WorldWideScience

Sample records for grafted polysaccharide layers

  1. Recent progress on the design and applications of polysaccharide-based graft copolymer hydrogels as adsorbents for wastewater purification

    CSIR Research Space (South Africa)

    Mittal, Hemant

    2016-05-01

    Full Text Available as emulsifiers and thickeners. In their natural form, gum polysaccharides have poor mechanical and physical properties; therefore, they are frequently modified with various synthetic monomers such as acrylamide and acrylic acid using graft copolymerization. Graft...

  2. Salt-Induced Control of the Grafting Density in Poly(ethylene glycol) Brush Layers by a Grafting-to Approach

    DEFF Research Database (Denmark)

    Ortiz, Roberto; Olsen, Stefan; Thormann, Esben

    2018-01-01

    In this work, a method to obtain control of the grafting density during the formation of polymer brush layers by the grafting-to method of thiolated poly(ethylene glycol) onto gold is presented. The grafting density of the polymer chains was adjusted by adding Na2SO4 in concentrations between 0.......2 and 0.9 M to the aqueous polymer solution during the grafting process. The obtained grafting densities ranged from 0.26 to 1.60 chains nm-2, as determined by surface plasmon resonance. The kinetics of the grafting process were studied in situ by a quartz crystal microbalance with dissipation......, and a mushroom to brush conformational transition was observed when the polymer was grafted in the presence of Na2SO4. The transition from mushroom to brush was only observed for long periods of grafting, highlighting the importance of time to obtain high grafting densities. Finally, the prepared brush layer...

  3. Double-layered collagen graft to the radial forearm free flap donor sites without skin graft.

    Science.gov (United States)

    Park, Tae-Jun; Kim, Hong-Joon; Ahn, Kang-Min

    2015-12-01

    Radial forearm free flap is the most reliable flap for intraoral soft tissue reconstruction after cancer ablation surgery. However, unesthetic scar of the donor site and the need for a second donor site for skin graft are major disadvantages of the forearm flap. The purpose of this study was to report the clinical results of double-layered collagen graft to the donor site of the forearm free flap without skin graft. Twenty-two consecutive patients who underwent oral cancer ablation and forearm reconstruction between April 2010 and November 2013 were included in this study. Male to female ratio was 12:10, and average age was 61.0 years old (27-84). Double-layered collagen was grafted to the donor site of the forearm free flap and healed for secondary intention. Upper silicone had been trimmed at the periphery during secondary intention, and dry dressing was used. Postoperative scar healing and esthetic results and function were evaluated. An average follow-up period was 34.9 months. The scar area was decreased to 63.9 % in average. The complete healing was obtained between 1.5 and 3 months according to the defect size. There was no functional defect or impairment 3 months after operation. All patients were satisfied with the esthetic results. Three patients died of recurred cancer. Double-layered collagen graft was successfully performed in this study. Without the thigh skin graft, patients had experienced less painful postoperative healing periods and discomfort.

  4. Triple-Layer Vascular Grafts Fabricated by Combined E-Jet 3D Printing and Electrospinning.

    Science.gov (United States)

    Huang, Ruiying; Gao, Xiangkai; Wang, Jian; Chen, Haoxiang; Tong, Chunyi; Tan, Yongjun; Tan, Zhikai

    2018-05-29

    Small-diameter tissue-engineered vascular grafts are urgently needed for clinic arterial substitute. To simulate the structures and functions of natural blood vessels, we designed a novel triple-layer poly(ε-caprolactone) (PCL) fibrous vascular graft by combining E-jet 3D printing and electrospinning techniques. The resultant vascular graft consisted of an interior layer comprising 3D-printed highly aligned strong fibers, a middle layer made by electrospun densely fibers, and an exterior structure composed of mixed fibers fabricated by co-electrospraying. The biocompatible triple-layer graft was used for in vivo implantation, and results demonstrated that the longitudinally-aligned fibers within the lumen of the graft could enhance the proliferation and migration of endothelial cells, while maintained good mechanical properties. The exterior layer provided a pathway that encouraged cells to migrate into the scaffold after implantation. This experimental graft overcame the limitations of conventionally electrospun vascular grafts of inadequate porosity and lowly cell penetration. The unique structure of the triple-layer vascular graft promoted cell growth and infiltration in vivo, thus provided an encouraging substitute for in situ tissue engineering.

  5. Radiation processed polysaccharide products

    International Nuclear Information System (INIS)

    Nguyen, Quoc Hien

    2007-01-01

    Radiation crosslinking, degradation and grafting techniques for modification of polymeric materials including natural polysaccharides have been providing many unique products. In this communication, typical products from radiation processed polysaccharides particularly plant growth promoter from alginate, plant protector and elicitor from chitosan, super water absorbent containing starch, hydrogel sheet containing carrageenan/CM-chitosan as burn wound dressing, metal ion adsorbent from partially deacetylated chitin were described. The procedures for producing those above products were also outlined. Future development works on radiation processing of polysaccharides were briefly presented. (author)

  6. Direct observation of grafting interlayer phosphate in Mg/Al layered double hydroxides

    International Nuclear Information System (INIS)

    Shimamura, Akihiro; Kanezaki, Eiji; Jones, Mark I.; Metson, James B.

    2012-01-01

    The grafting of interlayer phosphate in synthetic Mg/Al layered double hydroxides with interlayer hydrogen phosphate (LDH-HPO 4 ) has been studied by XRD, TG/DTA, FT-IR, XPS and XANES. The basal spacing of crystalline LDH-HPO 4 decreases in two stages with increasing temperature, from 1.06 nm to 0.82 nm at 333 K in the first transition, and to 0.722 nm at 453 K in the second. The first stage occurs due to the loss of interlayer water and rearrangement of the interlayer HPO 4 2− . In the second transition, the interlayer phosphate is grafted to the layer by the formation of direct bonding to metal cations in the layer, accompanied by a change in polytype of the crystalline structure. The grafted phosphate becomes immobilized and cannot be removed by anion-exchange with 1-octanesulfonate. The LDH is amorphous at 743 K but decomposes to Mg 3 (PO 4 ) 2 , AlPO 4 , MgO and MgAl 2 O 4 after heated to 1273 K. - Graphical abstract: The cross section of the synthetic Mg, Al layered double hydroxides in Phase 1, with interlayer hydrogen phosphate Phase 2, and with grafted phosphate, Phase 3. Highlights: ► The grafting of hydrogen phosphate intercalated Mg/Al-LDH has been studied. ► The basal spacing of crystalline LDH-HPO 4 decreases in two stages with increasing temperature. ► The first decrease is due to loss of interlayer water, the second is attributed to phosphate grafting. ► The grafted interlayer phosphate becomes immobilized and cannot be removed by anion-exchange.

  7. Polysaccharide-Based Micelles for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Nan Zhang

    2013-05-01

    Full Text Available Delivery of hydrophobic molecules and proteins has been an issue due to poor bioavailability following administration. Thus, micelle carrier systems are being investigated to improve drug solubility and stability. Due to problems with toxicity and immunogenicity, natural polysaccharides are being explored as substitutes for synthetic polymers in the development of new micelle systems. By grafting hydrophobic moieties to the polysaccharide backbone, self-assembled micelles can be readily formed in aqueous solution. Many polysaccharides also possess inherent bioactivity that can facilitate mucoadhesion, enhanced targeting of specific tissues, and a reduction in the inflammatory response. Furthermore, the hydrophilic nature of some polysaccharides can be exploited to enhance circulatory stability. This review will highlight the advantages of polysaccharide use in the development of drug delivery systems and will provide an overview of the polysaccharide-based micelles that have been developed to date.

  8. PROPAGATION OF KHAYA ANTHOTHECA: INTERSPECIFIC GRAFTING WITH SWIETENIA MACROPHYLLA AND AIR LAYERING

    Directory of Open Access Journals (Sweden)

    Joamir Barbosa Filho

    2016-12-01

    Full Text Available Swietenia macrophylla yields high-quality wood; however, its vulnerability to extinction coupled with challenges for its cultivation have brought attention to its replacement for alternative species such as the Khaya anthotheca. The species has been recently introduced to South America, with potential for the production of high-quality wood. However, limited background on breeding and efficient strategies for its vegetative propagation exist. Here, we achieved significant results with the application of cleft grafting and air layering for the propagation of K. anthotheca plants grown from seeds. First, we analyzed the compatibility of scions and rootstocks for intraspecific and interspecific cleft grafting combinations of K. anthotheca and S. macrophylla. Second, air layering was performed in K. anthotheca seedlings irrigated with three nutrient solution (100%, 50% and 25% of the initial concentration of nutrients combined with the application of indole-3-butyric acid (IBA to evaluate adventitious rooting. From cleft grafting, we achieved an overall graft compatibility and survival of 48% after 200 days. However, the interspecific combination of S. macrophylla (scion and K. anthotheca (rootstock implicated in no compatibility, while the reciprocal resulted in 52% of compatibility. Through air layering, the irrigation with the nutrient solution with at least 50% of the nutrients concentration and with IBA (3.0 or 8.0 g.L-1 resulted in the best adventitious rooting. Overall, we recommend cleft grafting, except for the combination S. macrophylla(scion and K. anthotheca (rootstock, with no compatibility. Air layering might also be useful for the propagation of K. anthotheca genotypes in breeding programs.

  9. The effect of layer-by-layer chitosan-hyaluronic acid coating on graft-to-bone healing of a poly(ethylene terephthalate) artificial ligament.

    Science.gov (United States)

    Li, Hong; Ge, Yunsheng; Zhang, Pengyun; Wu, Lingxiang; Chen, Shiyi

    2012-01-01

    Surface coating with an organic layer-by-layer self-assembled template of chitosan and hyaluronic acid on a poly(ethylene terephthalate) (PET) artificial ligament was designed for the promotion and enhancement of graft-to-bone healing after artificial ligament implantation in a bone tunnel. The results of in vitro culturing of MC3T3-E1 mouse osteoblastic cells supported the hypothesis that the layer-by-layer coating of chitosan and hyaluronic acid could promote the cell compatibility of grafts and could promote osteoblast proliferation. A rabbit extra-articular tendon-to-bone healing model was used to evaluate the effect of this kind of surface-modified stainless artificial ligament in vivo. The final results proved that this organic compound coating could significantly promote and enhance new bone formation at the graft-bone interface histologically and, correspondingly, the experimental group with coating had significantly higher biomechanical properties compared with controls at 8 weeks (P < 0.05).

  10. Fabrication and preliminary study of a biomimetic tri-layer tubular graft based on fibers and fiber yarns for vascular tissue engineering.

    Science.gov (United States)

    Wu, Tong; Zhang, Jialing; Wang, Yuanfei; Li, Dandan; Sun, Binbin; El-Hamshary, Hany; Yin, Meng; Mo, Xiumei

    2018-01-01

    Designing a biomimetic and functional tissue-engineered vascular graft has been urgently needed for repairing and regenerating defected vascular tissues. Utilizing a multi-layered vascular scaffold is commonly considered an effective way, because multi-layered scaffolds can easily simulate the structure and function of natural blood vessels. Herein, we developed a novel tri-layer tubular graft consisted of Poly(L-lactide-co-caprolactone)/collagen (PLCL/COL) fibers and Poly(lactide-co-glycolide)/silk fibroin (PLGA/SF) yarns via a three-step electrospinning method. The tri-layer vascular graft consisted of PLCL/COL aligned fibers in inner layer, PLGA/SF yarns in middle layer, and PLCL/COL random fibers in outer layer. Each layer possessed tensile mechanical strength and elongation, and the entire tubular structure provided tensile and compressive supports. Furthermore, the human umbilical vein endothelial cells (HUVECs) and smooth muscle cells (SMCs) proliferated well on the materials. Fluorescence staining images demonstrated that the axially aligned PLCL/COL fibers prearranged endothelium morphology in lumen and the circumferential oriented PLGA/SF yarns regulated SMCs organization along the single yarns. The outside PLCL/COL random fibers performed as the fixed layer to hold the entire tubular structure. The in vivo results showed that the tri-layer vascular graft supported cell infiltration, scaffold biodegradation and abundant collagen production after subcutaneous implantation for 10weeks, revealing the optimal biocompatibility and tissue regenerative capability of the tri-layer graft. Therefore, the specially designed tri-layer vascular graft will be beneficial to vascular reconstruction. Copyright © 2017. Published by Elsevier B.V.

  11. Modulating surface rheology by electrostatic protein/polysaccharide interactions

    NARCIS (Netherlands)

    Ganzevles, R.A.; Zinoviadou, K.; Vliet, van T.; Cohen Stuart, M.A.; Jongh, de H.H.J.

    2006-01-01

    There is a large interest in mixed protein/polysaccharide layers at air-water and oil-water interfaces because of their ability to stabilize foams and emulsions. Mixed protein/polysaccharide adsorbed layers at air-water interfaces can be prepared either by adsorption of soluble protein/

  12. Grafted polymers layers: neutral chains to charged chains; Couches de polymeres greffes: des chaines neutres aux chaines chargees

    Energy Technology Data Exchange (ETDEWEB)

    Mir, Y

    1995-09-29

    This work concerns an experimental study, by small angle neutrons scattering, of neutral or charged grafted polymers layers structures. The method consisted in exploiting the acknowledges got on neutral brushes, to reach the problem of grafted polyelectrolyte layers. The difficulty of charged layers making has been, until this day, an important obstacle to the experimental study of these systems. It has been partially resolved in the case of sodium sulfonate polystyrene layers, and allowed to study their structure. (N.C.). 72 refs., 74 figs., 24 tabs.

  13. XPS-nanocharacterization of organic layers electrochemically grafted on the surface of SnO_2 thin films to produce a new hybrid material coating

    International Nuclear Information System (INIS)

    Drevet, R.; Dragoé, D.; Barthés-Labrousse, M.G.; Chaussé, A.; Andrieux, M.

    2016-01-01

    Graphical abstract: An innovative hybrid material layer is synthesized by combining two processes. SnO_2 thin films are deposited by MOCVD on Si substrates and an organic layer made of carboxyphenyl moieties is electrochemically grafted by the reduction of a diazonium salt. XPS characterizations are carried out to assess the efficiency of the electrochemical grafting. Display Omitted - Highlights: • An innovative hybrid material layer is synthesized by combining two processes. • SnO_2 thin films are deposited by MOCVD on Si substrates. • An organic layer is electrochemically grafted by the reduction of a diazonium salt. • The efficiency of the grafting is accurately assessed by XPS. • Three electrochemical grafting models are proposed. - Abstract: This work presents the synthesis and the characterization of hybrid material thin films obtained by the combination of two processes. The electrochemical grafting of organic layers made of carboxyphenyl moieties is carried out from the reduction of a diazonium salt on tin dioxide (SnO_2) thin films previously deposited on Si substrates by metal organic chemical vapor deposition (MOCVD). Since the MOCVD experimental parameters impact the crystal growth of the SnO_2 layer (i.e. its morphology and its texturation), various electrochemical grafting models can occur, producing different hybrid materials. In order to evidence the efficiency of the electrochemical grafting of the carboxyphenyl moieties, X-ray Photoelectron Spectroscopy (XPS) is used to characterize the first nanometers in depth of the synthesized hybrid material layer. Then three electrochemical grafting models are proposed.

  14. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery.

    Science.gov (United States)

    Alvarez-Lorenzo, Carmen; Blanco-Fernandez, Barbara; Puga, Ana M; Concheiro, Angel

    2013-08-01

    Polysaccharides are gaining increasing attention as components of stimuli-responsive drug delivery systems, particularly since they can be obtained in a well characterized and reproducible way from the natural sources. Ionic polysaccharides can be readily crosslinked to render hydrogel networks sensitive to a variety of internal and external variables, and thus suitable for switching drug release on-off through diverse mechanisms. Hybrids, composites and grafted polymers can reinforce the responsiveness and widen the range of stimuli to which polysaccharide-based systems can respond. This review analyzes the state of the art of crosslinked ionic polysaccharides as components of delivery systems that can regulate drug release as a function of changes in pH, ion nature and concentration, electric and magnetic field intensity, light wavelength, temperature, redox potential, and certain molecules (enzymes, illness markers, and so on). Examples of specific applications are provided. The information compiled demonstrates that crosslinked networks of ionic polysaccharides are suitable building blocks for developing advanced externally activated and feed-back modulated drug delivery systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. XPS-nanocharacterization of organic layers electrochemically grafted on the surface of SnO{sub 2} thin films to produce a new hybrid material coating

    Energy Technology Data Exchange (ETDEWEB)

    Drevet, R., E-mail: richarddrevet@yahoo.fr [Univ. Paris Sud, SP2M-ICMMO, CNRS UMR 8182, Bât. 410, 91405 Orsay Cedex (France); Université d’Evry Val d’Essonne, LAMBE, CNRS-CEA UMR 8587, Boulevard François Mitterrand, 91025 Evry Cedex (France); Dragoé, D.; Barthés-Labrousse, M.G. [Univ. Paris Sud, SP2M-ICMMO, CNRS UMR 8182, Bât. 410, 91405 Orsay Cedex (France); Chaussé, A. [Université d’Evry Val d’Essonne, LAMBE, CNRS-CEA UMR 8587, Boulevard François Mitterrand, 91025 Evry Cedex (France); Andrieux, M. [Univ. Paris Sud, SP2M-ICMMO, CNRS UMR 8182, Bât. 410, 91405 Orsay Cedex (France)

    2016-10-30

    Graphical abstract: An innovative hybrid material layer is synthesized by combining two processes. SnO{sub 2} thin films are deposited by MOCVD on Si substrates and an organic layer made of carboxyphenyl moieties is electrochemically grafted by the reduction of a diazonium salt. XPS characterizations are carried out to assess the efficiency of the electrochemical grafting. Display Omitted - Highlights: • An innovative hybrid material layer is synthesized by combining two processes. • SnO{sub 2} thin films are deposited by MOCVD on Si substrates. • An organic layer is electrochemically grafted by the reduction of a diazonium salt. • The efficiency of the grafting is accurately assessed by XPS. • Three electrochemical grafting models are proposed. - Abstract: This work presents the synthesis and the characterization of hybrid material thin films obtained by the combination of two processes. The electrochemical grafting of organic layers made of carboxyphenyl moieties is carried out from the reduction of a diazonium salt on tin dioxide (SnO{sub 2}) thin films previously deposited on Si substrates by metal organic chemical vapor deposition (MOCVD). Since the MOCVD experimental parameters impact the crystal growth of the SnO{sub 2} layer (i.e. its morphology and its texturation), various electrochemical grafting models can occur, producing different hybrid materials. In order to evidence the efficiency of the electrochemical grafting of the carboxyphenyl moieties, X-ray Photoelectron Spectroscopy (XPS) is used to characterize the first nanometers in depth of the synthesized hybrid material layer. Then three electrochemical grafting models are proposed.

  16. Processing of Polymer Nanocomposites Reinforced with Polysaccharide Nanocrystals

    Directory of Open Access Journals (Sweden)

    Alain Dufresne

    2010-06-01

    Full Text Available Aqueous suspensions of polysaccharide (cellulose, chitin or starch nanocrystals can be prepared by acid hydrolysis of biomass. The main problem with their practical use is related to the homogeneous dispersion of these nanoparticles within a polymeric matrix. Water is the preferred processing medium. A new and interesting way for the processing of polysaccharide nanocrystals-based nanocomposites is their transformation into a co-continuous material through long chain surface chemical modification. It involves the surface chemical modification of the nanoparticles based on the use of grafting agents bearing a reactive end group and a long compatibilizing tail.

  17. Layer-by-layer buildup of polysaccharide-containing films: Physico-chemical properties and mesenchymal stem cells adhesion.

    Science.gov (United States)

    Kulikouskaya, Viktoryia I; Pinchuk, Sergei V; Hileuskaya, Kseniya S; Kraskouski, Aliaksandr N; Vasilevich, Irina B; Matievski, Kirill A; Agabekov, Vladimir E; Volotovski, Igor D

    2018-03-22

    Layer-by-Layer assembled polyelectrolyte films offer the opportunity to control cell attachment and behavior on solid surfaces. In the present study, multilayer films based on negatively charged biopolymers (pectin, dextran sulfate, carboxymethylcellulose) and positively charged polysaccharide chitosan or synthetic polyelectrolyte polyethyleneimine has been prepared and evaluated. Physico-chemical properties of the formed multilayer films, including their growth, morphology, wettability, stability, and mechanical properties, have been studied. We demonstrated that chitosan-containing films are characterized by the linear growth, the defect-free surface, and predominantly viscoelastic properties. When chitosan is substituted for the polyethyleneimine in the multilayer system, the properties of the formed films are significantly altered: the rigidity and surface roughness increases, the film growth acquires the exponential character. The multilayer films were subsequently used for culturing mesenchymal stem cells. It has been determined that stem cells effectively adhered to chitosan-containing films and formed on them the monolayer culture of fibroblast-like cells with high viability. Our results show that cell attachment is a complex process which is not only governed by the surface functionality because one of the key parameter effects on cell adhesion is the stiffness of polyelectrolyte multilayer films. We therefore propose our Layer-by-Layer films for applications in tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2018. © 2018 Wiley Periodicals, Inc.

  18. New polysaccharide-based polymer electrolytes; Nouveaux electrolytes polymeres a base de polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez-Morales, P.; Le Nest, J.F.; Gandini, A. [Ecole Francaise de Papeterie et des Industries Graphique, 38 - Saint Martin d`Heres (France)

    1996-12-31

    Polysaccharides like cellulose and chitosan are known for their filmic properties. This paper concerns the synthesis and the study of chitosan-based polymer electrolytes. A preliminary work concerns the study of glucosamine reactivity. The poly-condensation of chitosan ethers (obtained by reaction with ethylene oxide or propylene oxide) with bifunctional and monofunctional oligo-ethers leads to the formation of thin lattices (10 {mu}m) having excellent mechanical properties. The presence of grafted polyether chains along the polysaccharide skeleton allows to modify the vitreous transition temperature and the molecular disorder of the system. Two type of polymer electrolytes have been synthesized: electrolytes carrying a dissolved alkaline metal salt and ionomers. The analysis of their thermal, dynamical mechanical, nuclear magnetic relaxation, electrical, and electrochemical properties shows that this new class of polymer electrolytes has the same performances as ethylene poly-oxide based amorphous lattices plus the advantage of having good filmic properties. Abstract only. (J.S.)

  19. New polysaccharide-based polymer electrolytes; Nouveaux electrolytes polymeres a base de polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez-Morales, P; Le Nest, J F; Gandini, A [Ecole Francaise de Papeterie et des Industries Graphique, 38 - Saint Martin d` Heres (France)

    1997-12-31

    Polysaccharides like cellulose and chitosan are known for their filmic properties. This paper concerns the synthesis and the study of chitosan-based polymer electrolytes. A preliminary work concerns the study of glucosamine reactivity. The poly-condensation of chitosan ethers (obtained by reaction with ethylene oxide or propylene oxide) with bifunctional and monofunctional oligo-ethers leads to the formation of thin lattices (10 {mu}m) having excellent mechanical properties. The presence of grafted polyether chains along the polysaccharide skeleton allows to modify the vitreous transition temperature and the molecular disorder of the system. Two type of polymer electrolytes have been synthesized: electrolytes carrying a dissolved alkaline metal salt and ionomers. The analysis of their thermal, dynamical mechanical, nuclear magnetic relaxation, electrical, and electrochemical properties shows that this new class of polymer electrolytes has the same performances as ethylene poly-oxide based amorphous lattices plus the advantage of having good filmic properties. Abstract only. (J.S.)

  20. Effects of cloud-point grafting, chain length, and density of PEG layers on competitive adsorption of ocular proteins

    DEFF Research Database (Denmark)

    Kingshott, P.; Thissen, H.; Griesser, H.J.

    2002-01-01

    The effects of pinning density, chain length, and 'cloud point' (CP) versus non-CP grafting conditions have been studied on the ability of polyethylene glycol (PEG) layers to minimize adsorption from a multicomponent (lysozyme, human serum albumin (HSA), IgG and lactoferrin) protein solution...... density) r.f.g.d. polymer layers. The PEG graft density was varied also by increasing the temperature and salt (K2SO4) content of the grafting solution; it reached a maximum at the CP of the PEGs. The CP reaction conditions were critical for producing PEG layers capable of minimizing protein adsorption. X...... density and chain length are interrelated, but the key factor is optimization of PEG chain density by use of the CP conditions, provided that a sufficient density of pinning sites exists. (C) 2002 Elsevier Science Ltd. Al l rights reserved....

  1. Ligand-functionalized degradable polyplexes formed by cationic poly(aspartic acid)-grafted chitosan-cyclodextrin conjugates

    Science.gov (United States)

    Song, Hai-Qing; Li, Rui-Quan; Duan, Shun; Yu, Bingran; Zhao, Hong; Chen, Da-Fu; Xu, Fu-Jian

    2015-03-01

    Polypeptide-based degradable polyplexes attracted considerable attention in drug delivery systems. Polysaccharides including cyclodextrin (CD), dextran, and chitosan (CS) were readily grafted with cationic poly(aspartic acid)s (PAsps). To further enhance the transfection performances of PAsp-based polyplexes, herein, different types of ligand (folic acid, FA)-functionalized degradable polyplexes were proposed based on the PAsp-grafted chitosan-cyclodextrin conjugate (CCPE), where multiple β-CDs were tied on a CS chain. The FA-functionalized CCPE (i.e., CCPE-FA) was obtained via a host-guest interaction between the CD units of CCPE and the adamantane (Ad) species of Ad-modified FA (Ad-FA). The resulting CCPE/pDNA, CCPE-FA/pDNA, and ternary CCPE-FA/CCPE/pDNA (prepared by layer-by-layer assembly) polyplexes were investigated in detail using different cell lines. The CCPE-based polyplexes displayed much higher transfection efficiencies than the CS-based polyplexes reported earlier by us. The ternary polyplexes of CCPE-FA/CCPE/pDNA produced excellent gene transfection abilities in the folate receptor (FR)-positive tumor cells. This work would provide a promising means to produce highly efficient polyplexes for future gene therapy applications.Polypeptide-based degradable polyplexes attracted considerable attention in drug delivery systems. Polysaccharides including cyclodextrin (CD), dextran, and chitosan (CS) were readily grafted with cationic poly(aspartic acid)s (PAsps). To further enhance the transfection performances of PAsp-based polyplexes, herein, different types of ligand (folic acid, FA)-functionalized degradable polyplexes were proposed based on the PAsp-grafted chitosan-cyclodextrin conjugate (CCPE), where multiple β-CDs were tied on a CS chain. The FA-functionalized CCPE (i.e., CCPE-FA) was obtained via a host-guest interaction between the CD units of CCPE and the adamantane (Ad) species of Ad-modified FA (Ad-FA). The resulting CCPE/pDNA, CCPE

  2. Hemocompatibility of poly(vinylidene fluoride) membrane grafted with network-like and brush-like antifouling layer controlled via plasma-induced surface PEGylation.

    Science.gov (United States)

    Chang, Yung; Shih, Yu-Ju; Ko, Chao-Yin; Jhong, Jheng-Fong; Liu, Ying-Ling; Wei, Ta-Chin

    2011-05-03

    In this work, the hemocompatibility of PEGylated poly(vinylidene fluoride) (PVDF) microporous membranes with varying grafting coverage and structures via plasma-induced surface PEGylation was studied. Network-like and brush-like PEGylated layers on PVDF membrane surfaces were achieved by low-pressure and atmospheric plasma treatment. The chemical composition, physical morphology, grafting structure, surface hydrophilicity, and hydration capability of prepared membranes were determined to illustrate the correlations between grafting qualities and hemocompatibility of PEGylated PVDF membranes in contact with human blood. Plasma protein adsorption onto different PEGylated PVDF membranes from single-protein solutions and the complex medium of 100% human plasma were measured by enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies. Hemocompatibility of the PEGylated membranes was evaluated by the antifouling property of platelet adhesion observed by scanning electron microscopy (SEM) and the anticoagulant activity of the blood coagulant determined by testing plasma-clotting time. The control of grafting structures of PEGylated layers highly regulates the PVDF membrane to resist the adsorption of plasma proteins, the adhesion of platelets, and the coagulation of human plasma. It was found that PVDF membranes grafted with brush-like PEGylated layers presented higher hydration capability with binding water molecules than with network-like PEGylated layers to improve the hemocompatible character of plasma protein and blood platelet resistance in human blood. This work suggests that the hemocompatible nature of grafted PEGylated polymers by controlling grafting structures gives them great potential in the molecular design of antithrombogenic membranes for use in human blood.

  3. An in vitro assessment of titanium functionalized with polysaccharides conjugated with vascular endothelial growth factor for enhanced osseointegration and inhibition of bacterial adhesion.

    Science.gov (United States)

    Hu, Xuefeng; Neoh, Koon-Gee; Shi, Zhilong; Kang, En-Tang; Poh, Chyekhoon; Wang, Wilson

    2010-12-01

    The long-term success of orthopedic implants may be compromised by defective osseointegration and bacterial infection. An effective approach to minimize implant failure would be to modify the surface of the implant to make it habitable for bone-forming cells and anti-infective at the same time. In this in vitro study, the surfaces of titanium (Ti) substrates were functionalized by first covalently grafting either dopamine followed by carboxymethyl chitosan (CMCS) or hyaluronic acid-catechol (HAC). Vascular endothelial growth factor (VEGF) was then conjugated to the polysaccharide-grafted surface. Antibacterial assay with Staphylococcus aureus (S. aureus) showed that the polysaccharide-modified substrates significantly decrease bacterial adhesion. The CMCS-functionalized Ti demonstrated better antibacterial property than the HAC-functionalized Ti since CMCS is bactericidal while HA only inhibits the adhesion of bacteria without killing them. Osteoblast attachment, as well as alkaline phosphatase (ALP) activity and calcium deposition were enhanced by the immobilized VEGF on the polysaccharide-grafted Ti. Thus, Ti substrates modified with polysaccharides conjugated with VEGF can promote osteoblast functions and concurrently reduce bacterial adhesion. Since VEGF is also known to enhance angiogenesis, the VEGF-polysaccharide functionalized substrates will have promising applications in the orthopedic field. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. POLYSACCHARIDES AND eDNA AID BACTERIAL ATTACHMENT TO POLYMER BRUSH COATINGS (PLL-g-PEG)

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Ogaki, Ryosuke; Regina, Viduthalai R.

    measured the adsorption of peptides, polysaccharides and DNA to these coatings, as they represent bacterial adhesins with very different properties. While protein adsorption was minimized, we found considerable adsorption of polysaccharides, and exposure to DNA resulted in complete desorption...... of the conventional coating. These results explain why S. epidermidis, which produces polysaccharides and extracellular DNA, could successfully colonize the conventional PLL-g-PEG coatings. The ability of high-density PLL-g-PEG to resist polysaccharides, DNA, and bacterial adhesion of all strains is thus highly......Polymer brush coatings of poly(ethylene glycol) are considered the gold standard for nonfouling surfaces, but nevertheless, a few bacteria manage to attach and initiate biofilm formation on these coatings. To achieve robust resistance against bacterial adhesion and biofilm formation, grafting...

  5. In Vivo Evaluation of Short-Term Performance of New Three-Layer Collagen-Based Vascular Graft Designed for Low-Flow Peripheral Vascular Reconstructions

    Directory of Open Access Journals (Sweden)

    Tomas Grus

    2018-01-01

    Full Text Available Aim. The aim of this study was to evaluate short-term patency of the new prosthetic graft and its structural changes after explantation. Methods. The study team developed a three-layer conduit composed of a scaffold made from polyester coated with collagen from the inner and outer side with an internal diameter of 6 mm. The conduit was implanted as a bilateral bypass to the carotid artery in 7 sheep and stenosis was created in selected animals. After a period of 161 days, the explants were evaluated as gross and microscopic specimens. Results. The initial flow rate (median ± IQR in grafts with and without artificial stenosis was 120±79 ml/min and 255±255 ml/min, respectively. Graft occlusion occurred after 99 days in one of 13 conduits (patency rate: 92%. Wall-adherent thrombi occurred only in sharp curvatures in two grafts. Microscopic evaluation showed good engraftment and preserved structure in seven conduits; inflammatory changes with foci of bleeding, necrosis, and disintegration in four conduits; and narrowing of the graft due to thickening of the wall with multifocal separation of the outer layer in two conduits. Conclusions. This study demonstrates good short-term patency rates of a newly designed three-layer vascular graft even in low-flow conditions in a sheep model.

  6. Antibacterial Effect of Acrylic Acid-Grafted Cotton, Wool and Polyester Fabrics on the Growth of Staphylococcus Aureus

    International Nuclear Information System (INIS)

    El-Gendy, E.H.; Hussien, H.A.; Hassan, A.A.

    2008-01-01

    The effects of nutrient time (t) and acrylic acid graft yield (GY) on the growth of Staphylococcus aureus bacteria on cotton, wool and polyester fabrics have been studied. The bacterial growth increases with the increase in t after a 6 h-incubation period (IP). For cotton fabrics, the IP increases from 6 h to 12 h as the GY increases to 20%. The initial growth rate (R) is found to decrease with the increase in graft yield. The order (n) and rate constant (k) of the growth process are calculated at 303 K from the logarithmic dependence of R on GY. Both kinetic parameters are dependent on the type of fabric. The growth rate constant k is the lowest for grafted cotton and the highest for grafted polyester fabrics. The inhibiting effect of grafted poly acrylic acid (PAA), on the S. aureus growth rate is attributed to the release of hydrogen ions (H + ) from the grafts into the nutrient aqueous solution. The accumulation of H + ions, which increase with the increase in GY, at the cell wall and their possible diffusion inside the cell cause a perturbing effect that impairs the viability of the cells. This is observed from the increase in the polysaccharide layer around the cell due to increase in GY to 20%. Transmission electron micrographs revealed the existence of considerable changes in the shape of the cells as a result of PAA grafted on the fabrics

  7. Composite vascular repair grafts via micro-imprinting and electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuanyuan, E-mail: yuanyuan-liu@shu.edu.cn; Hu, Qingxi, E-mail: huqingxi@shu.edu.cn [Rapid Manufacturing Engineering Center, Shanghai University, Shanghai 200444 (China); Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai 200072 (China); Xiang, Ke, E-mail: xiangke@shu.edu.cn; Chen, Haiping, E-mail: 519673062@qq.com; Li, Yu, E-mail: liyu@hpu.edu.cn [Rapid Manufacturing Engineering Center, Shanghai University, Shanghai 200444 (China)

    2015-04-15

    Composite vascular grafts formed by micro-imprinting and electrospinning exhibited improved mechanical properties relative to those formed by electrospinning alone. The three-layered composite grafts mimic the three-layered structure of natural blood vessels. The middle layer is made by micro-imprinting poly-p-dioxanone (PPDO), while the inner and outer layers are electrospun mixtures of chitosan and polyvinyl alcohol. The graft morphology is characterized with scanning electron microscopy. For constant graft thicknesses, the PPDO increases the mechanical strength. Cells cultivated on the vascular grafts adhere and proliferate better because of the natural, biological chitosan in the inner and outer layers. Overall, the composite scaffolds could be good candidates for blood vessel repair.

  8. Fabrication and characterization of ultrathin dextran layers: Time dependent nanostructure in aqueous environments revealed by OWLS.

    Science.gov (United States)

    Saftics, Andras; Kurunczi, Sándor; Szekrényes, Zsolt; Kamarás, Katalin; Khánh, Nguyen Quoc; Sulyok, Attila; Bősze, Szilvia; Horvath, Robert

    2016-10-01

    Surface coatings of the polysaccharide dextran and its derivatives are key ingredients especially in label-free biosensors for the suppression of non-specific binding and for receptor immobilization. Nevertheless, the nanostructure of these ultrathin coatings and its tailoring by the variation of the preparation conditions have not been profoundly characterized and understood. In this work carboxymethylated dextran (CMD) was prepared and used for fabricating ultrathin surface coatings. A grafting method based on covalent coupling to aminosilane- and epoxysilane-functionalized surfaces was applied to obtain thin CMD layers. The carboxyl moiety of the CMD was coupled to the aminated surface by EDC-NHS reagents, while CMD coupling through epoxysilane molecules was performed without any additional reagents. The surface analysis following the grafting procedures consisted of X-ray photoelectron spectroscopy (XPS), attenuated total reflection infrared spectroscopy (ATR-IR), spectroscopic ellipsometry, atomic force microscopy (AFM) and optical waveguide lightmode spectroscopy (OWLS). The XPS and AFM measurements showed that the grafting resulted in a very thin dextran layer of a few nanometers. The OWLS method allowed devising the structure of the interfacial dextran layers by the evaluation of the optogeometrical parameters. The alteration in the nanostructure of the CMD layer with the chemical composition of the silane coverage and the pH of the grafting solution was revealed by in situ OWLS, specifically, lain down chains were found to be prevalent on the surface under neutral and basic conditions on epoxysilylated surfaces. The developed methodologies allowed to design and fabricate nanometer scale CMD layers with well-controlled surface structure, which are very difficult to characterize in aqueous environments using present instrumentations and highly hydrated surface layers. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Polysaccharide coating of human corneal endothelium

    DEFF Research Database (Denmark)

    Schroder, H D; Sperling, S

    1977-01-01

    Electron microscopy revealed the presence of a 600-1500 A thick layer of polysaccharide on the surface of human corneal endothelial cells. The surface layer was visualized by combined fixation and staining in a mixture of ruthenium red and osmium tetroxide. The coating material was stable for at ...... for at least 39 h post mortem and was retained on disintegrating cells....

  10. Bio-inspired materials engineering using polysaccharide based biotemplates

    International Nuclear Information System (INIS)

    Zollfrank, C.

    2007-01-01

    Nano-structured materials with a controlled microstructure and tailored properties at a scale below 100 nm are of interest for applications in micro-mechanical, sensor and biomedical devices. In contrast to top-down manufacturing processes the formation of solid matter structures in nature is templated and directed by biomacromolecules such as polysaccharides and polypeptides. A promising biomimetic route for the directed deposition of ceramic materials is the application of anisotropically structured biomacromolecules as patterned templates. The polysaccharides exhibit a hierarchical multi scale order as well as self-assembly properties. The bio-inspired deposition and formation of ceramic phases on biomolecular polysaccharide templates was investigated. The polysaccharides were used at various structural levels from the molecular scale up to three-dimensional parts in the millimetre range. The versatility of polysaccharide shaping capabilities was explored using dissolved polysaccharide molecules as well as thin films for the or simultaneous or successive formation of inorganic mineral phases. Microalgae with a spherical appearance of 5 micro-m were applied in mineralisation studies. The extracellular polysaccharide (EPS) layers on the microalgae were used as biotemplates for manufacturing of functional ceramics. The obtained results on the mineralisation of inorganic phases on polysaccharides are adapted for novel biomimetic routes used in the fabrication for functional and biomedical ceramics. (author)

  11. Matrix polyelectrolyte capsules based on polysaccharide/MnCO₃ hybrid microparticle templates.

    Science.gov (United States)

    Wei, Qingrong; Ai, Hua; Gu, Zhongwei

    2011-06-15

    An efficient strategy for biomacromolecule encapsulation based on spontaneous deposition into polysaccharide matrix-containing capsules is introduced in this study. First, hybrid microparticles composed of manganese carbonate and ionic polysaccharides including sodium hyaluronate (HA), sodium alginate (SA) and dextran sulfate sodium (DS) with narrow size distribution were synthesized to provide monodisperse templates. Incorporation of polysaccharide into the hybrid templates was successful as verified by thermogravimetric analysis (TGA) and confocal laser scanning microscopy (CLSM). Matrix polyelectrolyte microcapsules were fabricated through layer-by-layer (LbL) self-assembly of oppositely charged polyelectrolytes (PEs) onto the hybrid particles, followed by removal of the inorganic part of the cores, leaving polysaccharide matrix inside the capsules. The loading and release properties of the matrix microcapsules were investigated using myoglobin as a model biomacromolecule. Compared to matrix-free capsules, the matrix capsules had a much higher loading capacity up to four times; the driving force is mostly due to electrostatic interactions between myoglobin and the polysaccharide matrix. From our observations, for the same kind of polysaccharide, a higher amount of polysaccharide inside the capsules usually led to better loading capacity. The release behavior of the loaded myoglobin could be readily controlled by altering the environmental pH. These matrix microcapsules may be used as efficient delivery systems for various charged water-soluble macromolecules with applications in biomedical fields. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Ionizing radiation damage in Micrococcus radiodurans cell wall: release of polysaccharide

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.

    1976-01-01

    Sublethal 60 Co γ-irradiation of the bacterium Micrococcus radiodurans in aqueous suspension results in a loss of up to 6 percent of its cellular dry weight and 30 percent of its wet weight. In the process some specific cell wall polysaccharides, including a polymer of glucose and N-acylated glucosamine, are released into the surrounding medium. These polysaccharides appear to originate from a hydrophobic site in the middle, lipid-rich, cell wall layer. The damage to this layer which results in the release of these and other polymers may be due to a disruption of this hydrophobic site. The polysaccharide containing glucose and N-acylated glucosamine exists as a high molecular weight polymer in unirradiated cells, but irradiation causes some degradation prior to release. In a free state this polysaccharide is considerably less sensitive to radiolytic degradation than in a bound state. Free radicals generated from surrounding water by ionizing radiation initiate the release, hydroxyl radicals being the most important species. Oxygen protects the cell wall against loss of the polysaccharides, apparently by a mechanism which does not depend on the ability of O 2 to scavenge hydrogen atoms and aqueous electrons

  13. Graft-copolymerization onto carbon black

    International Nuclear Information System (INIS)

    Nakase, Yoshiaki; Nishii, Masanobu; Kijima, Toshiyuki; Kato, Hiroshi.

    1988-07-01

    Radiation-induced graft copolymerization of vinyl monomer onto carbon black was performed. During the γ-ray- and electron beam-induced polymerization (In-source), or the electron beam post-polymerization, the graft-copolymerization behavior was affected by the kinds of both carbon blacks and monomers, i.e. the smaller the size of carbon black particles, the higher the apparent grafted fraction. Homopolymer in the grafted carbon black samples was washed out by the solvent of the polymer, and the extracted polymer seemed to be dimer or trimer of the used monomer. In the case of the post-polymerization with the pre-irradiation doses of 50 Mrad, homopolymer was hardly observed. The polymer sheets of plastics or rubbers with grafted carbon black had an electrical conductivity unalterable considerably by the heating cycles. The particles of grafted carbon black in the sheet might be kept much more at the surface layer within 100 nm depth than at the inner layer. (author)

  14. Rapid synthesis of graft copolymers from natural cellulose fibers.

    Science.gov (United States)

    Thakur, Vijay Kumar; Thakur, Manju Kumari; Gupta, Raju Kumar

    2013-10-15

    Cellulose is the most abundant natural polysaccharide polymer, which is used as such or its derivatives in a number of advanced applications, such as in paper, packaging, biosorption, and biomedical. In present communication, in an effort to develop a proficient way to rapidly synthesize poly(methyl acrylate)-graft-cellulose (PMA-g-cellulose) copolymers, rapid graft copolymerization synthesis was carried out under microwave conditions using ferrous ammonium sulfate-potassium per sulfate (FAS-KPS) as redox initiator. Different reaction parameters such as microwave radiation power, ratio of monomer, solvent and initiator concentrations were optimized to get the highest percentage of grafting. Grafting percentage was found to increase with increase in microwave power up to 70%, and maximum 36.73% grafting was obtained after optimization of all parameters. Fourier transforms infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA/DTA/DTG) analysis were used to confirm the graft copolymerization of poly(methyl acrylate) (PMA) onto the mercerized cellulose. The grafted cellulosic polymers were subsequently subjected to the evaluation of different physico-chemical properties in order to access their application in everyday life, in a direction toward green environment. The grafted copolymers demonstrated increased chemical resistance, and higher thermal stability. Published by Elsevier Ltd.

  15. Successful immunotherapy with micrococcus, BCG or related polysaccharides on L1210 leukaemia after BCNU chemotherapy.

    Science.gov (United States)

    Verloes, R.; Atassi, G.; Dumont, P.; Kanarek, L.

    1981-01-01

    The experiments aimed at evaluating the optimal parameters in the chemo-immunotherapeutic treatment of the L1210 lymphoid leukaemia grafted to [female BALB/c (H2d) X male DBA/2 (H2d)]F1 hybrid mice, hereafter referred to as CDF1 mice. In vitro irradiation of leukaemic ascites cells by X- or gamma-rays and subsequent inoculation in mice showed that optimum immunogenicity is radiation dose-dependent. Grafting mice with 10(7) leukaemic ascites cells irradiated at optimum dose (80 GyX- or gamma-rays) delays mortality of the animals when challenged later with untreated L1210 cells, but is unable to cure mice. By contrast, specific immunoprophylaxis induced by Micrococcus, complement-triggering polysaccharides or BCG and irradiated leukaemic cells was able to protect mice against grafts of 10(4) L1210 cells. The i.p. route was notably superior to the i.v. route. When mice bearing advanced L1210 tumour were treated by chemotherapy (12 mg/kg of BCNU) on Day 6.5 after grafting 10(4) L1210 cells and subsequently treated by immunotherapy, a very high percentage (up to 90%) of mice with 10(8) leukaemic cells could be cured by repeated 1mg injections of bacterium or polysaccharide, and challenge with irradiated leukaemic cells was unnecessary. Because of the high cure rate obtained, the very regular response pattern and the non-pathogenicity, the bacterium Micrococcus lysodeikticus would seem a promising new candidate for chemo-immunotherapeutic antitumour strategies. PMID:7470382

  16. Research and Development of Radiation Processing of Polysaccharide for Agricultural Sector in Myanmar

    International Nuclear Information System (INIS)

    Lay, K. K.

    2015-01-01

    Myanmar is an agricultural-based country in which rice is the main staple food and present agricultural systems still follow the traditional methods that utilise the available natural resources combined with improved cultural practices. To fulfil the major needs for improving safety agricultural productivity in the country, and to apply radiation technology for useful products in agriculture, current research is based on radiation processing of polysaccharide for production of super water absorbents and plant growth promoter (liquid fertilizer) using Gamma Radiation. Corn starch, Brown seaweed and Rice straw cellulose were used as polysaccharide in this research work. Morphological structures of products super water absorbents from corn starch and rice straw cellulose were analyzed by Scanning Electron Microscope (SEM). Fourier Transfer Infrared (FTIR) was used to analyze the changes of chemical structure of the original polysaccharides and products (super water absorbents and plant growth promoter). The effect of radiation dose and monomer concentration on grafting efficiency, gel fraction, crosslink density, and swelling degree were studied for two types of super water absorbent. It was found that the grafting efficiency and gel fraction increased with increasing in radiation dose as well as the higher in crosslink density, which is directly proportional to increasing in radiation dose, led to decreasing in swelling degree. Decreasing molecular weights of the irradiated seaweed liquid fertilizer (SLF) were generally found with increasing radiation doses. To study the water retention properties of super water absorbents and growth promotion effect of seaweed liquid fertilizer (SLF), field tests were done. This research showed that radiation technology is very useful not only for agriculture sector but also for environmental monitoring since the agricultural waste such as rice straw was used as polysaccharide in this research work. (author)

  17. Hybrid Iron Oxide-Graphene Oxide-Polysaccharides Microcapsule: A Micro-Matryoshka for On-demand Drug Release and Antitumor Therapy In Vivo

    KAUST Repository

    Deng, Lin; Li, Qiujin; Al-Rehili, Safa'a; Omar, Haneen; Almalik, Abdulaziz; Alshamsan, Aws; Zhang, Jianfei; Khashab, Niveen M.

    2016-01-01

    microcapsule (h-MC) by a simple layer-by-layer technique comprising polysaccharides (Alg, Chi, HA), iron oxide, and graphene oxide. Electrostatic assembly of the oppositely charged polysaccharides and graphene sheets provided a robust structure to load drugs

  18. Propagação de Jabuticabeira por enxertia e alporquia Propagation of jabuticaba tree for grafting and air layering techniques

    Directory of Open Access Journals (Sweden)

    Simone Aparecida Zolet Sasso

    2010-06-01

    Full Text Available O objetivo deste trabalho foi investigar a eficiência das técnicas de enxertia e alporquia na produção de mudas de jabuticabeira. Testou-se a pega de enxertia de três espécies de jabuticabeira (Plinia cauliflora, P. trunciflora, P. jaboticaba sobre porta-enxertos de P. cauliflora, em duas épocas (maio e agosto. Avaliaram-se a brotação e o número e tamanho de brotos, após 90 dias da implantação do experimento. Para alporquia, foram testados dois diâmetros de ramos (1,0-1,5 cm e 2,0-2,5 cm e duas larguras do anelamento (1,5 cm e 3,0 cm, na espécie P. cauliflora. Avaliaram-se o enraizamento e o número e tamanho de raízes, após 180 dias da implantação do experimento. A enxertia e a alporquia são técnicas recomendáveis para a propagação da jabuticabeira, pois proporcionam alto percentual de formação de mudas, de até 72,9% e 87,5%, respectivamente. Houve pega de enxertia das três espécies enxertadas sobre P. cauliflora. A utilização de garfos retirados de plantas em frutificação deve ser evitada, pois ocorre inibição da brotação dos enxertos. Na alporquia, ramos de diâmetro de 2,0-2,5 cm proporcionam maior enraizamento e maior número e tamanho de raízes, em relação a ramos de menor diâmetro (1,0 a 1,5 cm.The objective of this work was to test the efficiency of grafting and air layering propagation techniques for jabuticaba tree. Was tested compatibility of grafting of three species of jabuticaba tree (Plinia cauliflora, P. trunciflora and P. jaboticaba on rootstocks of P. cauliflora, and two periods (May and August. The percentage of grafting, number and size of shoots, was evaluated 90 days after the experiment started. Air layering was made in P. cauliflora using two diameters of branches (1.0-1.5 cm and 2.0-2.5 cm and two widths of girdling (1.5 cm and 3.0 cm. It was evaluated the rooting percentage, number and length of roots, 180 days after the experiment started. Both grafting and the air layering are

  19. Grafting of acrylamide onto synthetic co polyamide by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hamoud, M R; Qamhieyh, E A [Chemistry Dept., College of Ibn Al-Haitham Baghdad university-Adhamiyah-Baghdad- (Iraq)

    1995-10-01

    Grafted copolymer was prepared by using gamma irradiation to graft acrylamide onto polymeric molecule prepared by interfacial condensation between two diamine molecules like 1,2 diamino propane and 1,6 diamino-hexane in aqueous layer with sebacoyl chloride in organic layer. The resulted co polyamide was grafted with acrylamide using gamma irradiation. The optimum conditions of grafting reaction were found, also various factors such as the effect of solvents, redox systems and the role water on the radiochemical grafting were studied. Many techniques were used in the characterization of the copolymer before and after grafting. 8 figs.,.

  20. Modification of polysaccharides: Pharmaceutical and tissue engineering applications with commercial utility (patents)

    Energy Technology Data Exchange (ETDEWEB)

    Malviya, Rishabha, E-mail: rishabhamalviya19@gmail.com [Polymer Science Laboratory, Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greator Noida, UP (India); Department of Pharmacy, Uttarkhand Technical University, Dehradun, Uttarkhand (India); Sharma, Pramod Kumar [Polymer Science Laboratory, Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greator Noida, UP (India); Dubey, Susheel Kumar [Siddarth Institute of Pharmacy, Dehradun, Uttarkhand (India)

    2016-11-01

    Polymer modifications open new era for the development of polymers with requisite properties. Use of modified polymers is practically boundless. Different studies focus on biomedical applications of chemically modified polysaccharides. Development and utilization of modified polysaccharides get attention to be used as carrier for pharmaceutical drug delivery as well as tissue engineering scaffolds. Grafted polymer shows better cellular regeneration, signal transmission, diagnostic and imaging material than putative form. This review article aims to discuss various approaches to modify naturally derived polymer and their applications as pharmaceutical drug carrier and as a material for wound dressing and artificial cartilage due to better biophysical cues. Manuscript included various patents based on the applications of modified polymers and techniques used to modify polymers. - Highlights: • Properties of natural polysaccharides can be modulated by modification in their basic backbone. • Polysaccharides can be easily modified using microwave irradiation as compared to conventional closed vessel modification. • Biodegradable and biocompatible nature of modified polymer promotes their use in targeted cellular delivery of pharmaceuticals. • Studies show strong support that biodegradable polymers have ability to modulate cell signaling, cellular attachment, migration, proliferation and differentiation. • Manuscript reveals the fact that various commercial patents have been granted for the use of modified polymer.

  1. Kinetics of vein graft hyperplasia

    International Nuclear Information System (INIS)

    Zwolak, R.M.; Adams, M.C.; Clowes, A.W.

    1986-01-01

    Human aortocoronary vein grafts fail due to accelerated occlusive disease. The possibility that this is related to cellular hyperplasia was investigated in a rabbit model where kinetics of vein graft thickening, endothelial (EC) repair, and smooth muscle cell (SMC) proliferation were measured from 2 days to 24 weeks after implanting jugular vein segments in the carotid artery. Immediately after graft placement focal EC denudation was observed. These defects were repaired within 1 week and did not recur. By 4 weeks intimal area had increased 30 fold from 0.028 +/- 0.004 to 0.705 +/- 0.021 mm 2 , and a 24 weeks was 0.93 +/- 0.21 mm 2 . This response did not produce a reduction in graft lumen area. EC and SMC thymidine-labeling index were measured by en face and cross-section autoradiography after injection of 3 H-thymidine and perfusion fixation. Despite rapid EC surface repair EC labeling index remained elevated and only returned to normal levels at 12 weeks; SMC labeling was 10 fold greater than baseline even at 24 weeks (0.22% vs 0.02%). SMC mass demonstrated morphometrically increased between 2 and 12 weeks. Intimal thickening in vein grafts is due to SMC proliferation and develops after the EC layer has been restored. In contrast, intimal SMC proliferate in damaged arteries when the EC layer is absent and cease when the EC layer is regenerated

  2. Modification of polysaccharides: Pharmaceutical and tissue engineering applications with commercial utility (patents).

    Science.gov (United States)

    Malviya, Rishabha; Sharma, Pramod Kumar; Dubey, Susheel Kumar

    2016-11-01

    Polymer modifications open new era for the development of polymers with requisite properties. Use of modified polymers is practically boundless. Different studies focus on biomedical applications of chemically modified polysaccharides. Development and utilization of modified polysaccharides get attention to be used as carrier for pharmaceutical drug delivery as well as tissue engineering scaffolds. Grafted polymer shows better cellular regeneration, signal transmission, diagnostic and imaging material than putative form. This review article aims to discuss various approaches to modify naturally derived polymer and their applications as pharmaceutical drug carrier and as a material for wound dressing and artificial cartilage due to better biophysical cues. Manuscript included various patents based on the applications of modified polymers and techniques used to modify polymers. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Precision Synthesis of Functional Polysaccharide Materials by Phosphorylase-Catalyzed Enzymatic Reactions

    Directory of Open Access Journals (Sweden)

    Jun-ichi Kadokawa

    2016-04-01

    Full Text Available In this review article, the precise synthesis of functional polysaccharide materials using phosphorylase-catalyzed enzymatic reactions is presented. This particular enzymatic approach has been identified as a powerful tool in preparing well-defined polysaccharide materials. Phosphorylase is an enzyme that has been employed in the synthesis of pure amylose with a precisely controlled structure. Similarly, using a phosphorylase-catalyzed enzymatic polymerization, the chemoenzymatic synthesis of amylose-grafted heteropolysaccharides containing different main-chain polysaccharide structures (e.g., chitin/chitosan, cellulose, alginate, xanthan gum, and carboxymethyl cellulose was achieved. Amylose-based block, star, and branched polymeric materials have also been prepared using this enzymatic polymerization. Since phosphorylase shows a loose specificity for the recognition of substrates, different sugar residues have been introduced to the non-reducing ends of maltooligosaccharides by phosphorylase-catalyzed glycosylations using analog substrates such as α-d-glucuronic acid and α-d-glucosamine 1-phosphates. By means of such reactions, an amphoteric glycogen and its corresponding hydrogel were successfully prepared. Thermostable phosphorylase was able to tolerate a greater variance in the substrate structures with respect to recognition than potato phosphorylase, and as a result, the enzymatic polymerization of α-d-glucosamine 1-phosphate to produce a chitosan stereoisomer was carried out using this enzyme catalyst, which was then subsequently converted to the chitin stereoisomer by N-acetylation. Amylose supramolecular inclusion complexes with polymeric guests were obtained when the phosphorylase-catalyzed enzymatic polymerization was conducted in the presence of the guest polymers. Since the structure of this polymeric system is similar to the way that a plant vine twines around a rod, this polymerization system has been named

  4. A grafting from approach to graft polystyrene chains at the surface of graphene nanolayers by RAFT polymerization: Various graft densities from hydroxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Roghani-Mamaqani, Hossein, E-mail: r.mamaghani@sut.ac.ir [Department of Polymer Engineering, Sahand University of Technology, PO Box 51335-1996, Tabriz (Iran, Islamic Republic of); Khezri, Khezrollah [School of Chemistry, University College of Science, University of Tehran, PO Box 14155-6455, Tehran (Iran, Islamic Republic of)

    2016-01-01

    graphite layers with flat and smooth surface wrinkled after oxidation and turned to opaque layers by grafting PS.

  5. Oxygen barrier of multilayer thin films comprised of polysaccharides and clay.

    Science.gov (United States)

    Laufer, Galina; Kirkland, Christopher; Cain, Amanda A; Grunlan, Jaime C

    2013-06-05

    Multilayered thin films of chitosan (CH), carrageenan (CR) and montmorillonite (MMT) clay, deposited using the layer-by-layer technique, were studied in an effort to produce fully renewable polysaccharide-based thin films with low oxygen permeability. Ten 'trilayers' of CH/MMT/CR (film reduced its oxygen permeability (1.76×10(-15) cm(3) cm/cm(2) s Pa) by an order of magnitude under dry conditions. By adding an additional layer of CH to the trilayer sequence, a 'quadlayer' film of CH/CR/CH/MMT (barrier is believed to be due to the unique nanostructure of these films, often referred to as a "nanobrick wall" structure, as well as a strong association amongst the oppositely charged polysaccharides. Combining fully renewable and food contact approved ingredients with high gas barrier and optical transparency makes this technology promising as a foil replacement for food packaging. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Au-nanoparticles grafted on plasma treated PE

    International Nuclear Information System (INIS)

    Svorcik, V.; Chaloupka, A.; Rezanka, P.; Slepicka, P.; Kolska, Z.; Kasalkova, N.; Hubacek, T.; Siegel, J.

    2010-01-01

    Polyethylene (PE) surface was treated with Ar plasma. Activated surface was grafted from methanol solution of 1,2-ethanedithiol. Then the sample was immersed into freshly prepared colloid solution of Au-nanoparticles. Finally Au layer was sputtered on the samples. Properties of the modified PE were studied using various methods: AFM, EPR, RBS and nanoindentation. It was shown that the plasma treatment results in degradation of polymer chain (AFM) and creation of free radicals by EPR. After grafting with dithiol, the concentration of free radicals declines. The presence of Au and S in the surface layer after the coating with Au-nanoparticles was proved by RBS. Plasma treatment changes PE surface morphology and increases surface roughness, too. Another significant change in surface morphology and roughness was observed after deposition of Au-nanoparticles. Nanoindentation measurements show that the grafting with Au-nanoparticles increases adhesion of subsequently sputtered Au layer.

  7. Angiographic Evaluation of Carotid Artery Grafting with Prefabricated Small-Diameter, Small-Intestinal Submucosa Grafts in Sheep

    International Nuclear Information System (INIS)

    Pavcnik, Dusan; Obermiller, Josef; Uchida, Barry T.; Van Alstine, William; Edwards, James M.; Landry, Gregory J.; Kaufman, John A.; Keller, Frederick S.; Roesch, Josef

    2009-01-01

    The purpose of this study was to report the longitudinal angiographic evaluation of prefabricated lyophilized small-intestinal submucosa (SIS) grafts placed in ovine carotid arteries and to demonstrate a variety of complications that developed. A total of 24 grafts, 10 cm long and 6 mm in diameter, were placed surgically as interposition grafts. Graft patency at 1 week was evaluated by Doppler ultrasound, and angiography was used for follow-up at 1 month and at 3 to 4 months. A 90% patency rate was found at 1 week, 65% at 1 month, and 30% at 3 to 4 months. On the patent grafts, angiography demonstrated a variety of changes, such as anastomotic stenoses, graft diffuse dilations and dissections, and aneurysm formation. These findings have not been previously demonstrated angiographically by other investigators reporting results with small-diameter vessel grafts made from fresh small-intestinal submucosa (SIS). The complications found were partially related to the graft construction from four SIS layers. Detailed longitudinal angiographic study should become an essential part of any future evaluation of small-vessel SIS grafting.

  8. Layer-by-layer assembled cell instructive nanocoatings containing platelet lysate.

    Science.gov (United States)

    Oliveira, Sara M; Santo, Vítor E; Gomes, Manuela E; Reis, Rui L; Mano, João F

    2015-04-01

    Great efforts have been made to introduce growth factors (GFs) onto 2D/3D constructs in order to control cell behavior. Platelet lysate (PL) presents itself as a cost-effective source of multiple GFs and other proteins. The instruction given by a construct-PL combination will depend on how its instructive cues are presented to the cells. The content, stability and conformation of the GFs affect their instruction. Strategies for a controlled incorporation of PL are needed. Herein, PL was incorporated into nanocoatings by layer-by-layer assembling with polysaccharides presenting different sulfation degrees (SD) and charges. Heparin and several marine polysaccharides were tested to evaluate their PL and GF incorporation capability. The consequent effects of those multilayers on human adipose derived stem cells (hASCs) were assessed in short-term cultures. Both nature of the polysaccharide and SD were important properties that influenced the adsorption of PL, vascular endothelial growth factor (VEGF), fibroblast growth factor b (FGFb) and platelet derived growth factor (PDGF). The sulfated polysaccharides-PL multilayers showed to be efficient in the promotion of morphological changes, serum-free adhesion and proliferation of high passage hASCs (P > 5). These biomimetic multilayers promise to be versatile platforms to fabricate instructive devices allowing a tunable incorporation of PL. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Microwave based synthesis and spectral characterization of thermo-sensitive poly(N,N-diethylacrylamide) grafted pectin copolymer.

    Science.gov (United States)

    Işıklan, Nuran; Tokmak, Şeyma

    2018-07-01

    The functionalization of polysaccharides with synthetic polymers has attracted great attention owing to its application in many industrial fields. The aim of this work was to study the impact of pectin functionalization with N,N-diethylacrylamide (DEAAm). Pectin was modified via microwave-induced graft copolymerization of DEAAm using ceric ammonium nitrate (CAN) and N,N,N',N'-tetramethylethylenediamine (TEMED). FTIR, 13 C NMR, DSC/TGA, XRD, and SEM techniques were used to verify the structure of graft copolymers. Various reaction conditions such as microwave irradiation time, temperature, microwave power, monomer, initiator, and TEMED concentrations were investigated to get a maximum grafting yield of 192%. Lower critical solution temperatures (LCST) of graft copolymers were determined by UV spectroscopy. Graft copolymers were found to be thermo-sensitive, with LCST of 31°C and high thermal resistance. Biocompatibility test of copolymers showed that copolymers were not cytotoxic to L929 fibroblasts cells and can be used as a biomaterial. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Controlled Zn-mediated grafting of thin layers of bipodal diazonium salt on gold and carbon substrates.

    Science.gov (United States)

    Torréns, Mabel; Ortiz, Mayreli; Turner, Anthony P F; Beni, Valerio; O'Sullivan, Ciara K

    2015-01-07

    A controlled, rapid, and potentiostat-free method has been developed for grafting the diazonium salt (3,5-bis(4-diazophenoxy)benzoic acid tetrafluoroborate (DCOOH)) on gold and carbon substrates, based on a Zn-mediated chemical dediazonation. The highly stable thin layer organic platforms obtained were characterized by cyclic voltammetry, AFM, impedance, XP, and Raman spectroscopies. A dediazonation mechanism based on radical formation is proposed. Finally, DCOOH was proved as a linker to an aminated electroactive probe. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Cartilage grafting in nasal reconstruction.

    Science.gov (United States)

    Immerman, Sara; White, W Matthew; Constantinides, Minas

    2011-02-01

    Nasal reconstruction after resection for cutaneous malignancies poses a unique challenge to facial plastic surgeons. The nose, a unique 3-D structure, not only must remain functional but also be aesthetically pleasing to patients. A complete understanding of all the layers of the nose and knowledge of available cartilage grafting material is necessary. Autogenous material, namely septal, auricular, and costal cartilage, is the most favored material in a free cartilage graft or a composite cartilage graft. All types of material have advantages and disadvantages that should guide the most appropriate selection to maximize the functional and cosmetic outcomes for patients. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Propagation by Cuttings, Layering and Division

    OpenAIRE

    Relf, Diane; Ball, Elizabeth Carter

    2009-01-01

    The major methods of asexual propagation are cuttings, layering, division, and budding/grafting. Cuttings involve rooting a severed piece of the parent plant; layering involves rooting a part of the parent and then severing it; and budding and grafting are joining two plant parts from different varieties.

  13. Structure of mixed β-lactoglobulin/pectin adsorbed layers at air/water interfaces; a spectroscopy study

    NARCIS (Netherlands)

    Ganzevles, R.A.; Fokkink, R.; Vliet, T. van; Cohen Stuart, M.A.; Jongh, H.H.J. de

    2008-01-01

    Based on earlier reported surface rheological behaviour two factors appeared to be important for the functional behaviour of mixed protein/polysaccharide adsorbed layers at air/water interfaces: (1) protein/polysaccharide mixing ratio and (2) formation history of the layers. In this study complexes

  14. Structure of mixed Beta-lactoglobulin/pectin adsorbed layers at air/water interfaces; a spectroscopy study

    NARCIS (Netherlands)

    Ganzevles, R.A.; Fokkink, R.G.; Vliet, van T.; Cohen Stuart, M.A.; Jongh, de H.H.J.

    2008-01-01

    Based on earlier reported surface rheological behaviour two factors appeared to be important for the functional behaviour of mixed protein/polysaccharide adsorbed layers at air/water interfaces: (1) protein/polysaccharide mixing ratio and (2) formation history of the layers. In this study complexes

  15. Hollow fiber membrane lumen modified by polyzwitterionic grafting

    KAUST Repository

    Le, Ngoc Lieu

    2016-08-24

    In this study, we demonstrate an effective way to modify the lumen of polyetherimide hollow fibers by grafting zwitterionic poly(sulfobetaine) to increase the membrane resistance to fouling. Surface-selective grafting of the protective hydrogel layers has been achieved in a facile two-step process. The first step is the adsorption of a macromolecular redox co-initiator on the lumen-side surface of the membrane, which in the second step, after flushing the lumen of the membrane with a solution comprising monomers and a complementary redox initiator, triggers the in situ cross-linking copolymerization at room temperature. The success of grafting reaction has been verified by the surface elemental analyses using X-ray photoelectron spectroscopy (XPS) and the surface charge evaluation using zeta potential measurements. The hydrophilicity of the grafted porous substrate is improved as indicated by the change of contact angle value from 44° to 30°, due to the hydration layer on the surface produced by the zwitterionic poly(sulfobetaine). Compared to the pristine polyetherimide (PEI) substrate, the poly(sulfobetaine) grafted substrates exhibit high fouling resistance against bovine serum albumin (BSA) adsorption, E. coli attachment and cell growth on the surface. Fouling minimization in the lumen is important for the use of hollow fibers in different processes. For instance, it is needed to preserve power density of pressure-retarded osmosis (PRO). In high-pressure PRO tests, a control membrane based on PEI with an external polyamide selective layer was seriously fouled by BSA, leading to a high water flux drop of 37%. In comparison, the analogous membrane, whose lumen was modified with poly(sulfobetaine), not only had a less water flux decline but also had better flux recovery, up to 87% after cleaning and hydraulic pressure impulsion. Clearly, grafting PRO hollow fiber membranes with zwitterionic polymeric hydrogels as a protective layer potentially sustains PRO

  16. Polysaccharide-producing microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Braud, J.P.; Chaumont, D.; Gudin, C.; Thepenier, C.; Chassin, P.; Lemaire, C.

    1982-11-01

    The production of extracellular polysaccharides is studied with Nostoc sp (cyanophycus), Porphiridium cruentum, Rhodosorus marinus, Rhodella maculata (rhodophyci) and Chlamydomonas mexicana (chlorophycus). The polysaccharides produced are separated by centrifugation of the culture then precipitation with alcohol. Their chemical structure was studied by infrared spectrometry and acid hydrolysis. By their rheological properties and especially their insensitivity to temperatrure and pH variations the polysaccharides produced by Porphryridium cruentum and Rhodella maculata appear as suitable candidates for industrial applications.

  17. Urea potentiometric enzymatic biosensor based on charged biopolymers and electrodeposited polyaniline.

    Science.gov (United States)

    Lakard, Boris; Magnin, Delphine; Deschaume, Olivier; Vanlancker, Guilhem; Glinel, Karine; Demoustier-Champagne, Sophie; Nysten, Bernard; Jonas, Alain M; Bertrand, Patrick; Yunus, Sami

    2011-06-15

    A potentiometric biosensor based on urease was developed for the quantitative determination of urea concentration in aqueous solutions for biomedical applications. The urease was either physisorbed onto an electrodeposited polyaniline film (PANI), or immobilized on a layer-by-layer film (LbL) assembled over the PANI film, that was obtained by the alternate deposition of charged polysaccharides (carboxymethylpullulan (CMP) and chitosan (CHI)). In the latter case, the urease (Urs) enzyme was either physically adsorbed or covalently grafted to the LbL film using carbodiimide coupling reaction. Potentiometric responses of the enzymatic biosensors were measured as a function of the urea concentration in aqueous solutions (from 10(-6) to 10(-1) mol L(-1) urea). Very high sensitivity and short response time were observed for the present biosensor. Moreover, a stability study showed a higher stability over time for the potentiometric response of the sensor with the enzyme-grafted LbL film, testifying for the protective nature of the polysaccharide coating and the interest of covalent grafting. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. CHANGES IN THE MORPHOLOGY AND POLYSACCHARIDE CONTENT OF MICROCYSTIS AERUGINOSA (CYANOBACTERIA) DURING FLAGELLATE GRAZING(1).

    Science.gov (United States)

    Yang, Zhou; Kong, Fanxiang; Shi, Xiaoli; Zhang, Min; Xing, Peng; Cao, Huansheng

    2008-06-01

    To investigate the changes in the morphology and polysaccharide content of Microcystis aeruginosa (Kütz.) Kütz. during flagellate grazing, cultures of M. aeruginosa were exposed to grazing Ochromonas sp. for a period of 9 d under controlled laboratory conditions. M. aeruginosa responded actively to flagellate grazing and formed colonies, most of which were made up of several or dozens of cells, suggesting that flagellate grazing may be one of the biotic factors responsible for colony formation in M. aeruginosa. When colonies were formed, the cell surface ultrastructure changed, and the polysaccharide layer on the surface of the cell wall became thicker. This change indicated that synthesis and secretion of extracellular polysaccharide (EPS) of M. aeruginosa cells increased under flagellate grazing pressure. The contents of soluble extracellular polysaccharide (sEPS), bound extracellular polysaccharide (bEPS), and total polysaccharide (TPS) in colonial cells of M. aeruginosa increased significantly compared with those in single cells. This finding suggested that the increased amount of EPS on the cell surface may play a role in keeping M. aeruginosa cells together to form colonies. © 2008 Phycological Society of America.

  19. Radiation graft copolymerization of n-butyl acrylate on natural rubber latex

    International Nuclear Information System (INIS)

    Sundardi, F.; Kadariah, S.

    1986-01-01

    A method of radiation graft copolymerization of n-butyl acrylate (NBA) on natural rubber (NR) latex has been studied. The rate of conversion increases with the increase of NBA in latex. An irradiation dose of about 12 kGy is needed to obtain 90% conversion with 40 phr of NBA in latex. Tensile strength, tear strength, and elongation at break of grafted NR are found to decrease with increasing degree of grafting. The physical strength of a vulcanizate prepared from a mixture of NR and ply-NBA was found to be better than that of NBA-NR graft copolymer vulcanizate. The graft copolymerization reaction takes place in the outer layer of NR particles, and because the secondary bonds between poly-NBA molecules may be weaker than those between NR molecules, the existence of a poly-NBA layer in NR particles will decrease its physical strength

  20. Preparation and enhanced properties of polyaniline/grafted intercalated ZnAl-LDH nanocomposites

    Science.gov (United States)

    Hu, Jinlong; Gan, Mengyu; Ma, Li; Zhang, Jun; Xie, Shuang; Xu, Fenfang; Shen, JiYue Zheng Xiaoyu; Yin, Hui

    2015-02-01

    The polymeric nanocomposites (PANI/AD-LDH) were prepared by in situ polymerization based on polyaniline (PANI) and decavanadate-intercalated and γ-aminopropyltriethoxysilane (APTS)-grafted ZnAl-layered double hydroxide (AD-LDH). FTIR and XRD studies confirm the grafting of APTS with decavanadate-intercalated LDH (D-LDH). The extent of grafting (wt%) has also been estimated on the basis of the residue left in nitrogen atmosphere at 800 °C in TGA. SEM and XPS studies show the partial exfoliation of grafted LDH in the PANI matrix and the interfacial interaction between PANI and grafted LDH, respectively. The grafted intercalated layered double hydroxide in reinforcing the properties of the PANI nanocomposites has also been investigated by open circuit potential (OCP), tafel polarization curves (TAF), electrochemical impendence spectroscopy (EIS), salt spray test and TGA-DTA. The experimental results indicate that the PANI/AD-LDH has a higher thermal stability and anticorrosion properties relative to the PANI.

  1. Grafting cavitands on the Si(100) surface.

    Science.gov (United States)

    Condorelli, Guglielmo G; Motta, Alessandro; Favazza, Maria; Fragalà, Ignazio L; Busi, Marco; Menozzi, Edoardo; Dalcanale, Enrico; Cristofolini, Luigi

    2006-12-19

    Cavitand molecules having double bond terminated alkyl chains and different bridging groups at the upper rim have been grafted on H-terminated Si(100) surface via photochemical hydrosilylation of the double bonds. Pure and mixed monolayers have been obtained from mesitylene solutions of either pure cavitand or cavitand/1-octene mixtures. Angle resolved high-resolution X-ray photoelectron spectroscopy has been used as the main tool for the monolayer characterization. The cavitand decorated surface consists of Si-C bonded layers with the upper rim at the top of the layer. Grafting of pure cavitands leads to not-well-packed layers, which are not able to efficiently passivate the Si(100) surface. By contrast, monolayers obtained from cavitand/1-octene mixtures consist of well-packed layers since they prevent silicon oxidation after aging. AFM measurements showed that these monolayers have a structured topography, with objects protruding from the Si(100) surface with average heights compatible with the expected ones for cavitand molecules.

  2. Bioinspired Layer-by-Layer Microcapsules Based on Cellulose Nanofibers with Switchable Permeability

    DEFF Research Database (Denmark)

    Paulraj, Thomas; Riazanova, Anastasia V; Yao, Kun

    2017-01-01

    Green, all-polysaccharide based microcapsules with mechanically robust capsule walls and fast, stimuli-triggered, and switchable permeability behavior show great promise in applications based on selective and timed permeability. Taking a cue from nature, the build-up and composition of plant......-by-layer technique on sacrificial CaCO3 templates, using plant polysaccharides (pectin, cellulose nanofibers, and xyloglucan) only. In water, the capsule wall was permeable to labeled dextrans with a hydrodynamic diameter of ∼6.6 nm. Upon exposure to NaCl, the porosity of the capsule wall quickly changed allowing...

  3. Vascular Biocompatibility of a Triple Layered Self Expanding Stent-Graft in a Dog Mode

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jae Ik; Won, Je Hwan; Jang, Eun Ho; Lee, Sung Yeong; Ko, Kwang Tae [Dept. of Radiology, Ajou University School of Medicine, Suwon (Korea, Republic of); Jin, Bo Hwan [Medical Science Research Center, Ajou University School of Medicine, Suwon (Korea, Republic of); Lee, June Woo [Dept. of Radiology, Busan National University College of Medicine, Busan (Korea, Republic of)

    2012-02-15

    To evaluate performance and biocompatibility of a newly designed self-expanding stent graft, which consisted of two nitinol stents and an intervening expanded polytetrafluoroethylene membrane in a dog artery model. Twelve stent grafts were placed in the aorta of 6 dogs (beagle, mean body weight 11 kg) for 4 weeks (n = 4) and 12 weeks (n = 8). Luminal diameters were measured for each segment (the proximal bare, the middle graft, the distal bare) by angiographies after implantation and follow up periods. Percent luminal stenosis based on angiographies, histomorphometric, histologic, and scanning electron microscopic analyses of each segments were performed. Blood flow through the stent grafts was good after implantation and during the follow up period, without thrombotic occlusion or stent graft migration. The mean percent luminal stenosis of the proximal bare, the middle grafted and the distal bare segments after 12 weeks were 13.5%, 3.9%, 9.6% retrospectively. The mean neointimal areas of the middle grafted segment were 4.39 mm{sup 2} (4 week) and 4.92 mm{sup 2} (12 week). Mature endothelialization was evident in over 70% of the area of the stented artery after 4 weeks and in over 90% after 12 weeks. The stent graft was well placed in the attempted area without migration. During the 12-week-follow up period, it showed a good patency without thrombotic occlusion or significant in-stent luminal stenosis. Endothelialization was rapid and nearly complete. Neointima was thin and smooth on the middle graft segment and thicker and irregular on the bare segments.

  4. Vascular Biocompatibility of a Triple Layered Self Expanding Stent-Graft in a Dog Mode

    International Nuclear Information System (INIS)

    Bae, Jae Ik; Won, Je Hwan; Jang, Eun Ho; Lee, Sung Yeong; Ko, Kwang Tae; Jin, Bo Hwan; Lee, June Woo

    2012-01-01

    To evaluate performance and biocompatibility of a newly designed self-expanding stent graft, which consisted of two nitinol stents and an intervening expanded polytetrafluoroethylene membrane in a dog artery model. Twelve stent grafts were placed in the aorta of 6 dogs (beagle, mean body weight 11 kg) for 4 weeks (n = 4) and 12 weeks (n = 8). Luminal diameters were measured for each segment (the proximal bare, the middle graft, the distal bare) by angiographies after implantation and follow up periods. Percent luminal stenosis based on angiographies, histomorphometric, histologic, and scanning electron microscopic analyses of each segments were performed. Blood flow through the stent grafts was good after implantation and during the follow up period, without thrombotic occlusion or stent graft migration. The mean percent luminal stenosis of the proximal bare, the middle grafted and the distal bare segments after 12 weeks were 13.5%, 3.9%, 9.6% retrospectively. The mean neointimal areas of the middle grafted segment were 4.39 mm 2 (4 week) and 4.92 mm 2 (12 week). Mature endothelialization was evident in over 70% of the area of the stented artery after 4 weeks and in over 90% after 12 weeks. The stent graft was well placed in the attempted area without migration. During the 12-week-follow up period, it showed a good patency without thrombotic occlusion or significant in-stent luminal stenosis. Endothelialization was rapid and nearly complete. Neointima was thin and smooth on the middle graft segment and thicker and irregular on the bare segments.

  5. Functionalization of Polymer Surfaces by Radiation-Induced Grafting for Separation of Heavy Metal Ions

    Energy Technology Data Exchange (ETDEWEB)

    Przybytniak, G; Kornacka, E M; Fuks, L; Walo, M; Lyczko, K; Mirkowski, K [Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw (Poland)

    2012-09-15

    The reported investigations were focused on the elucidation of the most important factors influencing radiation-induced grafting; particularly (1) the effect of radical population generated in polymeric matrix on degree of grafting, (2) parameters determined grafting and its procedure, (3) correlation between layer structure formed via copolymerization and content of monomers in the initial solution. Sorption capacity of the adsorbants was evaluated using {sup 152}Eu{sup 3+} as a marker monitoring depletion of the radioisotope from the initial solution by gamma radiometer. Electron spin resonance spectroscopy (EPR) and gas chromatography (GC) studies confirmed that yield of radiation-induced radicals increases in the following order polystyrene (PS) < polypropylene (PP) < polyethylene (PE). The same relationship was found for efficiency of radiation grafting. It was concluded that under comparable conditions the content of radicals in polymeric matrices determines grafting degree. It was found that application of the simultaneous method of grafting introduces to the grafted layers crosslinking or/and branching as well as degradation of functional groups. All these phenomena reduce access of Eu{sup 3+} to the studied sorbent therefore sorption capacity of the polyamide functionalized via pre-irradiation (indirect) method is higher than that determined for the sorbent prepared by simultaneous method of grafting. When two monomers, acrylic acid (AAc) and acrylamide (AAm) , contributed in the formation of grafted layer, their input into copolymerization was not proportional to the concentrations in the feed solution. It was confirmed that grafting of the monomers shows synergetic effect as the yield of copolymerization exceeds degree of grafting achieved for individual components. (author)

  6. Biochemical And Genetic Modification Of Polysaccharides

    Science.gov (United States)

    Kern, Roger G.; Petersen, Gene R.; Richards, Gil F.

    1993-01-01

    Bacteriophages producing endopolysaccharase-type enzymes used to produce, isolate, and purify high yields of modified polysaccharides from polysaccharides produced by, and incorporated into capsules of, certain bacteria. Bacteriophages used in conversion of native polysaccharide materials into polymers of nearly uniform high molecular weight or, alternatively, into highly pure oligosaccharides. Also used in genetic selection of families of polysaccharides structurally related to native polysaccharide materials, but having altered properties. Resulting new polysaccharides and oligosaccharides prove useful in variety of products, including pharmaceutical chemicals, coating materials, biologically active carbohydrates, and drag-reducing additives for fluids.

  7. A multilayered polyurethane foam technique for skin graft immobilization.

    Science.gov (United States)

    Nakamura, Motoki; Ito, Erika; Kato, Hiroshi; Watanabe, Shoichi; Morita, Akimichi

    2012-02-01

    Several techniques are applicable for skin graft immobilization. Although the sponge dressing is a popular technique, pressure failure near the center of the graft is a weakness of the technique that can result in engraftment failure. To evaluate the efficacy of a new skin graft immobilization technique using multilayered polyurethane foam in vivo and in vitro. Twenty-six patients underwent a full-thickness skin graft. Multiple layers of a hydrocellular polyurethane foam dressing were used for skin graft immobilization. In addition, we created an in vitro skin graft model that allowed us to estimate immobilization pressure at the center and edges of skin grafts of various sizes. Overall mean graft survival was 88.9%. In the head and neck region (19 patients), mean graft survival was 93.6%. Based on the in vitro outcomes, this technique supplies effective pressure (skin graft. This multilayered polyurethane foam dressing is simple, safe, and effective for skin graft immobilization. © 2011 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  8. Layer-by-Layer films based on biopolymers extracted from red seaweeds and polyaniline for applications in electrochemical sensors of chromium VI

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Farias, Emanuel Airton de; Corrêa dos Santos, Marianne; Araujo Dionísio, Natália de; Quelemes, Patrick V.; Souza Almeida Leite, José Roberto de [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, CMRV, UFPI, Parnaíba, PI 64202-020 (Brazil); Eaton, Peter [UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto (Portugal); Alves da Silva, Durcilene [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, CMRV, UFPI, Parnaíba, PI 64202-020 (Brazil); Eiras, Carla, E-mail: eiras@cnpq.br [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, CMRV, UFPI, Parnaíba, PI 64202-020 (Brazil); Laboratório Interdisciplinar de Materiais Avançados, LIMAV, CCN, UFPI, Teresina, PI 64049-550 (Brazil)

    2015-10-15

    Graphical abstract: - Highlights: • LbL films based on PANI and polysaccharides of seaweeds were produced and applied sensors of Cr (VI). - Abstract: This paper proposes a new application for natural polysaccharides (agar and carrageenan), both extracted from the cell wall of red seaweeds. Thin films were prepared by the Layer-by-Layer (LbL) self-assembly technique onto ITO (tin-doped indium oxide), where the polysaccharides of interest were deposited in layers alternating with polyaniline (PANI). The films developed were characterized by cyclic voltammetry (CV), ultraviolet–visible spectroscopy (UV–vis) and atomic force microscopy (AFM). Results showed the presence of agar as well as carrageenan, which improves the electrochemical stability of the conducting polymer in an acid medium. The interactions at the molecular level between PANI and the biopolymers affected the most appropriate sequence of deposition as employed in the process of material immobilization and also influenced the resulting morphology. Among the films studied, the most promising system as regards electrochemical measurements was the ITO/agar/PANI system, which was subsequently employed in the electrochemical detection of chromium (VI)

  9. Layer-by-Layer films based on biopolymers extracted from red seaweeds and polyaniline for applications in electrochemical sensors of chromium VI

    International Nuclear Information System (INIS)

    Oliveira Farias, Emanuel Airton de; Corrêa dos Santos, Marianne; Araujo Dionísio, Natália de; Quelemes, Patrick V.; Souza Almeida Leite, José Roberto de; Eaton, Peter; Alves da Silva, Durcilene; Eiras, Carla

    2015-01-01

    Graphical abstract: - Highlights: • LbL films based on PANI and polysaccharides of seaweeds were produced and applied sensors of Cr (VI). - Abstract: This paper proposes a new application for natural polysaccharides (agar and carrageenan), both extracted from the cell wall of red seaweeds. Thin films were prepared by the Layer-by-Layer (LbL) self-assembly technique onto ITO (tin-doped indium oxide), where the polysaccharides of interest were deposited in layers alternating with polyaniline (PANI). The films developed were characterized by cyclic voltammetry (CV), ultraviolet–visible spectroscopy (UV–vis) and atomic force microscopy (AFM). Results showed the presence of agar as well as carrageenan, which improves the electrochemical stability of the conducting polymer in an acid medium. The interactions at the molecular level between PANI and the biopolymers affected the most appropriate sequence of deposition as employed in the process of material immobilization and also influenced the resulting morphology. Among the films studied, the most promising system as regards electrochemical measurements was the ITO/agar/PANI system, which was subsequently employed in the electrochemical detection of chromium (VI)

  10. Polysaccharide charge density regulating protein adsorption to air/water interfaces by protein/polysaccharide complex formation

    NARCIS (Netherlands)

    Ganzevles, R.A.; Kosters, H.; Vliet, T. van; Stuart, M.A.C.; Jongh, H.H.J. de

    2007-01-01

    Because the formation of protein/polysaccharide complexes is dominated by electrostatic interaction, polysaccharide charge density is expected to play a major role in the adsorption behavior of the complexes. In this study, pullulan (a non-charged polysaccharide) carboxylated to four different

  11. Reactivity study of silicon electrode modified by grafting using electrochemical reduction of diazonium salts

    International Nuclear Information System (INIS)

    Kaiber, A.; Cherkkaoui, M.; Chazalviel, J.N.

    2015-01-01

    The use of the hydrogenated surface of silicon is hampered by its chemical instability by surface oxidation. The researchers have attempted to modify this surface by direct grafting through the establishment of covalent silicon-carbon bonds from the reaction of chemical species on the surface. Different grafting methods can be implemented for the preparation of grafted surfaces. The choice of an electrochemical reaction allows fast grafting from the hydrogenated surface. We studied the formation of a phenyl layer by electrochemical reduction of aryl diazonium salts (BF4-,+N2-ph-OCH3) on a p-Si-H (111) electrode in an aqueous medium (0.05M H/sub 2/SO/sub 4/ + 0.05M HF). The grafting of an organic layer by reduction is confirmed by the observation of a cyclic voltammetry peak around -0.3V/SCE. In-situ infrared spectroscopy (IR) analysis allows to identify the chemical functions present on the grafted surface, allowing a direct monitoring of the grafting reaction. (author)

  12. Grafting of Polystyrene Chains at the Edge of Graphene Nanolayers by "Grafting Through" Approach Using Reversible Addition-Fragmentation Chain Transfer Polymerization

    Directory of Open Access Journals (Sweden)

    Hossein Roghani-Mamaqani

    2017-09-01

    Full Text Available Edge-functionalized graphene nanolayers with polystyrene chains were prepared by a “grafting through” reversible addition-fragmentation chain transfer (RAFT polymerization. For this purpose, double-bond containing modifier (MD was prepared. After edge-functionalization of graphene oxide (GO by two different amounts of MD and preparation of modified graphenes (LFG and HFG, RAFT polymerization of styrene was applied for preparation of functionalized GO with different densities of polystyrene chains. Fourier transform infrared spectroscopy showed that MD and polystyrene chains were grafted at the edge of GO. Gas chromatography showed that conversion decreased by the addition of modified GO content and also grafting density of MD. Number-average molecular weight and polydispersity index of polystyrene chains were derived from gel permeation chromatography. Increase of modified graphene content results in a decrease in molecular weight of attached polystyrene chains and also an increase in their PDI value. Increase of grafting density of MD results in decrease of molecular weight of polystyrene chains with no considerable variation in PDI value. Thermogravimetric analysis results showed that char residue is about 45.1 and 46.8% for LFG and HFG, respectively. The content of degradation ascribed to polystyrene increased with increase of grafting density of MD and decreased with increase of modified graphene content. X-ray diffraction results were used for evaluation of interlayer spacing of graphene layers after functionalization process and also study of nanocomposites structure. The results of scanning electron microscopy and transmission electron microscopy show that graphene layers with high clarity turned to opaque layers with lots of creases by oxidation and attachment of polystyrene chains.

  13. Hemocompatible control of sulfobetaine-grafted polypropylene fibrous membranes in human whole blood via plasma-induced surface zwitterionization.

    Science.gov (United States)

    Chen, Sheng-Han; Chang, Yung; Lee, Kueir-Rarn; Wei, Ta-Chin; Higuchi, Akon; Ho, Feng-Ming; Tsou, Chia-Chun; Ho, Hsin-Tsung; Lai, Juin-Yih

    2012-12-21

    In this work, the hemocompatibility of zwitterionic polypropylene (PP) fibrous membranes with varying grafting coverage of poly(sulfobetaine methacrylate) (PSBMA) via plasma-induced surface polymerization was studied. Charge neutrality of PSBMA-grafted layers on PP membrane surfaces was controlled by the low-pressure and atmospheric plasma treatment in this study. The effects of grafting composition, surface hydrophilicity, and hydration capability on blood compatibility of the membranes were determined. Protein adsorption onto the different PSBMA-grafted PP membranes from human fibrinogen solutions was measured by enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies. Blood platelet adhesion and plasma clotting time measurements from a recalcified platelet-rich plasma solution were used to determine if platelet activation depends on the charge bias of the grafted PSBMA layer. The charge bias of PSBMA layer deviated from the electrical balance of positively and negatively charged moieties can be well-controlled via atmospheric plasma-induced interfacial zwitterionization and was further tested with human whole blood. The optimized PSBMA surface graft layer in overall charge neutrality has a high hydration capability and keeps its original blood-inert property of antifouling, anticoagulant, and antithrmbogenic activities when it comes into contact with human blood. This work suggests that the hemocompatible nature of grafted PSBMA polymers by controlling grafting quality via atmospheric plasma treatment gives a great potential in the surface zwitterionization of hydrophobic membranes for use in human whole blood.

  14. Abundance of dissolved polysaccharides in the oxygen minimum layer of the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N; Bhaskar, P.V.; Ramachandran, S.

    hydrolysis and after hydrolysis with dilute HCl (0.09 N) and concentrated H sub(2)SO sub(4) (1.2 M). Monosaccharide (MCHO) concentrations averaged 1.88 plus or minus 1.01 mu andM and showed small variations with depth at all stations. Polysaccharides (PCHO...

  15. Polysaccharide fraction from higher plants which strongly interacts with the cytosolic phosphorylase isozyme. I. Isolation and characterization

    International Nuclear Information System (INIS)

    Yang, Yi; Steup, M.

    1990-01-01

    From leaves of Spinacia oleracea L. or from Pisum sativum L. and from cotyledons of germinating pea seeds a high molecular weight polysaccharide fraction was isolated. The apparent size of the fraction, as determined by gel filtration, was similar to that of dextran blue. Following acid hydrolysis the monomer content of the polysaccharide preparation was studied using high pressure liquid and thin layer chromatography. Glucose, galactose, arabinose, and ribose were the main monosaccharide compounds. The native polysaccharide preparation interacted strongly with the cytosolic isozyme of phosphorylase (EC 2.4.1.1). Interaction with the plastidic phosphorylase isozyme(s) was by far weaker. Interaction with the cytosolic isozyme was demonstrated by affinity electrophoresis, kinetic measurements, and by 14 C-labeling experiments in which the glucosyl transfer from [ 14 C]glucose 1-phosphate to the polysaccharide preparation was monitored

  16. Computer simulation and experimental study of the polysaccharide-polysaccharide interaction in the bacteria Azospirillum brasilense Sp245

    Science.gov (United States)

    Arefeva, Oksana A.; Kuznetsov, Pavel E.; Tolmachev, Sergey A.; Kupadze, Machammad S.; Khlebtsov, Boris N.; Rogacheva, Svetlana M.

    2003-09-01

    We have studied the conformational properties and molecular dynamics of polysaccharides by using molecular modeling methods. Theoretical and experimental results of polysaccharide-polysaccharide interactions are described.

  17. Thermal grafting of fluorinated molecular monolayers on doped amorphous silicon surfaces

    International Nuclear Information System (INIS)

    Sabbah, H.; Zebda, A.; Ababou-Girard, S.; Solal, F.; Godet, C.; Conde, J. P.; Chu, V.

    2009-01-01

    Thermally induced (160-300 deg. C) gas phase grafting of linear alkene molecules (perfluorodecene) was performed on hydrogenated amorphous silicon (a-Si:H) films, either nominally undoped or doped with different boron and phosphorus concentrations. Dense and smooth a-Si:H films were grown using plasma decomposition of silane. Quantitative analysis of in situ x-ray photoelectron spectroscopy indicates the grafting of a single layer of organic molecules. The hydrophobic properties of perfluorodecene-modified surfaces were studied as a function of surface coverage. Annealing experiments in ultrahigh vacuum show the covalent binding and the thermal stability of these immobilized layers up to 370 deg. C; this temperature corresponds to the Si-C bond cleavage temperature. In contrast with hydrogenated crystalline Si(111):H, no heavy wet chemistry surface preparation is required for thermal grafting of alkene molecules on a-Si:H films. A threshold grafting temperature is observed, with a strong dependence on the doping level which produces a large contrast in the molecular coverage for grafting performed at 230 deg. C

  18. Magnetic resonance imaging of hyaline cartilage regeneration in neocartilage graft implantation.

    Science.gov (United States)

    Tan, C F; Ng, K K; Ng, S H; Cheung, Y C

    2003-12-01

    The purpose of this study was to investigate the regenerative potential of hyaline cartilage in a neocartilage graft implant with the aid of MR cartilage imaging using a rabbit model. Surgical osteochondral defects were created in the femoral condyles of 30 mature New Zealand rabbits. The findings of neocartilage in autologous cartilage grafts packed into osteochondral defects were compared with control group of no implant to the osteochondral defect. The outcome of the implantations was correlated with histologic and MR cartilage imaging findings over a 3-month interval. Neocartilage grafts packed into osteochondral defects showed regeneration of hyaline cartilage at the outer layer of the implant using MR cartilage imaging. Fibrosis of fibrocartilage developed at the outer layer of the autologous cartilage graft together with an inflammatory reaction within the osteochondral defect. This animal study provides evidence of the regenerative ability of hyaline cartilage in neocartilage transplants to repair articular cartilage.

  19. Stability of SG1 nitroxide towards unprotected sugar and lithium salts: a preamble to cellulose modification by nitroxide-mediated graft polymerization

    Directory of Open Access Journals (Sweden)

    Guillaume Moreira

    2013-08-01

    Full Text Available The range of applications of cellulose, a glucose-based polysaccharide, is limited by its inherently poor mechanical properties. The grafting of synthetic polymer chains by, for example, a “grafting from” process may provide the means to broaden the range of applications. The nitroxide-mediated polymerization (NMP method is a technique of choice to control the length, the composition and the architecture of the grafted copolymers. Nevertheless, cellulose is difficult to solubilize in organic media because of inter- and intramolecular hydrogen bonds. One possibility to circumvent this limitation is to solubilize cellulose in N,N-dimethylformamide (DMF or N,N-dimethylacetamide (DMA with 5 to 10 wt % of lithium salts (LiCl or LiBr, and carry out grafted polymerization in this medium. The stability of nitroxides such as SG1 has not been studied under these conditions yet, even though these parameters are of crucial importance to perform the graft modification of polysaccharide by NMP. The aim of this work is to offer a model study of the stability of the SG1 nitroxide in organic media in the presence of unprotected glucose or cellobiose (used as a model of cellulose and in the presence of lithium salts (LiBr or LiCl in DMF or DMA.Contrary to TEMPO, SG1 proved to be stable in the presence of unprotected sugar, even with an excess of 100 molar equivalents of glucose. On the other hand, lithium salts in DMF or DMA clearly degrade SG1 nitroxide as proven by electron-spin resonance measurements. The instability of SG1 in these lithium-containing solvents may be explained by the acidification of the medium by the hydrolysis of DMA in the presence of LiCl. This, in turn, enables the disproportionation of the SG1 nitroxide into an unstable hydroxylamine and an oxoammonium ion.Once the conditions to perform an SG1-based nitroxide-mediated graft polymerization from cellobiose have been established, the next stage of this work will be the modification of

  20. Using polysaccharides against cancer

    Directory of Open Access Journals (Sweden)

    E. Azarnoosh

    2017-11-01

    Full Text Available Background and objectives: Nowadays cancer is one of the most important concerns of the society. The adverse effects of common therapeutics and resistance of some cancerous cells to treatment have brought the necessity of new approaches towards the issue. Polysaccharides are a group of carbohydrates found in natural sources. In the present article, our goal was to show the positive effects of carbohydrates (especially polysaccharides in cancer treatment, based on literature review. Methods: The literature review was carried out between 1990 and 2017 inclusive using the following search terms: cancer, carbohydrate and polysaccharide and was performed with use of Google scholar, Medline, Scopus, PubMed, Elsevier and other similar data banks, related to medicine and pharmaceutical fields. Results: Plants like Lyceum barbarum, Astragalus membrannceous, Panax ginseng, and Antrodia camphorate have been studied with promising effects in combating cancerous cells. The polysaccharides from these plants have benefits with numerous mechanisms such as apoptosis, inhibition of angiogenesis, anti-proliferation, immunomodulation, tumor suppression, and increase in macrophage activity. Other studies showed over 200 mushrooms with anticancer effects, especially basidiomycetes (e.g. Ganoderma lucidum. Sulfated polysaccharides found in sea and animals or even a few bacteria like E. coli showed to be useful in cancer. Conclusion: Scientists are realizing the importance of natural drugs and polysaccharide as good and available sources that could give a bright future for prevention, cure and palliative therapy in cancer.

  1. Antioxidant effects of polysaccharides from traditional Chinese medicines.

    Science.gov (United States)

    Liu, Yang; Huang, Gangliang

    2017-12-07

    Polysaccharides are a kind of biological macromolecules with immune regulation, anti-tumor, anti-radiation, anti-inflammation, anti-fatigue and anti-aging effects. These effects are related to their antioxidant properties. The action mechanisms of antioxidation and scavenging free radicals for polysaccharides were reviewed. The polysaccharides contain plant polysaccharides, animal polysaccharides and microbial polysaccharides. The recent research progresses and our work on antioxidant properties of polysaccharides and their derivatives were summarized. At last, the existing problems of antioxidant polysaccharides were analyzed, and the development prospects were also presented. It is important to study the antioxidant activities of polysaccharides and their derivatives for the development of natural antioxidants. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Meniscal allograft transplantation. Part 1: systematic review of graft biology, graft shrinkage, graft extrusion, graft sizing, and graft fixation.

    Science.gov (United States)

    Samitier, Gonzalo; Alentorn-Geli, Eduard; Taylor, Dean C; Rill, Brian; Lock, Terrence; Moutzouros, Vasilius; Kolowich, Patricia

    2015-01-01

    To provide a systematic review of the literature regarding five topics in meniscal allograft transplantation: graft biology, shrinkage, extrusion, sizing, and fixation. A systematic literature search was conducted using the PubMed (MEDLINE), ScienceDirect, and EBSCO-CINAHL databases. Articles were classified only in one topic, but information contained could be reported into other topics. Information was classified according to type of study (animal, in vitro human, and in vivo human) and level of evidence (for in vivo human studies). Sixty-two studies were finally included: 30 biology, 3 graft shrinkage, 11 graft extrusion, 17 graft size, and 6 graft fixation (some studies were categorized in more than one topic). These studies corresponded to 22 animal studies, 22 in vitro human studies, and 23 in vivo human studies (7 level II, 10 level III, and 6 level IV). The principal conclusions were as follows: (a) Donor cells decrease after MAT and grafts are repopulated with host cells form synovium; (b) graft preservation alters collagen network (deep freezing) and causes cell apoptosis with loss of viable cells (cryopreservation); (c) graft shrinkage occurs mainly in lyophilized and gamma-irradiated grafts (less with cryopreservation); (d) graft extrusion is common but has no clinical/functional implications; (e) overall, MRI is not superior to plain radiograph for graft sizing; (f) graft width size matching is more important than length size matching; (g) height appears to be the most important factor influencing meniscal size; (h) bone fixation better restores contact mechanics than suture fixation, but there are no differences for pullout strength or functional results; and (i) suture fixation has more risk of graft extrusion compared to bone fixation. Systematic review of level II-IV studies, Level IV.

  3. Electrochemical Grafting of Graphene Nano Platelets with Aryl Diazonium Salts.

    Science.gov (United States)

    Qiu, Zhipeng; Yu, Jun; Yan, Peng; Wang, Zhijie; Wan, Qijin; Yang, Nianjun

    2016-10-26

    To vary interfacial properties, electrochemical grafting of graphene nano platelets (GNP) with 3,5-dichlorophenyl diazonium tetrafluoroborate (aryl-Cl) and 4-nitrobenzene diazonium tetrafluoroborate (aryl-NO 2 ) was realized in a potentiodynamic mode. The covalently bonded aryl layers on GNP were characterized using atomic force microscopy and X-ray photoelectron spectroscopy. Electrochemical conversion of aryl-NO 2 into aryl-NH 2 was conducted. The voltammetric and impedance behavior of negatively and positively charged redox probes (Fe(CN) 6 3-/4- and Ru(NH 3 ) 6 2+/3+ ) on three kinds of aryl layers grafted on GNP reveal that their interfacial properties are determined by the charge states of redox probes and reactive terminal groups (-Cl, -NO 2 , -NH 2 ) in aryl layers. On aryl-Cl and aryl-NH 2 garted GNP, selective and sensitive monitoring of positively charged lead ions as well as negatively charged nitrite and sulfite ions was achieved, respectively. Such a grafting procedure is thus a perfect way to design and control interfacial properties of graphene.

  4. Incorporation of poly-saccharidic derivatives in model biological systems: monolayers, lamellar phases and vesicles

    International Nuclear Information System (INIS)

    Deme, Bruno

    1995-01-01

    Our aim is to introduce a soluble polymer in a lyotropic lamellar phase, and to modify the force balance in the case of a collapsed system where no repulsive contribution overcomes the van der Waals attraction, except at very short distances where hydration forces dominate (i.e. a collapsed stack of membranes). Mixed layers of a synthetic lecithin (DMPC) and a hydrophobically modified polysaccharide (cholesteryl-pullulan, CHP) have been investigated at the air-water interface by surface tension experiments and by specular reflection of neutrons. The DMPC/CHP/water ternary phase diagram has been determined by small angle X-ray scattering (SAXS) and small angle neutron scattering (SANS). CHP derivatives are associative polymers bearing lateral cholesterol groups that interact with a polar phases such as phospholipid monolayers and biological membranes. These derivatives are surface active and self-aggregate in solution leading to the formation of soluble micellar type aggregates. The interaction of CHP derivatives with lipidic structures involves the anchoring of the cholesterol groups that yields to the tethering of the poly-saccharidic backbones at lipid/water interfaces. These poly-saccharidic backbones are flexible chains in good solvent in water. Using these derivatives and a new preparation procedure, we show that it is possible to avoid the depletion of the polysaccharide due to its steric exclusion by the collapsed DMPC lamellar phase. We are able to prepare samples at thermodynamic equilibrium with the polysaccharide solubilized in the lamellar phase, a situation opposed to the well known behavior of mixed polysaccharide/lecithin Systems commonly used in osmotic stress experiments. Here, the osmotic pressure of the chains confined in the lamellar lattice acts as a new long range repulsive contribution in the DMPC lyotropic L_α phase and results in the swelling of the lamellar phase at large membrane separations (570 A). Such bilayer separations allow out of

  5. Assembly of multilayer microcapsules on CacO3 particles from biocompatible polysaccharides.

    Science.gov (United States)

    Zhao, Qinghe; Mao, Zhengwei; Gao, Changyou; Shen, Jiacong

    2006-01-01

    Multilayer microcapsules were fabricated by layer-by-layer (LbL) assembly of natural polysaccharides onto CaCO3 particles, following with core removal. The micron-sized CaCO3 particles were synthesized by reaction between Ca(NO3)2 and Na2CO3 solutions in the existence of carboxylmethyl cellulose (CMC). The incorporated amount of CMC in the CaCO3 particles was found to be 5.3 wt% by thermogravimetric analysis. Two biocompatible polysaccharides, chitosan and sodium alginate were alternately deposited onto the CaCO3(CMC) templates to obtain hollow microcapsules. Regular oscillation of surface charge as detected by zeta potential demonstrated that the assembly proceeded surely in a LbL manner. The stability of the microcapsules was effectively improved by cross-linking of chitosan with glutaraldehyde. The chemical reaction was verified by infrared spectroscopy. The microcapsules thus fabricated could be spontaneously filled with positively charged low molecular weight substances such as rhodamine 6G and showed good biocompatibility, as detected by in vitro cell culture.

  6. Grafting of molecularly imprinted polymer to porous polyethylene filtration membranes by plasma polymerization.

    Science.gov (United States)

    Cowieson, D; Piletska, E; Moczko, E; Piletsky, S

    2013-08-01

    An application of plasma-induced grafting of polyethylene membranes with a thin layer of molecularly imprinted polymer (MIP) was presented. High-density polyethylene (HDPE) membranes, "Vyon," were used as a substrate for plasma grafting modification. The herbicide atrazine, one of the most popular targets of the molecular imprinting, was chosen as a template. The parameters of the plasma treatment were optimized in order to achieve a good balance between polymerization and ablation processes. Modified HDPE membranes were characterized, and the presence of the grafted polymeric layer was confirmed based on the observed weight gain, pore size measurements, and infrared spectrometry. Since there was no significant change in the porosity of the modified membranes, it was assumed that only a thin layer of the polymer was introduced on the surface. The experiments on the re-binding of the template atrazine to the membranes modified with MIP and blank polymers were performed. HDPE membranes which were grafted with polymer using continuous plasma polymerization demonstrated the best result which was expressed in an imprinted factor equal to 3, suggesting that molecular imprinting was successfully achieved.

  7. Radiation grafting of methyl methacrylate onto polyethylene separators for lithium secondary batteries

    Science.gov (United States)

    Gwon, Sung-Jin; Choi, Jae-Hak; Sohn, Joon-Yong; An, Sung-Jun; Ihm, Young-Eon; Nho, Young-Chang

    2008-08-01

    Micro-porous polyethylene separator was modified by radiation grafting of methyl methacrylate in order to improve its affinity with a liquid electrolyte. The degree of grafting (DOG) increased with the monomer concentration and grafting time. The morphological change of the modified separator was investigated by scanning electron microscopy. The degree of crystallinity upon grafting was reduced due to the formation of an amorphous PMMA layer. The electrolyte uptake and the ionic conductivity of the separator increased with an increase in the DOG. The ionic conductivity reached 2.0 mS/cm for the grafted polyethylene separator with 127 wt% DOG.

  8. Radiation grafting of methyl methacrylate onto polyethylene separators for lithium secondary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gwon, Sung-Jin [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Department of Materials Engineering, Chnugnam National University, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Choi, Jae-Hak; Sohn, Joon-Yong; An, Sung-Jun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Ihm, Young-Eon [Department of Materials Engineering, Chnugnam National University, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Nho, Young-Chang [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)], E-mail: ycnho@kaeri.re.kr

    2008-08-15

    Micro-porous polyethylene separator was modified by radiation grafting of methyl methacrylate in order to improve its affinity with a liquid electrolyte. The degree of grafting (DOG) increased with the monomer concentration and grafting time. The morphological change of the modified separator was investigated by scanning electron microscopy. The degree of crystallinity upon grafting was reduced due to the formation of an amorphous PMMA layer. The electrolyte uptake and the ionic conductivity of the separator increased with an increase in the DOG. The ionic conductivity reached 2.0 mS/cm for the grafted polyethylene separator with 127 wt% DOG.

  9. Qualitative and quantitative analysis of specific polysaccharides in Dendrobium huoshanense by using saccharide mapping and chromatographic methods.

    Science.gov (United States)

    Deng, Yong; Chen, Ling-Xiao; Han, Bang-Xing; Wu, Ding-Tao; Cheong, Kit-Leong; Chen, Nai-Fu; Zhao, Jing; Li, Shao-Ping

    2016-09-10

    Qualitative and quantitative analysis of specific polysaccharides from ten batches of Dendrobium huoshanense were performed using high performance size exclusion chromatography coupled with multi-angle laser light scattering and refractive index detector (HPSEC-MALLS-RID), gas chromatography-mass spectrometry (GC-MS), nuclear magnetic resonance (NMR) and saccharide mapping based on polysaccharides analysis by using carbohydrate gel electrophoresis (PACE) and high performance thin layer chromatography (HPTLC). Results showed that molecular weights, the radius of gyrations, and contents of specific polysaccharides in D. huoshanense were ranging from 1.16×10(5) to 2.17×10(5)Da, 38.8 to 52.1nm, and 9.9% to 19.9%, respectively. Furthermore, the main monosaccharide compositions were Man and Glc. Indeed, the main glycosidic linkages were β-1,4-Manp and β-1,4-Glcp, and substituted with acetyl groups at O-2 and O-3 of 1,4-linked Manp. Moreover, results showed that PACE and HPTLC fingerprints of partial acidic and enzymatic hydrolysates of specific polysaccharides were similar, which are helpful to better understand the specific polysaccharides in D. huoshanense and beneficial to improve their quality control. These approaches could also be routinely used for quality control of polysaccharides in other medicinal plants. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Electroosmotic Flow in Mixed Polymer Brush-Grafted Nanochannels

    Directory of Open Access Journals (Sweden)

    Qianqian Cao

    2016-12-01

    Full Text Available Mixed polymer brush-grafted nanochannels—where two distinct species of polymers are alternately grafted on the inner surface of nanochannels—are an interesting class of nanostructured hybrid materials. By using a coarse-grained molecular dynamics simulation method, we are able to simulate the electrokinetic transport dynamics of the fluid in such nanochannels as well as the conformational behaviors of the mixed polymer brush. We find that (1 the brush adopts vertically-layered and longitudinally-separated structures due to the coupling of electroosmotic flow (EOF and applied electric field; (2 the solvent quality affects the brush conformations and the transport properties of the EOF; (3 the EOF flux non-monotonically depends on the grafting density, although the EOF velocity in the central region of the channel monotonically depends on the grafting density.

  11. Amino acids grafting of Ar+ ions modified PE

    International Nuclear Information System (INIS)

    Svorcik, V.; Hnatowicz, V.; Stopka, P.; Bacakova, L.; Heitz, J.; Oechsner, R.; Ryssel, H.

    2001-01-01

    Polyethylene (PE) was irradiated with 63 keV Ar + ions to the fluences from 1x10 12 to 3x10 15 cm -2 and then grafted at room temperature from water solution with amino acids (alanine, leucine). Using various spectroscopic techniques (UV-VIS, FTIR, RBS and EPR) it was shown that the amino acids penetrate into PE where they are eventually captured either on double bonds or on free radicals created by the ion irradiation. Grafting with amino acids in the whole specimen layer modified by irradiation is observed. The ion-beam-modified and amino-acid grafted PE is supposed to exhibit increased biocompatibility. (author)

  12. Immobilization of glucose oxidase on sepharose by UV-initiated graft copolymerization

    International Nuclear Information System (INIS)

    D'Angiuro, L.; Cremonesi, P.

    1982-01-01

    The performance of a new method of enzyme immobilization based on photochemically initiated direct graft copolymerization was recently investigated. The immobilization reaction can be carried out in a simple way and by carefully selecting the reaction conditions, the enzyme-graft copolymer can be obtained as the main reaction product. Coupling efficiency of glucose oxidase has been found to depend only on the amount of photocatalyst (FeCl 3 ) fixed on Sepharose used as polysaccharide support. Small quantities of glycidylmethacrylate (GMA) (0.25 g/g dry Sepharose) are sufficient but necessary to achieve the best enzyme coupling efficiency (20-40%). Enzyme immobilization occurs very rapidly and the entire reaction occurs within 60 min. Reaction patterns and physicochemical characteristics of the obtained enzyme-graft copolymers exclude the glucose oxidase entrapment: therefore a covalent attachment mechanism may be proposed. The kinetic parameters of immobilized glucose oxidase (K/sub m/' = 2.0 x 10 -2 M) are quite similar to those of free enzyme (K/sub m/ = 1.93 x 10 -2 M), and no diffusion limitation phenomena are evidenced in samples having different enzyme or polymer content. Lyophilization, thermostability, and long-term continuous operation also have been investigated. The advantages of this method over that using vinylenzyme copolymerization are discussed

  13. Polysaccharide components from the scape of Musa paradisiaca: main structural features of water-soluble polysaccharide component.

    Science.gov (United States)

    Anjaneyalu, Y V; Jagadish, R L; Raju, T S

    1997-06-01

    Polysaccharide components present in the pseudo-stem (scape) of M. paradisiaca were purified from acetone powder of the scape by delignification followed by extraction with aqueous solvents into water soluble polysaccharide (WSP), EDTA-soluble polysaccharide (EDTA-SP), alkali-soluble polysaccharide (ASP) and alkali-insoluble polysaccharide (AISP) fractions. Sugar compositional analysis showed that WSP and EDTA-SP contained only D-Glc whereas ASP contained D-Glc, L-Ara and D-Xyl in approximately 1:1:10 ratio, respectively, and AISP contained D-Glc, L-Ara and D-Xyl in approximately 10:1:2 ratio, respectively. WSP was further purified by complexation with iso-amylalcohol and characterized by specific rotation, IR spectroscopy, Iodine affinity, ferricyanide number, blue value, hydrolysis with alpha-amylase and glucoamylase, and methylation linkage analysis, and shown to be a amylopectin type alpha-D-glucan.

  14. Morphological Study on Room-Temperature-Cured PMMA-Grafted Natural Rubber-Toughened Epoxy/Layered Silicate Nanocomposite

    Directory of Open Access Journals (Sweden)

    N. Y. Yuhana

    2012-01-01

    Full Text Available A morphological study was conducted on ternary systems containing epoxy, PMMA-grafted natural rubber, and organic chemically modified montmorillonite (Cloisite 30B. Optical microscopy, transmission electron microscopy (TEM, scanning electron microscopy (SEM, energy dispersive X-ray (EDX, and wide-angle X-ray diffraction (WAXD analysis were used. The following four materials were prepared at room temperature: cured unmodified epoxy, cured toughened epoxy, cured unmodified epoxy/Cloisite 30B nanocomposites, and cured toughened epoxy/Cloisite 30B nanocomposites. Mixing process was performed by mechanical stirring. Poly(etheramine was used as the curing agent. The detailed TEM images revealed co-continuous and dispersed spherical rubber in the epoxy-rubber blend, suggesting a new proposed mechanism of phase separation. High-magnification TEM analysis showed good interactions between rubber and Cloisite 30B in the ternary system. Also, it was found that rubber particles could enhance the separation of silicates layers. Both XRD and TEM analyses confirmed that the intercalation of Cloisite 30B was achieved. No distinct exfoliated silicates were observed by TEM. Aggregates of layered silicates (tactoids were observed by SEM and EDX, in addition to TEM at low magnification. EDX analysis confirmed the presence of organic and inorganic elements in the binary and ternary epoxy systems containing Cloisite 30B.

  15. Surface grafted chitosan gels. Part II. Gel formation and characterization

    DEFF Research Database (Denmark)

    Liu, Chao; Thormann, Esben; Claesson, Per M.

    2014-01-01

    Responsive biomaterial hydrogels attract significant attention due to their biocompatibility and degradability. In order to make chitosan based gels, we first graft one layer of chitosan to silica, and then build a chitosan/poly(acrylic acid) multilayer using the layer-by-layer approach. After...... cross-linking the chitosan present in the polyelectrolyte multilayer, poly(acrylic acid) is partly removed by exposing the multilayer structure to a concentrated carbonate buffer solution at a high pH, leaving a surface-grafted cross-linked gel. Chemical cross-linking enhances the gel stability against...... detachment and decomposition. The chemical reaction between gluteraldehyde, the cross-linking agent, and chitosan was followed in situ using total internal reflection Raman (TIRR) spectroscopy, which provided a molecular insight into the complex reaction mechanism, as well as the means to quantify the cross...

  16. Advances on Bioactive Polysaccharides from Medicinal Plants.

    Science.gov (United States)

    Xie, Jian-Hua; Jin, Ming-Liang; Morris, Gordon A; Zha, Xue-Qiang; Chen, Han-Qing; Yi, Yang; Li, Jing-En; Wang, Zhi-Jun; Gao, Jie; Nie, Shao-Ping; Shang, Peng; Xie, Ming-Yong

    2016-07-29

    In recent decades, the polysaccharides from the medicinal plants have attracted a lot of attention due to their significant bioactivities, such as anti-tumor activity, antioxidant activity, anticoagulant activity, antidiabetic activity, radioprotection effect, anti-viral activity, hypolipidemic and immunomodulatory activities, which make them suitable for medicinal applications. Previous studies have also shown that medicinal plant polysaccharides are non-toxic and show no side effects. Based on these encouraging observations, most researches have been focusing on the isolation and identification of polysaccharides, as well as their bioactivities. A large number of bioactive polysaccharides with different structural features and biological effects from medicinal plants have been purified and characterized. This review provides a comprehensive summary of the most recent developments in physiochemical, structural features and biological activities of bioactive polysaccharides from a number of important medicinal plants, such as polysaccharides from Astragalus membranaceus, Dendrobium plants, Bupleurum, Cactus fruits, Acanthopanax senticosus, Angelica sinensis (Oliv.) Diels, Aloe barbadensis Miller, and Dimocarpus longan Lour. Moreover, the paper has also been focused on the applications of bioactive polysaccharides for medicinal applications. Recent studies have provided evidence that polysaccharides from medicinal plants can play a vital role in bioactivities. The contents and data will serve as a useful reference material for further investigation, production, and application of these polysaccharides in functional foods and therapeutic agents.

  17. Structural analysis of cell wall polysaccharides using PACE

    Energy Technology Data Exchange (ETDEWEB)

    Mortimer, Jennifer C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint BioEnergy Institute

    2017-01-01

    The plant cell wall is composed of many complex polysaccharides. The composition and structure of the polysaccharides affect various cell properties including cell shape, cell function and cell adhesion. Many techniques to characterize polysaccharide structure are complicated, requiring expensive equipment and specialized operators e.g. NMR, MALDI-MS. PACE (Polysaccharide Analysis using Carbohydrate gel Electrophoresis) uses a simple, rapid technique to analyze polysaccharide quantity and structure (Goubet et al. 2002). Whilst the method here describes xylan analysis, it can be applied (by use of the appropriate glycosyl hydrolase) to any cell wall polysaccharide.

  18. l-Arginine grafted alginate hydrogel beads: A novel pH-sensitive system for specific protein delivery

    Directory of Open Access Journals (Sweden)

    Mohamed S. Mohy Eldin

    2015-05-01

    Full Text Available Novel pH-sensitive hydrogels based on l-arginine grafted alginate (Arg-g-Alg hydrogel beads were synthesized and utilized as a new carrier for protein delivery (BSA in specific pH media. l-arginine was grafted onto the polysaccharide backbone of virgin alginate via amine functions. Evidences of grafting of alginate were extracted from FT-IR and thermal analysis, while the morphological structure of Arg-g-Alg hydrogel beads was investigated by SEM photographs. Factors affecting on the grafting process e.g. l-arginine concentration, reaction time, reaction temperature, reaction pH, and crosslinking conditions, have been studied. Whereas, grafting efficiency of each factor was evaluated. Grafting of alginate has improved both thermal and morphological properties of Arg-g-Alg hydrogel beads. The swelling behavior of Arg-g-Alg beads was determined as a function of pH and compared with virgin calcium alginate beads. The cumulative in vitro release profiles of BSA loaded beads were studied at different pHs for simulating the physiological environments of the gastrointestinal tract. The amount of BSA released from neat alginate beads at pH 2 was almost 15% after 5 h, while the Arg-g-Alg beads at the same conditions were clearly higher than 45%, then it increased to 90% at pH 7.2. Accordingly, grafting of alginate has improved its release profile behavior particularly in acidic media. The preliminary results clearly suggested that the Arg-g-Alg hydrogel may be a potential candidate for polymeric carrier for oral delivery of protein or drugs.

  19. An exocellular polysaccharide and its interactions with proteins

    NARCIS (Netherlands)

    Tuinier, R.

    1999-01-01

    In the food industry polysaccharides are used as thickening or gelling agents. Polysaccharides are usually extracted from plants. Micro-organisms are also capable of excreting polysaccharides: exocellular polysaccharides (EPSs). In some cases EPSs are produced in-situ in food products,

  20. Self-organization of grafted polyelectrolyte layers via the coupling of chemical equilibrium and physical interactions.

    Science.gov (United States)

    Tagliazucchi, Mario; de la Cruz, Mónica Olvera; Szleifer, Igal

    2010-03-23

    The competition between chemical equilibrium, for example protonation, and physical interactions determines the molecular organization and functionality of biological and synthetic systems. Charge regulation by displacement of acid-base equilibrium induced by changes in the local environment provides a feedback mechanism that controls the balance between electrostatic, van der Waals, steric interactions and molecular organization. Which strategies do responsive systems follow to globally optimize chemical equilibrium and physical interactions? We address this question by theoretically studying model layers of end-grafted polyacids. These layers spontaneously form self-assembled aggregates, presenting domains of controlled local pH and whose morphologies can be manipulated by the composition of the solution in contact with the film. Charge regulation stabilizes micellar domains over a wide range of pH by reducing the local charge in the aggregate at the cost of chemical free energy and gaining in hydrophobic interactions. This balance determines the boundaries between different aggregate morphologies. We show that a qualitatively new form of organization arises from the coupling between physical interactions and protonation equilibrium. This optimization strategy presents itself with polyelectrolytes coexisting in two different and well-defined protonation states. Our results underline the need of considering the coupling between chemical equilibrium and physical interactions due to their highly nonadditive behavior. The predictions provide guidelines for the creation of responsive polymer layers presenting self-organized patterns with functional properties and they give insights for the understanding of competing interactions in highly inhomogeneous and constrained environments such as those relevant in nanotechnology and those responsible for biological cells function.

  1. Air Pump-Assisted Graft Centration, Graft Edge Unfolding, and Graft Uncreasing in Young Donor Graft Pre-Descemet Endothelial Keratoplasty.

    Science.gov (United States)

    Jacob, Soosan; Narasimhan, Smita; Agarwal, Amar; Agarwal, Athiya; A I, Saijimol

    2017-08-01

    To assess an air pump-assisted technique for graft centration, graft edge unfolding, and graft uncreasing while performing pre-Descemet endothelial keratoplasty (PDEK) using young donor grafts. Continuous pressurized air infusion was used for graft centration, graft edge unfolding, and graft unwrinkling. Ten eyes of 10 patients underwent PDEK with donors aged below 40 years. In all eyes, the donor scrolled into tight scrolls. In all cases, the air pump-assisted technique was effective in positioning and centering the graft accurately and in straightening infolded graft edges and smoothing out graft creases and wrinkles. Endothelial cell loss was 38.6%. Postoperative best-corrected visual acuity at 6 months was 0.66 ± 0.25 in decimal equivalent. Continuous pressurized air infusion acted as a third hand providing a continuous pressure head that supported the graft and prevented graft dislocation as well as anterior chamber collapse during intraocular maneuvering. Adequate maneuvering space was available in all cases, and bleeding, if any, was tamponaded successfully in all cases. Although very young donor grafts may be used for PDEK, they are difficult to center and unroll completely before floating against host stroma. An air pump-assisted technique using continuous pressurized air infusion allows successful final graft positioning even with very young donor corneas. It thus makes surgery easier as several key steps are made easier to handle. It additionally helps in tamponading hemorrhage during peripheral iridectomy, increasing surgical space, preventing fluctuations in the anterior chamber depth, and promoting graft adherence.

  2. Three-Dimensional Structural Aspects of Protein–Polysaccharide Interactions

    Directory of Open Access Journals (Sweden)

    Masamichi Nagae

    2014-03-01

    Full Text Available Linear polysaccharides are typically composed of repeating mono- or disaccharide units and are ubiquitous among living organisms. Polysaccharide diversity arises from chain-length variation, branching, and additional modifications. Structural diversity is associated with various physiological functions, which are often regulated by cognate polysaccharide-binding proteins. Proteins that interact with linear polysaccharides have been identified or developed, such as galectins and polysaccharide-specific antibodies, respectively. Currently, data is accumulating on the three-dimensional structure of polysaccharide-binding proteins. These proteins are classified into two types: exo-type and endo-type. The former group specifically interacts with the terminal units of polysaccharides, whereas the latter with internal units. In this review, we describe the structural aspects of exo-type and endo-type protein-polysaccharide interactions. Further, we discuss the structural basis for affinity and specificity enhancement in the face of inherently weak binding interactions.

  3. Stent graft placement for dysfunctional arteriovenous grafts

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Gyeong Sik [Dept. of Radiology, CHA Bundang Medical Center, College of Medicine, CHA University, Seongnam (Korea, Republic of); Shin, Byung Seok; Ohm, Joon Young; Ahn, Moon Sang [Chungnam National University Hospital, Daejeon (Korea, Republic of)

    2015-07-15

    This study aimed to evaluate the usefulness and outcomes of stent graft use in dysfunctional arteriovenous grafts. Eleven patients who underwent stent graft placement for a dysfunctional hemodialysis graft were included in this retrospective study. Expanded polytetrafluoroethylene covered stent grafts were placed at the venous anastomosis site in case of pseudoaneurysm, venous laceration, elastic recoil or residual restenosis despite the repeated angioplasty. The patency of the arteriovenous graft was evaluated using Kaplan-Meier analysis. Primary and secondary mean patency was 363 days and 741 days. Primary patency at 3, 6, and 12 months was 82%, 73%, and 32%, respectively. Secondary patency at the 3, 6, 12, 24, and 36 months was improved to 91%, 82%, 82%, 50%, and 25%, respectively. Fractures of the stent graft were observed in 2 patients, but had no effect on the patency. Stent graft placement in dysfunctional arteriovenous graft is useful and effective in prolonging graft patency.

  4. Layer-by-layer-assembled healable antifouling films.

    Science.gov (United States)

    Chen, Dongdong; Wu, Mingda; Li, Bochao; Ren, Kefeng; Cheng, Zhongkai; Ji, Jian; Li, Yang; Sun, Junqi

    2015-10-21

    Healable antifouling films are fabricated by the exponential layer-by-layer assembly of PEGylated branched poly(ethylenimine) and hyaluronic acid followed by post-crosslinking. The antifouling function originates from the grafted PEG and the extremely soft nature of the films. The rapid and multiple healing of damaged antifouling functions caused by cuts and scratches can be readily achieved by immersing the films in normal saline solution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Punch grafts to treat lower limb intractable sores

    Directory of Open Access Journals (Sweden)

    JÚLIO WILSON FERNANDES

    Full Text Available ABSTRACT Lower limb recurrent ulcers, usually caused by prolonged decubitus, trauma, diabetes or burns, may not heal with conventional clinical or surgical treatment. Frequently, laminated skin grafts do not integrate with the recipient layer, and the only alternatives are neighbor microsurgical flaps. These have higher morbidity and create secondary defects, to be corrected with skin grafts, when fasciocutaneous or miocutaneous segments are removed for the treatment of the primary defect. We describe the non-conventional use of punch grafts in the treatment of lower limb ulcers, when conventional skin laminated graft failed, without the use of flaps. Since this is a very successful technique, its use should be considered as a valuable alternative for the treatment of recurrent lower limb ulcers. It is a simple and easy-learned technique that may be used by different surgeons, even in remote places without correct specialized hospital facilities.

  6. Role of molecular properties of ulvans on their ability to elaborate antiadhesive surfaces.

    Science.gov (United States)

    Gadenne, Virginie; Lebrun, Laurent; Jouenne, Thierry; Thebault, Pascal

    2015-03-01

    Antiadhesive properties of polysaccharides (such ulvans) once immobilized on a surface are described in the literature but the parameters governing their antifouling properties are not yet well identified. In the present study, the relationship between molecular parameters of ulvans and the inhibition of bacterial adhesion was investigated. To this aim, various ulvans were grafted on silicon wafers under two different experimental immobilization conditions. Results showed that the experimental immobilization conditions and the polysaccharides molecular weight led to specific layer conformations which exhibited a key role in the surface antiadhesive properties. © 2014 Wiley Periodicals, Inc.

  7. Mixed layers of sodium caseinate + dextran sulfate: influence of order of addition to oil-water interface.

    Science.gov (United States)

    Jourdain, Laureline S; Schmitt, Christophe; Leser, Martin E; Murray, Brent S; Dickinson, Eric

    2009-09-01

    We report on the interfacial properties of electrostatic complexes of protein (sodium caseinate) with a highly sulfated polysaccharide (dextran sulfate). Two routes were investigated for preparation of adsorbed layers at the n-tetradecane-water interface at pH = 6. Bilayers were made by the layer-by-layer deposition technique whereby polysaccharide was added to a previously established protein-stabilized interface. Mixed layers were made by the conventional one-step method in which soluble protein-polysaccharide complexes were adsorbed directly at the interface. Protein + polysaccharide systems gave a slower decay of interfacial tension and stronger dilatational viscoelastic properties than the protein alone, but there was no significant difference in dilatational properties between mixed layers and bilayers. Conversely, shear rheology experiments exhibited significant differences between the two kinds of interfacial layers, with the mixed system giving much stronger interfacial films than the bilayer system, i.e., shear viscosities and moduli at least an order of magnitude higher. The film shear viscoelasticity was further enhanced by acidification of the biopolymer mixture to pH = 2 prior to interface formation. Taken together, these measurements provide insight into the origin of previously reported differences in stability properties of oil-in-water emulsions made by the bilayer and mixed layer approaches. Addition of a proteolytic enzyme (trypsin) to both types of interfaces led to a significant increase in the elastic modulus of the film, suggesting that the enzyme was adsorbed at the interface via complexation with dextran sulfate. Overall, this study has confirmed the potential of shear rheology as a highly sensitive probe of associative electrostatic interactions and interfacial structure in mixed biopolymer layers.

  8. Two dimensional NMR studies of polysaccharides

    International Nuclear Information System (INIS)

    Byrd, R.A.; Egan, W.; Summers, M.F.

    1987-01-01

    Polysaccharides are very important components in the immune response system. Capsular polysaccharides and lipopolysaccharides occupy cell surface sites of bacteria, play key roles in recognition and some have been used to develop vaccines. Consequently, the ability to determine chemical structures of these systems is vital to an understanding of their immunogenic action. The authors have been utilizing recently developed two-dimensional homonuclear and heteronuclear correlation spectroscopy for unambiguous assignment and structure determination of a number of polysaccharides. In particular, the 1 H-detected heteronuclear correlation experiments are essential to the rapid and sensitive determination of these structures. Linkage sites are determined by independent polarization transfer experiments and multiple quantum correlation experiments. These methods permit the complete structure determination on very small amounts of the polysaccharides. They present the results of a number of structural determinations and discuss the limits of these experiments in terms of their applications to polysaccharides

  9. Experimental high-frequency ultrasound can detect graft rejection after small bowel transplantation.

    Science.gov (United States)

    Yang, R; Liu, Q; Wu, E X; Pescovitz, M D; Collins, M H; Kopecky, K K; Grosfeld, J L

    1994-02-01

    Early diagnosis of graft rejection after small bowel transplantation (SBT) can allow prompt institution of vigorous immunosuppressive therapy, with resultant reversal of the rejection process. The current method for graft monitoring is random mucosal biopsy from a stomal site or through an endoscope. However, because early rejection often has a patchy distribution, it could be missed by random biopsy. We hypothesized that the pathological process of rejection would alter acoustic impedance of the tissue and thus change the ultrasonic patterns of the graft intestinal wall. If this hypothesis is correct, then high-frequency endoscopic ultrasound (US) could be used to monitor the entire transplanted bowel and guide the biopsy, with improved yields. This hypothesis was tested in a rat orthotopic SBT model. Sixty-two intestinal specimens (9 isografts, 12 allografts treated with cyclosporine A [CsA], 22 untreated allografts, and 19 intestines from normal rats) were collected for in vitro transluminal US imaging (30 MHz) and histopathologic study. The echo pattern of normal rat intestinal wall consisted of five echo layers that correlated spatially with the histological layers: the innermost hyperechoic layer 1, plus hypoechoic layer 2, corresponded to the mucosa; hyperechoic layer 3, the submucosa; anechoic layer 4, the muscularis propria; and hyperechoic layer 5, the serosa. The isografts and CsA-treated allografts were identical histologically and ultrasonically to normal intestine. However, the echo patterns of the untreated allografts had progressive loss of architectural stratification, with worsening rejection. The change began with patchy indistinctness and disruption of hyperechoic layers 1, 3 and 5, and progressed to total obliteration of the layers, with the intestinal wall becoming a nonstratified hypoechoic structure.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Botanical polysaccharides: macrophage immunomodulation and therapeutic potential.

    Science.gov (United States)

    Schepetkin, Igor A; Quinn, Mark T

    2006-03-01

    Botanical polysaccharides exhibit a number of beneficial therapeutic properties, and it is thought that the mechanisms involved in these effects are due to the modulation of innate immunity and, more specifically, macrophage function. In this review, we summarize our current state of understanding of the macrophage modulatory effects of botanical polysaccharides isolated from a wide array of different species of flora, including higher plants, mushrooms, lichens and algae. Overall, the primary effect of botanical polysaccharides is to enhance and/or activate macrophage immune responses, leading to immunomodulation, anti-tumor activity, wound-healing and other therapeutic effects. Furthermore, botanical and microbial polysaccharides bind to common surface receptors and induce similar immunomodulatory responses in macrophages, suggesting that evolutionarily conserved polysaccharide structural features are shared between these organisms. Thus, the evaluation of botanical polysaccharides provides a unique opportunity for the discovery of novel therapeutic agents and adjuvants that exhibit beneficial immunomodulatory properties.

  11. Surface functionalization of cyclic olefin copolymer with aryldiazonium salts: A covalent grafting method

    International Nuclear Information System (INIS)

    Brisset, Florian; Vieillard, Julien; Berton, Benjamin; Morin-Grognet, Sandrine; Duclairoir-Poc, Cécile; Le Derf, Franck

    2015-01-01

    Graphical abstract: - Highlights: • An effective method to modify cyclic olefin copolymer surface. • The surface of COC was modified by covalent grafting of aryl diazonium salts. • The wettability of COC surface was modulated by diazonium salts. • Photoinitiation and chemical reduction have to be combined to graft diazonium salt on COC surface. - Abstract: Covalent immobilization of biomolecules on the surface of cyclic olefin copolymer (COC) is still a tough challenge. We developed a robust method for COC surface grafting through reaction with aryldiazonium. Chemical diazonium reduction generated an aryl radical and the formation of a grafted film layer on the organic surface. We also demonstrated that the chemical reduction of diazonium salt was not sufficient to form a film on the COC surface. UV illumination had to be combined with chemical reduction to graft an aryl layer onto the COC surface. We optimized organic film deposition by using different chemical reducers, different reaction times and reagent proportions. We characterized surface modifications by fluorescence microscopy and contact angle measurements, infrared spectroscopy, X-ray photoemission spectroscopy and Raman spectroscopy, and assessed the topography of the aryl film by atomic force microscopy. This original strategy allowed us to evidence various organic functions to graft biomolecules onto COC surfaces with a fast and efficient technique

  12. Surface functionalization of cyclic olefin copolymer with aryldiazonium salts: A covalent grafting method

    Energy Technology Data Exchange (ETDEWEB)

    Brisset, Florian, E-mail: florian.brisset@etu.univ-rouen.fr [UMR CNRS 6014 COBRA, FR 3038, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France); Vieillard, Julien, E-mail: julien.vieillard@univ-rouen.fr [UMR CNRS 6014 COBRA, FR 3038, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France); Berton, Benjamin, E-mail: benjamin.berton@univ-rouen.fr [EA 3233 SMS, Université de Rouen, 1 rue du 7ème Chasseurs, BP281, 27002 Evreux Cedex (France); Morin-Grognet, Sandrine, E-mail: sandrine.morin@univ-rouen.fr [EA 3829 MERCI, Université de Rouen, 1 rue du 7ème Chasseurs, BP281, 27002 Evreux Cedex (France); Duclairoir-Poc, Cécile, E-mail: cecile.duclairoir@univ-rouen.fr [EA 4312 LMSM, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France); Le Derf, Franck, E-mail: franck.lederf@univ-rouen.fr [UMR CNRS 6014 COBRA, FR 3038, Université de Rouen, 55 rue Saint Germain, 27000 Evreux (France)

    2015-02-28

    Graphical abstract: - Highlights: • An effective method to modify cyclic olefin copolymer surface. • The surface of COC was modified by covalent grafting of aryl diazonium salts. • The wettability of COC surface was modulated by diazonium salts. • Photoinitiation and chemical reduction have to be combined to graft diazonium salt on COC surface. - Abstract: Covalent immobilization of biomolecules on the surface of cyclic olefin copolymer (COC) is still a tough challenge. We developed a robust method for COC surface grafting through reaction with aryldiazonium. Chemical diazonium reduction generated an aryl radical and the formation of a grafted film layer on the organic surface. We also demonstrated that the chemical reduction of diazonium salt was not sufficient to form a film on the COC surface. UV illumination had to be combined with chemical reduction to graft an aryl layer onto the COC surface. We optimized organic film deposition by using different chemical reducers, different reaction times and reagent proportions. We characterized surface modifications by fluorescence microscopy and contact angle measurements, infrared spectroscopy, X-ray photoemission spectroscopy and Raman spectroscopy, and assessed the topography of the aryl film by atomic force microscopy. This original strategy allowed us to evidence various organic functions to graft biomolecules onto COC surfaces with a fast and efficient technique.

  13. Use of surface plasmon resonance (SPR) to study the dissociation and polysaccharide binding of casein micelles and caseins.

    Science.gov (United States)

    Thompson, Abby K; Singh, Harjinder; Dalgleish, Douglas G

    2010-11-24

    Tests were made to determine whether surface plasmon resonance (SPR) could be used as a technique to study the dissociation properties of bovine casein micelles or of sodium caseinate and the interactions between these protein particles and different polysaccharides. Surfaces of bound micelles or caseinate were made, and the changes in refractive index of these layers were used to define changes in the structures of the chemisorbed material. The technique appears to have some potential for studying details of the dissociation of casein micelles and of the binding of different polysaccharides to caseins.

  14. Production of bacterial polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Ellwood, D C; Evans, C G.T.; Yeo, R G

    1978-06-01

    A process for the biochemical synthesis of polysaccharides comprises growing polysaccharide-producing bacteria of the genus Xanthomonas in a single stage continuous culture in a chemically-defined medium. The term chemically-defined medium denotes a culture medium wherein nutrients other than carbon are provided as inorganic salts or single organic compounds of known molecular structure rather than as complex naturally-derived mixtures. Normally the only organic component of the chemically-defined medium will be a conventional carbon source such as a carbohydrate, especially glucose, or glycerol. Preferably the medium should contain only one nitrogen source, since the use of multiple nitrogen sources, as present in complex media, appears to promote changes in the nature of the culture resulting in loss of polysaccharide production. 22 claims.

  15. Structural modification of polysaccharides: A biochemical-genetic approach

    Science.gov (United States)

    Kern, Roger G.; Petersen, Gene R.

    1991-01-01

    Polysaccharides have a wide range of industrial and biomedical applications. An industry trend is underway towards the increased use of bacteria to produce polysaccharides. Long term goals of this work are the adaptation and enhancement of saccharide properties for electronic and optic applications. In this report we illustrate the application of enzyme-bearing bacteriophage on strains of the enteric bacterium Klebsiella pneumoniae, which produces a polysaccharide with the relatively rare rheological property of drag-reduction. This has resulted in the production of new polysaccharides with enhanced rheological properties. Our laboratory is developing techniques for processing and structurally modifying bacterial polysaccharides and oligosaccharides which comprise their basic polymeric repeat units. Our research has focused on bacteriophage which produce specific polysaccharide degrading enzymes. This has lead to the development of enzymes generated by bacteriophage as tools for polysaccharide modification and purification. These enzymes were used to efficiently convert the native material to uniform-sized high molecular weight polymers, or alternatively into high-purity oligosaccharides. Enzyme-bearing bacteriophage also serve as genetic selection tools for bacteria that produce new families of polysaccharides with modified structures.

  16. Liposome-Based Delivery Systems in Plant Polysaccharides

    International Nuclear Information System (INIS)

    Meiwan, C.; Yitao, W.; Yanfang, Z.; Xinsheng, P.; Jingjing, H.; Ping, Z.

    2012-01-01

    Plant polysaccharides consist of many monosaccharide by α or β glycosidic bond which can be extracted by the water, alcohol, lipophile liquid from a variety of plants including Cordyceps sinensis, astragalus, and mushrooms. Recently, many evidences illustrate that natural plant polysaccharides possess various biological activities including strengthening immunity, lowering blood sugar, regulating lipid metabolism, anti oxidation, anti aging, and antitumour. Plant polysaccharides have been widely used in the medical field due to their special features and low toxicity. As an important drug delivery system, liposomes can not only encapsulate small-molecule compound but also big-molecule drug; therefore, they present great promise for the application of plant polysaccharides with unique physical and chemical properties and make remarkable successes. This paper summarized the current progress in plant polysaccharides liposomes, gave an overview on their experiment design method, preparation, and formulation, characterization and quality control, as well as in vivo and in vitro studies. Moreover, the potential application of plant polysaccharides liposomes was prospected as well.

  17. Radiation-grafting of 2-hydroxyethylmethacrylate and oligo (ethylene glycol) methyl ether methacrylate onto polypropylene films by one step method

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Jimenez, Alejandro [Departamento de Quimica de Radiaciones y Radioquimica, Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Mexico DF 04510 (Mexico); Alvarez-Lorenzo, Carmen; Concheiro, Angel [Departamento de Farmacia y Tecnologia Farmaceutica, Universidad de Santiago de Compostela, 15782-Santiago de Compostela (Spain); Bucio, Emilio, E-mail: ebucio@nucleares.unam.mx [Departamento de Quimica de Radiaciones y Radioquimica, Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Mexico DF 04510 (Mexico)

    2012-01-15

    Polypropylene films were modified with 2-hydroxyethylmethacrylate (HEMA) and oligo (ethylene glycol) methyl ether methacrylate (OEGMA) using the pre-irradiation method with gamma-rays (one step method). The effect of absorbed dose from 10 to 100 kGy, temperature (50, 60, and 70 {sup o}C), monomer concentration between 12.5% and 62.5%, monomers ratio from 10% to 90% and reaction time from 5 to 50 h; on the degree of grafting was determined. The grafted samples were analyzed by FTIR-ATR, TGA, DSC, swelling, and contact angle. Grafts onto polymeric films between 3% and 109% were obtained at doses from 10 to 100 kGy and a dose rate around 7.4 kGy/h. The graft percent increased with the content in HEMA in the HEMA:OEGMA feed mixture, which indicates a lower reactivity of OEGMA compared to HEMA. The hydrogel layer grafted on the polypropylene substrate increases the hydrophilicity of the surface and also provides certain temperature-responsiveness, which may be of interest for biomedical applications. - Highlights: > PP was grafted with a hydrogel layer applying the {gamma}-ray pre-irradiation method. > Effects of radiation dose, time, temperature and monomers concentration were evaluated. > Grafted layer increases the hydrophilicity of PP films. > HEMA and OEGMA grafted onto PP may be of interest for biomedical applications.

  18. Hydrogel brushes grafted from stainless steel via surface-initiated atom transfer radical polymerization for marine antifouling

    Science.gov (United States)

    Wang, Jingjing; Wei, Jun

    2016-09-01

    Crosslinked hydrogel brushes were grafted from stainless steel (SS) surfaces for marine antifouling. The brushes were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) respectively with different fractions of crosslinker in the feed. The grafted layers prepared with different thickness were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), ellipsometry and water contact angle measurements. With the increase in the fraction of crosslinker in the feed, the thickness of the grafted layer increased and the surface became smooth. All the brush-coated SS surfaces could effectively reduce the adhesion of bacteria and microalgae and settlement of barnacle cyprids, as compared to the pristine SS surface. The antifouling efficacy of the PEGMA polymer (PPEGMA)-grafted surface was higher than that of the MPC polymer (PMPC)-grafted surfaces. Furthermore, the crosslinked hydrogel brush-grafted surfaces exhibited better fouling resistance than the non-crosslinked polymer brush-grafted surfaces, and the antifouling efficacy increased with the crosslinking density. These hydrogel coatings of low toxicity and excellent anti-adhesive characteristics suggested their useful applications as environmentally friendly antifouling coatings.

  19. Interaction of blood with radiation-grafted materials

    International Nuclear Information System (INIS)

    Ikada, Y.; Suzuki, M.; Taniguchi, M.; Iwata, H.; Taki, W.; Miyake, H.; Yonekawa, Y.; Handa, H.

    1981-01-01

    Extensive works on blood compatibility of polymeric materials have revealed that it is strongly governed by their surface structure and properties. Among them are roughness, hydrophobic-hydrophilic balance, ionic species, and water content in the surface layer. In the present work, low and high density polyethylenes as well as heat-treated poly(vinyl) alcohol are grafted with acrylamide (and acrylic acid for comparison) by a pre-irradiation technique to convert the rigid hydrophobic surface into a soft hydrogel with high water contents. The surface modification of materials with grafted polyacrylamide chains will be confirmed from the contact angle measurement which is one of the best methods for assessing the hydrophilicity of surfaces. Blood compatibility of the resulting surfaces will be evaluated from in vivo experiments by anastomosing the surface-grafted tubes of small diameter with the carotid artery of rat. (author)

  20. Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization.

    Science.gov (United States)

    Chang, Yung; Chang, Wan-Ju; Shih, Yu-Ju; Wei, Ta-Chin; Hsiue, Ging-Ho

    2011-04-01

    Development of nonfouling membranes to prevent nonspecific protein adsorption and platelet adhesion is critical for many biomedical applications. It is always a challenge to control the surface graft copolymerization of a highly polar monomer from the highly hydrophobic surface of a fluoropolymer membrane. In this work, the blood compatibility of poly(vinylidene fluoride) (PVDF) membranes with surface-grafted electrically neutral zwitterionic poly(sulfobetaine methacrylate) (PSBMA), from atmospheric plasma-induced surface copolymerization, was studied. The effect of surface composition and graft morphology, electrical neutrality, hydrophilicity and hydration capability on blood compatibility of the membranes were determined. Blood compatibility of the zwitterionic PVDF membranes was systematically evaluated by plasma protein adsorption, platelet adhesion, plasma-clotting time, and blood cell hemolysis. It was found that the nonfouling nature and hydration capability of grafted PSBMA polymers can be effectively controlled by regulating the grafting coverage and charge balance of the PSBMA layer on the PVDF membrane surface. Even a slight charge bias in the grafted zwitterionic PSBMA layer can induce electrostatic interactions between proteins and the membrane surfaces, leading to surface protein adsorption, platelet activation, plasma clotting and blood cell hemolysis. Thus, the optimized PSBMA surface graft layer in overall charge neutrality has a high hydration capability and the best antifouling, anticoagulant, and antihemolytic activities when comes into contact with human blood. © 2011 American Chemical Society

  1. Functional regeneration of ligament-bone interface using a triphasic silk-based graft.

    Science.gov (United States)

    Li, Hongguo; Fan, Jiabing; Sun, Liguo; Liu, Xincheng; Cheng, Pengzhen; Fan, Hongbin

    2016-11-01

    The biodegradable silk-based scaffold with unique mechanical property and biocompatibility represents a favorable ligamentous graft for tissue-engineering anterior cruciate ligament (ACL) reconstruction. However, the low efficiency of ligament-bone interface restoration barriers the isotropic silk graft to common ACL therapeutics. To enhance the regeneration of the silk-mediated interface, we developed a specialized stratification approach implementing a sequential modification on isotropic silk to constitute a triphasic silk-based graft in which three regions respectively referring to ligament, cartilage and bone layers of interface were divided, followed by respective biomaterial coating. Furthermore, three types of cells including bone marrow mesenchymal stem cells (BMSCs), chondrocytes and osteoblasts were respectively seeded on the ligament, cartilage and bone region of the triphasic silk graft, and the cell/scaffold complex was rolled up as a multilayered graft mimicking the stratified structure of native ligament-bone interface. In vitro, the trilineage cells loaded on the triphasic silk scaffold revealed a high proliferative capacity as well as enhanced differentiation ability into their corresponding cell lineage. 24 weeks postoperatively after the construct was implanted to repair the ACL defect in rabbit model, the silk-based ligamentous graft exhibited the enhancement of osseointegration detected by a robust pullout force and formation of three-layered structure along with conspicuously corresponding matrix deposition via micro-CT and histological analysis. These findings potentially broaden the application of silk-based ligamentous graft for ACL reconstruction and further large animal study. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Cytochemical Localization of Polysaccharides in Dendrobium officinale and the Involvement of DoCSLA6 in the Synthesis of Mannan Polysaccharides

    OpenAIRE

    He, Chunmei; Wu, Kunlin; Zhang, Jianxia; Liu, Xuncheng; Zeng, Songjun; Yu, Zhenming; Zhang, Xinghua; Teixeira da Silva, Jaime A.; Deng, Rufang; Tan, Jianwen; Luo, Jianping; Duan, Jun

    2017-01-01

    Dendrobium officinale is a precious traditional Chinese medicinal plant because of its abundant polysaccharides found in stems. We determined the composition of water-soluble polysaccharides and starch content in D. officinale stems. The extracted water-soluble polysaccharide content was as high as 35% (w/w). Analysis of the composition of monosaccharides showed that the water-soluble polysaccharides were dominated by mannose, to a lesser extent glucose, and a small amount of galactose, in a ...

  3. Research of polysaccharide complexes from asteraceae family plants

    Directory of Open Access Journals (Sweden)

    Світлана Михайлівна Марчишин

    2015-10-01

    Full Text Available Aim of research. Depth study of polysaccharides in some little-known plant species of Asteraceae family is pressing question, considering that polysaccharides are important biologically active compounds widely used in pharmaceutical and medical practice as remedies and preventive medications. The aim of research was to determinate both quantitative content and monomeric composition of polysaccharide complexes from Asteraceae family plant species – Tagetes genus, Arnica genus, and Bellis genus.Materials and methods. Determination of polysaccharides was carried out by the precipitation reaction, using 96 % ethyl alcohol P and Fehling's solution after acid hydrolysis; quantitative content of this group of compounds was determined by gravimetric analysis. On purpose to identify the monomeric composition hydrolysis under sulfuric acid conditions was conducted. Qualitative monomeric composition of polysaccharides after hydrolysis was carried out by paper chromatography method in n-Butanol – Pyridine – Distilled water P (6:4:3 system along with saccharides reference samples.Results. Polysaccharide complexes from Tagetes erecta, Tagetes patula, Tagetes tenuifolia, Arnica montana, Arnica foliosa, wild and cultivated Bellis perennis herbs were studied. Water-soluble polysaccharides and pectin fractions were isolated from studied objects; their quantitative content and monomeric composition were determined.Conclusion. The highest amount of water-soluble polysaccharides was found in cultivated Bellis perennis herb (10,13 %, the highest amount of pectin compounds – in Tagetes tenuifolia herb (13,62 %; the lowest amount of water-soluble polysaccharides and pectin compounds was found in Arnica montana herb (4,61 % and Tagetes patula herb (3,62 %, respectively. It was found that polysaccharide complexes from all studied species include glucose and arabinose

  4. Investigation of graft copolymerization modification of PTFE surface using microwave plasma

    International Nuclear Information System (INIS)

    Wen Yunjian; Guan Weishu; Fang Yan; Ying Yongxiang

    1995-03-01

    Investigation of graft copolymerization modification of PTFE surface with kind of one or another reactive monomers was performed by using non-equilibrium microwave plasma at 2.45 GHz under various operating conditions. Untreated clean samples and grafted samples were examined and analyzed with different surface analytical techniques such as X-Ray Photoelectron Spectroscopy (XPS), Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Scanning Electron Microscopy (SEM). The results showed that the occurrence of noticeable de-fluorination and cross linking on grafted surface, and different polar groups and content of oxygen-containing were introduced into the grafted surface of PTFE. Fibriform hetero-structure layer was also formed. These results confirmed the success of graft and indicated that the hydrophilicity of the grafted surface is excellent and a significant improvement in adhesion characteristics has been achieved. The experiments revealed that the changes in surface properties are correlated closely to the changes in chemical structure, composition and morphology. (8 figs., 1 refs.)

  5. Protein adsorption at polymer-grafted surfaces: Comparison between a mixture of saliva proteins and some well-defined model proteins

    NARCIS (Netherlands)

    Kawasaki, K.; Kambara, M.; Matsumura, H.; Norde, W.

    2003-01-01

    Grafting a dense layer of soluble polymers onto a surface is a well-established method for controlling protein adsorption. In the present study, polyethylene oxide (PEO) layers of three different grafting densities were prepared, i.e. 10-15 nm2, 5.5 nm2 and 4 nm2 per polymer chain, respectively. The

  6. Self-reduction and size controlled synthesis of silver nanoparticles on carbon nanospheres by grafting triazine-based molecular layer for conductivity improvement

    Science.gov (United States)

    Sang, Jing; Aisawa, Sumio; Hirahara, Hidetoshi; Kudo, Takahiro; Mori, Kunio

    2016-02-01

    A facile, self-reduction and size controlled synthesis method has been explored to fabricate silver nanoparticles (Ag NPs) on carbon nanosphere (CNs) under mild conditions. Without using predeposition of seed metals and reducing agent, a uniform and complete layer of Ag NPs was formed through grafting a molecular layer on CNs surfaces under UV irradiation. The size and thickness of Ag NPs were effectively tuned by adjusting the UV irradiation time. This direct formation of Ag NPs was attributed to self seed in aqueous Ag(NH3)2+ complex solution through a triazine-based silane coupling agent molecular layer, even at 25 °C. Scanning electron microscopy (SEM), Transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS) were employed to characterize the Ag NPs' properties. A substantial conductivity improvement of prepared Ag NPs on carbon nanosphere was demonstrated. The presented method is simple and environmentally friendly and thus should be of significant value for the industrial fabrication of Ag NPs on carbon nanosphere in conduct electricity paint and coating applications.

  7. Solvent influence during radiation induced grafting of styrene in PVDF

    International Nuclear Information System (INIS)

    Ferreira, Henrique P.; Parra, Duclerc F.; Lugao, Ademar B.

    2013-01-01

    Radiation-induced grafting was studied to produce styrene grafted poly(vinylidene fluoride) (PVDF) membranes. PVDF films with 0.125 mm thickness were irradiated at doses between 5 and 20 kGy in the presence of styrene/N,N-dimethylformamide (DMF), styrene/acetone or styrene/toluene solutions (1:1, v/v) at dose rate of 5 kGy h -1 by simultaneous method, using gamma rays from a Co-60, under nitrogen atmosphere and at room temperature. The films were characterized before and after modification by grafting yield (GY %), infrared spectroscopy (FT-IR), scanning electron microscopy (SEM and EDS), differential scanning calorimetry (DSC) and thermogravimetry (TG/DTG). GY results shows that grafting increases with dose and toluene hinders the grafting, leading to a small GY comparing to DMF and acetone. It was possible to confirm the grafting of styrene by FT-IR due to the new characteristics peaks and by the TG and DSC due to changes in thermal behavior of the grafted material. SEM and EDS show surface and cross-section distribution of the grafting, which takes place on the surface and heterogeneously with toluene as solvent and homogeneously and penetrating into the inner layers of the matrix using DMF and acetone as solvent. (author)

  8. Solvent influence during radiation induced grafting of styrene in PVDF

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Henrique P.; Parra, Duclerc F.; Lugao, Ademar B., E-mail: hp.ferreira@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Radiation-induced grafting was studied to produce styrene grafted poly(vinylidene fluoride) (PVDF) membranes. PVDF films with 0.125 mm thickness were irradiated at doses between 5 and 20 kGy in the presence of styrene/N,N-dimethylformamide (DMF), styrene/acetone or styrene/toluene solutions (1:1, v/v) at dose rate of 5 kGy h{sup -1} by simultaneous method, using gamma rays from a Co-60, under nitrogen atmosphere and at room temperature. The films were characterized before and after modification by grafting yield (GY %), infrared spectroscopy (FT-IR), scanning electron microscopy (SEM and EDS), differential scanning calorimetry (DSC) and thermogravimetry (TG/DTG). GY results shows that grafting increases with dose and toluene hinders the grafting, leading to a small GY comparing to DMF and acetone. It was possible to confirm the grafting of styrene by FT-IR due to the new characteristics peaks and by the TG and DSC due to changes in thermal behavior of the grafted material. SEM and EDS show surface and cross-section distribution of the grafting, which takes place on the surface and heterogeneously with toluene as solvent and homogeneously and penetrating into the inner layers of the matrix using DMF and acetone as solvent. (author)

  9. Models for formation of macroheterogeneous structure in radiation-grafted polymers

    International Nuclear Information System (INIS)

    Babkin, I.Yu.; Burukhin, S.B.; Maksimov, A.F.

    1994-01-01

    Mathematical models, which describe the formation of grafted polymer layer with respect to variations in sorption and kinetic characteristics due to the changes in composition of the modified polymer and grafted polymer under variable boundary conditions were obtained. The influence of heat effect of polymerization reaction on concentration profiles was estimated. Taking into account the nonlinear diffusion kinetics, the conditions providing diffuse and step profiles of concentration of grafted polymer in polymer matrix were revealed. Step concentration profiles were shown to be associated with a nonlinear dependence of diffusion and kinetic parameters of polymerization on the composition of modified polymer. 22 refs.; 11 figs.; 2 tabs

  10. Extraction, characterisation and antioxidant activity of Allium sativum polysaccharide.

    Science.gov (United States)

    Cheng, Hao; Huang, Gangliang

    2018-07-15

    Extraction and antioxidant activity of polysaccharide from Allium sativum were investigated. The crude polysaccharide was obtained by the hot-water extraction method. The molecular weight of polysaccharide deproteinized with CaCl 2 was 7.35×10 3 . It indicated that polysaccharide from Allium sativum consisted of three monosaccharides, namely fructose, glucose, and galactose by HPLC. The polysaccharide had the β-glycosidic bond. Moreover, it was proved that the polysaccharide had the potential scavenging ability to superoxide anions and hydroxyl radicals. So, it should be a potential antioxidant. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Graft-Sparing Strategy for Thoracic Prosthetic Graft Infection.

    Science.gov (United States)

    Uchino, Gaku; Yoshida, Takeshi; Kakii, Bunpachi; Furui, Masato

    2018-04-01

     Thoracic prosthetic graft infection is a rare but serious complication with no standard management. We reported our surgical experience on graft-sparing strategy for thoracic prosthetic graft infection.  This study included patients who underwent graft-sparing surgery for thoracic prosthetic graft infection at Matsubara Tokushukai Hospital in Japan from January 2000 to October 2017.  There were 17 patients included in the analyses, with a mean age at surgery of 71.0 ± 10.5 years; 11 were men. In-hospital mortality was observed in five patients (29.4%).  Graft-sparing surgery for thoracic prosthetic graft infection is an alternative option particularly for early graft infection after hemiarch replacement. Georg Thieme Verlag KG Stuttgart · New York.

  12. Reepithelialization from stem cells of hair follicles of dermal graft of the scalp in acute treatment of third-degree burns: first clinical and histologic study.

    Science.gov (United States)

    Zakine, Gilbert; Mimoun, Maurice; Pham, Julien; Chaouat, Marc

    2012-07-01

    The scalp, an excellent donor site for thin skin grafts, presents a limited surface but is rich in keratinocyte stem cells. The purpose of this study was to double scalp harvesting in one procedure and to evaluate the capacity of the dermal layer to spontaneously reepithelialize from hair follicle stem cells. Two layers of 0.2-mm split-thickness skin graft, a dermoepidermal graft and a dermal graft, were harvested from scalp during the same procedure. Fifteen burn patients were included in this study. Healing of the scalp donor site and percentage of graft taken were evaluated. The Vancouver Scar Scale was used at 3 months and 1 year. Histologic studies were performed at day 0 and 3 months on grafts, and on the scalp at day 28. Nine patients were treated on the limbs with meshed dermal graft. Six were treated on the hands with unmeshed dermal graft. Graft take was good for both types of grafts. The mean time for scalp healing was 9.3 days. Histologic study confirmed that the second layer was a dermal graft with numerous annexes and that, at 3 months, the dermis had normal thickness but with rarer and smaller epidermal crests than dermal graft. The difference between the mean Vancouver Scar Scale score of dermal graft and dermoepidermal graft was not significant. The authors' study shows the efficacy of dermal graft from the scalp and good scalp healing. Therapeutic, II.

  13. Hybrid Iron Oxide-Graphene Oxide-Polysaccharides Microcapsule: A Micro-Matryoshka for On-demand Drug Release and Antitumor Therapy In Vivo

    KAUST Repository

    Deng, Lin

    2016-02-25

    Premature drug release is a common drawback in stimuli responsive drug delivery systems (DDS) especially if it depends on internal triggers, that are hard to control, or a single external stimulus, that can only have one function. Thus, many DDS systems were reported combining different triggers, however limited success has been established in fine-tuning the release process mainly due to the poor bioavailability and complexity of the reported designs. This paper reports the design of a hybrid microcapsule (h-MC) by a simple layer-by-layer technique comprising polysaccharides (Alg, Chi, HA), iron oxide, and graphene oxide. Electrostatic assembly of the oppositely charged polysaccharides and graphene sheets provided a robust structure to load drugs through pH control. The polysaccharides component ensured high biocompatibility, bioavailability, and tumor cells targeting. Magnetic field and near infrared laser triggerable Fe3O4@GO component provided dual high energy and high penetration hyperthermia therapy. On-demand drug release from h-MC can be achieved by synchronizing these external triggers, making it highly controllable. The synergistic effect of hyperthermia and chemotherapy was successfully confirmed in vitro and in vivo.

  14. Structures of two cell wall-associated polysaccharides of a Streptococcus mitis biovar 1 strain. A unique teichoic acid-like polysaccharide and the group O antigen which is a C-polysaccharide in common with pneumococci

    DEFF Research Database (Denmark)

    Bergström, N; Jansson, P.-E.; Kilian, Mogens

    2000-01-01

    The cell wall of Streptococcus mitis biovar 1 strain SK137 contains the C-polysaccharide known as the common antigen of a closely related species Streptococcus pneumoniae, and a teichoic acid-like polysaccharide with a unique structure. The two polysaccharides are different entities and could...... be partially separated by gel chromatography. The structures of the two polysaccharides were determined by chemical methods and by NMR spectroscopy. The teichoic acid-like polymer has a heptasaccharide phosphate repeating unit with the following structure: The structure neither contains ribitol nor glycerol...... phosphate as classical teichoic acids do, thus we have used the expression teichoic acid-like for this polysaccharide. The following structure of the C-polysaccharide repeating unit was established: where AAT is 2-acetamido-4-amino-2,4, 6-trideoxy-D-galactose. It has a carbohydrate backbone identical...

  15. Hydrogel brushes grafted from stainless steel via surface-initiated atom transfer radical polymerization for marine antifouling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingjing, E-mail: jjwang1@hotmail.com; Wei, Jun

    2016-09-30

    Highlights: • Crosslinked hydrogel brushes were grafted from SS surfaces for marine antifouling. • All brush-coated SS surfaces could effectively reduce the adhesion of biofouling. • The antifouling efficacy increased with the crosslinking density of hydrogels. - Abstract: Crosslinked hydrogel brushes were grafted from stainless steel (SS) surfaces for marine antifouling. The brushes were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) respectively with different fractions of crosslinker in the feed. The grafted layers prepared with different thickness were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), ellipsometry and water contact angle measurements. With the increase in the fraction of crosslinker in the feed, the thickness of the grafted layer increased and the surface became smooth. All the brush-coated SS surfaces could effectively reduce the adhesion of bacteria and microalgae and settlement of barnacle cyprids, as compared to the pristine SS surface. The antifouling efficacy of the PEGMA polymer (PPEGMA)-grafted surface was higher than that of the MPC polymer (PMPC)-grafted surfaces. Furthermore, the crosslinked hydrogel brush-grafted surfaces exhibited better fouling resistance than the non-crosslinked polymer brush-grafted surfaces, and the antifouling efficacy increased with the crosslinking density. These hydrogel coatings of low toxicity and excellent anti-adhesive characteristics suggested their useful applications as environmentally friendly antifouling coatings.

  16. Hydrogel brushes grafted from stainless steel via surface-initiated atom transfer radical polymerization for marine antifouling

    International Nuclear Information System (INIS)

    Wang, Jingjing; Wei, Jun

    2016-01-01

    Highlights: • Crosslinked hydrogel brushes were grafted from SS surfaces for marine antifouling. • All brush-coated SS surfaces could effectively reduce the adhesion of biofouling. • The antifouling efficacy increased with the crosslinking density of hydrogels. - Abstract: Crosslinked hydrogel brushes were grafted from stainless steel (SS) surfaces for marine antifouling. The brushes were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) respectively with different fractions of crosslinker in the feed. The grafted layers prepared with different thickness were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), ellipsometry and water contact angle measurements. With the increase in the fraction of crosslinker in the feed, the thickness of the grafted layer increased and the surface became smooth. All the brush-coated SS surfaces could effectively reduce the adhesion of bacteria and microalgae and settlement of barnacle cyprids, as compared to the pristine SS surface. The antifouling efficacy of the PEGMA polymer (PPEGMA)-grafted surface was higher than that of the MPC polymer (PMPC)-grafted surfaces. Furthermore, the crosslinked hydrogel brush-grafted surfaces exhibited better fouling resistance than the non-crosslinked polymer brush-grafted surfaces, and the antifouling efficacy increased with the crosslinking density. These hydrogel coatings of low toxicity and excellent anti-adhesive characteristics suggested their useful applications as environmentally friendly antifouling coatings.

  17. Experimental evaluation of new chitin-chitosan graft for duraplasty.

    Science.gov (United States)

    Pogorielov, M; Kravtsova, A; Reilly, G C; Deineka, V; Tetteh, G; Kalinkevich, O; Pogorielova, O; Moskalenko, R; Tkach, G

    2017-02-01

    Natural materials such as collagen and alginate have promising applications as dural graft substitutes. These materials are able to restore the dural defect and create optimal conditions for the development of connective tissue at the site of injury. A promising material for biomedical applications is chitosan-a linear polysaccharide obtained by the deacetylation of chitin. It has been found to be nontoxic, biodegradable, biofunctional and biocompatible in addition to having antimicrobial characteristics. In this study we designed new chitin-chitosan substitutes for dura mater closure and evaluated their effectiveness and safety. Chitosan films were produced from 3 % of chitosan (molar mass-200, 500 or 700 kDa, deacetylation rate 80-90%) with addition of 20% of chitin. Antimicrobial effictively and cell viability were analysed for the different molar masses of chitosan. The film containing chitosan of molar mass 200 kDa, had the best antimicrobial and biological activity and was successfully used for experimental duraplasty in an in vivo model. In conclusion the chitin-chitosan membrane designed here met the requirements for a dura matter graft exhibiting the ability to support cell growth, inhibit microbial growth and biodegradade at an appropriate rate. Therefore this is a promising material for clinical duroplasty.

  18. Characterization of active polysaccharides of HemoHIM

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Kwang Sun; Shin, Myeong Suk; Bae, Beom Seon; Hwang, Yong Cheol [Kyonggi University, Suwon (Korea, Republic of); Ryu, Kwang Won [Chungju University, Chungju (Korea, Republic of)

    2007-07-15

    In this study, we aimed to elucidate the detailed structure and active moiety of polysaccharide, one of the active constituents of immune and hematopoietic modulating activities of HemoHIM. We first isolated the polysaccharide fractions from the hot water extracts of the each ingredient herbs (A. gigas, P. janonica, C. officinale) of HemoHIM and their mixture. These polysaccharides were composed of neutral (85.32-92.73%) and acidic (4.25-7.88%) saccharides, proteins (0.16-4.02%), and polyphenols (2.09-5.37%). The hydrolytic analysis of polysaccharide fractions showed that they commonly showed higher arabinose, galactose, and galacturonic acid contents. These result suggested that these polysaccharides may have higher contents of rhamnogalacturonan among pectic substances and the main active moiety is composed of polysaccharides. The anion exchange chromatography of HemoHIM and each ingredient herb extract using DEAE-Sepharose FF (Cl- form) column resulted in 1 non-adsorption and 8 adsorption fractions. The analysis of immune activity (lymphocyte proliferation) on these fractions showed that the fractions obtained by higher salt concentration carried the higher activity, but all fractions showed considerable immune activity

  19. Characterization of active polysaccharides of HemoHIM

    International Nuclear Information System (INIS)

    Shin, Kwang Sun; Shin, Myeong Suk; Bae, Beom Seon; Hwang, Yong Cheol; Ryu, Kwang Won

    2007-07-01

    In this study, we aimed to elucidate the detailed structure and active moiety of polysaccharide, one of the active constituents of immune and hematopoietic modulating activities of HemoHIM. We first isolated the polysaccharide fractions from the hot water extracts of the each ingredient herbs (A. gigas, P. janonica, C. officinale) of HemoHIM and their mixture. These polysaccharides were composed of neutral (85.32-92.73%) and acidic (4.25-7.88%) saccharides, proteins (0.16-4.02%), and polyphenols (2.09-5.37%). The hydrolytic analysis of polysaccharide fractions showed that they commonly showed higher arabinose, galactose, and galacturonic acid contents. These result suggested that these polysaccharides may have higher contents of rhamnogalacturonan among pectic substances and the main active moiety is composed of polysaccharides. The anion exchange chromatography of HemoHIM and each ingredient herb extract using DEAE-Sepharose FF (Cl- form) column resulted in 1 non-adsorption and 8 adsorption fractions. The analysis of immune activity (lymphocyte proliferation) on these fractions showed that the fractions obtained by higher salt concentration carried the higher activity, but all fractions showed considerable immune activity

  20. Modified polysaccharides as alternative binders for foundry industry

    Directory of Open Access Journals (Sweden)

    K. Kaczmarska

    2016-10-01

    Full Text Available Polysaccharides constitute a wide group of important polymers with many commercial applications, for example food packaging, fibres, coatings, adhesives etc. This review is devoted to the presentation of polysaccharide application in foundry industry. In this paper the selected properties of foundry moulding sand and core sand containing modified polysaccharides as binders are presented according to foreign literature data. Also, author’s own research about effect of using moulding sand binder consisting of modified polysaccharide (modified starch or its composition with non-toxic synthetic polymers are discussed. Based on technologies taken under consideration in this paper, it could be concluded that polysaccharides are suitable as an alternative for use as binder in foundry moulding applications.

  1. The immunostimulating role of lichen polysaccharides: a review.

    Science.gov (United States)

    Shrestha, Gajendra; St Clair, Larry L; O'Neill, Kim L

    2015-03-01

    The immune system has capacity to suppress the development or progression of various malignancies including cancer. Research on the immunomodulating properties of polysaccharides obtained from plants, microorganisms, marine organisms, and fungi is growing rapidly. Among the various potential sources, lichens, symbiotic systems involving a fungus and an alga and/or a cyanobacterium, show promise as a potential source of immunomodulating compounds. It is well known that lichens produce an abundance of structurally diverse polysaccharides. However, only a limited number of studies have explored the immunostimulating properties of lichen polysaccharides. Published studies have shown that some lichen polysaccharides enhance production of nitrous oxide (NO) by macrophages and also alter the production levels of various proinflammatory and antiinflammatory cytokines (IL-10, IL-12, IL-1β, TNF-α, and IFN-α/β) by macrophages and dendritic cells. Although there are only a limited number of studies examining the role of lichen polysaccharides, all results suggest that lichen polysaccharides can induce immunomodulatory responses in macrophages and dendritic cells. Thus, a detailed evaluation of immunomodulatory capacity of lichen polysaccharides could provide a unique opportunity for the discovery of novel therapeutic agents. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Structure and chemical composition of layers adsorbed at interfaces with champagne.

    Science.gov (United States)

    Aguié-Béghin, V; Adriaensen, Y; Péron, N; Valade, M; Rouxhet, P; Douillard, R

    2009-11-11

    The structure and the chemical composition of the layer adsorbed at interfaces involving champagne have been investigated using native champagne, as well as ultrafiltrate (UFch) and ultraconcentrate (UCch) obtained by ultrafiltration with a 10(4) nominal molar mass cutoff. The layer adsorbed at the air/liquid interface was examined by surface tension and ellipsometry kinetic measurements. Brewster angle microscopy demonstrated that the layer formed on polystyrene by adsorption or drop evaporation was heterogeneous, with a domain structure presenting similarities with the layer adsorbed at the air/liquid interface. The surface chemical composition of polystyrene with the adlayer was determined by X-ray photoelectron spectroscopy (XPS). The contribution of champagne constituents varied according to the liquid (native, UFch, and UCch) and to the procedure of adlayer formation (evaporation, adsorption, and adsorption + rinsing). However, their chemical composition was not significantly influenced either by ultrafiltration or by the procedure of deposition on polystyrene. Modeling this composition in terms of classes of model compounds gave approximately 35% (w/w) of proteins and 65% (w/w) of polysaccharides. In the adlayer, the carboxyl groups or esters represent about 18% of carbon due to nonpolypeptidic compounds, indicating the presence of either uronic acids in the complex structure of pectic polysaccharides or of polyphenolic esters. This structural and chemical information and its relationship with the experimental procedures indicate that proteins alone cannot be used as a realistic model for the macromolecules forming the adsorption layer of champagne. Polysaccharides, the other major macromolecular components of champagne wine, are assembled with proteins at the interfaces, in agreement with the heterogeneous character of the adsorbed layer at interfaces.

  3. [Comparison on polysaccharide content and PMP-HPLC fingerprints of polysaccharide in stems and leaves of Dendrobium officinale].

    Science.gov (United States)

    Zhou, Gui-Fen; Pang, Min-Xia; Chen, Su-Hong; Lv, Gui-Yuan; Yan, Mei-Qiu

    2014-03-01

    In order to provide scientific basics for exploitation and sufficient application of Dendrobium officinale leaves resources, the phenol-sulfuric acid method was applied to determine the polysaccharide content. The monosaccharides were derivated by PMP and the derivatives were identified by HPLC-DAD-ESI-MS(n) and the contents of mannose and glucose were determined simultaneously. Similarity evaluation system for chromatographic fingerprint of traditional Chinese medicine (2004A) was employed to generate the mean chromatogram and similarity analysis of the samples was carried out. The results demonstrated that polysaccharide content, monosaccharide compositions and composition ratio had an obvious difference between stems and leaves. The polysaccharide content of stems was higher than that of leaves. Monosaccharide composition in leaf was significantly different from that in stem. The polysaccharide from stems was composed of mannose and glucose, however the polysaccharide of leaves was acid heteropolysaccharide and was mainly composed of five monosaccharides, including mannose, galacturonic acid, glucose, galactose and arabinose. The similarity value of the 14 batches was above 0.9, indicating that similarity of fingerprints among different samples was high. The study can provide evidence for expanding the medicinal parts of D. officinale.

  4. Skin graft

    Science.gov (United States)

    Skin transplant; Skin autografting; FTSG; STSG; Split thickness skin graft; Full thickness skin graft ... donor site. Most people who are having a skin graft have a split-thickness skin graft. This takes ...

  5. In vitro prebiotic effects of seaweed polysaccharides

    Science.gov (United States)

    Chen, Xiaolin; Sun, Yuhao; Hu, Linfeng; Liu, Song; Yu, Huahua; Xing, Rong'e.; Li, Rongfeng; Wang, Xueqin; Li, Pengcheng

    2017-09-01

    Although prebiotic activities of alginate and agar oligosaccharides isolated from seaweeds have been reported, it remains unknown whether seaweed polysaccharides have prebiotic activity. In this study, we isolated polysaccharides from four species of seaweeds, such as Grateloupia filicina (GFP), Eucheuma spinosum (ESP), Ulva pertusa (UPP), and Ascophyllum nodosum (ANP), and characterized their structures and prebiotic effects in vitro. The results showed that these polysaccharides were different in total sugar and sulfate contents as well as monosaccharide composition. GFP and ESP significantly promoted bifidobacterium proliferation and 0.1% ESP and 0.4% GFP resulted in the highest proliferation rates of beneficial bacteria, whereas UPP and ANP inhibited the growth of beneficial bacteria at all tested concentrations (0.1%-0.5%). The different behaviors of the four seaweed-originated polysaccharides might be reflected by differences in monosaccharide composition and structure. Therefore, polysaccharides isolated from GFP and ESP could be utilized as prebiotics. However, more studies must be carried out in vivo.

  6. New organophilic kaolin clays based on single-point grafted 3-aminopropyl dimethylethoxysilane.

    Science.gov (United States)

    Zaharia, A; Perrin, F-X; Teodorescu, M; Radu, A-L; Iordache, T-V; Florea, A-M; Donescu, D; Sarbu, A

    2015-10-14

    In this study, the organophilization procedure of kaolin rocks with a monofunctional ethoxysilane- 3 aminopropyl dimethyl ethoxysilane (APMS) is depicted for the first time. The two-step organophilization procedure, including dimethyl sulfoxide intercalation and APMS grafting onto the inner hydroxyl surface of kaolinite (the mineral) layers was tested for three sources of kaolin rocks (KR, KC and KD) with various morphologies and kaolinite compositions. The load of APMS in the kaolinite interlayer space was higher than that of 3-aminopropyl triethoxysilane (APTS) due to the single-point grafting nature of the organophilization reaction. A higher long-distance order of kaolinite layers with low staking was obtained for the APMS, due to a more controllable organiphilization reaction. Last but not least, the solid state (29)Si-NMR tests confirmed the single-point grafting mechanism of APMS, corroborating monodentate fixation on the kaolinite hydroxyl facets, with no contribution to the bidentate or tridentate fixation as observed for APTS.

  7. Evolution of skin grafting for treatment of burns: Reverdin pinch grafting to Tanner mesh grafting and beyond.

    Science.gov (United States)

    Singh, Mansher; Nuutila, Kristo; Collins, K C; Huang, Anne

    2017-09-01

    Skin grafting is the current standard care in the treatment of full thickness burns. It was first described around 1500 BC but the vast majority of advancements have been achieved over the past 200 years. An extensive literature review was conducted on Pubmed, Medline and Google Scholar researching the evolution of skin grafting techniques. The authors concentrated on the major landmarks of skin grafting and also provide an overview of ongoing research efforts in this field. The major innovations of skin grafting include Reverdin pinch grafting, Ollier grafting, Thiersch grafting, Wolfe grafting, Padgett dermatome and modifications, Meek-wall microdermatome and Tanner mesh grafting. A brief description of the usage, advantages and limitations of each technique is included in the manuscript. Skin grafting technique have evolved significantly over past 200 years from Reverdin pinch grafting to modern day meshed skin grafts using powered dermatome. Increasing the expansion ratio and improving the cosmetic and functional outcome are the main focus of ongoing skin grafting research and emerging techniques (such as Integra ® , Recell ® , Xpansion ® ) are showing promise. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  8. Bioactive polysaccharides and gut microbiome (abstract)

    Science.gov (United States)

    Many polysaccharides have shown the ability to reduce plasma cholesterol or postprandial glycemia. Viscosity in the small intestine seems to be required to slow glucose uptake. Cereal mixed linkage beta-glucans, psyllium, glucomannans, and other polysaccharides also seem to require higher molecula...

  9. Biochemical Aspects of Non-Starch Polysaccharides

    Directory of Open Access Journals (Sweden)

    Rodica Căpriţă

    2010-05-01

    Full Text Available Polysaccharides are macromolecules of monosaccharides linked by glycosidic bonds. Non-starch polysaccharides (NSP are principally non-α-glucan polysaccharides of the plant cell wall. They are a heterogeneous group of polysaccharides with varying degrees of water solubility, size, and structure. The water insoluble fiber fraction include cellulose, galactomannans, xylans, xyloglucans, and lignin, while the water-soluble fibers are the pectins, arabinogalactans, arabinoxylans, and β-(1,3(1,4-D-glucans (β-glucans. Knowledge of the chemical structure of NSP has permitted the development of enzyme technology to overcome their antinutritional effects. The physiological effects of NSP on the digestion and absorption of nutrients in human and monogastric animals have been attributed to their physicochemical properties: hydration properties, viscosity, cation exchange capacity and organic compound absorptive properties. This paper reviews and presents information on NSPs chemistry, physicochemical properties and physiological effects on the nutrient entrapment.

  10. Interfacially enhancement of PBO/epoxy composites by grafting MWCNTs onto PBO surface through melamine as molecular bridge

    Science.gov (United States)

    Lv, Junwei; Wang, Bin; Ma, Qi; Wang, Wenjing; Xiang, Dong; Li, Mengyao; Zeng, Lan; Li, Hui; Li, Yuntao; Zhao, Chunxia

    2018-06-01

    Melamine and multi-walled carbon nanotubes (MWCNTs) were grafted onto Poly-p-phenylene benzobisoxazole (PBO) fiber surface effectively via layer-by-layer method. Both of them have been chemically bonded as fourier transform infrared spectroscopy (FTIR) confirmed. Grafting melamine overcame the inertness of PBO surface. Ammoniation was processed on PBO surface through grafting melamine so that the MWCNTs could be grafted onto PBO surface. Scanning electron microscopy (SEM) images indicated that melamine used as molecular bridge could increase MWCNTs’ quantity on PBO surface. X-ray photoelectron spectroscopy (XPS) results revealed the variation of chemical composition of PBO surface. Test of interfacial shear strength (IFSS) and tensile strength indicated the great mechanical properties of modified PBO fibers when combining with epoxy resin. Furthermore, whole reaction was processed under a simple condition. Results in this research also promised a potential method to modify PBO surface.

  11. Immunomodulatory dietary polysaccharides: a systematic review of the literature

    Directory of Open Access Journals (Sweden)

    Nelson Erika D

    2010-11-01

    Full Text Available Abstract Background A large body of literature suggests that certain polysaccharides affect immune system function. Much of this literature, however, consists of in vitro studies or studies in which polysaccharides were injected. Their immunologic effects following oral administration is less clear. The purpose of this systematic review was to consolidate and evaluate the available data regarding the specific immunologic effects of dietary polysaccharides. Methods Studies were identified by conducting PubMed and Google Scholar electronic searches and through reviews of polysaccharide article bibliographies. Only articles published in English were included in this review. Two researchers reviewed data on study design, control, sample size, results, and nature of outcome measures. Subsequent searches were conducted to gather information about polysaccharide safety, structure and composition, and disposition. Results We found 62 publications reporting statistically significant effects of orally ingested glucans, pectins, heteroglycans, glucomannans, fucoidans, galactomannans, arabinogalactans and mixed polysaccharide products in rodents. Fifteen controlled human studies reported that oral glucans, arabinogalactans, heteroglycans, and fucoidans exerted significant effects. Although some studies investigated anti-inflammatory effects, most studies investigated the ability of oral polysaccharides to stimulate the immune system. These studies, as well as safety and toxicity studies, suggest that these polysaccharide products appear to be largely well-tolerated. Conclusions Taken as a whole, the oral polysaccharide literature is highly heterogenous and is not sufficient to support broad product structure/function generalizations. Numerous dietary polysaccharides, particularly glucans, appear to elicit diverse immunomodulatory effects in numerous animal tissues, including the blood, GI tract and spleen. Glucan extracts from the Trametes versicolor

  12. Development and evaluation of a new composite Laserskin graft.

    Science.gov (United States)

    Lam, P K; Chan, E S; To, E W; Lau, C H; Yen, S C; King, W W

    1999-11-01

    Tremendous effort has been made to improve the graft take rate of cultured epidermal autograph. The purpose of this study is to develop and evaluate a new composite Laserskin graft (CLSG) as a human skin substitute for wound resurfacing. The seeding efficacy of cultured keratinocytes on plain Laserskin was compared with the 3T3 cell-seeded Laserskin and allogenic fibroblast-populated Laserskin. Three different types of CLSG, 2 cm in diameter each, were prepared and tested in rats. Type A CLSG consisted of proliferative allogenic rat fibroblasts on both sides of the Laserskin with autologous keratinocytes also on the upper side. Fibroblasts and keratinocytes were seeded only on the upper side of the Laserskin in type B CLSG. Keratinocytes alone were seeded on plain Laserskin in type C CLSG. Type B CLSG consisting of autologous keratinocytes and autologous dermal fibroblasts was tested on five selected wounds (5x5 cm each) of a patient with full-thickness burn. In another burn patient, type B CLSG consisting of autologous keratinocytes and allogenic dermal fibroblasts was grafted onto three wounds (5x5 cm each). The seeding efficacy of human keratinocytes on plain Laserskin increased from 75% to 95% when proliferative allogenic fibroblasts were grown as a feeder layer on the Laserskin. The seeding efficacy of rat keratinocytes increased from 36% to 88% in the presence of a proliferative allogenic fibroblast feeder layer, whereas human/rat keratinocytes had respective seeding efficacy of 98%/91% on Laserskin preseeded with mitomycin C-treated 3T3 cells. Skin biopsies of grafted type A CLSG on day 14 after grafting showed complete epithelialization without severe inflammation in 16 of 20 (80%) grafted surgical wounds in rats. There were eight (40%) and seven (35%) "takes" of the CLSG in types B and C, respectively. The infection rate in type B CLSG was two (10%). There was one (5%) infection in types A and C. The respective take rates on the two patients grafted with

  13. Protective effect of plant polysaccharides against radiation injury

    International Nuclear Information System (INIS)

    Wang Bingji; Huang Shafei; Cheng Lurong

    1989-01-01

    A series of polysaccharides have been isolated from Chinese traditional medicinal herbs and tested in mice subjected to ionizing radiation for their protective action. The polysaccharides from different origins showed various degrees of radioprotection. Those isolated from Hericium erinaceus and Armillaria mellea showed a higher radioprotective effect than some other polysaccharides. They could increase the survival rate of irradiated mice to 60%. But the polysaccheride separated from Apocynum venetum has negligible effect. In general, most of these polysaccharides are effective only on administration before irradiation. No apparent protection was observed when given post irradiation. The polysaccharide isolated from Armillaria venetum could raise the survival rate of mice irradiated by lethal dose of γ-rays to 58%. It is effective even when administered after irradiation. Some work has been carried out to clarify the mechanism of radioprotective action of polysaccharides. Protection of hemapoietic organs, regulation of immunological system, induction of release of some endogeneous bioactive substances in the organism and reduction of oxygen tension in some vital tissues may be correlated with the protection of organism against radiation injury

  14. Graft intolerance syndrome requiring graft nephrectomy after late kidney graft failure: can it be predicted? A retrospective cohort study.

    Science.gov (United States)

    Bunthof, Kim L W; Verhoeks, Carmen M; van den Brand, Jan A J G; Hilbrands, Luuk B

    2018-02-01

    Graft nephrectomy is recommended in case of early graft failure. When the graft fails more than 3-6 months after transplantation, it is current practice to follow a wait-and-see policy. A common indication for graft removal is the graft intolerance syndrome. We aimed to create a risk prediction model for the occurrence of graft intolerance resulting in graft nephrectomy. We collected data of kidney transplantations performed in our center between 1980 and 2010 that failed at least 6 months after transplantation. We evaluated the association between baseline characteristics and the occurrence of graft nephrectomy because of graft intolerance using a competing risk regression model. Prognostic factors were included in a multivariate prediction model. In- and exclusion criteria were met in 288 cases. In 48 patients, the graft was removed because of graft intolerance. Donor age, the number of rejections, and shorter graft survival were predictive factors for graft nephrectomy because of the graft intolerance syndrome. These factors were included in a prediction rule. Using donor age, graft survival, and the number of rejections, clinicians can predict the need for graft nephrectomy with a reasonable accuracy. © 2017 Steunstichting ESOT.

  15. Interaction between gut immunity and polysaccharides.

    Science.gov (United States)

    Huang, Xiaojun; Nie, Shaoping; Xie, Mingyong

    2017-09-22

    The human gut is colonized with a vast and diverse microbial ecosystem, and these bacteria play fundamental roles in the well being of our bodies. Gut-associated lymphoid tissues, the largest mucosal immune system, should never be overlooked for their profound effect in maintaining the host immunity. Therefore, we discussed the relationship between gut immunity and host health, primarily from two aspects: the homeostasis of gut microbiota, and the function of gut-associated lymphoid tissues. Polysaccharides, widely concerned as bioactive macromolecules in recent centuries, have been proved to benefit the intestinal health. Dietary polysaccharides can improve the ratio of probiotics, regulate the intestinal microenvironment like decreasing the gut pH, and stimulate the macrophages or lymphocytes in gut tissues to fight against diseases like cancer. Based on various experimental and clinical evidence, the impacts of dietary polysaccharides on intestinal health are summarized, in order to reveal the possible immunomodulatory mechanisms of polysaccharides.

  16. Electrospun silk fibroin/poly (L-lactide-ε-caplacton) graft with platelet-rich growth factor for inducing smooth muscle cell growth and infiltration.

    Science.gov (United States)

    Yin, Anlin; Bowlin, Gary L; Luo, Rifang; Zhang, Xingdong; Wang, Yunbing; Mo, Xiumei

    2016-12-01

    The construction of a smooth muscle layer for blood vessel through electrospinning method plays a key role in vascular tissue engineering. However, smooth muscle cells (SMCs) penetration into the electrospun graft to form a smooth muscle layer is limited due to the dense packing of fibers and lack of inducing factors. In this paper, silk fibroin/poly (L-lactide-ε-caplacton) (SF/PLLA-CL) vascular graft loaded with platelet-rich growth factor (PRGF) was fabricated by electrospinning. The in vitro results showed that SMCs cultured in the graft grew fast, and the incorporation of PRGF could induce deeper SMCs infiltrating compared to the SF/PLLA-CL graft alone. Mechanical properties measurement showed that PRGF-incorporated graft had proper tensile stress, suture retention strength, burst pressure and compliance which could match the demand of native blood vessel. The success in the fabrication of PRGF-incorporated SF/PLLA-CL graft to induce fast SMCs growth and their strong penetration into graft has important application for tissue-engineered blood vessels.

  17. Brushes and soap : grafted polymers and their interactions with nanocolloids

    OpenAIRE

    Currie, E.P.K.

    2000-01-01

    Layers of polymer chains end-attached to a grafting plane at high densities, so-called brushes, are a curious state of matter. The (average) monomer density within the brush is as high as in a semi-dilute polymer solution, resulting in a high osmotic pressure in the brush. Due to the grafting, however, this isotropic osmotic pressure results in an anisotropic stretching of the chains normal to the surface. This degree of stretching can be quite extensive; in this thesis PEO-chains of...

  18. Enzymatic method for improving the injectability of polysaccharides. [US Patent Application

    Science.gov (United States)

    Griffith, W.L.; Compere, A.L.; Holleman, J.W.

    A method for enhancing the ability of polysaccharides in aqueous solution to flow through a porous medium comprises contacting the polysaccharides with an endoenzyme capable of hydrolyzing at least one of the linkages of the sugar units of the polysaccharides and maintaining the polysaccharides in contact with the enzyme under hydrolysis conditions for a time sufficient to decrease the tendency of the polysaccharides to plug the porous medium yet insufficient to decrease the viscosity of the aqueous polysaccharides by more than 25%. The partially hydrolyzed polysaccharides are useful as thickening agents for flooding water used to recover oil from oil-containing subterranean formations.

  19. Aortic Graft Infection Secondary to Iatrogenic Transcolonic Graft Malposition.

    Science.gov (United States)

    Blank, Jacqueline J; Rothstein, Abby E; Lee, Cheong Jun; Malinowski, Michael J; Lewis, Brian D; Ridolfi, Timothy J; Otterson, Mary F

    2018-01-01

    Aortic graft infections are a rare but devastating complication of aortic revascularization. Often infections occur due to contamination at the time of surgery. Iatrogenic misplacement of the limbs of an aortobifemoral graft is exceedingly rare, and principles of evaluation and treatment are not well defined. We report 2 cases of aortobifemoral bypass graft malposition through the colon. Case 1 is a 54-year-old male who underwent aortobifemoral bypass grafting for acute limb ischemia. He had previously undergone a partial sigmoid colectomy for diverticulitis. Approximately 6 months after vascular surgery, he presented with an occult graft infection. Preoperative imaging and intraoperative findings were consistent with graft placement through the sigmoid colon. Case 2 is a 60-year-old male who underwent aortobifemoral bypass grafting due to a nonhealing wound after toe amputation. His postoperative course was complicated by pneumonia, bacteremia thought to be secondary to the pneumonia, general malaise, and persistent fevers. Approximately 10 weeks after the vascular surgery, he presented with imaging and intraoperative findings of graft malposition through the cecum. Aortic graft infection is usually caused by surgical contamination and presents as an indolent infection. Case 1 presented as such; Case 2 presented more acutely. Both grafts were iatrogenically misplaced through the colon at the index operation. The patients underwent extra-anatomic bypass and graft explantation and subsequently recovered.

  20. Functionalized and graft copolymers of chitosan and its pharmaceutical applications.

    Science.gov (United States)

    Bhavsar, Chintan; Momin, Munira; Gharat, Sankalp; Omri, Abdelwahab

    2017-10-01

    Chitosan is the second most abundant natural polysaccharide. It belongs a family of polycationic polymers comprised of repetitive units of glucosamine and N-acetylglucosamine. Its biodegradability, nontoxicity, non-immunogenicity and biocompatibility along with properties like mucoadhesion, fungistatic and bacteriogenic have made chitosan an appreciated polymer with numerous applications in the pharmaceutical, comestics and food industry. However, the limited solubility of chitosan at alkaline and neutral pH limits its widespread commercial use. This can be circumvented by fabrication of chitosan by graft copolymerization with acyl, alkyl, monomeric and polymeric moieties. Areas covered: Modifications like quarterization, thiolation, acylation and grafting result in copolymers with higher mucoadhesion strength, increased hydrophobic interactions (advantageous in hydrophobic drug entrapment), and increased solubility in alkaline pH, the ability for adsorption of metal ions, protein and peptide delivery and nutrient delivery. Insights on methods of polymerization, including atomic transfer radical polymerization and click chemistry are discussed. Applications of such modified chitosan copolymers in medical and surgical, and drug delivery, including nasal, oral and buccal delivery have also been covered. Expert opinion: Despite a number of successful investigations, commercialization of chitosan copolymers still remains a challenge. Further advancements in polymerization techniques may address the unmet needs of the healthcare industry.

  1. Structural and thermal characterization of polyvinylalcohol grafted SiC nanocrystals

    DEFF Research Database (Denmark)

    Saini, Isha; Sharma, Annu; Dhiman, Rajnish

    2017-01-01

    introduced in the characteristic TO and LO mode of vibration of SiC nanocrystals after grafting procedure.XRD analysis confirmed that the grafting procedure did not alter the crystalline geometry of SiC nanocrystals. TEM and SEM images further support the FTIR and Raman spectroscopic results and confirm...... of semiconducting SiC nanocrystals using a novel method. FTIR spectroscopy reveals the introduction of new peaks corresponding to various functional groups of PVA alongwith the presence of characteristic Si-C vibrational peak in the spectra of grafted SiC nanocrystals. Raman spectra depict the presence of changes...... the presence of PVA layer around SiC nanocrystals. Thermal degradation behavior of PVA-g-SiC nanocrystals has been studied using TGA analysis....

  2. Formation of mixed organic layers by stepwise electrochemical reduction of diazonium compounds.

    Science.gov (United States)

    Santos, Luis; Ghilane, Jalal; Lacroix, Jean Christophe

    2012-03-28

    This work describes the formation of a mixed organic layer covalently attached to a carbon electrode. The strategy adopted is based on two successive electrochemical reductions of diazonium salts. First, bithiophene phenyl (BTB) diazonium salt is reduced using host/guest complexation in a water/cyclodextrin (β-CD) solution. The resulting layer consists of grafted BTB oligomers and cyclodextrin that can be removed from the surface. The electrochemical response of several outer-sphere redox probes on such BTB/CD electrodes is close to that of a diode, thanks to the easily p-dopable oligo(BTB) moieties. When CD is removed from the surface, pinholes are created and this diode like behavior is lost. Following this, nitrophenyl (NP) diazonium is reduced to graft a second component. Electrochemical study shows that upon grafting NP insulating moieties, the diode-like behavior of the layer is restored which demonstrates that NP is grafted predominately in the empty spaces generated by β-CD desorption. As a result, a mixed BTB/NP organic layer covalently attached to a carbon electrode is obtained using a stepwise electrochemical reduction of two diazonium compounds.

  3. Regulation and diversity of plant polysaccharide utilisation in fungi

    NARCIS (Netherlands)

    Battaglia, E.

    2011-01-01

    Filamentous fungi obtain their nutrients by degrading dead or living plant material. Plant material consists of different cell wall and storage polysaccharides. Due to the complex structure and the variety of plant polysaccharides, filamentous fungi secrete a wide range of plant polysaccharide

  4. Improved biotribological properties of PEEK by photo-induced graft polymerization of acrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaoduo; Xiong, Dangsheng, E-mail: xiongds@163.com; Wang, Kun; Wang, Nan

    2017-06-01

    The keys of biomaterials application in artificial joints are good hydrophilicity and wear resistance. One kind of the potential bio-implant materials is polyetheretherketone (PEEK), which has some excellent properties such as non-toxic and good biocompatibility. However, its bioinert surface and inherent chemical inertness hinder its application. In this study, we reported an efficient method for improving the surface wettability and wear resistance for PEEK, a layer of acrylic acid (AA) polymer brushes on PEEK surface was prepared by UV-initiated graft polymerization. The effects of different grafting parameters (UV-irradiation time/AA monomer solution concentration) on surface characteristics were clearly investigated, and the AA-g-PEEK specimens were examined by ATR-FTIR, static water contact angle measurements and friction tests. Our results reveal that AA can be successfully grafted onto the PEEK surface after UV irradiation, the water wettability and tribological properties of AA-g-PEEK are much better than untreated PEEK because that AA is a hydrophilic monomer, the AA layer on PEEK surface can improve its bearing capacity and reduce abrasion. This detailed understanding of the grafting parameters allows us to accurately control the experimental products, and this method of surface modification broadens the use of PEEK in orthopedic implants. - Highlights: • Acrylic acid was successful grafted onto PEEK substrate by UV-initiated graft polymerization. • AA-g-PEEK owned better hydrophilicity than untreated PEEK. • Wear resistance of AA-g-PEEK were significantly improved due to AA brushes could bear high contact stress.

  5. Radiation degradation of marine polysaccharides by low energy electron beam

    International Nuclear Information System (INIS)

    Yoshii, Fumio; Nagasawa, Naotsugu; Kume, Tamikazu

    2003-01-01

    The radiation degradations of marine polysaccharides by both gamma Co-60 and electron beam irradiations are investigated. Polysaccharides and oligosaccharides can be produced by degradation of corresponding polysaccharides including marine polysaccharides such as alginates, chitin chitosan and carrageenan. The viscosity of alginate, chitosan and carrageenan solution decreases markedly with increase of the low energy electron beam irradiation time and the beam current. Furthermore, the viscosity is reduced sharply in short time for polysaccharide solution with low concentration, for instance carrageenan solution of 1%. (author)

  6. Grafting

    Energy Technology Data Exchange (ETDEWEB)

    Garnett, J L [New South Wales Univ., Kensington (Australia). School of Chemistry

    1979-01-01

    The unique value of ionizing radiation for the initiation of grafting to backbone polymers is discussed. The principles of the technique are briefly reviewed. The conditions under which free radicals and ions participate in these reactions are examined. Examples of representative grafting processes are considered to illustrate where the technique can be of potential commercial value to a wide range of industries. The general principles of these grafting reactions are shown to be applicable to radiation induced rapid cure technology such as is provided by electron beam processing facilities. Grafting reactions initiated by UV are also treated and shown to be of importance because of the many similarities in properties of the ionizing radiation and UV systems, also the rapid industrial exploitation of EB and sensitized UV processing technology. Possible future trends in radiation grafting are outlined.

  7. PEGylation on mixed monolayer gold nanoparticles: Effect of grafting density, chain length, and surface curvature.

    Science.gov (United States)

    Lin, Jiaqi; Zhang, Heng; Morovati, Vahid; Dargazany, Roozbeh

    2017-10-15

    PEGylation on nanoparticles (NPs) is widely used to prevent aggregation and to mask NPs from the fast clearance system in the body. Understanding the molecular details of the PEG layer could facilitate rational design of PEGylated NPs that maximize their solubility and stealth ability without significantly compromising the targeting efficiency and cellular uptake. Here, we use molecular dynamics (MD) simulation to understand the structural and dynamic the PEG coating of mixed monolayer gold NPs. Specifically, we modeled gold NPs with PEG grafting densities ranging from 0-2.76chain/nm 2 , chain length with 0-10 PEG monomers, NP core diameter from 5nm to 500nm. It is found that the area accessed by individual PEG chains gradually transits from a "mushroom" to a "brush" conformation as NP surface curvature become flatter, whereas such a transition is not evident on small NPs when grafting density increases. It is shown that moderate grafting density (∼1.0chain/nm 2 ) and short chain length are sufficient enough to prevent NPs from aggregating in an aqueous medium. The effect of grafting density on solubility is also validated by dynamic light scattering measurements of PEGylated 5nm gold NPs. With respect to the shielding ability, simulations predict that increase either grafting density, chain length, or NP diameter will reduce the accessibility of the protected content to a certain size molecule. Interestingly, reducing NP surface curvature is estimated to be most effective in promoting shielding ability. For shielding against small molecules, increasing PEG grafting density is more effective than increasing chain length. A simple model that includes these three investigated parameters is developed based on the simulations to roughly estimate the shielding ability of the PEG layer with respect to molecules of different sizes. The findings can help expand our current understanding of the PEG layer and guide rational design of PEGylated gold NPs for a particular

  8. Plant-Polysaccharide-Degrading Enzymes from Basidiomycetes

    Science.gov (United States)

    Rytioja, Johanna; Hildén, Kristiina; Yuzon, Jennifer; Hatakka, Annele; de Vries, Ronald P.

    2014-01-01

    SUMMARY Basidiomycete fungi subsist on various types of plant material in diverse environments, from living and dead trees and forest litter to crops and grasses and to decaying plant matter in soils. Due to the variation in their natural carbon sources, basidiomycetes have highly varied plant-polysaccharide-degrading capabilities. This topic is not as well studied for basidiomycetes as for ascomycete fungi, which are the main sources of knowledge on fungal plant polysaccharide degradation. Research on plant-biomass-decaying fungi has focused on isolating enzymes for current and future applications, such as for the production of fuels, the food industry, and waste treatment. More recently, genomic studies of basidiomycete fungi have provided a profound view of the plant-biomass-degrading potential of wood-rotting, litter-decomposing, plant-pathogenic, and ectomycorrhizal (ECM) basidiomycetes. This review summarizes the current knowledge on plant polysaccharide depolymerization by basidiomycete species from diverse habitats. In addition, these data are compared to those for the most broadly studied ascomycete genus, Aspergillus, to provide insight into specific features of basidiomycetes with respect to plant polysaccharide degradation. PMID:25428937

  9. Anti-radiation effect of hericium erinaceus polysaccharide

    International Nuclear Information System (INIS)

    Liu Shuchen; Zhang Huijuan; Luo Chuanhuan; Wang Bingji

    1999-01-01

    Objective: To study the anti-radiation effect of hericium erinaceus polysaccharide on irradiated mice. Methods: 520 female mice were randomized to several groups and exposed to 6.25-8.5 Gy whole-body γ-rays. The hericium erinaceus polysaccharide was injected i.p before or after irradiation. The 30-day survival rate of mice was determined, and DNA content of bone marrow was observed as well at seventh day after irradiation. Results: It was showed that the 30-day survival rate and DNA content of bone marrow were all significantly higher in 30 mg or 15 mg hericium erinaceus polysaccharide-treated groups than those in the corresponding irradiated controls (P < 0.01). The 30-day survival rate increased from 35% to 97.5%. Conclusion: The hericium erinaceus polysaccharide has marked anti-radiation effect. Further investigation is worthwhile

  10. Visualization of bacterial polysaccharides by scanning transmission electron microscopy.

    Science.gov (United States)

    Wolanski, B S; McAleer, W J; Hilleman, M R

    1983-04-01

    Highly purified capsular polysaccharides of Neisseria meningitidis groups A, B, and C have been visualized by high resolution Scanning Transmission Electron Microscopy (STEM). Spheroidal macromolecules approximately 200 A in diameter are characteristic of the Meningococcus A and C polysaccharides whereas filaments that are 400-600 A in length are found in Meningococcus B polysaccharide preparations. Filaments are occasionally found associated with the spheroidal Meningococcus A and C polysaccharides and it is proposed that these structures are composed of a long (1-4 microns) filament or filaments that are arranged in spheroidal molecules or micelles of high molecular weight. The Meningococcus B polysaccharide, by contrast, is a short flexuous filament or strand of relatively low molecular weight. A relationship between morphology and antigenicity is proposed.

  11. Chemical studies on the polysaccharides of Salicornia brachiata.

    Science.gov (United States)

    Sanandiya, Naresh D; Siddhanta, A K

    2014-11-04

    A group of 12 polysaccharide extracts were prepared from the tips, stem and roots of an Indian halophyte Salicornia brachiata Roxb. obtained by sequential extractions with cold water (CW), hot water (HW), aqueous ammonium oxalate (OX) and aqueous sodium hydroxide (ALK) solutions. Monosaccharide composition analysis revealed that all the polysaccharide extract samples consisted primarily of rhamnose, arabinose, mannose, galactose, glucose, whereas ribose and xylose were present only in some of the extracts. All the extracts exhibited low apparent viscosity (1.47-2.02 cP) and sulphate and contained no prominent toxic metal ions. Fucose was detected only in OX extract of the roots. These polysaccharides were found to be heterogeneous and highly branched (glycoside linkage analysis, size-exclusion chromatography, (13)C-NMR, FT-IR, circular dichroism and optical rotation data). Physico-chemical analyses of these polysaccharides including uronic acid, sulphate and protein contents were also carried out. This constitutes the first report on the profiling of Salicornia polysaccharides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Comparison of polysaccharides from two species of Ganoderma.

    Science.gov (United States)

    Xie, Jing; Zhao, Jing; Hu, De-Jun; Duan, Jin-Ao; Tang, Yu-Ping; Li, Shao-Ping

    2012-01-13

    Ganoderma lucidum and Ganoderma sinense, known as Lingzhi in Chinese, are commonly used Chinese medicines with excellent beneficial health effects. Triterpenes and polysaccharides are usually considered as their main active components. However, the content of triterpenes differs significantly between the two species of Ganoderma. To date, a careful comparison of polysaccharides from the two species of Ganoderma has not been performed. In this study, polysaccharides from fruiting bodies of two species of Lingzhi collected from different regions of China were analyzed and compared based on HPSEC-ELSD and HPSEC-MALLS-RI analyses, as well as enzymatic digestion and HPTLC of acid hydrolysates. The results indicated that both the HPSEC-ELSD profiles and the molecular weights of the polysaccharides were similar. Enzymatic digestion showed that polysaccharides from all samples of Lingzhi could be hydrolyzed by pectinase and dextranase. HPTLC profiles of their TFA hydrolysates colored with different reagents and their monosaccharides composition were also similar.

  13. Comparison of Polysaccharides from Two Species of Ganoderma

    OpenAIRE

    Xie, Jing; Zhao, Jing; Hu, De-Jun; Duan, Jin-Ao; Tang, Yu-Ping; Li, Shao-Ping

    2012-01-01

    Ganoderma lucidum and Ganoderma sinense, known as Lingzhi in Chinese, are commonly used Chinese medicines with excellent beneficial health effects. Triterpenes and polysaccharides are usually considered as their main active components. However, the content of triterpenes differs significantly between the two species of Ganoderma. To date, a careful comparison of polysaccharides from the two species of Ganoderma has not been performed. In this study, polysaccharides from fruiting bodies of two...

  14. Polysaccharides in fungi. XXXII. Hypoglycemic activity and chemical properties of a polysaccharide from the cultural mycelium of Cordyceps sinensis.

    Science.gov (United States)

    Kiho, T; Hui, J; Yamane, A; Ukai, S

    1993-12-01

    Crude polysaccharides were obtained from a hot-water extract and alkaline extracts of the cultural mycelium of Cordyceps sinensis. They showed significant activity in normal mice and streptozotocin-induced diabetic mice as a result of intraperitoneal (i.p.) injection. A crude polysaccharide (CS-OHEP) obtained from 5% sodium hydroxide extract slightly lowered the plasma glucose level in normal mice by oral (p.o.) administration. A neutral polysaccharide (CS-F30) exhibited higher hypoglycemic activity than its crude polysaccharide (CS-OHEP), exhibited by i.p. injection, and it significantly lowered the glucose level by p.o. administration (50 mg/kg). However, it hardly affected the plasma insulin level in normal mice. CS-F30 ([alpha]D + 21 degrees in water) is composed of galactose, glucose and mannose (molar percent, 62:28:10), and its molecular weight is about 45000.

  15. Radiation-chemical destruction of cellulose and other polysaccharides

    International Nuclear Information System (INIS)

    Ershov, B.G.

    1998-01-01

    The studies concerning the radiation-chemical destruction of cellulose, its ethers and some polysaccharides (xylan, starch, decstrans, chitin, chitosan and geparin) are discussed. Ionising irradiation causes the destruction of these compounds with the decay of pyranose ring, accompanied by the formation of compounds containing carbonyl or carboxyl groups, as well as hydrogen, carbon dioxide, and carbon oxide. The efficiency of radiation degradation increases with increasing the temperature and depends on the structure of polysaccharides and the nature of substituents. The mechanism of radiation-chemical transformations of cellulose and others polysaccharides is proposed. Prospects of the application of radiation-chemical methods of treatment of cellulose and other polysaccharides in industry and agriculture considered [ru

  16. Improved coupling of bacterial polysaccharides to macromolecules and solid supports

    DEFF Research Database (Denmark)

    2013-01-01

    The invention relates to a method of producing a polysaccharide-carrier conjugate comprising coupling a polysaccharide to a carrier, said polysaccharide comprising at least one monosaccharide unit comprising a keto-carboxy group according to the formula -C(=O)COOR, where R is either hydrogen or C1......-alkoxyamine group of the carrier with a keto-carboxy group of said polysaccharide to form a covalent amide bond between the carrier and the polysaccharide. Another aspect of the present invention relates to a compound or solid surface obtained when performing the method of the present invention. A third aspect...

  17. Improved biotribological properties of PEEK by photo-induced graft polymerization of acrylic acid.

    Science.gov (United States)

    Zhao, Xiaoduo; Xiong, Dangsheng; Wang, Kun; Wang, Nan

    2017-06-01

    The keys of biomaterials application in artificial joints are good hydrophilicity and wear resistance. One kind of the potential bio-implant materials is polyetheretherketone (PEEK), which has some excellent properties such as non-toxic and good biocompatibility. However, its bioinert surface and inherent chemical inertness hinder its application. In this study, we reported an efficient method for improving the surface wettability and wear resistance for PEEK, a layer of acrylic acid (AA) polymer brushes on PEEK surface was prepared by UV-initiated graft polymerization. The effects of different grafting parameters (UV-irradiation time/AA monomer solution concentration) on surface characteristics were clearly investigated, and the AA-g-PEEK specimens were examined by ATR-FTIR, static water contact angle measurements and friction tests. Our results reveal that AA can be successfully grafted onto the PEEK surface after UV irradiation, the water wettability and tribological properties of AA-g-PEEK are much better than untreated PEEK because that AA is a hydrophilic monomer, the AA layer on PEEK surface can improve its bearing capacity and reduce abrasion. This detailed understanding of the grafting parameters allows us to accurately control the experimental products, and this method of surface modification broadens the use of PEEK in orthopedic implants. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Characterization of polysaccharides from Ganoderma spp. using saccharide mapping.

    Science.gov (United States)

    Wu, Ding-Tao; Xie, Jing; Hu, De-Jun; Zhao, Jing; Li, Shao-Ping

    2013-09-12

    Polysaccharides from Ganoderma spp. and their adulterants were firstly investigated and compared using saccharide mapping, enzymatic (endo-1,3-β-D-glucanase and pectinase) digestion followed by polysaccharide analysis using carbohydrate gel electrophoresis analysis. The results showed that both 1,3-β-D-glucosidic and 1,4-α-D-galactosiduronic linkages were existed in Lingzhi (Ganoderma lucidum and Ganoderma sinense), and the similarity of polysaccharides from G. lucidum and G. sinense was high, which may contribute to rational use of Lingzhi. Different species of Ganoderma and their adulterants can be differentiated based on the saccharide mapping, which is helpful to well understand the structural characters of polysaccharides from different species of Ganoderma and to improve the quality control of polysaccharides in Lingzhi. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Grafting and curing

    International Nuclear Information System (INIS)

    Garnett, J.L.; Loo-Teck Ng; Visay Viengkhou

    1998-01-01

    Progress in radiation grafting and curing is briefly reviewed. The two processes are shown to be mechanistically related. The parameters influencing yields are examined particularly for grafting. For ionising radiation grafting systems (EB and gamma ray) these include solvents, substrate and monomer structure, dose and dose-rate, temperature and more recently role of additives. In addition, for UV grafting, the significance of photoinitiators is discussed. Current applications of radiation grafting and curing are outlined. The recent development of photoinitiator free grafting and curing is examined as well as the potential for the new excimer laser sources. The future application of both grafting and curing is considered, especially the significance of the occurrence of concurrent grafting during cure and its relevance in environmental considerations

  20. Particle localization and hyperuniformity of polymer-grafted nanoparticle materials

    Energy Technology Data Exchange (ETDEWEB)

    Chremos, Alexandros [Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD (United States); Douglas, Jack F.

    2017-05-15

    The properties of materials largely reflect the degree and character of the localization of the molecules comprising them so that the study and characterization of particle localization has central significance in both fundamental science and material design. Soft materials are often comprised of deformable molecules and many of their unique properties derive from the distinct nature of particle localization. We study localization in a model material composed of soft particles, hard nanoparticles with grafted layers of polymers, where the molecular characteristics of the grafted layers allow us to ''tune'' the softness of their interactions. Soft particles are particular interesting because spatial localization can occur such that density fluctuations on large length scales are suppressed, while the material is disordered at intermediate length scales; such materials are called ''disordered hyperuniform''. We use molecular dynamics simulation to study a liquid composed of polymer-grafted nanoparticles (GNP), which exhibit a reversible self-assembly into dynamic polymeric GNP structures below a temperature threshold, suggesting a liquid-gel transition. We calculate a number of spatial and temporal correlations and we find a significant suppression of density fluctuations upon cooling at large length scales, making these materials promising for the practical fabrication of ''hyperuniform'' materials. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Chemical characteristics and anti-proliferation activities of Ganoderma tsugae polysaccharides.

    Science.gov (United States)

    Chien, Rao-Chi; Yen, Ming-Tsung; Tseng, Yu-Hsiu; Mau, Jeng-Leun

    2015-09-05

    Polysaccharides were extracted by hot-water and hot-alkali from four forms of Ganoderma tsugae including mature and baby Ling chih, mycelium and filtrate. Different profiles of proximate composition and monosaccharide constituents, and element contents were found in the extracted polysaccharides from different extractions and different forms. The molecular weight distributions of polysaccharides were 2.8×10(4)-6.5×10(5)Da and their infrared spectra were comparable. The hot-alkali extracted polysaccharides exhibited better anti-proliferation on IMR32 cells than the hot-water extracted polysaccharides, which were in turn more effective than the hot-water extracts. Besides, most hot-water extracts and both extracted polysaccharides exhibited an anti-proliferation effect on Hep G2 cells. However, the hot-water extracts showed less effective in anti-proliferation of IMR32 and Hep G2 cells. Based on the anti-tumor effects, both polysaccharides could be prepared for use in the formulation of nutraceuticals and functional foods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Electronic structure of methoxy-, bromo-, and nitrobenzene grafted onto Si(111).

    Science.gov (United States)

    Hunger, Ralf; Jaegermann, Wolfram; Merson, Alexandra; Shapira, Yoram; Pettenkofer, Christian; Rappich, Jörg

    2006-08-10

    The properties of Si(111) surfaces grafted with benzene derivatives were investigated using ultraviolet photoemission spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS). The investigated materials were nitro-, bromo-, and methoxybenzene layers (-C(6)H(4)-X, with X = NO(2), Br, O-CH(3)) deposited from diazonium salt solutions in a potentiostatic electrochemical process. The UPS spectra of the valence band region are governed by the molecular orbital density of states of the adsorbates, which is modified from the isolated state in the gas phase due to molecule-molecule and molecule-substrate interaction. Depending on the adsorbate, clearly different emission features are observed. The analysis of XPS intensities clearly proves multilayer formation for bromo- and nitrobenzene in agreement with the amount of charge transferred during the grafting process. Methoxybenzene forms only a sub-monolayer coverage. The detailed analysis of binding energy shifts of the XPS emissions for determining the band bending and the secondary electron onset in UPS spectra for determining the work function allow one to discriminate between surface dipole layers--changing the electron affinity--and band bending, affecting only the work function. Thus, complete energy band diagrams of the grafted Si(111) surfaces can be constructed. It was found that silicon surface engineering can be accomplished by the electrochemical grafting process using nitrobenzene and bromobenzene: silicon-derived interface gap states are chemically passivated, and the adsorbate-related surface dipole effects an increase of the electron affinity.

  3. Structure of polysaccharide antibiotics

    International Nuclear Information System (INIS)

    Matutano, L.

    1966-01-01

    Study of the structure of antibiotics having two or several sugars in their molecule. One may distinguish: the polysaccharide antibiotics themselves, made up of two or several sugars either with or without nitrogen, such as streptomycin, neomycins, paromomycine, kanamycin, chalcomycin; the hetero-polysaccharide antibiotics made up of one saccharide part linked to an aglycone of various type through a glucoside: macrolide, pigment, pyrimidine purine. Amongst these latter are: erythromycin, magnamycin, spiramycin, oleandomycin, cinerubin and amicetin. The sugars can either play a direct role in biochemical reactions or act as a dissolving agent, as far as the anti-microbe power of these antibiotics is concerned. (author) [fr

  4. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity.

    Science.gov (United States)

    Chen, Yun; Yao, Fangke; Ming, Ke; Wang, Deyun; Hu, Yuanliang; Liu, Jiaguo

    2016-12-13

    Traditional Chinese Medicine (TCM) has been used to treat diseases in China for thousands of years. TCM compositions are complex, using as their various sources plants, animals, fungi, and minerals. Polysaccharides are one of the active and important ingredients of TCMs. Polysaccharides from TCMs exhibit a wide range of biological activities in terms of immunity- modifying, antiviral, anti-inflammatory, anti-oxidative, and anti-tumor properties. With their widespread biological activities, polysaccharides consistently attract scientist's interests, and the studies often concentrate on the extraction, purification, and biological activity of TCM polysaccharides. Currently, numerous studies have shown that the modification of polysaccharides can heighten or change the biological activities, which is a new angle of polysaccharide research. This review highlights the current knowledge of TCM polysaccharides, including their extraction, purification, modification, and biological activity, which will hopefully provide profound insights facilitating further research and development.

  5. [Effects of tree species on polysaccharides content of epiphytic Dendrobium officinale].

    Science.gov (United States)

    Guo, Ying-Ying; Zhu, Yan; Si, Jin-Ping; Liu, Jing-Jing; Wu, Cheng-Yong; Li, Hui

    2014-11-01

    To reveals the effects of tree species on polysaccharides content of epiphytic Dendrobium officinale. The polysaccharides content of D. officinale attached to living tress in wild or stumps in bionic-facility was determined by phenol-sulfuric acid method. There were extremely significant differences of polysaccharides content of D. officinale attached to different tree species, but the differences had no relationship with the form and nutrition of barks. The polysaccharides content of D. officinale mainly affected by the light intensity of environment, so reasonable illumination favored the accumulation of polysaccharides. Various polysaccharides content of D. officinal from different attached trees is due to the difference of light regulation, but not the form and nutrition of barks.

  6. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity

    Directory of Open Access Journals (Sweden)

    Yun Chen

    2016-12-01

    Full Text Available Traditional Chinese Medicine (TCM has been used to treat diseases in China for thousands of years. TCM compositions are complex, using as their various sources plants, animals, fungi, and minerals. Polysaccharides are one of the active and important ingredients of TCMs. Polysaccharides from TCMs exhibit a wide range of biological activities in terms of immunity- modifying, antiviral, anti-inflammatory, anti-oxidative, and anti-tumor properties. With their widespread biological activities, polysaccharides consistently attract scientist's interests, and the studies often concentrate on the extraction, purification, and biological activity of TCM polysaccharides. Currently, numerous studies have shown that the modification of polysaccharides can heighten or change the biological activities, which is a new angle of polysaccharide research. This review highlights the current knowledge of TCM polysaccharides, including their extraction, purification, modification, and biological activity, which will hopefully provide profound insights facilitating further research and development.

  7. Grafting the alar rim: application as anatomical graft.

    Science.gov (United States)

    Gruber, Ronald P; Fox, Paige; Peled, Anne; Belek, Kyle A

    2014-12-01

    Alar rim contour and alar rim grafts have become essential components of rhinoplasty. Ideally, grafts of the nose should be anatomical in shape. So doing might make grafts of the alar rim more robust. The authors considered doing that by applying the graft as a continuous extension of the lateral crus. Twelve patients (two men and 10 women) constituted the study group (seven primary and five secondary cases). Of those, there were five concave rims, two concave rims with rim retraction, two boxy tips, and three cephalically oriented lateral crura. Surgical technique included the following: (1) an open approach was used; (2) a marginal incision that ignored the caudal margin of the lateral crus (the incision went straight posteriorly to a point 5 to 6 mm from the rim margin) was used; (3) a triangular graft was made to cover the exposed vestibular skin; (4) it was secured end to end to the caudal border of the lateral crus; and (5) the poster end was allowed to sit in a small subcutaneous pocket. Follow-up was 11 to 19 months. All 12 patients exhibited good rims as judged by a blinded panel. Rim retraction was not fully corrected in one patient, but no further treatment was required. One patient did require a secondary small rim graft for residual rim concavity. The concept of grafting the alar rim is strongly supported by the authors' results. The modifications the authors applied by designing the graft to be anatomical in shape has been a technical help.

  8. Chromatography in characterization of polysaccharides from medicinal plants and fungi.

    Science.gov (United States)

    Hu, De-jun; Cheong, Kit-leong; Zhao, Jing; Li, Shao-ping

    2013-01-01

    Polysaccharides isolated from medicinal plants and fungi exhibit multiple pharmacological activities. The biological activities of polysaccharides depend on their chemical characteristics. However, characterization of polysaccahrides is a challenge because of their complicated structure and macromolecular mass. In this review, chromatography in characterization of polysaccharides, including physicochemical characterization (purity, molecular mass, and distribution), structural characterization (constituent monosaccharide composition and the ratio, the features of glycosidic linkages), and fingerprint of polysaccharides (acidic and enzymatic hydrolysates), from medicinal plants and fungi were reviewed and discussed according to the publications collected in Web of Science since 2007. The perspective for characterization of polysaccharides has also been described. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Lytic polysaccharide monooxygenases from Myceliophthora thermophila C1

    NARCIS (Netherlands)

    Frommhagen, Matthias

    2017-01-01

    Current developments aim at the effective enzymatic degradation of plant biomass polysaccharides into fermentable monosaccharides for biofuels and biochemicals. Recently discovered lytic polysaccharide monooxgygenases (LPMOs) boost the hydrolytic breakdown of lignocellulosic biomass, especially

  10. Two-layer tissue engineered urethra using oral epithelial and muscle derived cells.

    Science.gov (United States)

    Mikami, Hiroshi; Kuwahara, Go; Nakamura, Nobuyuki; Yamato, Masayuki; Tanaka, Masatoshi; Kodama, Shohta

    2012-05-01

    We fabricated novel tissue engineered urethral grafts using autologously harvested oral cells. We report their viability in a canine model. Oral tissues were harvested by punch biopsy and divided into mucosal and muscle sections. Epithelial cells from mucosal sections were cultured as epithelial cell sheets. Simultaneously muscle derived cells were seeded on collagen mesh matrices to form muscle cell sheets. At 2 weeks the sheets were joined and tubularized to form 2-layer tissue engineered urethras, which were autologously grafted to surgically induced urethral defects in 10 dogs in the experimental group. Tissue engineered grafts were not applied to the induced urethral defect in control dogs. The dogs were followed 12 weeks postoperatively. Urethrogram and histological examination were done to evaluate the grafting outcome. We successfully fabricated 2-layer tissue engineered urethras in vitro and transplanted them in dogs in the experimental group. The 12-week complication-free rate was significantly higher in the experimental group than in controls. Urethrogram confirmed urethral patency without stricture in the complication-free group at 12 weeks. Histologically urethras in the transplant group showed a stratified epithelial layer overlying well differentiated submucosa. In contrast, urethras in controls showed severe fibrosis without epithelial layer formation. Two-layer tissue engineered urethras were engineered using cells harvested by minimally invasive oral punch biopsy. Results suggest that this technique can encourage regeneration of a functional urethra. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  11. Structural Characterization and Enzymatic Modification of Soybean Polysaccharides

    DEFF Research Database (Denmark)

    Pierce, Brian; Wichmann, Jesper

    % galacturonic acid, 8% xylose, 3% rhamnose, and 3% fucose. Currently, the majority of this material is disposed of as waste, increasing production costs. Opportunities exist for the develop-ment of novel functional ingredients from this abundant and underutilized ma-terial; however, efforts in this area......The work in this thesis explores the structure of soybean polysaccharides, and examines approaches for the chemical and enzymatic degradation and solu-bilization of this material. Soybean polysaccharides are produced in large quantities globally as a by-product of various soy production processes...... are currently limited by the material’s insol-ubility. A central hypothesis of this work was that by obtaining a more complete understanding of the structure of this material, chemical and enzymatic ap-proaches could be developed to modify the polysaccharides, creating soluble polysaccharide fractions...

  12. Subdaily growth patterns and organo-mineral nanostructure of the growth layers in the calcitic prisms of the shell of Concholepas concholepas Bruguière, 1789 (Gastropoda, Muricidae).

    Science.gov (United States)

    Guzman, Nury; Ball, Alexander D; Cuif, Jean-Pierre; Dauphin, Yannicke; Denis, Alain; Ortlieb, Luc

    2007-10-01

    Fluorochrome marking of the gastropod Concholepas concholepas has shown that the prismatic units of the shell are built by superimposition of isochronic growth layers of about 2 mum. Fluorescent growth marks make it possible to establish the high periodicity of the cyclic biomineralization process at a standard growth rhythm of about 45 layers a day. Sulphated polysaccharides have been identified within the growth layers by using synchrotron radiation, whereas high resolution mapping enables the banding pattern of the mineral phase to be correlated with the layered distribution of polysaccharides. Atomic force microscopy has shown that the layers are made of nanograins densely packed in an organic component.

  13. Effect of flow on vascular endothelial cells grown in tissue culture on polytetrafluoroethylene grafts

    International Nuclear Information System (INIS)

    Sentissi, J.M.; Ramberg, K.; O'Donnell, T.F. Jr.; Connolly, R.J.; Callow, A.D.

    1986-01-01

    Vascular grafts lined with endothelial cells (EC) grown to confluence in culture before implantation may provide a thromboresistant flow surface. Growth of EC on and their adherence to currently available prosthetic materials under conditions of flow are two impediments remaining in the development of such a graft. To address these problems, 22 polytetrafluoroethylene grafts (PTFE) (5 cm by 4 mm inside diameter) were pretreated with collagen and fibronectin, seeded with 2 to 3 X 10(6) bovine aortic EC per graft, and placed in tissue culture (seeded grafts). Twenty-two grafts pretreated with collagen and fibronectin alone served as controls. After 2 weeks morphologic studies revealed that 20/22 seeded grafts were lined with a confluent endothelial layer. Indium 111-oxine was then used to label the EC-seeded grafts. After exposure to either low (25 ml/min) or high (200 ml/min) flow rates for 60 minutes in an in vitro circuit, examination of the luminal surface of the graft by light microscopy and scanning electron microscopy revealed minimal loss of EC. These findings were corroborated by radionuclide scans that showed an insignificant loss of the EC-associated indium label during exposure to flow (7% low flow, 11% high flow). Pretreatment of PTFE grafts with collagen and fibronectin thus promotes both attachment and adherence of EC even under flow conditions

  14. Characterization and antioxidant activities of polysaccharides from thirteen boletus mushrooms.

    Science.gov (United States)

    Zhang, Lan; Hu, Yu; Duan, Xiaoyu; Tang, Tingting; Shen, Yingbin; Hu, Bin; Liu, Aiping; Chen, Hong; Li, Cheng; Liu, Yuntao

    2018-07-01

    Water-soluble polysaccharides were extracted from the caps and stipes of thirteen boletus mushrooms representing five different species collected in Southwest China. Investigations of their structures and antioxidant activities allowed an evaluation of structure-function relationships. The polysaccharides were composed mainly of the monosaccharides arabinose, xylose, mannose, glucose and galactose. Most samples displayed a broad molecular weight range, with significant differences observed between the molecular weight ranges of the polysaccharides from the caps and the stipes. FT-IR spectral analysis of the polysaccharides revealed that most of polysaccharides from boletus mushrooms (except Boletus edulis) contained a pyranose ring. The antioxidant activities of the polysaccharides in stipes showed a significant correlation with their monosaccharide composition, and were also related to their molecular weight and anomeric configuration. Suillellus luridus collected in Pingwu, Mianyang, Sichuan, China had remarkably superior antioxidant activity and might be developed as a natural antioxidant. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Screen-printed electro grafted electrode for trace uranium analysis

    Energy Technology Data Exchange (ETDEWEB)

    Betelu, St.; Vautrin-Ui, Ch.; Chausse, A. [Univ Evry Val Essonne, LAMBE, CNRS CEA, UMR 8587, F-91025 Evry, (France); Ly, J. [CEA, L3MR, Ctr Etud Saclay, DEN DANS DPC SECR, F-91191 Gif Sur Yvette, (France)

    2009-07-01

    This paper reports the interest of the novel 4-carboxyphenyl-grafted screen-printed electrodes (4-CP-SPEs) for sub-nano-molar analysis of uranium in water samples. Electrodes were easily prepared via electrochemically reduction of the corresponding diazonium salt. The stability of the grafted layer has been clearly demonstrated. Uranium detection was then achieved by immersing the grafted electrode into the sample solution, followed by the electrochemical measurement of adsorbed U(VI) by square wave voltammetry. Adsorption time was investigated so as to find the best compromise between analysis time, repeatability and reproducibility. Limit of detection and quantitation reached 7 * 10{sup -10} and 2 * 10{sup -9} mol L{sup -1} respectively. Moreover, interference study was conducted with Zn(II), Cd(II), Pb(II) and Cu(II); no major interference was established. 4-CP-SPEs were finally applied for uranium determination in estuarine water demonstrating the convenience of these electrodes for environmental analysis. (authors)

  16. Studies on water soluble polysaccharides from Pithecellobium dulce (Roxb.) Benth. seeds.

    Science.gov (United States)

    Bagchi, S; Kumar, K Jayaram

    2016-03-15

    In this existing experimental work, water soluble PDP polysaccharides were secluded from Pithecellobium dulce (Roxb.) Benth. seeds. The physicochemical properties were analyzed in terms of swelling power, solubility, pH and water holding capacity. Micromeretic studies proved the polysaccharide may be used a potential pharmaceutical adjuvant. The polysaccharide was characterized by FT-IR, SEM, TGA and NMR techniques. Methylation analysis confirmed that the polysaccharide is composed of Arabinose (Araf) units. The chemical shifts of anomeric proton region were found in the region of 4.4-5.5ppm. Thermogravimetric analysis showed that PDP polysaccharide was thermally stable. The in vitro antioxidant capacities of the polysaccharide were investigated in terms of scavenging of hydroxyl radicals, 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radicals, hydrogen peroxide (H2O2) and reducing power assay. The polysaccharide fractions showed activity in a concentration dependent manner which was comparable to the standard, ascorbic acid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Non-cellulosic polysaccharides from cotton fibre are differently impacted by textile processing

    DEFF Research Database (Denmark)

    Runavot, Jean-Luc; Guo, Xiaoyuan; Willats, William George Tycho

    2014-01-01

    -cellulosic cotton fibre polysaccharides during different steps of cotton textile processing using GC-MS, HPLC and comprehensive microarray polymer profiling to obtain monosaccharide and polysaccharide amounts and linkage compositions. Additionally, in situ detection was used to obtain information on polysaccharide......Cotton fibre is mainly composed of cellulose, although non-cellulosic polysaccharides play key roles during fibre development and are still present in the harvested fibre. This study aimed at determining the fate of non-cellulosic polysaccharides during cotton textile processing. We analyzed non...... localization and accessibility. We show that pectic and hemicellulosic polysaccharide levels decrease during cotton textile processing and that some processing steps have more impact than others. Pectins and arabinose-containing polysaccharides are strongly impacted by the chemical treatments, with most being...

  18. Polysaccharides isolated from Açaí fruit induce innate immune responses.

    Directory of Open Access Journals (Sweden)

    Jeff Holderness

    2011-02-01

    Full Text Available The Açaí (Acai fruit is a popular nutritional supplement that purportedly enhances immune system function. These anecdotal claims are supported by limited studies describing immune responses to the Acai polyphenol fraction. Previously, we characterized γδ T cell responses to both polyphenol and polysaccharide fractions from several plant-derived nutritional supplements. Similar polyphenol and polysaccharide fractions are found in Acai fruit. Thus, we hypothesized that one or both of these fractions could activate γδ T cells. Contrary to previous reports, we did not identify agonist activity in the polyphenol fraction; however, the Acai polysaccharide fraction induced robust γδ T cell stimulatory activity in human, mouse, and bovine PBMC cultures. To characterize the immune response to Acai polysaccharides, we fractionated the crude polysaccharide preparation and tested these fractions for activity in human PBMC cultures. The largest Acai polysaccharides were the most active in vitro as indicated by activation of myeloid and γδ T cells. When delivered in vivo, Acai polysaccharide induced myeloid cell recruitment and IL-12 production. These results define innate immune responses induced by the polysaccharide component of Acai and have implications for the treatment of asthma and infectious disease.

  19. Antibiofilm activity of Actinobacillus pleuropneumoniae serotype 5 capsular polysaccharide.

    Directory of Open Access Journals (Sweden)

    Michael T Karwacki

    Full Text Available Cell-free extracts isolated from colony biofilms of Actinobacillus pleuropneumoniae serotype 5 were found to inhibit biofilm formation by Staphylococcus aureus, S. epidermidis and Aggregatibacter actinomycetemcomitans, but not by A. pleuropneumoniae serotype 5 itself, in a 96-well microtiter plate assay. Physical and chemical analyses indicated that the antibiofilm activity in the extract was due to high-molecular-weight polysaccharide. Extracts isolated from a mutant strain deficient in the production of serotype 5 capsular polysaccharide did not exhibit antibiofilm activity. A plasmid harboring the serotype 5 capsule genes restored the antibiofilm activity in the mutant extract. Purified serotype 5 capsular polysaccharide also exhibited antibiofilm activity against S. aureus. A. pleuropneumoniae wild-type extracts did not inhibit S. aureus growth, but did inhibit S. aureus intercellular adhesion and binding of S. aureus cells to stainless steel surfaces. Furthermore, polystyrene surfaces coated with A. pleuropneumoniae wild-type extracts, but not with capsule-mutant extracts, resisted S. aureus biofilm formation. Our findings suggest that the A. pleuropneumoniae serotype 5 capsule inhibits cell-to-cell and cell-to-surface interactions of other bacteria. A. pleuropneumoniae serotype 5 capsular polysaccharide is one of a growing number of bacterial polysaccharides that exhibit broad-spectrum, nonbiocidal antibiofilm activity. Future studies on these antibiofilm polysaccharides may uncover novel functions for bacterial polysaccharides in nature, and may lead to the development of new classes of antibiofilm agents for industrial and clinical applications.

  20. Mapping the polysaccharide degradation potential of Aspergillus niger

    Science.gov (United States)

    2012-01-01

    Background The degradation of plant materials by enzymes is an industry of increasing importance. For sustainable production of second generation biofuels and other products of industrial biotechnology, efficient degradation of non-edible plant polysaccharides such as hemicellulose is required. For each type of hemicellulose, a complex mixture of enzymes is required for complete conversion to fermentable monosaccharides. In plant-biomass degrading fungi, these enzymes are regulated and released by complex regulatory structures. In this study, we present a methodology for evaluating the potential of a given fungus for polysaccharide degradation. Results Through the compilation of information from 203 articles, we have systematized knowledge on the structure and degradation of 16 major types of plant polysaccharides to form a graphical overview. As a case example, we have combined this with a list of 188 genes coding for carbohydrate-active enzymes from Aspergillus niger, thus forming an analysis framework, which can be queried. Combination of this information network with gene expression analysis on mono- and polysaccharide substrates has allowed elucidation of concerted gene expression from this organism. One such example is the identification of a full set of extracellular polysaccharide-acting genes for the degradation of oat spelt xylan. Conclusions The mapping of plant polysaccharide structures along with the corresponding enzymatic activities is a powerful framework for expression analysis of carbohydrate-active enzymes. Applying this network-based approach, we provide the first genome-scale characterization of all genes coding for carbohydrate-active enzymes identified in A. niger. PMID:22799883

  1. Nanofat grafting under a split-thickness skin graft for problematic wound management.

    Science.gov (United States)

    Kemaloğlu, Cemal Alper

    2016-01-01

    Obesity and certain medical disorders make the reconstruction of skin defects challenging. Different kind of procedure can be used for these defect, besides, skin grafting is one of the most common and simplest procedure. Fat grafting and stem cells which are located in the adipose tissue have been commonly used in plastic surgery for regeneration and rejuvenation purposes. To decrease graft failure rate we performed nanofat grafting under an autologous split-thickness skin graft in our patient who had a problematic wound. The case of a 35-year-old female patient with a traumatic skin defect on her left anterior crural region is described herein. After subsequent flap reconstruction, the result was disappointing and the defect size was widened. The defect was treated with combined grafting (nanofat grafting under an autologous split-thickness skin graft). At the 6 months follow-up assessment after combined grafting, the integrity of the skin graft was good with excellent pliability. Combined grafting for problematic wounds seems to be a useful technique for cases requiring reconstruction. The potential existence of stem cells may be responsible for the successful result in our patient.

  2. Bacillus subtilis biofilm induction by plant polysaccharides.

    Science.gov (United States)

    Beauregard, Pascale B; Chai, Yunrong; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2013-04-23

    Bacillus subtilis is a plant-beneficial Gram-positive bacterium widely used as a biofertilizer. However, relatively little is known regarding the molecular processes underlying this bacterium's ability to colonize roots. In contrast, much is known about how this bacterium forms matrix-enclosed multicellular communities (biofilms) in vitro. Here, we show that, when B. subtilis colonizes Arabidopsis thaliana roots it forms biofilms that depend on the same matrix genes required in vitro. B. subtilis biofilm formation was triggered by certain plant polysaccharides. These polysaccharides served as a signal for biofilm formation transduced via the kinases controlling the phosphorylation state of the master regulator Spo0A. In addition, plant polysaccharides are used as a source of sugars for the synthesis of the matrix exopolysaccharide. The bacterium's response to plant polysaccharides was observed across several different strains of the species, some of which are known to have beneficial effects on plants. These observations provide evidence that biofilm genes are crucial for Arabidopsis root colonization by B. subtilis and provide insights into how matrix synthesis may be triggered by this plant.

  3. Tribological and mechanical investigation of acrylic-based nanocomposite coatings reinforced with PMMA-grafted-MWCNT

    Energy Technology Data Exchange (ETDEWEB)

    Al-Kawaz, A. [UPR22/CNRS, Institut Charles Sadron, Université de Strasbourg, 23 Rue du Loess, BP 84047, F-67034 Strasbourg Cedex 2 (France); Rubin, A., E-mail: anne.rubin@ics-cnrs.unistra.fr [UPR22/CNRS, Institut Charles Sadron, Université de Strasbourg, 23 Rue du Loess, BP 84047, F-67034 Strasbourg Cedex 2 (France); Badi, N.; Blanck, C.; Jacomine, L. [UPR22/CNRS, Institut Charles Sadron, Université de Strasbourg, 23 Rue du Loess, BP 84047, F-67034 Strasbourg Cedex 2 (France); Janowska, I.; Pham-Huu, C. [Institute of Chemistry and Processes for Energy, Environment and Health (UMR 7515) CNRS - University of Strasbourg, 25 Rue Becquerel Strasbourg, 67087 Cedex 08 (France); Gauthier, C. [UPR22/CNRS, Institut Charles Sadron, Université de Strasbourg, 23 Rue du Loess, BP 84047, F-67034 Strasbourg Cedex 2 (France)

    2016-06-01

    The chemical functionalization of carbon nanotubes (CNTs) could improve their chemical compatibility. Poly(methyl methacrylate) (PMMA)-functionalized multi-walled carbon nanotubes (MWCNTs) are prepared by in situ atom transfer radical polymerization (ATRP) using a “grafting from” approach. It allows the control of the thickness of the polymer layer grafted on MWCNTs from two parameters: the feed ratio of MMA to MWCNT, the volume fraction of solvent to MMA. This work compared the effect of several PMMA-grafted-MWNCT fillers embedded into a PMMA matrix, PMMA-grafted-MWCNT/PMMA, and obtained by solution mixing technique. We studied the tribological performances of 20 μm coatings of these nanocomposites deposited on neat PMMA. The percentage of embedded fillers is kept low to maintain the transparency of the PMMA. The coefficient of friction was found to relatively decrease with the increase of the weight fraction of polymer grafted to the surface of MWCNT. Moreover the elastic modulus also increased with increasing the weight fraction of PMMA coated MWCNT. - Highlights: • Synthesis of MWCNT-PMMA nanoparticles by ATRP “grafting from” approach. • PMMA-grafted-MWCNT/PMMA coatings with good mechanical properties. • High tribological performance of PMMA-grafted-MWCNT/PMMA coatings.

  4. Extraction, purification and antioxidant activities of the polysaccharides from maca (Lepidium meyenii).

    Science.gov (United States)

    Zha, Shenghua; Zhao, Qingsheng; Chen, Jinjin; Wang, Liwei; Zhang, Guifeng; Zhang, Hong; Zhao, Bing

    2014-10-13

    Water-soluble polysaccharides were separated from maca (Lepidium meyenii) aqueous extract (MAE). The crude polysaccharides were deproteinized by Sevag method. During the preparation process of maca polysaccharides, amylase and glucoamylase effectively removed starch in maca polysaccharides. Four Lepidium meyenii polysaccharides (LMPs) were obtained by changing the concentration of ethanol in the process of polysaccharide precipitation. All of the LMPs were composed of rhamnose, arabinose, glucose and galactose. Antioxidant activity tests revealed that LMP-60 showed good capability of scavenging hydroxyl free radical and superoxide radical at 2.0mg/mL, the scavenging rate was 52.9% and 85.8%, respectively. Therefore, the results showed that maca polysaccharides had a high antioxidant activity and could be explored as the source of bioactive compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Detection of Inulin, a Prebiotic Polysaccharide, in Maple Syrup.

    Science.gov (United States)

    Sun, Jiadong; Ma, Hang; Seeram, Navindra P; Rowley, David C

    2016-09-28

    Maple syrup is a widely consumed plant-derived natural sweetener produced by concentrating xylem sap collected from certain maple (Acer) species. During thermal evaporation of water, natural phytochemical components are concentrated in maple syrup. The polymeric components from maple syrup were isolated by ethanol precipitation, dialysis, and anion exchange chromatography and structurally characterized by glycosyl composition analysis, glycosyl linkage analysis, and nuclear magnetic resonance spectroscopy. Among the maple syrup polysaccharides, one neutral polysaccharide was characterized as inulin with a broad molecular weight distribution, representing the first isolation of this prebiotic carbohydrate from a xylem sap. In addition, two acidic polysaccharides with structural similarity were identified as arabinogalactans derived from rhamnogalacturonan type I pectic polysaccharides.

  6. Effect of bidispersity in grafted chain length on grafted chain conformations and potential of mean force between polymer grafted nanoparticles in a homopolymer matrix.

    Science.gov (United States)

    Nair, Nitish; Wentzel, Nathaniel; Jayaraman, Arthi

    2011-05-21

    In efforts to produce polymeric materials with tailored physical properties, significant interest has grown around the ability to control the spatial organization of nanoparticles in polymer nanocomposites. One way to achieve controlled particle arrangement is by grafting the nanoparticle surface with polymers that are compatible with the matrix, thus manipulating the interfacial interactions between the nanoparticles and the polymer matrix. Previous work has shown that the molecular weight of the grafted polymer, both at high grafting density and low grafting density, plays a key role in dictating the effective inter-particle interactions in a polymer matrix. At high grafting density nanoparticles disperse (aggregate) if the graft molecular weight is higher (lower) than the matrix molecular weight. At low grafting density the longer grafts can better shield the nanoparticle surface from direct particle-particle contacts than the shorter grafts and lead to the dispersion of the grafted particles in the matrix. Despite the importance of graft molecular weight, and evidence of non-trivial effects of polydispersity of chains grafted on flat surfaces, most theoretical work on polymer grafted nanoparticles has only focused on monodisperse grafted chains. In this paper, we focus on how bidispersity in grafted chain lengths affects the grafted chain conformations and inter-particle interactions in an implicit solvent and in a dense homopolymer polymer matrix. We first present the effects of bidispersity on grafted chain conformations in a single polymer grafted particle using purely Monte Carlo (MC) simulations. This is followed by calculations of the potential of mean force (PMF) between two grafted particles in a polymer matrix using a self-consistent Polymer Reference Interaction Site Model theory-Monte Carlo simulation approach. Monte Carlo simulations of a single polymer grafted particle in an implicit solvent show that in the bidisperse polymer grafted particles

  7. Bone grafting: An overview

    Directory of Open Access Journals (Sweden)

    D. O. Joshi

    2010-08-01

    Full Text Available Bone grafting is the process by which bone is transferred from a source (donor to site (recipient. Due to trauma from accidents by speedy vehicles, falling down from height or gunshot injury particularly in human being, acquired or developmental diseases like rickets, congenital defects like abnormal bone development, wearing out because of age and overuse; lead to bone loss and to replace the loss we need the bone grafting. Osteogenesis, osteoinduction, osteoconduction, mechanical supports are the four basic mechanisms of bone graft. Bone graft can be harvested from the iliac crest, proximal tibia, proximal humerus, proximal femur, ribs and sternum. An ideal bone graft material is biologically inert, source of osteogenic, act as a mechanical support, readily available, easily adaptable in terms of size, shape, length and replaced by the host bone. Except blood, bone is grafted with greater frequency. Bone graft indicated for variety of orthopedic abnormalities, comminuted fractures, delayed unions, non-unions, arthrodesis and osteomyelitis. Bone graft can be harvested from the iliac crest, proximal tibia, proximal humerus, proximal femur, ribs and sternum. By adopting different procedure of graft preservation its antigenicity can be minimized. The concept of bone banking for obtaining bone grafts and implants is very useful for clinical application. Absolute stability require for successful incorporation. Ideal bone graft must possess osteogenic, osteoinductive and osteocon-ductive properties. Cancellous bone graft is superior to cortical bone graft. Usually autologous cancellous bone graft are used as fresh grafts where as allografts are employed as an alloimplant. None of the available type of bone grafts possesses all these properties therefore, a single type of graft cannot be recomm-ended for all types of orthopedic abnormalities. Bone grafts and implants can be selected as per clinical problems, the equipments available and preference of

  8. Life cycle assessment of polysaccharide materials: a review

    NARCIS (Netherlands)

    Shen, L.|info:eu-repo/dai/nl/310872022; Patel, M.K.|info:eu-repo/dai/nl/18988097X

    2008-01-01

    Apart from conventional uses of polysaccharide materials, such as food, clothing, paper packaging and construction, new polysaccharide products and materials have been developed. This paper reviews life cycle assessment (LCA) studies in order to gain insight of the environmental profiles of

  9. Surface Modifications of Polymers Induced by Heavy Ions Grafting

    Energy Technology Data Exchange (ETDEWEB)

    Mazzei, R O; Lombardo, J; Camporotondi, D; Tadey, D; Bermudez, G G [National Atomic Energy Commission, Ezeiza Atomic Centre, Ezeiza (Argentina)

    2012-09-15

    Polymer surfaces are modified by the application of swift heavy ions etching and grafting procedures. The residual active sites produced by heavy ion beams, remaining after the etching process, were used to start the grafting process. In order to produce tracks on foils of poly(vinylidene fluoride) (PVDF) they were irradiated with {sup 208}Pb of 25.62 MeV/n or with 115 MeV Cl ions. Moreover, foils of polypropylene (PP) were irradiated with {sup 208}Pb of 25.62 MeV/n. Then, they were etched and grafted with N-isopropylacrylamide (NIPAAm) monomers or with acrylic acid (AAc) monomers, respectively. The replica method allowed the observation of the shape of the grafted tracks using transmission electron microscopy (TEM). In addition NIPAAm grafted foils were analyzed using Fourier transform infrared spectroscopy (FTIR). The sulfonation procedure (methodology previously described for perfluorated polymers) was applied on grafted PVDF. A new method is described to produce a thin layer of poly-acrylic-acid (membranes) that grows on the surface of PVDF foils implanted by an Ar{sup +} beam with energies between 30-150 keV. Different combinations of monomers in water solutions were used such as: acrylic acid (AAc); acrylic acid-glycidyl methacrylate (AAc-GMA); acrylic acid-styrene (AAc-S); acrylic acid-N-isopropyl acrylamide (AAc-NIPAAm) and acrylic acid-N-isopropyl acrylamide - glycidyl methacrylate (AAc-NIPAAm-GMA). The experimental results show that for particular values of: ion fluence and energy, AAc concentration, sulphuric acid and PVDF polymorphous (alpha or beta) a huge percentage of grafting was obtained. At certain point of the grafting process the development of the PolyAAc-Xmonomer produce a detachment from the irradiated substrate and continue its grafting outside it. This method produces a membrane that is an increased replica of the original implanted surface. Finally, PVDF films implanted by an Ar{sup +} beam with energies about 100 keV and a fluence of 10

  10. Polysaccharides purified from wild Cordyceps activate FGF2/FGFR1c signaling

    Science.gov (United States)

    Zeng, Yangyang; Han, Zhangrun; Yu, Guangli; Hao, Jiejie; Zhang, Lijuan

    2015-02-01

    Land animals as well as all organisms in ocean synthesize sulfated polysaccharides. Fungi split from animals about 1.5 billion years ago. As fungi make the evolutionary journey from ocean to land, the biggest changes in their living environment may be a sharp decrease in salt concentration. It is established that sulfated polysaccharides interact with hundreds of signaling molecules and facilitate many signaling transduction pathways, including fibroblast growth factor (FGF) and FGF receptor signaling pathway. The disappearance of sulfated polysaccharides in fungi and plants on land might indicate that polysaccharides without sulfation might be sufficient in facilitating protein ligand/receptor interactions in low salinity land. Recently, it was reported that plants on land start to synthesize sulfated polysaccharides in high salt environment, suggesting that fungi might be able to do the same when exposed in such environment. Interestingly, Cordyceps, a fungus habituating inside caterpillar body, is the most valued traditional Chinese Medicine. One of the important pharmaceutical active ingredients in Cordyceps is polysaccharides. Therefore, we hypothesize that the salty environment inside caterpillar body might allow the fungi to synthesize sulfated polysaccharides. To test the hypothesis, we isolated polysaccharides from both lava and sporophore of wild Cordyceps and also from Cordyceps militaris cultured without or with added salts. We then measured the polysaccharide activity using a FGF2/FGFR1c signaling-dependent BaF3 cell proliferation assay and found that polysaccharides isolated from wild Cordyceps activated FGF2/FGFR signaling, indicating that the polysaccharides synthesized by wild Cordyceps are indeed different from those by the cultured mycelium.

  11. The dietary polysaccharide maltodextrin promotes Salmonella survival and mucosal colonization in mice.

    Directory of Open Access Journals (Sweden)

    Kourtney P Nickerson

    Full Text Available In the latter half of the 20th century, societal and technological changes led to a shift in the composition of the American diet to include a greater proportion of processed, pre-packaged foods high in fat and carbohydrates, and low in dietary fiber (a "Western diet". Over the same time period, there have been parallel increases in Salmonella gastroenteritis cases and a broad range of chronic inflammatory diseases associated with intestinal dysbiosis. Several polysaccharide food additives are linked to bacterially-driven intestinal inflammation and may contribute to the pathogenic effects of a Western diet. Therefore, we examined the effect of a ubiquitous polysaccharide food additive, maltodextrin (MDX, on clearance of the enteric pathogen Salmonella using both in vitro and in vivo infection models. When examined in vitro, murine bone marrow-derived macrophages exposed to MDX had altered vesicular trafficking, suppressed NAPDH oxidase expression, and reduced recruitment of NADPH oxidase to Salmonella-containing vesicles, which resulted in persistence of Salmonella in enlarged Rab7+ late endosomal vesicles. In vivo, mice consuming MDX-supplemented water had a breakdown of the anti-microbial mucous layer separating gut bacteria from the intestinal epithelium surface. Additionally, oral infection of these mice with Salmonella resulted in increased cecal bacterial loads and enrichment of lamina propria cells harboring large Rab7+ vesicles. These findings indicate that consumption of processed foods containing the polysaccharide MDX contributes to suppression of intestinal anti-microbial defense mechanisms and may be an environmental priming factor for the development of chronic inflammatory disease.

  12. Mapping the polysaccharide degradation potential of Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Andersen Mikael R

    2012-07-01

    Full Text Available Abstract Background The degradation of plant materials by enzymes is an industry of increasing importance. For sustainable production of second generation biofuels and other products of industrial biotechnology, efficient degradation of non-edible plant polysaccharides such as hemicellulose is required. For each type of hemicellulose, a complex mixture of enzymes is required for complete conversion to fermentable monosaccharides. In plant-biomass degrading fungi, these enzymes are regulated and released by complex regulatory structures. In this study, we present a methodology for evaluating the potential of a given fungus for polysaccharide degradation. Results Through the compilation of information from 203 articles, we have systematized knowledge on the structure and degradation of 16 major types of plant polysaccharides to form a graphical overview. As a case example, we have combined this with a list of 188 genes coding for carbohydrate-active enzymes from Aspergillus niger, thus forming an analysis framework, which can be queried. Combination of this information network with gene expression analysis on mono- and polysaccharide substrates has allowed elucidation of concerted gene expression from this organism. One such example is the identification of a full set of extracellular polysaccharide-acting genes for the degradation of oat spelt xylan. Conclusions The mapping of plant polysaccharide structures along with the corresponding enzymatic activities is a powerful framework for expression analysis of carbohydrate-active enzymes. Applying this network-based approach, we provide the first genome-scale characterization of all genes coding for carbohydrate-active enzymes identified in A. niger.

  13. Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane surface with stably anti-protein-fouling performance via a two-step surface polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Li Qian; Bi Qiuyan; Zhou Bo [Membrane Technology and Engineering Research Center, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China); Wang Xiaolin, E-mail: xl-wang@tsinghua.edu.cn [Membrane Technology and Engineering Research Center, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China)

    2012-03-01

    A zwitterionic polymer, poly(3-(methacryloylamino) propyl-dimethyl-(3-sulfopropyl) ammonium hydroxide) (poly(MPDSAH)) was successfully grafted in high density from the surface of poly(vinylidene fluoride) (PVDF) hollow fiber membrane via a two-step polymerization. Poly(2-hydroxyethyl methacrylate) (poly(HEMA)) chains were firstly grafted from outside surface of PVDF membrane through atom transfer radical polymerization (ATRP) to provide the initiation sites for subsequent cerium (Ce (IV))-induced graft copolymerization of polyMPDSAH in the presence of N,N Prime -ethylene bisacrylamide (EBAA) as a cross-linking agent. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) confirmed that the EBAA could stimulate zwitterionic polymers grafting onto the membrane surface. The dense poly(MPDSAH) layers on the PVDF membrane surface were revealed by the scanning electron microscope (SEM). The mechanical property of PVDF membrane was improved by the zwitterionic surface layers. The gravimetry results indicated the grafting amount increased to 520 {mu}g/cm{sup 2} for a copolymerization time of more than 3 h. Static and dynamic water contact angle measurements showed that the surface hydrophilicity of the PVDF membranes was significantly enhanced. As the grafting amount reached 513 {mu}g cm{sup -2}, the value of contact angle dropped to 22.1 Degree-Sign and the amount of protein adsorption decreased to zero. The cyclic experiments for BSA solution filtration demonstrated that the extent of protein fouling was significantly reduced and most of the fouling was reversible. The grafted polymer layer on the PVDF membrane showed a good stability during the membrane cleaning process. The experimental results concluded a good prospect in obtaining the sulfobetaine-modified PVDF membranes with high mechanical strength, good anti-protein-fouling performance, and long-term stability via the two-step polymerization.

  14. Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane surface with stably anti-protein-fouling performance via a two-step surface polymerization

    International Nuclear Information System (INIS)

    Li Qian; Bi Qiuyan; Zhou Bo; Wang Xiaolin

    2012-01-01

    A zwitterionic polymer, poly(3-(methacryloylamino) propyl-dimethyl-(3-sulfopropyl) ammonium hydroxide) (poly(MPDSAH)) was successfully grafted in high density from the surface of poly(vinylidene fluoride) (PVDF) hollow fiber membrane via a two-step polymerization. Poly(2-hydroxyethyl methacrylate) (poly(HEMA)) chains were firstly grafted from outside surface of PVDF membrane through atom transfer radical polymerization (ATRP) to provide the initiation sites for subsequent cerium (Ce (IV))-induced graft copolymerization of polyMPDSAH in the presence of N,N′-ethylene bisacrylamide (EBAA) as a cross-linking agent. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) confirmed that the EBAA could stimulate zwitterionic polymers grafting onto the membrane surface. The dense poly(MPDSAH) layers on the PVDF membrane surface were revealed by the scanning electron microscope (SEM). The mechanical property of PVDF membrane was improved by the zwitterionic surface layers. The gravimetry results indicated the grafting amount increased to 520 μg/cm 2 for a copolymerization time of more than 3 h. Static and dynamic water contact angle measurements showed that the surface hydrophilicity of the PVDF membranes was significantly enhanced. As the grafting amount reached 513 μg cm -2 , the value of contact angle dropped to 22.1° and the amount of protein adsorption decreased to zero. The cyclic experiments for BSA solution filtration demonstrated that the extent of protein fouling was significantly reduced and most of the fouling was reversible. The grafted polymer layer on the PVDF membrane showed a good stability during the membrane cleaning process. The experimental results concluded a good prospect in obtaining the sulfobetaine-modified PVDF membranes with high mechanical strength, good anti-protein-fouling performance, and long-term stability via the two-step polymerization.

  15. [Successful correction with stent-graft of coronary artery rupture after angioplasty].

    Science.gov (United States)

    Demin, V V

    2003-01-01

    Rupture and perforation of coronary arteries complicate in average 0.5% of radiosurgical coronary interventions and often are accompanied by serious consequences and high mortality. According to-type of coronary perforation different methods of correction are used, ranging from conservative measures to urgent cardiosurgical interventions. Coronary stent-grafts with 'sandwich' type of construction ore composed from two metal stents and PTFE layer between them. Development of such stents enabled effective radioguided endovascular repair of coronary ruptures. The paper presents the first Russian experience of stout-graft implantation for coronary artery rupture occurred during direct stenting of proximal anterior descending artery and balloon angioplasty in distal segment. The rupture occurred probably because of wall fragility between affected segment and muscular bridge. Stent-graft JoStent 16 mm in length connected with 3-mm balloon was implanted with subsequent complete restitution of blood flow, resolution of pain syndrome and ECG normalization. Echocardiography in operative theatre and one day after surgery showed no intrapericardial fluid. Stent-graft devices for urgent implantation in cases of coronary rupture must be included into obligatory equipment of radiosurgical facilities.

  16. Study of organic grafting of the silicon surface from 4-nitrobenzene diazonium tetrafluoroborate

    International Nuclear Information System (INIS)

    Ait El Hadj, F.; Amiar, A.; Cherkaoui, M.; Chazalviel, J.-N.; Ozanam, F.

    2012-01-01

    The hydrogenated silicon surface has outstanding electronic properties. However, its resistance to oxidation is insufficient. An alternative is the substitution of the Si-H bonds with Si-organic groups. This modification of the silicon surface by grafting of organic molecules was carried out by electrochemical reduction of 4-nitrobenzene diazonium tetrafluoroborate in an aqueous medium containing HF and H 2 SO 4 . The choice fell on this electrochemical reaction because it allows for fast grafting. The reduction of nitrobenzene diazonium is confirmed by the presence of a voltammetric peak around −0.1 V/SCE. The grafting was also characterized by in situ infrared spectroscopy (FTIR) which, via the detection of vibrations characteristic of chemical bonds, allows one to identify the chemical functions present. In addition, electrochemical impedance measurements allowed us to approach the interfacial mechanisms. It appears that the cathodic grafting leads to the formation of a polymeric layer, but the same grafting also occurs spontaneously within a few tens of seconds at open circuit potential, an expected phenomenon indeed in view of the reduction potential of 4-nitrobenzene diazonium.

  17. Preparation of Sulfobetaine-Grafted PVDF Hollow Fiber Membranes with a Stably Anti-Protein-Fouling Performance

    Directory of Open Access Journals (Sweden)

    Qian Li

    2014-04-01

    Full Text Available Based on a two-step polymerization method, two sulfobetaine-based zwitterionic monomers, including 3-(methacryloylamino propyl-dimethyl-(3-sulfopropyl ammonium hydroxide (MPDSAH and 2-(methacryloyloxyethyl ethyl-dimethyl-(3-sulfopropyl ammonium (MEDSA, were successfully grafted from poly(vinylidene fluoride (PVDF hollow fiber membrane surfaces in the presence of N,N′-methylene bisacrylamide (MBAA as a cross-linking agent. The mechanical properties of the PVDF membrane were improved by the zwitterionic surface layers. The surface hydrophilicity of PVDF membranes was significantly enhanced and the polyMPDSAH-g-PVDF membrane showed a higher hydrophilicity due to the higher grafting amount. Compared to the polyMEDSA-g-PVDF membrane, the polyMPDSAH-g-PVDF membrane showed excellent significantly better anti-protein-fouling performance with a flux recovery ratio (RFR higher than 90% during the cyclic filtration of a bovine serum albumin (BSA solution. The polyMPDSAH-g-PVDF membrane showed an obvious electrolyte-responsive behavior and its protein-fouling-resistance performance was improved further during the filtration of the protein solution with 100 mmol/L of NaCl. After cleaned with a membrane cleaning solution for 16 days, the grafted MPDSAH layer on the PVDF membrane could be maintain without any chang; however, the polyMEDSA-g-PVDF membrane lost the grafted MEDSA layer after this treatment. Therefore, the amide group of sulfobetaine, which contributed significantly to the higher hydrophilicity and stability, was shown to be imperative in modifying the PVDF membrane for a stable anti-protein-fouling performance via the two-step polymerization method.

  18. Maca polysaccharides: A review of compositions, isolation, therapeutics and prospects.

    Science.gov (United States)

    Li, Yujuan; Xu, Fangxue; Zheng, Mengmeng; Xi, Xiaozhi; Cui, Xiaowei; Han, Chunchao

    2018-05-01

    Maca polysaccharides, some of the major bioactive substances in Lepidium meyenii (Walp.) (Maca), have various biological properties, including anti-oxidant, anti-fatigue, anti-tumor, and immunomodulatory effects, as well as hepatoprotective activity and regulation function. Although many therapeutics depend on multiple structures of maca polysaccharides in addition to providing sufficient foundations for maca polysaccharide products in industrial applications, the relationships between the pharmacological effects and structures have not been established. Therefore, this article summarizes the extraction and purification methods, compositions, pharmacological effects, prospects and industrial applications of maca polysaccharides. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Arteriovenous shunt graft ulceration with sinus and graft epithelialization

    Directory of Open Access Journals (Sweden)

    Pooja Singhal

    2015-03-01

    Full Text Available Arteriovenous fistula and grafts are used as access sites for patients with chronic kidney disease and are prone for complications. Stent grafts are used to treat access site complications. We report a rare and unusual finding of epithelialization of the sinus tract and the lumen of a polytetrafluoroethylene graft, following ulceration of the overlying skin.

  20. Role of graft oversizing in the fixation strength of barbed endovascular grafts.

    Science.gov (United States)

    Kratzberg, Jarin A; Golzarian, Jafar; Raghavan, Madhavan L

    2009-06-01

    The role of endovascular graft oversizing on risk of distal graft migration following endovascular aneurysm repair for abdominal aortic aneurysm is poorly understood. A controlled in vitro investigation of the role of oversizing in graft-aorta attachment strength for endovascular grafts (EVGs) with barbs was performed. Barbed stent grafts (N = 20) with controlled graft oversizing varying from 4-45% were fabricated while maintaining other design variables unchanged. A flow loop with physiological flow characteristics and a biosynthetic aortic aneurysm phantom (synthetic aneurysm model with a bovine aortic neck) were developed. The stent grafts were deployed into the aortic neck of the bio-synthetic aortic aneurysm phantom under realistic flow conditions. Computed tomography imaging of the graft-aorta complex was used to document attachment characteristics such as graft apposition, number of barbs penetrated, and penetration depth and angle. The strength of graft attachment to the aortic neck was assessed using mechanical pullout testing. Stent grafts were categorized into four groups based on oversizing: 4-10%; 11-20%; 21-30%; and greater than 30% oversizing. Pullout force, a measure of post-deployment fixation strength was not different between 4-10% (6.23 +/- 1.90 N), 11-20% (6.25 +/- 1.84 N) and 20-30% (5.85 +/- 1.89 N) groups, but significantly lower for the group with greater than 30% oversizing (3.67 +/- 1.41 N). Increasing oversizing caused a proportional decrease in the number of barbs penetrating the aortic wall (correlation = -0.83). Of the 14 barbs available in the stent graft, 89% of the barbs (12.5 of 14 on average) penetrated the aortic wall in the 4-10% oversizing group while only 38% (5.25 of 14) did for the greater than 30% group (P barb penetration were found to be positively correlated to pullout force. Greater than 30% graft oversizing affects both barb penetration and graft apposition adversely resulting in a low pullout force in this in vitro

  1. Extraction, characterization and antioxidant activities of Se-enriched tea polysaccharides.

    Science.gov (United States)

    Wang, Yuanfeng; Li, Yongfu; Liu, Yangyang; Chen, Xueqing; Wei, Xinlin

    2015-01-01

    Se-polysaccharides from Se-enriched tea leaves were purified by DEAE-sepharose fast flow gel column (2.5×60cm) and three polysaccharide fractions (Se-TPS1, Se-TPS2, and Se-TPS3) were isolated and purified with yields of 6.5, 37.14, and 8.57%, respectively. The average sizes of Se-TPS1 and Se-TPS2 were determined by HPGPC system, with molecular weights of 1.1×10(5) and 2.4×10(5)Da, respectively. Se-TPS3 was a polysaccharide polymer with two peaks with molecular weights of 9.2×10(5) and 2.5×10(5)Da. Monosaccharide components analysis by ion chromatography revealed Se-polysaccharides were acidic polysaccharoses and different from each other in monosaccharide kinds and molar ratio. Elements of Se, C, H, N, S, and 14 kinds of mineral elements were analyzed by AFS, EA, and ICP-AES, respectively. Spectral analysis (IR and UV) indicated Se-polysaccharides were typical glycoproteins. Morphological analyses of the samples were determined by SEM and AFM. In addition, the DPPH and superoxide radicals scavenging activities were also discussed to assess antioxidant activities of the samples, and Se-polysaccharides showed higher antioxidant activities compared to the ordinary polysaccharides. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Physicochemical properties and membrane biofouling of extra-cellular polysaccharide produced by a Micrococcus luteus strain.

    Science.gov (United States)

    Feng, Lei; Li, Xiufen; Song, Ping; Du, Guocheng; Chen, Jian

    2014-07-01

    The physicochemical properties of the extra-cellular polysaccharide (EPS) produced by a Micrococcus luteus strain, a dominating strain isolated from membrane biofouling layer, were determined in this study. The EPS isolated from this strain was measured to have an average molecular weight of 63,540 Da and some typical polysaccharide absorption peaks in Fourier transform infrared spectrum. Monosaccharide components of the EPS contained rhamnose, fucose, arabinose, xylose, mannose, galactose and glucose in a molar ratio of 0.2074:0.0454:0.0262:0.0446:1.7942:1.2086:0.4578. Pseudo plastic properties were also observed for the EPS through the rheological measurement. The EPS was further characterized for its behavior to cause membrane flux decline. The results showed that both flux declines for polyvinylidenefluoride (PVDF) and polypropylene membranes became more severe as EPS feed concentration increased. A higher irreversible fouling for the PVDF membrane suggested that the EPS had the larger fouling potential to this microfiltration membrane.

  3. Brushes and soap : grafted polymers and their interactions with nanocolloids

    NARCIS (Netherlands)

    Currie, E.P.K.

    2000-01-01

    Layers of polymer chains end-attached to a grafting plane at high densities, so-called brushes, are a curious state of matter. The (average) monomer density within the brush is as high as in a semi-dilute polymer solution, resulting in a high osmotic pressure in the brush. Due to the

  4. Production of heterologous storage polysaccharides in potato plants

    NARCIS (Netherlands)

    Huang, X.; Vincken, J.P.; Visser, R.G.F.; Trindade, L.M.

    2011-01-01

    Starch is the most important storage polysaccharide in higher plants. This polysaccharide is used in many industrial applications as it is abundant, renewable and biodegradable and it can be modified into a wide range of products used in food, animal feed, pharmaceuticals and industry. With the

  5. Ultrasonic-assisted extraction and in vitro antioxidant activity of polysaccharides from Agaricus bisporus.

    Science.gov (United States)

    Qiao, De-Liang; Zhao, Feng; Huang, Hai-Zhong; Fan, Chun-Chun; Han, Lei

    2012-08-01

    To optimize ultrasonic-assisted extraction parameters of polysaccharides from Agaricus bisporus and evaluate antioxidant activities of A. bisporus polysaccharides. Polysaccharides from A. bisporus was extracted by using methods of ultrasonic-assisted hot water lixiviation, ethanol precipitation, Sevag's deproteination and ethanol precipitation again. Extraction temperature, extraction time, ratio of water to raw material and ultrasonic power were selected in single-factor tests. Based on the single-factor tests, parameters combination for the ultrasonic-assisted extraction of A. bisporus polysaccharides was optimized by using four-factor-three-level orthogonal test. Antioxidant activities (reductive potential, superoxide anion scavenging activity and H2O2 scavenging activity) of A. bisporus polysaccharides were evaluated in vitro. Optimum conditions for the extracting of A. bisporus polysaccharides were extracting temperature 65 degrees C, extracting time 40 min, ratio of water to raw material 30 mL/g and ultrasonic power 170 w. Practicing this optimal condition, extraction yield of polysaccharides from A. bisporus was 5.6 014%. In crude polysaccharides of A. bisporus, carbohydrates content, determined by applying the phenol-sulfuric acid method, was 75.48%. Polysaccharides of A. bisporus could reduce ferric ion, scavenge superoxide anion and hydrogen peroxide in a dose-dependent manner. Utrasonic-assisted extraction could be used in the extracting of A. bisporus polysaccharides. Polysaccharides of A. bisporus, had direct and potent antioxidant activities, might be developed and utilized as natural antioxidant.

  6. Comparison of Polysaccharides from Two Species of Ganoderma

    Directory of Open Access Journals (Sweden)

    Yu-Ping Tang

    2012-01-01

    Full Text Available Ganoderma lucidum and Ganoderma sinense, known as Lingzhi in Chinese, are commonly used Chinese medicines with excellent beneficial health effects. Triterpenes and polysaccharides are usually considered as their main active components. However, the content of triterpenes differs significantly between the two species of Ganoderma. To date, a careful comparison of polysaccharides from the two species of Ganoderma has not been performed. In this study, polysaccharides from fruiting bodies of two species of Lingzhi collected from different regions of China were analyzed and compared based on HPSEC-ELSD and HPSEC-MALLS-RI analyses, as well as enzymatic digestion and HPTLC of acid hydrolysates. The results indicated that both the HPSEC-ELSD profiles and the molecular weights of the polysaccharides were similar. Enzymatic digestion showed that polyshaccharides from all samples of Lingzhi could be hydrolyzed by pectinase and dextranase. HPTLC profiles of their TFA hydrolysates colored with different reagents and their monosaccharides composition were also similar.

  7. Bone Graft Alternatives

    Science.gov (United States)

    ... Spine Treatment Spondylolisthesis BLOG FIND A SPECIALIST Treatments Bone Graft Alternatives Patient Education Committee Patient Education Committee ... procedure such as spinal fusion. What Types of Bone Grafts are There? Bone grafts that are transplanted ...

  8. Inhibitory Effects of Various Ratios of Polysaccharides/Alkaloids from ...

    African Journals Online (AJOL)

    and increases survival in endotoxemic mice. Acta. Pharmacol Sin ... secretion in hyperthyroid diarrheic rats. Regul Peptides ... effect of Coptis chinensis polysaccharide in high-fat diet ... polysaccharides decrease blood sugar by inhibition of α-.

  9. Glomerular endothelial surface layer acts as a barrier against albumin filtration

    NARCIS (Netherlands)

    Dane, M.J.; Berg, B.M. van den; Avramut, M.C.; Faas, F.G.; Vlag, J. van der; Rops, A.L.; Ravelli, R.B.; Koster, B.J.; Zonneveld, A.J. van; Vink, H.; Rabelink, T.J.

    2013-01-01

    Glomerular endothelium is highly fenestrated, and its contribution to glomerular barrier function is the subject of debate. In recent years, a polysaccharide-rich endothelial surface layer (ESL) has been postulated to act as a filtration barrier for large molecules, such as albumin. To test this

  10. Sulfated Polysaccharides in Marine Sponges: Extraction Methods and Anti-HIV Activity

    Directory of Open Access Journals (Sweden)

    Ana I. S. Esteves

    2011-01-01

    Full Text Available The extraction, fractionation and HIV-1 inhibition potential of polysaccharides extracted from three species of marine sponges, Erylus discophorus, Cliona celata and Stelletta sp., collected in the Northeastern Atlantic, is presented in this work. The anti-HIV activity of 23 polysaccharide pellets and three crude extracts was tested. Crude extracts prepared from Erylus discophorus specimens were all highly active against HIV-1 (90 to 95% inhibition. Cliona celata pellets showed low polysaccharide content (bellow 38.5% and almost no anti-HIV activity (<10% inhibition. Stelletta sp. pellets, although quite rich in polysaccharide (up to 97.3%, showed only modest bioactivity (<36% HIV-1 inhibition. Erylus discophorus pellets were among the richest in terms of polysaccharide content (up to 98% and the most active against HIV-1 (up to 95% inhibition. Chromatographic fractionation of the polysaccharide pellet obtained from a specimen of Erylus discophorus (B161 yielded only modestly active fractions. However, we could infer that the active molecule is most probably a high molecular weight sulfated polysaccharide (>2000 kDa, whose mechanism is possibly preventing viral attachment and entry (fusion inhibitor.

  11. Graft irradiation abrogates graft-versus-host disease in combined pancreas-spleen transplantation

    International Nuclear Information System (INIS)

    Schulak, J.A.; Sharp, W.J.

    1986-01-01

    A model of combined pancreas-spleen transplantation (PST) was studied in LBN F1 recipients of Lewis grafts in order to evaluate the efficacy of pretransplant graft irradiation in preventing lethal graft-versus-host disease (GVHD). Recipients of unmodified PST uniformly developed severe GVHD and died (MST = 16.7 +/- 3.8 days). Whole body donor irradiation with either 500 or 250 rad prevented lethal GVHD. Similarly, ex vivo graft irradiation with either 1000 or 500 rad also resulted in normal weight gain, graft function, and host survival for the 6-week study period. Conversely, delay of graft irradiation until 3 days after transplantation failed to prevent this complication (MST = 15.8 +/- 3.7 days). Recipients of irradiated grafts displayed glucose tolerance tests that were identical to those in the control group indicating that the doses of radiation employed in these experiments were not deleterious to islet function. Irradiated spleen grafts appeared histologically normal at 6 weeks after transplantation. Cells derived from these grafts failed to stimulate lymph node enlargement in a popliteal lymph node assay for GVHD, suggesting that these spleens may have become repopulated with host cells. These experiments confirm that PST has the potential to cause lethal GVHD and suggest that pretransplant graft irradiation may be used to prevent its occurrence

  12. [Analysis of thickening polysaccharides by the improved diethyldithioacetal derivatization method].

    Science.gov (United States)

    Akiyama, Takumi; Yamazaki, Takeshi; Tanamoto, Kenichi

    2011-01-01

    The identification test for thickening polysaccharides containing neutral saccharides and uronic acids was investigated by GC analysis of constituent monosaccharides. The reported method, in which monosaccharides were converted to diethyldithioacetal derivatives with ethanethiol followed by trimethylsilylation, was improved in terms of operability and reproducibility of GC/MS analysis. The suitability of the improved diethyldithioacetal derivatization method was determined for seven thickening polysaccharides, i.e., carob bean gum, guar gum, karaya gum, gum arabic, gum ghatti, tragacanth gum and peach gum. The samples were acid-hydrolyzed to form monosaccharides. The hydrolysates were derivatized and analyzed with GC/FID. Each sugar derivative was detected as a single peak and was well separated from others on the chromatograms. The amounts of constituent monosaccharides in thickening polysaccharides were successfully estimated. Seven polysaccharides were distinguished from each other on the basis of constituent monosaccharides. Further examination of the time period of hydrolysis of polysaccharides using peach gum showed that the optimal times were not the same for all monosaccharides. A longer time was needed to hydrolyze glucuronic acid than neutral saccharides. The findings suggest that hydrolysis time may sometimes affect the analytical results on composition of constituent monosaccharides in polysaccharides.

  13. Effect of Grafting Method, Graft Cover and Foliar Spray of some Mineral Elements on Persian Walnut Graft-take and Winter Survival Rate

    Directory of Open Access Journals (Sweden)

    Reza Rezaee

    2017-09-01

    Full Text Available Introduction: Persian walnut (Juglans regia L. is an important nut crop in Iran and many parts of the world. One of the major challenges of growing walnut is planting of non-grafted walnut trees in orchards, which leads to the reduction of yield, quality and productivity of walnut orchards. Compared to the other fruit trees, walnut grafting is difficult and even newly grafted walnut seedlings are vulnerable to fall or winter frost chilling, so that most of the seedlings are lost after subjecting to the cold winter. There are a few studies reporting successful grafting in outdoor conditions, however, final grafting take after winter has been usually ignored. Hence, increased walnut grafting success and improved tree growth after grafting through foliar nutrient application may lead to increased tolerance of chilling. Therefore, main goals of this research were to investigate the effect of some graft covers and role of foliar spray of calcium, boron and zinc on the reduction of frost damage in newly grafted seedlings under outdoor conditions. Materials and methods: This research was conducted at agricultural research station, Khoy city, west Azerbaijan province, during 2012-2014. In the first experiment, three methods of grafting including cleft, bark and V-shaped, and two kinds of graft covers including moist sawdust and superabsorbent plus cotton wool were investigated in terms of grafting success and quality of seedlings. In the second experiment, effect of the three above-mentioned grafting methods and two levels of foliar spray including sequential spray of Ca (4 ppm, B and Zn (2% (3 times during growth season and control (no spray were studied in terms of frost damage. The experiments conducted in factorial based on randomized complete block design with 10 trees in each plot. Data were collected 45 days after grafting take, final grafting take after one winter, subsequent scion growth length and diameter and concentration of Ca, B and Zn in

  14. Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities.

    Science.gov (United States)

    Xu, Shu-Ying; Huang, Xuesong; Cheong, Kit-Leong

    2017-12-13

    Marine algae have attracted a great deal of interest as excellent sources of nutrients. Polysaccharides are the main components in marine algae, hence a great deal of attention has been directed at isolation and characterization of marine algae polysaccharides because of their numerous health benefits. In this review, extraction and purification approaches and chemico-physical properties of marine algae polysaccharides (MAPs) are summarized. The biological activities, which include immunomodulatory, antitumor, antiviral, antioxidant, and hypolipidemic, are also discussed. Additionally, structure-function relationships are analyzed and summarized. MAPs' biological activities are closely correlated with their monosaccharide composition, molecular weights, linkage types, and chain conformation. In order to promote further exploitation and utilization of polysaccharides from marine algae for functional food and pharmaceutical areas, high efficiency, and low-cost polysaccharide extraction and purification methods, quality control, structure-function activity relationships, and specific mechanisms of MAPs activation need to be extensively investigated.

  15. Suction blister grafting - Modifications for easy harvesting and grafting

    Directory of Open Access Journals (Sweden)

    2012-01-01

    Full Text Available Suction blister grafting is a simple modality of treatment of patients with resistant and stable vitiligo. But raising the blisters may be time consuming and transferring to the recipient site may be difficult as the graft is ultrathin. By doing some modifications we can make the technique simpler and easier. We can decrease the blister induction time by intradermal injection of saline, exposure to Wood′s lamp, intrablister injection of saline. By these methods we can decrease the blister induction time from 2-3 hrs to 45-90 minutes. After harvesting the graft, it can be transferred to the recipient area by taking the graft on a sterile glass slide, on the gloved finger, rolling the graft over a sterile syringe and then spreading on the recipient area, or taking on the sterile wrapper of paraffin dressing and then placing over the recipient area.

  16. Evaluation of synthetic vascular grafts in a mouse carotid grafting model.

    Science.gov (United States)

    Chan, Alex H P; Tan, Richard P; Michael, Praveesuda L; Lee, Bob S L; Vanags, Laura Z; Ng, Martin K C; Bursill, Christina A; Wise, Steven G

    2017-01-01

    Current animal models for the evaluation of synthetic grafts are lacking many of the molecular tools and transgenic studies available to other branches of biology. A mouse model of vascular grafting would allow for the study of molecular mechanisms of graft failure, including in the context of clinically relevant disease states. In this study, we comprehensively characterise a sutureless grafting model which facilitates the evaluation of synthetic grafts in the mouse carotid artery. Using conduits electrospun from polycaprolactone (PCL) we show the gradual development of a significant neointima within 28 days, found to be greatest at the anastomoses. Histological analysis showed temporal increases in smooth muscle cell and collagen content within the neointima, demonstrating its maturation. Endothelialisation of the PCL grafts, assessed by scanning electron microscopy (SEM) analysis and CD31 staining, was near complete within 28 days, together replicating two critical aspects of graft performance. To further demonstrate the potential of this mouse model, we used longitudinal non-invasive tracking of bone-marrow mononuclear cells from a transgenic mouse strain with a dual reporter construct encoding both luciferase and green fluorescent protein (GFP). This enabled characterisation of mononuclear cell homing and engraftment to PCL using bioluminescence imaging and histological staining over time (7, 14 and 28 days). We observed peak luminescence at 7 days post-graft implantation that persisted until sacrifice at 28 days. Collectively, we have established and characterised a high-throughput model of grafting that allows for the evaluation of key clinical drivers of graft performance.

  17. Evaluation of synthetic vascular grafts in a mouse carotid grafting model.

    Directory of Open Access Journals (Sweden)

    Alex H P Chan

    Full Text Available Current animal models for the evaluation of synthetic grafts are lacking many of the molecular tools and transgenic studies available to other branches of biology. A mouse model of vascular grafting would allow for the study of molecular mechanisms of graft failure, including in the context of clinically relevant disease states. In this study, we comprehensively characterise a sutureless grafting model which facilitates the evaluation of synthetic grafts in the mouse carotid artery. Using conduits electrospun from polycaprolactone (PCL we show the gradual development of a significant neointima within 28 days, found to be greatest at the anastomoses. Histological analysis showed temporal increases in smooth muscle cell and collagen content within the neointima, demonstrating its maturation. Endothelialisation of the PCL grafts, assessed by scanning electron microscopy (SEM analysis and CD31 staining, was near complete within 28 days, together replicating two critical aspects of graft performance. To further demonstrate the potential of this mouse model, we used longitudinal non-invasive tracking of bone-marrow mononuclear cells from a transgenic mouse strain with a dual reporter construct encoding both luciferase and green fluorescent protein (GFP. This enabled characterisation of mononuclear cell homing and engraftment to PCL using bioluminescence imaging and histological staining over time (7, 14 and 28 days. We observed peak luminescence at 7 days post-graft implantation that persisted until sacrifice at 28 days. Collectively, we have established and characterised a high-throughput model of grafting that allows for the evaluation of key clinical drivers of graft performance.

  18. Delayed grafting for banked skin graft in lymph node flap transfer.

    Science.gov (United States)

    Ciudad, Pedro; Date, Shivprasad; Orfaniotis, Georgios; Dower, Rory; Nicoli, Fabio; Maruccia, Michele; Lin, Shu-Ping; Chuang, Chu-Yi; Chuang, Tsan-Yu; Wang, Gou-Jen; Chen, Hung-Chi

    2017-02-01

    Over the last decade, lymph node flap (LNF) transfer has turned out to be an effective method in the management of lymphoedema of extremities. Most of the time, the pockets created for LNF cannot be closed primarily and need to be resurfaced with split thickness skin grafts. Partial graft loss was frequently noted in these cases. The need to prevent graft loss on these iatrogenic wounds made us explore the possibility of attempting delayed skin grafting. We have herein reported our experience with delayed grafting with autologous banked split skin grafts in cases of LNF transfer for lymphoedema of the extremities. Ten patients with International Society of Lymphology stage II-III lymphoedema of upper or lower extremity were included in this study over an 8-month period. All patients were thoroughly evaluated and subjected to lymph node flap transfer. The split skin graft was harvested and banked at the donor site, avoiding immediate resurfacing over the flap. The same was carried out in an aseptic manner as a bedside procedure after confirming flap viability and allowing flap swelling to subside. Patients were followed up to evaluate long-term outcomes. Flap survival was 100%. Successful delayed skin grafting was done between the 4th and 6th post-operative day as a bedside procedure under local anaesthesia. The split thickness skin grafts (STSG) takes more than 97%. One patient needed additional medications during the bedside procedure. All patients had minimal post-operative pain and skin graft requirement. The patients were also reported to be satisfied with the final aesthetic results. There were no complications related to either the skin grafts or donor sites during the entire period of follow-up. Delayed split skin grafting is a reliable method of resurfacing lymph node flaps and has been shown to reduce the possibility of flap complications as well as the operative time and costs. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  19. Skin Graft

    OpenAIRE

    Shimizu, Ruka; Kishi, Kazuo

    2012-01-01

    Skin graft is one of the most indispensable techniques in plastic surgery and dermatology. Skin grafts are used in a variety of clinical situations, such as traumatic wounds, defects after oncologic resection, burn reconstruction, scar contracture release, congenital skin deficiencies, hair restoration, vitiligo, and nipple-areola reconstruction. Skin grafts are generally avoided in the management of more complex wounds. Conditions with deep spaces and exposed bones normally require the use o...

  20. Synthesis, characterization and evaluation of thiolated tamarind seed polysaccharide as a mucoadhesive polymer.

    Science.gov (United States)

    Kaur, Harmanmeet; Yadav, Shikha; Ahuja, Munish; Dilbaghi, Neeraj

    2012-11-06

    In the present study, thiol-functionalization of tamarind seed polysaccharide was carried out by esterification with thioglycolic acid. Thiol-functionalization was confirmed by SH stretch in Fourier-transformed infra-red spectra at 2586 cm(-1). It was found to possess 104.5 mM of thiol groups per gram. The results of differential scanning calorimetry and X-ray diffraction study indicate increase in crystallinity. Polymer compacts of thiolated tamarind seed polysaccharide required 6.85-fold greater force to detach from the mucin coated membrane than that of tamarind seed polysaccharide. Comparative evaluation of Carbopol-based metronidazole gels containing thiolated tamarind seed polysaccharide with gels containing tamarind seed polysaccharide for mucoadhesive strength using chicken ileum by modified balance method revealed higher mucoadhesion of gels containing thiolated tamarind seed polysaccharide. Further, the gels containing tamarind seed polysaccharide and thiolated tamarind seed polysaccharide released the drug by Fickian-diffusion following the first-order and Higuchi's-square root release kinetics, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Polysaccharide-Based Membranes in Food Packaging Applications

    Directory of Open Access Journals (Sweden)

    Ana R. V. Ferreira

    2016-04-01

    Full Text Available Plastic packaging is essential nowadays. However, the huge environmental problem caused by landfill disposal of non-biodegradable polymers in the end of life has to be minimized and preferentially eliminated. The solution may rely on the use of biopolymers, in particular polysaccharides. These macromolecules with film-forming properties are able to produce attracting biodegradable materials, possibly applicable in food packaging. Despite all advantages of using polysaccharides obtained from different sources, some drawbacks, mostly related to their low resistance to water, mechanical performance and price, have hindered their wider use and commercialization. Nevertheless, with increasing attention and research on this field, it has been possible to trace some strategies to overcome the problems and recognize solutions. This review summarizes some of the most used polysaccharides in food packaging applications.

  2. Polysaccharide-Based Membranes in Food Packaging Applications

    Science.gov (United States)

    Ferreira, Ana R. V.; Alves, Vítor D.; Coelhoso, Isabel M.

    2016-01-01

    Plastic packaging is essential nowadays. However, the huge environmental problem caused by landfill disposal of non-biodegradable polymers in the end of life has to be minimized and preferentially eliminated. The solution may rely on the use of biopolymers, in particular polysaccharides. These macromolecules with film-forming properties are able to produce attracting biodegradable materials, possibly applicable in food packaging. Despite all advantages of using polysaccharides obtained from different sources, some drawbacks, mostly related to their low resistance to water, mechanical performance and price, have hindered their wider use and commercialization. Nevertheless, with increasing attention and research on this field, it has been possible to trace some strategies to overcome the problems and recognize solutions. This review summarizes some of the most used polysaccharides in food packaging applications. PMID:27089372

  3. Capsular Polysaccharide Expression in Commensal Streptococcus Species

    DEFF Research Database (Denmark)

    Skov Sørensen, Uffe B; Yao, Kaihu; Yang, Yonghong

    2016-01-01

    Expression of a capsular polysaccharide is considered a hallmark of most invasive species of bacteria, including Streptococcus pneumoniae, in which the capsule is among the principal virulence factors and is the basis for successful vaccines. Consequently, it was previously assumed that capsule....... pneumoniae evolved by import of cps fragments from commensal Streptococcus species, resulting in a mosaic of genes of different origins. The demonstrated antigenic identity of at least eight of the numerous capsular polysaccharide structures expressed by commensal streptococci with recognized serotypes of S...... of Streptococcus pneumoniae and is the basis for successful vaccines against infections caused by this important pathogen. Contrasting with previous assumptions, this study showed that expression of capsular polysaccharides by the same genetic mechanisms is a general property of closely related species...

  4. Evaluation of Replacement Grafts and Punch Grafts in the Treatment of Vitiligo

    Directory of Open Access Journals (Sweden)

    Singh Ajit Kumar

    1980-01-01

    Full Text Available Thirtycasesof vitiligo eachwithminimum of two lesions undent replacement graft and multiple punch grafts in one lesion each. Complications observed at the recipient site like infection and raised nigosed surface were significantly more in replacement grafts. Hypopigmentation of the graft was significantly more when the disease was progressive.

  5. Surface modification of commercial seawater reverse osmosis membranes by grafting of hydrophilic monomer blended with carboxylated multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Vatanpour, Vahid, E-mail: vahidvatanpour@khu.ac.ir; Zoqi, Naser

    2017-02-28

    Highlights: • A commercial PA RO membrane was modified by grafting of hydrophilic acrylic acid. • COOH-MWCNTs were mixed in grafting layer to increase permeability and antifouling. • However, more increase of CNTs caused in reduction of flux of the membranes. • Effect of acrylic acid amount, contact time and curing time was optimized. - Abstract: In this study, modification of commercial seawater reverse osmosis membranes was carried out with simultaneous use of surface grafting and nanoparticle incorporation. Membrane grafting with a hydrophilic acrylic acid monomer and thermal initiator was used to increase membrane surface hydrophilicity. The used nanomaterial was carboxylated multiwalled carbon nanotubes (MWCNTs), which were dispersed in the grafting solution and deposited on membrane surface to reduce fouling by creating polymer brushes and hydrodynamic resistance. Effectiveness of the grafting process (formation of graft layer on membrane surface) was proved by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analyses. Increase of membrane surface hydrophilicity was approved with contact angle test. First, the grafting was performed on the membrane surfaces with different monomer concentrations, various contact times and several membrane curing times (three variables for optimization). The modified membranes were tested by a cross-flow setup using saline solution for permeability and rejection tests, and bovine serum albumin (BSA) solution for fouling test. The results showed that the modified membranes with 0.75 M of monomer, 3 min contact time and 80 min curing time in an oven at 50 °C presented the highest flux and lowest rejection decline related to the commercial reverse osmosis membrane. In the next step, the optimum grafting condition was selected and the nanotubes with different weight percentages were dispersed in the acrylic acid monomer solution. The membrane containing 0.25 wt% COOH-MWCNTs showed the

  6. Surface modification of commercial seawater reverse osmosis membranes by grafting of hydrophilic monomer blended with carboxylated multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Vatanpour, Vahid; Zoqi, Naser

    2017-01-01

    Highlights: • A commercial PA RO membrane was modified by grafting of hydrophilic acrylic acid. • COOH-MWCNTs were mixed in grafting layer to increase permeability and antifouling. • However, more increase of CNTs caused in reduction of flux of the membranes. • Effect of acrylic acid amount, contact time and curing time was optimized. - Abstract: In this study, modification of commercial seawater reverse osmosis membranes was carried out with simultaneous use of surface grafting and nanoparticle incorporation. Membrane grafting with a hydrophilic acrylic acid monomer and thermal initiator was used to increase membrane surface hydrophilicity. The used nanomaterial was carboxylated multiwalled carbon nanotubes (MWCNTs), which were dispersed in the grafting solution and deposited on membrane surface to reduce fouling by creating polymer brushes and hydrodynamic resistance. Effectiveness of the grafting process (formation of graft layer on membrane surface) was proved by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analyses. Increase of membrane surface hydrophilicity was approved with contact angle test. First, the grafting was performed on the membrane surfaces with different monomer concentrations, various contact times and several membrane curing times (three variables for optimization). The modified membranes were tested by a cross-flow setup using saline solution for permeability and rejection tests, and bovine serum albumin (BSA) solution for fouling test. The results showed that the modified membranes with 0.75 M of monomer, 3 min contact time and 80 min curing time in an oven at 50 °C presented the highest flux and lowest rejection decline related to the commercial reverse osmosis membrane. In the next step, the optimum grafting condition was selected and the nanotubes with different weight percentages were dispersed in the acrylic acid monomer solution. The membrane containing 0.25 wt% COOH-MWCNTs showed the

  7. Biophysical functionality in polysaccharides: from Lego-blocks to nano-particles.

    Science.gov (United States)

    Cesàro, Attilio; Bellich, Barbara; Borgogna, Massimiliano

    2012-04-01

    The objective of the paper is to show the very important biophysical concepts that have been developed with polysaccharides. In particular, an attempt will be made to relate "a posteriori" the fundamental aspects, both experimental and theoretical, with some industrial applications of polysaccharide-based materials. The overview of chain conformational aspects includes relationships between topological features and local dynamics, exemplified for some naturally occurring carbohydrate polymers. Thus, by using simulation techniques and computational studies, the physicochemical properties of aqueous solutions of polysaccharides are interpreted. The relevance of conformational disorder-order transitions, chain aggregation, and phase separation to the underlying role of the ionic contribution to these processes is discussed. We stress the importance of combining information from analysis of experimental data with that from statistical-thermodynamic models for understanding the conformation, size, and functional stability of industrially important polysaccharides. The peculiar properties of polysaccharides in industrial applications are summarized for the particularly important example of nanoparticles production, a field of growing relevance and scientific interest.

  8. Structural Features and Healthy Properties of Polysaccharides Occurring in Mushrooms

    Directory of Open Access Journals (Sweden)

    Eva Guillamón

    2012-12-01

    Full Text Available Polysaccharides from mushrooms have attracted a great deal of attention due to the many healthy benefits they have demonstrated, such as immunomodulation, anticancer activity, prevention and treatment of cardiovascular diseases, antiviral and antimicrobial effects, among others. Isolation and purification of polysaccharides commonly involve several steps, and different techniques are actually available in order to increase extraction yield and purity. Studies have demonstrated that the molecular structure and arrangement significantly influence the biological activity; therefore, there is a wide range of analytical techniques for the elucidation of chemical structures. Different polysaccharides have been isolated from mushrooms, most of them consisting of β-linked glucans, such as lentinan from Lentinus edodes, pleuran from Pleurotus species, schizophyllan from Schizophyllum commune, calocyban from Calocybe indica, or ganoderan and ganopoly from Ganoderma lucidum. This article reviews the main methods of polysaccharide isolation and structural characterization, as well as some of the most important polysaccharides isolated from mushrooms and the healthy benefits they provide.

  9. Nanocomposites from polymers and layered minerals

    NARCIS (Netherlands)

    Fischer, H.R.; Gielgens, L.H.; Koster, T.P.M.

    1999-01-01

    Composites consisting of polymer matrix materials and natural or synthetic layered minerals e.g. clays were prepared by using special compatibilizing agents betsveen these two intrinsically non-miscible components. Block or graft copolymers combining one part of the polymer that is identically

  10. Marine Derived Polysaccharides for Biomedical Applications: Chemical Modification Approaches

    Directory of Open Access Journals (Sweden)

    Paola Laurienzo

    2008-09-01

    Full Text Available Polysaccharide-based biomaterials are an emerging class in several biomedical fields such as tissue regeneration, particularly for cartilage, drug delivery devices and gelentrapment systems for the immobilization of cells. Important properties of the polysaccharides include controllable biological activity, biodegradability, and their ability to form hydrogels. Most of the polysaccharides used derive from natural sources; particularly, alginate and chitin, two polysaccharides which have an extensive history of use in medicine, pharmacy and basic sciences, and can be easily extracted from marine plants (algae kelp and crab shells, respectively. The recent rediscovery of poly-saccharidebased materials is also attributable to new synthetic routes for their chemical modification, with the aim of promoting new biological activities and/or to modify the final properties of the biomaterials for specific purposes. These synthetic strategies also involve the combination of polysaccharides with other polymers. A review of the more recent research in the field of chemical modification of alginate, chitin and its derivative chitosan is presented. Moreover, we report as case studies the results of our recent work concerning various different approaches and applications of polysaccharide-based biomaterials, such as the realization of novel composites based on calcium sulphate blended with alginate and with a chemically modified chitosan, the synthesis of novel alginate-poly(ethylene glycol copolymers and the development of a family of materials based on alginate and acrylic polymers of potential interest as drug delivery systems.

  11. Unusual monosaccharides: components of O-antigenic polysaccharides of microorganisms

    Science.gov (United States)

    Kochetkov, Nikolai K.

    1996-09-01

    The data on new monosaccharides detected in O-antigenic polysaccharides of Gram-negative bacteria have been surveyed. The results of isolation and structure determination of these unusual monosaccharides have been arranged and described systematically. The NMR spectroscopy techniques are shown to be promising for the O-antigenic polysaccharides structure determination. The information about fine structure of monosaccharides which constitute the base of important class of microbial polysaccharides, is of great significance for applied studies, first of all, the design and synthesis of biologically active substances. The bibliography includes 216 references.

  12. Preparation of polymethacrylic acid-grafted HEMA/PVP microspheres and preliminary study on basic protein adsorption.

    Science.gov (United States)

    Gao, Baojiao; Hu, Hongyan; Guo, Jianfeng; Li, Yanbin

    2010-06-01

    The crosslinked copolymeric microspheres (HEMA/NVP) of N-vinylpyrrolidone (NVP) and 2-hydroxyethyl methacrylate (HEMA) were prepared using inverse suspension polymerization method. Subsequently, the reaction of methacryloyl chloride with the hydroxyl groups on the surfaces of HEMA/NVP microspheres was performed, leading to the introduction of polymerisable double bonds onto the surfaces of microspheres HEMA/NVP. Afterward, methacrylic acid was allowed to be graft-polymerized on microspheres HEMA/NVP in the manner of "grafting from", resulting in the grafted microspheres PMAA-HEMA/NVP. The grafted microspheres PMAA-HEMA/NVP were fully characterized with several means. The graft-polymerization of MAA on microspheres HEMA/NVP was studied in detail, and the optimal reaction conditions were determined. Thereafter, the adsorption property of the grafted microspheres PMAA-HEMA/NVP for lysozyme as a basic protein model was preliminarily examined to explore the feasibility of removing deleterious basic protein such as density lipoprotein from blood. The experimental results indicate that the PMAA grafting degree on microspheres HEMA/NVP is limited because an enwinding polymer layer as a kinetic barrier on the surfaces of HEMA/NVP microspheres will be formed during the graft-polymerization, and block the graft-polymerization. In order to enhance PMAA grafting degree, reaction temperature, monomer concentration and the used amount of initiator should be effectively controlled. The experimental results also reveal that the grafted microspheres PMAA-HEMA/NVP possess very strong adsorption ability for lysozyme by right of strong electrostatic interaction. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Preparation of a surface-grafted imprinted ceramic membrane for selective separation of molybdate anion from water solutions.

    Science.gov (United States)

    Zeng, Jianxian; Dong, Zhihui; Zhang, Zhe; Liu, Yuan

    2017-07-05

    A surface-grafted imprinted ceramic membrane (IIP-PVI/CM) for recognizing molybdate (Mo(VI)) anion was prepared by surface-initiated graft-polymerization. Firstly, raw alumina ceramic membrane (CM) was deposited with SiO 2 active layer by situ hydrolysis deposition method. Subsequently, γ-methacryloxy propyl trimethoxyl silane (MPS) was used as a coupling agent to introduce double bonds onto the SiO 2 layer (MPS-CM). Then, 1-vinylimidazole (VI) was employed as a functional monomer to graft-polymerization onto the MPS-CM (PVI-CM). During the graft-polymerization, the influence factors of grafting degree of PVI were investigated in detail. Under optimum conditions (monomer concentration 20wt%, temperature 70°C, initiator amount 1.1wt% and reaction time 8h), the grafting degree of 20.39g/100g was obtained. Further, Mo(VI) anion was used as a template to imprint in the PVI-CM by employing 1,6-dibromohexane as a cross-linking agent, and then Mo(VI) was removed, obtaining the IIP-PVI/CM with many imprinted cavities for Mo(VI). Thereafter, static adsorption and dynamic separation properties of IIP-PVI/CM for Mo(VI) were studied. Results indicate that IIP-PVI/CM shows a specific selectivity for Mo(VI) with the adsorption capacity of 0.69mmol/100g, and the selectivity coefficient of IIP-PVI/CM is 7.48 for molybdate to tungstate anions. During the dynamic separation, IIP-PVI/CM has also good selectivity for separation of Mo(VI) and W(VI) anions. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Polyelectrolyte multilayer assembly as a function of pH and ionic strength using the polysaccharides chitosan and heparin.

    Science.gov (United States)

    Boddohi, Soheil; Killingsworth, Christopher E; Kipper, Matt J

    2008-07-01

    The goal of this work is to explore the effects of solution ionic strength and pH on polyelectrolyte multilayer (PEM) assembly, using biologically derived polysaccharides as the polyelectrolytes. We used the layer-by-layer (LBL) technique to assemble PEM of the polysaccharides heparin (a strong polyanion) and chitosan (a weak polycation) and characterized the sensitivity of the PEM composition and layer thickness to changes in processing parameters. Fourier-transform surface plasmon resonance (FT-SPR) and spectroscopic ellipsometry provided in situ and ex situ measurements of the PEM thickness, respectively. Vibrational spectroscopy and X-ray photoelectron spectroscopy (XPS) provided details of the chemistry (i.e., composition, electrostatic interactions) of the PEM. We found that when PEM were assembled from 0.2 M buffer, the PEM thickness could be increased from less than 2 nm per bilayer to greater than 4 nm per bilayer by changing the solution pH; higher and lower ionic strength buffer solutions resulted in narrower ranges of accessible thickness. Molar composition of the PEM was not very sensitive to solution pH or ionic strength, but pH did affect the interactions between the sulfonates in heparin and amines in chitosan when PEM were assembled from 0.2 M buffer. Changes in the PEM thickness with pH and ionic strength can be interpreted through descriptions of the charge density and conformation of the polyelectrolyte chains in solution.

  15. Biodegradation of bacterial polysaccharides adsorbed on montmorillonite

    International Nuclear Information System (INIS)

    Guckert, A.; Tok, H.H.; Jacquin, F.

    1977-01-01

    In this research, by means of a model, a study was made of the biodegradation of microbial organic compounds adsorbed on clays, with a parallel experiment on Fontainebleau sand serving as the control. During incubation the three classes of organic matter ( 14 C-labelled glucose, 14 C-labelled polysaccharides and 14 C-labelled microbial cells) mineralize more actively in the presence of sand than in the presence of clay, since the latter provides protection against biodegradation. Mineralization of the adsorbed organic compounds, however, is marked by clear-cut differences after three weeks - glucose (55%)>polysaccharides (43%)>microbial organisms (7.3%). After incubation, chemical extraction of the organo-mineral complexes by alkaline solvents shows only water-soluble and alkali-soluble products in the case of sand; conversely, in that of montmorillonite the bulk of the 14 C was found in the non-extractable fraction or humin (18.1% of the initial 14 C for glucose, 27.3% for the polysaccharides, and 67.6% for the microbial organisms). A second incubation carried out after a phase in which there was drying and remoistening of the organo-mineral complexes, brings to light the important part played by climatic alternations during the biodegradation process. A new mineralization phase is observed, affecting more the bacterial organisms (14.1%) than the polysaccharides (6.3%), with the glucose-base complexes occupying an intermediate position (11.2%). The chemical fractioning of the organo-mineral complexes following re-incubation shows the stability of 14 C in humin very clearly, especially in the case of polysaccharides, where the mineralization phase relates primarily to the products extractable with alkalis. (author)

  16. [Variation of polysaccharides and alcohol-soluble extracts content of Dendrobium officinale].

    Science.gov (United States)

    Yu, Qiao-xian; Guo, Ying-ying; Si, Jin-ping; Wu, Ling-shang; Wang, Lin-hua

    2014-12-01

    To reveal the variation of polysaccharides and alcohol-soluble extract contents of Dendrobium officinale, the polysaccharides and alcohol-soluble extracts contents of three D. officinale strains were determined by phenol-sulfuric acid method and hot-dip method, respectively. The results showed that the contents of polysaccharides and alcohol-soluble extracts and their total content were significantly different among D. officinale samples collected in different periods, and the variations were closely related to the phenology of D. officinale. Additionally, the quality variation of polysaccharides was closely related to the flowering of D. officinale, while the alcohol-soluble extracts was closely associated to the formation and germination of buds. According to the dynamic variation of these two compounds, it is more reasonable to harvest D. officinale at biennials pre-bloom than at specific harvesting month considering polysaccharides content. It is better to harvest before the germination of buds considering alcohol-soluble extracts. While with regards to both polysaccharides and alcohol-soluble extract, it is better to harvest this plant at the period from the sprouting to pre-bloom next year.

  17. Drying Characteristics and Water-soluble Polysaccharides Evaluation of Kidney Shape Ganoderma lucidum Drying in Air Circulation System

    Science.gov (United States)

    Prasetyo, D. J.; Jatmiko, T. H.; Poeloengasih, C. D.; Kismurtono, M.

    2017-12-01

    In this project, drying kinetic of kidney shape Ganoderma lucidum fruiting body in air circulation system was studied. The drying experiments were conducted at 40, 50 and 60°C with air flow rate of 1.3 ms-1. Samples were weighted periodically until no change in sample weight was recorded, and then the samples were analyzed for its moisture content. Four different thin-layer mathematical models (Newton, Page, Two-term, Midilli) were used and compare to evaluate the drying curves of kidney shape G. lucidum. The water-soluble polysaccharides were evaluated in order to find the best drying temperature condition. The results indicates that Midilli model was the fittest model to describe the characteristic of kidney shape G. lucidum in the air circulation drying system and temperature of 50°C was the best drying condition to get highest value of water-soluble polysaccharides.

  18. Feasibility of the Use of RapiGraft and Skin Grafting in Reconstructive Surgery

    Directory of Open Access Journals (Sweden)

    Jung Dug Yang

    2016-09-01

    Full Text Available BackgroundSkin grafting is a relatively simple and thus widely used procedure. However, the elastic and structural quality of grafted skin is poor. Recently, various dermal substitutes have been developed to overcome this disadvantage of split-thickness skin grafts. The present study aims to determine the feasibility of RapiGraft as a new dermal substitute.MethodsThis prospective study included 20 patients with partial- or full-thickness skin defects; the patients were enrolled between January 2013 and March 2014. After skin defect debridement, the wound was divided into two parts by an imaginary line. Split-thickness skin grafting alone was performed on one side (group A, and RapiGraft and split-thickness skin grafting were used on the other side (group B. All patients were evaluated using photographs and self-questionnaires. The Manchester scar scale (MSS, a chromameter, and a durometer were used for the scar evaluation. The average follow-up period was 6 months.ResultsThe skin graft take rates were 93% in group A and 89% in group B, a non-significant difference (P=0.082. Statistically, group B had significantly lower MSS, vascularity, and pigmentation results than group A (P<0.05 for all. However, the groups did not differ significantly in pliability (P=0.155.ConclusionsThe present study indicates that a simultaneous application of RapiGraft and a split-thickness skin graft is safe and yields improved results. Therefore, we conclude that the use of RapiGraft along with skin grafting will be beneficial for patients requiring reconstructive surgery.

  19. Cartilage Morphological and Histological Findings After Reconstruction of the Glenoid With an Iliac Crest Bone Graft.

    Science.gov (United States)

    Auffarth, Alexander; Resch, Herbert; Matis, Nicholas; Hudelmaier, Martin; Wirth, Wolfgang; Forstner, Rosemarie; Neureiter, Daniel; Traweger, Andreas; Moroder, Philipp

    2018-04-01

    The J-bone graft is presumably representative of iliac crest bone grafts in general and allows anatomic glenoid reconstruction in cases of bone defects due to recurrent traumatic anterior shoulder dislocations. As a side effect, these grafts have been observed to be covered by some soft, cartilage-like tissue when arthroscopy has been indicated after such procedures. To evaluate the soft tissue covering of J-bone grafts by use of magnetic resonance imaging (MRI) and histological analysis. Case series; Level of evidence, 4. Patients underwent MRI at 1 year after the J-bone graft procedures. Radiological data were digitally processed and evaluated by segmentation of axial images. Independent from the MRI analysis, 2 biopsy specimens of J-bone grafts were harvested for descriptive histological analysis. Segmentation of the images revealed that all grafts were covered by soft tissue. This layer had an average thickness of 0.87 mm compared with 1.96 mm at the adjacent native glenoid. Of the 2 biopsy specimens, one exhibited evident hyaline-like cartilage and the other presented patches of chondrocytes embedded in a glycosaminoglycan-rich extracellular matrix. J-bone grafts are covered by soft tissue that can differentiate into fibrous and potentially hyaline cartilage. This feature may prove beneficial for delaying the onset of dislocation arthropathy of the shoulder.

  20. Chloroanthraquinone as a grafted probe molecule to investigate grafting yield on carbon powder

    International Nuclear Information System (INIS)

    Le Comte, Annaïg; Brousse, Thierry; Bélanger, Daniel

    2016-01-01

    Spontaneous grafting of chloroanthraquinone (ClAQ) groups on Black Pearls carbon by reduction of the corresponding in-situ generated diazonium cations was successfully achieved. The presence of an halogen atom on the quinone molecule allowed the use of different spectroscopic characterization techniques to determine the accurate quinone content of the modified carbon. Electrochemical characterization highlighted that the presence of chlorine atom on the grafted molecule did not affect the electrochemical response or the grafting reaction efficiency. The amount of ClAQ molecules at the carbon surface after grafting was determined by cyclic voltammetry, together with thermogravimetric analysis coupled mass spectroscopy, X-ray photoelectron spectroscopy and elemental analysis. The ClAQ mass loadings estimated from the four techniques are in very good agreement and confirm that the grafted moieties are all electrochemically active and accessible. Finally, the grafting of quinone-type molecule using the reduction of diazonium cations does not affect the electroactivity of the grafted groups and cyclic voltammetry can be considered as a reliable technique to evaluate the mass loading of grafted quinone groups on porous carbon. Thus ClAQ can be used as a grafted probe molecule to investigate grafting yield on carbon powder, and this approach can be extended to functionalized electrodes used in an increasing number of electrochemical energy storage devices.

  1. Cartilage grafting in facial reconstruction with special consideration of irradiated grafts

    International Nuclear Information System (INIS)

    Donald, P.J.

    1986-01-01

    The search for the perfect facial implant for reconstruction of the face continues. Cartilage, once thought to be an undesirable graft material because of its propensity for absorption, has regained popularity in the past decade. Various preparation techniques have been employed to ensure graft sterility and diminished absorption. An improved understanding of cartilage structure and physiology has shed considerable light on the host-graft relationship. Gamma irradiation is a time-honored method of preservation. An experiment was undertaken to investigate the physiology of irradiated cartilage grafts following prolonged implantation on the facial skeleton of sheep and dog. Merthiolate preserved grafts were used as controls. Direct observation, histochemical techniques, autoradiography, and transmission electron micrography were used to determine chondrocyte viability and matrix composition. It was surprising to note that following implantation of 16 to 72 months, complete resorption was seen in 87.7% of the irradiated grafts and in 43.8% of the Merthiolate stored controls. Many of the grafts acquired chondrocytes from the host and produced new proteoglycan matrix as well as undergoing some degree of ossification. A comparison to the clinical situation in humans is made. 98 references

  2. Structural studies of the O-specific polysaccharide(s) from the lipopolysaccharide of Azospirillum brasilense type strain Sp7.

    Science.gov (United States)

    Sigida, Elena N; Fedonenko, Yuliya P; Shashkov, Alexander S; Zdorovenko, Evelina L; Konnova, Svetlana A; Ignatov, Vladimir V; Knirel, Yuriy A

    2013-10-18

    Lipopolysaccharide was obtained by phenol-water extraction from dried bacterial cells of Azospirillum brasilense type strain Sp7. Mild acid hydrolysis of the lipopolysaccharide followed by GPC on Sephadex G-50 resulted in a polysaccharide mixture, which was studied by composition and methylation analyses, Smith degradation and (1)H and (13)C NMR spectroscopy. The following polysaccharide structures were established, where italics indicate a non-stoichiometric (∼40%) 2-O-methylation of l-rhamnose. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Repair of a common bile duct defect with a decellularized ureteral graft

    Science.gov (United States)

    Cheng, Yao; Xiong, Xian-Ze; Zhou, Rong-Xing; Deng, Yi-Lei; Jin, Yan-Wen; Lu, Jiong; Li, Fu-Yu; Cheng, Nan-Sheng

    2016-01-01

    AIM To evaluate the feasibility of repairing a common bile duct defect with a decellularized ureteral graft in a porcine model. METHODS Eighteen pigs were randomly divided into three groups. An approximately 1 cm segment of the common bile duct was excised from all the pigs. The defect was repaired using a 2 cm long decellularized ureteral graft over a T-tube (T-tube group, n = 6) or a silicone stent (stent group, n = 6). Six pigs underwent bile duct reconstruction with a graft alone (stentless group). The surviving animals were euthanized at 3 mo. Specimens of the common bile ducts were obtained for histological analysis. RESULTS The animals in the T-tube and stent groups survived until sacrifice. The blood test results were normal in both groups. The histology results showed a biliary epithelial layer covering the neo-bile duct. In contrast, all the animals in the stentless group died due to biliary peritonitis and cholangitis within two months post-surgery. Neither biliary epithelial cells nor accessory glands were observed at the graft sites in the stentless group. CONCLUSION Repair of a common bile duct defect with a decellularized ureteral graft appears to be feasible. A T-tube or intraluminal stent was necessary to reduce postoperative complications. PMID:28082809

  4. Tear trough – Anatomy and treatment by autologous fat grafting

    Directory of Open Access Journals (Sweden)

    Chang Yung Chia

    2016-07-01

    Full Text Available Tear trough is the main irregularity at midface, of which treatment is difficult. There is no agreement in literature about its anatomy and best treatment. The author presented an anatomical study and personal autologous fat grafting technique for tear trough treatment. Anatomical dissections were done on two fresh cadavers to examine the skin, subcutaneous, muscle and bone layers, spaces, and attachments. Safety and efficacy were evaluated via retrospective analysis of the last 200 consecutive procedures performed by the author. Tear trough is caused by the abrupt transition of the palpebral orbicular oculi muscle (OOM (i.e., thin skin without subcutaneous fat compartment to the orbital OOM (i.e., thicker skin with malar fat compartment. The tear trough region is located at the OOM bony origin at the medial canthus where no specific ligament was found. The grafted fat volume stabilized at two or three months after the procedure, instead of six months as stated in literature, with excellent results and no severe complications. Tear trough is a personal characteristic, a natural anatomical depression caused by subcutaneous irregularity and can worsen with age. The lack of volume is not effectively corrected by surgeries and thus it must be filled. Fat grafting has several advantages over alloplastic fillers, although it may be more difficult. Fat graft is autologous and abundant, and tissue transplantation could enhance skin quality. Fat grafting is a simple, safe, and effective solution for adding extra volume to correct the deflation phenomenon of the midface aging process. There is no specific anatomical plane for volume injection; the fat graft must be evenly distributed in the deep and superficial plane for uniformity.

  5. Immunogold scanning electron microscopy can reveal the polysaccharide architecture of xylem cell walls

    Science.gov (United States)

    Sun, Yuliang; Juzenas, Kevin

    2017-01-01

    Abstract Immunofluorescence microscopy (IFM) and immunogold transmission electron microscopy (TEM) are the two main techniques commonly used to detect polysaccharides in plant cell walls. Both are important in localizing cell wall polysaccharides, but both have major limitations, such as low resolution in IFM and restricted sample size for immunogold TEM. In this study, we have developed a robust technique that combines immunocytochemistry with scanning electron microscopy (SEM) to study cell wall polysaccharide architecture in xylem cells at high resolution over large areas of sample. Using multiple cell wall monoclonal antibodies (mAbs), this immunogold SEM technique reliably localized groups of hemicellulosic and pectic polysaccharides in the cell walls of five different xylem structures (vessel elements, fibers, axial and ray parenchyma cells, and tyloses). This demonstrates its important advantages over the other two methods for studying cell wall polysaccharide composition and distribution in these structures. In addition, it can show the three-dimensional distribution of a polysaccharide group in the vessel lateral wall and the polysaccharide components in the cell wall of developing tyloses. This technique, therefore, should be valuable for understanding the cell wall polysaccharide composition, architecture and functions of diverse cell types. PMID:28398585

  6. O-sulfated bacterial polysaccharides with low anticoagulant activity inhibit metastasis.

    Science.gov (United States)

    Borgenström, Marjut; Wärri, Anni; Hiilesvuo, Katri; Käkönen, Rami; Käkönen, Sanna; Nissinen, Liisa; Pihlavisto, Marjo; Marjamäki, Anne; Vlodavsky, Israel; Naggi, Annamaria; Torri, Giangiacomo; Casu, Benito; Veromaa, Timo; Salmivirta, Markku; Elenius, Klaus

    2007-07-01

    Heparin-like polysaccharides possess the capacity to inhibit cancer cell proliferation, angiogenesis, heparanase-mediated cancer cell invasion, and cancer cell adhesion to vascular endothelia via adhesion receptors, such as selectins. The clinical applicability of the antitumor effect of such polysaccharides, however, is compromised by their anticoagulant activity. We have compared the potential of chemically O-sulfated and N,O-sulfated bacterial polysaccharide (capsular polysaccharide from E. COLI K5 [K5PS]) species to inhibit metastasis of mouse B16-BL6 melanoma cells and human MDA-MB-231 breast cancer cells in two in vivo models. We demonstrate that in both settings, O-sulfated K5PS was a potent inhibitor of metastasis. Reducing the molecular weight of the polysaccharide, however, resulted in lower antimetastatic capacity. Furthermore, we show that O-sulfated K5PS efficiently inhibited the invasion of B16-BL6 cells through Matrigel and also inhibited the in vitro activity of heparanase. Moreover, treatment with O-sulfated K5PS lowered the ability of B16-BL6 cells to adhere to endothelial cells, intercellular adhesion molecule-1, and P-selectin, but not to E-selectin. Importantly, O-sulfated K5PSs were largely devoid of anticoagulant activity. These findings indicate that O-sulfated K5PS polysaccharide should be considered as a potential antimetastatic agent.

  7. Optimization of polysaccharides extraction from watermelon rinds: Structure, functional and biological activities.

    Science.gov (United States)

    Romdhane, Molka Ben; Haddar, Anissa; Ghazala, Imen; Jeddou, Khawla Ben; Helbert, Claire Boisset; Ellouz-Chaabouni, Semia

    2017-02-01

    In the present work, optimization of hot water extraction, structural characteristics, functional properties, and biological activities of polysaccharides extracted from watermelon rinds (WMRP) were investigated. The physicochemical characteristics and the monosaccharide composition of these polysaccharides were then determined using chemical composition analysis, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and gas chromatography-flame ionization detection (GC-FID). SEM images showed that extracted polysaccharides had a rough surface with many cavities. GC-FID results proved that galactose was the dominant sugar in the extracted polysaccharides, followed by arabinose, glucose, galacturonic acid, rhamnose, mannose, xylose and traces of glucuronic acid. The findings revealed that WMRP displayed excellent antihypertensive and antioxidant activities. Those polysaccharides had also a protection effect against hydroxyl radical-induced DNA damage. Functional properties of extracted polysaccharides were also evaluated. WMRP showed good interfacial dose-dependent proprieties. Overall, the results suggested that WMRP presents a promising natural source of antioxidants and antihypertensive agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Extraction and antioxidation of polysaccharide from porphyra haitanensis using response surface method

    International Nuclear Information System (INIS)

    Cai, C.; Yang, Y.; Zhao, M.; Jia, R.; He, P.

    2017-01-01

    This paper deals with the preparation and antioxidation of polysaccharide from Porphyra haitanensis. The ratio of water to raw material, extraction temperature and extraction time were taken in sequence as independent variables in single factor test, and polysaccharide yield as response value. Using Box-Benhnken central combination experimental design principles and response surface methodology, interactions of variables and their influence on polysaccharide yield of P. haitanensis were studied and the prediction model of quadratic polynomial regression equation was inferred by simulation, in which the optimum parameters for preparing polysaccharide from P. haitanensis were 88.4°C of extraction temperature, 1.97 h of extraction time and 40:1 (ml/g) of ratio of water to raw material, and polysaccharide of 15.19 % in yield from P. haitanensis was verified after two parallel test. Furthermore, the polysaccharide of P. haitanensis showed good antioxidant capacity which could be used as potential natural antioxidant products in food additives industries. (author)

  9. Plant cell wall polysaccharide analysis during cell elongation

    DEFF Research Database (Denmark)

    Guo, Xiaoyuan

    Plant cell walls are complex structures whose composition and architecture are important to various cellular activities. Plant cell elongation requires a high level of rearrangement of the cell wall polymers to enable cell expansion. However, the cell wall polysaccharides dynamics during plant cell...... elongation is poorly understood. This PhD project aims to elucidate the cell wall compositional and structural change during cell elongation by using Comprehensive Microarray Polymer Profiling (CoMPP), microscopic techniques and molecular modifications of cell wall polysaccharide. Developing cotton fibre......, pea and Arabidopsis thaliana were selected as research models to investigate different types of cell elongation, developmental elongation and tropism elongation. A set of comprehensive analysis covering 4 cotton species and 11 time points suggests that non-cellulosic polysaccharides contribute...

  10. Polysaccharides from Probiotics: New Developments as Food Additives

    Directory of Open Access Journals (Sweden)

    Philippe Michaud

    2010-01-01

    Full Text Available Microbial polysaccharides with nutraceutical potential and bioactive properties have been investigated in detail during the last few decades. There is an increasing demand in food industries for live microbes or polysaccharides produced by them which assert health benefits other than dietetic constituents. Although there are a large number of exopolysaccharide (EPS-producing bacteria, the titers are low for commercialization. This manuscript deals with the polysaccharides produced by probiotic strains, with major emphasis on the EPSs, their properties, applications and some of the strategies adopted which would be helpful in better understanding of the process in the near future. Research on the improved EPS biosynthesis is essential for obtaining high yields. Therefore, to reach commercialization, metabolic engineering must be applied.

  11. Antioxidant properties of cell wall polysaccharides of Stevia rebaudiana leaves

    Directory of Open Access Journals (Sweden)

    Mediesse Kengne Francine

    2014-12-01

    Full Text Available Objective: To examine the total phenolic and protein contents, and the antioxidant activities of cell wall polysaccharide fractions of Stevia rebaudiana leaves. Methods: Three different polysaccharide-enriched fractions, namely FPE (extract with 50 mmol/ L ethylene diamine tetra acetic acid, FPK (extract with 0.05 mol/L KOH and FH (extract with 4 mol/L KOH were extracted from Stevia rebaudiana leaves. The antioxidant activity of these fractions was evaluated based on their ability to scavenge DPPH (1, 1-diphenyl-2-picryl hydrazyl free radical, to reduce ferric power, to chelate ferrous ion and to protect human DNA. Results: The results indicated that protein content was found to be higher in FPK polysaccharide enriched fraction (47.48 µg per mg of FPK. Furthermore, the phenolic compound analysis according to the Folin-Ciocalteu method was higher in FPK (17.71 µg ferulic acid. The DPPH maximal inhibition percentage of the three polysaccharide-enriched fractions at 400 µg/mL was 27.66%, 59.90% and 23.21% respectively for FPE, FPK and FH. All the polysaccharide fractions exhibited a ferric reducing power except the FH one. The three fractions also exhibited lipid peroxidation inhibition, and they completely reverted the DNA damage induced by H2O2/FeCl2. FPK showed the strongest scavenging activity against the DPPH radical, the best chelating ability and lipid peroxidation inhibition. Conclusions: Stevia cell wall polysaccharide fractions are potent protective agents against oxidative stress. The analysis revealed major differences in the antioxidant activity in the three polysaccharides fractions. However, the 0.05 mol/L KOH pectin fraction (FPK showed better antioxidant activity.

  12. Antiviral Potential of Algae Polysaccharides Isolated from Marine Sources: A Review

    Directory of Open Access Journals (Sweden)

    Azin Ahmadi

    2015-01-01

    Full Text Available From food to fertilizer, algal derived products are largely employed in assorted industries, including agricultural, biomedical, food, and pharmaceutical industries. Among different chemical compositions isolated from algae, polysaccharides are the most well-established compounds, which were subjected to a variety of studies due to extensive bioactivities. Over the past few decades, the promising results for antiviral potential of algae-derived polysaccharides have advocated them as inordinate candidates for pharmaceutical research. Numerous studies have isolated various algal polysaccharides possessing antiviral activities, including carrageenan, alginate, fucan, laminaran, and naviculan. In addition, different mechanisms of action have been reported for these polysaccharides, such as inhibiting the binding or internalization of virus into the host cells or suppressing DNA replication and protein synthesis. This review strives for compiling previous antiviral studies of algae-derived polysaccharides and their mechanism of action towards their development as natural antiviral agents for future investigations.

  13. Evaluation of early coronary graft patency after coronary artery bypass graft surgery using multislice computed tomography angiography

    Directory of Open Access Journals (Sweden)

    Raissi Kamal

    2009-12-01

    Full Text Available Abstract Background Coronary artery bypass graft (CABG surgery is the standard of care in the treatment of advanced coronary artery disease, and its long-term results are affected by the failure of bypass grafts. The aim of the present study was to evaluate the early patency rate in coronary bypass grafts. Methods A total of 107 consecutive patients who underwent CABG were included in this study. Early graft patency was evaluated via computed tomography (CT angiography in the first week after surgery. Results There were a total of 366 grafts, comprised of 250 venous grafts and 116 arterial grafts. Multi-slice CT detected acute graft occlusions in 32 (8.7% of all the grafts, including 26 (10% of the 250 venous grafts and 6 (5% of the 116 arterial grafts. The patency rates obtained were 97.3% for the left internal mammary (IMA grafts, 50% for the radial artery grafts, and 50% for the right IMA grafts. Additionally, 107 (96.4% grafts to the left anterior descending artery (LAD were classified as patent, whereas 1 (30% of the 3 grafts in the left circumflex (LCX region and 1 (50% of the 2 grafts in the right coronary artery (RCA territory were found to be occluded. In the venous category, 8 (13.7% of the 58 grafts to LAD were found to be occluded. In the LCX region, 9 (8.5% of the 106 grafts were classified as occluded, while the remaining 97 (91.5% grafts were patent. The venous grafts to RCA were occluded in 9 (10.4% of the 86 grafts. Amongst the multiple preoperative, intraoperative, and postoperative factors, pump time was significantly longer in the patients with occluded grafts than in those with patent grafts (P = 0.04. Conclusion The IMA grafts had the highest early patency rate amongst the coronary bypass grafts. However, the other arterial grafts were associated with a high rate of acute occlusions.

  14. Extraction, Structural Characterization, and Potential Antioxidant Activity of the Polysaccharides from Four Seaweeds

    Science.gov (United States)

    He, Jinzhe; Xu, Yaoyang; Chen, Hongbo; Sun, Peilong

    2016-01-01

    Four seaweed polysaccharides were extracted from Sarcodia ceylonensis, Ulva lactuca L., Gracilaria lemaneiformis, and Durvillaea antarctica, respectively, by microwave-assisted extraction. The effect of three significant variables (extraction time, extraction temperature, and the ratio of water to raw material) on the process for extracting polysaccharides was investigated, along with the optimization of the extraction using the response surface method (RSM) with a Box–Behnken design. The polysaccharide structure, monosaccharide composition, degree of sulfation, and molecular weight (MW) distribution were analyzed by infrared (IR) spectrometry, gas chromatography (GC), and high-performance gel permeation chromatography (HPGPC). IR spectrometry showed that Sarcodia ceylonensis polysaccharide (SCP), Ulva lactuca L. polysaccharide (ULLP), and Durvillaea antarctica polysaccharide (DAP) were all sulfated polysaccharides and, except Gracilaria lemaneiformis polysaccharide (GLP), all belong to β-pyranosidic polysaccharides. The average molecular weight (MW) of SCP, ULLP, GLP, and DAP was 466, 404, 591, and 482 kDa, respectively. The quantitative and comparative results with external standards indicated that the main monosaccharide in SCP and ULLP was mannose; and GLP and DAP were mainly composed of galactose and glucose, respectively. Then the in vitro antioxidant activity of all of the polysaccharides was evaluated using different assays—2,2–azino –bis (3-ethylbenzthiazoline-6- sulfonate) (ABTS), hydroxyl radical, nitrite scavenging capacity, and reducing power—and the relationship between their antioxidant activity and chemical characteristics were also examined. ULLP presented the highest ABTS radical scavenging activity; ULLP, SCP and DAP also showed a strong effect on the ABTS radical scavenging activity. SCP and ULLP exhibited excellent hydroxyl radical scavenging activities, about 83.33% ± 2.31% and 80.07% ± 2.17%, respectively, at 4 mg/mL. The

  15. Extraction, Structural Characterization, and Potential Antioxidant Activity of the Polysaccharides from Four Seaweeds

    Directory of Open Access Journals (Sweden)

    Jinzhe He

    2016-11-01

    Full Text Available Four seaweed polysaccharides were extracted from Sarcodia ceylonensis, Ulva lactuca L., Gracilaria lemaneiformis, and Durvillaea antarctica, respectively, by microwave-assisted extraction. The effect of three significant variables (extraction time, extraction temperature, and the ratio of water to raw material on the process for extracting polysaccharides was investigated, along with the optimization of the extraction using the response surface method (RSM with a Box–Behnken design. The polysaccharide structure, monosaccharide composition, degree of sulfation, and molecular weight (MW distribution were analyzed by infrared (IR spectrometry, gas chromatography (GC, and high-performance gel permeation chromatography (HPGPC. IR spectrometry showed that Sarcodia ceylonensis polysaccharide (SCP, Ulva lactuca L. polysaccharide (ULLP, and Durvillaea antarctica polysaccharide (DAP were all sulfated polysaccharides and, except Gracilaria lemaneiformis polysaccharide (GLP, all belong to β-pyranosidic polysaccharides. The average molecular weight (MW of SCP, ULLP, GLP, and DAP was 466, 404, 591, and 482 kDa, respectively. The quantitative and comparative results with external standards indicated that the main monosaccharide in SCP and ULLP was mannose; and GLP and DAP were mainly composed of galactose and glucose, respectively. Then the in vitro antioxidant activity of all of the polysaccharides was evaluated using different assays—2,2–azino –bis (3-ethylbenzthiazoline-6- sulfonate (ABTS, hydroxyl radical, nitrite scavenging capacity, and reducing power—and the relationship between their antioxidant activity and chemical characteristics were also examined. ULLP presented the highest ABTS radical scavenging activity; ULLP, SCP and DAP also showed a strong effect on the ABTS radical scavenging activity. SCP and ULLP exhibited excellent hydroxyl radical scavenging activities, about 83.33% ± 2.31% and 80.07% ± 2.17%, respectively, at 4 mg/mL. The

  16. Size resolved airborne particulate polysaccharides in summer high Arctic

    Science.gov (United States)

    Leck, C.; Gao, Q.; Mashayekhy Rad, F.; Nilsson, U.

    2013-04-01

    Size-resolved aerosol samples for subsequent determination of polysaccharides (monosaccharides in combined form) were collected in air over the central Arctic Ocean during the biologically most active period between the late summer melt season and into the transition to autumn freeze-up. The analysis was carried out using liquid chromatography coupled with highly selective and sensitive tandem mass spectrometry. Polysaccharides were detected in all sizes ranging from 0.035 to 10 μm in diameter with distinct features of heteropolysaccharides, enriched in xylose, glucose + mannose as well as a substantial fraction of deoxysugars. Polysaccharides containing deoxysugars showed a bimodal structure with about 60% of their mass found in the Aitken mode over the pack ice area. Pentose (xylose) and hexose (glucose + mannose) showed a weaker bimodal character and were largely found in the coarse mode in addition to a minor fraction apportioned in the sub-micrometer size range. The concentration of total hydrolysable neutral sugars (THNS) in the samples collected varied over 3 orders of magnitude (1 to 692 pmol m-3) in the super-micrometer size fraction and to a lesser extent in sub-micrometer particles (4 to 88 pmol m-3). Lowest THNS concentrations were observed in air masses that had spent more than 5 days over the pack ice. Within the pack ice area, about 53% (by mass) of the total mass of polysaccharides were found in sub-micrometer particles. The relative abundance of sub-micrometer polysaccharides was closely related to the length of time that the air mass spent over pack ice, with highest fraction (> 90%) observed for > 7 days of advection. The ambient aerosol particles collected onboard ship showed similar monosaccharide composition, compared to particles generated experimentally in situ at the open lead site. This supports the existence of a primary source of particulate polysaccharides from open leads by bubble bursting at the air-sea interface. We speculate that

  17. Pancreas grafts

    International Nuclear Information System (INIS)

    Hahn, D.; Buell, U.; Land, W.; Unertl, K.

    1981-01-01

    Perfusion studies with sup(99m)Tc-DTPA, which has hitherto been used routinely to investigate renal grafts, have also proved useful for monitoring the perfusion of pancreas grafts. A total perfusion failure is equally reliably demonstrable as in renal grafts. Quantitatively smaller perfusion alterations can be demonstrated by monitoring the course. It seems possible to differentiate the salivary edema of a rejection reaction, well known from animal experiments, with the help of other paramters (e.g. creatinine). Further clinical studies are however necessary to confirm these results. (orig.) [de

  18. Graft union formation in artichoke grafting onto wild and cultivated cardoon: an anatomical study.

    Science.gov (United States)

    Trinchera, Alessandra; Pandozy, Gianmarco; Rinaldi, Simona; Crinò, Paola; Temperini, Olindo; Rea, Elvira

    2013-12-15

    In order to develop a non-chemical method such as grafting effective against well-known artichoke soil borne diseases, an anatomical study of union formation in artichoke grafted onto selected wild and cultivated cardoon rootstocks, both resistant to Verticillium wilt, was performed. The cardoon accessions Belgio (cultivated cardoon) and Sardo (wild cardoon) were selected as rootstocks for grafting combinations with the artichoke cv. Romolo. Grafting experiments were carried out in the autumn and spring. The anatomical investigation of grafting union formation was conducted by scanning electron microscopy (SEM) on the grafting portions at the 3rd, 6th, 10th, 12th day after grafting. For the autumn experiment only, SEM analysis was also performed at 30 d after grafting. A high affinity between artichoke scion and cardoon rootstocks was observed, with some genotype differences in healing time between the two bionts. SEM images of scion/rootstock longitudinal sections revealed the appearance of many interconnecting structures between the two grafting components just 3d after grafting, followed by a vascular rearrangement and a callus development during graft union formation. De novo formation of many plasmodesmata between scion and rootstock confirmed their high compatibility, particularly in the globe artichoke/wild cardoon combination. Moreover, the duration of the early-stage grafting process could be influenced not only by the scion/rootstock compatibility, but also by the seasonal conditions, being favored by lower temperatures and a reduced light/dark photoperiod. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. [Monosaccharide composition analysis and its content determination of polysaccharides from Rhaponticum uniforum].

    Science.gov (United States)

    Li, Fa-Sheng; Xu, Heng-Gui; Yan, Xiao-Mei; Li, Ming-Yang; Liu, Hui

    2008-06-01

    To analyze the monosaccharide composition in the polysaccharides from Rhaponticum uniforum, determine the content of monosaccharide, and provide some references for further research. The monosaccharide composition was determined by high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Phenol-sulfuric acid method was used for the determination of the content of polysaccharide. The monosaccharides composition in polysaccharides from R. uniforum are glucose, arabonose and fructose. Their molar ratios are 1 : 1.61 : 2.21. The content of polysaccharide is 95.78%, taking the mixture of monosaccharide compositions as reference substances. HPAEC-PAD can be used to analyze the monosaccharide composition in the polysaccharide with high precision, and the method of phenol-sulfuric acid is simple, convenient and reliable.

  20. Adhesion mapping of chemically modified and poly(ethylene oxide)-grafted glass surfaces.

    Science.gov (United States)

    Jogikalmath, G; Stuart, J K; Pungor, A; Hlady, V

    1999-08-01

    Two-dimensional mapping of the adhesion pull-off forces was used to study the origin of surface heterogeneity in the grafted poly(ethylene oxide) (PEO) layer. The variance of the pull-off forces measured over the μm-sized regions after each chemical step of modifying glass surfaces was taken to be a measure of the surface chemical heterogeneity. The attachment of γ-glycidoxypropyltrimethoxy silane (GPS) to glass decreased the pull-off forces relative to the clean glass and made the surface more uniform. The subsequent hydrolysis of the terminal epoxide groups resulted in a larger surface heterogeneity which was modeled by two populations of the terminal hydroxyl groups, each with its own distribution of adhesion forces and force variance. The activation of the hydroxyls with carbonyldiimmidazole (CDI) healed the surface and lowered its adhesion, however, the force variance remained rather large. Finally, the grafting of the α,ω-diamino poly(ethyleneoxide) chains to the CDI-activated glass largely eliminated adhesion except at a few discrete regions. The adhesion on the PEO grafted layer followed the Poisson distribution of the pull-off forces. With the exception of the glass surface, a correlation between the water contact angles and the mean pull-off forces measured with the Si(3)N(4) tip surfaces was found for all modified glass surfaces.

  1. A COMPARATIVE STUDY OF TYMPANOPLASTY USING SLICED CARTILAGE GRAFT VS. TEMPORALIS FASCIA GRAFT

    Directory of Open Access Journals (Sweden)

    Rahul Ashok Telang

    2018-02-01

    Full Text Available BACKGROUND The objective of the study was to compare the hearing improvement after using sliced cartilage graft with that of temporalis fascia and to compare the graft take-up between the two graft materials. MATERIALS AND METHODS A prospective clinical study including 60 patients with chronic mucosal otitis media, who were selected randomly from the outpatient department, after obtaining their consent were divided into 2 groups of 30 each, and evaluated according the study protocol. Their pre-operative audiometry was recorded and both groups of patients underwent surgery with one of the graft materials- temporalis fascia or sliced tragal cartilage with a thickness of 0.5 mm. All patients were regularly followed up and post-operative audiometry was done at 3 months. The hearing improvement in the form of closure of air-bone-gap and graft take-up was analysed statistically. RESULTS The temporalis fascia graft group had a pre-operative ABG of 22.33 ± 6.24 dB and post-operative ABG of 12.33 ± 4.72 dB with hearing improvement of 10.00 dB. The sliced cartilage graft group had a pre-operative ABG of 20.77 ± 5.75 dB and postoperative ABG of 10.50 ± 4.46 dB with hearing improvement of 10.27 dB. In the temporalis fascia group, 28 (93.3% patients had good graft take-up and in the sliced cartilage group 29 (96.7% had good graft take-up. There was statistically significant hearing improvement in both of our study groups but there was no statistically significant difference between the two groups. There was no statistically significant difference in graft take-up also. CONCLUSION Sliced cartilage graft is a good auto-graft material in tympanoplasty, which can give good hearing improvement and has good graft take-up, which is comparable with that of temporalis fascia.

  2. Organosilane grafted acid-activated beidellite clay for the removal of non-ionic alachlor and anionic imazaquin

    International Nuclear Information System (INIS)

    Paul, Blain; Martens, Wayde N.; Frost, Ray L.

    2011-01-01

    Clay adsorbents were prepared via two-step method to remove nonionic alachlor and anionic imazaquin herbicides from water. Firstly, layered beidellite clay, a member of smectite family, was treated with acid in hydrothermal process; secondly, common silane coupling agents, 3-chloro-propyl trimethoxysilane or triethoxy silane, were grafted on the acid treated samples to prepare adsorbent materials. The organically modified clay samples were characterized by powder X-ray diffraction, N 2 gas adsorption, and FTIR spectroscopy. It was found that the selective modification of clay samples displayed higher adsorption capacity for herbicides compared with acid activated clay. And the amount of adsorption is increased with increasing the grafting amount of silane groups. Clay grafted with 3-chloro-propyl trimethoxysilane is an excellent adsorbent for both alachlor and imazaquin but triethoxy (octyl) silane grafted clay is more efficient only for alachlor removal.

  3. Outcomes of AV Fistulas and AV Grafts after Interventional Stent-Graft Deployment in Haemodialysis Patients

    Energy Technology Data Exchange (ETDEWEB)

    Schmelter, Christopher, E-mail: christopher.schmelter@klinikum-ingolstadt.de; Raab, Udo, E-mail: udo.raab@klinikum-ingolstadt.de [Klinikum Ingolstadt, Department of Diagnostic and Interventional Radiology (Germany); Lazarus, Friedrich, E-mail: friedrich.lazarus@klinikum-ingolstadt.de [Klinikum Ingolstadt, Department of Nephrology (Germany); Ruppert, Volker, E-mail: volker.ruppert@klinikum-ingolstadt.de [Klinikum Ingolstadt, Department of Vascular Surgery (Germany); Vorwerk, Dierk, E-mail: dierk.vorwerk@klinikum-ingolstadt.de [Klinikum Ingolstadt, Department of Diagnostic and Interventional Radiology (Germany)

    2015-08-15

    PurposeThe study was designed to assess outcomes of arteriovenous (AV) accesses after interventional stent-graft deployment in haemodialysis patients.Materials and Methods63 haemodialysis patients with 66 AV fistulas and AV grafts were treated by interventional stent-graft deployment from 2006 to 2012 at our hospital. Data of these patients were retrospectively analysed for location of deployed stent-grafts, occurrence and location of (re-)stenosis and (re-)thrombosis. Complex stenosis was the most frequent indication for stent-graft deployment (45.5 %), followed by complications of angioplasty with vessel rupture or dissection (31.8 %).ResultsA high rate of procedural success was achieved (98.5 %). The most frequent location of the deployed stent-graft was the draining vein (66.7 %). Stent-graft deployment was more frequent in AV grafts than in AV fistulas. Primary patency was 45.5 % at 6 month, 31.3 % at 12 month and 19.2 % at 24 month. Primary patency was significantly better for AV fistulas than for AV grafts with deployed stent-grafts. Patency of the deployed stent-graft was much better than overall AV access primary patency with deployed stent-graft. Re-stenosis with thrombosis was the most frequent indication for re-intervention. Most frequent location of re-stenosis was the draining vein (37.1 %), followed by stenosis at the AV access (29.5 %) and the deployed stent-graft (23.5 %).ConclusionRe-stenosis and re-thrombosis remain frequent in AV fistulas and AV grafts in haemodialysis patients despite stent-graft deployment. Re-stenosis of the deployed stent-graft is, only in the minority of the cases, responsible for AV access dysfunction.

  4. Application of gamma irradiation for the enhanced physiological properties of polysaccharides from seaweeds

    International Nuclear Information System (INIS)

    Choi, Jong-il; Kim, Hyun-Joo; Kim, Jae-Hun; Byun, Myung-Woo; Soo Chun, Byeong; Hyun Ahn, Dong; Hwang, Young-Jeong; Kim, Duk-Jin; Kim, Gwang Hoon; Lee, Ju-Woon

    2009-01-01

    Polysaccharides from seaweeds, fucoidan and laminarin, were irradiated with gamma rays, and their structural changes and anti-oxidative activities were investigated. The gamma irradiation decreased the average molecular weights of polysaccharides, and UV spectra of irradiated polysaccharides showed increases in the numbers of carboxyl and carbonyl groups and double bonds. DPPH radical scavenging ability and reducing power of the gamma irradiated polysaccharides were significantly higher than those non-irradiated.

  5. Advances in radiation grafting

    International Nuclear Information System (INIS)

    Hegazy, El-Sayed A.; AbdEl-Rehim, H.A.; Kamal, H.; Kandeel, K.A.

    2001-01-01

    Graft copolymerization is an attractive means for modifying base polymers because grafting frequently results in the superposition of properties relating to the backbone and pendent chains. Among the various methods for initiating the grafting reaction, ionizing radiation is the cleanest and most versatile method of grafting available. Ion-exchange membranes play an important role in modern technology, especially in separation and purification of materials. The search for improved membrane composition has considered almost every available polymeric material because of its great practical importance. Grafting of polymers with a mixture of monomers is important since different types of chains containing different functional groups are included. A great deal is focused on the waste treatment of heavy and toxic metals from wastewater because of the severe problems of environmental pollution. Functionalized polymers suitable for metal adsorption with their reactive functional groups such as carboxylic and pyridine groups suitable for waste treatment were prepared by radiation grafting method. More reactive chelating groups were further introduced to the grafted copolymer through its functional groups by chemical treatments with suitable reagents. The advances of radiation grafting and possible uses are briefly discussed

  6. Chemical Composition and Antioxidant Activities of Three Polysaccharide Fractions from Pine Cones

    Directory of Open Access Journals (Sweden)

    Pu Wang

    2012-11-01

    Full Text Available The traditional method of gas chromatography-mass spectrometry for monosaccharide component analysis with pretreatment of acetylation is described with slight modifications and verified in detail in this paper. It was then successfully applied to the quantitative analysis of component monosaccharides in polysaccharides extracted from the pine cones. The results demonstrated that the three pine cone polysaccharides all consisted of ribose, rhamnose, arabinose, xylose, mannose, glucose and galactose in different molar ratios. According to the recovery experiment, the described method was proved accurate and practical for the analysis of pine cone polysaccharides, meeting the need in the field of chemical analysis of Pinus plants. Furthermore; the chemical characteristics, such as neutral sugar, uronic acids, amino acids, molecular weights, and antioxidant activities of the polysaccharides were investigated by chemical and instrumental methods. The results showed that the chemical compositions of the polysaccharides differed from each other, especially in the content of neutral sugar and uronic acid. In the antioxidant assays, the polysaccharide fractions exhibited effective scavenging activities on ABTS radical and hydroxyl radical, with their antioxidant capabilities decreasing in the order of PKP > PAP > PSP. Therefore, although the polysaccharide fractions had little effect on superoxide radical scavenging, they still have potential to be developed as natural antioxidant agents in functional foods or medicine.

  7. Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities.

    Science.gov (United States)

    Ferreira, Isabel C F R; Heleno, Sandrina A; Reis, Filipa S; Stojkovic, Dejan; Queiroz, Maria João R P; Vasconcelos, M Helena; Sokovic, Marina

    2015-06-01

    Ganoderma genus comprises one of the most commonly studied species worldwide, Ganoderma lucidum. However, other Ganoderma species have been also reported as important sources of bioactive compounds. Polysaccharides are important contributors to the medicinal properties reported for Ganoderma species, as demonstrated by the numerous publications, including reviews, on this matter. Yet, what are the chemical features of Ganoderma polysaccharides that have bioactivity? In the present manuscript, the chemical features of Ganoderma polysaccharides with reported antioxidant, antitumor and antimicrobial activities (the most studied worldwide) are analyzed in detail. The composition of sugars (homo- versus hetero-glucans and other polysaccharides), type of glycosidic linkages, branching patterns, and linkage to proteins are discussed. Methods for extraction, isolation and identification are evaluated and, finally, the bioactivity of polysaccharidic extracts and purified compounds are discussed. The integration of data allows deduction of structure-activity relationships and gives clues to the chemical aspects involved in Ganoderma bioactivity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Identification of interstellar polysaccharides and related hydrocarbons

    International Nuclear Information System (INIS)

    Hoyle, F.; Olavesen, A.H.; Wickramasinghe, N.C.

    1978-01-01

    A discussion is presented on the infrared transmittance spectra of several polysaccharides that may be of interest as possible interstellar candidates. It is stated that a 2.5 to 15 μm spectrum computed from the author's measurements is remarkably close to that required to explain a wide range of astronomical data, except for two points. First the required relative opacity at the 3 μm absorption dip is a factor of about 1.5 lower than was found in laboratory measurements; this difference may arise from the presence of water in terrestrial polysaccharide samples. Secondly, in the 9.5 to 12 μm waveband an additional source of opacity appears to be necessary. Close agreement between the spectrum of this additional opacity and the absorption spectrum of propene, C 3 H 6 , points strongly to the presence of hydrocarbons of this type, which may be associated with polysaccharide grains in interstellar space. (U.K.)

  9. Neisseria meningitidis serogroup A capsular polysaccharide acetyltransferase, methods and compositions

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, David S [Stone Mountain, GA; Gudlavalleti, Seshu K [Kensington, MD; Tzeng, Yih-Ling [Atlanta, GA; Datta, Anup K [San Diego, CA; Carlson, Russell W [Athens, GA

    2011-02-08

    Provided are methods for recombinant production of an O-acetyltransferase and methods for acetylating capsular polysaccharides, especially those of a Serogroup A Neisseria meningitidis using the recombinant O-acetyltransferase, and immunogenic compositions comprising the acetylated capsular polysaccharide.

  10. Effect of atracylodes rhizome polysaccharide in rats with adenine-induced chronic renal failure.

    Science.gov (United States)

    Yang, C; Liu, C; Zhou, Q; Xie, Y C; Qiu, X M; Feng, X

    2015-01-01

    The aim of the study was to elucidate the therapeutic effects of Atracylodes rhizome polysaccharide on adenine-induced chronic renal failure in rats. Fifty male Sprague Dawley rats were selected and randomly divided in to 5 groups (n=10 rats per group): The normal control group, the chronic renal failure pathological control group, the dexamethasone treatment group and two Atracylodes rhizome polysaccharide treatment groups, treated with two different concentrations of the polysaccharide, the Atracylodes rhizome polysaccharide high group and the Atracylodes rhizome polysaccharide low group. All the rats, except those in the normal control group were fed adenine-enriched diets, containing 10 g adenine per kg food for 3 weeks. After being fed with adenine, the dexamethasone treatment group, Atracylodes rhizome polysaccharide high group and Atracylodes rhizome polysaccharide low group rats were administered the drug orally for 2 weeks. On day 35, the kidney coefficient of the rats and the serum levels of creatinine, blood urea nitrogen, total protein and hemalbumin were determined. Subsequent to experimentation on a model of chronic renal failure in rats, the preparation was proven to be able to reduce serum levels of creatinine, blood urea nitrogen and hemalbumin levels (Prenal function. Atracylodes rhizome polysaccharide had reversed the majority of the indices of chronic renal failure in rats.

  11. Utilizing whey protein isolate and polysaccharide complexes to stabilize aerated dairy gels.

    Science.gov (United States)

    O'Chiu, Emily; Vardhanabhuti, Bongkosh

    2017-05-01

    Heated soluble complexes of whey protein isolate (WPI) with polysaccharides may be used to modify the properties of aerated dairy gels, which could be formulated into novel-textured high-protein desserts. The objective of this study was to determine the effect of polysaccharide charge density and concentration within a WPI-polysaccharide complex on the physical properties of aerated gels. Three polysaccharides having different degrees of charge density were chosen: low-methoxyl pectin, high-methoxyl type D pectin, and guar gum. Heated complexes were prepared by heating the mixed dispersions (8% protein, 0 to 1% polysaccharide) at pH 7. To form aerated gels, 2% glucono-δ-lactone was added to the dispersions of skim milk powder and heated complex and foam was generated by whipping with a handheld frother. The foam set into a gel as the glucono-δ-lactone acidified to a final pH of 4.5. The aerated gels were evaluated for overrun, drainage, gel strength, and viscoelastic properties. Without heated complexes, stable aerated gels could not be formed. Overrun of aerated gel decreased (up to 73%) as polysaccharide concentration increased from 0.105 to 0.315% due to increased viscosity, which limited air incorporation. A negative relationship was found between percent drainage and dispersion viscosity. However, plotting of drainage against dispersion viscosity separated by polysaccharide type revealed that drainage decreased most in samples with high-charge-density, low-methoxyl pectin followed by those with low-charge-density, high-methoxyl type D pectin. Aerated gels with guar gum (no charge) did not show improvement to stability. Rheological results showed no significant difference in gelation time among samples; therefore, stronger interactions between WPI and high-charge-density polysaccharide were likely responsible for increased stability. Stable dairy aerated gels can be created from WPI-polysaccharide complexes. High-charge-density polysaccharides, at

  12. [Correlation analysis of major agronomic characters and the polysaccharide contents in Dendrobium officinale].

    Science.gov (United States)

    Zhang, Lei; Zheng, Xi-Long; Qiu, Dao-Shou; Cai, Shi-Ke; Luo, Huan-Ming; Deng, Rui-Yun; Liu, Xiao-Jin

    2013-10-01

    In order to provide theoretical and technological basis for the germplasm innovation and variety breeding in Dendrobium officinale, a study of the correlation between polysaccharide content and agronomic characters was conducted. Based on the polysaccharide content determination and the agronomic characters investigation of 30 copies (110 individual plants) of Dendrobium officinale germplasm resources, the correlation between polysaccharide content and agronomic characters was analyzed via path and correlation analysis. Correlation analysis results showed that there was a significant negative correlation between average spacing and polysaccharide content, the correlation coefficient was -0.695. And the blade thickness was positively correlated with the polysaccharide content, but the correlation was not significant. The path analysis results showed that the stem length was the maximum influence factor to the polysaccharide, and it was positive effect, the direct path coefficient was 1.568. According to thess results, the polysaccharide content can be easily and intuitively estimated by the agronomic characters investigating data in the germpalsm resources screening and variety breeding. Therefore, it is a visual and practical technology guidance in quality variety breeding of Dendrobium officinale.

  13. Mapping the polysaccharide degradation potential of Aspergillus niger

    DEFF Research Database (Denmark)

    Andersen, Mikael Rørdam; Giese, Malene; de Vries, Ronald P.

    2012-01-01

    Background: The degradation of plant materials by enzymes is an industry of increasing importance. For sustainable production of second generation biofuels and other products of industrial biotechnology, efficient degradation of non-edible plant polysaccharides such as hemicellulose is required....... For each type of hemicellulose, a complex mixture of enzymes is required for complete conversion to fermentable monosaccharides. In plant-biomass degrading fungi, these enzymes are regulated and released by complex regulatory structures. In this study, we present a methodology for evaluating the potential...... of a given fungus for polysaccharide degradation. Results: Through the compilation of information from 203 articles, we have systematized knowledge on the structure and degradation of 16 major types of plant polysaccharides to form a graphical overview. As a case example, we have combined this with a list...

  14. Screening of polysaccharides from tamarind, fenugreek and jackfruit seeds as pharmaceutical excipients.

    Science.gov (United States)

    Nayak, Amit Kumar; Pal, Dilipkumar; Santra, Kousik

    2015-08-01

    The paper describes the isolation and screening of plant polysaccharides namely tamarind seed polysaccharide (TSP), fenugreek seed mucilage (FSM) and jackfruit seed starch (JFSS) from tamarind (Tamarindus indica L.) seeds, fenugreek (Trigonella foenum-graecum L.) seeds and jackfruit (Artocarpus heterophyllus L.) seeds, respectively. The yields of isolated dried TSP, FSM and JFSS were 47.00%, 17.36% and 18.86%, respectively. Various physicochemical properties like colour, odour, taste, solubility in water, pH and viscosity of these isolated plant polysaccharides were assessed. Isolated polysaccharide samples were subjected to some phytochemical identification tests. FTIR and (1)H NMR analyses of isolated polysaccharides were performed, which suggest the presence of sugar residues. Isolated TSP, FSM and JFSS can be used as pharmaceutical excipients in various pharmaceutical formulations. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Grafted polymers with annealed excluded volume : a model for surfactant association in brushes

    NARCIS (Netherlands)

    Currie, E.P.K.; Fleer, G.J.; Cohen Stuart, M.A.; Borisov, O.V.

    2000-01-01

    We present an analytical self-consistent-field (SCF) theory for a neutral polymer brush (a layer of long polymer chains end-grafted to a surface) with annealed excluded volume interactions between the monomer units. This model mimics the reversible adsorption of solute molecules or aggregates, such

  16. Synthesis of Hydroxyapatite Nanoparticles in Presence of a Linear Polysaccharide

    Directory of Open Access Journals (Sweden)

    Humberto A. Monreal Romero

    2013-01-01

    Full Text Available Hydroxyapatite nanoparticles compounds were synthesized. Natural hydroxyapatite and a linear polysaccharide (1–3 linked   β-D galactopyranose and 1,4 linked 3,6 anhydro-α-L-galactopyranose were used as a precursor in its formation. Our purpose was to produce nanoparticles in the presence of a linear polysaccharide with the use of a gelification method. The powder sample was evaluated by scanning tunneling microscope (STM, Brunauer-Emmett-Teller (BET analysis, X-ray diffraction pattern (XRD, differential thermal analysis (DTA, infrared (IR analysis, and thermal gravimetric analysis (TGA. According to the results, it was found that these nanoparticles can successfully be synthesized using a polysaccharide in a solution. On the other hand, the XRD peak intensity corresponds to hydroxyapatite structure in the range of temperature of 810°C. The influence of the polysaccharide on the evolution of the nanoparticles has been demonstrated. This observation opens up new routes for the fabrication of nanoparticles using polysaccharides network. The synthesized nanoparticles have diameters ranging from 10 nm to 11 nm approximately. The elaboration conditions such as pH and concentration were optimized in this solution.

  17. Extraction, purification and elicitor activities of polysaccharides from Chrysanthemum indicum.

    Science.gov (United States)

    Du, Ningning; Tian, Wei; Zheng, Dongfang; Zhang, Xinyi; Qin, Pinyan

    2016-01-01

    Polysaccharides isolated from Chrysanthemum indicum were studied for their pathogen-derived resistance against Sclerotium rolfsii sacc in Atractylodis maceocephalae koidz. The total sugar content and monosaccharide analysis were determined by phenol-sulfuric acid method and gas chromatography, and infrared spectroscopy performed for simple structure information. The activities of CAT and POD as protective enzymes in A. maceocephalae leaves were evaluated. The purified polysaccharides exhibited strong CAT and POD activities in inoculated with S. rolfsii in A. macrocephala leaves, attained the maximum value 568.3 Ug(-1)min(-1) and 604.4 Ug(-1)min(-1)respectively. Whereas, when compared with the control plants, 20mg/ml purified polysaccharides exhibited the strongest CAT and POD activities. Notably, the treatments of A. macepcephalae seedlings with C. indicum polysaccharides (CIP) decreased disease index development caused by S. rolfsii. The disease index after 10 days was significantly reduced when the seedlings treated with 20mg/ml CIP, 4.41 compared to the control plants 32.00. Given together, these results indicated that purified polysaccharides derived from C. indicum may be useful as a natural inducer. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Thermo-mechanical and hydrophilic properties of polysaccharide/gluten-based bioplastics.

    Science.gov (United States)

    Zárate-Ramírez, L S; Romero, A; Bengoechea, C; Partal, P; Guerrero, A

    2014-11-04

    The influence of adding different polysaccharides (locust bean gum, LBG; methyl cellulose, MC; and carboxymethyl cellulose, CMC) to gluten-based biodegradable polymeric materials was assessed in this work. Gluten/polysaccharide/plasticiser bioplastics were prepared at different polysaccharide concentrations (0-4.5%) and pH values by mixing in a two-blade counter-rotating batch mixer (at 25 °C under adiabatic conditions) and thermomoulding at 9MPa and 130 °C. Bioplastic probes were evaluated through dynamic mechanical thermal analysis, tensile strength and water absorption capacity tests. Results pointed out that a moderate enhancement of the network structure may be achieved by adding polysaccharide at a pH close to the protein isoelectric point (pH 6), which also conferred a further thermosetting capacity to the system. Moreover, the addition of MC and CMC was found to significantly enhance material elongation properties. However, the presence of charges induced by pH leaded to a higher incompatibility between the polysaccharide and protein domains forming the composite. The pH value played a relevant role in the material water absorption, which significantly increased under acidic or basic conditions (particularly at pH 3). Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Seaweed Polysaccharide-Based Nanoparticles: Preparation and Applications for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Jayachandran Venkatesan

    2016-01-01

    Full Text Available In recent years, there have been major advances and increasing amounts of research on the utilization of natural polymeric materials as drug delivery vehicles due to their biocompatibility and biodegradability. Seaweed polysaccharides are abundant resources and have been extensively studied for several biological, biomedical, and functional food applications. The exploration of seaweed polysaccharides for drug delivery applications is still in its infancy. Alginate, carrageenan, fucoidan, ulvan, and laminarin are polysaccharides commonly isolated from seaweed. These natural polymers can be converted into nanoparticles (NPs by different types of methods, such as ionic gelation, emulsion, and polyelectrolyte complexing. Ionic gelation and polyelectrolyte complexing are commonly employed by adding cationic molecules to these anionic polymers to produce NPs of a desired shape, size, and charge. In the present review, we have discussed the preparation of seaweed polysaccharide-based NPs using different types of methods as well as their usage as carriers for the delivery of various therapeutic molecules (e.g., proteins, peptides, anti-cancer drugs, and antibiotics. Seaweed polysaccharide-based NPs exhibit suitable particle size, high drug encapsulation, and sustained drug release with high biocompatibility, thereby demonstrating their high potential for safe and efficient drug delivery.

  20. Maca polysaccharides: Extraction optimization, structural features and anti-fatigue activities.

    Science.gov (United States)

    Li, Yujuan; Xin, Yizhou; Xu, Fangxue; Zheng, Mengmeng; Xi, Xiaozhi; Cui, Xiaowei; Cao, Hui; Guo, Hong; Han, Chunchao

    2018-08-01

    The maca polysaccharides optimal extraction conditions were obtained by using response surface methodology (RSM) method and the anti-fatigue activity of maca polysaccharides (MCP) was explored. The maca polysaccharides extract yield of RSM could reach 9.97 mg/g by using the model predicts, and the total sugar and protein purity were 61.00% and 4.46% with the further isolation process, respectively. And the monosaccharide compositions obtained by gas chromatograph (GC) were composed of rhamnose (rha), glucose (glc), galactose (gal) with the ratio of 2.34:10.21:1.00. Furthermore, the anti-fatigue activity was evaluated by the swimming parameter, biochemistry parameters (liver glycogen (LG), blood urea nitrogen (BUN), and lactic acid (LD)), the result indicated that the low-dose maca polysaccharides group had the significant anti-fatigue activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. The implantation of separating aortic stent-graft into the canine thoracic aorta: an experimental study

    International Nuclear Information System (INIS)

    Xia Jinguo; Shi Haibin; Yang Zhengqiang; Li Chao; Liu Sheng; Zu Qingquan; Li Linsun

    2011-01-01

    Objective: to assess the technical feasibility of implanting separating stent-graft into the canine thoracic aorta and to study its biocompatibility. Methods: Twelve adult dogs were randomly and equally divided into three groups. The right femoral artery was cut open, through which the separating stent-graft was inserted and deployed in the canine thoracic aorta, with the proximal end of the graft being quite close to the origin of the left subclavian artery. the technical feasibility of the deployment process was assessed. Angiography was performed at 4, 8 and 12 weeks after stent-graft placement to evaluate the position and patency of the stent-graft. Then the dogs were sacrificed and the specimens were collected for pathologic study. Both gross and microscopic examinations were made to evaluate the fixation of the stent-graft with the vessel wall, the endothelialization of stent-graft surface and the pathologic changes of the vascular wall. Results: A total of ten separating stent-grafts were successfully deployed in the canine thoracic aorta, no migration or deformation occurred. One dog died of massive bleeding due to the rupture of the right femoral artery which occurred when the delivery system containing the inner bare stent was inserted through the right femoral artery. Death occurred in another dog as a result of the ascending aorta rupture caused by the migration of outer-layer stent-graft. Angiography was conducted at 4, 8 and 12 weeks after stent-graft placement. No migration, deformation, rupture or stenosis of the implanted stent-grafts were observed. The formation of intima on the inner surface of the bare stent appeared at 4 weeks, which became more and more obvious with the time passing, and at 12 weeks complete endothelialization of stent-graft surface was observed. Conclusion: Technically, it is feasible to deploy the separating aortic stent-graft into the canine thoracic aorta. Moreover, the separating aortic stent-graft carries excellent

  2. Ultrasonic extraction, antioxidant and anticancer activities of novel polysaccharides from Chuanxiong rhizome.

    Science.gov (United States)

    Hu, Jie; Jia, Xuejing; Fang, Xiaobin; Li, Peng; He, Chengwei; Chen, Meiwan

    2016-04-01

    Ultrasonic-assisted extraction technology was employed to prepare Ligusticum chuanxiong Hort polysaccharide. Single factor test and orthogonal experimental design were used to optimize the extraction conditions. The results showed that the optimal extraction conditions consisted of ultrasonic temperature of 80°C, ultrasonic time of 40 min and water to raw material ratio of 30 mL/g. Three novel polysaccharides fractions, LCX0, LCX1 and LCX2, were isolated and purified from the crude polysaccharides using DEAE-52 cellulose and Sephadex G-100 column chromatography. The molecular weight and monosaccharide composition of three LCX polysaccharides fractions were analyzed with gel permeation chromatography (GPC) and HPLC analysis, respectively. Furthermore, the antioxidant and in vitro anticancer activities of the polysaccharides were investigated. Compared with LCX0, LCX2 and LCX1 showed relative higher antioxidant activity and inhibitory activity to the growth of HepG2, SMMC7721, A549 and HCT-116 cells. It is suggested that the novel polysaccharides from rhizome of L. chuanxiong could be promising bioactive macromolecules for biomedical use. Copyright © 2016. Published by Elsevier B.V.

  3. Controlling the Growth of Staphylococcus epidermidis by Layer-By-Layer Encapsulation.

    Science.gov (United States)

    Jonas, Alain M; Glinel, Karine; Behrens, Adam; Anselmo, Aaron C; Langer, Robert S; Jaklenec, Ana

    2018-05-16

    Commensal skin bacteria such as Staphylococcus epidermidis are currently being considered as possible components in skin-care and skin-health products. However, considering the potentially adverse effects of commensal skin bacteria if left free to proliferate, it is crucial to develop methodologies that are capable of maintaining bacteria viability while controlling their proliferation. Here, we encapsulate S. epidermidis in shells of increasing thickness using layer-by-layer assembly, with either a pair of synthetic polyelectrolytes or a pair of oppositely charged polysaccharides. We study the viability of the cells and their delay of growth depending on the composition of the shell, its thickness, the charge of the last deposited layer, and the degree of aggregation of the bacteria which is varied using different coating procedures-among which is a new scalable process that easily leads to large amounts of nonaggregated bacteria. We demonstrate that the growth of bacteria is not controlled by the mechanical properties of the shell but by the bacteriostatic effect of the polyelectrolyte complex, which depends on the shell thickness and charge of its outmost layer, and involves the diffusion of unpaired amine sites through the shell. The lag times of growth are sufficient to prevent proliferation for daily topical applications.

  4. Salt Effect on the Antioxidant Activity of Red Microalgal Sulfated Polysaccharides in Soy-Bean Formula.

    Science.gov (United States)

    Burg, Ariela; Oshrat, Levy-Ontman

    2015-10-20

    Sulfated polysaccharides produced by microalgae, which are known to exhibit various biological activities, may potentially serve as natural antioxidant sources. To date, only a few studies have examined the antioxidant bioactivity of red microalgal polysaccharides. In this research, the effect of different salts on the antioxidant activities of two red microalgal sulfated polysaccharides derived from Porphyridium sp. and Porphyridium aerugineum were studied in a soy bean-based infant milk formula. Salt composition and concentration were both shown to affect the polysaccharides' antioxidant activity. It can be postulated that the salt ions intefer with the polysaccharide chains' interactions and alter their structure, leading to a new three-dimensional structure that better exposes antiooxidant sites in comparison to the polysaccharide without salt supplement. Among the cations that were studied, Ca(2+) had the strongest enhancement effect on antioxidant activities of both polysaccharides. Understanding the effect of salts on polysaccharides' stucture, in addition to furthering knowledge on polysaccharide bioactivities, may also shed light on the position of the antioxidant active sites.

  5. Spontaneous grafting of diazonium salts: chemical mechanism on metallic surfaces.

    Science.gov (United States)

    Mesnage, Alice; Lefèvre, Xavier; Jégou, Pascale; Deniau, Guy; Palacin, Serge

    2012-08-14

    The spontaneous reaction of diazonium salts on various substrates has been widely employed since it consists of a simple immersion of the substrate in the diazonium salt solution. As electrochemical processes involving the same diazonium salts, the spontaneous grafting is assumed to give covalently poly(phenylene)-like bonded films. Resistance to solvents and to ultrasonication is commonly accepted as indirect proof of the existence of a covalent bond. However, the most relevant attempts to demonstrate a metal-C interface bond have been obtained by an XPS investigation of spontaneously grafted films on copper. Similarly, our experiments give evidence of such a bond in spontaneously grafted films on nickel substrates in acetonitrile. In the case of gold substrates, the formation of a spontaneous film was unexpected but reported in the literature in parallel to our observations. Even if no interfacial bond was observed, formation of the films was explained by grafting of aryl cations or radicals on the surface arising from dediazoniation, the film growing later by azo coupling, radical addition, or cationic addition on the grafted phenyl layer. Nevertheless, none of these mechanisms fits our experimental results showing the presence of an Au-N bond. In this work, we present a fine spectroscopic analysis of the coatings obtained on gold and nickel substrates that allow us to propose a chemical structure of such films, in particular, their interface with the substrates. After testing the most probable mechanisms, we have concluded in favor of the involvement of two complementary mechanisms which are the direct reaction of diazonium salts with the gold surface that accounts for the observed Au-N interfacial bonds as well as the formation of aryl cations able to graft on the substrate through Au-C linkages.

  6. The Bolton Treovance abdominal stent-graft: European clinical trial design.

    Science.gov (United States)

    Chiesa, R; Riambau, V; Coppi, G; Zipfel, B; Llagostera, S; Marone, E M; Kahlberg, A

    2012-10-01

    Endovascular aortic repair (EVAR) has emerged as a promising, less invasive alternative to conventional open surgery for the treatment of infrarenal abdominal aortic aneurysms (AAAs). In the last 20 years, the application rate of EVAR and its clinical results have significantly improved thanks to the evolution of stent-grafts and endovascular delivery systems. However, further development is still needed to reduce the incidence of complications and secondary re-interventions. The Treovance abdominal aortic stent-graft (Bolton Medical, Barcelona, Spain) is a new-generation endovascular device, developed to increase flexibility, lower profile, improve deployment and sealing mechanisms. In particular, it is provided with some innovative features as a double layer of proximal barbs (suprarenal and infrarenal) for supplemental fixation, dull barbs between modules to avoid potential leg disconnections, detachable outer sheath provided with a new-design hemostatic valve, and a double improved mechanism (slow motion and "pin and pull") for precise stent-graft deployment. A European prospective, non-randomized, multi-institutional, "first-in-human" trial (the ADVANCE trial) was conducted from March to December 2011 to assess the safety and performance of the Treovance stent-graft system before commercialization. Thirty patients with anatomically suitable non-ruptured AAAs were enrolled at five clinical sites in Italy, Spain, and Germany. EVAR was completed successfully in all patients. The stent-graft was delivered and deployed safely even in heavily angulated or calcified anatomies. No 30-day device-related complications nor deaths were observed. Preliminary experience with the Treovance abdominal stent-graft within the ADVANCE trial was satisfactory with regard to technical success and perioperative clinical results. Follow-up data are needed to assess mid- and long-term clinical outcomes, along with durability of this new-generation endovascular device.

  7. Modification of polyetherurethane for biomedical application by radiation-induced grafting. I. Grafting procedure, determination of mechanical properties, and chemical modification of grafted films

    International Nuclear Information System (INIS)

    Jansen, B.; Ellinghorst, G.

    1985-01-01

    Radiation grafting of monomers onto suitable trunk polymers is a useful tool for tailoring new polymers for special purposes. This technique has been used in the past for the development of biocompatible materials, e.g., by grafting hydrogels onto mechanically stable polymers. In this first part of our work, the radiation grafting of hydrophilic or reactive monomers onto a polyetherurethane film using the pre-swelling technique is described. Following this technique the trunk polymer was swollen in the monomer before irradiation. As monomers 2-hydroxyethyl methacrylate (HEMA), 2,3-epoxypropyl methacrylate (GMA), 2,3-dihydroxypropyl methacrylate (GOMA), and acrylamide (AAm) were used. The kinetics of the grafting reactions were examined, and the distribution of the graft component inside the trunk polymer was investigated by means of infrared (IR) spectroscopy. Surface-grafted as well as bulk- and surface-grafted products could be obtained. The mechanical behavior of the grafted films--especially in the water-swollen state--was examined and compared with that of the pure trunk polymer. In nearly all cases it was found that the tensile strength sigma B and the elongation at break epsilon R decreases as the grafting yield increases. Modification of GMA- and AAm-grafted films via chemical reactions was performed to create new functional groups of biomedical interest. In this manner a diol structure, a carboxylic acid structure, and a sulfonic acid group could be introduced in the grafted polymer. The water uptake of such modified films is increased markedly when compared with that of the unmodified samples

  8. Iodophilic polysaccharide synthesis, acid production and growth in oral streptococci

    NARCIS (Netherlands)

    Houte, J. van; Winkler, K.C.; Jansen, H.M.

    The relation between iodophilic polysaccharide formation, acid production and growth in α-haemolytic streptococci, isolated from human dental plaque, was studied. In experiments with resting cell suspensions, or with cells growing at a low rate, all strains synthesizing iodophilic polysaccharide

  9. Improvement of cell infiltration in electrospun polycaprolactone scaffolds for the construction of vascular grafts.

    Science.gov (United States)

    Wang, Kai; Zhu, Meifeng; Li, Ting; Zheng, Wenting; Li, Li; Xu, Mian; Zhao, Qiang; Kong, Deling; Wang, Lianyong

    2014-08-01

    The less-than-ideal cell infiltration resulting from inherently small pore size limits the application of electrospinning scaffold in tissue engineering and regeneration medicine. The present study aims to develop a porogenic method which can significantly increase pore size in electrospinning scaffold and enhance cell migration. With this method, composite scaffolds consisting of poly(epsilon-caprolactone) (PCL) fibers and poly(ethylene oxide) (PEO) microparticles were prepared by simultaneously electrospinning and electrospraying. Removal of the PEO microparticles from the composites generated large pores. In vitro culture of NIH3T3 cells and in vivo subcutaneous implantation both demonstrated that the porogenic scaffolds markedly facilitated cell infiltration. With the same technique, vascular grafts with alternative dense and loose layers were prepared by turning on or off electrospraying PEO. SEM showed that there was no a clear delamination between the loose and dense layers. The mechanical strength and burst pressure of these vascular grafts could meet the requirements of vascular implantation. In conclusion, electrospinning PCL fibers with electrospraying PEO microparticles may be an effective and controllable method to increase pore size in electrospinning scaffold and provides a useful tool for the fabrication of vascular grafts that meets the need of blood vessel replacement.

  10. Composition and antioxidant activities of four polysaccharides extracted from Herba Lophatheri.

    Science.gov (United States)

    Ge, Qing; Mao, Jian-wei; Guo, Xiao-qing; Zhou, Yi-feng; Gong, Jing-yan; Mao, Shuang-rong

    2013-09-01

    Four polysaccharides (BLF80-A, BLF80-B, BLF80-C and BLF80-D) were isolated by hot-water extraction and purified from the leaves of Herba Lophatheri by DEAE-Sepharose fast flow. Their chemical and physical characteristics were determined and antioxidant activities were investigated on the basis of DPPH radical assay, hydroxyl radical assay and superoxide radical assay. The results showed that four polysaccharides exhibited antioxidant activities in a concentration-dependent manner, and the higher molecular weight, the stronger antioxidant activities of polysaccharides. Besides, the monosaccharide compositions of polysaccharides also influence their antioxidant activities. BLP80-D showed the strongest scavenging ability, followed by BLP80-C, BLP80-B and BLP80-A. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. [Correlation Between Functional Groups and Radical Scavenging Activities of Acidic Polysaccharides from Dendrobium].

    Science.gov (United States)

    Liao, Ying; Yuan, Wen-yu; Zheng, Wen-ke; Luo, Ao-xue; Fan, Yi-jun

    2015-11-01

    To compare the radical scavenging activity of five different acidic polysaccharides, and to find the correlation with the functional groups. Alkali extraction method and Stepwise ethanol precipitation method were used to extract and concentrate the five Dendrobium polysaccharides, and to determine the contents of sulfuric acid and uronic acid of each kind of acidic polysaccharides, and the scavenging activity to ABTS+ radical and hydroxyl radical. Functional group structures were examined by FTIR Spectrometer. Five kinds of Dendrobium polysaccharides had different ability of scavenging ABTS+ free radical and hydroxyl free radical. Moreover, the study had shown that five kinds of antioxidant activity of acidic polysaccharides had obvious correlation withuronic acid and sulfuric acid. The antioxidant activity of each sample was positively correlated with the content of uronic acid, and negatively correlated with the content of sulfuric acid. Sulfuric acid can inhibit the antioxidant activity of acidic polysaccharide but uronic acid can enhance the free radical scavenging activity. By analyzing the structure characteristics of five acidic polysaccharides, all samples have similar structures, however, Dendrobium denneanum, Dendrobium devonianum and Dendrobium officinale which had β configuration have higher antioxidant activity than Dendrobium nobile and Dendrobium fimbriatum which had a configuration.

  12. Carrageenan: a natural seaweed polysaccharide and its applications.

    Science.gov (United States)

    Prajapati, Vipul D; Maheriya, Pankaj M; Jani, Girish K; Solanki, Himanshu K

    2014-05-25

    Polysaccharides have been gaining interesting and valuable applications in the food and pharmaceutical fields. As they are derived from the natural source, they are easily available, non-toxic, cheap, biodegradable and biocompatible. Carrageenan is one among them, which fulfills the criteria of polysaccharide; it is a natural carbohydrate (polysaccharide) obtained from edible red seaweeds. The name Carrageenan is derived from the Chondrus crispus species of seaweed (Rhodophyceace) known as Carrageen Moss or Irish Moss, and Carraigin. A demand based on its application has been widely increasing in food and pharmaceutical sectors. Carrageenan has gained wide applications in experimental medicine, pharmaceutical formulations, cosmetics, and food industries. Through keen references of the reported literature on carrageenan, in this review, we have described about carrageenan, its properties, extraction and refining, and its food and pharmaceutical applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Analyses of Aloe polysaccharides using carbohydrate microarray profiling

    DEFF Research Database (Denmark)

    Isager Ahl, Louise; Grace, Olwen M; Pedersen, Henriette Lodberg

    2018-01-01

    As the popularity of Aloe vera extracts continues to rise, a desire to fully understand the individual polymer components of the leaf mesophyll, their relation to one another and the effects they have on the human body are increasing. Polysaccharides present in the leaf mesophyll have been...... identified as the components responsible for the biological activities of Aloe vera, and they have been widely studied in the past decades. However, the commonly used methods do not provide the desired platform to conduct large comparative studies of polysaccharide compositions as most of them require...... a complete or near-complete fractionation of the polymers. The objective for this study was to assess whether carbohydrate microarrays could be used for the high-throughput analysis of cell wall polysaccharides in Aloe leaf mesophyll. The method we chose is known as Comprehensive Microarray Polymer Profiling...

  14. Determining the degree of grafting for poly (vinylidene fluoride) graft-copolymers using fluorine elemental analysis

    International Nuclear Information System (INIS)

    Yu Yang; Zhang Bowu; Yang Xuanxuan; Deng Bo; Li Linfan; Yu Ming; Li Jingye

    2011-01-01

    Acrylic acid (AAc) and styrene (St) were grafted onto poly (vinylidene fluoride) (PVDF) powder or membrane samples by pre-irradiation graft copolymerization. The grafted chains were proved by FT-IR spectroscopy analysis. The degree of grafting (DG) of the grafted PVDF was determined by fluorine elemental analysis (FEA) method, and was compared with the DGs determined by weighing method, acid-base back titration method and quantitative FT-IR method. The results show that the FEA method is accurate, convenient and universal, especially for the grafted polymer powders. (authors)

  15. Bone grafts in dentistry

    Directory of Open Access Journals (Sweden)

    Prasanna Kumar

    2013-01-01

    Full Text Available Bone grafts are used as a filler and scaffold to facilitate bone formation and promote wound healing. These grafts are bioresorbable and have no antigen-antibody reaction. These bone grafts act as a mineral reservoir which induces new bone formation.

  16. Penile Inversion Vaginoplasty with or without Additional Full-Thickness Skin Graft: To Graft or Not to Graft?

    Science.gov (United States)

    Buncamper, Marlon E; van der Sluis, Wouter B; de Vries, Max; Witte, Birgit I; Bouman, Mark-Bram; Mullender, Margriet G

    2017-03-01

    Penile inversion vaginoplasty is considered to be the gold standard for gender reassignment surgery in transgender women. The use of additional full-thickness skin graft as neovaginal lining is controversial. Some believe that having extra penile skin for the vulva gives better aesthetic results. Others believe that it gives inferior functional results because of insensitivity and skin graft contraction. Transgender women undergoing penile inversion vaginoplasty were studied prospectively. The option to add full-thickness skin graft is offered in patients where the penile skin length lies between 7 and 12 cm. Neovaginal depth was measured at surgery and during follow-up (3, 13, 26, and 52 weeks postoperatively). Satisfaction with the aesthetic result, neovaginal depth, and dilation regimen during follow-up were recorded. Satisfaction, sexual function, and genital self-image were assessed using questionnaires. A total of 100 patients were included (32 with and 68 without additional full-thickness skin graft). Patient-reported aesthetic outcome, overall satisfaction with the neovagina, sexual function, and genital self-image were not significantly associated with surgical technique. The mean intraoperative neovaginal depth was 13.8 ± 1.4 cm. After 1 year, this was 11.5 ± 2.5 cm. The largest decline (-15 percent) in depth is observed in the first 3 postoperative weeks (p skin graft use, in penile inversion vaginoplasty. The additional use of full-thickness skin graft does not influence neovaginal shrinkage, nor does it affect the patient- and physician-reported aesthetic or functional outcome. Therapeutic, IV.

  17. Ozone treatment of polysaccharides from Arthrocnemum indicum: Physico-chemical characterization and antiproliferative activity.

    Science.gov (United States)

    Mzoughi, Zeineb; Chakroun, Ibtissem; Hamida, Sarra Ben; Rihouey, Christophe; Mansour, Hedi Ben; Le Cerf, Didier; Majdoub, Hatem

    2017-12-01

    The isolation, purification and ozone depolymerization of polysaccharides from Arthrocnemum indicum as well as the evaluation of their antiproliferative capacities were investigated. The ozone treatment for various reaction times (0, 15, 30, 45 and 60min) was employed as degradation method in order to attain lower molecular weight product with stronger antiproliferative property. According to FTIR, 1 H NMR and UV-vis analysis, the main chain of ozonolytic degraded polysaccharides could be preserved. The monosaccharide composition, which was determined via GC/MS analysis, showed that extracted polysaccharides were of type of arabinan-rich pectic polysaccharides. Macromolecular characteristics as well as intrinsic viscosity of the degraded polysaccharides were performed by size exclusion chromatography before and after ozone treatment. These experiments showed that intrinsic viscosity and molecular weight (Mn and Mw) of degraded samples decreased with increase in reaction time. Furthermore, preliminary antiproliferative tests indicated that degraded polysaccharide for 1h showed even better antiproliferative capacity. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Marine Polysaccharides: A Source of Bioactive Molecules for Cell Therapy and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Anne-Marie Fischer

    2011-09-01

    Full Text Available The therapeutic potential of natural bioactive compounds such as polysaccharides, especially glycosaminoglycans, is now well documented, and this activity combined with natural biodiversity will allow the development of a new generation of therapeutics. Advances in our understanding of the biosynthesis, structure and function of complex glycans from mammalian origin have shown the crucial role of this class of molecules to modulate disease processes and the importance of a deeper knowledge of structure-activity relationships. Marine environment offers a tremendous biodiversity and original polysaccharides have been discovered presenting a great chemical diversity that is largely species specific. The study of the biological properties of the polysaccharides from marine eukaryotes and marine prokaryotes revealed that the polysaccharides from the marine environment could provide a valid alternative to traditional polysaccharides such as glycosaminoglycans. Marine polysaccharides present a real potential for natural product drug discovery and for the delivery of new marine derived products for therapeutic applications.

  19. In situ observation of the growth of biofouling layer in osmotic membrane bioreactors by multiple fluorescence labeling and confocal laser scanning microscopy.

    Science.gov (United States)

    Yuan, Bo; Wang, Xinhua; Tang, Chuyang; Li, Xiufen; Yu, Guanghui

    2015-05-15

    Since the concept of the osmotic membrane bioreactor (OMBR) was introduced in 2008, it has attracted growing interests for its potential applications in wastewater treatment and reclamation; however, the fouling mechanisms of forward osmosis (FO) membrane especially the development of biofouling layer in the OMBR are not yet clear. Here, the fouled FO membranes were obtained from the OMBRs on days 3, 8 and 25 in sequence, and then the structure and growing rule of the biofouling layer formed on the FO membrane samples were in-situ characterized by multiple fluorescence labeling and confocal laser scanning microscopy (CLSM). CLSM images indicated that the variations in abundance and distribution of polysaccharides, proteins and microorganisms in the biofouling layer during the operation of OMBRs were significantly different. Before the 8th day, their biovolume dramatically increased. Subsequently, the biovolumes of β-d-glucopyranose polysaccharides and proteins continued increasing and leveled off after 8 days, respectively, while the biovolumes of α-d-glucopyranose polysaccharides and microorganisms decreased. Extracellular polymeric substances (EPS) played a significant role in the formation and growth of biofouling layer, while the microorganisms were seldom detected on the upper fouling layer after 3 days. Based on the results obtained in this study, the growth of biofouling layer on the FO membrane surface in the OMBR could be divided into three stages. Initially, EPS was firstly deposited on the FO membrane surface, and then microorganisms associated with EPS located in the initial depositing layer to form clusters. After that, the dramatic increase of the clusters of EPS and microorganisms resulted in the quick growth of biofouling layer during the flux decline of the OMBR. However, when the water flux became stable in the OMBR, some microorganisms and EPS would be detached from the FO membrane surface. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Assembly and Function of the Bacillus anthracis S-Layer.

    Science.gov (United States)

    Missiakas, Dominique; Schneewind, Olaf

    2017-09-08

    Bacillus anthracis, the anthrax agent, is a member of the Bacillus cereus sensu lato group, which includes invasive pathogens of mammals or insects as well as nonpathogenic environmental strains. The genes for anthrax pathogenesis are located on two large virulence plasmids. Similar virulence plasmids have been acquired by other B. cereus strains and enable the pathogenesis of anthrax-like diseases. Among the virulence factors of B. anthracis is the S-layer-associated protein BslA, which endows bacilli with invasive attributes for mammalian hosts. BslA surface display and function are dependent on the bacterial S-layer, whose constituents assemble by binding to the secondary cell wall polysaccharide (SCWP) via S-layer homology (SLH) domains. B. anthracis and other pathogenic B. cereus isolates harbor genes for the secretion of S-layer proteins, for S-layer assembly, and for synthesis of the SCWP. We review here recent insights into the assembly and function of the S-layer and the SCWP.

  1. Tissue Responses to Stent Grafts with Endo-Exo-Skeleton for Saccular Abdominal Aortic Aneurysms in a Canine Model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Il Young; Chung, Jin Wook; Kim, Hyo Cheol [Dept. of Radiology and Institute of Radiation Medicine, Seoul National University College of Medicine, Clinical Research Institute, Seoul (Korea, Republic of); Choi, Young Ho; So Young Ho [Dept. of Radiology, Seoul National University Boramae Hospital, Seoul (Korea, Republic of); Kim, Hyun Beom [Dept. of Radiology, National Cancer Center, Goyang (Korea, Republic of); Min, Seung Kee [Dept. of Surgery, Seoul National University College of Medicine, Seoul (Korea, Republic of); Park, Jae Hyung [Dept. of Radiology, Gachon University Gil Medical Center, Incheon (Korea, Republic of)

    2014-10-15

    We evaluated the effect of close contact between the stent and the graft on the induction of endothelial covering on the stent graft placed over an aneurysm. Saccular abdominal aortic aneurysms were made with Dacron patch in eight dogs. The stent graft consisted of an inner stent, a expanded polytetrafluoroethylene graft, and an outer stent. After sacrificing the animals, the aortas with an embedded stent graft were excised. The aortas were inspected grossly and evaluated microscopically. The animals were sacrificed at two (n = 3), six (n = 3), and eight months (n = 2) after endovascular repair. In two dogs, the aortic lumen was occluded at two months after the placement. On gross inspection of specimens from the other six dogs with a patent aortic lumen, stent grafts placed over the normal aortic wall were covered by glossy white neointima, whereas, stent grafts placed over the aneurysmal aortic wall were covered by brownish neointima. On microscopic inspection, stent grafts placed over the normal aortic wall were covered by thin neointima (0.27 ± 0.05 mm, mean ± standard deviation) with an endothelial layer, and stent grafts placed over the aneurysmal aortic wall were covered by thick neointima (0.62 ± 0.17 mm) without any endothelial lining. Transgraft cell migration at the normal aortic wall was more active than that at the aneurysmal aortic wall. Close contact between the stent and the graft, which was achieved with stent grafts with endo-exo-skeleton, could not enhance endothelial covering on the stent graft placed over the aneurysms.

  2. ISOLATION AND CHARACTERIZATION OF SOLUBLE POLYSACCHARIDES FROM CALAMAGROSTIS ANGUSTIFOLIA KOM

    Directory of Open Access Journals (Sweden)

    Xue-Fei Cao

    2011-06-01

    Full Text Available Sequential treatments of dewaxed Calamagrostis angustifolia Kom with water (60 ºC and 90 ºC, 70% ethanol, and 70% ethanol containing 0.2%, 1.0%, 2.0%, 4.0%, and 8.0% NaOH at a solid to liquid ratio of 1:25 (g/mL at 80 ºC for 3 h yielded 36.2% soluble polysaccharides of the dry dewaxed material. The eight polysaccharide fractions obtained were comparatively studied by sugar analysis, GPC, FT-IR, 1H and 13C-NMR, and 2D-NMR (HSQC spectroscopy. The results showed that the water-soluble polysaccharides might contain noticeable amounts of β-D-glucan, as well as some pectic substances and galactoarabinoxylan. 70% ethanol-soluble polysaccharide was mainly arabinogalactan. The five alkali-soluble hemicelluloses were mainly galactoarabinoxylans. The Ara/Xyl and Ara/Gal values of H5-H8 fractions decreased with the increment of NaOH concentration from 1.0% to 8.0%. Meanwhile, the molecular weights had a declining trend from ~60,000 to ~40,000 g/mol. The smaller sized and more branched polysaccharides tended to be extracted in the early stages under milder conditions, and the larger molecular sized and more linear hemicelluloses tended to be isolated under more highly alkaline conditions.

  3. Isolation, characterization and investigation of Plantago ovata husk polysaccharide as superdisintegrant.

    Science.gov (United States)

    Pawar, Harshal; Varkhade, Chhaya

    2014-08-01

    Psyllium husk (Plantago ovata, Family: Plantaginaceae) contains a high proportion of hemicellulose, composed of a xylan backbone linked with arabinose, rhamnose, and galacturonic acid units (arabinoxylans). Polysaccharide was isolated from Psyllium husk using solvent precipitation method. The isolated polysaccharide was evaluated for various physicochemical parameters. The rheological behavior of polysaccharide (1% w/v in water) was studied using Brookfield viscometer. Polysaccharide derived from the husk of P. ovata was investigated as superdisintegrant in the fast dissolving tablets. Valsartan, an antihypertensive drug, was selected as a model drug. The tablets of Valsartan were prepared separately using different concentrations (1, 2.5, 5, 7.5% w/w) of isolated Plantago ovata (P. ovata) husk polysaccharide (Natural) and crospovidone as a synthetic superdisintegrant by direct compression method. The prepared tablets were evaluated for various pre-compression and post-compression parameters. The drug excipient interactions were characterized by FTIR studies. The formulation F4 containing7.5% polysaccharide showed rapid wetting time and disintegration time as compared to formulation prepared using synthetic superdisintegrant at the same concentration level. Hence batch F4 was considered as optimized formulation. The stability studies were performed on formulation F4. The disintegration time and in vitro drug release of the optimized formulation was compared with the marketed formulation (Conventional tablets). Copyright © 2014 Elsevier B.V. All rights reserved.

  4. [Quantitive variation of polysaccharides and alcohol-soluble extracts in F1 generation of Dendrobium officinale].

    Science.gov (United States)

    Zhang, Xiao-Ling; Liu, Jing-Jing; Wu, Ling-Shang; Si, Jin-Ping; Guo, Ying-Ying; Yu, Jie; Wang, Lin-Hua

    2013-11-01

    Using phenol-sulfuric acid method and hot-dip method of alcohol-soluble extracts, the contents of polysaccharides and alcohol-soluble extracts in 11 F1 generations of Dendrobium officinale were determined. The results showed that the polysaccharides contents in samples collected in May and February were 32.89%-43.07% and 25.77%-35.25%, respectively, while the extracts contents were 2.81%-4.85% and 7.90%-17.40%, respectively. They were significantly different among families. The content of polysaccharides in offspring could be significantly improved by hybridization between parents with low and high polysaccharides contents, and the hybrid vigor was obvious. Cross breeding was an effective way for breeding new varieties with higher polysaccharides contents. Harvest time would significantly affect the contents of polysaccharides and alcohol-soluble extracts. The contents of polysaccharides in families collected in May were higher than those of polysaccharides in families collected in February, but the extracts content had the opposite variation. The extents of quantitative variation of polysaccharides and alcohol-soluble extracts were different among families, and each family had its own rules. It would be significant in giving full play to their role as the excellent varieties and increasing effectiveness by studying on the quantitative accumulation regularity of polysaccharides and alcohol-soluble extracts in superior families (varieties) of D. officinale to determine the best harvesting time.

  5. Immunoregulatory activities of polysaccharides from mung bean.

    Science.gov (United States)

    Yao, Yang; Zhu, Yingying; Ren, Guixing

    2016-03-30

    Ultrasonic treatment was performed on water-extractable polysaccharides from the seed of mung beans. Purified by anion-exchange and gel filtration chromatography, MWP-1' and MWP-2' were obtained. Average molecular weights (Mws) of MWP-1' and MWP-2' were 68.4 kDa, and 52.4 kDa, respectively. Monosaccharides components analysis indicated that MWP-1' was composed of Rha, Ara, Man and Gal in a molar percent of 0.4:2.6:5.3:0.7. MWP-2' was composed of Ara, Man, Gal and Glc in a molar percent of 0.5:1.4:2.1:0.4. In vitro study showed that both polysaccharides samples were able to stimulate the production of secretory molecules (NO, TNF-α and IL-6) of RAW264.7 murine macrophages in a dosage dependent manner. MWP-2' seemed to be the most potent and induced significantly higher the NO production. These findings suggest that the ultrasonic treatment polysaccharides isolated in our study have immune potentiation effects on macrophages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Development of biomimetic thermoplastic polyurethane/fibroin small-diameter vascular grafts via a novel electrospinning approach.

    Science.gov (United States)

    Yu, Emily; Mi, Hao-Yang; Zhang, Jue; Thomson, James A; Turng, Lih-Sheng

    2018-04-01

    A new electrospinning approach for fabricating vascular grafts with a layered, circumferentially aligned, and micro-wavy fibrous structure similar to natural elastic tissues has been developed. The customized electrospinning collector was able to generate wavy fibers using the dynamic "jump rope" collecting process, which also solved the sample removal problem for mandrel-type collectors. In this study, natural silk fibroin and synthetic thermoplastic polyurethane (TPU) were combined at different weight ratios to produce hybrid small-diameter vascular grafts. The purpose of combining these two materials was to leverage the bioactivity and tunable mechanical properties of these natural and synthetic materials. Results showed that the electrospun fiber morphology was highly influenced by the material compositions and solvents employed. All of the TPU/fibroin hybrid grafts had mechanical properties comparable to natural blood vessels. The circumferentially aligned and wavy biomimetic configuration provided the grafts with a sufficient toe region and the capacity for long-term usage under repeated dilatation and contraction. Cell culture tests with human endothelial cells (EC) also revealed high cell viability and good biocompatibility for these grafts. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 985-996, 2018. © 2017 Wiley Periodicals, Inc.

  7. Polysaccharide microarray technology for the detection of Burkholderia pseudomallei and Burkholderia mallei antibodies.

    Science.gov (United States)

    Parthasarathy, Narayanan; DeShazer, David; England, Marilyn; Waag, David M

    2006-11-01

    A polysaccharide microarray platform was prepared by immobilizing Burkholderia pseudomallei and Burkholderia mallei polysaccharides. This polysaccharide array was tested with success for detecting B. pseudomallei and B. mallei serum (human and animal) antibodies. The advantages of this microarray technology over the current serodiagnosis of the above bacterial infections were discussed.

  8. Flocculation of colloidal clay by bacterial polysaccharides: effect of macromolecule charge and structure.

    Science.gov (United States)

    Labille, J; Thomas, F; Milas, M; Vanhaverbeke, C

    2005-04-01

    The molecular mechanism of montmorillonite flocculation by bacterial polysaccharides was investigated, with special emphasis on the effect of carboxylic charges in the macromolecules on the mechanisms of interaction with the clay surface. An indirect way to quantify the energy of interaction was used, by comparing the flocculation ability of variously acidic polysaccharides. Data on tensile strength of aggregates in diluted suspension were collected by timed size measurements in the domain 0.1-600 microm, using laser diffraction. The flow behavior of settled aggregates was studied by rheology measurements. Flocculation of colloidal clay suspension by polysaccharides requires cancelling of the electrostatic repulsions by salts, which allows approach of clay surfaces close enough to be bridged by adsorbing macromolecules. The amount of acidic charges of the polysaccharides, and especially their location in the molecular structure, governs the bridging mechanism and the resulting tensile strength of the aggregates. The exposure of carboxylate groups located on side chains strongly promotes flocculation. In turn, charges located on the backbone of the polysaccharide are less accessible to interaction, and the flocculation ability of such polysaccharides is lowered. Measurements at different pH indicate that adsorption of acidic polysaccharides occurs via electrostatic interactions on the amphoteric edge surface of clay platelets, whereas neutral polysaccharides rather adsorb via weak interactions. Increased tensile strength in diluted aggregates due to strong surface interactions results in proportionally increased viscosity of the concentrated aggregates.

  9. Dorsal inlay buccal mucosal graft (Asopa) urethroplasty for anterior urethral stricture.

    Science.gov (United States)

    Marshall, Stephen D; Raup, Valary T; Brandes, Steven B

    2015-02-01

    Asopa described the inlay of a graft into Snodgrass's longitudinal urethral plate incision using a ventral sagittal urethrotomy approach in 2001. He claimed that this technique was easier to perform and led to less tissue ischemia due to no need for mobilization of the urethra. This approach has subsequently been popularized among reconstructive urologists as the dorsal inlay urethroplasty or Asopa technique. Depending on the location of the stricture, either a subcoronal circumferential incision is made for penile strictures, or a midline perineal incision is made for bulbar strictures. Other approaches for penile urethral strictures include the non-circumferential penile incisional approach and a penoscrotal approach. We generally prefer the circumferential degloving approach for penile urethral strictures. The penis is de-gloved and the urethra is split ventrally to exposure the stricture. It is then deepened to include the full thickness of the dorsal urethra. The dorsal surface is made raw and grafts are fixed on the urethral surface. Quilting sutures are placed to further anchor the graft. A Foley catheter is placed and the urethra is retubularized in two layers with special attention to the staggering of suture lines. The skin incision is then closed in layers. We have found that it is best to perform an Asopa urethroplasty when the urethral plate is ≥1 cm in width. The key to when to use the dorsal inlay technique all depends on the width of the urethral plate once the urethrotomy is performed, stricture etiology, and stricture location (penile vs. bulb).

  10. Change of the functional properties in polysaccharides irradiated by electron beam

    International Nuclear Information System (INIS)

    Sakaue, Kazushi; Murata, Yoshiyuki; Tada, Mikiro; Hayashi, Toru; Todoriki, Setsuko; Asai, Kazuo

    1998-01-01

    Polysaccharides widely used in the food industry were studied in terms of sterilization of bacteria by irradiation. 12 items of polysaccharides irradiated by electron beam ware investigated for bacteria count and the functional property of pH, gel strength, bloom and viscosity. This study aims to determine the sterilization effect by absorption dose and the applicability of the electron beam irradiation toward polysaccharides. Results shows that 1) Over 5kGy absorption dose are enough to be able to sterilize bacteria in the polysaccharide themselves. 2) We reconfirm that Arabic gum will be applicable for the electron beam irradiation, which has been used in some foreign countries. 3) Electron beam irradiation will be useful for Gellan gum b (acetyl type), as gelling agents in the food application. (author)

  11. C1-esterase inhibitor protects against early vein graft remodeling under arterial blood pressure.

    Science.gov (United States)

    Krijnen, Paul A J; Kupreishvili, Koba; de Vries, Margreet R; Schepers, Abbey; Stooker, Wim; Vonk, Alexander B A; Eijsman, Leon; Van Hinsbergh, Victor W M; Zeerleder, Sacha; Wouters, Diana; van Ham, Marieke; Quax, Paul H A; Niessen, Hans W M

    2012-01-01

    Arterial pressure induced vein graft injury can result in endothelial loss, accelerated atherosclerosis and vein graft failure. Inflammation, including complement activation, is assumed to play a pivotal role herein. Here, we analyzed the effects of C1-esterase inhibitor (C1inh) on early vein graft remodeling. Human saphenous vein graft segments (n=8) were perfused in vitro with autologous blood either supplemented or not with purified human C1inh at arterial pressure for 6h. The vein segments and perfusion blood were analyzed for cell damage and complement activation. In addition, the effect of purified C1inh on vein graft remodeling was analyzed in vivo in atherosclerotic C57Bl6/ApoE3 Leiden mice, wherein donor caval veins were interpositioned in the common carotid artery. Application of C1inh in the in vitro perfusion model resulted in significantly higher blood levels and significantly more depositions of C1inh in the vein wall. This coincided with a significant reduction in endothelial loss and deposition of C3d and C4d in the vein wall, especially in the circular layer, compared to vein segments perfused without supplemented C1inh. Administration of purified C1inh significantly inhibited vein graft intimal thickening in vivo in atherosclerotic C57Bl6/ApoE3 Leiden mice, wherein donor caval veins were interpositioned in the common carotid artery. C1inh significantly protects against early vein graft remodeling, including loss of endothelium and intimal thickening. These data suggest that it may be worth considering its use in patients undergoing coronary artery bypass grafting. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Current status of grafts and implants in rhinoplasty: Part II. Homologous grafts and allogenic implants.

    Science.gov (United States)

    Sajjadian, Ali; Naghshineh, Nima; Rubinstein, Roee

    2010-03-01

    After reading this article, the participant should be able to: 1. Understand the challenges in restoring volume and structural integrity in rhinoplasty. 2. Identify the appropriate uses of various homologous grafts and allogenic implants in reconstruction, including: (a) freeze-dried acellular allogenic cadaveric dermis grafts, (b) irradiated cartilage grafts, (c) hydroxyapatite mineral matrix, (d) silicone implants, (e) high-density polyethylene implants, (f) polytetrafluoroethylene implants, and (g) injectable filler materials. 3. Identify the advantages and disadvantages of each of these biomaterials. 4. Understand the specific techniques that may aid in the use these grafts or implants. This review specifically addresses the use of homologous grafts and allogenic implants in rhinoplasty. It is important to stress that autologous materials remain the preferred graft material for use in rhinoplasty, owing to their high biocompatibility and low risk of infection and extrusion. However, concerns of donor-site morbidity, graft availability, and graft resorption have motivated the development and use of homologous and allogenic implants.

  13. Quantitative high throughput analytics to support polysaccharide production process development.

    Science.gov (United States)

    Noyes, Aaron; Godavarti, Ranga; Titchener-Hooker, Nigel; Coffman, Jonathan; Mukhopadhyay, Tarit

    2014-05-19

    The rapid development of purification processes for polysaccharide vaccines is constrained by a lack of analytical tools current technologies for the measurement of polysaccharide recovery and process-related impurity clearance are complex, time-consuming, and generally not amenable to high throughput process development (HTPD). HTPD is envisioned to be central to the improvement of existing polysaccharide manufacturing processes through the identification of critical process parameters that potentially impact the quality attributes of the vaccine and to the development of de novo processes for clinical candidates, across the spectrum of downstream processing. The availability of a fast and automated analytics platform will expand the scope, robustness, and evolution of Design of Experiment (DOE) studies. This paper details recent advances in improving the speed, throughput, and success of in-process analytics at the micro-scale. Two methods, based on modifications of existing procedures, are described for the rapid measurement of polysaccharide titre in microplates without the need for heating steps. A simplification of a commercial endotoxin assay is also described that features a single measurement at room temperature. These assays, along with existing assays for protein and nucleic acids are qualified for deployment in the high throughput screening of polysaccharide feedstreams. Assay accuracy, precision, robustness, interference, and ease of use are assessed and described. In combination, these assays are capable of measuring the product concentration and impurity profile of a microplate of 96 samples in less than one day. This body of work relies on the evaluation of a combination of commercially available and clinically relevant polysaccharides to ensure maximum versatility and reactivity of the final assay suite. Together, these advancements reduce overall process time by up to 30-fold and significantly reduce sample volume over current practices. The

  14. Selenylation Modification of Degraded Polysaccharide from Enteromorpha prolifera and Its Biological Activities

    Science.gov (United States)

    Lv, Haitao; Duan, Ke; Shan, Hu

    2018-04-01

    Polysaccharide extracted from Enteromorpha prolifera possessed excellent biological activities, but its molecular weight was greatly high which influenced the activity. Organic Se had higher biological activities and was safer than inorganic Se species. In the present study, Enteromorpha polysaccharide was degraded to low molecular weight by free-radical degradation method of H2O2 and ascorbic acid. By single factor and orthogonal experiments, the optimal degradation conditions were reaction time of 2 h, reaction temperature of 50°C, H2O2/ascorbic acid (n/n=1:1) concentration of 15 mmol L-1, and solid-liquid ratio of 1:50 (g mL-1). Then, the degraded polysaccharide was chemically modified to obtain its selenide derivatives by nitric acid-sodium selenite method. The selenium content was 1137.29 μg g-1, while the content of sulfate radical had no change. IR spectra indicated that the selenite ester group was formed. Degraded polysaccharide selenide was characterized and evaluated for antioxidant, antifungal and antibacterial activities. The results showed that degraded polysaccharide selenide had strong capacity of scavenging DPPH and ·OH free radical. It had significant antibacterial properties for Escherichia coli, Bacillus subtilis and Salmonella spp., and it also had significant antifungal properties for Apple anthrax. The result ascertained degradation and selenylation modification did not change the main structure of polysaccharides. It was possible that free-radical degradation was an effective way for enhancing antioxidant activity to decrease molecular weight of polysaccharides.

  15. Vein grafting in fingertip replantations.

    Science.gov (United States)

    Yan, Hede; Jackson, William D; Songcharoen, Somjade; Akdemir, Ovunc; Li, Zhijie; Chen, Xinglong; Jiang, Liangfu; Gao, Weiyang

    2009-01-01

    In this retrospective study, the survival rates of fingertip replantation with and without vein grafting were evaluated along with their postoperative functional and cosmetic results. One hundred twenty-one-fingertip amputations were performed in 103 patients between September 2002 and July 2007. Thirty-four amputated fingertips were replanted without vein grafting, while 87 amputated fingertips were replanted with vein grafting for arterial and/or venous repairs. The overall survival rates of the replantations with and without vein grafting were 90% (78/87) and 85% (29/34), respectively. The survival rates were 88% (36/41) with venous repair, 93% (25/27) with arterial repair, and 89% (17/19) with both. Nineteen patients without vein grafting and 48 patients with vein grafting had a follow-up period of more than one year. Good cosmetic and functional outcomes were observed in both groups of patients. The results show that vein grafting is a reliable technique in fingertip replantations, showing no significant difference (P > 0.05) in survival between those with and without vein grafting. Furthermore, no significant difference (P > 0.05) in survival was found between cases with vein grafts for arterial and/or venous repairs. In fingertip replantations with vein grafting, favorable functional and esthetic results can be achieved without sacrificing replantation survival. (c) 2009 Wiley-Liss, Inc.

  16. Recombinant Plants Provide a New Approach to the Production of Bacterial Polysaccharide for Vaccines

    Science.gov (United States)

    Smith, Claire M.; Fry, Stephen C.; Gough, Kevin C.; Patel, Alexandra J. F.; Glenn, Sarah; Goldrick, Marie; Roberts, Ian S.; Andrew, Peter W.

    2014-01-01

    Bacterial polysaccharides have numerous clinical or industrial uses. Recombinant plants could offer the possibility of producing bacterial polysaccharides on a large scale and free of contaminating bacterial toxins and antigens. We investigated the feasibility of this proposal by cloning and expressing the gene for the type 3 synthase (cps3S) of Streptococcus pneumoniae in Nicotinia tabacum, using the pCambia2301 vector and Agrobacterium tumefaciens-mediated gene transfer. In planta the recombinant synthase polymerised plant-derived UDP-glucose and UDP-glucuronic acid to form type 3 polysaccharide. Expression of the cps3S gene was detected by RT-PCR and production of the pneumococcal polysaccharide was detected in tobacco leaf extracts by double immunodiffusion, Western blotting and high-voltage paper electrophoresis. Because it is used a component of anti-pneumococcal vaccines, the immunogenicity of the plant-derived type 3 polysaccharide was tested. Mice immunised with extracts from recombinant plants were protected from challenge with a lethal dose of pneumococci in a model of pneumonia and the immunised mice had significantly elevated levels of serum anti-pneumococcal polysaccharide antibodies. This study provides the proof of the principle that bacterial polysaccharide can be successfully synthesised in plants and that these recombinant polysaccharides could be used as vaccines to protect against life-threatening infections. PMID:24498433

  17. Immune receptors for polysaccharides from Ganoderma lucidum

    International Nuclear Information System (INIS)

    Shao Baomei; Dai Hui; Xu Wen; Lin Zhibin; Gao Xiaoming

    2004-01-01

    This study was designed to identify and characterize the immune receptors for polysaccharides from Ganoderma lucidum, a Chinese medicinal fungus that exhibits anti-tumor activities via enhancing host immunity. We herein demonstrate that G. lucidum polysaccharides (GLPS) activated BALB/c mouse B cells and macrophages, but not T cells, in vitro. However, GLPS was unable to activate splenic B cells from C3H/HeJ mice that have a mutated TLR4 molecule (incapable of signal transduction) in proliferation assays. Rat anti-mouse TLR4 monoclonal antibody (Ab) inhibited the proliferation of BALB/c mouse B cells under GLPS stimulation. Combination of Abs against mouse TLR4 and immunoglobulin (Ig) achieved almost complete inhibition of GLPS-induced B cell proliferation, implying that both membrane Ig and TLR4 are required for GLPS-mediated B cell activation. In addition, GLPS significantly inhibited the binding of mouse peritoneal macrophages with polysaccharides from Astragalus membranaceus, which is known to bind directly with TLR4 on macrophage surface. Moreover, GLPS induced IL-1β production by peritoneal macrophages from BALB/c, but not C3H/HeJ, mice, suggesting that TLR4 is also involved in GLPS-mediated macrophage activation. We Further identified a unique 31 kDa serum protein and two intracellular proteins (ribosomal protein S7 and a transcriptional coactivator) capable of binding with GLPS in co-precipitation experiments. Our results may have important implications for our understanding on the molecular mechanisms of immunopotentiating polysaccharides from traditional Chinese medicine

  18. Characterization of EDTA-soluble polysaccharides from the scape of Musa paradisiaca (banana).

    Science.gov (United States)

    Raju, T S; Jagadish, R L; Anjaneyalu, Y V

    2001-02-01

    The polysaccharide components present in the scape of Musa paradisiaca (banana) were fractionated into water-soluble (WSP), EDTA-soluble (EDTA-SP), alkali-soluble (ASP) and alkali-insoluble (AISP) polysaccharide fractions [Anjaneyalu, Jagadish and Raju (1997) Glycoconj. J. 14, 507-512]. The EDTA-SP was further fractionated by iso-amyl alcohol into EDTA-SP-A and EDTA-SP-B. The homogeneity of these two polysaccharides was established by repeated precipitation with iso-amyl alcohol, gel-filtration chromatography and sedimentation analysis. The polysaccharides were characterized by monosaccharide composition analysis, methylation linkage analysis, iodine affinity, ferricyanide number, blue value, hydrolysis with alpha-amylase, gold-electron microscopy and X-ray diffraction spectroscopy. Data from all of these studies suggest that EDTA-SP-A is a branched amylose-type alpha-D-glucan and that EDTA-SP-B is a highly branched amylopectin-type polymer. The nature of the branching patterns of these polysaccharides suggests that they are unique to M. paradisiaca.

  19. Monte Carlo simulations of the static friction between two grafted polymer brushes.

    Science.gov (United States)

    Mendonça, Ana C F; Goujon, Florent; Malfreyt, Patrice; Tildesley, Dominic J

    2016-02-17

    A configurational bias Monte Carlo method has been developed to study the static friction between grafted polymers immersed in a good solvent. Simple models using the soft quadratic potential from a dissipative particle dynamics study have been used to model polyzwitterionic brushes at physiological pressures (up to 7.5 MPa). Three models of decreasing rigidity have been used to model the friction between the brushes by calculating the tangential component of the pressure induced by a mismatch in the registry of the two grafting surfaces. The static friction coefficient can be calculated for three model systems and the slip between the layers occurs at a much lower values of shear force for the more flexible polymer layer. A moderate increase in the flexibility of the chains reduces the friction coefficient by a factor of ca. 20. Tilting the layer directors of the brushes also increases the static friction between the layer when the top, tilted layer is displaced in the direction away from the tilt. Non-equilibrium dynamics techniques for the same model were performed using dissipative particle dynamics and the limiting extremes of the Stribeck curve corresponding to the boundary lubrication regime and the hydrodynamic lubrication regime were observed for these flat surfaces. As expected, μk is significantly lower than μs for the same system. The dynamical friction coefficients in the model are in good agreement with those observed in the experiment and the ratio of μk/μs of between 0.11 and 0.5 observed in the simulations is in reasonable agreement with the value of 0.5 normally observed for these seen for these systems.

  20. Chemical analysis of a polysaccharide of unripe (green) tomato (Lycopersicon esculentum).

    Science.gov (United States)

    Chandra, Krishnendu; Ghosh, Kaushik; Ojha, Arnab K; Islam, Syed S

    2009-11-02

    A polysaccharide (PS-I) isolated from the aqueous extract of the unripe (green) tomatoes (Lycopersicon esculentum) consists of D-galactose, D-methyl galacturonate, D-arabinose, L-arabinose, and L-rhamnose. Structural investigation of the polysaccharide was carried out using total acid hydrolysis, methylation analysis, periodate oxidation study, and NMR studies ((1)H, (13)C, DQF-COSY, TOCSY, NOESY, ROESY, HMQC, and HMBC). On the basis of above-mentioned experiments the structure of the repeating unit of the polysaccharide (PS-I) was established as: [structure: see text].

  1. Polysaccharides from Extremophilic Microorganisms

    Science.gov (United States)

    Nicolaus, B.; Moriello, V. Schiano; Lama, L.; Poli, A.; Gambacorta, A.

    2004-02-01

    Several marine thermophilic strains were analyzed for exopolysaccharide production. The screening process revealed that a significant number of thermophilic microorganisms were able to produce biopolymers, and some of them also revealed interesting chemical compositions. We have identified four new polysaccharides from thermophilic marine bacteria, with complex primary structures and with different repetitive units: a galacto-mannane type from strain number 4004 and mannane type for the other strains. The thermophilic Bacillus thermantarcticus produces two exocellular polysaccharides (EPS 1, EPS 2) that give the colonies a typical mucous character. The exopolysaccharide fraction was produced with all substrates assayed, although a higher yield 400 mg liter-1 was obtained with mannose as carbon and energy source. NMR spectra confirmed that EPS 1 was a heteropolysaccharide of which the repeating unit was constituted by four different α-D-mannoses and three different β-D-glucoses. It seems to be close to some xantan polymers. EPS 2 was a mannan. Four different α-D-mannoses were found as the repeating unit. Production and chemical studies of biopolymers produced by halophilic archaea, Haloarcula species were also reported.

  2. Antigenic polysaccharides of bacteria. 14. Structure of the O-specific polysaccharide chain of the lipopolysaccharide of pseudomonas aeruginosa O12 (Lanyi)

    International Nuclear Information System (INIS)

    Knirel', Y.A.; Shashkov, A.S.; Dmitriev, B.A.; Kochetkov, N.K.; Stanislavskii, E.S.; Mashilova, G.M.

    1986-01-01

    The mild-alkaline hydrolysis of the lipopolysaccharide of Pseudomonas aeruginosa O12 (Lanyi classification) has given the O-specific polysaccharide, which is constructed of D-ribose and N-acetyl-D-galactosamine residues. The disaccharide structure for the repeating unit of this polysaccharide has been established by a nondestructive method as the result of the complete deciphering of its 1 H and 13 C NMR spectra using homonuclear and selective heteronuclear 13 C { 1 H} double resonance

  3. [Structural characterization of Astragalus polysaccharides using partial acid hydrolysis-hydrophilic interaction liquid chromatography-mass spectrometry].

    Science.gov (United States)

    Liang, Tu; Fu, Qing; Xin, Huaxia; Li, Fangbing; Jin, Yu; Liang, Xinmiao

    2014-12-01

    Water-soluble polysaccharides from traditional Chinese medicine (TCM) have properties of broad-spectrum treatment and low toxicity, making them as important components in natural medicines and health products. In order to solve the problem of polysaccharides characterization caused by their complex structures, a "bottom-up" approach was developed to complete the characterization of polysaccharides from Astragalus. Firstly, Astragalus pieces were extracted with hot water and then were precipitated by ethanol to obtain Astragalus polysaccharides. Secondly, a partial acid hydrolysis method was carried out and the effects of time, acid concentration and temperature on hydrolysis were investigated. The degree of hydrolysis increased along with the increase of hydrolysis time and acid concentration. The temperature played a great role in the hydrolysis process. No hydrolysis of the polysaccharides occurred at low temperature, while the polysaccharides were almost hydrolyzed to monosaccharide at high temperature. Under the optimum hydrolysis conditions (4 h, 1.5 mol/L trifluoroacetic acid, and 80 °C), Astragalus polysaccharides were hydrolyzed to characteristic oligosaccharide fragments. At last, a hydrophilic liquid chromatography-mass spectrometry method was used for the separation and structural characterization of the polysaccharide hydrolysates. The results showed that the resulting polysaccharides were mainly 1--> 4 linear glucan, and gluco-oligosaccharides with the degrees of polymerization (DP) of 4 - 11 were obtained after partial acid hydrolysis. The significance of this study is that it is the guidance for the characterization of other TCM polysaccharides.

  4. Determination of the distribution of graft yields following a radiation-induced graft copolymerization

    International Nuclear Information System (INIS)

    Schipschack, K.; Wagner, H.; Sawtschenko, L.

    1976-01-01

    In the radiation-induced graft copolymerization on solid initial polymers a distribution of graft yields takes place along the cross-sections of samples. Methods for determining this distribution, which are described in the literature, are reviewed. In our own investigations boards made of ethylene-vinyl acetate copolymers and grafted with vinyl chloride were used. Distributions of the grafted component obtained by infrared analysis of microtome cuts parallel to the surface are partly rather inhomogeneous, and are interpreted as dependent on the experimental parameters. (author)

  5. Study on grafting glycidyl methacrylate onto HDPE membranes by pre-irradiation graft copolymerization

    International Nuclear Information System (INIS)

    Tong Long; Zu Jianhua; Liu Xinwen; Sun Guisheng; Yu Chunhui

    2006-01-01

    Glycidyl methacrylate (GMA) was grafted onto HDPE membranes by pre-irradiation method with 1.8 MeV E-beam and a kind of membranes having reactive epoxy groups was successfully synthesized. Effects of monomer concentration, reaction temperature and time and irradiation dose on the grafting yield were studied. Composition, thermo-property and surface morphology of the grafted membranes were studied by FTIR, DSC and Tapping-mode AFM, respectively. The FTIR measurements proved the synthesized copolymer is HDPE-g-GMA. The DSC results indicated the grafted HDPE's melting temperature (T m ) and heat of fusion (ΔH f ( HDPE) ) which was reduced with increasing grafting yield. The AFM images indicated that surface of the HDPE-g-GMA membranes was rougher than the virgin HDPE. (authors)

  6. Neuroprotective effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis

    Science.gov (United States)

    Sun, Xin-zhi; Liao, Ying; Li, Wei; Guo, Li-mei

    2017-01-01

    Ganoderma lucidum polysaccharides have protective effects against apoptosis in neurons exposed to ischemia/reperfusion injury, but the mechanisms are unclear. The goal of this study was to investigate the underlying mechanisms of the effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis. Hydrogen peroxide (H2O2) was used to induce apoptosis in cultured cerebellar granule cells. In these cells, ganoderma lucidum polysaccharides remarkably suppressed H2O2-induced apoptosis, decreased expression of caspase-3, Bax and Bim and increased that of Bcl-2. These findings suggested that ganoderma lucidum polysaccharides regulate expression of apoptosis-associated proteins, inhibit oxidative stress-induced neuronal apoptosis and, therefore, have significant neuroprotective effects. PMID:28761429

  7. Biocatalytic cross-linking of pectic polysaccharides for designed food functionality

    DEFF Research Database (Denmark)

    Zaidel, Dayang Norulfairuz Abang; Meyer, Anne S.

    2012-01-01

    the mechanisms of formation of functional pectic polysaccharide cross-links, including covalent cross-links (notably phenolic esters and uronyl ester linkages) and non-covalent, ionic cross-links (which involve calcium and borate ester links). The treatise examines how such cross-links can be designed via......Recent research has demonstrated how cross-linking of pectic polysaccharides to obtain gel formation can be promoted by enzymatic catalysis reactions, and provide opportunities for functional upgrading of pectic polysaccharides present in agro-industrial sidestreams. This review highlights...... specific enzymatic reactions, and highlights the most recent data concerning enzyme catalyzed engineering of cross-links for in situ structural design of functional properties of foods....

  8. Chemical Structures and Bioactivities of Sulfated Polysaccharides from Marine Algae

    Directory of Open Access Journals (Sweden)

    H. Stephen Ewart

    2011-02-01

    Full Text Available Sulfated polysaccharides and their lower molecular weight oligosaccharide derivatives from marine macroalgae have been shown to possess a variety of biological activities. The present paper will review the recent progress in research on the structural chemistry and the bioactivities of these marine algal biomaterials. In particular, it will provide an update on the structural chemistry of the major sulfated polysaccharides synthesized by seaweeds including the galactans (e.g., agarans and carrageenans, ulvans, and fucans. It will then review the recent findings on the anticoagulant/antithrombotic, antiviral, immuno-inflammatory, antilipidemic and antioxidant activities of sulfated polysaccharides and their potential for therapeutic application.

  9. Prevention of primary vascular graft infection with silver-coated polyester graft in a porcine model

    DEFF Research Database (Denmark)

    Gao, H; Sandermann, J; Prag, J

    2010-01-01

    To evaluate the efficacy of a silver-coated vascular polyester graft in the prevention of graft infection after inoculation with Staphylococcus aureus in a porcine model.......To evaluate the efficacy of a silver-coated vascular polyester graft in the prevention of graft infection after inoculation with Staphylococcus aureus in a porcine model....

  10. Extraction optimization and characterization of polysaccharide ...

    African Journals Online (AJOL)

    Keywords: Pinellia rhizoma, Polysaccharides Optimization extraction, Monosaccharide composition,. Antioxidant ..... mean yield of PRP was 2.47 %. Therefore ... Table 3: Analysis of variance (ANOVA) for the fitted quadratic polynomial model.

  11. Voltammetry of Os(VI)-modified polysaccharides at carbon electrodes

    Czech Academy of Sciences Publication Activity Database

    Trefulka, Mojmír; Paleček, Emil

    2009-01-01

    Roč. 21, č. 15 (2009), s. 1763-1766 ISSN 1040-0397 R&D Projects: GA ČR(CZ) GA301/07/0490; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : chemical modification of polysaccharides * Os(VI)L-polysaccharide adducts * pyrolytic graphite electrodes Subject RIV: BO - Biophysics Impact factor: 2.630, year: 2009

  12. Properties of polysaccharides in several seaweeds from Atlantic Canada and their potential anti-influenza viral activities

    Science.gov (United States)

    Jiao, Guangling; Yu, Guangli; Wang, Wei; Zhao, Xiaoliang; Zhang, Junzeng; Ewart, Stephen H.

    2012-06-01

    To explore the polysaccharides from selected seaweeds of Atlantic Canada and to evaluate their potential anti-influenza virus activities, polysaccharides were isolated from several Atlantic Canadian seaweeds, including three red algae ( Polysiphonia lanosa, Furcellaria lumbricalis, and Palmaria palmata), two brown algae ( Ascophyllum nodosum and Fucus vesiculosus), and one green alga ( Ulva lactuca) by sequential extraction with cold water, hot water, and alkali solutions. These polysaccharides were analyzed for monosaccharide composition and other general chemical properties, and they were evaluated for anti-influenza virus activities. Total sugar contents in these polysaccharides ranged from 15.4% (in U. lactuca) to 91.4% (in F. lumbricalis); sulfation level was as high as 17.6% in a polysaccharide from U. lactuca, whereas it could not be detected in an alikali-extract from P. palmaria. For polysaccharides from red seaweeds, the main sugar units were sulfated galactans (agar or carrageenan) for P. lanosa, F. lumbricalis, and xylans for P. palmata. In brown seaweeds, the polysaccharides largely contained sulfated fucans, whereas the polysaccharides in green seaweed were mainly composed of heteroglycuronans. Screening for antiviral activity against influenza A/PR/8/34 (H1N1) virus revealed that brown algal polysaccharides were particularly effective. Seaweeds from Atlantic Canada are a good source of marine polysaccharides with potential antiviral properties.

  13. Polysaccharide Fabrication Platforms and Biocompatibility Assessment as Candidate Wound Dressing Materials

    Directory of Open Access Journals (Sweden)

    Donald C. Aduba

    2017-01-01

    Full Text Available Wound dressings are critical for wound care because they provide a physical barrier between the injury site and outside environment, preventing further damage or infection. Wound dressings also manage and even encourage the wound healing process for proper recovery. Polysaccharide biopolymers are slowly becoming popular as modern wound dressings materials because they are naturally derived, highly abundant, inexpensive, absorbent, non-toxic and non-immunogenic. Polysaccharide biopolymers have also been processed into biomimetic platforms that offer a bioactive component in wound dressings that aid the healing process. This review primarily focuses on the fabrication and biocompatibility assessment of polysaccharide materials. Specifically, fabrication platforms such as electrospun fibers and hydrogels, their fabrication considerations and popular polysaccharides such as chitosan, alginate, and hyaluronic acid among emerging options such as arabinoxylan are discussed. A survey of biocompatibility and bioactive molecule release studies, leveraging polysaccharide’s naturally derived properties, is highlighted in the text, while challenges and future directions for wound dressing development using emerging fabrication techniques such as 3D bioprinting are outlined in the conclusion. This paper aims to encourage further investigation and open up new, disruptive avenues for polysaccharides in wound dressing material development.

  14. [Purification and composition analysis of polysaccharide RCPS from Rhodiola crenulata].

    Science.gov (United States)

    Song, Xue-Wei; Ren, Lei; Han, Yong-Ping; Cui, Zhi-Bin; Huang, Jia-Kun

    2008-03-01

    Hot water extracting and ethanol precipitating method was employed to isolate polysaccharides. RCP (Rhodiola crenulata polysaccharide) was fractionally precipitated with EtOH. RCP3 (Rhodiola crenulata polysaccharide 3) was one of the three fractions. RCPS was obtained after RCP3 was purified by deproteination; decolourization and gel chromatography on Sephadex G-100. The homogeneity and molecular masses of RCPS were proved by HLGPC. The amount of total carbohydrates of RCPS was measured with phenol-sulfuric acid method. IR spectrometry and UV-spectrophotometer were used to determine the characteristic absorption of RCPS. The monosaccharides contained in the RCPS were analyzed by GC. The amount of total carbohydrates in RCPS is 99.11%. The molecular weight was 27 876. IR spectrometry analysis indicated that RCPS showed typical signals of acid polysaccharide, including signals at 3 424.83, 2 934.10, 1 742.11, 1 438.96, 1 261.40, 1 103.54 and 832.86 cm(-1); UV-spectrophotometer analysis indicated that RCPS showed a signal of polysaccharide at 195 nm and no signals of protein, nucleic acid at 260 and 280 nm. The monosaccharide constituents of RCPS were Rha, Ara, Xyl, Man, Glu, Gal and GalA, and their molar proportions were 1 : 2.96 : 0.21 : 0.26 : 0.08 : 0.58 and 0.15, respectively.

  15. Molecular mapping of the cell wall polysaccharides of the human pathogen Streptococcus agalactiae

    Science.gov (United States)

    Beaussart, Audrey; Péchoux, Christine; Trieu-Cuot, Patrick; Hols, Pascal; Mistou, Michel-Yves; Dufrêne, Yves F.

    2014-11-01

    The surface of many bacterial pathogens is covered with polysaccharides that play important roles in mediating pathogen-host interactions. In Streptococcus agalactiae, the capsular polysaccharide (CPS) is recognized as a major virulence factor while the group B carbohydrate (GBC) is crucial for peptidoglycan biosynthesis and cell division. Despite the important roles of CPS and GBC, there is little information available on the molecular organization of these glycopolymers on the cell surface. Here, we use atomic force microscopy (AFM) and transmission electron microscopy (TEM) to analyze the nanoscale distribution of CPS and GBC in wild-type (WT) and mutant strains of S. agalactiae. TEM analyses reveal that in WT bacteria, peptidoglycan is covered with a very thin (few nm) layer of GBC (the ``pellicle'') overlaid by a 15-45 nm thick layer of CPS (the ``capsule''). AFM-based single-molecule mapping with specific antibody probes shows that CPS is exposed on WT cells, while it is hardly detected on mutant cells impaired in CPS production (ΔcpsE mutant). By contrast, both TEM and AFM show that CPS is over-expressed in mutant cells altered in GBC expression (ΔgbcO mutant), indicating that the production of the two surface glycopolymers is coordinated in WT cells. In addition, AFM topographic imaging and molecular mapping with specific lectin probes demonstrate that removal of CPS (ΔcpsE), but not of GBC (ΔgbcO), leads to the exposure of peptidoglycan, organized into 25 nm wide bands running parallel to the septum. These results indicate that CPS forms a homogeneous barrier protecting the underlying peptidoglycan from environmental exposure, while the presence of GBC does not prevent peptidoglycan detection. This work shows that single-molecule AFM, combined with high-resolution TEM, represents a powerful platform for analysing the molecular arrangement of the cell wall polymers of bacterial pathogens.

  16. Skin graft - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100100.htm Skin graft - series—Normal anatomy To use the sharing features ... entire body, and acts as a protective barrier. Skin grafts may be recommended for: Extensive wounds Burns Specific ...

  17. Polysaccharides in Human Health Care

    NARCIS (Netherlands)

    Dam, van J.E.G.; Broek, van den L.A.M.; Boeriu, C.G.

    2016-01-01

    Polysaccharides are abundant natural polymers found in plants, animals and microorganisms with exceptional properties and essential roles to sustain life. They are well known for their high nutritive value and the positive effects on our immune and digestive functions and detoxification system. The

  18. Evidence for covalent attachment of phospholipid to the capsular polysaccharide of Haemophilus influenzae type b

    International Nuclear Information System (INIS)

    Kuo, J.S.; Doelling, V.W.; Graveline, J.F.; McCoy, D.W.

    1985-01-01

    Cells of Haemophilus influenzae type b were grown in a liquid medium containing [ 3 H]palmitate or [ 14 C]ribose or both for two generations of exponential growth. Radiolabeled type-specific capsular polysaccharide, polyribosyl ribitol phosphate (PRP), was purified from the culture supernatant by Cetavlon precipitation, ethanol fractionation, and hydroxylapatite and Sepharose 4B chromatography. The doubly labeled ( [ 3 H]palmitate and [ 14 C]ribose) PRP preparation was found to coelute in a single peak from a Sepharose 4B column, suggesting that both precursors were incorporated into the purified PRP. A singly labeled ( [ 3 H]palmitate) purified PRP preparation was found to be quantitatively immune precipitated by human serum containing antibody against PRP. Only after acid, alkaline, or phospholipase A2 treatment of PRP labeled with [ 3 H]palmitate or [ 3 H]palmitate and [ 14 C]ribose followed by chloroform-methanol extraction could most of the 3 H-radioactivity be recovered in the organic phase. The chloroform-soluble acid-hydrolyzed or phospholipase A2-treated product was identified as palmitic acid after thin-layer chromatography. These results strongly suggest that a phospholipid moiety is covalently associated with the H. influenzae type b polysaccharide PRP

  19. Lycopene and flesh colour differences in grafted and non-grafted watermelon

    OpenAIRE

    Fekete D.; Stéger-Máté M.; Bőhm V.; Balázs G.; Kappel N.

    2015-01-01

    The experiment was carried out in three regions in Hungary (Jászszentandrás, Cece, Újkígyós) in 2013 to determine the fruit quality of grafted watermelon (Citrullus lanatus Thunb.). The “RX 467” seedless watermelon variety was grafted on two commercial rootstocks “FR STRONG” [Lagenaria siceraria (Mol.) Standl.] and “RS 841” (Cucurbita maxima Duchesne × Cucurbita moschata Duchesne). The lycopene and flesh colours are important quality characteristics even of the selfrooted and grafted watermel...

  20. [Relativity among starch quantity, polysaccharides content and total alkaloid content of Dendrobium loddigesii].

    Science.gov (United States)

    Zhu, Hua; Teng, Jianbei; Cai, Yi; Liang, Jie; Zhu, Yilin; Wei, Tao

    2011-12-01

    To find out the relativity among starch quantity, polysaccharides content and total alkaloid content of Dendrobium loddigesii. Microscopy-counting process was applied to starch quantity statistics, sulfuric acid-anthrone colorimetry was used to assay polysaccharides content and bromocresol green colorimetry was used to assay alkaloid content. Pearson product moment correlation analysis, Kendall's rank correlation analysis and Spearman's concordance coefficient analysis were applied to study their relativity. Extremely significant positive correlation was found between starch quantity and polysaccharides content, and significant negative correlation between alkaloid content and starch quantity was discovered, as well was between alkaloid content and polysaccharides content.

  1. A new grafting technique for tympanoplasty: tympanoplasty with a boomerang-shaped chondroperichondrial graft (TwBSCPG).

    Science.gov (United States)

    Dündar, Rıza; Soy, Fatih Kemal; Kulduk, Erkan; Muluk, Nuray Bayar; Cingi, Cemal

    2014-10-01

    The aim of this study was to introduce a new grafting technique in tympanoplasty that involves use of a boomerang-shaped chondroperichondrial graft (BSCPG). The anatomical and functional results were evaluated. A new tympanoplasty with boomerang-shaped chondroperichondrial graft (TwBSCPG) technique was used in 99 chronic otitis media patients with central or marginal perforation of the tympanic membrane and a normal middle ear mucosa. All 99 patients received chondroperichondrial cartilage grafts with a boomerang-shaped cartilage island left at the anterior and inferior parts. Postoperative follow-ups were conducted at months 1, 6, and 12. Preoperative and postoperative audiological examinations were performed and air-bone gaps were calculated according to the pure-tone averages (PTAs) of the patients. In the preoperative period, most (83.8%) air-bone gaps were ≥ 16 dB; after operating using the TwBSCPG technique, the air-bone gaps decreased to 0-10 dB in most patients (77.8%). In the TwBSCPG patients, the mean preoperative air-bone gap was 22.02 ± 6.74 dB SPL. Postoperatively, the mean postoperative air-bone gap was 8.70 ± 5.74 dB SPL. The TwBSCPG technique therefore decreased the postoperative air-bone gap compared to that preoperatively (p = 0.000, z = -8.645). At the 1-month follow-up, there were six graft perforations and one graft retraction. At the 6-month follow-up, there were nine graft perforations and three graft retractions. At 12 months, there were seven graft perforations and four graft retractions. During the first year after the boomerang tympanoplasty surgery, graft lateralization was not detected in any patient. Retractions were grade 1 according to the Sade classification and were localized to the postero-superior quadrant of the tympanic membrane. The TwBSCPG technique has benefits with respect to postoperative anatomical and audiological results. It prevents perforation of the tympanic membrane at the anterior quadrant and avoids graft

  2. Studies of polysaccharides from three edible species of Nostoc (cyanobacteria) with different colony morphologies : structural characterization and effect on the complement system of polysaccharides from Nostoc commune

    NARCIS (Netherlands)

    Brüll, L.P.; Huang, Z.; Thomas-Oates, J.E.; Smestad-Paulsen, B.; Cohen, E.H.; Michaelsen, T.E.

    2000-01-01

    The cyanobacterium Nostoc commune Vaucher produces quite complex extracellular polysaccharides. The cyanobacterium is nitrogen fixing, and on growing the cyanobacterium in media with and without nitrogen, different types of extracellular polysaccharides were obtained. These were also different from

  3. Dacron graft as replacement to dissected aorta: A three-dimensional fluid-structure-interaction analysis.

    Science.gov (United States)

    Jayendiran, R; Nour, B M; Ruimi, A

    2018-02-01

    Aortic dissection (AD) is a serious medical condition characterized by a tear in the intima, the inner layer of the aortic walls. In such occurrence, blood is being diverted to the media (middle) layer and may result in patient death if not quickly attended. In the case where the diseased portion of the aorta needs to be replaced, one common surgical technique is to use a graft made of Dacron, a synthetic fabric. We investigate the response of a composite human aortic segment-Dacron graft structure subjected to blood flow using the three-dimensional fluid-structure-interaction (FSI) capability in Abaqus. We obtain stress and strain profiles in each of the three layers of the aortic walls as well as in the Dacron graft. Results are compared when elastic and hyperelastic models are used and when isotropy vs. anisotropy is assumed. The more complex case (hyperelastic-anisotropy) is represented by the Holzapfel-Gasser-Ogden (HGO) model which also accounts for the orientation of the fibers present in the tissues. The fluid flow is taken as Newtonian, incompressible, pulsatile and turbulent. The simulation show that for all the cases, the von Mises stress distribution at aorta-Dacron interface is well below the ultimate strength of the aorta. No significant change in radial displacement at the interface of the two materials due to blood flow is observed. Computation cost is also addressed and results show that the hyperelastic-anisotropic model takes about three times longer to run than the elastic isotropic case. Trade-off between accuracy and computational cost has to be weighted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. In vitro antioxidant activity of polysaccharide from Gardenia jasminoides ellis

    Science.gov (United States)

    Fan, Y.; Ge, Z.; Luo, A.

    2011-01-01

    A water-soluble polysaccharide, GP, was isolated from Gardenia jasminoides Ellis through hot water extraction followed by ethanol precipitation. The in vitro free radicals scavenging tests exhibited that GP has significant scavenging abilities especially for ABTS, DPPH, and hydroxyl radicals, which suggests that the polysaccharide GP is a novel antioxidant. ?? 2011 Academic Journals.

  5. Carbon Nanotubes and Algal Polysaccharides To Enhance the Enzymatic Properties of Urease in Lipid Langmuir-Blodgett Films.

    Science.gov (United States)

    Rodrigues, Raul T; Morais, Paulo V; Nordi, Cristina S F; Schöning, Michael J; Siqueira, José R; Caseli, Luciano

    2018-03-06

    Algal polysaccharides (extracellular polysaccharides) and carbon nanotubes (CNTs) were adsorbed on dioctadecyldimethylammonium bromide Langmuir monolayers to serve as a matrix for the incorporation of urease. The physicochemical properties of the supramolecular system as a monolayer at the air-water interface were investigated by surface pressure-area isotherms, surface potential-area isotherms, interfacial shear rheology, vibrational spectroscopy, and Brewster angle microscopy. The floating monolayers were transferred to hydrophilic solid supports, quartz, mica, or capacitive electrolyte-insulator-semiconductor (EIS) devices, through the Langmuir-Blodgett (LB) technique, forming mixed films, which were investigated by quartz crystal microbalance, fluorescence spectroscopy, and field emission gun scanning electron microscopy. The enzyme activity was studied with UV-vis spectroscopy, and the feasibility of the thin film as a urea sensor was essayed in an EIS sensor device. The presence of CNT in the enzyme-lipid LB film not only tuned the catalytic activity of urease but also helped to conserve its enzyme activity. Viability as a urease sensor was demonstrated with capacitance-voltage and constant capacitance measurements, exhibiting regular and distinctive output signals over all concentrations used in this work. These results are related to the synergism between the compounds on the active layer, leading to a surface morphology that allowed fast analyte diffusion owing to an adequate molecular accommodation, which also preserved the urease activity. This work demonstrates the feasibility of employing LB films composed of lipids, CNT, algal polysaccharides, and enzymes as EIS devices for biosensing applications.

  6. Role of Polysaccharides on Mechanical and Adhesion Properties of Flax Fibres in Flax/PLA Biocomposite

    Directory of Open Access Journals (Sweden)

    Gijo Raj

    2011-01-01

    Full Text Available The effect of alkali and enzymatic treatments on flax fibre morphology, mechanical, and adhesion properties was investigated. The multilength scale analysis allows for the correlation of the fibre's morphological changes induced by the treatments with mechanical properties to better explain the adherence properties between flax and PLA. The atomic force microscopy (AFM images revealed the removal of primary layers, upon treatments, down to cellulose microfibrils present in the secondary layers. The variation in mechanical properties was found to be dependent, apart from the crystalline content, on interaction between cellulose microfibrils and encrusting polysaccharides, pectins and hemicelluloses, in the secondary layers. Finally, microbond tests between the modified fibres and PLA emphasize the important role of the outer fibre's surface on the overall composite properties. It was observed here that gentle treatments of the fibres, down to the oriented microfibrils, are favourable to a better adherence with a PLA drop. This paper highlights the important role of amorphous polymers, hemicellulose and pectin, in the optimisation of the adhesion and mechanical properties of flax fibres in the biocomposite.

  7. A Novel Enzyme Portfolio for Red Algal Polysaccharide Degradation in the Marine Bacterium Paraglaciecola hydrolytica S66T Encoded in a Sizeable Polysaccharide Utilization Locus.

    Science.gov (United States)

    Schultz-Johansen, Mikkel; Bech, Pernille K; Hennessy, Rosanna C; Glaring, Mikkel A; Barbeyron, Tristan; Czjzek, Mirjam; Stougaard, Peter

    2018-01-01

    Marine microbes are a rich source of enzymes for the degradation of diverse polysaccharides. Paraglaciecola hydrolytica S66 T is a marine bacterium capable of hydrolyzing polysaccharides found in the cell wall of red macroalgae. In this study, we applied an approach combining genomic mining with functional analysis to uncover the potential of this bacterium to produce enzymes for the hydrolysis of complex marine polysaccharides. A special feature of P. hydrolytica S66 T is the presence of a large genomic region harboring an array of carbohydrate-active enzymes (CAZymes) notably agarases and carrageenases. Based on a first functional characterization combined with a comparative sequence analysis, we confirmed the enzymatic activities of several enzymes required for red algal polysaccharide degradation by the bacterium. In particular, we report for the first time, the discovery of novel enzyme activities targeting furcellaran, a hybrid carrageenan containing both β-carrageenan and κ/β-carrageenan motifs. Some of these enzymes represent a new subfamily within the CAZy classification. From the combined analyses, we propose models for the complete degradation of agar and κ/β-type carrageenan by P. hydrolytica S66 T . The novel enzymes described here may find value in new bio-based industries and advance our understanding of the mechanisms responsible for recycling of red algal polysaccharides in marine ecosystems.

  8. A Novel Enzyme Portfolio for Red Algal Polysaccharide Degradation in the Marine Bacterium Paraglaciecola hydrolytica S66T Encoded in a Sizeable Polysaccharide Utilization Locus

    Directory of Open Access Journals (Sweden)

    Mikkel Schultz-Johansen

    2018-05-01

    Full Text Available Marine microbes are a rich source of enzymes for the degradation of diverse polysaccharides. Paraglaciecola hydrolytica S66T is a marine bacterium capable of hydrolyzing polysaccharides found in the cell wall of red macroalgae. In this study, we applied an approach combining genomic mining with functional analysis to uncover the potential of this bacterium to produce enzymes for the hydrolysis of complex marine polysaccharides. A special feature of P. hydrolytica S66T is the presence of a large genomic region harboring an array of carbohydrate-active enzymes (CAZymes notably agarases and carrageenases. Based on a first functional characterization combined with a comparative sequence analysis, we confirmed the enzymatic activities of several enzymes required for red algal polysaccharide degradation by the bacterium. In particular, we report for the first time, the discovery of novel enzyme activities targeting furcellaran, a hybrid carrageenan containing both β-carrageenan and κ/β-carrageenan motifs. Some of these enzymes represent a new subfamily within the CAZy classification. From the combined analyses, we propose models for the complete degradation of agar and κ/β-type carrageenan by P. hydrolytica S66T. The novel enzymes described here may find value in new bio-based industries and advance our understanding of the mechanisms responsible for recycling of red algal polysaccharides in marine ecosystems.

  9. Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia.

    Directory of Open Access Journals (Sweden)

    Manuel Martinez-Garcia

    Full Text Available Microbial hydrolysis of polysaccharides is critical to ecosystem functioning and is of great interest in diverse biotechnological applications, such as biofuel production and bioremediation. Here we demonstrate the use of a new, efficient approach to recover genomes of active polysaccharide degraders from natural, complex microbial assemblages, using a combination of fluorescently labeled substrates, fluorescence-activated cell sorting, and single cell genomics. We employed this approach to analyze freshwater and coastal bacterioplankton for degraders of laminarin and xylan, two of the most abundant storage and structural polysaccharides in nature. Our results suggest that a few phylotypes of Verrucomicrobia make a considerable contribution to polysaccharide degradation, although they constituted only a minor fraction of the total microbial community. Genomic sequencing of five cells, representing the most predominant, polysaccharide-active Verrucomicrobia phylotype, revealed significant enrichment in genes encoding a wide spectrum of glycoside hydrolases, sulfatases, peptidases, carbohydrate lyases and esterases, confirming that these organisms were well equipped for the hydrolysis of diverse polysaccharides. Remarkably, this enrichment was on average higher than in the sequenced representatives of Bacteroidetes, which are frequently regarded as highly efficient biopolymer degraders. These findings shed light on the ecological roles of uncultured Verrucomicrobia and suggest specific taxa as promising bioprospecting targets. The employed method offers a powerful tool to rapidly identify and recover discrete genomes of active players in polysaccharide degradation, without the need for cultivation.

  10. Impact of bone graft harvesting techniques on bone formation and graft resorption

    DEFF Research Database (Denmark)

    Saulacic, Nikola; Bosshardt, Dieter D; Jensen, Simon S

    2015-01-01

    BACKGROUND: Harvesting techniques can affect cellular parameters of autogenous bone grafts in vitro. Whether these differences translate to in vivo bone formation, however, remains unknown. OBJECTIVE: The purpose of this study was to assess the impact of different harvesting techniques on bone fo......: Transplantation of autogenous bone particles harvested with four techniques in the present model resulted in moderate differences in terms of bone formation and graft resorption.......BACKGROUND: Harvesting techniques can affect cellular parameters of autogenous bone grafts in vitro. Whether these differences translate to in vivo bone formation, however, remains unknown. OBJECTIVE: The purpose of this study was to assess the impact of different harvesting techniques on bone...... formation and graft resorption in vivo. MATERIAL AND METHODS: Four harvesting techniques were used: (i) corticocancellous blocks particulated by a bone mill; (ii) bone scraper; (iii) piezosurgery; and (iv) bone slurry collected from a filter device upon drilling. The grafts were placed into bone defects...

  11. Adolescent External Iliac Artery Trauma: Recurrent Aneurysmal Dilatation of an Iliofemoral Saphenous Vein Graft Treated by Stent-Grafting

    International Nuclear Information System (INIS)

    Lenton, James; Davies, John; Homer-Vanniasinkam, S.; McPherson, Simon

    2008-01-01

    An adolescent male sustained a severe penetrating injury to the external iliac artery. Emergency surgical revascularization was with a reversed long saphenous vein interposition graft. The primary graft and the subsequent revision graft both became aneurysmal. The second graft aneurysm was successfully excluded by endovascular stent-grafts with medium-term primary patency. A venous graft was used initially rather than a synthetic graft to reduce the risk of infection and the potential problems from future growth. Aneurysmal dilatation of venous grafts in children and adolescents is a rare but recognized complication. To the best of our knowledge, exclusion of these aneurysms with stent-grafts has not been previously reported in the adolescent population.

  12. Compliance Study of Endovascular Stent Grafts Incorporated with Polyester and Polyurethane Graft Materials in both Stented and Unstented Zones

    Directory of Open Access Journals (Sweden)

    Ying Guan

    2016-08-01

    Full Text Available Compliance mismatch between stent graft and host artery may induce complications and blood flow disorders. However, few studies have been reported on stent graft compliance. This study aims to explore the deformation and compliance of stent graft in stented and unstented zones under three pressure ranges. Compliance of two stent grafts incorporated with polyurethane graft (nitinol-PU and polyester graft (nitinol-PET materials respectively were tested; the stents used in the two stent grafts were identical. For the circumferential deformation of the stent grafts under each pressure range, the nitinol-PET stent graft was uniform in both zones. The nitinol-PU stent graft was circumferentially uniform in the stented zone, however, it was nonuniform in the unstented zone. The compliance of the PU graft material was 15 times higher than that of the PET graft. No significant difference in compliance was observed between stented and unstented zones of the nitinol-PET stent graft regardless of the applied pressure range. However, for the nitinol-PU stent graft, compliance of the unstented PU region was approximately twice that of the stented region; thus, compliance along the length of the nitinol-PU stent graft was not constant and different from that of the nitinol-PET stent graft.

  13. Homogenate extraction of crude polysaccharides from Lentinus edodes and evaluation of the antioxidant activity

    Directory of Open Access Journals (Sweden)

    Leqin KE

    2016-01-01

    Full Text Available Abstract Crude polysaccharides of Lentinus edodes were extracted using homogenate method. Factors affecting the yield of crude polysaccharides were investigated and optimized by response surface methodology. The homogenate extraction method was compared with traditional heating extraction method. The antioxidant activity of crude polysaccharides from Lentinus edodes was evaluated. Results showed that, the optimal conditions of homogenate extraction were as follows: solvent pH, 10; liquid-solid ratio, 30: 1 (mL: g, extraction time, 66 s; number of extraction, 1. Under these conditions, the yield of crude polysaccharides was (13.2 ± 0.9%, which was 29.82% higher than that of traditional heating extraction. Crude polysaccharides of Lentinus edodes had good DPPH scavenging activity. Compared with the traditional heating extraction, the homogenate extraction had notable advantages including good extraction yield, short extraction time and low extraction temperature. It is an efficient way to extract crude polysaccharides from Lentinus edodes.

  14. The biosynthesis of polysaccharides. Incorporation of d-[1-14C]glucose and d-[6-14C]glucose into plum-leaf polysaccharides

    Science.gov (United States)

    Andrews, P.; Hough, L.; Picken, J. M.

    1965-01-01

    1. The utilization of specifically labelled d-glucose in the biosynthesis of plum-leaf polysaccharides has been studied. After these precursors had been metabolized in plum leaves, the polysaccharides were isolated from the leaves, and their monosaccharide constituents isolated and purified. 2. Both the specific activities and the distribution of 14C along the carbon chains of the monosaccharides were determined. Significant 14C activity was found in units of d-galactose, d-glucose, d-xylose and l-arabinose, but their specific activities varied widely. The labelling patterns suggest that in the leaves the other monosaccharides all arise directly from d-glucose without any skeletal change in the carbon chain, other than the loss of a terminal carbon atom in the synthesis of pentoses. 3. The results indicated that within the leaf there are various precursor pools for polysaccharide synthesis and that these pools are not in equilibrium with one another. PMID:14342252

  15. Structure of polysaccharide and structural analysis by x-ray

    International Nuclear Information System (INIS)

    Yuguchi, Yoshiaki

    2010-01-01

    Polysaccharides occur in plants and the living body in the solid, gel, or liquid. They have a highly structural diversity and possess the potential to be used for development of new materials and energy sources. So it is very important to understand their molecular structure under various conditions. This review introduces the structural characteristics of polysaccharides and the examples of their analysis by the X-ray scattering method. (author)

  16. Chemical grafting of the superhydrophobic surface on copper with hierarchical microstructure and its formation mechanism

    Science.gov (United States)

    Cai, Junyan; Wang, Shuhui; Zhang, Junhong; Liu, Yang; Hang, Tao; Ling, Huiqin; Li, Ming

    2018-04-01

    In this paper, a superhydrophobic surface with hierarchical structure was fabricated by chemical deposition of Cu micro-cones array, followed by chemical grafting of poly(methyl methacrylate) (PMMA). Water contact measurements give contact angle of 131.0° on these surfaces after PMMA grafting of 2 min and 165.2° after 6 min. The superhydrophobicity results from two factors: (1) the hierarchical structure due to Cu micro-cones array and the second level structure caused by intergranular corrosion during grafting of PMMA (confirmed by the scanning electron microscopy) and (2) the chemical modification of a low surface energy PMMA layer (confirmed by Fourier transform infrared spectrometer and X-ray photoelectron spectroscopy). In the chemical grafting process, the spontaneous reduction of nitrobenzene diazonium (NBD) tetrafluoroborate not only causes the corrosion of the Cu surface that leads to a hierarchical structure, but also initiates the polymerization of methyl methacrylate (MMA) monomers and thus the low free energy surface. Such a robust approach to fabricate the hierarchical structured surface with superhydrophobicity is expected to have practical application in anti-corrosion industry.

  17. Purification, characterization and immunomodulatory activity of polysaccharides from stem lettuce.

    Science.gov (United States)

    Nie, Chenzhipeng; Zhu, Peilei; Ma, Shuping; Wang, Mingchun; Hu, Youdong

    2018-05-15

    Stem lettuce has a long history of cultivation in China and possesses high nutritional and medicinal value. In our previous studies, extraction optimization, characterization, and bioactivities of stem lettuce polysaccharides (SLP) were investigated. In this study, SLP were further separated into two purified polysaccharides, SLP-1 and SLP-2, by anion exchange chromatography followed by size exclusion chromatography. SLP-1, with a molecular weight of 90 KDa, was mainly composed of galacturonic acid, galactose and arabinose in a molar ratio of 17.6:41.7:33.9. SLP-2, with a molecular weight of 44 KDa, was mainly composed of mannose, galacturonic acid, galactose and arabinose in a molar ratio of 11.5:69.5:9.3:8.2. In addition, both purified polysaccharides contain sulphate radicals, have triple helical structures and can promote macrophage proliferation without cytotoxicity. SLP-2 was better able to stimulate phagocytic and nitric oxide production than SLP-1. The results suggest that polysaccharides from stem lettuce could be explored as immunomodulatory agents in the field of pharmaceuticals and functional foods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Electrochemical writing on edible polysaccharide films for intelligent food packaging.

    Science.gov (United States)

    Wu, Si; Wang, Wenqi; Yan, Kun; Ding, Fuyuan; Shi, Xiaowen; Deng, Hongbing; Du, Yumin

    2018-04-15

    Polysaccharide films used as intelligent food packaging possess the advantages of renewability, safety and biodegradability. Printing on the polysaccharidic food packaging is challenging due to the high demand for edible-ink and the need for a suitable printing technique. In this work, we propose an electrochemical method for writing on polysaccharide film. Unlike conventional printing, this electrochemical writing process relies on the pH responsive color change of anthocyanin embedded in the chitosan/agarose hydrogel. By biasing a negative potential to a stainless wire (used as a pen) contacting the surface of the chitosan/agarose/ATH hydrogel, the locally generated pH change induced the color change of ATH and wrote programmed information on the hydrogel. We demonstrate the writing can be temporary in the hydrogel but stable when the hydrogel is dried. We further demonstrate that the written film is applicable for the detection of the spoilage of crucian fish. The reported electrochemical writing process provides a novel method for printing information on polysaccharide film and great potential for intelligent food packaging. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Depth of the graft bed influences split-skin graft contraction.

    NARCIS (Netherlands)

    Mensik, I.; Lamme, E.N.; Brychta, P.

    2003-01-01

    Contraction of a split-thickness skin graft used for coverage of large defects remains a great problem in plastic, burn and reconstructive surgery. In this study we evaluated healing of split-thickness skin grafts transplanted in wounds on the subcutaneous fat and muscle fascia in pigs. Four young

  20. Bone scintigraphy in evaluating the viability of composite bone grafts revascularized by microvascular anastomoses, conventional autogenous bone grafts, and free non-revascularized periosteal grafts

    International Nuclear Information System (INIS)

    Berggren, A.; Weiland, A.J.; Ostrup, L.T.

    1982-01-01

    Researchers studied the value of bone scintigraphy in the assessment of anastomotic patency and bone-cell viability in free bone grafts revascularized by microvascular anastomoses in twenty-seven dogs. The dogs were divided into three different groups, and scintigraphy was carried out using technetium-labeled methylene diphosphonate in composite bone grafts revascularized by microvascular anastomoses, conventional autogenous bone grafts, and periosteal grafts placed in different recipient beds. The viability of the grafts were evaluated by histological examination and fluorescence microscopy after triple labeling with oxytetracycline on the first postoperative day, alizarin complexone on the fourth postoperative day, and DCAF on the eleventh postoperative day. A positive scintiscan within the first week following surgery indicated patent microvascular anastomoses, and histological study and fluorescence microscopy confirmed that bone throughout the graft was viable. A positive scintiscan one week after surgery or later does not necessarily indicate microvascular patency or bone-cell survival, because new bone formed by creeping substitution on the surface of a dead bone graft can result in this finding

  1. Osseous scintigraphy and auxiliary graft

    International Nuclear Information System (INIS)

    Khelifa, F.; Siles, S.; Puech, B.

    1992-01-01

    The scintigraphy could be a good way to survey the osseous graft: three cases are studied in which were recognized the presence of a graft, surinfection, graft lysis, pseudo-arthrosis, algodystrophy. 8 refs., 5 figs

  2. Similar Outcomes in Diabetes Patients After Coronary Artery Bypass Grafting With Single Internal Thoracic Artery Plus Radial Artery Grafting and Bilateral Internal Thoracic Artery Grafting.

    Science.gov (United States)

    Raza, Sajjad; Blackstone, Eugene H; Houghtaling, Penny L; Koprivanac, Marijan; Ravichandren, Kirthi; Javadikasgari, Hoda; Bakaeen, Faisal G; Svensson, Lars G; Sabik, Joseph F

    2017-12-01

    The purpose of this study was to determine in patients with diabetes mellitus whether single internal thoracic artery (SITA) plus radial artery (RA) grafting yields outcomes similar to those of bilateral internal thoracic artery (BITA) grafting. From January 1994 to January 2011, 1,325 diabetic patients underwent primary isolated coronary artery bypass graft surgery with either (1) SITA plus RA with or without saphenous vein (SV) grafts (n = 965) or (2) BITA with or without SV grafts (n = 360); an internal thoracic artery was used in all patients to graft the left anterior descending coronary artery. Endpoints were in-hospital outcomes and time-related mortality. Median follow-up was 7.4 years, with a total follow-up of 9,162 patient-years. Propensity score matching was performed to identify 282 well-matched pairs for adjusted comparisons. Unadjusted in-hospital mortality was 0.52% for SITA plus RA with or without SV grafts and 0.28% for BITA with or without SV grafts, and prevalence of deep sternal wound infection was 3.2% and 1.7%, respectively. Unadjusted survival at 1, 5, 10, and 14 years was 97%, 88%, 68%, and 51% for SITA plus RA with or without SV grafts, and 97%, 95%, 80%, and 66% for BITA with or without SV grafts, respectively. Among propensity-matched patients, in-hospital mortality (0.35% versus 0.35%) and prevalence of deep sternal wound infection (1.4% versus 1.4%) were similar (p > 0.9) in the two groups, as was 1-, 5-, 10-, and 14-year survival: 97%, 90%, 70%, and 58% for SITA plus RA with or without SV grafting versus 97%, 93%, 79%, and 64% for BITA with or without SV grafting, respectively (early p = 0.8, late p = 0.2). For diabetic patients, SITA plus RA with or without SV grafting and BITA with or without SV grafting yield similar in-hospital outcomes and long-term survival after coronary artery bypass graft surgery. Therefore, both SITA plus RA and BITA plus SV grafting should be considered for these patients. Copyright © 2017 The Society

  3. Inhibition of α-glucosidase by polysaccharides from the fruit hull of Camellia oleifera Abel.

    Science.gov (United States)

    Zhang, Sheng; Li, Xiang-Zhou

    2015-01-22

    We isolated and purified polysaccharides from the Camellia oleifera Abel. fruit hull and studied its hypoglycemic potential. Our results revealed six polysaccharides (CFPA-1-5 & CFPB) from the aqueous extract from the defatted C. oleifera fruit hull. Purified polysaccharides (purity >90%) were investigated for the inhibition of α-glucosidase activity in vitro. Two polysaccharides, CFPB and CFPA-3 were present in high concentration in the fruit hull and showed a dose-dependent inhibition of α-glucosidase activity, with IC50 concentrations of 11.80 and 10.95 μg/mL, respectively. This result suggests that polysaccharides (CFP) extracted from the fruit hull of C. oleifera may have potential as functional foods with featuring a hypoglycemic effect. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Characterization and Antihyperglycemic Activity of a Polysaccharide from Dioscorea opposita Thunb Roots

    Directory of Open Access Journals (Sweden)

    Yijun Fan

    2015-03-01

    Full Text Available A polysaccharide DOTP-80 from Dioscorea opposita Thunb was obtained by using the method of acid water-extraction and ethanol-precipitation. After being purified by chromatography, the structure characteristics of DOTP-80 were established. Based on the calibration curve obtained with standard dextrans, the molecular weight of the polysaccharide fraction DOTP-80 was calculated to be 123 kDa. The results of Infrared spectrum (FT-IR indicated that the polysaccharide contained the α-configuration of sugar units. GC-MS analysis revealed that DOTP-80 was mainly composed of mannose and glucose. Alloxan-induced diabetic rats and mice models were developed to evaluate the in vivo hypoglycemic activity of the polysaccharide. The results indicated that a high dose DOTP-80 (400 mg/kg had strong hypoglycemic activity. Moreover, DOTP-80 could increase the level of antioxidant enzymes (SOD activity in alloxan-induced diabetic mice and stimulate an increase in glucose disposal in diabetic rats. Therefore, the polysaccharide DOTP-80 should be evaluated as a candidate for future studies on diabetes mellitus.

  5. Characteristics and antioxidant of Ulva intestinalis sulphated polysaccharides extracted with different solvents.

    Science.gov (United States)

    Peasura, Napassorn; Laohakunjit, Natta; Kerdchoechuen, Orapin; Wanlapa, Sorada

    2015-11-01

    Ulva intestinalis, a tubular green seaweed, is a rich source of nutrient, especially sulphated polysaccharides. Sulphated polysaccharides from U. intestinalis were extracted with distilled water, 0.1N HCl, and 0.1N NaOH at 80°C for 1, 3, 6, 12, and 24h to study the effect of the extraction solvent and time on their chemical composition and antioxidant activity. Different types of solvents and extraction time had a significant influence on the chemical characteristics and antioxidant activity (pMonosaccharide composition and FT-IR spectra analyses revealed that sulphated polysaccharides from all solvent extractions have a typical sugar backbone (glucose, rhamnose, and sulphate attached at C-2 or C-3 of rhamnose). Sulphated polysaccharides extracted with acid exhibited greater antioxidant activity than did those extracted with distilled water and alkali. The results indicated that solvent extraction could be an efficacious method for enhancing antioxidant activity by distinct molecular weight and chemical characteristic of sulphated polysaccharides. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Chemical Methods for the Determination of Soluble and Insoluble Non-Starch Polysaccharides - Review

    Directory of Open Access Journals (Sweden)

    Rodica Căpriţă

    2011-10-01

    Full Text Available Polysaccharides are macromolecules of monosaccharides linked by glycosidic bonds. Non-starch polysaccharides(NSP are principally non-α-glucan polysaccharides of the plant cell wall. They are a heterogeneous group ofpolysaccharides with varying degrees of water solubility, size, and structure. The water insoluble fiber fractioninclude cellulose, galactomannans, xylans, xyloglucans, and lignin, while the water-soluble fibers are the pectins,arabinogalactans, arabinoxylans, and β-(1,3(1,4-D-glucans (β-glucans. Both the enzymatic-gravimetric andenzymatic-chemical methods used for the determination of soluble and insoluble non-starch polysaccharides haveundergone a number of modifications and improvements, most occurring over the last 20 years.

  7. The Specific Nature of Plant Cell Wall Polysaccharides 1

    Science.gov (United States)

    Nevins, Donald J.; English, Patricia D.; Albersheim, Peter

    1967-01-01

    Polysaccharide compositions of cell walls were assessed by quantitative analyses of the component sugars. Cell walls were hydrolyzed in 2 n trifluoroacetic acid and the liberated sugars reduced to their respective alditols. The alditols were acetylated and the resulting alditol acetates separated by gas chromatography. Quantitative assay of the alditol acetates was accomplished by electronically integrating the detector output of the gas chromatograph. Myo-inositol, introduced into the sample prior to hydrolysis, served as an internal standard. The cell wall polysaccharide compositions of plant varieties within a given species are essentially identical. However, differences in the sugar composition were observed in cell walls prepared from different species of the same as well as of different genera. The fact that the wall compositions of different varieties of the same species are the same indicates that the biosynthesis of cell wall polysaccharides is genetically regulated. The cell walls of various morphological parts (roots, hypocotyls, first internodes and primary leaves) of bean plants were each found to have a characteristic sugar composition. It was found that the cell wall sugar composition of suspension-cultured sycamore cells could be altered by growing the cells on different carbon sources. This demonstrates that the biosynthesis of cell wall polysaccharides can be manipulated without fatal consequences. PMID:16656594

  8. Hydrophilic/hydrophobic character of grafted cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Takacs, E., E-mail: takacs@iki.kfki.h [Institute of Isotopes, Hungarian Academy of Sciences, Budapest (Hungary); Wojnarovits, L. [Institute of Isotopes, Hungarian Academy of Sciences, Budapest (Hungary); Borsa, J. [Budapest University of Technology and Economics (Hungary); Racz, I. [Bay Zoltan Institute for Materials Science and Technology, Budapest (Hungary)

    2010-04-15

    Vinyl monomers with long paraffin chains were grafted onto two kinds of cellulose (cotton and cotton linter) by direct irradiation grafting technique. The effect of dose, monomer structure and concentration, as well as homopolymer suppressor (styrene) concentration on the grafting yield was studied and the optimal grafting conditions were established. Grafting decreased the swelling of the samples in water and increased their polymer compatibility in polypropylene matrix.

  9. Discovery and characterization of surface binding sites in polysaccharide converting enzymes

    DEFF Research Database (Denmark)

    Wilkens, Casper

    Enzymes that act on various polysaccharides are widespread in any domain of life and they play a role in degradation, modification, and synthesis of carbohydrates. These carbohydrate active enzymes interact with their substrate (the polysaccharide) at the active site and often at so called subsites...

  10. Characterization and bioactivities of a novel polysaccharide obtained from Gracilariopsis lemaneiformis

    Directory of Open Access Journals (Sweden)

    CHEN-SHAN SHI

    Full Text Available ABSTRACT Gracilariopsis lemaneiformis is a type of red alga that contains seaweed polysaccharide agar. In this study, a novel non-agar seaweed polysaccharide fraction named GCP (short of crude polysaccharide obtained from Gracilariopsis lemaneiformis was isolated from Gracilariopsis lemaneiformis. Structural analysis showed that GCP shows triple helical chain conformation when dissolved in water and has many branches and long side chains. Also, 1→3 linkage is the major linkage and the sugar structures are galactopyranose configurations linked by β-type glycosidic linkages. Two macromolecular substance fractions (GCP-1 and GCP-2 were purified by DEAE Sepharose Fast Flow column chromatography. Moreover, a splenocyte damage assay and splenocyte proliferation assay were used to analyse the bioactivities of GCP, GCP-1 and GCP-2. It was demonstrated that polysaccharides could protect splenocyte damaged by H2O2; GCP-2 shows a greatest protection rate, that is, 92.8%, which significantly enhanced the splenocyte proliferation, and GCP showed the highest proliferation rate, 9.30%. The results suggested that this type of novel non-agar polysaccharide displayed remarkable antioxidant and immunomodulatory activities and early alkali treatment could decrease the activities. It may represent a potential material for health food and clinical medicines.

  11. Salt Effect on the Antioxidant Activity of Red Microalgal Sulfated Polysaccharides in Soy-Bean Formula

    Directory of Open Access Journals (Sweden)

    Ariela Burg

    2015-10-01

    Full Text Available Sulfated polysaccharides produced by microalgae, which are known to exhibit various biological activities, may potentially serve as natural antioxidant sources. To date, only a few studies have examined the antioxidant bioactivity of red microalgal polysaccharides. In this research, the effect of different salts on the antioxidant activities of two red microalgal sulfated polysaccharides derived from Porphyridium sp. and Porphyridium aerugineum were studied in a soy bean-based infant milk formula. Salt composition and concentration were both shown to affect the polysaccharides’ antioxidant activity. It can be postulated that the salt ions intefer with the polysaccharide chains’ interactions and alter their structure, leading to a new three-dimensional structure that better exposes antiooxidant sites in comparison to the polysaccharide without salt supplement. Among the cations that were studied, Ca2+ had the strongest enhancement effect on antioxidant activities of both polysaccharides. Understanding the effect of salts on polysaccharides’ stucture, in addition to furthering knowledge on polysaccharide bioactivities, may also shed light on the position of the antioxidant active sites.

  12. Tamarind seed polysaccharide: A promising natural excipient for pharmaceuticals

    OpenAIRE

    Joshny Joseph; S N Kanchalochana; G Rajalakshmi; Vedha Hari; Ramya Devi Durai

    2012-01-01

    The natural polymers always have exceptional properties which make them distinct from the synthetic polymers and tamarind seed polysaccharide (TSP) is one such example which shows more valuable properties making it a useful excipient for a wide range of applications. TSP is a natural polysaccharide obtained from the seeds of Tamarindus indica, recently gaining a wide potential in the field of pharmaceutical and cosmetic industries. Its isolation and characterisation involve simple techniques ...

  13. Haemodynamics in axillobifemoral bypass grafts

    NARCIS (Netherlands)

    C.H. Wittens

    1992-01-01

    textabstractThis thesis is based on four publications on the subject of graft configuration and haemodynamics in axillobifemoral bypass grafts: 1. A clinical evaluation of 17 patients with axillobifemoral bypass graft operations, performed for various indications. Two important observations were

  14. Development of parietal bone surrogates for parietal graft lift training

    Directory of Open Access Journals (Sweden)

    Hollensteiner Marianne

    2016-09-01

    Full Text Available Currently the surgical training of parietal bone graft techniques is performed on patients or specimens. Commercially available bone models do not deliver realistic haptic feedback. Thus customized parietal skull surrogates were developed for surgical training purposes. Two human parietal bones were used as reference. Based on the measurement of insertion forces of drilling, milling and saw procedures suitable material compositions for molding cortical and cancellous calvarial layers were found. Artificial skull caps were manufactured and tested. Additionally microtomograpy images of human and artificial parietal bones were performed to analyze outer table and diploe thicknesses. Significant differences between human and artificial skulls were not detected with the mechanical procedures tested. Highly significant differences were found for the diploe thickness values. In conclusion, an artificial bone has been created, mimicking the properties of human parietal bone thus being suitable for tabula externa graft lift training.

  15. Fingerprint analysis of polysaccharides from different Ganoderma by HPLC combined with chemometrics methods.

    Science.gov (United States)

    Sun, Xiaomei; Wang, Haohao; Han, Xiaofeng; Chen, Shangwei; Zhu, Song; Dai, Jun

    2014-12-19

    A fingerprint analysis method has been developed for characterization and discrimination of polysaccharides from different Ganoderma by high performance liquid chromatography (HPLC) coupled with chemometrics means. The polysaccharides were extracted under ultrasonic-assisted condition, and then partly hydrolyzed with trifluoroacetic acid. Monosaccharides and oligosaccharides in the hydrolyzates were subjected to pre-column derivatization with 1-phenyl-3-methyl-5-pyrazolone and HPLC analysis, which will generate unique fingerprint information related to chemical composition and structure of polysaccharides. The peak data were imported to professional software in order to obtain standard fingerprint profiles and evaluate similarity of different samples. Meanwhile, the data were further processed by hierarchical cluster analysis and principal component analysis. Polysaccharides from different parts or species of Ganoderma or polysaccharides from the same parts of Ganoderma but from different geographical regions or different strains could be differentiated clearly. This fingerprint analysis method can be applied to identification and quality control of different Ganoderma and their products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. The role of wine polysaccharides on salivary protein-tannin interaction: A molecular approach.

    Science.gov (United States)

    Brandão, Elsa; Silva, Mafalda Santos; García-Estévez, Ignacio; Williams, Pascale; Mateus, Nuno; Doco, Thierry; de Freitas, Victor; Soares, Susana

    2017-12-01

    Polysaccharides are described to inhibit aggregation between food polyphenols and salivary proteins (SP) and may hence lead to astringency modulation. In this work, the effect of two wine polysaccharides (arabinogalactan proteins-AGPs and rhamnogalacturonan II- RGII) on SP-polyphenol interaction was evaluated. In general, both polysaccharides were effective to inhibit or reduce SP-polyphenol interaction and aggregation. They can act by two different mechanisms (ternary or competitive) depending on the SP-tannin pair. In the case of salivary P-B peptide, AGPs and RGII seem to act by a ternary mechanism, in which they surround this complex, enhancing its solubility. Concerning acidic proline-rich proteins (aPRPs), it was possible to observe both mechanisms, depending on the tannin and the polysaccharide involved. Overall, this work point out for a specific property of wine polysaccharides important to modulate this and other beverages and food astringency perception. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Immunomodulating activities of acidic sulphated polysaccharides obtained from the seaweed Ulva rigida C. Agardh.

    Science.gov (United States)

    Leiro, José M; Castro, Rosario; Arranz, Jon A; Lamas, Jesús

    2007-07-01

    Water-soluble acidic polysaccharides from the cell walls of Ulva rigida are mainly composed of disaccharides that contain glucuronic acid and sulphated rhamnose. The structure of disaccharides resembles that of glycosaminoglycans (GAGs) as they both contain glucuronic acid and sulphated sugars. Glycosaminoglycans occur in the extracellular matrix of animal connective tissues but can also be produced by leucocytes at inflammatory sites. Certain types of GAGs can even activate macrophages and therefore the acidic polysaccharides from U. rigida probably modulate macrophage activity. In the present study, we evaluated the effects of U. rigida polysaccharides on several RAW264.7 murine macrophage activities, including expression of inflammatory cytokines and receptors, nitric oxide and prostaglandin E2 (PGE(2)) production, and nitric oxide synthase 2 (NOS-2) and cyclooxygenase-2 (COX-2) gene expression. U. rigida acidic polysaccharides induced a more than two-fold increase in the expression of several chemokines (chemokine (C motif) ligand 1, chemokine (C-X-C motif) ligand 12, chemokine (C-C motif) ligand 22 and chemokine (C-X-C motif) ligand 14 (Cxcl14)) and in the expression of IL6 signal transducer and IL12 receptor beta 1. Incubation of macrophages with U. rigida polysaccharides also induced an increase in nitrite production, although this effect decreased considerably after desulphation of polysaccharides, suggesting that the sulphate group is important for the stimulatory capacity of these molecules. U. rigida polysaccharides also stimulated macrophage secretion of PGE(2) and induced an increase in COX-2 and NOS-2 expression. The results indicate that U. rigida acid polysaccharide can be used as an experimental immunostimulant for analysing inflammatory responses related to macrophage functions. In addition, these polysaccharides may also be of clinical interest for modifying certain macrophage activities in diseases where macrophage function is impaired or needs

  18. Chemical Methods for the Determination of Soluble and Insoluble Non-Starch Polysaccharides - Review

    OpenAIRE

    Rodica Căpriţă; Adrian Căpriţă

    2011-01-01

    Polysaccharides are macromolecules of monosaccharides linked by glycosidic bonds. Non-starch polysaccharides(NSP) are principally non-α-glucan polysaccharides of the plant cell wall. They are a heterogeneous group ofpolysaccharides with varying degrees of water solubility, size, and structure. The water insoluble fiber fractioninclude cellulose, galactomannans, xylans, xyloglucans, and lignin, while the water-soluble fibers are the pectins,arabinogalactans, arabinoxylans, and β-(1,3)(1,4)-D-g...

  19. Optimization for ultrasonic-microwave synergistic extraction of polysaccharides from Cornus officinalis and characterization of polysaccharides.

    Science.gov (United States)

    Yin, Xiulian; You, Qinghong; Jiang, Zhonghai; Zhou, Xinghai

    2016-02-01

    Ultrasonic-microwave synergistic extraction (UMSE) of polysaccharides from Cornus officinalis was optimized by response surface methodology (RSM). The effect of four different factors on the yield of C. officinalis polysaccharides (COP) was studied. RSM results showed that the optimal conditions were extraction time of 31.49823 min, microwave power of 99.39769 W, and water-to-raw material ratio of 28.16273. The COP yield was 11.38±0.31% using the modified optimal conditions, which was consistent with the value predicted by the model. The crude COP was purified by DEAE-Cellulose 52 chromatography and Sephadex G-100 chromatography. Five fractions, namely, crude COP, COP-1, COP-2, COP-3, and COP-4, were obtained. Monosaccharide composition analysis revealed that the COP was composed of glucose, arabinose, fucose, xylose, mannose, and rhamnose. Preliminary structural characterizations of COP were conducted by scanning electron microscopy and Fourier transform infrared spectroscopy. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Biodegradability of poly(3-hydroxybutyrate) film grafted with vinyl acetate: Effect of grafting and saponification

    Science.gov (United States)

    Wada, Yuki; Seko, Noriaki; Nagasawa, Naotsugu; Tamada, Masao; Kasuya, Ken-ichi; Mitomo, Hiroshi

    2007-06-01

    Radiation-induced graft polymerization of vinyl acetate (VAc) onto poly(3-hydroxybutyrate) (PHB) film was carried out. At a degree of grafting higher than 5%, the grafted films (PHB-g-VAc) completely lost the enzymatic degradability that is characteristic of PHB due to the grafted VAc covering the surface of the PHB film. However, the biodegradability of the PHB-g-VAc films was recovered when the films were saponified in alkali solution under optimum conditions. Graft chains of the PHB-g-VAc film reacted selectively to become biodegradable polyvinyl alcohol (PVA). The biodegradability of the saponified PHB-g-VAc film increased rapidly with time.

  1. Biodegradability of poly(3-hydroxybutyrate) film grafted with vinyl acetate: Effect of grafting and saponification

    International Nuclear Information System (INIS)

    Wada, Yuki; Seko, Noriaki; Nagasawa, Naotsugu; Tamada, Masao; Kasuya, Ken-ichi; Mitomo, Hiroshi

    2007-01-01

    Radiation-induced graft polymerization of vinyl acetate (VAc) onto poly(3-hydroxybutyrate) (PHB) film was carried out. At a degree of grafting higher than 5%, the grafted films (PHB-g-VAc) completely lost the enzymatic degradability that is characteristic of PHB due to the grafted VAc covering the surface of the PHB film. However, the biodegradability of the PHB-g-VAc films was recovered when the films were saponified in alkali solution under optimum conditions. Graft chains of the PHB-g-VAc film reacted selectively to become biodegradable polyvinyl alcohol (PVA). The biodegradability of the saponified PHB-g-VAc film increased rapidly with time

  2. * Calvarial Bone Regeneration Is Enhanced by Sequential Delivery of FGF-2 and BMP-2 from Layer-by-Layer Coatings with a Biomimetic Calcium Phosphate Barrier Layer.

    Science.gov (United States)

    Gronowicz, Gloria; Jacobs, Emily; Peng, Tao; Zhu, Li; Hurley, Marja; Kuhn, Liisa T

    2017-12-01

    A drug delivery coating for synthetic bone grafts has been developed to provide sequential delivery of multiple osteoinductive factors to better mimic aspects of the natural regenerative process. The coating is composed of a biomimetic calcium phosphate (bCaP) layer that is applied to a synthetic bone graft and then covered with a poly-l-Lysine/poly-l-Glutamic acid polyelectrolyte multilayer (PEM) film. Bone morphogenetic protein-2 (BMP-2) was applied before the coating process directly on the synthetic bone graft and then, bCaP-PEM was deposited followed by adsorption of fibroblast growth factor-2 (FGF-2) into the PEM layer. Cells access the FGF-2 immediately, while the bCaP-PEM temporally delays the cell access to BMP-2. In vitro studies with cells derived from mouse calvarial bones demonstrated that Sca-1 and CD-166 positive osteoblast progenitor cells proliferated in response to media dosing with FGF-2. Coated scaffolds with BMP-2 and FGF-2 were implanted in mouse calvarial bone defects and harvested at 1 and 3 weeks. After 1 week in vivo, proliferation of cells, including Sca-1+ progenitors, was observed with low dose FGF-2 and BMP-2 compared to BMP-2 alone, indicating that in vivo delivery of FGF-2 activated a similar population of cells as shown by in vitro testing. At 3 weeks, FGF-2 and BMP-2 delivery increased bone formation more than BMP-2 alone, particularly in the center of the defect, confirming that the proliferation of the Sca-1 positive osteoprogenitors by FGF-2 was associated with increased bone healing. Areas of bone mineralization were positive for double fluorochrome labeling of calcium and alkaline phosphatase staining of osteoblasts, along with increased TRAP+ osteoclasts, demonstrating active bone formation distinct from the bone-like collagen/hydroxyapatite scaffold. In conclusion, the addition of a bCaP layer to PEM delayed access to BMP-2 and allowed the FGF-2 stimulated progenitors to populate the scaffold before differentiating in

  3. Radiation grafting on natural films

    Science.gov (United States)

    Lacroix, M.; Khan, R.; Senna, M.; Sharmin, N.; Salmieri, S.; Safrany, A.

    2014-01-01

    Different methods of polymer grafting using gamma irradiation are reported in the present study for the preparation of newly functionalized biodegradable films, and some important properties related to their mechanical and barrier properties are described. Biodegradable films composed of zein and poly(vinyl alcohol) (PVA) were gamma-irradiated in presence of different ratios of acrylic acid (AAc) monomer for compatibilization purpose. Resulting grafted films (zein/PVA-g-AAc) had their puncture strength (PS=37-40 N mm-1) and puncture deformation (PD=6.5-9.8 mm) improved for 30% and 50% PVA in blend, with 5% AAc under 20 kGy. Methylcellulose (MC)-based films were irradiated in the presence of 2-hydroxyethyl methacrylate (HEMA) or silane, in order to determine the effect of monomer grafting on the mechanical properties of films. It was found that grafted films (MC-g-HEMA and MC-g-silane) using 35% monomer performed higher mechanical properties with PS values of 282-296 N mm-1 and PD of 5.0-5.5 mm under 10 kGy. Compatibilized polycaprolactone (PCL)/chitosan composites were developed via grafting silane in chitosan films. Resulting trilayer grafted composite film (PCL/chitosan-g-silane/PCL) presented superior tensile strength (TS=22 MPa) via possible improvement of interfacial adhesion (PCL/chitosan) when using 25% silane under 10 kGy. Finally, MC-based films containing crystalline nanocellulose (CNC) as a filling agent were prepared and irradiated in presence of trimethylolpropane trimethacrylate (TMPTMA) as a grafted plasticizer. Grafted films (MC-g-TMPTMA) presented superior mechanical properties with a TS of 47.9 MPa and a tensile modulus (TM) of 1792 MPa, possibly due to high yield formation of radicals to promote TMPTMA grafting during irradiation. The addition of CNC led to an additional improvement of the barrier properties, with a significant 25% reduction of water vapor permeability (WVP) of grafted films.

  4. Acrylic acid grafted PDMS preliminary activated by Ar{sup +}beam plasma and cell observation

    Energy Technology Data Exchange (ETDEWEB)

    Kostadinova, A.; Zaekov, N. [Institute of Biophysics, BAS, Sofia (Bulgaria); Keranov, I. [Department of Polymer Engineering, University of Chemical Technology and Metallurgy (UCTM), Sofia (Bulgaria)

    2007-07-01

    Plasma based Ar{sup +} beam performed in RF (13.56 MHz) low-pressure (200 mTorr) glow discharge (at 100 W, 1200 W and 2500 W) with a serial capacitance was employed for surface modification of poly(dimethylsiloxane) (PDMS) aimed at improvement of its interactions with living cells. The presence of a serial capacitance ensures arise of an ion-flow inside the plasma volume directed toward the treated sample and the vary of the discharge power ensures varied density of the ion-flow The initial adhesion of human fibroblast cells was studied on the described above plasma based Ar{sup +}beam modified and acrylic acid (AA) grafted or not fibronectin (FN) pre-coated or ba resurfaces. The cell response seem sto be related with the peculiar structure and wettability of the modified PDMS surface layer after plasma based Ar{sup +} beam treatment followed or not by AA grafting. Key words: Biomaterials; Surface treatment of PDMS; Plasma based Ar{sup +} beam; Acrylic acid grafting; Fibroblast cells.

  5. Dual stimuli polysaccharide nanovesicles for conjugated and physically loaded doxorubicin delivery in breast cancer cells

    Science.gov (United States)

    Pramod, P. S.; Shah, Ruchira; Jayakannan, Manickam

    2015-04-01

    The present work reports the development of pH and enzyme dual responsive polysaccharide vesicular nano-scaffolds for the administration of doxorubicin via physical loading and polymer-drug conjugation to breast cancer cells. Dextran was suitably modified with a renewable resource 3-pentadecyl phenol unit through imine and aliphatic ester chemical linkages that acted as pH and esterase enzyme stimuli, respectively. These dual responsive polysaccharide derivatives self-organized into 200 +/- 10 nm diameter nano-vesicles in water. The water soluble anticancer drug doxorubicin (DOX.HCl) was encapsulated in the hydrophilic pocket to produce core-loaded polysaccharide vesicles whereas chemical conjugation produced DOX anchored at the hydrophobic layer of the dextran nano-vesicles. In vitro studies revealed that about 70-80% of the drug was retained under circulatory conditions at pH = 7.4 and 37 °C. At a low pH of 6.0 to 5.0 and in the presence of esterase; both imine and ester linkages were cleaved instantaneously to release 100% of the loaded drugs. Cytotoxicity assays on Wild Type Mouse Embryonic Fibroblasts (WTMEFs) confirmed the non-toxicity of the newly developed dextran derivatives at up to 500 μg mL-1 in PBS. MTT assays on fibroblast cells revealed that DOX.HCl loaded nano-vesicles exhibited better killing abilities than DOX conjugated polymer nano-vesicles. Both DOX loaded and DOX conjugated nano-vesicles were found to show significant killing in breast cancer cells (MCF 7). Confocal microscopy images confirmed the uptake of DOX loaded (or conjugated) nano-vesicles by cells compared to free DOX. Thus, the newly developed pH and enzyme dual responsive polysaccharide vesicular assemblies are potential drug vectors for the administration of DOX in both loaded and chemically conjugated forms for the efficient killing of breast cancer cells.The present work reports the development of pH and enzyme dual responsive polysaccharide vesicular nano-scaffolds for the

  6. In vivo anticancer and immunomodulating activities of mannogalactoglucan-type polysaccharides from Lentinus edodes (Berkeley) Singer.

    Science.gov (United States)

    Jeff, Iteku Bekomo; Fan, Enxue; Tian, Meihong; Song, Chenyang; Yan, Jingmin; Zhou, Yifa

    2016-01-01

    There is considerable interest in the potential of mushrooms in modulating the immune system and/or suppressing tumor growth. Among the studied bioactive compounds in mushrooms, polysaccharides are the most important. Nontoxic fungal polysaccharides have a more important role in immunomodulating and antitumor activities which are related to their effects to act of immune effecter cells such as lymphocytes, macrophages, dendritic cells, and natural killer cells involved in the innate and adaptive immunity. Two mannogalactoglucan-type polysaccharides (WPLE-N-2 and WPLE-A0.5-2), purified from the fruiting bodies of Lentinus edodes, were evaluated for their effects on the cellular immune response of Sarcoma 180 (S-180)-bearing mice. Mice were treated with 100 mg/kg body weight of the polysaccharides for 10 days. Significant tumor regressions of the polysaccharide groups' mice were observed compared to the control group. These polysaccharides could induce an increase in nitrite oxide (NO) production in peritoneal macrophages, significantly increase macrophage phagocytosis of tumor-bearing mice and augment concanavalin (ConA) and lipopolysaccharide (LPS)-induced splenocytes proliferation. Our results indicated that immunomodulating activity occurred through host mediation in response to lymphocyte proliferation, macrophage phagocytosis and induction of NO production while the antitumor activity occurred through direct cytotoxicity. Our findings suggest that mannogalactoglucan-type polysaccharides from L. edodes can be explored as novel potential immunostimulants. Our research provides essential data to a better understanding of L. edodes bioactive compounds, especially polysaccharides. Our results also confirm the key role of β-linkages in the antitumor and immunomodulating effects of polysaccharides.

  7. Fabrication of TiO_2-modified polytetrafluoroethylene ultrafiltration membranes via plasma-enhanced surface graft pretreatment

    International Nuclear Information System (INIS)

    Qian, Yingjia; Chi, Lina; Zhou, Weili; Yu, Zhenjiang; Zhang, Zhongzhi; Zhang, Zhenjia; Jiang, Zheng

    2016-01-01

    Graphical abstract: - Highlights: • Multifunctional TiO_2/PAA/PTFE ultrafiltration membrane was fabricated via tight coating of TiO_2 functional layer onto the plasma-assisted graft of PAA on PTFE. • The high water flux rate, remarkable enhanced ultrafiltration performance and excellent self-cleaning ability were demonstrated. • The formation of COO−Ti bidentate coordination between TiO_2 and PAA was responsible for the successful coating. - Abstract: Surface hydrophilic modification of polymer ultrafiltration membrane using metal oxide represents an effective yet highly challenging solution to improve water flux and antifouling performance. Via plasma-enhanced graft of poly acryl acid (PAA) prior to coating TiO_2, we successfully fixed TiO_2 functional thin layer on super hydrophobic polytetrafluoroethylene (PTFE) ultrafiltration (UF) membranes. The characterization results evidenced TiO_2 attached on the PTFE-based UF membranes through the chelating bidentate coordination between surface-grafted carboxyl group and Ti"4"+. The TiO_2 surface modification may greatly reduce the water contact angle from 115.8° of the PTFE membrane to 35.0° without degradation in 30-day continuous filtration operations. The novel TiO_2/PAA/PTFE membranes also exhibited excellent antifouling and self-cleaning performance due to the intrinsic hydrophilicity and photocatalysis properties of TiO_2, which was further confirmed by the photo-degradation of MB under Xe lamp irradiation.

  8. Bioactivity and Applications of Sulphated Polysaccharides from Marine Microalgae

    Directory of Open Access Journals (Sweden)

    Rui Manuel Santos Costa de Morais

    2013-01-01

    Full Text Available Marine microalgae have been used for a long time as food for humans, such as Arthrospira (formerly, Spirulina, and for animals in aquaculture. The biomass of these microalgae and the compounds they produce have been shown to possess several biological applications with numerous health benefits. The present review puts up-to-date the research on the biological activities and applications of polysaccharides, active biocompounds synthesized by marine unicellular algae, which are, most of the times, released into the surrounding medium (exo- or extracellular polysaccharides, EPS. It goes through the most studied activities of sulphated polysaccharides (sPS or their derivatives, but also highlights lesser known applications as hypolipidaemic or hypoglycaemic, or as biolubricant agents and drag-reducers. Therefore, the great potentials of sPS from marine microalgae to be used as nutraceuticals, therapeutic agents, cosmetics, or in other areas, such as engineering, are approached in this review.

  9. Aqueous extracts and polysaccharides from Marshmallow roots (Althea officinalis L.): cellular internalisation and stimulation of cell physiology of human epithelial cells in vitro.

    Science.gov (United States)

    Deters, Alexandra; Zippel, Janina; Hellenbrand, Nils; Pappai, Dirk; Possemeyer, Cathleen; Hensel, Andreas

    2010-01-08

    Aqueous extracts from the roots of Althea officinalis L. (Malvaceae) are widely used for treatment of irritated mucosa. The clinical proven effects are related to the presence of bioadhesive and mucilaginous polysaccharides from the rhamnogalacturonan type, leading to the physical formation of mucin-like on top of the irritated tissues. No data are available if the extracts or the polysaccharides from these extract exert an active influence on mucosal or connective tissue cells, in order to initiated changes in cell physiology, useful for better tissue regeneration. In vitro investigations of aqueous A. officinalis extract AE and raw polysaccharides (RPS) on epithelial KB cells and primary dermal human fibroblasts (pNHF) using WST1 vitality test and BrdU proliferation ELISA. Gene expression analysis by microarray from KB cells. Internalisation studies of polysaccharides were performed by laser scanning microscopy. AE (1, 10 microg/mL) had stimulating effect on cell viability and proliferation of epithelial KB cells. RPS (1, 10 microg/mL) stimulated cell vitality of epithelial cells significantly without triggering the cells into higher proliferation status. Neither AE nor RPS had any effect on fibroblasts. FITC-labeled RPS was shown to be internalised into epithelial cells, but not into fibroblasts. FITC-RPS was shown to form bioadhesive layers on the cell surface of dermal fibroblasts. Microarray analysis indicated an up-regulation of genes related to cell adhesion proteins, growth regulators, extracellular matrix, cytokine release and apoptosis. Aqueous extracts and polysaccharides from the roots of A. officinalis are effective stimulators of cell physiology of epithelial cells which can prove the traditional use of Marshmallow preparations for treatment of irritated mucous membranes within tissue regeneration. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  10. Engineering cartilaginous grafts using chondrocyte-laden hydrogels supported by a superficial layer of stem cells.

    Science.gov (United States)

    Mesallati, Tariq; Buckley, Conor T; Kelly, Daniel J

    2017-05-01

    During postnatal joint development, progenitor cells that reside in the superficial region of articular cartilage first drive the rapid growth of the tissue and later help direct the formation of mature hyaline cartilage. These developmental processes may provide directions for the optimal structuring of co-cultured chondrocytes (CCs) and multipotent stromal/stem cells (MSCs) required for engineering cartilaginous tissues. The objective of this study was to engineer cartilage grafts by recapitulating aspects of joint development where a population of superficial progenitor cells drives the development of the tissue. To this end, MSCs were either self-assembled on top of CC-laden agarose gels (structured co-culture) or were mixed with CCs before being embedded in an agarose hydrogel (mixed co-culture). Porcine infrapatellar fat pad-derived stem cells (FPSCs) and bone marrow-derived MSCs (BMSCs) were used as sources of progenitor cells. The DNA, sGAG and collagen content of a mixed co-culture of FPSCs and CCs was found to be lower than the combined content of two control hydrogels seeded with CCs and FPSCs only. In contrast, a mixed co-culture of BMSCs and CCs led to increased proliferation and sGAG and collagen accumulation. Of note was the finding that a structured co-culture, at the appropriate cell density, led to greater sGAG accumulation than a mixed co-culture for both MSC sources. In conclusion, assembling MSCs onto CC-laden hydrogels dramatically enhances the development of the engineered tissue, with the superficial layer of progenitor cells driving CC proliferation and cartilage ECM production, mimicking certain aspects of developing cartilage. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Environmental application of radiation grafting

    International Nuclear Information System (INIS)

    Tamada, Masao

    2007-01-01

    Adsorbent having high selectivity against a certain metal ion was synthesized by means of radiation-induced graft polymerization for the purpose of environmental application. The resulting adsorbents were utilized for the removal of toxic metal from scallop waste and the collection of uranium from seawater. As a novel application of grafting, the biodegradability of poly-hydroxybutylate was controlled by grafting. The biodegradability could be depressed by the graft chain and then recovered by external stimuli such as thermal and chemical treatments. (author)

  12. Graft union formation in Douglas-fir.

    Science.gov (United States)

    D.L. Copes

    1969-01-01

    Greenhouse-grown Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) graft unions were examined between 2 and 84 days after grafting. Room temperature was maintained at 60-70 F throughout the growing season. In most respects grafts of Douglas-fir followed development patterns previously reported for spruce and pine grafts, but specific differences...

  13. The S-Layer Glycome—Adding to the Sugar Coat of Bacteria

    Directory of Open Access Journals (Sweden)

    Robin Ristl

    2011-01-01

    Full Text Available The amazing repertoire of glycoconjugates present on bacterial cell surfaces includes lipopolysaccharides, capsular polysaccharides, lipooligosaccharides, exopolysaccharides, and glycoproteins. While the former are constituents of Gram-negative cells, we review here the cell surface S-layer glycoproteins of Gram-positive bacteria. S-layer glycoproteins have the unique feature of self-assembling into 2D lattices providing a display matrix for glycans with periodicity at the nanometer scale. Typically, bacterial S-layer glycans are O-glycosidically linked to serine, threonine, or tyrosine residues, and they rely on a much wider variety of constituents, glycosidic linkage types, and structures than their eukaryotic counterparts. As the S-layer glycome of several bacteria is unravelling, a picture of how S-layer glycoproteins are biosynthesized is evolving. X-ray crystallography experiments allowed first insights into the catalysis mechanism of selected enzymes. In the future, it will be exciting to fully exploit the S-layer glycome for glycoengineering purposes and to link it to the bacterial interactome.

  14. FAS grafted superhydrophobic ceramic membrane

    Science.gov (United States)

    Lu, Jun; Yu, Yun; Zhou, Jianer; Song, Lixin; Hu, Xingfang; Larbot, Andre

    2009-08-01

    The hydrophobic properties of γ-Al 2O 3 membrane have been obtained by grafting fluoroalkylsilane (FAS) on the surface of the membrane. The following grafting parameters were studied: the eroding time of the original membrane, the grafting time, the concentration of FAS solution and the multiplicity of grafting. Hydrophobicity of the membranes was characterized by contact angle (CA) measurement. The thermogravimetric analysis (TGA) was used to investigate the weight loss process (25-800 °C) of the fluoroalkylsilane grafted on Al 2O 3 powders under different grafting conditions. The morphologies of the membranes modified under different parameters were examined by field emission scanning electron microscopy (FE-SEM) and the surface roughness (Ra) was measured using white light interferometers. A needle-like structure was observed on the membrane surface after modification, which causes the change of Ra. On the results above, we speculated a model to describe the reaction between FAS and γ-Al 2O 3 membrane surface as well as the formed surface morphology.

  15. Radiation-induced grafting of TMPM onto polypropylene

    International Nuclear Information System (INIS)

    Wang Huiliang; Li Hong; Chen Wenxiu

    1995-01-01

    The gamma radiation-induced graft copolymerization of 2,2,6,6-tetramethyl-4-piperidinyl-methacrylate (TMPM), a very effective hindered amine light stabilizer (HALS), onto polypropylene was investigated by simultaneous- irradiation technique. The various synthesis conditions on the graft content was studied. It was found that benzene, CCl 4 and petroleum ether are more effective than other solvents, the percent grafting reached 7.1% for benzene. The percent grafting is higher when graft copolymerization is carried out in argon atmosphere than those in air. For all the grafting copolymerization carried out in benzene and CCl 4 , percent grafting increase linearly from 1 to 5 Mrad and beyond 5 Mrad, a tendency to level off appeared. At a constant dose, the percent grafting was found to be higher at high dose rate until 228 rad/s. Percent grafting also increased continuously with increasing monomer concentration up to 2.85 mol/L, but significant increase in grafting was observed only up to 1.14 mol/L

  16. Changes in histopathology and cytokeratin AE1/AE3 expression in skin graft with different time on Indonesian local cats.

    Science.gov (United States)

    Erwin; Etriwati; Gunanti; Handharyani, Ekowati; Noviana, Deni

    2017-06-01

    A good skin graft histopathology is followed by formation of hair follicle, sweat gland, sebaceous gland, blood vessel, lightly dense connective tissue, epidermis, and dermis layer. This research aimed to observe histopathology feature and cytokeratin AE1/AE3 expression on cat skin post skin grafting within a different period of time. Nine male Indonesian local cats aged 1-2 years old weighing 3-4 kg were separated into three groups. First surgery created defect wound of 2 cm × 2 cm in size to whole groups. The wounds were left alone for several days, differing in interval between each group, respectively: Group I (for 2 days), Group II (for 4 days), and Group III (for 6 days). The second surgery was done to each group which harvested skin of thoracic area and applied it on recipient wound bed. On day 24 th post skin graft was an examination of histopathology and cytokeratin AE1/AE3 immunohistochemistry. Group I donor skin's epidermis layer had not formed completely whereas epidermis of donor skin of Groups II and III had completely formed. In all group hair follicle, sweat gland, sebaceous gland, and neovascularization were found. The density of connective tissue in Group I was very solid than other groups. Cytokeratin AE1/AE3 expression was found on donor skin's epithelial cell in epidermis and dermis layer with very brown intensity for Group II, brown intensity for Group II, and lightly brown for Group I. Histopathological structure and cytokeratin AE1/AE3 expression post skin graft are better in Groups II and III compared to Group I.

  17. Application of Box-Behnken design for ultrasonic-assisted extraction of polysaccharides from Paeonia emodi.

    Science.gov (United States)

    Ahmad, Ajaz; Alkharfy, Khalid M; Wani, Tanveer A; Raish, Mohammad

    2015-01-01

    The objective of the present work was to study the ultrasonic assisted extraction and optimization of polysaccharides from Paeonia emodi and evaluation of its anti-inflammatory response. Specifically, the optimization of polysaccharides was carried out using Box-Behnken statistical experimental design. Response surface methodology (RSM) of three factors (extraction temperature, extraction time and liquid solid ratio) was employed to optimize the percentage yield of the polysaccharides. The experimental data were fitted to quadratic response surface models using multiple regression analysis with high coefficient of determination value (R) of 0.9906. The highest polysaccharide yield (8.69%) as per the Derringer's desirability prediction tool was obtained under the optimal extraction condition (extraction temperature 47.03 °C, extraction time 15.68 min, and liquid solid ratio 1.29 ml/g) with a desirability value of 0.98. These optimized values of tested parameters were validated under similar conditions (n = 6), an average of 8.13 ± 2.08% of polysaccharide yield was obtained in an optimized extraction conditions with 93.55% validity. The anti-inflammatory effect of polysaccharides of P. emodi were studied on carrageenan induced paw edema. In vivo results showed that the P. emodi 200mg/kg of polysaccharide extract exhibited strong potential against inflammatory response induced by 1% suspension of carrageenean in normal saline. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Studies on radiation-induced graft polymerization

    International Nuclear Information System (INIS)

    Omichi, Hideki

    1978-09-01

    Radiation-induced graft polymerization is used extensively to improve physical properties of polymers, but few processes are now commercialized. The reason for this is partly inadequate basic research on the reaction and partly the difficulty in developing the grafting process with large radiation source. Firstly, new techniques are proposed of studying kinetics of the graft polymerization in heterogeneous system. Based on the grafting yield, the molecular weight of graft chains, and the amount of radicals given by ESR and activation analysis, kinetic parameters are obtained and the reaction mechanism of grafting process is discussed. Secondly, the development of grafting process of poly (vinyl chloride)-butadiene is described. By study of the reaction, process design, construction and operation of the pilot plant, and economic analysis of the process, this process with 60 Co gamma ray sources is shown to be industrially promising. (author)

  19. Rapid preparation of functional polysaccharides from Pyropia yezoensis by microwave-assistant rapid enzyme digest system.

    Science.gov (United States)

    Lee, Ji-Hyeok; Kim, Hyung-Ho; Ko, Ju-Young; Jang, Jun-Ho; Kim, Gwang-Hoon; Lee, Jung-Suck; Nah, Jae-Woon; Jeon, You-Jin

    2016-11-20

    This study describes a simple preparation of functional polysaccharides from Pyropia yezoensis using a microwave-assistant rapid enzyme digest system (MAREDS) with various carbohydrases, and evaluates their antioxidative effects. Polysaccharide hydrolysates were prepared using MAREDS under different hydrolytic conditions of the carbohydrases and microwave powers. Polysaccharides less than 10kDa (Low molecular weight polysaccharides, LMWP, ≤10kDa) were efficiently obtained using an ultrafiltration (molecular weight cut-off of 10kDa). MAREDS increases AMG activation via an increased degree of hydrolysis; the best AMG hydrolysate was prepared using a 10:1 ratio of substrate to enzyme for 2h in MAREDS with 400W. LMWP consisted of galactose (27.3%), glucose (64.5%), and mannose (8.3%) from the AMG hydrolysate had stronger antioxidant effects than the high molecular weight polysaccharides (>10kDa). We rapidly prepared functional LMWPs by using MAREDS with carbohydrases, and suggest that LMWP might be potentially a valuable algal polysaccharide antioxidant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Allogeneic cultured keratinocytes vs. cadaveric skin to cover wide-mesh autogenous split-thickness skin grafts.

    Science.gov (United States)

    Monstrey, S; Beele, H; Kettler, M; Van Landuyt, K; Blondeel, P; Matton, G; Naeyaert, J M

    1999-09-01

    Improved shock therapy has extended the limits of survival in patients with massive burns, and nowadays skin coverage has become the major problem in burn management. The use of mesh skin grafts is still the simplest technique to expand the amount of available donor skin. However, very wide-mesh skin grafts take a very long time to heal, often resulting in unaesthetic scar formation. On the other hand, allogeneic cultured keratinocytes have been reported as a natural source of growth factors and thus could be useful to improve wound healing of these wide-mesh grafts. A clinical study was performed to compare the use of cryopreserved allogeneic cultured keratinocytes vs. the traditional cadaveric skin as a double layer over widely expanded autogenous skin grafts. This procedure was performed in 18 pairs of full-thickness burn wounds (with similar depth and location) in 11 severely burned patients. Early clinical evaluation was made at 2, 3, and 4 to 5 weeks. Parameters such as epithelialization, granulation tissue formation, infection, and scar formation were evaluated. Biopsies were taken to compare the histological characteristics of the epidermis, the epidermal-dermal junction, and the dermis. Late evaluations were performed at 6 and 12 months regarding color, softness, thickness, and subjective feeling of the scar tissue. Aside from a faster (p keratinocyte group at 2 weeks, there were no statistically different results in any of the early evaluated parameters, neither clinically nor histologically. At long-term follow-up, clinical results and scar characteristics were not significantly different in the two compared groups. It is concluded from the results of this study that, during the early phase, epithelialization was faster with allogeneic cultured keratinocytes compared with cadaveric skin. However, taking into account the substantial difference in costs, the described use of cryopreserved allogeneic cultured keratinocytes as a double layer on meshed

  1. Layer-by-Layer Assembly of Biopolyelectrolytes onto Thermo/pH-Responsive Micro/Nano-Gels

    Directory of Open Access Journals (Sweden)

    Ana M. Díez-Pascual

    2014-11-01

    Full Text Available This review deals with the layer-by-layer (LbL assembly of polyelectrolyte multilayers of biopolymers, polypeptides (i.e., poly-l-lysine/poly-l-glutamic acid and polysaccharides (i.e., chitosan/dextran sulphate/sodium alginate, onto thermo- and/or pH-responsive micro- and nano-gels such as those based on synthetic poly(N-isopropylacrylamide (PNIPAM and poly(acrylic acid (PAA or biodegradable hyaluronic acid (HA and dextran-hydroxyethyl methacrylate (DEX-HEMA. The synthesis of the ensembles and their characterization by way of various techniques is described. The morphology, hydrodynamic size, surface charge density, bilayer thickness, stability over time and mechanical properties of the systems are discussed. Further, the mechanisms of interaction between biopolymers and gels are analysed. Results demonstrate that the structure and properties of biocompatible multilayer films can be finely tuned by confinement onto stimuli-responsive gels, which thus provides new perspectives for biomedical applications, particularly in the controlled release of biomolecules, bio-sensors, gene delivery, tissue engineering and storage.

  2. Development of Highly Efficient Grafting Technique and Synthesis of Natural Polymer-Based Graft Adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, Y; Seko, N; Tamada, M [Japan Atomic Energy Agency, Quantum Beam Science Directorate, Takasaki (Japan)

    2012-09-15

    In the framework of the CRP, Japan has focused on the development of fibrous adsorbents for removal of toxic metal ions and recovery of significant metal ions from industrial wastewater and streaming water. Graft polymerization was carried out by using gamma irradiation facility and electron beam accelerator. Emulsion grafting is a novel topic for synthesis of metal ion adsorbents which are prepared from fibrous trunk polymers such as polyethylene fibre and biodegradable nonwoven fabrics. The emulsion grafting, where monomer micelles are dispersed in water in the presence of surfactant, is a highly efficient and economic grafting technique as compared to general organic solvent system. The resultant cotton-based adsorbent has high adsorption efficiency and high adsorption capacity for Hg, besides, it is biodegradable. Polylactic acid can also be used as a trunk material for the grafting. (author)

  3. Surface-Layer (S-Layer) Proteins Sap and EA1 Govern the Binding of the S-Layer-Associated Protein BslO at the Cell Septa of Bacillus anthracis

    Science.gov (United States)

    Kern, Valerie J.; Kern, Justin W.; Theriot, Julie A.; Schneewind, Olaf

    2012-01-01

    The Gram-positive pathogen Bacillus anthracis contains 24 genes whose products harbor the structurally conserved surface-layer (S-layer) homology (SLH) domain. Proteins endowed with the SLH domain associate with the secondary cell wall polysaccharide (SCWP) following secretion. Two such proteins, Sap and EA1, have the unique ability to self-assemble into a paracrystalline layer on the surface of bacilli and form S layers. Other SLH domain proteins can also be found within the S layer and have been designated Bacillus S-layer-associated protein (BSLs). While both S-layer proteins and BSLs bind the same SCWP, their deposition on the cell surface is not random. For example, BslO is targeted to septal peptidoglycan zones, where it catalyzes the separation of daughter cells. Here we show that an insertional lesion in the sap structural gene results in elongated chains of bacilli, as observed with a bslO mutant. The chain length of the sap mutant can be reduced by the addition of purified BslO in the culture medium. This complementation in trans can be explained by an increased deposition of BslO onto the surface of sap mutant bacilli that extends beyond chain septa. Using fluorescence microscopy, we observed that the Sap S layer does not overlap the EA1 S layer and slowly yields to the EA1 S layer in a growth-phase-dependent manner. Although present all over bacilli, Sap S-layer patches are not observed at septa. Thus, we propose that the dynamic Sap/EA1 S-layer coverage of the envelope restricts the deposition of BslO to the SCWP at septal rings. PMID:22609927

  4. Antioxidant activities of polysaccharides from Lentinus edodes and their significance for disease prevention.

    Science.gov (United States)

    Chen, Huoliang; Ju, Ying; Li, Junjie; Yu, Min

    2012-01-01

    The crude polysaccharide (LEP) was extracted by hot water from the fruiting bodies of Lentinus edodes, and further purified by DEAE-cellulose and Sepharose CL-6B chromatography, giving three polysaccharide fractions coded as LEPA1, LEPB1 and LEPC1. In this study, their chemical and physical characteristics of polysaccharide fractions and antioxidant capacities, including scavenging activity against hydroxyl radicals, superoxide radicals and Fe(2+)-chelating ability, were valuated. The results showed that LEPC1 exhibited significantly antioxidant activity at a concentration-dependent manner. Therefore these results indicated that the water-extractable polysaccharide fraction was a potent antioxidant and could be developed to be new health medicine for fighting against various human diseases. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Photochemistry of Fe(Iii)-Carboxylates in Polysaccharide-Based Materials with Tunable Mechanical Properties

    Science.gov (United States)

    Giammanco, Giuseppe E.

    We present the formulation and study of light-responsive materials based on carboxylate-containing polysaccharides. The functional groups in these natural polymers allow for strong interactions with transition metal ions such as Fe(III). The known photochemistry of hydroxycarboxylic acids in natural waters inspired us in exploring the visible light induced photochemistry of the carboxylates in these polysaccharides when coordinated to Fe(III) ions. Described in this dissertation are the design and characterization of the Fe(III)-polysaccharide materials, specifically the mechanistic aspects of the photochemistry and the effects that these reactions have on the structure of the polymer materials. We present a study of the quantitative photochemistry of different polysaccharide systems, where the presence of uronic acids was important for the photoreaction to take place. Alginate (Alg), pectate (Pec), hyaluronic acid (Hya), xanthan gum (Xan), and a polysaccharide extracted from the Noni fruit (NoniPs), were among the natural uronic acid-containing polysaccharide (UCPS) systems we analyzed. Potato starch, lacking of uronate groups, did not present any photochemistry in the presence of Fe(III); however, we were able to induce a photochemical response in this polysaccharide upon chemical manipulation of its functional groups. Important structure-function relationships were drawn from this study. The uronate moiety present in these polysaccharides is then envisioned as a tool to induce response to light in a variety of materials. Following this approach, we report the formulation of materials for controlled drug release, able to encapsulate and release different drug models only upon illumination with visible light. Furthermore, hybrid hydrogels were prepared from UPCS and non-responsive polymers. Different properties of these materials could be tuned by controlling the irradiation time, intensity and location. These hybrid gels were evaluated as scaffolds for tissue

  6. Designed optimization of a single-step extraction of fucose-containing sulfated polysaccharides from Sargassum sp

    DEFF Research Database (Denmark)

    Ale, Marcel Tutor; Mikkelsen, Jørn Dalgaard; Meyer, Anne S.

    2012-01-01

    Fucose-containing sulfated polysaccharides can be extracted from the brown seaweed, Sargassum sp. It has been reported that fucose-rich sulfated polysaccharides from brown seaweeds exert different beneficial biological activities including anti-inflammatory, anticoagulant, and anti-viral effects....... Classical extraction of fucose-containing sulfated polysaccharides from brown seaweed species typically involves extended, multiple-step, hot acid, or CaCl2 treatments, each step lasting several hours. In this work, we systematically examined the influence of acid concentration (HCl), time, and temperature...... on the yield of fucosecontaining sulfated polysaccharides (FCSPs) in statistically designed two-step and single-step multifactorial extraction experiments. All extraction factors had significant effects on the fucose-containing sulfated polysaccharides yield, with the temperature and time exerting positive...

  7. Atom-scale covalent electrochemical modification of single-layer graphene on SiC substrates by diaryliodonium salts

    International Nuclear Information System (INIS)

    Gearba, Raluca I.; Mueller, Kory M.; Veneman, Peter A.; Holliday, Bradley J.; Chan, Calvin K.; Stevenson, Keith J.

    2015-01-01

    Owing to its high conductivity, graphene holds promise as an electrode for energy devices such as batteries and photovoltaics. However, to this end, the work function and doping levels in graphene need to be precisely tuned. One promising route for modifying graphene's electronic properties is via controlled covalent electrochemical grafting of molecules. We show that by employing diaryliodonium salts instead of the commonly used diazonium salts, spontaneous functionalization is avoided. This then allows for precise tuning of the grafting density. Moreover, by employing bis(4-nitrophenyl)iodonium(III) tetrafluoroborate (DNP) salt calibration curves, the surface functionalization density (coverage) of glassy carbon was controlled using cyclic voltammetry in varying salt concentrations. These electro-grafting conditions and calibration curves translated directly over to modifying single layer epitaxial graphene substrates (grown on insulating 6H-SiC (0 0 0 1)). In addition to quantifying the functionalization densities using electrochemical methods, samples with low grafting densities were characterized by low-temperature scanning tunneling microscopy (LT-STM). We show that the use of buffer-layer free graphene substrates is required for clear observation of the nitrophenyl modifications. Furthermore, atomically-resolved STM images of single site modifications were obtained, showing no preferential grafting at defect sites or SiC step edges as supposed previously in the literature. Most of the grafts exhibit threefold symmetry, but occasional extended modifications (larger than 4 nm) were observed as well

  8. Design of a Sapling Branch Grafting Robot

    Directory of Open Access Journals (Sweden)

    Qun Sun

    2014-01-01

    Full Text Available The automatic sapling grafting methods and grafting robot technologies are not comprehensively studied despite the fact that they are urgently required in practice. For this reason, a sapling grafting robot is developed to implement automatic grafting for saplings. The developed grafting robot includes clipping mechanism, moving mechanism, cutting mechanism, binding mechanism, and Arduino MCU based control system, which is capable of clipping, moving, positioning, cutting, grafting, and binding saplings. Experiments show that the stock cutting efficiency is 98.4%, the scion cutting efficiency is 98.9%, the grafting efficiency is 87.3%, and the binding efficiency is 68.9%.

  9. Fat Grafting for Facial Filling and Regeneration.

    Science.gov (United States)

    Coleman, Sydney R; Katzel, Evan B

    2015-07-01

    Plastic surgeons have come to realize that fat grafting can rejuvenate an aging face by restoring or creating fullness. However, fat grafting does much more than simply add volume. Grafted fat can transform or repair the tissues into which it is placed. Historically, surgeons have hesitated to embrace the rejuvenating potential of fat grafting because of poor graft take, fat necrosis, and inconsistent outcomes. This article describes fat grafting techniques and practices to assist readers in successful harvesting, processing, and placement of fat for optimal graft retention and facial esthetic outcomes. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. APPLICATION OF A POLYSACCHARIDE DERIVED FROM ...

    African Journals Online (AJOL)

    While Tragacanth was superior to Treculia gum, the latter performed better than sodium carboxymethylcellulose (SCMC) as a sustained release hydrophilic matrix for theophylline hydrate. Key Words: Polysaccharide, Treculia africana, Moreaceae, Hydrophilic matrix, theophylline hydrate and dissolution rate. Nig. J. Nat.

  11. Analyzing Activities of Lytic Polysaccharide Monooxygenases by Liquid Chromatography and Mass Spectrometry

    DEFF Research Database (Denmark)

    Westereng, Bjørge; Arntzen, Magnus Ø.; Wittrup Agger, Jane

    2017-01-01

    Lytic polysaccharide monooxygenases perform oxidative cleavage of glycosidic bonds in various polysaccharides. The majority of LMPOs studied so far possess activity on either cellulose or chitin and analysis of these activities is therefore the main focus of this review. Notably, however, the num...

  12. La relation extraction-structure-propriétés des polysaccharides : cas des galactomannanes et des alginates

    OpenAIRE

    Gillet, Sébastien; Richel, Aurore

    2014-01-01

    Polysaccharides are usually composed of various monosaccharides linked with different glucosidic bonds. Some polysaccharides have hyperbranched structures. Moreover, polysaccharides often have high molecular weights, and tend to form aggregates in solution that can mask the behavior of individual macromolecules. In consequence, to characterize the chemical structures, chain conformations and physical properties of polysaccharides is not an easy task.

  13. Novel Polysaccharide Based Polymers and Nanoparticles for Controlled Drug Delivery and Biomedical Imaging

    Science.gov (United States)

    Shalviri, Alireza

    The use of polysaccharides as building blocks in the development of drugs and contrast agents delivery systems is rapidly growing. This can be attributed to the outstanding virtues of polysaccharides such as biocompatibility, biodegradability, upgradability, multiple reacting groups and low cost. The focus of this thesis was to develop and characterize novel starch based hydrogels and nanoparticles for delivery of drugs and imaging agents. To this end, two different systems were developed. The first system includes polymer and nanoparticles prepared by graft polymerization of polymethacrylic acid and polysorbate 80 onto starch. This starch based platform nanotechnology was developed using the design principles based on the pathophysiology of breast cancer, with applications in both medical imaging and breast cancer chemotherapy. The nanoparticles exhibited a high degree of doxorubicin loading as well as sustained pH dependent release of the drug. The drug loaded nanoparticles were significantly more effective against multidrug resistant human breast cancer cells compared to free doxorubicin. Systemic administration of the starch based nanoparticles co-loaded with doxorubicin and a near infrared fluorescent probe allowed for non-invasive real time monitoring of the nanoparticles biodistribution, tumor accumulation, and clearance. Systemic administration of the clinically relevant doses of the drug loaded particles to a mouse model of breast cancer significantly enhanced therapeutic efficacy while minimizing side effects compared to free doxorubicin. A novel, starch based magnetic resonance imaging (MRI) contrast agent with good in vitro and in vivo tolerability was formulated which exhibited superior signal enhancement in tumor and vasculature. The second system is a co-polymeric hydrogel of starch and xanthan gum with adjustable swelling and permeation properties. The hydrogels exhibited excellent film forming capability, and appeared to be particularly useful in

  14. Inhibitory effects of Enteromorpha linza polysaccharide on micronucleus of Allium sativum root cells.

    Science.gov (United States)

    Zhang, Zhongshan; Wang, Xiaomei; Li, Jingfen; Liu, Chongbin; Zhang, Quanbin

    2016-06-01

    In this study, the antimutagenic function of the polysaccharide from Enteromorpha linza with the micronucleus test of Allium sativum root cells induced by sulfur dioxide and ultraviolet was studied. The concentration-effect relation of the two inducers was firstly evaluated. The results showed that an increase of genotoxicity damage was demonstrated and micronuclei frequency induced by sulfur dioxide and ultraviolet displayed dose dependent increases. All the doses of polysaccharide did affect the micronuclei frequency formation compared with the negative control. And also, the significant increase in inhibition rate of micronuclei frequency was observed with the increase of the dose of polysaccharide. It was showed maximum inhibition of micronuclei frequency cells (71.74% and 66.70%) at a concentration of 200g/mL in three experiments. The low molecular weight polysaccharide showed higher inhibition rate than raw polysaccharide at the higher concentration (50g/mL) in the absence of sulfur dioxide and ultraviolet. It was confirmed to be a good mutant inhibitor. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. An inventory of factors that affect polysaccharide production by Phaeocystis globosa

    Science.gov (United States)

    van Rijssel, M.; Janse, I.; Noordkamp, D. J. B.; Gieskes, W. W. C.

    2000-08-01

    Phaeocystis material contains polysaccharides that are built from at least eight different monosaccharides. Differences have been reported between the carbohydrate composition of different Phaeocystis species, and also between samples taken from Phaeocystis globosa blooms in different areas. In order to elucidate factors that could play a role in determining variation in carbohydrate composition and production, a number of Phaeocystis globosa strains were studied under laboratory conditions. Although there was a clear distinction of a northern and a southern cluster in the Phaeocystis globosa strains based on RAPD analysis, the differences in the composition of the mucopolysaccharides were relatively small. The contribution of glucose, however, ranged from 7-85% of total sugars. A strain that was cultured in seawaters of diverse origin produced polysaccharides of a different composition, suggesting the effect of environmental factors. The presence of bacteria affected neither the amount, nor the composition of the carbohydrates that were produced by Phaeocystis globosa. Glucose is part of both the intracellular polysaccharide pool and of the mucopolysaccharides in the colony matrix. Using specific digestion of the intracellular chrysolaminaran by laminarinase, the distribution of polysaccharides over different pools could be assessed. During growth of an axenic, mucus-producing strain, the portion of glucose present as chrysolaminaran appeared to increase. The polyglucose that was not digested by laminarinase remains unidentified. This study shows that environmental factors rather than strain differences determine differences in the sugar composition of Phaeocystis globosa, especially with respect to the glucose content of the material. A difference in the contribution of glucose could be correlated to the portion of cells in the culture that are not in the colonies. Our study emphasises that for studying polysaccharide dynamics in Phaeocystis globosa it is

  16. Determination of grafting conversion degree in PS/PS-graft-POSS/POSS hybrid nanocomposites obtained through reactive processing

    International Nuclear Information System (INIS)

    Bianchi, Otavio; Repenning, Gustavo B.; Mauler, Raquel S.; Oliveira, Ricardo V.B.; Canto, Leonardo B.

    2011-01-01

    Hybrid nanocomposites of polystyrene (PS) and polyhedral oligomeric silsesquioxanes (POSS) - PS/PS-graft-POSS/POSS - with different grafting degrees were prepared by reactive melt processing using dicumyl peroxide (DCP) as initiator in the presence or absence of styrene monomer as radical transfer agent. Gel permeation chromatography (GPC) using triple-detector and proton nuclear magnetic resonance (NMR 1 H) analyses were used together to determine the conversion degree of PS-graft-POSS as a function of the reactive processing conditions adopted. GPC was employed to evaluate the effects of grafting (PS-graft-POSS) and PS chains degradation (β scission) that occur simultaneously during processing on the variation of average molecular masses and distributions for each PS/POSS sample. PS/POSS systems processed with styrene showed higher weight average molecular weights (M w ) and lower polydispersity indexes (M w /M n ), as a result of higher grafting (PS-graft-POSS) conversion (28-40%) and lower PS chain degradation level, as compared to PS/POSS systems processed without styrene in which the degree of grafting conversion was around 25-28%. (author)

  17. [Influence of different processing methods on Angelica sinensis polysaccharides from same origin].

    Science.gov (United States)

    Lv, Jieli; Chen, Hongli; Duan, Jinao; Yan, Hui; Tang, Yuping; Song, Bingsheng

    2011-04-01

    To study the influences of different processing methods on the content of Angelica sinensis polysaccharides (APS) from the same origin. The contents of neutral polysaccharides and acidic polysaccharides in various samples of A. sinensis were determined by phenol-sulfuric acid and carbazole-sulfuric acid method, respectively. The proliferation ability of lymphocyte was detected by MTT method after the cells were cultured with different concentrations of APS from two samples processed by different methods. The different processing methods had different effects on the contents of polysaccharide. The maximum content of APS (26.03%) was found in the sample processed by microwave drying medium-fired, but the minimum content of APS (2.25%) was found in the sample processed by vacuum drying at 50 TC. Furthermore, the APS (high concentration group, P methods have different effects on the contents of APS and the proliferation ability of lymphocytes.

  18. Surface Grafted Glycopolymer Brushes to Enhance Selective Adhesion of HepG2 Cells

    DEFF Research Database (Denmark)

    Chernyy, Sergey; Jensen, Bettina Elisabeth Brøgger; Shimizu, Kyoko

    2013-01-01

    on the polymerization kinetics of 2-lactobionamidoethyl methacrylate) (LAMA) monomer on thermally oxidized silicon wafer. Both monolayer and multilayered aminosilane precursor layers have been prepared followed by reaction with 2-bromoisobutyrylbromide to form the ATRP initiator layer. It is inferred from the kinetic...... studies that the rate of termination is low on a multilayered initiator layer compared to a disordered monolayer structure. However both initiator types results in similar graft densities. Furthermore, it is shown that thick comb-like poly(LAMA) brushes can be constructed by initiating a second ATRP...... process on a previously formed poly(LAMA) brushes. The morphology of human hepatocellular carcinoma cancer cells (HepG2) on the comb-like poly(LAMA) brush layer has been studied. The fluorescent images of the HepG2 cells on the glycopolymer brush surface display distinct protrusions that extend outside...

  19. One Year Outcomes of 101 BeGraft Stent Grafts used as Bridging Stents in Fenestrated Endovascular Repairs.

    Science.gov (United States)

    Spear, Rafaelle; Sobocinski, Jonathan; Hertault, Adrien; Delloye, Matthieu; Azzauiu, Richard; Fabre, Dominique; Haulon, Stéphan

    2018-04-01

    To evaluate the outcomes of the second generation BeGraft balloon expandable covered stent Graft System (Bentley InnoMed, Hechingen, Germany) implanted as bridging stent grafts during fenestrated endovascular aortic repair (FEVAR) of complex aneurysms. This was a single centre prospective study including all consecutive patients treated by FEVAR performed with second generation BeGraft stent grafts as bridging stents. Demographics of patients, diameter and length of the bridging stent grafts, technical success, re-interventions, occlusions, post-operative events, and imaging (Cone Beam CT and/or CT scan, and contrast enhanced ultrasound) were prospectively collected in an electronic database. Duplex ultrasound was performed before discharge and at 6 month follow-up. At 1 year, patients were evaluated clinically and by imaging (CT and ultrasound). Between November 2015 and September 2016, 39 consecutive patients (one woman) were treated with custom made fenestrated endografts (2-5 fenestrations) for complex aneurysms or type 1 endoleak after EVAR, using a variety of bridging stents including the BeGraft. All 101 BeGraft stent grafts were successfully delivered and deployed. There was no in hospital mortality. Early fenestration patency rate was 99% (96/97); the sole target vessel post-operative occlusion was secondary to a dissection of the renal artery distal to the stent. Complementary stenting was unsuccessful in recovering renal artery patency; bilateral renal stent occlusion was observed in the same patient on a CT scan performed 2 months after the procedure. He required post-operative dialysis. No additional renal impairment was observed. During follow-up (median 13 months [11-15]), all fenestrations stented with BeGraft stent grafts remained patent (95/97, 98%). One type 1b endoleak was detected and treated (2.6%). BeGraft stent grafts used as bridging stents during FEVAR are associated with favourable outcomes at 1 year follow-up. Long-term follow-up is

  20. A study on the morphology of polystyrene-grafted poly(ethylene-alt-tetrafluoroethylene) (ETFE) films prepared using a simultaneous radiation grafting method

    International Nuclear Information System (INIS)

    Song, Ju-Myung; Ko, Beom-Seok; Sohn, Joon-Yong; Nho, Young Chang; Shin, Junhwa

    2014-01-01

    The morphology of polystyrene-grafted poly(ethylene-alt-tetrafluoroethylene) (ETFE) films prepared using a simultaneous radiation grafting method was investigated using DMA, DSC, XRD, and SAXS instruments. The DMA study indicates that the ETFE amorphous phase and PS amorphous phase are mixed well in the PS-grafted ETFE films while the ETFE crystalline phase and the PS amorphous phase are separated, suggesting that the PS chains are grafted mainly on the ETFE amorphous regions. The DSC and XRD data showed that the natural crystalline structures of ETFE in the grafted ETFE films are not affected by the degree of grafting. The SAXS profiles displayed that the inter-crystalline distance of the ETFE films increases with an increasing degree of grafting, which further implies that the PS graft chains formed by the simultaneous irradiation has a significant impact on the amorphous morphology of the resulting grafted ETFE film. Thus, these results indicate that the styrene monomers are mainly grafted on the ETFE amorphous regions during the simultaneous radiation grafting process. - Highlights: • PS-grafted ETFE films were prepared by a simultaneous radiation grafting method was investigated. • The natural crystalline structures of grafted ETFE films are not affect by the degree of grafting. • The inter-crystalline distance of the ETFE films increase with increasing degree of grafting. • The styrene monomers are mainly grafted on the ETFE amorphous regions during a simultaneous radiation grafting using gamma-ray

  1. Analysis of compositional monosaccharides in fungus polysaccharides by capillary zone electrophoresis.

    Science.gov (United States)

    Hu, Yuanyuan; Wang, Tong; Yang, Xingbin; Zhao, Yan

    2014-02-15

    A rapid analytical method of capillary zone electrophoresis (CZE) was established for the simultaneous separation and determination of 10 monosaccharides (aldoses and uronic acids). The monosaccharides were labeled with 1-phenyl-3-methyl-5-pyrazolone (PMP), and subsequently separated using an uncoated capillary (50 μm i.d. × 58.5 cm) and detected by UV at 245 nm with pH 11.0, 175 mM borate buffer at voltage 20 kV and capillary temperature 25 °C by CZE. The 10 PMP-labeled monosaccharides were rapidly baseline separated within 20 min. The optimized CZE method was successfully applied to the simultaneous separation and identification of the monosaccharide composition in Termitomyces albuminosus polysaccharides (TAPs) and Panus giganteus polysaccharides (PGPs). The quantitative recovery of the component monosaccharides in the fungus polysaccharides was in the range of 92.0-101.0% and the CV value was lower than 3.5%. The results demonstrate that the proposed CZE method is precise and practical for the monosaccharide analysis of fungus polysaccharides. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Depolymerization of polysaccharides from Opuntia ficus indica: Antioxidant and antiglycated activities.

    Science.gov (United States)

    Chaouch, Mohamed Aymen; Hafsa, Jawhar; Rihouey, Christophe; Le Cerf, Didier; Majdoub, Hatem

    2015-08-01

    The extraction, purification and degradation of polysaccharides from Opuntia ficus indica cladodes, as well as the evaluation of their antioxidant and antiglycated activities in vitro were investigated. The optimization of the extraction showed that extraction by ultrasound at 40 °C presented the best carbohydrates yield. The degradation of the extracted polysaccharides was achieved by free radical depolymerization with H2O2 in the presence of copper(II) acetate for various reaction times. Sugar contents were determined by colorimetric assays. The macromolecular characteristics of the different isolated and degraded carbohydrates were carried by size exclusion chromatography (SEC/MALS/VD/DRI). These experiments showed that all samples are polysaccharides, which are probably pectins and that molecular weight (Mw) has decreased from 6,800,000 to 14,000 g/mol after 3 h of depolymerization without changing the structure. Preliminary antioxidant and antiglycated tests indicated that degraded polysaccharides for 2 and 3 h showed even better antioxidant and antiglycated activities. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Polysaccharides from the Marine Environment with Pharmacological, Cosmeceutical and Nutraceutical Potential

    Directory of Open Access Journals (Sweden)

    Nadia Ruocco

    2016-04-01

    Full Text Available Carbohydrates, also called saccharides, are molecules composed of carbon, hydrogen, and oxygen. They are the most abundant biomolecules and essential components of many natural products and have attracted the attention of researchers because of their numerous human health benefits. Among carbohydrates the polysaccharides represent some of the most abundant bioactive substances in marine organisms. In fact, many marine macro- and microorganisms are good resources of carbohydrates with diverse applications due to their biofunctional properties. By acting on cell proliferation and cycle, and by modulating different metabolic pathways, marine polysaccharides (including mainly chitin, chitosan, fucoidan, carrageenan and alginate also have numerous pharmaceutical activities, such as antioxidative, antibacterial, antiviral, immuno-stimulatory, anticoagulant and anticancer effects. Moreover, these polysaccharides have many general beneficial effects for human health, and have therefore been developed into potential cosmeceuticals and nutraceuticals. In this review we describe current advances in the development of marine polysaccharides for nutraceutical, cosmeceutical and pharmacological applications. Research in this field is opening new doors for harnessing the potential of marine natural products.

  4. Morphological Study on Room-Temperature-Cured PMMA-Grafted Natural Rubber-Toughened Epoxy/Layered Silicate Nanocomposite

    OpenAIRE

    Yuhana, N. Y.; Ahmad, S.; Kamal, M. R.; Jana, S. C.; Bahri, A. R. Shamsul

    2012-01-01

    A morphological study was conducted on ternary systems containing epoxy, PMMA-grafted natural rubber, and organic chemically modified montmorillonite (Cloisite 30B). Optical microscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and wide-angle X-ray diffraction (WAXD) analysis were used. The following four materials were prepared at room temperature: cured unmodified epoxy, cured toughened epoxy, cured unmodified epoxy/Cloisite 3...

  5. Identification of key genes involved in polysaccharide bioflocculant synthesis in Bacillus licheniformis.

    Science.gov (United States)

    Chen, Zhen; Liu, Peize; Li, Zhipeng; Yu, Wencheng; Wang, Zhi; Yao, Haosheng; Wang, Yuanpeng; Li, Qingbiao; Deng, Xu; He, Ning

    2017-03-01

    The present study reports the sequenced genome of Bacillus licheniformis CGMCC 2876, which is composed of a 4,284,461 bp chromosome that contains 4,188 protein-coding genes, 72 tRNA genes, and 21 rRNA genes. Additional analysis revealed an eps gene cluster with 16 open reading frames. Conserved Domains Database analysis combined with qPCR experiments indicated that all genes in this cluster were involved in polysaccharide bioflocculant synthesis. Phosphoglucomutase and UDP-glucose pyrophosphorylase were supposed to be key enzymes in polysaccharide secretion in B. licheniformis. A biosynthesis pathway for the production of polysaccharide bioflocculant involving the integration of individual genes was proposed based on functional analysis. Overexpression of epsDEF from the eps gene cluster in B. licheniformis CGMCC 2876 increased the flocculating activity of the recombinant strain by 90% compared to the original strain. Similarly, the crude yield of polysaccharide bioflocculant was enhanced by 27.8%. Overexpression of the UDP-glucose pyrophosphorylase gene not only increased the flocculating activity by 71% but also increased bioflocculant yield by 13.3%. Independent of UDP-N-acetyl-D-mannosamine dehydrogenase gene, flocculating activity, and polysaccharide yield were negatively impacted by overexpression of the UDP-N-acetylglucosamine 2-epimerase gene. Overall, epsDEF and gtaB2 were identified as key genes for polysaccharide bioflocculant synthesis in B. licheniformis. These results will be useful for further engineering of B. licheniformis for industrial bioflocculant production. Biotechnol. Bioeng. 2017;114: 645-655. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. FAS grafted superhydrophobic ceramic membrane

    Energy Technology Data Exchange (ETDEWEB)

    Lu Jun [School of Material Science and Engineering, Jingdezhen Ceramic Institute, 333001 Jingdezhen (China); Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, CAS, 1295 DingXi Road, Shanghai 200050 (China); Yu Yun, E-mail: yunyush@mail.sic.ac.cn [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, CAS, 1295 DingXi Road, Shanghai 200050 (China); Zhou Jianer [School of Material Science and Engineering, Jingdezhen Ceramic Institute, 333001 Jingdezhen (China); Song Lixin; Hu Xingfang [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, CAS, 1295 DingXi Road, Shanghai 200050 (China); Larbot, Andre [Institut Europeen des Membranes, UMR 5635-CNRS, ENSCM, UMII, 1919 Route de Mende 34293, Montpellier Cedex 5 (France)

    2009-08-30

    The hydrophobic properties of {gamma}-Al{sub 2}O{sub 3} membrane have been obtained by grafting fluoroalkylsilane (FAS) on the surface of the membrane. The following grafting parameters were studied: the eroding time of the original membrane, the grafting time, the concentration of FAS solution and the multiplicity of grafting. Hydrophobicity of the membranes was characterized by contact angle (CA) measurement. The thermogravimetric analysis (TGA) was used to investigate the weight loss process (25-800 deg. C) of the fluoroalkylsilane grafted on Al{sub 2}O{sub 3} powders under different grafting conditions. The morphologies of the membranes modified under different parameters were examined by field emission scanning electron microscopy (FE-SEM) and the surface roughness (Ra) was measured using white light interferometers. A needle-like structure was observed on the membrane surface after modification, which causes the change of Ra. On the results above, we speculated a model to describe the reaction between FAS and {gamma}-Al{sub 2}O{sub 3} membrane surface as well as the formed surface morphology.

  7. Postoperative radiographic evaluation of vascularized fibular grafts

    International Nuclear Information System (INIS)

    Manaster, B.J.; Coleman, D.A.; Bell, D.A.

    1989-01-01

    This paper reports on thirty-five patients with free vascularized fibular grafts examined postoperatively with plain radiography. Early graft incorporation is seen as a fuzziness of the cortex at the site of its insertion into the host bone. Causes of failure in grafting for bone defects include graft fracture, hardware failure, and infection. A high percentage of complications or at least delayed unions occurred when vascularized fibular grafts were used to fill defects in the lower extremity. Conversely, upper extremity defects bridged by vascularized grafts heal quickly and hypertrophy. Vascularized grafts placed in the femoral head and neck for a vascular necrosis incorporate early on their superior aspect. The osseous tunnel in which they are placed is normally wider than the graft and often becomes sclerotic; this appearance does not represent nonunion

  8. Arterial grafts balance survival between incomplete and complete revascularization: a series of 1000 consecutive coronary artery bypass graft patients with 98% arterial grafts.

    Science.gov (United States)

    Kieser, Teresa M; Curran, Helen J; Rose, M Sarah; Norris, Colleen M; Graham, Michelle M

    2014-01-01

    Coronary artery bypass grafting (CABG) with incomplete revascularization (ICR) is thought to decrease survival. We studied the survival of patients with ICR undergoing total arterial grafting. In a consecutive series of all-comer 1000 patients with isolated CABG, operative and midterm survival were assessed for patients undergoing complete versus ICR, with odds ratios and hazard ratios, adjusted for European System for Cardiac Operative Risk Evaluation category, CABG urgency, age, and comorbidities. In this series of 1000 patients with 98% arterial grafts (2922 arterial, 59 vein grafts), 73% of patients with multivessel disease received bilateral internal mammary artery grafts. ICR occurred in 140 patients (14%). Operative mortality was 3.8% overall, 8.6% for patients with ICR, and 3.2% for patients with complete revascularization (P = .008). For operative mortality using multivariable logistic regression, after controlling for European System for Cardiac Operative Risk Evaluation category (P System for Cardiac Operative Risk Evaluation category (P reserved.

  9. Catalytic synthesis and antioxidant activity of sulfated polysaccharide from Momordica charantia L.

    Science.gov (United States)

    Liu, Xin; Chen, Tong; Hu, Yan; Li, Kexin; Yan, Liushui

    2014-03-01

    Sulfated derivatives of polysaccharide from Momordica charantia L. (MCPS) with different degree of sulfation (DS) were synthesized by chlorosulfonic acid method with ionic liquids as solvent. Fourier transform infrared spectra and 13C nuclear magnetic resonance spectra indicated that C-6 substitution was predominant in MCPS compared with the C-2 position. Compared with the native polysaccharide from Momordica charantia L. (MCP), MCPS exhibited more excellent antioxidant activities in vitro, which indicated that sulfated modification could enhance antioxidant activities of MCP. Furthermore, high DS and moderate molecular weight could improve the antioxidant activities of polysaccharide. Copyright © 2013 Wiley Periodicals, Inc.

  10. Partial characterization of soluble polysaccharides leaves Malva parviflora L. (Malvaceae): prebiotic activity

    International Nuclear Information System (INIS)

    Boual, Z.; Kemassi, A.; Oudjana, A.H.; Michaud, P.; Didi, O.H.M.

    2013-01-01

    Malva parviflora L. (Malvaceae), a spontaneous plant used in traditional medicine is found inGhardaia (Septentrional EastAlgerian Sahara). This paper reports on the extraction and partial characterization of water-soluble polysaccharides from M. parviflorleaves. These polysaccharides were obtained by elimination of the ethanol extract and sequential extraction in distilled water, followed by precipitation in 75% ethanol. The yield of extract is of 1.46%. The crude water soluble polysaccharide extract was further characterized and revealed the average values:15 ± 2,64% total ashes, 17,14 ± 1,43% proteins and 68,18 ± 0,94% carbohydrates, among them 44,96 ± 0,42% are acidic monosaccharides and the rest 55 ± 0,62% are neutral monosaccharides. The considered optimum conditions of hydrolysis by trifluoroacetic acid were: 4 M during 5 hours at 80°C. Anion exchange high performance chromatography of hydrosoluble polysaccharides of Malva leaves indicates the presence of galactose (56.86%), glucuronic acid (20.57%), arabinose (9.04%), rhamnose (8.46%) and mannose (5.05%). The oligosaccharides resulting from the partial hydrolys is of the hydrosoluble polysaccharides stimulate significantly (concentration of 0,333 mg/mL) for 0,1 DO after 24 hours, the growth of Bifido bacterium longum. Their prebiotic effect is notable. (author)

  11. Biofilms from Klebsiella pneumoniae: Matrix Polysaccharide Structure and Interactions with Antimicrobial Peptides.

    Science.gov (United States)

    Benincasa, Monica; Lagatolla, Cristina; Dolzani, Lucilla; Milan, Annalisa; Pacor, Sabrina; Liut, Gianfranco; Tossi, Alessandro; Cescutti, Paola; Rizzo, Roberto

    2016-08-10

    Biofilm matrices of two Klebsiella pneumoniae clinical isolates, KpTs101 and KpTs113, were investigated for their polysaccharide composition and protective effects against antimicrobial peptides. Both strains were good biofilm producers, with KpTs113 forming flocs with very low adhesive properties to supports. Matrix exopolysaccharides were isolated and their monosaccharide composition and glycosidic linkage types were defined. KpTs101 polysaccharide is neutral and composed only of galactose, in both pyranose and furanose ring configurations. Conversely, KpTs113 polysaccharide is anionic due to glucuronic acid units, and also contains glucose and mannose residues. The susceptibility of the two strains to two bovine cathelicidin antimicrobial peptides, BMAP-27 and Bac7(1-35), was assessed using both planktonic cultures and biofilms. Biofilm matrices exerted a relevant protection against both antimicrobials, which act with quite different mechanisms. Similar protection was also detected when antimicrobial peptides were tested against planktonic bacteria in the presence of the polysaccharides extracted from KpTs101 and KpTs113 biofilms, suggesting sequestering adduct formation with antimicrobials. Circular dichroism experiments on BMAP-27 in the presence of increasing amounts of either polysaccharide confirmed their ability to interact with the peptide and induce an α-helical conformation.

  12. Rapid End-Group Modification of Polysaccharides for Biomaterial Applications in Regenerative Medicine.

    Science.gov (United States)

    Bondalapati, Somasekhar; Ruvinov, Emil; Kryukov, Olga; Cohen, Smadar; Brik, Ashraf

    2014-09-15

    Polysaccharides have emerged as important functional materials because of their unique properties such as biocompatibility, biodegradability, and availability of reactive sites for chemical modifications to optimize their properties. The overwhelming majority of the methods to modify polysaccharides employ random chemical modifications, which often improve certain properties while compromising others. On the other hand, the employed methods for selective modifications often require excess of coupling partners, long reaction times and are limited in their scope and wide applicability. To circumvent these drawbacks, aniline-catalyzed oxime formation is developed for selective modification of a variety of polysaccharides through their reducing end. Notably, it is found that for efficient oxime formation, different conditions are required depending on the composition of the specific polysaccharide. It is also shown how our strategy can be applied to improve the physical and functional properties of alginate hydrogels, which are widely used in tissue engineering and regenerative medicine applications. While the randomly and selectively modified alginate exhibits similar viscoelastic properties, the latter forms significantly more stable hydrogel and superior cell adhesive and functional properties. Our results show that the developed conjugation reaction is robust and should open new opportunities for preparing polysaccharide-based functional materials with unique properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Anti-glycated and antiradical activities in vitro of polysaccharides from Ganoderma capense.

    Science.gov (United States)

    Yan, Chunyan; Kong, Fansheng; Zhang, Dezhi; Cui, Jiangxia

    2013-01-01

    Ganoderma capense is a Ganoderma species and is widely used, especially in Asia, as a well-known medicinal mushroom for health-promoting effect and for treatment of chronic diseases, such as diabetes, aging, etc. G. capense is rich of polysaccharide. To isolate the polysaccharides from G. capense and evaluate their anti-glycated and antiradical activities in vitro. The dried powder of submerged fermentation culturing mycelium of G. capense was defatted, extracted with water/alkaline water followed by ethanol precipitation and deproteinated. And four crude polysaccharides, named as GC50, GC70, GC90 and GCB, were obtained. For the first time, the in vitro anti-glycated activities of the four samples were studied by non-enzymatic glycation reaction. Then, the DPPH radical and hydroxyl radical assays were established to estimate the antiradical capacity of the four samples. Meanwhile the contents of polysaccharides were determined by phenol-sulphuric acid colorimetry. Preliminary antiradical in vitro studies indicated that the four crude polysaccharides showed concentration-dependent scavenging abilities on DPPH and hydroxyl radicals. The evaluation of anti-glycation activity suggested that GC70 had good potential for inhibiting the formation of advanced glycation end products. Time- and dose-dependent effects were also observed for all GC70 samples.

  14. Emerging concepts in liver graft preservation

    Science.gov (United States)

    Bejaoui, Mohamed; Pantazi, Eirini; Folch-Puy, Emma; Baptista, Pedro M; García-Gil, Agustín; Adam, René; Roselló-Catafau, Joan

    2015-01-01

    The urgent need to expand the donor pool in order to attend to the growing demand for liver transplantation has obliged physicians to consider the use of suboptimal liver grafts and also to redefine the preservation strategies. This review examines the different methods of liver graft preservation, focusing on the latest advances in both static cold storage and machine perfusion (MP). The new strategies for static cold storage are mainly designed to increase the fatty liver graft preservation via the supplementation of commercial organ preservation solutions with additives. In this paper we stress the importance of carrying out effective graft washout after static cold preservation, and present a detailed discussion of the future perspectives for dynamic graft preservation using MP at different temperatures (hypothermia at 4 °C, normothermia at 37 °C and subnormothermia at 20 °C-25 °C). Finally, we highlight some emerging applications of regenerative medicine in liver graft preservation. In conclusion, this review discusses the “state of the art” and future perspectives in static and dynamic liver graft preservation in order to improve graft viability. PMID:25593455

  15. Extraction optimization and characterization of polysaccharide ...

    African Journals Online (AJOL)

    Purpose: To investigate the optimum extraction conditions of polysaccharides from Pinellia Rhizoma (PRP) and their antioxidant activities. Methods: Response surface methodology (RSM) was applied to optimize the water extraction conditions of PRP by Box-Benhnken design (BBD). A high performance liquid ...

  16. Chemical analysis and antioxidant activity in vitro of polysaccharides extracted from Boletus edulis.

    Science.gov (United States)

    Zhang, Anqiang; Xiao, Nannan; He, Pengfei; Sun, Peilong

    2011-12-01

    Boletus edulis is a well-known delicious mushroom. In this study, three crude polysaccharides (BEPF30, BEPF60 and BEPF80) were isolated from the fruiting bodies of B. edulis with boiling water. Chemical and physical characteristics of the three crude polysaccharides were investigated by the combination of chemical and instrumental analysis methods. Their antioxidant activities were investigated in vitro systems including hydroxyl assay, superoxide radical assay, reducing power and chelating activity. Among these three polysaccharides, BEPF60 showed more significant reducing power and chelating activity; and highest inhibitory effects on superoxide radical and hydroxyl radical. These results indicated that polysaccharides extracted from B. edulis might be employed as ingredients in healthy and functional food to alleviate the oxidative stress. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Structure and genetics of the O-specific polysaccharide of Escherichia coli O27.

    Science.gov (United States)

    Perepelov, Andrei V; Chen, Tingting; Senchenkova, Sofya N; Filatov, Andrei V; Song, Jingjie; Shashkov, Alexander S; Liu, Bin; Knirel, Yuriy A

    2018-02-01

    The O-specific polysaccharide (O-antigen) is a part of the lipopolysaccharide on the cell surface of Gram-negative bacteria. The O-polysaccharide was obtained by mild acid hydrolysis of the lipopolysaccharide of Escherichia coli O27 and studied by sugar analysis and Smith degradation along with 1 H and 13 C NMR spectroscopy. The following structure of the branched hexasaccharide repeating unit was established, which is unique among known structures of bacterial polysaccharides:where GlcA is non-stoichiometrically O-acetylated at position 3 (∼22%) or 4 (∼37%). Functions of genes in the O-antigen gene cluster of E. coli O27 were tentatively assigned by comparison with sequences in the available databases and found to be consistent with the O-polysaccharide structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The immunomodulatory activities of licorice polysaccharides (Glycyrrhiza uralensis Fisch.) in CT 26 tumor-bearing mice.

    Science.gov (United States)

    Ayeka, Peter Amwoga; Bian, YuHong; Githaiga, Peter Mwitari; Zhao, Ying

    2017-12-15

    The increasing use of complementary and alternative medicine (CAM) has kindled the need for scientific evaluation of the mechanism of action of CAMs. Although, licorice, a common ingredient in many Traditional Chinese medicine (TCM) has attracted great attention for its antitumor and immunomodulatory activities, the mechanism of action of its polysaccharides is still unclear. Here we report the immunomodulatory activity of licorice polysaccharides in vivo. The differential anticancer activities of licorice polysaccharides by tumorigenesis and immunomodulation was evaluated in vivo. Six weeks old, 120 CT-26 tumor bearing BALB/c mice, weighing 20 ± 2 g were used. They were randomly divided into six groups, three groups receiving high molecular weight (fraction A), low molecular weight (fraction B) polysaccharides and crude extract (fraction C); positive, negative and normal groups receiving cytoxin, saline and normal diet respectively. Weight of mice and tumors was determined and tumorigenicity assay calculated to determine the anticancer effects. Immunomodulatory potential was determined by immune organ indices, immune cell population and serum cytokine levels using immune organ weight and index, flow cytometry and cytokine/chemokine bead panel kit respectively. Licorice polysaccharides exhibited immunomodulatory activities in CT 26 tumor bearing BALB/c mice. The polysaccharides significantly suppressed tumor growth and increased immune organ index. Furthermore, the immunomodulatory effect was evident with activation of CD4 + and CD8 + immune cells population. The polysaccharides also affected the production of various cytokines, by increasing IL 2, IL 6, IL 7 levels and a decreasing TNFα levels. In summary, licorice polysaccharide especially of low molecular weight exhibit anticancer and immunomodulatory activities by suppressing tumor growth and improving general health of mice. They also augment the thymus/spleen index and population of T lymphocytes

  19. Repair Effect of Seaweed Polysaccharides with Different Contents of Sulfate Group and Molecular Weights on Damaged HK-2 Cells

    Directory of Open Access Journals (Sweden)

    Poonam Bhadja

    2016-05-01

    Full Text Available The structure–activity relationships and repair mechanism of six low-molecular-weight seaweed polysaccharides (SPSs on oxalate-induced damaged human kidney proximal tubular epithelial cells (HK-2 were investigated. These SPSs included Laminaria japonica polysaccharide, degraded Porphyra yezoensis polysaccharide, degraded Gracilaria lemaneiformis polysaccharide, degraded Sargassum fusiforme polysaccharide, Eucheuma gelatinae polysaccharide, and degraded Undaria pinnatifida polysaccharide. These SPSs have a narrow difference of molecular weight (from 1968 to 4020 Da after degradation by controlling H2O2 concentration. The sulfate group (–SO3H content of the six SPSs was 21.7%, 17.9%, 13.3%, 8.2%, 7.0%, and 5.5%, respectively, and the –COOH contents varied between 1.0% to 1.7%. After degradation, no significant difference was observed in the contents of characteristic –SO3H and –COOH groups of polysaccharides. The repair effect of polysaccharides was determined using cell-viability test by CCK-8 assay and cell-morphology test by hematoxylin-eosin staining. The results revealed that these SPSs within 0.1–100 μg/mL did not express cytotoxicity in HK-2 cells, and each polysaccharide had a repair effect on oxalate-induced damaged HK-2 cells. Simultaneously, the content of polysaccharide –SO3H was positively correlated with repair ability. Furthermore, the low-molecular-weight degraded polysaccharides showed better repair activity on damaged HK-2 cells than their undegraded counterpart. Our results can provide reference for inhibiting the formation of kidney stones and for developing original anti-stone polysaccharide drugs.

  20. Composite three-layer closure of oral antral communication with 10 months follow-up-a case study.

    Science.gov (United States)

    Weinstock, Robert J; Nikoyan, Levon; Dym, Harry

    2014-02-01

    We propose a 3-layer composite closure technique for an oral antral communication (OAC) while avoiding secondary donor site morbidity. A patient had developed a 1-cm OAC after extraction of right maxillary first molar. The patient subsequently developed acute maxillary sinusitis. The patient was taken to the operating room, and a Caldwell-Luc procedure was performed. The bony window from the Caldwell-Luc was "press fit" over the bony OAC defect. Soft tissue closure was then achieved with a buccal fat pad flap and a buccal mucosal advancement flap. The patient was examined on postoperative day 5 and 1, 2, 3, 6, and 10 months postoperatively. The acute sinusitis had resolved. The soft tissue closure was successful. The bone graft remained intact, prevented sinus pneumatization, and restored continuity to the floor of the maxillary sinus. The presented technique for 3-layer closure of OACs allows for the stability of a double-layer closure of OAC with the added benefit of bone grafting from single operative site, achieving stable oral antral closure, bone grafting, and the avoidance of secondary donor site morbidity. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival

    DEFF Research Database (Denmark)

    Kølle, Stig-Frederik Trojahn; Fischer-Nielsen, Anne; Mathiasen, Anders Bruun

    2013-01-01

    Autologous fat grafting is increasingly used in reconstructive surgery. However, resorption rates ranging from 25% to 80% have been reported. Therefore, methods to increase graft viability are needed. Here, we report the results of a triple-blind, placebo-controlled trial to compare the survival ...... of fat grafts enriched with autologous adipose-derived stem cells (ASCs) versus non-enriched fat grafts....

  2. Isolation, structural characterization and bioactivities of naturally occurring polysaccharide-polyphenolic conjugates from medicinal plants-A reivew.

    Science.gov (United States)

    Liu, Jun; Bai, Ruyu; Liu, Yunpeng; Zhang, Xin; Kan, Juan; Jin, Changhai

    2018-02-01

    In recent years, several medicinal plants have been demonstrated as valuable resources of naturally occurring polysaccharide-polyphenolic conjugates. For the first time, this article introduces recent advances of polysaccharide-polyphenolic conjugates isolated from different medicinal plants. The isolation, purification, structural characterization and biological activities of polysaccharide-polyphenolic conjugates are introduced in details. In general, polysaccharide-polyphenolic conjugates can be isolated by hot water or alkaline extraction followed by purification through anion exchange chromatography or gel filtration chromatography. The structures of conjugates are usually characterized by chemical composition analysis, UV-vis, Fourier-transform infrared and nuclear magnetic resonance spectroscopy. Moreover, polysaccharide-polyphenolic conjugates exhibit several biological activities including anticoagulant, antioxidant, radioprotective, anti-platelet, antitussive and bronchodilatory effects. Therefore, polysaccharide-polyphenolic conjugates isolated from medicinal plants are certain to have a bright prospect in the field of food and pharmaceutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Inhibition of hydrogen peroxide induced injuring on human skin fibroblast by Ulva prolifera polysaccharide.

    Science.gov (United States)

    Cai, Chuner; Guo, Ziye; Yang, Yayun; Geng, Zhonglei; Tang, Langlang; Zhao, Minglin; Qiu, Yuyan; Chen, Yifan; He, Peimin

    2016-10-01

    Ulva prolifera can protect human skin fibroblast from being injured by hydrogen peroxide. This work studied the composition of Ulva prolifera polysaccharide and identified its physicochemical properties. The results showed that the cell proliferation of 0.5mg/mL crude polysaccharide was 154.4% of that in negative control group. Moreover, ROS detection indices, including DCFH-DA, GSH-PX, MDA and CAT, indicated that crude polysaccharide could improve cellular ability to scavenge free radical and decrease the injury on human skin fibroblast by hydrogen peroxide. In purified polysaccharide, the activity of fraction P1-1 was the highest, with 174.6% of that in negative control group. The average molecular weight of P1-1 was 137kD with 18.0% of sulfate content. This work showed the inhibition of hydrogen peroxide induced injuries on human skin fibroblast by Ulva prolifera polysaccharide, which may further evaluate the application of U. prolifera on cosmetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Sulfated Polysaccharides in the Freshwater Green Macroalga Cladophora surera Not Linked to Salinity Adaptation.

    Science.gov (United States)

    Arata, Paula X; Alberghina, Josefina; Confalonieri, Viviana; Errea, María I; Estevez, José M; Ciancia, Marina

    2017-01-01

    The presence of sulfated polysaccharides in cell walls of seaweeds is considered to be a consequence of the physiological adaptation to the high salinity of the marine environment. Recently, it was found that sulfated polysaccharides were present in certain freshwater Cladophora species and some vascular plants. Cladophora (Ulvophyceae, Chlorophyta) is one of the largest genera of green algae that are able to grow in both, seas and freshwater courses. Previous studies carried out on the water-soluble polysaccharides of the marine species C. falklandica established the presence of sulfated xylogalactoarabinans constituted by a backbone of 4-linked β-L-arabinopyranose units partially sulfated mainly on C3 and also on C2 with partial glycosylation, mostly on C2, with terminal β-D-xylopyranose or β-D-galactofuranose units. Besides, minor amounts of 3-, 6- and/or 3,6-linked β-D-galactan structures, with galactose in the pyranosic form were detected. In this work, the main water soluble cell wall polysaccharides from the freshwater alga Cladophora surera were characterized. It was found that this green alga biosynthesizes sulfated polysaccharides, with a structure similar to those found in marine species of this genus. Calibration of molecular clock with fossil data suggests that colonization of freshwater environments occurred during the Miocene by its ancestor. Therefore, the presence of sulfated polysaccharides in the freshwater green macroalga C. surera could be, in this case, an adaptation to transient desiccation and changes in ionic strength. Retention of sulfated polysaccharides at the cell walls may represent a snapshot of an evolutionary event, and, thus constitutes an excellent model for further studies on the mechanisms of sulfation on cell wall polysaccharides and environmental stress co-evolution.

  5. Sulfated Polysaccharides in the Freshwater Green Macroalga Cladophora surera Not Linked to Salinity Adaptation

    Directory of Open Access Journals (Sweden)

    Paula X. Arata

    2017-11-01

    Full Text Available The presence of sulfated polysaccharides in cell walls of seaweeds is considered to be a consequence of the physiological adaptation to the high salinity of the marine environment. Recently, it was found that sulfated polysaccharides were present in certain freshwater Cladophora species and some vascular plants. Cladophora (Ulvophyceae, Chlorophyta is one of the largest genera of green algae that are able to grow in both, seas and freshwater courses. Previous studies carried out on the water-soluble polysaccharides of the marine species C. falklandica established the presence of sulfated xylogalactoarabinans constituted by a backbone of 4-linked β-L-arabinopyranose units partially sulfated mainly on C3 and also on C2 with partial glycosylation, mostly on C2, with terminal β-D-xylopyranose or β-D-galactofuranose units. Besides, minor amounts of 3-, 6- and/or 3,6-linked β-D-galactan structures, with galactose in the pyranosic form were detected. In this work, the main water soluble cell wall polysaccharides from the freshwater alga Cladophora surera were characterized. It was found that this green alga biosynthesizes sulfated polysaccharides, with a structure similar to those found in marine species of this genus. Calibration of molecular clock with fossil data suggests that colonization of freshwater environments occurred during the Miocene by its ancestor. Therefore, the presence of sulfated polysaccharides in the freshwater green macroalga C. surera could be, in this case, an adaptation to transient desiccation and changes in ionic strength. Retention of sulfated polysaccharides at the cell walls may represent a snapshot of an evolutionary event, and, thus constitutes an excellent model for further studies on the mechanisms of sulfation on cell wall polysaccharides and environmental stress co-evolution.

  6. Durable grafting of silkworm pupa protein onto the surface of polyethylene terephthalate fibers

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianfeng, E-mail: 584884673@qq.com [College of Textiles & Garments, Southwest University, Chongqing 400716 (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, 400716 (China); Zheng, Dandan, E-mail: 183737543@qq.com [College of Textiles & Garments, Southwest University, Chongqing 400716 (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, 400716 (China); Zhang, Fengxiu, E-mail: zhangfx656472@sina.com.cn [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Zhang, Guangxian, E-mail: zgx656472@sina.com [College of Textiles & Garments, Southwest University, Chongqing 400716 (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, 400716 (China)

    2016-12-01

    In this paper, reactive –NH{sub 2} groups (8.36 × 10{sup −6} mol/g fabric) were introduced to the surface of polyethylene terephthalate (PET) fabrics by a nitration and reduction method, and epoxy groups were introduced to silkworm pupa protein (SPP) by reaction with epoxy chloropropane. PET-SPP composite fabrics were then prepared by reaction of these two precursors. The results showed that the SPP was firmly grafted onto the PET fabric surface and that the hydrophilicity of the fabric was markedly improved by the grafting of SPP. SEM images revealed a layer of substance covering the surface of the PET fibers, and XPS investigation showed that the nitrogen content of the PET-SPP fabric was higher than that of the original PET fabric (2.32% vs 0%). ATR-FTIR adsorption bands at 1653 and 1543 cm{sup −1} suggested the successful grafting of SPP onto the PET fabric surface. The DSC and TG of the PET fibers demonstrated that the thermal stability of the original PET fibers was maintained well by the SPP-grafted PET fibers. The breaking strength, bending rigidity, air permeability, and crease recovery angle of the original PET fabric were also retained by the SPP-grafted PET fabric. - Highlights: • Reactive –NH{sub 2} groups were introduced to PET fibers by nitration and reduction method. • Reactive epoxy groups were introduced to silkworm pupa protein by reacting with epoxy chloropropane. • The silkworm pupa protein could be grafted firmly on the PET fabric surface through covalent bond. • The skin-friendly property and hydrophilicity of PET-SPP fabric were improved greatly. • The wearability of PET-SPP composite fabric kept well.

  7. Characterization of poly(Sodium Styrene Sulfonate) Thin Films Grafted from Functionalized Titanium Surfaces

    Science.gov (United States)

    Zorn, Gilad; Baio, Joe E.; Weidner, Tobias; Migonney, Veronique; Castner, David G.

    2011-01-01

    Biointegration of titanium implants in the body is controlled by their surface properties. Improving surface properties by coating with a bioactive polymer is a promising approach to improve the biological performance of titanium implants. To optimize the grafting processes, it is important to fully understand the composition and structure of the modified surfaces. The main focus of this study is to provide a detailed, multi-technique characterization of a bioactive poly(sodium styrene sulfonate) (pNaSS) thin film grafted from titanium surfaces via a two-step procedure. Thin titanium films (~50 nm thick with an average surface roughness of 0.9±0.2nm) prepared by evaporation onto silicon wafers were used as smooth model substrates. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) showed that the titanium film was covered with a TiO2 layer that was at least 10nm thick and contained hydroxyl groups present at the outermost surface. These hydroxyl groups were first modified with a 3-methacryloxypropyltrimethoxysilane (MPS) cross linker. XPS and ToF-SIMS showed that a monolayer of the MPS molecules were successfully attached onto the titanium surfaces. The pNaSS film was grafted from the MPS modified titanium through atom transfer radical polymerization. Again, XPS and ToF-SIMS were used to verify that the pNaSS molecules were successfully grafted onto the modified surfaces. Atomic force microscopy analysis showed that the film was smooth and uniformly covered the surface. Fourier transform infrared spectroscopy indicated an ordered array of grafted NaSS molecules were present on the titanium surfaces. Sum frequency generation vibration spectroscopy and near edge X-ray absorption fine structure spectroscopy illustrated that the NaSS molecules were grafted onto the titanium surface with a substantial degree of orientational order in the styrene rings. PMID:21892821

  8. Laser-assisted indocyanine green dye angiography accurately predicts the split-thickness graft timing of integra artificial dermis.

    Science.gov (United States)

    Fourman, Mitchell S; Phillips, Brett T; Fritz, Jason R; Conkling, Nicole; McClain, Steve A; Simon, Marcia; Dagum, Alexander B

    2014-08-01

    The use of an artificial dermal substitute such as Integra-a bilaminate combination of thin silicone and cross-linked bovine tendon collagen and chondroitin-6-sulfate-has become a popular method to address large surface area wounds or smaller, complex wounds devoid of a vascular bed. The incorporation of Integra depends on a vascular wound bed or periphery and can take 4 weeks or longer to occur. If the Integra has not fully incorporated at the time of placement of the split-thickness graft, complete graft loss may result. The availability of a minimally invasive method to assess the incorporation of Integra would be of great value. Two 5 × 10-cm paraspinal full-thickness wounds were created on 3 female swine. Wounds were randomly assigned full-thickness skin graft or Integra (Plainsboro, NJ) treatment. Both types of grafts were placed after the application of fibrin glue (Tisseel, Deerfield, Ill) to the wound bed. Laser Doppler imaging (LDI) (Moor), indocyanine green dye (ICG) angiography (LifeCell SPY), and clinical scoring were performed weekly for a period of 8 weeks after grafting. At 4 weeks, the silicone layer of the Integra was removed, and a culture of autologous keratinocytes was applied. A 4-mm punch biopsy sample of each graft was taken 1, 2, 4, 6, 7, and 8 weeks postoperatively for histologic analysis. Both ICG angiography and LDI perfusion measurements noted an increase in perfusion at the Integra graft site that peaked 3 weeks after grafting, corresponding with the start of neovascularization and the optimal time for the application of a split-thickness skin graft. indocyanine green dye angiography measurements exhibit greater reproducibility between animals at late time points as compared with LDI. This decrease in LDI precision is directly related to increases in scar tissue thickness of greater than 5 mm as determined via histologic analysis and corresponds with the accepted maximum penetration depth of the LDI laser. Indocyanine green dye

  9. Method to conjugate polysaccharide antigens to surfaces for the detection of antibodies.

    Science.gov (United States)

    Boas, Ulrik; Lind, Peter; Riber, Ulla

    2014-11-15

    A new generic method for the conjugation of lipopolysaccharide (LPS)-derived polysaccharide antigens from gram-negative bacteria has been developed using Salmonella as a model. After removal of lipid A from the LPS by mild acidolysis, the polysaccharide antigen was conjugated to polystyrene microbeads modified with N-alkyl hydroxylamine and N-alkyl-O-methyl hydroxylamine surface groups by incubation of antigen and beads for 16 h at 40 °C without the need for coupling agents. The efficiency of the new method was evaluated by flow cytometry in model samples and serum samples containing antibodies against Salmonella typhimurium and Salmonella dublin. The presented method was compared with a similar method for conjugation of Salmonella polysaccharide antigens to surfaces. Here, the new method showed higher antigen coupling efficiency by detecting low concentrations of antibodies. Furthermore, the polysaccharide-conjugated beads showed preserved bioactivity after 1 year of use. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Optimization of enzyme-assisted extraction and characterization of polysaccharides from Hericium erinaceus.

    Science.gov (United States)

    Zhu, Yang; Li, Qian; Mao, Guanghua; Zou, Ye; Feng, Weiwei; Zheng, Daheng; Wang, Wei; Zhou, Lulu; Zhang, Tianxiu; Yang, Jun; Yang, Liuqing; Wu, Xiangyang

    2014-01-30

    The enzyme-assisted extraction (EAE) of polysaccharides from the fruits of Hericium erinaceus was studied. In this study, response surface methodology and the Box-Behnken design based on single-factor and orthogonal experiments were applied to optimize the EAE conditions. The optimal extraction conditions were as follows: a pH of 5.71, a temperature of 52.03°C and a time of 33.79 min. The optimal extraction conditions resulted in the highest H. erinaceus polysaccharides (HEP) yield, with a value 13.46 ± 0.37%, which represented an increase of 67.72% compared to hot water extraction (HWE). The polysaccharides were characterized by FT-IR, SEM, CD, AFM, and GC. The results showed that HEP was composed of mannose, glucose, xylose, and galactose in a molar ratio of 15.16:5.55:4.21:1. The functional groups of the H. erinaceus polysaccharides extracted by HWE and EAE were fundamentally identical but had apparent conformational changes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon.

    Science.gov (United States)

    Salyers, A A; Vercellotti, J R; West, S E; Wilkins, T D

    1977-01-01

    Ten Bacteroides species found in the human colon were surveyed for their ability to ferment mucins and plant polysaccharides ("dietary fiber"). A number of strains fermented mucopolysaccharides (heparin, hyaluronate, and chondroitin sulfate) and ovomucoid. Only 3 of the 188 strains tested fermented beef submaxillary mucin, and none fermented porcine gastric mucin. Many of the Bacteroides strains tested were also able to ferment a variety of plant polysaccharides, including amylose, dextran, pectin, gum tragacanth, gum guar, larch arabinogalactan, alginate, and laminarin. Some plant polysaccharides such as gum arabic, gum karaya, gum ghatti and fucoidan, were not utilized by any of the strains tested. The ability to utilize mucins and plant polysaccharides varied considerably among the Bacteroides species tested. PMID:848954

  12. Structure of the polysaccharides from the lipopolysaccharide of Azospirillum brasilense Jm125A2.

    Science.gov (United States)

    Sigida, Elena N; Fedonenko, Yuliya P; Shashkov, Alexander S; Zdorovenko, Evelina L; Konnova, Svetlana A; Ignatov, Vladimir V; Knirel, Yuriy A

    2015-10-30

    Two polysaccharides were obtained by mild acid degradation of the lipopolysaccharide of associative nitrogen-fixing bacteria Azospirillum brasilense Jm125A2 isolated from the rhizosphere of a pearl millet. The following structures of the polysaccharides were established by sugar and methylation analyses, Smith degradation, and (1)H and (13)C NMR spectroscopy: [Formula: see text] Structure 1 has been reported earlier for a polysaccharide from A. brasilense S17 (Fedonenko YP, Konnova ON, Zdorovenko EL, Konnova SA, Zatonsky GV, Shaskov AS, Ignatov VV, Knirel YA. Carbohydr Res 2008;343:810-6), whereas to our knowledge structure 2 has not been hitherto found in bacterial polysaccharides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Intraoperative echocardiographic imaging of coronary arteries and graft anastomoses during coronary artery bypass grafting without cardiopulmonary bypass.

    Science.gov (United States)

    Suematsu, Y; Takamoto, S; Ohtsuka, T

    2001-12-01

    No accepted approach exists for the intraoperative evaluation of the quality of coronary arteries and the technical adequacy of graft anastomoses during coronary artery bypass grafting without cardiopulmonary bypass. We assessed the accuracy of high-frequency epicardial echocardiography and power Doppler imaging in evaluating coronary arteries during coronary artery bypass grafting without cardiopulmonary bypass. To validate measurements of coronary arteries and graft anastomoses by high-frequency epicardial echocardiography and power Doppler imaging, we compared luminal diameters determined by these methods with diameters determined histologically in a study of off-pump coronary artery bypass grafting in 20 dogs. Technical errors were deliberately created in 10 grafts (stenosis group). The results of these animal validation studies showed that the maximum luminal diameters of coronary arteries and graft anastomoses measured by high-frequency epicardial echocardiography (HEE) and power Doppler imaging (PDI) correlated well with the histologic measurements: HEE = 1.027 x Histologic measurements + 0.005 (P anastomoses were examined intraoperatively by high-frequency epicardial echocardiography and power Doppler imaging, and luminal diameters determined by power Doppler imaging were compared with those determined by postoperative coronary angiography. The results demonstrated that graft anastomosis by power Doppler imaging correlated well with the angiographic measurements: PDI = 1.018 x Angiographic measurements - 0.106 (P anastomoses and can detect technical errors and inadequacies during coronary artery bypass grafting without cardiopulmonary bypass.

  14. Grafting of ARPE-19 and Schwann cells to the subretinal space in RCS rats.

    Science.gov (United States)

    Wang, Shaomei; Lu, Bin; Wood, Patrick; Lund, Raymond D

    2005-07-01

    To study the distribution of the human retinal pigment epithelium (hRPE) cell line ARPE-19 and human Schwann (hSC) cells grafted to the subretinal space of the Royal College of Surgeon (RCS) rat and the relation of graft cell distribution to photoreceptor rescue. Cell suspensions of both donor types were injected into the subretinal space of 3-week-old dystrophic RCS rats through a transscleral approach, human fibroblast and medium were used as control grafts. All animals were maintained on oral cyclosporine. At 1, 2, 4, 6, 15, 28, and 36 weeks after grafting, animals were killed. Human cell-specific markers were used to localize donor cells. Both donor cell types, as revealed by antibodies survived for a substantial time. Their distribution was very different: hRPE cells formed a large clump early on and, with time, spread along the host RPE in a layer one to two cells deep, whereas hSCs formed many smaller clumps, mainly in the subretinal space. Both cells rescued photoreceptors beyond the area of donor cell distribution. The number of surviving cells declined with time. Both hRPE and hSC grafts can survive and rescue photoreceptors for a substantial time after grafting. The number of both donor cell types declined with time, which could be an immune-related problem and/or due to other factors intrinsic to the host RCS retina. The fact that rescue occurred beyond the area of donor cell distribution suggests that diffusible factors are involved, raising the possibility that the two cell types function in a similar manner to rescue photoreceptors.

  15. Neutral wetting brush layers for block copolymer thin films using homopolymer blends processed at high temperatures

    International Nuclear Information System (INIS)

    Ceresoli, M; Palermo, M; Ferrarese Lupi, F; Seguini, G; Perego, M; Zuccheri, G; Phadatare, S D; Antonioli, D; Gianotti, V; Sparnacci, K; Laus, M

    2015-01-01

    Binary homopolymer blends of two hydroxyl-terminated polystyrene (PS-OH) and polymethylmethacrylate (PMMA-OH) homopolymers (Mn ∼ 16000 g mol"−"1) were grafted on SiO_2 substrates by high-temperature (T > 150 °C), short-time (t < 600 s) thermal treatments. The resulting brush layer was tested to screen preferential interactions of the SiO_2 substrate with the different symmetric and asymmetric PS-b-PMMA block copolymers deposited on top of the grafted molecules. By properly adjusting the blend composition and the processing parameters, an efficient surface neutralization path was identified, enabling the formation, in the block copolymer film, of homogeneous textures of lamellae or cylinders perpendicularly oriented with respect to the substrate. A critical interplay between the phase segregation of the homopolymer blends and their grafting process on the SiO_2 was observed. In fact, the polar SiO_2 is preferential for the PMMA-rich phase that forms a homogeneous layer on the substrate, while the PS-rich phase is located at the polymer-air interface. During the thermal treatment, phase segregation and grafting proceed simultaneously. Complete wetting of the PS rich phase on the PMMA rich phase leads to the formation of a PS/PMMA bilayer. In this case, the progressive diffusion of PS chains toward the polymer-SiO_2 interface during the thermal treatment allows tuning of the brush layer composition. (paper)

  16. Effects of polysaccharide isolated from Streptococcus thermophilus CRL1190 on human gastric epithelial cells.

    Science.gov (United States)

    Marcial, Guillermo; Messing, Jutta; Menchicchi, Bianca; Goycoolea, Francisco M; Faller, Gerhard; Graciela, Font de Valdez; Hensel, Andreas

    2013-11-01

    EPS1190 was isolated from skim milk fermented with Stretococcus thermophilus CRL1190. The polysaccharide consisted of 33% glucose and 66% galactose with 1,4- and 1,4,6-galactose residues as main building blocks beside a high amount of 1,4-linked glucose. The polymer was characterized additionally concerning viscosity and zeta potential. EPS1190 stimulated cellular vitality and proliferation of human stomach AGS cells and human buccal KB cells significantly. EPS1190 stimulated phagocytosis rate of murine macrophages RAW264.7 significantly. NO-release or anti-inflammatory effects by inhibition of LPS-induced NO release were not observed. Confocal laser scanning microscopy revealed that EPS1190 is partially internalized into AGS cells via endosomes. The bioadhesive absorption of FITC-labeled EPS1190 into the mucus layer on the apical side of the epithelium using histological tissue sections from human stomach was observed. Specific interaction of EPS1190 with mucin can be excluded as shown by microviscosimetry studies. EPS1190 increased the adhesion of H. pylori to AGS cells, which resulted in increased secretion of proinflammatory cytokines TNFa, IL-6 and IL-8. Summarizing, EPS1190 seems to stimulate epithelial cell regeneration and immunological innate defense mechanisms, which again can rationalized the use of this polysaccharide as cytoprotective compound in probiotioc preparations. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. The preliminary study of prebiotic potential of Polish wild mushroom polysaccharides: the stimulation effect on Lactobacillus strains growth.

    Science.gov (United States)

    Nowak, Renata; Nowacka-Jechalke, Natalia; Juda, Marek; Malm, Anna

    2018-06-01

    According to the vast body of evidence demonstrating that the intestinal microbiota is undoubtedly linked with overall health, including cancer risk, searching for functional foods and novel prebiotic influencing on beneficial bacteria is necessary. The present study aimed to investigate the potential of polysaccharides from 53 wild-growing mushrooms to stimulate the growth of Lactobacillus acidophilus and Lactobacillus rhamnosus and to determine the digestibility of polysaccharide fractions. Mushroom polysaccharides were precipitated with ethanol from aqueous extracts. Determination of growth promoting activity of polysaccharides was performed in U-shaped 96-plates in an ELISA reader in relation to the reference strain of L. acidophilus and two clinical strains of L. rhamnosus. The digestibility of mushroom polysaccharides was investigated in vitro by exposing them to artificial human gastric juice. Obtained results revealed that fungal polysaccharides stimulate the growth of Lactobacillus strains stronger than commercially available prebiotics like inulin or fructooligosaccharides. Moreover, selected polysaccharides were subjected to artificial human gastric juice and remain undigested in more than 90%. Obtained results indicate that mushroom polysaccharides are able to pass through the stomach unchanged, reaching the colon and stimulating the growth of beneficial bacteria. Majority of 53 polysaccharide fractions were analysed for the first time in our study. Overall, our findings suggest that polysaccharide fractions from edible mushrooms might be useful in producing functional foods and nutraceuticals.

  18. Marine Origin Polysaccharides in Drug Delivery Systems.

    Science.gov (United States)

    Cardoso, Matias J; Costa, Rui R; Mano, João F

    2016-02-05

    Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents and extraction media, and their interaction with other biocompounds. Polysaccharides such as alginate, carrageenan and fucoidan can be extracted from algae, whereas chitosan and hyaluronan can be obtained from animal sources. Most marine polysaccharides have important biological properties such as biocompatibility, biodegradability, and anti-inflammatory activity, as well as adhesive and antimicrobial actions. Moreover, they can be modified in order to allow processing them into various shapes and sizes and may exhibit response dependence to external stimuli, such as pH and temperature. Due to these properties, these biomaterials have been studied as raw material for the construction of carrier devices for drugs, including particles, capsules and hydrogels. The devices are designed to achieve a controlled release of therapeutic agents in an attempt to fight against serious diseases, and to be used in advanced therapies, such as gene delivery or regenerative medicine.

  19. Marine Origin Polysaccharides in Drug Delivery Systems

    Science.gov (United States)

    Cardoso, Matias J.; Costa, Rui R.; Mano, João F.

    2016-01-01

    Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents and extraction media, and their interaction with other biocompounds. Polysaccharides such as alginate, carrageenan and fucoidan can be extracted from algae, whereas chitosan and hyaluronan can be obtained from animal sources. Most marine polysaccharides have important biological properties such as biocompatibility, biodegradability, and anti-inflammatory activity, as well as adhesive and antimicrobial actions. Moreover, they can be modified in order to allow processing them into various shapes and sizes and may exhibit response dependence to external stimuli, such as pH and temperature. Due to these properties, these biomaterials have been studied as raw material for the construction of carrier devices for drugs, including particles, capsules and hydrogels. The devices are designed to achieve a controlled release of therapeutic agents in an attempt to fight against serious diseases, and to be used in advanced therapies, such as gene delivery or regenerative medicine. PMID:26861358

  20. Marine Origin Polysaccharides in Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Matias J. Cardoso

    2016-02-01

    Full Text Available Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents and extraction media, and their interaction with other biocompounds. Polysaccharides such as alginate, carrageenan and fucoidan can be extracted from algae, whereas chitosan and hyaluronan can be obtained from animal sources. Most marine polysaccharides have important biological properties such as biocompatibility, biodegradability, and anti-inflammatory activity, as well as adhesive and antimicrobial actions. Moreover, they can be modified in order to allow processing them into various shapes and sizes and may exhibit response dependence to external stimuli, such as pH and temperature. Due to these properties, these biomaterials have been studied as raw material for the construction of carrier devices for drugs, including particles, capsules and hydrogels. The devices are designed to achieve a controlled release of therapeutic agents in an attempt to fight against serious diseases, and to be used in advanced therapies, such as gene delivery or regenerative medicine.

  1. Multiple arterial grafts in coronary artery bypass grafting, Sohag University Hospital's initial experience

    Directory of Open Access Journals (Sweden)

    A.A.A. Elsayed

    2017-12-01

    Conclusions: Using multiple arterial grafts did not add a significant risk or time to the classic CABG. With accumulating evidence about better patency rate in arterial grafts, MAR is recommended especially in younger patients undergoing CABG.

  2. [Antivirus effect of polysaccharides of brewer yeast in vitro].

    Science.gov (United States)

    Li, F; Shi, Y; Guan, X; Zhang, S; Tian, T

    1998-03-01

    The antivirus effect of polysaccharides of brewer yeast from yeast mud on 13 kinds of viruses including DNA and RNA virus along with their mechanisms were studied. The result showed that this effect was remarkable on the infections with poliovirus III, adenovirus III, ECHO6 virus, enterovirus 71, vesicular stomatitis virus, herpesvirus I, II, coxsackie A16 virus and coxsackie B3 virus. The polysaccharides of brewer yeast could also inhibit the development of cytopathic effect(CPE) and protect cultural cells from being infected with the above viruses.

  3. Radiation-induced grafting from binary mixture of monomers onto cellulose acetate film and the characterization of the graft copolymer

    International Nuclear Information System (INIS)

    Bhattacharyya, S.N.; Maldas, D.

    1984-01-01

    Binary mixtures of styrene and acrylamide in methanol-water were grafted onto cellulose acetate films by taking recourse to preirradiation grafting technique. The extent of total grafting was determined from the measured weight increase. The percent acrylamide residue in the graft copolymer was calculated from the observed nitrogen content but the polystyrene residue in the grafted sample was determined by IR spectral studies. When the specific permeability of water vapour through the grafted films is measured, it is observed that the specific permeability increases with the increase of grafting of acrylamide in all humidities, but in case of styrene which is a nonpolar molecule the permeability is found to show a reversed order. In the case of mixed graft the permeability pattern pertains to that when both styrene and acrylamide have their effective roles to play. (author)

  4. Antioxidant and immunoregulatory activity of polysaccharides from quinoa (Chenopodium quinoa Willd.).

    Science.gov (United States)

    Yao, Yang; Shi, Zhenxing; Ren, Guixing

    2014-10-23

    The water-extractable (QWP) and the alkali-extractable (QAP) polysaccharides from quinoa (named QWP and QAP, respectively) and their four polysaccharide sub-fractions (QWP-1, QWP-2, QAP-1 and QAP-2), were isolated and purified by anion-exchange and gel filtration chromatography. QWP-1 and QWP-2 were composed of Rha, Ara, Gal and GalA. QAP-1 and QAP-2 were composed of Rha, Ara, Man, Gal and GalA. Antioxidant and immunoregulatory activities of the polysaccharides were evaluated. The results showed that QWP-1, QWP-2, QAP-1 and QAP-2 had significant antioxidant and immunoregulatory activities. The results suggest that QWP-1, QWP-2, QAP-1 and QAP-2 could be used as potential antioxidants and immunomodulators.

  5. Antioxidant and Immunoregulatory Activity of Polysaccharides from Quinoa (Chenopodium quinoa Willd.

    Directory of Open Access Journals (Sweden)

    Yang Yao

    2014-10-01

    Full Text Available The water-extractable (QWP and the alkali-extractable (QAP polysaccharides from quinoa (named QWP and QAP, respectively and their four polysaccharide sub-fractions (QWP-1, QWP-2, QAP-1 and QAP-2, were isolated and purified by anion-exchange and gel filtration chromatography. QWP-1 and QWP-2 were composed of Rha, Ara, Gal and GalA. QAP-1 and QAP-2 were composed of Rha, Ara, Man, Gal and GalA. Antioxidant and immunoregulatory activities of the polysaccharides were evaluated. The results showed that QWP-1, QWP-2, QAP-1 and QAP-2 had significant antioxidant and immunoregulatory activities. The results suggest that QWP-1, QWP-2, QAP-1 and QAP-2 could be used as potential antioxidants and immunomodulators.

  6. Studies on Radiation Synthesis of Poly(vinyl alcohol)- Natural Polysaccharides Hydrogel Wound Dressing

    International Nuclear Information System (INIS)

    Varshney, L.

    2006-01-01

    Radiation processed PVA-polysaccharides hydrogels have been observed to be suitable for producing transparent, flexible and mechanically strong, biocompatible, effective and economical hydrogel dressings(HD). The dressings were formed in single stage irradiation process achieving gel formation and sterilization at 25-30 kGy gamma radiation dose. No synthetic plasticizers and additives were used. Different formulations containing Poly-vinylalcohol, (PVA) and polysaccharides selected from combinations of agar and carrageenan were used to make the dressings. The selected polysaccharides themselves form thermo-reversible gels and degrade on irradiation. Using concentration of polysaccharides as low as 0.5 -2 % resulted in increase of tensile strength from 45 g/cm 2 to 400 g/cm 2 , elongation from 30 % to 410 % and water uptake from 25 % to 120% with respect to PVA gel without polysaccharides. Besides improving mechanical strength, agar contributes more to elongation and carrageenan to mechanical strength of the gel dressing. The polysaccharides show different pre-gel viscosities behaviour indicating different individual contribution to the PVA network. Increasing the concentration of agar in the formulation to about 2% converts the sheet gel to paste gel useful for filling wound cavities. The polysaccharides also provide desirable plasticizer and humectant effect into the dressing. Formulations containing 7-9% PVA, 0.5- 1.5 % carrageenan and 0.5-1% agar gave highly effective usable hydrogel dressings. Scanning Electron Micrographs show highly porous structure of the gel. Clinical trials of wound dressing on human patients established safety and efficacy of the dressing. The dressing has been observed to be useful in treating burns, non healing ulcers of Diabetes, Leprosy and other external wounds. The dressings are now being marketed in India under different brand names

  7. Comparison of mesencephalic free-floating tissue culture grafts and cell suspension grafts in the 6-hydroxydopamine-lesioned rat

    DEFF Research Database (Denmark)

    Meyer, Morten; Widmer, H R; Wagner, B

    1998-01-01

    of grafted dopaminergic neurons and to correlate that with the behavioral effects. Additional cultures and acutely prepared explants were also fixed and stored for histological investigation in order to estimate the loss of dopaminergic neurons in culture and after transplantation. Similar behavioral...... numbers of TH-immunoreactive (TH-ir) neurons in grafts of cultured tissue (775 +/- 98, mean +/- SEM) and grafts of fresh, dissociated cell suspension (806 +/- 105, mean +/- SEM). Cell counts in fresh explants, 7-day-old cultures, and grafted cultures revealed a 68.2% loss of TH-ir cells 7 days after......Ventral mesencephalon (VM) of fetal rat and human origin grown as free-floating roller-tube (FFRT) cultures can survive subsequent grafting to the adult rat striatum. To further explore the functional efficacy of such grafts, embryonic day 13 ventral mesencephalic tissue was grafted either after 7...

  8. Influence of polymer architecture on antigens camouflage, CD47 protection and complement mediated lysis of surface grafted red blood cells.

    Science.gov (United States)

    Chapanian, Rafi; Constantinescu, Iren; Rossi, Nicholas A A; Medvedev, Nadia; Brooks, Donald E; Scott, Mark D; Kizhakkedathu, Jayachandran N

    2012-11-01

    Hyperbranched polyglycerol (HPG) and polyethylene glycol (PEG) polymers with similar hydrodynamic sizes in solution were grafted to red blood cells (RBCs) to investigate the impact of polymer architecture on the cell structure and function. The hydrodynamic sizes of polymers were calculated from the diffusion coefficients measured by pulsed field gradient NMR. The hydration of the HPG and PEG was determined by differential scanning calorimetry analyses. RBCs grafted with linear PEG had different properties compared to the compact HPG grafted RBCs. HPG grafted RBCs showed much higher electrophoretic mobility values than PEG grafted RBCs at similar grafting concentrations and hydrodynamic sizes indicating differences in the structure of the polymer exclusion layer on the cell surface. PEG grafting impacted the deformation properties of the membrane to a greater degree than HPG. The complement mediated lysis of the grafted RBCs was dependent on the type of polymer, grafting concentration and molecular size of grafted chains. At higher molecular weights and graft concentrations both HPG and PEG triggered complement activation. The magnitude of activation was higher with HPG possibly due to the presence of many hydroxyl groups per molecule. HPG grafted RBCs showed significantly higher levels of CD47 self-protein accessibility than PEG grafted RBCs at all grafting concentrations and molecular sizes. PEG grafted polymers provided, in general, a better shielding and protection to ABO and minor antigens from antibody recognition than HPG polymers, however, the compact HPGs provided greater protection of certain antigens on the RBC surface. Our data showed that HPG 20 kDa and HPG 60 kDa grafted RBCs exhibited properties that are more comparable to the native RBC than PEG 5 kDa and PEG 10 kDa grafted RBCs of comparable hydrodynamic sizes. The study shows that small compact polymers such as HPG 20 kDa have a greater potential in the generation of functional RBC for therapeutic

  9. Radiation grafting on natural films

    International Nuclear Information System (INIS)

    Lacroix, M.; Khan, R.; Senna, M.; Sharmin, N.; Salmieri, S.; Safrany, A.

    2014-01-01

    Different methods of polymer grafting using gamma irradiation are reported in the present study for the preparation of newly functionalized biodegradable films, and some important properties related to their mechanical and barrier properties are described. Biodegradable films composed of zein and poly(vinyl alcohol) (PVA) were gamma-irradiated in presence of different ratios of acrylic acid (AAc) monomer for compatibilization purpose. Resulting grafted films (zein/PVA-g-AAc) had their puncture strength (PS=37–40 N mm −1 ) and puncture deformation (PD=6.5–9.8 mm) improved for 30% and 50% PVA in blend, with 5% AAc under 20 kGy. Methylcellulose (MC)-based films were irradiated in the presence of 2-hydroxyethyl methacrylate (HEMA) or silane, in order to determine the effect of monomer grafting on the mechanical properties of films. It was found that grafted films (MC-g-HEMA and MC-g-silane) using 35% monomer performed higher mechanical properties with PS values of 282–296 N mm −1 and PD of 5.0–5.5 mm under 10 kGy. Compatibilized polycaprolactone (PCL)/chitosan composites were developed via grafting silane in chitosan films. Resulting trilayer grafted composite film (PCL/chitosan-g-silane/PCL) presented superior tensile strength (TS=22 MPa) via possible improvement of interfacial adhesion (PCL/chitosan) when using 25% silane under 10 kGy. Finally, MC-based films containing crystalline nanocellulose (CNC) as a filling agent were prepared and irradiated in presence of trimethylolpropane trimethacrylate (TMPTMA) as a grafted plasticizer. Grafted films (MC-g-TMPTMA) presented superior mechanical properties with a TS of 47.9 MPa and a tensile modulus (TM) of 1792 MPa, possibly due to high yield formation of radicals to promote TMPTMA grafting during irradiation. The addition of CNC led to an additional improvement of the barrier properties, with a significant 25% reduction of water vapor permeability (WVP) of grafted films. - Highlights: • Irradiation of zein

  10. The Pseudomonas aeruginosa PSL polysaccharide is a social but noncheatable trait in biofilms

    DEFF Research Database (Denmark)

    Irie, Yasuhiko; Roberts, Aled E.L.; Kragh, Kasper N.

    2017-01-01

    Extracellular polysaccharides are compounds secreted by microorganisms into the surrounding environment, and they are important for surface attachment and maintaining structural integrity within biofilms. The social nature of many extracellular polysaccharides remains unclear, and it has been sug...

  11. High-dimensional assessment of B-cell responses to quadrivalent meningococcal conjugate and plain polysaccharide vaccine.

    Science.gov (United States)

    O'Connor, Daniel; Clutterbuck, Elizabeth A; Thompson, Amber J; Snape, Matthew D; Ramasamy, Maheshi N; Kelly, Dominic F; Pollard, Andrew J

    2017-01-30

    Neisseria meningitidis is a globally important cause of meningitis and septicaemia. Twelve capsular groups of meningococci are known, and quadrivalent vaccines against four of these (A, C, W and Y) are available as plain-polysaccharide and protein-polysaccharide conjugate vaccines. Here we apply contemporary methods to describe B-cell responses to meningococcal polysaccharide and conjugate vaccines. Twenty adults were randomly assigned to receive either a meningococcal plain-polysaccharide or conjugate vaccine; one month later all received the conjugate vaccine. Blood samples were taken pre-vaccination and 7, 21 and 28 days after vaccination; B-cell responses were assessed by ELISpot, serum bactericidal assay, flow cytometry and gene expression microarray. Seven days after an initial dose of either vaccine, a gene expression signature characteristic of plasmablasts was detectable. The frequency of newly generated plasma cells (CXCR3 + HLA-DR + ) and the expression of transcripts derived from IGKC and IGHG2 correlated with immunogenicity. Notably, using an independent dataset, the expression of glucosamine (N-acetyl)-6-sulfatase was found to reproducibly correlate with the magnitude of immune response. Transcriptomic and flow cytometric data revealed depletion of switched memory B cells following plain-polysaccharide vaccine. These data describe distinct gene signatures associated with the production of high-avidity antibody and a plain-polysaccharide-specific signature, possibly linked to polysaccharide-induced hyporesponsiveness.

  12. Optimization of cellulase-assisted extraction process and antioxidant activities of polysaccharides from Tricholoma mongolicum Imai.

    Science.gov (United States)

    Zhao, Yong-Ming; Song, Jin-Hui; Wang, Jin; Yang, Jian-Ming; Wang, Zhi-Bao; Liu, Ying-Hui

    2016-10-01

    Tricholoma mongolicum Imai is a well-known edible and medicinal mushroom which in recent years has attracted increasing attention because of its bioactivities. In this study, water-soluble polysaccharides were extracted from T. mongolicum Imai by cellulase-assisted extraction and their antioxidant activities were investigated. In order to improve the yield of polysaccharides, four variables, cellulase amount (X1 ), pH (X2 ), temperature (X3 ) and extraction time (X4 ), were investigated with a Box-Behnken design. The optimal conditions were predicted to be cellulase amount of 20 g kg(-1) , pH of 4.0, temperature of 50 °C and extraction time of 127 min, with a predicted polysaccharide yield of 190.1 g kg(-1) . The actual yield of polysaccharides under these conditions was 189.6 g kg(-1) , which matched the predicted value well. The crude polysaccharides were purified to obtain four fractions, and characterization of each was carried out. In addition, antioxidant properties of four polysaccharides assessed by 1,1-diphenyl-2-picryldydrazyl (DPPH) and hydroxyl radical-scavenging assays indicated that polysaccharides from T. mongolicum Imai (TMIPs) possessed antioxidant activity in a dose-dependent manner. TMIPs show moderate antioxidant activities in vitro. Therefore it is suggested that TMIPs are potential natural antioxidants for use in functional foods. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Determination of saccharide content in pneumococcal polysaccharides and conjugate vaccines by GC-MSD.

    Science.gov (United States)

    Kim, John S; Laskowich, Erin R; Arumugham, Rasappa G; Kaiser, Raymond E; MacMichael, Gregory J

    2005-12-15

    A simple and sensitive gas chromatographic method was designed for quantitative analysis of Streptococcus pneumoniae capsular polysaccharides, activated polysaccharides, and polysaccharide conjugates. Pneumococcal serotypes 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, and 23F polysaccharide or conjugate were subjected to methanolysis in 3N hydrochloric acid in methanol followed by re-N-acetylation and trimethylsilylation. Derivatized samples were chromatographed and detected using gas chromatography with mass selective detector. Gas chromatographic results were compared with colorimetric values with agreement of 92 to 123% over the range of all samples tested. Monosaccharides released during methanolysis included hexoses, uronic acids, 6-deoxy-hexoses, amino sugars, and alditols. Quantitative recovery of monosaccharides was achieved for all serotypes by the use of a single methanolysis, derivatization, and chromatography procedure. Response factors generated from authentic monosaccharide standards were used for quantitation of pneumococcal polysaccharides and conjugates with confirmation of peak assignments by retention time and mass spectral analysis. This method allows saccharide quantitation in multivalent pneumococcal vaccine intermediates and final drug products with low-level detection (10 pg) and peak purity.

  14. Preparation of poly(vinylbenzyl chloride)-grafted PFA film by a simultaneous irradiation grafting method

    International Nuclear Information System (INIS)

    Fei, Geng; Shin, Jun Hwa; Nho, Young Chang; Lee, Youn Sik

    2009-01-01

    In this study, PFA-g-PVBC films were prepared by a radiation grafting of vinylbenzyl chloride (VBC) monomer onto poly(tetrafluoroethylene-co-perfluoro propyl vinyl ether) (PFA) films by simultaneous irradiation method. IR, TGA, and SEM-EDX instruments were utilized to confirm the successful preparation of the grafted film. The effects of several irradiation conditions, including the dose, VBC concentration, and film thickness on the degree of grafting of PFA-g-PVBC film were investigated

  15. Interventions in Infrainguinal Bypass Grafts

    International Nuclear Information System (INIS)

    Mueller-Huelsbeck, S.; Order, B.-M.; Jahnke, T.

    2006-01-01

    The interventional radiologist plays an important role in the detection and prevention of infrainguinal bypass failure. Early detection and evaluation of flow-limiting lesions effectively preserve graft (venous bypass and polyester or expanded polytetrafluoroethylene bypass) patency by identifying stenoses before occlusion occurs. Delay in treatment of the at-risk graft may result in graft failure and a reduced chance of successful revascularization. For this reason, surveillance protocols form an important part of follow-up after infrainguinal bypass surgery. As well as having an understanding of the application of imaging techniques including ultrasound, MR angiography, CT angiography and digital subtraction angiography, the interventional radiologist should have detailed knowledge of the minimally invasive therapeutic options. Percutaneous transluminal angioplasty (PTA), or alternatively cutting balloon angioplasty, is the interventional treatment of choice in prevention of graft failure and occlusion. Further alternatives include metallic stent placement, fibrinolysis, and mechanical thrombectomy. Primary assisted patency rates following PTA can be up to 65% at 5 years. When the endovascular approach is unsuccessful, these therapeutic options are complemented by surgical procedures including vein patch revision, jump grafting, or placement of a new graft

  16. Rib Bone Graft Adjusted to Fit the Facial Asymmetry: A Frame Structure Graft.

    Science.gov (United States)

    Lee, Yoon Ho; Choi, Jong Hwan; Hwang, Kun; Choi, Jun Ho

    2015-10-01

    The authors introduce the concept of a "frame structure graft" in which a harvested rib bone was adjusted to fit facial asymmetry. On the costochondral junction of the sixth or seventh rib, a 5 cm incision was made. Through a subperiosteal dissection, the rib bone was harvested. Using a reciprocating saw, the harvested rib was scored on its anterior surface as well as its posterior surface with a partial depth at different intervals. The harvested rib bone was placed on the skin surface of the unaffected side of the face and a curvature was created exactly matching that of the unaffected side by bending the bone using a greenstick fracture. Thereafter, the graft was adjusted to conceal the asymmetry of the deficient side. The adjusted "frame structure" was transferred to the defect through the incisions on the affected side, and the "frame structure" graft was placed on the mandible or zygoma. The graft fixation was done externally with at least 2 Kirschner wires (K-wires). From January 2005 to August 2013, a total of 30 patients (13 men, 17 women, mean age 25.6 years) received a frame structure graft. All 30 patients achieved good healing at the operation site without complications. Donor-site morbidity as pneumothorax from the rib bone harvest was not found. Merits of this frame structure graft, the authors think, are that this method could allow a similar curvature to the normal side. In addition, the procedure itself is easy.

  17. Graft copolymers of polypropylene films. 1. radiation induced grafting of mixed monomers. Vol. 3

    International Nuclear Information System (INIS)

    El-Salmawi, K.M.; El-Naggar, A.M.; Said, H.M.; Zahran, A.H.

    1996-01-01

    Radiation graft copolymerization of co monomer mixtures of acrylic acid (AAC), and styrene (S) onto polypropylene (PP) film by mutual method has been investigated. The effects of different factors that may affect the grafting yield such as inhibitor concentration (Mohr's salt), solvent composition (MeOH and H 2 O), radiation dose and dose rate were considered. It was found that the role of Mohr's salt is very effective when the ratio of AAC in the co monomer mixtures was at lower values. However, the addition of 1.25 Wt% of Mohr's salt reduced the homo polymer formation and enhances the grafting process. Graft copolymerization in presence of solvent mixture composed of methanol and water was found to afford higher grafting than in pure methanol regardless of the composition of the co monomer mixture used. However, the highest degree of grafting was obtained at a solvent composition of 20% H 2 O:80%MeOH and a co monomer mixture of 20%AAC:80%sty. An attempt was made to determine each PAAC and PS fractions in the total graft yield obtained. Two methods of analysis based on using the reactivity ratios reported in literature, elemental analysis and IR spectroscopy. The determination of poly (acrylic acid) and polystyrene fractions by elemental analysis is believed more accurate than these by reactivity ratio. The precise results obtained by elemental analysis with respect to the chemical structure of known polymer prepared under identical conditions. The results obtained by IR measurements go well with that obtained with the reactivity ratio methods. 5 figs., 3 tabs

  18. Size-resolved atmospheric particulate polysaccharides in the high summer Arctic

    Science.gov (United States)

    Leck, C.; Gao, Q.; Mashayekhy Rad, F.; Nilsson, U.

    2013-12-01

    Size-resolved aerosol samples for subsequent quantitative determination of polymer sugars (polysaccharides) after hydrolysis to their subunit monomers (monosaccharides) were collected in surface air over the central Arctic Ocean during the biologically most active summer period. The analysis was carried out by novel use of liquid chromatography coupled with highly selective and sensitive tandem mass spectrometry. Polysaccharides were detected in particle sizes ranging from 0.035 to 10 μm in diameter with distinct features of heteropolysaccharides, enriched in xylose, glucose + mannose as well as a substantial fraction of deoxysugars. Polysaccharides, containing deoxysugar monomers, showed a bimodal size structure with about 70% of their mass found in the Aitken mode over the pack ice area. Pentose (xylose) and hexose (glucose + mannose) had a weaker bimodal character and were largely found with super-micrometer sizes and in addition with a minor sub-micrometer fraction. The concentration of total hydrolysable neutral sugars (THNS) in the samples collected varied over two orders of magnitude (1 to 160 pmol m-3) in the super-micrometer size fraction and to a somewhat lesser extent in sub-micrometer particles (4 to 140 pmol m-3). Lowest THNS concentrations were observed in air masses that had spent more than five days over the pack ice. Within the pack ice area, about 53% of the mass of hydrolyzed polysaccharides was detected in sub-micrometer particles. The relative abundance of sub-micrometer hydrolyzed polysaccharides could be related to the length of time that the air mass spent over pack ice, with the highest fraction (> 90%) observed for > 7 days of advection. The aerosol samples collected onboard ship showed similar monosaccharide composition, compared to particles generated experimentally in situ at the expedition's open lead site. This supports the existence of a primary particle source of polysaccharide containing polymer gels from open leads by bubble

  19. Imaging features of anterior cruciate ligament reconstruction graft insufficiency

    International Nuclear Information System (INIS)

    Shang Yao; Zhang Yue; Tian Chunyan; Zheng Zhuozhao

    2011-01-01

    Objective: To investigate the imaging features of anterior cruciate ligament (ACL) graft insufficiency. Methods: X-Ray and MR imaging examinations in 24 consecutive patients who had ACL reconstructive graft insufficiency were retrospectively evaluated for tunnel position, osteoarthrosis and its related complications. Follow-up arthroscopy showed 16 graft tears and 8 graft laxities. Fisher exact test was used to compare tunnel malpositions, the proportion of graft tear on MRI and osteoarthrosis between graft tear group and graft laxity group. Results: Two malpositions of tibial tunnel and 3 malpositions of femoral tunnel were seen in graft tear group. Three-malpositions of tibial tunnel and 4 malpositions of femoral tunnel were seen in graft laxity group. The proportion of tibial or femoral malposition showed no significant difference between the two groups (P=0.289, P=0.167). In graft tear group, 15 complete graft tears were diagnosed correctly, 1 partial tear was misdiagnosed as normal on MRI. In graft laxity group, 4 grafts were diagnosed as normal and 4 were considered as graft tear on MRI. A significant difference was seen between the two groups (P=0.028) in the proportion of graft tear diagnosed on MRI. Fourteen osteoarthrosis were seen in graft tear group and 5 in graft laxity group. No significant difference was seen between the two groups (P= 0.289) in the proportion of osteoarthrosis. Conclusion: The proportions of tunnel malposition and osteoarthrosis showed no significant difference between the graft tear group and graft Laxity group. Most graft tears can be diagnosed accurately on MRI, but some cases of graft laxity may be misdiagnosed for graft tear. (authors)

  20. Purification, Characterization, and Antioxidant Activity of Polysaccharides Isolated from Cortex Periplocae.

    Science.gov (United States)

    Wang, Xiaoli; Zhang, Yifei; Liu, Zhikai; Zhao, Mingqin; Liu, Pengfei

    2017-10-31

    In this study, crude Cortex Periplocae polysaccharides (CCPPs) were extracted with water. CCPPs were decolored with AB-8 resin and deproteinated using papain-Sevage methods. Then, they were further purified and separated through DEAE-52 anion exchange chromatography and Sephadex G-100 gel filtration chromatography, respectively. Three main fractions-CPP1, CPP2, and CPP3, (CPPs)-were obtained. The average molecular weights, monosaccharide analysis, surface morphology, and chemical compositions of the CPPs were investigated by high-performance gel permeation chromatography (HPGPC), gas chromatography-mass spectrometry (GC/MS), UV-vis spectroscopy, Fourier transform infrared (FT-IR) spectrum, and nuclear magnetic resonance (NMR). In addition, the antioxidant activities of these three polysaccharides were investigated. The results indicated that all of the CPPs were composed of rhamnose, arabinose, mannose, glucose, and galactose. These three polysaccharides exhibited antioxidant activities in four assays including 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, 2,2'-azino-bis(3-ethyl-benzthiazoline-6-sulfonic acid) (ABTS) radical, reducing power, and total antioxidant activity in vitro. The data indicated that these three polysaccharides could be utilized as potential natural sources of alternative additives in the functional food, cosmetics, and pharmaceutical industries.