Graph approach to the gradient expansion of density functionals
International Nuclear Information System (INIS)
Kozlowski, P.M.; Nalewajski, R.F.
1986-01-01
A graph representation of terms in the gradient expansion of the kinetic energy density functional is presented. They briefly discuss the implications of the virial theorem for the graph structure and relations between possible graphs at a given order of expansion
Giovannini, Massimo
2015-01-01
Cosmological singularities are often discussed by means of a gradient expansion that can also describe, during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. It is argued that conventional arguments addressing the preinflationary initial conditions are necessary but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage.
Bigravity from gradient expansion
International Nuclear Information System (INIS)
Yamashita, Yasuho; Tanaka, Takahiro
2016-01-01
We discuss how the ghost-free bigravity coupled with a single scalar field can be derived from a braneworld setup. We consider DGP two-brane model without radion stabilization. The bulk configuration is solved for given boundary metrics, and it is substituted back into the action to obtain the effective four-dimensional action. In order to obtain the ghost-free bigravity, we consider the gradient expansion in which the brane separation is supposed to be sufficiently small so that two boundary metrics are almost identical. The obtained effective theory is shown to be ghost free as expected, however, the interaction between two gravitons takes the Fierz-Pauli form at the leading order of the gradient expansion, even though we do not use the approximation of linear perturbation. We also find that the radion remains as a scalar field in the four-dimensional effective theory, but its coupling to the metrics is non-trivial.
Primordial vorticity and gradient expansion
Giovannini, Massimo
2012-01-01
The evolution equations of the vorticities of the electrons, ions and photons in a pre-decoupling plasma are derived, in a fully inhomogeneous geometry, by combining the general relativistic gradient expansion and the drift approximation within the Adler-Misner-Deser decomposition. The vorticity transfer between the different species is discussed in this novel framework and a set of general conservation laws, connecting the vorticities of the three-component plasma with the magnetic field intensity, is derived. After demonstrating that a source of large-scale vorticity resides in the spatial gradients of the geometry and of the electromagnetic sources, the total vorticity is estimated to lowest order in the spatial gradients and by enforcing the validity of the momentum constraint. By acknowledging the current bounds on the tensor to scalar ratio in the (minimal) tensor extension of the $\\Lambda$CDM paradigm the maximal comoving magnetic field induced by the total vorticity turns out to be, at most, of the or...
Strain expansion-reduction approach
Baqersad, Javad; Bharadwaj, Kedar
2018-02-01
Validating numerical models are one of the main aspects of engineering design. However, correlating million degrees of freedom of numerical models to the few degrees of freedom of test models is challenging. Reduction/expansion approaches have been traditionally used to match these degrees of freedom. However, the conventional reduction/expansion approaches are only limited to displacement, velocity or acceleration data. While in many cases only strain data are accessible (e.g. when a structure is monitored using strain-gages), the conventional approaches are not capable of expanding strain data. To bridge this gap, the current paper outlines a reduction/expansion technique to reduce/expand strain data. In the proposed approach, strain mode shapes of a structure are extracted using the finite element method or the digital image correlation technique. The strain mode shapes are used to generate a transformation matrix that can expand the limited set of measurement data. The proposed approach can be used to correlate experimental and analytical strain data. Furthermore, the proposed technique can be used to expand real-time operating data for structural health monitoring (SHM). In order to verify the accuracy of the approach, the proposed technique was used to expand the limited set of real-time operating data in a numerical model of a cantilever beam subjected to various types of excitations. The proposed technique was also applied to expand real-time operating data measured using a few strain gages mounted to an aluminum beam. It was shown that the proposed approach can effectively expand the strain data at limited locations to accurately predict the strain at locations where no sensors were placed.
Crystalline phases by an improved gradient expansion technique
Carignano, S.; Mannarelli, M.; Anzuini, F.; Benhar, O.
2018-02-01
We develop an innovative technique for studying inhomogeneous phases with a spontaneous broken symmetry. The method relies on the knowledge of the exact form of the free energy in the homogeneous phase and on a specific gradient expansion of the order parameter. We apply this method to quark matter at vanishing temperature and large chemical potential, which is expected to be relevant for astrophysical considerations. The method is remarkably reliable and fast as compared to performing the full numerical diagonalization of the quark Hamiltonian in momentum space and is designed to improve the standard Ginzburg-Landau expansion close to the phase transition points. For definiteness, we focus on inhomogeneous chiral symmetry breaking, accurately reproducing known results for one-dimensional and two-dimensional modulations and examining novel crystalline structures, as well. Consistently with previous results, we find that the energetically favored modulation is the so-called one-dimensional real-kink crystal. We propose a qualitative description of the pairing mechanism to motivate this result.
Constantin, Lucian A; Fabiano, Eduardo; Della Sala, Fabio
2017-09-12
Using the semiclassical neutral atom theory, we developed a modified fourth-order kinetic energy (KE) gradient expansion (GE4m) that keeps unchanged all the linear-response terms of the uniform electron gas and gives a significant improvement with respect to the known semilocal functionals for both large atoms and jellium surfaces. On the other hand, GE4m is not accurate for light atoms; thus, we modified the GE4m coefficients making them dependent on a novel ingredient, the reduced Hartree potential, recently introduced in the Journal of Chemical Physics 2016, 145, 084110, in the context of exchange functionals. The resulting KE gradient expansion functional, named uGE4m, belongs to the novel class of u-meta-generalized-gradient-approximations (uMGGA) whose members depend on the conventional ingredients (i.e., the reduced gradient and Laplacian of the density) as well as on the reduced Hartree potential. To test uGE4m, we defined an appropriate benchmark (including total KE and KE differences for atoms, molecules and jellium clusters) for gradient expansion functionals, that is, including only those systems which are mainly described by a slowly varying density regime. While most of the GGA and meta-GGA KE functionals (we tested 18 of them) are accurate for some properties and inaccurate for others, uGE4m shows a consistently good performance for all the properties considered. This represents a qualitative boost in the KE functional development and highlights the importance of the reduced Hartree potential for the construction of next-generation KE functionals.
International Nuclear Information System (INIS)
Sergeev, Alexey; Jovanovic, Raka; Kais, Sabre; Alharbi, Fahhad H
2016-01-01
We consider the density of a fermionic system as a functional of the potential, in one-dimensional case, where it is approximated by the Thomas–Fermi term plus semiclassical corrections through the gradient expansion. We compare this asymptotic series with the exact answer for the case of the harmonic oscillator and the Morse potential. It is found that the leading (Thomas–Fermi) term is in agreement with the exact density, but the subdominant term does not agree in terms of the asymptotic behavior because of the presence of oscillations in the exact density, but their absence in the gradient expansion. However, after regularization of the density by convolution with a Gaussian, the agreement can be established even in the subdominant term. Moreover, it is found that the expansion is always divergent, and its terms grow proportionally to the factorial function of the order, similar to the well-known divergence of perturbation series in field theory and the quantum anharmonic oscillator. Padé–Hermite approximants allow summation of the series, and one of the branches of the approximants agrees with the density. (paper)
International Nuclear Information System (INIS)
Kaschner, R.; Graefenstein, J.; Ziesche, P.
1988-12-01
From the local momentum balance using density functional theory an expression for the local quantum-mechanical stress tensor (or stress field) σ(r) of non-relativistic Coulomb systems is found out within the Thomas-Fermi approximation and its generalizations including gradient expansion method. As an illustration the stress field σ(r) is calculated for the jellium model of the interface K-Cs, containing especially the adhesive force between the two half-space jellia. (author). 23 refs, 1 fig
A pedagogical approach to the Magnus expansion
International Nuclear Information System (INIS)
Blanes, S; Casas, F; Oteo, J A; Ros, J
2010-01-01
Time-dependent perturbation theory as a tool to compute approximate solutions of the Schroedinger equation does not preserve unitarity. Here we present, in a simple way, how the Magnus expansion (also known as exponential perturbation theory) provides such unitary approximate solutions. The purpose is to illustrate the importance and consequences of such a property. We suggest that the Magnus expansion may be introduced to students in advanced courses of quantum mechanics.
Salinity Gradient Energy from Expansion and Contraction of Poly(allylamine hydrochloride) Hydrogels.
Bui, Tri Quang; Cao, Vinh Duy; Do, Nu Bich Duyen; Christoffersen, Trine Eker; Wang, Wei; Kjøniksen, Anna-Lena
2018-06-22
Salinity gradients exhibit a great potential for production of renewable energy. Several techniques such as pressure-retarded osmosis and reverse electrodialysis have been employed to extract this energy. Unfortunately, these techniques are restricted by the high costs of membranes and problems with membrane fouling. However, the expansion and contraction of hydrogels can be a new and cheaper way to harvest energy from salinity gradients since the hydrogels swell in freshwater and shrink in saltwater. We have examined the effect of cross-linker concentration and different external loads on the energy recovered for this type of energy-producing systems. Poly(allylamine hydrochloride) hydrogels were cross-linked with glutaraldehyde to produce hydrogels with excellent expansion and contraction properties. Increasing the cross-linker concentration markedly improved the energy that could be recovered from the hydrogels, especially at high external loads. A swollen hydrogel of 60 g could recover more than 1800 mJ when utilizing a high cross-linker concentration, and the maximum amount of energy produced per gram of polymer was 3.4 J/g. Although more energy is recovered at high cross-linking densities, the maximum amount of energy produced per gram of polymer is highest at an intermediate cross-linking concentration. Energy recovery was reduced when the salt concentration was increased for the low-concentration saline solution. The results illustrate that hydrogels are promising for salinity gradient energy recovery, and that optimizing the systems significantly increases the amount of energy that can be recovered.
A substrate independent approach for generation of surface gradients
Energy Technology Data Exchange (ETDEWEB)
Goreham, Renee V. [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); Mierczynska, Agnieszka; Pierce, Madelene [Ian Wark Research Institute, University of South Australia, Mawson Lakes 5095 (Australia); Short, Robert D.; Taheri, Shima; Bachhuka, Akash; Cavallaro, Alex; Smith, Louise E. [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); Vasilev, Krasimir, E-mail: krasimir.vasilev@unisa.edu.au [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia)
2013-01-01
Recently, surface gradients have attracted significant interest for various research and technological applications. In this paper, we report a facile and versatile method for generating surface gradients of immobilized nanoparticles, nanotopography and ligands that is independent from the substrate material. The method consists of first depositing a functional polymer layer on a substrate and subsequent time controlled immersion of this functionalized substrate in solution gold nanoparticles (AuNPs), silver nanoparticles (AgNPs) or poly (styrenesulfonate) (PSS). Chemical characterization by X-ray Photoelectron Spectroscopy (XPS) and morphological analysis by Atomic Force Microscopy (AFM) show that the density of nanoparticles and the concentration of PSS across the surface increases in a gradient manner. As expected, time of immersion determines the concentration of surface bound species. We also demonstrate the generation of surface gradients of pure nanotopography. This is achieved by depositing a 5 nm thick plasma polymer layer on top of the number density gradient of nanoparticles to achieve a homogeneous surface chemistry. The surface independent approach for generation of surface gradients presented in this paper may open opportunities for a wider use of surface gradient in research and in various technologies. - Highlights: ► We present a substrate independent approach for generation of surface gradients. ► We demonstrate well-defined density gradients of gold and silver nanoparticles. ► We provide an example of pure surface nanotopography gradients. ► We demonstrate concentration gradients of bound ligands.
A substrate independent approach for generation of surface gradients
International Nuclear Information System (INIS)
Goreham, Renee V.; Mierczynska, Agnieszka; Pierce, Madelene; Short, Robert D.; Taheri, Shima; Bachhuka, Akash; Cavallaro, Alex; Smith, Louise E.; Vasilev, Krasimir
2013-01-01
Recently, surface gradients have attracted significant interest for various research and technological applications. In this paper, we report a facile and versatile method for generating surface gradients of immobilized nanoparticles, nanotopography and ligands that is independent from the substrate material. The method consists of first depositing a functional polymer layer on a substrate and subsequent time controlled immersion of this functionalized substrate in solution gold nanoparticles (AuNPs), silver nanoparticles (AgNPs) or poly (styrenesulfonate) (PSS). Chemical characterization by X-ray Photoelectron Spectroscopy (XPS) and morphological analysis by Atomic Force Microscopy (AFM) show that the density of nanoparticles and the concentration of PSS across the surface increases in a gradient manner. As expected, time of immersion determines the concentration of surface bound species. We also demonstrate the generation of surface gradients of pure nanotopography. This is achieved by depositing a 5 nm thick plasma polymer layer on top of the number density gradient of nanoparticles to achieve a homogeneous surface chemistry. The surface independent approach for generation of surface gradients presented in this paper may open opportunities for a wider use of surface gradient in research and in various technologies. - Highlights: ► We present a substrate independent approach for generation of surface gradients. ► We demonstrate well-defined density gradients of gold and silver nanoparticles. ► We provide an example of pure surface nanotopography gradients. ► We demonstrate concentration gradients of bound ligands
A Pedagogical Approach to the Magnus Expansion
Blanes, S.; Casas, F.; Oteo, J. A.; Ros, J.
2010-01-01
Time-dependent perturbation theory as a tool to compute approximate solutions of the Schrodinger equation does not preserve unitarity. Here we present, in a simple way, how the "Magnus expansion" (also known as "exponential perturbation theory") provides such unitary approximate solutions. The purpose is to illustrate the importance and…
Optimizing sampling approaches along ecological gradients
DEFF Research Database (Denmark)
Schweiger, Andreas; Irl, Severin D. H.; Steinbauer, Manuel
2016-01-01
1. Natural scientists and especially ecologists use manipulative experiments or field observations along gradients to differentiate patterns driven by processes from those caused by random noise. A well-conceived sampling design is essential for identifying, analysing and reporting underlying...... patterns in a statistically solid and reproducible manner, given the normal restrictions in labour, time and money. However, a technical guideline about an adequate sampling design to maximize prediction success under restricted resources is lacking. This study aims at developing such a solid...... and reproducible guideline for sampling along gradients in all fields of ecology and science in general. 2. We conducted simulations with artificial data for five common response types known in ecology, each represented by a simple function (no response, linear, exponential, symmetric unimodal and asymmetric...
Chemical bond as a test of density-gradient expansions for kinetic and exchange energies
International Nuclear Information System (INIS)
Perdew, J.P.; Levy, M.; Painter, G.S.; Wei, S.; Lagowski, J.B.
1988-01-01
Errors in kinetic and exchange contributions to the molecular bonding energy are assessed for approximate density functionals by reference to near-exact Hartree-Fock values. From the molecular calculations of Allan et al. and of Lee and Ghosh, it is demonstrated that the density-gradient expansion does not accurately describe the noninteracting kinetic contribution to the bonding energy, even when this expansion is carried to fourth order and applied in its spin-density-functional form to accurate Hartree-Fock densities. In a related study, it is demonstrated that the overbinding of molecules such as N 2 and F 2 , which occurs in the local-spin-density (LSD) approximation for the exchange-correlation energy, is not attributable to errors in the self-consistent LSD densities. Contrary to expectations based upon the Gunnarsson-Jones nodality argument, it is found that the LSD approximation for the exchange energy can seriously overbind a molecule even when bonding does not create additional nodes in the occupied valence orbitals. LSD and exact values for the exchange contribution to the bonding energy are displayed and discussed for several molecules
An Overview of the Topological Gradient Approach in Image Processing: Advantages and Inconveniences
Jaafar Belaid, Lamia
2010-01-01
Image analysis by topological gradient approach is a technique based upon the historic application of the topological asymptotic expansion to crack localization problem from boundary measurements. This paper aims at reviewing this methodology through various applications in image processing; in particular image restoration with edge detection, classification and segmentation problems for both grey level and color images is presented in this work. The numerical experiments show the efficiency ...
Numerical approaches to expansion process modeling
Directory of Open Access Journals (Sweden)
G. V. Alekseev
2017-01-01
mandatory processing. Among the most promising now include the technology of expansion.
International Nuclear Information System (INIS)
Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.
2013-01-01
Highlights: ► A new adaptive h-refinement approach has been developed for a class of nodal method. ► The resulting system of nodal equations is more amenable to efficient numerical solution. ► The benefit of the approach is reducing computational efforts relative to the uniform fine mesh modeling. ► Spatially adaptive approach greatly enhances the accuracy of the solution. - Abstract: The aim of this work is to develop a spatially adaptive coarse mesh strategy that progressively refines the nodes in appropriate regions of domain to solve the neutron balance equation by zeroth order nodal expansion method. A flux gradient based a posteriori estimation scheme has been utilized for checking the approximate solutions for various nodes. The relative surface net leakage of nodes has been considered as an assessment criterion. In this approach, the core module is called in by adaptive mesh generator to determine gradients of node surfaces flux to explore the possibility of node refinements in appropriate regions and directions of the problem. The benefit of the approach is reducing computational efforts relative to the uniform fine mesh modeling. For this purpose, a computer program ANRNE-2D, Adaptive Node Refinement Nodal Expansion, has been developed to solve neutron diffusion equation using average current nodal expansion method for 2D rectangular geometries. Implementing the adaptive algorithm confirms its superiority in enhancing the accuracy of the solution without using fine nodes throughout the domain and increasing the number of unknown solution. Some well-known benchmarks have been investigated and improvements are reported
Nonnegative least-squares image deblurring: improved gradient projection approaches
Benvenuto, F.; Zanella, R.; Zanni, L.; Bertero, M.
2010-02-01
The least-squares approach to image deblurring leads to an ill-posed problem. The addition of the nonnegativity constraint, when appropriate, does not provide regularization, even if, as far as we know, a thorough investigation of the ill-posedness of the resulting constrained least-squares problem has still to be done. Iterative methods, converging to nonnegative least-squares solutions, have been proposed. Some of them have the 'semi-convergence' property, i.e. early stopping of the iteration provides 'regularized' solutions. In this paper we consider two of these methods: the projected Landweber (PL) method and the iterative image space reconstruction algorithm (ISRA). Even if they work well in many instances, they are not frequently used in practice because, in general, they require a large number of iterations before providing a sensible solution. Therefore, the main purpose of this paper is to refresh these methods by increasing their efficiency. Starting from the remark that PL and ISRA require only the computation of the gradient of the functional, we propose the application to these algorithms of special acceleration techniques that have been recently developed in the area of the gradient methods. In particular, we propose the application of efficient step-length selection rules and line-search strategies. Moreover, remarking that ISRA is a scaled gradient algorithm, we evaluate its behaviour in comparison with a recent scaled gradient projection (SGP) method for image deblurring. Numerical experiments demonstrate that the accelerated methods still exhibit the semi-convergence property, with a considerable gain both in the number of iterations and in the computational time; in particular, SGP appears definitely the most efficient one.
Estimating Soil Hydraulic Parameters using Gradient Based Approach
Rai, P. K.; Tripathi, S.
2017-12-01
The conventional way of estimating parameters of a differential equation is to minimize the error between the observations and their estimates. The estimates are produced from forward solution (numerical or analytical) of differential equation assuming a set of parameters. Parameter estimation using the conventional approach requires high computational cost, setting-up of initial and boundary conditions, and formation of difference equations in case the forward solution is obtained numerically. Gaussian process based approaches like Gaussian Process Ordinary Differential Equation (GPODE) and Adaptive Gradient Matching (AGM) have been developed to estimate the parameters of Ordinary Differential Equations without explicitly solving them. Claims have been made that these approaches can straightforwardly be extended to Partial Differential Equations; however, it has been never demonstrated. This study extends AGM approach to PDEs and applies it for estimating parameters of Richards equation. Unlike the conventional approach, the AGM approach does not require setting-up of initial and boundary conditions explicitly, which is often difficult in real world application of Richards equation. The developed methodology was applied to synthetic soil moisture data. It was seen that the proposed methodology can estimate the soil hydraulic parameters correctly and can be a potential alternative to the conventional method.
Using Spherical-Harmonics Expansions for Optics Surface Reconstruction from Gradients.
Solano-Altamirano, Juan Manuel; Vázquez-Otero, Alejandro; Khikhlukha, Danila; Dormido, Raquel; Duro, Natividad
2017-11-30
In this paper, we propose a new algorithm to reconstruct optics surfaces (aka wavefronts) from gradients, defined on a circular domain, by means of the Spherical Harmonics. The experimental results indicate that this algorithm renders the same accuracy, compared to the reconstruction based on classical Zernike polynomials, using a smaller number of polynomial terms, which potentially speeds up the wavefront reconstruction. Additionally, we provide an open-source C++ library, released under the terms of the GNU General Public License version 2 (GPLv2), wherein several polynomial sets are coded. Therefore, this library constitutes a robust software alternative for wavefront reconstruction in a high energy laser field, optical surface reconstruction, and, more generally, in surface reconstruction from gradients. The library is a candidate for being integrated in control systems for optical devices, or similarly to be used in ad hoc simulations. Moreover, it has been developed with flexibility in mind, and, as such, the implementation includes the following features: (i) a mock-up generator of various incident wavefronts, intended to simulate the wavefronts commonly encountered in the field of high-energy lasers production; (ii) runtime selection of the library in charge of performing the algebraic computations; (iii) a profiling mechanism to measure and compare the performance of different steps of the algorithms and/or third-party linear algebra libraries. Finally, the library can be easily extended to include additional dependencies, such as porting the algebraic operations to specific architectures, in order to exploit hardware acceleration features.
Using Spherical-Harmonics Expansions for Optics Surface Reconstruction from Gradients
Directory of Open Access Journals (Sweden)
Juan Manuel Solano-Altamirano
2017-11-01
Full Text Available In this paper, we propose a new algorithm to reconstruct optics surfaces (aka wavefronts from gradients, defined on a circular domain, by means of the Spherical Harmonics. The experimental results indicate that this algorithm renders the same accuracy, compared to the reconstruction based on classical Zernike polynomials, using a smaller number of polynomial terms, which potentially speeds up the wavefront reconstruction. Additionally, we provide an open-source C++ library, released under the terms of the GNU General Public License version 2 (GPLv2, wherein several polynomial sets are coded. Therefore, this library constitutes a robust software alternative for wavefront reconstruction in a high energy laser field, optical surface reconstruction, and, more generally, in surface reconstruction from gradients. The library is a candidate for being integrated in control systems for optical devices, or similarly to be used in ad hoc simulations. Moreover, it has been developed with flexibility in mind, and, as such, the implementation includes the following features: (i a mock-up generator of various incident wavefronts, intended to simulate the wavefronts commonly encountered in the field of high-energy lasers production; (ii runtime selection of the library in charge of performing the algebraic computations; (iii a profiling mechanism to measure and compare the performance of different steps of the algorithms and/or third-party linear algebra libraries. Finally, the library can be easily extended to include additional dependencies, such as porting the algebraic operations to specific architectures, in order to exploit hardware acceleration features.
Global GPS Ionospheric Modelling Using Spherical Harmonic Expansion Approach
Directory of Open Access Journals (Sweden)
Byung-Kyu Choi
2010-12-01
Full Text Available In this study, we developed a global ionosphere model based on measurements from a worldwide network of global positioning system (GPS. The total number of the international GPS reference stations for development of ionospheric model is about 100 and the spherical harmonic expansion approach as a mathematical method was used. In order to produce the ionospheric total electron content (TEC based on grid form, we defined spatial resolution of 2.0 degree and 5.0 degree in latitude and longitude, respectively. Two-dimensional TEC maps were constructed within the interval of one hour, and have a high temporal resolution compared to global ionosphere maps which are produced by several analysis centers. As a result, we could detect the sudden increase of TEC by processing GPS observables on 29 October, 2003 when the massive solar flare took place.
Polynomial Chaos Expansion Approach to Interest Rate Models
Directory of Open Access Journals (Sweden)
Luca Di Persio
2015-01-01
Full Text Available The Polynomial Chaos Expansion (PCE technique allows us to recover a finite second-order random variable exploiting suitable linear combinations of orthogonal polynomials which are functions of a given stochastic quantity ξ, hence acting as a kind of random basis. The PCE methodology has been developed as a mathematically rigorous Uncertainty Quantification (UQ method which aims at providing reliable numerical estimates for some uncertain physical quantities defining the dynamic of certain engineering models and their related simulations. In the present paper, we use the PCE approach in order to analyze some equity and interest rate models. In particular, we take into consideration those models which are based on, for example, the Geometric Brownian Motion, the Vasicek model, and the CIR model. We present theoretical as well as related concrete numerical approximation results considering, without loss of generality, the one-dimensional case. We also provide both an efficiency study and an accuracy study of our approach by comparing its outputs with the ones obtained adopting the Monte Carlo approach, both in its standard and its enhanced version.
Reilly, J.; Abdel-Jaber, H.; Yarnold, M.; Glisic, B.
2017-04-01
Structural Health Monitoring aims to characterize the performance of a structure from a combination of recorded sensor data and analytic techniques. Many methods are concerned with quantifying the elastic response of the structure, treating temperature changes as noise in the analysis. While these elastic profiles do demonstrate a portion of structural behavior, thermal loads on a structure can induce comparable strains to elastic loads. Understanding this relationship between the temperature of the structure and the resultant strain and displacement can provide in depth knowledge of the structural condition. A necessary parameter for this form of analysis is the Coefficient of Thermal Expansion (CTE). The CTE of a material relates the amount of expansion or contraction a material undergoes per degree change in temperature, and can be determined from temperature-strain relationship given that the thermal strain can be isolated. Many times with concrete, the actual amount of expansion with temperature in situ varies from the given values for the CTE due to thermally generated elastic strain, which complicates evaluation of the CTE. To accurately characterize the relationship between temperature and strain on a structure, the actual thermal behavior of the structure needs to be analyzed. This rate can vary for different parts of a structure, depending on boundary conditions. In a case of unrestrained structures, the strain in the structure should be linearly related to the temperature change. Thermal gradients in a structure can affect this relationship, as they induce curvature and deplanations in the cross section. This paper proposes a method that addresses these challenges in evaluating the CTE.
Delaruelle, Katrijn; Buffel, Veerle; Bracke, Piet
2015-11-01
Researchers have recently been investigating the temporal variation in the educational gradient in health. While there is abundant literature concerning age trajectories, theoretical knowledge about cohort differences is relatively limited. Therefore, in analogy with the life course perspective, we introduce two contrasting cohort-specific hypotheses. The diminishing health returns hypothesis predicts a decrease in educational disparities in health across cohorts. By contrast, the cohort accretion hypothesis suggests that the education-health gap will be more pronounced among younger cohorts. To shed light on this, we perform a hierarchical age-period-cohort analysis (HAPC), using data from a subsample of individuals between 25 and 85 years of age (N = 232,573) from 32 countries in the European Social Survey (six waves: 2002-2012). The analysis leads to three important conclusions. First, we observe a widening health gap between different educational levels over the life course. Second, we find that these educational differences in the age trajectories of health seem to strengthen with each successive birth cohort. However, the two age-related effects disappear when we control for employment status, household income, and family characteristics. Last, when adjusting for these mediators, we reveal evidence to support the diminishing health returns hypothesis, implying that it is primarily the direct association between education and health that decreases across cohorts. This finding raises concerns about potential barriers to education being a vehicle for empowerment and the promotion of health. Copyright © 2015 Elsevier Ltd. All rights reserved.
Generalized approach to the non-backtracking lace expansion
Fitzner, R.; van der Hofstad, R.W.
2017-01-01
The lace expansion is a powerful perturbative technique to analyze the critical behavior of random spatial processes such as the self-avoiding walk, percolation and lattice trees and animals. The non-backtracking lace expansion (NoBLE) is a modification that allows us to improve its applicability in
A matched expansion approach to practical self-force calculations
International Nuclear Information System (INIS)
Anderson, Warren G; Wiseman, Alan G
2005-01-01
We discuss a practical method of computing the self-force on a particle moving through a curved spacetime. This method involves two expansions to calculate the self-force, one arising from the particle's immediate past and the other from the more distant past. The expansion in the immediate past is a covariant Taylor series and can be carried out for all geometries. The more distant expansion is a mode sum, and may be carried out in those cases where the wave equation for the field mediating the self-force admits a mode expansion of the solution. In particular, this method can be used to calculate the gravitational self-force for a particle of mass μ orbiting a black hole of mass M to order μ 2 , provided μ/M << 1. We discuss how to use these two expansions to construct a full self-force, and in particular investigate criteria for matching the two expansions. As with all methods of computing self-forces for particles moving in black hole spacetimes, one encounters considerable technical difficulty in applying this method; nevertheless, it appears that the convergence of each series is good enough that a practical implementation may be plausible
A cluster expansion approach to exponential random graph models
International Nuclear Information System (INIS)
Yin, Mei
2012-01-01
The exponential family of random graphs are among the most widely studied network models. We show that any exponential random graph model may alternatively be viewed as a lattice gas model with a finite Banach space norm. The system may then be treated using cluster expansion methods from statistical mechanics. In particular, we derive a convergent power series expansion for the limiting free energy in the case of small parameters. Since the free energy is the generating function for the expectations of other random variables, this characterizes the structure and behavior of the limiting network in this parameter region
Variational approach to coarse-graining of generalized gradient flows
Duong, M.H.; Lamacz, A.; Peletier, M.A.; Sharma, U.
2017-01-01
In this paper we present a variational technique that handles coarse-graining and passing to a limit in a unified manner. The technique is based on a duality structure, which is present in many gradient flows and other variational evolutions, and which often arises from a large-deviations principle.
Endoscopic Approach for Tissue Expansion for Different Cosmetic ...
African Journals Online (AJOL)
Background/Purpose: The use of tissue expanders in plastic and reconstruction surgery is now well established for large defects in adults & children. Tissue expansion is one of the reconstructive surgeon's alternatives in providing optimal tissue replacement when skin shortage is a major problem. Predesigned plan about ...
Lyapunov exponent of the random frequency oscillator: cumulant expansion approach
International Nuclear Information System (INIS)
Anteneodo, C; Vallejos, R O
2010-01-01
We consider a one-dimensional harmonic oscillator with a random frequency, focusing on both the standard and the generalized Lyapunov exponents, λ and λ* respectively. We discuss the numerical difficulties that arise in the numerical calculation of λ* in the case of strong intermittency. When the frequency corresponds to a Ornstein-Uhlenbeck process, we compute analytically λ* by using a cumulant expansion including up to the fourth order. Connections with the problem of finding an analytical estimate for the largest Lyapunov exponent of a many-body system with smooth interactions are discussed.
Two-dimensional strain gradient damage modeling: a variational approach
Placidi, Luca; Misra, Anil; Barchiesi, Emilio
2018-06-01
In this paper, we formulate a linear elastic second gradient isotropic two-dimensional continuum model accounting for irreversible damage. The failure is defined as the condition in which the damage parameter reaches 1, at least in one point of the domain. The quasi-static approximation is done, i.e., the kinetic energy is assumed to be negligible. In order to deal with dissipation, a damage dissipation term is considered in the deformation energy functional. The key goal of this paper is to apply a non-standard variational procedure to exploit the damage irreversibility argument. As a result, we derive not only the equilibrium equations but, notably, also the Karush-Kuhn-Tucker conditions. Finally, numerical simulations for exemplary problems are discussed as some constitutive parameters are varying, with the inclusion of a mesh-independence evidence. Element-free Galerkin method and moving least square shape functions have been employed.
Gradient approach to quantify the gradation smoothness for output media
Kim, Youn Jin; Bang, Yousun; Choh, Heui-Keun
2010-01-01
We aim to quantify the perception of color gradation smoothness using objectively measurable properties. We propose a model to compute the smoothness of hardcopy color-to-color gradations. It is a gradient-based method that can be determined as a function of the 95th percentile of second derivative for the tone-jump estimator and the fifth percentile of first derivative for the tone-clipping estimator. Performance of the model and a previously suggested method were psychophysically appreciated, and their prediction accuracies were compared to each other. Our model showed a stronger Pearson correlation to the corresponding visual data, and the magnitude of the Pearson correlation reached up to 0.87. Its statistical significance was verified through analysis of variance. Color variations of the representative memory colors-blue sky, green grass and Caucasian skin-were rendered as gradational scales and utilized as the test stimuli.
Sergeev, A.; Alharbi, F. H.; Jovanovic, R.; Kais, S.
2016-04-01
The gradient expansion of the kinetic energy density functional, when applied to atoms or finite systems, usually grossly overestimates the energy in the fourth order and generally diverges in the sixth order. We avoid the divergence of the integral by replacing the asymptotic series including the sixth order term in the integrand by a rational function. Padé approximants show moderate improvements in accuracy in comparison with partial sums of the series. The results are discussed for atoms and Hooke’s law model for two-electron atoms.
Bates, Kevin R.; Daniels, Andrew D.; Scuseria, Gustavo E.
1998-01-01
We report a comparison of two linear-scaling methods which avoid the diagonalization bottleneck of traditional electronic structure algorithms. The Chebyshev expansion method (CEM) is implemented for carbon tight-binding calculations of large systems and its memory and timing requirements compared to those of our previously implemented conjugate gradient density matrix search (CG-DMS). Benchmark calculations are carried out on icosahedral fullerenes from C60 to C8640 and the linear scaling memory and CPU requirements of the CEM demonstrated. We show that the CPU requisites of the CEM and CG-DMS are similar for calculations with comparable accuracy.
Multiple-scale approach for the expansion scaling of superfluid quantum gases
International Nuclear Information System (INIS)
Egusquiza, I. L.; Valle Basagoiti, M. A.; Modugno, M.
2011-01-01
We present a general method, based on a multiple-scale approach, for deriving the perturbative solutions of the scaling equations governing the expansion of superfluid ultracold quantum gases released from elongated harmonic traps. We discuss how to treat the secular terms appearing in the usual naive expansion in the trap asymmetry parameter ε and calculate the next-to-leading correction for the asymptotic aspect ratio, with significant improvement over the previous proposals.
International Nuclear Information System (INIS)
Cho, J. Y.; Noh, J. M.; Cheong, H. K.; Choo, H. K.
1998-01-01
In order to simplify the previous spectral history effect correction based on the polynomial expansion nodal method, a new spectral history effect correction is proposed. The new spectral history correction eliminates four microscopic depletion points out of total 13 depletion points in the previous correction by approximating the group cross sections with exponential function. The neutron flux to homogenize the group cross sections for the correction of the spectral history effect is calculated by the analytic function expansion nodal method in stead of the conventional polynomial expansion nodal method. This spectral history correction model is verified against the three MOX benchmark cores: a checkerboard type, a small core with 25 fuel assemblies, and a large core with 177 fuel assemblies. The benchmark results prove that this new spectral history correction model is superior to the previous one even with the reduced number of the local microscopic depletion points
Disability approach in face of expansion of human rights
Directory of Open Access Journals (Sweden)
Joyceane Bezerra de Menezes
2016-12-01
Full Text Available It analyzes the social model of disability approach that is adopted by the Convention on the Rights of Persons with Disabilities. Unlike the medical model, disability shall be understood as the interaction between the limitation or natural deterrent suffering person in their physical functions, mental and / or intellectual and social barriers. The paper follows qualitative analysis, basing on bibliographical and documentary research that showed the change in paradigm of international documents on human rights, focusing on the inclusion of people with disabilities and mitigation of social barriers to participate in community life, social and politician.
A Nonparametric Operational Risk Modeling Approach Based on Cornish-Fisher Expansion
Directory of Open Access Journals (Sweden)
Xiaoqian Zhu
2014-01-01
Full Text Available It is generally accepted that the choice of severity distribution in loss distribution approach has a significant effect on the operational risk capital estimation. However, the usually used parametric approaches with predefined distribution assumption might be not able to fit the severity distribution accurately. The objective of this paper is to propose a nonparametric operational risk modeling approach based on Cornish-Fisher expansion. In this approach, the samples of severity are generated by Cornish-Fisher expansion and then used in the Monte Carlo simulation to sketch the annual operational loss distribution. In the experiment, the proposed approach is employed to calculate the operational risk capital charge for the overall Chinese banking. The experiment dataset is the most comprehensive operational risk dataset in China as far as we know. The results show that the proposed approach is able to use the information of high order moments and might be more effective and stable than the usually used parametric approach.
Cluster expansion for abstract polymer models New bounds from an old approach
Fernández, R
2006-01-01
We revisit the classical approach to cluster expansions, based on tree graphs, and establish a new convergence condition that improves those by Koteck\\'y-Preiss and Dobrushin, as we show in some examples. The strategy is to better exploit a well known tree-graph expression, due to Penrose.
A Series Expansion Approach to Risk Analysis of an Inventory System with Sourcing
Berkhout, J.; Heidergott, B.F.
2014-01-01
In this paper we extend the series expansion approach for uni-chain Markov processes to a special case of finite multi-chains with possible transient states. We will show that multi-chain Markov models arise naturally in simple models such as a single item inventory system with sourcing, i.e., with
An Improved Heaviside Approach to Partial Fraction Expansion and Its Applications
Man, Yiu-Kwong
2009-01-01
In this note, we present an improved Heaviside approach to compute the partial fraction expansions of proper rational functions. This method uses synthetic divisions to determine the unknown partial fraction coefficients successively, without the need to use differentiation or to solve a system of linear equations. Examples of its applications in…
Leader-Follower Approach to Gas-Electricity Expansion Planning Problem
DEFF Research Database (Denmark)
Khaligh, Vahid; Oloomi Buygi, Majid; Anvari-Moghaddam, Amjad
2018-01-01
investment in capacity addition to the generation and transmission levels while considers the limitations on fuel consumption. On the other hand gas operator decides about investment in gas pipelines expansions considering the demanded gas by the electricity network. In this planning model for a joint gas......The main purpose of this paper is to develop a method for sequential gas and electricity networks expansion planning problem. A leader-follower approach performs the expansion planning of the joint gas and electricity networks. Electric system operator under adequacy incentive decides about......-electricity network, supply and demand are matched together while adequacy of fuel for gas consuming units is also guaranteed. To illustrate the effectiveness of the proposed method Khorasan province of Iran is considered as a case study which has a high penetration level of gas-fired power plants (GFPP). Also...
A signal-flow-graph approach to on-line gradient calculation.
Campolucci, P; Uncini, A; Piazza, F
2000-08-01
A large class of nonlinear dynamic adaptive systems such as dynamic recurrent neural networks can be effectively represented by signal flow graphs (SFGs). By this method, complex systems are described as a general connection of many simple components, each of them implementing a simple one-input, one-output transformation, as in an electrical circuit. Even if graph representations are popular in the neural network community, they are often used for qualitative description rather than for rigorous representation and computational purposes. In this article, a method for both on-line and batch-backward gradient computation of a system output or cost function with respect to system parameters is derived by the SFG representation theory and its known properties. The system can be any causal, in general nonlinear and time-variant, dynamic system represented by an SFG, in particular any feedforward, time-delay, or recurrent neural network. In this work, we use discrete-time notation, but the same theory holds for the continuous-time case. The gradient is obtained in a straightforward way by the analysis of two SFGs, the original one and its adjoint (obtained from the first by simple transformations), without the complex chain rule expansions of derivatives usually employed. This method can be used for sensitivity analysis and for learning both off-line and on-line. On-line learning is particularly important since it is required by many real applications, such as digital signal processing, system identification and control, channel equalization, and predistortion.
Davies, J K; Sherriff, N S
2014-03-01
This paper seeks to introduce and analyse the development of the Gradient Evaluation Framework (GEF) to facilitate evaluation of policy actions for their current or future use in terms of their 'gradient friendliness'. In particular, this means their potential to level-up the gradient in health inequalities by addressing the social determinants of health and thereby reducing decision-makers' chances of error when developing such policy actions. A qualitative developmental study to produce a policy-based evaluation framework. The scientific basis of GEF was developed using a comprehensive consensus-building process. This process followed an initial narrative review, based on realist review principles, which highlighted the need for production of a dedicated evaluation framework. The consensus-building process included expert workshops, a pretesting phase, and external peer review, together with support from the Gradient project Scientific Advisory Group and all Gradient project partners, including its Project Steering Committee. GEF is presented as a flexible policy tool resulting from a consensus-building process involving experts from 13 European countries. The theoretical foundations which underpin GEF are discussed, together with a range of practical challenges. The importance of systematic evaluation at each stage of the policy development and implementation cycle is highlighted, as well as the socio-political context in which policy actions are located. GEF offers potentially a major contribution to the public health field in the form of a practical, policy-relevant and common frame of reference for the evaluation of public health interventions that aim to level-up the social gradient in health inequalities. Further research, including the need for practical field testing of GEF and the exploration of alternative presentational formats, is recommended. Copyright © 2013 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
A Least Squares Collocation Approach with GOCE gravity gradients for regional Moho-estimation
Rieser, Daniel; Mayer-Guerr, Torsten
2014-05-01
The depth of the Moho discontinuity is commonly derived by either seismic observations, gravity measurements or combinations of both. In this study, we aim to use the gravity gradient measurements of the GOCE satellite mission in a Least Squares Collocation (LSC) approach for the estimation of the Moho depth on regional scale. Due to its mission configuration and measurement setup, GOCE is able to contribute valuable information in particular in the medium wavelengths of the gravity field spectrum, which is also of special interest for the crust-mantle boundary. In contrast to other studies we use the full information of the gradient tensor in all three dimensions. The problem outline is formulated as isostatically compensated topography according to the Airy-Heiskanen model. By using a topography model in spherical harmonics representation the topographic influences can be reduced from the gradient observations. Under the assumption of constant mantle and crustal densities, surface densities are directly derived by LSC on regional scale, which in turn are converted in Moho depths. First investigations proofed the ability of this method to resolve the gravity inversion problem already with a small amount of GOCE data and comparisons with other seismic and gravitmetric Moho models for the European region show promising results. With the recently reprocessed GOCE gradients, an improved data set shall be used for the derivation of the Moho depth. In this contribution the processing strategy will be introduced and the most recent developments and results using the currently available GOCE data shall be presented.
A Proposed Stochastic Finite Difference Approach Based on Homogenous Chaos Expansion
Directory of Open Access Journals (Sweden)
O. H. Galal
2013-01-01
Full Text Available This paper proposes a stochastic finite difference approach, based on homogenous chaos expansion (SFDHC. The said approach can handle time dependent nonlinear as well as linear systems with deterministic or stochastic initial and boundary conditions. In this approach, included stochastic parameters are modeled as second-order stochastic processes and are expanded using Karhunen-Loève expansion, while the response function is approximated using homogenous chaos expansion. Galerkin projection is used in converting the original stochastic partial differential equation (PDE into a set of coupled deterministic partial differential equations and then solved using finite difference method. Two well-known equations were used for efficiency validation of the method proposed. First one being the linear diffusion equation with stochastic parameter and the second is the nonlinear Burger's equation with stochastic parameter and stochastic initial and boundary conditions. In both of these examples, the probability distribution function of the response manifested close conformity to the results obtained from Monte Carlo simulation with optimized computational cost.
Efficient approach to obtain free energy gradient using QM/MM MD simulation
International Nuclear Information System (INIS)
Asada, Toshio; Koseki, Shiro; Ando, Kanta
2015-01-01
The efficient computational approach denoted as charge and atom dipole response kernel (CDRK) model to consider polarization effects of the quantum mechanical (QM) region is described using the charge response and the atom dipole response kernels for free energy gradient (FEG) calculations in the quantum mechanical/molecular mechanical (QM/MM) method. CDRK model can reasonably reproduce energies and also energy gradients of QM and MM atoms obtained by expensive QM/MM calculations in a drastically reduced computational time. This model is applied on the acylation reaction in hydrated trypsin-BPTI complex to optimize the reaction path on the free energy surface by means of FEG and the nudged elastic band (NEB) method
Vismeh, Ramin
to 45-50 % of ammonia that is lost during the pretreatment. Methodology for identification, detection and quantification of various diferulate cross-linkers in forms of Di-Acids (Di-Ac), Acid-Amide (Ac-Am), and Di-Amides (Di-Am) in AFEX and NaOH treated corn stover using ultrahigh performance liquid chromatography/tandem mass spectrometry (LC/MS/MS) is presented. Characterization of isomeric diferulates was based on the distinguishing fragments formed upon collision induced dissociation (CID) of [M+H]+ ions of each diferulate isomer. LC separations combined with quasi-simultaneous acquisition of mass spectra at multiple collision energies provide fast spectrum acquisition using a time-of-flight (TOF) mass analyzer. This approach, called mux-CID, generates molecular and fragment ion mass information at different collision energies for molecular and adduct ions of oligosaccharides in a single analysis. Non-selective CID facilitated characterization of glucans and arabinoxylans in the AFEXTCS extracts. A LC/MS gradient based on multiplexed-CID detection was developed and applied to profile oligosaccharides in AFEXTCS extract. This method detected glucans with degree of polymerization (DP) from 2 to 22 after solid phase extraction (SPE) enrichment using porous graphitized carbon (PGC), which proved essential for recoveries of specific oligosaccharides. Arabinoxylans were also detected and partially characterized using this strategy after hydrolysis using xylanase. A relative quantification based on peak areas showed removal of almost 85% of the acetate esters of arabinoxylans after AFEX.
International Nuclear Information System (INIS)
Prykarpatsky, Yarema A.; Bogolubov, Nikolai N. Jr.; Prykarpatsky, Anatoliy K.; Samoylenko, Valeriy H.
2010-12-01
A gradient-holonomic approach for the Lax type integrability analysis of differential-discrete dynamical systems is devised. The asymptotical solutions to the related Lax equation are studied and the related gradient identity is stated. The integrability of a discrete nonlinear Schroedinger type dynamical system is treated in detail. The integrability of a generalized Riemann type discrete hydrodynamical system is discussed. (author)
A systematic approach to robust preconditioning for gradient-based inverse scattering algorithms
International Nuclear Information System (INIS)
Nordebo, Sven; Fhager, Andreas; Persson, Mikael; Gustafsson, Mats
2008-01-01
This paper presents a systematic approach to robust preconditioning for gradient-based nonlinear inverse scattering algorithms. In particular, one- and two-dimensional inverse problems are considered where the permittivity and conductivity profiles are unknown and the input data consist of the scattered field over a certain bandwidth. A time-domain least-squares formulation is employed and the inversion algorithm is based on a conjugate gradient or quasi-Newton algorithm together with an FDTD-electromagnetic solver. A Fisher information analysis is used to estimate the Hessian of the error functional. A robust preconditioner is then obtained by incorporating a parameter scaling such that the scaled Fisher information has a unit diagonal. By improving the conditioning of the Hessian, the convergence rate of the conjugate gradient or quasi-Newton methods are improved. The preconditioner is robust in the sense that the scaling, i.e. the diagonal Fisher information, is virtually invariant to the numerical resolution and the discretization model that is employed. Numerical examples of image reconstruction are included to illustrate the efficiency of the proposed technique
Monitoring rubber plantation expansion using Landsat data time series and a Shapelet-based approach
Ye, Su; Rogan, John; Sangermano, Florencia
2018-02-01
The expansion of tree plantations in tropical forests for commercial rubber cultivation threatens biodiversity which may affect ecosystem services, and hinders ecosystem productivity, causing net carbon emission. Numerous studies refer to the challenge of reliably distinguishing rubber plantations from natural forest, using satellite data, due to their similar spectral signatures, even when phenology is incorporated into an analysis. This study presents a novel approach for monitoring the establishment and expansion of rubber plantations in Seima Protection Forest (SPF), Cambodia (1995-2015), by detecting and analyzing the 'shapelet' structure in a Landsat-NDVI time series. This paper introduces a new classification procedure consisting of two steps: (1) an exhaustive-searching algorithm to detect shapelets that represent a period for relatively low NDVI values within an image time series; and (2) a t-test used to determine if NDVI values of detected shapelets are significantly different than their non-shapelet trend, thereby indicating the presence of rubber plantations. Using this approach, historical rubber plantation events were mapped over the twenty-year timespan. The shapelet algorithm produced two types of information: (1) year of rubber plantation establishment; and (2) pre-conversion land-cover type (i.e., agriculture, or natural forest). The overall accuracy of the rubber plantation map for the year of 2015 was 89%. The multi-temporal map products reveal that more than half of the rubber planting activity (57%) took place in 2010 and 2011, following the granting of numerous rubber concessions two years prior. Seventy-three percent of the rubber plantations were converted from natural forest and twenty-three percent were established on non-forest land-cover. The shapelet approach developed here can be used reliably to improve our understanding of the expansion of rubber production beyond Seima Protection Forest of Cambodia, and likely elsewhere in the
Validity of the toposequence approach along a rainfall gradient at a desert fringe
Yair, Aaron
2017-04-01
According to the "classic" toposequence approach soil's properties are closely related to the position of a soil along a slope. The positional differences in soil properties are usually attributed to spatial differences in runoff; erosion and deposition processes. These processes reflect long term effects of the spatial redistribution of water, solids and soluble materials, which are of great importance in respect of nutrient cycling on the landscape scale, and the structuring of natural ecosystems. The "classic" toposequence approach has been seriously questioned by Sommer and Schlichting (1997). They were followed by many scientists of various disciplines (hydrology, ecology, paleopedology, paleoclimate etc). The present study covers three topo-sequences, located in southern Israel, along an average annual rainfall gradient of 90-300 mm. The classic toposequence approach does not apply to none of them, and the controlling factors vary from one site to another.
An IR-Based Approach Utilizing Query Expansion for Plagiarism Detection in MEDLINE.
Nawab, Rao Muhammad Adeel; Stevenson, Mark; Clough, Paul
2017-01-01
The identification of duplicated and plagiarized passages of text has become an increasingly active area of research. In this paper, we investigate methods for plagiarism detection that aim to identify potential sources of plagiarism from MEDLINE, particularly when the original text has been modified through the replacement of words or phrases. A scalable approach based on Information Retrieval is used to perform candidate document selection-the identification of a subset of potential source documents given a suspicious text-from MEDLINE. Query expansion is performed using the ULMS Metathesaurus to deal with situations in which original documents are obfuscated. Various approaches to Word Sense Disambiguation are investigated to deal with cases where there are multiple Concept Unique Identifiers (CUIs) for a given term. Results using the proposed IR-based approach outperform a state-of-the-art baseline based on Kullback-Leibler Distance.
Oliveira, Dauro Douglas; Bartolomeo, Flávia Uchôa Costa; Cardinal, Lucas; Figueiredo, Daniel Santos Fonseca; Palomo, Juan Martin; Andrade, Ildeu
2014-11-01
Cleft lip and palate patients commonly present maxillary constriction, particularly in the anterior region. The aim of this case report was to describe an alternative clinical approach that used a smaller Hyrax screw unconventionally positioned to achieve greater anterior than posterior expansion in patients with complete unilateral cleft lip and palate. The idea presented here is to take advantage of a reduced dimension screw to position it anteriorly. When only anterior expansion was needed (patient 1), the appliance was soldered to the first premolar bands and associated to a transpalatal arch cemented to the first molars. However, when overall expansion was required (patient 2), the screw was positioned anteriorly, but soldered to the first molar bands. Intercanine, premolar, and first molar widths were measured on dental casts with a digital caliper. Pre-expansion and postexpansion radiographs and tomographies were also evaluated. A significant anterior expansion and no intermolar width increase were registered in the first patient. Although patient 2 also presented a greater anterior than posterior expansion, a noteworthy expansion occurred at the molar region. The alternative approach to expand the maxilla in cleft patients reported here caused greater anterior than posterior expansion when the Mini-Hyrax was associated to a transpalatal arch, and its reduced dimension also minimized discomfort and facilitated hygiene.
A new approach to stochastic transport via the functional Volterra expansion
International Nuclear Information System (INIS)
Ziya Akcasu, A.; Corngold, N.
2005-01-01
In this paper we present a new algorithm (FDA) for the calculation of the mean and the variance of the flux in stochastic transport when the transport equation contains a spatially random parameter θ(r), such as the density of the medium. The approach is based on the renormalized functional Volterra expansion of the flux around its mean. The attractive feature of the approach is that it explicitly displays the functional dependence of the flux on the products of θ(r i ), and hence enables one to take ensemble averages directly to calculate the moments of the flux in terms of the correlation functions of the underlying random process. The renormalized deterministic transport equation for the mean flux has been obtained to the second order in θ(r), and a functional relationship between the variance and the mean flux has been derived to calculate the variance to this order. The feasibility and accuracy of FDA has been demonstrated in the case of stochastic diffusion, using the diffusion equation with a spatially random diffusion coefficient. The connection of FDA with the well-established approximation schemes in the field of stochastic linear differential equations, such as the Bourret approximation, developed by Van Kampen using cumulant expansion, and by Terwiel using projection operator formalism, which has recently been extended to stochastic transport by Corngold. We hope that FDA's potential will be explored numerically in more realistic applications of the stochastic transport. (authors)
Álvarez, Gonzalo A.; Shemesh, Noam; Frydman, Lucio
2014-02-01
Dynamical decoupling, a generalization of the original NMR spin-echo sequence, is becoming increasingly relevant as a tool for reducing decoherence in quantum systems. Such sequences apply non-equidistant refocusing pulses for optimizing the coupling between systems, and environmental fluctuations characterized by a given noise spectrum. One such sequence, dubbed Selective Dynamical Recoupling (SDR) [P. E. S. Smith, G. Bensky, G. A. Álvarez, G. Kurizki, and L. Frydman, Proc. Natl. Acad. Sci. 109, 5958 (2012)], allows one to coherently reintroduce diffusion decoherence effects driven by fluctuations arising from restricted molecular diffusion [G. A. Álvarez, N. Shemesh, and L. Frydman, Phys. Rev. Lett. 111, 080404 (2013)]. The fully-refocused, constant-time, and constant-number-of-pulses nature of SDR also allows one to filter out "intrinsic" T1 and T2 weightings, as well as pulse errors acting as additional sources of decoherence. This article explores such features when the fluctuations are now driven by unrestricted molecular diffusion. In particular, we show that diffusion-driven SDR can be exploited to investigate the decoherence arising from the frequency fluctuations imposed by internal gradients. As a result, SDR presents a unique way of probing and characterizing these internal magnetic fields, given an a priori known free diffusion coefficient. This has important implications in studies of structured systems, including porous media and live tissues, where the internal gradients may serve as fingerprints for the system's composition or structure. The principles of this method, along with full analytical solutions for the unrestricted diffusion-driven modulation of the SDR signal, are presented. The potential of this approach is demonstrated with the generation of a novel source of MRI contrast, based on the background gradients active in an ex vivo mouse brain. Additional features and limitations of this new method are discussed.
International Nuclear Information System (INIS)
Álvarez, Gonzalo A.; Shemesh, Noam; Frydman, Lucio
2014-01-01
Dynamical decoupling, a generalization of the original NMR spin-echo sequence, is becoming increasingly relevant as a tool for reducing decoherence in quantum systems. Such sequences apply non-equidistant refocusing pulses for optimizing the coupling between systems, and environmental fluctuations characterized by a given noise spectrum. One such sequence, dubbed Selective Dynamical Recoupling (SDR) [P. E. S. Smith, G. Bensky, G. A. Álvarez, G. Kurizki, and L. Frydman, Proc. Natl. Acad. Sci. 109, 5958 (2012)], allows one to coherently reintroduce diffusion decoherence effects driven by fluctuations arising from restricted molecular diffusion [G. A. Álvarez, N. Shemesh, and L. Frydman, Phys. Rev. Lett. 111, 080404 (2013)]. The fully-refocused, constant-time, and constant-number-of-pulses nature of SDR also allows one to filter out “intrinsic” T 1 and T 2 weightings, as well as pulse errors acting as additional sources of decoherence. This article explores such features when the fluctuations are now driven by unrestricted molecular diffusion. In particular, we show that diffusion-driven SDR can be exploited to investigate the decoherence arising from the frequency fluctuations imposed by internal gradients. As a result, SDR presents a unique way of probing and characterizing these internal magnetic fields, given an a priori known free diffusion coefficient. This has important implications in studies of structured systems, including porous media and live tissues, where the internal gradients may serve as fingerprints for the system's composition or structure. The principles of this method, along with full analytical solutions for the unrestricted diffusion-driven modulation of the SDR signal, are presented. The potential of this approach is demonstrated with the generation of a novel source of MRI contrast, based on the background gradients active in an ex vivo mouse brain. Additional features and limitations of this new method are discussed
International Nuclear Information System (INIS)
Sun Gang; Jin Peng; Liu Xunwei; Hao Runsong; Xie Zhiyong; Li Fandong; Yi Yuhai; Zhang Xuping
2008-01-01
Objective: To evaluate the clinical efficacy and safety of kyphoplasty with single balloon cross-midline expansion using unipedicular approach for osteoporotic vertebral body compressive fracture (OVCF). Methods: Thirty six cases of painful OVCF were included in the study, with 61 vertebrae involved. Under X-ray fluoroscopy monitoring, kyphoplasty was performed using a unilateral, single, balloon via a unilateral transpedicular approach. A final balloon position was in the midline of the vertebral body with the balloon cross-midline expansions and bone cement filled. Clinical outcomes were determined by comparison of preoperative and postoperative VAS and ODI scores. Radiographic assessment included vertebral height restoration and correction of kyphosis. Follow-up was conducted for 6.0-12.0 months (mean 9.2 months). Results: Thirty-six consecutive patients with 61 vertebrae were successfully operated with an operative time of (37.4 ± 9.6) min per vertebra. All patients had significant pain relief and functional recovery within 96 h after the procedure with no surgery- and device-related complications. VAS score improved from (7.3 ± 1.0) preoperatively to (2.7 ± 0.8) postoperatively (t=19.53, P<0.01). ODI score was decreased from(71.1±10.9)% preoperatively to(26.6±6.4)% postoperatively(t=18.54, P<0.01). The average anterior body height loss was (14.3±2.8) mm before procedure and (10.0 ± 1.8) mm after procedure (t=14.68, P<0.01). The average middle body height loss was (10.2 ± 2.7) mm before procedure and (5.9±1.8) mm after procedure (t=16.44,P<0.01). The Cobb's angle was corrected from 23.4 degree ± 5.0 degree to 16.2 degree ± 2.8 degree (t=15.60,P<0.01). Some leakages of cement around the anterior margin of vertebra and inter-vertebral space were found in 2 patients, but there were no clinical symptoms. X-ray examination indicated there were no cement leakages in other vertebra. The pain relief and functional recovery were substantial and maintained to
A New Approach for Identifying Ionospheric Gradients in the Context of the Gagan System
Kudala, Ravi Chandra
VIG and σCNRI was examined. High values of σVIG were determined for strong noise signals and corresponded to minimal σCNRI, indicating poor phase estimations and, in turn, an erroneous location. On the other hand, low values of σVIG were produced for weak noise signals and corresponded to maximum σCNRI, indicating strong phase estimations and, in turn, accurate locations. In other words, if a gradient persists in the line of sight direction of GEOSAT for aviation users, the down link L- band signal itself becomes erroneous. As a result, the en-route aviation user fails to receive a SBAS correction message leading to deprivation for the main objective of GAGAN. On the other hand, since the proposed approach enhances the receivers of both the aviation user and the reference monitoring station in terms of their performance, based on σCNRI, the integrity of SBAS messages themselves can be analyzed and considered for forward corrections.
Rakvongthai, Yothin; Ouyang, Jinsong; Guerin, Bastien; Li, Quanzheng; Alpert, Nathaniel M; El Fakhri, Georges
2013-10-01
Our research goal is to develop an algorithm to reconstruct cardiac positron emission tomography (PET) kinetic parametric images directly from sinograms and compare its performance with the conventional indirect approach. Time activity curves of a NCAT phantom were computed according to a one-tissue compartmental kinetic model with realistic kinetic parameters. The sinograms at each time frame were simulated using the activity distribution for the time frame. The authors reconstructed the parametric images directly from the sinograms by optimizing a cost function, which included the Poisson log-likelihood and a spatial regularization terms, using the preconditioned conjugate gradient (PCG) algorithm with the proposed preconditioner. The proposed preconditioner is a diagonal matrix whose diagonal entries are the ratio of the parameter and the sensitivity of the radioactivity associated with parameter. The authors compared the reconstructed parametric images using the direct approach with those reconstructed using the conventional indirect approach. At the same bias, the direct approach yielded significant relative reduction in standard deviation by 12%-29% and 32%-70% for 50 × 10(6) and 10 × 10(6) detected coincidences counts, respectively. Also, the PCG method effectively reached a constant value after only 10 iterations (with numerical convergence achieved after 40-50 iterations), while more than 500 iterations were needed for CG. The authors have developed a novel approach based on the PCG algorithm to directly reconstruct cardiac PET parametric images from sinograms, and yield better estimation of kinetic parameters than the conventional indirect approach, i.e., curve fitting of reconstructed images. The PCG method increases the convergence rate of reconstruction significantly as compared to the conventional CG method.
The evolving approach to the evaluation of low-gradient aortic stenosis.
Cutting, William B; Bavry, Anthony A
2018-04-07
Severe aortic stenosis (AS) is typically identified by a low valve area (≤1.0 cm 2 ) and high mean gradient (≥40 mm Hg). A subset of patients are found to have a less than severe mean gradient (gradient AS (stage D2) or normal ejection fraction with low-gradient AS (stage D3). Determining the true severity of disease within these categories has proved difficult. In this review we illustrate both traditional and novel techniques that can be used for further valvular assessment. We also propose a simple algorithm that can be used to evaluate low-gradient AS. Published by Elsevier Inc.
Engineering-derived approaches for iPSC preparation, expansion, differentiation and applications.
Li, Yang; Li, Ling; Chen, Zhi-Nan; Gao, Ge; Yao, Rui; Sun, Wei
2017-07-31
Remarkable achievements have been made since induced pluripotent stem cells (iPSCs) were first introduced in 2006. Compared with non-pluripotent stem cells, iPSC research faces several additional complexities, such as the choice of extracellular matrix proteins, growth and differentiation factors, as well as technical challenges related to self-renewal and directed differentiation. Overcoming these challenges requires the integration of knowledge and technologies from multiple fields including cell biology, biomaterial science, engineering, physics and medicine. Here, engineering-derived iPSC approaches are reviewed according to three aspects of iPSC studies: preparation, expansion, differentiation and applications. Engineering strategies, such as 3D systems establishment, cell-matrix mechanics and the regulation of biophysical and biochemical cues, together with engineering techniques, such as 3D scaffolds, cell microspheres and bioreactors, have been applied to iPSC studies and have generated insightful results and even mini-organs such as retinas, livers and intestines. Specific results are given to demonstrate how these approaches impact iPSC behavior, and related mechanisms are discussed. In addition, cell printing technologies are presented as an advanced engineering-derived approach since they have been applied in both iPSC studies and the construction of diverse tissues and organs. Further development and possible innovations of cell printing technologies are presented in terms of creating complex and functional iPSC-derived living tissues and organs.
Embedding SAS approach into conjugate gradient algorithms for asymmetric 3D elasticity problems
Energy Technology Data Exchange (ETDEWEB)
Chen, Hsin-Chu; Warsi, N.A. [Clark Atlanta Univ., GA (United States); Sameh, A. [Univ. of Minnesota, Minneapolis, MN (United States)
1996-12-31
In this paper, we present two strategies to embed the SAS (symmetric-and-antisymmetric) scheme into conjugate gradient (CG) algorithms to make solving 3D elasticity problems, with or without global reflexive symmetry, more efficient. The SAS approach is physically a domain decomposition scheme that takes advantage of reflexive symmetry of discretized physical problems, and algebraically a matrix transformation method that exploits special reflexivity properties of the matrix resulting from discretization. In addition to offering large-grain parallelism, which is valuable in a multiprocessing environment, the SAS scheme also has the potential for reducing arithmetic operations in the numerical solution of a reasonably wide class of scientific and engineering problems. This approach can be applied directly to problems that have global reflexive symmetry, yielding smaller and independent subproblems to solve, or indirectly to problems with partial symmetry, resulting in loosely coupled subproblems. The decomposition is achieved by separating the reflexive subspace from the antireflexive one, possessed by a special class of matrices A, A {element_of} C{sup n x n} that satisfy the relation A = PAP where P is a reflection matrix (symmetric signed permutation matrix).
Output Tracking Control of Switched Hybrid Systems: A Fliess Functional Expansion Approach
Directory of Open Access Journals (Sweden)
Fenghua He
2013-01-01
Full Text Available The output tracking problem is investigated for a nonlinear affine system with multiple modes of continuous control inputs. We convert the family of nonlinear affine systems under consideration into a switched hybrid system by introducing a multiple-valued logic variable. The Fliess functional expansion is adopted to express the input and output relationship of the switched hybrid system. The optimal switching control is determined for a multiple-step output tracking performance index. The proposed approach is applied to a multitarget tracking problem for a flight vehicle aiming for one real target with several decoys flying around it in the terminal guidance course. These decoys appear as apparent targets and have to be distinguished with the approaching of the flight vehicle. The guidance problem of one flight vehicle versus multiple apparent targets should be considered if no large miss distance might be caused due to the limitation of the flight vehicle maneuverability. The target orientation at each time interval is determined. Simulation results show the effectiveness of the proposed method.
Energy Technology Data Exchange (ETDEWEB)
Golling, Christiane
2012-11-01
This thesis determines a cost-efficient expansion of electricity generated by renewable energy sources (RES-E) in the European power generation system. It is an integrated modelling approach with a particular emphasis on diurnal and seasonal patterns of renewable energy sources (RES). An integrated modelling approach optimizes the overall European electricity system while comprising fossil, nuclear, and renewable generation as well as storage capacities. The integrated model approach corresponds to a situation in which renewable generation is subject to electricity price signals. In sensitivity scenarios cases of the integrated model approach are compared to situations in which renewable generation is granted priority feed-in and is decoupled from electricity price signals. In addition, the role of different flexibility options, which can be provided by storage capacities and grid expansion are scrutinized. The methodology of the thesis consists of two parts. First, it develops an integrative model approach by extending an existing European electricity model only comprising conventional power generating technologies. Second, an appropriate representation of intermittent RES for electricity market models is established by the determination of corresponding typedays. The typeday modelling takes the spatial correlation of RES and the correlation between wind and solar power into account. Moreover, the typeday modelling captures average dispatch-relevant, diurnal and seasonal RES characteristics such as the level, the variance, and the gradient. The scenario analysis shows that separate developments of renewable and conventional technologies imply several inefficiencies. These increase with higher RES-E penetration. Inefficiencies such as an increased wind power curtailment, an augmented capital turnover, or a higher cumulative installed power generating capacity are revealed and quantified.
Bateman gradients in hermaphrodites: An extended approach to quantify sexual selection.
Anthes, N.; David, P.; Auld, J.R.; Hoffer, J.N.A.; Jarne, P.; Koene, J.M.; Kokko, H.; Lorenzi, M.C.; Pélissié, B.; Sprenger, D.; Staikou, A.; Schärer, L.
2011-01-01
Sexual selection is often quantified using Bateman gradients, which represent sex-specific regression slopes of reproductive success on mating success and thus describe the expected fitness returns from mating more often. Although the analytical framework for Bateman gradients aimed at covering all
Munoz Mendoza, Jair; Sun, Sumi; Chertow, Glenn M.; Moran, John; Doss, Sheila; Schiller, Brigitte
2011-01-01
Background. A higher sodium gradient (dialysate sodium minus pre-dialysis plasma sodium) during hemodialysis (HD) has been associated with sodium loading; however, its role is not well studied. We hypothesized that a sodium dialysate prescription resulting in a higher sodium gradient is associated with increases in interdialytic weight gain (IDWG), blood pressure (BP) and thirst.
School Expansion in North Korea and South Korea: Two Systems, Two Approaches.
Lee, Hyangkue
2001-01-01
Examines differences in the public-policy objectives and financing of school expansion efforts in North and South Korea. Institutionalizing credentialism and reliance on financing private education dominates South Korean school expansion, while the financing of public schools and greater government control of education dominates North Korean…
DEFF Research Database (Denmark)
Horn, Signe; Kirkegaard, Jeannette S.; Hoelper, Soraya
2016-01-01
to be up regulated as a response to pregnancy. These included several proteins, not previously associated with pregnancy-induced islet expansion, such as CLIC1, STMN1, MCM6, PPIB, NEDD4, and HLTF. Confirming the validity of our approach, we also identified proteins encoded by genes known to be associated...
International Nuclear Information System (INIS)
Chundawat, Shishir P. S.; Uppugundla, Nirmal; Gao, Dahai; Curran, Paul G.; Balan, Venkatesh; Dale, Bruce E.
2017-01-01
Most cellulolytic enzyme blends, either procured from a commercial vendor or isolated from a single cellulolytic microbial secretome, do not efficiently hydrolyze ammonia-pretreated (e.g., ammonia fiber expansion, AFEX) lignocellulosic agricultural crop residues like corn stover to fermentable sugars. Typically reported commercial enzyme loading (30–100 mg protein/g glucan) necessary to achieve >90% total hydrolysis yield (to monosaccharides) for AFEX-treated biomass, within a short saccharification time frame (24–48 h), is economically unviable. Unlike acid-based pretreatments, AFEX retains most of the hemicelluloses in the biomass and therefore requires a more complex suite of enzymes for efficient hydrolysis of cellulose and hemicellulose at industrially relevant high solids loadings. One strategy to reduce enzyme dosage while improving cocktail effectiveness for AFEX-treated biomass has been to use individually purified enzymes to determine optimal enzyme combinations to maximize hydrolysis yields. However, this approach is limited by the selection of heterologous enzymes available or the labor required for isolating low-abundance enzymes directly from the microbial secretomes. Here, we show that directly blending crude cellulolytic and hemicellulolytic enzymes-rich microbial secretomes can maximize specific activity on AFEX-treated biomass without having to isolate individual enzymes. Fourteen commercially available cellulolytic and hemicellulolytic enzymes were procured from leading enzyme companies (Novozymes ® , Genencor ® , and Biocatalysts ® ) and were mixed together to generate several hundred unique cocktail combinations. The mixtures were assayed for activity on AFEX-treated corn stover (AFEX-CS) using a previously established high-throughput methodology. The optimal enzyme blend combinations identified from these screening assays were enriched in various low-abundance hemicellulases and accessory enzymes typically absent in most commercial
General approach for solving the density gradient theory in the interfacial tension calculations
DEFF Research Database (Denmark)
Liang, Xiaodong; Michelsen, Michael Locht
2017-01-01
Within the framework of the density gradient theory, the interfacial tension can be calculated by finding the density profiles that minimize an integral of two terms over the system of infinite width. It is found that the two integrands exhibit a constant difference along the interface for a finite...... property evaluations compared to other methods. The performance of the algorithm with recommended parameters is analyzed for various systems, and the efficiency is further compared with the geometric-mean density gradient theory, which only needs to solve nonlinear algebraic equations. The results show...... that the algorithm is only 5-10 times less efficient than solving the geometric-mean density gradient theory....
A new approach to the I/N-expansion for the Dirac equation
International Nuclear Information System (INIS)
Stepanov, S.S.; Tutik, R.S.
1991-01-01
The difficulties associated with application of the I/N-expansion to the Dirac equation have been resolved by applying the method of (h/2π)-expansion. This technique does not involve converting the initial equation into the Schroedinger-like or Klein-Gordon-like form. Obtained recurrence formulae have a simple form and allow one to find the I/N-corrections of an arbitrary order in any of the I/N-expansion scheme. The method restores the exact results for the Coulomb potential. 17 refs. (author)
Lefebvre, Corentin; Khartabil, Hassan; Boisson, Jean-Charles; Contreras-García, Julia; Piquemal, Jean-Philip; Hénon, Eric
2018-03-19
Extraction of the chemical interaction signature from local descriptors based on electron density (ED) is still a fruitful field of development in chemical interpretation. In a previous work that used promolecular ED (frozen ED), the new descriptor, δg , was defined. It represents the difference between a virtual upper limit of the ED gradient (∇ρIGM , IGM=independent gradient model) that represents a noninteracting system and the true ED gradient (∇ρ ). It can be seen as a measure of electron sharing brought by ED contragradience. A compelling feature of this model is to provide an automatic workflow that extracts the signature of interactions between selected groups of atoms. As with the noncovalent interaction (NCI) approach, it provides chemists with a visual understanding of the interactions present in chemical systems. ∇ρIGM is achieved simply by using absolute values upon summing the individual gradient contributions that make up the total ED gradient. Hereby, we extend this model to relaxed ED calculated from a wave function. To this end, we formulated gradient-based partitioning (GBP) to assess the contribution of each orbital to the total ED gradient. We highlight these new possibilities across two prototypical examples of organic chemistry: the unconventional hexamethylbenzene dication, with a hexa-coordinated carbon atom, and β-thioaminoacrolein. It will be shown how a bond-by-bond picture can be obtained from a wave function, which opens the way to monitor specific interactions along reaction paths. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DEFF Research Database (Denmark)
El-Naaman, Salim Abdallah; Nielsen, Kim Lau; Niordson, Christian Frithiof
2015-01-01
In agreement with dislocation theory, recent experiments show, both quantitatively and qualitatively, how geometrically necessary dislocations (GNDs) distribute in dislocation wall and cell structures. Hence, GND density fields are highly localized with large gradients and discontinuities occurring...
International Nuclear Information System (INIS)
Tagliafico, Luca A.; Scarpa, Federico; Valsuani, Federico
2014-01-01
Traditional thermal solar panel technologies have limited efficiency and the required economic investments make them noncompetitive in the space heating market. The greatest limit to the diffusion of thermal solar systems is the characteristic temperatures they can reach: the strong connection between the user temperature and the collector temperature makes it possible to achieve high thermal (collector) efficiency only at low, often useless, user temperatures. By using solar collectors as thermal exchange units (evaporators) in a heat pump system (direct expansion solar assisted heat pump, DX-SAHP), the overall efficiency greatly increases with a significative cut of the associated investment in terms of pay-back time. In this study, an approach is proposed to the steady state analysis of DX-SAHP, which is based on the simplified inverse Carnot cycle and on the second law efficiency concept. This method, without the need of calculating the refrigerant fluid properties and the detailed processes occurring in the refrigeration device, allows us to link the main features of the plant to its relevant interactions with the surroundings. The very nature of the proposed method makes the relationship explicit and meaningful among all the involved variables. The paper, after the description of the method, presents an explanatory application of this technique by reviewing various aspects of the performance of a typical DX-SAHP in which the savings on primary energy consumption is regarded as the main feature of the plant and highlighted in a monthly averaged analysis. Results agree to those coming from a common standard steady state thermodynamic analysis. The application to a typical DX-SAHP system demonstrates that a mean saved primary energy of about 50% with respect to standard gas burner can be achieved for the same user needs. Such a result is almost independent from the type of flat plate solar panel used (double or single glazed, or even bare panels) as a result of
Present accelerated expansion of the universe from new Weyl-integrable gravity approach
Energy Technology Data Exchange (ETDEWEB)
Aguila, Ricardo; Madriz Aguilar, Jose Edgar; Moreno, Claudia [Universidad de Guadalajara (UdG), Departamento de Matematicas, Centro Universitario de Ciencias Exactas e ingenierias (CUCEI), Guadalajara, Jalisco (Mexico); Bellini, Mauricio [Universidad Nacional de Mar del Plata (UNMdP), Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), La Plata (Argentina)
2014-11-15
We investigate if a recently introduced formulation of general relativity on a Weyl-integrable geometry contains cosmological solutions exhibiting acceleration in the present cosmic expansion. We derive the general conditions to have acceleration in the expansion of the universe and obtain a particular solution for the Weyl scalar field describing a cosmological model for the present time in concordance with the data combination Planck + WP + BAO + SN. (orig.)
Akasofu, Syun-Ichi
2017-10-01
Auroral substorms are mostly manifestations of dissipative processes of electromagnetic energy. Thus, we consider a sequence of processes consisting of the power supply (dynamo), transmission (currents/circuits) and dissipations (auroral substorms-the end product), namely the electric current line approach. This work confirms quantitatively that after accumulating magnetic energy during the growth phase, the magnetosphere unloads the stored magnetic energy impulsively in order to stabilize itself. This work is based on our result that substorms are caused by two current systems, the directly driven (DD) current system and the unloading system (UL). The most crucial finding in this work is the identification of the UL (unloading) current system which is responsible for the expansion phase. A very tentative sequence of the processes leading to the expansion phase (the generation of the UL current system) is suggested for future discussions. (1) The solar wind-magnetosphere dynamo enhances significantly the plasma sheet current when its power is increased above 10^{18} erg/s (10^{11} w). (2) The magnetosphere accumulates magnetic energy during the growth phase, because the ionosphere cannot dissipate the increasing power because of a low conductivity. As a result, the magnetosphere is inflated, accumulating magnetic energy. (3) When the power reaches 3-5× 10^{18} erg/s (3-5× 10^{11} w) for about one hour and the stored magnetic energy reaches 3-5×10^{22} ergs (10^{15} J), the magnetosphere begins to develop perturbations caused by current instabilities (the current density {≈}3× 10^{-12} A/cm2 and the total current {≈}106 A at 6 Re). As a result, the plasma sheet current is reduced. (4) The magnetosphere is thus deflated. The current reduction causes partial B/partial t > 0 in the main body of the magnetosphere, producing an earthward electric field. As it is transmitted to the ionosphere, it becomes equatorward-directed electric field which drives both
Excellent approach to modeling urban expansion by fuzzy cellular automata: agent base model
Khajavigodellou, Yousef; Alesheikh, Ali A.; Mohammed, Abdulrazak A. S.; Chapi, Kamran
2014-09-01
Recently, the interaction between humans and their environment is the one of important challenges in the world. Landuse/ cover change (LUCC) is a complex process that includes actors and factors at different social and spatial levels. The complexity and dynamics of urban systems make the applicable practice of urban modeling very difficult. With the increased computational power and the greater availability of spatial data, micro-simulation such as the agent based and cellular automata simulation methods, has been developed by geographers, planners, and scholars, and it has shown great potential for representing and simulating the complexity of the dynamic processes involved in urban growth and land use change. This paper presents Fuzzy Cellular Automata in Geospatial Information System and remote Sensing to simulated and predicted urban expansion pattern. These FCA-based dynamic spatial urban models provide an improved ability to forecast and assess future urban growth and to create planning scenarios, allowing us to explore the potential impacts of simulations that correspond to urban planning and management policies. A fuzzy inference guided cellular automata approach. Semantic or linguistic knowledge on Land use change is expressed as fuzzy rules, based on which fuzzy inference is applied to determine the urban development potential for each pixel. The model integrates an ABM (agent-based model) and FCA (Fuzzy Cellular Automata) to investigate a complex decision-making process and future urban dynamic processes. Based on this model rapid development and green land protection under the influences of the behaviors and decision modes of regional authority agents, real estate developer agents, resident agents and non- resident agents and their interactions have been applied to predict the future development patterns of the Erbil metropolitan region.
Energy Technology Data Exchange (ETDEWEB)
Chundawat, Shishir P. S., E-mail: shishir.chundawat@rutgers.edu [Department of Chemical and Biochemical Engineering, Rutgers-State University of New Jersey, Piscataway, NJ (United States); Uppugundla, Nirmal; Gao, Dahai [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI (United States); Curran, Paul G. [Center for Statistical Training and Consulting (CSTAT), Michigan State University, East Lansing, MI (United States); Balan, Venkatesh; Dale, Bruce E. [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI (United States)
2017-05-10
Most cellulolytic enzyme blends, either procured from a commercial vendor or isolated from a single cellulolytic microbial secretome, do not efficiently hydrolyze ammonia-pretreated (e.g., ammonia fiber expansion, AFEX) lignocellulosic agricultural crop residues like corn stover to fermentable sugars. Typically reported commercial enzyme loading (30–100 mg protein/g glucan) necessary to achieve >90% total hydrolysis yield (to monosaccharides) for AFEX-treated biomass, within a short saccharification time frame (24–48 h), is economically unviable. Unlike acid-based pretreatments, AFEX retains most of the hemicelluloses in the biomass and therefore requires a more complex suite of enzymes for efficient hydrolysis of cellulose and hemicellulose at industrially relevant high solids loadings. One strategy to reduce enzyme dosage while improving cocktail effectiveness for AFEX-treated biomass has been to use individually purified enzymes to determine optimal enzyme combinations to maximize hydrolysis yields. However, this approach is limited by the selection of heterologous enzymes available or the labor required for isolating low-abundance enzymes directly from the microbial secretomes. Here, we show that directly blending crude cellulolytic and hemicellulolytic enzymes-rich microbial secretomes can maximize specific activity on AFEX-treated biomass without having to isolate individual enzymes. Fourteen commercially available cellulolytic and hemicellulolytic enzymes were procured from leading enzyme companies (Novozymes{sup ®}, Genencor{sup ®}, and Biocatalysts{sup ®}) and were mixed together to generate several hundred unique cocktail combinations. The mixtures were assayed for activity on AFEX-treated corn stover (AFEX-CS) using a previously established high-throughput methodology. The optimal enzyme blend combinations identified from these screening assays were enriched in various low-abundance hemicellulases and accessory enzymes typically absent in most
A new approach to the Taylor expansion of multiloop Feynman diagrams
International Nuclear Information System (INIS)
Tarasov, O.V.
1996-01-01
We present a new method for the Taylor expansion of Feynman integrals with arbitrary masses and any number of loops and external momenta. By using the parametric representation we derive a generating function for the coefficients of the small momentum expansion of an arbitrary diagram. The method is applicable for the expansion with respect to all or a subset of external momenta. The coefficients of the expansion are obtained by applying a differential operator to a given integral with shifted value of the space-time dimension d and the expansion momenta set equal to zero. Integrals with changed d are evaluated by using the generalized recurrence relations recently proposed [O.V. Tarasov, Connection between Feynman integrals having different values of the space-time dimension, preprint DESY 96-068, JINR E2-96-62 (hep-th/9606018), to be published in Phys. Rev. D 54, No. 10 (1996)]. We show how the method works for one- and two-loop integrals. It is also illustrated that our method is simpler and more efficient than others. (orig.)
Conjugate gradient minimisation approach to generating holographic traps for ultracold atoms.
Harte, Tiffany; Bruce, Graham D; Keeling, Jonathan; Cassettari, Donatella
2014-11-03
Direct minimisation of a cost function can in principle provide a versatile and highly controllable route to computational hologram generation. Here we show that the careful design of cost functions, combined with numerically efficient conjugate gradient minimisation, establishes a practical method for the generation of holograms for a wide range of target light distributions. This results in a guided optimisation process, with a crucial advantage illustrated by the ability to circumvent optical vortex formation during hologram calculation. We demonstrate the implementation of the conjugate gradient method for both discrete and continuous intensity distributions and discuss its applicability to optical trapping of ultracold atoms.
International Nuclear Information System (INIS)
Szyniszewski, Marcin; Manchester Univ.; Cichy, Krzysztof; Poznan Univ.; Kujawa-Cichy, Agnieszka
2014-10-01
We employ exact diagonalization with strong coupling expansion to the massless and massive Schwinger model. New results are presented for the ground state energy and scalar mass gap in the massless model, which improve the precision to nearly 10 -9 %. We also investigate the chiral condensate and compare our calculations to previous results available in the literature. Oscillations of the chiral condensate which are present while increasing the expansion order are also studied and are shown to be directly linked to the presence of flux loops in the system.
Economic expansion and increase in labout market formality: a poaching approach
Directory of Open Access Journals (Sweden)
Carlos Henrique L. Corseuil
2012-06-01
Full Text Available This paper investigates the relationship between economic expansion and the degree of formalization for the Brazilian labour market in the recent period. We present a theoretical framework that attempts to explain this relationship through the dynamics of firms hiring strategies. The main predictions are: the share of formal employment rises as the unemployment rate falls, and that the formal-informal wage gap increases, at least at the beginning of the economic expansion. In the empirical part, we use longitudinal microdata from a Brazilian household survey to check whether these two predictions are confirmed. To a large extent our results corroborate both predictions.
Mananga, Eugene S.; Reid, Alicia E.
2013-01-01
This paper presents a study of finite pulse widths for the BABA pulse sequence using the Floquet-Magnus expansion (FME) approach. In the FME scheme, the first order ? is identical to its counterparts in average Hamiltonian theory (AHT) and Floquet theory (FT). However, the timing part in the FME approach is introduced via the ? function not present in other schemes. This function provides an easy way for evaluating the spin evolution during the time in between' through the Magnus expansion of the operator connected to the timing part of the evolution. The evaluation of ? is particularly useful for the analysis of the non-stroboscopic evolution. Here, the importance of the boundary conditions, which provide a natural choice of ? , is ignored. This work uses the ? function to compare the efficiency of the BABA pulse sequence with ? and the BABA pulse sequence with finite pulses. Calculations of ? and ? are presented.
On the usefulness of non-gradient approaches in topology optimization
DEFF Research Database (Denmark)
Sigmund, Ole
2011-01-01
Topology optimization is a highly developed tool for structural design and is by now being extensively used in mechanical, automotive and aerospace industries throughout the world. Gradient-based topology optimization algorithms may efficiently solve fine-resolution problems with thousands and up...
International Nuclear Information System (INIS)
Kolesnikov, R.A.; Krommes, J.A.
2005-01-01
The transition to collisionless ion-temperature-gradient-driven plasma turbulence is considered by applying dynamical systems theory to a model with 10 degrees of freedom. The study of a four-dimensional center manifold predicts a 'Dimits shift' of the threshold for turbulence due to the excitation of zonal flows and establishes (for the model) the exact value of that shift
On the gradient plasticity approach to size effects. Pt. 1: reviews
International Nuclear Information System (INIS)
Malmberg, T.; Tsagrakis, I.; Eleftheriadis, I.; Aifantis, E.C.; Michigan Technol. Univ., Houghton, MI
2001-03-01
The influence of specimen size on the plastic deformation and failure behaviour of some metals and steels is considered. This size dependence issue relates to the question of the transferability of mechanical test results of geometrically similar scaled-down structural models to the full scale structures using similitude laws; but it concerns also the validity of small scale laboratory type test results and their use as a basis for the computational modelling of large scale components. In part I ''reviews'' of this report a restricted review of scaled experiments at room temperature of geometrically similar specimens is given. This refers to the initiation of yielding under non-uniform states of deformation and also to the plastic deformation and fracture of smooth tensile specimens. Among others, non-classical continuum mechanics theories have become a means to interpret size effects. Especially gradient concepts are of interest which enrich the classical plasticity theories by higher order spatial strain gradients. These model extensions implicate additional material parameters which can be associated with internal length scales characteristic for the material. In part I a brief review of several gradient theories of plasticity is also given, including both deformation and flow theories and a comparison of the original ''symmetric stress'' theory with the more recent ''asymmetric stress'' theory is provided. The forthcoming part II ''applications'' exemplifies to what extend strain gradient models can describe the size influence on the deformation behaviour. (orig.) [de
Asymptotic Expansions of the Lognormal Implied Volatility : A Model Free Approach
Cyril Grunspan
2011-01-01
We invert the Black-Scholes formula. We consider the cases low strike, large strike, short maturity and large maturity. We give explicitly the first 5 terms of the expansions. A method to compute all the terms by induction is also given. At the money, we have a closed form formula for implied lognormal volatility in terms of a power series in call price.
Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient
Civale, Leonardo; Tan, Teng; Wolak, M.; Xi, Xiaoxing; Tajima, Tsuyoshi
Bulk niobium Superconducting Radio-Frequency cavities are a leading accelerator technology. Their performance is limited by the cavity loss and maximum acceleration gradient, which are negatively affected by vortex penetration into the superconductor when the peak magnetic field at the cavity wall surface exceeds the vortex penetration field (Hvp). It has been proposed that coating the inner wall of an SRF cavity with superconducting thin films increases Hvp. In this work, we utilized Nb ellipsoids to simulate an inverse SRF cavity and investigate the effect of coating it with magnesium diboride layer on the vortex penetration field. A significant enhancement of Hvp was observed. At 2.8 K, Hvp increased from 2100 Oe for an uncoated Nb ellipsoid to 2700 Oe for a Nb ellipsoid coated with 200 nm thick MgB2 thin film. This finding creates a new route towards achieving higher acceleration gradient in SRF cavity accelerator beyond the theoretical limit of bulk Nb.
The convergence radius of the chiral expansion in the Dyson-Schwinger approach
International Nuclear Information System (INIS)
Meissner, T.
1994-01-01
We determine the convergence radius m conv or the expansion in the current quark mass using the Dyson-Schwinger (DS) equation of QCD in the rainbow approximation. Within a Gaussian form for the gluon propagator D μ ν(p) ∼ δμνχ 2 e - Δ /p 2 we find that m conv increases with decreasing width Δ and increasing strength χ 2 . For those values of χ 2 and Δ, which provide the best known description of low energy hadronic phenomena, m conv lies around 2Λ QCD , which is big enough, that the chiral expansion in the strange sector converges. Our analysis also explains the rather low value of m conv ∼ 50...80 MeV in the Nambu-Jona-Lasinio model, which as itself can be regarded as a special case of the rainbow DS models, where the gluon propagator is a constant in momentum space
An FBG Optical Approach to Thermal Expansion Measurements under Hydrostatic Pressure.
Rosa, Priscila F S; Thomas, Sean M; Balakirev, Fedor F; Betts, Jon; Seo, Soonbeom; Bauer, Eric D; Thompson, Joe D; Jaime, Marcelo
2017-11-04
We report on an optical technique for measuring thermal expansion and magnetostriction at cryogenic temperatures and under applied hydrostatic pressures of 2.0 GPa. Optical fiber Bragg gratings inside a clamp-type pressure chamber are used to measure the strain in a millimeter-sized sample of CeRhIn₅. We describe the simultaneous measurement of two Bragg gratings in a single optical fiber using an optical sensing instrument capable of resolving changes in length [dL/L = (L- L₀)/L₀] on the order of 10 -7 . Our results demonstrate the possibility of performing high-resolution thermal expansion measurements under hydrostatic pressure, a capability previously hindered by the small working volumes typical of pressure cells.
International Nuclear Information System (INIS)
Bender, C.M.; Cooper, F.
1985-01-01
An apparent difference between formulating mean field perturbation theory for lambdaphi 4 field theory via path integrals or via functional differential equations when there are external sources present is shown not to exist when mean field theory is considered as the N = 1 limit of the 0(N)lambdaphi 4 field theory. A simply method is given for determining the 1/N expansion for the Green's functions in the presence of external sources by directly solving the functional differential equations order by order in 1/N. The 1/N expansion for the effective action GAMMA(phi,chi) is obtained by directly integrating the functional differential equations for the fields phi and chi (equivalent1/2lambda/Nphi/sub α/phi/sup α/-μ 2 ) in the presence of two external sources j = -deltaGAMMA/deltaphi, S = -deltaGAMMA/deltachi
Martin, Andrew C.; Jeffers, Elizabeth S.; Petrokofsky, Gillian; Myers-Smith, Isla; Macias-Fauria, Marc
2017-08-01
Woody shrubs have increased in biomass and expanded into new areas throughout the Pan-Arctic tundra biome in recent decades, which has been linked to a biome-wide observed increase in productivity. Experimental, observational, and socio-ecological research suggests that air temperature—and to a lesser degree precipitation—trends have been the predominant drivers of this change. However, a progressive decoupling of these drivers from Arctic vegetation productivity has been reported, and since 2010, vegetation productivity has also been declining. We created a protocol to (a) identify the suite of controls that may be operating on shrub growth and expansion, and (b) characterise the evidence base for controls on Arctic shrub growth and expansion. We found evidence for a suite of 23 proximal controls that operate directly on shrub growth and expansion; the evidence base focused predominantly on just four controls (air temperature, soil moisture, herbivory, and snow dynamics). 65% of evidence was generated in the warmest tundra climes, while 24% was from only one of 28 floristic sectors. Temporal limitations beyond 10 years existed for most controls, while the use of space-for-time approaches was high, with 14% of the evidence derived via experimental approaches. The findings suggest the current evidence base is not sufficiently robust or comprehensive at present to answer key questions of Pan-Arctic shrub change. We suggest future directions that could strengthen the evidence, and lead to an understanding of the key mechanisms driving changes in Arctic shrub environments.
International Nuclear Information System (INIS)
Kolesnikov, R.A.; Krommes, J.A.
2004-01-01
The transition to collisionless ion-temperature-gradient-driven plasma turbulence is considered by applying dynamical systems theory to a model with ten degrees of freedom. Study of a four-dimensional center manifold predicts a ''Dimits shift'' of the threshold for turbulence due to the excitation of zonal flows and establishes the exact value of that shift in terms of physical parameters. For insight into fundamental physical mechanisms, the method provides a viable alternative to large simulations
Directory of Open Access Journals (Sweden)
L. DONNARUMMA
2014-02-01
Full Text Available Effects of ocean acidification (OA on the colonization/settlement pattern of the epibiont community of the leaves and rhizomesof the Mediterranean seagrass,Posidoniaoceanica, have been studied at volcanic CO2vents off Ischia (Italy, using “mimics”as artificial substrates. The experiments were conducted in shallowPosidoniastands (2-3 m depth, in three stations on the northand three on the south sides of the study area, distributed along a pH gradient. At each station, 4 rhizome mimics and 6 artificialleaves were collected every three months (Sept 2009-Sept 2010. The epibionts on both leaf and rhizome mimics showed clearchanges along the pH gradient; coralline algae and calcareous invertebrates (bryozoans, serpulid polychaetes and barnacles weredominant at control stations but progressively disappeared at the most acidified stations. In these extremely low pH sites theassemblage was dominated by filamentous algae and non calcareous taxa such as hydroids and tunicates. Settlement pattern onthe artificial leaves and rhizome mimics over time showed a consistent distribution pattern along the pH gradient and highlightedthe peak of recruitment of the various organisms in different periods according to their life history.Posidoniamimics at theacidified station showed a poor and very simplified assemblage where calcifying epibionts seemed less competitive for space. Thisprofound difference in epiphyte communities in low pH conditions suggests cascading effects on the food web of the meadow and,consequently, on the functioning of the system
Directory of Open Access Journals (Sweden)
Maria de Lourdes Pinto de Almeida
2016-01-01
Full Text Available The intention of this article is to investigate the current scenario of expansion of higher education in Brazil reflects the educational principles and guidelines laid down by the Bologna Declaration. The study starts from the hypothesis that the current policies of expansion of higher education in the country reveal global influences on the role of the State, the Universities and Entrepreneurs, one of these documents to the Bologna Declaration of 19 June 1999 Thus, understand the contents of this document would give us some pointers understand the assumptions that guide the contours of Brazilian educational policies of the last thirteen years, with reference to data published by the Ministry of Education from 2000 to 2011 the authors advocate the thesis that the expansion of higher education in Brazil led by the private sector reflects the propositions, even partial, of the Bologna Declaration, since this is an attempt to reform the European educational landscape in order to increase competitiveness in the European System of Higher Education.
Alam, Md Nur; Akbar, M Ali; Roshid, Harun-Or-
2014-01-01
Exact solutions of nonlinear evolution equations (NLEEs) play a vital role to reveal the internal mechanism of complex physical phenomena. In this work, the exact traveling wave solutions of the Boussinesq equation is studied by using the new generalized (G'/G)-expansion method. Abundant traveling wave solutions with arbitrary parameters are successfully obtained by this method and the wave solutions are expressed in terms of the hyperbolic, trigonometric, and rational functions. It is shown that the new approach of generalized (G'/G)-expansion method is a powerful and concise mathematical tool for solving nonlinear partial differential equations in mathematical physics and engineering. 05.45.Yv, 02.30.Jr, 02.30.Ik.
Anisotropic failure and size effects in periodic honeycomb materials: A gradient-elasticity approach
Réthoré, Julien; Dang, Thi Bach Tuyet; Kaltenbrunner, Christine
2017-02-01
This paper proposes a fracture mechanics model for the analysis of crack propagation in periodic honeycomb materials. The model is based on gradient-elasticity which enables us to account for the effect of the material structure at the macroscopic scale. For simulating the propagation of cracks along an arbitrary path, the numerical implementation is elaborated based on an extended finite element method with the required level of continuity. The two main features captured by the model are directionality and size effect. The numerical predictions are consistent with experimental results on honeycomb materials but also with results reported in the literature for microstructurally short cracks in metals.
A fuzzy approach to the generation expansion planning problem in a multi-objective environment
International Nuclear Information System (INIS)
Abass, S. A.; Massoud, E. M. A.; Abass, S. A.)
2007-01-01
In many power system problems, the use of optimization techniques has proved inductive to reducing the costs and losses of the system. A fuzzy multi-objective decision is used for solving power system problems. One of the most important issues in the field of power system engineering is the generation expansion planning problem. In this paper, we use the concepts of membership functions to define a fuzzy decision model for generating an optimal solution for this problem. Solutions obtained by the fuzzy decision theory are always efficient and constitute the best compromise. (author)
Initial Comparison of Direct and Legacy Modeling Approaches for Radial Core Expansion Analysis
International Nuclear Information System (INIS)
Shemon, Emily R.
2016-01-01
Radial core expansion in sodium-cooled fast reactors provides an important reactivity feedback effect. As the reactor power increases due to normal start up conditions or accident scenarios, the core and surrounding materials heat up, causing both grid plate expansion and bowing of the assembly ducts. When the core restraint system is designed correctly, the resulting structural deformations introduce negative reactivity which decreases the reactor power. Historically, an indirect procedure has been used to estimate the reactivity feedback due to structural deformation which relies upon perturbation theory and coupling legacy physics codes with limited geometry capabilities. With advancements in modeling and simulation, radial core expansion phenomena can now be modeled directly, providing an assessment of the accuracy of the reactivity feedback coefficients generated by indirect legacy methods. Recently a new capability was added to the PROTEUS-SN unstructured geometry neutron transport solver to analyze deformed meshes quickly and directly. By supplying the deformed mesh in addition to the base configuration input files, PROTEUS-SN automatically processes material adjustments including calculation of region densities to conserve mass, calculation of isotopic densities according to material models (for example, sodium density as a function of temperature), and subsequent re-homogenization of materials. To verify the new capability of directly simulating deformed meshes, PROTEUS-SN was used to compute reactivity feedback for a series of contrived yet representative deformed configurations for the Advanced Burner Test Reactor design. The indirect legacy procedure was also performed to generate reactivity feedback coefficients for the same deformed configurations. Interestingly, the legacy procedure consistently overestimated reactivity feedbacks by 35% compared to direct simulations by PROTEUS-SN. This overestimation indicates that the legacy procedures are in fact
Quantum-statistical mechanics of an atom-dimer mixture: Lee-Yang cluster expansion approach
International Nuclear Information System (INIS)
Ohkuma, Takahiro; Ueda, Masahito
2006-01-01
We use the Lee-Yang cluster expansion method to study quantum-statistical properties of a mixture of interconvertible atoms and dimers, where the dimers form in a two-body bound state of the atoms. We point out an infinite series of cluster diagrams whose summation leads to the Bose-Einstein condensation of the dimers below a critical temperature. Our theory captures some important features of a cold atom-dimer mixture such as interconversion of atoms and dimers and properties of the mixture at the unitarity limit
Initial Comparison of Direct and Legacy Modeling Approaches for Radial Core Expansion Analysis
Energy Technology Data Exchange (ETDEWEB)
Shemon, Emily R. [Argonne National Lab. (ANL), Argonne, IL (United States)
2016-10-10
Radial core expansion in sodium-cooled fast reactors provides an important reactivity feedback effect. As the reactor power increases due to normal start up conditions or accident scenarios, the core and surrounding materials heat up, causing both grid plate expansion and bowing of the assembly ducts. When the core restraint system is designed correctly, the resulting structural deformations introduce negative reactivity which decreases the reactor power. Historically, an indirect procedure has been used to estimate the reactivity feedback due to structural deformation which relies upon perturbation theory and coupling legacy physics codes with limited geometry capabilities. With advancements in modeling and simulation, radial core expansion phenomena can now be modeled directly, providing an assessment of the accuracy of the reactivity feedback coefficients generated by indirect legacy methods. Recently a new capability was added to the PROTEUS-SN unstructured geometry neutron transport solver to analyze deformed meshes quickly and directly. By supplying the deformed mesh in addition to the base configuration input files, PROTEUS-SN automatically processes material adjustments including calculation of region densities to conserve mass, calculation of isotopic densities according to material models (for example, sodium density as a function of temperature), and subsequent re-homogenization of materials. To verify the new capability of directly simulating deformed meshes, PROTEUS-SN was used to compute reactivity feedback for a series of contrived yet representative deformed configurations for the Advanced Burner Test Reactor design. The indirect legacy procedure was also performed to generate reactivity feedback coefficients for the same deformed configurations. Interestingly, the legacy procedure consistently overestimated reactivity feedbacks by 35% compared to direct simulations by PROTEUS-SN. This overestimation indicates that the legacy procedures are in fact
Energy Technology Data Exchange (ETDEWEB)
Eby, Joshua; Suranyi, Peter; Wijewardhana, L. C. R.
2018-04-01
The method pioneered by Ruffini and Bonazzola (RB) to describe boson stars involves an expansion of the boson field which is linear in creation and annihilation operators. This expansion constitutes an exact solution to a non-interacting field theory, and has been used as a reasonable ansatz for an interacting one. In this work, we show how one can go beyond the RB ansatz towards an exact solution of the interacting operator Klein-Gordon equation, which can be solved iteratively to ever higher precision. Our Generalized Ruffini-Bonazzola approach takes into account contributions from nontrivial harmonic dependence of the wavefunction, using a sum of terms with energy $k\\,E_0$, where $k\\geq1$ and $E_0$ is the chemical potential of a single bound axion. The method critically depends on an expansion in a parameter $\\Delta \\equiv \\sqrt{1-E_0{}^2/m^2}<1$, where $m$ is the mass of the boson. In the case of the axion potential, we calculate corrections which are relevant for axion stars in the transition or dense branches. We find with high precision the local minimum of the mass, $M_{min}\\approx 463\\,f^2/m$, at $\\Delta\\approx0.27$, where $f$ is the axion decay constant. This point marks the crossover from transition to dense branches of solutions, and a corresponding crossover from structural instability to stability.
Gradient ascent pulse engineering approach to CNOT gates in donor electron spin quantum computing
International Nuclear Information System (INIS)
Tsai, D.-B.; Goan, H.-S.
2008-01-01
In this paper, we demonstrate how gradient ascent pulse engineering (GRAPE) optimal control methods can be implemented on donor electron spin qubits in semiconductors with an architecture complementary to the original Kane's proposal. We focus on the high fidelity controlled-NOT (CNOT) gate and we explicitly find the digitized control sequences for a controlled-NOT gate by optimizing its fidelity using the effective, reduced donor electron spin Hamiltonian with external controls over the hyperfine A and exchange J interactions. We then simulate the CNOT-gate sequence with the full spin Hamiltonian and find that it has an error of 10 -6 that is below the error threshold of 10 -4 required for fault-tolerant quantum computation. Also the CNOT gate operation time of 100 ns is 3 times faster than 297 ns of the proposed global control scheme.
International Nuclear Information System (INIS)
Papp, Z.; Plessas, W.
1996-01-01
We demonstrate the feasibility and efficiency of the Coulomb-Sturmian separable expansion method for generating accurate solutions of the Faddeev equations. Results obtained with this method are reported for several benchmark cases of bosonic and fermionic three-body systems. Correct bound-state results in agreement with the ones established in the literature are achieved for short-range interactions. We outline the formalism for the treatment of three-body Coulomb systems and present a bound-state calculation for a three-boson system interacting via Coulomb plus short-range forces. The corresponding result is in good agreement with the answer from a recent stochastic-variational-method calculation. copyright 1996 The American Physical Society
Experimental approach of plasma supersonic expansion physics and of Hall effect propulsion systems
International Nuclear Information System (INIS)
Mazouffre, Stephane
2009-01-01
This report for accreditation to supervise research (HDR) proposes a synthesis of scientific and research works performed by the author during about ten years. Thus, a first part addresses studies on plasma rarefied supersonic flows: expansion through a sonic hole and through a Laval nozzle. The next part addresses the study of plasma propulsion for spacecraft, and more particularly electric propulsion based on the Hall effect: phenomena of ionic and atomic transport, characteristics of the electric field, energy deposition on walls, basic scale laws, related works, hybrid Hall-RF propulsion systems. The third part presents perspectives and projects related to propulsion by Hall effect (research topics, planned researches, a European project on high power, hybrid Hall-RF propulsion) and to ions-ions plasma (the PEGASES concept, the NExET test installation, RF source of negative ions and magnetic trap)
Hakiki, Farizal
2017-07-25
A study performed by Marbun et al. [1] claimed that “A new methodology to predict fracture pressure from former calculations, Matthew–Kelly and Eaton are proposed.” Also, Marbun et al.\\'s paper stated that “A new value of Poisson\\'s and a stress ratio of the formation were generated and the accuracy of fracture gradient was improved.” We found those all statements are incorrect and some misleading concepts are revealed. An attempt to expose the method of fracture gradient determination from industry practice also appears to solidify that our arguments are acceptable to against improper Marbun et al.\\'s claims.
Bozzeda, Fabio; Zangrilli, Maria Paola; Defeo, Omar
2016-06-01
A Fuzzy Naïve Bayes (FNB) classifier was developed to assess large-scale variations in abundance, species richness and diversity of the macrofauna inhabiting fifteen Uruguayan sandy beaches affected by the effects of beach morphodynamics and the estuarine gradient generated by Rio de la Plata. Information from six beaches was used to estimate FNB parameters, while abiotic data of the remaining nine beaches were used to forecast abundance, species richness and diversity. FNB simulations reproduced the general increasing trend of target variables from inner estuarine reflective beaches to marine dissipative ones. The FNB model also identified a threshold value of salinity range beyond which diversity markedly increased towards marine beaches. Salinity range is suggested as an ecological master factor governing distributional patterns in sandy beach macrofauna. However, the model: 1) underestimated abundance and species richness at the innermost estuarine beach, with the lowest salinity, and 2) overestimated species richness in marine beaches with a reflective morphodynamic state, which is strongly linked to low abundance, species richness and diversity. Therefore, future modeling efforts should be refined by giving a dissimilar weigh to the gradients defined by estuarine (estuarine beaches) and morphodynamic (marine beaches) variables, which could improve predictions of target variables. Our modeling approach could be applied to a wide spectrum of issues, ranging from basic ecology to social-ecological systems. This approach seems relevant, given the current challenge to develop predictive methodologies to assess the simultaneous and nonlinear effects of anthropogenic and natural impacts in coastal ecosystems.
Mananga, Eugene S; Reid, Alicia E
This paper presents the study of finite pulse widths for the BABA pulse sequence using the Floquet-Magnus expansion (FME) approach. In the FME scheme, the first order F 1 is identical to its counterparts in average Hamiltonian theory (AHT) and Floquet theory (FT). However, the timing part in the FME approach is introduced via the Λ 1 ( t ) function not present in other schemes. This function provides an easy way for evaluating the spin evolution during "the time in between" through the Magnus expansion of the operator connected to the timing part of the evolution. The evaluation of Λ 1 ( t ) is useful especially for the analysis of the non-stroboscopic evolution. Here, the importance of the boundary conditions, which provides a natural choice of Λ 1 (0) is ignored. This work uses the Λ 1 ( t ) function to compare the efficiency of the BABA pulse sequence with δ - pulses and the BABA pulse sequence with finite pulses. Calculations of Λ 1 ( t ) and F 1 are presented.
Directory of Open Access Journals (Sweden)
L. Jarecki
2018-04-01
Full Text Available An analytical formula is derived for the oriented crystallization coefficient governing kinetics of oriented crystallization under uniaxial amorphous orientation in the entire temperature range. A series expansion approach is applied to the free energy of crystallization in the Hoffman-Lauritzen kinetic model of crystallization at accounting for the entropy of orientation of the amorphous chains. The series expansion coefficients are calculated for systems of Gaussian chains in linear stress-orientation range. Oriented crystallization rate functions are determined basing on the ‘proportional expansion’ approach proposed by Ziabicki in the steady-state limit. Crystallization kinetics controlled by separate predetermined and sporadic primary nucleation is considered, as well as the kinetics involving both nucleation mechanisms potentially present in oriented systems. The involvement of sporadic nucleation in the transformation kinetics is predicted to increase with increasing amorphous orientation. Example computations illustrate the dependence of the calculated functions on temperature and amorphous orientation, as well as qualitative agreement of the calculations with experimental results.
Pricing and hedging of arithmetic Asian options via the Edgeworth series expansion approach
Directory of Open Access Journals (Sweden)
Weiping Li
2016-03-01
Full Text Available In this paper, we derive a pricing formula for arithmetic Asian options by using the Edgeworth series expansion. Our pricing formula consists of a Black-Scholes-Merton type formula and a finite sum with the estimation of the remainder term. Moreover, we present explicitly a method to compute each term in our pricing formula. The hedging formulas (greek letters for the arithmetic Asian options are obtained as well. Our formulas for the long lasting question on pricing and hedging arithmetic Asian options are easy to implement with enough accuracy. Our numerical illustration shows that the arithmetic Asian options worths less than the European options under the standard Black-Scholes assumptions, verifies theoretically that the volatility of the arithmetic average is less than the one of the underlying assets, and also discovers an interesting phenomena that the arithmetic Asian option for large fixed strikes such as stocks has higher volatility (elasticity than the plain European option. However, the elasticity of the arithmetic Asian options for small fixed strikes as trading in currencies and commodity products is much less than the elasticity of the plain European option. These findings are consistent with the ones from the hedgings with respect to the time to expiration, the strike, the present underlying asset price, the interest rate and the volatility.
Sharma, Nandlal; Reuter, Dirk
2017-11-01
Two vertically stacked quantum dots that are electronically coupled, so called quantum dot molecules, are of great interest for the realization of solid state building blocks for quantum communication networks. We present a modified gradient approach to realize InAs quantum dot molecules with a low areal density so that single quantum dot molecules can be optically addressed. The individual quantum dot layers were prepared by solid source molecular beam epitaxy depositing InAs on GaAs(100). The bottom quantum dot layer has been grown without substrate rotation resulting in an In-gradient across the surface, which translated into a density gradient with low quantum dot density in a certain region of the wafer. For the top quantum dot layer, separated from the bottom quantum dot layer by a 6 nm thick GaAs barrier, various InAs amounts were deposited without an In-gradient. In spite of the absence of an In-gradient, a pronounced density gradient is observed for the top quantum dots. Even for an In-amount slightly below the critical thickness for a single dot layer, a density gradient in the top quantum dot layer, which seems to reproduce the density gradient in the bottom layer, is observed. For more or less In, respectively, deviations from this behavior occur. We suggest that the obvious influence of the bottom quantum dot layer on the growth of the top quantum dots is due to the strain field induced by the buried dots.
International Nuclear Information System (INIS)
Kim, Ji Hoon; Lee, M.G.; Kim, D.; Matlock, D.K.; Wagoner, R.H.
2010-01-01
Research highlights: → Robust microstructure-based FE mesh generation technique was developed. → Local deformation behavior near phase boundaries could be quantitatively understood. → Macroscopic failure could be connected to microscopic deformation behavior of multi-phase steel. - Abstract: A qualitative analysis was carried out on the formability of dual-phase (DP) steels by introducing a realistic microstructure-based finite element approach. The present microstructure-based model was constructed using a mesh generation process with a boundary-smoothing algorithm after proper image processing. The developed model was applied to hole-expansion formability tests for DP steel sheets having different volume fractions and morphological features. On the basis of the microstructural inhomogeneity observed in the scanning electron micrographs of the DP steel sheets, it was inferred that the localized plastic deformation in the ferritic phase might be closely related to the macroscopic formability of DP steel. The experimentally observed difference between the hole-expansion formability of two different microstructures was reasonably explained by using the present finite element model.
Oxidative stress in birds along a NOx and urbanisation gradient: An interspecific approach.
Salmón, Pablo; Stroh, Emilie; Herrera-Dueñas, Amparo; von Post, Maria; Isaksson, Caroline
2018-05-01
Urbanisation is regarded as one of the most threatening global issues for wildlife, however, measuring its impact is not always straight forward. Oxidative stress physiology has been suggested to be a useful biomarker of health and therefore, a potentially important indicator of the impact that urban environmental stressors, especially air pollution, can have on wildlife. For example, nitrogen oxides (NO x ), released during incomplete combustion of fossil fuels, are highly potent pro-oxidants, thus predicted to affect either the protective antioxidants and/or cause oxidative damage to bio-molecules. To date, epidemiological modelling of the predicted association between oxidative stress and NO x exposure has not been performed in wild animals. Here, we address this short-coming, by investigating multiple oxidative stress markers in four common passerine bird species, the blue tit (Cyanistes caeruleus), great tit (Parus major), house sparrow (Passer domesticus) and tree sparrow (Passer montanus), living along a gradient of NO x and urbanisation levels in southern Sweden. First of all, the results revealed that long- and medium-term (one month and one week, respectively) NO x levels were highly correlated with the level of urbanisation. This confirms that the commonly used urbanisation index is a reliable proxy for urban air pollution. Furthermore, in accordance to our prediction, individuals exposed to higher long- and medium-term NO x levels/urbanisation had higher plasma antioxidant capacity. However, only tree sparrows showed higher oxidative damage (protein carbonyls) in relation to NO x levels and this association was absent with urbanisation. Lipid peroxidation, glutathione and superoxide dismutase levels did not co-vary with NO x /urbanisation. Given that most oxidative stress biomarkers showed strong species-specificity, independent of variation in NO x /urbanisation, the present study highlights the need to study variation in oxidative stress across
Urban Expansion: a Geo-Spatial Approach for Temporal Monitoring of Loss of Agricultural Land
Sumari, N. S.; Shao, Z.; Huang, M.; Sanga, C. A.; Van Genderen, J. L.
2017-09-01
This paper presents some preliminary results from research on monitoring the urban growth of Shenzhen in China. Agriculture is still the pillar of national economies in many countries including China. Thus, agriculture contributes to population growth. Population growth follows either exponential or logistic growth models. These models can be examined using a time-series of geospatial data, mainly historical earth observation imagery from satellites such as LANDSAT. Such multitemporal data may provide insights into settlement analysis as well as on population dynamics and hence, quantify the loss of agricultural land. In this study, LANDSAT data of ten dates, at approximately five yearly intervals from 1977 to 2017 were used. The remote sensing techniques used for analysis of data for 40 years were image selection, then followed by geometric and radiometric corrections and mosaicking. Also, classification, remote sensing image fusion, and change detection methods were used. This research extracted the information on the amount, direction, and speed of urbanization, and hence, the number of hectares of agricultural land lost due to urban expansion. Several specific elements were used in the descriptive model of landscape changes and population dynamics of the city of Shenzhen in China. These elements are: i) quantify the urban changes, from a small town (37.000 people in the early 1970's) to the megalopolis of around 20 million habitants today. ii) Examining the rate of urban extension on the loss of agricultural landscape and population growth. iii) The loss of food production was analysed against the economic growth in the region. iv) The aspects of loss of agricultural land, area of built-up urban land, and increase in population are studied quantitatively, by the temporal analysis of earth observation geospatial data. The experimental results from this study show that the proposed method is effective in determining loss of agricultural land in any city due to
Directory of Open Access Journals (Sweden)
Wenjie Wu
2016-05-01
Full Text Available This paper uses a market potential approach to examine the evolution of the rail transport network of China and its spatial distributional impacts on local accessibility, with a particular focus on high-speed rail improvements. Accessibility is measured by using a “market potential” function that was derived from the general equilibrium model of the economic geography literature, and is empirically calculated based on Geographical Information System (GIS techniques. A key finding, albeit from a highly stylized model, is that rail improvements may help raise territorial polarizing patterns across counties. The results point to the profound implications of railroad network expansion on the accessibility dynamics in periphery regions relative to core regions.
Waqas, Abi; Melati, Daniele; Manfredi, Paolo; Grassi, Flavia; Melloni, Andrea
2018-02-01
The Building Block (BB) approach has recently emerged in photonic as a suitable strategy for the analysis and design of complex circuits. Each BB can be foundry related and contains a mathematical macro-model of its functionality. As well known, statistical variations in fabrication processes can have a strong effect on their functionality and ultimately affect the yield. In order to predict the statistical behavior of the circuit, proper analysis of the uncertainties effects is crucial. This paper presents a method to build a novel class of Stochastic Process Design Kits for the analysis of photonic circuits. The proposed design kits directly store the information on the stochastic behavior of each building block in the form of a generalized-polynomial-chaos-based augmented macro-model obtained by properly exploiting stochastic collocation and Galerkin methods. Using this approach, we demonstrate that the augmented macro-models of the BBs can be calculated once and stored in a BB (foundry dependent) library and then used for the analysis of any desired circuit. The main advantage of this approach, shown here for the first time in photonics, is that the stochastic moments of an arbitrary photonic circuit can be evaluated by a single simulation only, without the need for repeated simulations. The accuracy and the significant speed-up with respect to the classical Monte Carlo analysis are verified by means of classical photonic circuit example with multiple uncertain variables.
Hausmann, Sonja; Charles, Donald F; Gerritsen, Jeroen; Belton, Thomas J
2016-08-15
Over-enrichment leading to excess algal growth is a major problem in rivers and streams. Regulations to protect streams typically incorporate nutrient criteria, concentrations of phosphorus and nitrogen that should not be exceeded in order to protect biological communities. A major challenge has been to develop an approach for both categorizing streams based on their biological conditions and determining scientifically defensible nutrient criteria to protect the biotic integrity of streams in those categories. To address this challenge, we applied the Biological Condition Gradient (BCG) approach to stream diatom assemblages to develop a system for categorizing sites by level of impairment, and then examined the related nutrient concentrations to identify potential nutrient criteria. The six levels of the BCG represent a range of ecological conditions from natural (1) to highly disturbed (6). A group of diatom experts developed a set of rules and a model to assign sites to these levels based on their diatom assemblages. To identify potential numeric nutrient criteria, we explored the relation of assigned BCG levels to nutrient concentrations, other anthropogenic stressors, and possible confounding variables using data for stream sites in New Jersey (n=42) and in surrounding Mid-Atlantic states, USA (n=1443). In both data sets, BCG levels correlated most strongly with total phosphorus and the percentage of forest in the watershed, but were independent of pH. We applied Threshold Indicator Taxa Analysis (TITAN) to determine change-points in the diatom assemblages along the BCG gradient. In both data sets, statistically significant diatom changes occurred between BCG levels 3 and 4. Sites with BCG levels 1 to 3 were dominated by species that grow attached to surfaces, while sites with BCG scores of 4 and above were characterized by motile diatoms. The diatom change-point corresponded with a total phosphorus concentration of about 50μg/L. Copyright © 2016 Elsevier B
Jonnagaddala, Jitendra; Jue, Toni Rose; Chang, Nai-Wen; Dai, Hong-Jie
2016-01-01
The rapidly increasing biomedical literature calls for the need of an automatic approach in the recognition and normalization of disease mentions in order to increase the precision and effectivity of disease based information retrieval. A variety of methods have been proposed to deal with the problem of disease named entity recognition and normalization. Among all the proposed methods, conditional random fields (CRFs) and dictionary lookup method are widely used for named entity recognition and normalization respectively. We herein developed a CRF-based model to allow automated recognition of disease mentions, and studied the effect of various techniques in improving the normalization results based on the dictionary lookup approach. The dataset from the BioCreative V CDR track was used to report the performance of the developed normalization methods and compare with other existing dictionary lookup based normalization methods. The best configuration achieved an F-measure of 0.77 for the disease normalization, which outperformed the best dictionary lookup based baseline method studied in this work by an F-measure of 0.13.Database URL: https://github.com/TCRNBioinformatics/DiseaseExtract. © The Author(s) 2016. Published by Oxford University Press.
Jonnagaddala, Jitendra; Jue, Toni Rose; Chang, Nai-Wen; Dai, Hong-Jie
2016-01-01
The rapidly increasing biomedical literature calls for the need of an automatic approach in the recognition and normalization of disease mentions in order to increase the precision and effectivity of disease based information retrieval. A variety of methods have been proposed to deal with the problem of disease named entity recognition and normalization. Among all the proposed methods, conditional random fields (CRFs) and dictionary lookup method are widely used for named entity recognition and normalization respectively. We herein developed a CRF-based model to allow automated recognition of disease mentions, and studied the effect of various techniques in improving the normalization results based on the dictionary lookup approach. The dataset from the BioCreative V CDR track was used to report the performance of the developed normalization methods and compare with other existing dictionary lookup based normalization methods. The best configuration achieved an F-measure of 0.77 for the disease normalization, which outperformed the best dictionary lookup based baseline method studied in this work by an F-measure of 0.13. Database URL: https://github.com/TCRNBioinformatics/DiseaseExtract PMID:27504009
The Biopsychosocial-Digital Approach to Health and Disease: Call for a Paradigm Expansion.
Ahmadvand, Alireza; Gatchel, Robert; Brownstein, John; Nissen, Lisa
2018-05-18
Digital health is an advancing phenomenon in modern health care systems. Currently, numerous stakeholders in various countries are evaluating the potential benefits of digital health solutions at the individual, population, and/or organizational levels. Additionally, driving factors are being created from the customer-side of the health care systems to push health care providers, policymakers, or researchers to embrace digital health solutions. However, health care providers may differ in their approach to adopt these solutions. Health care providers are not assumed to be appropriately trained to address the requirements of integrating digital health solutions into daily everyday practices and procedures. To adapt to the changing demands of health care systems, it is necessary to expand relevant paradigms and to train human resources as required. In this article, a more comprehensive paradigm will be proposed, based on the 'biopsychosocial model' of assessing health and disease, originally introduced by George L Engel. The "biopsychosocial model" must be leveraged to include a "digital" component, thus suggesting a 'biopsychosocial-digital' approach to health and disease. Modifications to the "biopsychosocial" model and transition to the "biopsychosocial-digital" model are explained. Furthermore, the emerging implications of understanding health and disease are clarified pertaining to their relevance in training human resources for health care provision and research. ©Alireza Ahmadvand, Robert Gatchel, John Brownstein, Lisa Nissen. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 18.05.2018.
Directory of Open Access Journals (Sweden)
Jan Winiecki
2000-06-01
Full Text Available The article offers an approach to the westward reorientation of foreign trade by the post-communist economies of East-Central Europe at the micro--i.e. enterprise--level. Having presented the dynamics of reorientation and its theoretical/historical underpinnings, the writer then goes on to underline the surprisingly large number of microeconomic determinants behind the strong westbound export surge. The article starts with the most often cited factor, namely the distressed sale argument, and then shifts the focus to determinants that have received far less attention: an unusual extension of the "distressed sale" argument and another, more important one, namely the legacy of the oversized industrial sector and resultant availability of firms ready (or forced to test their mettle on the world markets. The following section extends the list of determinants to foreign direct investment and the growing export activity of domestic de novo firms. The linkages between the determinants are also pointed out. The final section sums up the observations.
Alam, Md Nur; Akbar, M Ali
2013-01-01
The new approach of the generalized (G'/G)-expansion method is an effective and powerful mathematical tool in finding exact traveling wave solutions of nonlinear evolution equations (NLEEs) in science, engineering and mathematical physics. In this article, the new approach of the generalized (G'/G)-expansion method is applied to construct traveling wave solutions of the Kadomtsev-Petviashvili-Benjamin-Bona-Mahony (KP-BBM) equation. The solutions are expressed in terms of the hyperbolic functions, the trigonometric functions and the rational functions. By means of this scheme, we found some new traveling wave solutions of the above mentioned equation.
AN ASSESSMENT OF URBAN SPACE EXPANSION AND ITS IMPACT ON AIR QUALITY USING GEOSPATIAL APPROACH
Directory of Open Access Journals (Sweden)
Ankita P. Dadhich
2017-01-01
Full Text Available The development oriented growth and accelerated industrializati on had been rapidly worsening the environmental quality of urban centers. Jaipur, c apital of Rajasthan India, the 10 th largest metropolitan city of India, is also facing the increas ing pressure on land due to urbanization and de mographic factors. Therefore, in this study an integrated approach of remote sensing and GIS (Geographic Infor mation System was applied to examine the relationship among spatial variables suc h as impervious area, land consumption rate and air po llutants concentration within a n urban context of Jaipur city. The urban sprawl over the period of five years (20 08–2013 is determined by computing the impervious area or built up area using IRS (In dian Remote Sensing Resourcesat 2 satellite data for Jaipur urban region. Thereafte r, Land Consumption Rate (LCR and Land Absorption Coefficient (LAC were quantifie d to evaluate the impervious area growth in differe nt wards of the Jaipur city. T he temporal variations in gaseous and particulate pollutants were also investigated to as certain the degree of association between air pollutants and impervious area. It has been observed that there is 74.89% increase in impervious area during 2008 to 2013.The z onal distribution of impervious area clearly indicates the increase in number of war ds under Zone 5 (80- 100% category from 2008 to 2013. The spatial distribution of L CR reveals very high land consumption rate (>0.012 in outskirts of the city ie. Vid hyadhar Nagar, Jhotwara and Jagatpura area. The LAC is zero in wards of Kishanpole area and high (>0.06 for the wards of Civil lines, Jagatpura, and Jhotwara area of the c ity. The urban air quality pattern (2008-2013 results indicate that PM 10 and SPM concentration have the greatest effects on the air environment in comparison to gaseous polluta nts (SO 2 and NO x . The association between particulate pollution and impervious area i ndicate strong correlation
International Nuclear Information System (INIS)
Creyx, M.; Delacourt, E.; Morin, C.; Desmet, B.
2016-01-01
A dynamic model using the bond graph formalism of the expansion cylinder of an open Joule cycle Ericsson engine intended for a biomass-fuelled micro-CHP system is presented. Dynamic phenomena, such as the thermodynamic evolution of air, the instantaneous air mass flow rates linked to pressure drops crossing the valves, the heat transferred through the expansion cylinder wall and the mechanical friction losses, are included in the model. The influence on the Ericsson engine performances of the main operating conditions (intake air pressure and temperature, timing of intake and exhaust valve closing, rotational speed, mechanical friction losses and heat transfer at expansion cylinder wall) is studied. The operating conditions maximizing the performances of the Ericsson engine used in the a biomass-fuelled micro-CHP unit are an intake air pressure between 6 and 8 bar, a maximized intake air temperature, an adjustment of the intake and exhaust valve closing corresponding to an expansion cycle close to the theoretical Joule cycle, a rotational speed close to 800 rpm. The heat transfer at the expansion cylinder wall reduces the engine performances. - Highlights: • A bond graph dynamic model of the Ericsson engine expansion cylinder is presented. • Dynamic aspects are modelled: pressure drops, friction losses, wall heat transfer. • Influent factors and phenomena on the engine performances are investigated. • Expansion cycles close to the theoretical Joule cycle maximize the performances. • The heat transfer at the expansion chamber wall reduces the performances.
Dalen, Jeanne; Brody, Janet L; Staples, Julie K; Sedillo, Donna
2015-10-01
Currently, over 30% of US youth are overweight and 1 in 6 have metabolic syndrome, making youth obesity one of the major global health challenges of the 21st century. Few enduring treatment strategies have been identified in youth populations, and the majority of standard weight loss programs fail to adequately address the impact of psychological factors on eating behavior and the beneficial contribution of parental involvement in youth behavior change. A critical need exists to expand treatment development efforts beyond traditional education and cognitive-behavioral programs and explore alternative treatment models for youth obesity. Meditation-based mindful eating programs represent a unique and novel scientific approach to the current youth obesity epidemic given that they address key psychological variables affecting weight. The recent expansion of mindfulness programs to include family relationships shows the immense potential for broadening the customarily individual focus of this intervention to include contextual factors thought to influence youth health outcomes. This article provides an overview of how both mindful eating and family systems theory fits within a conceptual framework in order to guide development of a comprehensive family-based mindful eating program for overweight youth.
Low-temperature thermal expansion
International Nuclear Information System (INIS)
Collings, E.W.
1986-01-01
This chapter discusses the thermal expansion of insulators and metals. Harmonicity and anharmonicity in thermal expansion are examined. The electronic, magnetic, an other contributions to low temperature thermal expansion are analyzed. The thermodynamics of the Debye isotropic continuum, the lattice-dynamical approach, and the thermal expansion of metals are discussed. Relative linear expansion at low temperatures is reviewed and further calculations of the electronic thermal expansion coefficient are given. Thermal expansions are given for Cu, Al and Ti. Phenomenologic thermodynamic relationships are also discussed
International Nuclear Information System (INIS)
Brooks, B.R.
1979-09-01
The Graphical Unitary Group Approach (GUGA) was cast into an extraordinarily powerful form by restructuring the Hamiltonian in terms of loop types. This restructuring allows the adoption of the loop-driven formulation which illuminates vast numbers of previously unappreciated relationships between otherwise distinct Hamiltonian matrix elements. The theoretical/methodological contributions made here include the development of the loop-driven formula generation algorithm, a solution of the upper walk problem used to develop a loop breakdown algorithm, the restriction of configuration space employed to the multireference interacting space, and the restructuring of the Hamiltonian in terms of loop types. Several other developments are presented and discussed. Among these developments are the use of new segment coefficients, improvements in the loop-driven algorithm, implicit generation of loops wholly within the external space adapted within the framework of the loop-driven methodology, and comparisons of the diagonalization tape method to the direct method. It is also shown how it is possible to implement the GUGA method without the time-consuming full (m 5 ) four-index transformation. A particularly promising new direction presented here involves the use of the GUGA methodology to obtain one-electron and two-electron density matrices. Once these are known, analytical gradients (first derivatives) of the CI potential energy are easily obtained. Several test calculations are examined in detail to illustrate the unique features of the method. Also included is a calculation on the asymmetric 2 1 A' state of SO 2 with 23,613 configurations to demonstrate methods for the diagonalization of very large matrices on a minicomputer. 6 figures, 6 tables
Energy Technology Data Exchange (ETDEWEB)
Granovsky, Alexander A., E-mail: alex.granovsky@gmail.com [Firefly project, Moscow, 117593 Moscow (Russian Federation)
2015-12-21
We present a new, very efficient semi-numerical approach for the computation of state-specific nuclear gradients of a generic state-averaged multi-configuration self consistent field wavefunction. Our approach eliminates the costly coupled-perturbed multi-configuration Hartree-Fock step as well as the associated integral transformation stage. The details of the implementation within the Firefly quantum chemistry package are discussed and several sample applications are given. The new approach is routinely applicable to geometry optimization of molecular systems with 1000+ basis functions using a standalone multi-core workstation.
International Nuclear Information System (INIS)
Granovsky, Alexander A.
2015-01-01
We present a new, very efficient semi-numerical approach for the computation of state-specific nuclear gradients of a generic state-averaged multi-configuration self consistent field wavefunction. Our approach eliminates the costly coupled-perturbed multi-configuration Hartree-Fock step as well as the associated integral transformation stage. The details of the implementation within the Firefly quantum chemistry package are discussed and several sample applications are given. The new approach is routinely applicable to geometry optimization of molecular systems with 1000+ basis functions using a standalone multi-core workstation
Granovsky, Alexander A
2015-12-21
We present a new, very efficient semi-numerical approach for the computation of state-specific nuclear gradients of a generic state-averaged multi-configuration self consistent field wavefunction. Our approach eliminates the costly coupled-perturbed multi-configuration Hartree-Fock step as well as the associated integral transformation stage. The details of the implementation within the Firefly quantum chemistry package are discussed and several sample applications are given. The new approach is routinely applicable to geometry optimization of molecular systems with 1000+ basis functions using a standalone multi-core workstation.
Boehm, K; Rösgen, J; Hinz, H-J
2006-02-15
A new method is described that permits the continuous and synchronous determination of heat capacity and expansibility data. We refer to it as pressure-modulated differential scanning calorimetry (PMDSC), as it involves a standard DSC temperature scan and superimposes on it a pressure modulation of preselected format. The power of the method is demonstrated using salt solutions for which the most accurate heat capacity and expansibility data exist in the literature. As the PMDSC measurements could reproduce the parameters with high accuracy and precision, we applied the method also to an aqueous suspension of multilamellar DSPC vesicles for which no expansibility data had been reported previously for the transition region. Excellent agreement was obtained between data from PMDSC and values from independent direct differential scanning densimetry measurements. The basic theoretical background of the method when using sawtooth-like pressure ramps is given under Supporting Information, and a complete statistical thermodynamic derivation of the general equations is presented in the accompanying paper.
International Nuclear Information System (INIS)
Yun, Y.
2015-01-01
Thermal expansion of fuel pellet is an important property which limits the lifetime of the fuels in reactors, because it affects both the pellet and cladding mechanical interaction and the gap conductivity. By fitting a number of available measured data, recommended equations have been presented and successfully used to estimate thermal expansion coefficient of the nuclear fuel pellet. However, due to large scatter of the measured data, non-consensus data have been omitted in formulating the equations. Also, the equation is strongly governed by the lack of appropriate experimental data. For those reasons, it is important to develop theoretical methodologies to better describe thermal expansion behaviour of nuclear fuel. In particular, first-principles and molecular dynamics simulations have been certainly contributed to predict reliable thermal expansion without fitting the measured data. Furthermore, the two theoretical techniques have improved on understanding the change of fuel dimension by describing the atomic-scale processes associated with lattice expansion in the fuels. (author)
Susan Will-Wolf; Peter Neitlich
2010-01-01
Development of a regional lichen gradient model from community data is a powerful tool to derive lichen indexes of response to environmental factors for large-scale and long-term monitoring of forest ecosystems. The Forest Inventory and Analysis (FIA) Program of the U.S. Department of Agriculture Forest Service includes lichens in its national inventory of forests of...
CSIR Research Space (South Africa)
Shatalov, MY
2006-01-01
Full Text Available -scale structure to guarantee the numerical accuracy of solution. In the present paper the authors propose to use a novel method of solution of the Helmholtz integral equation, which is based on expansion of the integrands in double Fourier series. The main...
Directory of Open Access Journals (Sweden)
Zhonghao Zhang
2016-08-01
Full Text Available Quantifying the landscape pattern change can effectively demonstrate the ecological progresses and the consequences of urbanization. Based on remotely sensed land cover data in 1994, 2000, 2006 and a gradient analysis with landscape metrics at landscape- and class- level, we attempted to characterize the individual and entire landscape patterns of Shanghai metropolitan during the rapid urbanization. We highlighted that a roadscape transect approach that combined the buffer zone method and the transect-based approach was introduced to describe the urban-rural patterns of agricultural, residential, green, industrial, and public facilities land along the railway route. Our results of landscape metrics showed significant spatiotemporal patterns and gradient variations along the transect. The urban growth pattern in two time spans conform to the hypothesis for diffusion–coalescence processes, implying that the railway is adaptive as a gradient element to analyze the landscape patterns with urbanization. As the natural landscape was replaced by urban landscape gradually, the desakota region expanded its extent widely. Suburb areas witnessed the continual transformation from the predominantly rural landscape to peri-urban landscape. Furthermore, the gap between urban and rural areas remained large especially in public service. More reasonable urban plans and land use policies should push to make more efforts to transition from the urban-rural separation to coordinated urban-rural development. This study is a meaningful trial in demonstrating a new form of urban–rural transects to study the landscape change of large cities. By combining gradient analysis with landscape metrics, we addressed the process of urbanization both spatially and temporally, and provided a more quantitative approach to urban studies.
Influence of permittivity on gradient force exerted on Mie spheres.
Chen, Jun; Li, Kaikai; Li, Xiao
2018-04-01
In optical trapping, whether a particle could be stably trapped into the focus region greatly depends on the strength of the gradient force. Individual theoretical study on gradient force exerted on a Mie particle is rare because the mathematical separation of the gradient force and the scattering force in the Mie regime is difficult. Based on the recent forces separation work by Du et al. [Sci. Rep.7, 18042 (2017)SRCEC32045-232210.1038/s41598-017-17874-1], we investigate the influence of permittivity (an important macroscopic physical quantity) on the gradient force exerted on a Mie particle by cooperating numerical calculation using fast Fourier transform and analytical analysis using multipole expansion. It is revealed that gradient forces exerted on small spheres are mainly determined by the electric dipole moment except for certain permittivity with which the real part of polarizability of the electric dipole approaches zero, and gradient forces exerted on larger spheres are complex because of the superposition of the multipole moments. The classification of permittivity corresponding to different varying tendencies of gradient forces exerted on small spheres or larger Mie particles are illustrated. Absorption of particles favors the trapping of small spheres by gradient force, while it is bad for the trapping of larger particles. Moreover, the absolute values of the maximal gradient forces exerted on larger Mie particles decline greatly versus the varied imaginary part of permittivity. This work provides elaborate investigation on the different varying tendencies of gradient forces versus permittivity, which favors more accurate and free optical trapping.
Piretzidis, Dimitrios; Sideris, Michael G.
2017-09-01
connected to and employed in the first computational steps of the space-wise approach, where a time-wise Wiener filter is applied at the first stage of GOCE gravity gradient filtering. The results of this work can be extended to using other adaptive filtering algorithms, such as the recursive least-squares and recursive least-squares lattice filters.
International Nuclear Information System (INIS)
Liu, F.-Q.; Lim, T.K.
1988-01-01
The Faddeev and Faddeev-Yakubovsky equations for three- and four-body systems are solved by applying the hyperspherical-harmonics expansion to them in momentum space. This coupling of two popular approaches to the few-body problem together with the use of the so-called Raynal-Revai transformation, which relates hyperspherical functions, allows the few-body equations to be written as one-dimensional coupled integral equations. Numerical solutions for these are achieved through standard matrix methods; these are made straightforward, because a second transformation renders potential multipoles easily calculable. For sample potentials and a restricted size of matrix in each case, the binding energies extracted match those previously obtained in solving the Schroedinger equation through the hyperspherical-harmonics expansion in coordinate space. 9 refs
A hybrid optimization method for biplanar transverse gradient coil design
International Nuclear Information System (INIS)
Qi Feng; Tang Xin; Jin Zhe; Jiang Zhongde; Shen Yifei; Meng Bin; Zu Donglin; Wang Weimin
2007-01-01
The optimization of transverse gradient coils is one of the fundamental problems in designing magnetic resonance imaging gradient systems. A new approach is presented in this paper to optimize the transverse gradient coils' performance. First, in the traditional spherical harmonic target field method, high order coefficients, which are commonly ignored, are used in the first stage of the optimization process to give better homogeneity. Then, some cosine terms are introduced into the series expansion of stream function. These new terms provide simulated annealing optimization with new freedoms. Comparison between the traditional method and the optimized method shows that the inhomogeneity in the region of interest can be reduced from 5.03% to 1.39%, the coil efficiency increased from 3.83 to 6.31 mT m -1 A -1 and the minimum distance of these discrete coils raised from 1.54 to 3.16 mm
Travelling gradient thermocouple calibration
International Nuclear Information System (INIS)
Broomfield, G.H.
1975-01-01
A short discussion of the origins of the thermocouple EMF is used to re-introduce the idea that the Peltier and Thompson effects are indistinguishable from one another. Thermocouples may be viewed as devices which generate an EMF at junctions or as integrators of EMF's developed in thermal gradients. The thermal gradient view is considered the more appropriate, because of its better accord with theory and behaviour, the correct approach to calibration, and investigation of service effects is immediately obvious. Inhomogeneities arise in thermocouples during manufacture and in service. The results of travelling gradient measurements are used to show that such effects are revealed with a resolution which depends on the length of the gradient although they may be masked during simple immersion calibration. Proposed tests on thermocouples irradiated in a nuclear reactor are discussed
Barrett, John W.; Garcke, Harald; Nürnberg, Robert
2017-01-01
A finite element method for the evolution of a two-phase membrane in a sharp interface formulation is introduced. The evolution equations are given as an $L^2$--gradient flow of an energy involving an elastic bending energy and a line energy. In the two phases Helfrich-type evolution equations are prescribed, and on the interface, an evolving curve on an evolving surface, highly nonlinear boundary conditions have to hold. Here we consider both $C^0$-- and $C^1$--matching conditions for the su...
Seghouane, Abd-Krim; Iqbal, Asif
2017-09-01
Sequential dictionary learning algorithms have been successfully applied to functional magnetic resonance imaging (fMRI) data analysis. fMRI data sets are, however, structured data matrices with the notions of temporal smoothness in the column direction. This prior information, which can be converted into a constraint of smoothness on the learned dictionary atoms, has seldomly been included in classical dictionary learning algorithms when applied to fMRI data analysis. In this paper, we tackle this problem by proposing two new sequential dictionary learning algorithms dedicated to fMRI data analysis by accounting for this prior information. These algorithms differ from the existing ones in their dictionary update stage. The steps of this stage are derived as a variant of the power method for computing the SVD. The proposed algorithms generate regularized dictionary atoms via the solution of a left regularized rank-one matrix approximation problem where temporal smoothness is enforced via regularization through basis expansion and sparse basis expansion in the dictionary update stage. Applications on synthetic data experiments and real fMRI data sets illustrating the performance of the proposed algorithms are provided.
Stefenelli, Mario; Todt, Juraj; Riedl, Angelika; Ecker, Werner; Müller, Thomas; Daniel, Rostislav; Burghammer, Manfred; Keckes, Jozef
2013-10-01
Novel scanning synchrotron cross-sectional nanobeam and conventional laboratory as well as synchrotron Laplace X-ray diffraction methods are used to characterize residual stresses in exemplary 11.5 µm-thick TiN coatings. Both real and Laplace space approaches reveal a homogeneous tensile stress state and a very pronounced compressive stress gradient in as-deposited and blasted coatings, respectively. The unique capabilities of the cross-sectional approach operating with a beam size of 100 nm in diameter allow the analysis of stress variation with sub-micrometre resolution at arbitrary depths and the correlation of the stress evolution with the local coating microstructure. Finally, advantages and disadvantages of both approaches are extensively discussed.
Zheng, Xiasheng; Zhang, Peng; Liao, Baosheng; Li, Jing; Liu, Xingyun; Shi, Yuhua; Cheng, Jinle; Lai, Zhitian; Xu, Jiang; Chen, Shilin
2017-01-01
Herbal medicine is a major component of complementary and alternative medicine, contributing significantly to the health of many people and communities. Quality control of herbal medicine is crucial to ensure that it is safe and sound for use. Here, we investigated a comprehensive quality evaluation system for a classic herbal medicine, Danggui Buxue Formula, by applying genetic-based and analytical chemistry approaches to authenticate and evaluate the quality of its samples. For authenticity, we successfully applied two novel technologies, third-generation sequencing and PCR-DGGE (denaturing gradient gel electrophoresis), to analyze the ingredient composition of the tested samples. For quality evaluation, we used high performance liquid chromatography assays to determine the content of chemical markers to help estimate the dosage relationship between its two raw materials, plant roots of Huangqi and Danggui. A series of surveys were then conducted against several exogenous contaminations, aiming to further access the efficacy and safety of the samples. In conclusion, the quality evaluation system demonstrated here can potentially address the authenticity, quality, and safety of herbal medicines, thus providing novel insight for enhancing their overall quality control. Highlight: We established a comprehensive quality evaluation system for herbal medicine, by combining two genetic-based approaches third-generation sequencing and DGGE (denaturing gradient gel electrophoresis) with analytical chemistry approaches to achieve the authentication and quality connotation of the samples. PMID:28955365
Directory of Open Access Journals (Sweden)
Xiasheng Zheng
2017-09-01
Full Text Available Herbal medicine is a major component of complementary and alternative medicine, contributing significantly to the health of many people and communities. Quality control of herbal medicine is crucial to ensure that it is safe and sound for use. Here, we investigated a comprehensive quality evaluation system for a classic herbal medicine, Danggui Buxue Formula, by applying genetic-based and analytical chemistry approaches to authenticate and evaluate the quality of its samples. For authenticity, we successfully applied two novel technologies, third-generation sequencing and PCR-DGGE (denaturing gradient gel electrophoresis, to analyze the ingredient composition of the tested samples. For quality evaluation, we used high performance liquid chromatography assays to determine the content of chemical markers to help estimate the dosage relationship between its two raw materials, plant roots of Huangqi and Danggui. A series of surveys were then conducted against several exogenous contaminations, aiming to further access the efficacy and safety of the samples. In conclusion, the quality evaluation system demonstrated here can potentially address the authenticity, quality, and safety of herbal medicines, thus providing novel insight for enhancing their overall quality control.Highlight: We established a comprehensive quality evaluation system for herbal medicine, by combining two genetic-based approaches third-generation sequencing and DGGE (denaturing gradient gel electrophoresis with analytical chemistry approaches to achieve the authentication and quality connotation of the samples.
Zheng, Xiasheng; Zhang, Peng; Liao, Baosheng; Li, Jing; Liu, Xingyun; Shi, Yuhua; Cheng, Jinle; Lai, Zhitian; Xu, Jiang; Chen, Shilin
2017-01-01
Herbal medicine is a major component of complementary and alternative medicine, contributing significantly to the health of many people and communities. Quality control of herbal medicine is crucial to ensure that it is safe and sound for use. Here, we investigated a comprehensive quality evaluation system for a classic herbal medicine, Danggui Buxue Formula, by applying genetic-based and analytical chemistry approaches to authenticate and evaluate the quality of its samples. For authenticity, we successfully applied two novel technologies, third-generation sequencing and PCR-DGGE (denaturing gradient gel electrophoresis), to analyze the ingredient composition of the tested samples. For quality evaluation, we used high performance liquid chromatography assays to determine the content of chemical markers to help estimate the dosage relationship between its two raw materials, plant roots of Huangqi and Danggui. A series of surveys were then conducted against several exogenous contaminations, aiming to further access the efficacy and safety of the samples. In conclusion, the quality evaluation system demonstrated here can potentially address the authenticity, quality, and safety of herbal medicines, thus providing novel insight for enhancing their overall quality control. Highlight : We established a comprehensive quality evaluation system for herbal medicine, by combining two genetic-based approaches third-generation sequencing and DGGE (denaturing gradient gel electrophoresis) with analytical chemistry approaches to achieve the authentication and quality connotation of the samples.
International Nuclear Information System (INIS)
Knoll, J.
1985-10-01
A quantum dynamical model is suggested which describes the expansion and disassembly phase of highly excited compounds formed in energetic heavy-ion collisions. First applications in two space and one time dimensional model world are discussed and qualitatively compared to standard freeze-out concepts. (orig.)
Indian Academy of Sciences (India)
of a system under investigation is to model the system in terms of some ... The organization of the paper is as follows: In §2, a brief account of the (G /G)- expansion ...... It is interesting to note that from the general results, one can easily recover.
Wetting of flat gradient surfaces.
Bormashenko, Edward
2018-04-01
Gradient, chemically modified, flat surfaces enable directed transport of droplets. Calculation of apparent contact angles inherent for gradient surfaces is challenging even for atomically flat ones. Wetting of gradient, flat solid surfaces is treated within the variational approach, under which the contact line is free to move along the substrate. Transversality conditions of the variational problem give rise to the generalized Young equation valid for gradient solid surfaces. The apparent (equilibrium) contact angle of a droplet, placed on a gradient surface depends on the radius of the contact line and the values of derivatives of interfacial tensions. The linear approximation of the problem is considered. It is demonstrated that the contact angle hysteresis is inevitable on gradient surfaces. Electrowetting of gradient surfaces is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Guangjin Tian
2014-09-01
Full Text Available Policy makers and the human decision processes of urban planning have an impact on urban expansion. The behaviors and decision modes of regional authority, real estate developer, resident, and farmer agents and their interactions can be simulated by the analytical hierarchy process (AHP method. The driving factors are regressed with urban dynamics instead of static land-use types. Agents' behaviors and decision modes have an impact on the urban dynamic pattern by adjusting parameter weights. We integrate an agent-based model (ABM with AHP to investigate a complex decision-making process and future urban dynamic processes. Three policy scenarios for baseline development, rapid development, and green land protection have been applied to predict the future development patterns of the Guangzhou metropolitan region. A future policy scenario analysis can help policy makers to understand the possible results. These individuals can adjust their policies and decisions according to their different objectives.
International Nuclear Information System (INIS)
Ohtani, S.; Kokubun, S.; Russell, C.T.
1992-01-01
The substorm onset region and the radial development of the tail current disruption are examined from a new viewpoint. The reconfiguration of the magnetotail field at substorm onset can be understood in terms of a sudden decrease (disruption) in tail current intensity. The north-south component (B Z ) is very sensitive to whether the spacecraft position is earthward or tailward of the disruption region, while the change in Sun-Earth component (B X ) is most sensitive to the change in tail current intensity near the spacecraft. If the current disruption starts in a localized range of radial distance and expands radially, a distinctive phase relationship between the changes in B X and B Z is expected to be observed. This phase relationship depends on whether the current disruption starts on the earthward side or the tailward side of the spacecraft. Thus it is possible to infer the direction of the radial expansion of the current disruption from magnetic field data of a single spacecraft. This method is applied to ISEE observations of a tail reconfiguration event that occurred on March 6, 1979. The phase relationship indicates that eh disruption region expanded tailward from the earthward side of the spacecraft during the event. This model prediction is consistent with the time lag of magnetic signatures observed by the two ISEE spacecraft. The expansion velocity is estimated at 2 R E /min (∼200 km/s) for this event. Furthermore, it is found that the observed magnetic signatures can be reproduced to a good approximation by a simple geometrical model of the current disruption. The method is used statistically for 13 events selected from the ISEE magnetometer data. It is found that the current disruption usually starts in the near-Earth magnetotail (|X| E ) and often within 15 R E of the Earth
Bolthausen, Erwin; Van Der Hofstad, Remco; Kozma, Gady
2018-01-01
We show Green's function asymptotic upper bound for the two-point function of weakly self-Avoiding walk in d >4, revisiting a classic problem. Our proof relies on Banach algebras to analyse the lace-expansion fixed point equation and is simpler than previous approaches in that it avoids Fourier
Mortillaro, J. M.; Schaal, G.; Grall, J.; Nerot, C.; Brind'Amour, A.; Marchais, V.; Perdriau, M.; Le Bris, H.
2014-01-01
In coastal estuarine embayments, retention of water masses due to coastal topography may result in an increased contribution of continental organic matter in food webs. However, in megatidal embayments, the effect of topography can be counterbalanced by the process of tidal mixing. Large amounts of continental organic matter are exported each year by rivers to the oceans. The fate of terrestrial organic matter in food webs of coastal areas and on neighboring coastal benthic communities was therefore evaluated, at multi-trophic levels, from primary producers to primary consumers and predators. Two coastal areas of the French Atlantic coast, differing in the contributions from their watershed, tidal range and aperture degree, were compared using carbon and nitrogen stable isotopes (δ13C and δ15N) during two contrasted periods. The Bay of Vilaine receives large inputs of freshwater from the Vilaine River, displaying 15N enriched and 13C depleted benthic communities, emphasizing the important role played by allochtonous inputs and anthropogenic impact on terrestrial organic matter in the food web. In contrast, the Bay of Brest which is largely affected by tidal mixing, showed a lack of agreement between isotopic gradients displayed by suspended particulate organic matter (SPOM) and suspension-feeders. Discrepancy between SPOM and suspension-feeders is not surprising due to differences in isotopes integration times. We suggest further that such a discrepancy may result from water replenishment due to coastal inputs, nutrient depletion by phytoplankton production, as well as efficient selection of highly nutritive phytoplanktonic particles by primary consumers.
Barber, L.B.; Murphy, S.F.; Verplanck, P.L.; Sandstrom, M.W.; Taylor, Howard E.; Furlong, E.T.
2006-01-01
Identifying the sources and impacts of organic and inorganic contaminants at the watershed scale is a complex challenge because of the multitude of processes occurring in time and space. Investigation of geochemical transformations requires a systematic evaluation of hydrologic, landscape, and anthropogenic factors. The 1160 km2 Boulder Creek Watershed in the Colorado Front Range encompasses a gradient of geology, ecotypes, climate, and urbanization. Streamflow originates primarily as snowmelt and shows substantial annual variation. Water samples were collected along a 70-km transect during spring-runoff and base-flow conditions, and analyzed for major elements, trace elements, bulk organics, organic wastewater contaminants (OWCs), and pesticides. Major-element and trace-element concentrations were low in the headwaters, increased through the urban corridor, and had a step increase downstream from the first major wastewater treatment plant (WWTP). Boron, gadolinium, and lithium were useful inorganic tracers of anthropogenic inputs. Effluent from the WWTP accounted for as much as 75% of the flow in Boulder Creek and was the largest chemical input. Under both hydrological conditions, OWCs and pesticides were detected in Boulder Creek downstream from the WWTP outfall as well as in the headwater region, and loads of anthropogenic-derived contaminants increased as basin population density increased. This report documents a suite of potential endocrine-disrupting chemicals in a reach of stream with native fish populations showing indication of endocrine disruption.
Series expansions without diagrams
International Nuclear Information System (INIS)
Bhanot, G.; Creutz, M.; Horvath, I.; Lacki, J.; Weckel, J.
1994-01-01
We discuss the use of recursive enumeration schemes to obtain low- and high-temperature series expansions for discrete statistical systems. Using linear combinations of generalized helical lattices, the method is competitive with diagrammatic approaches and is easily generalizable. We illustrate the approach using Ising and Potts models. We present low-temperature series results in up to five dimensions and high-temperature series in three dimensions. The method is general and can be applied to any discrete model
Jardínez, Christiaan; Vela, Alberto; Cruz-Borbolla, Julián; Alvarez-Mendez, Rodrigo J; Alvarado-Rodríguez, José G
2016-12-01
The relationship between the chemical structure and biological activity (log IC 50 ) of 40 derivatives of 1,4-dihydropyridines (DHPs) was studied using density functional theory (DFT) and multiple linear regression analysis methods. With the aim of improving the quantitative structure-activity relationship (QSAR) model, the reduced density gradient s( r) of the optimized equilibrium geometries was used as a descriptor to include weak non-covalent interactions. The QSAR model highlights the correlation between the log IC 50 with highest molecular orbital energy (E HOMO ), molecular volume (V), partition coefficient (log P), non-covalent interactions NCI(H4-G) and the dual descriptor [Δf(r)]. The model yielded values of R 2 =79.57 and Q 2 =69.67 that were validated with the next four internal analytical validations DK=0.076, DQ=-0.006, R P =0.056, and R N =0.000, and the external validation Q 2 boot =64.26. The QSAR model found can be used to estimate biological activity with high reliability in new compounds based on a DHP series. Graphical abstract The good correlation between the log IC 50 with the NCI (H4-G) estimated by the reduced density gradient approach of the DHP derivatives.
International Nuclear Information System (INIS)
Ward, G.J.; Heckbert, P.S.; Technische Hogeschool Delft
1992-04-01
A new method for improving the accuracy of a diffuse interreflection calculation is introduced in a ray tracing context. The information from a hemispherical sampling of the luminous environment is interpreted in a new way to predict the change in irradiance as a function of position and surface orientation. The additional computation involved is modest and the benefit is substantial. An improved interpolation of irradiance resulting from the gradient calculation produces smoother, more accurate renderings. This result is achieved through better utilization of ray samples rather than additional samples or alternate sampling strategies. Thus, the technique is applicable to a variety of global illumination algorithms that use hemicubes or Monte Carlo sampling techniques
International Nuclear Information System (INIS)
Vermeulen, Anke; Müller, Wendt; Matson, Kevin D.; Irene Tieleman, B.; Bervoets, Lieven; Eens, Marcel
2015-01-01
Excessive deposition of metals in the environment is a well-known example of pollution worldwide. Chronic exposure of organisms to metals can have a detrimental effect on reproduction, behavior, health and survival, due to the negative effects on components of the immune system. However, little is known about the effects of chronic sublethal metal exposure on immunity, especially for wildlife. In our study, we examined the constitutive innate immunity of great tit (Parus major) nestlings (N = 234) living in four populations along a metal pollution gradient. For each nestling, we determined the individual metal concentrations (lead, cadmium, arsenic) present in the red blood cells and measured four different innate immune parameters (agglutination, lysis, haptoglobin concentrations and nitric oxide concentrations) to investigate the relationship between metal exposure and immunological condition. While we found significant differences in endogenous metal concentrations among populations with the highest concentrations closest to the pollution source, we did not observe corresponding patterns in our immune measures. However, when evaluating relationships between metal concentrations and immune parameters at the individual level, we found negative effects of lead and, to a lesser extent, arsenic and cadmium on lysis. In addition, high arsenic concentrations appear to elicit inflammation, as reflected by elevated haptoglobin concentrations. Thus despite the lack of a geographic association between pollution and immunity, this type of association was present at the individual level at a very early life stage. The high variation in metal concentrations and immune measures observed within populations indicates a high level of heterogeneity along an existing pollution gradient. Interestingly, we also found substantial within nest variation, for which the sources remain unclear, and which highlights the need of an individual-based approach. - Highlights: • Innate immunity
Energy Technology Data Exchange (ETDEWEB)
Vermeulen, Anke, E-mail: anke.vermeulen@uantwerpen.be [Department of Biology — Ethology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Müller, Wendt, E-mail: wendt.mueller@uantwerpen.be [Department of Biology — Ethology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Matson, Kevin D., E-mail: k.d.matson@rug.nl [Animal Ecology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, P.O. Box 11103, 9700 CC Groningen (Netherlands); The Resource Ecology Group, Department of Environmental Sciences, Wageningen University, Droevendaalsesteeg 3a, 6708PB Wageningen (Netherlands); Irene Tieleman, B., E-mail: b.i.tieleman@rug.nl [Animal Ecology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, P.O. Box 11103, 9700 CC Groningen (Netherlands); Bervoets, Lieven, E-mail: lieven.bervoets@uantwerpen.be [Department of Biology — SPHERE, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen (Belgium); Eens, Marcel, E-mail: marcel.eens@uantwerpen.be [Department of Biology — Ethology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium)
2015-03-01
Excessive deposition of metals in the environment is a well-known example of pollution worldwide. Chronic exposure of organisms to metals can have a detrimental effect on reproduction, behavior, health and survival, due to the negative effects on components of the immune system. However, little is known about the effects of chronic sublethal metal exposure on immunity, especially for wildlife. In our study, we examined the constitutive innate immunity of great tit (Parus major) nestlings (N = 234) living in four populations along a metal pollution gradient. For each nestling, we determined the individual metal concentrations (lead, cadmium, arsenic) present in the red blood cells and measured four different innate immune parameters (agglutination, lysis, haptoglobin concentrations and nitric oxide concentrations) to investigate the relationship between metal exposure and immunological condition. While we found significant differences in endogenous metal concentrations among populations with the highest concentrations closest to the pollution source, we did not observe corresponding patterns in our immune measures. However, when evaluating relationships between metal concentrations and immune parameters at the individual level, we found negative effects of lead and, to a lesser extent, arsenic and cadmium on lysis. In addition, high arsenic concentrations appear to elicit inflammation, as reflected by elevated haptoglobin concentrations. Thus despite the lack of a geographic association between pollution and immunity, this type of association was present at the individual level at a very early life stage. The high variation in metal concentrations and immune measures observed within populations indicates a high level of heterogeneity along an existing pollution gradient. Interestingly, we also found substantial within nest variation, for which the sources remain unclear, and which highlights the need of an individual-based approach. - Highlights: • Innate immunity
Andrés, Axel; Rosés, Martí; Bosch, Elisabeth
2014-11-28
In previous work, a two-parameter model to predict chromatographic retention of ionizable analytes in gradient mode was proposed. However, the procedure required some previous experimental work to get a suitable description of the pKa change with the mobile phase composition. In the present study this previous experimental work has been simplified. The analyte pKa values have been calculated through equations whose coefficients vary depending on their functional group. Forced by this new approach, other simplifications regarding the retention of the totally neutral and totally ionized species also had to be performed. After the simplifications were applied, new prediction values were obtained and compared with the previously acquired experimental data. The simplified model gave pretty good predictions while saving a significant amount of time and resources. Copyright © 2014 Elsevier B.V. All rights reserved.
Tavares, Filipa; Schwaerzel, Kai; Nunes, João. Pedro; Feger, Karl-Heinz
2010-05-01
Forestry activities affect the environmental conditions of river basins by modifying soil properties and vegetation cover, leading to changes in e.g. runoff generation and routing, water yield or the trophic status of water bodies. Climate change is directly linked to forestry, since site-adapted sustainable forest management can buffer negative climate change impacts in river basins, while practices leading to over-harvesting or increasing wildfires can exacerbate these impacts. While studies relating hydrological processes with forestry practices or climate change have already been conducted, the combined impacts of both are rarely discussed. The main objective of the proposed work is to study the interactions between forest management and climate change and the effects of these upon water fluxes and water quality at the catchment scale, over medium to long-term periods and following an East-West climate gradient. Additional objectives are to increase knowledge about the relations between forest, water quality and soil conservation/degradation; and to improve the modelling of hydrological and matter transport processes in managed forests. The present poster shows a conceptual approach to understand this combined interaction by analysing an East-West climatic gradient (Ukraine-Germany-Portugal), with contrasting forestry practices and climate vulnerabilities. The activities within this workplan, to take place during the period 2010 - 2014, will be developed in close collaboration with several ongoing research projects in the host institution at the Dresden University of Technology (TUD) and in the University of Aveiro (UA). The Institute of Soil Science and Site-Ecology (ISSE) at TUD has an internationally renowned research tradition in forest hydrological topics using methods and findings from various (sub)disciplines in a multidisplinary approach. The measurement and simulation of forest catchments has also been a point of research at the Centre for
Gradient composite metal-ceramic foam as supportive component for planar SOFCs and MIEC membranes
International Nuclear Information System (INIS)
Smorygo, Oleg; Mikutski, Vitali; Marukovich, Alexander; Sadykov, Vladislav; Usoltsev, Vladimir; Mezentseva, Natalia; Borodinecs, Anatolijs; Bobrenok, Oleg
2011-01-01
A novel approach to the design of planar gradient porous supports for the thin-film SOFCs and MIEC membranes is described. The support's thermal expansion is controlled by the creation of a two-component composite metal-ceramic foam structure. Thin MIEC membranes and SOFCs were prepared on the composite supports by the layerwise deposition of composite functional layers including complex fluorites and perovskites. Lab-scale studies demonstrated promising performance of both MIEC membrane and SOFC.
Gradient composite metal-ceramic foam as supportive component for planar SOFCs and MIEC membranes
Smorygo, Oleg; Mikutski, Vitali; Marukovich, Alexander; Sadykov, Vladislav; Usoltsev, Vladimir; Mezentseva, Natalia; Borodinecs, Anatolijs; Bobrenok, Oleg
2011-06-01
A novel approach to the design of planar gradient porous supports for the thin-film SOFCs and MIEC membranes is described. The support's thermal expansion is controlled by the creation of a two-component composite metal-ceramic foam structure. Thin MIEC membranes and SOFCs were prepared on the composite supports by the layerwise deposition of composite functional layers including complex fluorites and perovskites. Lab-scale studies demonstrated promising performance of both MIEC membrane and SOFC.
Guerrero, Julien; Oliveira, Hugo; Catros, Sylvain; Siadous, Robin; Derkaoui, Sidi-Mohammed; Bareille, Reine; Letourneur, Didier; Amédée, Joëlle
2015-03-01
Current approaches in bone tissue engineering have shown limited success, mostly owing to insufficient vascularization of the construct. A common approach consists of co-culture of endothelial cells and osteoblastic cells. This strategy uses cells from different sources and differentiation states, thus increasing the complexity upstream of a clinical application. The source of reparative cells is paramount for the success of bone tissue engineering applications. In this context, stem cells obtained from human bone marrow hold much promise. Here, we analyzed the potential of human whole bone marrow cells directly expanded in a three-dimensional (3D) polymer matrix and focused on the further characterization of this heterogeneous population and on their ability to promote angiogenesis and osteogenesis, both in vitro and in vivo, in a subcutaneous model. Cellular aggregates were formed within 24 h and over the 12-day culture period expressed endothelial and bone-specific markers and a specific junctional protein. Ectopic implantation of the tissue-engineered constructs revealed osteoid tissue and vessel formation both at the periphery and within the implant. This work sheds light on the potential clinical use of human whole bone marrow for bone regeneration strategies, focusing on a simplified approach to develop a direct 3D culture without two-dimensional isolation or expansion.
Jing, Xingjian
2015-01-01
This book is a systematic summary of some new advances in the area of nonlinear analysis and design in the frequency domain, focusing on the application oriented theory and methods based on the GFRF concept, which is mainly done by the author in the past 8 years. The main results are formulated uniformly with a parametric characteristic approach, which provides a convenient and novel insight into nonlinear influence on system output response in terms of characteristic parameters and thus facilitate nonlinear analysis and design in the frequency domain. The book starts with a brief introduction to the background of nonlinear analysis in the frequency domain, followed by recursive algorithms for computation of GFRFs for different parametric models, and nonlinear output frequency properties. Thereafter the parametric characteristic analysis method is introduced, which leads to the new understanding and formulation of the GFRFs, and nonlinear characteristic output spectrum (nCOS) and the nCOS based analysis a...
Energy Technology Data Exchange (ETDEWEB)
Gattringer, Christof, E-mail: christof.gattringer@uni-graz.at; Marchis, Carlotta, E-mail: carla.marchis@uni-graz.at
2017-03-15
We propose a new approach to strong coupling series and dual representations for non-abelian lattice gauge theories using the SU(2) case as an example. The Wilson gauge action is written as a sum over “abelian color cycles” (ACC) which correspond to loops in color space around plaquettes. The ACCs are complex numbers which can be commuted freely such that the strong coupling series and the dual representation can be obtained as in the abelian case. Using a suitable representation of the SU(2) gauge variables we integrate out all original gauge links and identify the constraints for the dual variables in the SU(2) case. We show that the construction can be generalized to the case of SU(2) gauge fields with staggered fermions. The result is a strong coupling series where all gauge integrals are known in closed form and we discuss its applicability for possible dual simulations. The abelian color cycle concept can be generalized to other non-abelian gauge groups such as SU(3).
Isotropic Negative Thermal Expansion Metamaterials.
Wu, Lingling; Li, Bo; Zhou, Ji
2016-07-13
Negative thermal expansion materials are important and desirable in science and engineering applications. However, natural materials with isotropic negative thermal expansion are rare and usually unsatisfied in performance. Here, we propose a novel method to achieve two- and three-dimensional negative thermal expansion metamaterials via antichiral structures. The two-dimensional metamaterial is constructed with unit cells that combine bimaterial strips and antichiral structures, while the three-dimensional metamaterial is fabricated by a multimaterial 3D printing process. Both experimental and simulation results display isotropic negative thermal expansion property of the samples. The effective coefficient of negative thermal expansion of the proposed models is demonstrated to be dependent on the difference between the thermal expansion coefficient of the component materials, as well as on the circular node radius and the ligament length in the antichiral structures. The measured value of the linear negative thermal expansion coefficient of the three-dimensional sample is among the largest achieved in experiments to date. Our findings provide an easy and practical approach to obtaining materials with tunable negative thermal expansion on any scale.
Directory of Open Access Journals (Sweden)
Ulrike Lehr
2012-02-01
Full Text Available National studies have shown that both gross and net effects of the expansion of energy from renewable sources on employment are positive for Germany. These modeling approaches also revealed that this holds true for both present and future perspectives under certain assumptions on the development of exports, fossil fuel prices and national politics. Yet how are employment effects distributed within Germany? What components contribute to growth impacts on a regional level? To answer these questions (new methods of regionalization were explored and developed for the example “wind energy onshore” for Germany’s federal states. The main goal was to develop a methodology which is applicable to all renewable energy technologies in future research. For the quantification and projection, it was necessary to distinguish between jobs generated by domestic investments and exports on the one hand, and jobs for operation and maintenance of existing plants on the other hand. Further, direct and indirect employment is analyzed. The results show, that gross employment is particularly high in the northwestern regions of Germany. However, especially the indirect effects are spread out over the whole country. Regions in the south not only profit from the delivery of specific components, but also from other industry and service inputs.
Directory of Open Access Journals (Sweden)
Xing Liu
Full Text Available BACKGROUND: Previous studies have focused on linking soil community structure, diversity, or specific taxa to disturbances. Relatively little attention has been directed to crop monoculture soils, particularly potato monoculture. Information about microbial community changes over time between monoculture and non-monoculture treatments is lacking. Furthermore, few studies have examined microbial communities in potato monoculture soils using a high throughput pyrosequencing approach. METHODOLOGY/PRINCIPAL FINDINGS: Soils along a seven-year gradient of potato monoculture were collected and microbial communities were characterized using high throughput pyrosequencing approach. Principal findings are as follows. First, diversity (H(Shannon and richness (S(Chao1 indices of bacterial community, but not of fungal community, were linearly decreased over time and corresponded to a decline of soil sustainability represented by yield decline and disease incidence increase. Second, Fusarium, the only soilborne pathogen-associated fungal genus substantially detected, was linearly increased over time in abundance and was closely associated with yield decline. Third, Fusarium abundance was negatively correlated with soil organic matter (OM and total nitrogen (TN but positively with electrical conductivity (EC. Fourth, Fusarium was correlated in abundances with 6 bacterial taxa over time. CONCLUSIONS: Soil bacterial and fungal communities exhibited differential responses to the potato monoculture. The overall soil bacterial communities were shaped by potato monoculture. Fusarium was the only soilborne pathogen-associated genus associated with disease incidence increase and yield decline. The changes of soil OM, TN and EC were responsible for Fusarium enrichment, in addition to selections by the monoculture crop. Acidobacteria and Nitrospirae were linearly decreased over time in abundance, corresponding to the decrease of OM, suggesting their similar
Asymptotic Expansions - Methods and Applications
International Nuclear Information System (INIS)
Harlander, R.
1999-01-01
Different viewpoints on the asymptotic expansion of Feynman diagrams are reviewed. The relations between the field theoretic and diagrammatic approaches are sketched. The focus is on problems with large masses or large external momenta. Several recent applications also for other limiting cases are touched upon. Finally, the pros and cons of the different approaches are briefly discussed. (author)
Energy Technology Data Exchange (ETDEWEB)
Marreco, Juliana de Moraes
2007-05-15
This thesis considers uncertainty on the long term generation expansion planning in the Brazilian Electric System, under a Real Options Approach . First, Real Options Theory is used to demonstrate the importance of thermo power plants insertion in Brazil, through a flexibility valuation on hydrothermal system. This is the first objective of this thesis. In the second part a Real Options Model is proposed to support long term expansion studies, based in a levelized costs analysis. The adequacy of proposed models to real problem is illustrated by a case study of the Brazilian Power System. The results show the importance of the energetic matrix diversification on the Long Term Planning. In the expansion model proposed, results are in favor of higher participation of biomass, nuclear power and coal in Brazilian electricity generation matrix. (author)
Akihiko Takahashi; Kohta Takehara
2007-01-01
This paper proposes an asymptotic expansion scheme of currency options with a libor market model of interest rates and stochastic volatility models of spot exchange rates. In particular, we derive closed-form approximation formulas for the density functions of the underlying assets and for pricing currency options based on the third order asymptotic expansion scheme; we do not model a foreign exchange rate's variance such as in Heston[1993], but its volatility that follows a general time-inho...
Okpechi, Ikechi Gareth; Chukwuonye, Innocent Ijezie; Tiffin, Nicki; Madukwe, Okechukwu Ojoemelam; Onyeonoro, Ugochukwu Uchenna; Umeizudike, Theophilus Ifeanyichukwu; Ogah, Okechukwu Samuel
2013-01-01
Developing countries of sub-Saharan Africa (SSA) face a double burden of non-communicable diseases (NCDs) and communicable diseases. As high blood pressure (BP) is a common global cardiovascular (CV) disorder associated with high morbidity and mortality, the relationship between gradients of BP and other CV risk factors was assessed in Abia State, Nigeria. Using the WHO STEPwise approach to surveillance of chronic disease risk factors, we conducted a population-based cross-sectional survey in Abia state, Nigeria from August 2011 to March 2012. Data collected at various steps included: demographic and behavioral risk factors (Step 1); BP and anthropometric measurements (Step 2), and fasting blood cholesterol and glucose (Step 3). Of the 2983 subjects with complete data for analysis, 52.1% were females and 53.2% were rural dwellers. Overall, the distribution of selected CV disease risk factors was diabetes (3.6%), hypertension (31.4%), cigarette smoking (13.3%), use of smokeless tobacco (4.8%), physical inactivity (64.2%) and being overweight or obese (33.7%). Presence of hypertension, excessive intake of alcohol, smoking (cigarette and smokeless tobacco) and physical inactivity occurred more frequently in males than in females (p<0.05); while low income, lack of any formal education and use of smokeless tobacco were seen more frequently in rural dwellers than in those living in urban areas (p<0.05). The frequency of selected CV risk factors increased as BP was graded from optimal, normal to hypertension; and high BP correlated with age, gender, smokeless tobacco, overweight or obesity, annual income and level of education. Given the high prevalence of hypertension in this part of Nigeria, there is an urgent need to focus on the reduction of preventable CV risk factors we have observed to be associated with hypertension, in order to effectively reduce the burden of NCDs in Africa.
Directory of Open Access Journals (Sweden)
Ikechi Gareth Okpechi
Full Text Available BACKGROUND: Developing countries of sub-Saharan Africa (SSA face a double burden of non-communicable diseases (NCDs and communicable diseases. As high blood pressure (BP is a common global cardiovascular (CV disorder associated with high morbidity and mortality, the relationship between gradients of BP and other CV risk factors was assessed in Abia State, Nigeria. METHODS: Using the WHO STEPwise approach to surveillance of chronic disease risk factors, we conducted a population-based cross-sectional survey in Abia state, Nigeria from August 2011 to March 2012. Data collected at various steps included: demographic and behavioral risk factors (Step 1; BP and anthropometric measurements (Step 2, and fasting blood cholesterol and glucose (Step 3. RESULTS: Of the 2983 subjects with complete data for analysis, 52.1% were females and 53.2% were rural dwellers. Overall, the distribution of selected CV disease risk factors was diabetes (3.6%, hypertension (31.4%, cigarette smoking (13.3%, use of smokeless tobacco (4.8%, physical inactivity (64.2% and being overweight or obese (33.7%. Presence of hypertension, excessive intake of alcohol, smoking (cigarette and smokeless tobacco and physical inactivity occurred more frequently in males than in females (p<0.05; while low income, lack of any formal education and use of smokeless tobacco were seen more frequently in rural dwellers than in those living in urban areas (p<0.05. The frequency of selected CV risk factors increased as BP was graded from optimal, normal to hypertension; and high BP correlated with age, gender, smokeless tobacco, overweight or obesity, annual income and level of education. CONCLUSION: Given the high prevalence of hypertension in this part of Nigeria, there is an urgent need to focus on the reduction of preventable CV risk factors we have observed to be associated with hypertension, in order to effectively reduce the burden of NCDs in Africa.
Combining Step Gradients and Linear Gradients in Density.
Kumar, Ashok A; Walz, Jenna A; Gonidec, Mathieu; Mace, Charles R; Whitesides, George M
2015-06-16
Combining aqueous multiphase systems (AMPS) and magnetic levitation (MagLev) provides a method to produce hybrid gradients in apparent density. AMPS—solutions of different polymers, salts, or surfactants that spontaneously separate into immiscible but predominantly aqueous phases—offer thermodynamically stable steps in density that can be tuned by the concentration of solutes. MagLev—the levitation of diamagnetic objects in a paramagnetic fluid within a magnetic field gradient—can be arranged to provide a near-linear gradient in effective density where the height of a levitating object above the surface of the magnet corresponds to its density; the strength of the gradient in effective density can be tuned by the choice of paramagnetic salt and its concentrations and by the strength and gradient in the magnetic field. Including paramagnetic salts (e.g., MnSO4 or MnCl2) in AMPS, and placing them in a magnetic field gradient, enables their use as media for MagLev. The potential to create large steps in density with AMPS allows separations of objects across a range of densities. The gradients produced by MagLev provide resolution over a continuous range of densities. By combining these approaches, mixtures of objects with large differences in density can be separated and analyzed simultaneously. Using MagLev to add an effective gradient in density also enables tuning the range of densities captured at an interface of an AMPS by simply changing the position of the container in the magnetic field. Further, by creating AMPS in which phases have different concentrations of paramagnetic ions, the phases can provide different resolutions in density. These results suggest that combining steps in density with gradients in density can enable new classes of separations based on density.
Higher gradient expansion for linear isotropic peridynamic materials
Czech Academy of Sciences Publication Activity Database
Šilhavý, Miroslav
2017-01-01
Roč. 22, č. 6 (2017), s. 1483-1493 ISSN 1081-2865 Institutional support: RVO:67985840 Keywords : peridynamics * higher-grade theories * non-local elastic-material model * representation theorems for isotropic functions Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 2.953, year: 2016 http://journals.sagepub.com/doi/10.1177/1081286516637235
Higher gradient expansion for linear isotropic peridynamic materials
Czech Academy of Sciences Publication Activity Database
Šilhavý, Miroslav
2017-01-01
Roč. 22, č. 6 (2017), s. 1483-1493 ISSN 1081-2865 Institutional support: RVO:67985840 Keywords : peridynamics * higher-grade theories * non-local elastic-material model * representation theorems for isotropic functions Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 2.953, year: 2016 http:// journals .sagepub.com/doi/10.1177/1081286516637235
Waveform LiDAR across forest biomass gradients
Montesano, P. M.; Nelson, R. F.; Dubayah, R.; Sun, G.; Ranson, J.
2011-12-01
Detailed information on the quantity and distribution of aboveground biomass (AGB) is needed to understand how it varies across space and changes over time. Waveform LiDAR data is routinely used to derive the heights of scattering elements in each illuminated footprint, and the vertical structure of vegetation is related to AGB. Changes in LiDAR waveforms across vegetation structure gradients can demonstrate instrument sensitivity to land cover transitions. A close examination of LiDAR waveforms in footprints across a forest gradient can provide new insight into the relationship of vegetation structure and forest AGB. In this study we use field measurements of individual trees within Laser Vegetation Imaging Sensor (LVIS) footprints along transects crossing forest to non-forest gradients to examine changes in LVIS waveform characteristics at sites with low (field AGB measurements to original and adjusted LVIS waveforms to detect the forest AGB interval along a forest - non-forest transition in which the LVIS waveform lose the ability to discern differences in AGB. Our results help identify the lower end the forest biomass range that a ~20m footprint waveform LiDAR can detect, which can help infer accumulation of biomass after disturbances and during forest expansion, and which can guide the use of LiDAR within a multi-sensor fusion biomass mapping approach.
Tzeneva, V.A.; Li, Y.; Felske, A.; Vos, de W.M.; Akkermans, A.D.L.; Vaughan, E.E.; Smidt, H.
2004-01-01
The worldwide presence of a hitherto-nondescribed group of predominant soil microorganisms related to Bacillus benzoevorans was analyzed after development of two sets of selective primers targeting 16S rRNA genes in combination with denaturing gradient gel electrophoresis (DGGE). The high abundance
$\\delta$-Expansion at Finite Temperature
Ramos, Rudnei O.
1996-01-01
We apply the $\\delta$-expansion perturbation scheme to the $\\lambda \\phi^{4}$ self-interacting scalar field theory in 3+1 D at finite temperature. In the $\\delta$-expansion the interaction term is written as $\\lambda (\\phi^{2})^{ 1 + \\delta}$ and $\\delta$ is considered as the perturbation parameter. We compute within this perturbative approach the renormalized mass at finite temperature at a finite order in $\\delta$. The results are compared with the usual loop-expansion at finite temperature.
Cosmological expansion and local physics
International Nuclear Information System (INIS)
Faraoni, Valerio; Jacques, Audrey
2007-01-01
The interplay between cosmological expansion and local attraction in a gravitationally bound system is revisited in various regimes. First, weakly gravitating Newtonian systems are considered, followed by various exact solutions describing a relativistic central object embedded in a Friedmann universe. It is shown that the 'all or nothing' behavior recently discovered (i.e., weakly coupled systems are comoving while strongly coupled ones resist the cosmic expansion) is limited to the de Sitter background. New exact solutions are presented which describe black holes perfectly comoving with a generic Friedmann universe. The possibility of violating cosmic censorship for a black hole approaching the big rip is also discussed
Community and ecosystem responses to elevational gradients
DEFF Research Database (Denmark)
Sundqvist, Maja K.; Sanders, Nate; Wardle, David A.
2013-01-01
Community structure and ecosystem processes often vary along elevational gradients. Their responses to elevation are commonly driven by changes in temperature, and many community- and ecosystem-level variables therefore frequently respond similarly to elevation across contrasting gradients...... elevational gradients for understanding community and ecosystem responses to global climate change at much larger spatial and temporal scales than is possible through conventional ecological experiments. However, future studies that integrate elevational gradient approaches with experimental manipulations...... will provide powerful information that can improve predictions of climate change impacts within and across ecosystems....
The δ expansion for stochastic quantization
International Nuclear Information System (INIS)
Bender, C.M.; Cooper, F.; Milton, K.A.; Department of Physics, Brown University, Providence, Rhode Island 02912; Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexic o 87545; Department of Physics, The Ohio State University, Columbus, Ohio 43210; Department of Physics and Astronomy, University of Oklahoma, Norman, Oklaho ma 73019)
1989-01-01
Using a recently proposed perturbation expansion called the δ expansion, we show how to solve the Langevin equation associated with a gphi 4 field theory. We illustrate the technique in zero- and one-dimensional space-time, and then generalize this approach to d dimensions
Platform Expansion Design as Strategic Choice
DEFF Research Database (Denmark)
Staykova, Kalina S.; Damsgaard, Jan
2016-01-01
In this paper, we address how the strategic choice of platform expansion design impacts the subse-quent platform strategy. We identify two distinct approaches to platform expansion – platform bun-dling and platform constellations, which currently co-exist. The purpose of this paper is to outline...
On genus expansion of superpolynomials
Energy Technology Data Exchange (ETDEWEB)
Mironov, Andrei, E-mail: mironov@itep.ru [Lebedev Physics Institute, Moscow 119991 (Russian Federation); ITEP, Moscow 117218 (Russian Federation); National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation); Morozov, Alexei, E-mail: morozov@itep.ru [ITEP, Moscow 117218 (Russian Federation); National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation); Sleptsov, Alexei, E-mail: sleptsov@itep.ru [ITEP, Moscow 117218 (Russian Federation); Laboratory of Quantum Topology, Chelyabinsk State University, Chelyabinsk 454001 (Russian Federation); KdVI, University of Amsterdam (Netherlands); Smirnov, Andrey, E-mail: asmirnov@math.columbia.edu [ITEP, Moscow 117218 (Russian Federation); Columbia University, Department of Mathematics, New York (United States)
2014-12-15
Recently it was shown that the (Ooguri–Vafa) generating function of HOMFLY polynomials is the Hurwitz partition function, i.e. that the dependence of the HOMFLY polynomials on representation R is naturally captured by symmetric group characters (cut-and-join eigenvalues). The genus expansion and expansion through Vassiliev invariants explicitly demonstrate this phenomenon. In the present paper we claim that the superpolynomials are not functions of such a type: symmetric group characters do not provide an adequate linear basis for their expansions. Deformation to superpolynomials is, however, straightforward in the multiplicative basis: the Casimir operators are β-deformed to Hamiltonians of the Calogero–Moser–Sutherland system. Applying this trick to the genus and Vassiliev expansions, we observe that the deformation is fully straightforward only for the thin knots. Beyond the family of thin knots additional algebraically independent terms appear in the Vassiliev and genus expansions. This can suggest that the superpolynomials do in fact contain more information about knots than the colored HOMFLY and Kauffman polynomials. However, even for the thin knots the beta-deformation is non-innocent: already in the simplest examples it seems inconsistent with the positivity of colored superpolynomials in non-(anti)symmetric representations, which also happens in I. Cherednik's (DAHA-based) approach to the torus knots.
Negative thermal expansion materials
International Nuclear Information System (INIS)
Evans, J.S.O.
1997-01-01
The recent discovery of negative thermal expansion over an unprecedented temperature range in ZrW 2 O 8 (which contracts continuously on warming from below 2 K to above 1000 K) has stimulated considerable interest in this unusual phenomenon. Negative and low thermal expansion materials have a number of important potential uses in ceramic, optical and electronic applications. We have now found negative thermal expansion in a large new family of materials with the general formula A 2 (MO 4 ) 3 . Chemical substitution dramatically influences the thermal expansion properties of these materials allowing the production of ceramics with negative, positive or zero coefficients of thermal expansion, with the potential to control other important materials properties such as refractive index and dielectric constant. The mechanism of negative thermal expansion and the phase transitions exhibited by this important new class of low-expansion materials will be discussed. (orig.)
Hydraulic gradients in rock aquifers
International Nuclear Information System (INIS)
Dahlblom, P.
1992-05-01
This report deals with fractured rock as a host for deposits of hazardous waste. In this context the rock, with its fractures containing moving groundwater, is called the geological barrier. The desired properties of the geological barrier are low permeability to water, low hydraulic gradients and ability to retain matter dissolved in the water. The hydraulic gradient together with the permeability and the porosity determines the migration velocity. Mathematical modelling of the migration involves calculation of the water flow and the hydrodynamic dispersion of the contaminant. The porous medium approach can be used to calculate mean flow velocities and hydrodynamic dispersion of a large number of fractures are connected, which means that a large volume have to be considered. It is assumed that the porous medium approach can be applied, and a number of idealized examples are shown. It is assumed that the groundwater table is replenished by percolation at a constant rate. One-dimensional analytical calculations show that zero hydraulic gradients may exist at relatively large distance from the coast. Two-dimensional numerical calculations show that it may be possible to find areas with low hydraulic gradients and flow velocities within blocks surrounded by areas with high hydraulic conductivity. (au)
Langenbach, K; Heilig, M; Horsch, M; Hasse, H
2018-03-28
A new method for predicting homogeneous bubble nucleation rates of pure compounds from vapor-liquid equilibrium (VLE) data is presented. It combines molecular dynamics simulation on the one side with density gradient theory using an equation of state (EOS) on the other. The new method is applied here to predict bubble nucleation rates in metastable liquid carbon dioxide (CO 2 ). The molecular model of CO 2 is taken from previous work of our group. PC-SAFT is used as an EOS. The consistency between the molecular model and the EOS is achieved by adjusting the PC-SAFT parameters to VLE data obtained from the molecular model. The influence parameter of density gradient theory is fitted to the surface tension of the molecular model. Massively parallel molecular dynamics simulations are performed close to the spinodal to compute bubble nucleation rates. From these simulations, the kinetic prefactor of the hybrid nucleation theory is estimated, whereas the nucleation barrier is calculated from density gradient theory. This enables the extrapolation of molecular simulation data to the whole metastable range including technically relevant densities. The results are tested against available experimental data and found to be in good agreement. The new method does not suffer from typical deficiencies of classical nucleation theory concerning the thermodynamic barrier at the spinodal and the bubble size dependence of surface tension, which is typically neglected in classical nucleation theory. In addition, the density in the center of critical bubbles and their surface tension is determined as a function of their radius. The usual linear Tolman correction to the capillarity approximation is found to be invalid.
Langenbach, K.; Heilig, M.; Horsch, M.; Hasse, H.
2018-03-01
A new method for predicting homogeneous bubble nucleation rates of pure compounds from vapor-liquid equilibrium (VLE) data is presented. It combines molecular dynamics simulation on the one side with density gradient theory using an equation of state (EOS) on the other. The new method is applied here to predict bubble nucleation rates in metastable liquid carbon dioxide (CO2). The molecular model of CO2 is taken from previous work of our group. PC-SAFT is used as an EOS. The consistency between the molecular model and the EOS is achieved by adjusting the PC-SAFT parameters to VLE data obtained from the molecular model. The influence parameter of density gradient theory is fitted to the surface tension of the molecular model. Massively parallel molecular dynamics simulations are performed close to the spinodal to compute bubble nucleation rates. From these simulations, the kinetic prefactor of the hybrid nucleation theory is estimated, whereas the nucleation barrier is calculated from density gradient theory. This enables the extrapolation of molecular simulation data to the whole metastable range including technically relevant densities. The results are tested against available experimental data and found to be in good agreement. The new method does not suffer from typical deficiencies of classical nucleation theory concerning the thermodynamic barrier at the spinodal and the bubble size dependence of surface tension, which is typically neglected in classical nucleation theory. In addition, the density in the center of critical bubbles and their surface tension is determined as a function of their radius. The usual linear Tolman correction to the capillarity approximation is found to be invalid.
Boson expansion theory in the seniority scheme
International Nuclear Information System (INIS)
Tamura, T.; Li, C.; Pedrocchi, V.G.
1985-01-01
A boson expansion formalism in the seniority scheme is presented and its relation with number-conserving quasiparticle calculations is elucidated. Accuracy and convergence are demonstrated numerically. A comparative discussion with other related approaches is given
Joining of Tungsten Armor Using Functional Gradients
International Nuclear Information System (INIS)
John Scott O'Dell
2006-01-01
The joining of low thermal expansion armor materials such as tungsten to high thermal expansion heat sink materials has been a major problem in plasma facing component (PFC) development. Conventional planar bonding techniques have been unable to withstand the high thermal induced stresses resulting from fabrication and high heat flux testing. During this investigation, innovative functional gradient joints produced using vacuum plasma spray forming techniques have been developed for joining tungsten armor to copper alloy heat sinks. A model was developed to select the optimum gradient architecture. Based on the modeling effort, a 2mm copper rich gradient was selected. Vacuum plasma pray parameters and procedures were then developed to produce the functional gradient joint. Using these techniques, dual cooling channel, medium scale mockups (32mm wide x 400mm length) were produced with vacuum plasma spray formed tungsten armor. The thickness of the tungsten armor was up to 5mm thick. No evidence of debonding at the interface between the heat sink and the vacuum plasma sprayed material was observed.
Directory of Open Access Journals (Sweden)
Dominique Brun-Battistini
2017-10-01
Full Text Available Richard C. Tolman analyzed the relation between a temperature gradient and a gravitational field in an equilibrium situation. In 2012, Tolman’s law was generalized to a non-equilibrium situation for a simple dilute relativistic fluid. The result in that scenario, obtained by introducing the gravitational force through the molecular acceleration, couples the heat flux with the metric coefficients and the gradients of the state variables. In the present paper it is shown, by explicitly describing the single particle orbits as geodesics in Boltzmann’s equation, that a gravitational field drives a heat flux in this type of system. The calculation is devoted solely to the gravitational field contribution to this heat flux in which a Newtonian limit to the Schwarzschild metric is assumed. The corresponding transport coefficient, which is obtained within a relaxation approximation, corresponds to the dilute fluid in a weak gravitational field. The effect is negligible in the non-relativistic regime, as evidenced by the direct evaluation of the corresponding limit.
Evaluating population expansion of black bears using spatial capture-recapture
Sun, Catherine C.; Fuller, Angela K.; Hare, Matthew P.; Hurst, Jeremy E.
2017-01-01
The population of American black bears (Ursus americanus) in southern New York, USA has been growing and expanding in range since the 1990s. This has motivated a need to anticipate future patterns of range expansion. We conducted a non-invasive, genetic, spatial capture-recapture (SCR) study to estimate black bear density and identify spatial patterns of population density that are potentially associated with range expansion. We collected hair samples in a 2,519-km2 study area in southern New York with barbed-wire hair snares and identified individuals and measured genetic diversity using 7 microsatellite loci and 1 sex-linked marker. We estimated a mean density of black bears in the region of 13.7 bears/100 km2, and detected a slight latitudinal gradient in density consistent with the documented range expansion. However, elevation and the amounts of forest, crop, and developed landcover types did not influence density, suggesting that bears are using a diversity of resources in this heterogeneous landscape outside their previously described distribution. These results provide the first robust baseline estimates for population density and distribution associated with different landcover types in the expanded bear range. Further, genetic diversity was comparable to that of non-expanding black bear populations in the eastern United States, and in combination with the latitudinal density gradient, suggest that the study area is not at the colonizing front of the range expansion. In addition, the diversity of landcover types used by bears in the study area implies a possible lack of constraints for further northern expansion of the black bear range. Our non-invasive, genetic, spatial capture-recapture approach has utility for studying populations of other species that may be expanding in range because SCR allows for the testing of explicit, spatial ecological hypotheses.
Tao, Shengzhen; Weavers, Paul T; Trzasko, Joshua D; Shu, Yunhong; Huston, John; Lee, Seung-Kyun; Frigo, Louis M; Bernstein, Matt A
2017-06-01
To develop a gradient pre-emphasis scheme that prospectively counteracts the effects of the first-order concomitant fields for any arbitrary gradient waveform played on asymmetric gradient systems, and to demonstrate the effectiveness of this approach using a real-time implementation on a compact gradient system. After reviewing the first-order concomitant fields that are present on asymmetric gradients, we developed a generalized gradient pre-emphasis model assuming arbitrary gradient waveforms to counteract their effects. A numerically straightforward, easily implemented approximate solution to this pre-emphasis problem was derived that was compatible with the current hardware infrastructure of conventional MRI scanners for eddy current compensation. The proposed method was implemented on the gradient driver subsystem, and its real-time use was tested using a series of phantom and in vivo data acquired from two-dimensional Cartesian phase-difference, echo-planar imaging, and spiral acquisitions. The phantom and in vivo results demonstrated that unless accounted for, first-order concomitant fields introduce considerable phase estimation error into the measured data and result in images with spatially dependent blurring/distortion. The resulting artifacts were effectively prevented using the proposed gradient pre-emphasis. We have developed an efficient and effective gradient pre-emphasis framework to counteract the effects of first-order concomitant fields of asymmetric gradient systems. Magn Reson Med 77:2250-2262, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Energy Technology Data Exchange (ETDEWEB)
Dzenus, M.; Hundhausen, W.; Jansing, W.
1979-10-15
This discourse recounts efforts put into the SNR-2 project; specifically the development of compensation devices. The various prototypes of these compensation devices are described and the state of development reviewed. The expansion joints were developed on the basis of specific design criteria whereby differentiation is made between expansion joints of small and large nominal diameter. Expansion joints for installation in the sodium-filled primary piping are equipped with safety bellows in addition to the actual working bellows.
Ono, Shunsuke
2017-04-01
Minimizing L 0 gradient, the number of the non-zero gradients of an image, together with a quadratic data-fidelity to an input image has been recognized as a powerful edge-preserving filtering method. However, the L 0 gradient minimization has an inherent difficulty: a user-given parameter controlling the degree of flatness does not have a physical meaning since the parameter just balances the relative importance of the L 0 gradient term to the quadratic data-fidelity term. As a result, the setting of the parameter is a troublesome work in the L 0 gradient minimization. To circumvent the difficulty, we propose a new edge-preserving filtering method with a novel use of the L 0 gradient. Our method is formulated as the minimization of the quadratic data-fidelity subject to the hard constraint that the L 0 gradient is less than a user-given parameter α . This strategy is much more intuitive than the L 0 gradient minimization because the parameter α has a clear meaning: the L 0 gradient value of the output image itself, so that one can directly impose a desired degree of flatness by α . We also provide an efficient algorithm based on the so-called alternating direction method of multipliers for computing an approximate solution of the nonconvex problem, where we decompose it into two subproblems and derive closed-form solutions to them. The advantages of our method are demonstrated through extensive experiments.
Thermal expansion coefficient determination of polylactic acid using digital image correlation
Botean, Adrian-Ioan
2018-02-01
This paper aims determining the linear thermal expansion coefficient (CTE) of polylactic acid (PLA) using an optical method for measuring deformations called digital image correlation method (DIC). Because PLA is often used in making many pieces with 3D printing technology, it is opportune to know this coefficient to obtain a higher degree of precision in the construction of parts and to monitor deformations when these parts are subjected to a thermal gradient. Are used two PLA discs with 20 and 40% degree of filling. In parallel with this approach was determined the linear thermal expansion coefficient (CTE) for the copper cylinder on the surface of which are placed the two discs of PLA.
Thermal expansion coefficient determination of polylactic acid using digital image correlation
Directory of Open Access Journals (Sweden)
Botean Adrian - Ioan
2018-01-01
Full Text Available This paper aims determining the linear thermal expansion coefficient (CTE of polylactic acid (PLA using an optical method for measuring deformations called digital image correlation method (DIC. Because PLA is often used in making many pieces with 3D printing technology, it is opportune to know this coefficient to obtain a higher degree of precision in the construction of parts and to monitor deformations when these parts are subjected to a thermal gradient. Are used two PLA discs with 20 and 40% degree of filling. In parallel with this approach was determined the linear thermal expansion coefficient (CTE for the copper cylinder on the surface of which are placed the two discs of PLA.
Wei, Mi; Tong, Yao; Wang, Hongbo; Wang, Lihua; Yu, Longjiang
2016-04-01
Development of efficient pretreatment methods which can disrupt the peripheral lignocellulose and even the parenchyma cells is of great importance for production of diosgenin from turmeric rhizomes. It was found that low pressure steam expansion pretreatment (LSEP) could improve the diosgenin yield by more than 40% compared with the case without pretreatment, while simultaneously increasing the production of fermentable sugar by 27.37%. Furthermore, little inhibitory compounds were produced in LSEP process which was extremely favorable for the subsequent biotransformation of fermentable sugar to other valuable products such as ethanol. Preliminary study showed that the ethanol yield when using the fermentable sugar as carbon source was comparable to that using glucose. The liquid residue of LSEP treated turmeric tuber after diosgenin production can be utilized as a quality fermentable carbon source. Therefore, LSEP has great potential in industrial application in diosgenin clean production and comprehensive utilization of turmeric tuber. Copyright © 2016 Elsevier Ltd. All rights reserved.
Energy expansion planning by considering electrical and thermal expansion simultaneously
International Nuclear Information System (INIS)
Abbasi, Ali Reza; Seifi, Ali Reza
2014-01-01
Highlights: • This paper focused on the expansion planning optimization of energy systems. • Employing two form of energy: the expansion of electrical and thermal energies. • The main objective is to minimize the costs. • A new Modified Honey Bee Mating Optimization (MHBMO) algorithm is applied. - Abstract: This study focused on the expansion planning optimization of energy systems employing two forms of energy: the expansion of electrical and thermal energies simultaneously. The main objective of this investigation is confirming network adequacy by adding new equipment to the network, over a given planning horizon. The main objective of the energy expansion planning (EEP) is to minimize the real energy loss, voltage deviation and the total cost of installation equipments. Since the objectives are different and incommensurable, it is difficult to solve the problem by the conventional approaches that may optimize a single objective. So, the meta-heuristic algorithm is applied to this problem. Here, Honey Bee Mating Optimization algorithm (HBMO) as a new evolutionary optimization algorithm is utilized. In order to improve the total ability of HBMO for the global search and exploration, a new modification process is suggested such a way that the algorithm will search the total search space globally. Also, regarding the uncertainties of the new complicated energy systems, in this paper for the first time, the EEP problem is investigated in a stochastic environment by the use of probabilistic load flow technique based on Point Estimate Method (PEM). In order to evaluate the feasibility and effectiveness of the proposed algorithm, two modified test systems are used as case studies
Convergence of mayer expansions
International Nuclear Information System (INIS)
Brydges, D.C.
1986-01-01
The tree graph bound of Battle and Federbush is extended and used to provide a simple criterion for the convergence of (iterated) Mayer expansions. As an application estimates on the radius of convergence of the Mayer expansion for the two-dimensional Yukawa gas (nonstable interaction) are obtained
Denaturing gradient gel electrophoresis
International Nuclear Information System (INIS)
Kocherginskaya, S.A.; Cann, I.K.O.; Mackie, R.I.
2005-01-01
It is worthwhile considering that only some 30 species make up the bulk of the bacterial population in human faeces at any one time based on the classical cultivation-based approach. The situation in the rumen is similar. Thus, it is practical to focus on specific groups of interest within the complex community. These may be the predominant or the most active species, specific physiological groups or readily identifiable (genetic) clusters of phylogenetically related organisms. Several 16S rDNA fingerprinting techniques can be invaluable for selecting and monitoring sequences or phylogenetic groups of interest and are described below. Over the past few decades, considerable attention was focussed on the identification of pure cultures of microbes on the basis of genetic polymorphisms of DNA encoding rRNA such as ribotyping, amplified fragment length polymorphism and randomly amplified polymorphic DNA. However, many of these methods require prior cultivation and are less suitable for use in analysis of complex mixed populations although important in describing cultivated microbial diversity in molecular terms. Much less attention was given to molecular characterization of complex communities. In particular, research into diversity and community structure over time has been revolutionized by the advent of molecular fingerprinting techniques for complex communities. Denaturing or temperature gradient gel electrophoresis (DGGE/TGGE) methods have been successfully applied to the analysis of human, pig, cattle, dog and rodent intestinal populations
NMR surprizes with thin slices and strong gradients
Energy Technology Data Exchange (ETDEWEB)
Gaedke, Achim; Kresse, Benjamin [Institute of Condensed Matter Physics, Technische Universitaet Darmstadt (Germany); Nestle, Nikolaus
2008-07-01
In the context of our work on diffusion-relaxation-coupling in thin excited slices, we perform NMR experiments in static magnetic field gradients up to 200 T/m. For slice thicknesses in the range of 10{mu}m, the frequency bandwidth of the excited slices becomes sufficiently narrow that free induction decays (FIDs) become observable despite the presence of the strong static gradient. The observed FIDs were also simulated using standard methods from MRI physics. Possible effects of diffusion during the FID duration are still minor at this slice thickness in water but might become dominant for smaller slices or more diffusive media. Furthermore, the detailed excitation structure of the RF pulses was studied in profiling experiments over the edge of a plane liquid cell. Side lobe effects to the slices will be discussed along with approaches to control them. The spatial resolution achieved in the profiling experiments furthermore allows the identification of thermal expansion phenomena in the NMR magnet. Measures to reduce the temperature drift problems are presented.
Directory of Open Access Journals (Sweden)
Ilkka Leinonen
2018-05-01
Full Text Available Agricultural by-products are an important component of livestock feed. In Scotland, distillery by-products are protein rich and traditionally cost competitive feed ingredients in cattle production. However, during recent years, distilleries in the UK (including Scotch whisky producers have started to use the by-products also as a source of renewable energy, in order to reduce the carbon footprint of alcohol production. In this study, a systems-based material and energy flow analysis was performed to calculate the life-cycle greenhouse gas (GHG emissions of whisky production for two scenarios where distillery by-products were used either (1 as beef cattle feed to replace other protein sources (namely soya bean meal and rapeseed meal; or (2 as anaerobic digester (AD feedstock in order to generate renewable energy (heat and electricity. System expansion was used to quantitatively handle the by-products in the analysis. The results show that considerable reductions in GHG emissions could be achieved by either replacing feed crops with by-products or by using the by-products in AD plants to generate bio-energy. The biggest reductions in the GHG emissions were achieved when by-products were used to replace soya meal in animal feed. However, the results are highly sensitive to methodological choices, including the accounting method of the land use change emissions arising from soya production.
National Research Council Canada - National Science Library
Uranowski, Christina
2003-01-01
The Hydrogeomorphic (HGM) Approach is a collection of concepts and methods for developing functional indices and subsequently using them to assess the capacity of a wetland to perform functions relative to similar wetlands in a region...
Chemical graph-theoretic cluster expansions
International Nuclear Information System (INIS)
Klein, D.J.
1986-01-01
A general computationally amenable chemico-graph-theoretic cluster expansion method is suggested as a paradigm for incorporation of chemical structure concepts in a systematic manner. The cluster expansion approach is presented in a formalism general enough to cover a variety of empirical, semiempirical, and even ab initio applications. Formally such approaches for the utilization of chemical structure-related concepts may be viewed as discrete analogues of Taylor series expansions. The efficacy of the chemical structure concepts then is simply bound up in the rate of convergence of the cluster expansions. In many empirical applications, e.g., boiling points, chromatographic separation coefficients, and biological activities, this rate of convergence has been observed to be quite rapid. More note will be made here of quantum chemical applications. Relations to questions concerning size extensivity of energies and size consistency of wave functions are addressed
Some Improved Nonperturbative Bounds for Fermionic Expansions
Energy Technology Data Exchange (ETDEWEB)
Lohmann, Martin, E-mail: marlohmann@gmail.com [Universita di Roma Tre, Dipartimento di Matematica (Italy)
2016-06-15
We reconsider the Gram-Hadamard bound as it is used in constructive quantum field theory and many body physics to prove convergence of Fermionic perturbative expansions. Our approach uses a recursion for the amplitudes of the expansion, discovered in a model problem by Djokic (2013). It explains the standard way to bound the expansion from a new point of view, and for some of the amplitudes provides new bounds, which avoid the use of Fourier transform, and are therefore superior to the standard bounds for models like the cold interacting Fermi gas.
Xing, Zhencheng; Wang, Jigan; Zhang, Jie
2018-09-01
Due to the increasing environmental burdens caused by dramatic economic expansion, eco-efficiency indicating how efficient the economic activity is with respect to its environmental impacts has become a topic of considerable interest in China. In this context, Economic Input-output Life Cycle Assessment (EIO-LCA) and Data Envelopment Analysis (DEA) are combined to assess the environmental impacts and eco-efficiency of China's 26 economic sectors. The EIO-LCA results indicate that Electricity Production and Supply sector is the largest net exporter in energy usage, CO 2 emission and exhaust emission categories, while Construction sector is the largest net importer for five impact categories except for water withdrawal. Moreover, Construction sector is found to be the destination of the largest sector-to-sector environmental impact flows for the five impact categories and make the most contributions to the total environmental impacts. Another key finding is that Agriculture sector is both the largest net exporter and the greatest contributor for water withdrawal category. DEA results indicate that seven sectors are eco-efficient while over 70% of China's economic sectors are inefficient and require significant improvements. The average target improvements range between 23.30% and 35.06% depending on the impact category. Further sensitivity analysis reveals that the average sensitivity ratios vary from 7.7% to 15.7% among the six impact categories, which are found to be negatively correlated with their improvement potentials. Finally, several policy recommendations are made to mitigate environmental impacts of China's economic sectors and improve their eco-efficiency levels. Copyright © 2018 Elsevier B.V. All rights reserved.
Stochastic quantization and 1/N expansion
International Nuclear Information System (INIS)
Brunelli, J.C.; Mendes, R.S.
1992-10-01
We study the 1/N expansion of field theories in the stochastic quantization method of Parisi and Wu using the supersymmetric functional approach. This formulation provides a systematic procedure to implement the 1/N expansion which resembles the ones used in the equilibrium. The 1/N perturbation theory for the non linear sigma model in two dimensions is worked out as an example. (author). 19 refs., 5 figs
Kashuba, Roxolana; McMahon, Gerard; Cuffney, Thomas F.; Qian, Song; Reckhow, Kenneth; Gerritsen, Jeroen; Davies, Susan
2012-01-01
Urban development alters important physical, chemical, and biological processes that define urban stream ecosystems. An approach was developed for quantifying the effects of these processes on aquatic biota, and then linking those effects to endpoints that can be used for environmental management. These complex, interacting systems are challenging to model from a scientific standpoint. A desirable model clearly shows the system, simulates the interactions, and ultimately predicts results of management actions. Traditional regression techniques that calculate empirical relations between pairs of environmental factors do not capture the interconnected web of multiple stressors, but urban development effects are not yet understood at the detailed scales required to make mechanistic modeling approaches feasible. Therefore, in contrast to a fully deterministic or fully statistical modeling approach, a Bayesian network model provides a hybrid approach that can be used to represent known general associations between variables while acknowledging uncertainty in predicted outcomes. It does so by quantifying an expert-elicited network of probabilistic relations between variables. Advantages of this modeling approach include (1) flexibility in accommodating many model specifications and information types; (2) efficiency in storing and manipulating complex information, and to parameterize; and (3) transparency in describing the relations using nodes and arrows and in describing uncertainties with discrete probability distributions for each variable.
Controlled Thermal Expansion Alloys
National Aeronautics and Space Administration — There has always been a need for controlled thermal expansion alloys suitable for mounting optics and detectors in spacecraft applications. These alloys help...
Quaternion Gradient and Hessian
Xu, Dongpo; Mandic, Danilo P.
2014-01-01
The optimization of real scalar functions of quaternion variables, such as the mean square error or array output power, underpins many practical applications. Solutions typically require the calculation of the gradient and Hessian. However, real functions of quaternion variables are essentially nonanalytic, which are prohibitive to the development of quaternion-valued learning systems. To address this issue, we propose new definitions of quaternion gradient and Hessian, based on the novel gen...
Fuel Thermal Expansion (FTHEXP)
International Nuclear Information System (INIS)
Reymann, G.A.
1978-07-01
A model is presented which deals with dimensional changes in LWR fuel pellets caused by changes in temperature. It is capable of dealing with any combination of UO 2 and PuO 2 in solid, liquid or mixed phase states, and includes expansion due to the solid-liquid phase change. The function FTHEXP models fuel thermal expansion as a function of temperature, fraction of PuO 2 , and the fraction of fuel which is molten
International Nuclear Information System (INIS)
Salat, A.
1990-01-01
In conventional drift wave theory the density gradient κ n =d lnn/dχ determines the linear phase velocity, and the (electron) temperature gradient κ T =d lnT/dχ gives rise to a nonlinear term which leads to the existence of soliton-type solutions and solitary waves. LAKHIN, MIKHAILOVSKI and ONISHCHENKO, Phys. Lett. A 119, 348 (1987) and Plasma Phys. and Contr. Fus. 30, 457 (1988), recently claimed that it is not κ T but essentially the derivative of the density gradient, dκ n /dχ, that is relevant. This claim is refuted by means of an expansion scheme in ε=eΦ/T≤1, where Φ is the drift wave potential. (orig.)
Zhang, C.; Li, X.; Huawu, W.; Wang, P.; Wang, Y.; WU, X.; Li, W.; Huang, Y.
2017-12-01
Understanding of the responses of different plant species to changes in available water source is critical for accurately modeling and predicting species dynamic and the effect of expected climate change on plant distribution. Our study aimed to explore whether there were differences of water use strategies between the two coexisting shrubs (Reaumuria songarica Maxim and Nitraria.sphaerocarpa Maxim ) in response to different amounts of summer precipitation. We conducted a 3-year field observations at three sites along a gradient of precipitation from middle to lower reaches of Heihe River basin (HRB), northwestern China. Stable oxygen composition (δ18O) in plant xylem water, soil water, and groundwater were analyzed concurrently with ecophysiological measurement at monthly intervals during the growing seasons. The results showed that both R. soongorica and N. sphaerocarpa growing in regions with precipitation dominated water supply exhibited distinct seasonal pattern in water source utilization. In contrast, R. soongorica in the most arid site has the consistent water-use strategy relying primarily on groundwater sources regardless seasonality of precipitation. Water source for coexisting R. soongorica and N. sphaerocarpa did not differ at the sites where precipitation amount was high, but they were a significant different in more arid locations. N. sphaerocarpa is more sensitive to summer precipitation than R. soongorica in terms of predawn water potential (Ψpd), stomatal conductance and foliage δ13C. Our findings reveal that plant relying groundwater sources could maintain a consistent water use strategies, but did not for plants took up precipitation-derived water source. Our results demonstrated that N. sphaerocarpa with a shallower rooting system was more responsive for summer rainfall than did for R. soongorica. We also found that the difference in water source uptake between the coexisting species was more apparent in more arid locations. Results of this
Gradient Alloy for Optical Packaging
National Aeronautics and Space Administration — Advances in additive manufacturing, such as Laser Engineered Net Shaping (LENS), enables the fabrication of compositionally gradient microstructures, i.e. gradient...
Polarization-dependent ponderomotive gradient force in a standing wave
Smorenburg, P.W.; Kanters, J.H.M.; Lassise, A.; Brussaard, G.J.H.; Kamp, L.P.J.; Luiten, O.J.
2011-01-01
The ponderomotive force is derived for a relativistic charged particle entering an electromagnetic standing wave with a general three-dimensional field distribution and a nonrelativistic intensity, using a perturbation expansion method. It is shown that the well-known ponderomotive gradient force
International Nuclear Information System (INIS)
Lind, P.
1993-02-01
The completeness properties of the discrete set of bound state, virtual states and resonances characterizing the system of a single nonrelativistic particle moving in a central cutoff potential is investigated. From a completeness relation in terms of these discrete states and complex scattering states one can derive several Resonant State Expansions (RSE). It is interesting to obtain purely discrete expansion which, if valid, would significantly simplify the treatment of the continuum. Such expansions can be derived using Mittag-Leffler (ML) theory for a cutoff potential and it would be nice to see if one can obtain the same expansions starting from an eigenfunction theory that is not restricted to a finite sphere. The RSE of Greens functions is especially important, e.g. in the continuum RPA (CRPA) method of treating giant resonances in nuclear physics. The convergence of RSE is studied in simple cases using square well wavefunctions in order to achieve high numerical accuracy. Several expansions can be derived from each other by using the theory of analytic functions and one can the see how to obtain a natural discretization of the continuum. Since the resonance wavefunctions are oscillating with an exponentially increasing amplitude, and therefore have to be interpreted through some regularization procedure, every statement made about quantities involving such states is checked by numerical calculations.Realistic nuclear wavefunctions, generated by a Wood-Saxon potential, are used to test also the usefulness of RSE in a realistic nuclear calculation. There are some fundamental differences between different symmetries of the integral contour that defines the continuum in RSE. One kind of symmetry is necessary to have an expansion of the unity operator that is idempotent. Another symmetry must be used if we want purely discrete expansions. These are found to be of the same form as given by ML. (29 refs.)
Breeding bird response to juniper woodland expansion
Rosenstock, Steven S.; van Riper, Charles
2001-01-01
In recent times, pinyon (Pinus spp.)-juniper (Juniperus spp.) woodlands have expanded into large portions of the Southwest historically occupied by grassland vegetation. From 1997-1998, we studied responses of breeding birds to one-seed juniper (J. monosperma) woodland expansion at 2 grassland study areas in northern Arizona. We sampled breeding birds in 3 successional stages along a grassland-woodland gradient: un-invaded grassland, grassland undergoing early stages of juniper establishment, and developing woodland. Species composition varied greatly among successional stages and was most different between endpoints of the gradient. Ground-nesting grassland species predominated in uninvaded grassland but declined dramatically as tree density increased. Tree- and cavity-nesting species increased with tree density and were most abundant in developing woodland. Restoration of juniper-invaded grasslands will benefit grassland-obligate birds and other wildlife.
δ expansion applied to quantum electrodynamics
International Nuclear Information System (INIS)
Bender, C.M.; Boettcher, S.; Milton, K.A.
1992-01-01
A recently proposed technique known as the δ expansion provides a nonperturbative treatment of a quantum field theory. The δ-expansion approach can be applied to electrodynamics in such a way that local gauge invariance is preserved. In this paper it is shown that for electrodynamic processes involving only external photon lines and no external electron lines the δ expansion is equivalent to a fermion loop expansion. That is, the coefficient of δ n in the δ expansion is precisely the sum of all n-electron-loop Feynman diagrams in a conventional weak-coupling approximation. This equivalence does not extend to processes having external electron lines. When external electron lines are present, the δ expansion is truly nonperturbative and does not have a simple interpretation as a resummation of conventional Feynman diagrams. To illustrate the nonperturbative character of the δ expansion we perform a speculative calculation of the fermion condensate in the massive Schwinger model in the limit of large coupling constant
High Gradient Accelerator Research
International Nuclear Information System (INIS)
Temkin, Richard
2016-01-01
The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.
International Nuclear Information System (INIS)
Dzenus, M.; Hundhausen, W.; Jansing, W.
1980-01-01
This discourse recounts efforts put into the SNR-2 project; specifically the development of compensation devices. The various prototypes of these compensation devices are described and the state of the development reviewed. Large Na (sodium)-heat transfer systems require a lot of valuable space if the component lay-out does not include compensation devices. So, in order to condense the spatial requirement as much as possible, expansion joints must be integrated into the pipe system. There are two basic types to suit the purpose: axial expansion joints and angular expansion joints. The expansion joints were developed on the basis of specific design criteria whereby differentiation is made between expansion joints of small and large nominal diameter. Expansion joints for installation in the sodium-filled primary piping are equipped with safety bellows in addition to the actual working bellows. Expansion joints must be designed and mounted in a manner to completely withstand seismic forces. The design must exclude any damage to the bellows during intermittent operations, that is, when sodium is drained the bellows' folds must be completely empty; otherwise residual solidified sodium could destroy the bellows when restarting. The expansion joints must be engineered on the basis of the following design data for the secondary system of the SNR project: working pressure: 16 bar; failure mode pressure: 5 events; failure mode: 5 sec., 28.5 bar, 520 deg. C; working temperature: 520 deg. C; temperature transients: 30 deg. C/sec.; service life: 200,000 h; number of load cycles: 10 4 ; material: 1.4948 or 1.4919; layer thickness of folds: 0.5 mm; angular deflection (DN 800): +3 deg. C or; axial expansion absorption (DN 600): ±80 mm; calculation: ASME class. The bellows' development work is not handled within this scope. The bellows are supplied by leading manufacturers, and warrant highest quality. Multiple bellows were selected on the basis of maximum elasticity - a property
Mullite-alumina functionally gradient ceramics
International Nuclear Information System (INIS)
Pena, P.; Bartolome, J.; Requena, J.; Moya, J.S.
1993-01-01
Cracks free mullite-alumina Functionally Gradient Ceramics (FGC) have been obtained by sequential slip casting of Mullite-alumina slurries with different mullite/alumina ratios. These slurries were prepared with 65 % solids content and viscosities ranging from 10 to 40 mPa.s. The presence of cracks perpendicular to the FGC layers have been attributed to residual stresses developed because of the mismatch in thermal expansion between layers. The microstructure of the different layers, and de residual stress value σ R in each layer was also determined. (orig.)
Coreless Concept for High Gradient Induction Cell
International Nuclear Information System (INIS)
Krasnykh, Anatoly
2008-01-01
An induction linac cell for a high gradient is discussed. The proposed solid state coreless approach for the induction linac topology (SLIM(reg s ign)) is based on nanosecond mode operation. This mode may have an acceleration gradient comparable with gradients of rf- accelerator structures. The discussed induction system has the high electric efficiency. The key elements are a solid state semiconductor switch and a high electric density dielectric with a thin section length. The energy in the induction system is storied in the magnetic field. The nanosecond current break-up produces the high voltage. The induced voltage is used for acceleration. This manner of an operation allows the use of low voltage elements in the booster part and achieves a high accelerating gradient. The proposed topology was tested in POP (proof of principle) experiments
On fracture in finite strain gradient plasticity
DEFF Research Database (Denmark)
Martínez Pañeda, Emilio; Niordson, Christian Frithiof
2016-01-01
In this work a general framework for damage and fracture assessment including the effect of strain gradients is provided. Both mechanism-based and phenomenological strain gradient plasticity (SGP) theories are implemented numerically using finite deformation theory and crack tip fields are invest......In this work a general framework for damage and fracture assessment including the effect of strain gradients is provided. Both mechanism-based and phenomenological strain gradient plasticity (SGP) theories are implemented numerically using finite deformation theory and crack tip fields...... are investigated. Differences and similarities between the two approaches within continuum SGP modeling are highlighted and discussed. Local strain hardening promoted by geometrically necessary dislocations (GNDs) in the vicinity of the crack leads to much higher stresses, relative to classical plasticity...... in the multiple parameter version of the phenomenological SGP theory. Since this also dominates the mechanics of indentation testing, results suggest that length parameters characteristic of mode I fracture should be inferred from nanoindentation....
Accelerating the loop expansion
International Nuclear Information System (INIS)
Ingermanson, R.
1986-01-01
This thesis introduces a new non-perturbative technique into quantum field theory. To illustrate the method, I analyze the much-studied phi 4 theory in two dimensions. As a prelude, I first show that the Hartree approximation is easy to obtain from the calculation of the one-loop effective potential by a simple modification of the propagator that does not affect the perturbative renormalization procedure. A further modification then susggests itself, which has the same nice property, and which automatically yields a convex effective potential. I then show that both of these modifications extend naturally to higher orders in the derivative expansion of the effective action and to higher orders in the loop-expansion. The net effect is to re-sum the perturbation series for the effective action as a systematic ''accelerated'' non-perturbative expansion. Each term in the accelerated expansion corresponds to an infinite number of terms in the original series. Each term can be computed explicitly, albeit numerically. Many numerical graphs of the various approximations to the first two terms in the derivative expansion are given. I discuss the reliability of the results and the problem of spontaneous symmetry-breaking, as well as some potential applications to more interesting field theories. 40 refs
Tate, Stephen James
2013-10-01
In the 1960s, the technique of using cluster expansion bounds in order to achieve bounds on the virial expansion was developed by Lebowitz and Penrose (J. Math. Phys. 5:841, 1964) and Ruelle (Statistical Mechanics: Rigorous Results. Benjamin, Elmsford, 1969). This technique is generalised to more recent cluster expansion bounds by Poghosyan and Ueltschi (J. Math. Phys. 50:053509, 2009), which are related to the work of Procacci (J. Stat. Phys. 129:171, 2007) and the tree-graph identity, detailed by Brydges (Phénomènes Critiques, Systèmes Aléatoires, Théories de Jauge. Les Houches 1984, pp. 129-183, 1986). The bounds achieved by Lebowitz and Penrose can also be sharpened by doing the actual optimisation and achieving expressions in terms of the Lambert W-function. The different bound from the cluster expansion shows some improvements for bounds on the convergence of the virial expansion in the case of positive potentials, which are allowed to have a hard core.
Conformal expansions and renormalons
Energy Technology Data Exchange (ETDEWEB)
Rathsman, J.
2000-02-07
The coefficients in perturbative expansions in gauge theories are factorially increasing, predominantly due to renormalons. This type of factorial increase is not expected in conformal theories. In QCD conformal relations between observables can be defined in the presence of a perturbative infrared fixed-point. Using the Banks-Zaks expansion the authors study the effect of the large-order behavior of the perturbative series on the conformal coefficients. The authors find that in general these coefficients become factorially increasing. However, when the factorial behavior genuinely originates in a renormalon integral, as implied by a postulated skeleton expansion, it does not affect the conformal coefficients. As a consequence, the conformal coefficients will indeed be free of renormalon divergence, in accordance with previous observations concerning the smallness of these coefficients for specific observables. The authors further show that the correspondence of the BLM method with the skeleton expansion implies a unique scale-setting procedure. The BLM coefficients can be interpreted as the conformal coefficients in the series relating the fixed-point value of the observable with that of the skeleton effective charge. Through the skeleton expansion the relevance of renormalon-free conformal coefficients extends to real-world QCD.
Improvement of Expansive Soils Using Chemical Stabilizers
Ikizler, S. B.; Senol, A.; Khosrowshahi, S. K.; Hatipoğlu, M.
2014-12-01
The aim of this study is to investigate the effect of two chemical stabilizers on the swelling potential of expansive soil. A high plasticity sodium bentonite was used as the expansive soil. The additive materials including fly ash (FA) and lime (L) were evaluated as potential stabilizers to decrease the swelling pressure of bentonite. Depending on the type of additive materials, they were blended with bentonite in different percentages to assess the optimum state and approch the maximum swell pressure reduction. According to the results of swell pressure test, both fly ash and lime reduce the swelling potential of bentonite but the maximum improvement occurs using bentonite-lime mixture while the swelling pressure reduction approaches to 49%. The results reveal a significant reduction of swelling potential of expansive soil using chemical stabilizers. Keywords: Expansive soil; swell pressure; chemical stabilization; fly ash; lime
International Nuclear Information System (INIS)
Taylor, D.
1984-01-01
This paper gives regression data for a modified second order polynomial fitted to the expansion data of, and percentage expansions for dioxides with (a) the fluorite and antifluorite structure: AmO 2 , BkO 2 , CeO 2 , CmO 2 , HfO 2 , Li 2 O, NpO 2 , PrO 2 , PuO 2 , ThO 2 , UO 2 , ZrO 2 , and (b) the rutile structure: CrO 2 , GeO 2 , IrO 2 , MnO 2 , NbO 2 , PbO 2 , SiO 2 , SnO 2 , TeO 2 , TiO 2 and VO 2 . Reduced expansion curves for the dioxides showed only partial grouping into iso-electronic series for the fluorite structures and showed that the 'law of corresponding states' did not apply to the rutile structures. (author)
Ledoux, L.A.F.; Berkhoff, Arthur P.; Thijssen, J.M.
The Conjugate Gradient Rayleigh method for the calculation of acoustic reflection and transmission at a rough interface between two media was experimentally verified. The method is based on a continuous version of the conjugate gradient technique and plane-wave expansions. We measured the beam
High gradient superconducting quadrupoles
International Nuclear Information System (INIS)
Lundy, R.A.; Brown, B.C.; Carson, J.A.; Fisk, H.E.; Hanft, R.H.; Mantsch, P.M.; McInturff, A.D.; Remsbottom, R.H.
1987-07-01
Prototype superconducting quadrupoles with a 5 cm aperture and gradient of 16 kG/cm have been built and tested as candidate magnets for the final focus at SLC. The magnets are made from NbTi Tevatron style cable with 10 inner and 14 outer turns per quadrant. Quench performance and multipole data are presented. Design and data for a low current, high gradient quadrupole, similar in cross section but wound with a cable consisting of five insulated conductors are also discussed
A Latitudinal Diversity Gradient in Terrestrial Bacteria of the Genus Streptomyces
Directory of Open Access Journals (Sweden)
Cheryl P. Andam
2016-04-01
Full Text Available We show that Streptomyces biogeography in soils across North America is influenced by the regional diversification of microorganisms due to dispersal limitation and genetic drift. Streptomyces spp. form desiccation-resistant spores, which can be dispersed on the wind, allowing for a strong test of whether dispersal limitation governs patterns of terrestrial microbial diversity. We employed an approach that has high sensitivity for determining the effects of genetic drift. Specifically, we examined the genetic diversity and phylogeography of physiologically similar Streptomyces strains isolated from geographically distributed yet ecologically similar habitats. We found that Streptomyces beta diversity scales with geographic distance and both beta diversity and phylogenetic diversity manifest in a latitudinal diversity gradient. This pattern of Streptomyces biogeography resembles patterns seen for diverse species of plants and animals, and we therefore evaluated these data in the context of ecological and evolutionary hypotheses proposed to explain latitudinal diversity gradients. The data are consistent with the hypothesis that niche conservatism limits dispersal, and historical patterns of glaciation have limited the time for speciation in higher-latitude sites. Most notably, higher-latitude sites have lower phylogenetic diversity, higher phylogenetic clustering, and evidence of range expansion from lower latitudes. In addition, patterns of beta diversity partition with respect to the glacial history of sites. Hence, the data support the hypothesis that extant patterns of Streptomyces biogeography have been driven by historical patterns of glaciation and are the result of demographic range expansion, dispersal limitation, and regional diversification due to drift.
A Latitudinal Diversity Gradient in Terrestrial Bacteria of the Genus Streptomyces
Andam, Cheryl P.; Doroghazi, James R.; Campbell, Ashley N.; Kelly, Peter J.; Choudoir, Mallory J.
2016-01-01
ABSTRACT We show that Streptomyces biogeography in soils across North America is influenced by the regional diversification of microorganisms due to dispersal limitation and genetic drift. Streptomyces spp. form desiccation-resistant spores, which can be dispersed on the wind, allowing for a strong test of whether dispersal limitation governs patterns of terrestrial microbial diversity. We employed an approach that has high sensitivity for determining the effects of genetic drift. Specifically, we examined the genetic diversity and phylogeography of physiologically similar Streptomyces strains isolated from geographically distributed yet ecologically similar habitats. We found that Streptomyces beta diversity scales with geographic distance and both beta diversity and phylogenetic diversity manifest in a latitudinal diversity gradient. This pattern of Streptomyces biogeography resembles patterns seen for diverse species of plants and animals, and we therefore evaluated these data in the context of ecological and evolutionary hypotheses proposed to explain latitudinal diversity gradients. The data are consistent with the hypothesis that niche conservatism limits dispersal, and historical patterns of glaciation have limited the time for speciation in higher-latitude sites. Most notably, higher-latitude sites have lower phylogenetic diversity, higher phylogenetic clustering, and evidence of range expansion from lower latitudes. In addition, patterns of beta diversity partition with respect to the glacial history of sites. Hence, the data support the hypothesis that extant patterns of Streptomyces biogeography have been driven by historical patterns of glaciation and are the result of demographic range expansion, dispersal limitation, and regional diversification due to drift. PMID:27073097
Crisanto-Neto, J. C.; da Luz, M. G. E.; Raposo, E. P.; Viswanathan, G. M.
2016-09-01
In practice, the Lévy α-stable distribution is usually expressed in terms of the Fourier integral of its characteristic function. Indeed, known closed form expressions are relatively scarce given the huge parameters space: 0\\lt α ≤slant 2 ({{L\\'{e}vy}} {{index}}), -1≤slant β ≤slant 1 ({{skewness}}),σ \\gt 0 ({{scale}}), and -∞ \\lt μ \\lt ∞ ({{shift}}). Hence, systematic efforts have been made towards the development of proper methods for analytically solving the mentioned integral. As a further contribution in this direction, here we propose a new way to tackle the problem. We consider an approach in which one first solves the Fourier integral through a formal (thus not necessarily convergent) series representation. Then, one uses (if necessary) a pertinent sum-regularization procedure to the resulting divergent series, so as to obtain an exact formula for the distribution, which is amenable to direct numerical calculations. As a concrete study, we address the centered, symmetric, unshifted and unscaled distribution (β =0, μ =0, σ =1), with α ={α }M=2/M, M=1,2,3\\ldots . Conceivably, the present protocol could be applied to other sets of parameter values.
Directory of Open Access Journals (Sweden)
Philipp Sprau
2017-08-01
Full Text Available The impact of urbanization has been widely studied in the context of species diversity and life history evolution. Behavioral adaptation, by contrast, remains poorly understood because empirical studies rarely investigate the relative importance of two key mechanisms: plastic responses vs. non-random distributions of behavioral types. We propose here an approach that enables the simultaneous estimation of the respective roles of these distinct mechanisms. We investigated why risky behaviors are often associated with urbanization, using an urban nest box population of great tits (Parus major as a study system. We simultaneously and repeatedly quantified individual behavior (aggression and flight initiation distance as well as environmental factors characterizing level of urbanization (numbers of pedestrians, cars and cyclists. This enabled us to statistically distinguish plastic responses from patterns of non-random distributions of behavioral types. Data analyses revealed that individuals did not plastically adjust their behavior to the level of urbanization. Behavioral types were instead non-randomly distributed: bold birds occurred more frequently in areas with more cars and fewer pedestrians while shy individuals were predominantly found in areas with fewer cars and more pedestrians. These novel findings imply a major role for behavioral types in the evolutionary ecology of urban environments and call for the full integration of among- and within-individual variation in urban ecological studies.
Gaze, Eric C.
2005-01-01
We introduce a cooperative learning, group lab for a Calculus III course to facilitate comprehension of the gradient vector and directional derivative concepts. The lab is a hands-on experience allowing students to manipulate a tangent plane and empirically measure the effect of partial derivatives on the direction of optimal ascent. (Contains 7…
OPEC future capacity expansions
International Nuclear Information System (INIS)
Sandrea, I.
2005-01-01
This conference presentation examined OPEC future capacity expansions including highlights from 2000-2004 from the supply perspective and actions by OPEC; OPEC spare capacity in 2005/2006; medium-term capacity expansion and investments; long-term scenarios, challenges and opportunities; and upstream policies in member countries. Highlights from the supply perspective included worst than expected non-OPEC supply response; non-OPEC supply affected by a number of accidents and strikes; geopolitical tensions; and higher than expected demand for OPEC crude. OPEC's actions included closer relationship with other producers and consumers; capacity expansions in 2004 and 2005/2006; and OPEC kept the market well supplied with crude in 2004. The presentation also provided data using graphical charts on OPEC net capacity additions until 2005/2006; OPEC production versus spare capacity from 2003 to 2005; OPEC production and capacity to 2010; and change in required OPEC production from 2005-2020. Medium term expansion to 2010 includes over 60 projects. Medium-term risks such as project execution, financing, costs, demand, reserves, depletion, integration of Iraq, and geopolitical tensions were also discussed. The presentation concluded that in the long term, large uncertainties remain; the peak of world supply is not imminent; and continued and enhanced cooperation is essential to market stability. tabs., figs
Physics suggests that the interplay of momentum, continuity, and geometry in outward radial flow must produce density and concomitant pressure reductions. In other words, this flow is intrinsically auto-expansive. It has been proposed that this process is the key to understanding...
Pressure gradients fail to predict diffusio-osmosis
Liu, Yawei; Ganti, Raman; Frenkel, Daan
2018-05-01
We present numerical simulations of diffusio-osmotic flow, i.e. the fluid flow generated by a concentration gradient along a solid-fluid interface. In our study, we compare a number of distinct approaches that have been proposed for computing such flows and compare them with a reference calculation based on direct, non-equilibrium molecular dynamics simulations. As alternatives, we consider schemes that compute diffusio-osmotic flow from the gradient of the chemical potentials of the constituent species and from the gradient of the component of the pressure tensor parallel to the interface. We find that the approach based on treating chemical potential gradients as external forces acting on various species agrees with the direct simulations, thereby supporting the approach of Marbach et al (2017 J. Chem. Phys. 146 194701). In contrast, an approach based on computing the gradients of the microscopic pressure tensor does not reproduce the direct non-equilibrium results.
Gradient Material Strategies for Hydrogel Optimization in Tissue Engineering Applications
2018-01-01
Although a number of combinatorial/high-throughput approaches have been developed for biomaterial hydrogel optimization, a gradient sample approach is particularly well suited to identify hydrogel property thresholds that alter cellular behavior in response to interacting with the hydrogel due to reduced variation in material preparation and the ability to screen biological response over a range instead of discrete samples each containing only one condition. This review highlights recent work on cell–hydrogel interactions using a gradient material sample approach. Fabrication strategies for composition, material and mechanical property, and bioactive signaling gradient hydrogels that can be used to examine cell–hydrogel interactions will be discussed. The effects of gradients in hydrogel samples on cellular adhesion, migration, proliferation, and differentiation will then be examined, providing an assessment of the current state of the field and the potential of wider use of the gradient sample approach to accelerate our understanding of matrices on cellular behavior. PMID:29485612
Arnaiz-Schmitz, C; Schmitz, M F; Herrero-Jáuregui, C; Gutiérrez-Angonese, J; Pineda, F D; Montes, C
2018-01-15
Socio-ecological systems maintain reciprocal interactions between biophysical and socioeconomic structures. As a result of these interactions key essential services for society emerge. Urban expansion is a direct driver of land change and cause serious shifts in socio-ecological relationships and the associated lifestyles. The framework of rural-urban gradients has proved to be a powerful tool for ecological research about urban influences on ecosystems and on sociological issues related to social welfare. However, to date there has not been an attempt to achieve a classification of municipalities in rural-urban gradients based on socio-ecological interactions. In this paper, we developed a methodological approach that allows identifying and classifying a set of socio-ecological network configurations in the Region of Madrid, a highly dynamic cultural landscape considered one of the European hotspots in urban development. According to their socio-ecological links, the integrated model detects four groups of municipalities, ordered along a rural-urban gradient, characterized by their degree of biophysical and socioeconomic coupling and different indicators of landscape structure and social welfare. We propose the developed model as a useful tool to improve environmental management schemes and land planning from a socio-ecological perspective, especially in territories subject to intense urban transformations and loss of rurality. Copyright © 2017 Elsevier B.V. All rights reserved.
Nong, Duong H; Lepczyk, Christopher A; Miura, Tomoaki; Fox, Jefferson M
2018-01-01
Urbanization has been driven by various social, economic, and political factors around the world for centuries. Because urbanization continues unabated in many places, it is crucial to understand patterns of urbanization and their potential ecological and environmental impacts. Given this need, the objectives of our study were to quantify urban growth rates, growth modes, and resultant changes in the landscape pattern of urbanization in Hanoi, Vietnam from 1993 to 2010 and to evaluate the extent to which the process of urban growth in Hanoi conformed to the diffusion-coalescence theory. We analyzed the spatiotemporal patterns and dynamics of the built-up land in Hanoi using landscape expansion modes, spatial metrics, and a gradient approach. Urbanization was most pronounced in the periods of 2001-2006 and 2006-2010 at a distance of 10 to 35 km around the urban center. Over the 17 year period urban expansion in Hanoi was dominated by infilling and edge expansion growth modes. Our findings support the diffusion-coalescence theory of urbanization. The shift of the urban growth areas over time and the dynamic nature of the spatial metrics revealed important information about our understanding of the urban growth process and cycle. Furthermore, our findings can be used to evaluate urban planning policies and aid in urbanization issues in rapidly urbanizing countries.
Lepczyk, Christopher A.; Miura, Tomoaki; Fox, Jefferson M.
2018-01-01
Urbanization has been driven by various social, economic, and political factors around the world for centuries. Because urbanization continues unabated in many places, it is crucial to understand patterns of urbanization and their potential ecological and environmental impacts. Given this need, the objectives of our study were to quantify urban growth rates, growth modes, and resultant changes in the landscape pattern of urbanization in Hanoi, Vietnam from 1993 to 2010 and to evaluate the extent to which the process of urban growth in Hanoi conformed to the diffusion-coalescence theory. We analyzed the spatiotemporal patterns and dynamics of the built-up land in Hanoi using landscape expansion modes, spatial metrics, and a gradient approach. Urbanization was most pronounced in the periods of 2001–2006 and 2006–2010 at a distance of 10 to 35 km around the urban center. Over the 17 year period urban expansion in Hanoi was dominated by infilling and edge expansion growth modes. Our findings support the diffusion-coalescence theory of urbanization. The shift of the urban growth areas over time and the dynamic nature of the spatial metrics revealed important information about our understanding of the urban growth process and cycle. Furthermore, our findings can be used to evaluate urban planning policies and aid in urbanization issues in rapidly urbanizing countries. PMID:29734346
Form factor expansion for thermal correlators
Pozsgay, B.; Takács, G.
2010-01-01
We consider finite temperature correlation functions in massive integrable quantum field theory. Using a regularization by putting the system in finite volume, we develop a novel approach (based on multi-dimensional residues) to the form factor expansion for thermal correlators. The first few terms
International Nuclear Information System (INIS)
Lewis, C.
1997-01-01
The Olympic Dam orebody is the 6th largest copper and the single largest uranium orebody in the world. Mine production commenced in June 1988, at an annual production rate of around 45,000 tonnes of copper and 1,000 tonnes of uranium. Western Mining Corporation announced in 1996 a proposed $1.25 billion expansion of the Olympic Dam operation to raise the annual production capacity of the mine to 200,000 tonnes of copper, approximately 3,700 tonnes of uranium, 75,000 ounces of gold and 950,000 ounces of silver by 2001. Further optimisation work has identified a faster track expansion route, with an increase in the capital cost to $1.487 billion but improved investment outcome, a new target completion date of end 1999, and a new uranium output of 4,600 tonnes per annum from that date
Financing electricity expansion
International Nuclear Information System (INIS)
Hyman, L.S.
1994-01-01
Expansion of electricity supply is associated with economic development. The installation and enlargement of power systems in developing countries entails a huge financial burden, however. Energy consumers in such countries must pay not only for supplies but for the cost of raising the capital for expansion on the international markets. Estimates are presented for the capital expenditure for electricity supply over the period 1990 to 2020 for the major world regions, using approximations for the cost of plant and capital and for the returns earned. These data lead to the conclusion that the five regions with the lowest per capita incomes are those which will need the major part of the capital expenditure and the highest percentage of external finance. (6 tables) (UK)
International Nuclear Information System (INIS)
Suess, S.T.
1987-01-01
Magnetic clouds are a carefully defined subclass of all interplanetary signatures of coronal mass ejections whose geometry is thought to be that of a cylinder embedded in a plane. It has been found that the total magnetic pressure inside the clouds is higher than the ion pressure outside, and that the clouds are expanding at 1 AU at about half the local Alfven speed. The geometry of the clouds is such that even though the magnetic pressure inside is larger than the total pressure outside, expansion will not occur because the pressure is balanced by magnetic tension - the pinch effect. The evidence for expansion of clouds at 1 AU is nevertheless quite strong so another reason for its existence must be found. It is demonstrated that the observations can be reproduced by taking into account the effects of geometrical distortion of the low plasma beta clouds as they move away from the Sun
2010-03-31
nonimaging design capabilities to incorporate 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 12-04-2011 13. SUPPLEMENTARY NOTES The views, opinions...Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Imaging Optics, Nonimaging Optics, Gradient Index Optics, Camera, Concentrator...imaging and nonimaging design capabilities to incorporate manufacturable GRIN lenses can provide imaging lens systems that are compact and
IKEA's International Expansion
Harapiak, Clayton
2013-01-01
This case concerns a global retailing firm that is dealing with strategic management and marketing issues. Applying a scenario of international expansion, this case provides a thorough analysis of the current business environment for IKEA. Utilizing a variety of methods (e.g. SWOT, PESTLE, McKinsey Matrix) the overall objective is to provide students with the opportunity to apply their research skills and knowledge regarding a highly competitive industry to develop strategic marketing strateg...
International Nuclear Information System (INIS)
Matsuki, Takayuki
1976-01-01
Symmetric eikonal expansion for the scattering amplitude is formulated for nonrelativistic and relativistic potential scatterings and also for the quantum field theory. The first approximations coincide with those of Levy and Sucher. The obtained scattering amplitudes are time reversal invariant for all cases and are crossing symmetric for the quantum field theory in each order of approximation. The improved eikonal phase introduced by Levy and Sucher is also derived from the different approximation scheme from the above. (auth.)
Theory of compression and expansion of hydrogels
Energy Technology Data Exchange (ETDEWEB)
Iwata, M. [Suzuka National College of Tech., Mie (Japan). Dept. of Industrial Chemistry; Koda, S.; Nomura, H. [Nagoya University, Nagoya (Japan). Dept. of Molecular Design and Engineering
1999-10-01
Compression and expansion processes of cross-linked sodium polyacrylate hydrogels under mechanical pressure were investigated. A packed spherical gel bed shows irreversible deformation when the applied pressure is decreased; the expansion behavior depends on the maximum pressure applied to the gel bed. The time required to attain a certain degree of deformation is directly proportional to the square of the total solid volume of the gel bed; this relation is very similar to that observed in expression or expansion processes of ordinary solid-liquid mixtures. The driving force of the deformation is an effective osmotic pressure gradient in the gel bed, where the effective osmotic pressure of the gel is the difference between the swelling pressure of the gel and the pressure applied to the gel. The flow rate of liquid through any gel layer can be expressed by Darcy's equation. The deformation ceases when the swelling pressure of each gel particle is equal to the applied pressure. Thus, the deformation of a packed gel bed can be recognized as a process of equalizing the swelling pressure distribution in the bed. (author)
Towards finite density QCD with Taylor expansions
International Nuclear Information System (INIS)
Karsch, F.; Schaefer, B.-J.; Wagner, M.; Wambach, J.
2011-01-01
Convergence properties of Taylor expansions of observables, which are also used in lattice QCD calculations at non-zero chemical potential, are analyzed in an effective N f =2+1 flavor Polyakov quark-meson model. A recently developed algorithmic technique allows the calculation of higher-order Taylor expansion coefficients in functional approaches. This novel technique is for the first time applied to an effective N f =2+1 flavor Polyakov quark-meson model and the findings are compared with the full model solution at finite densities. The results are used to discuss prospects for locating the QCD phase boundary and a possible critical endpoint in the phase diagram.
Expansions for Coulomb wave functions
Boersma, J.
1969-01-01
In this paper we derive a number of expansions for Whittaker functions, regular and irregular Coulomb wave functions. The main result consists of a new expansion for the irregular Coulomb wave functions of orders zero and one in terms of regular Coulomb wave functions. The latter expansions are
Directory of Open Access Journals (Sweden)
Sandro Aparecido Gonçalves
2008-01-01
Full Text Available Este artigo trata da expansão do ensino superior privado no Brasil, durante os anos de 1990, tendo como base as mudanças institucionais que envolveram o Estado no século XX, destacando sua crise nos anos de 1980, que culminaram na busca de um novo modelo na última década analisada. Merece ser enfatizado que ainda não há clareza das relações entre Estado e Sociedade, mesmo em meados do século XXI, posto que possui menor número de instrumentos de ação direta, não obteve redução significativa em seu tamanho, apresenta dificuldades nas operações regulatórias, mas mantém razoável interesse em se constituir como Estado de Bem-Estar. Nesse contexto, torna-se mais fácil o entendimento da expansão em voga, na medida em que se trata de um aspecto da mudança e não de um fenômeno isolado. Quanto à metodologia, foram realizadas 32 entrevistas semi-estruturadas e análise de autores que abordaram o assunto, cujas principais conclusões estão apresentadas no final do texto.This article deals with the expansion of the private higher education in Brazil in the 1990's based on the institutional changes involving the State in twentieth century, highlighting the crisis of the 1980's and culminating in the search for a new model in the last decade of analysis. It is worth pointing out that there is still no clarity concerning the relationship between State and Society, even in the twenty-first century. Given that the State has fewer instruments to direct action, it has not managed to reduce its size, has difficulty with regulatory operations and also has a reasonable interest in being constituted as the Welfare State. In this context, it becomes easier to understand the current expansion in that it is an aspect of change and not an isolated phenomenon. As a methodological approach, thirty-two semi-structured interviews were conducted, and others read authors who have dealt with the subject. The main conclusions are given in this text.
Gradient-type methods in inverse parabolic problems
International Nuclear Information System (INIS)
Kabanikhin, Sergey; Penenko, Aleksey
2008-01-01
This article is devoted to gradient-based methods for inverse parabolic problems. In the first part, we present a priori convergence theorems based on the conditional stability estimates for linear inverse problems. These theorems are applied to backwards parabolic problem and sideways parabolic problem. The convergence conditions obtained coincide with sourcewise representability in the self-adjoint backwards parabolic case but they differ in the sideways case. In the second part, a variational approach is formulated for a coefficient identification problem. Using adjoint equations, a formal gradient of an objective functional is constructed. A numerical test illustrates the performance of conjugate gradient algorithm with the formal gradient.
Expansion of a function about a displaced centre
International Nuclear Information System (INIS)
Rashid, M.A.
1981-07-01
We review the progress recently made in obtaining closed form expressions for the expansion of general orbitals about a displaced centre and establish the equivalence between different expansions. We also examine how these expressions do have the desired limit as the displacement approaches zero. (author)
A constrained conjugate gradient algorithm for computed tomography
Energy Technology Data Exchange (ETDEWEB)
Azevedo, S.G.; Goodman, D.M. [Lawrence Livermore National Lab., CA (United States)
1994-11-15
Image reconstruction from projections of x-ray, gamma-ray, protons and other penetrating radiation is a well-known problem in a variety of fields, and is commonly referred to as computed tomography (CT). Various analytical and series expansion methods of reconstruction and been used in the past to provide three-dimensional (3D) views of some interior quantity. The difficulties of these approaches lie in the cases where (a) the number of views attainable is limited, (b) the Poisson (or other) uncertainties are significant, (c) quantifiable knowledge of the object is available, but not implementable, or (d) other limitations of the data exist. We have adapted a novel nonlinear optimization procedure developed at LLNL to address limited-data image reconstruction problems. The technique, known as nonlinear least squares with general constraints or constrained conjugate gradients (CCG), has been successfully applied to a number of signal and image processing problems, and is now of great interest to the image reconstruction community. Previous applications of this algorithm to deconvolution problems and x-ray diffraction images for crystallography have shown the great promise.
Zhang, Xiao-bo; Tan, Jun; Song, Peng; Li, Jin-shan; Xia, Dong-ming; Liu, Zhao-lun
2017-01-01
The gradient preconditioning approach based on seismic wave energy can effectively avoid the huge storage consumption in the gradient preconditioning algorithms based on Hessian matrices in time-domain full waveform inversion (FWI), but the accuracy
Radial expansion and multifragmentation
International Nuclear Information System (INIS)
Angelique, J.C.; Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Colin, J.; Cussol, D.; Durand, D.; Kerambrun, A.; Le Brun, C.; Lecolley, J.F.; Lopez, O.; Louvel, M.; Meslin, C.; Nakagawa, T.; Patry, J.P.; Peter, J.; Popescu, R.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Yuasa-Nakagawa, K.; Wieloch, A.
1998-01-01
The light systems 36 Ar + 27 Al and 64 Zn + nat Ti were measured at several bombarding energies between ∼ 35 and 95 MeV/nucleon. It was found that the predominant part of the cross section is due to binary collisions. In this paper the focus is placed on the properties of the quasi-projectile nuclei. In the central collisions the excitation energies of the quasi-projectile reach values exceeding largely 10 MeV/nucleon. The slope of the high energy part of the distribution can give only an upper limit of the apparent temperature (the average temperature along the decay chain). The highly excited quasi-projectile may get rapidly fragmented rather than sequentially. The heavy fragments are excited and can emit light particles (n, p, d, t, 3 He, α,...) what perturbs additionally the spectrum of these particles. Concerning the expansion energy, one can determine the average kinetic energies of the product (in the quasi-projectile-framework) and compare with simulation values. To fit the experimental data an additional radial expansion energy is to be considered. The average expansion energy depends slightly on the impact parameter but it increases with E * / A, ranging from 0.4 to 1,2 MeV/nucleon for an excitation energy increasing from 7 to 10.5 MeV/nucleon. This collective radial energy seems to be independent of the fragment mass, what is possibly valid for the case of larger quasi-projectile masses. The origin of the expansion is to be determined. It may be due to a compression in the interaction zone at the initial stage of the collision, which propagates in the quasi-projectile and quasi-target, or else, may be due, simply, to the increase of thermal energy leading to a rapid fragment emission. The sequential de-excitation calculation overestimates light particle emission and consequently heavy residues, particularly, at higher excitation energies. This disagreement indicates that a sequential process can not account for the di-excitation of very hot nuclei
DEFF Research Database (Denmark)
Kolbæk, Ditte; Lundh Snis, Ulrika
Abstract: This paper analyses an online community of master’s students taking a course in ICT and organisational learning. The students initiated and facilitated an educational design for organisational learning called Proactive Review in the organisation where they are employed. By using an online...... discussion forum on Google groups, they created new ways of reflecting and learning. We used netnography to select qualitative postings from the online community and expansive learning concepts for data analysis. The findings show how students changed practices of organisational learning...
Load regulating expansion fixture
International Nuclear Information System (INIS)
Wagner, L.M.; Strum, M.J.
1998-01-01
A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils is disclosed. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located there between. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components. 1 fig
Reversible Watermarking Using Prediction-Error Expansion and Extreme Learning Machine
Directory of Open Access Journals (Sweden)
Guangyong Gao
2015-01-01
Full Text Available Currently, the research for reversible watermarking focuses on the decreasing of image distortion. Aiming at this issue, this paper presents an improvement method to lower the embedding distortion based on the prediction-error expansion (PE technique. Firstly, the extreme learning machine (ELM with good generalization ability is utilized to enhance the prediction accuracy for image pixel value during the watermarking embedding, and the lower prediction error results in the reduction of image distortion. Moreover, an optimization operation for strengthening the performance of ELM is taken to further lessen the embedding distortion. With two popular predictors, that is, median edge detector (MED predictor and gradient-adjusted predictor (GAP, the experimental results for the classical images and Kodak image set indicate that the proposed scheme achieves improvement for the lowering of image distortion compared with the classical PE scheme proposed by Thodi et al. and outperforms the improvement method presented by Coltuc and other existing approaches.
Travelling waves of density for a fourth-gradient model of fluids
Gouin, Henri; Saccomandi, Giuseppe
2016-09-01
In mean-field theory, the non-local state of fluid molecules can be taken into account using a statistical method. The molecular model combined with a density expansion in Taylor series of the fourth order yields an internal energy value relevant to the fourth-gradient model, and the equation of isothermal motions takes then density's spatial derivatives into account for waves travelling in both liquid and vapour phases. At equilibrium, the equation of the density profile across interfaces is more precise than the Cahn and Hilliard equation, and near the fluid's critical point, the density profile verifies an Extended Fisher-Kolmogorov equation, allowing kinks, which converges towards the Cahn-Hillard equation when approaching the critical point. Nonetheless, we also get pulse waves oscillating and generating critical opalescence.
Thermal expansion of granite rocks
International Nuclear Information System (INIS)
Stephansson, O.
1978-04-01
The thermal expansion of rocks is strongly controlled by the thermal expansion of the minerals. The theoretical thermal expansion of the Stripa Granite is gound to be 21 . 10 -6 [deg C] -1 at 25 deg C and 38 . 10 -6 [deg C] -1 at 400 deg C. The difference in expansion for the rock forming minerals causes micro cracking at heating. The expansion due to micro cracks is found to be of the same order as the mineral expansion. Most of the micro cracks will close at pressures of the order of 10 - 20 MPa. The thermal expansion of a rock mass including the effect of joints is determined in the pilot heater test in the Stripa Mine
Energy Technology Data Exchange (ETDEWEB)
Froschauer, K J
1993-01-01
A study of the development of five provincial hydroelectric utilities in Canada indicates that power companies and the state invited manufacturers to use hydroelectricity and natural resources in order to diversify provincial economies. These hydro expansions also show that utilities and government designed hydro projects to serve continental requirements; serving both objectives became problematic. It is argued that when the Canadian state and firms such as utilities use hydro expansions to serve both continentalism and industrialization, then at best they foster dependent industrialization and staple processing. At worst, they overbuild the infrastructure to generate provincial surplus energy for continental, rather than national, integration. Hydro developments became subject to state intervention in Canada mainly through the failures of private utilities to provide power for the less-lucrative industrial markets within provincial subregions. Although the state and utilities invited foreign firms to manufacture hydro equipment within the provinces and others to use electricity to diversify production beyond resource processing, such a diversification did not occur. Since 1962, ca 80% of industrial energy was used to semi-process wood-derived products, chemicals, and metals. The idea for a national power network became undermined by interprovincial political-economic factors and since 1963, the federal national/continential power policy prevailed. 187 refs., 6 figs., 52 tabs.
International Nuclear Information System (INIS)
Vogeleer, J. P.
1985-01-01
The expansion of the primary tubes or sleeves of the steam generator of a nuclear reactor plant are measured while the tubes or sleeves are being expanded. A primary tube or sleeve is expanded by high pressure of water which flows through a channel in an expander body. The water is supplied through an elongated conductor and is introduced through a connector on the shank connected to the conductor at its outer end. A wire extends through the mandrel and through the conductor to the end of the connector. At its inner end the wire is connected to a tapered pin which is subject to counteracting forces produced by the pressure of the water. The force on the side where the wire is connected to the conductor is smaller than on the opposite side. The tapered pin is moved in the direction of the higher force and extrudes the wire outwardly of the conductor. The tapered surface of the tapered pin engages transverse captive plungers which are maintained in engagement with the expanding tube or sleeve as they are moved outwardly by the tapered pin. The wire and the connector extend out of the generator and, at its outer end, the wire is connected to an indicator which measures the extent to which the wire is moved by the tapered pin, thus measuring the expansion of the tube or sleeve as it progresses
Global correlation imaging of magnetic total field gradients
International Nuclear Information System (INIS)
Guo, Lianghui; Meng, Xiaohong; Shi, Lei
2012-01-01
Firstly we introduce the correlation imaging approach for the x-, y- and z-gradients of a magnetic total field anomaly for deriving the distribution of equivalent magnetic sources of the subsurface. In this approach, the subsurface space is divided into a regular grid, and then a correlation coefficient function is computed at each grid node, based on the cross-correlation between the x-gradient (or y-gradient or z-gradient) of the observed magnetic total field anomaly and the x-gradient (or y-gradient or z-gradient) of the theoretical magnetic total field anomaly due to a magnetic dipole. The resultant correlation coefficient is used to describe the probability of a magnetic dipole occurring at the node. We then define a global correlation coefficient function for comprehensively delineating the probability of an occurrence of a magnetic dipole, which takes, at each node, the maximum positive value of the corresponding correlation coefficient function of the three gradients. We finally test the approach both on synthetic data and real data from a metallic deposit area in the middle-lower reaches of the Yangtze River, China. (paper)
Analysis of expansion phase experiments with improved approximation schemes
International Nuclear Information System (INIS)
Foit, J.J.
1987-05-01
A steady-state flow of a single-phase and incompressible fluid across a singularity is studied. Based on these theoretical considerations new approximation methods for the pressure gradient term in the SIMMER-II momentum equations are proposed which give a satisfactory pressure change in flows across singularities. The expansion phase experiments with a dipplate performed by SRI-International are evaluated to examine the quality of the proposed approximation schemes. (orig.) [de
CAPMIX -Deploying Capacitors for Salt Gradient Power Extraction
Bijmans, M.F.M.; Burheim, O.S.; Bryjak, M.; Delgado, A.; Hack, P.; Mantegazza, F.; Tenisson, S.; Hamelers, H.V.M.
2012-01-01
The process of mixing sea and river water can be utilised as a power source. At present, three groups of technology are established for doing so; i) mechanical; Pressure Retarded Osmosis PRO, ii) electrochemical reactions; Reverse ElectroDialysis (RED) and Nano Battery Electrodes (NBE) and iii) ultra capacitors; Capacitive Double Layer Expansion (CDLE) and Capacitors charge by the Donnan Potentials (CDP). The chemical potential for salt gradient power systems is only limited by th...
Gradient waveform pre-emphasis based on the gradient system transfer function.
Stich, Manuel; Wech, Tobias; Slawig, Anne; Ringler, Ralf; Dewdney, Andrew; Greiser, Andreas; Ruyters, Gudrun; Bley, Thorsten A; Köstler, Herbert
2018-02-25
The gradient system transfer function (GSTF) has been used to describe the distorted k-space trajectory for image reconstruction. The purpose of this work was to use the GSTF to determine the pre-emphasis for an undistorted gradient output and intended k-space trajectory. The GSTF of the MR system was determined using only standard MR hardware without special equipment such as field probes or a field camera. The GSTF was used for trajectory prediction in image reconstruction and for a gradient waveform pre-emphasis. As test sequences, a gradient-echo sequence with phase-encoding gradient modulation and a gradient-echo sequence with a spiral read-out trajectory were implemented and subsequently applied on a structural phantom and in vivo head measurements. Image artifacts were successfully suppressed by applying the GSTF-based pre-emphasis. Equivalent results are achieved with images acquired using GSTF-based post-correction of the trajectory as a part of image reconstruction. In contrast, the pre-emphasis approach allows reconstruction using the initially intended trajectory. The artifact suppression shown for two sequences demonstrates that the GSTF can serve for a novel pre-emphasis. A pre-emphasis based on the GSTF information can be applied to any arbitrary sequence type. © 2018 International Society for Magnetic Resonance in Medicine.
Thermal expansion of coking coals
Energy Technology Data Exchange (ETDEWEB)
Orlik, M.; Klimek, J. (Vyzkumny a Zkusebni Ustav Nova Hut, Ostrava (Czechoslovakia))
1992-12-01
Analyzes expansion of coal mixtures in coke ovens during coking. Methods for measuring coal expansion on both a laboratory and pilot plant scale are comparatively evaluated. The method, developed, tested and patented in Poland by the Institute for Chemical Coal Processing in Zabrze (Polish standard PN-73/G-04522), is discussed. A laboratory device developed by the Institute for measuring coal expansion is characterized. Expansion of black coal from 10 underground mines in the Ostrava-Karvina coal district and from 9 coal mines in the Upper Silesia basin in Poland is comparatively evaluated. Investigations show that coal expansion reaches a maximum for coal types with a volatile matter ranging from 20 to 25%. With increasing volatile matter in coal, its expansion decreases. Coal expansion increases with increasing swelling index. Coal expansion corresponds with coal dilatation. With increasing coal density its expansion increases. Coal mixtures should be selected in such a way that their expansion does not cause a pressure exceeding 40 MPa. 11 refs.
Identity Expansion and Transcendence
Directory of Open Access Journals (Sweden)
William Sims Bainbridge
2014-05-01
Full Text Available Emerging developments in communications and computing technology may transform the nature of human identity, in the process rendering obsolete the traditional philosophical and scientific frameworks for understanding the nature of individuals and groups. Progress toward an evaluation of this possibility and an appropriate conceptual basis for analyzing it may be derived from two very different but ultimately connected social movements that promote this radical change. One is the governmentally supported exploration of Converging Technologies, based in the unification of nanoscience, biology, information science and cognitive science (NBIC. The other is the Transhumanist movement, which has been criticized as excessively radical yet is primarily conducted as a dignified intellectual discussion within a new school of philosophy about human enhancement. Together, NBIC and Transhumanism suggest the immense transformative power of today’s technologies, through which individuals may explore multiple identities by means of online avatars, semi-autonomous intelligent agents, and other identity expansions.
Effects of forest expansion on mountain grassland
DEFF Research Database (Denmark)
Guidi, Claudia; Magid, Jakob; Rodeghiero, Mirco
2014-01-01
Background and aims. Grassland abandonment followed by forest succession is the dominant land-use change in the European Alps. We studied the impact of current forest expansion on mountain grassland on changes in physical soil organic carbon (SOC) fractions along a land-use and management gradient......, focusing on changes in aggregate stability and particulate organic matter (POM). Methods. Four successional stages were investigated: managed grassland, two transitional phases in which grassland abandonment led to colonization by Picea abies (L.) Karst., and old mixed forest dominated by Fagus sylvatica L....... Results. The dimension of aggregates assessed by aggregate size fractionation tended to increase, whereas SOC allocation to stable aggregates assessed by sizedensity fractionation decreased following conversion of grassland to forest (e.g. from 81 to 59 % in the 0–5 cm layer). The amount of SOC stored...
Review of new shapes for higher gradients
International Nuclear Information System (INIS)
Geng, R.L.
2006-01-01
High-gradient superconducting RF (SRF) cavities are needed for energy frontier superconducting accelerators. Progress has been made over the past decades and the accelerating gradient E acc has been increased from a few MV/m to ∼42 MV/m in SRF niobium cavities. The corresponding peak RF magnetic field H pk on the niobium cavity surface is approaching the intrinsic RF critical magnetic field H crit,RF , a hard physical limit at which superconductivity breaks down. Pushing the gradient envelope further by adopting new cavity shapes with a lower ratio of H pk /E acc has been recently proposed. For a reduced H pk /E acc , a higher ultimate E acc is sustained when H pk finally strikes H crit,RF . The new cavity geometry include the re-entrant shape conceived at Cornell University and the so-called 'Low-loss' shape proposed by a DESY/JLAB/KEK collaboration. Experimental work is being pursued at Cornell, KEK and JLAB. Results of single-cell cavities are encouraging. A record gradient of 47 MV/m was first demonstrated in a 1.3 GHz re-entrant niobium cavity at Cornell University. At the time of writing, a new record of 52 MV/m has been realized with another 1.3 GHz re-entrant cavity, designed and built at Cornell and processed and tested at KEK. Single-cell low-loss cavities have reached equally high gradients in the range of 45-51 MV/m at KEK and JLAB. Owing to their higher gradient potential and the encouraging single-cell cavity results, the new cavity shapes are becoming attractive for their possible use in the international linear collider (ILC). Experimental work on multi-cell niobium cavities of new shapes is currently under active exploration
Review of new shapes for higher gradients
Geng, R. L.
2006-07-01
High-gradient superconducting RF (SRF) cavities are needed for energy frontier superconducting accelerators. Progress has been made over the past decades and the accelerating gradient Eacc has been increased from a few MV/m to ∼42 MV/m in SRF niobium cavities. The corresponding peak RF magnetic field Hpk on the niobium cavity surface is approaching the intrinsic RF critical magnetic field Hcrit,RF, a hard physical limit at which superconductivity breaks down. Pushing the gradient envelope further by adopting new cavity shapes with a lower ratio of Hpk/ Eacc has been recently proposed. For a reduced Hpk/ Eacc, a higher ultimate Eacc is sustained when Hpk finally strikes Hcrit,RF. The new cavity geometry include the re-entrant shape conceived at Cornell University and the so-called “Low-loss” shape proposed by a DESY/JLAB/KEK collaboration. Experimental work is being pursued at Cornell, KEK and JLAB. Results of single-cell cavities are encouraging. A record gradient of 47 MV/m was first demonstrated in a 1.3 GHz re-entrant niobium cavity at Cornell University. At the time of writing, a new record of 52 MV/m has been realized with another 1.3 GHz re-entrant cavity, designed and built at Cornell and processed and tested at KEK. Single-cell low-loss cavities have reached equally high gradients in the range of 45-51 MV/m at KEK and JLAB. Owing to their higher gradient potential and the encouraging single-cell cavity results, the new cavity shapes are becoming attractive for their possible use in the international linear collider (ILC). Experimental work on multi-cell niobium cavities of new shapes is currently under active exploration.
International Nuclear Information System (INIS)
Ren Xiaoan; Wu Wenquan; Xanthis, Leonidas S.
2011-01-01
Highlights: → New approach for stochastic computations based on polynomial chaos. → Development of dynamically adaptive wavelet multiscale solver using space refinement. → Accurate capture of steep gradients and multiscale features in stochastic problems. → All scales of each random mode are captured on independent grids. → Numerical examples demonstrate the need for different space resolutions per mode. - Abstract: In stochastic computations, or uncertainty quantification methods, the spectral approach based on the polynomial chaos expansion in random space leads to a coupled system of deterministic equations for the coefficients of the expansion. The size of this system increases drastically when the number of independent random variables and/or order of polynomial chaos expansions increases. This is invariably the case for large scale simulations and/or problems involving steep gradients and other multiscale features; such features are variously reflected on each solution component or random/uncertainty mode requiring the development of adaptive methods for their accurate resolution. In this paper we propose a new approach for treating such problems based on a dynamically adaptive wavelet methodology involving space-refinement on physical space that allows all scales of each solution component to be refined independently of the rest. We exemplify this using the convection-diffusion model with random input data and present three numerical examples demonstrating the salient features of the proposed method. Thus we establish a new, elegant and flexible approach for stochastic problems with steep gradients and multiscale features based on polynomial chaos expansions.
Degraded character recognition based on gradient pattern
Babu, D. R. Ramesh; Ravishankar, M.; Kumar, Manish; Wadera, Kevin; Raj, Aakash
2010-02-01
Degraded character recognition is a challenging problem in the field of Optical Character Recognition (OCR). The performance of an optical character recognition depends upon printed quality of the input documents. Many OCRs have been designed which correctly identifies the fine printed documents. But, very few reported work has been found on the recognition of the degraded documents. The efficiency of the OCRs system decreases if the input image is degraded. In this paper, a novel approach based on gradient pattern for recognizing degraded printed character is proposed. The approach makes use of gradient pattern of an individual character for recognition. Experiments were conducted on character image that is either digitally written or a degraded character extracted from historical documents and the results are found to be satisfactory.
Thermal expansion of beryllium oxide
International Nuclear Information System (INIS)
Solodukhin, A.V.; Kruzhalov, A.V.; Mazurenko, V.G.; Maslov, V.A.; Medvedev, V.A.; Polupanova, T.I.
1987-01-01
Precise measurements of temperature dependence of the coefficient of linear expansion in the 22-320 K temperature range on beryllium oxide monocrystals are conducted. A model of thermal expansion is suggested; the range of temperature dependence minimum of the coefficient of thermal expansion is well described within the frames of this model. The results of the experiment may be used for investigation of thermal stresses in crystals
Gradient Boosting Machines, A Tutorial
Directory of Open Access Journals (Sweden)
Alexey eNatekin
2013-12-01
Full Text Available Gradient boosting machines are a family of powerful machine-learning techniques that have shown considerable success in a wide range of practical applications. They are highly customizable to the particular needs of the application, like being learned with respect to different loss functions. This article gives a tutorial introduction into the methodology of gradient boosting methods. A theoretical information is complemented with many descriptive examples and illustrations which cover all the stages of the gradient boosting model design. Considerations on handling the model complexity are discussed. A set of practical examples of gradient boosting applications are presented and comprehensively analyzed.
International Nuclear Information System (INIS)
Eschke, Andy
2015-01-01
Examination object of the present thesis was the determination of local distributions of crystallographic texture and mechanical (eigen-)stresses in submicro-/nan0crystalline many-phase gradient materials. For this at the one hand experimental methods of the two-dimensional X-ray diffraction were applied as well as at the other hand theoretical calculations performed by means of analytical and numerical modeling approaches. The interest for the material is founded on the fact that ultrafine-granular materials because of their mechanical propertier (for instance hardness, ductility) ar to be stressed for advanced engineering application purposes. Furthermore the application of many-phase gradient materials makes to some extent possible a manufacture for measure concerning physical properties and by this a manifold of application potentials as well as a tuning of the material properties to the differential requirements in the application fields. This measure tailoring is related both to the degree of gradiation and to the special composition of the composite materials by the chosen starting materials. The work performed in the framework of the excellence cluster ''European Centre for Emerging Materials and Processes Dresden (ECEMP)'' of the Saxonian excellence initiative aimed especially to the analysis of an especially processed, ultrafine-granular Ti/Al composite, which was and is research object of the partial ECEMP project ''High strength metallic composites'' (HSMetComp). Thereby were process as well as materials in the focus of the above mentioned (indirect) examination methods. which were adapted and further developed for these purposes. The results of the experimental as well as theoretical studies could contribute to an increased understanding of the technological process as well as the material behaviour and can by this also used for hints concerning process- and/or material-sided optimizations. Altogether they
Transport due to ion pressure gradient turbulence
International Nuclear Information System (INIS)
Connor, J.W.
1986-01-01
Turbulent transport due to the ion pressure gradient (or temperature drift) instability is thought to be significant when etasub(i)=d(ln Tsub(i))/d(ln n)>1. The invariance properties of the governing equations under scale transformations are used to discuss the characteristics of this turbulence. This approach not only clarifies the relationships between earlier treatments but also, in certain limits, completely determines the scaling properties of the fluctuations and the consequent thermal transport. (author)
Gradient waveform synthesis for magnetic propulsion using MRI gradient coils
International Nuclear Information System (INIS)
Han, B H; Lee, S Y; Park, S
2008-01-01
Navigating an untethered micro device in a living subject is of great interest for both diagnostic and therapeutic applications. Magnetic propulsion of an untethered device carrying a magnetic core in it is one of the promising methods to navigate the device. MRI gradients coils are thought to be suitable for navigating the device since they are capable of magnetic propulsion in any direction while providing magnetic resonance images. For precise navigation of the device, especially in the peripheral region of the gradient coils, the concomitant gradient fields, as well as the linear gradient fields in the main magnetic field direction, should be considered in driving the gradient coils. For simple gradient coil configurations, the Maxwell coil in the z-direction and the Golay coil in the x- and y-directions, we have calculated the magnetic force fields, which are not necessarily the same as the conventional linear gradient fields of MRI. Using the calculated magnetic force fields, we have synthesized gradient waveforms to navigate the device along a desired path
Theory of thermal expansivity and bulk modulus
International Nuclear Information System (INIS)
Kumar, Munish
2005-01-01
The expression for thermal expansivity and bulk modulus, claimed by Shanker et al. to be new [Physica B 233 (1977) 78; 245 (1998) 190; J. Phys. Chem. Solids 59 (1998) 197] are compared with the theory of high pressure-high temperature reported by Kumar and coworkers. It is concluded that the Shanker formulation and the relations based on this are equal to the approach of Kumar et al. up to second order
Analysis of magnetic gradients to study gravitropism.
Hasenstein, Karl H; John, Susan; Scherp, Peter; Povinelli, Daniel; Mopper, Susan
2013-01-01
Gravitropism typically is generated by dense particles that respond to gravity. Experimental stimulation by high-gradient magnetic fields provides a new approach to selectively manipulate the gravisensing system. The movement of corn, wheat, and potato starch grains in suspension was examined with videomicroscopy during parabolic flights that generated 20 to 25 s of weightlessness. During weightlessness, a magnetic gradient was generated by inserting a wedge into a uniform, external magnetic field that caused repulsion of starch grains. The resultant velocity of movement was compared with the velocity of sedimentation under 1 g conditions. The high-gradient magnetic fields repelled the starch grains and generated a force of at least 0.6 g. Different wedge shapes significantly affected starch velocity and directionality of movement. Magnetic gradients are able to move diamagnetic compounds under weightless or microgravity conditions and serve as directional stimulus during seed germination in low-gravity environments. Further work can determine whether gravity sensing is based on force or contact between amyloplasts and statocyte membrane system.
Ion temperature gradient instability
International Nuclear Information System (INIS)
1989-01-01
Anomalous ion thermal conductivity remains an open physics issue for the present generation of high temperature Tokamaks. It is generally believed to be due to Ion Temperature Gradient Instability (η i mode). However, it has been difficult, if not impossible to identify this instability and study the anomalous transport due to it, directly. Therefore the production and identification of the mode is pursued in the simpler and experimentally convenient configuration of the Columbia Linear Machine (CLM). CLM is a steady state machine which already has all the appropriate parameters, except η i . This parameter is being increased to the appropriate value of the order of 1 by 'feathering' a tungsten screen located between the plasma source and the experimental cell to flatten the density profile and appropriate redesign of heating antennas to steepen the ion temperature profile. Once the instability is produced and identified, a thorough study of the characteristics of the mode can be done via a wide range of variation of all the critical parameters: η i , parallel wavelength, etc
Alignment dynamics of diffusive scalar gradient in a two-dimensional model flow
Gonzalez, M.
2018-04-01
The Lagrangian two-dimensional approach of scalar gradient kinematics is revisited accounting for molecular diffusion. Numerical simulations are performed in an analytic, parameterized model flow, which enables considering different regimes of scalar gradient dynamics. Attention is especially focused on the influence of molecular diffusion on Lagrangian statistical orientations and on the dynamics of scalar gradient alignment.
Characterization of gradient control systems
Cortés, Jorge; van der Schaft, Arjan; Crouch, Peter E.
2005-01-01
Given a general nonlinear affine control system with outputs and a torsion-free affine connection defined on its state space, we investigate the gradient realization problem: we give necessary and sufficient conditions under which the control system can be written as a gradient control system
Characterization of Gradient Control Systems
Cortés, Jorge; Schaft, Arjan van der; Crouch, Peter E.
2005-01-01
Given a general nonlinear affine control system with outputs and a torsion-free affine connection defined on its state space, we investigate the gradient realization problem: we give necessary and sufficient conditions under which the control system can be written as a gradient control system
Sobolev gradients and differential equations
Neuberger, J W
2010-01-01
A Sobolev gradient of a real-valued functional on a Hilbert space is a gradient of that functional taken relative to an underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. For discrete versions of partial differential equations, corresponding Sobolev gradients are seen to be vastly more efficient than ordinary gradients. In fact, descent methods with these gradients generally scale linearly with the number of grid points, in sharp contrast with the use of ordinary gradients. Aside from the first edition of this work, this is the only known account of Sobolev gradients in book form. Most of the applications in this book have emerged since the first edition was published some twelve years ago. What remains of the first edition has been extensively revised. There are a number of plots of results from calculations and a sample MatLab code is included for a simple problem. Those working through a fair p...
Electric field gradients in metals
International Nuclear Information System (INIS)
Schatz, G.
1979-01-01
A review of the recent works on electric field gradient in metals is given. The main emphasis is put on the temperature dependence of the electric field gradient in nonmagnetic metals. Some methods of investigation of this effect using nuclear probes are described. One of them is nuclear accoustic resonance method. (S.B.)
Renormalization group and Mayer expansions
International Nuclear Information System (INIS)
Mack, G.
1984-02-01
Mayer expansions promise to become a powerful tool in exact renormalization group calculations. Iterated Mayer expansions were sucessfully used in the rigorous analysis of 3-dimensional U(1) lattice gauge theory by Goepfert and the author, and it is hoped that they will also be useful in the 2-dimensional nonlinear sigma-model, and elsewhere. (orig.)
Renormalization group and mayer expansions
International Nuclear Information System (INIS)
Mack, G.
1984-01-01
Mayer expansions promise to become a powerful tool in exact renormalization group calculations. Iterated Mayer expansions were sucessfully used in the rigorous analysis of 3-dimensional U (1) lattice gauge theory by Gopfert and the author, and it is hoped that they will also be useful in the 2-dimensional nonlinear σ-model, and elsewhere
On summation of perturbation expansions
International Nuclear Information System (INIS)
Horzela, A.
1985-04-01
The problem of the restoration of physical quantities defined by divergent perturbation expansions is analysed. The Pad'e and Borel summability is proved for alternating perturbation expansions with factorially growing coefficients. The proof is based on the methods of the classical moments theory. 17 refs. (author)
The geomagnetic field gradient tensor
DEFF Research Database (Denmark)
Kotsiaros, Stavros; Olsen, Nils
2012-01-01
We develop the general mathematical basis for space magnetic gradiometry in spherical coordinates. The magnetic gradient tensor is a second rank tensor consisting of 3 × 3 = 9 spatial derivatives. Since the geomagnetic field vector B is always solenoidal (∇ · B = 0) there are only eight independent...... tensor elements. Furthermore, in current free regions the magnetic gradient tensor becomes symmetric, further reducing the number of independent elements to five. In that case B is a Laplacian potential field and the gradient tensor can be expressed in series of spherical harmonics. We present properties...... of the magnetic gradient tensor and provide explicit expressions of its elements in terms of spherical harmonics. Finally we discuss the benefit of using gradient measurements for exploring the Earth’s magnetic field from space, in particular the advantage of the various tensor elements for a better determination...
The replication of expansive production knowledge
DEFF Research Database (Denmark)
Wæhrens, Brian Vejrum; Yang, Cheng; Madsen, Erik Skov
2012-01-01
Purpose – With the aim to support offshore production line replication, this paper specifically aims to explore the use of templates and principles to transfer expansive productive knowledge embedded in a production line and understand the contingencies that influence the mix of these approaches......; and (2) rather than being viewed as alternative approaches, templates and principles should be seen as complementary once the transfer motive moves beyond pure replication. Research limitations – The concepts introduced in this paper were derived from two Danish cases. While acceptable for theory...
W-Cu gradient materials - processing, properties and application possibilities
International Nuclear Information System (INIS)
Joensson, M.; Kieback, B.
2001-01-01
The functionally graded material (FGM) of tungsten with its high thermal and mechanical resistance and copper with its very high thermal and electrical conductivity and ductility expands the application fields of this material in the direction of extreme demands such as plasma facing components in fusion reactors. The PM-production of W-Cu-gradients recommends itself because of the possibility to form the gradient by the mixing of powder components, but is also demanding because of the differences in their sintering behavior and thermal expansions. W-Gu-gradient samples of different concentration profiles have been formed in layers by powder stacking in a die and continuously by centrifugal powder forming. The consolidation routes were determined by the concentration areas of the gradients and encompass liquid phase sintering, pressure assisted solid phase sintering and the application of coated Tungsten powder and sintering additives. The microstructure and the concentration profiles of the samples have been investigated metaliographically and by EDX. The influence of processing and the gradient profile of the properties have been characterized by TRS and the investigation of residual thermal stresses by neutron diffraction. (author)
On WKB expansions for Alfven waves in the solar wind
International Nuclear Information System (INIS)
Hollweg, J.V.
1990-01-01
The author reexamines the WKB expansion for toroidal Alfven waves in the solar wind, as described by equations (9) of Heinemann and Olbert (1980). His principal conclusions are as follows: (1) The WKB expansion used by Belcher (1971) and Hollweg (1973) is nonuniformly convergent. (2) Using the method of multiple scales (Nayfeh, 1981), he obtains an expansion which is uniform. (3) The uniform expansion takes into account the small modification to the Alfven wave phase speed due to spatial gradients of the background. (4) Both the uniform and nonuniform expansions reveal that each normal mode has both Elsaesser variables δz + ≠ 0 and δz - ≠ 0. Thus if δz - corresponds to the outgoing mode in a homogeneous background, an observation of δz + ≠ 0 does not necessarily imply the presence of the inward propagating mode, as is commonly assumed. (5) Even at the Alfven critical point (where V = υ A ) he finds that δz + ≠ 0. Thus incompressible MHD turbulence, which requires both δz + ≠ 0 and δz - ≠ 0, can proceed at the Alfven critical point (cf. Roberts, 1989). (6) With very few exceptions, the predictions of these calculations do not agree with recent observations (Marsch and Tu, 1990) of the power spectra of δz + and δz - in the solar wind. Thus the evolution of Alfven waves in the solar wind is governed by dynamics not included in the Heinemann and Olbert equations
Spiral Gradient Coil Design for Use in Cylindrical MRI Systems.
Wang, Yaohui; Xin, Xuegang; Liu, Feng; Crozier, Stuart
2018-04-01
In magnetic resonance imaging, the stream function based method is commonly used in the design of gradient coils. However, this method can be prone to errors associated with the discretization of continuous current density and wire connections. In this paper, we propose a novel gradient coil design scheme that works directly in the wire space, avoiding the system errors that may appear in the stream function approaches. Specifically, the gradient coil pattern is described with dedicated spiral functions adjusted to allow the coil to produce the required field gradients in the imaging area, minimal stray field, and other engineering terms. The performance of a designed spiral gradient coil was compared with its stream-function counterpart. The numerical evaluation shows that when compared with the conventional solution, the inductance and resistance was reduced by 20.9 and 10.5%, respectively. The overall coil performance (evaluated by the figure of merit (FoM)) was improved up to 26.5% for the x -gradient coil design; for the z-gradient coil design, the inductance and resistance were reduced by 15.1 and 6.7% respectively, and the FoM was increased by 17.7%. In addition, by directly controlling the wire distributions, the spiral gradient coil design was much sparser than conventional coils.
Substrate-Bound Protein Gradients to Study Haptotaxis
Directory of Open Access Journals (Sweden)
Sebastien G. Ricoult
2015-03-01
Full Text Available Cells navigate in response to inhomogeneous distributions of extracellular guidance cues. The cellular and molecular mechanisms underlying migration in response to gradients of chemical cues have been investigated for over a century. Following the introduction of micropipettes and more recently microfluidics for gradient generation, much attention and effort was devoted to study cellular chemotaxis, which is defined as guidance by gradients of chemical cues in solution. Haptotaxis, directional migration in response to gradients of substrate-bound cues, has received comparatively less attention; however it is increasingly clear that in vivo many physiologically relevant guidance proteins – including many secreted cues – are bound to cellular surfaces or incorporated into extracellular matrix and likely function via a haptotactic mechanism. Here, we review the history of haptotaxis. We examine the importance of the reference surface, the surface in contact with the cell that is not covered by the cue, which forms a gradient opposing the gradient of the protein cue and must be considered in experimental designs and interpretation of results. We review and compare microfluidics, contact-printing, light patterning and 3D fabrication to pattern substrate-bound protein gradients in vitro, and focus on their application to study axon guidance. The range of methods to create substrate-bound gradients discussed herein make possible systematic analyses of haptotactic mechanisms. Furthermore, understanding the fundamental mechanisms underlying cell motility will inform bioengineering approaches to program cell navigation and recover lost function.
Scattering-angle based filtering of the waveform inversion gradients
Alkhalifah, Tariq Ali
2014-01-01
Full waveform inversion (FWI) requires a hierarchical approach to maneuver the complex non-linearity associated with the problem of velocity update. In anisotropic media, the non-linearity becomes far more complex with the potential trade-off between the multiparameter description of the model. A gradient filter helps us in accessing the parts of the gradient that are suitable to combat the potential non-linearity and parameter trade-off. The filter is based on representing the gradient in the time-lag normalized domain, in which the low scattering angle of the gradient update is initially muted out in the FWI implementation, in what we may refer to as a scattering angle continuation process. The result is a low wavelength update dominated by the transmission part of the update gradient. In this case, even 10 Hz data can produce vertically near-zero wavenumber updates suitable for a background correction of the model. Relaxing the filtering at a later stage in the FWI implementation allows for smaller scattering angles to contribute higher-resolution information to the model. The benefits of the extended domain based filtering of the gradient is not only it's ability in providing low wavenumber gradients guided by the scattering angle, but also in its potential to provide gradients free of unphysical energy that may correspond to unrealistic scattering angles.
Scattering-angle based filtering of the waveform inversion gradients
Alkhalifah, Tariq Ali
2014-11-22
Full waveform inversion (FWI) requires a hierarchical approach to maneuver the complex non-linearity associated with the problem of velocity update. In anisotropic media, the non-linearity becomes far more complex with the potential trade-off between the multiparameter description of the model. A gradient filter helps us in accessing the parts of the gradient that are suitable to combat the potential non-linearity and parameter trade-off. The filter is based on representing the gradient in the time-lag normalized domain, in which the low scattering angle of the gradient update is initially muted out in the FWI implementation, in what we may refer to as a scattering angle continuation process. The result is a low wavelength update dominated by the transmission part of the update gradient. In this case, even 10 Hz data can produce vertically near-zero wavenumber updates suitable for a background correction of the model. Relaxing the filtering at a later stage in the FWI implementation allows for smaller scattering angles to contribute higher-resolution information to the model. The benefits of the extended domain based filtering of the gradient is not only it\\'s ability in providing low wavenumber gradients guided by the scattering angle, but also in its potential to provide gradients free of unphysical energy that may correspond to unrealistic scattering angles.
Gradient Dynamics and Entropy Production Maximization
Janečka, Adam; Pavelka, Michal
2018-01-01
We compare two methods for modeling dissipative processes, namely gradient dynamics and entropy production maximization. Both methods require similar physical inputs-how energy (or entropy) is stored and how it is dissipated. Gradient dynamics describes irreversible evolution by means of dissipation potential and entropy, it automatically satisfies Onsager reciprocal relations as well as their nonlinear generalization (Maxwell-Onsager relations), and it has statistical interpretation. Entropy production maximization is based on knowledge of free energy (or another thermodynamic potential) and entropy production. It also leads to the linear Onsager reciprocal relations and it has proven successful in thermodynamics of complex materials. Both methods are thermodynamically sound as they ensure approach to equilibrium, and we compare them and discuss their advantages and shortcomings. In particular, conditions under which the two approaches coincide and are capable of providing the same constitutive relations are identified. Besides, a commonly used but not often mentioned step in the entropy production maximization is pinpointed and the condition of incompressibility is incorporated into gradient dynamics.
MODIFIED ARMIJO RULE ON GRADIENT DESCENT AND CONJUGATE GRADIENT
Directory of Open Access Journals (Sweden)
ZURAIDAH FITRIAH
2017-10-01
Full Text Available Armijo rule is an inexact line search method to determine step size in some descent method to solve unconstrained local optimization. Modified Armijo was introduced to increase the numerical performance of several descent algorithms that applying this method. The basic difference of Armijo and its modified are in existence of a parameter and estimating the parameter that is updated in every iteration. This article is comparing numerical solution and time of computation of gradient descent and conjugate gradient hybrid Gilbert-Nocedal (CGHGN that applying modified Armijo rule. From program implementation in Matlab 6, it's known that gradient descent was applying modified Armijo more effectively than CGHGN from one side: iteration needed to reach some norm of the gradient (input by the user. The amount of iteration was representing how long the step size of each algorithm in each iteration. In another side, time of computation has the same conclusion.
Conditioning the full waveform inversion gradient to welcome anisotropy
Alkhalifah, Tariq Ali
2014-01-01
Multi-parameter full waveform inversion (FWI) suffers from the complex nonlinearity in the objective function, compounded by the eventual tradeoff between the model parameters. A hierarchical approach based on frequency and arrival time data decimation to maneuver the complex nonlinearity associated with this problem usually falls short in anisotropic media. In place of data decimation, I use a model gradient filter approach to access the parts of the gradient more suitable to combat the potential nonlinearity and parameter trade off. The filter is based on representing the gradient in the time-lag normalized domain in which the small scattering angles of the gradient update is initially muted out. A model update hierarchical filtering strategy includes applying varying degree of filtering to the different parameter updates. A feature not easily accessible to simple data decimation. Using both FWI and reection based FWI (RFWI), two strategies to combat the tradeoff between anisotropic parameters are outlined.
Conditioning the full waveform inversion gradient to welcome anisotropy
Alkhalifah, Tariq Ali
2014-08-05
Multi-parameter full waveform inversion (FWI) suffers from the complex nonlinearity in the objective function, compounded by the eventual tradeoff between the model parameters. A hierarchical approach based on frequency and arrival time data decimation to maneuver the complex nonlinearity associated with this problem usually falls short in anisotropic media. In place of data decimation, I use a model gradient filter approach to access the parts of the gradient more suitable to combat the potential nonlinearity and parameter trade off. The filter is based on representing the gradient in the time-lag normalized domain in which the small scattering angles of the gradient update is initially muted out. A model update hierarchical filtering strategy includes applying varying degree of filtering to the different parameter updates. A feature not easily accessible to simple data decimation. Using both FWI and reection based FWI (RFWI), two strategies to combat the tradeoff between anisotropic parameters are outlined.
The Potential of Tropospheric Gradients for Regional Precipitation Prediction
Boisits, Janina; Möller, Gregor; Wittmann, Christoph; Weber, Robert
2017-04-01
Changes of temperature and humidity in the neutral atmosphere cause variations in tropospheric path delays and tropospheric gradients. By estimating zenith wet delays (ZWD) and gradients using a GNSS reference station network the obtained time series provide information about spatial and temporal variations of water vapour in the atmosphere. Thus, GNSS-based tropospheric parameters can contribute to the forecast of regional precipitation events. In a recently finalized master thesis at TU Wien the potential of tropospheric gradients for weather prediction was investigated. Therefore, ZWD and gradient time series at selected GNSS reference stations were compared to precipitation data over a period of six months (April to September 2014). The selected GNSS stations form two test areas within Austria. All required meteorological data was provided by the Central Institution for Meteorology and Geodynamics (ZAMG). Two characteristics in ZWD and gradient time series can be anticipated in case of an approaching weather front. First, an induced asymmetry in tropospheric delays results in both, an increased magnitude of the gradient and in gradients pointing towards the weather front. Second, an increase in ZWD reflects the increased water vapour concentration right before a precipitation event. To investigate these characteristics exemplary test events were processed. On the one hand, the sequence of the anticipated increase in ZWD at each GNSS station obtained by cross correlation of the time series indicates the direction of the approaching weather front. On the other hand, the corresponding peak in gradient time series allows the deduction of the direction of movement as well. To verify the results precipitation data from ZAMG was used. It can be deduced, that tropospheric gradients show high potential for predicting precipitation events. While ZWD time series rather indicate the orientation of the air mass boundary, gradients rather indicate the direction of movement
Hypersonic expansion of the Fokker--Planck equation
International Nuclear Information System (INIS)
Fernandez-Feria, R.
1989-01-01
A systematic study of the hypersonic limit of a heavy species diluted in a much lighter gas is made via the Fokker--Planck equation governing its velocity distribution function. In particular, two different hypersonic expansions of the Fokker--Planck equation are considered, differing from each other in the momentum equation of the heavy gas used as the basis of the expansion: in the first of them, the pressure tensor is neglected in that equation while, in the second expansion, the pressure tensor term is retained. The expansions are valid when the light gas Mach number is O(1) or larger and the difference between the mean velocities of light and heavy components is small compared to the light gas thermal speed. They can be applied away from regions where the spatial gradient of the distribution function is very large, but it is not restricted with respect to the temporal derivative of the distribution function. The hydrodynamic equations corresponding to the lowest order of both expansions constitute two different hypersonic closures of the moment equations. For the subsequent orders in the expansions, closed sets of moment equations (hydrodynamic equations) are given. Special emphasis is made on the order of magnitude of the errors of the lowest-order hydrodynamic quantities. It is shown that if the heat flux vanishes initially, these errors are smaller than one might have expected from the ordinary scaling of the hypersonic closure. Also it is found that the normal solution of both expansions is a Gaussian distribution at the lowest order
Block-conjugate-gradient method
International Nuclear Information System (INIS)
McCarthy, J.F.
1989-01-01
It is shown that by using the block-conjugate-gradient method several, say s, columns of the inverse Kogut-Susskind fermion matrix can be found simultaneously, in less time than it would take to run the standard conjugate-gradient algorithm s times. The method improves in efficiency relative to the standard conjugate-gradient algorithm as the fermion mass is decreased and as the value of the coupling is pushed to its limit before the finite-size effects become important. Thus it is potentially useful for measuring propagators in large lattice-gauge-theory calculations of the particle spectrum
Temporal quadratic expansion nodal Green's function method
International Nuclear Information System (INIS)
Liu Cong; Jing Xingqing; Xu Xiaolin
2000-01-01
A new approach is presented to efficiently solve the three-dimensional space-time reactor dynamics equation which overcomes the disadvantages of current methods. In the Temporal Quadratic Expansion Nodal Green's Function Method (TQE/NGFM), the Quadratic Expansion Method (QEM) is used for the temporal solution with the Nodal Green's Function Method (NGFM) employed for the spatial solution. Test calculational results using TQE/NGFM show that its time step size can be 5-20 times larger than that of the Fully Implicit Method (FIM) for similar precision. Additionally, the spatial mesh size with NGFM can be nearly 20 times larger than that using the finite difference method. So, TQE/NGFM is proved to be an efficient reactor dynamics analysis method
Plasma expansion: fundamentals and applications
International Nuclear Information System (INIS)
Engeln, R; Mazouffre, S; Vankan, P; Bakker, I; Schram, D C
2002-01-01
The study of plasma expansion is interesting from a fundamental point of view as well as from a more applied point of view. We here give a short overview of the way properties like density, velocity and temperature behave in an expanding thermal plasma. Experimental data show that the basic phenomena of plasma expansion are to some extent similar to those of the expansion of a hot neutral gas. From the application point of view, we present first results on the use of an expanding thermal plasma in the plasma-activated catalysis of ammonia, from N 2 -H 2 mixtures
On the meaning of perturbation expansions in quantum field theory
International Nuclear Information System (INIS)
Burdik, C.; Chyla, J.
1987-01-01
We reformulate perturbation expansions in renormalized quantum field theories in a way that allows straightforward handling of situations when in the conventional approach (i.e. in fixed renormalization scheme) these expansions are divergent. In our approach the results of perturbation calculations of physical quantities appear in the form of (under certain circumstances) convergent expansions in powers of a free parameter χ, characterising the procedure involved. This inherent ambiguity of perturbative calculations is conjectures to be an expression of the underlaying ambiguity in the separation of the full theory into its perturbative and nonperturbative parts. The close connection of our results with the Borel summation technique is demonstrated and their relation to conventional perturbation expansions in fixed renormalization scheme is clarified
Electroforming of nickel and partially stabilized zirconia (Ni+PSZ) gradient coating
Energy Technology Data Exchange (ETDEWEB)
Li Jun [Herbin Inst. of Technol. (China). Dept. of Appl. Chem.; Dai Changsong [Herbin Inst. of Technol. (China). Dept. of Appl. Chem.; Wang Dianlong [Herbin Inst. of Technol. (China). Dept. of Appl. Chem.; Hu Xinguo [Herbin Inst. of Technol. (China). Dept. of Appl. Chem.
1997-05-01
A sediment electrodeposition technique has been successfully used to prepare Ni+PSZ gradient coatings with a compositional gradient. The microstructure and composition of the coating have been studied by scanning electron microscopy and electron probe microanalysis. The variation of the hardness, elastic modulus, residual stress, thermal expansion coefficient and thermal conductivity of the coatings with various components is also discussed. Thermal fatigue tests demonstrate that Ni+PSZ gradient coatings improve the resistance to thermal shock by eliminating the mismatch with the substrate. (orig.)
Edgeworth expansion for the pre-averaging estimator
DEFF Research Database (Denmark)
Podolskij, Mark; Veliyev, Bezirgen; Yoshida, Nakahiro
In this paper, we study the Edgeworth expansion for a pre-averaging estimator of quadratic variation in the framework of continuous diffusion models observed with noise. More specifically, we obtain a second order expansion for the joint density of the estimators of quadratic variation and its...... asymptotic variance. Our approach is based on martingale embedding, Malliavin calculus and stable central limit theorems for continuous diffusions. Moreover, we derive the density expansion for the studentized statistic, which might be applied to construct asymptotic confidence regions....
Drivers of the international expansion of emerging-market multinationals
Directory of Open Access Journals (Sweden)
D. Boșcor
2013-06-01
Full Text Available The purpose of the present paper is to analyze the drivers of the international expansion of emerging market multinationals and the strategies applied by these companies in other emerging and developed markets. The paper applies a conceptual approach combined with analyses of statistics and secondary material and presents the company and the country specific advantages. The proposals for the Romanian companies and institutions are based on the comparison between the drivers of expansion in the BRIC countries.
Estimates for the parameters of the heavy quark expansion
Energy Technology Data Exchange (ETDEWEB)
Heinonen, Johannes; Mannel, Thomas [Universitaet Siegen (Germany)
2015-07-01
We give improved estimates for the non-perturbative parameters appearing in the heavy quark expansion for inclusive decays. While the parameters appearing in low orders of this expansion can be extracted from data, the number of parameters in higher orders proliferates strongly, making a determination of these parameters from data impossible. Thus, one has to rely on theoretical estimates which may be obtained from an insertion of intermediate states. We refine this method and attempt to estimate the uncertainties of this approach.
Spatial gradient tuning in metamaterials
Driscoll, Tom; Goldflam, Michael; Jokerst, Nan; Basov, Dimitri; Smith, David
2011-03-01
Gradient Index (GRIN) metamaterials have been used to create devices inspired by, but often surpassing the potential of, conventional GRIN optics. The unit-cell nature of metamaterials presents the opportunity to exert much greater control over spatial gradients than is possible in natural materials. This is true not only during the design phase but also offers the potential for real-time reconfiguration of the metamaterial gradient. This ability fits nicely into the picture of transformation-optics, in which spatial gradients can enable an impressive suite of innovative devices. We discuss methods to exert control over metamaterial response, focusing on our recent demonstrations using Vanadium Dioxide. We give special attention to role of memristance and mem-capacitance observed in Vanadium Dioxide, which simplify the demands of stimuli and addressing, as well as intersecting metamaterials with the field of memory-materials.
INTEGRATING PHYSIOLOGY AND ARCHITECTURE IN MODELS OF FRUIT EXPANSION
Directory of Open Access Journals (Sweden)
Mikolaj Cieslak
2016-11-01
Full Text Available Architectural properties of a fruit, such as its shape, vascular patterns, and skin morphology, play a significant role in determining the distributions of water, carbohydrates, and nutrients inside the fruit. Understanding the impact of these properties on fruit quality is difficult because they develop over time and are highly dependent on both genetic and environmental controls. We present a 3D functional-structural fruit model that can be used to investigate effects of the principle architectural properties on fruit quality. We use a three step modeling pipeline in the OpenAlea platform: (1 creating a 3D volumetric mesh representation of the internal and external fruit structure, (2 generating a complex network of vasculature that is embedded within this mesh, and (3 integrating aspects of the fruit’s function, such as water and dry matter transport, with the fruit’s structure. We restrict our approach to the phase where fruit growth is mostly due to cell expansion and the fruit has already differentiated into different tissue types. We show how fruit shape affects vascular patterns and, as a consequence, the distribution of sugar/water in tomato fruit. Furthermore, we show that strong interaction between tomato fruit shape and vessel density induces, independently of size, an important and contrasted gradient of water supply from the pedicel to the blossom end of the fruit. We also demonstrate how skin morphology related to microcracking distribution affects the distribution of water and sugars inside nectarine fruit. Our results show that such a generic model permits detailed studies of various, unexplored architectural features affecting fruit quality development.
Clavel, Marie-Annick; Magne, Julien; Pibarot, Philippe
2016-09-07
An important proportion of patients with aortic stenosis (AS) have a 'low-gradient' AS, i.e. a small aortic valve area (AVA gradient (gradient discrepancy raises uncertainty about the actual stenosis severity and thus about the indication for aortic valve replacement (AVR) if the patient has symptoms and/or left ventricular (LV) systolic dysfunction. The most frequent cause of low-gradient (LG) AS is the presence of a low LV outflow state, which may occur with reduced left ventricular ejection fraction (LVEF), i.e. classical low-flow, low-gradient (LF-LG), or preserved LVEF, i.e. paradoxical LF-LG. Furthermore, a substantial proportion of patients with AS may have a normal-flow, low-gradient (NF-LG) AS: i.e. a small AVA-low-gradient combination but with a normal flow. One of the most important clinical challenges in these three categories of patients with LG AS (classical LF-LG, paradoxical LF-LG, and NF-LG) is to differentiate a true-severe AS that generally benefits from AVR vs. a pseudo-severe AS that should be managed conservatively. A low-dose dobutamine stress echocardiography may be used for this purpose in patients with classical LF-LG AS, whereas aortic valve calcium scoring by multi-detector computed tomography is the preferred modality in those with paradoxical LF-LG or NF-LG AS. Although patients with LF-LG severe AS have worse outcomes than those with high-gradient AS following AVR, they nonetheless display an important survival benefit with this intervention. Some studies suggest that transcatheter AVR may be superior to surgical AVR in patients with LF-LG AS. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
Warp drive with zero expansion
Energy Technology Data Exchange (ETDEWEB)
Natario, Jose [Department of Mathematics, Instituto Superior Tecnico (Portugal)
2002-03-21
It is commonly believed that Alcubierre's warp drive works by contracting space in front of the warp bubble and expanding the space behind it. We show that this contraction/expansion is but a marginal consequence of the choice made by Alcubierre and explicitly construct a similar spacetime where no contraction/expansion occurs. Global and optical properties of warp-drive spacetimes are also discussed.
International Nuclear Information System (INIS)
Andro, Jean.
1973-01-01
The invention relates the expansion lyre-shaped tube portions formed in dudgeoned tubular bundles between two bottom plates. An expansion lyre comprises at least two sets of tubes of unequal lengths coplanar and symmetrical with respect to the main tube axis, with connecting portions between the tubes forming said sets. The invention applies to apparatus such as heat exchangers, heaters, superheaters or breeders [fr
Estimates of expansion time scales
International Nuclear Information System (INIS)
Jones, E.M.
1979-01-01
Monte Carlo simulations of the expansion of a spacefaring civilization show that descendants of that civilization should be found near virtually every useful star in the Galaxy in a time much less than the current age of the Galaxy. Only extreme assumptions about local population growth rates, emigration rates, or ship ranges can slow or halt an expansion. The apparent absence of extraterrestrials from the solar system suggests that no such civilization has arisen in the Galaxy. 1 figure
Strategic Complexity and Global Expansion
DEFF Research Database (Denmark)
Oladottir, Asta Dis; Hobdari, Bersant; Papanastassiou, Marina
2012-01-01
The purpose of this paper is to analyse the determinants of global expansion strategies of newcomer Multinational Corporations (MNCs) by focusing on Iceland, Israel and Ireland. We argue that newcomer MNCs from small open economies pursue complex global expansion strategies (CGES). We distinguish....... The empirical evidence suggests that newcomer MNCs move away from simplistic dualities in the formulation of their strategic choices towards more complex options as a means of maintaining and enhancing their global competitiveness....
Range expansion of heterogeneous populations.
Reiter, Matthias; Rulands, Steffen; Frey, Erwin
2014-04-11
Risk spreading in bacterial populations is generally regarded as a strategy to maximize survival. Here, we study its role during range expansion of a genetically diverse population where growth and motility are two alternative traits. We find that during the initial expansion phase fast-growing cells do have a selective advantage. By contrast, asymptotically, generalists balancing motility and reproduction are evolutionarily most successful. These findings are rationalized by a set of coupled Fisher equations complemented by stochastic simulations.
Graded/Gradient Porous Biomaterials
Directory of Open Access Journals (Sweden)
Xigeng Miao
2009-12-01
Full Text Available Biomaterials include bioceramics, biometals, biopolymers and biocomposites and they play important roles in the replacement and regeneration of human tissues. However, dense bioceramics and dense biometals pose the problem of stress shielding due to their high Young’s moduli compared to those of bones. On the other hand, porous biomaterials exhibit the potential of bone ingrowth, which will depend on porous parameters such as pore size, pore interconnectivity, and porosity. Unfortunately, a highly porous biomaterial results in poor mechanical properties. To optimise the mechanical and the biological properties, porous biomaterials with graded/gradient porosity, pores size, and/or composition have been developed. Graded/gradient porous biomaterials have many advantages over graded/gradient dense biomaterials and uniform or homogenous porous biomaterials. The internal pore surfaces of graded/gradient porous biomaterials can be modified with organic, inorganic, or biological coatings and the internal pores themselves can also be filled with biocompatible and biodegradable materials or living cells. However, graded/gradient porous biomaterials are generally more difficult to fabricate than uniform or homogenous porous biomaterials. With the development of cost-effective processing techniques, graded/gradient porous biomaterials can find wide applications in bone defect filling, implant fixation, bone replacement, drug delivery, and tissue engineering.
Dose gradient curve: A new tool for evaluating dose gradient.
Sung, KiHoon; Choi, Young Eun
2018-01-01
Stereotactic radiotherapy, which delivers an ablative high radiation dose to a target volume for maximum local tumor control, requires a rapid dose fall-off outside the target volume to prevent extensive damage to nearby normal tissue. Currently, there is no tool to comprehensively evaluate the dose gradient near the target volume. We propose the dose gradient curve (DGC) as a new tool to evaluate the quality of a treatment plan with respect to the dose fall-off characteristics. The average distance between two isodose surfaces was represented by the dose gradient index (DGI) estimated by a simple equation using the volume and surface area of isodose levels. The surface area was calculated by mesh generation and surface triangulation. The DGC was defined as a plot of the DGI of each dose interval as a function of the dose. Two types of DGCs, differential and cumulative, were generated. The performance of the DGC was evaluated using stereotactic radiosurgery plans for virtual targets. Over the range of dose distributions, the dose gradient of each dose interval was well-characterized by the DGC in an easily understandable graph format. Significant changes in the DGC were observed reflecting the differences in planning situations and various prescription doses. The DGC is a rational method for visualizing the dose gradient as the average distance between two isodose surfaces; the shorter the distance, the steeper the dose gradient. By combining the DGC with the dose-volume histogram (DVH) in a single plot, the DGC can be utilized to evaluate not only the dose gradient but also the target coverage in routine clinical practice.
The adaptation rate of a quantitative trait in an environmental gradient
Hermsen, R|info:eu-repo/dai/nl/315062312
2016-01-01
The spatial range of a species habitat is generally determined by the ability of the species to cope with biotic and abiotic variables that vary in space. Therefore, the species range is itself an evolvable property. Indeed, environmental gradients permit a mode of evolution in which range expansion
An extended discrete gradient formula for oscillatory Hamiltonian systems
International Nuclear Information System (INIS)
Liu Kai; Shi Wei; Wu Xinyuan
2013-01-01
In this paper, incorporating the idea of the discrete gradient method into the extended Runge–Kutta–Nyström integrator, we derive and analyze an extended discrete gradient formula for the oscillatory Hamiltonian system with the Hamiltonian H(p,q)= 1/2 p T p+ 1/2 q T Mq+U(q), where q:R→R d represents generalized positions, p:R→R d represents generalized momenta and M is an element of R dxd is a symmetric and positive semi-definite matrix. The solution of this system is a nonlinear oscillator. Basically, many nonlinear oscillatory mechanical systems with a partitioned Hamiltonian function lend themselves to this approach. The extended discrete gradient formula presented in this paper exactly preserves the energy H(p, q). We derive some properties of the new formula. The convergence is analyzed for the implicit schemes based on the discrete gradient formula, and it turns out that the convergence of the implicit schemes based on the extended discrete gradient formula is independent of ‖M‖, which is a significant property for the oscillatory Hamiltonian system. Thus, it transpires that a larger step size can be chosen for the new energy-preserving schemes than that for the traditional discrete gradient methods when applied to the oscillatory Hamiltonian system. Illustrative examples show the competence and efficiency of the new schemes in comparison with the traditional discrete gradient methods in the scientific literature. (paper)
A study of gradient strengthening based on a finite-deformation gradient crystal-plasticity model
Pouriayevali, Habib; Xu, Bai-Xiang
2017-11-01
A comprehensive study on a finite-deformation gradient crystal-plasticity model which has been derived based on Gurtin's framework (Int J Plast 24:702-725, 2008) is carried out here. This systematic investigation on the different roles of governing components of the model represents the strength of this framework in the prediction of a wide range of hardening behaviors as well as rate-dependent and scale-variation responses in a single crystal. The model is represented in the reference configuration for the purpose of numerical implementation and then implemented in the FEM software ABAQUS via a user-defined subroutine (UEL). Furthermore, a function of accumulation rates of dislocations is employed and viewed as a measure of formation of short-range interactions. Our simulation results reveal that the dissipative gradient strengthening can be identified as a source of isotropic-hardening behavior, which may represent the effect of irrecoverable work introduced by Gurtin and Ohno (J Mech Phys Solids 59:320-343, 2011). Here, the variation of size dependency at different magnitude of a rate-sensitivity parameter is also discussed. Moreover, an observation of effect of a distinctive feature in the model which explains the effect of distortion of crystal lattice in the reference configuration is reported in this study for the first time. In addition, plastic flows in predefined slip systems and expansion of accumulation of GNDs are distinctly observed in varying scales and under different loading conditions.
Seasonal hydroclimatic impacts of Sun Corridor expansion
International Nuclear Information System (INIS)
Georgescu, M; Mahalov, A; Moustaoui, M
2012-01-01
Conversion of natural to urban land forms imparts influence on local and regional hydroclimate via modification of the surface energy and water balance, and consideration of such effects due to rapidly expanding megapolitan areas is necessary in light of the growing global share of urban inhabitants. Based on a suite of ensemble-based, multi-year simulations using the Weather Research and Forecasting (WRF) model, we quantify seasonally varying hydroclimatic impacts of the most rapidly expanding megapolitan area in the US: Arizona’s Sun Corridor, centered upon the Greater Phoenix metropolitan area. Using a scenario-based urban expansion approach that accounts for the full range of Sun Corridor growth uncertainty through 2050, we show that built environment induced warming for the maximum development scenario is greatest during the summer season (regionally averaged warming over AZ exceeds 1 °C). Warming remains significant during the spring and fall seasons (regionally averaged warming over AZ approaches 0.9 °C during both seasons), and is least during the winter season (regionally averaged warming over AZ of 0.5 °C). Impacts from a minimum expansion scenario are reduced, with regionally averaged warming ranging between 0.1 and 0.3 °C for all seasons except winter, when no warming impacts are diagnosed. Integration of highly reflective cool roofs within the built environment, increasingly recognized as a cost-effective option intended to offset the warming influence of urban complexes, reduces urban-induced warming considerably. However, impacts on the hydrologic cycle are aggravated via enhanced evapotranspiration reduction, leading to a 4% total accumulated precipitation decrease relative to the non-adaptive maximum expansion scenario. Our results highlight potentially unintended consequences of this adaptation approach within rapidly expanding megapolitan areas, and emphasize the need for undeniably sustainable development paths that account for
Quasi parton distributions and the gradient flow
International Nuclear Information System (INIS)
Monahan, Christopher; Orginos, Kostas
2017-01-01
We propose a new approach to determining quasi parton distribution functions (PDFs) from lattice quantum chromodynamics. By incorporating the gradient flow, this method guarantees that the lattice quasi PDFs are finite in the continuum limit and evades the thorny, and as yet unresolved, issue of the renormalization of quasi PDFs on the lattice. In the limit that the flow time is much smaller than the length scale set by the nucleon momentum, the moments of the smeared quasi PDF are proportional to those of the lightfront PDF. Finally, we use this relation to derive evolution equations for the matching kernel that relates the smeared quasi PDF and the light-front PDF.
Temperature dependency of silicon structures for magnetic field gradient sensing
Dabsch, Alexander; Rosenberg, Christoph; Stifter, Michael; Keplinger, Franz
2018-02-01
This work describes the temperature dependence of two sensors for magnetic field gradient sensors and demonstrates a structure to compensate for the drift of resonance frequency over a wide temperature range. The temperature effect of the sensing element is based on internal stresses induced by the thermal expansion of material, therefore FEM is used to determine the change of the eigenvalues of the sensing structure. The experimental setup utilizes a Helmholtz coil system to generate the magnetic field and to excite the MEMS structure with Lorentz forces. The MEMS structure is placed on a plate heated with resistors and cooled by a Peltier element to control the plate temperature. In the second part, we describe how one can exploit temperature sensitivity for temperature measurements and we show the opportunity to include the temperature effect to increase the sensitivity of single-crystal silicon made flux density gradient sensors.
Asymptotic expansions for high-contrast elliptic equations
Calo, Victor M.; Efendiev, Yalchin R.; Galvis, Juan
2014-01-01
In this paper, we present a high-order expansion for elliptic equations in high-contrast media. The background conductivity is taken to be one and we assume the medium contains high (or low) conductivity inclusions. We derive an asymptotic expansion with respect to the contrast and provide a procedure to compute the terms in the expansion. The computation of the expansion does not depend on the contrast which is important for simulations. The latter allows avoiding increased mesh resolution around high conductivity features. This work is partly motivated by our earlier work in [Domain decomposition preconditioners for multiscale flows in high-contrast media, Multiscale Model Simul. 8 (2010) 1461-1483] where we design efficient numerical procedures for solving high-contrast problems. These multiscale approaches require local solutions and our proposed high-order expansion can be used to approximate these local solutions inexpensively. In the case of a large-number of inclusions, the proposed analysis can help to design localization techniques for computing the terms in the expansion. In the paper, we present a rigorous analysis of the proposed high-order expansion and estimate the remainder of it. We consider both high-and low-conductivity inclusions. © 2014 World Scientific Publishing Company.
Asymptotic expansions for high-contrast elliptic equations
Calo, Victor M.
2014-03-01
In this paper, we present a high-order expansion for elliptic equations in high-contrast media. The background conductivity is taken to be one and we assume the medium contains high (or low) conductivity inclusions. We derive an asymptotic expansion with respect to the contrast and provide a procedure to compute the terms in the expansion. The computation of the expansion does not depend on the contrast which is important for simulations. The latter allows avoiding increased mesh resolution around high conductivity features. This work is partly motivated by our earlier work in [Domain decomposition preconditioners for multiscale flows in high-contrast media, Multiscale Model Simul. 8 (2010) 1461-1483] where we design efficient numerical procedures for solving high-contrast problems. These multiscale approaches require local solutions and our proposed high-order expansion can be used to approximate these local solutions inexpensively. In the case of a large-number of inclusions, the proposed analysis can help to design localization techniques for computing the terms in the expansion. In the paper, we present a rigorous analysis of the proposed high-order expansion and estimate the remainder of it. We consider both high-and low-conductivity inclusions. © 2014 World Scientific Publishing Company.
Cosmic expansion from boson and fermion fields
International Nuclear Information System (INIS)
De Souza, Rudinei C; Kremer, Gilberto M
2011-01-01
This paper consists in analyzing an action that describes boson and fermion fields minimally coupled to the gravity and a common matter field. The self-interaction potentials of the fields are not chosen a priori but from the Noether symmetry approach. The Noether forms of the potentials allow the boson field to play the role of dark energy and matter and the fermion field to behave as standard matter. The constant of motion and the cyclic variable associated with the Noether symmetry allow the complete integration of the field equations, whose solution produces a universe with alternated periods of accelerated and decelerated expansion.
The colour and flavour 1/N expansions
International Nuclear Information System (INIS)
Veneziano, G.
General ideas about the colour and flavour 1/N expansions are presented in a non-specialized fashion according to both: a unified approach to meson dynamics (the basic logical scheme, lepton-hadron interactions, hadronic processes in lowest order, higher order effects and the Reggeon calculus); and a possible extension to baryons (difficulties with baryons in dual and gauge theories, possible definition of dual baryons in quantum chromodynamics, lowest order B anti-B and BB scattering: baryonium, Reggeon calculus for processes involving baryons)
Kato expansion in quantum canonical perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Nikolaev, Andrey, E-mail: Andrey.Nikolaev@rdtex.ru [Institute of Computing for Physics and Technology, Protvino, Moscow Region, Russia and RDTeX LTD, Moscow (Russian Federation)
2016-06-15
This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson’s ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.
Kato expansion in quantum canonical perturbation theory
International Nuclear Information System (INIS)
Nikolaev, Andrey
2016-01-01
This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson’s ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.
The Dynamics of Regional and Global Expansion
DEFF Research Database (Denmark)
Geisler Asmussen, Christian; Nielsen, Bo Bernhard; Osegowitsch, Tom
2015-01-01
Purpose – The purpose of this paper is to model and test the dynamics of home-regional and global penetration by multi-national enterprises (MNEs). Design/methodology/approach – Drawing on international business (IB) theory, the authors model MNEs adjusting their home-regional and global market...... domain. Findings – The authors demonstrate that MNEs do penetrate both home-regional and global markets, often simultaneously, and that penetration levels often oscillate within an MNE over time. The authors show firms’ rates of regional and global expansion to be affected by their existing regional...
Hargreaves, Brian
2012-01-01
Gradient echo sequences are widely used in magnetic resonance imaging (MRI) for numerous applications ranging from angiography to perfusion to functional MRI. Compared with spin-echo techniques, the very short repetition times of gradient-echo methods enable very rapid 2D and 3D imaging, but also lead to complicated “steady states.” Signal and contrast behavior can be described graphically and mathematically, and depends strongly on the type of spoiling: fully balanced (no spoiling), gradient spoiling, or RF-spoiling. These spoiling options trade off between high signal and pure T1 contrast while the flip angle also affects image contrast in all cases, both of which can be demonstrated theoretically and in image examples. As with spin-echo sequences, magnetization preparation can be added to gradient-echo sequences to alter image contrast. Gradient echo sequences are widely used for numerous applications such as 3D perfusion imaging, functional MRI, cardiac imaging and MR angiography. PMID:23097185
The influence of ALN-Al gradient material gradient index on ballistic performance
International Nuclear Information System (INIS)
Wang Youcong; Liu Qiwen; Li Yao; Shen Qiang
2013-01-01
Ballistic performance of the gradient material is superior to laminated material, and gradient materials have different gradient types. Using ls-dyna to simulate the ballistic performance of ALN-AL gradient target plates which contain three gradient index (b = 1, b = 0.5, b = 2). Through Hopkinson bar numerical simulation to the target plate materials, we obtained the reflection stress wave and transmission stress wave state of gradient material to get the best gradient index. The internal stress state of gradient material is simulated by amplification processing of the target plate model. When the gradient index b is equal to 1, the gradient target plate is best of all.
Scattering angle base filtering of the inversion gradients
Alkhalifah, Tariq Ali
2014-01-01
Full waveform inversion (FWI) requires a hierarchical approach based on the availability of low frequencies to maneuver the complex nonlinearity associated with the problem of velocity inversion. I develop a model gradient filter to help us access the parts of the gradient more suitable to combat this potential nonlinearity. The filter is based on representing the gradient in the time-lag normalized domain, in which low scattering angles of the gradient update are initially muted. The result are long-wavelength updates controlled by the ray component of the wavefield. In this case, even 10 Hz data can produce near zero wavelength updates suitable for a background correction of the model. Allowing smaller scattering angle to contribute provides higher resolution information to the model.
A density gradient theory based method for surface tension calculations
DEFF Research Database (Denmark)
Liang, Xiaodong; Michelsen, Michael Locht; Kontogeorgis, Georgios
2016-01-01
The density gradient theory has been becoming a widely used framework for calculating surface tension, within which the same equation of state is used for the interface and bulk phases, because it is a theoretically sound, consistent and computationally affordable approach. Based on the observation...... that the optimal density path from the geometric mean density gradient theory passes the saddle point of the tangent plane distance to the bulk phases, we propose to estimate surface tension with an approximate density path profile that goes through this saddle point. The linear density gradient theory, which...... assumes linearly distributed densities between the two bulk phases, has also been investigated. Numerical problems do not occur with these density path profiles. These two approximation methods together with the full density gradient theory have been used to calculate the surface tension of various...
Comparative Studies of High-Gradient Rf and Dc Breakdowns
Kovermann, Jan Wilhelm; Wuensch, Walter
2010-01-01
The CLIC project is based on normal-conducting high-gradient accelerating structures with an average accelerating gradient of 100 MV/m. The maximum achievable gradient in these structures is limited by the breakdown phenomenon. The physics of breakdowns is not yet fully understood quantitatively. A full knowledge could have strong impact on the design, material choice and construction of rf structures. Therefore, understanding breakdowns has great importance to reaching a gradient of 100MV/m with an acceptable breakdown probability. This thesis addresses the physics underlying the breakdown effect, focusing on a comparison of breakdowns in rf structures and in a dc spark setup. The dc system is simpler, easier to benchmark against simulations, with a faster turnaround time, but the relationship to rf breakdown must be established. To do so, an experimental approach based on optical diagnostics and electrical measurements methods was made. Following an introduction into the CLIC project, a general theoretical ...
Alloy design as an inverse problem of cluster expansion models
DEFF Research Database (Denmark)
Larsen, Peter Mahler; Kalidindi, Arvind R.; Schmidt, Søren
2017-01-01
Central to a lattice model of an alloy system is the description of the energy of a given atomic configuration, which can be conveniently developed through a cluster expansion. Given a specific cluster expansion, the ground state of the lattice model at 0 K can be solved by finding the configurat......Central to a lattice model of an alloy system is the description of the energy of a given atomic configuration, which can be conveniently developed through a cluster expansion. Given a specific cluster expansion, the ground state of the lattice model at 0 K can be solved by finding...... the inverse problem in terms of energetically distinct configurations, using a constraint satisfaction model to identify constructible configurations, and show that a convex hull can be used to identify ground states. To demonstrate the approach, we solve for all ground states for a binary alloy in a 2D...
Integrating agricultural expansion into conservation biogeography: conflicts and priorities
Directory of Open Access Journals (Sweden)
Ricardo Dobrovolski
2014-06-01
Full Text Available Increasing food production without compromising biodiversity is one of the great challenges for humanity. The aims of my thesis were to define spatial priorities for biodiversity conservation and to evaluate conservation conflicts considering agricultural expansion in the 21st century. I also tested the effect of globalizing conservation efforts on both food production and biodiversity conservation. I found spatial conflicts between biodiversity conservation and agricultural expansion. However, incorporating agricultural expansion data into the spatial prioritization process can significantly alleviate conservation conflicts, by reducing spatial correlation between the areas under high impact of agriculture and the priority areas for conservation. Moreover, developing conservation blueprints at the global scale, instead of the usual approach based on national boundaries, can benefit both food production and biodiversity. Based on these findings I conclude that the incorporation of agricultural expansion as a key component for defining global conservation strategies should be added to the list of solutions for our cultivated planet.
Low Thermal Expansion Glass Ceramics
Bach, Hans
2005-01-01
This book appears in the authoritative series reporting the international research and development activities conducted by the Schott group of companies. This series provides an overview of Schott's activities for scientists, engineers, and managers from all branches of industry worldwide in which glasses and glass ceramics are of interest. Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated. This new extended edition describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics. The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions. Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization. Thus g...
Low thermal expansion glass ceramics
1995-01-01
This book is one of a series reporting on international research and development activities conducted by the Schott group of companies With the series, Schott aims to provide an overview of its activities for scientists, engineers, and managers from all branches of industry worldwide where glasses and glass ceramics are of interest Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated This volume describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization Thus glass ceramics with thermal c...
Regulation of gas infrastructure expansion
International Nuclear Information System (INIS)
De Joode, J.
2012-01-01
The topic of this dissertation is the regulation of gas infrastructure expansion in the European Union (EU). While the gas market has been liberalised, the gas infrastructure has largely remained in the regulated domain. However, not necessarily all gas infrastructure facilities - such as gas storage facilities, LNG import terminals and certain gas transmission pipelines - need to be regulated, as there may be scope for competition. In practice, the choice of regulation of gas infrastructure expansion varies among different types of gas infrastructure facilities and across EU Member States. Based on a review of economic literature and on a series of in-depth case studies, this study explains these differences in choices of regulation from differences in policy objectives, differences in local circumstances and differences in the intrinsic characteristics of the infrastructure projects. An important conclusion is that there is potential for a larger role for competition in gas infrastructure expansion.
Gradient descent learning algorithm overview: a general dynamical systems perspective.
Baldi, P
1995-01-01
Gives a unified treatment of gradient descent learning algorithms for neural networks using a general framework of dynamical systems. This general approach organizes and simplifies all the known algorithms and results which have been originally derived for different problems (fixed point/trajectory learning), for different models (discrete/continuous), for different architectures (forward/recurrent), and using different techniques (backpropagation, variational calculus, adjoint methods, etc.). The general approach can also be applied to derive new algorithms. The author then briefly examines some of the complexity issues and limitations intrinsic to gradient descent learning. Throughout the paper, the author focuses on the problem of trajectory learning.
Directory of Open Access Journals (Sweden)
Jonathan Rolland
2014-01-01
Full Text Available The increase in species richness from the poles to the tropics, referred to as the latitudinal diversity gradient, is one of the most ubiquitous biodiversity patterns in the natural world. Although understanding how rates of speciation and extinction vary with latitude is central to explaining this pattern, such analyses have been impeded by the difficulty of estimating diversification rates associated with specific geographic locations. Here, we use a powerful phylogenetic approach and a nearly complete phylogeny of mammals to estimate speciation, extinction, and dispersal rates associated with the tropical and temperate biomes. Overall, speciation rates are higher, and extinction rates lower, in the tropics than in temperate regions. The diversity of the eight most species-rich mammalian orders (covering 92% of all mammals peaks in the tropics, except that of the Lagomorpha (hares, rabbits, and pikas reaching a maxima in northern-temperate regions. Latitudinal patterns in diversification rates are strikingly consistent with these diversity patterns, with peaks in species richness associated with low extinction rates (Primates and Lagomorpha, high speciation rates (Diprotodontia, Artiodactyla, and Soricomorpha, or both (Chiroptera and Rodentia. Rates of range expansion were typically higher from the tropics to the temperate regions than in the other direction, supporting the "out of the tropics" hypothesis whereby species originate in the tropics and disperse into higher latitudes. Overall, these results suggest that differences in diversification rates have played a major role in shaping the modern latitudinal diversity gradient in mammals, and illustrate the usefulness of recently developed phylogenetic approaches for understanding this famous yet mysterious pattern.
The loop expansion as a divergent-power-series expansion
International Nuclear Information System (INIS)
Murai, N.
1981-01-01
The loop expansion should be divergent, possibly an asymptotic one, in the Euclidean path integral formulation. This consideration is important in applications of the symmetric and mass-independent renormalization. The [1,1] Pade approximant is calculated in a PHI 4 model. Its classical vacua may be not truely stable for nonzero coupling constant. (author)
Temperature expansions for magnetic systems
International Nuclear Information System (INIS)
Cangemi, D.; Dunne, G.
1996-01-01
We derive finite temperature expansions for relativistic fermion systems in the presence of background magnetic fields, and with nonzero chemical potential. We use the imaginary-time formalism for the finite temperature effects, the proper-time method for the background field effects, and zeta function regularization for developing the expansions. We emphasize the essential difference between even and odd dimensions, focusing on 2+1 and 3+1 dimensions. We concentrate on the high temperature limit, but we also discuss the T=0 limit with nonzero chemical potential. Copyright copyright 1996 Academic Press, Inc
Bearing-Mounting Concept Accommodates Thermal Expansion
Nespodzany, Robert; Davis, Toren S.
1995-01-01
Pins or splines allow radial expansion without slippage. Design concept for mounting rotary bearing accommodates differential thermal expansion between bearing and any structure(s) to which bearing connected. Prevents buildup of thermal stresses by allowing thermal expansion to occur freely but accommodating expansion in such way not to introduce looseness. Pin-in-slot configuration also maintains concentricity.
Orthogonal Expansions for VIX Options Under Affine Jump Diffusions
DEFF Research Database (Denmark)
Barletta, Andrea; Nicolato, Elisa
2017-01-01
In this work we derive new closed–form pricing formulas for VIX options in the jump-diffusion SVJJ model proposed by Duffie et al. (2000). Our approach is based on the classic methodology of approximating a density function with an orthogonal expansion of polynomials weighted by a kernel. Orthogo......In this work we derive new closed–form pricing formulas for VIX options in the jump-diffusion SVJJ model proposed by Duffie et al. (2000). Our approach is based on the classic methodology of approximating a density function with an orthogonal expansion of polynomials weighted by a kernel...
The Thermal Expansion Of Feldspars
Hovis, G. L.; Medford, A.; Conlon, M.
2009-12-01
Hovis and others (1) investigated the thermal expansion of natural and synthetic AlSi3 feldspars and demonstrated that the coefficient of thermal expansion (α) decreases significantly, and linearly, with increasing room-temperature volume (VRT). In all such feldspars, therefore, chemical expansion limits thermal expansion. The scope of this work now has been broadened to include plagioclase and Ba-K feldspar crystalline solutions. X-ray powder diffraction data have been collected between room temperature and 925 °C on six plagioclase specimens ranging in composition from anorthite to oligoclase. When combined with thermal expansion data for albite (2,3,4) a steep linear trend of α as a function of VRT emerges, reflecting how small changes in composition dramatically affect expansion behavior. The thermal expansion data for five synthetic Ba-K feldspars ranging in composition from 20 to 100 mole percent celsian, combined with data for pure K-feldspar (3,4), show α-VRT relationships similar in nature to the plagioclase series, but with a slope and intercept different from the latter. Taken as a group all Al2Si2 feldspars, including anorthite and celsian from the present study along with Sr- (5) and Pb-feldspar (6) from other workers, show very limited thermal expansion that, unlike AlSi3 feldspars, has little dependence on the divalent-ion (or M-) site occupant. This apparently is due to the necessitated alternation of Al and Si in the tetrahedral sites of these minerals (7), which in turn locks the tetrahedral framework and makes the M-site occupant nearly irrelevant to expansion behavior. Indeed, in feldspar series with coupled chemical substitution it is the change away from a 1:1 Al:Si ratio that gives feldspars greater freedom to expand. Overall, the relationships among α, chemical composition, and room-temperature volume provide useful predictive tools for estimating feldspar thermal expansion and give insight into the controls of expansion behavior in
The phenotypic variance gradient - a novel concept.
Pertoldi, Cino; Bundgaard, Jørgen; Loeschcke, Volker; Barker, James Stuart Flinton
2014-11-01
Evolutionary ecologists commonly use reaction norms, which show the range of phenotypes produced by a set of genotypes exposed to different environments, to quantify the degree of phenotypic variance and the magnitude of plasticity of morphometric and life-history traits. Significant differences among the values of the slopes of the reaction norms are interpreted as significant differences in phenotypic plasticity, whereas significant differences among phenotypic variances (variance or coefficient of variation) are interpreted as differences in the degree of developmental instability or canalization. We highlight some potential problems with this approach to quantifying phenotypic variance and suggest a novel and more informative way to plot reaction norms: namely "a plot of log (variance) on the y-axis versus log (mean) on the x-axis, with a reference line added". This approach gives an immediate impression of how the degree of phenotypic variance varies across an environmental gradient, taking into account the consequences of the scaling effect of the variance with the mean. The evolutionary implications of the variation in the degree of phenotypic variance, which we call a "phenotypic variance gradient", are discussed together with its potential interactions with variation in the degree of phenotypic plasticity and canalization.
Braak, ter C.J.F.
1988-01-01
The theory of gradient analysis is presented in this chapter, in which the heuristic techniques are integrated with regression, calibration, ordination and constrained ordination as distinct, well-defined statistical problems. The various techniques used for each type of problem are classified into
Compositional gradients in Gramineae genes
DEFF Research Database (Denmark)
Wong, Gane Ka-Shu; Wang, Jun; Tao, Lin
2002-01-01
In this study, we describe a property of Gramineae genes, and perhaps all monocot genes, that is not observed in eudicot genes. Along the direction of transcription, beginning at the junction of the 5'-UTR and the coding region, there are gradients in GC content, codon usage, and amino-acid usage...
Orderings for conjugate gradient preconditionings
Ortega, James M.
1991-01-01
The effect of orderings on the rate of convergence of the conjugate gradient method with SSOR or incomplete Cholesky preconditioning is examined. Some results also are presented that help to explain why red/black ordering gives an inferior rate of convergence.
Color gradients in elliptical galaxies
International Nuclear Information System (INIS)
Franx, M.; Illingworth, G.
1990-01-01
The relationship of the color gradients within ellipticals and the color differences between them are studied. It is found that the local color appears to be strongly related to the escape velocity. This suggests that the local escape velocity is the primary factor that determines the metallicity of the stellar population. Models with and without dark halos give comparable results. 27 refs
Crude oil pipeline expansion summary
International Nuclear Information System (INIS)
2005-02-01
The Canadian Association of Petroleum Producers has been working with producers to address issues associated with the development of new pipeline capacity from western Canada. This document presents an assessment of the need for additional oil pipeline capacity given the changing mix of crude oil types and forecasted supply growth. It is of particular interest to crude oil producers and contributes to current available information for market participants. While detailed, the underlying analysis does not account for all the factors that may come into play when individual market participants make choices about which expansions they may support. The key focus is on the importance of timely expansion. It was emphasized that if pipeline expansions lags the crude supply growth, then the consequences would be both significant and unacceptable. Obstacles to timely expansion are also discussed. The report reviews the production and supply forecasts, the existing crude oil pipeline infrastructure, opportunities for new market development, requirements for new pipeline capacity and tolling options for pipeline development. tabs., figs., 1 appendix
Model of clinker capacity expansion
CSIR Research Space (South Africa)
Stylianides, T
1998-10-01
Full Text Available This paper describes a model which has been applied in practice to determine an optimal plan for clinker capacity expansion. The problem was formulated as an integer linear program aiming to determine the optimal number, size and location of kilns...
The bootstrap and edgeworth expansion
Hall, Peter
1992-01-01
This monograph addresses two quite different topics, in the belief that each can shed light on the other. Firstly, it lays the foundation for a particular view of the bootstrap. Secondly, it gives an account of Edgeworth expansion. Chapter 1 is about the bootstrap, witih almost no mention of Edgeworth expansion; Chapter 2 is about Edgeworth expansion, with scarcely a word about the bootstrap; and Chapters 3 and 4 bring these two themes together, using Edgeworth expansion to explore and develop the properites of the bootstrap. The book is aimed a a graduate level audience who has some exposure to the methods of theoretical statistics. However, technical details are delayed until the last chapter (entitled "Details of Mathematical Rogour"), and so a mathematically able reader without knowledge of the rigorous theory of probability will have no trouble understanding the first four-fifths of the book. The book simultaneously fills two gaps in the literature; it provides a very readable graduate level account of t...
Liflyand, E.
2012-01-01
We study an extension to Fourier transforms of the old problem on absolute convergence of the re-expansion in the sine (cosine) Fourier series of an absolutely convergent cosine (sine) Fourier series. The results are obtained by revealing certain relations between the Fourier transforms and their Hilbert transforms.
On persistently positively expansive maps
Directory of Open Access Journals (Sweden)
Alexander Arbieto
2010-06-01
Full Text Available In this paper, we prove that any C¹-persistently positively expansive map is expanding. This improves a result due to Sakai (Sakai 2004.Neste artigo, mostramos que todo mapa C¹-persistentemente positivamente expansivo e expansor. Isto melhora um resultado devido a Sakai (Sakai 2004.
Elemental gradients in macrophytes from a reactor effluent gradient
International Nuclear Information System (INIS)
Grace, J.B.; Tilly, L.J.
1978-01-01
The tissues of submersed macrophtes from along the thermal gradient were analyzed for phosphorus to determine whether any pattern correspondent to standing crop distributions could be detected. Although water concentrations of phosphorus showed no detectable relationship to the thermal effluent, tissue concentrations of this element in submersed macrophytes declined with distance from the effluent entry point. The occurrence of this concentration pattern suggests that phosphorus availability is greater near the discharge. Because phosphorus is the element most often determined to limit aquatic productivity, its greater availability may partially account for the apparent enhancement of macrophte growth near the thermal discharge. A patter of macrophyte abundance which indicated enchancement related to the discharge gradient in the reactor-cooling reservoir, Par Pond is reported. Correlative data tended to implicate light and temperature as important in influencing the differential abundance pattern
Balke, T.; Swales, A.; Lovelock, C.E.; Herman, P.M.J.; Bouma, T.J.
2015-01-01
Mangroves are valuable coastal habitats that are globally under pressure due to climate change and coastal development. Small-scale physical disturbance by tidal inundation and wave-induced sediment dynamics has been described as the main bottlenecks to mangrove seedling establishment on exposed
Conditioning the full-waveform inversion gradient to welcome anisotropy
Alkhalifah, Tariq Ali
2015-04-23
Multiparameter full-waveform inversion (FWI) suffers from complex nonlinearity in the objective function, compounded by the eventual trade-off between the model parameters. A hierarchical approach based on frequency and arrival time data decimation to maneuver the complex nonlinearity associated with this problem usually falls short in anisotropic media. In place of data decimation, I use a model gradient filter approach to access the parts of the gradient more suitable to combat the potential nonlinearity and parameter trade-off. The filter is based on representing the gradient in the time-lag normalized domain, in which small scattering-angles of the gradient update are initially muted out. The model update hierarchical filtering strategy include applying varying degrees of filtering to the different anisotropic parameter updates, a feature not easily accessible to simple data decimation. Using FWI and reflection-based FWI, when the modeled data are obtained with the single-scattering theory, allows access to additional low model wavenumber components. Combining such access to wavenumbers with scattering-angle filters applied to the individual parameter gradients allows for multiple strategies to avoid complex FWI nonlinearity as well as the parameter trade-off.
Spectral edge: gradient-preserving spectral mapping for image fusion.
Connah, David; Drew, Mark S; Finlayson, Graham D
2015-12-01
This paper describes a novel approach to image fusion for color display. Our goal is to generate an output image whose gradient matches that of the input as closely as possible. We achieve this using a constrained contrast mapping paradigm in the gradient domain, where the structure tensor of a high-dimensional gradient representation is mapped exactly to that of a low-dimensional gradient field which is then reintegrated to form an output. Constraints on output colors are provided by an initial RGB rendering. Initially, we motivate our solution with a simple "ansatz" (educated guess) for projecting higher-D contrast onto color gradients, which we expand to a more rigorous theorem to incorporate color constraints. The solution to these constrained optimizations is closed-form, allowing for simple and hence fast and efficient algorithms. The approach can map any N-D image data to any M-D output and can be used in a variety of applications using the same basic algorithm. In this paper, we focus on the problem of mapping N-D inputs to 3D color outputs. We present results in five applications: hyperspectral remote sensing, fusion of color and near-infrared or clear-filter images, multilighting imaging, dark flash, and color visualization of magnetic resonance imaging diffusion-tensor imaging.
Lee, Jeffrey M.
1999-01-01
This study establishes a consistent set of differential equations for use in describing the steady secondary flows generated by periodic compression and expansion of an ideal gas in pulse tubes. Also considered is heat transfer between the gas and the tube wall of finite thickness. A small-amplitude series expansion solution in the inverse Strouhal number is proposed for the two-dimensional axisymmetric mass, momentum and energy equations. The anelastic approach applies when shock and acoustic energies are small compared with the energy needed to compress and expand the gas. An analytic solution to the ordered series is obtained in the strong temperature limit where the zeroth-order temperature is constant. The solution shows steady velocities increase linearly for small Valensi number and can be of order I for large Valensi number. A conversion of steady work flow to heat flow occurs whenever temperature, velocity or phase angle gradients are present. Steady enthalpy flow is reduced by heat transfer and is scaled by the Prandtl times Valensi numbers. Particle velocities from a smoke-wire experiment were compared with predictions for the basic and orifice pulse tube configurations. The theory accurately predicted the observed steady streaming.
Resource contrast in patterned peatlands increases along a climatic gradient
Eppinga, M.B.; Rietkerk, M.; Belyea, L.R.; Nilsson, M.B.; Ruiter, de P.C.; Wassen, M.J.
2010-01-01
Spatial patterning of ecosystems can be explained by several mechanisms. One approach to disentangling the influence of these mechanisms is to study a patterned ecosystem along a gradient of environmental conditions. This study focused on hummock–hollow patterning of peatlands. Previous models
Aeromagnetic gradient survey used in sandstone type uranium deposits prospecting
International Nuclear Information System (INIS)
Li Xiaolu; Chang Shushuai
2014-01-01
The principle, advantage and data processing of aeromagnetic gradient survey approach is introduced in this paper which was used in sandstone type uranium deposits prospecting to study the shallow surface faults, uranium ore-forming environment and depth of magnetic body, which proved to be a good results. (authors)
Measurement of gradient index profiles by Babinet fringe analysis.
Pandya, T P; Saxena, A K
1979-03-01
A theory for determining one-dimensional ray deflections with the help of distorted Babinet fringes has been developed. An approach for investigating two-dimensional ray deflections has been presented. Applications of the techniques for the study of gradient index glass have been described.
Computational Strain Gradient Crystal Plasticity
DEFF Research Database (Denmark)
Niordson, Christian Frithiof; Kysar, Jeffrey W.
2011-01-01
A model for strain gradient crystal visco-plasticity is formulated along the lines proposed by Fleck andWillis (2009) for isotropic plasticity. Size-effects are included in the model due to the addition of gradient terms in both the free energy as well as through a dissipation potential. A finite...... element solution method is presented, which delivers the slip-rate field and the velocity-field based on two minimum principles. Some plane deformation problems relevant for certain specific orientations of a face centered cubic crystal under plane loading conditions are studied, and effective in......-plane parameters are developed based on the crystallographic properties of the material. The problem of cyclic shear of a single crystal between rigid platens is studied as well as void growth of a cylindrical void....
Computational strain gradient crystal plasticity
DEFF Research Database (Denmark)
Niordson, Christian Frithiof; Kysar, Jeffrey W.
2014-01-01
A numerical method for viscous strain gradient crystal plasticity theory is presented, which incorporates both energetic and dissipative gradient effects. The underlying minimum principles are discussed as well as convergence properties of the proposed finite element procedure. Three problems...... of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically...... oriented face centered cubic crystals are developed in terms of the crystallographic slip parameters. The effect on geometrically necessary dislocation structures introduced by plastic deformation is investigated as a function of the ratio of void radius to plasticity length scale....
Vertebrate pressure-gradient receivers
DEFF Research Database (Denmark)
Christensen-Dalsgaard, Jakob
2011-01-01
The eardrums of all terrestrial vertebrates (tetrapods) are connected through Eustachian tubes or interaural canals. In some of the animals, these connections create pressure-gradient directionality, an enhanced directionality by interaction of sound arriving at both sides of the eardrum and stro......The eardrums of all terrestrial vertebrates (tetrapods) are connected through Eustachian tubes or interaural canals. In some of the animals, these connections create pressure-gradient directionality, an enhanced directionality by interaction of sound arriving at both sides of the eardrum....... Recent vertebrates form a continuum from perfect interaural transmission (0 dB in a certain frequency band) and pronounced eardrum directionality (30-40 dB) in the lizards, over somewhat attenuated transmission and limited directionality in birds and frogs, to the strongly attenuated interaural...
Improvements to the IAEA's electric generation expansion model
International Nuclear Information System (INIS)
Stoytchev, D.; Georgiev, S.
1997-01-01
This paper deals with the implementation of the IAEA's planning approach and software in Bulgaria. The problems encountered in the process are summarized, with emphasis on two of the limitations of the electric generation expansion model (WASP). The solutions found by Bulgarian experts to overcome these problems are also described, together with some comparative results of the tests performed. (author)
Quality of potential harmonics expansion method for dilute Bose ...
Indian Academy of Sciences (India)
Abstract. We present and examine an approximate but ab initio many-body approach, viz., potential harmonics expansion method (PHEM), which includes two-body correla- tions for dilute Bose–Einstein condensates. Comparing the total ground state energy for three trapped interacting bosons calculated in PHEM with the ...
Improvements to the IAEA`s electric generation expansion model
Energy Technology Data Exchange (ETDEWEB)
Stoytchev, D; Georgiev, S [Committee of Energy, Sofia (Bulgaria)
1997-09-01
This paper deals with the implementation of the IAEA`s planning approach and software in Bulgaria. The problems encountered in the process are summarized, with emphasis on two of the limitations of the electric generation expansion model (WASP). The solutions found by Bulgarian experts to overcome these problems are also described, together with some comparative results of the tests performed. (author).
Szegö Kernels and Asymptotic Expansions for Legendre Polynomials
Directory of Open Access Journals (Sweden)
Roberto Paoletti
2017-01-01
Full Text Available We present a geometric approach to the asymptotics of the Legendre polynomials Pk,n+1, based on the Szegö kernel of the Fermat quadric hypersurface, leading to complete asymptotic expansions holding on expanding subintervals of [-1,1].
Energy Technology Data Exchange (ETDEWEB)
Robinet, J.O. [Euro-Geomat-Consulting (France)]|[Institut National des Sciences Appliquees (INSA), 35 - Rennes (France); Plas, F. [Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA), 92 - Chatenay Malabry (France)
2005-07-01
The modelling of heat, mass transfer and the behaviour coupled thermo-hydro-mechanical in swelling clay require the development of appropriate constitutive laws as well as experimental data. This former approach, allows the quantitative validation of the theoretical models. In general modelling approaches consider dominant mechanisms, (i) Fourier law for diffusion of heat, (ii) generalized Darcy law for convection of liquid water, (iii) Flick law for diffusion of water vapour, and elastic-plastic models wit h hydric hardening and thermal damage/expansion for strain-stress behaviour. Transfer of dry air and water under thermal gradient and capillary (e.g. suction) gradient in unsaturated compacted swelling clays consider evaporation, migration and condensation. These transfers take into account the capillary effect. This effect is an evaporation of liquid water in the hot part for temperature higher than 100 C associated with a, diffusion of water vapor towards cold part then condensation, and convection of liquid water with gradient of suction in the opposite direction of the water vapour diffusion. High values of the diffusion coefficient of the vapour water are considered about 10{sup -7}m{sup 2}/s. Some thermal experiments related (i) low values of the water vapour diffusion coefficient in compacted swelling clays, 2004) and (ii) a significant drying associated with a water transfer even for temperature lower than 100 C. Other enhancement phenomena are used to explain these data and observations: the vaporization is a continuous process. At short term the mechanism of drying at short term is the thermal effect on the capillary pressure (e.g. surface tension depending of temperature); the thermal gradient is a driving force. When a temperature gradient is applied, diffusion occurs in order to reach equilibrium, e.g. to make the chemical potential (m) of each component uniform throughout. This mechanism is called thermal diffusion. This paper proposes a discussion
Exponential Expansion in Evolutionary Economics
DEFF Research Database (Denmark)
Frederiksen, Peter; Jagtfelt, Tue
2013-01-01
This article attempts to solve current problems of conceptual fragmentation within the field of evolutionary economics. One of the problems, as noted by a number of observers, is that the field suffers from an assemblage of fragmented and scattered concepts (Boschma and Martin 2010). A solution...... to this problem is proposed in the form of a model of exponential expansion. The model outlines the overall structure and function of the economy as exponential expansion. The pictographic model describes four axiomatic concepts and their exponential nature. The interactive, directional, emerging and expanding...... concepts are described in detail. Taken together it provides the rudimentary aspects of an economic system within an analytical perspective. It is argued that the main dynamic processes of the evolutionary perspective can be reduced to these four concepts. The model and concepts are evaluated in the light...
Production expansion continues to accelerate
International Nuclear Information System (INIS)
Anon.
1992-01-01
This paper reports that Saudi Arabian Oil Co. (Saudi Aramco) is continuing its accelerated Crude Oil Expansion Program initiated in 1989 that aims at achieving a 10 million bpd productive capacity by 1995. In addition to major engineering, construction and renovation work related to production expansion, Saudi Aramco drilling and workover operations have been markedly expanded. Since January 1991, rig activity has doubled. As an indication of aging of Saudi production, projects include modernizing current injection water treatment facilities, installing a new seawater injection plant on the Persian Gulf, installing dewatering facilities in a number of locations and installing a pilot gas lift project. In addition, equipment orders indicate the new discoveries south of Riyadh may also need the assistance of water injection from inception of production
Shrub expansion in SW Greenland
DEFF Research Database (Denmark)
Jørgensen, Rasmus Halfdan
Arctic regions have experienced higher temperatures in recent decades, and the warming trend is projected to continue in the coming years. Arctic ecosystems are considered to be particularly vulnerable to climate change. Expansion of shrubs has been observed widely in tundra areas across the Arctic......, and has a range of ecosystem effects where it occurs. Shrub expansion has to a large extend been attributed to increasing temperatures over the past century, while grazing and human disturbance have received less attention. Alnus viridis ssp. crispa is a common arctic species that contributes...... to increasing shrub cover. Despite this, there is only limited experimental evidence that growth of the species responds to warming. Plant populations in fragmented and isolated locations could face problems adapting to a warming climate due to limited genetic variation and restricted migration from southern...
RELIABILITY OF LENTICULAR EXPANSION COMPENSATORS
Directory of Open Access Journals (Sweden)
Gabriel BURLACU,
2011-11-01
Full Text Available Axial lenticular compensators are made to take over the longitudinal heat expansion, shock , vibration and noise, made elastic connections for piping systems. In order to have a long life for installations it is necessary that all elements, including lenticular compensators, have a good reliability. This desire can be did by technology of manufactoring and assembly of compensators, the material for lenses and by maintenance.of compensator
Detecting changes in insect herbivore communities along a pollution gradient
International Nuclear Information System (INIS)
Eatough Jones, Michele; Paine, Timothy D.
2006-01-01
The forests surrounding the urban areas of the Los Angeles basin are impacted by ozone and nitrogen pollutants arising from urban areas. We examined changes in the herbivore communities of three prominent plant species (ponderosa pine, California black oak and bracken fern) at six sites along an air pollution gradient. Insects were extracted from foliage samples collected in spring, as foliage reached full expansion. Community differences were evaluated using total herbivore abundance, richness, Shannon-Weiner diversity, and discriminant function analysis. Even without conspicuous changes in total numbers, diversity or richness of herbivores, herbivore groups showed patterns of change that followed the air pollution gradient that were apparent through discriminant function analysis. For bracken fern and oak, chewing insects were more dominant at high pollution sites. Oak herbivore communities showed the strongest effect. These changes in herbivore communities may affect nutrient cycling in forest systems. - Differences in insect herbivore communities were associated with an ambient air pollution gradient in the mixed conifer forest outside the Los Angeles area
Theory of neoclassical resistivity-gradient-driven turbulence
International Nuclear Information System (INIS)
Kwon, O.J.; Diamond, P.H.; Hahm, T.S.
1988-12-01
It is shown that rippling instabilities can tap the density gradient expansion free energy source through the density dependence of the neoclassical resistivity. Linear analyses show that the region where neoclassical rippling modes are significantly excited extends from the edge of the plasma to the region where ν/sub *e/ ≤ 1. Since these modes are non-dispersive, diamagnetic effects are negligible in comparison to the nonlinear decorrelation rate at saturation. Thus, the relevant regime is the 'strong turbulence' regime. The turbulent radial diffusivities of the temperature and the density are obtained as eigenvalues of the renormalized eigenmode equations at steady state. The density gradient acts to enhance the level of turbulence, compared to that driven by the temperature gradient alone. The saturated turbulent state is characterized by: current decoupling, the breakdown of Boltzmann relation, a radial mode scale of density fluctuations exceeding that of temperature fluctuations, implying that density diffusivity exceeds temperature diffusivity, and that density fluctuation levels exceed temperature fluctuation levels. Magnetic fluctuation levels are negligible. 29 refs., 1 fig
Detecting changes in insect herbivore communities along a pollution gradient
Energy Technology Data Exchange (ETDEWEB)
Eatough Jones, Michele [Department of Entomology, University of California Riverside, Riverside, CA 92521 (United States)]. E-mail: michele.eatough@ucr.edu; Paine, Timothy D. [Department of Entomology, University of California Riverside, Riverside, CA 92521 (United States)]. E-mail: timothy.paine@ucr.edu
2006-10-15
The forests surrounding the urban areas of the Los Angeles basin are impacted by ozone and nitrogen pollutants arising from urban areas. We examined changes in the herbivore communities of three prominent plant species (ponderosa pine, California black oak and bracken fern) at six sites along an air pollution gradient. Insects were extracted from foliage samples collected in spring, as foliage reached full expansion. Community differences were evaluated using total herbivore abundance, richness, Shannon-Weiner diversity, and discriminant function analysis. Even without conspicuous changes in total numbers, diversity or richness of herbivores, herbivore groups showed patterns of change that followed the air pollution gradient that were apparent through discriminant function analysis. For bracken fern and oak, chewing insects were more dominant at high pollution sites. Oak herbivore communities showed the strongest effect. These changes in herbivore communities may affect nutrient cycling in forest systems. - Differences in insect herbivore communities were associated with an ambient air pollution gradient in the mixed conifer forest outside the Los Angeles area.
Extended Plefka expansion for stochastic dynamics
International Nuclear Information System (INIS)
Bravi, B; Sollich, P; Opper, M
2016-01-01
We propose an extension of the Plefka expansion, which is well known for the dynamics of discrete spins, to stochastic differential equations with continuous degrees of freedom and exhibiting generic nonlinearities. The scenario is sufficiently general to allow application to e.g. biochemical networks involved in metabolism and regulation. The main feature of our approach is to constrain in the Plefka expansion not just first moments akin to magnetizations, but also second moments, specifically two-time correlations and responses for each degree of freedom. The end result is an effective equation of motion for each single degree of freedom, where couplings to other variables appear as a self-coupling to the past (i.e. memory term) and a coloured noise. This constitutes a new mean field approximation that should become exact in the thermodynamic limit of a large network, for suitably long-ranged couplings. For the analytically tractable case of linear dynamics we establish this exactness explicitly by appeal to spectral methods of random matrix theory, for Gaussian couplings with arbitrary degree of symmetry. (paper)
Extended Plefka expansion for stochastic dynamics
Bravi, B.; Sollich, P.; Opper, M.
2016-05-01
We propose an extension of the Plefka expansion, which is well known for the dynamics of discrete spins, to stochastic differential equations with continuous degrees of freedom and exhibiting generic nonlinearities. The scenario is sufficiently general to allow application to e.g. biochemical networks involved in metabolism and regulation. The main feature of our approach is to constrain in the Plefka expansion not just first moments akin to magnetizations, but also second moments, specifically two-time correlations and responses for each degree of freedom. The end result is an effective equation of motion for each single degree of freedom, where couplings to other variables appear as a self-coupling to the past (i.e. memory term) and a coloured noise. This constitutes a new mean field approximation that should become exact in the thermodynamic limit of a large network, for suitably long-ranged couplings. For the analytically tractable case of linear dynamics we establish this exactness explicitly by appeal to spectral methods of random matrix theory, for Gaussian couplings with arbitrary degree of symmetry.
Gradient computation for VTI acoustic wavefield tomography
Li, Vladimir; Wang, Hui; Tsvankin, Ilya; Diaz, Esteban; Alkhalifah, Tariq Ali
2016-01-01
-power objective functions. We also obtain the gradient expressions for the data-domain objective function, which can incorporate borehole information necessary for stable VTI velocity analysis. These gradients are compared to the ones obtained with a space
A Power Series Expansion and Its Applications
Chen, Hongwei
2006-01-01
Using the power series solution of a differential equation and the computation of a parametric integral, two elementary proofs are given for the power series expansion of (arcsin x)[squared], as well as some applications of this expansion.
Instabilities in power law gradient hardening materials
DEFF Research Database (Denmark)
Niordson, Christian Frithiof; Tvergaard, Viggo
2005-01-01
Tension and compression instabilities are investigated for specimens with dimensions in the micron range. A finite strain generalization of a higher order strain gradient plasticity theory is implemented in a finite element scheme capable of modeling power law hardening materials. Effects...... of gradient hardening are found to delay the onset of localization under plane strain tension, and significantly reduce strain gradients in the localized zone. For plane strain compression gradient hardening is found to increase the load-carrying capacity significantly....
Energy Technology Data Exchange (ETDEWEB)
Beghi, Alessandro [Dipartimento di Ingegneria dell' Informazione, Universita di Padova, via Gradenigo 6/B, I-35131 Padova (Italy); Cecchinato, Luca [Dipartimento di Fisica Tecnica, Universita di Padova, via Venezia 1, I-35131 Padova (Italy)
2009-11-15
In this paper some results of a research project aimed at deriving high-performance, adaptive control algorithms for electronic expansion valves (EEVs) to be used in finned-coiled, dry-expansion evaporators for refrigeration systems are reported. With the aim of developing a software environment that can be used for controller design, rapid prototyping, optimization of data collection and test design, virtual prototyping approach to design was adopted. The development of a distributed dynamic simulation model of the evaporator coupled with an electronic expansion valve, and its use for deriving autotuning PID control algorithms is described. Experimental results confirm the effectiveness of this kind of approach. (author)
Thermal Expansion Behavior of Hot-Pressed Engineered Matrices
Raj, S. V.
2016-01-01
Advanced engineered matrix composites (EMCs) require that the coefficient of thermal expansion (CTE) of the engineered matrix (EM) matches those of the fiber reinforcements as closely as possible in order to reduce thermal compatibility strains during heating and cooling of the composites. The present paper proposes a general concept for designing suitable matrices for long fiber reinforced composites using a rule of mixtures (ROM) approach to minimize the global differences in the thermal expansion mismatches between the fibers and the engineered matrix. Proof-of-concept studies were conducted to demonstrate the validity of the concept.
Multi-year expansion planning of large transmission networks
Energy Technology Data Exchange (ETDEWEB)
Binato, S; Oliveira, G C [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)
1994-12-31
This paper describes a model for multi-year transmission network expansion to be used in long-term system planning. The network is represented by a linearized (DC) power flow and, for each year, operation costs are evaluated by a linear programming (LP) based algorithm that provides sensitivity indices for circuit reinforcements. A Backward/Forward approaches is proposed to devise an expansion plan over the study period. A case study with the southeastern Brazilian system is presented and discussed. (author) 18 refs., 5 figs., 1 tab.
Expansion characteristics of coronary stents in focal stenoses
Directory of Open Access Journals (Sweden)
Schmidt Wolfram
2017-09-01
Full Text Available The presented experimental in vitro approach was designed to assess the expansion behavior of stent systems in a resistant focal stenosis model with respect to a potential dog-boning effect. Five different stent systems (nominal diameter 3.0 mm were investigated. The focal stenosis was simulated by a stainless steel tube (ID ≤ 1.20 mm. Stent expansion was performed using a proprietary test device consisting of a test chamber with 37 °C water, 2-axis laser scanner and a pressure controller.
Convergence of the multiple scattering expansion in XAFS and XANES
International Nuclear Information System (INIS)
Rehr, J.J.
1992-01-01
The convergence of the multiple-scattering expansion of XAFS and XANES by explicit path-bypath calculations. The approach is based on the fast scattering matrix formalism of Rehr and Albers, together with an automated path finder and filters that exclude negligible paths. High-order scattering terms are found to be essential, especially at low energies. Several factors including the magnitude of curved wave scattering amplitudes, inelastic losses and multiple-scattering Debye-Waller factors control convergence of the expansion. The convergence is illustrated explicitly for the case of diatomic molecules
An education gradient in health, a health gradient in education, or a confounded gradient in both?
Lynch, Jamie L; von Hippel, Paul T
2016-04-01
There is a positive gradient associating educational attainment with health, yet the explanation for this gradient is not clear. Does higher education improve health (causation)? Do the healthy become highly educated (selection)? Or do good health and high educational attainment both result from advantages established early in the life course (confounding)? This study evaluates these competing explanations by tracking changes in educational attainment and Self-rated Health (SRH) from age 15 to age 31 in the National Longitudinal Study of Youth, 1997 cohort. Ordinal logistic regression confirms that high-SRH adolescents are more likely to become highly educated. This is partly because adolescent SRH is associated with early advantages including adolescents' academic performance, college plans, and family background (confounding); however, net of these confounders adolescent SRH still predicts adult educational attainment (selection). Fixed-effects longitudinal regression shows that educational attainment has little causal effect on SRH at age 31. Completion of a high school diploma or associate's degree has no effect on SRH, while completion of a bachelor's or graduate degree have effects that, though significant, are quite small (less than 0.1 points on a 5-point scale). While it is possible that educational attainment would have greater effect on health at older ages, at age 31 what we see is a health gradient in education, shaped primarily by selection and confounding rather than by a causal effect of education on health. Copyright © 2016 Elsevier Ltd. All rights reserved.
Strain gradient effects in surface roughening
DEFF Research Database (Denmark)
Borg, Ulrik; Fleck, N.A.
2007-01-01
evidence for strain gradient effects. Numerical analyses of a bicrystal undergoing in-plane tensile deformation are also studied using a strain gradient crystal plasticity theory and also by using a strain gradient plasticity theory for an isotropic solid. Both theories include an internal material length...
Gradient remediability in linear distributed parabolic systems ...
African Journals Online (AJOL)
The aim of this paper is the introduction of a new concept that concerned the analysis of a large class of distributed parabolic systems. It is the general concept of gradient remediability. More precisely, we study with respect to the gradient observation, the existence of an input operator (gradient efficient actuators) ensuring ...
Accelerated gradient methods for constrained image deblurring
International Nuclear Information System (INIS)
Bonettini, S; Zanella, R; Zanni, L; Bertero, M
2008-01-01
In this paper we propose a special gradient projection method for the image deblurring problem, in the framework of the maximum likelihood approach. We present the method in a very general form and we give convergence results under standard assumptions. Then we consider the deblurring problem and the generality of the proposed algorithm allows us to add a energy conservation constraint to the maximum likelihood problem. In order to improve the convergence rate, we devise appropriate scaling strategies and steplength updating rules, especially designed for this application. The effectiveness of the method is evaluated by means of a computational study on astronomical images corrupted by Poisson noise. Comparisons with standard methods for image restoration, such as the expectation maximization algorithm, are also reported.
Eigen-Gradients for Traffic Sign Recognition
Directory of Open Access Journals (Sweden)
Sheila Esmeralda Gonzalez-Reyna
2013-01-01
Full Text Available Traffic sign detection and recognition systems include a variety of applications like autonomous driving, road sign inventory, and driver support systems. Machine learning algorithms provide useful tools for traffic sign identification tasks. However, classification algorithms depend on the preprocessing stage to obtain high accuracy rates. This paper proposes a road sign characterization method based on oriented gradient maps and the Karhunen-Loeve transform in order to improve classification performance. Dimensionality reduction may be important for portable applications on resource constrained devices like FPGAs; therefore, our approach focuses on achieving a good classification accuracy by using a reduced amount of attributes compared to some state-of-the-art methods. The proposed method was tested using German Traffic Sign Recognition Benchmark, reaching a dimensionality reduction of 99.3% and a classification accuracy of 95.9% with a Multi-Layer Perceptron.
Magnon dark modes and gradient memory.
Zhang, Xufeng; Zou, Chang-Ling; Zhu, Na; Marquardt, Florian; Jiang, Liang; Tang, Hong X
2015-11-16
Extensive efforts have been expended in developing hybrid quantum systems to overcome the short coherence time of superconducting circuits by introducing the naturally long-lived spin degree of freedom. Among all the possible materials, single-crystal yttrium iron garnet has shown up recently as a promising candidate for hybrid systems, and various highly coherent interactions, including strong and even ultrastrong coupling, have been demonstrated. One distinct advantage in these systems is that spins form well-defined magnon modes, which allows flexible and precise tuning. Here we demonstrate that by dissipation engineering, a non-Markovian interaction dynamics between the magnon and the microwave cavity photon can be achieved. Such a process enables us to build a magnon gradient memory to store information in the magnon dark modes, which decouple from the microwave cavity and thus preserve a long lifetime. Our findings provide a promising approach for developing long-lifetime, multimode quantum memories.
Reingruber, E.; Bedani, F.; Buchberger, W.; Schoenmakers, P.
2010-01-01
Gradient-elution liquid chromatography (GELC) is a powerful tool for the characterization of synthetic polymers. However, gradient-elution chromatograms often suffer from breakthrough phenomena. Breakthrough can be averted by using a sample solvent as weak as the mobile phase. However, this approach
Iinuma, Takeshi
2018-04-01
-oki earthquakes and the recovery of the interplate coupling around the rupture area of the 1994 M7.6 Sanriku-Haruka-oki earthquake. The results also indicate the semi-periodic occurrence of slow slip events and the expansion of the area of slow slip events before the 2011 Tohoku-oki earthquake (M9.0) approaching the hypocentre of the Tohoku-oki earthquake.
Separable expansion for realistic multichannel scattering problems
International Nuclear Information System (INIS)
Canton, L.; Cattapan, G.; Pisent, G.
1987-01-01
A new approach to the multichannel scattering problem with realistic local or nonlocal interactions is developed. By employing the negative-energy solutions of uncoupled Sturmian eigenvalue problems referring to simple auxiliary potentials, the coupling interactions appearing to the original multichannel problem are approximated by finite-rank potentials. By resorting to integral-equation tecniques the coupled-channel equations are then reduced to linear algebraic equations which can be straightforwardly solved. Compact algebraic expressions for the relevant scattering matrix elements are thus obtained. The convergence of the method is tasted in the single-channel case with realistic optical potentials. Excellent agreement is obtained with a few terms in the separable expansion for both real and absorptive interactions
Entropy Generation in Steady Laminar Boundary Layers with Pressure Gradients
Directory of Open Access Journals (Sweden)
Donald M. McEligot
2014-07-01
Full Text Available In an earlier paper in Entropy [1] we hypothesized that the entropy generation rate is the driving force for boundary layer transition from laminar to turbulent flow. Subsequently, with our colleagues we have examined the prediction of entropy generation during such transitions [2,3]. We found that reasonable predictions for engineering purposes could be obtained for flows with negligible streamwise pressure gradients by adapting the linear combination model of Emmons [4]. A question then arises—will the Emmons approach be useful for boundary layer transition with significant streamwise pressure gradients as by Nolan and Zaki [5]. In our implementation the intermittency is calculated by comparison to skin friction correlations for laminar and turbulent boundary layers and is then applied with comparable correlations for the energy dissipation coefficient (i.e., non-dimensional integral entropy generation rate. In the case of negligible pressure gradients the Blasius theory provides the necessary laminar correlations.
Fourier domain preconditioned conjugate gradient algorithm for atmospheric tomography.
Yang, Qiang; Vogel, Curtis R; Ellerbroek, Brent L
2006-07-20
By 'atmospheric tomography' we mean the estimation of a layered atmospheric turbulence profile from measurements of the pupil-plane phase (or phase gradients) corresponding to several different guide star directions. We introduce what we believe to be a new Fourier domain preconditioned conjugate gradient (FD-PCG) algorithm for atmospheric tomography, and we compare its performance against an existing multigrid preconditioned conjugate gradient (MG-PCG) approach. Numerical results indicate that on conventional serial computers, FD-PCG is as accurate and robust as MG-PCG, but it is from one to two orders of magnitude faster for atmospheric tomography on 30 m class telescopes. Simulations are carried out for both natural guide stars and for a combination of finite-altitude laser guide stars and natural guide stars to resolve tip-tilt uncertainty.
Fire Regime Characteristics along Environmental Gradients in Spain
Directory of Open Access Journals (Sweden)
María Vanesa Moreno
2016-11-01
Full Text Available Concern regarding global change has increased the need to understand the relationship between fire regime characteristics and the environment. Pyrogeographical theory suggests that fire regimes are constrained by climate, vegetation and fire ignition processes, but it is not obvious how fire regime characteristics are related to those factors. We used a three-matrix approach with a multivariate statistical methodology that combined an ordination method and fourth-corner analysis for hypothesis testing to investigate the relationship between fire regime characteristics and environmental gradients across Spain. Our results suggest that fire regime characteristics (i.e., density and seasonality of fire activity are constrained primarily by direct gradients based on climate, population, and resource gradients based on forest potential productivity. Our results can be used to establish a predictive model for how fire regimes emerge in order to support fire management, particularly as global environmental changes impact fire regime characteristics.
Sumarga, Elham; Hein, Lars
2016-01-01
Deforestation and oil palm expansion in Central Kalimantan province are among the highest in Indonesia. This study examines the physical and monetary impacts of oil palm expansion in Central Kalimantan up to 2025 under three policy scenarios. Our modelling approach combines a spatial logistic
Bosonization of fermion operators as linked-cluster expansions
International Nuclear Information System (INIS)
Kishimoto, T.; Tamura, T.
1983-01-01
In order for a boson-expansion theory to be useful for practical purposes, it must satisfy at least two requirements: It must be in the form of a linked-cluster expansion, and the pure (ideal) boson states must be usable as basis states. Previously, we constructed such a boson theory and used it successfully for many realistic calculations. This construction, however, lacked mathematical rigor. In the present paper, we develop an entirely new approach, which results in the same boson expansions obtained earlier, but now in a mathematically rigorous fashion. The achievement of the new formalism goes beyond this. Its framework is much more general and flexible than was that of the earlier formalism, and it allows us to extend the calculations beyond what had been done in the past
Cluster expansion for ground states of local Hamiltonians
Directory of Open Access Journals (Sweden)
Alvise Bastianello
2016-08-01
Full Text Available A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.
Atom-partitioned multipole expansions for electrostatic potential boundary conditions
Energy Technology Data Exchange (ETDEWEB)
Lee, M., E-mail: michael.s.lee131.civ@mail.mil [Simulation Sciences Branch, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Leiter, K. [Simulation Sciences Branch, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Eisner, C. [Secure Mission Solutions, a Parsons Company (United States); Simulation Sciences Branch, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Knap, J. [Simulation Sciences Branch, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States)
2017-01-01
Applications such as grid-based real-space density functional theory (DFT) use the Poisson equation to compute electrostatics. However, the expected long tail of the electrostatic potential requires either the use of a large and costly outer domain or Dirichlet boundary conditions estimated via multipole expansion. We find that the oft-used single-center spherical multipole expansion is only appropriate for isotropic mesh domains such as spheres and cubes. In this work, we introduce a method suitable for high aspect ratio meshes whereby the charge density is partitioned into atomic domains and multipoles are computed for each domain. While this approach is moderately more expensive than a single-center expansion, it is numerically stable and still a small fraction of the overall cost of a DFT calculation. The net result is that when high aspect ratio systems are being studied, form-fitted meshes can now be used in lieu of cubic meshes to gain computational speedup.
Expansion of protein domain repeats.
Directory of Open Access Journals (Sweden)
Asa K Björklund
2006-08-01
Full Text Available Many proteins, especially in eukaryotes, contain tandem repeats of several domains from the same family. These repeats have a variety of binding properties and are involved in protein-protein interactions as well as binding to other ligands such as DNA and RNA. The rapid expansion of protein domain repeats is assumed to have evolved through internal tandem duplications. However, the exact mechanisms behind these tandem duplications are not well-understood. Here, we have studied the evolution, function, protein structure, gene structure, and phylogenetic distribution of domain repeats. For this purpose we have assigned Pfam-A domain families to 24 proteomes with more sensitive domain assignments in the repeat regions. These assignments confirmed previous findings that eukaryotes, and in particular vertebrates, contain a much higher fraction of proteins with repeats compared with prokaryotes. The internal sequence similarity in each protein revealed that the domain repeats are often expanded through duplications of several domains at a time, while the duplication of one domain is less common. Many of the repeats appear to have been duplicated in the middle of the repeat region. This is in strong contrast to the evolution of other proteins that mainly works through additions of single domains at either terminus. Further, we found that some domain families show distinct duplication patterns, e.g., nebulin domains have mainly been expanded with a unit of seven domains at a time, while duplications of other domain families involve varying numbers of domains. Finally, no common mechanism for the expansion of all repeats could be detected. We found that the duplication patterns show no dependence on the size of the domains. Further, repeat expansion in some families can possibly be explained by shuffling of exons. However, exon shuffling could not have created all repeats.
Combinatorial MAPLE gradient thin film assemblies signalling to human osteoblasts
International Nuclear Information System (INIS)
Axente, Emanuel; Sima, Felix; Elena Sima, Livia; Serban, Natalia; Ristoscu, Carmen; Mihailescu, Ion N; Erginer, Merve; Toksoy Oner, Ebru; Eroglu, Mehmet S; Petrescu, Stefana M
2014-01-01
There is increased interest in smart bioactive materials to control tissue regeneration for the engineering of cell instructive scaffolds. We introduced combinatorial matrix-assisted pulsed laser evaporation (C-MAPLE) as a new method for the fabrication of organic thin films with a compositional gradient. Synchronized C-MAPLE of levan and oxidized levan was employed to assemble a two-compound biopolymer film structure. The gradient of the film composition was validated by fluorescence microscopy. In this study, we investigated the cell response induced by the compositional gradient using imaging of early osteoblast attachment and analysis of signalling phosphoprotein expression. Cells attached along the gradient in direct proportion to oxidized levan concentration. During this process distinct areas of the binary gradient have been shown to modulate the osteoblasts’ extracellular signal-regulated kinase signalling with different propensity. The proposed fabrication method results in the preparation of a new bioactive material, which could control the cell signalling response. This approach can be extended to screen new bioactive interfaces for tissue regeneration. (papers)
Regularized image denoising based on spectral gradient optimization
International Nuclear Information System (INIS)
Lukić, Tibor; Lindblad, Joakim; Sladoje, Nataša
2011-01-01
Image restoration methods, such as denoising, deblurring, inpainting, etc, are often based on the minimization of an appropriately defined energy function. We consider energy functions for image denoising which combine a quadratic data-fidelity term and a regularization term, where the properties of the latter are determined by a used potential function. Many potential functions are suggested for different purposes in the literature. We compare the denoising performance achieved by ten different potential functions. Several methods for efficient minimization of regularized energy functions exist. Most are only applicable to particular choices of potential functions, however. To enable a comparison of all the observed potential functions, we propose to minimize the objective function using a spectral gradient approach; spectral gradient methods put very weak restrictions on the used potential function. We present and evaluate the performance of one spectral conjugate gradient and one cyclic spectral gradient algorithm, and conclude from experiments that both are well suited for the task. We compare the performance with three total variation-based state-of-the-art methods for image denoising. From the empirical evaluation, we conclude that denoising using the Huber potential (for images degraded by higher levels of noise; signal-to-noise ratio below 10 dB) and the Geman and McClure potential (for less noisy images), in combination with the spectral conjugate gradient minimization algorithm, shows the overall best performance
Temperature Gradient in Hall Thrusters
International Nuclear Information System (INIS)
Staack, D.; Raitses, Y.; Fisch, N.J.
2003-01-01
Plasma potentials and electron temperatures were deduced from emissive and cold floating probe measurements in a 2 kW Hall thruster, operated in the discharge voltage range of 200-400 V. An almost linear dependence of the electron temperature on the plasma potential was observed in the acceleration region of the thruster both inside and outside the thruster. This result calls into question whether secondary electron emission from the ceramic channel walls plays a significant role in electron energy balance. The proportionality factor between the axial electron temperature gradient and the electric field is significantly smaller than might be expected by models employing Ohmic heating of electrons
Generalized Gradient Approximation Made Simple
International Nuclear Information System (INIS)
Perdew, J.P.; Burke, K.; Ernzerhof, M.
1996-01-01
Generalized gradient approximations (GGA close-quote s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. copyright 1996 The American Physical Society
Forest gradient response in Sierran landscapes: the physical template
Urban, Dean L.; Miller, Carol; Halpin, Patrick N.; Stephenson, Nathan L.
2000-01-01
Vegetation pattern on landscapes is the manifestation of physical gradients, biotic response to these gradients, and disturbances. Here we focus on the physical template as it governs the distribution of mixed-conifer forests in California's Sierra Nevada. We extended a forest simulation model to examine montane environmental gradients, emphasizing factors affecting the water balance in these summer-dry landscapes. The model simulates the soil moisture regime in terms of the interaction of water supply and demand: supply depends on precipitation and water storage, while evapotranspirational demand varies with solar radiation and temperature. The forest cover itself can affect the water balance via canopy interception and evapotranspiration. We simulated Sierran forests as slope facets, defined as gridded stands of homogeneous topographic exposure, and verified simulated gradient response against sample quadrats distributed across Sequoia National Park. We then performed a modified sensitivity analysis of abiotic factors governing the physical gradient. Importantly, the model's sensitivity to temperature, precipitation, and soil depth varies considerably over the physical template, particularly relative to elevation. The physical drivers of the water balance have characteristic spatial scales that differ by orders of magnitude. Across large spatial extents, temperature and precipitation as defined by elevation primarily govern the location of the mixed conifer zone. If the analysis is constrained to elevations within the mixed-conifer zone, local topography comes into play as it influences drainage. Soil depth varies considerably at all measured scales, and is especially dominant at fine (within-stand) scales. Physical site variables can influence soil moisture deficit either by affecting water supply or water demand; these effects have qualitatively different implications for forest response. These results have clear implications about purely inferential approaches
Roy, A.; Inamdar, A. B.
2017-12-01
near preceding years. The agricultural lands are densely replenished around the dams and natural water bodies which serve as the water supply stations for the irrigation purposes. Hence, the study shows there are alteration in LULC, agricultural practices and surface-water availability and expansion of barren-lands.
Dai-Kou type conjugate gradient methods with a line search only using gradient.
Huang, Yuanyuan; Liu, Changhe
2017-01-01
In this paper, the Dai-Kou type conjugate gradient methods are developed to solve the optimality condition of an unconstrained optimization, they only utilize gradient information and have broader application scope. Under suitable conditions, the developed methods are globally convergent. Numerical tests and comparisons with the PRP+ conjugate gradient method only using gradient show that the methods are efficient.
Nuclear fuel reprocessing expansion strategies
International Nuclear Information System (INIS)
Gallagher, J.M.
1975-01-01
A description is given of an effort to apply the techniques of operations research and energy system modeling to the problem of determination of cost-effective strategies for capacity expansion of the domestic nuclear fuel reprocessing industry for the 1975 to 2000 time period. The research also determines cost disadvantages associated with alternative strategies that may be attractive for political, social, or ecological reasons. The sensitivity of results to changes in cost assumptions was investigated at some length. Reactor fuel types covered by the analysis include the Light Water Reactor (LWR), High-Temperature Gas-Cooled Reactor (HTGR), and the Fast Breeder Reactor (FBR)
Thermal expansion of LATGS crystals
International Nuclear Information System (INIS)
Kassem, M.E.; Kandil, S.H.; Hamed, A.E.; Stankowska, J.
1989-04-01
The thermal expansion of triglycine sulphate crystals doped with L-α alanine (LATGS) has been studied around the phase transition temperature (30-60 deg. C) using thermomechanical analysis TMA. With increasing the content of admixture, the transition temperature (T c ) was shifted towards higher values, while the relative changes in the dimension of the crystals (ΔL/L 0 ) of the studied directions varied both in the para- and ferroelectric phases. The transition width in the case of doped crystals was found to be broad, and this broadening increases with increasing the content of L-α alanine. (author). 12 refs, 3 figs
Contribution of thermal expansion and
Directory of Open Access Journals (Sweden)
O.I.Pursky
2007-01-01
Full Text Available A theoretical model is developed to describe the experimental results obtained for the isobaric thermal conductivity of rare gas solids (RGS. The isobaric thermal conductivity of RGS has been analysed within Debye approximation with regard to the effect of thermal expansion. The suggested model takes into consideration the fact that thermal conductivity is determined by U-processes while above the phonon mobility edge it is determined by "diffusive" modes migrating randomly from site to site. The mobility edge ω0 is determined from the condition that the phonon mean-free path restricted by the U-processes cannot be smaller than half of the phonon wavelength.
Shang, Shang; Bai, Jing; Song, Xiaolei; Wang, Hongkai; Lau, Jaclyn
2007-01-01
Conjugate gradient method is verified to be efficient for nonlinear optimization problems of large-dimension data. In this paper, a penalized linear and nonlinear combined conjugate gradient method for the reconstruction of fluorescence molecular tomography (FMT) is presented. The algorithm combines the linear conjugate gradient method and the nonlinear conjugate gradient method together based on a restart strategy, in order to take advantage of the two kinds of conjugate gradient methods and compensate for the disadvantages. A quadratic penalty method is adopted to gain a nonnegative constraint and reduce the illposedness of the problem. Simulation studies show that the presented algorithm is accurate, stable, and fast. It has a better performance than the conventional conjugate gradient-based reconstruction algorithms. It offers an effective approach to reconstruct fluorochrome information for FMT.
Thermal expansion of two-dimensional itinerant nearly ferromagnetic metal
International Nuclear Information System (INIS)
Konno, R; Hatayama, N; Takahashi, Y; Nakano, H
2009-01-01
Thermal expansion of two-dimensional itinerant nearly ferromagnetic metal is investigated according to the recent theoretical development of magneto-volume effect for the three-dimensional weak ferromagnets. We particularly focus on the T 2 -linear thermal expansion of magnetic origin at low temperatures, so far disregarded by conventional theories. As the effect of thermal spin fluctuations we have found that the T-linear thermal expansion coefficient shows strong enhancement by assuming the double Lorentzian form of the non-interacting dynamical susceptibility justified in the small wave-number and low frequency region. It grows faster in proportional to y -1/2 as we approach the magnetic instability point than two-dimensional nearly antiferromagnetic metals with ln(1/y s ) dependence, where y and y s are the inverses of the reduced uniform and staggered magnetic susceptibilities, respectively. Our result is consistent with the Grueneisen's relation between the thermal expansion coefficient and the specific heat at low temperatures. In 2-dimensional electron gas we find that the thermal expansion coefficient is divergent with a finite y when the higher order term of non-interacting dynamical susceptibility is taken into account.
Advanced methodology for generation expansion planning including interconnected systems
Energy Technology Data Exchange (ETDEWEB)
Zhao, M; Yokoyama, R; Yasuda, K [Tokyo Metropolitan Univ. (Japan); Sasaki, H [Hiroshima Univ. (Japan); Ogimoto, K [Electric Power Development Co. Ltd., Tokyo (Japan)
1994-12-31
This paper reviews advanced methodology for generation expansion planning including interconnected systems developed in Japan, putting focus on flexibility and efficiency in a practical application. First, criteria for evaluating flexibility of generation planning considering uncertainties are introduced. Secondly, the flexible generation mix problem is formulated as a multi-objective optimization with more than two objective functions. The multi-objective optimization problem is then transformed into a single objective problem by using the weighting method, to obtain the Pareto optimal solution, and solved by a dynamics programming technique. Thirdly, a new approach for electric generation expansion planning of interconnected systems is presented, based on the Benders Decomposition technique. That is, large scale generation problem constituted by the general economic load dispatch problem, and several sub problems which are composed of smaller scale isolated system generation expansion plans. Finally, the generation expansion plan solved by an artificial neural network is presented. In conclusion, the advantages and disadvantages of this method from the viewpoint of flexibility and applicability to practical generation expansion planning are presented. (author) 29 refs., 10 figs., 4 tabs.
A new separable expansion for the two-body problem
International Nuclear Information System (INIS)
Haberzettl, H.
1988-07-01
We derive a new separable expansion of the two-body T matrix which represents the T matrix as a series of diagonal separable terms. The representation is exact half-on-shell at all energies even when truncated to one single term; moreover, the truncated expansion satisfies the full off-shell unitarity relation. The approach does not take recourse to some complete set of functions but rather uses properties of the Lippmann-Schwinger equation itself to arrive at the expansion. It is based on the W-matrix representation of the two-body T matrix introduced by Bartnik, Haberzettl, and Sandhas. That representation provides a splitting of the T matrix in one single separable term which contains all bound state poles and scatttering cuts and in a nonsingular, real remainder which vanishes half-on-shell. The method presented here yields a separable expansion of this remainder in which all its properties are preserved term by term. Any given n-term approximation can easily be refined to an (n+1)-term expansion by simply adding a new term. At each stage the amount of additional numerical work is constant. The method is applicable to any kind of short range potential, local, nonlocal or energy dependent. (orig.)
The benefits of transmission expansions in the competitive electricity markets
International Nuclear Information System (INIS)
Bresesti, Paola; Calisti, Roberto; Cazzol, Maria Vittoria; Gatti, Antonio; Vaiani, Andrea; Vailati, Riccardo; Provenzano, Dario
2009-01-01
The paper presents an innovative method for assessing simultaneously technical and economic benefits of transmission expansions. This method takes into account the new needs of the transmission planning process for competitive electricity markets, in which benefits of major transmission expansions include: (a) improved reliability, (b) increased availability of efficient supply and (c) increased competition among suppliers. The fundamental elements of the REliability and MARKet (REMARK) tool, which we implemented based on the aforementioned method, are: a yearly probabilistic simulation of power system operation; use of the non-sequential Monte Carlo method to pick the operational status of the network elements; full network representation; adoption of the simplified direct current model; quantitative assessment of the reliability benefits through the expected energy not supplied index; simulation of the strategic behaviour of suppliers based on a simplified model that correlates the price-cost mark-up to structural market variables (residual supply index and demand); a quantitative assessment of ''economic'' benefits through the calculation of the social welfare index. A test case application of the tool on the IEEE 24-bus reliability test system shows that the method can assess benefits of transmission expansions, in addition to the overall social perspective, for each market zone as well as separately for consumers, producers and transmission system operators. The results emphasize that the effect of transmission expansions in mitigating market power may be significant and that a simple and traditional cost-based approach may lead to a wrong evaluation of benefits given by transmission expansions. (author)
An analytical model for the assessment of airline expansion strategies
Directory of Open Access Journals (Sweden)
Mauricio Emboaba Moreira
2014-01-01
Full Text Available Purpose: The purpose of this article is to develop an analytical model to assess airline expansion strategies by combining generic business strategy models with airline business models. Methodology and approach: A number of airline business models are examined, as are Porter’s (1983 industry five forces that drive competition, complemented by Nalebuff/ Brandenburger’s (1996 sixth force, and the basic elements of the general environment in which the expansion process takes place. A system of points and weights is developed to create a score among the 904,736 possible combinations considered. The model’s outputs are generic expansion strategies with quantitative assessments for each specific combination of elements inputted. Originality and value: The analytical model developed is original because it combines for the first time and explicitly elements of the general environment, industry environment, airline business models and the generic expansion strategy types. Besides it creates a system of scores that may be used to drive the decision process toward the choice of a specific strategic expansion path. Research implications: The analytical model may be adapted to other industries apart from the airline industry by substituting the element “airline business model” by other industries corresponding elements related to the different specific business models.
Ternary gradient metal-organic frameworks.
Liu, Chong; Rosi, Nathaniel L
2017-09-08
Gradient MOFs contain directional gradients of either structure or functionality. We have successfully prepared two ternary gradient MOFs based on bMOF-100 analogues, namely bMOF-100/102/106 and bMOF-110/100/102, via cascade ligand exchange reactions. The cubic unit cell parameter discrepancy within an individual ternary gradient MOF crystal is as large as ∼1 nm, demonstrating the impressive compatibility and flexibility of the component MOF materials. Because of the presence of a continuum of unit cells, the pore diameters within individual crystals also change in a gradient fashion from ∼2.5 nm to ∼3.0 nm for bMOF-100/102/106, and from ∼2.2 nm to ∼2.7 nm for bMOF-110/100/102, indicating significant porosity gradients. Like previously reported binary gradient MOFs, the composition of the ternary gradient MOFs can be easily controlled by adjusting the reaction conditions. Finally, X-ray diffraction and microspectrophotometry were used to analyse fractured gradient MOF crystals by comparing unit cell parameters and absorbance spectra at different locations, thus revealing the profile of heterogeneity (i.e. gradient distribution of properties) and further confirming the formation of ternary gradient MOFs.
Strain gradient effects on cyclic plasticity
DEFF Research Database (Denmark)
Niordson, Christian Frithiof; Legarth, Brian Nyvang
2010-01-01
Size effects on the cyclic shear response are studied numerically using a recent higher order strain gradient visco-plasticity theory accounting for both dissipative and energetic gradient hardening. Numerical investigations of the response under cyclic pure shear and shear of a finite slab between...... rigid platens have been carried out, using the finite element method. It is shown for elastic–perfectly plastic solids how dissipative gradient effects lead to increased yield strength, whereas energetic gradient contributions lead to increased hardening as well as a Bauschinger effect. For linearly...... hardening materials it is quantified how dissipative and energetic gradient effects promote hardening above that of conventional predictions. Usually, increased hardening is attributed to energetic gradient effects, but here it is found that also dissipative gradient effects lead to additional hardening...
Achieving dynamic behaviour and thermal expansion in the organic solid state via co-crystallization.
Hutchins, Kristin M; Groeneman, Ryan H; Reinheimer, Eric W; Swenson, Dale C; MacGillivray, Leonard R
2015-08-01
Thermal expansion involves a response of a material to an external stimulus that typically involves an increase in a crystallographic axis (positive thermal expansion (PTE)), although shrinking with applied heat (negative thermal expansion (NTE)) is known in rarer cases. Here, we demonstrate a means to achieve dynamic molecular motion and thermal expansions in organic solids via co-crystallizations. One co-crystal component is known to exhibit dynamic behaviour in the solid state while the second, when varied systematically, affords co-crystals with linear thermal expansion coefficients that range from colossal to nearly zero. Two co-crystals exhibit rare NTE. We expect the approach to guide the design of molecular solids that enable predesigned motion related to thermal expansion processes.
High gradient RF breakdown study
International Nuclear Information System (INIS)
Laurent, L.; Luhmann, N.C. Jr.; Scheitrum, G.; Hanna, S.; Pearson, C.; Phillips, R.
1998-01-01
Stanford Linear Accelerator Center and UC Davis have been investigating high gradient RF breakdown and its effects on pulse shortening in high energy microwave devices. RF breakdown is a critical issue in the development of high power microwave sources and next generation linear accelerators since it limits the output power of microwave sources and the accelerating gradient of linacs. The motivation of this research is to find methods to increase the breakdown threshold level in X-band structures by reducing dark current. Emphasis is focused on improved materials, surface finish, and cleanliness. The test platform for this research is a traveling wave resonant ring. A 30 MW klystron is employed to provide up to 300 MW of traveling wave power in the ring to trigger breakdown in the cavity. Five TM 01 cavities have previously been tested, each with a different combination of surface polish and/or coating. The onset of breakdown was extended up to 250 MV/m with a TiN surface finish, as compared to 210 MV/m for uncoated OFE copper. Although the TiN coating was helpful in depressing the field emission, the lowest dark current was obtained with a 1 microinch surface finish, single-point diamond-turned cavity
NIF optics phase gradient specfication
International Nuclear Information System (INIS)
Williams, W.; Auerbach, J.; Hunt, J.; Lawson, L.; Manes, K.; Orth, C.; Sacks, R.; Trenholme, J.; Wegner, P.
1997-01-01
A root-mean-square (rms) phase gradient specification seems to allow a good connection between the NIP optics quality and focal spot requirements. Measurements on Beamlet optics individually, and as a chain, indicate they meet the assumptions necessary to use this specification, and that they have a typical rms phase gradient of ∼80 angstrom/cm. This may be sufficient for NIP to meet the proposed Stockpile Stewardship Management Program (SSMP) requirements of 80% of a high- power beam within a 200-250 micron diameter spot. Uncertainties include, especially, the scale length of the optics phase noise, the ability of the adaptive optic to correct against pump-induced distortions and optics noise, and the possibility of finding mitigation techniques against whole-beam self-focusing (e.g. a pre- correction optic). Further work is needed in these areas to better determine the NIF specifications. This memo is a written summary of a presentation on this topic given by W. Williams 24 April 1997 to NIP and LS ampersand T personnel
High thermal expansion, sealing glass
Brow, R.K.; Kovacic, L.
1993-11-16
A glass composition is described for hermetically sealing to high thermal expansion materials such as aluminum alloys, stainless steels, copper, and copper/beryllium alloys, which includes between about 10 and about 25 mole percent Na[sub 2]O, between about 10 and about 25 mole percent K[sub 2]O, between about 5 and about 15 mole percent Al[sub 2]O[sub 3], between about 35 and about 50 mole percent P[sub 2]O[sub 5] and between about 5 and about 15 mole percent of one of PbO, BaO, and mixtures thereof. The composition, which may also include between 0 and about 5 mole percent Fe[sub 2]O[sub 3] and between 0 and about 10 mole percent B[sub 2]O[sub 3], has a thermal expansion coefficient in a range of between about 160 and 210[times]10[sup [minus]7]/C and a dissolution rate in a range of between about 2[times]10[sup [minus]7] and 2[times]10[sup [minus]9]g/cm[sup 2]-min. This composition is suitable to hermetically seal to metallic electrical components which will be subjected to humid environments over an extended period of time.
Nonperturbative path integral expansion II
International Nuclear Information System (INIS)
Kaiser, H.J.
1976-05-01
The Feynman path integral representation of the 2-point function for a self-interacting Bose field is investigated using an expansion ('Path Integral Expansion', PIE) of the exponential of the kinetic term of the Lagrangian. This leads to a series - illustrated by a graph scheme - involving successively a coupling of more and more points of the lattice space commonly employed in the evaluation of path integrals. The values of the individual PIE graphs depend of course on the lattice constant. Two methods - Pade approximation and Borel-type extrapolation - are proposed to extract information about the continuum limit from a finite-order PIE. A more flexible PIE is possible by expanding besides the kinetic term a suitably chosen part of the interaction term too. In particular, if the co-expanded part is a mass term the calculation becomes only slightly more complicated than in the original formulation and the appearance of the graph scheme is unchanged. A significant reduction of the number of graphs and an improvement of the convergence of the PIE can be achieved by performing certain sums over an infinity of graph elements. (author)
Fei-Ran Shen; Hao Kuang; Feng-Xia Hu; Hui Wu; Qing-Zhen Huang; Fei-Xiang Liang; Kai-Ming Qiao; Jia Li; Jing Wang; Yao Liu; Lei Zhang; Min He; Ying Zhang; Wen-Liang Zuo; Ji-Rong Sun
2017-01-01
Materials with zero thermal expansion (ZTE) or precisely tailored thermal expansion are in urgent demand of modern industries. However, the overwhelming majority of materials show positive thermal expansion. To develop ZTE or negative thermal expansion (NTE) materials as compensators has become an important challenge. Here, we present the evidence for the realization of ultra-low thermal expansion in Mn–Co–Ge–In particles. The bulk with the Ni2In-type hexagonal structure undergoes giant NTE o...
Reevaluating Suitability Estimates Based on Dynamics of Cropland Expansion in the Brazilian Amazon
Morton, Douglas C.; Noojipady, Praveen; Macedo, Marcia M.; Victoria, Daniel C.; Bolfe, Edson L.
2016-01-01
Agricultural suitability maps are a key input for land use zoning and projections of cropland expansion. Suitability assessments typically consider edaphic conditions, climate, crop characteristics, and sometimes incorporate accessibility to transportation and market infrastructure. However, correct weighting among these disparate factors is challenging, given rapid development of new crop varieties, irrigation, and road networks, as well as changing global demand for agricultural commodities. Here, we compared three independent assessments of cropland suitability to spatial and temporal dynamics of agricultural expansion in the Brazilian state of Mato Grosso during 2001 2012. We found that areas of recent cropland expansion identified using satellite data were generally designated as low to moderate suitability for rainfed crop production. Our analysis highlighted the abrupt nature of suitability boundaries, rather than smooth gradients of agricultural potential, with little additional cropland expansion beyond the extent of the flattest areas (0-2% slope). Satellite-based estimates of the interannual variability in the use of existing crop areas also provided an alternate means to assess suitability. On average, cropland areas in the Cerrado biome had higher utilization (84%) than croplands in the Amazon region of northern Mato Grosso (74%). Areas of more recent expansion had lower utilization than croplands established before 2002, providing empirical evidence for lower suitability or alternative management strategies (e.g., pasture soya rotations) for lands undergoing more recent land use transitions. This unplanted reserve constitutes a large area of potentially available cropland (PAC)without further expansion, within the management limits imposed for pest management and fallow cycles. Using two key constraints on future cropland expansion, slope and restrictions on further deforestation of Amazon or Cerrado vegetation, we found little available flat land for
Strength gradient enhances fatigue resistance of steels
Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian
2016-02-01
Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility.
Hsiao-Hsuan Wang; William Grant; Todd Swannack; Jianbang Gan; William Rogers; Tomasz Koralewski; James Miller; John W. Taylor Jr.
2011-01-01
We present an integrated approach for predicting future range expansion of an invasive species (Chinese tallow tree) that incorporates statistical forecasting and analytical techniques within a spatially explicit, agent-based, simulation framework.
The effects of boreal forest expansion on the summer Arctic frontal zone
Energy Technology Data Exchange (ETDEWEB)
Liess, Stefan; Snyder, Peter K.; Harding, Keith J. [University of Minnesota, Department of Soil, Water, and Climate, Saint Paul, MN (United States)
2012-05-15
Over the last 100 years, Arctic warming has resulted in a longer growing season in boreal and tundra ecosystems. This has contributed to a slow northward expansion of the boreal forest and a decrease in the surface albedo. Corresponding changes to the surface and atmospheric energy budgets have contributed to a broad region of warming over areas of boreal forest expansion. In addition, mesoscale and synoptic scale patterns have changed as a result of the excess energy at and near the surface. Previous studies have identified a relationship between the positioning of the boreal forest-tundra ecotone and the Arctic frontal zone in summer. This study examines the climate response to hypothetical boreal forest expansion and its influence on the summer Arctic frontal zone. Using the Weather Research and Forecasting model over the Northern Hemisphere, an experiment was performed to evaluate the atmospheric response to expansion of evergreen and deciduous boreal needleleaf forests into open shrubland along the northern boundary of the existing forest. Results show that the lower surface albedo with forest expansion leads to a local increase in net radiation and an average hemispheric warming of 0.6 C at and near the surface during June with some locations warming by 1-2 C. This warming contributes to changes in the meridional temperature gradient that enhances the Arctic frontal zone and strengthens the summertime jet. This experiment suggests that continued Northern Hemisphere high-latitude warming and boreal forest expansion might contribute to additional climate changes during the summer. (orig.)
Expansion of passive safety function
International Nuclear Information System (INIS)
Inai, Nobuhiko; Nei, Hiromichi; Kumada, Toshiaki.
1995-01-01
Expansion of the use of passive safety functions is proposed. Two notions are presented. One is that, in the design of passive safety nuclear reactors where aversion of active components is stressed, some active components are purposely introduced, by which a system is built in such a way that it behaves in an apparently passive manner. The second notion is that, instead of using a passive safety function alone, a passive safety function is combined with some active components, relating the passivity in the safety function with enhanced controllability in normal operation. The nondormant system which the authors propose is one example of the first notion. This is a system in which a standby safety system is a portion of the normal operation system. An interpretation of the nondormant system via synergetics is made. As an example of the second notion, a PIUS density lock aided with active components is proposed and is discussed
Instability of shallow open channel flow with lateral velocity gradients
Energy Technology Data Exchange (ETDEWEB)
Lima, A C; Izumi, N, E-mail: adriano@eng.hokudai.ac.jp, E-mail: nizumi@eng.hokudai.ac.jp [River and Watershed Engineering Laboratory, Hokkaido University, Sapporo, 060-8628 (Japan)
2011-12-22
The turbulent flow in a wide rectangular open channel partially covered with vegetation is studied using linear stability analysis. In the base state normal flow condition, the water depth is constant and the transverse velocity vanishes, while there is a lateral gradient in the streamwise velocity with an inflexion point at the boundary between the vegetated zone and the main channel. The Reynolds stress is expressed by introducing the eddy viscosity, which is obtained from assuming a logarithmic distribution of the velocity near the bed. Perturbation expansions are introduced to the streamwise and transverse velocities, as well as to the water depth. The system of governing equations was solved in order to determine the maximum growth rate of the perturbations as a function of parameters which describe physical characteristics of the channel and the flow.
Generation Expansion Planning Considering Integrating Large-scale Wind Generation
DEFF Research Database (Denmark)
Zhang, Chunyu; Ding, Yi; Østergaard, Jacob
2013-01-01
necessitated the inclusion of more innovative and sophisticated approaches in power system investment planning. A bi-level generation expansion planning approach considering large-scale wind generation was proposed in this paper. The first phase is investment decision, while the second phase is production...... optimization decision. A multi-objective PSO (MOPSO) algorithm was introduced to solve this optimization problem, which can accelerate the convergence and guarantee the diversity of Pareto-optimal front set as well. The feasibility and effectiveness of the proposed bi-level planning approach and the MOPSO...
On the Equisummability of Hermite and Fourier Expansions
Indian Academy of Sciences (India)
We prove an equisummability result for the Fourier expansions and Hermite expansions as well as special Hermite expansions. We also prove the uniform boundedness of the Bochner-Riesz means associated to the Hermite expansions for polyradial functions.
Global sensitivity analysis using polynomial chaos expansions
International Nuclear Information System (INIS)
Sudret, Bruno
2008-01-01
Global sensitivity analysis (SA) aims at quantifying the respective effects of input random variables (or combinations thereof) onto the variance of the response of a physical or mathematical model. Among the abundant literature on sensitivity measures, the Sobol' indices have received much attention since they provide accurate information for most models. The paper introduces generalized polynomial chaos expansions (PCE) to build surrogate models that allow one to compute the Sobol' indices analytically as a post-processing of the PCE coefficients. Thus the computational cost of the sensitivity indices practically reduces to that of estimating the PCE coefficients. An original non intrusive regression-based approach is proposed, together with an experimental design of minimal size. Various application examples illustrate the approach, both from the field of global SA (i.e. well-known benchmark problems) and from the field of stochastic mechanics. The proposed method gives accurate results for various examples that involve up to eight input random variables, at a computational cost which is 2-3 orders of magnitude smaller than the traditional Monte Carlo-based evaluation of the Sobol' indices
Global sensitivity analysis using polynomial chaos expansions
Energy Technology Data Exchange (ETDEWEB)
Sudret, Bruno [Electricite de France, R and D Division, Site des Renardieres, F 77818 Moret-sur-Loing Cedex (France)], E-mail: bruno.sudret@edf.fr
2008-07-15
Global sensitivity analysis (SA) aims at quantifying the respective effects of input random variables (or combinations thereof) onto the variance of the response of a physical or mathematical model. Among the abundant literature on sensitivity measures, the Sobol' indices have received much attention since they provide accurate information for most models. The paper introduces generalized polynomial chaos expansions (PCE) to build surrogate models that allow one to compute the Sobol' indices analytically as a post-processing of the PCE coefficients. Thus the computational cost of the sensitivity indices practically reduces to that of estimating the PCE coefficients. An original non intrusive regression-based approach is proposed, together with an experimental design of minimal size. Various application examples illustrate the approach, both from the field of global SA (i.e. well-known benchmark problems) and from the field of stochastic mechanics. The proposed method gives accurate results for various examples that involve up to eight input random variables, at a computational cost which is 2-3 orders of magnitude smaller than the traditional Monte Carlo-based evaluation of the Sobol' indices.
Thermal expansion and its impacts on thermal transport in the FPU-α-β model
Directory of Open Access Journals (Sweden)
Xiaodong Cao
2015-05-01
Full Text Available We study the impacts of thermal expansion, arising from the asymmetric interparticle potential, on thermal conductance in the FPU-α-β model. A nonmonotonic dependence of the temperature gradient and thermal conductance on the cubic interaction parameter α are shown, which corresponds to the variation of the coefficient of thermal expansion. Three domains with respect to α can be identified. The results are explained based on the detailed analysis of the asymmetry of the interparticle potential. The self-consistent phonon theory, which can capture the effect of thermal expansion, is developed to support our explanation in a quantitative way. Our result would be helpful to understand the issue that whether there exist normal thermal conduction in the FPU-α-β model.
[Tissular expansion in giant congenital nevi treatment].
Nguyen Van Nuoi, V; Francois-Fiquet, C; Diner, P; Sergent, B; Zazurca, F; Franchi, G; Buis, J; Vazquez, M-P; Picard, A; Kadlub, N
2014-08-01
Surgical management of giant melanotic naevi remains a surgical challenge. Tissue expansion provides tissue of the same quality for the repair of defects. The aim of this study is to review tissular expansion for giant melanotic naevi. We conducted a retrospective study from 2000 to 2012. All children patients who underwent a tissular expansion for giant congenital naevi had been included. Epidemiological data, surgical procedure, complication rate and results had been analysed. Thirty-tree patients had been included; they underwent 61 procedures with 79 tissular-expansion prosthesis. Previous surgery, mostly simple excision had been performed before tissular expansion. Complete naevus excision had been performed in 63.3% of the cases. Complications occurred in 45% of the cases, however in 50% of them were minor. Iterative surgery increased the complication rate. Tissular expansion is a valuable option for giant congenital naevus. However, complication rate remained high, especially when iterative surgery is needed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Thermal conduction down steep temperature gradients
International Nuclear Information System (INIS)
Bell, A.R.; Evans, R.G.; Nicholas, D.J.
1980-08-01
The Fokker-Planck equation has been solved numerically in one spatial and two velocity dimensions in order to study thermal conduction in large temperature gradients. An initially cold plasma is heated at one end of the spatial grid producing temperature gradients with scale lengths of a few times the electron mean free path. The heat flow is an order of magnitude smaller than that predicted by the classical theory which is valid in the limit of small temperature gradients. (author)
Testing the limits of gradient sensing.
Directory of Open Access Journals (Sweden)
Vinal Lakhani
2017-02-01
Full Text Available The ability to detect a chemical gradient is fundamental to many cellular processes. In multicellular organisms gradient sensing plays an important role in many physiological processes such as wound healing and development. Unicellular organisms use gradient sensing to move (chemotaxis or grow (chemotropism towards a favorable environment. Some cells are capable of detecting extremely shallow gradients, even in the presence of significant molecular-level noise. For example, yeast have been reported to detect pheromone gradients as shallow as 0.1 nM/μm. Noise reduction mechanisms, such as time-averaging and the internalization of pheromone molecules, have been proposed to explain how yeast cells filter fluctuations and detect shallow gradients. Here, we use a Particle-Based Reaction-Diffusion model of ligand-receptor dynamics to test the effectiveness of these mechanisms and to determine the limits of gradient sensing. In particular, we develop novel simulation methods for establishing chemical gradients that not only allow us to study gradient sensing under steady-state conditions, but also take into account transient effects as the gradient forms. Based on reported measurements of reaction rates, our results indicate neither time-averaging nor receptor endocytosis significantly improves the cell's accuracy in detecting gradients over time scales associated with the initiation of polarized growth. Additionally, our results demonstrate the physical barrier of the cell membrane sharpens chemical gradients across the cell. While our studies are motivated by the mating response of yeast, we believe our results and simulation methods will find applications in many different contexts.
A gradient enhanced plasticity-damage microplane model for concrete
Zreid, Imadeddin; Kaliske, Michael
2018-03-01
Computational modeling of concrete poses two main types of challenges. The first is the mathematical description of local response for such a heterogeneous material under all stress states, and the second is the stability and efficiency of the numerical implementation in finite element codes. The paper at hand presents a comprehensive approach addressing both issues. Adopting the microplane theory, a combined plasticity-damage model is formulated and regularized by an implicit gradient enhancement. The plasticity part introduces a new microplane smooth 3-surface cap yield function, which provides a stable numerical solution within an implicit finite element algorithm. The damage part utilizes a split, which can describe the transition of loading between tension and compression. Regularization of the model by the implicit gradient approach eliminates the mesh sensitivity and numerical instabilities. Identification methods for model parameters are proposed and several numerical examples of plain and reinforced concrete are carried out for illustration.
The Price Equation, Gradient Dynamics, and Continuous Trait Game Theory.
Lehtonen, Jussi
2018-01-01
A recent article convincingly nominated the Price equation as the fundamental theorem of evolution and used it as a foundation to derive several other theorems. A major section of evolutionary theory that was not addressed is that of game theory and gradient dynamics of continuous traits with frequency-dependent fitness. Deriving fundamental results in these fields under the unifying framework of the Price equation illuminates similarities and differences between approaches and allows a simple, unified view of game-theoretical and dynamic concepts. Using Taylor polynomials and the Price equation, I derive a dynamic measure of evolutionary change, a condition for singular points, the convergence stability criterion, and an alternative interpretation of evolutionary stability. Furthermore, by applying the Price equation to a multivariable Taylor polynomial, the direct fitness approach to kin selection emerges. Finally, I compare these results to the mean gradient equation of quantitative genetics and the canonical equation of adaptive dynamics.
Simulation program for multiple expansion Stirling machines
International Nuclear Information System (INIS)
Walker, G.; Weiss, M.; Fauvel, R.; Reader, G.; Bingham, E.R.
1992-01-01
Multiple expansion Stirling machines have been a topic of interest at the University of Calgary for some years. Recently a second-order computer simulation program with integral graphics package for Stirling cryocoolers with up to four stages of expansion were developed and made available to the Stirling community. Adaptation of the program to multiple expansion Stirling power systems is anticipated. This paper briefly introduces the program and presents a specimen result
Semiclassical expansions for confined N fermion systems
International Nuclear Information System (INIS)
Krivine, H.; Martorell, J.; Casas, M.
1989-01-01
A new derivation of the Wigner Kirkwood expansion for N-fermion systems is presented, showing explicitly the connection to the WKB approximation for a single level. This allows to study separately the two ansatz required to obtain the semiclassical expansions: the asymptotic expansions in powers of ℎ and the smoothing of quantal effects. We discuss the one dimensional and three dimensional, with spherical symmetry, cases. Applications for standard potentials used in nuclear physics are described in detail
Thermal and hygroscopic expansion characteristics of bamboo
Huang, Puxi; Chang, Wen-shao; Ansell, Martin P.; Bowen, Chris R.; Chew, John Y. M.; Adamak, Vana i
2017-01-01
The expansion and contraction of bamboo caused by temperature and moisture variations must be evaluated\\ud if bamboo is to be utilised as a building material. However, detailed expansion data, especially data in the ascent and\\ud descent processes of temperature and moisture are unexplored. The aim of this study is to investigate the expansion\\ud characteristics of Phyllostachys edulis (Moso bamboo) in ascent and descent processes of temperature and moisture.\\ud The measurement of linear ther...
Chromatic Derivatives, Chromatic Expansions and Associated Spaces
Ignjatovic, Aleksandar
2009-01-01
This paper presents the basic properties of chromatic derivatives and chromatic expansions and provides an appropriate motivation for introducing these notions. Chromatic derivatives are special, numerically robust linear differential operators which correspond to certain families of orthogonal polynomials. Chromatic expansions are series of the corresponding special functions, which possess the best features of both the Taylor and the Shannon expansions. This makes chromatic derivatives and ...
Thermal expansion in small metallic particles
International Nuclear Information System (INIS)
Ivanov, A.S.
1985-01-01
An anomalously low thermal expansion observable in small particles is attributed to extending effect of the shell. It is shown that the coefficient of thermal expansion of the oxide-film-coated aluminium particles calculated using elastic constants and coefficients of thermal expansion of massive materials agres well with those measured experimentally. The linear dilatation of the shell, its stress to rupture and the values of the structural tension are estimated vs the temperature
Gradient Flow Convolutive Blind Source Separation
DEFF Research Database (Denmark)
Pedersen, Michael Syskind; Nielsen, Chinton Møller
2004-01-01
Experiments have shown that the performance of instantaneous gradient flow beamforming by Cauwenberghs et al. is reduced significantly in reverberant conditions. By expanding the gradient flow principle to convolutive mixtures, separation in a reverberant environment is possible. By use...... of a circular four microphone array with a radius of 5 mm, and applying convolutive gradient flow instead of just applying instantaneous gradient flow, experimental results show an improvement of up to around 14 dB can be achieved for simulated impulse responses and up to around 10 dB for a hearing aid...
On lower order strain gradient plasticity theories
DEFF Research Database (Denmark)
Niordson, Christian Frithiof; Hutchinson, J. W.
2003-01-01
By way of numerical examples, this paper explores the nature of solutions to a class of strain gradient plasticity theories that employ conventional stresses, equilibrium equations and boundary conditions. Strain gradients come into play in these modified conventional theories only to alter...... the tangent moduli governing increments of stress and strain. It is shown that the modification is far from benign from a mathematical standpoint, changing the qualitative character of solutions and leading to a new type of localization that is at odds with what is expected from a strain gradient theory....... The findings raise questions about the physical acceptability of this class of strain gradient theories....
STOCHASTIC GRADIENT METHODS FOR UNCONSTRAINED OPTIMIZATION
Directory of Open Access Journals (Sweden)
Nataša Krejić
2014-12-01
Full Text Available This papers presents an overview of gradient based methods for minimization of noisy functions. It is assumed that the objective functions is either given with error terms of stochastic nature or given as the mathematical expectation. Such problems arise in the context of simulation based optimization. The focus of this presentation is on the gradient based Stochastic Approximation and Sample Average Approximation methods. The concept of stochastic gradient approximation of the true gradient can be successfully extended to deterministic problems. Methods of this kind are presented for the data fitting and machine learning problems.
Asymptotic chaos expansions in finance theory and practice
Nicolay, David
2014-01-01
Stochastic instantaneous volatility models such as Heston, SABR or SV-LMM have mostly been developed to control the shape and joint dynamics of the implied volatility surface. In principle, they are well suited for pricing and hedging vanilla and exotic options, for relative value strategies or for risk management. In practice however, most SV models lack a closed form valuation for European options. This book presents the recently developed Asymptotic Chaos Expansions methodology (ACE) which addresses that issue. Indeed its generic algorithm provides, for any regular SV model, the pure asymptotes at any order for both the static and dynamic maps of the implied volatility surface. Furthermore, ACE is programmable and can complement other approximation methods. Hence it allows a systematic approach to designing, parameterising, calibrating and exploiting SV models, typically for Vega hedging or American Monte-Carlo. Asymptotic Chaos Expansions in Finance illustrates the ACE approach for single underlyings (suc...
Heat kernel expansion in the background field formalism
Barvinsky, Andrei
2015-01-01
Heat kernel expansion and background field formalism represent the combination of two calculational methods within the functional approach to quantum field theory. This approach implies construction of generating functionals for matrix elements and expectation values of physical observables. These are functionals of arbitrary external sources or the mean field of a generic configuration -- the background field. Exact calculation of quantum effects on a generic background is impossible. However, a special integral (proper time) representation for the Green's function of the wave operator -- the propagator of the theory -- and its expansion in the ultraviolet and infrared limits of respectively short and late proper time parameter allow one to construct approximations which are valid on generic background fields. Current progress of quantum field theory, its renormalization properties, model building in unification of fundamental physical interactions and QFT applications in high energy physics, gravitation and...
Disjoint sum expansion method in FTA
International Nuclear Information System (INIS)
Ruan Keqiang
1987-01-01
An expansion formula for transforming boolean algebraic expressions into disjoint form was proved. Based on this expansion formula, a method for transforming system failure function into disjoint form was devised. The fact that the expansion can be done for several elements simulatneously makes the method flexible and fast. Some examples from fault tree analysis (FTA) and network analysis were examined by the new method to show its algorithm and its merit. Besides, by means of the proved expansion formula some boolean algebraic relations can proved very easily
Thermal expansion of L-ascorbic acid
Nicolaï, B.; Barrio, M.; Tamarit, J.-Ll.; Céolin, R.; Rietveld, I. B.
2017-04-01
The specific volume of vitamin C has been investigated by X-ray powder diffraction as a function of temperature from 110 K up to complete degradation around 440 K. Its thermal expansion is relatively small in comparison with other organic compounds with an expansivity α v of 1.2(3) × 10-4 K-1. The structure consists of strongly bound molecules in the ac plane through a dense network of hydrogen bonds. The thermal expansion is anisotropic. Along the b axis, the expansion has most leeway and is about 10 times larger than in the other directions.
Adiabatic supernova expansion into the circumstellar medium
International Nuclear Information System (INIS)
Band, D.L.; Liang, E.P.
1987-01-01
We perform one dimensional numerical simulations with a Lagrangian hydrodynamics code of the adiabatic expansion of a supernova into the surrounding medium. The early expansion follows Chevalier's analytic self-similar solution until the reverse shock reaches the ejecta core. We follow the expansion as it evolves towards the adiabatic blast wave phase. Some memory of the earlier phases of expansion is retained in the interior even when the outer regions expand as a blast wave. We find the results are sensitive to the initial configuration of the ejecta and to the placement of gridpoints. 6 refs., 2 figs
Global Monte Carlo Simulation with High Order Polynomial Expansions
International Nuclear Information System (INIS)
William R. Martin; James Paul Holloway; Kaushik Banerjee; Jesse Cheatham; Jeremy Conlin
2007-01-01
The functional expansion technique (FET) was recently developed for Monte Carlo simulation. The basic idea of the FET is to expand a Monte Carlo tally in terms of a high order expansion, the coefficients of which can be estimated via the usual random walk process in a conventional Monte Carlo code. If the expansion basis is chosen carefully, the lowest order coefficient is simply the conventional histogram tally, corresponding to a flat mode. This research project studied the applicability of using the FET to estimate the fission source, from which fission sites can be sampled for the next generation. The idea is that individual fission sites contribute to expansion modes that may span the geometry being considered, possibly increasing the communication across a loosely coupled system and thereby improving convergence over the conventional fission bank approach used in most production Monte Carlo codes. The project examined a number of basis functions, including global Legendre polynomials as well as 'local' piecewise polynomials such as finite element hat functions and higher order versions. The global FET showed an improvement in convergence over the conventional fission bank approach. The local FET methods showed some advantages versus global polynomials in handling geometries with discontinuous material properties. The conventional finite element hat functions had the disadvantage that the expansion coefficients could not be estimated directly but had to be obtained by solving a linear system whose matrix elements were estimated. An alternative fission matrix-based response matrix algorithm was formulated. Studies were made of two alternative applications of the FET, one based on the kernel density estimator and one based on Arnoldi's method of minimized iterations. Preliminary results for both methods indicate improvements in fission source convergence. These developments indicate that the FET has promise for speeding up Monte Carlo fission source convergence
Asymptotic Expansions for Higher-Order Scalar Difference Equations
Directory of Open Access Journals (Sweden)
Ravi P. Agarwal
2007-04-01
Full Text Available We give an asymptotic expansion of the solutions of higher-order PoincarÃƒÂ© difference equation in terms of the characteristic solutions of the limiting equation. As a consequence, we obtain an asymptotic description of the solutions approaching a hyperbolic equilibrium of a higher-order nonlinear difference equation with sufficiently smooth nonlinearity. The proof is based on the inversion formula for the z -transform and the residue theorem.
Asymptotic Expansions for Higher-Order Scalar Difference Equations
Directory of Open Access Journals (Sweden)
Pituk Mihály
2007-01-01
Full Text Available We give an asymptotic expansion of the solutions of higher-order Poincaré difference equation in terms of the characteristic solutions of the limiting equation. As a consequence, we obtain an asymptotic description of the solutions approaching a hyperbolic equilibrium of a higher-order nonlinear difference equation with sufficiently smooth nonlinearity. The proof is based on the inversion formula for the z -transform and the residue theorem.
The 1/MQ expansion in the B-S formalism
International Nuclear Information System (INIS)
Dai Yuanben; Jin Hongying
1995-12-01
We present the 1/M q expansion for heavy mesons in the BS approach. Results due to the heavy quark symmetry are obtained at the leading order. The numerical results for spectra of heavy mesons and the decay rates of 1 - and 0 + heave mesons including the corrections of the order 1/M Q are obtained with the QCD-induced model and are in agreement with experimental data when they are available. (author). 23 refs, 3 tab
DYNAMIC PROGRAMMING – EFFICIENT TOOL FOR POWER SYSTEM EXPANSION PLANNING
Directory of Open Access Journals (Sweden)
SIMO A.
2015-03-01
Full Text Available The paper isfocusing on dynamic programming use for power system expansion planning (EP – transmission network (TNEP and distribution network (DNEP. The EP problem has been approached from the retrospective and prospective point of view. To achieve this goal, the authors are developing two software-tools in Matlab environment. Two techniques have been tackled: particle swarm optimization (PSO and genetic algorithms (GA. The case study refers to Test 25 buses test power system developed within the Power Systems Department.
Cumulant expansions for measuring water exchange using diffusion MRI
Ning, Lipeng; Nilsson, Markus; Lasič, Samo; Westin, Carl-Fredrik; Rathi, Yogesh
2018-02-01
The rate of water exchange across cell membranes is a parameter of biological interest and can be measured by diffusion magnetic resonance imaging (dMRI). In this work, we investigate a stochastic model for the diffusion-and-exchange of water molecules. This model provides a general solution for the temporal evolution of dMRI signal using any type of gradient waveform, thereby generalizing the signal expressions for the Kärger model. Moreover, we also derive a general nth order cumulant expansion of the dMRI signal accounting for water exchange, which has not been explored in earlier studies. Based on this analytical expression, we compute the cumulant expansion for dMRI signals for the special case of single diffusion encoding (SDE) and double diffusion encoding (DDE) sequences. Our results provide a theoretical guideline on optimizing experimental parameters for SDE and DDE sequences, respectively. Moreover, we show that DDE signals are more sensitive to water exchange at short-time scale but provide less attenuation at long-time scale than SDE signals. Our theoretical analysis is also validated using Monte Carlo simulations on synthetic structures.
Efficient and robust gradient enhanced Kriging emulators.
Energy Technology Data Exchange (ETDEWEB)
Dalbey, Keith R.
2013-08-01
%E2%80%9CNaive%E2%80%9D or straight-forward Kriging implementations can often perform poorly in practice. The relevant features of the robustly accurate and efficient Kriging and Gradient Enhanced Kriging (GEK) implementations in the DAKOTA software package are detailed herein. The principal contribution is a novel, effective, and efficient approach to handle ill-conditioning of GEK's %E2%80%9Ccorrelation%E2%80%9D matrix, RN%CC%83, based on a pivoted Cholesky factorization of Kriging's (not GEK's) correlation matrix, R, which is a small sub-matrix within GEK's RN%CC%83 matrix. The approach discards sample points/equations that contribute the least %E2%80%9Cnew%E2%80%9D information to RN%CC%83. Since these points contain the least new information, they are the ones which when discarded are both the easiest to predict and provide maximum improvement of RN%CC%83's conditioning. Prior to this work, handling ill-conditioned correlation matrices was a major, perhaps the principal, unsolved challenge necessary for robust and efficient GEK emulators. Numerical results demonstrate that GEK predictions can be significantly more accurate when GEK is allowed to discard points by the presented method. Numerical results also indicate that GEK can be used to break the curse of dimensionality by exploiting inexpensive derivatives (such as those provided by automatic differentiation or adjoint techniques), smoothness in the response being modeled, and adaptive sampling. Development of a suitable adaptive sampling algorithm was beyond the scope of this work; instead adaptive sampling was approximated by omitting the cost of samples discarded by the presented pivoted Cholesky approach.
Contribution of future urbanisation expansion to flood risk changes
Bruwier, Martin; Mustafa, Ahmed; Archambeau, Pierre; Erpicum, Sébastien; Pirotton, Michel; Teller, Jacques; Dewals, Benjamin
2016-04-01
The flood risk is expected to increase in the future due to climate change and urban development. Climate change modifies flood hazard and urban development influences exposure and vulnerability to floods. While the influence of climate change on flood risk has been studied widely, the impact of urban development also needs to be considered in a sustainable flood risk management approach. The main goal of this study is the determination of the sensitivity of future flood risk to different urban development scenarios at a relatively short-time horizon in the River Meuse basin in Wallonia (Belgium). From the different scenarios, the expected impact of urban development on flood risk is assessed. Three urban expansion scenarios are developed up to 2030 based on a coupled cellular automata (CA) and agent-based (AB) urban expansion model: (i) business-as-usual, (ii) restrictive and (iii) extreme expansion scenarios. The main factor controlling these scenarios is the future urban land demand. Each urban expansion scenario is developed by considering or not high and/or medium flood hazard zones as a constraint for urban development. To assess the model's performance, it is calibrated for the Meuse River valley (Belgium) to simulate urban expansion between 1990 and 2000. Calibration results are then assessed by comparing the 2000 simulated land-use map and the actual 2000 land-use map. The flood damage estimation for each urban expansion scenario is determined for five flood discharges by overlaying the inundation map resulting from a hydraulic computation and the urban expansion map and by using damage curves and specific prices. The hydraulic model Wolf2D has been extensively validated by comparisons between observations and computational results during flood event .This study focuses only on mobile and immobile prices for urban lands, which are associated to the most severe damages caused by floods along the River Meuse. These findings of this study offers tools to
Gravity gradient preprocessing at the GOCE HPF
Bouman, J.; Rispens, S.; Gruber, T.; Schrama, E.; Visser, P.; Tscherning, C. C.; Veicherts, M.
2009-04-01
One of the products derived from the GOCE observations are the gravity gradients. These gravity gradients are provided in the Gradiometer Reference Frame (GRF) and are calibrated in-flight using satellite shaking and star sensor data. In order to use these gravity gradients for application in Earth sciences and gravity field analysis, additional pre-processing needs to be done, including corrections for temporal gravity field signals to isolate the static gravity field part, screening for outliers, calibration by comparison with existing external gravity field information and error assessment. The temporal gravity gradient corrections consist of tidal and non-tidal corrections. These are all generally below the gravity gradient error level, which is predicted to show a 1/f behaviour for low frequencies. In the outlier detection the 1/f error is compensated for by subtracting a local median from the data, while the data error is assessed using the median absolute deviation. The local median acts as a high-pass filter and it is robust as is the median absolute deviation. Three different methods have been implemented for the calibration of the gravity gradients. All three methods use a high-pass filter to compensate for the 1/f gravity gradient error. The baseline method uses state-of-the-art global gravity field models and the most accurate results are obtained if star sensor misalignments are estimated along with the calibration parameters. A second calibration method uses GOCE GPS data to estimate a low degree gravity field model as well as gravity gradient scale factors. Both methods allow to estimate gravity gradient scale factors down to the 10-3 level. The third calibration method uses high accurate terrestrial gravity data in selected regions to validate the gravity gradient scale factors, focussing on the measurement band. Gravity gradient scale factors may be estimated down to the 10-2 level with this method.
Dynamics of Reactive Microbial Hotspots in Concentration Gradient.
Hubert, A.; Farasin, J.; Tabuteau, H.; Dufresne, A.; Meheust, Y.; Le Borgne, T.
2017-12-01
In subsurface environments, bacteria play a major role in controlling the kinetics of a broad range of biogeochemical reactions. In such environments, nutrients fluxes and solute concentrations needed for bacteria metabolism may be highly variable in space and intermittent in time. This can lead to the formation of reactive hotspots where and when conditions are favorable to particular microorganisms, hence inducing biogeochemical reaction kinetics that differ significantly from those measured in homogeneous model environments. To investigate the impact of chemical gradients on the spatial structure and temporal dynamics of subsurface microorganism populations, we develop microfluidic cells allowing for a precise control of flow and chemical gradient conditions, as well as quantitative monitoring of the bacteria's spatial distribution and biofilm development. Using the non-motile Escherichia coli JW1908-1 strain and Gallionella capsiferriformans ES-2 as model organisms, we investigate the behavior and development of bacteria over a range of single and double concentration gradients in the concentrations of nutrients, electron donors and electron acceptors. We measure bacterial activity and population growth locally in precisely known hydrodynamic and chemical environments. This approach allows time-resolved monitoring of the location and intensity of reactive hotspots in micromodels as a function of the flow and chemical gradient conditions. We compare reactive microbial hotspot dynamics in our micromodels to classic growth laws and well-known growth parameters for the laboratory model bacteria Escherichia coli.We also discuss consequences for the formation and temporal dynamics of biofilms in the subsurface.
Navarro Pérez, R.; Schunck, N.; Dyhdalo, A.; Furnstahl, R. J.; Bogner, S. K.
2018-05-01
Background: Energy density functional methods provide a generic framework to compute properties of atomic nuclei starting from models of nuclear potentials and the rules of quantum mechanics. Until now, the overwhelming majority of functionals have been constructed either from empirical nuclear potentials such as the Skyrme or Gogny forces, or from systematic gradient-like expansions in the spirit of the density functional theory for atoms. Purpose: We seek to obtain a usable form of the nuclear energy density functional that is rooted in the modern theory of nuclear forces. We thus consider a functional obtained from the density matrix expansion of local nuclear potentials from chiral effective field theory. We propose a parametrization of this functional carefully calibrated and validated on selected ground-state properties that is suitable for large-scale calculations of nuclear properties. Methods: Our energy functional comprises two main components. The first component is a non-local functional of the density and corresponds to the direct part (Hartree term) of the expectation value of local chiral potentials on a Slater determinant. Contributions to the mean field and the energy of this term are computed by expanding the spatial, finite-range components of the chiral potential onto Gaussian functions. The second component is a local functional of the density and is obtained by applying the density matrix expansion to the exchange part (Fock term) of the expectation value of the local chiral potential. We apply the UNEDF2 optimization protocol to determine the coupling constants of this energy functional. Results: We obtain a set of microscopically constrained functionals for local chiral potentials from leading order up to next-to-next-to-leading order with and without three-body forces and contributions from Δ excitations. These functionals are validated on the calculation of nuclear and neutron matter, nuclear mass tables, single-particle shell structure
Asymptotic expansion and statistical description of turbulent systems
International Nuclear Information System (INIS)
Hagan, W.K. III.
1986-01-01
A new approach to studying turbulent systems is presented in which an asymptotic expansion of the general dynamical equations is performed prior to the application of statistical methods for describing the evolution of the system. This approach has been applied to two specific systems: anomalous drift wave turbulence in plasmas and homogeneous, isotropic turbulence in fluids. For the plasma case, the time and length scales of the turbulent state result in the asymptotic expansion of the Vlasov/Poisson equations taking the form of nonlinear gyrokinetic theory. Questions regarding this theory and modern Hamiltonian perturbation methods are discussed and resolved. A new alternative Hamiltonian method is described. The Eulerian Direct Interaction Approximation (EDIA) is slightly reformulated and applied to the equations of nonlinear gyrokinetic theory. Using a similarity transformation technique, expressions for the thermal diffusivity are derived from the EDIA equations for various geometries, including a tokamak. In particular, the unique result for generalized geometry may be of use in evaluating fusion reactor designs and theories of anomalous thermal transport in tokamaks. Finally, a new and useful property of the EDIA is pointed out. For the fluid case, an asymptotic expansion is applied to the Navier-Stokes equation and the results lead to the speculation that such an approach may resolve the problem of predicting the Kolmogorov inertial range energy spectrum for homogeneous, isotropic turbulence. 45 refs., 3 figs
FRACTAL DIMENSION OF URBAN EXPANSION BASED ON REMOTE SENSING IMAGES
Directory of Open Access Journals (Sweden)
IACOB I. CIPRIAN
2012-11-01
Full Text Available Fractal Dimension of Urban Expansion Based on Remote Sensing Images: In Cluj-Napoca city the process of urbanization has been accelerated during the years and implication of local authorities reflects a relevant planning policy. A good urban planning framework should take into account the society demands and also it should satisfy the natural conditions of local environment. The expansion of antropic areas it can be approached by implication of 5D variables (time as a sequence of stages, space: with x, y, z and magnitude of phenomena into the process, which will allow us to analyse and extract the roughness of city shape. Thus, to improve the decision factor we take a different approach in this paper, looking at geometry and scale composition. Using the remote sensing (RS and GIS techniques we manage to extract a sequence of built-up areas (from 1980 to 2012 and used the result as an input for modelling the spatialtemporal changes of urban expansion and fractal theory to analysed the geometric features. Taking the time as a parameter we can observe behaviour and changes in urban landscape, this condition have been known as self-organized – a condition which in first stage the system was without any turbulence (before the antropic factor and during the time tend to approach chaotic behaviour (entropy state without causing an disequilibrium in the main system.
Canonical trivialization of gravitational gradients
International Nuclear Information System (INIS)
Niedermaier, Max
2017-01-01
A one-parameter family of canonical transformations is constructed that reduces the Hamiltonian form of the Einstein–Hilbert action to its strong coupling limit where dynamical spatial gradients are absent. The parameter can alternatively be viewed as the overall scale of the spatial metric or as a fractional inverse power of Newton’s constant. The generating function of the canonical transformation is constructed iteratively as a powerseries in the parameter to all orders. The algorithm draws on Lie–Deprit transformation theory and defines a ‘trivialization map’ with several bonus properties: (i) Trivialization of the Hamiltonian constraint implies that of the action while the diffeomorphism constraint is automatically co-transformed. (ii) Only a set of ordinary differential equations needs to be solved to drive the iteration via a homological equation where no gauge fixing is required. (iii) In contrast to (the classical limit of) a Lagrangian trivialization map the algorithm also produces series solutions of the field equations. (iv) In the strong coupling theory temporal gauge variations are abelian, nevertheless the map intertwines with the respective gauge symmetries on the action, the field equations, and their solutions. (paper)
Canonical trivialization of gravitational gradients
Niedermaier, Max
2017-06-01
A one-parameter family of canonical transformations is constructed that reduces the Hamiltonian form of the Einstein-Hilbert action to its strong coupling limit where dynamical spatial gradients are absent. The parameter can alternatively be viewed as the overall scale of the spatial metric or as a fractional inverse power of Newton’s constant. The generating function of the canonical transformation is constructed iteratively as a powerseries in the parameter to all orders. The algorithm draws on Lie-Deprit transformation theory and defines a ‘trivialization map’ with several bonus properties: (i) Trivialization of the Hamiltonian constraint implies that of the action while the diffeomorphism constraint is automatically co-transformed. (ii) Only a set of ordinary differential equations needs to be solved to drive the iteration via a homological equation where no gauge fixing is required. (iii) In contrast to (the classical limit of) a Lagrangian trivialization map the algorithm also produces series solutions of the field equations. (iv) In the strong coupling theory temporal gauge variations are abelian, nevertheless the map intertwines with the respective gauge symmetries on the action, the field equations, and their solutions.
Hubble expansion in static spacetime
International Nuclear Information System (INIS)
Rossler, Otto E.; Froehlich, Dieter; Movassagh, Ramis; Moore, Anthony
2007-01-01
A recently proposed mechanism for light-path expansion in a static spacetime is based on the moving-lenses paradigm. Since the latter is valid independently of whether space expands or not, a static universe can be used to better see the implications. The moving-lenses paradigm is related to the paradigm of dynamical friction. If this is correct, a Hubble-like law is implicit. It is described quantitatively. A bent in the Hubble-like line is predictably implied. The main underlying assumption is Price's Principle (PI 3 ). If the theory is sound, the greatest remaining problem in cosmology becomes the origin of hydrogen. Since Blandford's jet production mechanism for quasars is too weak, a generalized Hawking radiation hidden in the walls of cosmic voids is invoked. A second prediction is empirical: slow pattern changes in the cosmic microwave background. A third is ultra-high redshifts for Giacconi quasars. Bruno's eternal universe in the spirit of Augustine becomes a bit less outlandish
Transmission expansion in Argentina 4: A review of performance
International Nuclear Information System (INIS)
Littlechild, Stephen C.; Skerk, Carlos J.
2008-01-01
In 1992 Argentina's electricity reform provided an innovative approach to transmission expansion. In particular, major expansions were determined by the Public Contest method - that is, by votes of transmission users rather than by the transmission company or the regulatory body - and then put out to competitive tender. This paper reviews the overall performance of that policy. There was substantial new transmission investment, especially in control systems and transformers rather than extra-high-voltage lines: an achievement of the policy lies in making better use of the existing transmission system. The number and value of Public Contest transmission expansion projects were steadily growing over time until Argentina's economic crisis, particularly at sub-transmission level. Transactions costs were not a problem in the Public Contest method: the median number of voters was 5, and the process was generally characterised by harmony between participants rather than by discord. Distribution companies supported rather than obstructed the process, though there was scope to improve the provincial regulatory framework. There was effective competition to build and operate the expansions, with a median of 3 bids for each and the incumbent winning less than one fifth. Such competition roughly halved the cost of new lines. This contrasts with lines built under the present Federal Transmission Plan at two and a half times the previous cost
TESTING THE EFFECTS OF EXPANSION ON SOLAR WIND TURBULENCE
International Nuclear Information System (INIS)
Vech, Daniel; Chen, Christopher H K
2016-01-01
We present a multi-spacecraft approach to test the predictions of recent studies on the effect of solar wind expansion on the radial spectral, variance, and local 3D anisotropies of the turbulence. We found that on small scales (5000–10,000 km) the power levels of the B-trace structure functions do not depend on the sampling direction with respect to the radial suggesting that on this scale the effect of expansion is small possibly due to fast turbulent timescales. On larger scales (110–135 R E ), the fluctuations of the radial magnetic field component are reduced by ∼20% compared to the transverse (perpendicular to radial) ones, which could be due to expansion confining the fluctuations into the plane perpendicular to radial. For the local 3D spectral anisotropy, the B-trace structure functions showed dependence on the sampling direction with respect to radial. The anisotropy in the perpendicular plane is reduced when the increments are taken perpendicular with respect to radial, which could be an effect of expansion.
TESTING THE EFFECTS OF EXPANSION ON SOLAR WIND TURBULENCE
Energy Technology Data Exchange (ETDEWEB)
Vech, Daniel; Chen, Christopher H K, E-mail: dvech@umich.edu [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom)
2016-11-20
We present a multi-spacecraft approach to test the predictions of recent studies on the effect of solar wind expansion on the radial spectral, variance, and local 3D anisotropies of the turbulence. We found that on small scales (5000–10,000 km) the power levels of the B-trace structure functions do not depend on the sampling direction with respect to the radial suggesting that on this scale the effect of expansion is small possibly due to fast turbulent timescales. On larger scales (110–135 R{sub E}), the fluctuations of the radial magnetic field component are reduced by ∼20% compared to the transverse (perpendicular to radial) ones, which could be due to expansion confining the fluctuations into the plane perpendicular to radial. For the local 3D spectral anisotropy, the B-trace structure functions showed dependence on the sampling direction with respect to radial. The anisotropy in the perpendicular plane is reduced when the increments are taken perpendicular with respect to radial, which could be an effect of expansion.
Simplified design of flexible expansion anchored plates for nuclear structures
International Nuclear Information System (INIS)
Mehta, N.K.; Hingorani, N.V.; Longlais, T.G.; Sargent and Lundy, Chicago, IL)
1984-01-01
In nuclear power plant construction, expansion anchored plates are used to support pipe, cable tray and HVAC duct hangers, and various structural elements. The expansion anchored plates provide flexibility in the installation of field-routed lines where cast-in-place embedments are not available. General design requirements for expansion anchored plate assemblies are given in ACI 349, Appendix B (1). The manufacturers recommend installation procedures for their products. Recent field testing in response to NRC Bulletin 79-02 (2) indicates that anchors, installed in accordance with manufacturer's recommended procedures, perform satisfactorily under static and dynamic loading conditions. Finite element analysis is a useful tool to correctly analyze the expansion anchored plates subject to axial tension and biaxial moments, but it becomes expensive and time-consuming to apply this tool for a large number of plates. It is, therefore, advantageous to use a simplified method, even though it may be more conservative as compared to the exact method of analysis. This paper presents a design method referred to as the modified rigid plate analysis approach to simplify both the initial design and the review of as-built conditions
Rank gradient and p-gradient of amalgamated free products and HNN extensions
Pappas, Nathaniel
2013-01-01
We calculate the rank gradient and p-gradient of free products, free products with amalgamation over an amenable subgroup, and HNN extensions with an amenable associated subgroup. The notion of cost is used to compute the rank gradient of amalgamated free products and HNN extensions. For the p-gradient the Kurosh subgroup theorems for amalgamated free products and HNN extensions will be used.
Preconditioning the modified conjugate gradient method ...
African Journals Online (AJOL)
In this paper, the convergence analysis of the conventional conjugate Gradient method was reviewed. And the convergence analysis of the modified conjugate Gradient method was analysed with our extension on preconditioning the algorithm. Convergence of the algorithm is a function of the condition number of M-1A.
Structures and Strength of Gradient Nanostructures
DEFF Research Database (Denmark)
Hansen, Niels; Zhang, Xiaodan; Huang, Xiaoxu
distance from the surface forming a gradient structure. In this study [2], by shot peening of a low carbon steel a gradient structure has been produced extending to about 1 mm below the surface. A number of strengthening mechanisms have been analyzed as a basis for a calculation of the stress and strain...
On lower order strain gradient plasticity theories
DEFF Research Database (Denmark)
Niordson, Christian Frithiof; Hutchinson, J. W.
2002-01-01
By way of numerical examples, this paper explores the nature of solutions to a class of strain gradient plasticity theories that employ conventional stresses, equilibrium equations and boundary conditions. Strain gradients come into play in these modified conventional theories only to alter...
Ultra-high gradient compact accelerator developments
Brussaard, G.J.H.; Wiel, van der M.J.
2004-01-01
Continued development of relatively compact, although not quite 'table-top', lasers with peak powers in the range up to 100 TW has enabled laser-plasma-based acceleration experiments with amazing gradients of up to 1 TV/m. In order to usefully apply such gradients to 'controlled' acceleration,
An Inexpensive Digital Gradient Controller for HPLC.
Brady, James E.; Carr, Peter W.
1983-01-01
Use of gradient elution techniques in high performance liquid chromatography (HPLC) is often essential for direct separation of complex mixtures. Since most commercial controllers have features that are of marginal value for instructional purposes, a low-cost controller capable of illustrating essential features of gradient elution was developed.…
40 CFR 230.25 - Salinity gradients.
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Salinity gradients. 230.25 Section 230.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b... Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.25 Salinity gradients. (a) Salinity...