicking 2-D behavior. Aluminum alloy sheets (AA5754) have been investigated by a number of surface techniques, including digital image correlation, slip trace analysis and electron backscattered diffraction, at the individual grain level. Local strain concentration zones appear from the very beginning of deformation, which then maintain sustained growth and lead, in one of these regions, to localization and final fracture. These 'hot spots' occur in areas with locally soft grains (i.e. grains with or close to the tensile direction) and soft-evolution orientations (i.e. grains with close to the tensile direction). These grains can be correlated with Taylor and/or Schmid factors.
O'Leary, Garry J; Christy, Brendan; Nuttall, James; Huth, Neil; Cammarano, Davide; Stöckle, Claudio; Basso, Bruno; Shcherbak, Iurii; Fitzgerald, Glenn; Luo, Qunying; Farre-Codina, Immaculada; Palta, Jairo; Asseng, Senthold
2014-12-05
The response of wheat crops to elevated CO 2 (eCO 2 ) was measured and modelled with the Australian Grains Free-Air CO 2 Enrichment experiment, located at Horsham, Australia. Treatments included CO 2 by water, N and temperature. The location represents a semi-arid environment with a seasonal VPD of around 0.5 kPa. Over 3 years, the observed mean biomass at anthesis and grain yield ranged from 4200 to 10 200 kg ha -1 and 1600 to 3900 kg ha -1 , respectively, over various sowing times and irrigation regimes. The mean observed response to daytime eCO 2 (from 365 to 550 μmol mol -1 CO 2 ) was relatively consistent for biomass at stem elongation and at anthesis and LAI at anthesis and grain yield with 21%, 23%, 21% and 26%, respectively. Seasonal water use was decreased from 320 to 301 mm (P = 0.10) by eCO 2 , increasing water use efficiency for biomass and yield, 36% and 31%, respectively. The performance of six models (APSIM-Wheat, APSIM-Nwheat, CAT-Wheat, CROPSYST, OLEARY-CONNOR and SALUS) in simulating crop responses to eCO 2 was similar and within or close to the experimental error for accumulated biomass, yield and water use response, despite some variations in early growth and LAI. The primary mechanism of biomass accumulation via radiation use efficiency (RUE) or transpiration efficiency (TE) was not critical to define the overall response to eCO 2 . However, under irrigation, the effect of late sowing on response to eCO 2 to biomass accumulation at DC65 was substantial in the observed data (~40%), but the simulated response was smaller, ranging from 17% to 28%. Simulated response from all six models under no water or nitrogen stress showed similar response to eCO 2 under irrigation, but the differences compared to the dryland treatment were small. Further experimental work on the interactive effects of eCO 2 , water and temperature is required to resolve these model discrepancies. © 2014 John Wiley & Sons Ltd.
Grain formation in cool stellar envelopes
International Nuclear Information System (INIS)
Deguchi, S.
1980-01-01
The nucleation and growth of dust grains in the stellar envelope are investigated for the case of oxygen-rich stars, where the mass loss occurs as a result of the radiation pressure on the dust grains. The number density of grains, the final grain sizes, and the final amount of metals remaining in gaseous states are calculated based on the grain-nucleation theory proposed by Yamamoto and Hasegawa and Draine and Salpeter. It is shown that, even if we base our calculations on the Lothe-Pound nucleation rate equation instead of the classical, homogeneous nucleation rate equation, the proposed theory gives a number density of grains quite similar to that based on the classical rate equation. The approximate solution of the flow, in this paper, brings physical insight to the problem of how the formation of grains couples the flow passing the sonic point. The metals in the outer envelope remain in gaseous state by the amount of 1--10% of the initial content for the mass-loss rate of 10 -5 M/sub sun/ yr -1 and by less than 1% for the massloss are less than 3 x 10 -6 M/sub sun/ yr -1 . Species of metals condensed onto the grains are also discussed
GAO Hongying; WU Kangping
2007-01-01
This paper estimates the Pareto exponent of the city size (population size and economy size) distribution, all provinces, and three regions in China in 1997, 2000 and 2003 by OLS, comparatively analyzes the Pareto exponent cross section and times, and empirically analyzes the factors which impacts on the Pareto exponents of provinces. Our analyses show that the size distributions of cities in China follow the Pareto distribution and are of structural features. Variations in the value of the P...
Creep of quartz by dislocation and grain boundary processes
Fukuda, J. I.; Holyoke, C. W., III; Kronenberg, A. K.
2015-12-01
Wet polycrystalline quartz aggregates deformed at temperatures T of 600°-900°C and strain rates of 10-4-10-6 s-1 at a confining pressure Pc of 1.5 GPa exhibit plasticity at low T, governed by dislocation glide and limited recovery, and grain size-sensitive creep at high T, governed by diffusion and sliding at grain boundaries. Quartz aggregates were HIP-synthesized, subjecting natural milky quartz powder to T=900°C and Pc=1.5 GPa, and grain sizes (2 to 25 mm) were varied by annealing at these conditions for up to 10 days. Infrared absorption spectra exhibit a broad OH band at 3400 cm-1 due to molecular water inclusions with a calculated OH content (~4000 ppm, H/106Si) that is unchanged by deformation. Rate-stepping experiments reveal different stress-strain rate functions at different temperatures and grain sizes, which correspond to differing stress-temperature sensitivities. At 600-700°C and grain sizes of 5-10 mm, flow law parameters compare favorably with those for basal plasticity and dislocation creep of wet quartzites (effective stress exponents n of 3 to 6 and activation enthalpy H* ~150 kJ/mol). Deformed samples show undulatory extinction, limited recrystallization, and c-axis maxima parallel to the shortening direction. Similarly fine-grained samples deformed at 800°-900°C exhibit flow parameters n=1.3-2.0 and H*=135-200 kJ/mol corresponding to grain size-sensitive Newtonian creep. Deformed samples show some undulatory extinction and grain sizes change by recrystallization; however, grain boundary deformation processes are indicated by the low value of n. Our experimental results for grain size-sensitive creep can be compared with models of grain boundary diffusion and grain boundary sliding using measured rates of silicon grain boundary diffusion. While many quartz mylonites show microstructural and textural evidence for dislocation creep, results for grain size-sensitive creep may apply to very fine-grained (<10 mm) quartz mylonites.
Griffith, Leah
2016-01-01
Classroom teachers try to provide opportunities for students to practice and use the algebra skills they are learning in ways that are nonroutine. They also want to help students connect the big ideas of math with the skills they are learning as part of the balance between understanding concepts and procedures. Math games can be used to accomplish…
Wychowaniec, J.; Griffiths, I.; Gay, A.; Mughal, A.
2013-01-01
We report on simple shaking experiments to measure the compaction of a column of Firth oat grain. Such grains are elongated anisotropic particles with a bimodal polydispersity. In these experiments, the particle configurations start from an initially disordered, low-packing-fraction state and under vertical shaking evolve to a dense state with evidence of nematic-like structure at the surface of the confining tube. This is accompanied by an increase in the packing fraction of the grain.
Evolution of interstellar grains
International Nuclear Information System (INIS)
Greenberg, J.M.
1984-01-01
The principal aim of this chapter is to derive the properties of interstellar grains as a probe of local physical conditions and as a basis for predicting such properties as related to infrared emissivity and radiative transfer which can affect the evolution of dense clouds. The first sections will develop the criteria for grain models based directly on observations of gas and dust. A summary of the chemical evolution of grains and gas in diffuse and dense clouds follows. (author)
Tomislav Pogačić; Sanja Šinko; Šimun Zamberlin; Dubravka Samaržija
2013-01-01
Kefir grains represent the unique microbial community consisting of bacteria, yeasts, and sometimes filamentous moulds creating complex symbiotic community. The complexity of their physical and microbial structures is the reason that the kefir grains are still not unequivocally elucidated. Microbiota of kefir grains has been studied by many microbiological and molecular approaches. The development of metagenomics, based on the identification without cultivation, is opening new possibilities f...
International Nuclear Information System (INIS)
Dimitrov, O.
1975-01-01
Well-established aspects of grain-boundary migration are first briefly reviewed (influences of driving force, temperature, orientation and foreign atoms). Recent developments of the experimental methods and results are then examined, by considering the various driving of resistive forces acting on grain boundaries. Finally, the evolution in the theoretical models of grain-boundary motion is described, on the one hand for ideally pure metals and, on the other hand, in the presence of solute impurity atoms [fr
Rigorous lower bound on the dynamic critical exponent of some multilevel Swendsen-Wang algorithms
International Nuclear Information System (INIS)
Li, X.; Sokal, A.D.
1991-01-01
We prove the rigorous lower bound z exp ≥α/ν for the dynamic critical exponent of a broad class of multilevel (or ''multigrid'') variants of the Swendsen-Wang algorithm. This proves that such algorithms do suffer from critical slowing down. We conjecture that such algorithms in fact lie in the same dynamic universality class as the stanard Swendsen-Wang algorithm
The critical 1-arm exponent for the ferromagnetic Ising model on the Bethe lattice
Heydenreich, Markus; Kolesnikov, Leonid
2018-04-01
We consider the ferromagnetic nearest-neighbor Ising model on regular trees (Bethe lattice), which is well-known to undergo a phase transition in the absence of an external magnetic field. The behavior of the model at critical temperature can be described in terms of various critical exponents; one of them is the critical 1-arm exponent ρ which characterizes the rate of decay of the (root) magnetization as a function of the distance to the boundary. The crucial quantity we analyze in this work is the thermal expectation of the root spin on a finite subtree, where the expected value is taken with respect to a probability measure related to the corresponding finite-volume Hamiltonian with a fixed boundary condition. The spontaneous magnetization, which is the limit of this thermal expectation in the distance between the root and the boundary (i.e., in the height of the subtree), is known to vanish at criticality. We are interested in a quantitative analysis of the rate of this convergence in terms of the critical 1-arm exponent ρ. Therefore, we rigorously prove that ⟨σ0⟩ n +, the thermal expectation of the root spin at the critical temperature and in the presence of the positive boundary condition, decays as ⟨σ0 ⟩ n +≈n-1/2 (in a rather sharp sense), where n is the height of the tree. This establishes the 1-arm critical exponent for the Ising model on regular trees (ρ =1/2 ).
On the Topological Changes of Local Hurst Exponent in Polar Regions
Consolini, G.; De Michelis, P.
2014-12-01
Geomagnetic activity during magnetic substorms and storms is related to the dinamical and topological changes of the current systems flowing in the Earth's magnetosphere-ionosphere. This is particularly true in the case of polar regions where the enhancement of auroral electrojet current system is responsible for the observed geomagnetic perturbations. Here, using the DMA-technique we evaluate the local Hurst exponent (H"older exponent) for a set of 46 geomagnetic observatories, widely distributed in the northern hemisphere, during one of the most famous and strong geomagnetic storm, the Bastille event, and reconstruct a sequence of polar maps showing the dinamical changes of the topology of the local Hurst exponent with the geomagnetic activity level. The topological evolution of local Hurst exponent maps is discussed in relation to the dinamical changes of the current systems flowing in the polar ionosphere. G. Consolini has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant agreement no. 313038/STORM for this research.
Critical exponents in the transition to chaos in one-dimensional
Indian Academy of Sciences (India)
We report the numerically evaluated critical exponents associated with the scaling of generalized fractal dimensions during the transition from order to chaos. The analysis is carried out in detail in the context of unimodal and bimodal maps representing typical one-dimensional discrete dynamical systems. The behavior of ...
Fast and unbiased estimator of the time-dependent Hurst exponent
Pianese, Augusto; Bianchi, Sergio; Palazzo, Anna Maria
2018-03-01
We combine two existing estimators of the local Hurst exponent to improve both the goodness of fit and the computational speed of the algorithm. An application with simulated time series is implemented, and a Monte Carlo simulation is performed to provide evidence of the improvement.
A new interpretation of zero Lyapunov exponents in BKL time for Mixmaster cosmology
International Nuclear Information System (INIS)
Wu Xin
2010-01-01
A global relationship between cosmological time and Belinskii-Khalatnikov-Lifshitz (BKL) time during the entire evolution of the Mixmaster Bianchi IX universe is used to explain why all the Lyapunov exponents are zero at the BKL time. The actual reason is that the domain of the cosmological time is finite as the BKL time runs from minus infinity to infinity.
Phase space reconstruction and estimation of the largest Lyapunov exponent for gait kinematic data
Energy Technology Data Exchange (ETDEWEB)
Josiński, Henryk [Silesian University of Technology, Akademicka 16, 44-100 Gliwice (Poland); Świtoński, Adam [Polish-Japanese Institute of Information Technology, Aleja Legionów 2, 41-902 Bytom (Poland); Silesian University of Technology, Akademicka 16, 44-100 Gliwice (Poland); Michalczuk, Agnieszka; Wojciechowski, Konrad [Polish-Japanese Institute of Information Technology, Aleja Legionów 2, 41-902 Bytom (Poland)
2015-03-10
The authors describe an example of application of nonlinear time series analysis directed at identifying the presence of deterministic chaos in human motion data by means of the largest Lyapunov exponent. The method was previously verified on the basis of a time series constructed from the numerical solutions of both the Lorenz and the Rössler nonlinear dynamical systems.
Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data
Pathak, Jaideep; Lu, Zhixin; Hunt, Brian R.; Girvan, Michelle; Ott, Edward
2017-12-01
We use recent advances in the machine learning area known as "reservoir computing" to formulate a method for model-free estimation from data of the Lyapunov exponents of a chaotic process. The technique uses a limited time series of measurements as input to a high-dimensional dynamical system called a "reservoir." After the reservoir's response to the data is recorded, linear regression is used to learn a large set of parameters, called the "output weights." The learned output weights are then used to form a modified autonomous reservoir designed to be capable of producing an arbitrarily long time series whose ergodic properties approximate those of the input signal. When successful, we say that the autonomous reservoir reproduces the attractor's "climate." Since the reservoir equations and output weights are known, we can compute the derivatives needed to determine the Lyapunov exponents of the autonomous reservoir, which we then use as estimates of the Lyapunov exponents for the original input generating system. We illustrate the effectiveness of our technique with two examples, the Lorenz system and the Kuramoto-Sivashinsky (KS) equation. In the case of the KS equation, we note that the high dimensional nature of the system and the large number of Lyapunov exponents yield a challenging test of our method, which we find the method successfully passes.
Extraction of the power law exponent for 1 GeV/nucleon Au + C projectile multifragmentation
International Nuclear Information System (INIS)
Gilkes, M.L.; Elliott, J.B.; Huager, A.; Hirsch, A.S.; Hjort, E.
1993-01-01
Using moments of the measured charge distribution in exclusive gold multifragmentation events, we present a preliminary determination of the power law exponent τ. For a system undergoing a phase transition near the critical point, τ governs the cluster size distribution and is expected on rather general grounds to lie in the range 2 < τ < 3
Adiabatic invariants and asymptotic behavior of Lyapunov exponents of the Schrodinger equation
International Nuclear Information System (INIS)
Delyon, F.; Foulon, P.
1986-01-01
We give an upper bound for the high-energy behavior of the Lyapunov exponent of the one-dimensional Schrodinger equation. We relate this behavior to the diffrentiability properties of the potential. As an application, this result provides an upper bound for the asymptotic length of the gaps of the Schrodinger equation
Directional maximum likelihood self-estimation of the path-loss exponent
Hu, Y.; Leus, G.J.T.; Dong, Min; Zheng, Thomas Fang
2016-01-01
The path-loss exponent (PLE) is a key parameter in wireless propagation channels. Therefore, obtaining the knowledge of the PLE is rather significant for assisting wireless communications and networking to achieve a better performance. Most existing methods for estimating the PLE not only require
Predicting Traffic Flow in Local Area Networks by the Largest Lyapunov Exponent
Directory of Open Access Journals (Sweden)
Yan Liu
2016-01-01
Full Text Available The dynamics of network traffic are complex and nonlinear, and chaotic behaviors and their prediction, which play an important role in local area networks (LANs, are studied in detail, using the largest Lyapunov exponent. With the introduction of phase space reconstruction based on the time sequence, the high-dimensional traffic is projected onto the low dimension reconstructed phase space, and a reduced dynamic system is obtained from the dynamic system viewpoint. Then, a numerical method for computing the largest Lyapunov exponent of the low-dimensional dynamic system is presented. Further, the longest predictable time, which is related to chaotic behaviors in the system, is studied using the largest Lyapunov exponent, and the Wolf method is used to predict the evolution of the traffic in a local area network by both Dot and Interval predictions, and a reliable result is obtained by the presented method. As the conclusion, the results show that the largest Lyapunov exponent can be used to describe the sensitivity of the trajectory in the reconstructed phase space to the initial values. Moreover, Dot Prediction can effectively predict the flow burst. The numerical simulation also shows that the presented method is feasible and efficient for predicting the complex dynamic behaviors in LAN traffic, especially for congestion and attack in networks, which are the main two complex phenomena behaving as chaos in networks.
On identifying relationships between the flood scaling exponent and basin attributes.
Medhi, Hemanta; Tripathi, Shivam
2015-07-01
Floods are known to exhibit self-similarity and follow scaling laws that form the basis of regional flood frequency analysis. However, the relationship between basin attributes and the scaling behavior of floods is still not fully understood. Identifying these relationships is essential for drawing connections between hydrological processes in a basin and the flood response of the basin. The existing studies mostly rely on simulation models to draw these connections. This paper proposes a new methodology that draws connections between basin attributes and the flood scaling exponents by using observed data. In the proposed methodology, region-of-influence approach is used to delineate homogeneous regions for each gaging station. Ordinary least squares regression is then applied to estimate flood scaling exponents for each homogeneous region, and finally stepwise regression is used to identify basin attributes that affect flood scaling exponents. The effectiveness of the proposed methodology is tested by applying it to data from river basins in the United States. The results suggest that flood scaling exponent is small for regions having (i) large abstractions from precipitation in the form of large soil moisture storages and high evapotranspiration losses, and (ii) large fractions of overland flow compared to base flow, i.e., regions having fast-responding basins. Analysis of simple scaling and multiscaling of floods showed evidence of simple scaling for regions in which the snowfall dominates the total precipitation.
Singular elliptic systems involving concave terms and critical Caffarelli-Kohn-Nirenberg exponents
Directory of Open Access Journals (Sweden)
Mohammed E. O. El Mokhtar
2012-03-01
Full Text Available In this article, we establish the existence of at least four solutions to a singular system with a concave term, a critical Caffarelli-Kohn-Nirenberg exponent, and sign-changing weight functions. Our main tools are the Nehari manifold and the mountain pass theorem.
Effect of interband interaction on isotope effect exponent of MgB2 ...
Indian Academy of Sciences (India)
The interband interaction of the electron–phonon interaction shows more effect on the isotope exponent than on the non-phonon interaction. Acknowledgement. The authors would like to thank Thailand Research Fund for financial support and the University of the Thai Chamber of Commerce for partial financial support and.
PHYSIOLOGICAL RESPONSES DURING MATCHES AND PROFILE OF ELITE PENCAK SILAT EXPONENTS
Directory of Open Access Journals (Sweden)
Benedict Tan
2002-12-01
Full Text Available This is a descriptive, cross-sectional study describing the physiological responses during competitive matches and profile of elite exponents of an emerging martial art sport, pencak silat. Thirty exponents (21 males and 9 females were involved in the study. Match responses (i.e. heart rate (HR throughout match and capillary blood lactate concentration, [La], at pre-match and at the end of every round were obtained during actual competitive duels. Elite silat exponents' physiological attributes were assessed via anthropometry, vertical jump, isometric grip strength, maximal oxygen uptake, and the Wingate 30 s anaerobic test of the upper and lower body, in the laboratory. The match response data showed that silat competitors' mean HR was > 84% of estimated HR maximum and levels of [La] ranged from 6.7 - 18.7 mMol-1 during matches. This suggests that competitive silat matches are characterised by high aerobic and anaerobic responses. In comparison to elite taekwondo and judo athletes' physiological characteristics, elite silat exponents have lower aerobic fitness and grip strength, but greater explosive leg power (vertical jump. Generally, they also possessed a similar anaerobic capability in the lower but markedly inferior anaerobic capability in the upper body
Dynamical generalized Hurst exponent as a tool to monitor unstable periods in financial time series
Morales, Raffaello; Di Matteo, T.; Gramatica, Ruggero; Aste, Tomaso
2012-06-01
We investigate the use of the Hurst exponent, dynamically computed over a weighted moving time-window, to evaluate the level of stability/instability of financial firms. Financial firms bailed-out as a consequence of the 2007-2008 credit crisis show a neat increase with time of the generalized Hurst exponent in the period preceding the unfolding of the crisis. Conversely, firms belonging to other market sectors, which suffered the least throughout the crisis, show opposite behaviors. We find that the multifractality of the bailed-out firms increase at the crisis suggesting that the multi fractal properties of the time series are changing. These findings suggest the possibility of using the scaling behavior as a tool to track the level of stability of a firm. In this paper, we introduce a method to compute the generalized Hurst exponent which assigns larger weights to more recent events with respect to older ones. In this way large fluctuations in the remote past are less likely to influence the recent past. We also investigate the scaling associated with the tails of the log-returns distributions and compare this scaling with the scaling associated with the Hurst exponent, observing that the processes underlying the price dynamics of these firms are truly multi-scaling.
Ogawa, Shun; Yamaguchi, Yoshiyuki Y
2015-06-01
An external force dynamically drives an isolated mean-field Hamiltonian system to a long-lasting quasistationary state, whose lifetime increases with population of the system. For second order phase transitions in quasistationary states, two nonclassical critical exponents have been reported individually by using a linear and a nonlinear response theories in a toy model. We provide a simple way to compute the critical exponents all at once, which is an analog of the Landau theory. The present theory extends the universality class of the nonclassical exponents to spatially periodic one-dimensional systems and shows that the exponents satisfy a classical scaling relation inevitably by using a key scaling of momentum.
Large $N$ critical exponents for the chiral Heisenberg Gross-Neveu universality class
Gracey, J. A.
2018-01-01
We compute the large N critical exponents η, ηϕ and 1/ν in d dimensions in the chiral Heisenberg Gross-Neveu model to several orders in powers of 1/N. For instance, the large N conformal bootstrap method is used to determine η at O(1/N3) while the other exponents are computed to O(1/N2). Estimates of the exponents for a phase transition in graphene are given which are shown to be commensurate with other approaches. In particular the behavior of the exponents in 2
Tang, Huadong; Hussain, Azher; Leal, Mauricio; Fluhler, Eric; Mayersohn, Michael
2011-02-01
This commentary is a reply to a recent article by Mahmood commenting on the authors' article on the use of fixed-exponent allometry in predicting human clearance. The commentary discusses eight issues that are related to criticisms made in Mahmood's article and examines the controversies (fixed-exponent vs. varying-exponent allometry) from the perspective of statistics and mathematics. The key conclusion is that any allometric method, which is to establish a power function based on a limited number of animal species and to extrapolate the resulting power function to human values (varying-exponent allometry), is infused with fundamental statistical errors. Copyright © 2010 Wiley-Liss, Inc.
International Nuclear Information System (INIS)
Gale, M.D.; Flintham, J.E.
1984-01-01
The Tom Thumb dwarfing gene, Rht3, like the related genes Rht1 and Rht2 from Norin 10, has pleiotropic effects on individual ear yields, and grain protein concentrations. An experiment was conducted in which tiller number per plant and grain number per spike were restricted to ascertain whether reduced grain size and protein content are primary or secondary competitive effects in near-isogenic lines. The potential for grain growth was shown to be identical in Rht3 and rht genotypes when grain set was restricted, indicating that the primary effect of the gene is to increase spikelet fertility. Nitrogen accumulation within the grain was also affected by inter-grain competition but decreased nitrogen yields per plant indicated that reduced protein levels are, in part, a primary effect of the gene. Analysis of individual grain yields within Rht3 and rht spikes showed that the gene affected developmental 'dominance' relationships within the spike. (author)