WorldWideScience

Sample records for grain boundary defect

  1. Effects of grain size and grain boundaries on defect production in nanocrystalline 3C-SiC

    International Nuclear Information System (INIS)

    Swaminathan, N.; Kamenski, Paul J.; Morgan, Dane; Szlufarska, Izabela

    2010-01-01

    Cascade simulations in single crystal and nanocrystalline SiC have been conducted in order to determine the role of grain boundaries and grain size on defect production during primary radiation damage. Cascades are performed with 4 and 10 keV silicon as the primary knock-on atom (PKA). Total defect production is found to increase with decreasing grain size, and this effect is shown to be due to increased production in grain boundaries and changing grain boundary volume fraction. In order to consider in-grain defect production, a new mapping methodology is developed to properly normalize in-grain defect production rates for nanocrystalline materials. It is shown that the presence of grain boundaries does not affect the total normalized in-grain defect production significantly (the changes are lower than ∼20%) for the PKA energies considered. Defect production in the single grain containing the PKA is also studied and found to increase for smaller grain sizes. In particular, for smaller grain sizes the defect production decreases with increasing distance from the grain boundary while for larger grain sizes the presence of the grain boundaries has negligible effect on defect production. The results suggest that experimentally observed changes in radiation resistance of nanocrystalline materials may be due to long-term damage evolution rather than changes in defect production rates from primary damage.

  2. Mathematical simulation of point defect interaction with grain boundaries

    International Nuclear Information System (INIS)

    Bojko, V.S.

    1987-01-01

    Published works, where the interaction of point defects and grain boundaries was studied by mathematical simulation methods, have been analysed. Energetics of the vacancy formation both in nuclei of large-angle special grain boundaries and in lattice regions adjoining them has been considered. The data obtained permit to explain specific features of grain-boundary diffusion processes. Results of mathematical simulation of the interaction of impurity atoms and boundaries have been considered. Specific features of the helium atom interaction with large-angle grain boundaries are analysed as well

  3. Effect of grain boundary structures on the behavior of He defects in Ni: An atomistic study

    Institute of Scientific and Technical Information of China (English)

    H F Gong; Y Yan; X S Zhang; W Lv; T Liu; Q S Ren

    2017-01-01

    We investigated the effect of grain boundary structures on the trapping strength of HeN (N is the number of helium atoms) defects in the grain boundaries of nickel.The results suggest that the binding energy of an interstitial helium atom to the grain boundary plane is the strongest among all sites around the plane.The HeN defect is much more stable in nickel bulk than in the grain boundary plane.Besides,the binding energy of an interstitial helium atom to a vacancy is stronger than that to a grain boundary plane.The binding strength between the grain boundary and the HeN defect increases with the defect size.Moreover,the binding strength of the HeN defect to the Σ3 (1 12)[110] grain boundary becomes much weaker than that to other grain boundaries as the defect size increases.

  4. Study of some properties of point defects in grain boundaries

    International Nuclear Information System (INIS)

    Martin, Georges

    1973-01-01

    With the aim of deducing simple informations on the grain boundary core structure, we investigated self diffusion under hydrostatic pressure, impurity diffusion (In and Au), electromigration (Sb) along certain types of grain boundaries in Ag bicrystals, and the Moessbauer effect of 57 Co located in the grain boundaries of polycrystalline Be. Our results lead to the following conclusions: the formation of a vacancy like defects is necessary to grain boundary diffusion; solute atoms may release most of their elastic energy of dissolution as they segregate at the boundary; in an electrical field, the drift of Sb ions parallel to the boundary takes place toward the anode as in the bulk. The force on the grain boundary ions is larger than in the bulk; Moessbauer spectroscopy revealed the formation of Co-rich aggregates, which may proves important in the study of early stages of grain boundary precipitation. (author) [fr

  5. Chevron defect at the intersection of grain boundaries with free surfaces in Au

    International Nuclear Information System (INIS)

    Radetic, T.; Lancon, F.; Dahmen, U.

    2002-01-01

    We have identified a new defect at the intersection between grain boundaries and surfaces in Au using atomic resolution transmission electron microscopy. At the junction line of 90 deg. tilt grain boundaries of (110)-(001) orientation with the free surface, a small segment of the grain boundary, about 1 nm in length, dissociates into a triangular region with a chevronlike stacking disorder and a distorted hcp structure. The structure and stability of these defects are confirmed by atomistic simulations, and we point out the relationship with the one-dimensional incommensurate structure of the grain boundary

  6. High angle grain boundaries as sources or sinks for point defects

    Energy Technology Data Exchange (ETDEWEB)

    Balluffi, R.W.

    1979-09-01

    A secondary grain boundary dislocation climb model for high angle grain boundaries as sources/sinks for point defects is described in the light of recent advances in our knowledge of grain boundary structure. Experimental results are reviewed and are then compared with the expected behavior of the proposed model. Reasonably good consistency is found at the level of our present understanding of the subject. However, several gaps in our present knowledge still exist, and these are identified and discussed briefly.

  7. Grain boundary structure and properties

    International Nuclear Information System (INIS)

    Balluffi, R.W.

    1979-01-01

    An attempt is made to distinguish those fundamental aspects of grain boundaries which should be relevant to the problem of the time dependent fracture of high temperature structural materials. These include the basic phenomena which are thought to be associated with cavitation and cracking at grain boundaries during service and with the more general microstructural changes which occur during both processing and service. A very brief discussion of the current state of our knowledge of these fundamentals is given. Included are the following: (1) structure of ideal perfect boundaries; (2) defect structure of grain boundaries; (3) diffusion at grain boundaries; (4) grain boundaries as sources/sinks for point defects; (5) grain boundary migration; (6) dislocation phenomena at grain boundaries; (7) atomic bonding and cohesion at grain boundaries; (8) non-equilibrium properties of grain boundaries; and (9) techniques for studying grain boundaries

  8. Grain boundaries and defects in superconducting Bi-Sr-Ca-Cu-O ceramics

    International Nuclear Information System (INIS)

    Ramesh, R.; Bagley, B.G.; Tarascon, J.M.; Green, S.M.; Rudee, M.L.; Luo, H.L.

    1990-01-01

    Defects and structural interfaces in superconducting Bi-Sr-Ca-Cu-O have been characterized by transmission electron microscopy. The superconducting phase exhibits frequent variations in the stacking sequence (polytypoids). Dislocations, observed inside the grains, either introduce or accommodate the shear in the a-b plane and the local composition fluctuations. In general, the grains exhibit a platelike morphology with the a-b plane as the grain boundary plane. Grain boundaries along the short edge are generally disordered, whereas those near the long edge generally have a thin layer of the lower T c polytypoid. Coherent intragranular boundaries are also observed

  9. Thermo-kinetic mechanisms for grain boundary structure multiplicity, thermal instability and defect interactions

    International Nuclear Information System (INIS)

    Burbery, N.J.; Das, R.; Ferguson, W.G.

    2016-01-01

    Grain boundaries (GBs) provide a source and/or a sink for crystal defects and store elastic energy due to the non-uniform atomic bonding structure of the GB core. GB structures are thermodynamically driven to transition to the lowest energy configuration possible; however to date there has been little evidence to explain why specific GB structures have a low energy state. Furthermore, there is little quantitative demonstration of the significance of physical and GB structure characteristics on the GB energy, thermal stability, and the effect of temporary local GB structure transformations on defect interactions. This paper evaluates the defect interactions and structure stability of multiple Σ5(310) GB structures in bi-crystals of pure aluminium, and systematically investigates the features at 0 K to characterise multiple metastable structures. Structure stability is evaluated by utilising unstable vacancy defects to initiate GB transformations, and using nudged elastic band simulations to quantify this with the activation energy. The emission of stable vacancy defects from the ‘stable’ and metastable grain boundaries is also evaluated in the same manner. A detailed analysis of dislocation nucleation at the atomistic scale demonstrates that local transformations of GB structure between stable and metastable intermediates can provide a mechanism to accommodate the generation of crystal defects. Kinetic (time-dependent) effects that compete with energetic driving forces for structural transformations of GBs are shown to cause a significant effect on the activation properties that may exceed the influence of GB potential energy. The results demonstrate that GB structural multiplicity can be associated with the generation and absorption of dislocations and vacancies. This paper demonstrates the suitability of atomistic simulations coupled with nudged elastic band simulations to evaluate fundamental thermodynamic properties of pure FCC metals. Overall, this paper

  10. Thermo-kinetic mechanisms for grain boundary structure multiplicity, thermal instability and defect interactions

    Energy Technology Data Exchange (ETDEWEB)

    Burbery, N.J. [Department of Mechanical Engineering, University of Auckland, Auckland 1010 (New Zealand); Das, R., E-mail: r.das@auckland.ac.nz [Department of Mechanical Engineering, University of Auckland, Auckland 1010 (New Zealand); Ferguson, W.G. [Department of Chemical and Materials Engineering, University of Auckland, Auckland 1010 (New Zealand)

    2016-08-15

    Grain boundaries (GBs) provide a source and/or a sink for crystal defects and store elastic energy due to the non-uniform atomic bonding structure of the GB core. GB structures are thermodynamically driven to transition to the lowest energy configuration possible; however to date there has been little evidence to explain why specific GB structures have a low energy state. Furthermore, there is little quantitative demonstration of the significance of physical and GB structure characteristics on the GB energy, thermal stability, and the effect of temporary local GB structure transformations on defect interactions. This paper evaluates the defect interactions and structure stability of multiple Σ5(310) GB structures in bi-crystals of pure aluminium, and systematically investigates the features at 0 K to characterise multiple metastable structures. Structure stability is evaluated by utilising unstable vacancy defects to initiate GB transformations, and using nudged elastic band simulations to quantify this with the activation energy. The emission of stable vacancy defects from the ‘stable’ and metastable grain boundaries is also evaluated in the same manner. A detailed analysis of dislocation nucleation at the atomistic scale demonstrates that local transformations of GB structure between stable and metastable intermediates can provide a mechanism to accommodate the generation of crystal defects. Kinetic (time-dependent) effects that compete with energetic driving forces for structural transformations of GBs are shown to cause a significant effect on the activation properties that may exceed the influence of GB potential energy. The results demonstrate that GB structural multiplicity can be associated with the generation and absorption of dislocations and vacancies. This paper demonstrates the suitability of atomistic simulations coupled with nudged elastic band simulations to evaluate fundamental thermodynamic properties of pure FCC metals. Overall, this paper

  11. Partitioning of water between point defects, dislocations, and grain boundaries in olivine

    Science.gov (United States)

    Tielke, J. A.; Mecklenburgh, J.; Mariani, E.; Wheeler, J.

    2017-12-01

    Estimates of the storage capacity of water in the interior of the Earth and other terrestrial planets vary significantly. One interpretation is that water in planetary interiors exists primarily as hydrogen ions, dissociated from liquid water, that are associated with point defects in the crystal structure of nominally anhydrous minerals. However, dislocations and grain boundaries may contribute significantly to the storage capacity of water in planetary interiors, but hydrogen concentrations in dislocations and grain boundaries are difficult to quantify. To measure the water storage capacity of dislocations and grain boundaries, we are analyzing results from high-temperature and high-pressure experiments where deuterium, a stable isotope of hydrogen, was incorporated into olivine, the dominate phase in the upper mantle. Compared to hydrogen, deuterium concentrations can be determined at much higher spatial resolution using secondary-ion mass spectroscopy. The concentration of deuterium in the samples will also be quantified using Fourier transform infrared spectroscopy for comparison to results for hydrogen-bearing olivine. The spatial distribution of regions with different densities of geometrically-necessary dislocations and the locations of grain boundaries will be determined using electron-backscatter diffraction (EBSD) analyses. Correlation of the concentration of deuterium with dislocation densities and grain boundaries will be used to examine the partitioning of water-derived species between the different types of defects. Ultimately, these data will be used to place more realistic bounds on the storage capacity of water in the interior of Earth and of other terrestrial planets.

  12. Binding energetics of substitutional and interstitial helium and di-helium defects with grain boundary structure in α-Fe

    International Nuclear Information System (INIS)

    Tschopp, M. A.; Gao, F.; Yang, L.; Solanki, K. N.

    2014-01-01

    The formation/binding energetics and length scales associated with the interaction between He atoms and grain boundaries in BCC α-Fe were explored. Ten different low Σ grain boundaries from the 〈100〉 and 〈110〉 symmetric tilt grain boundary systems were used. In this work, we then calculated formation/binding energies for 1–2 He atoms in the substitutional and interstitial sites (HeV, He 2 V, HeInt, He 2 Int) at all potential grain boundary sites within 15 Å of the boundary (52 826 simulations total). The present results provide detailed information about the interaction energies and length scales of 1–2 He atoms with grain boundaries for the structures examined. A number of interesting new findings emerge from the present study. For instance, the Σ3(112) twin boundary in BCC Fe possesses a much smaller binding energy than other boundaries, which corresponds in long time dynamics simulations to the ability of an interstitial He defect to break away from the boundary in simulations on the order of nanoseconds. Additionally, positive correlations between the calculated formation/binding energies of the He defects (R > 0.9) asserts that the local environment surrounding each site strongly influences the He defect energies and that highly accurate quantum mechanics calculations of lower order defects may be an adequate predictor of higher order defects. Various metrics to quantify or classify the local environment were compared with the He defect binding energies. The present work shows that the binding and formation energies for He defects are important for understanding the physics of He diffusion and trapping by grain boundaries, which can be important for modeling He interactions in polycrystalline steels

  13. Binding energetics of substitutional and interstitial helium and di-helium defects with grain boundary structure in α-Fe

    Energy Technology Data Exchange (ETDEWEB)

    Tschopp, M. A., E-mail: mark.tschopp@gatech.edu [Dynamic Research Corporation, (on site at) U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States); Center for Advanced Vehicular Systems, Mississippi State University, Starkville, Mississippi 39762 (United States); Gao, F.; Yang, L. [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Solanki, K. N. [Arizona State University, School for Engineering of Matter, Transport and Energy, Tempe, Arizona 85287 (United States)

    2014-01-21

    The formation/binding energetics and length scales associated with the interaction between He atoms and grain boundaries in BCC α-Fe were explored. Ten different low Σ grain boundaries from the 〈100〉 and 〈110〉 symmetric tilt grain boundary systems were used. In this work, we then calculated formation/binding energies for 1–2 He atoms in the substitutional and interstitial sites (HeV, He{sub 2}V, HeInt, He{sub 2}Int) at all potential grain boundary sites within 15 Å of the boundary (52 826 simulations total). The present results provide detailed information about the interaction energies and length scales of 1–2 He atoms with grain boundaries for the structures examined. A number of interesting new findings emerge from the present study. For instance, the Σ3(112) twin boundary in BCC Fe possesses a much smaller binding energy than other boundaries, which corresponds in long time dynamics simulations to the ability of an interstitial He defect to break away from the boundary in simulations on the order of nanoseconds. Additionally, positive correlations between the calculated formation/binding energies of the He defects (R > 0.9) asserts that the local environment surrounding each site strongly influences the He defect energies and that highly accurate quantum mechanics calculations of lower order defects may be an adequate predictor of higher order defects. Various metrics to quantify or classify the local environment were compared with the He defect binding energies. The present work shows that the binding and formation energies for He defects are important for understanding the physics of He diffusion and trapping by grain boundaries, which can be important for modeling He interactions in polycrystalline steels.

  14. Accelerated carrier recombination by grain boundary/edge defects in MBE grown transition metal dichalcogenides

    Science.gov (United States)

    Chen, Ke; Roy, Anupam; Rai, Amritesh; Movva, Hema C. P.; Meng, Xianghai; He, Feng; Banerjee, Sanjay K.; Wang, Yaguo

    2018-05-01

    Defect-carrier interaction in transition metal dichalcogenides (TMDs) plays important roles in carrier relaxation dynamics and carrier transport, which determines the performance of electronic devices. With femtosecond laser time-resolved spectroscopy, we investigated the effect of grain boundary/edge defects on the ultrafast dynamics of photoexcited carrier in molecular beam epitaxy (MBE)-grown MoTe2 and MoSe2. We found that, comparing with exfoliated samples, the carrier recombination rate in MBE-grown samples accelerates by about 50 times. We attribute this striking difference to the existence of abundant grain boundary/edge defects in MBE-grown samples, which can serve as effective recombination centers for the photoexcited carriers. We also observed coherent acoustic phonons in both exfoliated and MBE-grown MoTe2, indicating strong electron-phonon coupling in this materials. Our measured sound velocity agrees well with the previously reported result of theoretical calculation. Our findings provide a useful reference for the fundamental parameters: carrier lifetime and sound velocity and reveal the undiscovered carrier recombination effect of grain boundary/edge defects, both of which will facilitate the defect engineering in TMD materials for high speed opto-electronics.

  15. Accelerated carrier recombination by grain boundary/edge defects in MBE grown transition metal dichalcogenides

    Directory of Open Access Journals (Sweden)

    Ke Chen

    2018-05-01

    Full Text Available Defect-carrier interaction in transition metal dichalcogenides (TMDs plays important roles in carrier relaxation dynamics and carrier transport, which determines the performance of electronic devices. With femtosecond laser time-resolved spectroscopy, we investigated the effect of grain boundary/edge defects on the ultrafast dynamics of photoexcited carrier in molecular beam epitaxy (MBE-grown MoTe2 and MoSe2. We found that, comparing with exfoliated samples, the carrier recombination rate in MBE-grown samples accelerates by about 50 times. We attribute this striking difference to the existence of abundant grain boundary/edge defects in MBE-grown samples, which can serve as effective recombination centers for the photoexcited carriers. We also observed coherent acoustic phonons in both exfoliated and MBE-grown MoTe2, indicating strong electron-phonon coupling in this materials. Our measured sound velocity agrees well with the previously reported result of theoretical calculation. Our findings provide a useful reference for the fundamental parameters: carrier lifetime and sound velocity and reveal the undiscovered carrier recombination effect of grain boundary/edge defects, both of which will facilitate the defect engineering in TMD materials for high speed opto-electronics.

  16. Defect sink characteristics of specific grain boundary types in 304 stainless steels under high dose neutron environments

    International Nuclear Information System (INIS)

    Field, Kevin G.; Yang, Ying; Allen, Todd R.; Busby, Jeremy T.

    2015-01-01

    Radiation induced segregation (RIS) is a well-studied phenomena which occurs in many structurally relevant nuclear materials including austenitic stainless steels. RIS occurs due to solute atoms preferentially coupling with mobile point defect fluxes that migrate and interact with defect sinks. Here, a 304 stainless steel was neutron irradiated up to 47.1 dpa at 320 °C. Investigations into the RIS response at specific grain boundary types were used to determine the sink characteristics of different boundary types as a function of irradiation dose. A rate theory model built on the foundation of the modified inverse Kirkendall (MIK) model is proposed and benchmarked to the experimental results. This model, termed the GiMIK model, includes alterations in the boundary conditions based on grain boundary structure and expressions for interstitial binding. This investigation, through experiment and modeling, found specific grain boundary structures exhibiting unique defect sink characteristics depending on their local structure. Such interactions were found to be consistent across all doses investigated and to have larger global implications, including precipitation of Ni–Si clusters near different grain boundary types

  17. The interactions of radiation damage with grain boundaries

    International Nuclear Information System (INIS)

    King, A.H.

    1979-01-01

    This thesis reports a theoretical and experimental study of the fundamental effects giving rise to zones adjacent to grain boundaries which are denuded of irradiation-induced damage. The results, however, have significance in the wider field of point-defect absorption (and emission) by grain boundaries. Particular emphasis has been laid upon correlating the point-defect sink behaviour of grain boundaries with their structures and to this end, grain boundaries with periodically repeating structures have been chosen for study. The hypotheses that point-defect absorption is achieved by the climb of grain boundary dislocation spirals, loops and structural arrays have been investigated and firm evidence has been found to support the two latter mechanisms in specific cases. Loops, in particular, have been found to grow only on coherent twin boundary planes. Chapter two of the thesis investigates the crystallographic nature of the possible reactions of point-defects with periodic boundaries and demonstrates that effects such as grain boundary migration and grain translations may be associated with point-defect absorption. Chapter three presents a theoretical study of the effects of elastic interactions between point-defects and grain boundary dislocations and gives predictions of sink strength and bias of a grain boundary as a function of its structure. Chapter four consists of experimental examples of grain boundaries observed during and after irradiation. Chapter five discusses the results of chapters two, three and four considering their implications for the various hypotheses and presents the conclusions of the thesis and some suggestions for further work. (author)

  18. Defect and grain boundary scattering in tungsten: A combined theoretical and experimental study

    Science.gov (United States)

    Lanzillo, Nicholas A.; Dixit, Hemant; Milosevic, Erik; Niu, Chengyu; Carr, Adra V.; Oldiges, Phil; Raymond, Mark V.; Cho, Jin; Standaert, Theodorus E.; Kamineni, Vimal K.

    2018-04-01

    Several major electron scattering mechanisms in tungsten (W) are evaluated using a combination of first-principles density functional theory, a Non-Equilibrium Green's Function formalism, and thin film Kelvin 4-point sheet resistance measurements. The impact of grain boundary scattering is found to be roughly an order of magnitude larger than the impact of defect scattering. Ab initio simulations predict average grain boundary reflection coefficients for a number of twin grain boundaries to lie in the range r = 0.47 to r = 0.62, while experimental data can be fit to the empirical Mayadas-Schatzkes model with a comparable but slightly larger value of r = 0.69. The experimental and simulation data for grain boundary resistivity as a function of grain size show excellent agreement. These results provide crucial insights for understanding the impact of scaling of W-based contacts between active devices and back-end-of-line interconnects in next-generation semiconductor technology.

  19. Role of interfacial defect creation-annihilation processes at grain boundaries on the diffusional creep of polycrystalline alumina

    International Nuclear Information System (INIS)

    Ikuma, Y.; Gordon, R.S.

    1981-01-01

    It is generally assumed in the diffusional creep of a polycrystalline solid that grain boundaries act as perfect sources and sinks for lattice defects. However, if this assumption is not valid, then diffusional creep can become rate limited by interfacial defect reactions at grain boundaries. Steady state diffusional creep data will be presented at 1450 to 1500 0 C for polycrystalline alumina doped with Ti and a Mg-Ti co-dopant, which are consistent with interfacial controlled kinetics over an intermediate grain size range. A new type of creep deformation map will be presented which reveals the range of grain sizes and impurity concentrations over which interfacial defect creation and/or annihilation processes are important in the steady state creep of polycrystalline alumina

  20. Moessbauer study of solute interactions with the lattice defect and grain boundary

    International Nuclear Information System (INIS)

    Ishida, Y.

    1979-10-01

    Moessbauer effect was used in the investigations of defect structures of Al- 57 Co alloys introduced by electron irradiation and grain boundary embrittlement in binary iron alloys containing sup(119m)Sn nuclei. The behaviour of tin during aging of Al-Cu-Sn alloys was examined by Moessbauer spectra during isothermal annealing of the samples at various temperatures. Similar investigations were conducted for polycrystalline and bicrystalline silver foils containing sup(119m)Sn sandwiched in the boundary. The binding state of tin atoms segregated at the grain boundary of fine grained iron and iron alloys provided the clues for the embrittlement of iron alloys. The inhibiting effect of Ti, V, and Mo can be explained by the usurpation of the electrons in the tin atoms to the 3d shell of iron. Moessbauer effect was extensively applied in studying the aging behaviour of aluminium alloys in quenching, ion-implantation and electron irradiation processes

  1. Role of Grain Boundaries under Long-Time Radiation

    Science.gov (United States)

    Zhu, Yichao; Luo, Jing; Guo, Xu; Xiang, Yang; Chapman, Stephen Jonathan

    2018-06-01

    Materials containing a high proportion of grain boundaries offer significant potential for the development of radiation-resistant structural materials. However, a proper understanding of the connection between the radiation-induced microstructural behavior of a grain boundary and its impact at long natural time scales is still missing. In this Letter, point defect absorption at interfaces is summarized by a jump Robin-type condition at a coarse-grained level, wherein the role of interface microstructure is effectively taken into account. Then a concise formula linking the sink strength of a polycrystalline aggregate with its grain size is introduced and is well compared with experimental observation. Based on the derived model, a coarse-grained formulation incorporating the coupled evolution of grain boundaries and point defects is proposed, so as to underpin the study of long-time morphological evolution of grains induced by irradiation. Our simulation results suggest that the presence of point defect sources within a grain further accelerates its shrinking process, and radiation tends to trigger the extension of twin boundary sections.

  2. Observing grain boundaries in CVD-grown monolayer transition metal dichalcogenides

    KAUST Repository

    Ly, Thuchue

    2014-11-25

    Two-dimensional monolayer transition metal dichalcogenides (TMdCs), driven by graphene science, revisit optical and electronic properties, which are markedly different from bulk characteristics. These properties are easily modified due to accessibility of all the atoms viable to ambient gases, and therefore, there is no guarantee that impurities and defects such as vacancies, grain boundaries, and wrinkles behave as those of ideal bulk. On the other hand, this could be advantageous in engineering such defects. Here, we report a method of observing grain boundary distribution of monolayer TMdCs by a selective oxidation. This was implemented by exposing directly the TMdC layer grown on sapphire without transfer to ultraviolet light irradiation under moisture-rich conditions. The generated oxygen and hydroxyl radicals selectively functionalized defective grain boundaries in TMdCs to provoke morphological changes at the boundary, where the grain boundary distribution was observed by atomic force microscopy and scanning electron microscopy. This paves the way toward the investigation of transport properties engineered by defects and grain boundaries. (Figure Presented).

  3. Interactions between Dislocations and Grain Boundaries

    NARCIS (Netherlands)

    Soer, Wouter Anthon

    2006-01-01

    Dislocations (line defects) and grain boundaries (planar defects) are two types of lattice defects that are crucial to the deformation behavior of metals. Permanent deformation of a crystalline material is microscopically associated with the nucleation and propagation of dislocations, and extensive

  4. Defect distribution in deformed grains of Cu-based alloy polycrystals

    Science.gov (United States)

    Koneva, N. A.; Trishkina, L. I.; Cherkasova, T. V.

    2017-12-01

    The paper presents transmission electron microscopy data on the grain defect structure formed in deformed Cu-Al polycrystals. The data show that the parameters of dislocation substructures vary with distance from grain boundaries and that a hardened zone arises near the grain boundaries and its size depends on the grain size.

  5. Surface concentration of defects at grain boundaries in sintered alumina determined by positron annihilation lifetime spectroscopy

    International Nuclear Information System (INIS)

    Kansy, J.; Ahmad, A.Si.; Moya, G.; Liebault, J.

    2001-01-01

    Sintered alumina samples of grain diameters spanning from 1.2 to 4.5 μm have been investigated by positron annihilation lifetime spectroscopy. One series of samples was produced from material containing about 150 ppm impurities (mainly SiO 2 ). The second one was made from material having about 2700 ppm of various elements (SiO 2 , MgO, CaO). Two models of positron trapping at grain boundaries are compared: The first one relates to the diffusion-limited regime; and the other one - to the transmission-limited regime of trapping. As a results of relative change of surface concentration of defects at grain boundaries is determined. Additionally, positron diffusion constant in bulk alumina at room temperature, D + = 0.36 ± 10 cm 2 /s, is estimated. (author)

  6. Defect induced d0 ferromagnetism in a ZnO grain boundary

    KAUST Repository

    Devi, Assa Aravindh Sasikala

    2015-12-08

    Several experimental studies have referred to the grain boundary(GB) defect as the origin of ferromagnetism in zinc oxide (ZnO). However, the mechanism of this hypothesis has never been confirmed. Present study investigates the atomic structure and the effect of point defects in a ZnOGB using the generalized gradient approximation+U approximation. The relaxed GB possesses large periodicity and channels with 8 and 10 numbered atoms having 4 and 3 fold coordination. The Znvacancy (VZn) shows a tendency to be attracted to the GB, relative to the bulk-like region. Although no magnetization is obtained from point defect-free GB, VZn induces spin polarization as large as 0.68 μB/atom to the O sites at the GB.Ferromagnetic exchange energy >150 eV is obtained by increasing the concentration of VZn and by the injection of holes into the system. Electronic structure analysis indicates that the spin polarization without external dopants originates from the O 2p orbitals, a common feature of d0semiconductors.

  7. Defect induced d0 ferromagnetism in a ZnO grain boundary

    KAUST Repository

    Devi, Assa Aravindh Sasikala; Schwingenschlö gl, Udo; Roqan, Iman S.

    2015-01-01

    Several experimental studies have referred to the grain boundary(GB) defect as the origin of ferromagnetism in zinc oxide (ZnO). However, the mechanism of this hypothesis has never been confirmed. Present study investigates the atomic structure and the effect of point defects in a ZnOGB using the generalized gradient approximation+U approximation. The relaxed GB possesses large periodicity and channels with 8 and 10 numbered atoms having 4 and 3 fold coordination. The Znvacancy (VZn) shows a tendency to be attracted to the GB, relative to the bulk-like region. Although no magnetization is obtained from point defect-free GB, VZn induces spin polarization as large as 0.68 μB/atom to the O sites at the GB.Ferromagnetic exchange energy >150 eV is obtained by increasing the concentration of VZn and by the injection of holes into the system. Electronic structure analysis indicates that the spin polarization without external dopants originates from the O 2p orbitals, a common feature of d0semiconductors.

  8. Structure of grain boundaries in hexagonal materials

    International Nuclear Information System (INIS)

    Sarrazit, F.

    1998-05-01

    The work presented in this thesis describes experimental and theoretical aspects associated with the structure of grain boundaries in hexagonal materials. It has been found useful to classify grain boundaries as low-angle, special or general on the basis of their structure. High-angle grain boundaries were investigated in tungsten carbide (WC) using conventional electron microscopy techniques, and three examples characteristic of the interfaces observed in this material were studied extensively. Three-dimensionally periodic patterns are proposed as plausible reference configurations, and the Burgers vectors of observed interfacial dislocations were predicted using a theory developed recently. The comparison of experimental observations with theoretical predictions proved to be difficult as contrast simulation techniques require further development for analysis to be completed confidently. Another part of this work involves the characterisation of high-angle grain boundaries in zinc oxide (ZnO) using circuit mapping. Two boundaries displayed structural features characteristic of the 'special' category, however, one boundary presented features which did not conform to this model. It is proposed that the latter observation shows a structural transition from the special to a more general type. Material fluxes involved in defect interactions were considered using the topological framework described in this work. A genera) expression was derived for the total flux arising which allows the behaviour of line-defects to be studied in complex interfacial processes. (author)

  9. Grain boundary defects initiation at the outer surface of dissimilar welds: corrosion mechanism studies

    International Nuclear Information System (INIS)

    De Bouvier, O.; Yrieix, B.

    1995-11-01

    Dissimilar welds located on the primary coolant system of the French PWR I plants exhibit grain boundary defects in the true austenitic zones of the first buttering layer. If grain boundaries reach the interface, they can extend to the martensitic band. Those defects are filled with compact oxides. In addition, the ferritic base metal presents some pits along the interface. Nowadays, three mechanisms are proposed to explain the initiation of those defects: stress corrosion cracking, intergranular corrosion and high temperature intergranular oxidation. This paper is dealing with the study of the mechanisms involved in the corrosion phenomenon. Intergranular corrosion tests performed on different materials show that only the first buttering layer, even with some δ ferrite, is sensitized. The results of stress corrosion cracking tests in water solutions show that intergranular cracking is possible on a bulk material representative of the first buttering layer. It is unlikely on actual dissimilar welds where the ferritic base metal protects the first austenitic layer by galvanic coupling. Therefore, the stress corrosion cracking assumption cannot explain the initiation of the defects in aqueous environment. The results of the investigations and of the corrosion studies led to the conclusion that the atmosphere could be the only possible aggressive environment. This conclusion is based on natural atmospheric exposure and accelerated corrosion tests carried out with SO 2 additions in controlled atmosphere. They both induce a severe intergranular corrosion on true sensitized austenitic materials. This corrosion studies cannot conclude definitively on the causes of the defect initiation on field, but they show that the atmospheric corrosion could produce intergranular attacks in the pure austenitic zones of the first buttering layer of the dissimilar welds and that this corrosion is stress assisted. (author). 1 ref., 6 figs., 4 tabs

  10. Three dimensional grain boundary modeling in polycrystalline plasticity

    Science.gov (United States)

    Yalçinkaya, Tuncay; Özdemir, Izzet; Fırat, Ali Osman

    2018-05-01

    At grain scale, polycrystalline materials develop heterogeneous plastic deformation fields, localizations and stress concentrations due to variation of grain orientations, geometries and defects. Development of inter-granular stresses due to misorientation are crucial for a range of grain boundary (GB) related failure mechanisms, such as stress corrosion cracking (SCC) and fatigue cracking. Local crystal plasticity finite element modelling of polycrystalline metals at micron scale results in stress jumps at the grain boundaries. Moreover, the concepts such as the transmission of dislocations between grains and strength of the grain boundaries are not included in the modelling. The higher order strain gradient crystal plasticity modelling approaches offer the possibility of defining grain boundary conditions. However, these conditions are mostly not dependent on misorientation of grains and can define only extreme cases. For a proper definition of grain boundary behavior in plasticity, a model for grain boundary behavior should be incorporated into the plasticity framework. In this context, a particular grain boundary model ([l]) is incorporated into a strain gradient crystal plasticity framework ([2]). In a 3-D setting, both bulk and grain boundary models are implemented as user-defined elements in Abaqus. The strain gradient crystal plasticity model works in the bulk elements and considers displacements and plastic slips as degree of freedoms. Interface elements model the plastic slip behavior, yet they do not possess any kind of mechanical cohesive behavior. The physical aspects of grain boundaries and the performance of the model are addressed through numerical examples.

  11. Defect induced d{sup 0} ferromagnetism in a ZnO grain boundary

    Energy Technology Data Exchange (ETDEWEB)

    Assa Aravindh, Sasikala Devi; Schwingenschloegl, Udo; Roqan, Iman S, E-mail: iman.roqan@kaust.edu.sa [Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 2955-6900 (Saudi Arabia)

    2015-12-14

    Several experimental studies have referred to the grain boundary (GB) defect as the origin of ferromagnetism in zinc oxide (ZnO). However, the mechanism of this hypothesis has never been confirmed. Present study investigates the atomic structure and the effect of point defects in a ZnO GB using the generalized gradient approximation+U approximation. The relaxed GB possesses large periodicity and channels with 8 and 10 numbered atoms having 4 and 3 fold coordination. The Zn vacancy (V{sub Zn}) shows a tendency to be attracted to the GB, relative to the bulk-like region. Although no magnetization is obtained from point defect-free GB, V{sub Zn} induces spin polarization as large as 0.68 μ{sub B}/atom to the O sites at the GB. Ferromagnetic exchange energy >150 eV is obtained by increasing the concentration of V{sub Zn} and by the injection of holes into the system. Electronic structure analysis indicates that the spin polarization without external dopants originates from the O 2p orbitals, a common feature of d{sup 0} semiconductors.

  12. Spatially resolved mapping of electrical conductivity across individual domain (grain) boundaries in graphene.

    Science.gov (United States)

    Clark, Kendal W; Zhang, X-G; Vlassiouk, Ivan V; He, Guowei; Feenstra, Randall M; Li, An-Ping

    2013-09-24

    All large-scale graphene films contain extended topological defects dividing graphene into domains or grains. Here, we spatially map electronic transport near specific domain and grain boundaries in both epitaxial graphene grown on SiC and CVD graphene on Cu subsequently transferred to a SiO2 substrate, with one-to-one correspondence to boundary structures. Boundaries coinciding with the substrate step on SiC exhibit a significant potential barrier for electron transport of epitaxial graphene due to the reduced charge transfer from the substrate near the step edge. Moreover, monolayer-bilayer boundaries exhibit a high resistance that can change depending on the height of substrate step coinciding at the boundary. In CVD graphene, the resistance of a grain boundary changes with the width of the disordered transition region between adjacent grains. A quantitative modeling of boundary resistance reveals the increased electron Fermi wave vector within the boundary region, possibly due to boundary induced charge density variation. Understanding how resistance change with domain (grain) boundary structure in graphene is a crucial first step for controlled engineering of defects in large-scale graphene films.

  13. Grain boundary sinks in neutron-irradiated Zr and Zr-alloys

    International Nuclear Information System (INIS)

    Griffiths, M.; Gilbert, R.W.; Coleman, C.E.

    1988-01-01

    Samples of annealed sponge and crystal-bar Zr and Zircaloy-2 have been examined following irradiation in EBR-II at temperatures ≅ 700 K. Loop analysis shows that there is selective denuding of interstitial loops near to some grain boundaries indicating that such boundaries are net sinks for interstitial point defects. Furthermore, in sponge Zr and Zircaloy-2, vacancy c-component loops are observed running into the grain boundaries showing that the grain boundaries are not preferred sinks for vacancies. Cavities are observed in all samples. In crystal-bar Zr and sponge Zr they are mostly observed adjacent to grain boundaries. They are also sometimes found within grains associated with precipitates. The cavities are more common in the crystal-bar Zr and this is probably because both the sponge Zr and Zircaloy-2 contain vacancy c-component loops which compete for vacancies (assuming that the cavities are vacancy sinks). Only some of the grain boundaries have cavities adjacent to them and this may be related to the orientation of the boundary. (orig.)

  14. Dynamics of defect-loaded grain boundary under shear deformation in alpha iron

    Science.gov (United States)

    Yang, L.; Zhou, H. L.; Liu, H.; Gao, F.; Zu, X. T.; Peng, S. M.; Long, X. G.; Zhou, X. S.

    2018-02-01

    Two symmetric tilt grain boundaries (GBs) (Σ3〈110〉{112} and Σ11〈110〉{332}) in alpha iron were performed to investigate the dynamics of defect-loaded GBs under shear deformation. The results show that the loaded self-interstitial atoms (SIAs) reduce the critical stress of the coupled GB motion in the Σ3 GB, but increase the critical stress in the Σ11 GB. The loaded SIAs in the Σ3 GB easily form 〈111〉 clusters and remain in the bulk when the GB moves away. However, the SIAs move along with the Σ11 GB and combine with the vacancies in the bulk, leading to the defect self-healing. The helium (He) atoms loaded into the GBs significantly affect the coupled GB motion. Once He clusters emit interstitials, the Σ11 GB carries those interstitials away but the Σ3 does not. The loaded He atoms reduce the critical stress of the Σ3 GB, but increase the critical stress of the Σ11 GB.

  15. Thermal stability of grain boundaries in nanocrystalline Zn studied by positron lifetime spectroscopy

    International Nuclear Information System (INIS)

    Zhou Kai; Li Hui; Pang Jinbiao; Wang Zhu

    2012-01-01

    Nanocrystalline Zn prepared by compacting nanoparticles with mean grain size about 55 nm at 15 MPa has been studied by positron lifetime spectroscopy. For the bulk Zn sample, the vacancy defect is annealed out at about 350 °C, but for the nanocrystalline Zn sample, the vacancy cluster in grain boundaries is quite difficult to be annealed out even at very high temperature (410 °C). In the grain boundaries of nanocrystalline Zn, the small free volume defect (not larger than divacancy) is dominant according to the high relative intensity for the short positron lifetime (τ 1 ). The oxide (ZnO) inside the grain boundaries has been found having an effect to hinder the decrease of average positron lifetime (τ av ), which probably indicates that the oxide stabilizes the microstructure of the grain boundaries. This stabilization is very important for the nanocrystalline materials using as radiation resistant materials.

  16. Science at the interface : grain boundaries in nanocrystalline metals.

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Mark Andrew; Follstaedt, David Martin; Knapp, James Arthur; Brewer, Luke N.; Holm, Elizabeth Ann; Foiles, Stephen Martin; Hattar, Khalid M.; Clark, Blythe B.; Olmsted, David L.; Medlin, Douglas L.

    2009-09-01

    Interfaces are a critical determinant of the full range of materials properties, especially at the nanoscale. Computational and experimental methods developed a comprehensive understanding of nanograin evolution based on a fundamental understanding of internal interfaces in nanocrystalline nickel. It has recently been shown that nanocrystals with a bi-modal grain-size distribution possess a unique combination of high-strength, ductility and wear-resistance. We performed a combined experimental and theoretical investigation of the structure and motion of internal interfaces in nanograined metal and the resulting grain evolution. The properties of grain boundaries are computed for an unprecedented range of boundaries. The presence of roughening transitions in grain boundaries is explored and related to dramatic changes in boundary mobility. Experimental observations show that abnormal grain growth in nanograined materials is unlike conventional scale material in both the level of defects and the formation of unfavored phases. Molecular dynamics simulations address the origins of some of these phenomena.

  17. Competing Grain Boundary and Interior Deformation Mechanisms with Varying Sizes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei [University of Tennessee (UT); Gao, Yanfei [ORNL; Nieh, T. G. [University of Tennessee, Knoxville (UTK)

    2018-01-01

    In typical coarse-grained alloys, the dominant plastic deformations are dislocation gliding or climbing, and material strengths can be tuned by dislocation interactions with grain boundaries, precipitates, solid solutions, and other defects. With the reduction of grain size, the increase of material strengths follows the classic Hall-Petch relationship up to nano-grained materials. Even at room temperatures, nano-grained materials exhibit strength softening, or called the inverse Hall-Petch effect, as grain boundary processes take over as the dominant deformation mechanisms. On the other hand, at elevated temperatures, grain boundary processes compete with grain interior deformation mechanisms over a wide range of the applied stress and grain sizes. This book chapter reviews and compares the rate equation model and the microstructure-based finite element simulations. The latter explicitly accounts for the grain boundary sliding, grain boundary diffusion and migration, as well as the grain interior dislocation creep. Therefore the explicit finite element method has clear advantages in problems where microstructural heterogeneities play a critical role, such as in the gradient microstructure in shot peening or weldment. Furthermore, combined with the Hall-Petch effect and its breakdown, the above competing processes help construct deformation mechanism maps by extending from the classic Frost-Ashby type to the ones with the dependence of grain size.

  18. Adsorption of metal atoms at a buckled graphene grain boundary using model potentials

    International Nuclear Information System (INIS)

    Helgee, Edit E.; Isacsson, Andreas

    2016-01-01

    Two model potentials have been evaluated with regard to their ability to model adsorption of single metal atoms on a buckled graphene grain boundary. One of the potentials is a Lennard-Jones potential parametrized for gold and carbon, while the other is a bond-order potential parametrized for the interaction between carbon and platinum. Metals are expected to adsorb more strongly to grain boundaries than to pristine graphene due to their enhanced adsorption at point defects resembling those that constitute the grain boundary. Of the two potentials considered here, only the bond-order potential reproduces this behavior and predicts the energy of the adsorbate to be about 0.8 eV lower at the grain boundary than on pristine graphene. The Lennard-Jones potential predicts no significant difference in energy between adsorbates at the boundary and on pristine graphene. These results indicate that the Lennard-Jones potential is not suitable for studies of metal adsorption on defects in graphene, and that bond-order potentials are preferable

  19. Effect of solute concentration on grain boundary migration with segregation in stainless steel and model alloys

    Science.gov (United States)

    Kanda, H.; Hashimoto, N.; Takahashi, H.

    The phenomenon of grain boundary migration due to boundary diffusion via vacancies is a well-known process for recrystallization and grain growth during annealing. This phenomenon is known as diffusion-induced grain boundary migration (DIGM) and has been recognized in various binary systems. On the other hand, grain boundary migration often occurs under irradiation. Furthermore, such radiation-induced grain boundary migration (RIGM) gives rise to solute segregation. In order to investigate the RIGM mechanism and the interaction between solutes and point defects during the migration, stainless steel and Ni-Si model alloys were electron-irradiated using a HVEM. RIGM was often observed in stainless steels during irradiation. The migration rate of boundary varied, and three stages of the migration were recognized. At lower temperatures, incubation periods up to the occurrence of the boundary migration were observed prior to first stage. These behaviors were recognized particularly for lower solute containing alloys. From the relation between the migration rates at stage I and inverse temperatures, activation energies for the boundary migration were estimated. In comparison to the activation energy without irradiation, these values were very low. This suggests that the RIGM is caused by the flow of mixed-dumbbells toward the grain boundary. The interaction between solute and point defects and the effective defect concentration generating segregation will be discussed.

  20. Effect of crystal orientation on grain boundary migration and radiation-induced segregation

    International Nuclear Information System (INIS)

    Hashimoto, N.; Eda, Y.; Takahashi, H.

    1996-01-01

    Fe-Cr-Ni, Ni-Al and Ni-Si alloys were electron-irradiated using a high voltage electron microscope (1 MeV), and in situ observations of the structural evolution and micro-chemical analysis were carried out. During the irradiation, the grain boundaries in the irradiated region migrated, while no grain boundary migration occurred in the unirradiated area. The occurrence of boundary migration depended on the orientation relationship of the boundary interfaces. Grain boundary migration took place in Fe-Cr-Ni and Ni-Si alloys with large crystal orientation difference between the two grains across a grain boundary. In Ni-Al, however, the grain boundary migration did not occur. The solute segregation was caused at grain boundary under irradiation and this segregation behavior was closely related to solute size, namely the concentrations of undersized Ni and oversized Cr elements in Fe-Cr-Ni alloy increased and reduced at grain boundary, respectively. The same dependence of segregation on the solute size was derived in Ni-Si and Ni-Al alloys, in which Si and Al solutes are undersized and oversized elements, respectively. Therefore, Si solute enriched and Al solute depleted at grain boundary. From the present segregation behavior, it is suggested that the flow of point defects into the boundary is the cause of grain boundary migration. (orig.)

  1. Grain Boundary Segregation in Metals

    CERN Document Server

    Lejcek, Pavel

    2010-01-01

    Grain boundaries are important structural components of polycrystalline materials used in the vast majority of technical applications. Because grain boundaries form a continuous network throughout such materials, their properties may limit their practical use. One of the serious phenomena which evoke these limitations is the grain boundary segregation of impurities. It results in the loss of grain boundary cohesion and consequently, in brittle fracture of the materials. The current book deals with fundamentals of grain boundary segregation in metallic materials and its relationship to the grain boundary structure, classification and other materials properties.

  2. Grain boundary migration

    International Nuclear Information System (INIS)

    Dimitrov, O.

    1975-01-01

    Well-established aspects of grain-boundary migration are first briefly reviewed (influences of driving force, temperature, orientation and foreign atoms). Recent developments of the experimental methods and results are then examined, by considering the various driving of resistive forces acting on grain boundaries. Finally, the evolution in the theoretical models of grain-boundary motion is described, on the one hand for ideally pure metals and, on the other hand, in the presence of solute impurity atoms [fr

  3. The atomic-scale origins of grain boundary superconducting properties

    International Nuclear Information System (INIS)

    Pennycook, S.J.; Chisholm, M.F.; Buban, J.; Browning, N.D.; Prouteau, C.; Univ. of Illinois, Chicago, IL; Nellist, P.D.

    1998-02-01

    Due to the extremely short coherence lengths of the high-T c superconductors, defects such as grain boundaries are obvious barriers to the flow of supercurrent. Within a few months of the discovery of these materials, it was shown how the critical current dropped four orders of magnitude as the grain boundary misorientation increased from zero to 45 degree. Even today, there is no quantitative understanding of this behavior. A qualitative understanding is however possible through atomic resolution Z-contrast imaging on YBa 2 Cu 3 O 7-δ and SrTiO 3 bicrystal grain boundaries, combined with bond-valence-sum analysis. The Z-contrast image of a YBa 2 Cu 3 O 7-δ low angle grain boundary shows the same kind of reconstructed dislocation cores as seen in SrTiO 3 , containing reconstructions on both the Cu and Y/Ba sublattices. An image of an asymmetric 30 degree boundary in YBa 2 Cu 3 O 7-δ shows the same units and unit sequence as expected for SrTiO 3 . YBa 2 Cu 3 O 7-δ boundaries are wavy because of their non-equilibrium growth process, and therefore mostly asymmetric in nature, although small segments have the symmetric structure. It seems reasonable to assume that boundaries of other angles will also have similar structures in these two materials

  4. Analysis of defect structure in silicon. Effect of grain boundary density on carrier mobility in UCP material

    Science.gov (United States)

    Dunn, J.; Stringfellow, G. B.; Natesh, R.

    1982-01-01

    The relationships between hole mobility and grain boundary density were studied. Mobility was measured using the van der Pauw technique, and grain boundary density was measured using a quantitative microscopy technique. Mobility was found to decrease with increasing grain boundary density.

  5. Influence of thermal barrier effect of grain boundaries on bulk cascades in alpha-zirconium revealed by molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yanan; Lai, Wensheng, E-mail: wslai@tsinghua.edu.cn

    2016-03-15

    The effect of grain boundaries (GBs) on bulk cascades in nano-structured alpha-zirconium has been studied by molecular dynamics (MD) simulations. It turns out that the existence of GBs increases the defect productivity in grains, suggesting that the GBs may act as a thermal barrier and postpone the annihilation of defects within grains. Moreover, it is found that the thermal barrier effect of GBs facilitates the shift of symmetric tilt GBs to the grain with higher temperature, and the smaller the tilt angle is, the easier the boundary shift will be. Thus, the influence of GBs on radiation damage in the nano-structured materials comes from the competition between damage increase in grains and defect annihilation at GBs.

  6. The evolution of interaction between grain boundary and irradiation-induced point defects: Symmetric tilt GB in tungsten

    Science.gov (United States)

    Li, Hong; Qin, Yuan; Yang, Yingying; Yao, Man; Wang, Xudong; Xu, Haixuan; Phillpot, Simon R.

    2018-03-01

    Molecular dynamics method is used and scheme of calculational tests is designed. The atomic evolution view of the interaction between grain boundary (GB) and irradiation-induced point defects is given in six symmetric tilt GB structures of bcc tungsten with the energy of the primary knock-on atom (PKA) EPKA of 3 and 5 keV and the simulated temperature of 300 K. During the collision cascade with GB structure there are synergistic mechanisms to reduce the number of point defects: one is vacancies recombine with interstitials, and another is interstitials diffuse towards the GB with vacancies almost not move. The larger the ratio of the peak defect zone of the cascades overlaps with the GB region, the statistically relative smaller the number of surviving point defects in the grain interior (GI); and when the two almost do not overlap, vacancy-intensive area generally exists nearby GBs, and has a tendency to move toward GB with the increase of EPKA. In contrast, the distribution of interstitials is relatively uniform nearby GBs and is affected by the EPKA far less than the vacancy. The GB has a bias-absorption effect on the interstitials compared with vacancies. It shows that the number of surviving vacancies statistically has increasing trend with the increase of the distance between PKA and GB. While the number of surviving interstitials does not change much, and is less than the number of interstitials in the single crystal at the same conditions. The number of surviving vacancies in the GI is always larger than that of interstitials. The GB local extension after irradiation is observed for which the interstitials absorbed by the GB may be responsible. The designed scheme of calculational tests in the paper is completely applicable to the investigation of the interaction between other types of GBs and irradiation-induced point defects.

  7. Pressure effect on grain boundary diffusion

    International Nuclear Information System (INIS)

    Smirnova, E.S.; Chuvil'deev, V.N.

    1997-01-01

    The influence of hydrostatic pressure on grain boundary diffusion and grain boundary migration in metallic materials is theoretically investigated. The model is suggested that permits describing changes in activation energy of grain boundary self-diffusion and diffusion permeability of grain boundaries under hydrostatic pressure. The model is based on the ideas about island-type structure of grain boundaries as well as linear relationship of variations in grain boundary free volume to hydrostatic pressure value. Comparison of theoretical data with experimental ones for a number of metals and alloys (α-Zr, Sn-Ge, Cu-In with Co, In, Al as diffusing elements) shows a qualitative agreement

  8. Ferroelectric domain continuity over grain boundaries

    DEFF Research Database (Denmark)

    Mantri, Sukriti; Oddershede, Jette; Damjanovic, Dragan

    2017-01-01

    Formation and mobility of domain walls in ferroelectric materials is responsible for many of their electrical and mechanical properties. Domain wall continuity across grain boundaries has been observed since the 1950's and is speculated to affect the grain boundary-domain interactions, thereby...... impacting macroscopic ferroelectric properties in polycrystalline systems. However detailed studies of such correlated domain structures across grain boundaries are limited. In this work, we have developed the mathematical requirements for domain wall plane matching at grain boundaries of any given...... orientation. We have also incorporated the effect of grain boundary ferroelectric polarization charge created when any two domains meet at the grain boundary plane. The probability of domain wall continuity for three specific grain misorientations is studied. Use of this knowledge to optimize processing...

  9. Structural evolution of a deformed Σ=9 (122) grain boundary in silicon. A high resolution electron microscopy study

    International Nuclear Information System (INIS)

    Putaux, Jean-Luc

    1991-01-01

    This research thesis addresses the study by high resolution electron microscopy of the evolution of a silicon bi-crystal under deformation at different temperatures. The author notably studied the structural evolution of the boundary as well as that of grains at the vicinity of the boundary. Two observation scales have been used: the evolution of sub-structures of dislocations induced by deformation in grains and in boundary, and the structure of all defects at an atomic scale. After a presentation of experimental tools (the necessary perfect quality of the electronic optics is outlined), the author recalls some descriptive aspects of grain boundaries (geometric network concepts to describe coinciding networks, concepts of delimiting boundaries and of structural unit to describe grain boundary atomic structure), recalls the characteristics of the studied bi-crystal, and the conditions under which it is deformed. He presents the structures of all perfectly coinciding boundaries, describes defects obtained by deformation at the vicinity of the boundary, describes the entry of dissociated dislocations into the boundaries, and discusses the characterization of boundary dislocations (the notion of Burgers vector is put into question again), and the atomic mechanism of displacement of dislocations in boundaries [fr

  10. Study of nanophase TiO2 grain boundaries by Raman spectroscopy

    International Nuclear Information System (INIS)

    Melendres, C.A.; Narayanasamy, A.; Maroni, V.A.; Siegel, R.W.

    1989-01-01

    Raman spectra have been recorded for as-consolidated nanophase TiO 2 samples with differing grain sizes and on samples annealed in air at a variety of temperatures up to 1273 K. The nanophase samples with the smallest grain size, about 12 nm average diameter, could have 15-30% of their atoms in grain boundaries; nevertheless, the strong Raman-active lines representative of the rutile structure were found to dominate all of the observed spectra, independent of grain size and annealing treatment. These lines were quite broad in the as-consolidated nanophase samples, equally in 12 nm and 100 nm grain-size compacts, but sharpened considerably upon annealing at elevated temperatures. The Raman data give no indication of grain-boundary structures in nanophase TiO 2 that are significantly different from those in conventional polycrystals. However, defect structures within the grains, which anneal out at elevated temperatures, are evidenced by changes in the Raman spectra. 15 refs., 2 figs

  11. Testing thermal gradient driving force for grain boundary migration using molecular dynamics simulations

    International Nuclear Information System (INIS)

    Bai, Xian-Ming; Zhang, Yongfeng; Tonks, Michael R.

    2015-01-01

    Strong thermal gradients in low-thermal-conductivity ceramics may drive extended defects, such as grain boundaries and voids, to migrate in preferential directions. In this work, molecular dynamics simulations are conducted to study thermal gradient driven grain boundary migration and to verify a previously proposed thermal gradient driving force equation, using uranium dioxide as a model system. It is found that a thermal gradient drives grain boundaries to migrate up the gradient and the migration velocity increases under a constant gradient owing to the increase in mobility with temperature. Different grain boundaries migrate at very different rates due to their different intrinsic mobilities. The extracted mobilities from the thermal gradient driven simulations are compared with those calculated from two other well-established methods and good agreement between the three different methods is found, demonstrating that the theoretical equation of the thermal gradient driving force is valid, although a correction of one input parameter should be made. The discrepancy in the grain boundary mobilities between modeling and experiments is also discussed.

  12. Structure and electronic properties of grain boundaries in earth-abundant photovoltaic absorber Cu2ZnSnSe4.

    Science.gov (United States)

    Li, Junwen; Mitzi, David B; Shenoy, Vivek B

    2011-11-22

    We have studied the atomic and electronic structure of Cu(2)ZnSnSe(4) and CuInSe(2) grain boundaries using first-principles calculations. We find that the constituent atoms at the grain boundary in Cu(2)ZnSnSe(4) create localized defect states that promote the recombination of photon-excited electron and hole carriers. In distinct contrast, significantly lower density of defect states is found at the grain boundaries in CuInSe(2), which is consistent with the experimental observation that CuInSe(2) solar cells exhibit high conversion efficiency without the need for deliberate passivation. Our investigations suggest that it is essential to effectively remove these defect states in order to improve the conversion efficiency of solar cells with Cu(2)ZnSnSe(4) as photovoltaic absorber materials. © 2011 American Chemical Society

  13. Grain boundary segregation and intergranular failure

    International Nuclear Information System (INIS)

    White, C.L.

    1980-01-01

    Trace elements and impurities often segregate strongly to grain boundaries in metals and alloys. Concentrations of these elements at grain boundaries are often 10 3 to 10 5 times as great as their overall concentration in the alloy. Because of such segregation, certain trace elements can exert a disproportionate influence on material properties. One frequently observed consequence of trace element segregation to grain boundaries is the occurrence of grain boundary failure and low ductility. Less well known are incidences of improved ductility and inhibition of grain boundary fracture resulting from trace element segregation to grain boundaries in certain systems. An overview of trace element segregation and intergranular failure in a variety of alloy systems as well as preliminary results from studies on Al 3% Li will be presented

  14. Grain boundary structures in La2/3Ca1/3MnO3 thin films

    International Nuclear Information System (INIS)

    Miller, D. J.; Lin, Y.-K.; Vlasko-Vlasov, V.; Welp, U.

    1999-01-01

    As with many other oxide-based compounds that exhibit electronic behavior, structural defects have a strong influence on the electronic properties of the CMR manganites. In this work, the authors have studied the effect of grain boundaries on the transport properties and on the local orientation of magnetization. Thin films of the perovskite-related La 2/3 Ca 1/3 MnO 3 compound were deposited onto bicrystal substrates using pulsed laser deposition. Transport measurements showed some enhancement of magnetoresistance across the grain boundary. The structure of the boundary was evaluated by electron microscopy. In contrast with the highly meandering boundaries typically observed in bicrystals of high temperature superconductors, the boundaries in these films are relatively straight and well defined. However, magneto-optical imaging showed that the local magnetization was oriented out of the plane at the grain boundary while it was oriented within the plane in the grains on either side. This coordinated reorientation of local magnetization near the grain boundary leads to enhanced magnetoresistance across the boundary in low fields

  15. The effect of grain boundary chemistry on the slip transmission process through grain boundaries in Ni3Al

    International Nuclear Information System (INIS)

    Robertson, I.M.; Lee, T.C.; Subramanian, R.; Birnbaum, H.K.

    1992-01-01

    This paper reports on the conditions established in disordered FCC systems for predicting the slip system that will be activated by a grain boundary to relieve a local stress concentration that have been applied to the ordered FCC alloy Ni 3 Al. The slip transfer behavior in hypo-stoichiometric Ni 3 Al with (0.2 at. %B) and without boron was directly observed by performing the deformation experiments in situ in the transmission electron microscope. In the boron-free and boron-doped alloys, lattice dislocations were incorporated in the grain boundary, but did not show evidence of dissociation to grain boundary dislocations or of movement in the grain boundary plane. The stress concentration associated with the dislocation pileup at the grain boundary are relieved by the emission of dislocations from the grain boundary in the boron-doped alloy. The slip system initiated in the adjoining grain obeyed the conditions established for disordered FCC systems. In the boron-free alloy, the primary stress relief mechanism was grain-boundary cracking, although dislocation emission from the grain boundary also occurred and accompanied intergranular crack advance

  16. Evolution of grain boundary character distributions in alloy 825 tubes during high temperature annealing: Is grain boundary engineering achieved through recrystallization or grain growth?

    International Nuclear Information System (INIS)

    Bai, Qin; Zhao, Qing; Xia, Shuang; Wang, Baoshun; Zhou, Bangxin; Su, Cheng

    2017-01-01

    Grain boundary engineering (GBE) of nickel-based alloy 825 tubes was carried out with different cold drawing deformations by using a draw-bench on a factory production line and subsequent annealing at various temperatures. The microstructure evolution of alloy 825 during thermal-mechanical processing (TMP) was characterized by means of the electron backscatter diffraction (EBSD) technique to study the TMP effects on the grain boundary network and the evolution of grain boundary character distributions during high temperature annealing. The results showed that the proportion of ∑ 3 n coincidence site lattice (CSL) boundaries of alloy 825 tubes could be increased to > 75% by the TMP of 5% cold drawing and subsequent annealing at 1050 °C for 10 min. The microstructures of the partially recrystallized samples and the fully recrystallized samples suggested that the proportion of low ∑ CSL grain boundaries depended on the annealing time. The frequency of low ∑ CSL grain boundaries increases rapidly with increasing annealing time associating with the formation of large-size highly-twinned grains-cluster microstructure during recrystallization. However, upon further increasing annealing time, the frequency of low ∑ CSL grain boundaries decreased markedly during grain growth. So it is concluded that grain boundary engineering is achieved through recrystallization rather than grain growth. - Highlights: •The grain boundary engineering (GBE) is applicable to 825 tubes. •GBE is achieved through recrystallization rather than grain growth. •The low ∑ CSL grain boundaries in 825 tubes can be increased to > 75%.

  17. A grain-boundary diffusion model of dynamic grain growth during superplastic deformation

    International Nuclear Information System (INIS)

    Kim, Byung-Nam; Hiraga, Keijiro; Sakka, Yoshio; Ahn, Byung-Wook

    1999-01-01

    Dynamic grain growth during superplastic deformation is modelled on the basis of a grain-boundary diffusion mechanism. On the grain boundary where a static and a dynamic potential difference coexist, matter transport along the boundary is assumed to contribute to dynamic grain growth through depositing the matter on the grain surface located opposite to the direction of grain-boundary migration. The amount of the diffusive matter during deformation is calculated for an aggregate of spherical grains and is converted to the increment of mean boundary migration velocity. The obtained relationship between the strain rate and the dynamic grain growth rate is shown to be independent of deformation mechanisms, provided that the grain growth is controlled by grain-boundary diffusion. The strain dependence, strain-rate dependence and temperature dependence of grain growth predicted from this model are consistent with those observed in superplastic ZrO 2 -dispersed Al 2 O 3

  18. Achieving Radiation Tolerance through Non-Equilibrium Grain Boundary Structures.

    Science.gov (United States)

    Vetterick, Gregory A; Gruber, Jacob; Suri, Pranav K; Baldwin, Jon K; Kirk, Marquis A; Baldo, Pete; Wang, Yong Q; Misra, Amit; Tucker, Garritt J; Taheri, Mitra L

    2017-09-25

    Many methods used to produce nanocrystalline (NC) materials leave behind non-equilibrium grain boundaries (GBs) containing excess free volume and higher energy than their equilibrium counterparts with identical 5 degrees of freedom. Since non-equilibrium GBs have increased amounts of both strain and free volume, these boundaries may act as more efficient sinks for the excess interstitials and vacancies produced in a material under irradiation as compared to equilibrium GBs. The relative sink strengths of equilibrium and non-equilibrium GBs were explored by comparing the behavior of annealed (equilibrium) and as-deposited (non-equilibrium) NC iron films on irradiation. These results were coupled with atomistic simulations to better reveal the underlying processes occurring on timescales too short to capture using in situ TEM. After irradiation, NC iron with non-equilibrium GBs contains both a smaller number density of defect clusters and a smaller average defect cluster size. Simulations showed that excess free volume contribute to a decreased survival rate of point defects in cascades occurring adjacent to the GB and that these boundaries undergo less dramatic changes in structure upon irradiation. These results suggest that non-equilibrium GBs act as more efficient sinks for defects and could be utilized to create more radiation tolerant materials in future.

  19. On the elastic stiffness of grain boundaries

    International Nuclear Information System (INIS)

    Zhang Tongyi; Hack, J.E.

    1992-01-01

    The elastic softening of grain boundaries is evaluated from the starting point of grain boundary energy. Several examples are given to illustrate the relationship between boundary energy and the extent of softening. In general, a high grain boundary energy is associated with a large excess atomic volume in the boundary region. The consequent reduction in grain boundary stiffness can represent a significant fraction of that observed in bulk crystals. (orig.)

  20. Grain boundary defect compensation in Ti-doped BaFe{sub 0.5}Nb{sub 0.5}O{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaojun; Deng, Jianming; Liu, Saisai; Yan, Tianxiang; Fang, Liang; Liu, Laijun [Guilin University of Technology, Key Laboratory of Nonferrous Materials and New Processing Technology, Ministry of Education, College of Materials Science and Engineering, Guangxi Universities Key Laboratory of Non-ferrous Metal Oxide Electronic Functional Materials and Devices, Guilin (China); Peng, Biaolin [Guangxi University, School of Physical Science and Technology and Guangxi Key Laboratory for Relativistic Astrophysics, Nanning (China); Jia, Wenhao [Shanghai Getong Enterprise Co., Ltd., Shanghai (China); Mei, Zaoming [Henan LiHeng Building Materials Co., Ltd., Zhengzhou (China); Su, Hongbo [Henan Province Product Quality Supervision and Inspection Center, Zhengzhou (China)

    2016-09-15

    Giant dielectric ceramics Ba(Nb{sub 0.5}Fe{sub 0.5-x}Ti{sub x})O{sub 3} (BNFT) have been fabricated by a conventional solid-state reaction. According to X-ray diffraction analysis, the crystal structure of these ceramics can be described by the cubic centrosymmetric with Pm-3m space group. The real part (ε') of dielectric permittivity and dielectric loss (tan δ) of the BNFT ceramics was measured in a frequency range from 40 Hz to 100 MHz at room temperature. The (ε') of all these samples displays a high value (∝6500) and a small frequency-dependence from 1 kHz to 1 MHz. We have established a link between conductivity activation energy and defect compensation at grain boundaries. The Ti{sup 4+}-doped Ba(Nb{sub 0.5}Fe{sub 0.5})O{sub 3} as a donor makes a great influence on the grain boundary behavior, which restricts the migration of oxygen vacancy and depresses dielectric loss factor for Ba(Nb{sub 0.5}Fe{sub 0.5})O{sub 3} ceramics. (orig.)

  1. Diffusion mechanisms in grain boundaries in solids

    International Nuclear Information System (INIS)

    Peterson, N.L.

    1982-01-01

    A critical review is given of our current knowledge of grain-boundary diffusion in solids. A pipe mechanism of diffusion based on the well-established dislocation model seems most appropriate for small-angle boundaries. Open channels, which have atomic configurations somewhat like dislocation cores, probably play a major role in large-angle grain-boundary diffusion. Dissociated dislocations and stacking faults are not efficient paths for grain-boundary diffusion. The diffusion and computer modeling experiments are consistent with a vacancy mechanism of diffusion by a rather well-localized vacancy. The effective width of a boundary for grain-boundary diffusion is about two atomic planes. These general features of grain-boundary diffusion, deduced primarily from experiments on metals, are thought to be equally applicable for pure ceramic solids. The ionic character of many ceramic oxides may cause some differences in grain-boundary structure from that observed in metals, resulting in changes in grain-boundary diffusion behavior. 72 references, 5 figures

  2. Grain-boundary engineering applied to grain growth in a high temperature material

    International Nuclear Information System (INIS)

    Huda, Z.

    1993-01-01

    Crystallography of grain boundaries are determined for a high temperature material, before and after grain growth processes, so as to study the induction of special properties useful for application in components of a gas-turbine engine. The philosophy of grain-boundary engineering is applied to grain growth in APK-6, a powder formed nickel-base superalloy so as to establish the possible structure/property relationships. The alloy in the as received condition is shown to possess a strong texture and contained coincident site lattices (CSL) boundaries with most boundaries having sigma values in the range of 3 > sigma > 25. A normal grain-growth heat treatment result in a good population of low angle grain boundaries, and drastically reduces the proportion of CSL boundaries. A strong [011] annealing texture is observed after an intermediate grain growth; most grain boundaries, here, tend to be high angle indicating a possibility of possessing special properties. (author)

  3. First-principles investigation of the energetics of point defects at a grain boundary in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Jun; Li, Yu-Hao; Niu, Liang-Liang; Qin, Shi-Yao; Zhou, Hong-Bo, E-mail: hbzhou@buaa.edu.cn; Jin, Shuo; Zhang, Ying; Lu, Guang-Hong

    2017-02-15

    Tungsten (W) and W alloys are considered as the most promising candidates for plasma facing materials in future fusion reactor. Grain boundaries (GBs) play an important role in the self-healing of irradiation defects in W. Here, we investigate the stability of point defects [vacancy and self-interstitial atoms (SIA’s)] in a Σ5(3 1 0) [0 0 1] tilt W GB by calculating the energetics using a first-principles method. It is found that both the vacancy and SIA are energetically favorable to locate at neighboring sites of the GB, suggesting the vacancy and SIA can easily segregate to the GB region with the segregation energy of 1.53 eV and 7.5 eV, respectively. This can be attributed to the special atomic configuration and large available space of the GB. The effective interaction distance between the GB and the SIA is ∼6.19 Å, which is ∼2 Å larger than that of the vacancy-GB, indicating the SIA are more preferable to locate at the GB in comparison with the vacancy. Further, the binding energy of di-vacancies in the W GB are much larger than that in bulk W, suggesting that the vacancy energetically prefers to congregate in the GB.

  4. Effect of grain defects on the mechanical behavior of nickel-based single crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Haibin; Guo, Haiding [Nanjing Univ. of Aeronautics and Astronautics (China). Jiangsu Province Key Lab. of Aerospace Power System

    2017-03-15

    In this paper, a single crystal (SC) partition model, consisting of primary grains and grain defects, is proposed to simulate the weakening effect of grain defects generated at geometric discontinuities of SC materials. The plastic deformation of SC superalloy is described with the modified yield criterion, associated flow rule and hardening law. Then a bicrystal model containing only one group of misoriented grains under uniaxial loading is constructed and analyzed in the commercial finite element software ABAQUS. The simulation results indicate that the yield strength and elastic modulus of misoriented grains, which are determined by the crystallographic orientation, have a significant effect on the stress distribution of the bicrystal model. A critical stress, which is calculated by the stress state at critical regions, is proposed to evaluate the local stress rise at the sub-boundary of primary and misoriented grains.

  5. Effect of grain defects on the mechanical behavior of nickel-based single crystal superalloy

    International Nuclear Information System (INIS)

    Tang, Haibin; Guo, Haiding

    2017-01-01

    In this paper, a single crystal (SC) partition model, consisting of primary grains and grain defects, is proposed to simulate the weakening effect of grain defects generated at geometric discontinuities of SC materials. The plastic deformation of SC superalloy is described with the modified yield criterion, associated flow rule and hardening law. Then a bicrystal model containing only one group of misoriented grains under uniaxial loading is constructed and analyzed in the commercial finite element software ABAQUS. The simulation results indicate that the yield strength and elastic modulus of misoriented grains, which are determined by the crystallographic orientation, have a significant effect on the stress distribution of the bicrystal model. A critical stress, which is calculated by the stress state at critical regions, is proposed to evaluate the local stress rise at the sub-boundary of primary and misoriented grains.

  6. submitter Thermal stability of interface voids in Cu grain boundaries with molecular dynamic simulations

    CERN Document Server

    Xydou, A; Aicheler, M; Djurabekova, F

    2016-01-01

    By means of molecular dynamic simulations, the stability of cylindrical voids is examined with respect to the diffusion bonding procedure. To do this, the effect of grain boundaries between the grains of different crystallographic orientations on the void closing time was studied at high temperatures from 0.7 up to 0.94 of the bulk melting temperature $(T_m)$. The diameter of the voids varied from 3.5 to 6.5 nm. A thermal instability occurring at high temperatures at the surface of the void placed in a grain boundary triggered the eventual closure of the void at all examined temperatures. The closing time has an exponential dependence on the examined temperature values. A model based on the defect diffusion theory is developed to predict the closing time for voids of macroscopic size. The diffusion coefficient within the grain boundaries is found to be overall higher than the diffusion coefficient in the region around the void surface. The activation energy for the diffusion in the grain boundary is calculate...

  7. Grain Boundary Engineering of Electrodeposited Thin Films

    DEFF Research Database (Denmark)

    Alimadadi, Hossein

    is not yet well-understood. This, at least partly, owes to the lack of robust characterization methods for analyzing the nature of grain boundaries including the grain boundary plane characteristics, until recently. In the past decade, significant improvements in the 2-dimensional and 3-dimensional analysis...... of the favorable boundaries that break the network of general grain boundaries. Successful dedicated synthesis of a textured nickel film fulfilling the requirements of grain boundary engineered materials, suggests improved boundary specific properties. However, the textured nickel film shows fairly low...... thermal stability and growth twins annihilate by thermal treatment at 600 degree C. In contrast, for oriented grains, growth nano-twins which are enveloped within columnar grains show a high thermal stability even after thermal treatment at 600 degree C. In order to exploit the high thermal...

  8. Concurrent grain boundary motion and grain rotation under an applied stress

    International Nuclear Information System (INIS)

    Gorkaya, Tatiana; Molodov, Konstantin D.; Molodov, Dmitri A.; Gottstein, Guenter

    2011-01-01

    Simultaneous shear coupling and grain rotation were observed experimentally during grain boundary migration in high-purity Al bicrystals subjected to an external mechanical stress at elevated temperatures. This behavior is interpreted in terms of the structure of the investigated planar 18.2 o non-tilt grain boundary with a 20 o twist component. For characterization of the grain rotation after annealing under stress the bicrystal surface topography across the boundary was measured by atomic force microscopy. The temperature dependence of the boundary migration rate was measured and the migration activation energy determined.

  9. Measurement and modeling of radiation-induced grain boundary grain boundary segregation in stainless steels

    International Nuclear Information System (INIS)

    Bruemmer, S.M.; Charlot, L.A.; Simonen, E.P.

    1995-08-01

    Grain boundary radiation-induced segregation (RIS) in Fe-Ni-Cr stainless alloys has been measured and modelled as a function of irradiation temperature and dose. Heavy-ion irradiation was used to produce damage levels from 1 to 20 displacements per atom (dpa) at temperatures from 175 to 550 degrees C. Measured Fe, Ni, and Cr segregation increased sharply with irradiation dose (from 0 to 5 dpa) and temperature (from 175 to about 350 degrees C). However, grain boundary concentrations did not change significantly as dose or temperatures were further increased. Impurity segregation (Si and P) was also measured, but only Si enrichment appeared to be radiation-induced. Grain boundary Si levels peaked at an intermediate temperature of ∼325 degrees C reaching levels of ∼8 at. %. Equilibrium segregation of P was measured in the high-P alloys, but interfacial concentration did not increase with irradiation exposure. Examination of reported RIS in neutron-irradiated stainless steels revealed similar effects of irradiation dose on grain boundary compositional changes for both major alloying and impurity element's. The Inverse Kirkendall model accurately predicted major alloying element RIS in ion- and neutron-irradiated alloys over the wide range of temperature and dose conditions. In addition, preliminary calculations indicate that the Johnson-Lam model can reasonably estimate grain boundary Si enrichment if back diffusion is enhanced

  10. A comparison of grain boundary evolution during grain growth in fcc metals

    International Nuclear Information System (INIS)

    Brons, J.G.; Thompson, G.B.

    2013-01-01

    Grain growth of Cu and Ni thin films, subjected to in situ annealing within a transmission electron microscope, has been quantified using a precession-enhanced electron diffraction technique. The orientation of each grain and its misorientation with respect to its neighboring grains were calculated. The Cu underwent grain growth that maintained a monomodal grain size distribution, with its low-angle grain boundaries being consumed, and the Ni exhibited grain size distributions in stages, from monomodal to bimodal to monomodal. The onset of Ni’s abnormal grain growth was accompanied by a sharp increase in the Σ3 and Σ9 boundary fractions, which is attributed to simulation predictions of their increased mobility. These Σ3 and Σ9 fractions then dropped to their room temperature values during the third stage of grain growth. In addition to the Σ3 and Σ9 boundaries, the Σ5 and Σ7 boundaries also underwent an increase in total boundary fraction with increasing temperature in both metals

  11. Grain boundary motion and grain rotation in aluminum bicrystals: recent experiments and simulations

    International Nuclear Information System (INIS)

    Molodov, D A; Barrales-Mora, L A; Brandenburg, J-E

    2015-01-01

    The results of experimental and computational efforts over recent years to study the motion of geometrically different grain boundaries and grain rotation under various driving forces are briefly reviewed. Novel in-situ measuring techniques based on orientation contrast imaging and applied simulation techniques are described. The experimental results obtained on specially grown aluminum bicrystals are presented and discussed. Particularly, the faceting and migration behavior of low angle grain boundaries under the curvature force is addressed. In contrast to the pure tilt boundaries, which remained flat/faceted and immobile during annealing at elevated temperatures, mixed tilt-twist boundaries readily assumed a curved shape and steadily moved under the capillary force. Computational analysis revealed that this behavior is due to the inclinational anisotropy of grain boundary energy, which in turn depends on boundary geometry. The shape evolution and shrinkage kinetics of cylindrical grains with different tilt and mixed boundaries were studied by molecular dynamics simulations. The mobility of low angle <100> boundaries with misorientation angles higher than 10°, obtained by both the experiments and simulations, was found not to differ from that of the high angle boundaries, but decreases essentially with further decrease of misorientation. The shape evolution of the embedded grains in simulations was found to relate directly to results of the energy computations. Further simulation results revealed that the shrinkage of grains with pure tilt boundaries is accompanied by grain rotation. In contrast, grains with the tilt-twist boundaries composed of dislocations with the mixed edge-screw character do not rotate during their shrinkage. Stress driven boundary migration in aluminium bicrystals was observed to be coupled to a tangential translation of the grains. The activation enthalpy of high angle boundary migration was found to vary non-monotonically with

  12. GRAIN-BOUNDARY PRECIPITATION UNDER IRRADIATION IN DILUTE BINARY ALLOYS

    Institute of Scientific and Technical Information of China (English)

    S.H. Song; Z.X. Yuan; J. Liu; R.G.Faulkner

    2003-01-01

    Irradiation-induced grain boundary segregation of solute atoms frequently bring about grain boundary precipitation of a second phase because of its making the solubility limit of the solute surpassed at grain boundaries. Until now the kinetic models for irradiation-induced grain boundary precipitation have been sparse. For this reason, we have theoretically treated grain boundary precipitation under irradiation in dilute binary alloys. Predictions ofγ'-Ni3Si precipitation at grain boundaries ave made for a dilute Ni-Si alloy subjected to irradiation. It is demonstrated that grain boundary silicon segregation under irradiation may lead to grain boundaryγ'-Ni3 Si precipitation over a certain temperature range.

  13. Interactions of impurities with a moving grain boundary

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, C L [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)

    1975-01-01

    Most theories developed to explain interaction of impurities with a moving grain boundary involve a uniform excess impurity concentration distributed along a planar grain boundary. As boundary velocity increases, the excess impurities exert a net drag force on the boundary until a level is reached whereat the drag force no longer can balance the driving force and breakaway of the boundary from these impurities occurs. In this investigation, assumptions of a uniform lateral impurity profile and a planar grain boundary shape are relaxed by allowing both forward and lateral diffusion of impurities in the vicinity of a grain boundary. It is found that the two usual regions (drag of impurities by, and breakaway of a planar grain boundary) are separated by an extensive region wherein a uniform lateral impurity profile and a planar grain boundary shape are unstable. It is suspected that, in this unstable region, grain boundaries assume a spectrum of more complex morphologies and that elucidation of these morphologies can provide the first definitive description of the breakaway process and insight to more complex phenomena such as solid-solution strengthening, grain growth and secondary recrystallization.

  14. Grain boundary corrosion of copper canister material

    International Nuclear Information System (INIS)

    Fennell, P.A.H.; Graham, A.J.; Smart, N.R.; Sofield, C.J.

    2001-03-01

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast inner container fitted inside a corrosion-resistant copper canister. During fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow they will tend to concentrate impurities within the copper at the new grain boundaries. The work described in this report was undertaken to determine whether there is any possibility of enhanced corrosion at grain boundaries within the copper canister. The potential for grain boundary corrosion was investigated by exposing copper specimens, which had undergone different heat treatments and hence had different grain sizes, to aerated artificial bentonite-equilibrated groundwater with two concentrations of chloride, for increasing periods of time. The degree of grain boundary corrosion was determined by atomic force microscopy (AFM) and optical microscopy. AFM showed no increase in grain boundary 'ditching' for low chloride groundwater. In high chloride groundwater the surface was covered uniformly with a fine-grained oxide. No increases in oxide thickness were observed. No significant grain boundary attack was observed using optical microscopy either. The work suggests that in aerated artificial groundwaters containing chloride ions, grain boundary corrosion of copper is unlikely to adversely affect SKB's copper canisters

  15. The influence of vortex pinning and grain boundary structure on critical currents across grain boundaries in YBa2Cu3Ox

    International Nuclear Information System (INIS)

    Miller, D. J.

    1998-01-01

    We have used studies of single grain boundaries in YBCO thin films and bulk bicrystals to study the influence of vortex pinning along a grain boundary on dissipation. The critical current density for transport across grain boundaries in thin films is typically more than an order of magnitude larger than that measured for transport across grain boundaries in bulk samples. For low disorientation angles, the difference in critical current density within the grains that form the boundary can contribute to the substantial differences in current density measured across the boundary. However, substantial differences exist in the critical current density across boundaries in thin film compared to bulk bicrystals even in the higher angle regime in which grain boundary dissipation dominates. The differences in critical current density in this regime can be understood on the basis of vortex pinning along the boundary

  16. Localized electronic states at grain boundaries on the surface of graphene and graphite

    DEFF Research Database (Denmark)

    Luican-Mayer, Adina; Barrios-Vargas, Jose E.; Falkenberg, Jesper Toft

    2016-01-01

    ecent advances in large-scale synthesis of graphene and other 2D materials have underscored the importance of local defects such as dislocations and grain boundaries (GBs), and especially their tendency to alter the electronic properties of the material. Understanding how the polycrystalline morp...

  17. Numerical study of the atomic and electronic structure of some silicon grain boundaries

    International Nuclear Information System (INIS)

    Torrent, M.

    1996-01-01

    This work contributes to the theoretical study of extended defects in covalent materials. The study is especially devoted to the tilt grain boundaries in silicon as a model material. The theoretical model is based on the self-consistent tight-binding approximation and is applied within two numerical techniques: the fast 'order N' density-matrix method and the diagonalization technique which allows the sampling of the reciprocal space. Total energy parameters of the model have been fitted in order to reproduce the silicon band structure (with a correct gap value) and the transferability of crystalline and mechanical properties of this material. A new type of boundary conditions is proposed and tested. These conditions, named 'ante-periodic' or 'Moebius', allow only one grain boundary per box instead of two and decrease the CPU time by a factor of two. The model is then applied to the study of the Σ=25 [001] (710) grain boundary. The results show the possible presence in this boundary of low energy non-reconstructed atomic structures which are electrically active. This confirms what had been suggested by some experimental observations. The same study is also performed for the Σ=13 [001] (510) grain boundary. In order to compare the intrinsic electrical activity in the previous grain boundaries with the one induced by impurities, a total energy parametrization for the silicon-nickel bond is achieved and used in preliminary calculations. Finally the two variants of the Σ=11 [011] (2-33) interface are studied, especially their respective interfacial energies. The result disagrees with previous calculations using phenomenological potentials. (author)

  18. A Study of diffusion and grain boundaries in ionic compounds by the molecular dynamic method

    International Nuclear Information System (INIS)

    Karakasidis, Theodoros

    1995-01-01

    In the first part, we present a model of variable cationic charges based on a rigid ion potential. In order to implement the model we performed static and dynamic simulations in calcium fluoride. The structural properties do not depend on the way the model is adjusted but the anion diffusion and the high frequency dielectric constant do. These results allowed to specify the criteria to adjust the variable charge model. As indicated by the behaviour of optical phonons this model introduced a supplementary polarisation mechanism to the rigid ion model. In the second part of this work, we studied the structural and diffusional behaviour of a high angle tilt grain boundary in NiO by molecular dynamics, using a usual rigid ion model. We examined structures with and without point defects between 0 K and 2500 K. The structure without defects presents always the lowest potential energy. In the others structures the defects can cluster and sometimes cause local changes in the boundary. Computer simulated images of high resolution electron microscopy, produced using these structures, present a similarity with the experimental ones. We calculated in the same boundary the diffusion coefficient of a doubly charged nickel vacancy between 2250 K and 2650 K. The atomic trajectories reveal the existence of preferential migration paths for the vacancy. The grain boundary diffusion is slightly anisotropic which is in agreement with an extrapolation of experimental results. A similar study in the volume reveals a migration energy higher than in the grain boundary. The calculated quantities allow for an estimation of the nickel diffusion acceleration due to the boundary. This acceleration is significant, but lower than the one measured by certain authors in polycrystalline, NiO; other authors studying bicrystals have not observed any acceleration. (author) [fr

  19. Stress-assisted grain growth in nanocrystalline metals: Grain boundary mediated mechanisms and stabilization through alloying

    International Nuclear Information System (INIS)

    Zhang, Yang; Tucker, Garritt J.; Trelewicz, Jason R.

    2017-01-01

    The mechanisms of stress-assisted grain growth are explored using molecular dynamics simulations of nanoindentation in nanocrystalline Ni and Ni-1 at.% P as a function of grain size and deformation temperature. Grain coalescence is primarily confined to the high stress region beneath the simulated indentation zone in nanocrystalline Ni with a grain size of 3 nm. Grain orientation and atomic displacement vector mapping demonstrates that coalescence transpires through grain rotation and grain boundary migration, which are manifested in the grain interior and grain boundary components of the average microrotation. A doubling of the grain size to 6 nm and addition of 1 at.% P eliminates stress-assisted grain growth in Ni. In the absence of grain coalescence, deformation is accommodated by grain boundary-mediated dislocation plasticity and thermally activated in pure nanocrystalline Ni. By adding solute to the grain boundaries, the temperature-dependent deformation behavior observed in both the lattice and grain boundaries inverts, indicating that the individual processes of dislocation and grain boundary plasticity will exhibit different activity based on boundary chemistry and deformation temperature.

  20. Subgroup report on grain boundary and interphase boundary structure and properties

    International Nuclear Information System (INIS)

    Balluffi, R.W.; Cannon, R.M.; Clarke, D.R.; Heuer, A.H.; Ho, P.S.; Kear, B.H.; Vitek, V.; Weertman, J.R.; White, C.L.

    1979-01-01

    In many high temperature structural applications, the performance characteristics of a materials system are largely controlled by the properties of its grain and interphase boundaries. Failure in creep and fatigue frequently occurs by cavitation, or cracking along grain boundaries. In a few special cases, this failure problem has been overcome by directional alignment of grain and interphase boundaries by various types of metallurgical processing such as directional solidification and directional recrystallization. A good example is to be found in the application of directionally aligned structures in high performance gas-turbine airfoils. However, where fine, equiaxed grain structures are desirable, other methods of controlling grain boundary properties have been developed. Important among these has been the introduction of improvements in primary melting practices, designed to control important impurities. This is of decisive importance because even traces of certain impurity elements present in grain boundaries in high temperature materials can seriously affect properties. Impurities are deleterious and need to be removed. However, in certain cases, (e.g., creep fracture) controlled impurity additions can be beneficial and result in improved properties

  1. Grain Boundaries From Theory to Engineering

    CERN Document Server

    Priester, Louisette

    2013-01-01

    Grain boundaries are a main feature of crystalline materials. They play a key role in determining the properties of materials, especially when grain size decreases and even more so with the current improvements of  processing tools and methods that allow us to control various elements in a polycrystal. This book presents the theoretical basis of the study of  grain boundaries and aims to open up new lines of research in this area. The treatment is light on mathematical approaches while emphasizing practical examples; the issues they raise are discussed with reference to theories. The general approach of the book has two main goals: to lead the reader from the concept of ‘ideal’ to ‘real’ grain boundaries; to depart from established knowledge and address the opportunities emerging through "grain boundary engineering",  the control of morphological and crystallographic features that affect material properties. The book is divided in three parts:  I ‘From interganular order to disorder’ deals wit...

  2. Transport properties through graphene grain boundaries: strain effects versus lattice symmetry

    Science.gov (United States)

    Hung Nguyen, V.; Hoang, Trinh X.; Dollfus, P.; Charlier, J.-C.

    2016-06-01

    As most materials available at the macroscopic scale, graphene samples usually appear in a polycrystalline form and thus contain grain boundaries. In the present work, the effect of uniaxial strain on the electronic transport properties through graphene grain boundaries is investigated using atomistic simulations. A systematic picture of transport properties with respect to the strain and lattice symmetry of graphene domains on both sides of the boundary is provided. In particular, it is shown that strain engineering can be used to open a finite transport gap in all graphene systems where the two domains are arranged in different orientations. This gap value is found to depend on the strain magnitude, on the strain direction and on the lattice symmetry of graphene domains. By choosing appropriately the strain direction, a large transport gap of a few hundred meV can be achieved when applying a small strain of only a few percents. For a specific class of graphene grain boundary systems, strain engineering can also be used to reduce the scattering on defects and thus to significantly enhance the conductance. With a large strain-induced gap, these graphene heterostructures are proposed to be promising candidates for highly sensitive strain sensors, flexible electronic devices and p-n junctions with non-linear I-V characteristics.

  3. Defects and defect processes in nonmetallic solids

    CERN Document Server

    Hayes, W

    2004-01-01

    This extensive survey covers defects in nonmetals, emphasizing point defects and point-defect processes. It encompasses electronic, vibrational, and optical properties of defective solids, plus dislocations and grain boundaries. 1985 edition.

  4. Grain boundaries in high temperature superconductors

    NARCIS (Netherlands)

    Hilgenkamp, Johannes W.M.; Mannhart, J.

    2002-01-01

    Since the first days of high-Tc superconductivity, the materials science and the physics of grain boundaries in superconducting compounds have developed into fascinating fields of research. Unique electronic properties, different from those of the grain boundaries in conventional metallic

  5. Grooving of grain boundaries in multicrystalline silicon: Effect on solar cell performance

    International Nuclear Information System (INIS)

    Dimassi, W.; Bouaicha, M.; Nouri, H.; Boujmil, M.F.; Ben Nasrallah, S.; Bessais, B.

    2006-01-01

    In this work, we investigate the effect of grooving of grain boundaries (GB) in multicrystalline silicon using chemical etching in HF/HNO 3 solutions. The grain boundaries were grooved in order to reduce the area of these highly recombining regions. Using optimized conditions, grooved GBs enable deep phosphorus diffusion and deep metallic contacts. As a result, the internal quantum efficiency (IQE), and the I-V characteristics under the dark and AM1.5 illumination were improved. It was also observed a reduction of the GB recombination velocity, which was deduced from light-beam-induced-current (LBIC) measurements. Such grooving in multicrystalline silicon enables passivation of GB-related defects. These results are discussed and compared to solar cells based on untreated multicrystalline silicon wafers

  6. Grain boundary cavitation under reversed constant stress

    International Nuclear Information System (INIS)

    Hales, R.

    1978-06-01

    The growth of grain boundary cavities by diffusion processes has been examined for cyclic stresses. It is found that the time required to grow a void by a predetermined amount (tsub(t)) is always longer than the time required to shrink the same defect to its original size (tsub(c)) under reversed stress. The ratio tsub(c)/tsub(t) is a function of the magnitude of the applied stress and tensile hold time. Similar calculations have been performed for gas filled bubbles. Similar results to those for voids are found at long hold times, but a significantly different ratio of tsub(c)/tsub(t) is obtained at short times. (author)

  7. Combined measurement of surface, grain boundary and lattice diffusion coefficients on olivine bi-crystals

    Science.gov (United States)

    Marquardt, Katharina; Dohmen, Ralf; Wagner, Johannes

    2014-05-01

    measurements. To evaluate the obtained diffusion profiles we adapted the isolated grain boundary model, first proposed by Fisher (1951) to match several observations: (i) Anisotropic diffusion in forsterite, (ii) fast diffusion along the grain boundary, (iii) fast diffusion on the surface of the sample. The latter process is needed to explain an additional flux of material from the surface into the grain boundary. Surface and grain boundary diffusion coefficients are on the order of 10000 times faster than diffusion in the lattice. Another observation was that in some regions the diffusion profiles in the lattice were greatly extended. TEM observations suggest here that surface defects (nano-cracks, ect.) have been present, which apparently enhanced the diffusion through the bulk lattice. Dohmen, R., & Milke, R. (2010). Diffusion in Polycrystalline Materials: Grain Boundaries, Mathematical Models, and Experimental Data. Reviews in Mineralogy and Geochemistry, 72(1), 921-970. Fisher, J. C. (1951). Calculations of Diffusion Penetration Curves for Surface and Grain Boundary Diffusion. Journal of Applied Physics, 22(1), 74-77. Le Claire, A. D. (1951). Grain boundary diffusion in metals. Philosophical Magazine A, 42(328), 468-474.

  8. Towards realistic molecular dynamics simulations of grain boundary mobility

    International Nuclear Information System (INIS)

    Zhou, J.; Mohles, V.

    2011-01-01

    In order to investigate grain boundary migration by molecular dynamics (MD) simulations a new approach involving a crystal orientation-dependent driving force has been developed by imposing an appropriate driving force on grain boundary atoms and enlarging the effective range of driving force. The new approach has been validated by the work of the driving force associated with the motion of grain boundaries. With the new approach the relation between boundary migration velocity and driving force is found to be nonlinear, as was expected from rate theory for large driving forces applied in MD simulations. By evaluating grain boundary mobility nonlinearly for a set of symmetrical tilt boundaries in aluminum at high temperature, high-angle grain boundaries were shown to move much faster than low-angle grain boundaries. This agrees well with experimental findings for recrystallization and grain growth. In comparison with the available data the simulated mobility of a 38.21 o Σ7 boundary was found to be significantly lower than other MD simulation results and comparable with the experimental values. Furthermore, the average volume involved during atomic jumps for boundary migration is determined in MD simulations for the first time. The large magnitude of the volume indicates that grain boundary migration is accomplished by the correlated motion of atom groups.

  9. Interactions between displacement cascades and Σ3〈110〉 tilt grain boundaries in Cu

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bo [CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027 (China); The Peac Institute of Multiscale Sciences, Chengdu, Sichuan, 610031 (China); Long, Xiao-Jiang [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan, 610031 (China); College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan, 610064 (China); Shen, Zhao-Wu, E-mail: ZWShen@ustc.edu.cn [CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027 (China); Luo, Sheng-Nian, E-mail: sluo@pims.ac.cn [Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, 610031 (China); The Peac Institute of Multiscale Sciences, Chengdu, Sichuan, 610031 (China)

    2016-12-01

    With large-scale molecular dynamics simulations, we investigate systematically the interaction of displacement cascades with a set of Σ3〈110〉 tilt grain boundaries (GBs) in Cu bicrystals at low ambient temperatures, as regards irradiation-induced defect production/absorption and GB migration/faceting. Except for coherent twin boundary, GBs exhibit pronounced preferential absorption of interstitials, which depends on initial primary knock-on atom distance from GB plane and inclination angle. GB migration occurs when displacement cascades overlap with a GB plane, as induced by recrystallization of thermal spike, and concurrent asymmetric grain growth. Faceting occurs via expanding coherent twin boundaries for asymmetric GBs.

  10. Charging effect at grain boundaries of MoS2

    Science.gov (United States)

    Yan, Chenhui; Dong, Xi; Li, Connie H.; Li, Lian

    2018-05-01

    Grain boundaries (GBs) are inherent extended defects in chemical vapor deposited (CVD) transition metal dichalcogenide (TMD) films. Characterization of the atomic structure and electronic properties of these GBs is crucial for understanding and controlling the properties of TMDs via defect engineering. Here, we report the atomic and electronic structure of GBs in CVD grown MoS2 on epitaxial graphene/SiC(0001). Using scanning tunneling microscopy/spectroscopy, we find that GBs mostly consist of arrays of dislocation cores, where the presence of mid-gap states shifts both conduction and valence band edges by up to 1 eV. Our findings demonstrate the first charging effect near GBs in CVD grown MoS2, providing insights into the significant impact GBs can have on materials properties.

  11. Structure and electronic properties of boron nitride sheet with grain boundaries

    International Nuclear Information System (INIS)

    Wang Zhiguo

    2012-01-01

    Using first-principles calculations, the structure, stability, and electronic properties of BN sheets with grain boundaries (GBs) are investigated. Two types of GBs, i.e., zigzag- and armchair-oriented GBs, are considered. Simulation results reveal that the zigzag-oriented GBs are more stable than the armchair-oriented ones. The GBs induce defect levels located within the band gap, which must be taken into account when building nanoelectronic devices.

  12. Grain boundary structure and properties

    International Nuclear Information System (INIS)

    Balluffi, R.W.

    1979-05-01

    An attempt is made to distinguish those fundamental aspects of grain boundaries which should be relevant to the problem of the time dependent fracture of high temperature structural materials. These include the basic phenomena which are thought to be associated with cavitation and cracking at grain boundaries during service and with the more general microstructural changes which occur during both processing and service. A very brief discussion of the current state of knowledge of these fundamentals is given

  13. Grain boundary and grain interior conduction in γ'-Bi2MoO6

    International Nuclear Information System (INIS)

    Vera, C.M.C.; Aragon, R.

    2005-01-01

    Impedance spectroscopy of fine grained ( 2 MoO 6 samples, in the frequency range of 0.1 Hz-250 kHz, relevant to sensor applications, up to 800 deg. C, has been used to characterize grain boundary and grain interior contributions to conduction. Above 500 deg. C, the grain boundary contribution is no longer rate limiting and conduction is dominated by the grain interior component. The corresponding activation energies are 0.98 eV for grain boundary and 0.73 eV for grain interior components. The weak dependence of conductivity on oxygen partial pressure below 500 deg. C can be attributed to electrode-electrolyte interface phenomena, whereas the robust response to ethanol is commensurate with changes in intrinsic ionic conductivity

  14. Tracer concentration contours in grain lattice and grain boundary diffusion

    International Nuclear Information System (INIS)

    Kim, Y. S.; Olander, D. R.

    1997-01-01

    Grain boundary diffusion plays a significant role in fission gas release, which is one of the crucial processes dominating nuclear fuel performance. Gaseous fission products such as Xe and Kr generated during nuclear fission have to diffuse in the grain lattice and the boundary inside fuel pellets before they reach the open spaces in a fuel rod. These processes can be studied by 'tracer diffusion' techniques, by which grain boundary diffusivity can be estimated and directly used for low burn-up fission gas release analysis. However, only a few models accounting for the both processes are available and mostly handle them numerically due to mathematical complexity. Also the numerical solution has limitations in a practical use. In this paper, an approximate analytical solution in case of stationary grain boundary in a polycrystalline solid is developed for the tracer diffusion techniques. This closed-form solution is compared to available exact and numerical solutions and it turns out that it makes computation not only greatly easier but also more accurate than previous models. It can be applied to theoretical modelings for low burn-up fission gas release phenomena and experimental analyses as well, especially for PIE (post irradiation examination). (author)

  15. Transitional grain boundary structures and the influence on thermal, mechanical and energy properties from molecular dynamics simulations

    International Nuclear Information System (INIS)

    Burbery, N.J.; Das, R.; Ferguson, W.G.

    2016-01-01

    The thermo-kinetic characteristics that dictate the activation of atomistic crystal defects significantly influence the mechanical properties of crystalline materials. Grain boundaries (GBs) primarily influence the plastic deformation of FCC metals through their interaction with mobile dislocation defects. The activation thresholds and atomic mechanisms that dictate the thermo-kinetic properties of grain boundaries have been difficult to study due to complex and highly variable GB structure. This paper presents a new approach for modelling GBs which is based on a systematic structural analysis of metastable and stable GBs. GB structural transformation accommodates defect interactions at the interface. The activation energy for such structural transformations was evaluated with nudged elastic band analysis of bi-crystals with several metastable 0 K grain boundary structures in pure FCC Aluminium (Al). The resultant activation energy was used to evaluate the thermal stability of the metastable grain boundary structures, with predictions of transition time based on transition state theory. The predictions are in very good agreement with the minimum time for irreversible structure transformation at 300 K obtained with molecular dynamics simulations. Analytical methods were used to evaluate the activation volume, which in turn was used to predict and explain the influence of stress and strain rate on the thermal and mechanical properties. Results of molecular dynamics simulations show that the GB structure is more closely related to the elastic strength at 0 K than the GB energy. Furthermore, the thermal instability of the GB structure directly influences the relationship between bi-crystal strength, temperature and strain rate. Hence, theoretically consistent models are established on the basis of activation criteria, and used to make predictions of temperature-dependent yield stress at a low strain rate, in agreement with experimental results.

  16. Simulation of the structure of vacancies in high angle grain boundaries

    International Nuclear Information System (INIS)

    Bristowe, P.D.; Brokman, A.; Spaepen, F.; Balluffi, R.W.

    1980-06-01

    Since the modeling approach used in an earlier work is used at an atomic level, this is the most appropriate and reliable technique available. To complement this study, however, we have also employed a hard sphere dynamic model and a bubble raft model because in the past they have provided useful qualitative insight into the structure of a variety of defects in two-dimensional crystalline and amorphous systems. The computed results form part of a wider investigation of vacancies and interstitials in various grain boundaries in which the binding energies are analyzed and related to the defect structure and form of the interatomic potential

  17. Gettering effect in grain boundaries of multi-crystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Nouri, H.; Bouaicha, M.; Ben Rabha, M.; Bessais, B. [Laboratoire de Photovoltaique, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95, Hammam-Lif 2050 (Tunisia)

    2012-10-15

    In this work, we analyze the effect of three gettering procedures on the variation of the grain boundaries (GBs) defect density in multicrystalline silicon (mc-Si). The effective defect density (N{sup B}) was calculated using a theoretical model where we consider the potential barrier induced by the GB as being due to structural defects and impurities. Results are compared to those obtained from C-V measurements. The potential barrier was evaluated from the dark current-voltage (I-V) characteristic performed across the GB. In addition to the Rapid Thermal Annealing (RTA), we use aluminum (Al) in the first gettering procedure, in the second we use porous silicon (PS), whereas in the third one, we realize a chemical damage (grooving). Mc-Si wafers were annealed in an infrared furnace in the same conditions, at temperatures ranging from 600 C to 1000 C (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Effects of oxide distributed in grain boundaries on microstructure stability of nanocrystalline metals

    Science.gov (United States)

    Zhou, Kai; Li, Hui; Biao Pang, Jin; Wang, Zhu

    2013-06-01

    Nanocrystalline copper and zinc prepared by high-pressure compaction method have been studied by positron lifetime spectroscopy associated with X-ray diffraction. For nanocrystalline Cu, mean grain sizes of the samples decrease after being annealed at 900 °C and increase during aging at 180 °C, revealing that the atoms exchange between the two regions. The positron lifetime results indicate that the vacancy clusters formed in the annealing process are unstable and decomposed at the aging time below 6 hours. In addition, the partially oxidized surfaces of the nanoparticles hinder the grain growth during the ageing at 180 °C, and the vacancy clusters inside the disorder regions which are related to Cu2O need longer aging time to decompose. In the case of nanocrystalline Zn, the open volume defect (not larger than divacancy) is dominant according to the high relative intensity for the short positron lifetime (τ1). The oxide (ZnO) inside the grain boundaries has been found having an effect to hinder the decrease of average positron lifetime (τav) during the annealing, which probably indicates that the oxide stabilizes the microstructure of the grain boundaries. For both nanocrystalline copper and zinc, the oxides in grain boundaries enhance the thermal stability of the microstucture, in spite of their different crystal structures. This effect is very important for the nanocrystalline materials using as radiation resistant materials.

  19. Effects of oxide distributed in grain boundaries on microstructure stability of nanocrystalline metals

    International Nuclear Information System (INIS)

    Zhou Kai; Li Hui; Pang Jinbiao; Wang Zhu

    2013-01-01

    Nanocrystalline copper and zinc prepared by high-pressure compaction method have been studied by positron lifetime spectroscopy associated with X-ray diffraction. For nanocrystalline Cu, mean grain sizes of the samples decrease after being annealed at 900 °C and increase during aging at 180 °C, revealing that the atoms exchange between the two regions. The positron lifetime results indicate that the vacancy clusters formed in the annealing process are unstable and decomposed at the aging time below 6 hours. In addition, the partially oxidized surfaces of the nanoparticles hinder the grain growth during the ageing at 180 °C, and the vacancy clusters inside the disorder regions which are related to Cu 2 O need longer aging time to decompose. In the case of nanocrystalline Zn, the open volume defect (not larger than divacancy) is dominant according to the high relative intensity for the short positron lifetime (τ 1 ). The oxide (ZnO) inside the grain boundaries has been found having an effect to hinder the decrease of average positron lifetime (τ av ) during the annealing, which probably indicates that the oxide stabilizes the microstructure of the grain boundaries. For both nanocrystalline copper and zinc, the oxides in grain boundaries enhance the thermal stability of the microstucture, in spite of their different crystal structures. This effect is very important for the nanocrystalline materials using as radiation resistant materials.

  20. A grain boundary phase transition in Si–Au

    International Nuclear Information System (INIS)

    Ma, Shuailei; Meshinchi Asl, Kaveh; Tansarawiput, Chookiat; Cantwell, Patrick R.; Qi, Minghao; Harmer, Martin P.; Luo, Jian

    2012-01-01

    A grain boundary transition from a bilayer to an intrinsic (nominally clean) boundary is observed in Si–Au. An atomically abrupt transition between the two complexions (grain boundary stabilized phases) implies the occurrence of a first-order interfacial phase transition associated with a discontinuity in the interfacial excess. This observation supports a grain-boundary complexion theory with broad applications. This transition is atypical in that the monolayer complexion is absent. A model is proposed to explain the bilayer stabilization and the origin of this complexion transition.

  1. Electronic and atomic structures of KFe2Se2 grain boundaries

    International Nuclear Information System (INIS)

    Fan, Wei; Liu, Da-Yong; Zeng, Zhi

    2014-01-01

    Highlights: •Twist grain boundary has lower grain-boundary energy. •Twist grain-boundary has similar electronic structure to that in crystal. •Charge and magnetic-moment fluctuations are large within tilt grain boundary. •Bi-collinear AFM is most stable even with existence of grain boundary. •Insulating Fe-vacancy phase is stable with existence of twist grain boundary. -- Abstract: The electronic and atomic structures of the twist and tilt grain boundaries (GB) of the iron-based superconductor KFe 2 Se 2 are studied based on the simulations of the first principles density functional theory. Our results have clarified that the Σ5[0 0 1] twist grain boundary of KFe 2 Se 2 with layered structure has the lower grain-boundary energy. The local structure and the main features of the basic electronic structure within the [0 0 1] twist grain-boundary region have small differences compared with those in KFe 2 Se 2 crystal. The large fluctuations of the charges and magnetic moments are found in the [0 0 1] tilt grain-boundary regions, especially the former are more prominent. The bi-collinear anti-ferromagnetic order is the most stable magnetic order even with grain boundaries in the bulk. The √(5)a×√(5)a superstructure of Fe-vacancies in K 2 Fe 4 Se 5 phase is intrinsically related to the coincident-site lattice of Σ5[0 0 1] twist grain boundary

  2. Basic aspects of high-Tc grain boundary devices

    International Nuclear Information System (INIS)

    Mannhart, J.; Moler, K.A.; Sigrist, M.

    1996-01-01

    Grain boundaries are extensively used as high-quality Josephson junctions in high-T c superconductors. Their superconducting characteristics can generally be well described by conventional models of strongly coupled Josephson junctions. Here, we report on highly anomalous critical current vs. magnetic field dependencies of grain boundaries in YBa 2 Cu 3 O 7-x . Direct imaging with scanning SQUID microscopy provides evidence of magnetic flux generated by single grain boundaries. Conventional Josephson junction models cannot explain these effects if a superconducting order parameter with a pure s-wave symmetry is assumed. The results have significant implications for our understanding of the properties of grain boundaries in high-T c superconductors and for their applications. (orig.)

  3. Grain boundary and triple junction diffusion in nanocrystalline copper

    Energy Technology Data Exchange (ETDEWEB)

    Wegner, M., E-mail: m.wegner@uni-muenster.de; Leuthold, J.; Peterlechner, M.; Divinski, S. V., E-mail: divin@uni-muenster.de [Institut für Materialphysik, Universität Münster, Wilhelm-Klemm-Straße 10, D-48149, Münster (Germany); Song, X., E-mail: xysong@bjut.edu.cn [College of Materials Science and Engineering, Beijing University of Technology, 100124 Beijing (China); Wilde, G. [Institut für Materialphysik, Universität Münster, Wilhelm-Klemm-Straße 10, D-48149, Münster (Germany); Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 200444 Shanghai (China)

    2014-09-07

    Grain boundary and triple junction diffusion in nanocrystalline Cu samples with grain sizes, 〈d〉, of ∼35 and ∼44 nm produced by spark plasma sintering were investigated by the radiotracer method using the {sup 63}Ni isotope. The measured diffusivities, D{sub eff}, are comparable with those determined previously for Ni grain boundary diffusion in well-annealed, high purity, coarse grained, polycrystalline copper, substantiating the absence of a grain size effect on the kinetic properties of grain boundaries in a nanocrystalline material at grain sizes d ≥ 35 nm. Simultaneously, the analysis predicts that if triple junction diffusion of Ni in Cu is enhanced with respect to the corresponding grain boundary diffusion rate, it is still less than 500⋅D{sub gb} within the temperature interval from 420 K to 470 K.

  4. Dynamical simulation of structural multiplicity in grain boundaries

    International Nuclear Information System (INIS)

    Majid, I.; Bristowe, P.D.

    1987-06-01

    Work on a computer simulation study of a low-energy high-angle boundary structure which is not periodic have been recently reported. This result is of interest since grain boundary structures are usually assumed to have a periodicity corresponding to the appropriate coincidence site lattice (CSL) and many experimental observations of the structure of grain boundaries performed using conventional and high-resolution electron microscopy, electron diffraction and x-ray diffraction appear to support this work. However, this work, using empirical interatomic pair potentials and the relaxation method of molecular statics, have simulated a Σ = 5 36.87 0 (001) twist boundary and found a low energy structure having a larger repeat cell than the CSL and is composed of two different types of structural unit that are randomly distributed in the boundary plane. This result, which has been termed the multiplicity of grain boundary structures, has also been found in the simulation of tilt boundaries. The multiplicity phenomenon is of special interest in twist boundaries since it is used as a structural model to explain the x-ray scattering from a Σ = 5 boundary in gold. These scattering patterns had previously remained unexplained using stable structures that had simple CSL periodicity. Also, the effect of having a multiple number of low energy structural units coexisting in the grain boundary is of more general interest since it implies that the boundary structures may be quasi-periodic and, in some circumstances, may even result in a roughening of the boundary plane. This paper extends this work by showing, using molecular dynamics, that a multiplicity of structural units can actually nucleate spontaneously in a high-angle grain boundary at finite temperatures

  5. Advantageous grain boundaries in iron pnictide superconductors

    Science.gov (United States)

    Katase, Takayoshi; Ishimaru, Yoshihiro; Tsukamoto, Akira; Hiramatsu, Hidenori; Kamiya, Toshio; Tanabe, Keiichi; Hosono, Hideo

    2011-01-01

    High critical temperature superconductors have zero power consumption and could be used to produce ideal electric power lines. The principal obstacle in fabricating superconducting wires and tapes is grain boundaries—the misalignment of crystalline orientations at grain boundaries, which is unavoidable for polycrystals, largely deteriorates critical current density. Here we report that high critical temperature iron pnictide superconductors have advantages over cuprates with respect to these grain boundary issues. The transport properties through well-defined bicrystal grain boundary junctions with various misorientation angles (θGB) were systematically investigated for cobalt-doped BaFe2As2 (BaFe2As2:Co) epitaxial films fabricated on bicrystal substrates. The critical current density through bicrystal grain boundary (JcBGB) remained high (>1 MA cm−2) and nearly constant up to a critical angle θc of ∼9°, which is substantially larger than the θc of ∼5° for YBa2Cu3O7–δ. Even at θGB>θc, the decay of JcBGB was much slower than that of YBa2Cu3O7–δ. PMID:21811238

  6. A constitutive model of nanocrystalline metals based on competing grain boundary and grain interior deformation mechanisms

    KAUST Repository

    Gurses, Ercan

    2011-12-01

    In this work, a viscoplastic constitutive model for nanocrystalline metals is presented. The model is based on competing grain boundary and grain interior deformation mechanisms. In particular, inelastic deformations caused by grain boundary diffusion, grain boundary sliding and dislocation activities are considered. Effects of pressure on the grain boundary diffusion and sliding mechanisms are taken into account. Furthermore, the influence of grain size distribution on macroscopic response is studied. The model is shown to capture the fundamental mechanical characteristics of nanocrystalline metals. These include grain size dependence of the strength, i.e., both the traditional and the inverse Hall-Petch effects, the tension-compression asymmetry and the enhanced rate sensitivity. © 2011 Elsevier B.V. All rights reserved.

  7. Properties of grain boundaries in BCC iron and iron-based alloys

    International Nuclear Information System (INIS)

    Terentyev, D.; He, Xinfu

    2010-01-01

    The report contains a summary of work done within the collaboration established between SCK-CEN and CIEA, performed during the internship of Xinfu He (CIAE) in the period of September 2009 to June 2010. In this work, we have carried out an atomistic study addressing the properties of grain boundaries in BCC Fe and Fe-Cr alloys. Throughout this work we report on the structural and cohesive properties of grain boundaries; thermal stability; interaction of grain boundaries with He and diffusivity of He in the core of the grain boundaries; equilibrium segregation of Cr near the grain boundary zone; cleavage fracture of grain boundaries; influence of the Cr precipitates, voids and He bubbles on the structure and strength of grain boundaries.

  8. Properties of grain boundaries in BCC iron and iron-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Terentyev, D.; He, Xinfu

    2010-08-15

    The report contains a summary of work done within the collaboration established between SCK-CEN and CIEA, performed during the internship of Xinfu He (CIAE) in the period of September 2009 to June 2010. In this work, we have carried out an atomistic study addressing the properties of grain boundaries in BCC Fe and Fe-Cr alloys. Throughout this work we report on the structural and cohesive properties of grain boundaries; thermal stability; interaction of grain boundaries with He and diffusivity of He in the core of the grain boundaries; equilibrium segregation of Cr near the grain boundary zone; cleavage fracture of grain boundaries; influence of the Cr precipitates, voids and He bubbles on the structure and strength of grain boundaries.

  9. Interaction of primary cascades with different atomic grain boundaries in α-Zr: An atomic scale study

    Energy Technology Data Exchange (ETDEWEB)

    Hatami, F.; Feghhi, S.A.H., E-mail: a.feghhi@gmail.com; Arjhangmehr, A., E-mail: ms.arjangmehr@gmail.com; Esfandiarpour, A.

    2016-11-15

    In this paper, we investigate interaction of primary cascades with grain boundaries (GBs) in α-Zr using the atomistic-scale simulations, and intend to study the influence of different GB structures on production and evolution of defects on picosecond timescale. We observe that, contrary to the previous results in cubic metals, GBs in α-Zr are not necessarily biased toward interstitials, and can preferentially absorb vacancies. Further, in terms of energetic and kinetic behavior, we find that GBs act as defect sinks due to the substantial reduction of defect formation energies and migration barriers in close vicinity of the GB center, with either a preference toward interstitials or vacancies which depends on the atomic structure of the boundaries. Finally, using continuous ion bombardment, we investigate the stability of GBs in sever irradiation environment. The results indicate that the sink strength and efficiency of boundaries varies with increasing accumulated defects in GB region. - Highlights: • GBs in hcp Zr are not necessarily biased toward interstitials. • Defect content within bulk depends on PKA energy, PKA distance, and GB texture. • Defect formation energies and diffusion barriers decrease in close vicinity of GBs. • GBs become locally unstable due to absorption of excess defects in ion bombardment.

  10. Grain boundary corrosion of copper canister weld material

    International Nuclear Information System (INIS)

    Gubner, Rolf; Andersson, Urban; Linder, Mats; Nazarov, Andrej; Taxen, Claes

    2006-01-01

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast inner container fitted inside a corrosion-resistant copper canister. During fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow, they will tend to concentrate impurities within the copper at the new grain boundaries. The work described in this report was undertaken to determine whether there is any possibility of enhanced corrosion at grain boundaries within the copper canister, based on the recommendations of the report SKB-TR--01-09 (INIS ref. 32025363). Grain boundary corrosion of copper is not expected to be a problem for the copper canisters in a repository. However, as one step in the experimental verification it is necessary to study grain boundary corrosion of copper in an environment where it may occur. A literature study aimed to find one or several solutions that are aggressive with respect to grain boundary corrosion of copper. Copper specimens cut from welds of real copper canisters where exposed to aerated ammonium hydroxide solution for a period of 14 days at 80 degrees C and 10 bar pressure. The samples were investigated prior to exposure using the scanning Kelvin probe technique to characterize anodic and cathodic areas on the samples. The degree of corrosion was determined by optical microscopy. No grain boundary corrosion could be observed in the autoclave experiments, however, a higher rate of corrosion was observed for the weld material compared to the base material. The work suggests that grain boundary corrosion of copper weld material is most unlikely to adversely affect SKB's copper canisters under the conditions in the repository

  11. Grain boundary corrosion of copper canister weld material

    Energy Technology Data Exchange (ETDEWEB)

    Gubner, Rolf; Andersson, Urban; Linder, Mats; Nazarov, Andrej; Taxen, Claes [Corrosion and Metals Research Inst. (KIMAB), Stockholm (Sweden)

    2006-01-15

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast inner container fitted inside a corrosion-resistant copper canister. During fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow, they will tend to concentrate impurities within the copper at the new grain boundaries. The work described in this report was undertaken to determine whether there is any possibility of enhanced corrosion at grain boundaries within the copper canister, based on the recommendations of the report SKB-TR--01-09 (INIS ref. 32025363). Grain boundary corrosion of copper is not expected to be a problem for the copper canisters in a repository. However, as one step in the experimental verification it is necessary to study grain boundary corrosion of copper in an environment where it may occur. A literature study aimed to find one or several solutions that are aggressive with respect to grain boundary corrosion of copper. Copper specimens cut from welds of real copper canisters where exposed to aerated ammonium hydroxide solution for a period of 14 days at 80 degrees C and 10 bar pressure. The samples were investigated prior to exposure using the scanning Kelvin probe technique to characterize anodic and cathodic areas on the samples. The degree of corrosion was determined by optical microscopy. No grain boundary corrosion could be observed in the autoclave experiments, however, a higher rate of corrosion was observed for the weld material compared to the base material. The work suggests that grain boundary corrosion of copper weld material is most unlikely to adversely affect SKB's copper canisters under the conditions in the repository.

  12. Additive recovery at lateral boundaries of grains under electronic exposure

    International Nuclear Information System (INIS)

    Plotnikov, S.V.; Postnikov, D.V.

    2000-01-01

    The experimental investigation of additive re-distribution under electronic beam revealed a recovery of the additive at grain boundaries. Additive accumulation mainly takes place at the boundaries that are perpendicular to material surface, whereas there is no an observed recovery of additive at the boundaries that are parallel to the surface. To construe the processes of additive recovery at grain boundaries, we may use the kinetic diffusion equation describing the mass transfer processes in the presence of temperature gradients and non-equilibrium vacancies. The additive recovery is caused by spot fault gradients near the grain boundary. The grain boundary is an intensive run-off region of vacancies. Therefore, the average vacancy distribution profile near the grain boundary changes its pattern. The above case indicates that there are two additive fluxes. One of them is vectored perpendicular to the surface, and the other one is parallel to it, i.e. it is vectored to the grain boundary. A study of the perpendicular and parallel boundaries shows that there is no additive settling at the boundaries that are parallel to the surface, since the general flux is vectored to the parallel boundaries. There is no such kind of phenomenon at the grain boundaries that are perpendicular to the surface. Besides, the perpendicular boundaries are more effective run-off regions for vacancies, since there is a slower build-up of the region with vacancies due to displacement of the vacancies to the surface

  13. The influence of grain boundary structure on diffusional creep

    DEFF Research Database (Denmark)

    Thorsen, Peter Anker; Bilde-Sørensen, Jørgen

    1999-01-01

    the deformation caused by deposition of material at (or removal of material from) grain boundaries. The misorientation across the grain boundaries, and hence the character of the boundaries, was measured with the use of electron back-scattering patterns. The deformation behavior of the individual boundaries......A Cu-2wt%Ni-alloy was deformed in tension in the diffusional creep regime (Nabarro-Herring creep). A periodic grid consisting of alumina was deposited on the surface of the creep specimen prior to creep. This makes it possible to separate the deformation caused by grain boundary sliding from...

  14. Additive recovery of lateral boundaries of grains under electronic exposure

    International Nuclear Information System (INIS)

    Postnikov, D.V.; Plotnikov, S.V.

    2002-01-01

    The experimental investigation of additive re-distribution under electronic beam revealed a recovery of the additive at grain boundaries. Additive accumulation mainly takes place at the boundaries that are perpendicular to material surface, whereas there is no an observed recovery of additive at the boundaries that are parallel to the surface. The additive recovery is caused by spot fault gradients near the grain boundary. The grain boundary is an intensive run-off region of vacancies. Therefore, the average vacancy distribution profile near the grain boundary changes its pattern. The above case indicates that there are two additive fluxes. One of them is vectored perpendicular to the surface, and the other one is parallel to it, i. e. it is vectored to the grain boundary. A study of the perpendicular and parallel boundaries shows that there is no additive settling at the boundaries that are parallel to the surface, since the general flux is vectored to the parallel boundaries. There is no such kind of phenomenon at the grain boundaries that are perpendicular to the surface. Besides, the perpendicular boundaries are more effective run-off regions for vacancies, since there is a slower build-up of the region with vacancies due to displacement of the vacancies to the surface. To compute concentration of vacancies we will consider a grain of the surface as a model. The computations indicate the presence of vacancy gradients vectored to the surface and grain boundaries, which are perpendicular to the surface. Comparison of the experimental and theoretical outcomes shows a good agreement between the theoretical model and actual processes occurring under the exposure. This theory disclose wide potentials for application of diffusion processes in alloys

  15. Grain boundaries of nanocrystalline materials - their widths, compositions, and internal structures

    International Nuclear Information System (INIS)

    Fultz, B.; Frase, H.N.

    2000-01-01

    Nanocrystalline materials contain many atoms at and near grain boundaries. Sufficient numbers of Moessbauer probe atoms can be situated in grain boundary environments to make a clear contribution to the measured Moessbauer spectrum. Three types of measurements on nanocrystalline materials are reported here, all using Moessbauer spectrometry in conjunction with X-ray diffractometry, transmission electron microscopy, or small angle neutron scattering. By measuring the fraction of atoms contributing to the grain boundary component in a Moessbauer spectrum, and by knowing the grain size of the material, it is possible to deduce the average width of grain boundaries in metallic alloys. It is found that these widths are approximately 0.5 nm for fcc alloys and slightly larger than 1.0 nm for bcc alloys.Chemical segregation to grain boundaries can be measured by Moessbauer spectrometry, especially in conjunction with small angle neutron scattering. Such measurements on Fe-Cu and Fe 3 Si-Nb were used to study how nanocrystalline materials could be stabilized against grain growth by the segregation of Cu and Nb to grain boundaries. The segregation of Cu to grain boundaries did not stabilize the Fe-Cu alloys against grain growth, since the grain boundaries were found to widen and accept more Cu atoms during annealing. The Nb additions to Fe 3 Si did suppress grain growth, perhaps because of the low mobility of Nb atoms, but also perhaps because Nb atoms altered the chemical ordering in the alloy.The internal structure of grain boundaries in nanocrystalline materials prepared by high-energy ball milling is found to be unstable against internal relaxations at low temperatures. The Moessbauer spectra of the nanocrystalline samples showed changes in the hyperfine fields attributable to movements of grain boundary atoms. In conjunction with SANS measurements, the changes in grain boundary structure induced by cryogenic exposure and annealing at low temperature were found to be

  16. Migration mechanisms of a faceted grain boundary

    Science.gov (United States)

    Hadian, R.; Grabowski, B.; Finnis, M. W.; Neugebauer, J.

    2018-04-01

    We report molecular dynamics simulations and their analysis for a mixed tilt and twist grain boundary vicinal to the Σ 7 symmetric tilt boundary of the type {1 2 3 } in aluminum. When minimized in energy at 0 K , a grain boundary of this type exhibits nanofacets that contain kinks. We observe that at higher temperatures of migration simulations, given extended annealing times, it is energetically favorable for these nanofacets to coalesce into a large terrace-facet structure. Therefore, we initiate the simulations from such a structure and study as a function of applied driving force and temperature how the boundary migrates. We find the migration of a faceted boundary can be described in terms of the flow of steps. The migration is dominated at lower driving force by the collective motion of the steps incorporated in the facet, and at higher driving forces by the step detachment from the terrace-facet junction and propagation of steps across the terraces. The velocity of steps on terraces is faster than their velocity when incorporated in the facet, and very much faster than the velocity of the facet profile itself, which is almost stationary. A simple kinetic Monte Carlo model matches the broad kinematic features revealed by the molecular dynamics. Since the mechanisms seem likely to be very general on kinked grain-boundary planes, the step-flow description is a promising approach to more quantitative modeling of general grain boundaries.

  17. Segregation to grain boundaries in nimonic PE16 superalloy

    International Nuclear Information System (INIS)

    Nettleship, D.J.; Wild, R.K.

    1990-01-01

    Nimonic PE16 alloy is a nickel-based superalloy containing 34 wt.% iron and 16wt.% chromium with additions of molybdenum, titanium and aluminium. It is used in the fuel assembly of the UK advanced gas-cooled reactors (AGR). This component supports significant loads in service and its mechanical integrity is therefore of paramount importance. Mechanical properties may be influenced by the grain size and grain boundary composition, both of which can themselves alter during service. Scanning Auger microscopy is a well-established method for investigating grain boundaries, and has now been applied to the study of PE16. In order to expose PE16 grain boundary surfaces it is necessary to hydrogen charge samples and fracture by pulling in tension at a slow strain rate within the ultra-high vacuum chamber of the Auger microprobe. A series of casts of nimonic PE16 alloy that have received a range of thermal ageing treatments have been fractured in an intergranular manner and the grain boundary composition determined. Segregation of trace and minority elements, particularly Mo and P, has been detected at grain boundaries. Significant variations between different as-manufactured casts were observed, whilst ageing brought about the growth of chromium-rich particles on the grain boundaries. Ductile fracture in PE16 followed a path through Ti(C, N) particles. Many of these particles incorporated large amounts of sulphur. (author)

  18. Voltage and temperature dependence of the grain boundary tunneling magnetoresistance in manganites

    OpenAIRE

    Hoefener, C.; Philipp, J. B.; Klein, J.; Alff, L.; Marx, A.; Buechner, B.; Gross, R.

    2000-01-01

    We have performed a systematic analysis of the voltage and temperature dependence of the tunneling magnetoresistance (TMR) of grain boundaries (GB) in the manganites. We find a strong decrease of the TMR with increasing voltage and temperature. The decrease of the TMR with increasing voltage scales with an increase of the inelastic tunneling current due to multi-step inelastic tunneling via localized defect states in the tunneling barrier. This behavior can be described within a three-current...

  19. Study of rapid grain boundary migration in a nanocrystalline Ni thin film

    International Nuclear Information System (INIS)

    Kacher, Josh; Robertson, I.M.; Nowell, Matt; Knapp, J.; Hattar, Khalid

    2011-01-01

    Research highlights: → Abnormal growth is distributed randomly in the foil and initiates at different times. → Growth occurs from seemingly uncorrelated regions of the grain boundary. → Growth twins are created during all stages of abnormal grain growth. → Grain growth patterns are qualitatively similar to a vacancy diffusion model. → Grain boundaries and orientations evolve during growth to minimize system energy. - Abstract: Grain boundary migration associated with abnormal grain growth in pulsed-laser deposited Ni was studied in real time by annealing electron transparent films in situ in the transmission electron microscope. The resulting texture evolution and grain boundary types produced were evaluated by ex situ electron backscatter diffraction of interrupted anneals. The combination of these two techniques allowed for the investigation of grain growth rates, grain morphologies, and the evolution of the orientation and grain boundary distributions. Grain boundaries were found to progress in a sporadic, start/stop fashion with no evidence of a characteristic grain growth rate. The orientations of the abnormally growing grains were found to be predominately //ND throughout the annealing process. A high fraction of twin boundaries developed during the annealing process. The intermittent growth from different locations of the grain boundary is discussed in terms of a vacancy diffusion model for grain growth.

  20. A constitutive model of nanocrystalline metals based on competing grain boundary and grain interior deformation mechanisms

    KAUST Repository

    Gurses, Ercan; El Sayed, Tamer S.

    2011-01-01

    In this work, a viscoplastic constitutive model for nanocrystalline metals is presented. The model is based on competing grain boundary and grain interior deformation mechanisms. In particular, inelastic deformations caused by grain boundary

  1. Grain-size distributions and grain boundaries of chalcopyrite-type thin films

    International Nuclear Information System (INIS)

    Abou-Ras, D.; Schorr, S.; Schock, H.W.

    2007-01-01

    CuInSe 2 , CuGaSe 2 , Cu(In,Ga)Se 2 and CuInS 2 thin-film solar absorbers in completed solar cells were studied in cross section by means of electronbackscatter diffraction. From the data acquired, grain-size distributions were extracted, and also the most frequent grain boundaries were determined. The grain-size distributions of all chalcopyrite-type thin films studied can be described well by lognormal distribution functions. The most frequent grainboundary types in these thin films are 60 - left angle 221 right angle tet and 71 - left angle 110 right angle tet (near) Σ3 twin boundaries. These results can be related directly to the importance of {112} tet planes during the topotactical growth of chalcopyrite-type thin films. Based on energetic considerations, it is assumed that the most frequent twin boundaries exhibit a 180 - left angle 221 right angle tet constellation. (orig.)

  2. Grain boundary imaging, gallium diffusion and the fracture behavior of Al-Zn Alloy - An in situ study

    CERN Document Server

    Tsai, W L; Chen, C H; Chang, L W; Je, J H; Lin, H M; Margaritondo, G

    2003-01-01

    Phase contrast radiology using unmonochromatic synchrotron X-ray successfully imaged the grain boundaries of Al and AlZn alloy without contrast agent. Combining the high penetration of X-ray and the possibility of 3D reconstruction by tomorgraphy or stereography method, this approach can be very used for nondestructive characterization of polycrystalline materials. By examine the images with 3D perspective, we were able locate the observed void-like defects which lies exclusively on the grain boundary and identify their origin from last stage of the rolling process. We studied the Ga Liquid metal diffusion in the AlZn alloy, under different temperature and stress conditions. High resolution images, approx 2 mu m, of Ga liquid metal diffusion in AlZn were obtained in real time and diffusion paths alone grain boundaries and surfaces were clearly identified. Embrittled AlZn responses to the tensile stress and fractures in a drastic different manner than the pure AlZn. These results, although very much expected f...

  3. The electrical properties of indium oxide thin films. In-situ Hall effect measurements to investigate the influence of point defects and grain boundaries; Die elektrischen Eigenschaften von Indiumoxid-Duennschichten. In-situ Hall-Effekt-Messungen zur Aufklaerung des Einflusses von Punktdefekten und Korngrenzen

    Energy Technology Data Exchange (ETDEWEB)

    Frischbier, Mareike

    2015-08-15

    Despite the wide application of indium oxide as transparent conducting material, basic mechanisms of its high conductivity are not understood yet. However, indium is scarce and the development of alternative materials for indium oxide is necessary. This requires a detailed understanding of the conductivity mechanisms. The electrical conductivity of undoped and doped indium oxide is given by defects. Thus, the influence of point defects and grain boundaries in sputtered indium oxide thin films is investigated here. This dissertation contributes to a more profound understanding of the conductivity mechanisms of indium oxide: grain boundary scattering is identified as the most important limiting scattering mechanism and the influence of doping elements on this property is shown. Dominant point defects in oxide materials are commonly investigated in literature by conductivity relaxation measurements depending on oxygen partial pressure. Usually, carrier mobility is assumed to be constant when analysing the results. However, this assumption is incorrect and can lead to a misinterpretation of data. Therefore, relaxation measurements are conducted as part of this dissertation to directly measure charge carrier concentration and mobility for the first time. For this purpose, a new experimental setup has been developed which enables measuring the Hall effect in-situ depending on oxygen partial pressure, temperature and total pressure. Relaxation measurements are conducted as part of this dissertation to show that charge carrier mobility is not constant, but strongly depends on carrier concentration. Further measurements verify that the scattering of charge carriers at grain boundaries is one main reason. In addition, the influence of deposition parameters of the sputter deposition process and doping (dopant element and concentration) on carrier concentration and mobility at room temperature is studied. The experimental results show that the doping elements influence both

  4. A study of diffusion and grain boundaries in ionic compounds by the molecular dynamic method; Etude par dynamique moleculaire de la diffusion et des joints de grains dans les composes ioniques

    Energy Technology Data Exchange (ETDEWEB)

    Karakasidis, T

    1995-11-13

    In the first part, we present a model of variable cationic charges based on a rigid ion potential. In order to implement the model we performed static and dynamic simulations in calcium fluoride. The structural properties do not depend on the way the model is adjusted but the anion diffusion and the high frequency dielectric constant do. These results allowed to specify the criteria to adjust the variable charge model. As indicated by the behaviour of optical phonons this model introduced a supplementary polarisation mechanism to the rigid ion model. In the second part of this work, we studied the structural and diffusional behaviour of a high angle tilt grain boundary in NiO by molecular dynamics, using a usual rigid ion model. We examined structures with and without point defects between 0 K and 2500 K. The structure without defects presents always the lowest potential energy. In the others structures the defects can cluster and sometimes cause local changes in the boundary. Computer simulated images of high resolution electron microscopy, produced using these structures, present a similarity with the experimental ones. We calculated in the same boundary the diffusion coefficient of a doubly charged nickel vacancy between 2250 k and 2650 K. The atomic trajectories reveal the existence of preferential migration paths for the vacancy. The grain boundary diffusion is slightly anisotropic which is in agreement with an extrapolation of experimental results. A similar study in the volume reveals a migration energy higher than in the grain boundary. The calculated quantities allow for an estimation of the nickel diffusion acceleration due to the boundary. This acceleration is significant, but lower than the one measured by certain authors in polycrystalline, NiO; other authors studying bicrystals have not observed any certain authors in polycrystalline, NiO; other authors studying bicrystals have not observed any acceleration. (author) 118 refs.

  5. Segregation of solute elements at grain boundaries in an ultrafine grained Al-Zn-Mg-Cu alloy

    International Nuclear Information System (INIS)

    Sha, Gang; Yao, Lan; Liao, Xiaozhou; Ringer, Simon P.; Chao Duan, Zhi; Langdon, Terence G.

    2011-01-01

    The solute segregation at grain boundaries (GBs) of an ultrafine grained (UFG) Al-Zn-Mg-Cu alloy processed by equal-channel angular pressing (ECAP) at 200 o C was characterised using three-dimensional atom probe. Mg and Cu segregate strongly to the grain boundaries. In contrast, Zn does not always show clear segregation and may even show depletion near the grain boundaries. Trace element Si selectively segregates at some GBs. An increase in the number of ECAP passes leads to a decrease in the grain size but an increase in solute segregation at the boundaries. The significant segregation of alloying elements at the boundaries of ultrafine-grained alloys implies that less solutes will be available in the matrix for precipitation with a decrease in the average grain size. -- Research Highlights: → Atom probe tomography has been employed successfully to reveal unique segregation of solutes at ultrafine grained material. → Mg and Cu elements segregated strongly at the grain boundary of an ultrafine grained Al-Zn-Mg-Cu alloy processed by 4-pass and 8-pass ECAP at 200 o C. Zn frequently depleted at GBs with a Zn depletion region of 7-15 nm in width on one or both sides of the GBs. Only a small fraction (3/13) of GBs were observed with a low level of Zn segregation where the combined Mg and Cu excess is over 3.1 atom/nm 2 . Si appeared selectively segregated at some of the GBs. → The increase in number of ECAP passes from 4 to 8 correlated with the increase in mean level segregation of Mg and Cu for both solute excess and peak concentration. → The change of plane normal of a grain boundary within 30 o only leads to a slight change in the solute segregation level.

  6. OKMC study of the effect of grain boundaries in martensitic Fe-Cr-C alloys

    International Nuclear Information System (INIS)

    Chiapetto, M.; Becquart, C.S.; Malerba, L.

    2015-01-01

    Fe-Cr-C alloys with chromium concentrations in the range from about 2 wt % to 12 wt % form ferritic-martensitic structures by rapid cooling from the austenite state already in the presence of relatively low carbon concentrations. In this process it is possible to obtain different ratios of ferrite and martensite, as well as formation of carbides, by varying the thermal treatment. The presence of ferrite or martensite might have an influence on the nano-structural evolution under irradiation of these alloys. Here, considering a tempered martensite reference alloy with 9% Cr, we make use of an already validated object kinetic Monte Carlo (OKMC) model in order to study the possible effect of the formation of martensite laths on the material nano-structural evolution under neutron irradiation, assuming that the relevant boundaries act as sinks for radiation defects. The results show that the reduction of the grain size (including in this definition the average size of prior austenite grains, blocks and laths) does not play any relevant role until sizes of the order of about 0.5 μm are reached: for smaller grains the number of defects being absorbed by the boundaries becomes dominant. However, this threshold is lower than the experimentally observed martensite lath dimensions, thereby suggesting that what makes the difference in martensitic Fe-Cr-C alloys with respect to ferrite concerning events and mechanisms taking place during irradiation are not the lath boundaries as sinks. Differences between the nano-structural evolution in ferrite and martensite should therefore be ascribed to other factors. This document is composed of an article and the presentation slides. (authors)

  7. Atomic structures and electronic properties of phosphorene grain boundaries

    International Nuclear Information System (INIS)

    Guo, Yu; Zhou, Si; Bai, Yizhen; Zhao, Jijun; Zhang, Junfeng

    2016-01-01

    Grain boundary (GB) is one main type of defects in two-dimensional (2D) crystals, and has significant impact on the physical properties of 2D materials. Phosphorene, a recently synthesized 2D semiconductor, possesses a puckered honeycomb lattice and outstanding electronic properties. It is very interesting to know the possible GBs present in this novel material, and how their properties differ from those in the other 2D materials. Based on first-principles calculations, we explore the atomic structure, thermodynamic stability, and electronic properties of phosphorene GBs. A total of 19 GBs are predicted and found to be energetically stable with formation energies much lower than those in graphene. These GBs do not severely affect the electronic properties of phosphorene: the band gap of perfect phosphorene is preserved, and the electron mobilities are only moderately reduced in these defective systems. Our theoretical results provide vital guidance for experimental tailoring the electronic properties of phosphorene as well as the device applications using phosphorene materials. (paper)

  8. Creep of quartz by dislocation and grain boundary processes

    Science.gov (United States)

    Fukuda, J. I.; Holyoke, C. W., III; Kronenberg, A. K.

    2015-12-01

    Wet polycrystalline quartz aggregates deformed at temperatures T of 600°-900°C and strain rates of 10-4-10-6 s-1 at a confining pressure Pc of 1.5 GPa exhibit plasticity at low T, governed by dislocation glide and limited recovery, and grain size-sensitive creep at high T, governed by diffusion and sliding at grain boundaries. Quartz aggregates were HIP-synthesized, subjecting natural milky quartz powder to T=900°C and Pc=1.5 GPa, and grain sizes (2 to 25 mm) were varied by annealing at these conditions for up to 10 days. Infrared absorption spectra exhibit a broad OH band at 3400 cm-1 due to molecular water inclusions with a calculated OH content (~4000 ppm, H/106Si) that is unchanged by deformation. Rate-stepping experiments reveal different stress-strain rate functions at different temperatures and grain sizes, which correspond to differing stress-temperature sensitivities. At 600-700°C and grain sizes of 5-10 mm, flow law parameters compare favorably with those for basal plasticity and dislocation creep of wet quartzites (effective stress exponents n of 3 to 6 and activation enthalpy H* ~150 kJ/mol). Deformed samples show undulatory extinction, limited recrystallization, and c-axis maxima parallel to the shortening direction. Similarly fine-grained samples deformed at 800°-900°C exhibit flow parameters n=1.3-2.0 and H*=135-200 kJ/mol corresponding to grain size-sensitive Newtonian creep. Deformed samples show some undulatory extinction and grain sizes change by recrystallization; however, grain boundary deformation processes are indicated by the low value of n. Our experimental results for grain size-sensitive creep can be compared with models of grain boundary diffusion and grain boundary sliding using measured rates of silicon grain boundary diffusion. While many quartz mylonites show microstructural and textural evidence for dislocation creep, results for grain size-sensitive creep may apply to very fine-grained (<10 mm) quartz mylonites.

  9. Grain-boundary, glassy-phase identification and possible artifacts

    International Nuclear Information System (INIS)

    Simpson, Y.K.; Carter, C.B.; Sklad, P.; Bentley, J.

    1985-01-01

    Specimen artifacts such as grain boundary grooving, surface damage of the specimen, and Si contamination are shown experimentally to arise from the ion milling used in the preparation of transmission electron microscopy specimens. These artifacts in polycrystalline, ceramic specimens can cause clean grain boundaries to appear to contain a glassy phase when the dark-field diffuse scattering technique, the Fresnel fringe technique, and analytical electron microscopy (energy dispersive spectroscopy) are used to identify glassy phases at a grain boundary. The ambiguity in interpreting each of these techniques due to the ion milling artifacts will be discussed from a theoretical view point and compared to experimental results obtained for alumina

  10. Numerical study of the atomic and electronic structure of some silicon grain boundaries; Etude numerique de la structure atomique et electronique de quelques joints de grains du silicium

    Energy Technology Data Exchange (ETDEWEB)

    Torrent, M

    1996-07-01

    This work contributes to the theoretical study of extended defects in covalent materials. The study is especially devoted to the tilt grain boundaries in silicon as a model material. The theoretical model is based on the self-consistent tight-binding approximation and is applied within two numerical techniques: the fast 'order N' density-matrix method and the diagonalization technique which allows the sampling of the reciprocal space. Total energy parameters of the model have been fitted in order to reproduce the silicon band structure (with a correct gap value) and the transferability of crystalline and mechanical properties of this material. A new type of boundary conditions is proposed and tested. These conditions, named 'ante-periodic' or 'Moebius', allow only one grain boundary per box instead of two and decrease the CPU time by a factor of two. The model is then applied to the study of the {sigma}=25 [001] (710) grain boundary. The results show the possible presence in this boundary of low energy non-reconstructed atomic structures which are electrically active. This confirms what had been suggested by some experimental observations. The same study is also performed for the {sigma}=13 [001] (510) grain boundary. In order to compare the intrinsic electrical activity in the previous grain boundaries with the one induced by impurities, a total energy parametrization for the silicon-nickel bond is achieved and used in preliminary calculations. Finally the two variants of the {sigma}=11 [011] (2-33) interface are studied, especially their respective interfacial energies. The result disagrees with previous calculations using phenomenological potentials. (author)

  11. The Pinning by Particles of Low and High Angle Grain Boundaries during Grain Growth

    DEFF Research Database (Denmark)

    Tweed, C.J.; Ralph, B.; Hansen, Niels

    1984-01-01

    A study has been made using transmission electron microscopy of the pinning of grain boundaries in aluminium during grain growth by fine dispersions of alumina particles. The boundary parameters have been determined with precision and the pinning effects measured using an approach due to Ashby...

  12. In-situ transmission electron microscopy study of glissile grain boundary dislocation relaxation in a near Σ = 3 {1 1 1} grain boundary in copper

    International Nuclear Information System (INIS)

    Couzinie, J.P.; Decamps, B.; Boulanger, L.; Priester, L.

    2005-01-01

    An in-situ annealing experiment has been performed on an intergranular dislocation configuration composed only of glissile grain boundary dislocations observed in a near Σ = 3 {1 1 1} grain boundary in copper. Relaxation phenomena are not obvious than those predicted by theoretical models. Upon annealing, glissile intergranular dislocations are shown to overcome dislocation obstacles by node movement leading to a decrease of the total grain boundary energy

  13. Molecular dynamics study on microstructure of near grain boundary distortion region in small grain size nano- NiAl alloy

    International Nuclear Information System (INIS)

    Wang, J.Y.; Wang, X.W.; Rifkin, J.; Li, D.X.

    2001-12-01

    Using the molecular dynamics simulation method, the microstructure of distortion region near curved amorphous-like grain boundary in nano-NiAl alloy is studied. The results showed that due to the internal elastic force of high energy grain boundary, distortion layer exists between grain and grain boundary. The lattice expansion and structure factor decreasing are observed in this region. Stacking fault in sample with grain size 3.8nm is clearly observed across the distortion region at the site very close to grain. The influences of different grain sizes on average distortion degree and volume fractions of distortion region, grain and grain boundary are also discussed. (author)

  14. Gap States at Low-Angle Grain Boundaries in Monolayer Tungsten Diselenide

    KAUST Repository

    Huang, Yu Li

    2016-05-03

    Two-dimensional (2D) transition metal dichalcogenides (TMDs) have revealed many novel properties of interest to future device applications. In particular, the presence of grain boundaries (GBs) can significantly influence the material properties of 2D TMDs. However, direct characterization of the electronic properties of the GB defects at the atomic scale remains extremely challenging. In this study, we employ scanning tunneling microscopy and spectroscopy to investigate the atomic and electronic structure of low-angle GBs of monolayer tungsten diselenide (WSe2) with misorientation angles of 3-6°. Butterfly features are observed along the GBs, with the periodicity depending on the misorientation angle. Density functional theory calculations show that these butterfly features correspond to gap states that arise in tetragonal dislocation cores and extend to distorted six-membered rings around the dislocation core. Understanding the nature of GB defects and their influence on transport and other device properties highlights the importance of defect engineering in future 2D device fabrication. © 2016 American Chemical Society.

  15. Gap States at Low-Angle Grain Boundaries in Monolayer Tungsten Diselenide

    KAUST Repository

    Huang, Yu Li; Ding, Zijing; Zhang, Wenjing; Chang, Yung-Huang; Shi, Yumeng; Li, Lain-Jong; Song, Zhibo; Zheng, Yu Jie; Chi, Dongzhi; Quek, Su Ying; Wee, Andrew T. S.

    2016-01-01

    Two-dimensional (2D) transition metal dichalcogenides (TMDs) have revealed many novel properties of interest to future device applications. In particular, the presence of grain boundaries (GBs) can significantly influence the material properties of 2D TMDs. However, direct characterization of the electronic properties of the GB defects at the atomic scale remains extremely challenging. In this study, we employ scanning tunneling microscopy and spectroscopy to investigate the atomic and electronic structure of low-angle GBs of monolayer tungsten diselenide (WSe2) with misorientation angles of 3-6°. Butterfly features are observed along the GBs, with the periodicity depending on the misorientation angle. Density functional theory calculations show that these butterfly features correspond to gap states that arise in tetragonal dislocation cores and extend to distorted six-membered rings around the dislocation core. Understanding the nature of GB defects and their influence on transport and other device properties highlights the importance of defect engineering in future 2D device fabrication. © 2016 American Chemical Society.

  16. Grain boundary and grain interior conduction in {gamma}'-Bi{sub 2}MoO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Vera, C.M.C. [Laboratorio de Peliculas Delgadas, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina)]. E-mail: cvera@fi.uba.ar; Aragon, R. [Laboratorio de Peliculas Delgadas, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina); CINSO, CONICET, CITEFA, Lasalle 4397, Villa Martelli, Buenos Aires (Argentina)

    2005-07-25

    Impedance spectroscopy of fine grained (<10 {mu}m) {gamma}'-Bi{sub 2}MoO{sub 6} samples, in the frequency range of 0.1 Hz-250 kHz, relevant to sensor applications, up to 800 deg. C, has been used to characterize grain boundary and grain interior contributions to conduction. Above 500 deg. C, the grain boundary contribution is no longer rate limiting and conduction is dominated by the grain interior component. The corresponding activation energies are 0.98 eV for grain boundary and 0.73 eV for grain interior components. The weak dependence of conductivity on oxygen partial pressure below 500 deg. C can be attributed to electrode-electrolyte interface phenomena, whereas the robust response to ethanol is commensurate with changes in intrinsic ionic conductivity.

  17. High temperature microplasticity of fine-grained ceramics

    International Nuclear Information System (INIS)

    Lakki, A.; Schaller, R.

    1996-01-01

    Several fine-grained ceramics exhibit enhanced ductility or even structural superplasticity at high temperature. Grain boundaries play a dominant role in the deformation process of these materials which usually involves diffusion-accommodated grain boundary sliding. Sliding is either lubricated by an amorphous intergranular phase or takes place by glide and climb of grain boundary dislocations. At high temperature, anelastic deformation precedes plastic deformation and stems from the short range motion of lattice defects, such as dislocations and grain boundaries. The energy loss (''mechanical loss'') associated with such motion can be measured by using the technique of mechanical spectroscopy. Moreover, at the onset of plasticity (''microplasticity''), long range irrecoverable motion of defects contributes to additional mechanical loss. Mechanical loss spectra may then give an insight into mechanisms operating at the transition between anelastic and plastic deformation. As an illustration, the spectra of three fine-grained ceramics (Si 3 N 4 , ZrO 2 , Al 2 O 3 ) are presented. In all cases, anelastic relaxation phenomena (peak and background) have been observed at high temperature (> 1200 K), bearing a close relation with creep behaviour. Their analysis permits to distinguish between different types of microstructrual elements: bulk regions of amorphous intergranular phase at triple points, grain boundaries separated by a thin glassy film and ''clean'' grain boundaries. (orig.)

  18. UO2 Grain Growth: Developing Phase Field Models for Pore Dragging, Solute Dragging and Anisotropic Grain Boundary Energies

    International Nuclear Information System (INIS)

    Ahmed, K.; Tonks, M.; Zhang, Y.; Biner, B.

    2016-01-01

    A detailed phase field model for the effect of pore drag on grain growth kinetics was implemented in MARMOT. The model takes into consideration both the curvature-driven grain boundary motion and pore migration by surface diffusion. As such, the model accounts for the interaction between pore and grain boundary kinetics, which tends to retard the grain growth process. Our 2D and 3D simulations demonstrate that the model capture all possible pore-grain boundary interactions proposed in theoretical models. For high enough surface mobility, the pores move along with the migrating boundary as a quasi-rigid-body, albeit hindering its migration rate compared to the pore-free case. For less mobile pores, the migrating boundary can separate from the pores. For the pore-controlled grain growth kinetics, the model predicts a strong dependence of the growth rate on the number of pores, pore size, and surface diffusivity in agreement with theroretical models. An evolution equation for the grain size that includes these parameters was derived and showed to agree well with numerical solution. It shows a smooth transition from boundary-controlled kinetics to pore-controlled kinetics as the surface diffusivity decreases or the number of pores or their size increases. This equation can be utilized in BISON to give accurate estimate for the grain size evolution. This will be accomplished in the near future. The effect of solute drag and anisotropy of grain boundary on grain growth will be investigated in future studies.

  19. Molecular dynamics study of the role of symmetric tilt grain boundaries on the helium distribution in nickel

    Science.gov (United States)

    Torres, E.; Pencer, J.

    2018-04-01

    Helium impurities, from either direct implantation or transmutation reactions, have been associated with embrittlement in nickel-based alloys. Helium has very low solubility in nickel, and has been found to aggregate at lattice defects such as vacancies, dislocations, and grain boundaries. The retention and precipitation of helium in nickel-based alloys have deleterious effects on the material mechanical properties. However, the underlying mechanisms that lead to helium effects in the host metal are not fully understood. In the present work, we investigate the role of symmetric tilt grain boundary (STGB) structures on the distribution of helium in nickel using molecular dynamics simulations. We investigate the family of STGBs specific to the 〈 110 〉 tilt axis. The present results indicate that accumulation of helium at the grain boundary may be modulated by details of grain boundary geometry. A plausible correlation between the grain boundary energy and misorientation with the accumulation and mobility of helium is proposed. Small clusters with up to 6 helium atoms show significant interstitial mobility in the nickel bulk, but also become sites for nucleation and grow of more stable helium clusters. High-energy GBs are found mainly populated with small helium clusters. The high mobility of small clusters along the GBs indicates the role of these GBs as fast two-dimensional channels for diffusion. In contrast, the accumulation of helium in large helium clusters at low-energy STGB creates a favorable environment for the formation of large helium bubbles, indicating a potential role for low-energy STGB in promoting helium-induced GB embrittlement.

  20. Studies about diffusion through grain boundary

    International Nuclear Information System (INIS)

    Allevato, C.E.

    1983-01-01

    Samples with layers of gold-silver and silver-chromium were deposited in high vacuum (10 -5 -10 -6 Torr) on glass and sodium chloride substrates. After deposition, these films were annealed at different temperatures and analysed by Rutherford Backscattering, Auger Spesctroscopy and Transmission Electron Microscopy. A simulated convolution was done using a computer in order to evalute the precision of the particle detector employed in the backscattering. The concentration profiles used to determine the diffusion coefficient were obtained by Auger electron spectroscopy. This technique demanded a study of sputtering rate to convert time of sputtering in thickness. This rate was determined by two methods. Analyses of the samples of silver-chromium, heated up to 250 0 C, by transmission electron microscopy and Auger electron spectroscopy, indicated the presence of oxide in small isolated regions, as crystallites. Values of the diffusion coefficient and activation energy related to the diffusion through the volume and by the grain boundary were determined by Suzuoka's method. The system Ag/Cr, due to its high grain boundary density, led to an increase of the diffusion coefficient so that this coefficient and the activation energy were obtained only from the grain boundary. (Author) [pt

  1. Numerical study of the atomic and electronic structure of some silicon grain boundaries; Etude numerique de la structure atomique et electronique de quelques joints de grains du silicium

    Energy Technology Data Exchange (ETDEWEB)

    Torrent, M

    1996-07-01

    This work contributes to the theoretical study of extended defects in covalent materials. The study is especially devoted to the tilt grain boundaries in silicon as a model material. The theoretical model is based on the self-consistent tight-binding approximation and is applied within two numerical techniques: the fast 'order N' density-matrix method and the diagonalization technique which allows the sampling of the reciprocal space. Total energy parameters of the model have been fitted in order to reproduce the silicon band structure (with a correct gap value) and the transferability of crystalline and mechanical properties of this material. A new type of boundary conditions is proposed and tested. These conditions, named 'ante-periodic' or 'Moebius', allow only one grain boundary per box instead of two and decrease the CPU time by a factor of two. The model is then applied to the study of the {sigma}=25 [001] (710) grain boundary. The results show the possible presence in this boundary of low energy non-reconstructed atomic structures which are electrically active. This confirms what had been suggested by some experimental observations. The same study is also performed for the {sigma}=13 [001] (510) grain boundary. In order to compare the intrinsic electrical activity in the previous grain boundaries with the one induced by impurities, a total energy parametrization for the silicon-nickel bond is achieved and used in preliminary calculations. Finally the two variants of the {sigma}=11 [011] (2-33) interface are studied, especially their respective interfacial energies. The result disagrees with previous calculations using phenomenological potentials. (author)

  2. Carrier Transport, Recombination, and the Effects of Grain Boundaries in Polycrystalline Cadmium Telluride Thin Films for Photovoltaics

    Science.gov (United States)

    Tuteja, Mohit

    Cadmium Telluride (CdTe), a chalcogenide semiconductor, is currently used as the absorber layer in one of the highest efficiency thin film solar cell technologies. Current efficiency records are over 22%. In 2011, CdTe solar cells accounted for 8% of all solar cells installed. This is because, in part, CdTe has a low degradation rate, high optical absorption coefficient, and high tolerance to intrinsic defects. Solar cells based on polycrystalline CdTe exhibit a higher short-circuit current, fill factor, and power conversion efficiency than their single crystal counterparts. This is despite the fact that polycrystalline CdTe devices exhibit lower open-circuit voltages. This is contrary to the observation for silicon and III-V semiconductors, where material defects cause a dramatic drop in device performance. For example, grain boundaries in covalently-bonded semiconductors (a) act as carrier recombination centers, and (b) lead to localized energy states, causing carrier trapping. Despite significant research to date, the mechanism responsible for the superior current collection properties of polycrystalline CdTe solar cells has not been conclusively answered. This dissertation focuses on the macro-scale electronic band structure, and micro scale electronic properties of grains and grain boundaries in device-grade CdTe thin films to answer this open question. My research utilized a variety of experimental techniques. Samples were obtained from leading groups fabricating the material and devices. A CdCl 2 anneal is commonly performed as part of this fabrication and its effects were also investigated. Photoluminescence (PL) spectroscopy was employed to study the band structure and defect states in CdTe polycrystals. Cadmium vacancy- and chlorine-related states lead to carrier recombination, as in CdTe films grown by other methods. Comparing polycrystalline and single crystal CdTe, showed that the key to explaining the improved performance of polycrystalline CdTe does

  3. Cadmium Telluride and Grain Boundaries: A Preliminary Study

    Science.gov (United States)

    Liao, Michael Evan

    The efficacy of the CdCl2 treatment on polycrystalline CdTe-based solar cells was discovered over a quarter of a century ago; and yet, the exact mechanism of this treatment is still not fully understood to this day. In fact, the lack of understanding stems from a debate on the exact role of grain boundaries in CdCl2-treated CdTe solar cells. Some hypothesize that the CdCl2-treatment causes grain boundaries to become beneficial to solar cell performance while others disagree and claim that the treatment simply mitigates the harmful effects of grain boundaries via passivation. A future goal of this project is to determine which, if either, hypothesis is correct by direct wafer bonding single crystalline CdTe. Direct wafer bonding of single crystalline materials would create only one grain boundary at the bonded interface. This approach allows the orientation and surface chemistry of interfaces to be controlled in order to study the chemistry of grain boundaries methodically. However, before any direct wafer bonding can be done, a preliminary study of single crystalline CdTe is necessary. High-quality direct wafer bonding can only be achieved if the surfaces of each wafer satisfy certain requirements. Additionally, analyzing single crystalline CdTe materials prior to bonding is crucial in order to make any insightful connections between results found from direct bonding of single crystalline CdTe and what is observed in polycrystalline CdTe. First, the surface of an (001) CdTe layer epitaxially grown on an (001) InSb substrate is studied using atomic force microscopy. Stacking faults on the CdTe surface are observed and the thickness of the grown CdTe epilayer is calculated by considering the interplanar angles between the (001) and (111) crystallographic planes as well as the dimensions of the stacking faults. While the stacking faults will inhibit successful wafer bonding, the roughness of the regions outside the stacking faults is 0.9 nm, which is an acceptable

  4. Grain-boundary unzipping by oxidation in polycrystalline graphene

    Science.gov (United States)

    Alexandre, Simone; Lucio, Aline; Nunes, Ricardo

    2011-03-01

    The need for large-scale production of graphene will inevitably lead to synthesis of the polycrystalline material [1,2]. Understanding the chemical, mechanical, and electronic properties of grain boundaries in graphene polycrystals will be crucial for the development of graphene-based electronics. Oxidation of this material has been suggested to lead to graphene ribbons, by the oxygen-driven unzipping mechanism. A cooperative-strain mechanism, based on the formation of epoxy groups along lines of parallel bonds in the hexagons of graphene's honeycomb lattice, was proposed to explain the unzipping effect in bulk graphene In this work we employ ab initio calculations to study the oxidation of polycrystalline graphene by chemisorption of oxygen at the grain boundaries. Our results indicate that oxygen tends to segregate at the boundaries, and that the unzipping mechanism is also operative along the grain boundaries, despite the lack of the parallel bonds due to the presence of fivefold and sevenfold carbon rings along the boundary core. We acknowledge support from the Brazilian agencies: CNPq, Fapemig, and INCT-Materiais de Carbono.

  5. Cross-sectional measurement of grain boundary segregation using WDS

    Energy Technology Data Exchange (ETDEWEB)

    Christien, F., E-mail: frederic.christien@emse.fr [Laboratoire Georges Friedel, CNRS, Ecole des Mines de Saint-Etienne, 158 Cours Fauriel, 42023 Saint-Etienne (France); Risch, P. [Institut des Matériaux Jean Rouxel (IMN), CNRS, Université de Nantes, Rue Christian Pauc, 44306 Nantes (France)

    2016-11-15

    A new method is proposed for the quantification of grain boundary segregation using Wavelength Dispersive Spectroscopy (WDS) in a Scanning Electron Microscope (SEM). Analyses are undertaken on a simple metallographically polished section of material. The method is demonstrated for the model system of sulphur segregation to nickel grain boundaries. Quantification was carried out from sulphur concentration profiles acquired across 11 grain boundaries of a nickel specimen containing 5.4 wt ppm of sulphur in the bulk and equilibrated at 550 °C. The average sulphur grain boundary concentration determined is µ=35.2 ng cm{sup −2}=6.6×10{sup 14} atoms cm{sup −2}≈0.5 monolayer, which is in good agreement with a previous quantification obtained from SIMS (Secondary Ion Mass Spectrometry) on the same material. However this is lower by a factor of two than the quantification obtained using “surface” techniques on fractured specimens of the same material. With the conditions of analysis used in this study, the limit of detection of the method developed is found to be better than 10% of a sulphur monolayer. - Highlights: • Impurity grain boundary segregation can be measured using WDS in a SEM. • The method proposed is quantitative. • The specimen preparation is simple: metallographical section.

  6. Radiation-induced grain boundary segregation in austenitic stainless steels

    International Nuclear Information System (INIS)

    Bruemmer, S.M.; Charlot, L.A.; Vetrano, J.S.; Simonen, E.P.

    1994-11-01

    Radiation-induced segregation (RIS) to grain boundaries in Fe-Ni-Cr-Si stainless alloys has been measured as a function of irradiation temperature and dose. Heavy-ion irradiation was used to produce damage levels from 1 to 20 displacements per atom (dpa) at temperatures from 175 to 550 degrees C. Measured Fe, Ni, and Cr segregation increased sharply with irradiation dose (from G to 5 dpa) and temperature (from 175 to about 350 degrees C). However, grain boundary concentrations did not change significantly as dose or temperatures were further increased. Although interfacial compositions were similar, the width of radiation-induced enrichment or depletion profiles increased consistently with increasing dose or temperature. Impurity segregation (Si and P) was also measured, but only Si enrichment appeared to be radiation-induced. Grain boundary Si peaked at levels approaching 10 at% after irradiation doses to 10 dpa at an intermediate temperature of 325 degrees C. No evidence of grain boundary silicide precipitation was detected after irradiation at any temperature. Equilibrium segregation of P was measured in the high-P alloys, but interfacial concentration did not increase with irradiation exposure. Comparisons to reported RIS in neutron-irradiated stainless steels revealed similar grain boundary compositional changes for both major alloying and impurity elements

  7. Impurity effects on the grain boundary cohesion in copper

    Science.gov (United States)

    Li, Yunguo; Korzhavyi, Pavel A.; Sandström, Rolf; Lilja, Christina

    2017-12-01

    Segregated impurities at grain boundaries can dramatically change the mechanical behavior of metals, while the mechanism is still obscure in some cases. Here, we suggest a unified approach to investigate segregation and its effects on the mechanical properties of polycrystalline alloys using the example of 3 s p impurities (Mg, Al, Si, P, or S) at a special type Σ 5 (310 )[001 ] tilt grain boundary in Cu. We show that for these impurities segregating to the grain boundary, the strain contribution to the work of grain boundary decohesion is small and that the chemical contribution correlates with the electronegativity difference between Cu and the impurity. The strain contribution to the work of dislocation emission is calculated to be negative, while the chemical contribution is calculated to be always positive. Both the strain and chemical contributions to the work of dislocation emission generally become weaker with the increasing electronegativity from Mg to S. By combining these contributions together, we find, in agreement with experimental observations, that a strong segregation of S can reduce the work of grain boundary separation below the work of dislocation emission, thus embrittling Cu, while such an embrittlement cannot be produced by a P segregation because it lowers the energy barrier for dislocation emission relatively more than for work separation.

  8. Study of grain boundary tunneling in barium-titanate ceramic films

    CERN Document Server

    Wong, H; Poon, M C

    1999-01-01

    The temperature and the electric-field dependences of the current-voltage characteristics and the low-frequency noise of barium-titanate ceramic films are studied. An abnormal field dependence is observed in the resistivity of BaTiO sub 3 materials with a small average grain size. In addition, experiments show that the low-frequency noise behaviors are governed by grain-boundary tunneling at room temperature and by trapping-detrapping of grain-boundary states at temperatures above the Curie point. Physical models for the new observations are developed. Results suggest that grain-boundary tunneling of carriers is as important as the double Schottky barrier in the current conduction in BaTiO sub 3 materials with small grain sizes.

  9. Micromechanical Modeling of Grain Boundaries Damage in a Copper Alloy Under Creep

    International Nuclear Information System (INIS)

    Voese, Markus

    2015-01-01

    In order to include the processes on the scale of the grain structure into the description of the creep behaviour of polycrystalline materials, the damage development of a single grain boundary has been initially investigated in the present work. For this purpose, a special simulationmethod has been used, whose resolution procedure based on holomorphic functions. The mechanisms taken into account for the simulations include nucleation, growth by grain boundary diffusion, coalescence and shrinkage until complete sintering of grain boundary cavities. These studies have then been used to develop a simplified cavitation model, which describes the grain boundary damage by two state variables and the time-dependent development by a mechanism-oriented rate formulation. To include the influence of grain boundaries within continuum mechanical considerations of polycrystals, an interface model has been developed, that incorporates both damage according to the simplified cavitation model and grain boundary sliding in dependence of a phenomenological grain boundary viscosity. Furthermore a micromechanical model of a polycrystal has been developed that allows to include a material's grain structure into the simulation of the creep behaviour by means of finite element simulations. Thereby, the deformations of individual grains are expressed by a viscoplastic single crystal model and the grain boundaries are described by the proposed interface model. The grain structure is represented by a finite element model, in which the grain boundaries are modelled by cohesive elements. From the evaluation of experimental creep data, the micromechanical model of a polycrystal has been calibrated for a copper-antimony alloy at a temperature of 823 K. Thereby, the adjustment of the single crystal model has been carried out on the basis of creep rates of pure copper single crystal specimens. The experimental determination of grain boundary sliding and grain boundary porosity for coarse-grained

  10. Influence of growth temperature on bulk and surface defects in hybrid lead halide perovskite films

    Science.gov (United States)

    Peng, Weina; Anand, Benoy; Liu, Lihong; Sampat, Siddharth; Bearden, Brandon E.; Malko, Anton V.; Chabal, Yves J.

    2016-01-01

    The rapid development of perovskite solar cells has focused its attention on defects in perovskites, which are gradually realized to strongly control the device performance. A fundamental understanding is therefore needed for further improvement in this field. Recent efforts have mainly focused on minimizing the surface defects and grain boundaries in thin films. Using time-resolved photoluminescence spectroscopy, we show that bulk defects in perovskite samples prepared using vapor assisted solution process (VASP) play a key role in addition to surface and grain boundary defects. The defect state density of samples prepared at 150 °C (~1017 cm-3) increases by 5 fold at 175 °C even though the average grains size increases slightly, ruling out grain boundary defects as the main mechanism for the observed differences in PL properties upon annealing. Upon surface passivation using water molecules, the PL intensity and lifetime of samples prepared at 200 °C are only partially improved, remaining significantly lower than those prepared at 150 °C. Thus, the present study indicates that the majority of these defect states observed at elevated growth temperatures originates from bulk defects and underscores the importance to control the formation of bulk defects together with grain boundary and surface defects to further improve the optoelectronic properties of perovskites.The rapid development of perovskite solar cells has focused its attention on defects in perovskites, which are gradually realized to strongly control the device performance. A fundamental understanding is therefore needed for further improvement in this field. Recent efforts have mainly focused on minimizing the surface defects and grain boundaries in thin films. Using time-resolved photoluminescence spectroscopy, we show that bulk defects in perovskite samples prepared using vapor assisted solution process (VASP) play a key role in addition to surface and grain boundary defects. The defect state

  11. Improvement of creep-rupture properties by serrated grain boundaries in high-tungsten cobalt-base superalloys

    International Nuclear Information System (INIS)

    Tanaka, Manabu

    1993-01-01

    The improvement of creep-rupture properties by serrated grain boundaries was investigated using cobalt-base superalloys containing about 14 to 20 wt.% tungsten at 1089 and 1311 K. Serrated grain boundaries improved both the rupture life and the ductility, especially under lower stresses at 1089 K. The increase in rupture life was larger in the alloys containing a larger amount of W. Ductile grain boundary fracture surfaces, which involved dimple patterns and grain boundary ledges, were observed in the specimens with serrated grain boundaries whereas brittle grain boundary facets were observed in the specimens with normal straight grain boundaries ruptured at 1089 K. The strengthening by serrated grain boundaries was also effective at 1311 K, but there was little difference in rupture life between the specimens with serrated grain boundaries and those with straight grain boundaries under lower stresses, since serrated grain boundaries developed also in the specimens with straight grain boundaries according to grain boundary precipitates forming during creep at 1311 K. The increase in W content of the alloys led to the increase in rupture life of the specimens with serrated grain boundaries at 1089 and 1311 K. (orig.) [de

  12. Grain-boundary melting: A Monte Carlo study

    DEFF Research Database (Denmark)

    Besold, Gerhard; Mouritsen, Ole G.

    1994-01-01

    Grain-boundary melting in a lattice-gas model of a bicrystal is studied by Monte Carlo simulation using the grand canonical ensemble. Well below the bulk melting temperature T(m), a disordered liquidlike layer gradually emerges at the grain boundary. Complete interfacial wetting can be observed...... when the temperature approaches T(m) from below. Monte Carlo data over an extended temperature range indicate a logarithmic divergence w(T) approximately - ln(T(m)-T) of the width of the disordered layer w, in agreement with mean-field theory....

  13. Grain Boundary Complexions

    Science.gov (United States)

    2014-05-01

    Cantwell et al. / Acta Materialia 62 (2014) 1–48 challenging from a scientific perspective, but it can also be very technologically rewarding , given the...energy) is a competing explanation that remains to be explored. Strategies to drive the grain boundary energy toward zero have produced some success...Thompson AM, Soni KK, Chan HM, Harmer MP, Williams DB, Chabala JM, et al. J Am Ceram Soc 1997;80:373. [172] Behera SK. PhD dissertation, Materials Science

  14. Metallographic screening of grain boundary engineered type 304 austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Hanning, F., E-mail: Fabian.Hanning@googlemail.com; Engelberg, D.L., E-mail: Dirk.engelberg@manchester.ac.uk

    2014-08-15

    An electrochemical etching method for the identification of grain boundary engineered type 304 austenitic stainless steel microstructures is described. The method can be applied for rapid microstructure screening to complement electron backscatter diffraction analysis. A threshold parameter to identify grain boundary engineered microstructure is proposed, and the application of metallographic etching for characterising the degree of grain boundary engineering discussed. - Highlights: • As-received (annealed) and grain boundary engineered microstructures were compared. • Electro-chemical polarisation in nitric acid solutions was carried out. • A metallographic screening method has been developed. • The screening method complements EBSD analysis for microstructure identification.

  15. Grain boundary engineering of highly deformable ceramics

    International Nuclear Information System (INIS)

    Mecartney, M.L.

    2000-01-01

    Highly deformable ceramics can be created with the addition of intergranular silicate phases. These amorphous intergranular phases can assist in superplastic deformation by relieving stress concentrations and minimizing grain growth if the appropriate intergranular compositions are selected. Examples from 3Y-TZP and 8Y-CSZ ceramics are discussed. The grain boundary chemistry is analyzed by high resolution analytical TEM is found to have a strong influence on the cohesion of the grains both at high temperature and at room temperature. Intergranular phases with a high ionic character and containing large ions with a relatively weak bond strength appear to cause premature failure. In contrast, intergranular phases with a high degree of covalent character and similar or smaller ions than the ceramic and a high ionic bond strength are the best for grain boundary adhesion and prevention of both cavitation at high temperatures and intergranular fracture at room temperature

  16. Characterization and Modeling of Grain Boundary Chemistry Evolution in Ferritic Steels under Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Marquis, Emmanuelle [Univ. of Michigan, Ann Arbor, MI (United States); Wirth, Brian [Univ. of Tennessee, Knoxville, TN (United States); Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-03-28

    Ferritic/martensitic (FM) steels such as HT-9, T-91 and NF12 with chromium concentrations in the range of 9-12 at.% Cr and high Cr ferritic steels (oxide dispersion strengthened steels with 12-18% Cr) are receiving increasing attention for advanced nuclear applications, e.g. cladding and duct materials for sodium fast reactors, pressure vessels in Generation IV reactors and first wall structures in fusion reactors, thanks to their advantages over austenitic alloys. Predicting the behavior of these alloys under radiation is an essential step towards the use of these alloys. Several radiation-induced phenomena need to be taken into account, including phase separation, solute clustering, and radiation-induced segregation or depletion (RIS) to point defect sinks. RIS at grain boundaries has raised significant interest because of its role in irradiation assisted stress corrosion cracking (IASCC) and corrosion of structural materials. Numerous observations of RIS have been reported on austenitic stainless steels where it is generally found that Cr depletes at grain boundaries, consistently with Cr atoms being oversized in the fcc Fe matrix. While FM and ferritic steels are also subject to RIS at grain boundaries, unlike austenitic steels, the behavior of Cr is less clear with significant scatter and no clear dependency on irradiation condition or alloy type. In addition to the lack of conclusive experimental evidence regarding RIS in F-M alloys, there have been relatively few efforts at modeling RIS behavior in these alloys. The need for predictability of materials behavior and mitigation routes for IASCC requires elucidating the origin of the variable Cr behavior. A systematic detailed high-resolution structural and chemical characterization approach was applied to ion-implanted and neutron-irradiated model Fe-Cr alloys containing from 3 to 18 at.% Cr. Atom probe tomography analyses of the microstructures revealed slight Cr clustering and segregation to dislocations and

  17. Grain-boundary microchemistry and intergranular cracking of irradiated austenitic stainless steels

    International Nuclear Information System (INIS)

    Chung, H.M.; Ruther, W.E.; Sanecki, J.E.; Kassner, T.F.

    1993-01-01

    Constant-extension-rate tensile tests and grain-boundary analysis by Auger electron spectroscopy were conducted on high and commercial-purity (HP and CP) Type 304 stainless steel (SS) specimens from irradiated boiling-water reactor (BWR) components to identify the mechanisms of irradiation-assisted stress corrosion cracking (IASCC). Contrary to previous beliefs, susceptibility to intergranular fracture could not be correlated with radiation-induced segregation of impurities such as Si, P, C, or S, but a correlation was obtained with grain-boundary Cr concentration, indicating a role for Cr depletion. Detailed analysis of grain-boundary chemistry was conducted on BWR neutron absorber tubes that were fabricated from two similar heats of HP Type 304 SS of virtually identical bulk chemical composition but exhibiting a significant difference in susceptibility to IASCC after irradiation to ∼2 x 10 21 n/cm 2 (E > 1 MeV). Grain-boundary concentrations of Cr Ni, Si, P, S, and C of the cracking-resistant and -susceptible HP heats were virtually identical. However, grain boundaries of the cracking-resistant material contained less N and more B and Li than those of the cracking-susceptible material. This observation indicates that, besides the deleterious effect of grain-boundary Cr depletion, a synergism between grain-boundary segregation of N and B and transmutation to H and Li plays an important role in IASCC

  18. Diffusive Fractionation of Lithium Isotopes in Olivine Grain Boundaries

    Science.gov (United States)

    Homolova, V.; Watson, E. B.

    2012-12-01

    Diffusive fractionation of isotopes has been documented in silicate melts, aqueous fluids, and single crystals. In polycrystalline rocks, the meeting place of two grains, or grain boundaries, may also be a site of diffusive fractionation of isotopes. We have undertaken an experimental and modeling approach to investigate diffusive fractionation of lithium (Li) isotopes by grain boundary diffusion. The experimental procedure consists of packing a Ni metal capsule with predominantly ground San Carlos olivine and subjecting the capsule to 1100C and 1GPa for two days in a piston cylinder apparatus to create a nominally dry, 'dunite rock'. After this synthesis step, the capsule is sectioned and polished. One of the polished faces of the 'dunite rock' is then juxtaposed to a source material of spodumene and this diffusion couple is subject to the same experimental conditions as the synthesis step. Li abundances and isotopic profiles (ratios of count rates) were analyzed using LA-ICP-MS. Li concentrations linearly decrease away from the source from 550ppm to the average concentration of the starting olivine (2.5ppm). As a function of distance from the source, the 7Li/6Li ratio decreases to a minimum before increasing to the background ratio of the 'dunite rock'. The 7Li/6Li ratio minimum coincides with the lowest Li concentrations above average 'dunite rock' abundances. The initial decrease in the 7Li/6Li ratio is similar to that seen in other studies of diffusive fractionation of isotopes and is thought to be caused by the higher diffusivity (D) of the lighter isotope relative to the heavier isotope. The relationship between D and mass (m) is given by (D1/D2) =(m2/m1)^β, where β is an empirical fractionation factor; 1 and 2 denote the lighter and heavier isotope, respectively. A fit to the Li isotopic data reveals an effective DLi of ~1.2x10^-12 m/s^2 and a β of 0.1. Numerical modelling was utilized to elucidate the relationship between diffusive fractionation

  19. Analysis of grain boundaries, twin boundaries, and Te precipitates in CdZnTe grown by high-pressure Bridgeman method

    International Nuclear Information System (INIS)

    Heffelfinger, J.R.; Medlin, D.L.; James, R.B.

    1998-03-01

    Grain boundaries and twin boundaries in commercial Cd 1-x Zn x Te, which is prepared by a high pressure Bridgeman technique, have been investigated with transmission electron microscopy, scanning electron microscopy, infrared light microscopy and visible light microscopy. Boundaries inside these materials were found to be decorated with Te precipitates. The shape and local density of the precipitates were found to depend on the particular boundary. For precipitates that decorate grain boundaries, their microstructure was found to consist of a single, saucer shaped grain of hexagonal Te (space group P3 1 21). Analysis of a Te precipitate precipitates by selected area diffraction revealed the Te to be aligned with the surrounding Cd 1-x Zn x Te grains. This alignment was found to match the (111) Cd 1-x Z x Te planes with the (1 bar 101) planes of hexagonal Te. Crystallographic alignments between the Cd 1-x Zn x Te grains were also observed for a high angle grain boundary. The structure of the grain boundaries and the Te/Cd 1-x Zn x Te interface are discussed

  20. The Role of Grain Orientation and Grain Boundary Characteristics in the Mechanical Twinning Formation in a High Manganese Twinning-Induced Plasticity Steel

    Science.gov (United States)

    Shterner, Vadim; Timokhina, Ilana B.; Rollett, Anthony D.; Beladi, Hossein

    2018-04-01

    In the current study, the dependence of mechanical twinning on grain orientation and grain boundary characteristics was investigated using quasi in-situ tensile testing. The grains of three main orientations (i.e., , , and parallel to the tensile axis (TA)) and certain characteristics of grain boundaries (i.e., the misorientation angle and the inclination angle between the grain boundary plane normal and the TA) were examined. Among the different orientations, and were the most and the least favored orientations for the formation of mechanical twins, respectively. The orientation was intermediate for twinning. The annealing twin boundaries appeared to be the most favorable grain boundaries for the nucleation of mechanical twinning. No dependence was found for the inclination angle of annealing twin boundaries, but the orientation of grains on either side of the annealing twin boundary exhibited a pronounced effect on the propensity for mechanical twinning. Annealing twin boundaries adjacent to high Taylor factor grains exhibited a pronounced tendency for twinning regardless of their inclination angle. In general, grain orientation has a significant influence on twinning on a specific grain boundary.

  1. Modeling radiation damage near grain boundary in helium-doped α-iron

    Energy Technology Data Exchange (ETDEWEB)

    Xu, C.P. [School of Nuclear Science and Technology, Lanzhou University, Lanzhou, Gansu 730000 (China); Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Liu, X.-Y. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Gao, F. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Li, Y.H. [School of Nuclear Science and Technology, Lanzhou University, Lanzhou, Gansu 730000 (China); Wang, Y.Q., E-mail: yqwang@lanl.gov [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2014-08-01

    Molecular dynamics (MD) simulations are performed to investigate how ∑3〈110〉(1 2 1) symmetric tilt grain boundary (GB) affects point defects and defect clusters in He-doped α-iron at 300 K in picosecond time scales. Molecular statics calculations are also performed and show that the formation energy is reduced in the GB, and the GB acts as a good sink for point defects, especially for interstitial He and self-interstitial atoms (SIAs). It is observed that the average size of He{sub n}V{sub m} (m > n) clusters becomes smaller in the GB-containing Fe system, where m and n represent the number of vacancies and He atoms in the cluster, respectively. It is also found that the number of He{sub n}V (n = 2, 3) clusters in the GB region decreases, while the number of the HeV clusters increases. The GBs loaded with substitutional or interstitial helium atoms are found to facilitate the growth of helium clusters in the GB region.

  2. Grain boundary engineering for control of tellurium diffusion in GH3535 alloy

    Science.gov (United States)

    Fu, Cai-Tao; Yinling, Wang; Chu, Xiang-Wei; Jiang, Li; Zhang, Wen-Zhu; Bai, Qin; Xia, Shuang; Leng, Bin; Li, Zhi-Jun; Ye, Xiang-Xi; Liu, Fang

    2017-12-01

    The effect of grain boundary engineering (GBE) on the Te diffusion along the surface grain boundaries was investigated in GH3535 alloy. It can be found that GBE treatment increases obviously the fraction of low-Σ coincidence site lattice (CSL) boundaries, especially the Σ3 ones, and introduces the large-size grain clusters. When the as-received (AR) and GBE-treated (GBET) specimens were exposed to Te vapor, only Σ3 boundaries were found to be resistant to Te diffusion. From the cross section and the surface, the fewer Te-attacked grain boundaries and the thinner corrosion layer can be observed in the GBET sample. The improvement of resistance to Te diffusion in the GBET sample can be attributed to the large size grain-clusters associated with high proportion of the Σ3n boundaries.

  3. Simulation of grain boundary effects on electronic transport in metals, and detailed causes of scattering

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, Baruch [Process Technology Modeling, Design and Technology Solutions, Technology and Manufacturing Group, Intel Corporation, Santa Clara, CA 95052 (United States); Department of Physics, University of Washington, Seattle, WA 98195 (United States); Park, Seongjun; Haverty, Michael; Shankar, Sadasivan [Process Technology Modeling, Design and Technology Solutions, Technology and Manufacturing Group, Intel Corporation, Santa Clara, CA 95052 (United States); Dunham, Scott T. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Department of Electrical Engineering, University of Washington, Seattle, WA 98195 (United States)

    2010-07-15

    We present first-principles simulations of single grain boundary reflectivity of electrons in noble metals, Cu and Ag. We examine twin and non-twin grain boundaries using non-equilibrium Green's function and first principles methods. We also investigate the determinants of reflectivity in grain boundaries by modeling atomic vacancies, disorder, and orientation and find that both the change in grain orientation and disorder in the boundary itself contribute significantly to reflectivity. We find that grain boundary reflectivity may vary widely depending on the grain boundary structure, consistent with published experimental results. Finally, we examine the reflectivity from multiple grain boundaries and find that grain boundary reflectivity may depend on neighboring grain boundaries. This study raises some potential limitations in the independent grain boundary assumptions of the Mayadas-Shatzkes (MS) model. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  4. AES/STEM grain boundary analysis of stabilized zirconia ceramics

    NARCIS (Netherlands)

    Winnubst, Aloysius J.A.; Kroot, P.J.M.; Burggraaf, A.J.

    1983-01-01

    Semiquantitative Auger Electron Spectroscopy (AES) on pure monophasic (ZrO2)0.83(YO1.5)0.17 was used to determine the chemical composition of the grain boundaries. Grain boundary enrichment with Y was observed with an enrichment factor of about 1.5. The difference in activation energy of the ionic

  5. Grain-boundary free energy in an assembly of elastic disks.

    Science.gov (United States)

    Lusk, Mark T; Beale, Paul D

    2004-02-01

    Grain-boundary free energy is estimated as a function of misoriention for symmetric tilt boundaries in an assembly of nearly hard disks. Fluctuating cell theory is used to accomplish this since the most common techniques for calculating interfacial free energy cannot be applied to such assemblies. The results are analogous to those obtained using a Leonard-Jones potential, but in this case the interfacial energy is dominated by an entropic contribution. Disk assemblies colorized with free and specific volume elucidate differences between these two characteristics of boundary structure. Profiles are also provided of the Helmholtz and Gibbs free energies as a function of distance from the grain boundaries. Low angle grain boundaries are shown to follow the classical relationship between dislocation orientation/spacing and misorientation angle.

  6. Atomic scale study of grain boundary segregation before carbide nucleation in Ni-Cr-Fe Alloys

    Science.gov (United States)

    Li, Hui; Xia, Shuang; Liu, Wenqing; Liu, Tingguang; Zhou, Bangxin

    2013-08-01

    Three dimensional chemical information concerning grain boundary segregation before carbide nucleation was characterized by atom probe tomography in two Ni-Cr-Fe alloys which were aged at 500 °C for 0.5 h after homogenizing treatment. B, C and Si atoms segregation at grain boundary in Alloy 690 was observed. B, C, N and P atoms segregation at grain boundary in 304 austenitic stainless steel was observed. C atoms co-segregation with Cr atoms at the grain boundaries both in Alloy 690 and 304 austenitic stainless steel was found, and its effect on the carbide nucleation was discussed. The amount of each segregated element at grain boundaries in the two Ni-Cr-Fe alloys were analyzed quantitatively. Comparison of the grain boundary segregation features of the two Ni-Cr-Fe alloys were carried out based on the experimental results. The impurity and solute atoms segregate inhomogeneously in the same grain boundary both in 304 SS and Alloy 690. The grain boundary segregation tendencies (Sav) are B (11.8 ± 1.4) > P (5.4 ± 1.4) > N (4.7 ± 0.3) > C (3.7 ± 0.4) in 304 SS, and B (6.9 ± 0.9) > C (6.7 ± 0.4) > Si (1.5 ± 0.2) in Alloy 690. Cr atoms may co-segregate with C atoms at grain boundaries before carbide nucleation at the grain boundaries both in 304 SS and Alloy 690. Ni atoms generally deplete at grain boundary both in 304 SS and Alloy 690. The literature shows that the Ni atoms may co-segregate with P atoms at grain boundaries [28], but the P atoms segregation do not leads to Ni segregation in the current study. In the current study, Fe atoms may segregate or deplete at grain boundary in Alloy 690. But Fe atoms generally deplete at grain boundary in 304 SS. B atoms have the strongest grain boundary segregation tendency both in 304 SS and Alloy 690. The grain boundary segregation tendency and Gibbs free energy of B in 304 SS is higher than in Alloy 690. C atoms are easy to segregate at grain boundaries both in 304 SS and Alloy 690. The grain boundary segregation

  7. Nonlinear Dynamics of Vortices in Different Types of Grain Boundaries

    Science.gov (United States)

    Sheikhzada, Ahmad K.

    As a major component of linear particle accelerators, superconducting radio-frequency (SRF) resonator cavities are required to operate with lowest energy dissipation and highest accelerating gradient. SRF cavities are made of polycrystalline materials in which grain boundaries can limit maximum RF currents and produce additional power dissipation sources due to local penetration of Josephson vortices. The essential physics of vortex penetration and mechanisms of dissipation of vortices driven by strong RF currents along networks of grain boundaries and their contribution to the residual surface resistance have not been well understood. To evaluate how GBs can limit the performance of SRF materials, particularly Nb and Nb3Sn, we performed extensive numerical simulations of nonlinear dynamics of Josephson vortices in grain boundaries under strong dc and RF fields. The RF power due to penetration of vortices both in weakly-coupled and strongly-coupled grain boundaries was calculated as functions of the RF field and frequency. The result of this calculation manifested a quadratic dependence of power to field amplitude at strong RF currents, an illustration of resistive behavior of grain boundaries. Our calculations also showed that the surface resistance is a complicated function of field controlled by penetration and annihilation of vortices and antivortices in strong RF fields which ultimately saturates to normal resistivity of grain boundary. We found that Cherenkov radiation of rapidly moving vortices in grain boundaries can produce a new instability causing generation of expanding vortex-antivortex pair which ultimately drives the entire GB in a resistive state. This effect is more pronounced in polycrystalline thin film and multilayer coating structures in which it can cause significant increase in power dissipation and results in hysteresis effects in I-V characteristics, particularly at low temperatures.

  8. Nonlinear Dynamics of Vortices in Different Types of Grain Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Sheikhzada, Ahmad [Old Dominion Univ., Norfolk, VA (United States)

    2017-05-01

    As a major component of linear particle accelerators, superconducting radio-frequency (SRF) resonator cavities are required to operate with lowest energy dissipation and highest accelerating gradient. SRF cavities are made of polycrystalline materials in which grain boundaries can limit maximum RF currents and produce additional power dissipation sources due to local penetration of Josephson vortices. The essential physics of vortex penetration and mechanisms of dissipation of vortices driven by strong RF currents along networks of grain boundaries and their contribution to the residual surface resistance have not been well understood. To evaluate how GBs can limit the performance of SRF materials, particularly Nb and Nb3Sn, we performed extensive numerical simulations of nonlinear dynamics of Josephson vortices in grain boundaries under strong dc and RF fields. The RF power due to penetration of vortices both in weakly-coupled and strongly-coupled grain boundaries was calculated as functions of the RF field and frequency. The result of this calculation manifested a quadratic dependence of power to field amplitude at strong RF currents, an illustration of resistive behavior of grain boundaries. Our calculations also showed that the surface resistance is a complicated function of field controlled by penetration and annihilation of vortices and antivortices in strong RF fields which ultimately saturates to normal resistivity of grain boundary. We found that Cherenkov radiation of rapidly moving vortices in grain boundaries can produce a new instability causing generation of expanding vortex-antivortex pair which ultimately drives the entire GB in a resistive state. This effect is more pronounced in polycrystalline thin film and multilayer coating structures in which it can cause significant increase in power dissipation and results in hysteresis effects in I-V characteristics, particularly at low temperatures.

  9. Transport properties of olivine grain boundaries from electrical conductivity experiments

    Science.gov (United States)

    Pommier, Anne; Kohlstedt, David L.; Hansen, Lars N.; Mackwell, Stephen; Tasaka, Miki; Heidelbach, Florian; Leinenweber, Kurt

    2018-05-01

    Grain boundary processes contribute significantly to electronic and ionic transports in materials within Earth's interior. We report a novel experimental study of grain boundary conductivity in highly strained olivine aggregates that demonstrates the importance of misorientation angle between adjacent grains on aggregate transport properties. We performed electrical conductivity measurements of melt-free polycrystalline olivine (Fo90) samples that had been previously deformed at 1200 °C and 0.3 GPa to shear strains up to γ = 7.3. The electrical conductivity and anisotropy were measured at 2.8 GPa over the temperature range 700-1400 °C. We observed that (1) the electrical conductivity of samples with a small grain size (3-6 µm) and strong crystallographic preferred orientation produced by dynamic recrystallization during large-strain shear deformation is a factor of 10 or more larger than that measured on coarse-grained samples, (2) the sample deformed to the highest strain is the most conductive even though it does not have the smallest grain size, and (3) conductivity is up to a factor of 4 larger in the direction of shear than normal to the shear plane. Based on these results combined with electrical conductivity data for coarse-grained, polycrystalline olivine and for single crystals, we propose that the electrical conductivity of our fine-grained samples is dominated by grain boundary paths. In addition, the electrical anisotropy results from preferential alignment of higher-conductivity grain boundaries associated with the development of a strong crystallographic preferred orientation of the grains.

  10. Migration energy barriers of symmetric tilt grain boundaries in body-centered cubic metal Fe

    International Nuclear Information System (INIS)

    Wu, Minghui; Gu, Jianfeng; Jin, Zhaohui

    2015-01-01

    Graphical abstract: DFT calculated migration energy barrier (left) for symmetric grain boundary in metals is an essential physical property to measure the trend of grain boundary migration, in particular, in terms of the classical homogeneous nucleation model of GB dislocation/disconnection loops (right). - Migration energy barriers of two symmetric tilt grain boundaries in body-centered cubic metal Fe are obtained via first-principles calculations in combination with the nudged elastic band methods. Although the two grain boundaries show similar grain boundary energies, the migration energy barriers are different. Based on a homogeneous nucleation theory of grain-boundary dislocation loops, the calculated energy barrier provides a measure of intrinsic grain-boundary mobility and helps to evaluate effects due to vacancy and interstitial atoms such as carbon

  11. Applied Thermodynamics: Grain Boundary Segregation

    Directory of Open Access Journals (Sweden)

    Pavel Lejček

    2014-03-01

    Full Text Available Chemical composition of interfaces—free surfaces and grain boundaries—is generally described by the Langmuir–McLean segregation isotherm controlled by Gibbs energy of segregation. Various components of the Gibbs energy of segregation, the standard and the excess ones as well as other thermodynamic state functions—enthalpy, entropy and volume—of interfacial segregation are derived and their physical meaning is elucidated. The importance of the thermodynamic state functions of grain boundary segregation, their dependence on volume solid solubility, mutual solute–solute interaction and pressure effect in ferrous alloys is demonstrated.

  12. Electrical properties of grain boundaries in polycrystalline materials under intrinsic or low doping

    International Nuclear Information System (INIS)

    Chowdhury, M H; Kabir, M Z

    2011-01-01

    An analytical model is developed to study the electrical properties (electric field and potential distributions, potential energy barrier height and polarization phenomenon) of polycrystalline materials at intrinsic or low doping for detector and solar cell applications by considering an arbitrary amount of grain boundary charge and a finite width of grain boundary region. The general grain boundary model is also applicable to highly doped polycrystalline materials. The electric field and potential distributions are obtained by solving Poisson's equation in both depleted grains and grain boundary regions. The electric field and potential distributions across the detector are analysed under various doping, trapping and applied biases. The electric field collapses, i.e. a nearly zero-average electric field region exists in some part of the biased detector at high trapped charge densities at the grain boundaries. The model explains the conditions of existence of a zero-average field region, i.e. the polarization mechanisms in polycrystalline materials. The potential energy barrier at the grain boundary exists if the electric field changes its sign at the opposite side of the grain boundary. The energy barrier does not exist in all grain boundaries in the low-doped polycrystalline detector and it never exists in intrinsic polycrystalline detectors under applied bias condition provided that there is no charge trapping in the grain.

  13. Grain boundary imaging, gallium diffusion and the fracture behavior of Al-Zn Alloy - An in situ study

    Science.gov (United States)

    Tsai, W. L.; Hwu, Y.; Chen, C. H.; Chang, L. W.; Je, J. H.; Lin, H. M.; Margaritondo, G.

    2003-01-01

    Phase contrast radiology using unmonochromatic synchrotron X-ray successfully imaged the grain boundaries of Al and AlZn alloy without contrast agent. Combining the high penetration of X-ray and the possibility of 3D reconstruction by tomorgraphy or stereography method, this approach can be very used for nondestructive characterization of polycrystalline materials. By examine the images with 3D perspective, we were able locate the observed void-like defects which lies exclusively on the grain boundary and identify their origin from last stage of the rolling process. We studied the Ga Liquid metal diffusion in the AlZn alloy, under different temperature and stress conditions. High resolution images, ˜2 μm, of Ga liquid metal diffusion in AlZn were obtained in real time and diffusion paths alone grain boundaries and surfaces were clearly identified. Embrittled AlZn responses to the tensile stress and fractures in a drastic different manner than the pure AlZn. These results, although very much expected from the known weakening effect of the liquid metal embrittlement demonstrated, however, that this particular radiology method is fully capable of dynamic study in the micrometer scale.

  14. Transformation of slip dislocation in ä3 grain boundary

    Czech Academy of Sciences Publication Activity Database

    Gemperlová, Juliana; Jacques, A.; Gemperle, Antonín; Zárubová, Niva

    2002-01-01

    Roč. 10, - (2002), s. 51-57 ISSN 0927-7056 R&D Projects: GA ČR GA202/98/1281; GA ČR GA202/01/0670 Institutional research plan: CEZ:AV0Z1010914 Keywords : in situ TEM * slip dislocations * grain boundary * grain boundary dislocations * plasticity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.767, year: 2002

  15. Influence of grain boundaries on elasticity and thermal conductivity of nanocrystalline diamond films

    International Nuclear Information System (INIS)

    Mohr, Markus; Daccache, Layal; Horvat, Sebastian; Brühne, Kai; Jacob, Timo; Fecht, Hans-Jörg

    2017-01-01

    Diamond combines several outstanding material properties such as the highest thermal conductivity and highest elastic moduli of all materials. This makes diamond an interesting candidate for a multitude of applications. Nonetheless, nanocrystalline diamond films, layers and coatings, usually show properties different to those of single crystalline diamond. This is usually attributed to the larger volume fraction of the grain boundaries with atomic structure different from the single crystal. In this work we measured Young's modulus and thermal conductivity of nanocrystalline diamond films with average grain sizes ranging from 6 to 15 nm. The measured thermal conductivities are modeled considering the thermal boundary conductance between grains as well as a grain size effect on the phonon mean free path. We make a comparison between elastic modulus and thermal boundary conductance of the grain boundaries G_k for different nanocrystalline diamond films. We conclude that the grain boundaries thermal boundary conductance G_k is a measure of the cohesive energy of the grain boundaries and therefore also of the elastic modulus of the nanocrystalline diamond films.

  16. A phase field study of strain energy effects on solute–grain boundary interactions

    International Nuclear Information System (INIS)

    Heo, Tae Wook; Bhattacharyya, Saswata; Chen Longqing

    2011-01-01

    We have studied strain-induced solute segregation at a grain boundary and the solute drag effect on boundary migration using a phase field model integrating grain boundary segregation and grain structure evolution. The elastic strain energy of a solid solution due to the atomic size mismatch and the coherency elastic strain energy caused by the inhomogeneity of the composition distribution are obtained using Khachaturyan’s microelasticity theory. Strain-induced grain boundary segregation at a static planar boundary is studied numerically and the equilibrium segregation composition profiles are validated using analytical solutions. We then systematically studied the effect of misfit strain on grain boundary migration with solute drag. Our theoretical analysis based on Cahn’s analytical theory shows that enhancement of the drag force with increasing atomic size mismatch stems from both an increase in grain boundary segregation due to the strain energy reduction and misfit strain relaxation near the grain boundary. The results were analyzed based on a theoretical analysis in terms of elastic and chemical drag forces. The optimum condition for solute diffusivity to maximize the drag force under a given driving force was identified.

  17. Influences of triple junctions on stress-assisted grain boundary motion in nanocrystalline materials

    International Nuclear Information System (INIS)

    Aramfard, Mohammad; Deng, Chuang

    2014-01-01

    Stress-assisted grain boundary motion is among the most studied modes of microstructural evolution in crystalline materials. In this study, molecular dynamics simulations were used to systematically investigate the influences of triple junctions on the stress-assisted motion of symmetric tilt grain boundaries in Cu by considering a honeycomb nanocrystalline model. It was found that the grain boundary motion in nanocrystalline models was highly sensitive to the loading mode, and a strong coupling effect which was prevalent in bicrystal models was only observed when simple shear was applied. In addition, the coupling factor extracted from the honeycomb model was found to be larger and more sensitive to temperature change than that from bicrystal models for the same type of grain boundary under the same loading conditions. Furthermore, the triple junctions seemed to exhibit unusual asymmetric pinning effects to the migrating grain boundary and the constraints by the triple junctions and neighboring grains led to remarkable non-linear grain boundary motion in directions both parallel and normal to the applied shear, which was in stark contrast to that observed in bicrystal models. In addition, dislocation nucleation and propagation, which were absent in the bicrystal model, were found to play an important role on shear-induced grain boundary motion when triple junctions were present. In the end, a generalized model for shear-assisted grain boundary motion was proposed based on the findings from this research. (paper)

  18. The helium effect at grain boundaries in Fe-Cr alloys: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Zemła, M.R., E-mail: marcin.zemla@wimpw.edu.pl [Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Wróbel, J.S.; Wejrzanowski, T. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Nguyen-Manh, D. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Kurzydłowski, K.J. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland)

    2017-02-15

    Helium is produced in the structural materials in nuclear power plants by nuclear transmutation following neutron irradiation. Since the solubility of helium in all metals is extremely low, helium tends to be trapped at defects such as vacancies, dislocations and grain boundaries, which cause material embrittlement. Density functional theory (DFT) calculations were performed in order to investigate the helium effect at grain boundaries (GBs) in iron-chromium alloys. Both cohesive energy and magnetic properties at symmetric Σ3(1 1 1) and Σ5(2 1 0) tilt Fe GBs are studied in the presence of Cr and He atoms. It is found that the presence of Cr atoms increases cohesive energy, at different He concentrations, and strongly influences magnetic properties at the GBs. The effect of the segregation energy of helium atom as a function of the different positions of Cr atoms located inside/outside a GB has been considered. Results of the present first-principles study enable one to clarify the role of Cr in understanding the helium effect in Fe-Cr-based alloys.

  19. Grain boundary precipitation strengthening mechanism in W containing advanced creep resistant ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, T.; Hasegawa, Y. [Tohoku Univ., Sendai (Japan)

    2010-07-01

    Grain boundary precipitation strengthening is expected to be a decisive factor in developing ferritic creep resistant steels. This study examined the grain boundary precipitation strengthening mechanism extracting the effect of the tempered martensitic microstructure and precipitates on the high angle grain boundary in M{sub 23}C4{sub 6} type carbide and the Fe{sub 2}W type Laves phase effect of the creep deformation fixing the grain boundary according to transmission electron microscope (TEM) observation. A creep test was carried out at high temperature in order to evaluate the high angle boundary strengthening effect simulating the long-term creep deformation microstructure by the lath structure disappearance. The correlation of the creep rupture time and the grain boundary shielding ratio were found to be independent of precipitate type. The creep deformation model represents block boundary shielding by precipitates as the decisive factor for W containing ferritic creep resistant steels. (orig.)

  20. Retardation of grain boundary self-diffusion in nickel doped with antimony and tin

    International Nuclear Information System (INIS)

    Padgett, R.A.; White, C.L.

    1984-01-01

    Many important metallurgical phenomena are strongly influenced or controlled by grain boundary mass transport. There is also much evidence that the composition of grain boundaries is often significantly different from the overall composition of metals and alloys, owing to strong segregation of residual (and often undetected) impurities. This segregation, which does not always advertise its presence through grain boundary brittleness, may vary markedly from heat to heat, and occasionally from specimen to specimen within a given heat. Unfortunately, there are relatively few experimental observations of how such segregation affects grain boundary mass transport, and even less fundamental understanding of how these effects occur. In this paper we present autoradiographic results on self-diffusion of 63 Ni in nickel and nickel doped with antimony and tin. While these results do not permit a quantitative evaluation of the grain boundary diffusivity, D, they qualitatively illustrate the dramatic effect that these solute elements have on the ability of nickel grain boundaries to act as preferential paths for mass transport

  1. Grain boundary engineering for structure materials of nuclear reactors

    Science.gov (United States)

    Tan, L.; Allen, T. R.; Busby, J. T.

    2013-10-01

    Grain boundary engineering (GBE), primarily implemented by thermomechanical processing, is an effective and economical method of enhancing the properties of polycrystalline materials. Among the factors affecting grain boundary character distribution, literature data showed definitive effect of grain size and texture. GBE is more effective for austenitic stainless steels and Ni-base alloys compared to other structural materials of nuclear reactors, such as refractory metals, ferritic and ferritic-martensitic steels, and Zr alloys. GBE has shown beneficial effects on improving the strength, creep strength, and resistance to stress corrosion cracking and oxidation of austenitic stainless steels and Ni-base alloys.

  2. Grain boundary engineering for structure materials of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tan, L., E-mail: tanl@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory (United States); Allen, T.R. [Department of Engineering Physics, University of Wisconsin–Madison (United States); Busby, J.T. [Materials Science and Technology Division, Oak Ridge National Laboratory (United States)

    2013-10-15

    Grain boundary engineering (GBE), primarily implemented by thermomechanical processing, is an effective and economical method of enhancing the properties of polycrystalline materials. Among the factors affecting grain boundary character distribution, literature data showed definitive effect of grain size and texture. GBE is more effective for austenitic stainless steels and Ni-base alloys compared to other structural materials of nuclear reactors, such as refractory metals, ferritic and ferritic–martensitic steels, and Zr alloys. GBE has shown beneficial effects on improving the strength, creep strength, and resistance to stress corrosion cracking and oxidation of austenitic stainless steels and Ni-base alloys.

  3. Interaction between particles and grain boundaries under conditions of cooperative migration

    International Nuclear Information System (INIS)

    Marvina, L.A.; Marvin, V.B.

    1996-01-01

    The analysis of particle grain boundary interaction is performed for dispersion hardened alloys when cooperative migration takes place. It is shown that in a general case the particle experiences a Zener force and a force of grain boundary surface tension due to boundary bending between particles. Approximate numerical estimates are made for the force acting on a particle in dispersion hardened alloy Ni-HfO 2 . It is noted that during cooperative migration of particle and grain boundary the velocity of the particle is directed along the resulting force. The latter equals the sum of surface tension and Zener forces. 6 refs., 2 figs

  4. Changes in grain boundary composition induced by neutron irradiation of austenitic stainless steels

    International Nuclear Information System (INIS)

    Asano, K.; Nakata, K.; Fukuya, K.; Kodama, M.

    1992-01-01

    The radiation induced segregation of solutes to the grain boundary in austenitic stainless steels were studied. Type 304 and type 316 steel samples neutron irradiated at 561K up to 9.2x10 25 n/m 2 were obtained and minute compositional profiles across grain boundaries were examined using an analytical scanning transmission electron microscope equipped with a field emission electron gun. Chromium was slightly enriched at grain boundaries at the lowest irradiation dose but decreased with increasing fluence. Higher fluence irradiation resulted in depletion in chromium and molybdenum, and enrichment in nickel, silicon and phosphorus. These changes in grain boundary chemistry were limited within about 5nm of the boundary. Significant depletion of chromium and enrichment of impurities on the grain boundary occurred at fluences roughly coincidental with that of SCC susceptibility change obtained from another project

  5. Evaluation of deformation behavior of in grains and grain boundaries of L-grade austenitic stainless steel 316L

    International Nuclear Information System (INIS)

    Nagashima, Nobuo; Hayakawa, Masao; Tsukada, Takashi; Kaji, Yoshiyuki; Miwa, Yukio; Ando, Masami; Nakata, Kiyotomo

    2009-01-01

    In this study, micro-hardness tests and AFM observations were performed on SUS 316L low-carbon austenitic stainless steel pre-strained by cold rolling to investigate its deformation behavior. The following results were obtained. Despite the fact that the same plastic strain was applied, post-tensile test AFM showed narrower slip-band spacing in a reduction in area of 30% cold-rolled specimen than the unrolled specimen. Concentrated slip bands were observed near grain boundaries. These were presumably due to slip blocking at grain boundaries. SCC sensitivity increased at a hardness of 300 or higher, the frequency occurrence of a hardness of 300 or higher in the micro-hardness measurements was compared. The micro-hardness did not exceed 300 both within grains and at grain boundaries in the unrolled and up to a reduction in area of 20% cold-rolled specimens of before and after the tensile tests. Micro-hardness exceeding 300 was found to occur frequently in after tensile test specimens with a reduction in area of 30% or more, particularly at grain boundaries. It is suggested that the nonuniformity of deformation at grain boundaries plays an important role of IGSCC crack propagation mechanism of low-carbon austenitic stainless steel. (author)

  6. Wetting and crystallization at grain boundaries: Origin of aluminum-induced crystallization of amorphous silicon

    International Nuclear Information System (INIS)

    Wang, J.Y.; He, D.; Zhao, Y.H.; Mittemeijer, E.J.

    2006-01-01

    It has been shown experimentally that the grain boundaries in aluminium in contact with amorphous silicon are the necessary agents for initiation of the crystallization of silicon upon annealing temperatures as low as 438 K. Thermodynamic analysis has shown (i) that Si can 'wet' the Al grain boundaries due to the favorable Si/Al interface energy as compared to the Al grain-boundary energy and (ii) that Si at the Al grain boundaries can maintain its amorphous state up to a thickness of about 1.0 nm. Beyond that thickness crystalline Si develops at the Al grain boundaries

  7. Temperature dependence of grain boundary free energy and elastic constants

    International Nuclear Information System (INIS)

    Foiles, Stephen M.

    2010-01-01

    This work explores the suggestion that the temperature dependence of the grain boundary free energy can be estimated from the temperature dependence of the elastic constants. The temperature-dependent elastic constants and free energy of a symmetric Σ79 tilt boundary are computed for an embedded atom method model of Ni. The grain boundary free energy scales with the product of the shear modulus times the lattice constant for temperatures up to about 0.75 the melting temperature.

  8. Investigation of slip transfer across HCP grain boundaries with application to cold dwell facet fatigue

    International Nuclear Information System (INIS)

    Zheng, Zebang; Balint, Daniel S.; Dunne, Fionn P.E.

    2017-01-01

    This paper addresses the role of grain boundary slip transfer and thermally-activated discrete dislocation plasticity in the redistribution of grain boundary stresses during cold dwell fatigue in titanium alloys. Atomistic simulations have been utilised to calculate the grain boundary energies for titanium with respect to the misorientation angles. The grain boundary energies are utilised within a thermally-activated discrete dislocation plasticity model incorporating slip transfer controlled by energetic and grain boundary geometrical criteria. The model predicts the grain size effect on the flow strength in Ti alloys. Cold dwell fatigue behaviour in Ti-6242 alloy is investigated and it is shown that significant stress redistribution from soft to hard grains occurs during the stress dwell, which is observed both for grain boundaries for which slip transfer is permitted and inhibited. However, the grain boundary slip penetration is shown to lead to significantly higher hard-grain basal stresses near the grain boundary after dwell, thus exacerbating the load shedding stress compared to an impenetrable grain boundary. The key property controlling the dwell fatigue response is argued to remain the time constant associated with the thermal activation process for dislocation escape, but the slip penetrability is also important and exacerbates the load shedding. The inclusion of a macrozone does not significantly change the conclusions but does potentially lead to the possibility of a larger initial facet.

  9. Thermally activated phase slippage in high-Tc grain-boundary Josephson junctions

    International Nuclear Information System (INIS)

    Gross, R.; Chaudhari, P.; Dimos, D.; Gupta, A.; Koren, G.

    1990-01-01

    The effect of thermally activated phase slippage (TAPS) in YBa 2 Cu 3 O 7 grain-boundary Josephson junctions has been studied. TAPS has been found to be responsible for the dc noise voltage superimposed on the dc Josephson current near the transition temperature. Because of the reduced Josephson coupling energy of the grain-boundary junctions, which is caused by a reduced superconducting order parameter at the grain-boundary interface, TAPS is present over a considerable temperature range. The implications of TAPS on the applicability of high-T c Josephson junctions are outlined

  10. Concentration contours in lattics and grain boundary diffusion in a polycrystalline solid

    International Nuclear Information System (INIS)

    Kim, Yong Soo; Jae, Won Mok; El Saied, Usama; Olander, Donald R.

    1995-01-01

    Grain boundary diffusion plays significant role in the fission gas release, which is one of the crucial processes dominating nuclear fuel performance. Gaseous fission products such as Xe and Kr generated inside fuel pellet have to diffuse in the lattice and in the grain boundary before they reach open space in the fuel rod. In the mean time, the grains in the fuel pellet grow and shrink according to grain growth kinetics, especially at elevated temperature at which nuclear reactors are operating. Thus the boundary movement ascribed to the grain growth greatly influences the fission gas release rate by lengthening or shortening the lattice diffusion distance, which is the rate limiting step. Sweeping fission gases by the moving boundary contributes to the increment of the fission gas release as well. Lattice and grain boundary diffusion processes in the fission gas release can be studied by 'tracer diffusion' technique, by which grain boundary diffusivity can be estimated and used directly for low burn up fission gas release analysis. However, even for tracer diffusion analysis, taking both the intragranular grain growth and the diffusion processes simultaneously into consideration is not easy. Only a few models accounting for the both processes are available and mostly handle them numerically. Numerical solutions are limited in the practical use. Here in this paper, an approximate analytical solution of the lattice and stationary grain boundary diffusion in a polycrystalline solid is developed for the tracer diffusion techniques. This short closed form solution is compared to available exact and numerical solutions and turns out to be acceptably accurate. It can be applied to the theoretical modeling and the experimental analysis, especially PIE (post irradiation examination), of low burn up fission gas release

  11. Grain boundary diffusion in terms of the tempered fractional calculus

    International Nuclear Information System (INIS)

    Sibatov, R.T.; Svetukhin, V.V.

    2017-01-01

    Mathematical treatment of grain-boundary diffusion based on the model first proposed by Fisher is usually formulated in terms of normal diffusion equations in a two-component nonhomogeneous medium. On the other hand, fractional equations of anomalous diffusion proved themselves to be useful in description of grain-boundary diffusion phenomena. Moreover, the most important propagation regime predicted by Fisher's model demonstrates subdiffusive behavior. However, the direct link between fractional approach and the Fisher model and its modifications has not found yet. Here, we fill this gap and show that solution of fractional subdiffusion equation offers general properties of classical solutions obtained by Whipple and Suzuoka. The tempered fractional approach is a convenient tool for studying precipitation in granular materials as the tempered subdiffusion limited process. - Highlights: • The link connected fractional diffusion approach and Fisher's model of grain-boundary diffusion is derived. • The subdiffusion exponent of grain-boundary diffusion can differ from 1/2. • Nucleation in granular materials is modeled by the process limited by tempered subdiffusion.

  12. Grain boundary diffusion in terms of the tempered fractional calculus

    Energy Technology Data Exchange (ETDEWEB)

    Sibatov, R.T., E-mail: ren_sib@bk.ru [Ulyanovsk State University, 432017, 42 Leo Tolstoy str., Ulyanovsk (Russian Federation); Svetukhin, V.V. [Ulyanovsk State University, 432017, 42 Leo Tolstoy str., Ulyanovsk (Russian Federation); Institute of Nanotechnology and Microelectronics of the Russian Academy of Sciences, 115487, 18 Nagatinskaya str., Moscow (Russian Federation)

    2017-06-28

    Mathematical treatment of grain-boundary diffusion based on the model first proposed by Fisher is usually formulated in terms of normal diffusion equations in a two-component nonhomogeneous medium. On the other hand, fractional equations of anomalous diffusion proved themselves to be useful in description of grain-boundary diffusion phenomena. Moreover, the most important propagation regime predicted by Fisher's model demonstrates subdiffusive behavior. However, the direct link between fractional approach and the Fisher model and its modifications has not found yet. Here, we fill this gap and show that solution of fractional subdiffusion equation offers general properties of classical solutions obtained by Whipple and Suzuoka. The tempered fractional approach is a convenient tool for studying precipitation in granular materials as the tempered subdiffusion limited process. - Highlights: • The link connected fractional diffusion approach and Fisher's model of grain-boundary diffusion is derived. • The subdiffusion exponent of grain-boundary diffusion can differ from 1/2. • Nucleation in granular materials is modeled by the process limited by tempered subdiffusion.

  13. First-Principles Investigations of Defects in Minerals

    Science.gov (United States)

    Verma, Ashok K.

    2011-07-01

    The ideal crystal has an infinite 3-dimensional repetition of identical units which may be atoms or molecules. But real crystals are limited in size and they have disorder in stacking which as called defects. Basically three types of defects exist in solids: 1) point defects, 2) line defects, and 3) surface defects. Common point defects are vacant lattice sites, interstitial atoms and impurities and these are known to influence strongly many solid-state transport properties such as diffusion, electrical conduction, creep, etc. In thermal equilibrium point defects concentrations are determined by their formation enthalpies and their movement by their migration barriers. Line and surface defects are though absent from the ideal crystal in thermal equilibrium due to higher energy costs but they are invariably present in all real crystals. Line defects include edge-, screw- and mixed-dislocations and their presence is essential in explaining the mechanical strength and deformation of real crystals. Surface defects may arise at the boundary between two grains, or small crystals, within a larger crystal. A wide variety of grain boundaries can form in a polycrystal depending on factors such growth conditions and thermal treatment. In this talk we will present our first-principles density functional theory based defect studies of SiO2 polymorphs (stishovite, CaCl2-, α-PbO2-, and pyrite-type), Mg2SiO4 polymorphs (forsterite, wadsleyite and ringwoodite) and MgO [1-3]. Briefly, several native point defects including vacancies, interstitials, and their complexes were studied in silica polymorphs upto 200 GPa. Their values increase by a factor of 2 over the entire pressure range studied with large differences in some cases between different phases. The Schottky defects are energetically most favorable at zero pressure whereas O-Frenkel pairs become systematically more favorable at pressures higher than 20 GPa. The geometric and electronic structures of defects and migrating

  14. Studies of Grain Boundaries in Materials Subjected to Diffusional Creep

    DEFF Research Database (Denmark)

    Nørbygaard, Thomas

    Grain boundaries in crystalline Cu(2%Ni) creep specimens have been studied by use of scanning and transmission electron microscopy in order to establish the mechanism of deformation. Creep rate measurements and dependencies were found to fit reasonably well with the model for diffusional creep......) with the activity displayed during diffusional creep testing. It was found that boundaries with low deviation from perfect Σ did not contribute macroscopically to the creep strain. A resist deposition procedure was examined to improve the reference surface grid so as to allow determination of the grain boundary...... plane by use of simple stereomicroscopy directly on the surface. The etched pattern deteriorated heav-ily during creep testing, supposedly because of dislocation creep, due to exces-sive creep stress. Grain boundaries have been studied and characterised by TEM providing an insight into the diversity...

  15. How grain boundaries affect the efficiency of poly-CdTe solar-cells: A fundamental atomic-scale study of grain boundary dislocation cores using CdTe bi-crystal thin films.

    Energy Technology Data Exchange (ETDEWEB)

    Klie, Robert [Univ. of Illinois, Chicago, IL (United States)

    2016-10-25

    It is now widely accepted that grain boundaries in poly-crystalline CdTe thin film devices have a detrimental effect on the minority carrier lifetimes, the open circuit voltage and therefore the overall solar-cell performance. The goal of this project was to develop a fundamental understanding of the role of grain boundaries in CdTe on the carrier life-time, open-circuit voltage, Voc, and the diffusion of impurities. To achieve this goal, i) CdTe bi-crystals were fabricated with various misorientation angels, ii) the atomic- and electronic structures of the grain boundaries were characterized using scanning transmission electron microscopy (STEM), and iii) first-principles density functional theory modeling was performed on the structures determined by STEM to predict the grain boundary potential. The transport properties and minority carrier lifetimes of the bi-crystal grain boundaries were measured using a variety of approaches, including TRPL, and provided feedback to the characterization and modeling effort about the effectiveness of the proposed models.

  16. Effective search for stable segregation configurations at grain boundaries with data-mining techniques

    Science.gov (United States)

    Kiyohara, Shin; Mizoguchi, Teruyasu

    2018-03-01

    Grain boundary segregation of dopants plays a crucial role in materials properties. To investigate the dopant segregation behavior at the grain boundary, an enormous number of combinations have to be considered in the segregation of multiple dopants at the complex grain boundary structures. Here, two data mining techniques, the random-forests regression and the genetic algorithm, were applied to determine stable segregation sites at grain boundaries efficiently. Using the random-forests method, a predictive model was constructed from 2% of the segregation configurations and it has been shown that this model could determine the stable segregation configurations. Furthermore, the genetic algorithm also successfully determined the most stable segregation configuration with great efficiency. We demonstrate that these approaches are quite effective to investigate the dopant segregation behaviors at grain boundaries.

  17. Structure and transport at grain boundaries in polycrystalline olivine: An atomic-scale perspective

    Science.gov (United States)

    Mantisi, Boris; Sator, Nicolas; Guillot, Bertrand

    2017-12-01

    Structure and transport properties at grain boundaries in polycrystalline olivine have been investigated at the atomic scale by molecular dynamics simulation (MD) using an empirical ionocovalent interaction potential. On the time scale of the simulation (a few tens of nanoseconds for a system size of ∼650,000 atoms) grain boundaries and grain interior were identified by mapping the atomic displacements along the simulation run. In the investigated temperature range (1300-1700 K) the mean thickness of the grain boundary phase is evaluated between 0.5 and 2 nm, a value which depends on temperature and grain size. The structure of the grain boundary phase is found to be disordered (amorphous-like) and is different from the one exhibited by the supercooled liquid. The self-diffusion coefficients of major elements in the intergranular region range from ∼10-13 to 10-10 m2/s between 1300 and 1700 K (with DSigb Kubo relation expressing the viscosity as function of the stress tensor time correlation function. In spite of a slow convergence of the calculation by MD, the grain boundary viscosity was estimated about ∼105 Pa s at 1500 K, a value in agreement with high-temperature viscoelastic relaxation data. An interesting information gained from MD is that sliding at grain boundaries is essentially controlled by the internal friction between the intergranular phase and the grain edges.

  18. Development of helium porosity near-by grain boundaries in nickel-carbon alloys

    International Nuclear Information System (INIS)

    Reutov, I.V.; Reutov, V.F.

    1995-01-01

    The peculiarities of development of helium porosity near grain boundaries in nickel with 0.002-0.065 at.% carbon uniformly doped with helium up to 2·10 -2 at.% in the process of post-irradiation isothermal annealing at 800 deg C for 1-50 hours are studied. It is stated that at this annealing temperature intensive nucleation and growth of bubbles are observed in near-boundary region whose width grows both with increase of annealing time and carbon content. The TEM studies have shown that in near-boundary zone itself the process of bubble growth is non-uniform: bubble size increases and their density decreases as the distance from grain boundary is increased. The effect observed is discussed from the point of view of formation of two zones with different level of swelling in a grain (near-by boundary and matrix) and consequently, hydrostatic stress as well conditioning the flux of vacancies and helium-vacancy complexes from matrix to grain boundary. 8 refs., 5 figs

  19. New deformation model of grain boundary strengthening in polycrystalline metals

    International Nuclear Information System (INIS)

    Trefilov, V.I.; Moiseev, V.F.; Pechkovskij, Eh.P.

    1988-01-01

    A new model explaining grain boundary strengthening in polycrystalline metals and alloys by strain hardening due to localization of plastic deformation in narrow bands near grain boundaries is suggested. Occurrence of localized deformation is caused by different flow stresses in grains of different orientation. A new model takes into account the active role of stress concentrator, independence of the strengthening coefficient on deformation, influence of segregations. Successful use of the model suggested for explanation of rhenium effect in molybdenum and tungsten is alloys pointed out

  20. Atomic scale study of grain boundary segregation before carbide nucleation in Ni–Cr–Fe Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui, E-mail: huili@shu.edu.cn [Key Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Institute of Materials, Shanghai University, Shanghai 200072 (China); Xia, Shuang [Institute of Materials, Shanghai University, Shanghai 200072 (China); Liu, Wenqing [Key Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Liu, Tingguang; Zhou, Bangxin [Institute of Materials, Shanghai University, Shanghai 200072 (China)

    2013-08-15

    Highlights: • Impurities segregated at grain boundaries were observed by atom probe tomography. • The comparison of segregation features in two Ni–Cr–Fe alloys was studied by APT. • C and Cr atoms co-segregated at grain boundaries before carbide precipitation. -- Abstract: Three dimensional chemical information concerning grain boundary segregation before carbide nucleation was characterized by atom probe tomography in two Ni–Cr–Fe alloys which were aged at 500 °C for 0.5 h after homogenizing treatment. B, C and Si atoms segregation at grain boundary in Alloy 690 was observed. B, C, N and P atoms segregation at grain boundary in 304 austenitic stainless steel was observed. C atoms co-segregation with Cr atoms at the grain boundaries both in Alloy 690 and 304 austenitic stainless steel was found, and its effect on the carbide nucleation was discussed. The amount of each segregated element at grain boundaries in the two Ni–Cr–Fe alloys were analyzed quantitatively. Comparison of the grain boundary segregation features of the two Ni–Cr–Fe alloys were carried out based on the experimental results.

  1. Complementary AES and AEM of grain boundary regions in irradiated γ'-strengthened alloys

    International Nuclear Information System (INIS)

    Farrell, K.; Kishimoto, N.; Clausing, R.E.; Heatherly, L.; Lehman, G.L.

    1986-01-01

    Two microchemical analysis techniques are used to measure solute segregation at grain boundaries in two γ'-strengthened, fcc Fe-Ni-Cr alloys that display radiation-induced intergranular fracture. Scanning Auger electron spectroscopy (AES) of grain boundary fracture surfaces and analytical electron microscopy (AEM) of intact grain boundaries using energy-dispersive x-ray spectroscopy show good agreement on the nature and extent of segregation. The elements Ni, Si, Ti, and Mo are found to accumulate in G, Laves and γ' phases on the grain boundaries. Segregation of P is detected by AES. The complementary features of the two analytical techniques are discussed briefly

  2. Algorithm based on regional separation for automatic grain boundary extraction using improved mean shift method

    Science.gov (United States)

    Zhenying, Xu; Jiandong, Zhu; Qi, Zhang; Yamba, Philip

    2018-06-01

    Metallographic microscopy shows that the vast majority of metal materials are composed of many small grains; the grain size of a metal is important for determining the tensile strength, toughness, plasticity, and other mechanical properties. In order to quantitatively evaluate grain size in metals, grain boundaries must be identified in metallographic images. Based on the phenomenon of grain boundary blurring or disconnection in metallographic images, this study develops an algorithm based on regional separation for automatically extracting grain boundaries by an improved mean shift method. Experimental observation shows that the grain boundaries obtained by the proposed algorithm are highly complete and accurate. This research has practical value because the proposed algorithm is suitable for grain boundary extraction from most metallographic images.

  3. Misorientation related microstructure at the grain boundary in a nickel-based single crystal superalloy

    International Nuclear Information System (INIS)

    Huang, Ming; Zhuo, Longchao; Liu, Zhanli; Lu, Xiaogang; Shi, Zhenxue; Li, Jiarong; Zhu, Jing

    2015-01-01

    The mechanical properties of nickel-based single crystal superalloys deteriorate with increasing misorientation, thus the finished product rate of the casting of single crystal turbine airfoils may be reduced due to the formation of grain boundaries especially when the misorientation angle exceeds to some extent. To this day, evolution of the microstructures at the grain boundaries with misorientation and the relationship between the microstructures and the mechanical properties are still unclear. In this work a detailed characterization of the misorientation related microstructure at the grain boundary in DD6 single crystal superalloy has been carried out using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques; the elemental distribution at the grain boundaries has been analyzed by energy dispersive (EDS) X-ray mapping; and the effect of precipitation of μ phases at the grain boundary on the mechanical property has been evaluated by finite element calculation. It is shown that the proportion of γ phase at the grain boundaries decreases, while the proportion of γ′ phase at the grain boundaries increases with increasing misorientation; the μ phase is precipitated at the grain boundaries when the misorientation angle exceeds about 10° and thus it could lead to a dramatic deterioration of the mechanical properties, as well as that the enrichment of Re and W gradually disappears as the misorientation angle increases. All these factors may result in the degradation of the mechanical properties at the grain boundaries as the misorientation increases. Furthermore, the finite element calculation confirms that precipitation of μ phases at the grain boundary is responsible for the significant deterioration of the mechanical properties when the misorientation exceeds about 10°. This work provides a physical imaging of the microstructure for understanding the relationship between the mechanical properties and the misorientation

  4. Diffuse-interface polycrystal plasticity: expressing grain boundaries as geometrically necessary dislocations

    Science.gov (United States)

    Admal, Nikhil Chandra; Po, Giacomo; Marian, Jaime

    2017-12-01

    The standard way of modeling plasticity in polycrystals is by using the crystal plasticity model for single crystals in each grain, and imposing suitable traction and slip boundary conditions across grain boundaries. In this fashion, the system is modeled as a collection of boundary-value problems with matching boundary conditions. In this paper, we develop a diffuse-interface crystal plasticity model for polycrystalline materials that results in a single boundary-value problem with a single crystal as the reference configuration. Using a multiplicative decomposition of the deformation gradient into lattice and plastic parts, i.e. F( X,t)= F L( X,t) F P( X,t), an initial stress-free polycrystal is constructed by imposing F L to be a piecewise constant rotation field R 0( X), and F P= R 0( X)T, thereby having F( X,0)= I, and zero elastic strain. This model serves as a precursor to higher order crystal plasticity models with grain boundary energy and evolution.

  5. A creep rupture model accounting for cavitation at sliding grain boundaries

    NARCIS (Netherlands)

    Giessen, Erik van der; Tvergaard, Viggo

    1991-01-01

    An axisymmetric cell model analysis is used to study creep failure by grain boundary cavitation at facets normal to the maximum principal tensile stress, taking into account the influence of cavitation and sliding at adjacent inclined grain boundaries. It is found that the interaction between the

  6. Ultra-low-angle boundary networks within recrystallizing grains

    DEFF Research Database (Denmark)

    Ahl, Sonja Rosenlund; Simons, Hugh; Zhang, Yubin

    2017-01-01

    We present direct evidence of a network of well-defined ultra-low-angle boundaries in bulk recrystallizing grains of 99.5% pure aluminium (AA1050) by means of a new, three-dimensional X-ray mapping technique; dark-field X-ray microscopy. These boundaries separate lattice orientation differences o...

  7. [Grain boundary and interface kinetics during ion irradiation

    International Nuclear Information System (INIS)

    Atwater, H.A.

    1991-01-01

    Proposed here is renewed support of a research program focused on interface motion and phase transformation during ion irradiation, with emphasis on elemental semiconductors. Broadly speaking, the aims of this program are to explore defect kinetics in amorphous and crystalline semiconductors, and to relate defect dynamics to interface motion and phase transformations. Over the last three years, we initiated a program under DOE support to explore crystallization and amorphization of elemental semiconductors under irradiation. This research has enabled new insights about the nature of defects in amorphous semiconductors and about microstructural evolution in the early stages of crystallization. In addition, we have demonstrated almost arbitrary control over the relative rates of crystal nucleation and crystal growth in silicon. As a result, the impinged grain microstructure of thin (100 nm) polycrystalline films crystallized under irradiation can be controlled with grain sizes ranging from a few nanometers to several micrometers, which may have interesting technological implications

  8. Determination of grain boundary mobility during recrystallization by statistical evaluation of electron backscatter diffraction measurements

    International Nuclear Information System (INIS)

    Basu, I.; Chen, M.; Loeck, M.; Al-Samman, T.; Molodov, D.A.

    2016-01-01

    One of the key aspects influencing microstructural design pathways in metallic systems is grain boundary motion. The present work introduces a method by means of which direct measurement of grain boundary mobility vs. misorientation dependence is made possible. The technique utilizes datasets acquired by means of serial electron backscatter diffraction (EBSD) measurements. The experimental EBSD measurements are collectively analyzed, whereby datasets were used to obtain grain boundary mobility and grain aspect ratio with respect to grain boundary misorientation. The proposed method is further validated using cellular automata (CA) simulations. Single crystal aluminium was cold rolled and scratched in order to nucleate random orientations. Subsequent annealing at 300 °C resulted in grains growing, in the direction normal to the scratch, into a single deformed orientation. Growth selection was observed, wherein the boundaries with misorientations close to Σ7 CSL orientation relationship (38° 〈111〉) migrated considerably faster. The obtained boundary mobility distribution exhibited a non-monotonic behavior with a maximum corresponding to misorientation of 38° ± 2° about 〈111〉 axes ± 4°, which was 10–100 times higher than the mobility values of random high angle boundaries. Correlation with the grain aspect ratio values indicated a strong growth anisotropy displayed by the fast growing grains. The observations have been discussed in terms of the influence of grain boundary character on grain boundary motion during recrystallization. - Highlights: • Statistical microstructure method to measure grain boundary mobility during recrystallization • Method implementation independent of material or crystal structure • Mobility of the Σ7 boundaries in 5N Al was calculated as 4.7 × 10"–"8 m"4/J ⋅ s. • Pronounced growth selection in the recrystallizing nuclei in Al • Boundary mobility values during recrystallization 2–3 orders of magnitude

  9. The influence of the grain boundary strength on the macroscopic properties of a polycrystalline aggregate

    International Nuclear Information System (INIS)

    Simonovski, Igor; Cizelj, Leon; Garrido, Oriol Costa

    2013-01-01

    Highlights: ► Grain boundary stiffness should be at least 1.5× higher that the stiffness of bulk grains. ► The ratio δ n pl /δ n el should be at least 400. ► Simultaneous increase of δ n el and δ n pl at constant grain boundary strength increases numerical stability but results in high percentage of damage grain boundary area. ► Shear contributes significantly to damage initialization. -- Abstract: In this work a model, based on a X-ray diffraction contrast tomography data of a stainless steel wire with a diameter of 0.4 mm is presented. As measured 3D grain geometry and crystallographic orientation of individual grains are directly transferred into a finite element model. Anisotropic elasticity and crystal plasticity constitutive laws are used for the bulk grain material while the grain boundaries are explicitly modeled using the cohesive zone approach. A parametric study on the effects of the grain boundary strength and other cohesive zone parameters on the macroscopic response and damaged grain boundary area of a polycrystalline aggregate is presented. Recommendations for the cohesive zone parameters values aimed at achieving low damaged grain boundary area during numerical tensile tests are given while at the same time taking into account the numerical stability of the simulations

  10. Electron scattering at surfaces and grain boundaries in thin Au films

    International Nuclear Information System (INIS)

    Henriquez, Ricardo; Flores, Marcos; Moraga, Luis; Kremer, German; González-Fuentes, Claudio; Munoz, Raul C.

    2013-01-01

    The electron scattering at surfaces and grain boundaries is investigated using polycrystalline Au films deposited onto mica substrates. We vary the three length scales associated with: (i) electron scattering in the bulk, that at temperature T is characterized by the electronic mean free path in the bulk ℓ 0 (T); (ii) electron-surface scattering, that is characterized by the film thickness t; (iii) electron-grain boundary scattering, that is characterized by the mean grain diameter D. We varied independently the film thickness from approximately 50 nm to about 100 nm, and the typical grain size making up the samples from 12 nm to 160 nm. We also varied the scale of length associated with electron scattering in the bulk by measuring the resistivity of each specimen at temperatures T, 4 K 0 (T) by approximately 2 orders of magnitude. Detailed measurements of the grain size distribution as well as surface roughness of each sample were performed with a Scanning Tunnelling Microscope (STM). We compare, for the first time, theoretical predictions with resistivity data employing the two theories available that incorporate the effect of both electron-surface as well as electron-grain boundary scattering acting simultaneously: the theory of A.F. Mayadas and M. Shatzkes, Phys. Rev. 1 1382 (1970) (MS), and that of G. Palasantzas, Phys. Rev. B 58 9685 (1998). We eliminate adjustable parameters from the resistivity data analysis, by using as input the grain size distribution as well as the surface roughness measured with the STM on each sample. The outcome is that both theories provide a fair representation of both the temperature as well as the thickness dependence of the resistivity data, but yet there are marked differences between the resistivity predicted by these theories. In the case of the MS theory, when the average grain diameter D is significantly smaller than ℓ 0 (300) = 37 nm, the electron mean free path in the bulk at 300 K, the effect of electron-grain

  11. Grain-Boundary Resistance in Copper Interconnects: From an Atomistic Model to a Neural Network

    Science.gov (United States)

    Valencia, Daniel; Wilson, Evan; Jiang, Zhengping; Valencia-Zapata, Gustavo A.; Wang, Kuang-Chung; Klimeck, Gerhard; Povolotskyi, Michael

    2018-04-01

    Orientation effects on the specific resistance of copper grain boundaries are studied systematically with two different atomistic tight-binding methods. A methodology is developed to model the specific resistance of grain boundaries in the ballistic limit using the embedded atom model, tight- binding methods, and nonequilibrium Green's functions. The methodology is validated against first-principles calculations for thin films with a single coincident grain boundary, with 6.4% deviation in the specific resistance. A statistical ensemble of 600 large, random structures with grains is studied. For structures with three grains, it is found that the distribution of specific resistances is close to normal. Finally, a compact model for grain-boundary-specific resistance is constructed based on a neural network.

  12. Grain Boundary Engineering the Mechanical Properties of Allvac 718Plus(Trademark) Superalloy

    Science.gov (United States)

    Gabb, Timothy P.; Telesman, Jack; Garg, Anita; Lin, Peter; Provenzano, virgil; Heard, Robert; Miller, Herbert M.

    2010-01-01

    Grain Boundary Engineering can enhance the population of structurally-ordered "low S" Coincidence Site Lattice (CSL) grain boundaries in the microstructure. In some alloys, these "special" grain boundaries have been reported to improve overall resistance to corrosion, oxidation, and creep resistance. Such improvements could be quite beneficial for superalloys, especially in conditions which encourage damage and cracking at grain boundaries. Therefore, the effects of GBE processing on high-temperature mechanical properties of the cast and wrought superalloy Allvac 718Plus (Allvac ATI) were screened. Bar sections were subjected to varied GBE processing, and then consistently heat treated, machined, and tested at 650 C. Creep, tensile stress relaxation, and dwell fatigue crack growth tests were performed. The influences of GBE processing on microstructure, mechanical properties, and associated failure modes are discussed.

  13. Electrical characterization of grain boundaries of CZTS thin films using conductive atomic force microscopy techniques

    Energy Technology Data Exchange (ETDEWEB)

    Muhunthan, N.; Singh, Om Pal [Compound Semiconductor Solar Cell, Physics of Energy Harvesting Division, New Delhi 110012 (India); Toutam, Vijaykumar, E-mail: toutamvk@nplindia.org [Quantum Phenomena and Applications Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Singh, V.N., E-mail: singhvn@nplindia.org [Compound Semiconductor Solar Cell, Physics of Energy Harvesting Division, New Delhi 110012 (India)

    2015-10-15

    Graphical abstract: Experimental setup for conducting AFM (C-AFM). - Highlights: • Cu{sub 2}ZnSnS{sub 4} (CZTS) thin film was grown by reactive co-sputtering. • The electronic properties were probed using conducting atomic force microscope, scanning Kelvin probe microscopy and scanning capacitance microscopy. • C-AFM current flow mainly through grain boundaries rather than grain interiors. • SKPM indicated higher potential along the GBs compared to grain interiors. • The SCM explains that charge separation takes place at the interface of grain and grain boundary. - Abstract: Electrical characterization of grain boundaries (GB) of Cu-deficient CZTS (Copper Zinc Tin Sulfide) thin films was done using atomic force microscopic (AFM) techniques like Conductive atomic force microscopy (CAFM), Kelvin probe force microscopy (KPFM) and scanning capacitance microscopy (SCM). Absorbance spectroscopy was done for optical band gap calculations and Raman, XRD and EDS for structural and compositional characterization. Hall measurements were done for estimation of carrier mobility. CAFM and KPFM measurements showed that the currents flow mainly through grain boundaries (GB) rather than grain interiors. SCM results showed that charge separation mainly occurs at the interface of grain and grain boundaries and not all along the grain boundaries.

  14. An Analysis of Hole Trapping at Grain Boundary or Poly-Si Floating-Body MOSFET.

    Science.gov (United States)

    Jang, Taejin; Baek, Myung-Hyun; Kim, Hyungjin; Park, Byung-Gook

    2018-09-01

    In this paper, we demonstrate the characteristics of the floating body effect of poly-silicon with grain boundary by SENTAURUS™ TCAD simulation. As drain voltage increases, impact ionization occurs at the drain-channel junction. And these holes created by impact ionization are deposited on the bottom of the body to change the threshold voltage. This feature, the kink effect, is also observed in fully depleted silicon on insulator because grain boundary of the poly-silicon serve as a storage to trap the holes. We simulate the transfer curve depending on the density and position of the grain boundary. The trap density of the grain boundary affects the device characteristics significantly. However similar properties appear except where the grain boundary is located on the drain side.

  15. Molecular dynamics study of grain boundary diffusion of hydrogen in tungsten

    International Nuclear Information System (INIS)

    Von Toussaint, U; Gori, S; Manhard, A; Höschen, T; Höschen, C

    2011-01-01

    Understanding the influence of the microstructure of tungsten on hydrogen transport is crucial for the use of tungsten as first-wall material in fusion reactors. Here, we report the results of molecular dynamics and transition state studies on the influence of grain boundaries in tungsten on the transport of hydrogen. An exhaustive mapping of possible minimum activation energy migration trajectories for hydrogen as the trace impurity reveals a strongly modified activation energy distribution in the neighborhood of grain boundaries together with an altered connectivity matrix. The results indicate that grain boundaries in polycrystalline tungsten may provide an important transport channel, especially for neutron-damaged tungsten.

  16. Grain boundary cavity growth under applied stress and internal pressure

    International Nuclear Information System (INIS)

    Mancuso, J.F.

    1977-08-01

    The growth of grain boundary cavities under applied stress and internal gas pressure was investigated. Methane gas filled cavities were produced by the C + 4H reversible CH4 reaction in the grain boundaries of type 270 nickel by hydrogen charging in an autoclave at 500 0 C with a hydrogen pressure of either 3.4 or 14.5 MPa. Intergranular fracture of nickel was achieved at a charging temperature of 300 0 C and 10.3 MPa hydrogen pressure. Cavities on the grain boundaries were observed in the scanning electron microscope after fracture. Photomicrographs of the cavities were produced in stereo pairs which were analyzed so as to correct for perspective distortion and also to determine the orientational dependence of cavity growth under an applied tensile stress

  17. Reconstruction of 3d grain boundaries from rock thin sections, using polarised light

    Science.gov (United States)

    Markus Hammes, Daniel; Peternell, Mark

    2016-04-01

    Grain boundaries affect the physical and chemical properties of polycrystalline materials significantly by initiating reactions and collecting impurities (Birchenall, 1959), and play an essential role in recrystallization (Doherty et al. 1997). In particular, the shape and crystallographic orientation of grain boundaries reveal the deformation and annealing history of rocks (Kruhl and Peternell 2002, Kuntcheva et al. 2006). However, there is a lack of non-destructive and easy-to-use computer supported methods to determine grain boundary geometries in 3D. The only available instrument using optical light to measure grain boundary angles is still the polarising microscope with attached universal stage; operated manually and time-consuming in use. Here we present a new approach to determine 3d grain boundary orientations from 2D rock thin sections. The data is recorded by using an automatic fabric analyser microscope (Peternell et al., 2010). Due to its unique arrangement of 9 light directions the highest birefringence colour due to each light direction and crystal orientation (retardation) can be determined at each pixel in the field of view. Retardation profiles across grain boundaries enable the calculation of grain boundary angle and direction. The data for all positions separating the grains are combined and further processed. In combination with the lateral position of the grain boundary, acquired using the FAME software (Hammes and Peternell, in review), the data is used to reconstruct a 3d grain boundary model. The processing of data is almost fully automatic by using MATLAB®. Only minor manual input is required. The applicability was demonstrated on quartzite samples, but the method is not solely restricted on quartz grains and other birefringent polycrystalline materials could be used instead. References: Birchenall, C.E., 1959: Physical Metallurgy. McGraw-Hill, New York. Doherty, R.D., Hughes, D.A., Humphreys, F.J., Jonas, J.J., Juul Jensen, D., Kassner, M

  18. Modeling of stresses at grain boundaries with respect to occurrence of stress corrosion cracking

    Energy Technology Data Exchange (ETDEWEB)

    Kozaczek, K.J. [Oak Ridge National Lab., TN (United States); Sinharoy, A.; Ruud, C.O. [Pennsylvania State Univ., University Park, PA (United States); McIlree, A.R. [Electric Power Research Institute, Palo Alto, CA (United States)

    1995-12-31

    The distributions of elastic stresses/strains in the grain boundary regions were studied by the analytical and the finite element models. The grain boundaries represent the sites where stress concentration occurs as a result of discontinuity of elastic properties across the grain boundary and the presence of second phase particles elastically different from the surrounding matrix grains. A quantitative analysis of those stresses for steels and nickel based alloys showed that the stress concentrations in the grain boundary regions are high enough to cause a local microplastic deformation even when the material is in the macroscopic elastic regime. The stress redistribution as a result of such a plastic deformation was discussed.

  19. SILICON CARBIDE GRAIN BOUNDARY DISTRIBUTIONS, IRRADIATION CONDITIONS, AND SILVER RETENTION IN IRRADIATED AGR-1 TRISO FUEL PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Lillo, T. M.; Rooyen, I. J.; Aguiar, J. A.

    2016-11-01

    Precession electron diffraction in the transmission electron microscope was used to map grain orientation and ultimately determine grain boundary misorientation angle distributions, relative fractions of grain boundary types (random high angle, low angle or coincident site lattice (CSL)-related boundaries) and the distributions of CSL-related grain boundaries in the SiC layer of irradiated TRISO-coated fuel particles. Two particles from the AGR-1 experiment exhibiting high Ag-110m retention (>80%) were compared to a particle exhibiting low Ag-110m retention (<19%). Irradiated particles with high Ag-110m retention exhibited a lower fraction of random, high angle grain boundaries compared to the low Ag-110m retention particle. An inverse relationship between the random, high angle grain boundary fraction and Ag-110m retention is found and is consistent with grain boundary percolation theory. Also, comparison of the grain boundary distributions with previously reported unirradiated grain boundary distributions, based on SEM-based EBSD for similarly fabricated particles, showed only small differences, i.e. a greater low angle grain boundary fraction in unirradiated SiC. It was, thus, concluded that SiC layers with grain boundary distributions susceptible to Ag-110m release were present prior to irradiation. Finally, irradiation parameters were found to have little effect on the association of fission product precipitates with specific grain boundary types.

  20. The influence of the grain boundary strength on the macroscopic properties of a polycrystalline aggregate

    Energy Technology Data Exchange (ETDEWEB)

    Simonovski, Igor, E-mail: Igor.Simonovski@ec.europa.eu [European Commission, DG-JRC, Institute for Energy and Transport, P.O. Box 2, NL-1755 ZG Petten (Netherlands); Cizelj, Leon, E-mail: Leon.Cizelj@ijs.si [Jožef Stefan Institute, Reactor Engineering Division, Jamova Cesta 39, SI-1000 Ljubljana (Slovenia); Garrido, Oriol Costa, E-mail: Oriol.Costa@ijs.si [Jožef Stefan Institute, Reactor Engineering Division, Jamova Cesta 39, SI-1000 Ljubljana (Slovenia)

    2013-08-15

    Highlights: ► Grain boundary stiffness should be at least 1.5× higher that the stiffness of bulk grains. ► The ratio δ{sub n}{sup pl}/δ{sub n}{sup el} should be at least 400. ► Simultaneous increase of δ{sub n}{sup el} and δ{sub n}{sup pl} at constant grain boundary strength increases numerical stability but results in high percentage of damage grain boundary area. ► Shear contributes significantly to damage initialization. -- Abstract: In this work a model, based on a X-ray diffraction contrast tomography data of a stainless steel wire with a diameter of 0.4 mm is presented. As measured 3D grain geometry and crystallographic orientation of individual grains are directly transferred into a finite element model. Anisotropic elasticity and crystal plasticity constitutive laws are used for the bulk grain material while the grain boundaries are explicitly modeled using the cohesive zone approach. A parametric study on the effects of the grain boundary strength and other cohesive zone parameters on the macroscopic response and damaged grain boundary area of a polycrystalline aggregate is presented. Recommendations for the cohesive zone parameters values aimed at achieving low damaged grain boundary area during numerical tensile tests are given while at the same time taking into account the numerical stability of the simulations.

  1. On the grain boundary hardening in a B-bearing 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Yao, X.X.

    1999-01-01

    The precipitates, (Cr,Fe) 23 (C,B) 6 carbides and (Cr,Fe) 2 B borides, formed along the grain boundaries in a 304 austenitic stainless steel containing boron of 33 ppm after solution treatment at 1100 C for 1 h followed by isothermal ageing for 0.5 h at temperatures ranging from 750 to 1050 C have been identified. The influence of these precipitates on the grain boundary hardening has been investigated by means of micro-Vickers hardness measurements. It is found that the degree of grain boundary hardening below 900 C decreases, while it increases above 900 C with increasing ageing temperature. The dissolution of (Cr,Fe) 23 (C,B) 6 carbides and the precipitation of (Cr,Fe) 2 B borides are associated with the changes of grain boundary hardening in this B-bearing 304 austenitic stainless steel between 750 and 1100 C. The non-equilibrium boron segregation enhances the grain boundary hardening when the ageing temperature is above 900 C. (orig.)

  2. Electron scattering at surfaces and grain boundaries in thin Au films

    Energy Technology Data Exchange (ETDEWEB)

    Henriquez, Ricardo [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 110-V, Valparaíso (Chile); Flores, Marcos; Moraga, Luis [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada 2008, Casilla 487-3, Santiago 8370449 (Chile); Kremer, German [Bachillerato, Universidad de Chile, Las Palmeras 3425, Santiago 7800024 (Chile); González-Fuentes, Claudio [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 110-V, Valparaíso (Chile); Munoz, Raul C., E-mail: ramunoz@ing.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada 2008, Casilla 487-3, Santiago 8370449 (Chile)

    2013-05-15

    The electron scattering at surfaces and grain boundaries is investigated using polycrystalline Au films deposited onto mica substrates. We vary the three length scales associated with: (i) electron scattering in the bulk, that at temperature T is characterized by the electronic mean free path in the bulk ℓ{sub 0}(T); (ii) electron-surface scattering, that is characterized by the film thickness t; (iii) electron-grain boundary scattering, that is characterized by the mean grain diameter D. We varied independently the film thickness from approximately 50 nm to about 100 nm, and the typical grain size making up the samples from 12 nm to 160 nm. We also varied the scale of length associated with electron scattering in the bulk by measuring the resistivity of each specimen at temperatures T, 4 K < T < 300 K. Cooling the samples to 4 K increases ℓ{sub 0}(T) by approximately 2 orders of magnitude. Detailed measurements of the grain size distribution as well as surface roughness of each sample were performed with a Scanning Tunnelling Microscope (STM). We compare, for the first time, theoretical predictions with resistivity data employing the two theories available that incorporate the effect of both electron-surface as well as electron-grain boundary scattering acting simultaneously: the theory of A.F. Mayadas and M. Shatzkes, Phys. Rev. 1 1382 (1970) (MS), and that of G. Palasantzas, Phys. Rev. B 58 9685 (1998). We eliminate adjustable parameters from the resistivity data analysis, by using as input the grain size distribution as well as the surface roughness measured with the STM on each sample. The outcome is that both theories provide a fair representation of both the temperature as well as the thickness dependence of the resistivity data, but yet there are marked differences between the resistivity predicted by these theories. In the case of the MS theory, when the average grain diameter D is significantly smaller than ℓ{sub 0}(300) = 37 nm, the electron mean

  3. Grain boundaries in Ni3Al. 2

    International Nuclear Information System (INIS)

    Kung, H.; Sass, S.L.

    1992-01-01

    This paper discusses the dislocation structure of small angle tilt and twist boundaries in ordered Ni 3 Al, with and without boron, investigated using transmission electron microscopy. Dislocation with Burgers vectors that correspond to anti-phase boundary (APB)-coupled superpartials were found in small angle twist boundaries in both boron-free and boron-doped Ni 3 Al, and a small angle tilt boundary in boron-doped Ni 3 Al. The boundary structures are in agreement with theoretical models proposed by Marcinkowski and co-workers. The APB energy determined from the dissociation of the grain boundary dislocations was lower than values reported for isolated APBs in Ni 3 Al. For small angle twist boundaries the presence of boron reduced the APB energy at the interface until it approached zero. This is consistent with the structure of these boundaries containing small regions of increased compositional disorder in the first atomic plane next to the interface

  4. Precession electron diffraction for SiC grain boundary characterization in unirradiated TRISO fuel

    International Nuclear Information System (INIS)

    Lillo, T.M.; Rooyen, I.J. van; Wu, Y.Q.

    2016-01-01

    Highlights: • SiC grain orientation determined by TEM-based precession electron diffraction. • Orientation data improved with increasing TEM sample thickness. • Fraction of low angle grain boundaries lower from PED data than EBSD data. • Fractions of high angle and CSL-related boundaries similar to EBSD data. - Abstract: Precession electron diffraction (PED), a transmission electron microscopy-based technique, has been evaluated for the suitability for evaluating grain boundary character in the SiC layer of tristructural isotropic (TRISO) fuel. This work reports the effect of transmission electron microscope (TEM) lamella thickness on the quality of data and establishes a baseline comparison to SiC grain boundary characteristics, in an unirradiated TRISO particle, determined previously using a conventional electron backscatter diffraction (EBSD) scanning electron microscope (SEM)-based technique. In general, it was determined that the lamella thickness produced using the standard focused ion beam (FIB) fabrication process (∼80 nm), is sufficient to provide reliable PED measurements, although thicker lamellae (∼120 nm) were found to produce higher quality orientation data. Also, analysis of SiC grain boundary character from the TEM-based PED data showed a much lower fraction of low-angle grain boundaries compared to SEM-based EBSD data from the SiC layer of a TRISO-coated particle made using the same fabrication parameters and a SiC layer deposited at a slightly lower temperature from a surrogate TRISO particle. However, the fractions of high-angle and coincident site lattice (CSL)-related grain boundaries determined by PED are similar to those found using SEM-based EBSD. Since the grain size of the SiC layer of TRSIO fuel can be as small as 250 nm (Kirchhofer et al., 2013), depending on the fabrication parameters, and since grain boundary fission product precipitates in irradiated TRISO fuel can be nano-sized, the TEM-based PED orientation data

  5. Grain boundary effects in nanocrystalline diamond

    Czech Academy of Sciences Publication Activity Database

    Mareš, Jiří J.; Hubík, Pavel; Krištofik, Jozef; Nesládek, Miloš

    2008-01-01

    Roč. 205, č. 9 (2008), 2163-2168 ISSN 1862-6300 R&D Projects: GA ČR(CZ) GA202/06/0040 Institutional research plan: CEZ:AV0Z10100521 Keywords : diamond film * grain boundary * superconductivity * noise * ballistic transport Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.205, year: 2008

  6. Formation of intra-island grain boundaries in pentacene monolayers.

    Science.gov (United States)

    Zhang, Jian; Wu, Yu; Duhm, Steffen; Rabe, Jürgen P; Rudolf, Petra; Koch, Norbert

    2011-12-21

    To assess the formation of intra-island grain boundaries during the early stages of pentacene film growth, we studied sub-monolayers of pentacene on pristine silicon oxide and silicon oxide with high pinning centre density (induced by UV/O(3) treatment). We investigated the influence of the kinetic energy of the impinging molecules on the sub-monolayer growth by comparing organic molecular beam deposition (OMBD) and supersonic molecular beam deposition (SuMBD). For pentacene films fabricated by OMBD, higher pentacene island-density and higher polycrystalline island density were observed on UV/O(3)-treated silicon oxide as compared to pristine silicon oxide. Pentacene films deposited by SuMBD exhibited about one order of magnitude lower island- and polycrystalline island densities compared to OMBD, on both types of substrates. Our results suggest that polycrystalline growth of single islands on amorphous silicon oxide is facilitated by structural/chemical surface pinning centres, which act as nucleation centres for multiple grain formation in a single island. Furthermore, the overall lower intra-island grain boundary density in pentacene films fabricated by SuMBD reduces the number of charge carrier trapping sites specific to grain boundaries and should thus help achieving higher charge carrier mobilities, which are advantageous for their use in organic thin-film transistors.

  7. Segregation and Migration of the Oxygen Vacancies in the 3 (111) Tilt Grain Boundaries of Ceria

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Fenglin [Univ. of Tennessee, Knoxville, TN (United States); Liu, Bin [Univ. of Tennessee, Knoxville, TN (United States); Zhang, Yanwen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Weber, William J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-01

    In nanocrystalline materials, defect-grain boundary (GB) interaction plays a key role in determining the structure stability, as well as size-dependent ionic, electronic, magnetic and chemical properties. In this study, we systematically investigated using density functional theory segregation and migration of oxygen vacancies at the Σ3 [110] / (111) grain boundary of ceria. Three oxygen layers near the GB are predicted to be segregation sites for oxygen vacancies. Moreover, the presence of oxygen vacancies stabilizes this tilt GB at a low Fermi level and/or oxygen poor conditions. An atomic strain model was proposed to rationalize layer dependency of the relaxation energy for +2 charged oxygen vacancy. The structural origin of large relaxation energies at layers 1 and 2 was determined to be free-volume space that induces ion relaxation towards the GB. Our results not only pave the way for improving the oxygen transport near GBs of ceria, but also provide important insights into engineering the GB structure for better ionic, magnetic and chemical properties of nanocrystalline ceria.

  8. Growth of single crystalline seeds into polycrystalline strontium titanate: Anisotropy of the mobility, intrinsic drag effects and kinetic shape of grain boundaries

    International Nuclear Information System (INIS)

    Rheinheimer, Wolfgang; Bäurer, Michael; Handwerker, Carol A.; Blendell, John E.; Hoffmann, Michael J.

    2015-01-01

    We present a suite of measurements and combined analyses of grain growth in SrTiO 3 for oriented single crystals into polycrystals. The growth distance and standard deviation and the microstructure evolution along the single crystal–matrix interface are used to locally characterize the change in migration behavior as a function of temperature, time and interface orientation. The relative grain boundary mobility was determined between 1250 °C and 1600 °C for four crystallographic orientations {1 0 0}, {1 1 0}, {1 1 1} and {3 1 0}. An absolute mobility of these orientations is estimated. Under fast growth conditions the morphology of single crystals shows macroscopic stepping with parts of the interface rotating to low mobility orientations. This effect represents a kinetic influence on the grain boundary morphology. The results also indicate dragging effects on microstructure coarsening, which indicate the existence of a critical driving force for grain growth. This critical driving force seems to be related to an ‘intrinsic’ interface drag similar to the solute drag, but based on intrinsic defects. At 1460 °C the growth of single crystals was significantly faster than expected from the mobility of the polycrystal and was identified as exaggerated grain growth. The findings give new insights into the recently published grain growth anomaly of strontium titanate, leading to a hypothesis based on the temperature dependent relative mobility of {1 0 0} oriented grain boundaries

  9. Applied thermodynamics: Grain boundary segregation

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel; Zheng, L.; Hofmann, S.; Šob, Mojmír

    2014-01-01

    Roč. 16, č. 3 (2014), s. 1462-1484 ISSN 1099-4300 R&D Projects: GA ČR(CZ) GAP108/12/0311; GA ČR GAP108/12/0144; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68378271 ; RVO:68081723 Keywords : interfacial segregation * Gibbs energy of segregation * enthalpy * entropy * volume * grain boundaries * iron Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.502, year: 2014

  10. Present state of the controversy about the grain boundary relaxation

    International Nuclear Information System (INIS)

    Povolo, F.; Molinas, B.J.

    1990-04-01

    An analysis of the internal friction produced by grain boundary relaxation in metals, alloys and ceramics is presented. The different interpretations given in the literature to relaxation phenomena occurring at temperatures above about half the melting point which include the influence of grain boundaries and their interaction with solutes and precipitates are discussed in detail. A complete set of the experimental data disposable in this field since 1972 until today is reviewed. Finally, some recent experiments are discussed and new ones are suggested. They might solve the actual controversy about the real origin of the relaxation phenomena observed. If this is the case, a considerable amount of information already published can be taken into account with a good degree of confidence. This information contributes to the description of the structure and behaviour of grain boundaries, both being important topics for materials science. (author). 119 refs, 21 figs, 1 tab

  11. Coercivity degradation caused by inhomogeneous grain boundaries in sintered Nd-Fe-B permanent magnets

    Science.gov (United States)

    Chen, Hansheng; Yun, Fan; Qu, Jiangtao; Li, Yingfei; Cheng, Zhenxiang; Fang, Ruhao; Ye, Zhixiao; Ringer, Simon P.; Zheng, Rongkun

    2018-05-01

    Quantitative correlation between intrinsic coercivity and grain boundaries in three dimensions is critical to further improve the performance of sintered Nd-Fe-B permanent magnets. Here, we quantitatively reveal the local composition variation across and especially along grain boundaries using the powerful atomic-scale analysis technique known as atom probe tomography. We also estimate the saturation magnetization, magnetocrystalline anisotropy constant, and exchange stiffness of the grain boundaries on the basis of the experimentally determined structure and composition. Finally, using micromagnetic simulations, we quantify the intrinsic coercivity degradation caused by inhomogeneous grain boundaries. This approach can be applied to other magnetic materials for the analysis and optimization of magnetic properties.

  12. An improved procedure for determining grain boundary diffusion coefficients from averaged concentration profiles

    Science.gov (United States)

    Gryaznov, D.; Fleig, J.; Maier, J.

    2008-03-01

    Whipple's solution of the problem of grain boundary diffusion and Le Claire's relation, which is often used to determine grain boundary diffusion coefficients, are examined for a broad range of ratios of grain boundary to bulk diffusivities Δ and diffusion times t. Different reasons leading to errors in determining the grain boundary diffusivity (DGB) when using Le Claire's relation are discussed. It is shown that nonlinearities of the diffusion profiles in lnCav-y6/5 plots and deviations from "Le Claire's constant" (-0.78) are the major error sources (Cav=averaged concentration, y =coordinate in diffusion direction). An improved relation (replacing Le Claire's constant) is suggested for analyzing diffusion profiles particularly suited for small diffusion lengths (short times) as often required in diffusion experiments on nanocrystalline materials.

  13. Non-equilibrium grain boundary segregation of boron in austenitic stainless steel - IV. Precipitation behaviour and distribution of elements at grain boundaries

    International Nuclear Information System (INIS)

    Karlsson, L.; Norden, H.

    1988-01-01

    The distribution of elements and the precipitation behaviour at grain boundaries have been studied in boron containing AISI 316L and ''Mo-free AISI 316L'' type austenitic stainless steels. A combination of microanalytical techniques was used to study the boundary regions after cooling at 0.29-530 0 C/s from 800, 1075 or 1250 0 C. Tetragonal M/sub 2/B, M/sub 5/B/sub 3/ and M/sub 3/B/sub 2/, all rich in Fe, Cr and Mo, precipitated in the ''high B'' (40 ppm) AISI 316L steel whereas orthorhombic M/sub 2/B, rich in Cr and Fe was found in the ''Mo-free steel'' with 23 ppm B. In the ''high B steel'' a thin (<2nm), continuous layer, containing B, Cr, Mo and Fe and having a stoichiometry of typically M/sub 9/B, formed at boundaries after cooling at intermediate cooling rates. For both types of steels a boundary zone was found, after all heat treatments, with a composition differing significantly from the bulk composition. The differences were most marked after cooling at intermediate cooling rates. In both types of steel boundary depletion of Cr and enrichment of B and C occurred. It was found that non-equilibrium grain boundary segregation of boron can affect the precipitation behaviour by making the boundary composition enter a new phase field ''Non-equilibrium phases'' might also form. The synergistic effect of B and Mo on the boundary composition and precipitation behaviour, and the observed indications of C non-equilibrium segregation are discussed

  14. The diffusional growth of a grain boundary crack

    International Nuclear Information System (INIS)

    Puls, M.P.; Dutton, R.

    1977-10-01

    This report considers the possibility of high temperature rupture occurring by a grain boundary diffusional mechanism. It is assumed that a pre-existing, intergranular crack grows by loss of atoms from the crack tip to the grain boundary. Rupture occurs when the crack has grown to a critical length. A theoretical treatment of the kinetics of crack growth is presented and equations are derived for the crack velocity and time to rupture. A comparison is made with a previous theoretical model developed by Charles, together with rupture data obtained experimentally for the nickel-based alloy, Nimonic 80A. We conclude that experimental verification of the theoretical models requires a comparison with crack velocity data rather than time to rupture data. (author)

  15. Local defect correction for boundary integral equation methods

    NARCIS (Netherlands)

    Kakuba, G.; Anthonissen, M.J.H.

    2014-01-01

    The aim in this paper is to develop a new local defect correction approach to gridding for problems with localised regions of high activity in the boundary element method. The technique of local defect correction has been studied for other methods as finite difference methods and finite volume

  16. Deformation by grain boundary sliding and slip creep versus diffusional creep

    International Nuclear Information System (INIS)

    Ruano, O A; Sherby, O D; Wadsworth, J.

    1998-01-01

    A review is presented of the debates between the present authors and other investigators regarding the possible role of diffusional creep in the plastic flow of polycrystalline metals at low stresses. These debates are recorded in eleven papers over the past seventeen years. ln these papers it has been shown that the creep rates of materials in the so-called diffusional creep region are almost always higher than those predicted by the diffusional creep theory. Additionally, the predictions of grain size effects and stress exponents from diffusional creep theory are often not found in the experimental data. Finally, denuded zones have been universally considered to be direct evidence for diffusional creep; but, those reported in the literature are shown to be found only under conditions where a high stress exponent is observed. Also, the locations of the denuded zones do not match those predicted. Alternative mechanisms are described in which diffusion-controlled dislocation creep and/or grain boundary sliding are the dominant deformation processes in low-stress creep. It is proposed that denuded zones are formed by stress-directed grain boundary migration with the precipitates dissolving in the moving grain boundaries. The above observations have led us to the conclusion that grain boundary sliding and slip creep are in fact the principal mechanisms for observations of plastic flow in the so-called diffusional creep regions

  17. Automatic kinetic Monte-Carlo modeling for impurity atom diffusion in grain boundary structure of tungsten material

    Directory of Open Access Journals (Sweden)

    Atsushi M. Ito

    2017-08-01

    Full Text Available The diffusion process of hydrogen and helium in plasma-facing material depends on the grain boundary structures. Whether a grain boundary accelerates or limits the diffusion speed of these impurity atoms is not well understood. In the present work, we proposed the automatic modeling of a kinetic Monte-Carlo (KMC simulation to treat an asymmetric grain boundary structure that corresponds to target samples used in fusion material experiments for retention and permeation. In this method, local minimum energy sites and migration paths for impurity atoms in the grain boundary structure are automatically found using localized molecular dynamics. The grain boundary structure was generated with the Voronoi diagram. Consequently, we demonstrate that the KMC simulation for the diffusion process of impurity atoms in the generated grain boundary structure of tungsten material can be performed.

  18. Grain boundary precipitation in an austenitic stainless steel

    International Nuclear Information System (INIS)

    Jones, A.R.; Howell, P.R.; Ralph, B.

    The precipitation of second phase particles of niobium carbide in an austenitic stainless steel is shown to be considerably influenced by the degree of deformation introduced prior to the ageing treatment. Sites for the nucleation of second phase particles are identified and the importance of one type of nucleation site, extrinsic dislocations, to the evolution of the final boundary precipitate distributions is emphasized. Further, it is shown that the presence of a grain boundary can effect precipitation processes for some considerable distance into the matrix on either side of the boundary. (author)

  19. Grain boundary layer behavior in ZnO/Si heterostructure

    International Nuclear Information System (INIS)

    Liu Bingce; Liu Cihui; Yi Bo

    2010-01-01

    The grain boundary layer behavior in ZnO/Si heterostucture is investigated. The current-voltage (I-V) curves, deep level transient spectra (DLTS) and capacitance-voltage (C-V) curves are measured. The transport currents of ZnO/Si heterojunction are dominated by grain boundary layer as high densities of interfacial states existed. The interesting phenomenon that the crossing of In I-V curves of ZnO/Si heterojunction at various measurement temperatures and the decrease of its effective barrier height with the decrement of temperature are in contradiction with the ideal heterojunction thermal emission model is observed. The details will be discussed in the following. (semiconductor physics)

  20. Atom Probe Tomography of Phase and Grain Boundaries in Experimentally-Deformed and Hot-Pressed Wehrlite

    Science.gov (United States)

    Cukjati, J.; Parman, S. W.; Cooper, R. F.; Zhao, N.

    2017-12-01

    Atom probe tomography (APT) was used to characterize the chemistry of three grain boundaries: an olivine-olivine (ol-ol) and olivine-clinopyroxene (ol-cpx) boundary in fine-grained experimentally-deformed wehrlite and an ol-cpx boundary in a fine-grained, hot-pressed wehrlite. Grain boundaries were extracted and formed into APT tips using a focused ion beam (FIB). The tips were analyzed in a reflectron-equipped LEAP4000HR (Harvard University) at 1% or 0.5% detection rate, 5pJ laser energy and 100kHz pulse rate. Total ion counts are between 40 and 100 million per tip. Examination of grain and phase boundaries in wehrlite are of interest since slow-diffusing and olivine-incompatible cations present in cpx (e.g. Ca and Al) may control diffusion-accommodated grain boundary sliding and affect mantle rheology (Sundberg & Cooper, 2008). At steady state, ol-cpx aggregates are weaker than either ol or cpx end member, the results of which are not currently well-explained. We investigate grain boundary widths to understand the transport of olivine-incompatible elements. Widths of grain/phase boundary chemical segregation are between 3nm and 6nm for deformed ol-ol and ol-cpx samples; minimally-deformed (hot-pressed) samples having slightly wider chemical segregation widths. Chemical segregation widths were determined from profiles of Na, Al, P, Cl, K, Ca, or Ni, although not all listed elements can be used for all samples (e.g. Na, K segregation profiles can only be observed for ol-ol sample). These estimates are consistent with prior estimates of grain boundary segregation by atom probe tomography on ol-ol and opx-opx samples (Bachhav et al., 2015) and are less than ol-ol interface widths analyzed by STEM/EDX (Hiraga, Anderson, & Kohlstedt, 2007). STEM/EDX will be performed on deformed wehrlite to investigate chemical profile as a function of applied stress orientation and at length scales between those observable by APT and EPMA. Determination of phase boundary chemistry and

  1. On the search for experimentally observed grain boundary phase transitions

    International Nuclear Information System (INIS)

    Balluffi, R.W.; Hsieh, T.E.

    1987-07-01

    The phase space for a heterogeneous system containing a grain boundary involves a relatively large number of variables (i.e., at least six plus the number of components), and it is therefore conceptually possible to induce a large variety of grain boundary phase transitions by selectively varying these parameters. Despite this, a review of the literature reveals that there have been virtually no clear-cut experimental observations of transitions reported in which the boundary structure has been observed as a function of time under well defined conditions. In current work, we are searching for roughening/faceting transitions and melting transitions for boundaries in Al by hot stage transmission electron microscopy. A clear example of a reversible roughening/faceting transition has been found. No evidence for melting has been found for temperatures as high as 0.96 T/sub m/ (by monitoring GBD core delocalization in several special boundaries with Σ ≤ 13) or 0.999 T/sub m/ (by observing the local diffraction contrast at general boundaries in polycrystalline specimens)

  2. Twin and grain boundary in InP: A synchrotron radiation study

    International Nuclear Information System (INIS)

    Han, Y.; Liu, X.; Jiao, J.; Lin, L.; Jiang, J.; Wang, Z.; Tian, Y.

    1998-01-01

    Experimentally observed X-ray reflectivity curves show bi-crystal(twin) characteristics. The study revealed that there was defect segregation at the twin boundary. Stress was relaxed at the edge of the boundary. Relaxation of the stress resulted in formation of twin and other defects. As a result of formation of such defects, a defect-free and stress-free zone or low defect density and small stress zone is created around the defects. So a twin model was proposed to explain the experimental results. Stress(mainly thermal stress), chemical stoichiometry deviation and impurities nonhomogeneous distributions are the key factors that cause twins in LEC InP crystal growth. Twins on (111) face in LEC InP crystal were studied. Experimental evidence of above mentioned twin model and suggestions on how to get twin-free LEC InP single crystals will be discussed

  3. Natural defects and defects created by ionic implantation in zinc tellurium

    International Nuclear Information System (INIS)

    Roche, J.P.; Dupuy, M.; Pfister, J.C.

    1977-01-01

    Various defects have been studied in ZnTe crystals by transmission electron microscope and by scanning electron microscope in cathodo-luminescence mode: grain boundaries, sub-grain boundaries, twins. Ionic implants of boron (100 keV - 2x10 14 and 10 15 ions cm -2 ) were made on these crystals followed by isochrone annealing (30 minutes) of zinc under partial pressure at 550, 650 and 750 0 C. The nature of the defects was determined by transmission electron microscope: these are interstitial loops (b=1/3 ) the size of which varies between 20 A (non-annealed sample) and 180A (annealed at 750 0 C). The transmission electron microscope was also used to make concentration profiles of defects depending on depth. It is found that for the same implant (2x10 14 ions.cm -2 ), the defect peak moves towards the exterior of the crystal as the annealing temperature rises (400 - 1000 and 7000 A for the three annealings). These results are explained from a model which allows for the coalescence of defects and considers the surface of the sample as being the principal source of vacancies. During the annealings, the migration of vacancies brings about the gradual annihilation of the implant defects. The adjustment of certain calculation parameters on the computer result in giving 2 eV as energy value for the formation of vacancies [fr

  4. Estimation of grain boundary diffusivity in near-α titanium polycrystals

    International Nuclear Information System (INIS)

    Brockman, Robert A.; Pilchak, Adam L.; John Porter, W.; John, Reji

    2011-01-01

    The role of enhanced grain boundary diffusivity in high-temperature diffusion of interstitial elements through metals is widely recognized but poorly characterized in most materials. This paper summarizes an effort to estimate grain boundary diffusivity of oxygen in a near-α titanium alloy, Ti-6Al-2Sn-4Zr-2Mo-0.1Si, by explicitly incorporating microstructure obtained from electron backscatter diffraction into an analytical model. Attention is focused on near-surface diffusion behavior contributing to the rapid ingress of oxygen and possible crack initiation in high-temperature environments.

  5. Investigation and optimization of YBa2Cu3O7-δ grain boundaries and coated conductors

    International Nuclear Information System (INIS)

    Held, Rainer Robert Martin

    2010-01-01

    With increasing misorientation angle grain boundaries strongly reduce the critical current density of high temperature superconductors. For this reason costly techniques are used in production of modern Coated Conductors to induce sharp textures in the polycrystalline superconductor layers. In this dissertation measurements of the critical current density of different grain boundary types are presented showing that out-of-plane grain boundaries exhibit, also in applied magnetic fields, much higher critical current densities than expected. In further analysis of the grain boundaries indications for a microstructural reason of the high critical current densities were found. The high critical current densities of the out-of-plane grain boundaries should in fabrication of Coated Conductors allow for a relaxation of the out-of-plane grain alignment requirements and a concomitant cost reduction. In this work also results of a industrial cooperation with Nexans are presented demonstrating that the critical current density of metal-organic deposited grain boundaries and Coated Conductor layers can be increased by selective Calcium-doping. In the experiments selective Calcium-doping most effectively increased the critical current density of weak spots. (orig.)

  6. On the orientation dependent grain boundary migration in an Fe-6at.%Si alloy

    International Nuclear Information System (INIS)

    Lejcek, P.; Adamek, J.

    1995-01-01

    The [100]symmetrical tilt grain boundaries in an Fe-6at.%Si alloy were found to exhibit as pronounced anisotropy of activation enthalpy of migration characterized by its high values for special boundaries as compared to general ones. This rather surprising posing three main contributions to the migration enthalpy: intrinsic migration enthalpy, migration enthalpy resulting from grain boundary segregation, and migration enthalpy resulting from alloy mixing. It is shown that the differences in migration enthalpy of special and general grain boundaries in a concentrated alloy reflect the prevailing character of the intrinsic migration enthalpy over the weakened segregation effects. (orig.)

  7. Thermally activated phase slippage in high- T sub c grain-boundary Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Gross, R.; Chaudhari, P.; Dimos, D.; Gupta, A.; Koren, G. (IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (USA))

    1990-01-08

    The effect of thermally activated phase slippage (TAPS) in YBa{sub 2}Cu{sub 3}O{sub 7} grain-boundary Josephson junctions has been studied. TAPS has been found to be responsible for the dc noise voltage superimposed on the dc Josephson current near the transition temperature. Because of the reduced Josephson coupling energy of the grain-boundary junctions, which is caused by a reduced superconducting order parameter at the grain-boundary interface, TAPS is present over a considerable temperature range. The implications of TAPS on the applicability of high-{ital T}{sub {ital c}} Josephson junctions are outlined.

  8. Oxygen diffusion in nanocrystalline yttria-stabilized zirconia: the effect of grain boundaries.

    Science.gov (United States)

    De Souza, Roger A; Pietrowski, Martha J; Anselmi-Tamburini, Umberto; Kim, Sangtae; Munir, Zuhair A; Martin, Manfred

    2008-04-21

    The transport of oxygen in dense samples of yttria-stabilized zirconia (YSZ), of average grain size d approximately 50 nm, has been studied by means of 18O/16O exchange annealing and secondary ion mass spectrometry (SIMS). Oxygen diffusion coefficients (D*) and oxygen surface exchange coefficients (k*) were measured for temperatures 673grain boundaries. Rather, the analysis indicates that grain boundaries hinder oxygen transport.

  9. Grain-boundary effects on the magnetoresistance properties of perovskite manganite films

    International Nuclear Information System (INIS)

    Gupta, A.; Gong, G.Q.; Xiao, G.; Duncombe, P.R.; Lecoeur, P.; Trouilloud, P.; Wang, Y.Y.; Dravid, V.P.; Sun, J.Z.

    1996-01-01

    The role of grain boundaries in the magnetoresistance (MR) properties of the manganites has been investigated by comparing the properties of epitaxial and polycrystalline films of La 0.67 D 0.33 MnO 3-δ (D=Ca,Sr, or vacancies). While the MR in the epitaxial films is strongly peaked near the ferromagnetic transition temperature and is very small at low temperatures, the polycrystalline films show large MR over a wide temperature range down to 5 K. The results are explained in terms of switching of magnetic domains in the grains and disorder-induced canting of Mn spins in the grain-boundary region. copyright 1996 The American Physical Society

  10. Importance of low-angle grain boundaries in YBa2Cu3O7-δ coated conductors

    International Nuclear Information System (INIS)

    Durrell, J H; Rutter, N A

    2009-01-01

    Over the past ten years the perception of grain boundaries in YBa 2 Cu 3 O 7-δ conductors has changed greatly. They are now not a problem to be eliminated, but an inevitable and potentially favourable part of the material. This change has arisen as a consequence of new manufacturing techniques which result in excellent grain alignment, reducing the spread of grain boundary misorientation angles. At the same time there is considerable recent evidence which indicates that the variation of properties of grain boundaries with mismatch angle is more complex than a simple exponential decrease in critical current. This is due to the fact that low-angle grain boundaries represent a qualitatively different system to high-angle boundaries. The time is therefore right for a targeted review of research into low-angle YBa 2 Cu 3 O 7-δ grain boundaries. This article does not purport to be a comprehensive review of the physics of grain boundaries as found in YBa 2 Cu 3 O 7-δ in general; for a broader overview we would recommend that the reader consult the comprehensive review of Hilgenkamp and Mannhart (2002 Rev. Mod. Phys. 74 485). The purpose of this article is to review the origin and properties of the low-angle grain boundaries found in YBa 2 Cu 3 O 7-δ coated conductors both individually and as a collective system. (topical review)

  11. Effect of grain boundary microcracks on crack resistance of annealed tungsten

    International Nuclear Information System (INIS)

    Babak, A.V.; Uskov, E.I.

    1984-01-01

    Effect of grain boundary microcracks in tungsten, produced by the method of powder sintering, on its crack resistance after annealing at T=2200 deg C, has been considered. On the basis of complex physncomechanical study of tungsten crack resistance it is shown, that the value of ultimate tensile stress does not depend on temperature. The presence of grain boundary cracks in such material (in the limits from 2 to 8%) does not produce effect on its crack resistance

  12. Statistical model for grain boundary and grain volume oxidation kinetics in UO2 spent fuel

    International Nuclear Information System (INIS)

    Stout, R.B.; Shaw, H.F.; Einziger, R.E.

    1989-09-01

    This paper addresses statistical characteristics for the simplest case of grain boundary/grain volume oxidation kinetics of UO 2 to U 3 O 7 for a fragment of a spent fuel pellet. It also presents a limited discussion of future extensions to this simple case to represent the more complex cases of oxidation kinetics in spent fuels. 17 refs., 1 fig

  13. Nanocompositional Electron Microscopic Analysis and Role of Grain Boundary Phase of Isotropically Oriented Nd-Fe-B Magnets

    Directory of Open Access Journals (Sweden)

    Gregor A. Zickler

    2017-01-01

    Full Text Available Nanoanalytical TEM characterization in combination with finite element micromagnetic modelling clarifies the impact of the grain misalignment and grain boundary nanocomposition on the coercive field and gives guidelines how to improve coercivity in Nd-Fe-B based magnets. The nanoprobe electron energy loss spectroscopy measurements obtained an asymmetric composition profile of the Fe-content across the grain boundary phase in isotropically oriented melt-spun magnets and showed an enrichment of iron up to 60 at% in the Nd-containing grain boundaries close to Nd2Fe14B grain surfaces parallel to the c-axis and a reduced iron content up to 35% close to grain surfaces perpendicular to the c-axis. The numerical micromagnetic simulations on isotropically oriented magnets using realistic model structures from the TEM results reveal a complex magnetization reversal starting at the grain boundary phase and show that the coercive field increases compared to directly coupled grains with no grain boundary phase independently of the grain boundary thickness. This behaviour is contrary to the one in aligned anisotropic magnets, where the coercive field decreases compared to directly coupled grains with an increasing grain boundary thickness, if Js value is > 0.2 T, and the magnetization reversal and expansion of reversed magnetic domains primarily start as Bloch domain wall at grain boundaries at the prismatic planes parallel to the c-axis and secondly as Néel domain wall at the basal planes perpendicular to the c-axis. In summary our study shows an increase of coercive field in isotropically oriented Nd-Fe-B magnets for GB layer thickness > 5 nm and an average Js value of the GB layer < 0.8 T compared to the magnet with perfectly aligned grains.

  14. Mapping grain boundary heterogeneity at the nanoscale in a positive temperature coefficient of resistivity ceramic

    Science.gov (United States)

    Holsgrove, Kristina M.; Kepaptsoglou, Demie M.; Douglas, Alan M.; Ramasse, Quentin M.; Prestat, Eric; Haigh, Sarah J.; Ward, Michael B.; Kumar, Amit; Gregg, J. Marty; Arredondo, Miryam

    2017-06-01

    Despite being of wide commercial use in devices, the orders of magnitude increase in resistance that can be seen in some semiconducting BaTiO3-based ceramics, on heating through the Curie temperature (TC), is far from well understood. Current understanding of the behavior hinges on the role of grain boundary resistance that can be modified by polarization discontinuities which develop in the ferroelectric state. However, direct nanoscale resistance mapping to verify this model has rarely been attempted, and the potential approach to engineer polarization states at the grain boundaries, that could lead to optimized positive temperature coefficient (PTC) behavior, is strongly underdeveloped. Here we present direct visualization and nanoscale mapping in a commercially optimized BaTiO3-PbTiO3-CaTiO3 PTC ceramic using Kelvin probe force microscopy, which shows that, even in the low resistance ferroelectric state, the potential drop at grain boundaries is significantly greater than in grain interiors. Aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy reveal new evidence of Pb-rich grain boundaries symptomatic of a higher net polarization normal to the grain boundaries compared to the purer grain interiors. These results validate the critical link between optimized PTC performance and higher local polarization at grain boundaries in this specific ceramic system and suggest a novel route towards engineering devices where an interface layer of higher spontaneous polarization could lead to enhanced PTC functionality.

  15. Mapping grain boundary heterogeneity at the nanoscale in a positive temperature coefficient of resistivity ceramic

    Directory of Open Access Journals (Sweden)

    Kristina M. Holsgrove

    2017-06-01

    Full Text Available Despite being of wide commercial use in devices, the orders of magnitude increase in resistance that can be seen in some semiconducting BaTiO3-based ceramics, on heating through the Curie temperature (TC, is far from well understood. Current understanding of the behavior hinges on the role of grain boundary resistance that can be modified by polarization discontinuities which develop in the ferroelectric state. However, direct nanoscale resistance mapping to verify this model has rarely been attempted, and the potential approach to engineer polarization states at the grain boundaries, that could lead to optimized positive temperature coefficient (PTC behavior, is strongly underdeveloped. Here we present direct visualization and nanoscale mapping in a commercially optimized BaTiO3–PbTiO3–CaTiO3 PTC ceramic using Kelvin probe force microscopy, which shows that, even in the low resistance ferroelectric state, the potential drop at grain boundaries is significantly greater than in grain interiors. Aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy reveal new evidence of Pb-rich grain boundaries symptomatic of a higher net polarization normal to the grain boundaries compared to the purer grain interiors. These results validate the critical link between optimized PTC performance and higher local polarization at grain boundaries in this specific ceramic system and suggest a novel route towards engineering devices where an interface layer of higher spontaneous polarization could lead to enhanced PTC functionality.

  16. Swelling and gas release of grain-boundary pores in uranium dioxide

    International Nuclear Information System (INIS)

    Schrire, D.I.

    1983-12-01

    The swelling and gas release of overpressured grain boundary pores is sintered unirradiated uranium dioxide were investigated under isothermal conditions. The pores became overpressured when the ambient pressure was reduced, and the excess pressure driving force caused growth and interconnection of the pores, leading to eventual gas release. Swelling was measured continuously by a linear variable differential transformer, and open and closed porosity fractions were determined after the tests by immersion density and quantitative microscopy measurements. The sinter porosity consisted of pores situated on grain faces, grain edges, and grain corners. Isolated pores maintained their equilibrium shape while growing, without any measurable change in dihedral angle. Interconnection occurred predominantly along grain edges, without any evidence of pore sharpening or crack propagation at low driving forces. Extensive open porosity occurred at a threshold density of about 85% TD. There was an almost linear dependence of the initial swelling rate on the driving force, with an activation energy of 200+- 8 kJ/mole, in good agreement with published values of the activation energy for grain boundary diffusion

  17. Investigations of the electrical neutralization and bonding mechanisms of shallow impurities in silicon grain boundaries

    International Nuclear Information System (INIS)

    Kazmerski, L.L.; Nelson, A.J.; Dhere, R.G.; Abou-Elfotouh, F.

    1987-01-01

    Interactions between shallow acceptors (B, Al, Ga and In) and hydrogen in polycrystalline Si are investigated. The bonding mechanisms involved in the acceptor neutralization process at grain boundaries are examined using microanalytical techniques. Differences in the incorporation of molecular and atomic hydrogen, and corresponding variations in electrical passivation at grain boundaries, are observed. Low-temperature Auger difference spectroscopy confirms Si-H bonding to dominate B, Ga and In-doped cases, with no direct acceptor-hydrogen bonding. Al-rich grain boundaries show H-complex and hydroxyl bonding. The data confirm chemical bond strength trends with B< Ga< In. Volume-indexed AES is utilized to compare bonding and H-distributions in B- and Al-rich grain boundary regions

  18. Detection of grain-boundary resistance to slip transfer using nanoindentation

    NARCIS (Netherlands)

    Soer, WA; De Hosson, JTM

    2005-01-01

    Nanoindentation measurements near a high-angle grain boundary in a Fe-14%Si bicrystal showed dislocation pile-up and transmission across the boundary. The latter is observed as a characteristic displacement jump, from which the Hall-Petch slope can be calculated as a measure for the slip

  19. Effects of microstructures and creep conditions on the fractal dimension of grain boundary fracture in high-temperature creep of heat-resistant alloys

    International Nuclear Information System (INIS)

    Tanaka, Manabu

    1993-01-01

    The effects of microstructural aspects, such as grain size and grain boundary configuration, and creep conditions on the fractal dimension of the grain boundary fracture were examined using several heat-resistant alloys, principally in an analysis scale range between one grain boundary length and specimen size. Grain boundary fracture surface profiles in the heat-resistant alloys exhibited a fractal nature in the scale range between one grain boundary length and specimen size as well as in the scale range below one grain boundary length. The fractal dimension of the grain boundary fracture slightly increased with decreasing grain size and was generally a little larger in the specimens with serrated grain boundaries than in those with straight grain boundaries. The fractal dimension of the grain boundary and the number of grain boundary microcracks which affected the grain boundary fracture patterns were a little larger in the specimen with the smaller grain size, and were also larger in the specimen with serrated grain boundaries. The fractal dimension of the grain boundary fracture increased with decreasing creep stress in the temperature range from 973 to 1422 K in these alloys, since more grain boundary microcracks existed in the specimens ruptured under the lower stresses at the higher temperatures. (orig.) [de

  20. Determination of compositional ordering at grain boundaries in boron-doped Ni3Al

    International Nuclear Information System (INIS)

    Mills, M.J.

    1989-01-01

    The effects of crystal thickness and defocus on the superlattice contrast from HRTEM images have been demonstrated. The results indicate that fine, FCC fringe spacings in the vicinity of these grain boundaries can be produced if the boundary is slightly inclined to the electron beam, creating the false impression that the region is compositionally disordered. For properly chosen defocus conditions and boundary orientation, contrast typical of the ordered structure extends up to the estimated position of the boundary plane. The lack of a distinct disordered region suggests that microplasticity near grain boundaries is not significantly affected by the presence of B, and that its influence must be highly localized to the boundaries

  1. Effect of grain boundary phase on the magnetization reversal process of nanocrystalline magnet using large-scale micromagnetic simulation

    Directory of Open Access Journals (Sweden)

    Hiroshi Tsukahara

    2018-05-01

    Full Text Available We investigated the effects of grain boundary phases on magnetization reversal in permanent magnets by performing large-scale micromagnetic simulations based on Landau–Lifshitz–Gilbert equation under a periodic boundary. We considered planar grain boundary phases parallel and perpendicular to an easy axis of the permanent magnet and assumed the saturation magnetization and exchange stiffness constant of the grain boundary phase to be 10% and 1%, respectively, for Nd2Fe14B grains. The grain boundary phase parallel to the easy axis effectively inhibits propagation of magnetization reversal. In contrast, the domain wall moves across the grain boundary perpendicular to the easy axis. These properties of the domain wall motion are explained by dipole interaction, which stabilizes the antiparallel magnetic configuration in the direction perpendicular to the magnetization orientation. On the other hand, the magnetization is aligned in the same direction by the dipole interaction parallel to the magnetization orientation. This anisotropy of the effect of the grain boundary phase shows that improvement of the grain boundary phase perpendicular to the easy axis effectively enhances the coercivity of permanent magnets.

  2. Grain boundary engineering to control the discontinuous precipitation in multicomponent U10Mo alloy

    Energy Technology Data Exchange (ETDEWEB)

    Devaraj, Arun; Kovarik, Libor; Kautz, Elizabeth; Arey, Bruce; Jana, Saumyadeep; Lavender, Curt; Joshi, Vineet

    2018-06-01

    Grain boundaries in metallic alloys often play a crucial role, not only in determining the mechanical properties or thermal stability of alloys, but also in dictating the phase transformation kinetics during thermomechanical processing. We demonstrate that locally stabilized structure and compositional segregation at grain boundaries—“grain boundary complexions”—in a complex multicomponent alloy can be modified to influence the kinetics of cellular transformation during subsequent thermomechanical processing. Using aberration-corrected scanning transmission electron microscopy and atom probe tomography analysis of a metallic nuclear fuel highly relevant to worldwide nuclear non-proliferation efforts —uranium-10 wt% molybdenum (U-10Mo) alloy, new evidence for the existence of grain boundary complexion is provided. We then modified the concentration of impurities dissolved in Υ-UMo grain interiors and/or segregated to Υ-UMo grain boundaries by changing the homogenization treatment, and these effects were used used to retard the kinetics of cellular transformation during subsequent sub-eutectoid annealing in this U-10-Mo alloy during sub-eutectoid annealing. Thus, this work provided insights on tailoring the final microstructure of the U-10Mo alloy, which can potentially improve the irradiation performance of this important class of alloy fuels.

  3. Superplasticity and grain boundary character distribution in overaged Al-Li-Cu-Mg-Zr alloy

    International Nuclear Information System (INIS)

    Avramovic-Cingara, G.; Aust, K.T.; Perovic, D.D.; McQueen, H.J.

    1995-01-01

    Samples of 8091 alloy were subjected to a thermomechanical processing (TMP) treatment that included the following stages: overaging before deformation, multistage deformation at 300 deg C and strain rate change tests for superplasticity. Torsional deformation was utilized both to develop the refined microstructure and to test for superplasticity. The strain rate sensitivity, m, of the material ranged between 0.30 and 0.45 at 450 deg C for strain rates between 8 x 10 -2 and 10 -3 s -1 . The grain boundary character distribution (GBCD) of thermomechanically processed Al-Li-Cu-Mg-Zr (8091) alloy, which develops good superplastic response, has been determined by an electron backscattering diffraction technique (EBSD). All grain boundaries have been classified into one of three categories in terms of Σ values : low angle, coincidence site lattice and random high angle boundaries. Quantitative studies of grain boundary character were done after various processing stages to obtain evidence about structure evolution and indicate an increase in Σ boundary frequency following TMP. Selected area electron diffraction examination (SAD) gave evidence about the refined structure, in which the grain boundary misorientation increased EBSD how the grain boundary character was changed to high Σ values. TEM analyses indicate that the T 2 phase is responsible for substructure stabilization. There is no evidence of cavity formation during superplastic deformation by torsion, which suggests that cavity nucleation is strongly influenced by the nature of stress. (author). 32 refs., 3 tabs., 9 figs

  4. Grain boundary embrittlement and cohesion enhancement in copper

    Energy Technology Data Exchange (ETDEWEB)

    Paxton, Anthony; Lozovoi, Alexander [Atomistic Simulation Centre, Queen' s University Belfast, BT7 1NN (United Kingdom); Schweinfest, Rainer [Science+Computing ag, Hagellocher Weg 71-5, 720270 T ubingen (Germany); Finnis, Michael [Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom)

    2008-07-01

    There has been a long standing debate surrounding the mechanism of grain boundary embrittlement and cohesion enhancement in metals. Embrittlement can lead to catastrophic failure such as happened in the Hinkley Point disaster, or indeed in the case of the Titanic. This kind of embrittlement is caused by segregation of low solubility impurities to grain boundaries. While the accepted wisdom is that this is a phenomenon driven by electronic or chemical factors, using language such as charge transfer and electronegativity difference; we believe that in copper, at least, both cohesion enhancement and reduction are caused by a simple size effect. We have developed a theory that allows us to separate unambiguously, if not uniquely, chemical and structural factors. We have studied a large number of solutes in copper using first principles atomistic simulation to support this argument, and the results of these calculations are presented here.

  5. Branching-induced grain boundary evolution during directional solidification of columnar dendritic grains

    International Nuclear Information System (INIS)

    Guo, Chunwen; Li, Junjie; Yu, Honglei; Wang, Zhijun; Lin, Xin; Wang, Jincheng

    2017-01-01

    We present an investigation of secondary and tertiary branching behavior in diverging grain boundaries (GBs) between two columnar dendritic grains with different crystallographic orientations, both by two-dimensional phase-field simulations and thin-sample experiments. The stochasticity of the GB trajectories and the statistically averaged GB orientations were analyzed in detail. The side-branching dynamics and subsequent branch competition behaviors found in the simulations agreed well with the experimental results. When the orientations of two grains are given, the experimental results indicated that the average GB orientation was independent of the pulling velocity in the dendritic growth regime. The simulation and experimental results, as well as the results reported in the literature exhibit a uniform relation between the percentage of the whole gap region occupied by the favorably oriented grain and the difference in the absolute values of the secondary arm growth directions of the two competitive grains. By describing such a uniform relation with a simple fitting equation, we proposed a simple analytical model for the GB orientation at diverging GBs, which gives a more accurate description of GB orientation selection than the existing models.

  6. Superconductivity of individual grains and inter-grain boundaries for polycrystalline FeSr2YCu2O6+y

    International Nuclear Information System (INIS)

    Yamaguchi, K.; Hata, Y.; Mochiku, T.; Yasuoka, H.

    2013-01-01

    Polycrystalline FeSr 2 YCu 2 O 6+y was synthesized and its transport and magnetic properties were studied. Diamagnetism was observed below 60 K. Zero resistivity was observed below 38 K under zero magnetic field and below 10 K under 160 kOe. A two-step transition was observed in resistivity measurement due to the superconductivity in individual grains and across inter-grain boundaries. The critical current density in individual grains, J c intra , at 2 K under 1 kOe was deduced 3.4 × 10 5 A/cm 2 from the Bean model. In contrast, the critical current density in inter-grain boundaries, J c inter , at 2 K was 1.7 A/cm 2 in voltage–current measurement. The two-step transition seems to result from the large difference between J c intra and J c inter

  7. Influence of microstructure on grain boundary sliding of alloys 600 and 690

    International Nuclear Information System (INIS)

    Kergaravat, J.F.; Guetaz, L.; Baillin, X.; Robert, G.

    1995-01-01

    The influence of deformation and damage mechanisms, and more especially of the grain boundary sliding effect, on the stress corrosion of nickel base alloys used in nuclear industry (exchanger tubes), has been experimentally examined. The grain boundary sliding effect has been measured at 500 C and 320 C on several samples of alloy 690 and 600 (in the mill annealed and mill annealed heat treated conditions). (author). 4 figs., 1 tab

  8. Large modulation of carrier transport by grain-boundary molecular packing and microstructure in organic thin films

    KAUST Repository

    Rivnay, Jonathan

    2009-11-08

    Solution-processable organic semiconductors are central to developing viable printed electronics, and performance comparable to that of amorphous silicon has been reported for films grown from soluble semiconductors. However, the seemingly desirable formation of large crystalline domains introduces grain boundaries, resulting in substantial device-to-device performance variations. Indeed, for films where the grain-boundary structure is random, a few unfavourable grain boundaries may dominate device performance. Here we isolate the effects of molecular-level structure at grain boundaries by engineering the microstructure of the high-performance n-type perylenediimide semiconductor PDI8-CN 2 and analyse their consequences for charge transport. A combination of advanced X-ray scattering, first-principles computation and transistor characterization applied to PDI8-CN 2 films reveals that grain-boundary orientation modulates carrier mobility by approximately two orders of magnitude. For PDI8-CN 2 we show that the molecular packing motif (that is, herringbone versus slip-stacked) plays a decisive part in grain-boundary-induced transport anisotropy. The results of this study provide important guidelines for designing device-optimized molecular semiconductors. © 2009 Macmillan Publishers Limited. All rights reserved.

  9. Grain boundary sweeping and dissolution effects on fission product behaviour under severe fuel damage accident conditions

    International Nuclear Information System (INIS)

    Rest, J.

    1986-01-01

    The theoretical FASTGRASS-VFP model has been used in the interpretation of fission gas, iodine, tellurium, and cesium release from severe-fuel-damage (SFD) tests performed in the PBF reactor in Idaho. A theory of grain boundary sweeping of gas bubbles, gas bubble behavior during fuel liquefaction (destruction of grain boundaries due to formation of a U-rich melt phase), and during U-Zr eutectic melting has been included within the FASTGRASS-VFP formalism. The grain-boundary-sweeping theory considers the interaction between the moving grain boundary and two distinct size classes of bubbles, those on grain faces and on grain edges. The theory of the effects of fuel liquefaction and U-Zr eutectic melting on fission product behaviour considers the migration and coalescence of fission gas bubbles in either molten uranium, or a Zircaloy-Uranium eutectic melt. Results of the analyses demonstrate that intragranular fission product behavior during the tests can be interpreted in terms of a grain-growth/grain-boundary-sweeping mechanism that enhances the flow of fission products from within the grains to the grain boundaries. Whereas fuel liquefaction leads to an enhanced release of fission products in trace-irradiated fuel, the occurrence of fuel liquefaction in normally-irradiated fuel can degrade fission product release. This phenomenon is due in part to reduced gas-bubble mobilities in a viscous medium as compared to vapor transport, and in part to a degradation of grain growth rates and the subsequent decrease in grain-boundary sweeping of intragranular fission products into the liquified lamina. The analysis shows that total UO 2 dissolution due to eutectic melting leads to increased release for both trace-irradiated and normally-irradiated fuel. The FASTGRASS-VFP predictions, measured release rates from the above tests, and previously published release rates are compared and differences between fission product behavior in trace-irradiated and in normally

  10. The effect of electron scattering from disordered grain boundaries on the resistivity of metallic nanostructures

    International Nuclear Information System (INIS)

    Arenas, Claudio; Henriquez, Ricardo; Moraga, Luis; Muñoz, Enrique; Munoz, Raul C.

    2015-01-01

    Highlights: • Quantum theory of the resistivity arising from electron-grain boundary scattering in nanometric metallic structures. • The resistivity is controlled by the collective properties of the grain assembly, by the allowed Kronig-Penney (KP) bands and by the electron transmission probability across successive grains. • When the grain diameter d is larger than the electron mean free path l, the increase in resistivity arises mainly from a decrease of the number of states at the Fermi surface that are allowed KP bands. • When the grain diameter d is smaller than the electron mean free path l, the increase in resistivity arises primarily from Anderson localization caused by electron transmission across successive grains. - Abstract: We calculate the electrical resistivity of a metallic specimen, under the combined effects of electron scattering by impurities, grain boundaries, and rough surfaces limiting the film, using a quantum theory based upon the Kubo formalism. Grain boundaries are represented by a one-dimensional periodic array of Dirac delta functions separated by a distance “d” giving rise to a Kronig–Penney (KP) potential. We use the Green's function built from the wave functions that are solutions of this KP potential; disorder is included by incorporating into the theory the probability that an electron is transmitted through several successive grain boundaries. We apply this new theory to analyze the resistivity of samples S1, S2, S7 and S8 measured between 4 and 300 K reported in Appl. Surf. Science273, 315 (2013). Although both the classical and the quantum theories predict a resistivity that agrees with experimental data to within a few percent or better, the phenomena giving rise to the increase of resistivity over the bulk are remarkably different. Classically, each grain boundary contributes to the electrical resistance by reflecting a certain fraction of the incoming electrons. In the quantum description, there are states

  11. The effect of electron scattering from disordered grain boundaries on the resistivity of metallic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, Claudio [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada 2008, Casilla 487-3, Santiago 8370449 (Chile); Synopsys Inc., Avenida Vitacura 5250, Oficina 708, Vitacura, Santiago (Chile); Henriquez, Ricardo [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 110-V, Valparaíso (Chile); Moraga, Luis [Universidad Central de Chile, Toesca 1783, Santiago (Chile); Muñoz, Enrique [Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 7820436 (Chile); Munoz, Raul C., E-mail: ramunoz@ing.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada 2008, Casilla 487-3, Santiago 8370449 (Chile)

    2015-02-28

    Highlights: • Quantum theory of the resistivity arising from electron-grain boundary scattering in nanometric metallic structures. • The resistivity is controlled by the collective properties of the grain assembly, by the allowed Kronig-Penney (KP) bands and by the electron transmission probability across successive grains. • When the grain diameter d is larger than the electron mean free path l, the increase in resistivity arises mainly from a decrease of the number of states at the Fermi surface that are allowed KP bands. • When the grain diameter d is smaller than the electron mean free path l, the increase in resistivity arises primarily from Anderson localization caused by electron transmission across successive grains. - Abstract: We calculate the electrical resistivity of a metallic specimen, under the combined effects of electron scattering by impurities, grain boundaries, and rough surfaces limiting the film, using a quantum theory based upon the Kubo formalism. Grain boundaries are represented by a one-dimensional periodic array of Dirac delta functions separated by a distance “d” giving rise to a Kronig–Penney (KP) potential. We use the Green's function built from the wave functions that are solutions of this KP potential; disorder is included by incorporating into the theory the probability that an electron is transmitted through several successive grain boundaries. We apply this new theory to analyze the resistivity of samples S1, S2, S7 and S8 measured between 4 and 300 K reported in Appl. Surf. Science273, 315 (2013). Although both the classical and the quantum theories predict a resistivity that agrees with experimental data to within a few percent or better, the phenomena giving rise to the increase of resistivity over the bulk are remarkably different. Classically, each grain boundary contributes to the electrical resistance by reflecting a certain fraction of the incoming electrons. In the quantum description, there are states

  12. Substitutional Boron in Nanodiamond, Bucky-Diamond, and Nanocrystalline Diamond Grain Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, Amanda S.; Sternberg, Michael G.

    2006-10-05

    Although boron has been known for many years to be a successful dopant in bulk diamond, efficient doping of nanocrystalline diamond with boron is still being developed. In general, the location, configuration, and bonding structure of boron in nanodiamond is still unknown, including the fundamental question of whether it is located within grains or grain boundaries of thin films and whether it is within the core or at the surface of nanoparticles. Presented here are density functional tight-binding simulations examining the configuration, potential energy surface, and electronic charge of substitutional boron in various types of nanocrystalline diamond. The results predict that boron is likely to be positioned at the surface of isolated particles and at the grain boundary of thin-film samples.

  13. Bandgap tunability at single-layer molybdenum disulphide grain boundaries

    KAUST Repository

    Huang, Yu Li

    2015-02-17

    Two-dimensional transition metal dichalcogenides have emerged as a new class of semiconductor materials with novel electronic and optical properties of interest to future nanoelectronics technology. Single-layer molybdenum disulphide, which represents a prototype two-dimensional transition metal dichalcogenide, has an electronic bandgap that increases with decreasing layer thickness. Using high-resolution scanning tunnelling microscopy and spectroscopy, we measure the apparent quasiparticle energy gap to be 2.40±0.05 eV for single-layer, 2.10±0.05 eV for bilayer and 1.75±0.05 eV for trilayer molybdenum disulphide, which were directly grown on a graphite substrate by chemical vapour deposition method. More interestingly, we report an unexpected bandgap tunability (as large as 0.85±0.05 eV) with distance from the grain boundary in single-layer molybdenum disulphide, which also depends on the grain misorientation angle. This work opens up new possibilities for flexible electronic and optoelectronic devices with tunable bandgaps that utilize both the control of two-dimensional layer thickness and the grain boundary engineering.

  14. High density of (pseudo) periodic twin-grain boundaries in molecular beam epitaxy-grown van der Waals heterostructure: MoTe{sub 2}/MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Horacio Coy; Ma, Yujing; Chaghi, Redhouane; Batzill, Matthias [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States)

    2016-05-09

    Growth of transition metal dichalcogenide heterostructures by molecular beam epitaxy (MBE) promises synthesis of artificial van der Waals materials with controllable layer compositions and separations. Here, we show that MBE growth of 2H-MoTe{sub 2} monolayers on MoS{sub 2} substrates results in a high density of mirror-twins within the films. The grain boundaries are tellurium deficient, suggesting that Te-deficiency during growth causes their formation. Scanning tunneling microscopy and spectroscopy reveal that the grain boundaries arrange in a pseudo periodic “wagon wheel” pattern with only ∼2.6 nm repetition length. Defect states from these domain boundaries fill the band gap and thus give the monolayer an almost metallic property. The band gap states pin the Fermi-level in MoTe{sub 2} and thus determine the band-alignment in the MoTe{sub 2}/MoS{sub 2} interface.

  15. Localized solid-state amorphization at grain boundaries in a nanocrystalline Al solid solution subjected to surface mechanical attrition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, X [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080 (China); Tao, N [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Hong, Y [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080 (China); Lu, J [LASMIS, University of Technology of Troyes, 10000, Troyes (France); Lu, K [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2005-11-21

    Using high-resolution electron microscopy, localized solid-state amorphization (SSA) was observed in a nanocrystalline (NC) Al solid solution (weight per cent 4.2 Cu, 0.3 Mn, the rest being Al) subjected to a surface mechanical attrition treatment. It was found that the deformation-induced SSA may occur at the grain boundary (GB) where either the high density dislocations or dislocation complexes are present. It is suggested that lattice instability due to elastic distortion within the dislocation core region plays a significant role in the initiation of the localized SSA at defective sites. Meanwhile, the GB of severely deformed NC grains exhibits a continuously varying atomic structure in such a way that while most of the GB is ordered but reveals corrugated configurations, localized amorphization may occur along the same GB.

  16. Effect of texture on grain boundary misorientation distributions in polycrystalline high temperature superconductors

    International Nuclear Information System (INIS)

    Goyal, A.; Specht, E.D.; Kroeger, D.M.; Mason, T.A.

    1996-01-01

    Computer simulations were performed to determine the most probable grain boundary misorientation distribution (GBMD) in model polycrystalline superconductors. GBMDs in polycrystalline superconductors can be expected to dictate the macroscopic transport critical current density, J c . Calculations were performed by simulating model polycrystals and then determining the GBMD. Such distributions were calculated for random materials having cubic, tetragonal, and orthorhombic crystal symmetry. In addition, since most high temperature superconductors are tetragonal or pseudotetragonal, the effect of macroscopic uniaxial and biaxial grain orientation texture on the GBMD was determined for tetragonal materials. It is found that macroscopic texture drastically alters the grain boundary misorientation distribution. The fraction of low angle boundaries increases significantly with uniaxial and biaxial texture. The results of this study are important in correlating the macroscopic transport J c with the measured grain orientation texture as determined by x-ray diffraction copyright 1996 American Institute of Physics

  17. Electronic and elemental properties of the Cu2ZnSn(S,Se)4 surface and grain boundaries

    International Nuclear Information System (INIS)

    Haight, Richard; Shao, Xiaoyan; Wang, Wei; Mitzi, David B.

    2014-01-01

    X-ray and femtosecond UV photoelectron spectroscopy, secondary ion mass spectrometry and photoluminescence imaging were used to investigate the electronic and elemental properties of the CZTS,Se surface and its oxides. Oxide removal reveals a very Cu poor and Zn rich surface relative to bulk composition. O and Na are observed at the surface and throughout the bulk. Upward bending of the valence bands indicates the presence of negative charge in the surface region and the Fermi level is found near the band gap center. The presence of point defects and the impact of these findings on grain boundary properties will be described

  18. Electronic and elemental properties of the Cu2ZnSn(S,Se)4 surface and grain boundaries

    Science.gov (United States)

    Haight, Richard; Shao, Xiaoyan; Wang, Wei; Mitzi, David B.

    2014-01-01

    X-ray and femtosecond UV photoelectron spectroscopy, secondary ion mass spectrometry and photoluminescence imaging were used to investigate the electronic and elemental properties of the CZTS,Se surface and its oxides. Oxide removal reveals a very Cu poor and Zn rich surface relative to bulk composition. O and Na are observed at the surface and throughout the bulk. Upward bending of the valence bands indicates the presence of negative charge in the surface region and the Fermi level is found near the band gap center. The presence of point defects and the impact of these findings on grain boundary properties will be described.

  19. First-principles study of the effects of segregated Ga on an Al grain boundary

    International Nuclear Information System (INIS)

    Zhang Ying; Lu Guanghong; Wang Tianmin; Deng Shenghua; Shu Xiaolin; Kohyama, Masanori; Yamamoto, Ryoichi

    2006-01-01

    The effects of different amounts of segregated Ga (substitutional) on an Al grain boundary have been investigated by using a first-principles pseudopotential method. The segregated Ga is found to draw charge from the surrounding Al due to the electronegativity difference between Ga and Al, leading to a charge density reduction between Ga and Al as well as along the Al grain boundary. Such an effect can be enhanced by increasing the Ga segregation amount. With further Ga segregated, in addition to the charge-drawing effect that occurs in the Al-Ga interface, a heterogeneous α-Ga-like phase can form in the grain boundary, which greatly alters the boundary structure. These effects are suggested to be responsible for Ga-induced Al intergranular embrittlement

  20. Physics of grain boundaries in polycrystalline photovoltaic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yanfa, E-mail: yanfa.yan@utoledo.edu; Yin, Wan-Jian; Wu, Yelong; Shi, Tingting; Paudel, Naba R. [Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Ohio 43606 (United States); Li, Chen [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Poplawsky, Jonathan [The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Wang, Zhiwei [Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Ohio 43606 (United States); National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Moseley, John; Guthrey, Harvey; Moutinho, Helio; Al-Jassim, Mowafak M. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Pennycook, Stephen J. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2015-03-21

    Thin-film solar cells based on polycrystalline Cu(In,Ga)Se{sub 2} (CIGS) and CdTe photovoltaic semiconductors have reached remarkable laboratory efficiencies. It is surprising that these thin-film polycrystalline solar cells can reach such high efficiencies despite containing a high density of grain boundaries (GBs), which would seem likely to be nonradiative recombination centers for photo-generated carriers. In this paper, we review our atomistic theoretical understanding of the physics of grain boundaries in CIGS and CdTe absorbers. We show that intrinsic GBs with dislocation cores exhibit deep gap states in both CIGS and CdTe. However, in each solar cell device, the GBs can be chemically modified to improve their photovoltaic properties. In CIGS cells, GBs are found to be Cu-rich and contain O impurities. Density-functional theory calculations reveal that such chemical changes within GBs can remove most of the unwanted gap states. In CdTe cells, GBs are found to contain a high concentration of Cl atoms. Cl atoms donate electrons, creating n-type GBs between p-type CdTe grains, forming local p-n-p junctions along GBs. This leads to enhanced current collections. Therefore, chemical modification of GBs allows for high efficiency polycrystalline CIGS and CdTe thin-film solar cells.

  1. Crystalline orientation dependent photoresponse and heterogeneous behaviors of grain boundaries in perovskite solar cells

    Science.gov (United States)

    Jiang, Chuanpeng; Zhang, Pengpeng

    2018-02-01

    Using photoconductive atomic force microscopy and Kelvin probe force microscopy, we characterize the local electrical properties of grains and grain boundaries of organic-inorganic hybrid perovskite (CH3NH3PbI3) thin films on top of a poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS)/ITO substrate. Three discrete photoconductivity levels are identified among perovskite grains, likely corresponding to the crystal orientation of each grain. Local J-V curves recorded on these grains further suggest an anti-correlation behavior between the short circuit current (JSC) and open circuit voltage (VOC). This phenomenon can be attributed to diffusion-limited surface recombination at the non-selective perovskite-tip contact, where a higher carrier mobility established in the perovskite grain results in an enhanced surface recombination and thus a lower VOC. In addition, the photoresponse of perovskite films displays a pronounced heterogeneity across the grain boundaries, with the boundaries formed between grains of the same photoconductivity level displaying even enhanced photocurrent and open circuit voltage compared to those of the adjacent grain interiors. These observations highlight the significance of controlling the microstructure of perovskite thin films, which will be a necessary route for further improving the efficiency of perovskite solar cells.

  2. In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments.

    Science.gov (United States)

    El-Atwani, O; Hinks, J A; Greaves, G; Gonderman, S; Qiu, T; Efe, M; Allain, J P

    2014-05-06

    The accumulation of defects, and in particular He bubbles, can have significant implications for the performance of materials exposed to the plasma in magnetic-confinement nuclear fusion reactors. Some of the most promising candidates for deployment into such environments are nanocrystalline materials as the engineering of grain boundary density offers the possibility of tailoring their radiation resistance properties. In order to investigate the microstructural evolution of ultrafine- and nanocrystalline-grained tungsten under conditions similar to those in a reactor, a transmission electron microscopy study with in situ 2 keV He(+) ion irradiation at 950 °C has been completed. A dynamic and complex evolution in the microstructure was observed including the formation of defect clusters, dislocations and bubbles. Nanocrystalline grains with dimensions less than around 60 nm demonstrated lower bubble density and greater bubble size than larger nanocrystalline (60-100 nm) and ultrafine (100-500 nm) grains. In grains over 100 nm, uniform distributions of bubbles and defects were formed. At higher fluences, large faceted bubbles were observed on the grain boundaries, especially on those of nanocrystalline grains, indicating the important role grain boundaries can play in trapping He and thus in giving rise to the enhanced radiation tolerance of nanocrystalline materials.

  3. Development of micro tensile testing method in an FIB system for evaluating grain boundary strength

    International Nuclear Information System (INIS)

    Fujii, Katsuhiko; Fukuya, Koji

    2010-01-01

    A micro tensile testing method for evaluating grain boundary strength was developed. Specimens of 2 x 2 x 10μm having one grain boundary were made by focused ion beam (FIB) micro-processing and tensioned in an FIB system in situ. The load was measured from the deflection of the silicon cantilever. The method was applied to aged and unaged Fe-Mn-P alloy specimens with different level of grain boundary phosphorus segregation. The load at intergranular fracture decreased with increasing phosphorus segregation. (author)

  4. Microstructure and composition of electromagnetically-characterized YBa2Cu3O7-δ grain boundaries

    International Nuclear Information System (INIS)

    Babcock, S.E.; Zhang, Na; Cai, Xue Yu; Larbalestier, D.C.; Gao, Yufei; Merkle, K.L.; Kaiser, D.L.

    1991-01-01

    The electrical character (flux-pinning, Josephson junction, or resistive) of the grain boundaries in approximately twenty flux-grown YBa 2 Cu 3 O 7-δ bicrystals was determined in previous studies. A selection of these same bicrystals now have been thinned for study by transmission and scanning transmission electron microscopy. High-spatial resolution imaging and analytical techniques reveal microstructural differences among these boundaries that are consistent with their diverse electrical characteristics. The observations offer preliminary insight into some of the feature that control the grain boundary superconducting properties and re-emphasize the very fine scale on which the grain boundary electrical character is determined. 11 refs., 6 figs

  5. A Cosserat crystal plasticity and phase field theory for grain boundary migration

    Science.gov (United States)

    Ask, Anna; Forest, Samuel; Appolaire, Benoit; Ammar, Kais; Salman, Oguz Umut

    2018-06-01

    The microstructure evolution due to thermomechanical treatment of metals can largely be described by viscoplastic deformation, nucleation and grain growth. These processes take place over different length and time scales which present significant challenges when formulating simulation models. In particular, no overall unified field framework exists to model concurrent viscoplastic deformation and recrystallization and grain growth in metal polycrystals. In this work a thermodynamically consistent diffuse interface framework incorporating crystal viscoplasticity and grain boundary migration is elaborated. The Kobayashi-Warren-Carter (KWC) phase field model is extended to incorporate the full mechanical coupling with material and lattice rotations and evolution of dislocation densities. The Cosserat crystal plasticity theory is shown to be the appropriate framework to formulate the coupling between phase field and mechanics with proper distinction between bulk and grain boundary behaviour.

  6. Enthalpy - entropy compensation effect in grain boundary phenomena

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel

    2005-01-01

    Roč. 96, č. 10 (2005), s. 1129-1133 ISSN 0044-3093 R&D Projects: GA MPO(CZ) FF-P2/053 Institutional research plan: CEZ:AV0Z10100520 Keywords : compensation effect * enthalpy * entropy * thermodynamics * grain boundary Subject RIV: BJ - Thermodynamics Impact factor: 0.842, year: 2005

  7. Defects and boundary RG flows in ℂ/ℤ{sub d}

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Melanie; Cabrera, Yaniel [George and Cynthia Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University,College Station, TX 77843-4242 (United States); Robbins, Daniel [Department of Physics, University at Albany,1400 Washington Ave., Albany, NY 12222 (United States)

    2017-02-01

    We show that topological defects in the language of Landau-Ginzburg models carry information about the RG flow between the non-compact orbifolds ℂ/ℤ{sub d}. We show that such defects correctly implement the bulk-induced RG flow on the boundary.

  8. Hydrogen diffusion along grain boundaries in erbium oxide coatings

    International Nuclear Information System (INIS)

    Mao, Wei; Chikada, Takumi; Suzuki, Akihiro; Terai, Takayuki

    2014-01-01

    Diffusion of interstitial atomic hydrogen in erbium oxide (Er 2 O 3 ) was investigated using density functional theory (DFT) and molecular dynamics (MD) methods. Hydrogen diffusivity in bulk, on (0 0 1) surface, and along Σ13 (4–3–1)/[1 1 1] symmetric tilt grain boundaries (GBs) were evaluated in a temperature range of 673–1073 K, as well as hydrogen diffusion barriers. It was found that H diffusion shows the faster on (0 0 1) surface than along GBs and in bulk. Also, energy barrier of H diffusion in bulk estimated by DFT and MD methods is somewhat higher than that along GBs evaluated in the experiments. This suggests that H diffusion in Er 2 O 3 coatings depends on GBs rather than bulk. In addition, with a correction of GB density, the simulated diffusivity along GBs in MD simulations is in good agreement with the experimental data within one order of magnitude. The discrepancy of H diffusivity between the experiments and the simulations should be reduced by considering H concentration, H diffusion direction, deviations of the initial configuration, vacancy defects, etc

  9. The grain boundary segregation of phosphorus in thermally aged and irradiated C-Mn submerged-are weld metal

    International Nuclear Information System (INIS)

    Mendes, C.M.

    1999-01-01

    The segregation of free phosphorus atoms to grain boundaries in C-Mn steels has been identified as an embrittlement mechanism. A change in the brittle fracture mechanism from transgranular to intergranular has been observed for materials with higher phosphorus grain boundary coverage. The grain boundary segregation of phosphorus in various steels used in the nuclear power industry has been thermodynamically and kinetically modelled mostly with the Langmuir-McLean model. Recent publications have also suggested that neutron irradiation can affect segregation and various attempts at modelling this are currently under way. The present paper describes a data base assembled on phosphorus grain boundary coverage measured by Auger electron spectroscopy on thermally aged and irradiated C-Mn submerged-arc weld specimens. Software tools were developed to evaluate the changes in phosphorus grain boundary coverage associated with instantaneous temperature changes and temperature gradients. The phosphorus free energy change associated with grain boundary segregation was modelled from the thermally aged data and used with the software to determine the phosphorus segregation in submerged-arc weld metals following the post weld stress relief heat treatments received prior to plant operation. The phosphorus grain boundary coverage changes arising from the thermal history of submerged-arc weld materials during irradiation were also modelled and found to compare well with data obtained on irradiated materials. It was concluded that under the irradiation conditions sampled, phosphorus grain boundary segregation in submerged-arc weld materials can be modelled successfully using only the thermal term without appealing to an irradiation induced segregation process. (author)

  10. Evaluation of local stress and local hydrogen concentration at grain boundary using three-dimensional polycrystalline model

    International Nuclear Information System (INIS)

    Ebihara, Ken-ichi; Itakura, Mitsuhiro; Yamaguchi, Masatake; Kaburaki, Hideo; Suzudo, Tomoaki

    2010-01-01

    The decohesion model in which hydrogen segregating at grain boundaries reduces cohesive energy is considered to explain hydrogen embrittlement. Although there are several experimental and theoretical supports of this model, its total process is still unclear. In order to understand hydrogen embrittlement in terms of the decohesion model, therefore, it is necessary to evaluate stress and hydrogen concentration at grain boundaries under experimental conditions and to verify the grain boundary decohesion process. Under this consideration, we evaluated the stress and the hydrogen concentration at grain boundaries in the three-dimensional polycrystalline model which was generated by the random Voronoi tessellation. The crystallographic anisotropy was given to each grain. As the boundary conditions of the calculations, data extracted from the results calculated in the notched round-bar specimen model under the tensile test condition in which fracture of the steel specimen is observed was given to the polycrystalline model. As a result, it was found that the evaluated stress does not reach the fracture stress which was estimated under the condition of the evaluated hydrogen concentration by first principles calculations. Therefore, it was considered that the initiation of grain boundary fracture needs other factors except the stress concentration due to the crystallographic anisotropy. (author)

  11. Defect analysis of NiMnSb epitaxial layers

    Energy Technology Data Exchange (ETDEWEB)

    Nowicki, L. [Andrzej SoItan Institute for Nuclear Studies, ul. Hoza 69, 00-681 Warsaw (Poland)]. E-mail: lech.nowicki@fuw.edu.pl; Turos, A. [Andrzej SoItan Institute for Nuclear Studies, ul. Hoza 69, 00-681 Warsaw (Poland); Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Stonert, A. [Andrzej SoItan Institute for Nuclear Studies, ul. Hoza 69, 00-681 Warsaw (Poland); Garrido, F. [Centre de Spectrometrie Nucleaire et Spectrometrie de Masse, CNRS-IN2P3-Universite Paris-Sud, 91405 Orsay (France); Molenkamp, L.W. [Department of Physics, University Wuerzburg, Am Hubland, 97074 Wuerzburg (Germany); Bach, P. [Department of Physics, University Wuerzburg, Am Hubland, 97074 Wuerzburg (Germany); Schmidt, G. [Department of Physics, University Wuerzburg, Am Hubland, 97074 Wuerzburg (Germany); Karczewski, G. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Muecklich, A. [Forschungszentrum Rossendorf, Institut fuer Ionenstrahlphysik und Materialforschung, POB 510119, 01314 Dresden (Germany)

    2005-10-15

    NiMnSb layers grown on InP substrates with InGaAs buffer were studied by the backscattering/channeling spectrometry (RBS/C) with He beams. The nature of predominant defects observed in the layers was studied by determination of incident-energy dependence of the relative channeling yield. The defects are described as a combination of large amount of interstitial atoms and of stacking faults or grain boundaries. The presence of grains was confirmed by transmission electron microscopy.

  12. Columns formed by multiple twinning in nickel layers—An approach of grain boundary engineering by electrodeposition

    DEFF Research Database (Denmark)

    Alimadadi, Hossein; da Silva Fanta, Alice Bastos; Somers, Marcel A. J.

    2013-01-01

    grain boundaries. A peculiar arrangement of Σ3 boundaries forming five-fold junctions is observed. The resulting microstructure meets the requirements for grain boundary engineering. Twinning induced effects on the crystallographic orientation of grains result in one major texture component being a ⟨210......⟩ fiber axis and additional minor orientations originating from first and second generation twins of ⟨210⟩, i.e., ⟨542⟩ and ⟨20 2 1⟩....

  13. Stress corrosion cracking of stainless steel under deaerated high-temperature water. Influence of grain boundary carbide precipitation

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Terachi, Takumi; Arioka, Koji

    2006-01-01

    In order to evaluate the influence of grain boundary carbide on IGSCC susceptibility, crack growth rate tests were performed under deaerated and 0.3 ppm hydrogenated pure water environments at 320degC using half-inch compact tension specimens. To investigate various grain boundary carbide conditions, three kinds of SUS316 - non-sensitized, sensitized at 650degC for 1 hour or 48 hours - were prepared. To examine the influence of grain boundary carbide, the grain boundary conditions of those materials were investigated by transmission electron microscopy and energy dispersive x-ray spectroscopy. As a result, (1) IGSCC crack growth was observed on non sensitized and cold worked SUS316 under deaerated and 0.3 ppm hydrogenated water environments at 320degC; (2) Any trace of IGSCC crack growth was not observed on sensitized at 650degC for 48 hours and cold worked SUS316 under the same water environments; (3) The SUS316 sensitized at 650degC for 48 hours showed extensive M 23 C 6 precipitation as well as Cr depletion at grain boundaries. These differences in IGSCC crack growth rate indicate that grain boundary carbide has the beneficial effect of improving IGSCC susceptibility, at least under deaerated and 0.3 ppm hydrogenated water environments, despite chromium depletion at the grain boundary. (author)

  14. Finite element approximation of the fields of bulk and interfacial line defects

    Science.gov (United States)

    Zhang, Chiqun; Acharya, Amit; Puri, Saurabh

    2018-05-01

    A generalized disclination (g.disclination) theory (Acharya and Fressengeas, 2015) has been recently introduced that goes beyond treating standard translational and rotational Volterra defects in a continuously distributed defects approach; it is capable of treating the kinematics and dynamics of terminating lines of elastic strain and rotation discontinuities. In this work, a numerical method is developed to solve for the stress and distortion fields of g.disclination systems. Problems of small and finite deformation theory are considered. The fields of a single disclination, a single dislocation treated as a disclination dipole, a tilt grain boundary, a misfitting grain boundary with disconnections, a through twin boundary, a terminating twin boundary, a through grain boundary, a star disclination/penta-twin, a disclination loop (with twist and wedge segments), and a plate, a lenticular, and a needle inclusion are approximated. It is demonstrated that while the far-field topological identity of a dislocation of appropriate strength and a disclination-dipole plus a slip dislocation comprising a disconnection are the same, the latter microstructure is energetically favorable. This underscores the complementary importance of all of topology, geometry, and energetics in understanding defect mechanics. It is established that finite element approximations of fields of interfacial and bulk line defects can be achieved in a systematic and routine manner, thus contributing to the study of intricate defect microstructures in the scientific understanding and predictive design of materials. Our work also represents one systematic way of studying the interaction of (g.)disclinations and dislocations as topological defects, a subject of considerable subtlety and conceptual importance (Aharoni et al., 2017; Mermin, 1979).

  15. Compressive intrinsic stress originates in the grain boundaries of dense refractory polycrystalline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Magnfält, D., E-mail: danma@ifm.liu.se; Sarakinos, K. [Nanoscale Engineering Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Fillon, A.; Abadias, G. [Institut P' , Département Physique et Mécanique des Matériaux, Université de Poitiers-CNRS-ENSMA, SP2MI, Téléport 2, Bd M. et P. Curie, F-86962 Chasseneuil-Futuroscope (France); Boyd, R. D.; Helmersson, U. [Plasma and Coatings Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden)

    2016-02-07

    Intrinsic stresses in vapor deposited thin films have been a topic of considerable scientific and technological interest owing to their importance for functionality and performance of thin film devices. The origin of compressive stresses typically observed during deposition of polycrystalline metal films at conditions that result in high atomic mobility has been under debate in the literature in the course of the past decades. In this study, we contribute towards resolving this debate by investigating the grain size dependence of compressive stress magnitude in dense polycrystalline Mo films grown by magnetron sputtering. Although Mo is a refractory metal and hence exhibits an intrinsically low mobility, low energy ion bombardment is used during growth to enhance atomic mobility and densify the grain boundaries. Concurrently, the lateral grain size is controlled by using appropriate seed layers on which Mo films are grown epitaxially. The combination of in situ stress monitoring with ex situ microstructural characterization reveals a strong, seemingly linear, increase of the compressive stress magnitude on the inverse grain size and thus provides evidence that compressive stress is generated in the grain boundaries of the film. These results are consistent with models suggesting that compressive stresses in metallic films deposited at high homologous temperatures are generated by atom incorporation into and densification of grain boundaries. However, the underlying mechanisms for grain boundary densification might be different from those in the present study where atomic mobility is intrinsically low.

  16. Grain boundary microchemistry and metallurgical characterization of Eurofer'97 after simulated service conditions

    International Nuclear Information System (INIS)

    Fernandez, P.; Garcia-Mazario, M.; Lancha, A.M.; Lapena, J.

    2004-01-01

    The aim of this paper is to describe the microstructural investigations, the mechanical properties (hardness, tensile and charpy) and the grain boundary microchemistry studied by Auger electron spectroscopy (AES), of the Eurofer'97 steel aged in the range of temperatures from 400 to 600 deg. C up to 10,000 h. After these thermal aging treatments the steel showed a high microstructural stability, and similar values of hardness, ultimate tensile strength and 0.2% proof stress regardless of the material condition. A slight DBTT increase was observed in the material aged at 600 deg. C for 5000 and 10,000 h. The Auger results showed chromium enrichment at grain boundaries in all material conditions. In addition, phosphorus was detected at the grain boundaries after the aging treatments at 500 deg. C

  17. Molecular Dynamics Simulations of Grain Boundary and Bulk Diffusion in Metals.

    Science.gov (United States)

    Plimpton, Steven James

    Diffusion is a microscopic mass transport mechanism that underlies many important macroscopic phenomena affecting the structural, electrical, and mechanical properties of metals. This thesis presents results from atomistic simulation studies of diffusion both in bulk and in the fast diffusion paths known as grain boundaries. Using the principles of molecular dynamics single boundaries are studied and their structure and dynamic properties characterized. In particular, tilt boundary bicrystal and bulk models of fcc Al and bcc alpha-Fe are simulated. Diffusion coefficients and activation energies for atomic motion are calculated for both models and compared to experimental data. The influence of the interatomic pair potential on the diffusion is studied in detail. A universal relation between the melting temperature that a pair potential induces in a simulated bulk model and the potential energy barrier height for atomic hopping is derived and used to correlate results for a wide variety of pair potentials. Using these techniques grain boundary and bulk diffusion coefficients for any fcc material can be estimated from simple static calculations without the need to perform more time-consuming dynamic simulations. The influences of two other factors on grain boundary diffusion are also studied because of the interest of the microelectronics industry in the diffusion related reliability problem known as electromigration. The first factor, known to affect the self diffusion rate of Al, is the presence of Cu impurity atoms in Al tilt boundaries. The bicrystal model for Al is seeded randomly with Cu atoms and a simple hybrid Morse potential used to model the Al-Cu interaction. While some effect due to the Cu is noted, it is concluded that pair potentials are likely an inadequate approximation for the alloy system. The second factor studied is the effect of the boundary orientation angle on the diffusion rate. Symmetric bcc Fe boundaries are relaxed to find optimal

  18. Direct imaging of grain boundaries

    International Nuclear Information System (INIS)

    Gronsky, R.

    1979-09-01

    There are currently two types of microscopes which, in principle, are capable of imaging atom positions at grain boundaries. One, the field ion microscope (FIM), yields a projection of the specimen surface (approximately stereographic) by field ionization of an imaging gas at protruding atom sites, and provides topographic information in high-index pole regions which may be interpreted atom-by-atom. The other, a transmission electron microscope (TEM), yields a projection (approximately linear) of the entire specimen thickness by electron optical imaging, and provides atomic resolution detail throughout the illuminated area. In this paper, both methods are described and compared, using examples from practical materials systems

  19. Defects in fine-grained and porous materials characterized by positron annihilation

    International Nuclear Information System (INIS)

    Staab, T.E.M.; Krause-Rehberg, R.; Kieback, B.

    2003-01-01

    We investigate the annihilation parameters (lifetimes and intensities) for positrons becoming trapped at grain boundaries and at inner surfaces (pores), examining fine-grained nickel powder compacts (effective powder particle size 1 - 10 μm with grains in or even below the micron size). Furthermore, we can monitor grain growth and sintering (volume shrinkage) during successive heat treatment of powder compacts. To reach this aim, we correlate the annihilation parameters with results of a Monte-Carlo simulation and analytical solutions of the positron diffusion. We find that it is possible to determine an effective average powder particle size as well as grain sizes by positron lifetime spectroscopy. (author)

  20. Creep crack extension by grain-boundary cavitation

    International Nuclear Information System (INIS)

    Bassani, J.L.

    1981-01-01

    Recent work by Riedel and coworkers has led to various descriptions of stationary and moving crack tip fields under creep conditions. For stationary and growing cracks, several flow mechanisms (e.g., elastic, time-independent plastic, primary creep, and secondary creep) can dictate the analytical form of the crack tip field. In this paper, relationship between overall loading and crack velocities are modelled based upon grain-boundary cavity growth and coalescence within the zone of concentrated strain in the crack tip field. Coupled diffusion and creep growth of the cavities is considered. Overall crack extension is taken to be intermittent on a size scale equivalent to the size of a grain. Numerical results are presented for a center-cracked panel of 304 stainless steel. (author)

  1. Dependence on film thickness of grain boundary low-field magnetoresistance in thin films of La0.7Ca0.3MnO3

    International Nuclear Information System (INIS)

    Todd, N. K.; Mathur, N. D.; Blamire, M. G.

    2001-01-01

    The magnetoresistance of grain boundaries in the perovskite manganites is being studied, both in polycrystalline materials, and thin films grown on bicrystal substrates, because of interest in low-field applications. In this article we show that epitaxial films grown on SrTiO 3 bicrystal substrates of 45 degree misorientation show magnetoresistance behavior which is strongly dependent on the thickness of the film. Thin films, e.g., 40 nm, can show a large low-field magnetoresistance at low temperatures, with very sharp switching between distinct high and low resistance states for fields applied in plane and parallel to the boundary. Thicker films show a more complex behavior of resistance as a function of field, and the dependence on the angle between the applied field and the grain boundary is altered. These changes in magnetoresistance behavior are linked to the variation in morphology of the films. Thin films are coherently strained, due to the mismatch with the substrate, and very smooth. Thicker films relax, with the formation of defects, and hence different micromagnetic behavior. [copyright] 2001 American Institute of Physics

  2. The vibrational spectrum of the atoms in the grain boundaries of nanocrystalline Pd

    Energy Technology Data Exchange (ETDEWEB)

    Stuhr, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Wipf, H.; Hahn, H. [Technische Hochschule Darmstadt (Germany); Natter, H.; Hemperlmann, R. [Universitaet des Saarlandes, Saarbruecken (Germany); Andersen, K. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-09-01

    The vibrational excitations of the atoms in nanocrystalline Pd was investigated by neutron-time-of-flight spectroscopy. Hydrogen was used as a probe for the vibrations in the grain boundaries. The separation between the H and Pd vibrations was done by spin analysis. The results show that in the grain boundary the density of states of low energy excitations ({<=}5 meV) is drastically increased. (author) 3 figs., 3 refs.

  3. Imaging of magnetic flux states in YBa2Cu3O7-δ grain boundary junctions

    International Nuclear Information System (INIS)

    Mayer, B.; Shen, Y.; Vase, P.

    1993-01-01

    The weak link behavior of grain boundaries in the high temperature superconductors has been studied intensively during the last years. On the one hand the weak link nature of the grain boundaries is responsible for the disappointingly low critical current densities in polycrystalline materials. However, on the other hand it offers the possibility to fabricate Josephson elements required for microelectronic applications of the cuprate superconductors. Although various types of artificially generated, so-called engineered grain boundary Josephson junctions (GBJs) have been fabricated and characterized with respect to their structural and electrical properties there are still open questions concerning the weak link nature of high-T c GBJs. As a consequence of the weak link nature the supercurrent density of the GBJs should be spatially modulated, if magnetic flux is coupled into the grain boundary by a magnetic field applied parallel to the grain boundary plane. We report on direct measurements of the spatially modulated supercurrent density in YBa 2 Cu 3 O 7-δ bicrystal GBJs using Low Temperature Scanning Electron Microscopy (LTSEM). The LTSEM images directly show the spatial oscillation of the supercurrent density J s along the grain boundary with a resolution of about 1 μm. Varying the applied magnetic field different magnetic flux states containing up to 10 Josephson vortices could be observed. (orig.)

  4. Low temperature grain boundary diffusion of chromium in SUS316 and 316L stainless steels

    International Nuclear Information System (INIS)

    Mizouchi, Masaki; Yamazaki, Yoshihiro; Iijima, Yoshiaki; Arioka, Koji

    2004-01-01

    Grain boundary diffusivity of chromium is SUS316 and 316L stainless steels has been determined in the temperature range between 518 and 1173 K. The magnitudes of the grain boundary diffusivities in four kinds of specimens are in the order of the cold-worked SUS316, the solution-treated SUS316L, the solution-treated SUS316 and the sensitized SUS316. The grain boundary diffusivities in these specimens are remarkably higher than those of previous works. The activation energies for the former are 85-91 kJmol -1 , whereas those for the latter are 151-234 kJmol -1 . (author)

  5. Grain boundary sweeping and dissolution effects on fission product behavior under severe fuel damage accident conditions

    International Nuclear Information System (INIS)

    Rest, J.

    1985-10-01

    The theoretical FASTGRASS-VFP model has been used in the interpretation of fission gas, iodine, tellurium, and cesium release from severe-fuel-damage (SFD) tests performed in the PBF reactor in Idaho. A theory of grain boundary sweeping of gas bubbles, gas bubble behavior during fuel liquefaction (destruction of grain boundaries due to formation of a U-rich melt phase), and during U-Zr eutectic melting has been included within the FASTGRASS-VFP formalism. The grain-boundary-sweeping theory considers the interaction between the moving grain boundary and two distinct size classes of bubbles, those on grain faces and on grain edges. The theory of the effects of fuel liquefaction and U-Zr eutectic melting on fission product behavior considers the migration and coalescence of fission gas bubbles in either molten uranium, or a zircaloy-uranium eutectic melt. The FASTGRASS-VFP predictions, measured release rates from the above tests, and previously published release rates are compared and differences between fission product behavior in trace-irradiated and in normally irradiated fuel are highlighted

  6. Grain boundary engineering with nano-scale InSb producing high performance InxCeyCo4Sb12+z skutterudite thermoelectrics

    Directory of Open Access Journals (Sweden)

    Han Li

    2017-12-01

    Full Text Available Thermoelectric semiconductors based on CoSb3 hold the best promise for recovering industrial or automotive waste heat because of their high efficiency and relatively abundant, lead-free constituent elements. However, higher efficiency is needed before thermoelectrics reach economic viability for widespread use. In this study, n-type InxCeyCo4Sb12+z skutterudites with high thermoelectric performance are produced by combining several phonon scattering mechanisms in a panoscopic synthesis. Using melt spinning followed by spark plasma sintering (MS-SPS, bulk InxCeyCo4Sb12+z alloys are formed with grain boundaries decorated with nano-phase of InSb. The skutterudite matrix has grains on a scale of 100–200 nm and the InSb nano-phase with a typical size of 5–15 nm is evenly dispersed at the grain boundaries of the skutterudite matrix. Coupled with the presence of defects on the Sb sublattice, this multi-scale nanometer structure is exceptionally effective in scattering phonons and, therefore, InxCeyCo4Sb12/InSb nano-composites have very low lattice thermal conductivity and high zT values reaching in excess of 1.5 at 800 K.

  7. Numerical evaluation of electromagnetic force induced in high Tc superconductor with grain boundary

    International Nuclear Information System (INIS)

    Hashizume, Hidetoshi; Toda, Saburo; Maeda, Koutaro

    1996-01-01

    After high T c superconducting material was discovered, its superconducting characteristic has been improved so that its critical current density becomes comparable with that of metal alloy superconductors. Together with this progress of the high T c material, it is considered to apply the materials to generating levitation force in combination with permanent magnets. In this case, it becomes very important to evaluate quantitatively the electromagnetic force for designing of the devices. Some researches have used numerical analysis to evaluate the force, where the grain boundary was ignored or treated as nonconducting. In the real materials, however, some part of the screening current can pass through the grain boundary. In this paper, therefore, two dimensional electromagnetic analysis was performed with a new method to treat the grain boundaries, and its effect on the levitation force was discussed

  8. Measurement of grain-boundary diffusion at low temperature by the surface-accumulation method. II. Results for gold-silver system

    International Nuclear Information System (INIS)

    Hwang, J.C.M.; Pan, J.D.; Balluffi, R.W.

    1979-01-01

    Grain-boundary diffusion rates in the gold-silver system were measured at relatively low temperatures by the surface-accumulation method which was analyzed in Paper I. The specimen was a polycrystalline gold film possessing columnar grains on which a silver layer was initially deposited epitaxially on one surface. During subsequent low-temperature annealing lattice diffusion was frozen out, and diffusion then occurred along the grain boundary and free-surface short circuits. The silver, therefore, diffused into the film from the silver layer along the boundaries, eventually reaching the opposite surface where it accumulated and was measured by Auger spectroscopy. The silver layer acted as an effective constant silver source, and grain-boundary diffusivities were calculated from the accumulation data. However, the exact location of the effective constant source in the silver layer could not be determined and this led to an uncertainty in the values of the grain-boundary diffusivities of a factor of 10. Lower- and upper-bound values were therefore described by D/sub b/(lower bound) =7.8 x 10 -6 exp(-0.62eV/kT) and D/sub b/(upper bound) =7.8 x 10 -5 exp(-0.62eV/kT) cm 2 /s in the temperature range 30--269 0 C. An examination of available grain-boundary diffusion data (including the present) suggests a tendency for the observed activation energy to decrease with decreasing temperature, and this was ascribed to a spectrum of activated jumps in the grain boundary and/or a spectrum of grain-boundary types in the specimen employed. The constant source behavior was tentatively ascribed, at least in part, to a grain-boundary ''Kirkendall effect'' resulting from the faster diffusion of silver than gold. The work indicates a need for increased understanding of the details of grain-boundary diffusion in alloys

  9. Method of making quasi-grain boundary-free polycrystalline solar cell structure and solar cell structure obtained thereby

    Science.gov (United States)

    Gonzalez, Franklin N.; Neugroschel, Arnost

    1984-02-14

    A new solar cell structure is provided which will increase the efficiency of polycrystalline solar cells by suppressing or completely eliminating the recombination losses due to the presence of grain boundaries. This is achieved by avoiding the formation of the p-n junction (or other types of junctions) in the grain boundaries and by eliminating the grain boundaries from the active area of the cell. This basic concept can be applied to any polycrystalline material; however, it will be most beneficial for cost-effective materials having small grains, including thin film materials.

  10. Oxygen Permeability and Grain-Boundary Diffusion Applied to Alumina Scales

    Science.gov (United States)

    Smialek, James L.; Jacobson, Nathan S.; Gleeson, Brian; Hovis, David B.; Heuer, Arthur H.

    2013-01-01

    High-temperature oxygen permeability measurements had determined grain-boundary diffusivities (deltaD(sub gb)) in bulk polycrystalline alumina (Wada, Matsudaira, and Kitaoka). They predict that oxygen deltaD(sub gb,O) varies with oxygen pressure as P(O2)(sup -1/6) at low pressure whereas aluminum deltaD(sub gb),Al varies with P(O2)(sup +3/16) at high pressure. These relations were used to evaluate alumina scale growth in terms of diffusivity and grain size. A modified Wagner treatment for dominant inward oxygen growth produces the concise solution: ?(sub i) = k(sub p,i)×G(sub i) = 12 deltaD(sub gb,O,int), where ?(sub i) is a constant and k(sub p,i) and G(sub i) refer to instantaneous values of the scale parabolic growth constant and grain size, respectively. A commercial FeCrAl(Zr) alloy was oxidized at 1100 to 1400 degC to determine k(sub p,i), interfacial grain size, ?, and thus deltaD(sub gb,O,int). The deltaD(sub gb,O,int) values predicted from oxidation at (375 kJ/mole) were about 20 times less than those obtained above (at 298 kJ/mole), but closer than extrapolations from high-temperature bulk measurements. The experimental oxidation results agree with similar FeCrAl(X) studies, especially where both k(sub p,i) and G(sub i) were characterized. This complete approach accounts for temperature-sensitive oxidation effects of grain enlargement, equilibrium interface pressure variation, and grain-boundary diffusivity.

  11. Improvement of corrosion resistance in austenitic stainless steel by grain boundary character distribution control

    International Nuclear Information System (INIS)

    Wang, Yun; Kaneda, Junya; Kasahara, Shigeki; Shigenaka, Naoto

    2012-01-01

    Strauss test, Coriou test and Huey test were conducted on a Type 316L austenitic stainless steel. Improvement in grain boundary corrosion resistance was verified after raising low Σ coincidence site lattice (CSL) grain boundary (GB) frequency by controlling grain boundary character distribution (GBCD). During crevice corrosion test under gamma-ray irradiation, initiation frequency of GB corrosion after GBCD controlled specimens decreased to 1/10 of GBCD uncontrolled counterpart along with lower depth of corrosion. Stress corrosion cracking (SCC) propagation rate of GBCD controlled specimen decreased to less than 1/2 of GBCD uncontrolled specimen in high temperature and high pressure water. Based on these results, we expect that GBCD control will improve corrosion resistance of austenitic material in a wide range of application and environment. (author)

  12. Effects of low-frequency magnetic field on grain boundary segregation in horizontal direct chill casting of 2024 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Effects of low frequency electromagnetic field on grain boundary segregation in horizontal direct chill (HDC)casting process was investigated experimentally. The grain boundary segregation and microstructures of the ingots,which manufactured by conventional HDC casting and low frequency electromagnetic HDC casting were compared.Results show that low frequency electromagnetic field significantly refines the microstructures and reduces grain boundary segregation. Decreasing electromagnetic frequency or increasing electromagnetic intensity has great effects in reducing grain boundary segregation. Meanwhile, the governing mechanisms were discussed.

  13. Fractional Josephson vortices at YBa$_2$Cu$_3$O$_{7-x}$ grain boundaries

    OpenAIRE

    Mints, R. G.; Papiashvili, Ilya

    2001-01-01

    We report numerical simulations of magnetic flux patterns in asymmetric 45$^{\\circ}$ [001]-tilt grain boundaries in YBa$_2$Cu$_3$O$_{7-x}$ superconducting films. The grain boundaries are treated as Josephson junctions with the critical current density $j_c(x)$ alternating along the junctions. We demonstrate the existence of Josephson vortices with fractional flux quanta for both periodic and random $j_c(x)$. A method is proposed to extract fractional vortices from experimental flux patterns.

  14. Observations of secondary oscillations in thermal grain boundary grooves

    International Nuclear Information System (INIS)

    Sachenko, P.P.; Schneibel, J.H.; Zhang, W.

    2004-01-01

    Thermal grain boundary grooving by surface diffusion is accompanied not only by main maxima on either side of a groove, but also by secondary maxima and minima. We measure these oscillations in tungsten and give reasons why the observed secondary maxima and minima are larger than predicted

  15. A Numerical Model of Anisotropic Mass Transport Through Grain Boundary Networks

    Science.gov (United States)

    Wang, Yibo

    Tin (Sn) thin films are commonly used in electronic circuit applications as coatings on contacts and solders for joining components. It is widely observed, for some such system, that whiskers---long, thin crystalline structures---emerge and grow from the film. The Sn whisker phenomenon has become a highly active research area since Sn whiskers have caused a large amount of damage and loss in manufacturing, military, medical and power industries. Though lead (Pb) addition to Sn has been used to solve this problem for over five decades, the adverse environmental and health effects of Pb have motivated legislation to severely constrain Pb use in society. People are researching and seeking the reasons which cause whiskers and corresponding methods to solve the problem. The contributing factors to cause a Sn whisker are potentially many and much still remains unknown. Better understanding of fundamental driving forces should point toward strategies to improve (a) the accuracy with which we can predict whisker formation, and (b) our ability to mitigate the phenomenon. This thesis summarizes recent important research achievements in understanding Sn whisker formation and growth, both experimentally and theoretically. Focus is then placed on examining the role that anisotropy in grain boundary diffusivity plays in determining whisker characteristics (specifically, whether they form and, if so, where on a surface). To study this aspect of the problem and to enable future studies on stress driven grain boundary diffusion, this thesis presents a numerical anisotropic mass transport model. In addition to presenting details of the model and implementation, model predictions for a set of increasingly complex grain boundary networks are discussed. Preliminary results from the model provide evidence that anisotropic grain boundary diffusion may be a primary driving mechanism in whisker formation.

  16. Nanolines of transition metals ruled by grain boundaries in graphene: An ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Lima, F.D.C. de, E-mail: felipe.lima@ufu.br; Miwa, R.H., E-mail: hiroki@infis.ufu.br

    2017-06-15

    We have performed an ab initio investigation of the energetic stability, and the electronic properties of transition metals (TMs = Mn, Fe, Co, and Ru) adsorbed on graphene, upon the presence of grain boundaries (GBs); where we found an energetic preference for the TMs lying on the GB sites (TM/GB). Further energy barrier calculations, of the transition metals in TM/GB, reveal that the GBs promote the formation of energetically favorable diffusion channels on graphene. By increasing the concentration of the TM adatoms, the energetic stability of the TM/GB systems has been strengthened; giving rise to TM nanolines (TM-NLs). The electronic properties of those TM-NLs were characterized through extensive electronic band structure calculations, where the energy bands of the TM/GB systems indicate the appearance of an anisotropic spin-polarized electronic current along the TM-NLs on graphene. - Highlights: • Formation of transition metal (TM) nanolines on graphene ruled by extended defects. • Those extended defects give rise to diffusion pipes of TMs on graphene. • The electronic band structure calculations indicate the formation of spin-polarized current upon the presence of TM nanolines. • The formation of those TM nanolines support the recent experimental findings.

  17. Influence of nano-inclusions' grain boundaries on crack propagation modes in materials

    International Nuclear Information System (INIS)

    Karakasidis, T.E.; Charitidis, C.A.

    2011-01-01

    The effect of nano-inclusions on materials' strength and toughness has attracted great interest in recent years. It has been shown that tuning the morphological and microstructural features of materials can tailor their fracture modes. The existence of a characteristic size of inclusions that favours the fracture mode (i.e. transgranular or intergranular) has been experimentally observed but also predicted by a 2D model based on energetic arguments which relates the crack propagation mode to the ratio of the interface area between the crystalline inclusion and the matrix with the area of the crystallite inclusion in a previous work. In the present work, a 3D model is proposed in order to extend the 2D model and take into account the influence of the size of grain boundary zone on the toughening/hardening behavior of the material as it was observed experimentally in the literature. The model relates crack propagation mode to the ratio of the volume of the grain boundary zone between the crystalline inclusion and the matrix with the volume of the nano-inclusion. For a ratio below a critical value, transgranular propagation is favoured while for larger values, intergranular propagation is favoured. We also demonstrate that the extent of the grain boundary region also can significantly affect this critical value. The results of the model are in agreement with the literature experimental observations related to the toughening/hardening behavior as a function of the size of crystalline inclusions as well as the width of the grain boundary regions.

  18. Stable High-Performance Perovskite Solar Cells via Grain Boundary Passivation

    KAUST Repository

    Niu, Tianqi

    2018-03-12

    The trap states at grain boundaries (GBs) within polycrystalline perovskite films deteriorate their optoelectronic properties, making GB engineering particularly important for stable high-performance optoelectronic devices. It is demonstrated that trap states within bulk films can be effectively passivated by semiconducting molecules with Lewis acid or base functional groups. The perovskite crystallization kinetics are studied using in situ synchrotron-based grazing-incidence X-ray scattering to explore the film formation mechanism. A model of the passivation mechanism is proposed to understand how the molecules simultaneously passivate the Pb-I antisite defects and vacancies created by under-coordinated Pb atoms. In addition, it also explains how the energy offset between the semiconducting molecules and the perovskite influences trap states and intergrain carrier transport. The superior optoelectronic properties are attained by optimizing the molecular passivation treatments. These benefits are translated into significant enhancements of the power conversion efficiencies to 19.3%, as well as improved environmental and thermal stability of solar cells. The passivated devices without encapsulation degrade only by ≈13% after 40 d of exposure in 50% relative humidity at room temperature, and only ≈10% after 24 h at 80 °C in controlled environment.

  19. Electronic and elemental properties of the Cu{sub 2}ZnSn(S,Se){sub 4} surface and grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Richard; Shao, Xiaoyan; Wang, Wei; Mitzi, David B. [IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Hts., New York 10598 (United States)

    2014-01-20

    X-ray and femtosecond UV photoelectron spectroscopy, secondary ion mass spectrometry and photoluminescence imaging were used to investigate the electronic and elemental properties of the CZTS,Se surface and its oxides. Oxide removal reveals a very Cu poor and Zn rich surface relative to bulk composition. O and Na are observed at the surface and throughout the bulk. Upward bending of the valence bands indicates the presence of negative charge in the surface region and the Fermi level is found near the band gap center. The presence of point defects and the impact of these findings on grain boundary properties will be described.

  20. Multiscale crystal defect dynamics: A coarse-grained lattice defect model based on crystal microstructure

    Science.gov (United States)

    Lyu, Dandan; Li, Shaofan

    2017-10-01

    Crystal defects have microstructure, and this microstructure should be related to the microstructure of the original crystal. Hence each type of crystals may have similar defects due to the same failure mechanism originated from the same microstructure, if they are under the same loading conditions. In this work, we propose a multiscale crystal defect dynamics (MCDD) model that models defects by considering its intrinsic microstructure derived from the microstructure or material genome of the original perfect crystal. The main novelties of present work are: (1) the discrete exterior calculus and algebraic topology theory are used to construct a scale-up (coarse-grained) dual lattice model for crystal defects, which may represent all possible defect modes inside a crystal; (2) a higher order Cauchy-Born rule (up to the fourth order) is adopted to construct atomistic-informed constitutive relations for various defect process zones, and (3) an hierarchical strain gradient theory based finite element formulation is developed to support an hierarchical multiscale cohesive (process) zone model for various defects in a unified formulation. The efficiency of MCDD computational algorithm allows us to simulate dynamic defect evolution at large scale while taking into account atomistic interaction. The MCDD model has been validated by comparing of the results of MCDD simulations with that of molecular dynamics (MD) in the cases of nanoindentation and uniaxial tension. Numerical simulations have shown that MCDD model can predict dislocation nucleation induced instability and inelastic deformation, and thus it may provide an alternative solution to study crystal plasticity.

  1. A theoretical model of grain boundary self-diffusion in metals with phase transitions (case study into titanium and zirconium)

    Science.gov (United States)

    Semenycheva, Alexandra V.; Chuvil'deev, Vladimir N.; Nokhrin, Aleksey V.

    2018-05-01

    The paper offers a model describing the process of grain boundary self-diffusion in metals with phase transitions in the solid state. The model is based on ideas and approaches found in the theory of non-equilibrium grain boundaries. The range of application of basic relations contained in this theory is shown to expand, as they can be used to calculate the parameters of grain boundary self-diffusion in high-temperature and low-temperature phases of metals with a phase transition. The model constructed is used to calculate grain boundary self-diffusion activation energy in titanium and zirconium and an explanation is provided as to their abnormally low values in the low-temperature phase. The values of grain boundary self-diffusion activation energy are in good agreement with the experiment.

  2. Secondary recrystallization in non-sag W filament wires -- On the possible role of relative grain boundary character distribution

    International Nuclear Information System (INIS)

    Samajdar, I.; Watte, P.; Mertens, F.

    1999-01-01

    Non-Sag tungsten (W) wire is indispensable for the lighting industry. For the necessary creep resistance, large elongated grains are considered as the desired microstructure. These large grains are obtained by primary and secondary recrystallization. In the present study an effort has been made to characterize and to understand the origin of such large elongated grains. In secondary recrystallization, often called abnormal grain growth, a few of the grains grow massive. The mechanisms of normal and abnormal grain growth are essentially the same, involving high angle boundary migration and driven by the reduction of surface energy. The abnormal grain growth can be visualized as a growth advantage for a few of the grains or growth disadvantage for the majority. Such an advantage/disadvantage may be caused by (1) differences in grain size and/or (2) differences in grain boundary character distribution (GBCD). In other words, a grain may grow massive if it has large size and/or possibilities of more favorable (i.e., of higher mobility) grain boundaries with the matrix grains

  3. Diffusion-accomodated rigid-body translations along grain boundaries in nanostructured materials

    International Nuclear Information System (INIS)

    Bachurin, D.V.; Nazarov, A.A.; Shenderova, O.A.; Brenner, D.W.

    2003-01-01

    A model for the structural relaxation of grain boundaries (GBs) in nanostructured materials (NSMs) by diffusion-accommodated rigid body translations along GBs is proposed. The model is based on the results of recent computer simulations that have demonstrated that the GBs in NSMs retain a high-energy structure with random translational states due to severe geometrical constraints applied from neighboring grains (J. Appl. Phys. 78 (1995) 847; Scripta Metall. Mater. 33 (1995) 1245). The shear stresses within a GB caused by non-optimized rigid-body translations (RBTs) can be accommodated by diffusive flow of atoms along a GB. This mechanism is particularly important for low-angle and vicinal GBs, the energy of which noticeably depends on the rigid body translations. At moderate and high temperatures the model yields relaxation times that are very short and therefore GBs in NSMs can attain an equilibrium structure with optimized rigid body translations. In contrast, at room temperature the model predicts that in some metals non-equilibrium structures can be preserved for a long time, which may result in the observation of grain boundary structures different from those in coarse grained polycrystals

  4. Structure and properties of fluid-filled grain boundaries under stress in geological materials. Geologica Ultraiectina (290)

    NARCIS (Netherlands)

    van Noort, R.

    2008-01-01

    Two of the three processes making up the deformation mechanism of intergranular pressure solution, being dissolution and diffusion, take place in the grain boundary fluid phase. Hence, the structure and physical properties of wet grain boundaries under stress can be expected to influence the

  5. Diffusion-induced grain boundary migration during ion beam mixing of Au/Cu bilayers

    International Nuclear Information System (INIS)

    Alexander, D.E.; Baldo, P.M.; Rehn, L.E.

    1992-09-01

    Experiments were performed to evaluate the effect of 1.5 MeV Kr irradiation on diffusion-induced grain boundary migration (DIGM) in Au/Cu bilayers in the temperature range of 300≤T≤050K. The experimental results were consistent with DIGM occurring in bilayers both during irradiation and during annealing treatments. Rutherford backscattering spectrometry showed a nearly uniform distribution of Cu present through the entire thickness of appropriately prepared polycrystalline Au films irradiated or annealed at temperatures ≥400K. No parallel effect was seen in similarly treated single-crystal films. In each polycrystalline sample studied, irradiation resulted in greater amounts of Cu present uniformly in the Au compared to annealing-only. The magnitudes of measured Cu compositions were substantially greater than that expected solely from grain boundary diffusion. A simple analysis of the process indicated that ion irradiation affects DIGM by increasing the composition of Cu present in alloyed zones and/or by increasing the grain boundary velocity in the Au

  6. Shear response of grain boundaries with metastable structures by molecular dynamics simulations

    Science.gov (United States)

    Zhang, Liang; Lu, Cheng; Shibuta, Yasushi

    2018-04-01

    Grain boundaries (GBs) can play a role as the favored locations to annihilate point defects, such as interstitial atoms and vacancies. It is thus highly probable that different boundary structures can be simultaneously present in equilibrium with each other in the same GB, and thus the GB achieves a metastable state. However, the structural transition and deformation mechanism of such GBs are currently not well understood. In this work, molecular dynamics simulations were carried out to study the multiple structures of a Σ5(310)/[001] GB in bicrystal Al and to investigate the effect of structural multiplicity on the mechanical and kinetic properties of such a GB. Different GB structures were obtained by changing the starting atomic configuration of the bicrystal model, and the GB structures had significantly different atomic density. For the Σ5(310) GB with metastable structures, GB sliding was the dominant mechanism at a low temperature (T = 10 K) under shear stress. The sliding mechanism resulted from the uncoordinated transformation of the inhomogeneous structural units. The nucleation of voids was observed during GB sliding at the low temperature, and the voids subsequently evolved to a nanocrack at the boundary plane. Increasing the temperature can induce the structural transition of local GB structures and can change their overall kinetic properties. GB migration with occasional GB sliding dominated the deformation mechanism at elevated temperatures (T = 300 and 600 K), and the migration process of the metastable GB structures is closely related to the thermally assisted diffusion mechanism.

  7. Local defect correction for boundary integral equation methods

    NARCIS (Netherlands)

    Kakuba, G.; Anthonissen, M.J.H.

    2013-01-01

    This paper presents a new approach to gridding for problems with localised regions of high activity. The technique of local defect correction has been studied for other methods as ¿nite difference methods and ¿nite volume methods. In this paper we develop the technique for the boundary element

  8. Pressure-induced transition in the grain boundary of diamond

    Science.gov (United States)

    Chen, J.; Tang, L.; Ma, C.; Fan, D.; Yang, B.; Chu, Q.; Yang, W.

    2017-12-01

    Equation of state of diamond powder with different average grain sizes was investigated using in situ synchrotron x-ray diffraction and a diamond anvil cell (DAC). Comparison of compression curves was made for two samples with average grain size of 50nm and 100nm. The two specimens were pre-pressed into pellets and loaded in the sample pressure chamber of the DAC separately to minimized differences of possible systematic errors for the two samples. Neon gas was used as pressure medium and ruby spheres as pressure calibrant. Experiments were conducted at room temperature and high pressures up to 50 GPa. Fitting the compression data in the full pressure range into the third order Birch-Murnaghan equation of state yields bulk modulus (K) and its pressure derivative (K') of 392 GPa and 5.3 for 50nm sample and 398GPa and 4.5 for 100nm sample respectively. Using a simplified core-shell grain model, this result indicates that the grain boundary has an effective bulk modulus of 54 GPa. This value is similar to that observed for carbon nanotube[1] validating the recent theoretical diamond surface modeling[2]. Differential analysis of the compression cures demonstrates clear relative compressibility change at the pressure about 20 GPa. When fit the compression data below and above this pressure separately, the effect of grain size on bulk modulus reverses in the pressure range above 20 GPa. This observation indicates a possible transition of grain boundary structure, likely from sp2 hybridization at the surface[2] towards sp3like orbital structure which behaves alike the inner crystal. [1] Jie Tang, Lu-Chang Qin, Taizo Sasaki, Masako Yudasaka, Akiyuki Matsushita, and Sumio Iijima, Compressibility and Polygonization of Single-Walled Carbon Nanotubes under Hydrostatic Pressure, Physical Review Letters, 85(9), 1187-1198, 2000. [2] Shaohua Lu, Yanchao Wang, Hanyu Liu, Mao-sheng Miao, and Yanming Ma, Self-assembled ultrathin nanotubes on diamond (100) surface, Nature

  9. Influence of the grain boundary atomic structure on the intergranular precipitation

    International Nuclear Information System (INIS)

    Le Coze, J.

    1975-01-01

    The number of intergranular precipitates after long time annealing is calculated taking into account nucleation, growth and coarsening. With intermediate supersaturation, the great number of precipitates which is observed in some boundaries may have different causes: in low misorientation boundaries and (111) twin, the maxima come from semi-coherent nucleation with one grain; in the other boundaries, the maxima are connected with a great number of high energy atomic sites. Depending on supersaturation, some maxima may disappear whereas others are reinforced [fr

  10. SEM-analysis of grain boundary porosity in three S-176 specimens

    International Nuclear Information System (INIS)

    Malen, K.; Birath, S.; Mattsson, O.

    1980-10-01

    Porosity in UO 2 -fuel has been studied in scanning electron microscope (SEM). The aim was to obtain a basis for evaluation of porosity in high burnup power reactor fuel. Three specimens have been analyzed. In the high temperature zones porosity can be seen both on grain boundaries and at grain edges. In the low temperature regions very little changes seem to have occurred during irradiation. (author)

  11. On the implication of solute contents and grain boundaries on the Hall-Petch relationship of nanocrystalline Ni-W alloys

    International Nuclear Information System (INIS)

    Shakibi Nia, N.; Savall, C.; Creus, J.; Bourgon, J.; Girault, P.; Metsue, A.; Cohendoz, S.; Feaugas, X.

    2016-01-01

    Nano-crystalline nickel-tungsten alloys are investigated in order to provide evidence of the contribution of the solute content (light elements and tungsten) and grain-boundaries on hardness. For this purpose, Ni-W alloys were elaborated by electrodeposition in an additive free citrate ammonium bath. The variation of electrodeposition conditions leads to W contents up to 18 at%, with a broad range of grain sizes (5–650 nm). The incorporation of light elements (H, O, C, N) depends on the deposition applied conditions and a progressive modification of the texture is observed with the following sequence: {110}, NT (Non-Textured) and {111} textures. We show that the Hall-Petch relationship for these alloys is influenced by the presence of light elements, the nature of the crystallographic texture and the grain boundaries character. The dependence of grain size on flow stress is a direct consequence of the solute content (solute strengthening) and the evolution of the internal stresses with grain size. To explain the experimental data, two competing physical mechanisms are suggested: grain boundary shearing and dislocation emission at grain boundary, which are affected by the nature of the grain boundary and the solute content.

  12. On the implication of solute contents and grain boundaries on the Hall-Petch relationship of nanocrystalline Ni-W alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shakibi Nia, N., E-mail: Niusha.Shakibi-Nia@uibk.ac.at [LaSIE (UMR 7356) CNRS, Université de La Rochelle, Av. Michel Crépeau, F-17000, La Rochelle (France); Savall, C.; Creus, J. [LaSIE (UMR 7356) CNRS, Université de La Rochelle, Av. Michel Crépeau, F-17000, La Rochelle (France); Bourgon, J. [ICMPE (UMR 7182) CNRS-UPEC, Université Paris Est, 2-8 rue Henri Dunant, F-94320, Thiais (France); Girault, P.; Metsue, A.; Cohendoz, S.; Feaugas, X. [LaSIE (UMR 7356) CNRS, Université de La Rochelle, Av. Michel Crépeau, F-17000, La Rochelle (France)

    2016-12-15

    Nano-crystalline nickel-tungsten alloys are investigated in order to provide evidence of the contribution of the solute content (light elements and tungsten) and grain-boundaries on hardness. For this purpose, Ni-W alloys were elaborated by electrodeposition in an additive free citrate ammonium bath. The variation of electrodeposition conditions leads to W contents up to 18 at%, with a broad range of grain sizes (5–650 nm). The incorporation of light elements (H, O, C, N) depends on the deposition applied conditions and a progressive modification of the texture is observed with the following sequence: {110}, NT (Non-Textured) and {111} textures. We show that the Hall-Petch relationship for these alloys is influenced by the presence of light elements, the nature of the crystallographic texture and the grain boundaries character. The dependence of grain size on flow stress is a direct consequence of the solute content (solute strengthening) and the evolution of the internal stresses with grain size. To explain the experimental data, two competing physical mechanisms are suggested: grain boundary shearing and dislocation emission at grain boundary, which are affected by the nature of the grain boundary and the solute content.

  13. Microstructure of Josephson junctions: Effect on supercurrent transport in YBCO grain boundary and barrier layer junctions

    International Nuclear Information System (INIS)

    Merkle, K.L.; Huang, Y.

    1998-01-01

    The electric transport of high-temperature superconductors, such as YBa 2 Cu 3 O 7-x (YBCO), can be strongly restricted by the presence of high-angle grain boundaries (GB). This weak-link behavior is governed by the macroscopic GB geometry and the microscopic grain boundary structure and composition at the atomic level. Whereas grain boundaries present a considerable impediment to high current applications of high T c materials, there is considerable commercial interest in exploiting the weak-link-nature of grain boundaries for the design of microelectronic devices, such as superconducting quantum interference devices (SQUIDs). The Josephson junctions which form the basis of this technology can also be formed by introducing artificial barriers into the superconductor. The authors have examined both types of Josephson junctions by EM techniques in an effort to understand the connection between microstructure/chemistry and electrical transport properties. This knowledge is a valuable resource for the design and production of improved devices

  14. Covalently Connecting Crystal Grains with Polyvinylammonium Carbochain Backbone To Suppress Grain Boundaries for Long-Term Stable Perovskite Solar Cells.

    Science.gov (United States)

    Li, Han; Liang, Chao; Liu, Yingliang; Zhang, Yiqiang; Tong, Jincheng; Zuo, Weiwei; Xu, Shengang; Shao, Guosheng; Cao, Shaokui

    2017-02-22

    Grain boundaries act as rapid pathways for nonradiative carrier recombination, anion migration, and water corrosion, leading to low efficiency and poor stability of organometal halide perovskite solar cells (PSCs). In this work, the strategy suppressing the crystal grain boundaries is applied to improve the photovoltaic performance, especially moisture-resistant stability, with polyvinylammonium carbochain backbone covalently connecting the perovskite crystal grains. This cationic polyelectrolyte additive serves as nucleation sites and template for crystal growth of MAPbI 3 and afterward the immobilized adjacent crystal grains grow into the continuous compact, pinhole-free perovskite layer. As a result, the unsealed PSC devices, which are fabricated under low-temperature fabrication protocol with a proper content of polymer additive PVAm·HI, currently exhibit the maximum efficiency of 16.3%. Remarkably, these unsealed devices follow an "outside-in" corrosion mechanism and respectively retain 92% and 80% of the initial PCE value after being exposed under ambient environment for 50 days and 100 days, indicating the superiority of carbochain polymer additives in solving the long-term stability problem of PSCs.

  15. Formation of multiple stoichiometric phases in binary systems by combined bulk and grain boundary diffusion: Experiments and model

    International Nuclear Information System (INIS)

    Svoboda, J.; Fischer, F.D.; Schillinger, W.

    2013-01-01

    The thermodynamic extremal principle has been used by the authors to treat the evolution of binary and multicomponent systems under the assumption that all phases are nearly stoichiometric. Up to now only bulk diffusion has been taken into account. The concept is now extended to combined bulk and grain boundary diffusion possible in each newly formed phase. The grains are approximated by cylinders allowing interface diffusion along the top and bottom of the grains and grain boundary diffusion along the mantle with different interface/grain boundary diffusion coefficients. A consistent analysis yields an effective diffusion coefficient taking into account the combined interface/grain boundary and bulk diffusion of each individual component. The current concept is applied to the Cu–Sn couple which has been studied by a number of researchers. The results of simulations are compared with experiments at 200 °C on solid systems reported in the literature as well as with our experiments at 250 °C with liquid Sn.

  16. Multiscale Modeling of Grain Boundary Segregation and Embrittlement in Tungsten for Mechanistic Design of Alloys for Coal Fired Plants

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jian; Tomar, Vikas; Zhou, Naixie; Lee, Hongsuk

    2013-06-30

    Based on a recent discovery of premelting-like grain boundary segregation in refractory metals occurring at high temperatures and/or high alloying levels, this project investigated grain boundary segregation and embrittlement in tungsten (W) based alloys. Specifically, new interfacial thermodynamic models have been developed and quantified to predict high-temperature grain boundary segregation in the W-Ni binary alloy and W-Ni-Fe, W-Ni-Ti, W-Ni-Co, W-Ni-Cr, W-Ni-Zr and W-Ni-Nb ternary alloys. The thermodynamic modeling results have been experimentally validated for selected systems. Furthermore, multiscale modeling has been conducted at continuum, atomistic and quantum-mechanical levels to link grain boundary segregation with embrittlement. In summary, this 3-year project has successfully developed a theoretical framework in combination with a multiscale modeling strategy for predicting grain boundary segregation and embrittlement in W based alloys.

  17. Evidence of sealing and brine distribution at grain boundaries in natural fine-grained Halite (Qum Kuh salt fountain, Central Iran): implications for rheology of salt extrusions

    Science.gov (United States)

    Desbois, Guillaume; Urai, Janos L.; de Bresser, J. H. P.

    2010-05-01

    When grain boundary movement is stopped, surface energy related forces reassert themselves driving the system to its equilibrium conditions ([2], [6], [7], [8]). This could result in growth of islands and shrinking of channels and hence in healing the boundary by internal redistribution of fluid and solid in the contact region. Such islands are proposed to grow preferentially close to the contact rim and promote the healing of the grain-grain contact, which in turn prevents transport in or out the boundary region and thus traps the fluids in isolated inclusions. This contribution is focused on observation of grain boundary microstructures in natural mylonitic rocksalt collected from the distal part of Kum-Quh salt fountain (central Iran) in order to give unprecedented insight of grain boundary microstructures using argon-beam cross-sectioning to prepare high quality polished surfaces suitable for high-resolution SEM imaging. The possibility to use our SEM under cryogenic conditions allows also imaging the in-situ distribution of fluids. Results show that brine at grain boundaries occurs as thick layers (> µm in scale) corresponding to cross-sectioned wetted triple junction tubes, as filling at triple junction and as array of isolated fluids inclusions at grain-grain contacts. Close observations at islands contacts suggest the presence of a very thin fluid film (Journal of Structural Geology. [2] Ghoussoub J., and Leroy Y.M. (2001), Solid-fluid phase transformation within grain boundaries during compaction by pressure solution, J. Mech. Phys. Solids, 49, 737 2385-2430. 738 [3] Jackson, M.P.A., (1985). Natural strain in diapiric and glacial rock salt, with emphasis on Oakwood dome, East Texas, Bureau of Economic Geology, The University of Texas at Austin, Texas. [4] Schléder Z. and Urai J.L. (2007). Deformation and recrystallization mechanisms in mylonitic shear zones in naturally deformed extrusive Eocene-Oligocene rock salt from Eyvanekey plateau and Garmsar

  18. Migration of liquid film and grain boundary in Mo-Ni induced by W diffusion

    International Nuclear Information System (INIS)

    Kang, H.K.; Hackney, S.; Yoon, D.N.

    1988-01-01

    The liquid films and grain boundaries in liquid phase sintered Mo-Ni alloy are observed to migrate during heat-treatment after adding W to the liquid matrix. Behind the migrating boundaries forms Mo-Ni-W solid solution with the W concentration decreasing with the migration distance because of W depletion in the liquid matrix. The migration rate during the heat-treatment at 1540 0 C after adding W decreases with the decreasing pretreatment sintering temperature. When the sintering temperature is 1420 0 C, the migration rate is almost reduced to O. Under this condition, the coherency strain due to the simultaneous diffusion of W and Ni into the grain surfaces is estimated to be almost O. The results thus show that the coherency strain due to lattice diffusion is the driving force for the liquid film and grain boundary migration

  19. Effect of residual stress and hardening on grain boundary sliding in welds of low-carbon stainless steels with surface machining

    International Nuclear Information System (INIS)

    Mori, Hiroaki; Mochizuki, Masahito; Nishimoto, Kazutoshi; Katsuyama, Jinya

    2007-01-01

    To clarify the effects of residual stress and hardening on intergranular stress corrosion cracking (IGSCC) behavior in welds of low-carbon austenitic stainless steels with surface machining, residual stress and hardness were evaluated by 3-dimentional thermo elastic-plastic analysis and grain boundary sliding behavior was examined using a constant strain rate tensile test. It was revealed that grain boundary sliding occurred in the material at 561K by the tensile test with the numerically simulated tensile residual stress due to welding and surface machining. In addition, it was clarified that the grain boundary energy is raised by the grain boundary sliding. On the basis of these results, it was concluded that the cause of IGSCC in the welds of low-carbon austenitic stainless steel with surface hardening is the increase in grain boundary energy due to grain boundary sliding accelerated by residual stress of multi pass welding and surface hardening. (author)

  20. Effect of residual stress and hardening on grain boundary sliding in welds of low-carbon stainless steels with surface machining

    International Nuclear Information System (INIS)

    Mori, Hiroaki; Mochizuki, Masahito; Nishimoto, Kazutoshi; Katsuyama, Jinya

    2008-01-01

    To clarify the effects of residual stress and hardening on intergranular stress corrosion cracking (IGSCC) behavior in welds of low-carbon austenitic stainless steels with surface machining, residual stress and hardness were evaluated by 3-dimentional thermo elastic-plastic analysis and grain boundary sliding behavior was examined using a constant strain rate tensile test. It was revealed that grain boundary sliding occurred in the material at 561K by the tensile test with the numerically simulated tensile residual stress due to multi-pass welding and surface machining. In addition, it was clarified that the grain boundary energy is raised by the grain boundary sliding. On the basis of these results, it was concluded that the cause of IGSCC in the welds of low-carbon austenitic stainless steel with surface hardening is the increase in grain boundary energy due to grain boundary sliding induced by residual stress of multi pass welding and surface hardening. (author)

  1. Atomic-scale investigations of grain boundary segregation in astrology with a three dimensional atom-probe

    Energy Technology Data Exchange (ETDEWEB)

    Blavette, D. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique]|[Institut Universitaire de France (France); Letellier, L. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique; Duval, P. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique; Guttmann, M. [Rouen Univ., 76 - Mont-Saint-Aignan (France). Lab. de Microscopie Electronique]|[Institut de Recherches de la Siderurgie Francaise (IRSID), 57 - Maizieres-les-Metz (France)

    1996-08-01

    Both conventional and 3D atom-probes were applied to the investigation of grain-boundary (GB) segregation phenomena in two-phase nickel base superalloys Astroloy. 3D images as provided by the tomographic atom-probe reveal the presence of a strong segregation of both boron and molybdenum at grain-boundaries. Slight carbon enrichment is also detected. Considerable chromium segregation is exhibited at {gamma}`-{gamma}` grain-boundaries. All these segregants are distributed in a continuous manner along the boundary over a width close to 0.5 nm. Experiments show that segregation occurs during cooling and more probably between 1000 C and 800 C. Boron and molybdenum GB enrichments are interpreted as due to an equilibrium type-segregation while chromium segregation is thought to be induced by {gamma}` precipitation at GB`s and stabilised by the presence of boron. No segregation of zirconium is detected. (orig.)

  2. Surface studies of iridium-alloy grain boundaries associated with weld cracking

    International Nuclear Information System (INIS)

    Mosley, W.C.

    1982-01-01

    Plutonium-238 oxide fuel pellets for the General Purpose Heat Source (GPHS) Radioisotopic Thermoelectric Generators to be used on the NASA Galileo Mission to Jupiter and the International Solar Polar Mission are produced and encapsulated in iridium alloy at the Savannah River Plant (SRP). Underbead cracks occasionally occur in the girth weld on the iridium-alloy-clad vent sets in the region where the gas tungsten arc is quenched. Grain-boundary structures and compositions were characterized by scanning electron microscopy/x-ray energy spectroscopy, electron microprobe analysis and scanning Auger microprobe analysis to determine the cause of weld quench area cracking. Results suggest that weld quench area cracking may be caused by gas porosity or liquation in the grain boundaries

  3. Role of grain boundaries in the conduction of Eu–Ni substituted Y-type hexaferrites

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Irshad, E-mail: irshadalibzu@gmail.com [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Islam, M.U. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Naeem Ashiq, Muhammad, E-mail: naeemashiqqau@yahoo.com [Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 (Pakistan); Asif Iqbal, M. [National University of Sciences and Technology, EME College, Islamabad (Pakistan); Khan, Hasan M. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Murtaza, G. [Centre for Advanced Studies in Physics, Government College University, Lahore 54000 (Pakistan)

    2014-08-01

    Single phase nanostructured (Eu–Ni) substituted Y-type hexaferrites with nominal composition of Sr{sub 2}Co{sub 2−x}Ni{sub x}Eu{sub y}Fe{sub 12−y}O{sub 22} (x=0.0–1, y=0.0–0.1) were synthesized by the microemulsion method. Temperature dependent DC electrical conductivity and drift mobility were found in good agreement with each other, reflecting semiconducting behavior. The presence of Debye peaks in imaginary electric modulus curves confirmed the existence of relaxation phenomena in given frequency range. The AC conductivity follows power law, with exponent (n) value, ranges from 0.81–0.97, indicating that the mechanism is due to polaron hopping. In the present ferrite system, Cole–Cole plots were used to separate the grain and grain boundary effects. Eu–Ni substitution leads to a remarkable rise of grain boundary resistance as compared to the grain resistance. As both AC conductivity and Cole–Cole plots are the functions of concentration, they reveal the dominant contribution of grain boundaries in the conduction mechanism. It was also observed that the AC activation energy is lower than the DC activation energy. Appreciable improved values of quality factor suggested the possible use of these synthesized materials for power applications and high frequency multilayer chip inductors. - Highlights: • Single phase nanostructures were synthesized by the micro-emulsion method. • Substitution leads to a remarkable rise of grain boundary resistance. • The AC activation energy is lower than the DC activation energy. • Improved values of quality factor make these materials useful for high frequency multilayer chip inductors.

  4. A simple method to evaluate the fission gas release at fuel grain boundary including the grain growth both at constant and at transient power histories

    International Nuclear Information System (INIS)

    Paraschiv, M.; Paraschiv, A.

    1991-01-01

    A method to rewrite Fick's second law for a region with a moving boundary when the moving law in time of this boundary is known, has been proposed. This method was applied to Booth's sphere model for radioactive and stable fission product diffusion from the oxide fuel grain in order to take into account the grain growth. The solution of this new equation was presented in the mathematical formulation for power histories from ANS 5.4 model for the stable species. It is very simple to apply and very accurate. The results obtained with this solution for constant and transient temperatures show that the fission gas release (FGR) at grain boundary is strongly dependent on kinetics of grain growth. The utilization of two semiempirical grain growth laws, from published information, shows that the fuel microstructural properties need to be multicitly considered in the fission gas release for every manufacturer of fuel. (orig.)

  5. Subthreshold characteristics of pentacene field-effect transistors influenced by grain boundaries.

    OpenAIRE

    Park, J.; Jeong, Y-S.; Park, K-S.; Do, L-M.; Bae, J-H.; Choi, J.S.; Pearson, C.; Petty, M.C.

    2012-01-01

    Grain boundaries in polycrystalline pentacene films significantly affect the electrical characteristics of pentacene field-effect transistors (FETs). Upon reversal of the gate voltage sweep direction, pentacene FETs exhibited hysteretic behaviours in the subthreshold region, which was more pronounced for the FET having smaller pentacene grains. No shift in the flat-band voltage of the metal-insulator-semiconductor capacitor elucidates that the observed hysteresis was mainly caused by the infl...

  6. Radiation-induced segregation: A microchemical gauge to quantify fundamental defect parameters

    International Nuclear Information System (INIS)

    Simonen, E.P.; Bruemmer, S.M.

    1994-12-01

    Defect Kinetic are evaluated for austenitic stainless alloys by comparing model predictions to measured responses for radiation-induced grain boundary segregation. Heavy-ions, neutrons and proton irradiations having substantial statistical bases are examined. The combined modeling and measurement approach is shown to be useful for quantifying fundamental defect parameters. The mechanism evaluation indicates vacancy, migration energies of 1.15 eV or less and a vacancy formation energy at grain boundaries of 1.5 eV. Damage efficiencies of about 0.03 were established for heavy-ions and for light-water reactor neutrons. Inferred proton damage efficiencies were about 0.15. Segregation measured in an advanced gas-cooled reactor component was much greater than expected using the above parameters

  7. Microstructure and nanoindentation of the CLAM steel with nanocrystalline grains under Xe irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yongqin, E-mail: chang@ustb.edu.cn; Zhang, Jing; Li, Xiaolin; Guo, Qiang; Wan, Farong; Long, Yi

    2014-12-15

    This work presents an early look at irradiation effects on China low activation martensitic (CLAM) steel with nanocrystalline grains (NC-CLAM steels) under 500 keV Xe-ion bombardment at room temperature to doses up to 5.3 displacements per atom (dpa). The microstructure in the topmost region of the steel is composed of nanocrystalline grains with an average diameter of 13 nm. As the samples were implanted at low dose, the nanocrystalline grains had martensite lath structure, and many dislocations and high density bubbles were introduced into the NC-CLAM steels. As the irradiation dose up to 5.3 dpa, a tangled dislocation network exists in the lath region, and the size of the bubbles increases. X-ray diffraction results show that the crystal quality decreases after irradiation, although the nanocrystals obviously coarsen. Grain growth under irradiation may be ascribed to the direct impact of the thermal spike on grain boundaries in the NC-CLAM steels. In irradiated samples, a compressive stress exists in the surface layer because of grain growth and irradiation-introduced defects, while the irradiation introduced grain-size coarsening and defects gradients from the surface to matrix result in a tensile stress in the irradiated NC-CLAM steels. Nanoindentation was used to estimate changes in mechanical properties during irradiation, and the results show that the hardness of the NC-CLAM steels increases with increasing irradiation dose, which was ascribed to the competition between the grain boundaries and the irradiation-introduced defects.

  8. Precipitation of grain boundary α in a laser deposited compositionally graded Ti-8Al-xV alloy - an orientation microscopy study

    International Nuclear Information System (INIS)

    Banerjee, R.; Bhattacharyya, D.; Collins, P.C.; Viswanathan, G.B.; Fraser, H.L.

    2004-01-01

    A graded ternary Ti-8Al-xV alloy (all compositions in wt%) has been deposited using the laser engineered net-shaping (LENS TM ) process. A compositional gradient in the alloy, from binary Ti-8Al to Ti-8Al-20V, has been achieved within a length of ∼25 mm. The feedstock used for depositing the graded alloy consisted of elemental Ti, Al, and V powders. Due to the columnar growth morphology of the β grains in these LENS TM deposited Ti alloys, the same prior β grain boundary often extends across lengths ∼10 mm. Using orientation microscopy techniques in a scanning electron microscope, the crystallography of precipitation of grain boundary α across the same boundary with changing composition has been investigated in detail. It was observed that while most grain boundary α precipitates maintain a Burgers or near-Burgers orientation relationship with only one of the β grains, a few of these precipitates develop a Burgers orientation relationship with the other β grain. In some rare instances, the grain boundary α did not develop a Burgers or near-Burgers orientation relationship with either β grains. Interestingly, in many cases while the grain boundary α maintained Burgers relationship with one of the β grains, precipitates of two different variants decorated the boundary, in a near-alternate fashion

  9. Slip transfer across grain boundaries in Fe-Si bicrystals

    Czech Academy of Sciences Publication Activity Database

    Gemperlová, Juliana; Polcarová, Milena; Gemperle, Antonín; Zárubová, Niva

    2004-01-01

    Roč. 378, - (2004), s. 97-101 ISSN 0925-8388 R&D Projects: GA ČR GA202/01/0670 Institutional research plan: CEZ:AV0Z1010914 Keywords : metals * dislocations and disclinations * bicrystals * grain boundaries * transmission electron microscopy * X-ray diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.562, year: 2004

  10. Density functional theory metadynamics of silver, caesium and palladium diffusion at β-SiC grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Rabone, Jeremy, E-mail: jeremy.rabone@ec.europa.eu [European Commission, Joint Research Centre, Institute for Transuranium Elements, D-76125 Karlsruhe (Germany); López-Honorato, Eddie [Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Unidad Saltillo, Industria Metalúrgica 1062, Parque Industrial, Ramos Arizpe 25900, Coahuila (Mexico)

    2015-03-15

    Highlights: • DFT metadynamics of diffusion of Pd, Ag and Cs on grain boundaries in β-SiC. • The calculated diffusion rates for Pd and Ag tally with experimental release rates. • A mechanism of release other than grain boundary diffusion seems likely for Cs. - Abstract: The use of silicon carbide in coated nuclear fuel particles relies on this materials impermeability towards fission products under normal operating conditions. Determining the underlying factors that control the rate at which radionuclides such as Silver-110m and Caesium-137 can cross the silicon carbide barrier layers, and at which fission products such as palladium could compromise or otherwise alter the nature of this layer, are of paramount importance for the safety of this fuel. To this end, DFT-based metadynamics simulations are applied to the atomic diffusion of silver, caesium and palladium along a Σ5 grain boundary and to palladium along a carbon-rich Σ3 grain boundary in cubic silicon carbide at 1500 K. For silver, the calculated diffusion coefficients lie in a similar range (7.04 × 10{sup −19}–3.69 × 10{sup −17} m{sup 2} s{sup −1}) as determined experimentally. For caesium, the calculated diffusion rates are very much slower (3.91 × 10{sup −23}–2.15 × 10{sup −21} m{sup 2} s{sup −1}) than found experimentally, suggesting a different mechanism to the simulation. Conversely, the calculated atomic diffusion of palladium is very much faster (7.96 × 10{sup −11}–7.26 × 10{sup −9} m{sup 2} s{sup −1}) than the observed penetration rate of palladium nodules. This points to the slow dissolution and rapid regrowth of palladium nodules as a possible ingress mechanism in addition to the previously suggested migration of entire nodules along grain boundaries. The diffusion rate of palladium along the Σ3 grain boundary was calculated to be slightly slower (2.38 × 10{sup −11}–8.24 × 10{sup −10} m{sup 2} s{sup −1}) than along the Σ5 grain boundary. Rather

  11. Study of the Sensitization on the Grain Boundary in Austenitic Stainless Steel Aisi 316

    Directory of Open Access Journals (Sweden)

    Kocsisová Edina

    2014-12-01

    Full Text Available Intergranular corrosion (IGC is one of the major problems in austenitic stainless steels. This type of corrosion is caused by precipitation of secondary phases on grain boundaries (GB. Precipitation of the secondary phases can lead to formation of chromium depleted zones in the vicinity of grain boundaries. Mount of the sensitization of material is characterized by the degree of sensitization (DOS. Austenitic stainless steel AISI 316 as experimental material had been chosen. The samples for the study of sensitization were solution annealed on 1100 °C for 60 min followed by water quenching and then sensitization by isothermal annealing on 700 °C and 650 °C with holding time from 15 to 600 min. Transmission electron microscopy (TEM was used for identification of secondary phases. Electron backscattered diffraction (EBSD was applied for characterization of grain boundary structure as one of the factors which influences on DOS.

  12. Segregation of sp-impurities at grain boundaries and surfaces: comparison of fcc cobalt and nickel

    Czech Academy of Sciences Publication Activity Database

    Všianská, Monika; Vémolová, H.; Šob, Mojmír

    2017-01-01

    Roč. 25, č. 8 (2017), č. článku 085004. ISSN 0965-0393 R&D Projects: GA ČR(CZ) GA16-24711S Institutional support: RVO:68081723 Keywords : local magnetic-moments * total-energy calculations * augmented-wave method * solute segregation * tilt boundaries * embrittling potency * alloying elements * hcp metals * basis-set * 1st-principles * grain boundary segregation * strengthening/embrittling energy * grain boundary magnetism * ab initio calculations * surface segregation Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.891, year: 2016

  13. The effects of defects on copper melting under hydrostatic and shock loading

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shengnian [Los Alamos National Laboratory; An, Qi [Los Alamos National Laboratory; Germann, Timothy C [Los Alamos National Laboratory; Han, Li - Bo [USTC

    2009-07-24

    With molecular dynamics (MD) simulations, we investigate the effects of defects on Cu melting under hydrostatic and shock wave loading. We explore preexistent defects including vacancies, stacking faults and grain boundaries, as well as shock-induced defects. Depending on defect characteristics (energy and concentration), defects may have negligible or considerable effects on melting at MD scales However, it is expected that defects have more pronounced effects at heating rates lower than the MD rates.

  14. Accurate electron channeling contrast analysis of a low angle sub-grain boundary

    International Nuclear Information System (INIS)

    Mansour, H.; Crimp, M.A.; Gey, N.; Maloufi, N.

    2015-01-01

    High resolution selected area channeling pattern (HR-SACP) assisted accurate electron channeling contrast imaging (A-ECCI) was used to unambiguously characterize the structure of a low angle grain boundary in an interstitial-free-steel. The boundary dislocations were characterized using TEM-style contrast analysis. The boundary was determined to be tilt in nature with a misorientation angle of 0.13° consistent with the HR-SACP measurements. The results were verified using high accuracy electron backscatter diffraction (EBSD), confirming the approach as a discriminating tool for assessing low angle boundaries

  15. Long time scale simulation of a grain boundary in copper

    DEFF Research Database (Denmark)

    Pedersen, A.; Henkelman, G.; Schiøtz, Jakob

    2009-01-01

    A general, twisted and tilted, grain boundary in copper has been simulated using the adaptive kinetic Monte Carlo method to study the atomistic structure of the non-crystalline region and the mechanism of annealing events that occur at low temperature. The simulated time interval spanned 67 mu s...... was also observed. In the final low-energy configurations, the thickness of the region separating the crystalline grains corresponds to just one atomic layer, in good agreement with reported experimental observations. The simulated system consists of 1307 atoms and atomic interactions were described using...

  16. Micromagnetic simulation of the orientation dependence of grain boundary properties on the coercivity of Nd-Fe-B sintered magnets

    Directory of Open Access Journals (Sweden)

    Jun Fujisaki

    2016-05-01

    Full Text Available This paper is focused on the micromagnetic simulation study about the orientation dependence of grain boundary properties on the coercivity of polycrystalline Nd-Fe-B sintered magnets. A multigrain object with a large number of meshes is introduced to analyze such anisotropic grain boundaries and the simulation is performed by combining the finite element method and the parallel computing. When the grain boundary phase parallel to the c-plane is less ferromagnetic the process of the magnetization reversal changes and the coercivity of the multigrain object increases. The simulations with various magnetic properties of the grain boundary phases are executed to search for the way to enhance the coercivity of polycrystalline Nd-Fe-B sintered magnets.

  17. Kinetics of interstitial segregation in Cottrell atmospheres and grain boundaries

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jiří; Zickler, G. A.; Kozeschnik, E.; Fischer, F. D.

    2015-01-01

    Roč. 95, č. 9 (2015), s. 458-465 ISSN 0950-0839 R&D Projects: GA ČR(CZ) GA15-06390S Institutional support: RVO:68081723 Keywords : segregation * grain boundaries * dislocations * simulation * thermodynamic extremal principle Subject RIV: BJ - Thermodynamics Impact factor: 0.918, year: 2015

  18. Diffusion of hydrogen from plasma source by grain boundaries in EFG silicon

    International Nuclear Information System (INIS)

    Fedotov, A.; Saad, Anis M.H.; Drozdov, N.; Mazanik, A.; Ulyashin, A.; Fahrner, W.R.; Stognii, A.

    2001-01-01

    Diffusion of atomized hydrogen along grain boundaries (GBs) studied by transformation of their electrical activity in p-type silicon bi crystalline samples cut from EFG silicon crystals was investigated. The changes in electrical activity of GBs was estimated relative to both minority (MiC) and majority (MaC) carriers and demonstrated the correlation between the type, structure and thermal pre-history of GBs. It was shown on the base of this study that diffusion along GBs depends essentially on three factors: type of GBs, state of ribbons (as-grown or annealed) and concurrence of grain boundary dangling bonds and boron passivation effects. The model of the longitudinal hydrogen diffusion that explains these results is proposed

  19. Investigation of the role of grain boundary on the mechanical properties of metals

    International Nuclear Information System (INIS)

    Kheradmand, Nousha; Barnoush, Afrooz; Vehoff, Horst

    2010-01-01

    Compression testing of micropillars was used to investigate the gain boundary effect on the strength of metals which is especially interesting in ultra fine grained and nanocrystalline metals. Single and bicrystal micropillars of different sizes and crystallographic orientations were fabricated using a focused ion beam system and the compression test was performed with a nanoindenter. A reduction of the pillar size as well as the introduction of a grain boundary results in an increase in the yield strength. The results show that the size and the orientation of different adjoining crystals in bicrystalline pillars have an obvious effect on dislocation nucleation and multiplication.

  20. Interdiffusion and grain-boundary migration in Au-Cu bilayers during ion-irradiation

    International Nuclear Information System (INIS)

    Alexander, D.E.; Rehn, L.E.; Baldo, P.M.

    1991-11-01

    Ion irradiation and annealing experiments have been conducted on Au/Cu bilayer films to evaluate the effect of irradiation on diffusion-induced grain boundary migration (DIGM). The Au films were prepared with a large-grained microstructure with grain boundaries perpendicular to the film surface and extending through the film thickness. Irradiations were conducted with 1.5 MeV Kr at 228 degree C. Rutherford backscattering spectrometry of the samples revealed that interdiffusion was substantially enhanced in the irradiated area relative to the unirradiated area. Both irradiated and annealed-only areas were characterized by a nearly uniform composition of 14 at.% and 7 at.% Cu respectively through the entire thickness of the underlying Au film. Small probe X-ray energy dispersive spectroscopy showed significant lateral compositional homogeneities in both irradiated and annealed areas. These two results are consistent with previous observations of DIGM in the Au/Cu system, suggesting that this previously unexamined mechanism contributes to ion beam mixing

  1. Stable High-Performance Perovskite Solar Cells via Grain Boundary Passivation.

    Science.gov (United States)

    Niu, Tianqi; Lu, Jing; Munir, Rahim; Li, Jianbo; Barrit, Dounya; Zhang, Xu; Hu, Hanlin; Yang, Zhou; Amassian, Aram; Zhao, Kui; Liu, Shengzhong Frank

    2018-04-01

    The trap states at grain boundaries (GBs) within polycrystalline perovskite films deteriorate their optoelectronic properties, making GB engineering particularly important for stable high-performance optoelectronic devices. It is demonstrated that trap states within bulk films can be effectively passivated by semiconducting molecules with Lewis acid or base functional groups. The perovskite crystallization kinetics are studied using in situ synchrotron-based grazing-incidence X-ray scattering to explore the film formation mechanism. A model of the passivation mechanism is proposed to understand how the molecules simultaneously passivate the Pb-I antisite defects and vacancies created by under-coordinated Pb atoms. In addition, it also explains how the energy offset between the semiconducting molecules and the perovskite influences trap states and intergrain carrier transport. The superior optoelectronic properties are attained by optimizing the molecular passivation treatments. These benefits are translated into significant enhancements of the power conversion efficiencies to 19.3%, as well as improved environmental and thermal stability of solar cells. The passivated devices without encapsulation degrade only by ≈13% after 40 d of exposure in 50% relative humidity at room temperature, and only ≈10% after 24 h at 80 °C in controlled environment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Simulation of the effects of grain boundary fission gas during thermal transients

    International Nuclear Information System (INIS)

    Fenske, G.R.; Emerson, J.E.; Beiersdorf, B.A.

    1984-11-01

    This report presents the results of an initial set of out-of-cell transient heating experiments performed on unirradiated UO 2 pellets fabricated to simulate the effect of grain boundary fission gas on fuel swelling and cladding failure. The fabrication involved trapping high-pressure argon on internal pores by sintering annular UO 2 pellets in a hot isostatic press (HIP). The pellet stack was subjected to two separate transients (DGF83-03A and -03B). Figures show photomicrographs of HIPped and non-HIPped UO 2 , respectively, and the adjacent cladding after DGF83-03B. Fuel melting occurred at the center of both the HIPped and non-HIPped pellets; however, a dark ring is present near the center in the HIPped fuel but not in the non-HIPped fuel. This dark band is a high-porosity region due to increased grain boundary/edge swelling in that pellet. In contrast, grain boundary/edge swelling did not occur in the non-HIPped pellets. Thus, the presence of the high-pressure argon trapped on internal pores during sintering in the HIP altered the microstructural behavior. Results of these preliminary tests indicate that the microstructural behavior of HIPped fuel during thermal transients is different from the behavior of conventionally fabricated fuel

  3. Solute grain boundary segregation during high temperature plastic deformation in a Cr-Mo low alloy steel

    International Nuclear Information System (INIS)

    Chen, X.-M.; Song, S.-H.; Weng, L.-Q.; Liu, S.-J.

    2011-01-01

    Highlights: → The segregation of P and Mo is evidently enhanced by plastic deformation. → The boundary concentrations of P and Mo increase with increasing strain. → A model with consideration of site competition in grain boundary segregation in a ternary system is developed. → Model predictions show a reasonable agreement with the observations. - Abstract: Grain boundary segregation of Cr, Mo and P to austenite grain boundaries in a P-doped 1Cr0.5Mo steel is examined using field emission gun scanning transmission electron microscopy for the specimens undeformed and deformed by 10% with a strain rate of 2 x 10 -3 s -1 at 900 deg. C, and subsequently water quenched to room temperature. Before deformation, there is some segregation for Mo and P, but the segregation is considerably increased after deformation. The segregation of Cr is very small and there is no apparent difference between the undeformed and deformed specimens. Since the thermal equilibrium segregation has been attained prior to deformation, the segregation produced during deformation has a non-equilibrium characteristic. A theoretical model with consideration of site competition in grain boundary segregation between two solutes in a ternary alloy is developed to explain the experimental results. Model predictions are made, which show a reasonable agreement with the observations.

  4. Grain boundary diffusion of Dy films prepared by magnetron sputtering for sintered Nd–Fe–B magnets

    Science.gov (United States)

    Chen, W.; Luo, J. M.; Guan, Y. W.; Huang, Y. L.; Chen, M.; Hou, Y. H.

    2018-05-01

    Dy films, deposited on the surface of sintered Nd–Fe–B magnets by magnetron sputtering, were employed for grain boundary diffusion source. High coercivity sintered Nd–Fe–B magnets were successfully prepared. Effects of sputtering power and grain boundary diffusion processes (GBDP) on the microstructure and magnetic properties were investigated in detail. The dense and uniform Dy films were beneficial to prepare high coercivity magnets by GBDP. The maximum coercivity value of 1189 kA m‑1 could be shown, which was an amplification of 22.3%, compared with that of as-prepared Nd–Fe–B magnet. Furthermore, the improved remanence and maximum energy product were also achieved through tuning grain boundary diffusion processes. Our results demonstrated that the formation of (Nd, Dy)2Fe14B shell surrounding Nd2Fe14B grains and fine, uniform and continuous intergranular RE-rich phases jointly contribute to the improved coercivity.

  5. A grain boundary sliding model for cavitation, crack growth and ...

    African Journals Online (AJOL)

    A model is presented for cavity growth, crack propagation and fracture resulting from grain boundary sliding (GBS) during high temperature creep deformation. The theory of cavity growth by GBS was based on energy balance criteria on the assumption that the matrix is sufficiently plastic to accommodate misfit strains ...

  6. Magnetism in grain-boundary phase of a NdFeB sintered magnet studied by spin-polarized scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kohashi, Teruo, E-mail: teruo.kohashi.fc@hitachi.com; Motai, Kumi [Central Research Laboratory, Hitachi, Ltd., Hatoyama, Saitama 350-0395 (Japan); Nishiuchi, Takeshi; Hirosawa, Satoshi [Magnetic Materials Research Laboratory, Hitachi Metals Ltd., Osaka 618-0013 (Japan)

    2014-06-09

    The magnetism in the grain-boundary phase of a NdFeB sintered magnet was measured by spin-polarized scanning electron microscopy (spin SEM). A sample magnet was fractured in the ultra-high-vacuum chamber to avoid oxidation, and its magnetizations in the exposed grain-boundary phase on the fracture surface were evaluated through the spin polarization of secondary electrons. Spin-SEM images were taken as the fracture surface was milled gradually by argon ions, and the magnetization in the grain-boundary phase was quantitatively obtained separately from that of the Nd{sub 2}Fe{sub 14}B phase. The obtained magnetization shows that the grain-boundary phase of this magnet has substantial magnetization, which was confirmed to be ferromagnetic.

  7. Formation of incoherent deformation twin boundaries in a coarse-grained Al-7Mg alloy

    Science.gov (United States)

    Jin, S. B.; Zhang, K.; Bjørge, R.; Tao, N. R.; Marthinsen, K.; Lu, K.; Li, Y. J.

    2015-08-01

    Deformation twinning has rarely been observed in coarse grained Al and its alloys except under some extreme conditions such as ultrahigh deformation strain or strain rates. Here, we report that a significant amount of Σ3 deformation twins could be generated in a coarse-grained Al-7 Mg alloy by dynamic plastic deformation (DPD). A systematic investigation of the Σ3 boundaries shows that they are Σ3{112} type incoherent twin boundaries (ITBs). These ITBs have formed by gradual evolution from copious low-angle deformation bands through -twist Σ boundaries by lattice rotation. These findings provide an approach to generate deformation twin boundaries in high stacking fault energy metallic alloys. It is suggested that high solution content of Mg in the alloy and the special deformation mode of DPD played an important role in formation of the Σ and ITBs.

  8. Mesoscopic conductance fluctuations in high-T{sub c} grain boundary Josephson junctions: Coherent quasiparticle transport

    Energy Technology Data Exchange (ETDEWEB)

    Tafuri, F. [Dip. Ingegneria dell' Informazione, Seconda Universita di Napoli, 81031 Aversa (Italy); CNR-INFM Coherentia, Dip. Scienze Fisiche, Universita di Napoli Federico II, 80125 Naples (Italy)], E-mail: tafuri@na.infn.it; Tagliacozzo, A.; Born, D.; Stornaiuolo, D. [CNR-INFM Coherentia, Dip. Scienze Fisiche, Universita di Napoli Federico II, 80125 Naples (Italy); Gambale, E.; Dalena, D. [Dip. Ingegneria dell' Informazione, Seconda Universita di Napoli, 81031 Aversa (Italy); Lombardi, F. [Department of Microelectronics and Nanoscience, MINA, Chalmers University of Technology, 41296 Goeteborg (Sweden)

    2007-09-01

    Magneto-fluctuations of the normal resistance R{sub N} have been reproducibly observed in YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (HTS) biepitaxial grain boundary junctions at low temperatures. We attribute them to mesoscopic transport in narrow channels across the grain boundary line. The Thouless energy appears to be the relevant energy scale. Possible implications on the understanding of coherent transport of quasiparticles in HTS and of the dissipation mechanisms are discussed.

  9. Application of Electron Backscattered Diffraction (EBSD) and Atomic Force Microscopy (AFM) to Determine Texture, Mesotexture, and Grain Boundary Energies in Ceramics

    International Nuclear Information System (INIS)

    Glass, S.J.; Rohrer, G.S.; Saylor, D.M.; Vedula, V.R.

    1999-01-01

    Crystallographic orientations in alumina (Al 2 0 3 ) and magnesium aluminate spinel (MgAl 2 0 4 ) were obtained using electron backscattered diffraction (EBSD) patterns. The texture and mesotexture (grain boundary mis-orientations) were random and no special boundaries were observed. The relative grain boundary energies were determined by thermal groove geometries using atomic force microscopy (AFM) to identify relationships between the grain boundary energies and mis-orientations

  10. Microcrystalline silicon, grain boundaries and role of oxygen

    Czech Academy of Sciences Publication Activity Database

    Kočka, Jan; Stuchlíková, The-Ha; Ledinský, Martin; Stuchlík, Jiří; Mates, Tomáš; Fejfar, Antonín

    2009-01-01

    Roč. 93, č. 8 (2009), s. 1444-1447 ISSN 0927-0248 R&D Projects: GA MŠk(CZ) LC06040; GA AV ČR KAN400100701; GA ČR(CZ) GD202/05/H003; GA MŠk LC510; GA AV ČR IAA1010413 Institutional research plan: CEZ:AV0Z10100521 Keywords : microcrystalline silicon * grain boundaries * electronic transport * hydrogen * oxygen Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.858, year: 2009

  11. Electrical characterization of CdTe grain-boundary properties from as processed CdTe/CdS solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Woods, L.M.; Robinson, G.Y. [Colorado State Univ., Fort Collins, CO (United States); Levi, D.H.; Ahrenkiel, R.K. [National Renewable Energy Lab., Golden, CO (United States); Kaydanov, V. [Colorado School of Mines, Golden, CO (United States)

    1998-09-01

    An ability to liftoff or separate the thin-film polycrystalline CdTe from the CdS, without the use of chemical etches, has enabled direct electrical characterization of the as-processed CdTe near the CdTe/CdS heterointerface. The authors use this ability to understand how a back-contact, nitric-phosphoric (NP) etch affects the grain boundaries throughout the film. Quantitative determination of the grain-boundary barrier potentials and estimates of doping density near the grain perimeter are determined from theoretical fits to measurements of the current vs. temperature. Estimates of the bulk doping are determined from high-frequency resistivity measurements. The light and dark barrier potentials change after the NP etch, and the origin of this change is postulated. Also, a variable doping density within the grains of non-etched material has been determined. These results allow a semi-quantitative grain-boundary band diagram to be drawn that should aid in determining more accurate two-dimensional models for polycrystalline CdTe solar cells.

  12. Three-dimensional study of grain boundary engineering effects on intergranular stress corrosion cracking of 316 stainless steel in high temperature water

    Science.gov (United States)

    Liu, Tingguang; Xia, Shuang; Bai, Qin; Zhou, Bangxin; Zhang, Lefu; Lu, Yonghao; Shoji, Tetsuo

    2018-01-01

    The intergranular cracks and grain boundary (GB) network of a GB-engineered 316 stainless steel after stress corrosion cracking (SCC) test in high temperature high pressure water of reactor environment were investigated by two-dimensional and three-dimensional (3D) characterization in order to expose the mechanism that GB-engineering mitigates intergranular SCC. The 3D microstructure shown that the essential characteristic of the GB-engineered microstructure is formation of many large twin-boundaries as a result of multiple-twinning, which results in the formation of large grain-clusters. The large grain-clusters played a key role to the improvement of intergranular SCC resistance by GB-engineering. The main intergranular cracks propagated in a zigzag along the outer boundaries of these large grain-clusters because all inner boundaries of the grain-clusters were twin-boundaries (∑3) or twin-related boundaries (∑3n) which had much lower susceptibility to SCC than random boundaries. These large grain-clusters had tree-ring-shaped topology structure and very complex morphology. They got tangled so that difficult to be separated during SCC, resulting in some large crack-bridges retained in the crack surface.

  13. The effect of inclination angle on the plastic deformation behavior of bicrystalline silver nanowires with Σ3 asymmetric tilt grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Lin, E-mail: yuanlin@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); National Key Laboratory for Precision Hot Processing of Metals, Harbin 150001 (China); Jing, Peng; Shan, Debin; Guo, Bin [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); National Key Laboratory for Precision Hot Processing of Metals, Harbin 150001 (China)

    2017-01-15

    Atomistic simulations were used to investigate the plastic deformation behavior of bicrystalline silver nanowires with Σ3 asymmetric tilt grain boundaries at 0.1 K. The calculated grain boundary energies of Σ3 asymmetric tilt grain boundaries corresponded well with the energies measured in experiments and predicted by the theoretical description. The Σ3 asymmetric tilt grain boundaries with low inclination angles were composed of a replication of twin boundary segments separated by small ledges. The results demonstrated that the combination effect of Schmid factor and non-Schmid factors could explain dislocations emission into grain 1 only in models with low inclination angles (< 64.76°). At the latter stage of plastic deformation, free surfaces served as additional dislocation sources. Parallelly arranged operative slip systems were the fundamental features of plastic deformation. In addition, a number of stacking faults and multiple stacking faults were formed during plastic deformation. The hindrance of stacking faults to dislocation motion and the interactions between dislocations leaded to the observed strain hardening in nanowires with inclination angles at and above 29.50°. The low stacking fault energy of silver was responsible for the appearance of strain hardening. Dislocations emitted from grain 2 interacted with each other contributing to the observed strain hardening. Grain boundaries were completely eliminated by successive emission of dislocations from grain boundaries in nanowires with an inclination angle of 35.26° and 54.74°. A detailed understanding of the relationship between strength and grain boundary structures as well as specific plastic deformation would push forward the application of nanocrystalline materials and provide insights into the synthesis of nanocrystalline materials with superior strength and ductility.

  14. Grain-boundary sliding in a TiAl alloy with fine-grained duplex microstructure during 750 deg. C creep

    Energy Technology Data Exchange (ETDEWEB)

    Peter, D. [Ruhr University Bochum, Institute for Materials, D-44780 Bochum (Germany); Viswanathan, G.B., E-mail: Viswanathan.11@osu.edu [Ruhr University Bochum, Institute for Materials, D-44780 Bochum (Germany) and Department of Materials Science and Engineering, Ohio State University, Columbus, OH 43210 (United States); Wagner, M.F.-X.; Eggeler, G. [Ruhr University Bochum, Institute for Materials, D-44780 Bochum (Germany)

    2009-06-15

    Constant-load creep experiments at a temperature of 750 deg. C and a nominal stress of 300 MPa were conducted on a fine-grained Ti-45Al-5Nb-0.2B-0.2C (in at.%) alloy with a duplex microstructure. Microstructures before and after creep (accumulated strain: 9.6%) were analyzed using scanning and transmission electron microscopy (SEM and TEM). TEM analysis after creep indicates that the individual microstructural constituents of the fine duplex microstructure, namely, the equiaxed {gamma} and the lamellar {alpha}{sub 2}/{gamma} colonies, undergo varying degrees of deformation and develop various substructures. Lamellar grains deform by dislocation creep. They show clear evidence for dislocation and twin activity. In contrast, only few dislocations are found in the equiaxed grains. We show that the regions with small equiaxed {gamma} grains, representing 65-75 vol.% of the microstructure, deform by grain-boundary sliding.

  15. Grain-boundary sliding in a TiAl alloy with fine-grained duplex microstructure during 750 deg. C creep

    International Nuclear Information System (INIS)

    Peter, D.; Viswanathan, G.B.; Wagner, M.F.-X.; Eggeler, G.

    2009-01-01

    Constant-load creep experiments at a temperature of 750 deg. C and a nominal stress of 300 MPa were conducted on a fine-grained Ti-45Al-5Nb-0.2B-0.2C (in at.%) alloy with a duplex microstructure. Microstructures before and after creep (accumulated strain: 9.6%) were analyzed using scanning and transmission electron microscopy (SEM and TEM). TEM analysis after creep indicates that the individual microstructural constituents of the fine duplex microstructure, namely, the equiaxed γ and the lamellar α 2 /γ colonies, undergo varying degrees of deformation and develop various substructures. Lamellar grains deform by dislocation creep. They show clear evidence for dislocation and twin activity. In contrast, only few dislocations are found in the equiaxed grains. We show that the regions with small equiaxed γ grains, representing 65-75 vol.% of the microstructure, deform by grain-boundary sliding.

  16. The potential role of diffusion-induced grain-boundary migration in extended life prediction

    International Nuclear Information System (INIS)

    Handwerker, C.A.; Blendell, J.E.; Interrante, C.G.; Ahn, T.M.

    1993-01-01

    The selection of materials that are suitable for various high-level waste-packaging designs must reflect the need to meet requirements for long-term performance in repository environments that change with time. With this in mind, we examine how grain boundaries in materials are induced to migrate as a result of solute diffusion even at low temperatures, how the composition of the matrix material is changed significantly by this diffusion-induced grain boundary migration (DIGM), and how the changing microstructures and compositions during DIGM lead to major changes in materials performance, such as corrosion or embrittlement. Methods are discussed for prediction of the long-term behavior of materials affected by DIGM

  17. Physical behaviors of impure atoms during relaxation of impure NiAl-based alloy grain boundary

    International Nuclear Information System (INIS)

    Zheng Liping; Jiang Bingyao; Liu Xianghuai; Li Douxing

    2003-01-01

    The Monte Carlo simulation with the energetics described by the embedded atom method has been employed to mainly study physical behaviors of boron atoms during relaxation of the Ni 3 Al-x at.% B grain boundary. During relaxation of impure Ni 3 Al grain boundaries, authors suggest that for different types of impure atoms (Mg, B, Cr and Zr atoms etc.), as the segregating species, they have the different behaviors, but as the inducing species, they have the same behaviors, i.e. they all induce Ni atoms to substitute Al atoms. Calculations show that at the equilibrium, when x(the B bulk concentration) increases from 0.1 to 0.9, the peak concentration of B increases, correspondently, the peak concentration of Ni maximizes but the valley concentration of Al minimizes, at x=0.5. The calculations also show the approximate saturation of Ni at the grain boundary at x=0.5

  18. Improved dielectric properties and grain boundary response in neodymium-doped Y_2_/_3Cu_3Ti_4O_1_2 ceramics

    International Nuclear Information System (INIS)

    Liang, Pengfei; Yang, Zupei; Chao, Xiaolian

    2016-01-01

    Rare earth element neodymium was adopted to refine grain and in turn increase the volume of grain boundary of Y_2_/_3Cu_3Ti_4O_1_2 ceramics, which could strongly increase the resistance of grain boundary. Proper amount of Nd substitution in Y_2_/_3_−_xNd_xCu_3Ti_4O_1_2 ceramics could significantly depress the low-frequency dielectric loss. When the doping level is 0.06 and 0.09, the samples exhibited a relatively low dielectric loss (below 0.050 between 0.3 and 50 kHz) and high dielectric constant above 11000 over a wide frequency range from 40 Hz to 100 kHz. Based on the ε′-T plots, dielectric relaxation intensity was substantially weakened by Nd doping so that the temperature stability of dielectric constant was improved obviously. The correlations between low-frequency dielectric loss and the resistance of grain boundary were revealed. After Nd doping, the activation energies for the conduction behavior in grain boundaries were significantly enhanced, and the activation energies for the dielectric relaxation process in grain boundaries were slightly influenced. - Highlights: • Significant decrease in dielectric loss of Y_2_/_3_−_xNd_xCu_3Ti_4O_1_2 ceramics was realized. • The enhanced grain boundary density is responsible for the lowered dielectric loss. • Nd doping could improve the temperature stability of dielectric constant. • Oxygen vacancies contribute to conduction and relaxation process of grain boundaries.

  19. Recombination via point defects and their complexes in solar silicon

    Energy Technology Data Exchange (ETDEWEB)

    Peaker, A.R.; Markevich, V.P.; Hamilton, B. [Photon Science Institute, University of Manchester, Manchester M13 9PL (United Kingdom); Parada, G.; Dudas, A.; Pap, A. [Semilab, 2 Prielle Kornelia Str, 1117 Budapest (Hungary); Don, E. [Semimetrics, PO Box 36, Kings Langley, Herts WD4 9WB (United Kingdom); Lim, B.; Schmidt, J. [Institute for Solar Energy Research (ISFH) Hamlen, 31860 Emmerthal (Germany); Yu, L.; Yoon, Y.; Rozgonyi, G. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7907 (United States)

    2012-10-15

    Electronic grade Czochralski and float zone silicon in the as grown state have a very low concentration of recombination generation centers (typically <10{sup 10} cm{sup -3}). Consequently, in integrated circuit technologies using such material, electrically active inadvertent impurities and structural defects are rarely detectable. The quest for cheap photovoltaic cells has led to the use of less pure silicon, multi-crystalline material, and low cost processing for solar applications. Cells made in this way have significant extrinsic recombination mechanisms. In this paper we review recombination involving defects and impurities in single crystal and in multi-crystalline solar silicon. Our main techniques for this work are recombination lifetime mapping measurements using microwave detected photoconductivity decay and variants of deep level transient spectroscopy (DLTS). In particular, we use Laplace DLTS to distinguish between isolated point defects, small precipitate complexes and decorated extended defects. We compare the behavior of some common metallic contaminants in solar silicon in relation to their effect on carrier lifetime and cell efficiency. Finally, we consider the role of hydrogen passivation in relation to transition metal contaminants, grain boundaries and dislocations. We conclude that recombination via point defects can be significant but in most multi-crystalline material the dominant recombination path is via decorated dislocation clusters within grains with little contribution to the overall recombination from grain boundaries. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. The shear response of copper bicrystals with Σ11 symmetric and asymmetric tilt grain boundaries by molecular dynamics simulation

    Science.gov (United States)

    Zhang, Liang; Lu, Cheng; Tieu, Kiet; Zhao, Xing; Pei, Linqing

    2015-04-01

    Grain boundaries (GBs) are important microstructure features and can significantly affect the properties of nanocrystalline materials. Molecular dynamics simulation was carried out in this study to investigate the shear response and deformation mechanisms of symmetric and asymmetric Σ11 tilt GBs in copper bicrystals. Different deformation mechanisms were reported, depending on GB inclination angles and equilibrium GB structures, including GB migration coupled to shear deformation, GB sliding caused by local atomic shuffling, and dislocation nucleation from GB. The simulation showed that migrating Σ11(1 1 3) GB under shear can be regarded as sliding of GB dislocations and their combination along the boundary plane. A non-planar structure with dissociated intrinsic stacking faults was prevalent in Σ11 asymmetric GBs of Cu. This type of structure can significantly increase the ductility of bicrystal models under shear deformation. A grain boundary can be a source of dislocation and migrate itself at different stress levels. The intrinsic free volume involved in the grain boundary area was correlated with dislocation nucleation and GB sliding, while the dislocation nucleation mechanism can be different for a grain boundary due to its different equilibrium structures.Grain boundaries (GBs) are important microstructure features and can significantly affect the properties of nanocrystalline materials. Molecular dynamics simulation was carried out in this study to investigate the shear response and deformation mechanisms of symmetric and asymmetric Σ11 tilt GBs in copper bicrystals. Different deformation mechanisms were reported, depending on GB inclination angles and equilibrium GB structures, including GB migration coupled to shear deformation, GB sliding caused by local atomic shuffling, and dislocation nucleation from GB. The simulation showed that migrating Σ11(1 1 3) GB under shear can be regarded as sliding of GB dislocations and their combination along the

  1. Mesoscopic current transport in two-dimensional materials with grain boundaries: Four-point probe resistance and Hall effect

    DEFF Research Database (Denmark)

    Lotz, Mikkel Rønne; Boll, Mads; Østerberg, Frederik Westergaard

    2016-01-01

    -configurations depends on the dimensionality of the current transport (i.e., one- or two-dimensional). At low grain density or low grain boundary resistivity, two-dimensional transport is observed. In contrast, at moderate grain density and high grain resistivity, one-dimensional transport is seen. Ultimately...

  2. Large Tc depression at low angle [100] tilt grain boundaries in bulk Bi2Sr2CaCu2O8+δ bicrystals

    International Nuclear Information System (INIS)

    Li, Q.; Tsay, Y.N.; Zhu, Y.; Suenaga, M.; Gu, G.D.; Koshizuka, N.

    1997-01-01

    Large depression of T c at 7 degree [100] tilt grain boundaries was observed in bulk Bi 2 Sr 2 CaCu 2 O 8+δ (Bi2212) bicrystals by measuring the zero-field electrical transport properties of the grain boundaries and the constituent single crystals over an extended range of currents and voltages. The T c -depressed region was determined to be around 20 nm, comparable to the width of the strain field associated with the observed array of grain-boundary dislocations. Superconducting coupling of the grain boundaries increases sharply as temperature decreases below the grain-boundary T c congruent 68 K. copyright 1997 American Institute of Physics

  3. Simulation of He embrittlement at grain boundaries in bcc transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Suzudo, Tomoaki, E-mail: suzudo.tomoaki@jaea.go.jp; Yamaguchi, Masatake

    2015-10-15

    To investigate what atomic properties largely determine vulnerability to He embrittlement at grain boundaries (GB) of bcc metals, we introduce a computational model composed of first principles density functional theory and a He segregation rate theory model. Predictive calculations of He embrittlement at the first wall of the future DEMO fusion concept reactor indicate that variation in the He embrittlement originated not only from He production rate related to neutron irradiation, but also from the He segregation energy at the GB that has a systematic trend in the periodic table. - Highlights: • We modeled He grain boundary (GB) segregation of bcc transition metals using first-principles-based rate theory. • We established the quantitative relation between He embrittlement and He segregation using GB cohesive energy. • He embrittlement was strongly dependent on He segregation energy at the GB that has a systematic trend in the periodic table.

  4. Simulation of He embrittlement at grain boundaries in bcc transition metals

    International Nuclear Information System (INIS)

    Suzudo, Tomoaki; Yamaguchi, Masatake

    2015-01-01

    To investigate what atomic properties largely determine vulnerability to He embrittlement at grain boundaries (GB) of bcc metals, we introduce a computational model composed of first principles density functional theory and a He segregation rate theory model. Predictive calculations of He embrittlement at the first wall of the future DEMO fusion concept reactor indicate that variation in the He embrittlement originated not only from He production rate related to neutron irradiation, but also from the He segregation energy at the GB that has a systematic trend in the periodic table. - Highlights: • We modeled He grain boundary (GB) segregation of bcc transition metals using first-principles-based rate theory. • We established the quantitative relation between He embrittlement and He segregation using GB cohesive energy. • He embrittlement was strongly dependent on He segregation energy at the GB that has a systematic trend in the periodic table.

  5. A Combined TEM/STEM and Micromagnetic Study of the Anisotropic Nature of Grain Boundaries and Coercivity in Nd-Fe-B Magnets

    Directory of Open Access Journals (Sweden)

    Gregor A. Zickler

    2017-01-01

    Full Text Available The nanoanalytical high resolution TEM/STEM investigation of the intergranular grain boundary phase of anisotropic sintered and rapidly quenched heavy rare earth-free Nd-Fe-B magnet materials revealed a difference in composition for grain boundaries parallel (large Fe-content and perpendicular (low Fe content to the alignment direction. This behaviour vanishes in magnets with a high degree of misorientation. The numerical finite element micromagnetic simulations are based on the anisotropic compositional behaviour of GBs and show a decrease of the coercive field with an increasing thickness of the grain boundary layer. The magnetization reversal and expansion of reversed magnetic domains primarily start as Bloch domain wall at grain boundaries parallel to the c-axis and secondly as Néel domain wall perpendicular to the c-axis into the adjacent hard magnetic grains. The increasing misalignment of grains leads to the loss of the anisotropic compositional behaviour and therefore to an averaged value of the grain boundary composition. In this case the simulations show an increase of the coercive field compared to the anisotropic magnet. The calculated coercive field values of the investigated magnet samples are in the order of μ0HcJ=1.8 T–2.1 T for a mean grain boundary thickness of 4 nm, which agrees perfectly with the experimental data.

  6. Defect characterization with positron annihilation

    International Nuclear Information System (INIS)

    Granatelli, L.; Lynn, K.G.

    1980-01-01

    Positron annihilation in metal crystals is reviewed. A brief introduction to the positron annihilation technique is presented first. Then the ability of the positron technique to perform microstructural characterization of four types of lattice defects (vacancies, voids, dislocations, grain boundaries) is discussed. It is frequently not possible to obtain samples that contain only one type of defect in nonnegligible concentrations. Such situations exist for some alloys and for fatigued metal samples. Finally, the current limitations and some future prospects of the technique are presented. 79 references, 14 figures, 1 table

  7. Grain boundary migration induced segregation in V-Cr-Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States); Ohnuki, S.; Takahashi, H. [Univ. of Hokkaido (Japan)

    1996-10-01

    Analytical electron microscopy results are reported for a series of vanadium alloys irradiated in the HFIR JP23 experiment at 500{degrees}C. Alloys were V-5Cr-5Ti and pure vanadium which are expected to have transmuted to V-15Cr-5Ti and V-10Cr following irradiation. Analytical microscopy confirmed the expected transmutation occurred and showed redistribution of Cr and Ti resulting from grain boundary migration in V-5Cr-5Ti, but in pure V, segregation was reduced and no clear trends as a function of position near a boundary were identified.

  8. Study on defects and impurities in cast-grown polycrystalline silicon substrates for solar cells

    International Nuclear Information System (INIS)

    Arafune, K.; Sasaki, T.; Wakabayashi, F.; Terada, Y.; Ohshita, Y.; Yamaguchi, M.

    2006-01-01

    We focused on the defects and impurities in polycrystalline silicon substrates, which deteriorate solar cell efficiency. Comparison of the minority carrier lifetime with the grain size showed that the region with short minority carrier lifetimes did not correspond to the region with small grains. Conversely, the minority carrier lifetime decreased as the etch-pit density (EPD) increased, suggesting that the minority carrier lifetime is strongly affected by the EPD. Electron beam induced current measurements revealed that a combination of grain boundaries and point defects had high recombination activity. Regarding impurities, the interstitial oxygen concentration was relatively low compared with that in a Czochralski-grown silicon substrate, the total carbon concentration exceeded the solubility limit of silicon melt. X-ray microprobe fluorescence measurements revealed a large amount of iron in the regions where there were many etch-pits and grain boundaries with etch-pits. X-ray absorption near edge spectrum analysis revealed trapped iron in the form of oxidized iron

  9. Measurement of gap and grain-boundary inventories of 129I in used CANDU fuels

    International Nuclear Information System (INIS)

    Stroes-Gascoyne, S.; Moir, D.L.; Kolar, M.; Porth, R.J.; McConnell, J.L.; Kerr, A.H.

    1995-01-01

    Combined gap and grain-boundary inventories of 129 I in 14 used CANDU fuel elements were measured by crushing and simultaneously leaching fuel segments for 4 h in a solution containing KI carrier. From analogy with previous work a near one-to-one correlation was anticipated between the amount of stable Xe and the amount of 128 I in the combined gap and grain-boundary regions of the fuel. However, the results showed that such a correlation was only apparent for low linear power rating (LLPR) fuels with an average linear power rating of 44 kW/m), the 129 I values were considerably smaller than expected. The combined gap and grain-boundary inventories of 129 I in the 14 fuels tested varied from 1.8 to 11.0%, with an average value of 3.6 ± 2.4% which suggests that the average value of 8.1 ± 1% used in safety assessment calculations overestimates the instant release fraction for 129 I. Segments of used CANDU fuels were leached for 92 d (samples taken at 5, 28 and 92 d) to determine the kinetics of 129 I release. Results could be fitted tentatively to half-order reaction kinetics, implying that 129 I release is a diffusion-controlled process for LLPR fuels, and also for HLPR fuels, once the gap inventory has been leached. However, more data are needed over longer leaching periods to gain more understanding of the processes that control grain-boundary release of 129 I from used CANDU fuel

  10. Influence of orientation mismatch on charge transport across grain boundaries in tri-isopropylsilylethynyl (TIPS) pentacene thin films.

    Science.gov (United States)

    Steiner, Florian; Poelking, Carl; Niedzialek, Dorota; Andrienko, Denis; Nelson, Jenny

    2017-05-03

    We present a multi-scale model for charge transport across grain boundaries in molecular electronic materials that incorporates packing disorder, electrostatic and polarisation effects. We choose quasi two-dimensional films of tri-isopropylsilylethynyl pentacene (TIPS-P) as a model system representative of technologically relevant crystalline organic semiconductors. We use atomistic molecular dynamics, with a force-field specific for TIPS-P, to generate and equilibrate polycrystalline two-dimensional thin films. The energy landscape is obtained by calculating contributions from electrostatic interactions and polarization. The variation in these contributions leads to energetic barriers between grains. Subsequently, charge transport is simulated using a kinetic Monte-Carlo algorithm. Two-grain systems with varied mutual orientation are studied. We find relatively little effect of long grain boundaries due to the presence of low impedance pathways. However, effects could be more pronounced for systems with limited inter-grain contact areas. Furthermore, we present a lattice model to generalize the model for small molecular systems. In the general case, depending on molecular architecture and packing, grain boundaries can result in interfacial energy barriers, traps or a combination of both with qualitatively different effects on charge transport.

  11. Removing grain boundaries from three-dimensional colloidal crystals using active dopants

    NARCIS (Netherlands)

    van der Meer, B.; Dijkstra, M.; Filion, L.C.

    2016-01-01

    Using computer simulations we explore how grain boundaries can be removed from three-dimensional colloidal crystals by doping with a small fraction of active colloids. We show that for sufficient selfpropulsion, the system is driven into a crystal-fluid coexistence. In this phase separated regime,

  12. Modeling grain boundaries in polycrystals using cohesive elements: Qualitative and quantitative analysis

    Energy Technology Data Exchange (ETDEWEB)

    El Shawish, Samir, E-mail: Samir.ElShawish@ijs.si [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Cizelj, Leon [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Simonovski, Igor [European Commission, DG-JRC, Institute for Energy and Transport, P.O. Box 2, NL-1755 ZG Petten (Netherlands)

    2013-08-15

    Highlights: ► We estimate the performance of cohesive elements for modeling grain boundaries. ► We compare the computed stresses in ABAQUS finite element solver. ► Tests are performed in analytical and realistic models of polycrystals. ► Most severe issue is found within the plastic grain response. ► Other identified issues are related to topological constraints in modeling space. -- Abstract: We propose and demonstrate several tests to estimate the performance of the cohesive elements in ABAQUS for modeling grain boundaries in complex spatial structures such as polycrystalline aggregates. The performance of the cohesive elements is checked by comparing the computed stresses with the theoretically predicted values for a homogeneous material under uniaxial tensile loading. Statistical analyses are performed under different loading conditions for two elasto-plastic models of the grains: isotropic elasticity with isotropic hardening plasticity and anisotropic elasticity with crystal plasticity. Tests are conducted on an analytical finite element model generated from Voronoi tessellation as well as on a realistic finite element model of a stainless steel wire. The results of the analyses highlight several issues related to the computation of normal and shear stresses. The most severe issue is found within the plastic grain response where the computed normal stresses on a particularly oriented cohesive elements are significantly underestimated. Other issues are found to be related to topological constraints in the modeling space and result in the increased scatter of the computed stresses.

  13. Grain-boundary contamination and ductility loss in boron-doped Ni3Al

    International Nuclear Information System (INIS)

    Takeyama, M.; Liu, C.T.

    1989-01-01

    The effect of heat treatment on ductility loss in a boron-doped Ni 3 Al was studied by tensile tests of specimens exposed to contaminated environments. Specimens heat treated at 1323 K exhibit only 3.3 pct ductility at 1033 K, whereas a previous study reported a tensile ductility of about 24 pct for specimens heat treated in a high vacuum system. Aluminum oxide and silicon-contaminated regions were observed at and near external surfaces of annealed specimens. The reactions occurring during heat treatment are interpreted in terms of thermodynamics. An Auger electron spectroscopy study revealed oxygen penetration along grain boundaries during annealing. Although the surface oxide layer and silicon contamination both contribute to some reductions in ductility, the major cause for embrittlement comes from oxygen penetration along grain boundaries

  14. Grain boundary sweeping and liquefaction-induced fission product behavior in nuclear fuel under severe-core damage accident conditions

    International Nuclear Information System (INIS)

    Rest, J.

    1984-05-01

    The theoretical FASTGRASS-VFP model has been used in the interpretation of fission gas, iodine, tellurium, and cesium release from: (1) irradiated high-burnup LWR fuel in a flowing steam atmosphere during high-temperature, in-cell heating tests performed at Oak Ridge National Laboratory; and (2) trace-irradiated and high-burnup LWR fuel during severe-fuel-damage (SFD) tests performed in the PBF reactor in Idaho. A theory of grain boundary sweeping of gas bubbles, gas bubble behavior during fuel liquefaction (destruction of grain boundaries due to formation of a U-rich melt phase), and U-Zr eutectic melting has been included within the FASTGRASS-VFP formalism. Results of the analyses demonstrate that intragranular fission product behavior during both types of tests can be interpreted in terms of a grain-growth/grain-boundary-sweeping mechanism that enhances the flow of fission products from within the grains to the grain boundaries. Whereas fuel liquefaction leads to an enhanced release of fission products in trace-irradiated fuel, the occurrence of fuel liquefaction in high-burnup fuel can degrade fission product release. This phenomenon is due in part to reduced gas-bubble mobilities in a viscous medium as compared to vapor transport, and in part to a degradation of grain growth rates and the subsequent decrease in grain-boundary sweeping of intragranular fission products into the liquefied lamina. The analysis shows that total UO 2 dissolution due to eutectic melting leads to increased release for both trace-irradiated and high-burnup fuel. The FASTGRASS-VFP predictions, measured release rates from the above tests, and previously published release rates are compared and differences between fission product behavior in trace-irradiated and in high-burnup fuel are highlighted

  15. Effect of Hydrostatic Pressure on Defect Structure and Durability of Ultrafine-Grained Aluminum

    Czech Academy of Sciences Publication Activity Database

    Betekhtin, V.I.; Kadomtsev, A. G.; Sklenička, Václav; Narykova, M. V.

    2011-01-01

    Roč. 37, č. 10 (2011), s. 977-979 ISSN 1063-7850 Institutional research plan: CEZ:AV0Z20410507 Keywords : defect structure * ultrafine-grained aluminium * durability Subject RIV: JG - Metallurgy Impact factor: 0.565, year: 2011

  16. The role of grain boundaries and transient porosity increase as fluid pathways for reaction front propagation

    Science.gov (United States)

    Jonas, Laura; John, Timm; Geisler, Thorsten; Putnis, Andrew

    2013-04-01

    The pseudomorphic replacement of Carrara marble by calcium phosphates was studied as a model system to examine the influence of different fluid pathways for reaction front propagation induced by fluid-rock interaction. In this model system, the grain boundaries present in the rock and the transient porosity structures developing throughout the replacement reaction enable the reaction front to progress further into the rock as well as to the center of each single grain until complete transformation. Hydrothermal treatment of the marble using phosphate bearing solutions at temperature levels of 150° C and 200° C for different durations lead to the formation of two product phases which were identified as hydroxyapatite [Ca5(PO4)3OH] as well as β-tricalcium phosphate [β-Ca3(PO4)2] (β-TCP). The formation of β-TCP was probably favored by the presence of ~0.6wt.% of Mg in the parent phase. Completely transformed single grains show a distinctive zoning, both in composition and texture. Whereas areas next to the grain boundary consist of nearly pure hydroxyapatite and show a coarse porosity, areas close to the center of the single grains show a high amount of β-TCP and a very fine porous microstructure. If F was added as an additional solution component, the formation of β-TCP was avoided and up to 3wt.% of F were incorporated into the product apatite. The use of the isotope 18O as a chronometer for the replacement reaction makes it possible to reconstruct the chronological development of the calcium phosphate reaction front. Raman analysis revealed that the incorporation of 18O in the PO4 tetrahedron of hydroxyapatite results in the development of distinct profiles in the calcium phosphate reaction front perpendicular to the grain boundaries of the marble. Through the use of the 18O chronometer, it is possible to estimate and compare the time effectiveness of the different fluid pathways in this model system. The results show that the grain boundaries serve as a

  17. The influence of the grain boundary structure on diffusional creep

    International Nuclear Information System (INIS)

    Thorsen, P.A.

    1998-05-01

    An experiment was carried out to quantify the deformation in the diffusional creep domain. It was found that material had indisputably been deposited at grain boundaries in tension. A characterisation of 131 boundaries in terms of their misorientation was carried out and this was correlated to the observed deformation. Twin boundaries below a certain limit of deviation from an exact twin misorientation were totally inactive in the deformation. A large qualitative difference was found in the way general boundaries take part in the deformation. The experiments have taken place at Materials Research Department, Risoe National Laboratory at Roskilde. The present thesis has been submitted in partial fulfillment of the requirements for the Ph.D. degree in physics at the Niels Bohr Institute, University of Copenhagen. Besides the results of the creep experiment the thesis contains a description of the theoretical background to diffusional creep models. Also, the results from an investigation of helium bubble formation in an irradiated copper sample is included. (au)

  18. Cyclic grain boundary migration during high temperature fatigue--I: microstructural observations

    International Nuclear Information System (INIS)

    Langdon, T.G.; Gifkins, R.S.

    1983-01-01

    Experiments were conducted on high purity lead at room temperature using reverse bending and torsion fatigue at low cyclic frequencies (less than or equal to1.50 Hz). Metallographic observations after testing show that there is a one-to-one correspondence between the markings from grain boundary migration and the number and pattern of cyclic loading, and this correspondence is maintained up to >100 cycles. Grain boundary sliding occurs in each cycle in addition to the migration, and this leads to the development of broad triple point folds. If the strain amplitude is maintained constant, it is shown that the average distance migrated in each cycle increases as the imposed frequency is decreased. The distance migrated is often exceptionally large in the first cycle of testing, and there is often a similar large initial displacement if the test is interrupted for periods of time from 1 to 24 h and then continued. For large grain sizes (greater than or equal to 2000μm), the migration markings may lead to a zig-zag pattern where the individual segments lie fairly close to 45 0 to the stress axis. A model is described which accounts for the one-to-one correspondence and which is consistent with a fine structure observed within the migration markings

  19. Void-assisted grain boundary migration in ion-irradiated austenitic stainless steels

    International Nuclear Information System (INIS)

    Vaidya, W.V.

    1983-01-01

    A number of austenitic stainless steels (15 wt% Cr-15 wt% Ni) were irradiated in the solution-annealed condition with 46 MeV Nisup(6+)-ions to a dose-level of 64 dpa at 848 K. Though the microstructure was initially well-equilibrated, under irradiation a general interface migration was observed, the most pronounced being at grain boundaries followed by that at incoherent and even at coherent twins. Changes at the migrating interfaces, features of the migration and variations in the near grain boundary voidage are described. After considering various possibilities which might have caused the migration, it is shown that the observed migration was void-assisted. This has led to the conclusion that voids by nature do not constitute an obstacle for the migrating interface but on the contrary, they offer driving force. Therefore, migration becomes feasible even in the solution-annealed specimens in which inherently there should be a least tendency for such a migration. (orig.)

  20. Void-assisted grain boundary migration in ion-irradiated austenitic stainless steels

    International Nuclear Information System (INIS)

    Vaidya, W.V.

    1983-01-01

    A number of austenitic stainless steels (15 wt% Cr-15 wt% Ni) were irradiated in the solution-annealed condition with 46 MeV Ni 6+ -ions to a dose-level of 64 dpa at 848 K. Though the microstructure was initially well-equilibrated, under irradiation a general interface migration was observed, the most pronounced being at grain boundaries followed by that at incoherent and even at coherent twins. Changes at the migrating interfaces, features of the migration and variations in the near grain boundary voidage are described. After considering various possibilities which might have caused the migration, it is shown that the observed migration was void-assisted. This has led to the conclusion that voids by nature do not constitute an obstacle for the migrating interface but on the contrary, they offer driving force. Therefore, migration becomes feasible even in the solution-annealed specimens in which inherently there should be a least tendency for such a migration. (orig.)

  1. Evidence for preferential flux flow at the grain boundaries of superconducting RF-quality niobium

    Science.gov (United States)

    Sung, Z.-H.; Lee, P. J.; Gurevich, A.; Larbalestier, D. C.

    2018-04-01

    The question of whether grain boundaries (GBs) in niobium can be responsible for lowered operating field (B RF) or quality factor (Q 0) in superconducting radio frequency (SRF) cavities is still controversial. Here, we show by direct DC transport across planar GBs isolated from a slice of very large-grain SRF-quality Nb that vortices can preferentially flow along the grain boundary when the external magnetic field lies in the GB plane. However, increasing the misalignment between the GB plane and the external magnetic field vector markedly reduces preferential flux flow along the GB. Importantly, we find that preferential GB flux flow is more prominent for a buffered chemical polished than for an electropolished bi-crystal. The voltage-current characteristics of GBs are similar to those seen in low angle grain boundaries of high temperature superconductors where there is clear evidence of suppression of the superconducting order parameter at the GB. While local weakening of superconductivity at GBs in cuprates and pnictides is intrinsic, deterioration of current transparency of GBs in Nb appears to be extrinsic, since the polishing method clearly affect the local GB degradation. The dependence of preferential GB flux flow on important cavity preparation and experimental variables, particularly the final chemical treatment and the angle between the magnetic field and the GB plane, suggests two more reasons why real cavity performance can be so variable.

  2. Grain size and boundary-related effects on the properties of nanocrystalline barium titanate ceramics

    Czech Academy of Sciences Publication Activity Database

    Buscaglia, V.; Buscaglia, M. T.; Viviani, M.; Mitoseriu, L.; Nanni, P.; Trefiletti, V.; Piaggio, P.; Gregora, Ivan; Ostapchuk, Tetyana; Pokorný, Jan; Petzelt, Jan

    2006-01-01

    Roč. 26, - (2006), s. 2889-2898 ISSN 0955-2219 R&D Projects: GA MŠk OC 525.20 Institutional research plan: CEZ:AV0Z10100520 Keywords : grain size * grain boundaries * spectroscopy * dielectric properties * BaTiO 3 Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.576, year: 2006

  3. Grain Boundaries Act as Solid Walls for Charge Carrier Diffusion in Large Crystal MAPI Thin Films.

    Science.gov (United States)

    Ciesielski, Richard; Schäfer, Frank; Hartmann, Nicolai F; Giesbrecht, Nadja; Bein, Thomas; Docampo, Pablo; Hartschuh, Achim

    2018-03-07

    Micro- and nanocrystalline methylammonium lead iodide (MAPI)-based thin-film solar cells today reach power conversion efficiencies of over 20%. We investigate the impact of grain boundaries on charge carrier transport in large crystal MAPI thin films using time-resolved photoluminescence (PL) microscopy and numerical model calculations. Crystal sizes in the range of several tens of micrometers allow for the spatially and time resolved study of boundary effects. Whereas long-ranged diffusive charge carrier transport is observed within single crystals, no detectable diffusive transport occurs across grain boundaries. The observed PL transients are found to crucially depend on the microscopic geometry of the crystal and the point of observation. In particular, spatially restricted diffusion of charge carriers leads to slower PL decay near crystal edges as compared to the crystal center. In contrast to many reports in the literature, our experimental results show no quenching or additional loss channels due to grain boundaries for the studied material, which thus do not negatively affect the performance of the derived thin-film devices.

  4. Grain Boundary Analysis of the Garnet-Like Oxides Li7+X−YLa3−XAXZr2−YNbYO12 (A = Sr or Ca)

    International Nuclear Information System (INIS)

    Ohta, Shingo; Kihira, Yuki; Asaoka, Takahiko

    2016-01-01

    Garnet-like oxides having the formula Li 7+X−Y La 3−X A X Zr 2−Y Nb Y O 12 (A = Sr or Ca) were synthesized using a solid-state reaction, and their bulk and grain boundary resistivities were assessed by AC impedance measurements. A difference in grain boundary resistivity was identified between Sr and Ca materials, and so the grain boundaries were examined using electron probe microanalysis (EPMA). The difference in the grain boundary resistivities was attributed to the core–shell structure of the Sr-substituted samples. In contrast, the Ca-substituted materials exhibited accumulations of impurities at the grain boundaries.

  5. Effect of intermixing at CdS/CdTe interface on defect properties

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji-Sang, E-mail: jspark@anl.gov; Yang, Ji-Hui; Barnes, Teresa [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Wei, Su-Huai, E-mail: suhuaiwei@csrc.ac.cn [Beijing Computational Science Research Center, Beijing 100094 (China)

    2016-07-25

    We investigated the stability and electronic properties of defects in CdTe{sub 1−x}S{sub x} that can be formed at the CdS/CdTe interface. As the anions mix at the interface, the defect properties are significantly affected, especially those defects centered at cation sites like Cd vacancy, V{sub Cd}, and Te on Cd antisite, Te{sub Cd}, because the environment surrounding the defect sites can have different configurations. We show that at a given composition, the transition energy levels of V{sub Cd} and Te{sub Cd} become close to the valence band maximum when the defect has more S atoms in their local environment, thus improving the device performance. Such beneficial role is also found at the grain boundaries when the Te atom is replaced by S in the Te-Te wrong bonds, reducing the energy of the grain boundary level. On the other hand, the transition levels with respect to the valence band edge of CdTe{sub 1−x}S{sub x} increases with the S concentration as the valence band edge decreases with the S concentration, resulting in the reduced p-type doping efficiency.

  6. Effects of thermo-mechanical iterations on the grain boundary character distribution of Pb-Ca-Sn-Al alloy

    International Nuclear Information System (INIS)

    Wang Weiguo; Guo Hong

    2007-01-01

    Recrystallized Pb-0.05%Ca-1.5%Sn-0.026%Al (mass fraction) alloy, with an averaged grain size of 20-30 μm, special grain boundary (Σ1-Σ29) fraction of less than 40% and the general high angle boundary (HAB) network of fully connected, was subjected to 1-4 cycles of thermo-mechanical processing (TMP) of rolling at ambient temperature followed by annealing at 270 deg. C (0.9T m ). Electron back-scatter diffraction (EBSD) techniques were employed to determine the grain boundary character distribution (GBCD) of the processed samples. The results indicated that 1-, 3- and 4-cycle TMP has very strong but nearly identical effects on the GBCD, the fraction of special boundaries enhanced to 80%, and the connectivity of general high angle boundary (HABs) network is interrupted sufficiently by the so-called special boundaries; However, 2-cycle TMP exerts slight impacts on the GBCD, the fraction of special boundaries is only increased to 59.2% and the connectivity of HABs network is not interrupted substantially. Further discussion pointed out the effects of 1-, 3- and 4-cycle TMP might be attributed to the migration and interactions of incoherent Σ3 (Σ3 ic ) and its variants Σ9 and Σ27 boundaries, while that of 2-cycle TMP may be caused by an enhanced recrystallization

  7. Thermodynamic model for grain boundary effects on hydrogen solubility, diffusivity and permeability in poly-crystalline tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Takuji, E-mail: oda@snu.ac.kr

    2016-11-15

    Highlights: • A thermodynamic model to simulate grain boundary effects on hydrogen behaviors in poly-crystalline W was established. • With this model, the effective solubility, diffusivity and permeability of hydrogen are calculated as a function of grain size. • Grain boundary significantly change the hydrogen behaviors in poly-crystalline W up to around 1000 K. - Abstract: A thermodynamic model to evaluate effects of grain boundary (GB) on hydrogen behaviors in poly-crystalline tungsten is established. With this model, the effective solubility, diffusivity and permeability of hydrogen in tungsten equilibrated with surrounding H{sub 2} gas can be calculated as a function of grain size, temperature and H{sub 2} partial pressure. By setting 1.0 eV to the binding energy of hydrogen to GBs and 0.4 eV to the diffusion barrier of hydrogen along GBs, the model reasonably reproduces some experimental data on the effective diffusivity and permeability. Comparisons between calculation results by the model and available experimental data show that GBs significantly affect the hydrogen behaviors up to around 1000 K or higher in practical materials. Therefore, the effects of GBs need to be considered in analysis of experimental results, for which the present model can be utilized, and in prediction of tritium inventory and leakage in fusion reactors.

  8. The role of grain size in He bubble formation: Implications for swelling resistance

    Science.gov (United States)

    El-Atwani, O.; Nathaniel, J. E.; Leff, A. C.; Muntifering, B. R.; Baldwin, J. K.; Hattar, K.; Taheri, M. L.

    2017-02-01

    Nanocrystalline metals are postulated as radiation resistant materials due to their high defect and particle (e.g. Helium) sink density. Here, the performance of nanocrystalline iron films is investigated in-situ in a transmission electron microscope (TEM) using He irradiation at 700 K. Automated crystal orientation mapping is used in concert with in-situ TEM to explore the role of grain orientation and grain boundary character on bubble density trends. Bubble density as a function of three key grain size regimes is demonstrated. While the overall trend revealed an increase in bubble density up to a saturation value, grains with areas ranging from 3000 to 7500 nm2 show a scattered distribution. An extrapolated swelling resistance based on bubble size and areal density indicated that grains with sizes less than 2000 nm2 possess the greatest apparent resistance. Moreover, denuded zones are found to be independent of grain size, grain orientation, and grain boundary misorientation angle.

  9. The role of grain size in He bubble formation: Implications for swelling resistance

    Energy Technology Data Exchange (ETDEWEB)

    El-Atwani, O., E-mail: oelatwan25@gmail.com [Drexel University, Department of Materials Science & Engineering, Philadelphia, PA (United States); Nathaniel, J.E.; Leff, A.C. [Drexel University, Department of Materials Science & Engineering, Philadelphia, PA (United States); Muntifering, B.R. [Department of Radiation Solid Interactions, Sandia National Laboratories, NM (United States); Baldwin, J.K. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM (United States); Hattar, K. [Department of Radiation Solid Interactions, Sandia National Laboratories, NM (United States); Taheri, M.L. [Drexel University, Department of Materials Science & Engineering, Philadelphia, PA (United States)

    2017-02-15

    Nanocrystalline metals are postulated as radiation resistant materials due to their high defect and particle (e.g. Helium) sink density. Here, the performance of nanocrystalline iron films is investigated in-situ in a transmission electron microscope (TEM) using He irradiation at 700 K. Automated crystal orientation mapping is used in concert with in-situ TEM to explore the role of grain orientation and grain boundary character on bubble density trends. Bubble density as a function of three key grain size regimes is demonstrated. While the overall trend revealed an increase in bubble density up to a saturation value, grains with areas ranging from 3000 to 7500 nm{sup 2} show a scattered distribution. An extrapolated swelling resistance based on bubble size and areal density indicated that grains with sizes less than 2000 nm{sup 2} possess the greatest apparent resistance. Moreover, denuded zones are found to be independent of grain size, grain orientation, and grain boundary misorientation angle.

  10. The use of cubic Nd-Ba-Cu-O seeds to create θ[100], 900-θ[100], and θ[001] tilt Y-Ba-Cu-O grain boundaries

    International Nuclear Information System (INIS)

    Field, M. B.

    1998-01-01

    Using seeding techniques to control the orientation of grains, we have been able to create a wide variety of YBa 2 Cu 3 O 6+x , grain boundaries. In addition to five domain samples with 90 degree[100] twist and tilt grain boundaries, we have now developed a method to produce grain boundaries in the same sample that have the misorientations θ[001] tilt, θ[100] tilt, and 90 degree ∼ θ[100], where the disorientation angle θ is fully controllable. We will demonstrate how these boundaries can be synthesized, give experimental evidence via polarized light microscopy and electron backscatter patterns (EBSP) that the intended grain boundaries were indeed formed, and discuss the importance of these boundaries in future grain boundary studies

  11. The disconnection mechanism of coupled migration and shear at grain boundaries

    International Nuclear Information System (INIS)

    Khater, H.A.; Serra, A.; Pond, R.C.; Hirth, J.P.

    2012-01-01

    The mechanism of coupled migration and shear is studied in a range of [0 0 0 1] tilt boundaries in hexagonal close-packed metal using atomic-scale computer simulation. Symmetrical tilt boundaries spanning the low- and high-angle regimes and comprising regular arrays of grain boundary dislocations are simulated. For each misorientation, θ, the perfect boundary (pristine) is investigated as well as one containing a disconnection. Both types of structures are subjected to incremental applied strains to determine the stress that produces coupled migration and shear. The stress for motion in the pristine case, entailing nucleation, is higher than the Peierls stress for motion when disconnections are present. We conclude that the applied stresses in our simulations exert a Peach–Koehler force on pre-existing disconnections, thereby providing a feasible mechanism with a well-defined driving force that produces coupled migration and shear. This mechanism is feasible for the lower-angle boundaries studied, and facile for the high-angle cases.

  12. First-principles investigation into the effect of Cr on the segregation of multi-H at the Fe Σ3 (1 1 1) grain boundary

    Energy Technology Data Exchange (ETDEWEB)

    He, Bingling; Xiao, Wei; Hao, Wei [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Tian, Zhixue, E-mail: tian@cp.prec.eng.osaka-u.ac.jp [Division of Precision Science and Technology and Applied Physics, Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2013-10-15

    First-principles calculations were carried out to investigate the effect of Cr on segregation of multiple H atoms in the Σ3 (1 1 1) grain boundary in bcc Fe. In the absence of Cr, four H atoms can be trapped at the interstitial site of the Fe grain boundary (areal density: 28 nm{sup −2}), and no H{sub 2} molecules are formed. The presence of Cr, however, suppresses the segregation tendency of H and only two H atoms can be trapped at this grain boundary. Although the volume expansion associated with the segregation of Cr to the grain boundary promotes H segregation, such a booting effect is unable to remedy the repulsion of H resulted from charge density increase in the grain boundary core. As a consequence, Cr mitigates H aggregation at the Σ3 (1 1 1) grain boundary in bcc Fe.

  13. Silicalite-1 polycrystalline layers and crystal twins: Morphology and grain boundaries

    Czech Academy of Sciences Publication Activity Database

    Brabec, Libor; Kočiřík, Milan

    2007-01-01

    Roč. 102, č. 1 (2007), s. 67-74 ISSN 0254-0584 R&D Projects: GA ČR GA203/05/0846 Institutional research plan: CEZ:AV0Z40400503 Keywords : silicalite-1 * HF acid * etching * grain boundaries Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.871, year: 2007

  14. Grain boundary segregation of antimony in .alfal-iron: prediction and experimental data

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel

    2004-01-01

    Roč. 378, - (2004), s. 85-88 ISSN 0925-8388 Institutional research plan: CEZ:AV0Z1010914 Keywords : metals * grain boundaries * thermal analysis * electron emission spectroscopies Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.562, year: 2004

  15. Multiscale model of metal alloy oxidation at grain boundaries

    International Nuclear Information System (INIS)

    Sushko, Maria L.; Alexandrov, Vitaly; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.

    2015-01-01

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr 2 O 3 . This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl 2 O 4 . Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3–10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr 2 O 3 has a plate-like structure with 1.2–1.7 nm wide pores running along the grain boundary, while NiAl 2 O 4 has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular direction providing an additional

  16. Meso-microstructural computational simulation of the hydrogen permeation test to calculate intergranular, grain boundary and effective diffusivities

    Energy Technology Data Exchange (ETDEWEB)

    Jothi, S., E-mail: s.jothi@swansea.ac.uk [College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom); Winzer, N. [Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstraße 11, 79108 Freiburg (Germany); Croft, T.N.; Brown, S.G.R. [College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom)

    2015-10-05

    Highlights: • Characterized polycrystalline nickel microstructure using EBSD analysis. • Development meso-microstructural model based on real microstructure. • Calculated effective diffusivity using experimental electrochemical permeation test. • Calculated intergranular diffusivity of hydrogen using computational FE simulation. • Validated the calculated computation simulation results with experimental results. - Abstract: Hydrogen induced intergranular embrittlement has been identified as a cause of failure of aerospace components such as combustion chambers made from electrodeposited polycrystalline nickel. Accurate computational analysis of this process requires knowledge of the differential in hydrogen transport in the intergranular and intragranular regions. The effective diffusion coefficient of hydrogen may be measured experimentally, though experimental measurement of the intergranular grain boundary diffusion coefficient of hydrogen requires significant effort. Therefore an approach to calculate the intergranular GB hydrogen diffusivity using finite element analysis was developed. The effective diffusivity of hydrogen in polycrystalline nickel was measured using electrochemical permeation tests. Data from electron backscatter diffraction measurements were used to construct microstructural representative volume elements including details of grain size and shape and volume fraction of grains and grain boundaries. A Python optimization code has been developed for the ABAQUS environment to calculate the unknown grain boundary diffusivity.

  17. Abnormal grain growth: a non-equilibrium thermodynamic model for multi-grain binary systems

    International Nuclear Information System (INIS)

    Svoboda, J; Fischer, F D

    2014-01-01

    Abnormal grain growth as the abrupt growth of a group of the largest grains in a multi-grain system is treated within the context of unequal retardation of grain growth due to the segregation of solute atoms from the bulk of the grains into the grain boundaries. During grain boundary migration, the segregated solute atoms are dragged under a small driving force or left behind the migrating grain boundary under a large driving force. Thus, the solute atoms in the grain boundaries of large grains, exhibiting a large driving force, can be released from the grain boundary. The mobility of these grain boundaries becomes significantly higher and abnormal grain growth is spontaneously provoked. The mean-field model presented here assumes that each grain is described by its grain radius and by its individual segregation parameter. The thermodynamic extremal principle is engaged to obtain explicit evolution equations for the radius and segregation parameter of each grain. Simulations of grain growth kinetics for various conditions of segregation with the same initial setting (100 000 grains with a given radius distribution) are presented. Depending on the diffusion coefficients of the solute in the grain boundaries, abnormal grain growth may be strongly or marginally pronounced. Solute segregation and drag can also significantly contribute to the stabilization of the grain structure. Qualitative agreement with several experimental results is reported. (paper)

  18. HREM investigation of the structure of the Σ5(310)/[001] symmetric tilt grain boundaries in Nb

    International Nuclear Information System (INIS)

    King, W.E.; Compbell, G.H.; Coombs, A.; Ruehle, M.

    1991-01-01

    This paper reports on atomistic simulations using interatomic potentials for Nb developed employing the embedded atom method (EAM) and the model generalized pseudopotential theory (MGPT) that have indicated a possible cusp at the Σ5 (310) orientation in the energy vs tilt angle curves for left-angle 001 right-angle symmetric tilt grain boundaries. In addition, the most stable structure predicted using EAM exhibits shifts of one crystal relative to the other along the tilt axis and along the direction perpendicular to the tilt axis lying in the boundary plane. The structure predicted using the MGPT was mirror symmetric across the plane of the grain boundary. This boundary has been prepared for experimental study using the ultra high vacuum diffusion bonding method. A segment of this boundary has been studied using high resolution electron microscopy

  19. Grain boundary segregation and intergranular stress corrosion cracking susceptibility of austenitic stainless steels in high temperature water

    International Nuclear Information System (INIS)

    Shoji, T.; Yamaki, K.; Ballinger, R.G.; Hwang, I.S.

    1992-01-01

    The effects of grain boundary segregation on intergranular stress corrosion cracking of austenitic stainless steels in high temperature water have been examined as a function of heat treatment. The materials investigated were: (1) two commercial purity Type 304; (2) low sulfur Type 304; (3) nuclear grade Type 304; (4) ultra high purity Type 304L; and (5) Type 316L and Type 347L. Specimens were solution treated at 1050 degrees C for 0.5 hour and given a sensitization heat treatment at 650 degrees C for 50 hours. Some of the specimens were then subjected to an aging heat treatment at 850 degrees C for from one to ten hours to cause Cr recovery at the grain boundaries. The effects of heat treatments on degree of sensitization and grain boundary segregation were evaluated by Electrochemical Potentiokinetic Reactivation (EPR) and Coriou tests, respectively. The susceptibility to stress corrosion (SCC) was evaluated using slow strain rate tests technique (SSRT) in high temperature water. SSRT tests were performed in an aerated pure water (8 ppm dissolved oxygen) at 288 degrees C at a strain rate of 1.33 x 10 -6 /sec. Susceptibility to intergranular stress corrosion cracking was compared with degree of sensitization and grain boundary segregation. The results of the investigation indicate that EPR is not always an accurate indicator of SCC susceptibility. The Coriou test provides a more reliable measure of SCC susceptibility especially for 304L, 304NG, 316L, and 347L stainless steels. The results also indicate that grain boundary segregation as well as degree of sensitization must be considered in the determination of SCC susceptibility

  20. Modification of the grain boundary microstructure of the austenitic PCA stainless steel to improve helium embrittlement resistance

    International Nuclear Information System (INIS)

    Maziasz, P.J.; Braski, D.N.

    1986-01-01

    Grain boundary MC precipitation was produced by a modified thermal-mechanical pretreatment in 25% cold worked (CW) austenitic prime candidate alloy (PCA) stainless steel prior to HFIR irradiation. Postirradiation tensile results and fracture analysis showed that the modified material (B3) resisted helium embrittlement better than either solution annealed (SA) or 25% CW PCA irradiated at 500 to 600 0 C to approx.21 dpa and 1370 at. ppM He. PCA SA and 25% CW were not embrittled at 300 to 400 0 C. Grain boundary MC survives in PCA-B3 during HFIR irradiation at 500 0 C but dissolves at 600 0 C; it does not form in either SA or 25% CW PCA during similar irradiation. The grain boundary MC appears to play an important role in the helium embrittlement resistance of PCA-B3

  1. The influence of the grain boundary structure on diffusional creep

    Energy Technology Data Exchange (ETDEWEB)

    Thorsen, P.A

    1998-05-01

    An experiment was carried out to quantify the deformation in the diffusional creep domain. It was found that material had indisputably been deposited at grain boundaries in tension. A characterisation of 131 boundaries in terms of their misorientation was carried out and this was correlated to the observed deformation. Twin boundaries below a certain limit of deviation from an exact twin misorientation were totally inactive in the deformation. A large qualitative difference was found in the way general boundaries take part in the deformation. The experiments have taken place at Materials Research Department, Risoe National Laboratory at Roskilde. The present thesis has been submitted in partial fulfillment of the requirements for the Ph.D. degree in physics at the Niels Bohr Institute, University of Copenhagen. Besides the results of the creep experiment the thesis contains a description of the theoretical background to diffusional creep models. Also, the results from an investigation of helium bubble formation in an irradiated copper sample is included. (au) 7 tabs., 56 ills., 75 refs.

  2. Intergranular corrosion in AA5XXX aluminum alloys with discontinuous precipitation at the grain boundaries

    Science.gov (United States)

    Bumiller, Elissa

    The US Navy currently uses AA5xxx aluminum alloys for structures exposed to a marine environment. These alloys demonstrate excellent corrosion resistance over other aluminum alloys (e.g., AA2xxx or AA7xxx) in this environment, filling a niche in the marine structures market when requiring a light-weight alternative to steel. However, these alloys are susceptible to localized corrosion; more specifically, intergranular corrosion (IGC) is of concern. IGC of AA5xxx alloys due to the precipitation of beta phase on the grain boundaries is a well-established phenomenon referred to as sensitization. At high degrees of sensitization, the IGC path is a continuous anodic path of beta phase particles. At lower degrees of sensitization, the beta phase coverage at the grain boundaries is not continuous. The traditional ranges of susceptibility to IGC as defined by ASTM B928 are in question due to recent studies. These studies showed that even at mid range degrees of sensitization where the beta phase is no longer continuous, IGC may still occur. Previous thoughts on IGC of these alloy systems were founded on the idea that once the grain boundary precipitate became discontinuous the susceptibility to IGC was greatly reduced. Additionally, IGC susceptibility has been defined metallurgically by compositional gradients at the grain boundaries. However, AA5xxx alloys show no compositional gradients at the grain boundaries, yet are still susceptible to IGC. The goal of this work is to establish criteria necessary for IGC to occur given no continuous beta phase path and no compositional gradient at the grain boundaries. IGC performance of the bulk alloy system AA5083 has been studied along with the primary phases present in the IGC system: alpha and beta phases using electrochemistry and modeling as the primary tools. Numerical modeling supports that at steady-state the fissure tip is likely saturated with Mg in excess of the 4% dissolved in the matrix. By combining these results

  3. Influence of competition between intragranular dislocation nucleation and intergranular slip transfer on mechanical properties of ultrafine-grained metals

    International Nuclear Information System (INIS)

    Tsuru, Tomohito; Kaji, Yoshiyuki; Aoyagi, Yoshiteru; Shimokawa, Tomotsugu

    2013-01-01

    Huge-scale atomistic simulations of shear deformation tests to the aluminum polycrystalline thin film containing the Frank-Read source are performed to elucidate the relationship between the inter- and intragranular plastic deformation processes and the mechanical properties of ultrafine-grained metals. Two-types of polycrystalline models, which consist of several grain boundaries reproducing easy and hard slip transfer, respectively, are prepared to investigate the effect of grain boundary on flow stress. While the first plastic deformation occurs by the dislocation bow-out motion within the grain region for both models, the subsequent plastic deformation is strongly influenced by the resistance of the slip transfer by dislocation transmission through grain boundaries. The influence of the competition between the intragranular dislocation nucleation and intergranular slip transfer on the material strength is considered. The nanostructured material's strength depending on local defect structures associated with grain size and dislocation source length is assessed quantitatively. (author)

  4. Intrinsic stress in ZrN thin films: Evaluation of grain boundary contribution from in situ wafer curvature and ex situ x-ray diffraction techniques

    International Nuclear Information System (INIS)

    Koutsokeras, L. E.; Abadias, G.

    2012-01-01

    Low-mobility materials, like transition metal nitrides, usually undergo large residual stress when sputter-deposited as thin films. While the origin of stress development has been an active area of research for high-mobility materials, atomistic processes are less understood for low-mobility systems. In the present work, the contribution of grain boundary to intrinsic stress in reactively magnetron-sputtered ZrN films is evaluated by combining in situ wafer curvature measurements, providing information on the overall biaxial stress, and ex situ x-ray diffraction, giving information on elastic strain (and related stress) inside crystallites. The thermal stress contribution was also determined from the in situ stress evolution during cooling down, after deposition was stopped. The stress data are correlated with variations in film microstructure and growth energetics, in the 0.13-0.42 Pa working pressure range investigated, and discussed based on existing stress models. At low pressure (high energetic bombardment conditions), a large compressive stress is observed due to atomic peening, which induces defects inside crystallites but also promotes incorporation of excess atoms in the grain boundary. Above 0.3-0.4 Pa, the adatom surface mobility is reduced, leading to the build-up of tensile stress resulting from attractive forces between under-dense neighbouring column boundary and possible void formation, while crystallites can still remain under compressive stress.

  5. Achieving ultrafine grained and homogeneous AA1050/ZnO nanocomposite with well-developed high angle grain boundaries through accumulative press bonding

    Energy Technology Data Exchange (ETDEWEB)

    Amirkhanlou, Sajjad, E-mail: s.amirkhanlou@aut.ac.ir [Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad (Iran, Islamic Republic of); Ketabchi, Mostafa; Parvin, Nader; Askarian, Masoomeh [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Carreño, Fernando [Department of Physical Metallurgy, CENIM-CSIC, Av. Gregorio del Amo 8, 28040 Madrid (Spain)

    2015-03-11

    Aluminum matrix nanocomposites with 2 vol% ZnO nanoparticles were produced using accumulative press bonding (APB) as a very effective and novel severe plastic deformation process. Microstructural evaluation and mechanical properties of specimens were characterized by field-emission scanning electron microscopy (FE-SEM), scanning transmission electron microscopy (STEM), electron backscatter diffraction (EBSD) and tensile test. Microstructure of AA1050/ZnO nanocomposite showed a uniform distribution of ZnO nanoparticles throughout the aluminum matrix. STEM and EBSD observations revealed that ultrafine-grained Al/ZnO nanocomposite with the average grain size of <500 nm and well-developed high angle grain boundaries (80% high angle boundaries and 37° average misorientation angle) was successfully obtained by performing 14 cycles of the APB process. When the number of APB cycles increased the tensile strength of Al/ZnO nanocomposite improved and reached 228 MPa after 14 cycles, which was 2.6 and 1.3 times greater than the obtained values for annealed (raw material, 88 MPa) and monolithic aluminum (180 MPa), respectively.

  6. Highly conductive grain boundaries in copper oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Deuermeier, Jonas, E-mail: j.deuermeier@campus.fct.unl.pt [Department of Materials Science, Faculty of Science and Technology, i3N/CENIMAT, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica (Portugal); Department of Materials and Earth Sciences, Technische Universität Darmstadt, Jovanka-Bontschits-Straße 2, D-64287 Darmstadt (Germany); Wardenga, Hans F.; Morasch, Jan; Siol, Sebastian; Klein, Andreas, E-mail: aklein@surface.tu-darmstadt.de [Department of Materials and Earth Sciences, Technische Universität Darmstadt, Jovanka-Bontschits-Straße 2, D-64287 Darmstadt (Germany); Nandy, Suman; Calmeiro, Tomás; Martins, Rodrigo; Fortunato, Elvira [Department of Materials Science, Faculty of Science and Technology, i3N/CENIMAT, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica (Portugal)

    2016-06-21

    High conductivity in the off-state and low field-effect mobility compared to bulk properties is widely observed in the p-type thin-film transistors of Cu{sub 2}O, especially when processed at moderate temperature. This work presents results from in situ conductance measurements at thicknesses from sub-nm to around 250 nm with parallel X-ray photoelectron spectroscopy. An enhanced conductivity at low thickness is explained by the occurrence of Cu(II), which is segregated in the grain boundary and locally causes a conductivity similar to CuO, although the surface of the thick film has Cu{sub 2}O stoichiometry. Since grains grow with an increasing film thickness, the effect of an apparent oxygen excess is most pronounced in vicinity to the substrate interface. Electrical properties of Cu{sub 2}O grains are at least partially short-circuited by this effect. The study focuses on properties inherent to copper oxide, although interface effects cannot be ruled out. This non-destructive, bottom-up analysis reveals phenomena which are commonly not observable after device fabrication, but clearly dominate electrical properties of polycrystalline thin films.

  7. Intergranular and inter-phased boundaries in the materials

    International Nuclear Information System (INIS)

    Aslanides, A.; Backhaus-Ricoult, M.; Bayle-Guillemaud, P.

    2000-01-01

    This document collects the abstracts of the talks presented during the colloquium J2IM on the intergranular and inter-phased boundaries in the materials. Around the themes of the interfaces behaviour and grain boundaries defects in materials, these days dealt with the microstructure behaviour in many domains such as the interfaces in batteries, the irradiation damages and the special case of the fuel-cladding interactions, the stressed interfaces, the alumina or silicon carbides substrates. (A.L.B.)

  8. Computer generated structures of grain boundaries in Li2-type ordered alloys

    International Nuclear Information System (INIS)

    DeHosson, J.Th.M.; Pestman, B.J.; Schapink, F.W.; Tichelaar, F.D.

    1988-01-01

    In recent years, the influence of the establishment of long-range order in cubic alloys on the structure of grain boundaries in Li 2 alloys has been considered. Thus, for example, for the Σ = 5 (310) tilt boundary the various possible structures have been investigated that are generated upon ordering, starting from plausible structures in the disordered state. However, apart from some rough energy estimates based upon nearest neighbor interactions, no reliable energy calculations have been performed of these different possible structures. In this paper, computer calculations based upon interatomic pair potentials constructed in such a way that the Li 2 structure is stable with respect to disordering, are reported for the Σ = 5 (310) boundary. The relative stability of various possible structures, with associated different boundary compositions, has been investigated

  9. On the interplay between phonon-boundary scattering and phonon-point-defect scattering in SiGe thin films

    Science.gov (United States)

    Iskandar, A.; Abou-Khalil, A.; Kazan, M.; Kassem, W.; Volz, S.

    2015-03-01

    This paper provides theoretical understanding of the interplay between the scattering of phonons by the boundaries and point-defects in SiGe thin films. It also provides a tool for the design of SiGe-based high-efficiency thermoelectric devices. The contributions of the alloy composition, grain size, and film thickness to the phonon scattering rate are described by a model for the thermal conductivity based on the single-mode relaxation time approximation. The exact Boltzmann equation including spatial dependence of phonon distribution function is solved to yield an expression for the rate at which phonons scatter by the thin film boundaries in the presence of the other phonon scattering mechanisms. The rates at which phonons scatter via normal and resistive three-phonon processes are calculated by using perturbation theories with taking into account dispersion of confined acoustic phonons in a two dimensional structure. The vibrational parameters of the model are deduced from the dispersion of confined acoustic phonons as functions of temperature and crystallographic direction. The accuracy of the model is demonstrated with reference to recent experimental investigations regarding the thermal conductivity of single-crystal and polycrystalline SiGe films. The paper describes the strength of each of the phonon scattering mechanisms in the full temperature range. Furthermore, it predicts the alloy composition and film thickness that lead to minimum thermal conductivity in a single-crystal SiGe film, and the alloy composition and grain size that lead to minimum thermal conductivity in a polycrystalline SiGe film.

  10. Effect of Grain Orientation and Boundary Distributions on Hydrogen-Induced Cracking in Low-Carbon-Content Steels

    Science.gov (United States)

    Masoumi, Mohammad; Coelho, Hana Livia Frota; Tavares, Sérgio Souto Maior; Silva, Cleiton Carvalho; de Abreu, Hamilton Ferreira Gomes

    2017-08-01

    Hydrogen-induced cracking (HIC) causes considerable economic losses in a wide range of steels exposed to corrosive environments. The effect of crystallographic texture and grain boundary distributions tailored by rolling at 850 °C in three different steels with a body-centered cube structure was investigated on HIC resistance. The x-ray and electron backscattered diffraction techniques were used to characterize texture evolutions during the rolling process. The findings revealed a significant improvement against HIC based on texture engineering. In addition, increasing the number of {111} and {110} grains, associated with minimizing the number of {001} grains in warm-rolled samples, reduced HIC susceptibility. Moreover, the results showed that boundaries associated with low {hkl} indexing and denser packing planes had more resistance against crack propagation.

  11. Diffraction-amalgamated grain boundary tracking for mapping 3D crystallographic orientation and strain fields during plastic deformation

    International Nuclear Information System (INIS)

    Toda, Hiroyuki; Kamiko, Takanobu; Tanabe, Yasuto; Kobayashi, Masakazu; Leclere, D.J.; Uesugi, Kentaro; Takeuchi, Akihisa; Hirayama, Kyosuke

    2016-01-01

    By amalgamating the X-ray diffraction technique with the grain boundary tracking technique, a novel method, diffraction-amalgamated grain boundary tracking (DAGT), has been developed. DAGT is a non-destructive in-situ analysis technique for characterising bulk materials, which can be applied up to near the point of fracture. It provides information about local crystal orientations and detailed grain morphologies in three dimensions, together with high-density strain mapping inside grains. As it obtains the grain morphologies by utilising X-ray imaging instead of X-ray diffraction, which latter is typically vulnerable to plastic deformation, DAGT is a fairly robust technique for analysing plastically deforming materials. Texture evolution and localised deformation behaviours have here been successfully characterised in Al–Cu alloys, during tensile deformation of 27% in applied strain. The characteristic rotation behaviours of grains were identified, and attributed to the effects of interaction with adjacent grains on the basis of the 3D local orientation and plastic strain distributions. It has also been revealed that 3D strain distribution in grains is highly heterogeneous, which is not explained by known mechanisms such as simple incompatibility with adjacent grains or strain percolation through soft grains. It has been clarified that groups consisting of a few adjacent grains may deform coordinately, especially in shear and lateral deformation, and the characteristic deformation pattern is thereby formed on a mesoscopic scale.

  12. Defect structures in MgB2 wires introduced by hot isostatic pressing

    International Nuclear Information System (INIS)

    Liao, X Z; Serquis, A; Zhu, Y T; Civale, L; Hammon, D L; Peterson, D E; Mueller, F M; Nesterenko, V F; Gu, Y

    2003-01-01

    The microstructures of MgB 2 wires prepared by the powder-in-tube technique and subsequent hot isostatic pressing were investigated using transmission electron microscopy. A large amount of crystalline defects including small-angle twisting, tilting and bending boundaries, in which high densities of dislocations reside, was found forming sub-grains within MgB 2 grains. It is believed that these defects resulted from particle deformation during the hot isostatic pressing process and are effective flux pinning centres that contribute to the high critical current densities of the wires at high temperatures and at high fields

  13. Effect of grain-boundary crystallization on the high-temperature strength of silicon nitride

    Science.gov (United States)

    Pierce, L. A.; Mieskowski, D. M.; Sanders, W. A.

    1986-01-01

    Si3N4 specimens having the composition 88.7 wt pct Si3N4-4.9 wt pct SiO2-6.4 wt pct Y2O3 were sintered at 2140 C under 25 atm N2 for 1 h and then subjected to a 5 h anneal at 1500 C. Crystallization of an amorphous grain-boundary phase resulted in the formation of Y2Si2O7. The short-time 1370 C strength of this material was compared with that of material of the same composition having no annealing treatment. No change in strength was noted. This is attributed to the refractory nature of the yttrium-rich grain-boundary phase (apparently identical in both glassy and crystalline phases) and the subsequent domination of the failure process by common processing flaws.

  14. Grain boundary sliding mechanism during high temperature deformation of AZ31 Magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Roodposhti, Peiman Shahbeigi, E-mail: pshahbe@ncsu.edu [North Carolina State University (United States); University of Connecticut (United States); Sarkar, Apu; Murty, Korukonda Linga [North Carolina State University (United States); Brody, Harold [University of Connecticut (United States); Scattergood, Ronald [North Carolina State University (United States)

    2016-07-04

    High temperature tensile creep tests were conducted on AZ31 Magnesium alloy at low stress range of 1–13 MPa to clarify the existence of grain boundary sliding (GBS) mechanism during creep deformation. Experimental data within the GBS regime shows the stress exponent is ~2 and the activation energy value is close to that for grain boundary diffusion. Analyses of the fracture surface of the sample revealed that the GBS provides many stress concentrated sites for diffusional cavities formation and leads to premature failure. Scanning electron microscopy images show the appearances of both ductile and brittle type fracture mechanism. X-ray diffraction line profile analysis (based on Williamson-Hall technique) shows a reduction in dislocation density due to dynamic recovery (DRV). A correlation between experimental data and Langdon's model for GBS was also demonstrated.

  15. Coercivity enhancement and thermal-stability improvement in the melt-spun NdFeB ribbons by grain boundary diffusion

    Science.gov (United States)

    Xie, Jiajun; Yuan, Chao; Luo, Yang; Yang, Yuanfei; Hu, Bin; Yu, Dunbo; Yan, Wenlong

    2018-01-01

    Rapidly quenched NdFeB ribbons with high coercivity were obtained by Nd70Cu30 diffusion process. Samples with a high coercivity of 22.02 kOe at room temperature were obtained after grain boundary diffusion with 20 wt% Nd70Cu30 alloys. The NdCu diffusion process promoted grain growth in the ribbons, and grain boundary phases were formed with Cu segregation among NdFeB grains. Coercivity above 10 kOe at 150 °C was achieved in the bonded magnets with NdCu content over 10 wt%. The flux loss of bonded magnets was reduced by ∼32% at 120 °C after diffusion treatment with only a small amount (2 wt%) of NdCu.

  16. Atomic structure of large angle grain boundaries determined by quantitative X-ray diffraction techniques

    International Nuclear Information System (INIS)

    Fitzsimmons, M.R.; Sass, S.L.

    1988-01-01

    Quantitative X-ray diffraction techniques have been used to determine the atomic structure of the Σ = 5 and 13 [001] twist boundaries in Au with a resolution of 0.09 Angstrom or better. The reciprocal lattices of these boundaries were mapped out using synchrotron radiation. The atomic structures were obtained by testing model structures against the intensity observations with a chi square analysis. The boundary structure were modeled using polyhedra, including octahedra, special configurations of tetrahedra and Archimedian anti-prisms, interwoven together by the boundary symmetry. The results of this work point to the possibility of obtaining general rules for grain boundary structure based on X-ray diffraction observations that give the atomic positions with high resolution

  17. On Techniques to Characterize and Correlate Grain Size, Grain Boundary Orientation and the Strength of the SiC Layer of TRISO Coated Particles: A Preliminary Study

    Energy Technology Data Exchange (ETDEWEB)

    I.J.van Rooyen; J.L. Dunzik Gougar; T. Trowbridge; Philip M van Rooyen

    2012-10-01

    The mechanical properties of the silicon carbide (SiC) layer of the TRi-ISOtropic (TRISO) coated particle (CP) for high temperature gas reactors (HTGR) are performance parameters that have not yet been standardized by the international HTR community. Presented in this paper are the results of characterizing coated particles to reveal the effect of annealing temperature (1000 to 2100°C) on the strength and grain size of unirradiated coated particles. This work was further expanded to include possible relationships between the grain size and strength values. The comparative results of two strength measurement techniques and grain size measured by the Lineal intercept method are included. Preliminary grain boundary characterization results determined by electron backscatter diffraction (EBSD) are included. These results are also important for future fission product transport studies, as grain boundary diffusion is identified as a possible mechanism by which 110mAg, one of the fission activation products, might be released through intact SiC layers. Temperature is a parameter known to influence the grain size of SiC and therefore it is important to investigate the effect of high temperature annealing on the SiC grain size. Recommendations and future work will also be briefly discussed.

  18. Influence of vortex-vortex interaction on critical currents across low-angle grain boundaries in YBa2Cu3O7-δ thin films

    Science.gov (United States)

    Albrecht, J.; Leonhardt, S.; Kronmüller, H.

    2001-01-01

    Low-angle grain boundaries with misorientation angles θ<5° in optimally doped thin films of YBa2Cu3O7-δ are investigated by magneto-optical imaging. By using a numerical inversion scheme of Biot-Savart's law, the critical current density across the grain boundary can be determined with a spatial resolution of about 5μm. Detailed investigation of the spatially resolved flux density and current density data shows that the current density across the boundary varies with varying local flux density. Combining the corresponding flux and current pattern, it is found that there exists a universal dependency of the grain boundary current on the local flux density. Considering the magnetic vortex-vortex interaction in and in the vicinity of the grain boundary, a model is developed that is able to describe the experimental data.

  19. Grain boundary corrosion and alteration phase formation during the oxidative dissolution of UO2 pellets

    International Nuclear Information System (INIS)

    Wronkiewicz, D.J.; Buck, E.C.; Bates, J.K.

    1996-01-01

    Alteration behavior of UO 2 pellets following reaction under unsaturated drip-test conditions at 90 C for up to 10 years was examined by solid phase and leachate analyses. Sample reactions were characterized by preferential dissolution of grain boundaries between the original press-sintered UO 2 granules comprising the samples, development of a polygonal network of open channels along the intergrain boundaries, and spallation of surface granules that had undergone severe grain boundary corrosion. The development of a dense mat of alteration phases after 2 years of reaction trapped loose granules, resulting in reduced rates of particulate U release. The paragenetic sequence of alteration phases that formed on the present samples was similar to that observed in surficial weathering zones of natural uraninite (UO 2 ) deposits, with alkali and alkaline earth uranyl silicates representing the long-term solubility-limiting phases for U in both systems

  20. Special grain boundaries in the nugget zone of friction stir welded AA6061-T6 under various welding parameters

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Wang [Key Lab of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Yong, Zou, E-mail: yzou@sdu.edu.cn [Key Lab of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Xuemei, Liu [Key Lab of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Matsuda, Kenji [Department of Materials Science and Technology, Faculty of Engineering, University of Toyama, Toyama 930-8555 (Japan)

    2016-08-01

    The age hardenable AA6061-T6 plate was butt welded by friction stir welding. The total heat input, generated by friction between the tool and work piece and plastic deformation, results in a consumption of meta-stable phases in the nugget zone. Precipitation phenomena were closely related to the diffusion of the solute atoms. The existence of special grain boundaries like Σ1a and Σ3 will increase the difficulty in diffusion, which will improve the hardness in the nugget zone. Furthermore, the formation of Σ3 grain boundaries can result from an impingement of re-crystallized grains coming from texture components in twin relationship already. An appropriate strain level may benefit the development of the twin components with a similar intensity. The welding parameters have an effect on heat source mode and the strain level. Then, the type of dynamic re-crystallization and distribution of the special grain boundaries was altered by changing the parameters.

  1. Grain Boundary Engineering for Assessing Durability and Aging Issues with Nickel-Based Superalloys, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Grain Boundary Engineering (GBE) approach, successfully demonstrated in Phase I, that microstructural optimization provides a very significant improvement in...

  2. Micromagnetic simulation of anisotropic grain boundary diffusion for sintered Nd-Fe-B magnets

    Science.gov (United States)

    Li, W.; Zhou, Q.; Zhao, L. Z.; Wang, Q. X.; Zhong, X. C.; Liu, Z. W.

    2018-04-01

    A systematic investigation on the anisotropic grain boundary diffusion in sintered Nd-Fe-B magnets is carried out by micromagnetic simulation. The results indicate that the critical reason for the anisotropic diffusion effect is not the difference in the amount of Dy diffused along different directions but the macroscopic demagnetizing field. The diffusion parallel to the easy axis from both pole surfaces of the magnet can increase the nucleation fields in the two major regions with large macroscopic demagnetizing fields, where the reverse domains can nucleate easily. As a consequence, the grain boundary diffusion along the directions parallel to the easy axis from two pole surfaces is more effective to improve the coercivity of the magnets than that along other directions. It is also found that, to enhance the coercivity, only a limited diffusion depth is required. The present result is in good agreement with the recent experimental findings.

  3. On the grain boundary character distribution of Incoloy 800H during dynamic recrystallization

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yu, E-mail: vieri32825@126.com [College of Materials Science and Engineering, Chongqing University, Chongqing 400045 (China); Di, Hongshuang [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Huang, Guangjie [College of Materials Science and Engineering, Chongqing University, Chongqing 400045 (China)

    2017-04-01

    In this paper, we investigated the influence of hot deformation parameters on the distribution and proliferation of twin boundaries during dynamic recrystallization (DRX). The results showed that microstructure evolution is characterized by a process of “dynamic recovery (DRV)→necklace/multiple necklace→fully DRX” with increasing temperature and decreasing strain rate. The predominant proliferation mechanism of Σ3{sup n} (1 ≤ n ≤ 3) boundaries is transformed from Σ3 regeneration to new twinning during the growth of DRX grains.

  4. On the grain boundary character distribution of Incoloy 800H during dynamic recrystallization

    International Nuclear Information System (INIS)

    Cao, Yu; Di, Hongshuang; Huang, Guangjie

    2017-01-01

    In this paper, we investigated the influence of hot deformation parameters on the distribution and proliferation of twin boundaries during dynamic recrystallization (DRX). The results showed that microstructure evolution is characterized by a process of “dynamic recovery (DRV)→necklace/multiple necklace→fully DRX” with increasing temperature and decreasing strain rate. The predominant proliferation mechanism of Σ3 n (1 ≤ n ≤ 3) boundaries is transformed from Σ3 regeneration to new twinning during the growth of DRX grains.

  5. Role of grain boundary engineering in the SCC behavior of ferritic-martensitic alloy HT-9

    International Nuclear Information System (INIS)

    Gupta, G.; Ampornrat, P.; Ren, X.; Sridharan, K.; Allen, T.R.; Was, G.S.

    2007-01-01

    This paper focuses on the role of grain boundary engineering (GBE) in stress corrosion cracking (SCC) of ferritic-martensitic (F-M) alloy HT-9 in supercritical water (SCW) at 400 deg. C and 500 deg. C. Constant extension rate tensile (CERT) tests were conducted on HT-9 in as-received (AR) and coincident site lattice enhanced (CSLE) condition. Both unirradiated and irradiated specimens (irradiated with 2 MeV protons at 400 deg. C and 500 deg. C to a dose of 7 dpa) were tested. Ferritic-martensitic steel HT-9 exhibited intergranular stress corrosion cracking when subjected to CERT tests in an environment of supercritical water at 400 deg. C and 500 deg. C and also in an inert environment of argon at 500 deg. C. CSL-enhancement reduces grain boundary carbide coarsening and cracking susceptibility in both the unirradiated and irradiated condition. Irradiation enhanced coarsening of grain boundary carbides and cracking susceptibility of HT-9 for both the AR and CSLE conditions. Intergranular (IG) cracking of HT-9 results likely from fracture of IG carbides and seems consistent with the mechanism that coarser carbides worsen cracking susceptibility. Oxidation in combination with wedging stresses is the likely cause of the observed environmental enhancement of high temperature IG cracking in HT-9

  6. Silicon Σ13(5 0 1) grain boundary interface structure determined by bicrystal Bragg rod X-ray scattering

    International Nuclear Information System (INIS)

    Howes, P.B.; Rhead, S.; Roy, M.; Nicklin, C.L.; Rawle, J.L.; Norris, C.A.

    2013-01-01

    The atomic structure of the silicon Σ13(5 0 1) symmetric tilt grain boundary interface has been determined using Bragg rod X-ray scattering. In contrast to conventional structural studies of grain boundary structure using transmission electron microscopy, this approach allows the non-destructive measurement of macroscopic samples. The interface was found to have a single structure that is fully fourfold coordinated. X-ray diffraction data were measured at Beamline I07 at the Diamond Light Source

  7. Deformation effects on the development of grain boundary chronium depletion (sensitization) in type 316 austenitic stainless steels

    International Nuclear Information System (INIS)

    Atteridge, D.G.; Wood, W.E.; Advani, A.H.; Bruemmer, S.M.

    1990-01-01

    Deformation induces an acceleration in the kinetics and reduction in the thermodynamic barrier to carbide precipitation and grain boundary chromium depletion (GBCD) development of a high carbon Type 316 stainless steel (SS). This was observed in a study on strain effects on GBCD (or sensitization) development in the range of 575 degree C to 775 degree C. Grain boundary chromium depletion behavior of SS was examined using the indirect electrochemical potentiokinetic reactivation (EPR) test and supported by studies on carbide precipitation using transmission electron microscopy (TEM). 99 refs., 84 figs., 9 tabs

  8. Investigation on the asymmetry of thermal condition and grain defect formation in the customary directional solidification process

    International Nuclear Information System (INIS)

    Ma, D; Wu, Q; Hollad, S; Bührig-Polaczek, A

    2012-01-01

    In the present study, the non-uniformity of the thermal condition and the corresponding grain defect formation in the customary Bridgman process were investigated. The casting clusters in radial alignment were directionally solidified in a Bridgman furnace. It was found that in the casting cluster, the shadow side facing the central rod was ineffectively heated in the hot zone and ineffectively cooled in the cooling zone during withdrawal, compared with the heater side facing the furnace heater. The metallographic examination of the simplified turbine blades exhibited that the platforms on the shadow side are very prone to stray grain formation, while the heater side reveals a markedly lower tendency for that. The asymmetric thermal condition causes the asymmetrical formation of these grain defects. This non-uniformity of the thermal condition should be minimized as far as possible, in order to effectively optimize the quality of the SC superalloy components.

  9. Significance of grain boundaries and stacking faults on hydrogen storage properties of Mg2Ni intermetallics processed by high-pressure torsion

    International Nuclear Information System (INIS)

    Hongo, Toshifumi; Edalati, Kaveh; Arita, Makoto; Matsuda, Junko; Akiba, Etsuo; Horita, Zenji

    2015-01-01

    Mg 2 Ni intermetallics are processed using three different routes to produce three different microstructural features: annealing at high temperature for coarse grain formation, severe plastic deformation through high-pressure torsion (HPT) for nanograin formation, and HPT processing followed by annealing for the introduction of stacking faults. It is found that both grain boundaries and stacking faults are significantly effective to activate the Mg 2 Ni intermetallics for hydrogen storage at 423 K (150 °C). The hydrogenation kinetics is also considerably enhanced by the introduction of large fractions of grain boundaries and stacking faults while the hydrogenation thermodynamics remains unchanged. This study shows that, similar to grain boundaries and cracks, stacking faults can act as quick pathways for the transportation of hydrogen in the hydrogen storage materials

  10. Engineering Mixed Ionic Electronic Conduction in La 0.8 Sr 0.2 MnO 3+ δ Nanostructures through Fast Grain Boundary Oxygen Diffusivity

    KAUST Repository

    Saranya, Aruppukottai M.

    2015-04-09

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Nanoionics has become an increasingly promising field for the future development of advanced energy conversion and storage devices, such as batteries, fuel cells, and supercapacitors. Particularly, nanostructured materials offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. However, the enhancement of the mass transport properties at the nanoscale has often been found to be difficult to implement in nanostructures. Here, an artificial mixed ionic electronic conducting oxide is fabricated by grain boundary (GB) engineering thin films of La0.8Sr0.2MnO3+δ. This electronic conductor is converted into a good mixed ionic electronic conductor by synthesizing a nanostructure with high density of vertically aligned GBs with high concentration of strain-induced defects. Since this type of GBs present a remarkable enhancement of their oxide-ion mass transport properties (of up to six orders of magnitude at 773 K), it is possible to tailor the electrical nature of the whole material by nanoengineering, especially at low temperatures. The presented results lead to fundamental insights into oxygen diffusion along GBs and to the application of these engineered nanomaterials in new advanced solid state ionics devices such are micro-solid oxide fuel cells or resistive switching memories. An electronic conductor such as La0.8Sr0.2MnO3+δ is converted into a good mixed ionic electronic conductor by synthesizing a nanostructure with excellent electronic and oxygen mass transport properties. Oxygen diffusion highways are created by promoting a high concentration of strain-induced defects in the grain boundary region. This novel strategy opens the way for synthesizing new families of artificial mixed ionic-electronic conductors by design.

  11. Characterizing the nano-structure and defect structure of nano-scaled non-ferrous structural alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ghamarian, Iman, E-mail: imanghamarian@yahoo.com [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203 (United States); Samimi, Peyman; Liu, Yue [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203 (United States); Center for Advanced Non-Ferrous Structural Alloys, an NSF-I/UCRC between the University of North Texas (Denton, TX, 76203) and the Colorado School of Mines (Golden, CO, 80401) (United States); Poorganji, Behrang; Vasudevan, Vijay K. [Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221 (United States); Collins, Peter C. [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203 (United States); Center for Advanced Non-Ferrous Structural Alloys, an NSF-I/UCRC between the University of North Texas (Denton, TX, 76203) and the Colorado School of Mines (Golden, CO, 80401) (United States)

    2016-03-15

    The presence and interaction of nanotwins, geometrically necessary dislocations, and grain boundaries play a key role in the mechanical properties of nanostructured crystalline materials. Therefore, it is vital to determine the orientation, width and distance of nanotwins, the angle and axis of grain boundary misorientations as well as the type and the distributions of dislocations in an automatic and statistically meaningful fashion in a relatively large area. In this paper, such details are provided using a transmission electron microscope-based orientation microscopy technique called ASTAR™/precession electron diffraction. The remarkable spatial resolution of this technique (~ 2 nm) enables highly detailed characterization of nanotwins, grain boundaries and the configuration of dislocations. This orientation microscopy technique provides the raw data required for the determination of these parameters. The procedures to post-process the ASTAR™/PED datasets in order to obtain the important (and currently largely hidden) details of nanotwins as well as quantifications of dislocation density distributions are described in this study. - Highlights: • EBSD cannot characterize defects such as dislocations, grain boundaries and nanotwins in severely deformed metals. • TEM based orientation microscopy technique called ASTAR™/PED was used to resolve the problem. • Locations and orientations of nanotwins, dislocation density distribution and grain boundary characters can be resolved. • This work provides the bases for further studies on the interactions between dislocations, grain boundaries and nanotwins. • The computation part is explained sufficiently which helps the readers to post process their own data.

  12. Grain boundaries and mechanical properties of nanocrystalline diamond films.

    Energy Technology Data Exchange (ETDEWEB)

    Busmann, H.-G.; Pageler, A.; Gruen, D. M.

    1999-08-06

    Phase-pure nanocrystalline diamond thin films grown from plasmas of a hydrogen-poor carbon argon gas mixture have been analyzed regarding their hardness and elastic moduli by means of a microindentor and a scanning acoustic microscope.The films are superhard and the moduli rival single crystal diamond. In addition, Raman spectroscopy with an excitation wavelength of 1064 nm shows a peak at 1438 l/cm and no peak above 1500 l/cm, and X-ray photoelectron spectroscopy a shake-up loss at 4.2 eV. This gives strong evidence for the existence of solitary double bonds in the films. The hardness and elasticity of the films then are explained by the assumption, that the solitary double bonds interconnect the nanocrystals in the films, leading to an intergrain boundary adhesion of similar strength as the intragrain diamond cohesion. The results are in good agreement with recent simulations of high-energy grain boundaries.

  13. Phononic thermal conductivity in silicene: the role of vacancy defects and boundary scattering

    Science.gov (United States)

    Barati, M.; Vazifehshenas, T.; Salavati-fard, T.; Farmanbar, M.

    2018-04-01

    We calculate the thermal conductivity of free-standing silicene using the phonon Boltzmann transport equation within the relaxation time approximation. In this calculation, we investigate the effects of sample size and different scattering mechanisms such as phonon–phonon, phonon-boundary, phonon-isotope and phonon-vacancy defect. We obtain some similar results to earlier works using a different model and provide a more detailed analysis of the phonon conduction behavior and various mode contributions. We show that the dominant contribution to the thermal conductivity of silicene, which originates from the in-plane acoustic branches, is about 70% at room temperature and this contribution becomes larger by considering vacancy defects. Our results indicate that while the thermal conductivity of silicene is significantly suppressed by the vacancy defects, the effect of isotopes on the phononic transport is small. Our calculations demonstrate that by removing only one of every 400 silicon atoms, a substantial reduction of about 58% in thermal conductivity is achieved. Furthermore, we find that the phonon-boundary scattering is important in defectless and small-size silicene samples, especially at low temperatures.

  14. Relation of ductile-to-brittle transition temperature to phosphorus grain boundary segregation for a Ti-stabilized interstitial free steel

    International Nuclear Information System (INIS)

    Chen, X.-M.; Song, S.-H.; Weng, L.-Q.; Liu, S.-J.; Wang, K.

    2011-01-01

    Highlights: → The free energy of phosphorus grain boundary segregation in IF steel is ∼44.8 kJ/mol. → A relationship between DBTT and phosphorus segregation is established. → The DBTT increases linearly with increasing phosphorus boundary concentration. → Cold work embrittlement may be severe if the steel is annealed at relatively low temperatures. - Abstract: Equilibrium grain boundary segregation of phosphorus in a Ti-stabilized interstitial free (IF) steel is measured using Auger electron spectroscopy (AES) after the specimens are aged for adequate time at different temperatures between 600 and 850 deg. C. Based on the experimental data of equilibrium grain boundary segregation along with the McLean equilibrium segregation theory, the free energy of segregation of phosphorus is evaluated to be ∼44.8 kJ/mol, being independent of temperature. With the AES results being combined with the ductile-to-brittle transition temperatures (DBTTs) determined by impact tests, a relationship between DBTT and phosphorus boundary concentration is established. Predictions with the relationship indicate that cold work embrittlement may be severe if the steel is annealed at relatively low temperatures after cold rolling.

  15. Recombination in Perovskite Solar Cells : Significance of Grain Boundaries, Interface Traps, and Defect Ions

    NARCIS (Netherlands)

    Sherkar, Tejas; Momblona, Cristina; Gil-Escrig, Lidon; Avila, Jorge; Sessolo, Michele; Bolink, Henk J.; Koster, Lambert

    2017-01-01

    Trap-assisted recombination, despite being lower as compared with traditional inorganic solar cells, is still the dominant recombination mechanism in perovskite solar cells (PSCs) and limits their efficiency. We investigate the attributes of the primary trap-assisted recombination channels (grain

  16. An improved method to identify grain boundary creep cavitation in 316H austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, B., E-mail: b.chen@bristol.ac.uk [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom); Flewitt, P.E.J. [Interface Analysis Centre, University of Bristol, 121 St. Michael' s Hill, Bristol BS2 8BS (United Kingdom); H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Smith, D.J. [Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR (United Kingdom); Jones, C.P. [Interface Analysis Centre, University of Bristol, 121 St. Michael' s Hill, Bristol BS2 8BS (United Kingdom)

    2011-04-15

    Inter-granular creep cavitation damage has been observed in an ex-service 316H austenitic stainless steel thick section weldment. Focused ion beam cross-section milling combined with ion channelling contrast imaging is used to identify the cavitation damage, which is usually associated with the grain boundary carbide precipitates in this material. The results demonstrate that this technique can identify, in particular, the early stage of grain boundary creep cavitation unambiguously in materials with complex phase constituents. -- Research highlights: {yields} FIB milling plus ion channelling contrast optimise the observation of cavity. {yields} Identification of the creep cavities unambiguously, using an FIB technique. {yields} The FIB technique can retain the polyhedral shape of cavity. {yields} Various stages of creep cavitation can be observed, using the FIB technique.

  17. Defect-Mediated Lithium Adsorption and Diffusion on Monolayer Molybdenum Disulfide

    OpenAIRE

    Sun, Xiaoli; Wang, Zhiguo; Fu, Yong Qing

    2015-01-01

    Monolayer Molybdenum Disulfide (MoS2) is a promising anode material for lithium ion batteries because of its high capacities. In this work, first principle calculations based on spin density functional theory were performed to investigate adsorption and diffusion of lithium on monolayer MoS2 with defects, such as single- and few-atom vacancies, antisite, and grain boundary. The values of adsorption energies on the monolayer MoS2 with the defects were increased compared to those on the pristin...

  18. Experiment-based modelling of grain boundary β-phase (Mg2Al3) evolution during sensitisation of aluminium alloy AA5083.

    Science.gov (United States)

    Zhang, R; Steiner, M A; Agnew, S R; Kairy, S K; Davies, C H J; Birbilis, N

    2017-06-07

    An empirical model for the evolution of β-phase (Mg 2 Al 3 ) along grain boundaries in aluminium alloy AA5083 (Al-Mg-Mn) during isothermal exposures is proposed herein. Developing a quantitative understanding of grain boundary precipitation is important to interpreting intergranular corrosion and stress corrosion cracking in this alloy system. To date, complete ab initio models for grain boundary precipitation based upon fundamental principles of thermodynamics and kinetics are not available, despite the critical role that such precipitates play in dictating intergranular corrosion phenomena. Empirical models can therefore serve an important role in advancing the understanding of grain boundary precipitation kinetics, which is an approach applicable beyond the present context. High resolution scanning electron microscopy was to quantify the size and distribution of β-phase precipitates on Ga-embrittled intergranular fracture surfaces of AA5083. The results are compared with the degree of sensitisation (DoS) as judged by nitric acid mass loss testing (ASTM-G67-04), and discussed with models for sensitisation in 5xxx series Al-alloys. The work herein allows sensitisation to be quantified from an unambiguous microstructural perspective.

  19. Density Functional Theory plus Hubbard U Study of the Segregation of Pt to the CeO2- x Grain Boundary.

    Science.gov (United States)

    Zhou, Guoli; Li, Pan; Ma, Qingmin; Tian, Zhixue; Liu, Ying

    2018-03-14

    Grain boundaries (GBs) can be used as traps for solute atoms and defects, and the interaction between segregants and GBs is crucial for understanding the properties of nanocrystalline materials. In this study, we have systematically investigated the Pt segregation and Pt-oxygen vacancies interaction at the ∑3 (111) GB in ceria (CeO 2 ). The Pt atom has a stronger tendency to segregate to the ∑3 (111) GB than to the (111) and (110) free surfaces, but the tendency is weaker than to (112) and (100). Lattice distortion plays a dominant role in Pt segregation. At the Pt-segregated-GB (Pt@GB), oxygen vacancies prefer to form spontaneously near Pt in the GB region. However, at the pristine GB, oxygen vacancies can only form under O-poor conditions. Thus, Pt segregation to the GB promotes the formation of oxygen vacancies, and their strong interactions enhance the interfacial cohesion. We propose that GBs fabricated close to the surfaces of nanocrystalline ceria can trap Pt from inside the grains or other types of surface, resulting in the suppression of the accumulation of Pt on the surface under redox reactions, especially under O-poor conditions.

  20. Effect of hydrogen environment on the separation of Fe grain boundaries

    International Nuclear Information System (INIS)

    Wang, Shuai; Martin, May L.; Robertson, Ian M.; Sofronis, Petros

    2016-01-01

    A density-functional theory based empirical potential was used to explore the energies of different types of Fe grain boundaries and free surfaces in thermodynamic equilibrium with a hydrogen environment. The classical model for calculating the ideal work of separation with solute atoms is extended to account for every trapping site. This yields the lowest-energy structures at different hydrogen chemical potentials (or gas pressures). At hydrogen gas pressures lower than 1000 atm, the reduction of the reversible work of separation is less than 33% and it increases to 36% at a gas pressure of 5000 atm. Near the hydride formation limit, 5 × 10 4  atm, the reduction is 44%. Based on the magnitude of these reductions for complete decohesion, and accounting for experimental observations of the microstructure associated with hydrogen-induced intergranular fracture of Fe, it is posited that hydrogen-enhanced plasticity and attendant effects establish the local conditions responsible for the transition in fracture mode from transgranular to intergranular. The conclusion is reached that intergranular failure occurs by a reduction of the cohesive energy but with contributions from structural as well as compositional changes in the grain boundary that are driven by hydrogen-enhanced plasticity processes.

  1. Orientation dependence of grain-boundary energy in metals in the view of a pseudoheterophase dislocation core model

    International Nuclear Information System (INIS)

    Missol, W.

    1976-01-01

    A new dislocation model for symmetric tilt grain boundaries was developed as a basis for deriving the quantitative dependence of grain-boundary energy upon misorientation angle in the form of an expression similar to that given by Read and Shockley [Phys. Rev. 78: 275(1950)]. The range of applicability of this equation was extended to over 20 degrees. A comparison of theory and experiment was made for Bi, Ag, Cu, and Fe--Si 3 percent in the teen-degree range of misorientation angles and for Au, α-Fe, Mo, and W in the high-angle range

  2. Stacking fault tetrahedra formation in the neighbourhood of grain boundaries

    CERN Document Server

    Samaras, M; Van Swygenhoven, H; Victoria, M

    2003-01-01

    Large scale molecular dynamics computer simulations are performed to study the role of the grain boundary (GB) during the cascade evolution in irradiated nanocrystalline Ni. At all primary knock-on atom (PKA) energies in cascades near GBs, the damage produced after cooling down is vacancy dominated. Truncated stacking fault tetrahedra (TSFTs) are easily formed at 10 keV and higher PKA energies. At the higher energies a complex partial dislocation network forms, consisting of TSFTs. The GB acts as an interstitial sink without undergoing major structural changes.

  3. Grain-boundary oxidation of used CANDU fuel exposed to dry air at 150 degrees C for a prolonged period

    International Nuclear Information System (INIS)

    Hocking, W.H.; Behnke, R.; Duclos, A.M.

    1995-01-01

    The grain-boundary chemistry of used CANDU fuel exposed to dry air at 150 degrees C for a prolonged period has been investigated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). High degrees of surface oxidation have been determined using the chemical-shift effects for the uranium photoelectron emission, but these must be largely restricted to thin films. The observed distribution of segregated fission products implies an absence of major fuel restructuring and SEM examinations revealed mainly subtle changes in the UO 2 grain structure. These findings are consistent with metallographic evidence of pervasive grain-boundary attack, despite only slight bulk alteration of the fluorite-lattice structure. (author)

  4. Surface potential at a ferroelectric grain due to asymmetric screening of depolarization fields

    Energy Technology Data Exchange (ETDEWEB)

    Genenko, Yuri A., E-mail: genenko@mm.tu-darmstadt.de; Hirsch, Ofer [Technische Universität Darmstadt, Darmstadt (Germany); Erhart, Paul [Chalmers University of Technology, Gothenburg (Sweden)

    2014-03-14

    Nonlinear screening of electric depolarization fields, generated by a stripe domain structure in a ferroelectric grain of a polycrystalline material, is studied within a semiconductor model of ferroelectrics. It is shown that the maximum strength of local depolarization fields is rather determined by the electronic band gap than by the spontaneous polarization magnitude. Furthermore, field screening due to electronic band bending and due to presence of intrinsic defects leads to asymmetric space charge regions near the grain boundary, which produce an effective dipole layer at the surface of the grain. This results in the formation of a potential difference between the grain surface and its interior of the order of 1 V, which can be of either sign depending on defect transition levels and concentrations. Exemplary acceptor doping of BaTiO{sub 3} is shown to allow tuning of the said surface potential in the region between 0.1 and 1.3 V.

  5. An Atomistic Modeling Study of Alloying Element Impurity Element, and Transmutation Products on the cohesion of A Nickel E5 {001} Twist Grain Boundary

    International Nuclear Information System (INIS)

    Young, G.A. Jr.; Najafabadi, R.; Strohmayer, W.; Baldrey, D.G.; Hamm, B.; Harris, J.; Sticht, J.; Wimmer, E.

    2003-01-01

    Atomistic modeling methods were employed to investigate the effects of impurity elements on the metallurgy, irradiation embrittlement, and environmentally assisted cracking of nickel-base alloys exposed to nuclear environments. Calculations were performed via ab initio atomistic modeling methods to ensure the accuracy and reliability of the results. A Griffith-type fracture criterion was used to quantitatively assess the effect of elements or element pairs on the grain boundary cohesive strength. In order of most embrittling to most strengthening, the elements are ranked as: He, Li, S, H, C, Zr, P, Fe, Mn, Nb, Cr, and B. Helium is strongly embrittling (-2.04 eV/atom lowering of the Griffith energy), phosphorus has little effect on the grain boundary (0.1 eV/atom), and boron offers appreciable strengthening (1.03 eV/atom increase in the Griffith energy). Calculations for pairs of elements (H-Li, H-B, H-C, H-P, and H-S) show little interaction on the grain boundary cohesive energy, so that for the conditions studied, linear superposition of elemental effects is a good approximation. These calculations help explain metallurgical effects (e.g. why boron can strengthen grain boundaries), irradiation embrittlement (e.g. how boron transmutation results in grain boundary embrittlement), as well as how grain boundary impurity elements can affect environmentally assisted cracking (i.e. low temperature crack propagation and stress corrosion cracking) of nickel-base alloys

  6. Grain boundary corrosion and alteration phase formation during the oxidative dissolution of UO{sub 2} pellets

    Energy Technology Data Exchange (ETDEWEB)

    Wronkiewicz, D.J.; Buck, E.C.; Bates, J.K.

    1996-12-31

    Alteration behavior of UO{sub 2} pellets following reaction under unsaturated drip-test conditions at 90 C for up to 10 years was examined by solid phase and leachate analyses. Sample reactions were characterized by preferential dissolution of grain boundaries between the original press-sintered UO{sub 2} granules comprising the samples, development of a polygonal network of open channels along the intergrain boundaries, and spallation of surface granules that had undergone severe grain boundary corrosion. The development of a dense mat of alteration phases after 2 years of reaction trapped loose granules, resulting in reduced rates of particulate U release. The paragenetic sequence of alteration phases that formed on the present samples was similar to that observed in surficial weathering zones of natural uraninite (UO{sub 2}) deposits, with alkali and alkaline earth uranyl silicates representing the long-term solubility-limiting phases for U in both systems.

  7. Influence of Al grain boundaries segregations and La-doping on embrittlement of intermetallic NiAl

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, Anatoly I., E-mail: a_kovalev@sprg.ru; Wainstein, Dmitry L.; Rashkovskiy, Alexander Yu.

    2015-11-01

    Highlights: • We investigated Al grain boundaries segregations in ordered pure and La-doped NiAl. • Structural segregation of Al decreases critical strain for brittle cracks nucleation. • La alloying sharply improves plasticity of NiAl intermetallic. • Metallicity of interatomic bonds on grain boundaries increases at La alloying. • We have experimentally measured by EELFS that La atoms are located in Al sublattice. - Abstract: The microscopic nature of intergranular fracture of NiAl was experimentally investigated by the set of electron spectroscopy techniques. The paper demonstrates that embrittlement of NiAl intermetallic compound is caused by ordering of atomic structure that leads to formation of structural aluminum segregations at grain boundaries (GB). Such segregations contain high number of brittle covalent interatomic bonds. The alloying by La increases the ductility of material avoiding Al GB enrichment and disordering GB atomic structure. The influence of La alloying on NiAl mechanical properties was investigated. GB chemical composition, atomic and electronic structure transformations after La doping were investigated by AES, XPS and EELFS techniques. To qualify the interatomic bonds metallicity the Fermi level (E{sub F}) position and electrons density (n{sub eff}) in conduction band were determined in both undoped and doped NiAl. Basing on experimental results the physical model of GB brittleness formation was proposed.

  8. On holographic defect entropy

    International Nuclear Information System (INIS)

    Estes, John; Jensen, Kristan; O’Bannon, Andy; Tsatis, Efstratios; Wrase, Timm

    2014-01-01

    We study a number of (3+1)- and (2+1)-dimensional defect and boundary conformal field theories holographically dual to supergravity theories. In all cases the defects or boundaries are planar, and the defects are codimension-one. Using holography, we compute the entanglement entropy of a (hemi-)spherical region centered on the defect (boundary). We define defect and boundary entropies from the entanglement entropy by an appropriate background subtraction. For some (3+1)-dimensional theories we find evidence that the defect/boundary entropy changes monotonically under certain renormalization group flows triggered by operators localized at the defect or boundary. This provides evidence that the g-theorem of (1+1)-dimensional field theories generalizes to higher dimensions

  9. Effect of strain and deformation route on grain boundary characteristics and recrystallization behavior of aluminum

    International Nuclear Information System (INIS)

    Sakai, Tetsuo; Takahashi, Yasuo; Utsunomiya, Hiroshi

    2014-01-01

    The effect of strain and deformation route on the recrystallization behavior of aluminum sheets has been investigated using well lubricated cold rolling and continuous equal channel angular extrusion. Three different deformation routes in plane strain corresponding to (1) simple shear, (2) compression, and (3) the combination of simple shear and compression were performed on 1100 aluminum sheet. Fixed amounts of the equivalent strain of 1.28 and 1.06 were accumulated in each route. In case of the combined deformation route, the ratio of shear strain to the total equivalent strain was varied. The recrystallized grain size was finer if the combined deformation route was employed instead of the monotonic route under the same amount of equivalent strain at either strain level. The density of high angle grain boundaries that act as nucleation sites for recrystallization was higher in materials deformed by the combined route. The orientation imaging micrographs revealed that the change in deformation route is effective for introducing a larger number of new high angle grain boundaries with relatively low misorientation angle

  10. Effect of strain and deformation route on grain boundary characteristics and recrystallization behavior of aluminum

    Science.gov (United States)

    Sakai, Tetsuo; Utsunomiya, Hiroshi; Takahashi, Yasuo

    2014-08-01

    The effect of strain and deformation route on the recrystallization behavior of aluminum sheets has been investigated using well lubricated cold rolling and continuous equal channel angular extrusion. Three different deformation routes in plane strain corresponding to (1) simple shear, (2) compression, and (3) the combination of simple shear and compression were performed on 1100 aluminum sheet. Fixed amounts of the equivalent strain of 1.28 and 1.06 were accumulated in each route. In case of the combined deformation route, the ratio of shear strain to the total equivalent strain was varied. The recrystallized grain size was finer if the combined deformation route was employed instead of the monotonic route under the same amount of equivalent strain at either strain level. The density of high angle grain boundaries that act as nucleation sites for recrystallization was higher in materials deformed by the combined route. The orientation imaging micrographs revealed that the change in deformation route is effective for introducing a larger number of new high angle grain boundaries with relatively low misorientation angle.

  11. Emission of partial dislocations from triple junctions of grain boundaries in nanocrystalline materials

    International Nuclear Information System (INIS)

    Gutkin, M Yu; Ovid'ko, I A; Skiba, N V

    2005-01-01

    A theoretical model is suggested that describes emission of partial Shockley dislocations from triple junctions of grain boundaries (GBs) in deformed nanocrystalline materials. In the framework of the model, triple junctions accumulate dislocations due to GB sliding along adjacent GBs. The dislocation accumulation at triple junctions causes partial Shockley dislocations to be emitted from the dislocated triple junctions and thus accommodates GB sliding. Ranges of parameters (applied stress, grain size, etc) are calculated in which the emission events are energetically favourable in nanocrystalline Al, Cu and Ni. The model accounts for the corresponding experimental data reported in the literature

  12. Observation of Pseudopartial Grain Boundary Wetting in the NdFeB-Based Alloy

    Science.gov (United States)

    Straumal, B. B.; Mazilkin, A. A.; Protasova, S. G.; Schütz, G.; Straumal, A. B.; Baretzky, B.

    2016-08-01

    The NdFeB-based alloys were invented in 1980s and remain the best-known hard magnetic alloys. In order to reach the optimum magnetic properties, the grains of hard magnetic Nd2Fe14B phase have to be isolated from one another by the (possibly thin) layers of a non-ferromagnetic Nd-rich phase. In this work, we observe that the few-nanometer-thin layers of the Nd-rich phase appear between Nd2Fe14B grains due to the pseudopartial grain boundary (GB) wetting. Namely, some Nd2Fe14B/Nd2Fe14B GBs are not completely wetted by the Nd-rich melt and have the high contact angle with the liquid phase and, nevertheless, contain the 2-4-nm-thin uniform Nd-rich layer.

  13. Utilizing the meso-scale grain boundary stress to estimate the onset of delamination in 2099-T861 aluminium–lithium

    International Nuclear Information System (INIS)

    McDonald, Russell J; Beaudoin, Armand J

    2010-01-01

    Aluminium–lithium alloys provide a lower density and higher stiffness alternative to other high strength aluminium alloys. However, many Al–Li alloys exhibit a non-traditional failure mechanism called delamination, which refers to the failure of the elongated grain boundary interface. In this investigation, delaminations were observed after cyclic deformation of both uniaxial and torsion experiments. A cyclically stable rate-independent crystal plasticity framework with kinematic hardening was developed to address many experimental trends of stabilized cyclic plasticity. Utilizing this framework, meso-scale grain boundary interface stresses were estimated with uniform deformation and bi-crystal models. These models are computationally amenable to investigate both orientation dependence and the statistical nature of the grain boundary stresses for a given bulk texture and nominal loading. A coupled shear-normal Findley-based damage parameter was formulated to quantitatively characterize the nucleation of delamination consistently with experimental trends

  14. Intrinsic Compressive Stress in Polycrystalline Films is Localized at Edges of the Grain Boundaries

    Science.gov (United States)

    Vasco, Enrique; Polop, Celia

    2017-12-01

    The intrinsic compression that arises in polycrystalline thin films under high atomic mobility conditions has been attributed to the insertion or trapping of adatoms inside grain boundaries. This compression is a consequence of the stress field resulting from imperfections in the solid and causes the thermomechanical fatigue that is estimated to be responsible for 90% of mechanical failures in current devices. We directly measure the local distribution of residual intrinsic stress in polycrystalline thin films on nanometer scales, using a pioneering method based on atomic force microscopy. Our results demonstrate that, at odds with expectations, compression is not generated inside grain boundaries but at the edges of gaps where the boundaries intercept the surface. We describe a model wherein this compressive stress is caused by Mullins-type surface diffusion towards the boundaries, generating a kinetic surface profile different from the mechanical equilibrium profile by the Laplace-Young equation. Where the curvatures of both profiles differ, an intrinsic stress is generated in the form of Laplace pressure. The Srolovitz-type surface diffusion that results from the stress counters the Mullins-type diffusion and stabilizes the kinetic surface profile, giving rise to a steady compression regime. The proposed mechanism of competition between surface diffusions would explain the flux and time dependency of compressive stress in polycrystalline thin films.

  15. Size Effect of Defects on the Mechanical Properties of Graphene

    Science.gov (United States)

    Park, Youngho; Hyun, Sangil

    2018-03-01

    Graphene, a two-dimensional material, has been studied and utilized for its excellent material properties. In reality, achieving a pure single-crystalline structure in graphene is difficult, so usually graphene may have various types of defects in it. Vacancies, Stone-Wales defects, and grain boundaries can drastically change the material properties of graphene. Graphene with vacancy defects has been of interest because it is a two-dimensional analogy of three-dimensional porous materials. It has efficient material properties, and can function as a part of modern devices. The mechanical properties have been studied by using molecular dynamics for either a single vacancy defect with various sizes or multiple vacancy defects with same defect ratios. However, it is not clear which one has more influence on the mechanical properties between the size of the defects and the defect ratio. Therefore, we investigated the hole-size effect on the mechanical properties of single-crystalline graphene at various defect ratios. A void defect with large size can have a rather high tensile modulus with a low fracture strain compared to a void defect with small size. We numerically found that the tensile properties of scattered single vacancies is similar to that of amorphous graphene. We suspect that this is due to the local orbital change of the carbon atoms near the boundary of the void defects, so-called the interfacial phase.

  16. Grain boundary chromium concentration effects on the IGSCC and IASCC of austenitic stainless steels

    International Nuclear Information System (INIS)

    Bruemmer, S.M.; Arey, B.W.; Charlot, L.A.

    1993-08-01

    Comparisons are made between grain boundary composition and intergranular stress corrosion cracking (IGSCC) of 304 and 309 austenitic stainless steels in high-temperature water environments. Chromium depletion had the dominant effect on cracking resistance with the extent of IG cracking controlled by the interfacial chromium concentration. The minimum chromium concentration required to promote cracking was a function of the applied strain rate during slow-strain-rate tensile tests in 288 C air-saturated water. Depletion from bulk levels of 18 wt% to ∼13.5 wt% Cr at grain boundaries prompted 100% IG cracking at a strain rate of 1 x 10 -6 s -1 , while embrittlement was observed with only a slight depletion to ∼17 wt% at 2 x 10 -7 s -1 . Insights into critical interfacial compositions promoting IGSCC are discussed in reference to cracking of irradiated stainless steel nuclear reactor core components

  17. Grain boundary engineering in sintered Nd-Fe-B permanent magnets for efficient utilization of heavy rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Loewe, Konrad

    2016-10-18

    The first part of the thesis investigates the diffusion of rare-earth (RE) elements in commercial sintered Nd-Fe-B based permanent magnets. A strong temperature dependence of the diffusion distance and resulting change in magnetic properties were found. A maximum increase in coercivity of ∼+350 kA/m using a Dy diffusion source occurred at the optimum annealing temperature of 900 C. After annealing for 6 h at this temperature, a Dy diffusion distance of about 4 mm has been observed with a scanning Hall probe. Consequently, the maximum thickness of grain boundary diffusion processed magnets with homogeneous properties is also only a few mm. The microstructural changes in the magnets after diffusion were investigated by electron microscopy coupled with electron probe microanalysis. It was found that the diffusion of Dy into sintered Nd-Fe-B permanent magnets occurs along the grain boundary phases, which is in accordance with previous studies. A partial melting of the Nd-Fe-B grains during the annealing process lead to the formation of so - called (Nd,Dy)-Fe-B shells at the outer part of the grains. These shells are μm thick at the immediate surface of the magnet and become thinner with increasing diffusion distance towards the center of the bulk. With scanning transmission electron microscopy coupled with electron probe analysis a Dy content of about 1 at.% was found in a shell located about 1.5 mm away from the surface of the magnet. The evaluation of diffusion speeds of Dy and other RE (Tb, Ce, Gd) in Nd-Fe-B magnets showed that Tb diffuses significantly faster than Dy, and Ce slightly slower than Dy, which is attributed to differences in the respective phase diagrams. The addition of Gd to the grain boundaries has an adverse effect on coercivity. Exemplary of the heavy rare earth element Tb, the nano - scale elemental distribution around the grain boundaries after the diffusion process was visualized with high resolution scanning transmission electron microscopy

  18. Accumulation and recovery of defects in ion-irradiated nanocrystalline gold

    Energy Technology Data Exchange (ETDEWEB)

    Chimi, Y. E-mail: chimi@popsvr.tokai.jaeri.go.jp; Iwase, A.; Ishikawa, N.; Kobiyama, M.; Inami, T.; Okuda, S

    2001-09-01

    Effects of 60 MeV {sup 12}C ion irradiation on nanocrystalline gold (nano-Au) are studied. The experimental results show that the irradiation-produced defects in nano-Au are thermally unstable because of the existence of a large volume fraction of grain boundaries. This suggests a possibility of the use of nanocrystalline materials as irradiation-resistant materials.

  19. Effect of solute interaction on interfacial and grain boundary embrittlement in binary alloys

    Czech Academy of Sciences Publication Activity Database

    Lejček, Pavel

    2013-01-01

    Roč. 48, č. 6 (2013), 2574-2580 ISSN 0022-2461 R&D Projects: GA ČR GAP108/12/0144 Institutional research plan: CEZ:AV0Z10100520 Keywords : interfacial segregation * grain boundary embrittlement * binary interaction * modeling * thermodynamics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.305, year: 2013

  20. Intergranular fracture stress and phosphorus grain boundary segregation of a Mn-Ni-Mo steel

    International Nuclear Information System (INIS)

    Naudin, C.; Frund, J.M.; Pineau, A.

    1999-01-01

    Nuclear Reactor Pressure Vessel (RPV) steel A508 class 3 which is a low alloyed steel is not usually sensitive to reversible temper embrittlement when properly heat treated. However heterogeneous zones may be present in particular near the inner side of the vessel. These zones result from the segregation of the alloying elements (C, Mn, Ni, Mo) and impurities (S, P) taking place during solidification of the material. They are called segregated zones (or ghost lines). They can reach 2 mm thick along the radius and 30 mm long through the circumferential direction. Their susceptibility to reversible temper embrittlement is mainly due to grain boundary phosphorus segregation triggering brittle intergranular fracture when the material is tested at low temperature. In this material like in other steels the influence of some other alloying elements (Mo, Mn...) is clearly significant and should also be taken into account. But phosphorus effect has proved to be predominant. The aim of the present study is therefore to find out a quantitative relationship between grain boundary phosphorus segregation and critical intergranular fracture stress. A synthetic steel with a chemical composition representative of an average segregated zone was prepared for the present study. A number of heat treatments were applied to reach different embrittlement conditions. Then brittle fracture properties were obtained by performing cryogenic fracture tests on notched tensile specimens while the corresponding grain boundary phosphorus levels were measured by Auger electron spectroscopy. Systematic fractographic observations were carried out. Moreover an attempt to determine the influence of temperature on the critical intergranular fracture stress was made

  1. Influence of defects on the ordering degree of nanopores made from anodic aluminum oxide

    International Nuclear Information System (INIS)

    Yu Wenhui; Fei Guangtao; Chen Xiaomeng; Xue Fanghong; Xu Xijin

    2006-01-01

    Anodic aluminum oxide (AAO) templates with highly ordered nanoporous structure were fabricated by means of the electrochemical anodization under the constant anodic voltage and electrolyte temperature. The dependence of the ordering degree of nanopores on the point defects, dislocation configuration and grain boundary of aluminum is qualitatively analyzed. Experiment results show that the size of the ordered region of nanopores depends strongly on the point defects, dislocation cell configuration

  2. Thermodynamics of grain boundary premelting in alloys. II. Atomistic simulation

    International Nuclear Information System (INIS)

    Williams, P.L.; Mishin, Y.

    2009-01-01

    We apply the semi-grand-canonical Monte Carlo method with an embedded-atom potential to study grain boundary (GB) premelting in Cu-rich Cu-Ag alloys. The Σ5 GB chosen for this study becomes increasingly disordered near the solidus line while its local chemical composition approaches the liquidus composition at the same temperature. This behavior indicates the formation of a thin layer of the liquid phase in the GB when the grain composition approaches the solidus. The thickness of the liquid layer remains finite and the GB can be overheated/oversaturated to metastable states slightly above the solidus. The premelting behavior found by the simulations is qualitatively consistent with the phase-field model of the same binary system presented in Part I of this work [Mishin Y, Boettinger WJ, Warren JA, McFadden GB. Acta Mater, in press]. Although this agreement is encouraging, we discuss several problems arising when atomistic simulations are compared with phase-field modeling.

  3. In situ TEM nanoindentation and dislocation-grain boundary interactions : a tribute to David Brandon

    NARCIS (Netherlands)

    de Hosson, J.T.M.; Soer, W.A.; Minor, A.M.; Shan, Z.W.; Stach, E.A.; Asif, S.A.S.; Warren, O.L.

    2006-01-01

    As a tribute to the scientific work of Professor David Brandon, this paper delineates the possibilities of utilizing in situ transmission electron microscopy to unravel dislocation-grain boundary interactions. In particular, we have focused on the deformation characteristics of Al-Mg films. To this

  4. The effect of surface contact conditions on grain boundary interdiffusion in a semi-infinite bicrystal

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jiří; Fischer, F. D.; Klinger, L.; Rabkin, E.

    2014-01-01

    Roč. 94, č. 30 (2014), s. 3398-3412 ISSN 1478-6435 Institutional support: RVO:68081723 Keywords : grain boundary diffusion * liquid metals * stress analysis * interfacial thermodynamics Subject RIV: BJ - Thermodynamics Impact factor: 1.825, year: 2014

  5. Characterization of grain boundaries in Cu(In,Ga)Se{sub 2} by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Torsten; Cojocaru-Miredin, Oana; Choi, Pyuck-Pa; Raabe, Dierk [Max-Planck Institute for Iron Research GmbH, Duesseldorf (Germany); Wuerz, Roland [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Stuttgart (Germany)

    2012-07-01

    Solar cells based on the compound semiconductor Cu(In,Ga)Se{sub 2} (CIGS) as absorber material exhibit the highest efficiency among all thin-film solar cells. This is surprising high in view of the polycrystalline defect-rich structure of the CIGS absorber films. The high efficiency has been commonly ascribed to the diffusion of alkali metal atoms from the soda-lime glass substrate into the CIGS layer, which can render the grain boundaries (GB) electrically inactive. However, the exact mechanisms of how these impurities enhance the cell efficiency are yet to be clarified. As a step towards a better understanding of CIGS solar cells, we have analyzed the composition of solar-grade CIGS layers at the atomic-scale by using pulsed laser Atom Probe Tomography (APT). To perform APT analyses on selected GBs site-specific sample preparation was carried out using the Focused Ion Beam lift-out technique. In addition, Electron Back Scattered Diffraction was performed to characterize the structure and misorientation of selected GBs. Using APT, segregation of impurities at the GBs was directly observed. APT data of various types of GBs are presented and discussed with respect to the possible effects on the cell efficiency.

  6. Effect of ion irradiation-produced defects on the mobility of dislocations in 304 stainless steel

    International Nuclear Information System (INIS)

    Briceno, M.; Fenske, J.; Dadfarnia, M.; Sofronis, P.; Robertson, I.M.

    2011-01-01

    The impact of heavy-ion produced defects on the mobility of dislocations, dislocation sources and newly generated dislocations in 304 stainless steel are discovered by performing irradiation and deformation experiments in real time in the transmission electron microscope. Dislocations mobile prior to the irradiation are effectively locked in position by the irradiation, but the irradiation has no discernible impact on the ability of a source to generate dislocations. The motion and mobility of a dislocation is altered by the irradiation. It becomes irregular and jerky and the mobility increases slowly with time as the radiation-produced defects are annihilated locally. Channels created by dislocations ejected from grain boundary dislocation sources were found to have a natural width, as the emission sites within the boundary were spaced close together. Finally, the distribution of dislocations, basically, an inverse dislocation pile-up, within a cleared channel suggests a new mechanism for generating high local levels of stress at grain boundaries. The impact of these observations on the mechanical properties of irradiated materials is discussed briefly.

  7. Effect of ion irradiation-produced defects on the mobility of dislocations in 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Briceno, M.; Fenske, J. [Department of Materials Science and Engineering, University of Illinois, Urbana, IL 61801 (United States); Dadfarnia, M.; Sofronis, P. [Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL 61801 (United States); Robertson, I.M., E-mail: ian.robertson@tcd.ie [Department of Materials Science and Engineering, University of Illinois, Urbana, IL 61801 (United States)

    2011-02-01

    The impact of heavy-ion produced defects on the mobility of dislocations, dislocation sources and newly generated dislocations in 304 stainless steel are discovered by performing irradiation and deformation experiments in real time in the transmission electron microscope. Dislocations mobile prior to the irradiation are effectively locked in position by the irradiation, but the irradiation has no discernible impact on the ability of a source to generate dislocations. The motion and mobility of a dislocation is altered by the irradiation. It becomes irregular and jerky and the mobility increases slowly with time as the radiation-produced defects are annihilated locally. Channels created by dislocations ejected from grain boundary dislocation sources were found to have a natural width, as the emission sites within the boundary were spaced close together. Finally, the distribution of dislocations, basically, an inverse dislocation pile-up, within a cleared channel suggests a new mechanism for generating high local levels of stress at grain boundaries. The impact of these observations on the mechanical properties of irradiated materials is discussed briefly.

  8. Crystallographic and morphological relationships between β phase and the Widmanstaetten and allotriomorphic α phase at special β grain boundaries in an α/β titanium alloy

    International Nuclear Information System (INIS)

    Bhattacharyya, D.; Viswanathan, G.B.; Fraser, Hamish L.

    2007-01-01

    In the present study, the relationship between the crystallographic orientations and growth directions of grain boundary-allotriomorphic-α (GB α) and secondary Widmanstaetten α laths growing from the GB α at grain boundaries separating β grains with specific misorientations has been examined. These relationships have been determined using a variety of characterization techniques, including scanning electron microscopy, orientation imaging microscopy, transmission electron microscopy (TEM) and a dual-beam focused ion beam instrument to provide site-selected TEM foils. Two very interesting cases, one in which the two adjacent β grains are rotated mutually by approximately 10.5 o about a common direction and the other in which the two β grains are in a twin relationship, i.e. a 60 o rotation about a common direction, have been studied. It was discovered that the α laths growing into two adjacent β grains from the common grain boundary may have the same orientation in both grains, while they may have either large (∼88.8 o ) or small (28.8 o ) angular differences in growth directions in the two adjacent β grains, depending on the relative misorientation of the β grains. The growth directions of the α laths growing from such boundaries are explained on the basis of the Burgers orientation relationship between the Widmanstaetten α and the β phases and the interfacial structure proposed previously by various workers

  9. Analysis on the energetics, magnetism and electronic properties in a 45° ZnO grain boundary doped with Gd

    KAUST Repository

    Devi, Assa Aravindh Sasikala

    2018-04-13

    The structural stability and magnetic properties of a grain boundary (GB) formed by aligning two ZnO single crystals oriented at an angle of 45° is investigated by density functional theory, using generalized gradient approximation (GGA) and taking the U parameter into consideration for the 4f impurity states. We found that the GB is stable with no dangling bonds and inter-granular structures. The stability of defects such as Gd substituted to the Zn site (Gd), Zn vacancy (V) and O vacancy (V) as well as defect complexes Gd-Gd, Gd-V, and Gd-V are analyzed using formation energy calculations. It is found that Gd-Gd clusters prefers to form at the GB. The spin polarization at the Gd sites is too localized and the exchange coupling energy is insufficient to overcome the thermal fluctuations. However, we show that the presence of V increases the hybridization between p orbitals of O as well as d orbitals of Zn, which can assist in increasing the magnetic polarization of the system. This work advances the understanding of the ferromagnetism in Gd-doped ZnO, indicating that Gd clustering at the GB is not likely to contribute to the ferromagnetism.

  10. A Study of Submicron Grain Boundary Precipitates in Ultralow Carbon 316LN Steels

    Science.gov (United States)

    Downey, S.; Han, K.; Kalu, P. N.; Yang, K.; Du, Z. M.

    2010-04-01

    This article reports our efforts in characterization of an ultralow carbon 316LN-type stainless steel. The carbon content in the material is one-third that in a conventional 316LN, which further inhibits the formation of grain boundary carbides and therefore sensitizations. Our primary effort is focused on characterization of submicron size precipitates in the materials with the electron backscatter diffraction (EBSD) technique complemented by Auger electron spectroscopy (AES). Thermodynamic calculations suggested that several precipitates, such as M23C6, Chi, Sigma, and Cr2N, can form in a low carbon 316LN. In the steels heat treated at 973 K (700 °C) for 100 hours, a combination of EBSD and AES conclusively identified the grain boundary precipitates (≥100 nm) as Cr2N, which has a hexagonal closed-packed crystallographic structure. Increases of the nitrogen content promote formation of large size Cr2N precipitates. Therefore, prolonged heat treatment at relatively high temperatures of ultralow carbon 316LN steels may result in a sensitization.

  11. Disorder-induced transition from grain boundary to bulk dominated ionic diffusion in pyrochlores

    International Nuclear Information System (INIS)

    Perriot, Romain; Dholabhai, Pratik P.; Uberuaga, Blas P.

    2017-01-01

    In this paper, we use molecular dynamics simulations to investigate the role of grain boundaries (GBs) on ionic diffusion in pyrochlores, as a function of the GB type, chemistry of the compound, and level of cation disorder. We observe that the presence of GBs promotes oxygen transport in ordered and low-disordered systems, as the GBs are found to have a higher concentration of mobile carriers with higher mobilities than in the bulk. Thus, in ordered samples, the ionic diffusion is 2D, localized along the grain boundary. When cation disorder is introduced, bulk carriers begin to contribute to the overall diffusion, while the GB contribution is only slightly enhanced. In highly disordered samples, the diffusive behavior at the GBs is bulk-like, and the two contributions (bulk vs. GB) can no longer be distinguished. There is thus a transition from 2D/GB dominated oxygen diffusivity to 3D/bulk dominated diffusivity versus disorder in pyrochlores. Finally, these results provide new insights into the possibility of using internal interfaces to enhance ionic conductivity in nanostructured complex oxides.

  12. Nanocrystalline CsPbBr3 thin films: a grain boundary opto-electronic study

    Science.gov (United States)

    Conte, G.; Somma, F.; Nikl, M.

    2005-01-01

    CsPbBr3 thin films with nanocrystalline morphology were studied by using optoelectronic techniques to infer the grain boundary region in respect of the crystallite's interior performance. Co-evaporation of puri-fied powders or crushed Bridgman single crystals were used to deposit materials and compare recombina-tion mechanism and dielectric relaxation processes within them. Nanosecond photoconduction decay was observed on both materials as well as activated hopping transport. An asymmetric Debye-like peak was evaluated from impedance spectroscopy with a FWHM value, which remains constant for 1.25 +/- 0.02 deca-des, addressing the presence of a tight conductivity relaxation times distribution. The evaluated activation energy, equal to 0.72 +/- 0.05 eV, similar to that estimated by DC measurements, is well smaller then that expected for an intrinsic material with exciton absorption at 2.36 eV. A simple model based on Voigt's elements was used to model the electronic characteristics of these nanostructured materials, to discuss observed results and define the role played by grain boundaries.

  13. Viscoelastic sliding and diffusive relaxation along grain boundaries in polycrystalline boron nitride

    International Nuclear Information System (INIS)

    Pezzotti, G.; Nishida, Toshihiko; Kleebe, H.J.; Ota, Kenichi

    1997-01-01

    Dense hexagonal boron nitride (BN) materials were prepared via two different processing routes: (1) hot-pressing with the addition of a Ca/B-containing glass and (2) chemical vapor deposition (CVD). The resulting microstructure of both materials was studied by scanning and transmission electron microscopy. While the hot-pressed BN material shows, apart from large BN matrix grains, an inhomogeneous distribution of residual glass at room temperature, the CVD deposition yields a homogeneous fine grained microstructure with no amorphous residue detectable. Internal-friction experiments were performed to study the micromechanical response of the materials when exposed to high temperatures. The CVD material revealed no relaxation peak during testing up to 2,300 C, while the glass-doped sample showed a pronounced relaxation peak at a peak-top temperature of about 600 C. This temperature corresponds to the softening temperature known for bulk Ca/B-glasses and it is, therefore, concluded that the glass homogeneously wets the BN grains at elevated temperatures. The results presented are seen as the first clear evidence that the internal friction peak monitored for various glass-containing ceramics is indeed related to a viscous sliding process along grain boundaries

  14. Effect of Grain Boundary Character Distribution on the Impact Toughness of 410NiMo Weld Metal

    DEFF Research Database (Denmark)

    Divya, M.; Das, Chitta Ranjan; Chowdhury, Sandip Ghosh

    2016-01-01

    Grain boundary character distributions in 410NiMo weld metal were studied in the as-welded, first-stage, and second-stage postweld heat treatment (PWHT) conditions, and these were correlated with the Charpy-V impact toughness values of the material. The high impact toughness values in the weld...... metal in the as-welded and first-stage PWHT conditions compared to that in the second-stage condition are attributed to the higher fraction of low-energy I pound boundaries. A higher volume fraction of retained austenite and coarser martensite after second-stage PWHT accompanied by the formation...... in the impact toughness. In addition to this, grain refinement during 4-hour PWHT in the second stage also increased the toughness of the weld metal....

  15. Effect of microwave-enhanced superconductivity in YBa2Cu3O7 bi-crystalline grain boundary weak-links

    International Nuclear Information System (INIS)

    Fu, C.M.; Chen, C.M.; Lin, H.C.

    1994-01-01

    We have studied systematically the effect of microwave irradiation on the temperature dependent resistivity R(T) and the current-voltage (I-V) characteristics of YBa 2 Cu 3 O 7-x (YBCO) bicrystalline grain boundary weak-links (GBWLs), with grain boundary of three different tilt angles. The superconducting transition temperature, T c , has significant enhancement upon microwave irradiation. The microwave enhanced T c is increased as a function of incidence microwave power, but limited to an optimum power level. The GBWLs of 45 degrees tilt boundary has shown to be most sensitive to the microwave irradiation power, and the GBWLs of 36.8 degrees tilt boundary has displayed a moderate response. In contrast, no enhancement of T c was observed in the GBWLs of 24 degrees tilt boundary, as well as in the uniform films. Under the microwave irradiation, the R(T) dependence is hysteretic as the transition taken from superconducting state to normal state and vice versa. Mechanisms associated with the redistribution of nonequilibrium quasiparticles under microwave irradiation are discussed

  16. Diffusion of He interstitial and di-He cluster at grain boundaries in α-Fe

    International Nuclear Information System (INIS)

    Gao, F.; Heinisch, H.L.; Kurtz, R.J.

    2007-01-01

    A systematic molecular dynamics study of the diffusion mechanisms of He interstitial and di-He cluster at two representative interfaces has been carried out in α-Fe. The diffusion coefficient of a He interstitial and the effective migration energies were determined. The He atom diffuses along the Σ11 grain boundary one-dimensionally along specific directions, while it migrates two-dimensionally at low temperatures, and three-dimensionally at higher temperatures, in the Σ3 grain boundary. The di-He interstitial cluster can migrate rapidly along the Σ3 interface at low temperatures, but not at the Σ11 interface. It has been observed that a di-He interstitial cluster can kick out a self interstitial atom (SIA) at high temperatures, forming a He 2 V complex. The SIA migrates rapidly near interfaces, whereas the He 2 V complex is immobile at the temperatures considered. This small cluster may serve as the smallest nucleation for the formation of helium bubbles at interfaces

  17. Excitonic localization in AlN-rich AlxGa1−xN/AlyGa1−yN multi-quantum-well grain boundaries

    KAUST Repository

    Ajia, Idris A.

    2014-09-22

    AlGaN/AlGaN multi-quantum-wells (MQW) with AlN-rich grains have been grown by metal organic chemical vapor deposition. The grains are observed to have strong excitonic localization characteristics that are affected by their sizes. The tendency to confine excitons progressively intensifies with increasing grain boundary area. Photoluminescence results indicate that the MQW have a dominant effect on the peak energy of the near-bandedge emission at temperatures below 150 K, with the localization properties of the grains becoming evident beyond 150 K. Cathodoluminescence maps reveal that the grain boundary has no effect on the peak intensities of the AlGaN/AlGaN samples.

  18. Evidence of preferential diffusion and segregation of impurities at grain boundaries in very pure niobium used for radiofrequency cavities

    International Nuclear Information System (INIS)

    Antoine, C.; Bonin, B.; Safa, H.; Berthier, B.; Tessier, E.; Trocelier, P.; Chevarier, A.; Chevarier, N.; Roux, B.

    1996-04-01

    In order to overcome dissipation due to impurity segregation at grain boundary, niobium cavities are submitted to a purification annealing (1300 deg C ± 200 deg C under vacuum) during which titanium is evaporated onto the Nb surface. The resulting titanium layer acts as a solid state getter reacting with light impurities (H, C, N, O), thereby removing these impurities from the bulk of the niobium. Evidence of preferential titanium diffusion and segregation at grain boundaries has been studied using PIXE analysis induced by proton microbeam. (author)

  19. Experimental approaches for probing interfaces and grain boundaries

    International Nuclear Information System (INIS)

    Barrera, E.V.; Marcus, H.L.

    1990-01-01

    This paper focuses its attention on several research efforts performed by the authors and colleagues whose primary aim is probing interfacial and grain boundary properties. The first investigations described pertain to impurity segregation induced embrittlement which were modeled using thermodynamic considerations and were characterized by fracture testing using Auger electron spectroscopy (AES). Localized interface chemical characterization is essential in this research. The second investigation focuses on interface/impurity interaction determination. Extended X-Ray Absorption Fine Structure (EXAFS), a structure characterization tool, was used to determine the local environment of impurities in metal-impurity-metal laminate composites, where the impurities were in monolayer to submonolayer interface concentrations. The third study pertains to the interface fracture in metal-matrix (metal/metal oxide/graphite) composites where a correlation was made between electronic states and fracture path

  20. Concurrent atomistic and continuum simulation of bi-crystal strontium titanate with tilt grain boundary.

    Science.gov (United States)

    Yang, Shengfeng; Chen, Youping

    2015-03-08

    In this paper, we present the development of a concurrent atomistic-continuum (CAC) methodology for simulation of the grain boundary (GB) structures and their interaction with other defects in ionic materials. Simulation results show that the CAC simulation allows a smooth passage of cracks through the atomistic-continuum interface without the need for additional constitutive rules or special numerical treatment; both the atomic-scale structures and the energies of the four different [001] tilt GBs in bi-crystal strontium titanate obtained by CAC compare well with those obtained by existing experiments and density function theory calculations. Although 98.4% of the degrees of freedom of the simulated atomistic system have been eliminated in a coarsely meshed finite-element region, the CAC results, including the stress-strain responses, the GB-crack interaction mechanisms and the effect of the interaction on the fracture strength, are comparable with that of all-atom molecular dynamics simulation results. In addition, CAC simulation results show that the GB-crack interaction has a significant effect on the fracture behaviour of bi-crystal strontium titanate; not only the misorientation angle but also the atomic-level details of the GB structure influence the effect of the GB on impeding crack propagation.