WorldWideScience

Sample records for graded-index slab fibers

  1. Gaussian beam-to-slab waveguide coupler by graded index photonic crystal lens

    International Nuclear Information System (INIS)

    Bahari, B; Abrishamian, M S

    2013-01-01

    In this numerical study, a Gaussian beam-to-slab waveguide coupler for both modes of TM and TE has been studied. For this purpose, a concrete structure is suggested, in which the graded index photonic crystal lens and the slab waveguide are in the same structure composed of Si material, and can be fabricated with a single-step lithography process. For maximum power coupling, half-holes have been used as an input matching layer. Power coupling of 80% over a 450 nm bandwidth for the TM mode, and 60% over a 180 nm bandwidth for the TE mode is achieved. (paper)

  2. Spatial Frequency Multiplexing of Fiber-Optic Interferometric Refractive Index Sensors Based on Graded-Index Multimode Fibers

    Science.gov (United States)

    Liu, Li; Gong, Yuan; Wu, Yu; Zhao, Tian; Wu, Hui-Juan; Rao, Yun-Jiang

    2012-01-01

    Fiber-optic interferometric sensors based on graded-index multimode fibers have very high refractive-index sensitivity, as we previously demonstrated. In this paper, spatial-frequency multiplexing of this type of fiber-optic refractive index sensors is investigated. It is estimated that multiplexing of more than 10 such sensors is possible. In the multiplexing scheme, one of the sensors is used to investigate the refractive index and temperature responses. The fast Fourier transform (FFT) of the combined reflective spectra is analyzed. The intensity of the FFT spectra is linearly related with the refractive index and is not sensitive to the temperature.

  3. High Performance Graded Index Polymer Optical Fibers

    National Research Council Canada - National Science Library

    Garito, Anthony

    1998-01-01

    ...) plastic optical fibers (POF) and graded index (GI) POFs are reported. A set of criteria and analyses of physical parameters are developed in context to the major issues of POF applications in short-distance communication systems...

  4. New method for calculating the coupling coefficient in graded index optical fibers

    Science.gov (United States)

    Savović, Svetislav; Djordjevich, Alexandar

    2018-05-01

    A simple method is proposed for determining the mode coupling coefficient D in graded index multimode optical fibers. It only requires observation of the output modal power distribution P(m, z) for one fiber length z as the Gaussian launching modal power distribution changes, with the Gaussian input light distribution centered along the graded index optical fiber axis (θ0 = 0) without radial offset (r0 = 0). A similar method we previously proposed for calculating the coupling coefficient D in a step-index multimode optical fibers where the output angular power distributions P(θ, z) for one fiber length z with the Gaussian input light distribution launched centrally along the step-index optical fiber axis (θ0 = 0) is needed to be known.

  5. Mode-multiplexed transmission over conventional graded-index multimode fibers

    NARCIS (Netherlands)

    Ryf, R.; Fontaine, N.K.; Chen, H.; Guan, B.; Huang, B.; Esmaeelpour, M.; Gnauck, A.H.; Randel, S.; Yoo, S.J.B.; Koonen, A.M.J.; Shubochkin, R.; Sun, Yi; Lingle, R.

    2015-01-01

    We present experimental results for combined mode-multiplexed and wavelength multiplexed transmission over conventional graded-index multimode fibers. We use mode-selective photonic lanterns as mode couplers to precisely excite a subset of the modes of the multimode fiber and additionally to

  6. Longitudinal versus transversal excitation in doped graded-index polymer optical fibers

    Science.gov (United States)

    Illarramendi, M. A.; Arrue, J.; Ayesta, I.; Jiménez, F.; Zubia, J.; Bikandi, I.; Tagaya, A.; Koike, Y.

    2014-03-01

    In this work we perform a detailed experimental and theoretical analysis of the properties of amplified spontaneous emission (ASE) in a rhodamine-6G-doped graded-index polymer optical fiber when the fiber is pumped either longitudinally or transversally with respect to the fiber axis. The dependence of the ASE threshold and efficiency on fiber length has been compared for both schemes of excitation. A theoretical model for longitudinal excitation has been carried out by means of the laser rate equations as functions of time, distance traveled by light and wavelength. The analysis takes into account that the fiber is a typical graded-index POF in which the radial distributions of light power density and dye concentration are not uniform. The theoretical calculations agree satisfactorily with the experimental results. The photodegradation of the ASE intensity has also been measured for both pumping schemes.

  7. Behaviour of reinforced concrete slabs with steel fibers

    Science.gov (United States)

    Baarimah, A. O.; Syed Mohsin, S. M.

    2017-11-01

    This paper investigates the potential effect of steel fiber added into reinforced concrete slabs. Four-point bending test is conducted on six slabs to investigate the structural behaviour of the slabs by considering two different parameters; (i) thickness of slab (ii) volume fraction of steel fiber. The experimental work consists of six slabs, in which three slabs are designed in accordance to Eurocode 2 to fulfil shear capacity characteristic, whereas, the other three slabs are designed with 17% less thickness, intended to fail in shear. Both series of slabs are added with steel fiber with a volume fraction of Vf = 0%, Vf = 1% and Vf = 2% in order to study the effect and potential of fiber to compensate the loss in shear capacity. The slab with Vf = 0% steel fiber and no reduction in thickness is taken as the control slab. The experimental result suggests promising improvement of the load carrying capacity (up to 32%) and ductility (up to 87%) as well as delayed in crack propagation for the slabs with Vf = 2%. In addition, it is observed that addition of fibers compensates the reduction in the slab thickness as well as changes the failure mode of the slab from brittle to a more ductile manner.

  8. Effect of kenaf fiber in reinforced concrete slab

    Science.gov (United States)

    Syed Mohsin, S. M.; Baarimah, A. O.; Jokhio, G. A.

    2018-04-01

    The effect of kenaf fibers in reinforced concrete slab with different thickness is discusses and presented in this paper. Kenaf fiber is a type of natural fiber and is added in the reinforced concrete slab to improve the structure strength and ductility. For this study, three types of mixtures were prepared with fiber volume fraction of 0%, 1% and 2%, respectively. The design compressive strength considered was 20 MPa. Six cubes were prepared to be tested at 7th and 28th day. A total of six reinforced concrete slab with two variances of thickness were also prepared and tested under four-point bending test. The differences in the thickness is to study the potential of kenaf fiber to serve as part of shear reinforcement in reinforced concrete slab that was design to fail in shear. It was observed that, addition of kenaf fiber in reinforced concrete slab improves the flexural strength and ductility of the reinforced concrete slab. In the slab with reduction in thickness, the mode of failure change from brittle to ductile with the inclusion of kenaf fiber.

  9. Near-infrared multispectral photoacoustic microscopy using a graded-index fiber amplifier

    Directory of Open Access Journals (Sweden)

    Takashi Buma

    2016-09-01

    Full Text Available We demonstrate optical resolution photoacoustic microscopy (OR-PAM of lipid-rich tissue using a multi-wavelength pulsed laser based on nonlinear fiber optics. 1047 nm laser pulses are converted to 1098, 1153, 1215, and 1270 nm pulses via stimulated Raman scattering in a graded-index multimode fiber. Multispectral PAM of a lipid phantom is demonstrated with our low-cost and simple technique.

  10. Graded-index fiber tip optical tweezers: numerical simulation and trapping experiment.

    Science.gov (United States)

    Gong, Yuan; Ye, Ai-Yan; Wu, Yu; Rao, Yun-Jiang; Yao, Yao; Xiao, Song

    2013-07-01

    Optical fiber tweezers based on a graded-index multimode fiber (GIMMF) tip is proposed. Light propagation characteristics and gradient force distribution near the GIMMF tip are numerically investigated, which are further compared with that of optical fiber tips based on conventional single mode fibers. The simulated results indicated that by selecting optimal GIMMF length, the gradient force of the GIMMF tip tweezers is about 4 times higher than that of the SMF tip tweezers with a same shape. To prove the feasibility of such a new concept, optical trapping of yeast cells with a diameter of ~5 μm using the chemically-etched GIMMF tip is experimentally demonstrated and the trapping force is also calculated.

  11. Optimization of the buffer layer of a side polished fiber slab coupler based on 3 D ADI beam propagation method

    International Nuclear Information System (INIS)

    Lee, Cherl Hee; Kim, Cheol; Park, Jae Hee

    2008-01-01

    A side polished fiber slab coupler has been widely applied to a sensor, which has the advantages of short response time, simple manufacturing process, and reusability as well as in line fiber component. A new type of a side polished fiber sensor providing remote sensing with an improved performance was also recently developed. The side polished fiber slab coupler is modeled as a fiber to planar waveguide coupler with four layers, including the fiber cladding, a buffer layer, planar waveguide and overlay material. The coupling effects by the buffer layer of a side polished fiber slab coupler are analyzed by using 3 dimensional alternating direction implicit (ADI)beam propagation method, where the refractive index and thickness of the buffer layer were tuned for efficient light coupling. The coupling is easily tuned and more occurred by the refractive index and thickness of the buffer layer for efficient coupling. This study tried to optimize the buffer layer parameters for achieving the desired light coupling and power transfer performance

  12. Low-cost and high-capacity short-range optical interconnects using graded-index plastic optical fiber

    NARCIS (Netherlands)

    Tangdiongga, E.; Yang, H.; Lee, S.C.J.; Okonkwo, C.M.; Boom, van den H.P.A.; Randel, S.; Koonen, A.M.J.

    2010-01-01

    We demonstrate a transmission rate of 51.8 Gb/s over 100-meters of perfluorinated multimode graded-index plastic optical fiber using discrete multitone modulation. The results prove suitability of plastic fibers for low-cost high-capacity optical interconnects.

  13. Exploit the Bandwidth Capacities of the Perfluorinated Graded Index Polymer Optical Fiber for Multi-Services Distribution

    Directory of Open Access Journals (Sweden)

    Paul Alain Rolland

    2011-06-01

    Full Text Available The study reported here deals with the exploitation of perfluorinated graded index polymer optical fiber bandwidth to add further services in a home/office network. The fiber properties are exhibited in order to check if perfluorinated graded index plastic optical fiber (PFGI-POF is suitable to support a multiplexing transmission. According to the high bandwidth length of plastic fibers, both at 850 nm and 1,300 nm, the extension of the classical baseband existing network is proposed to achieve a dual concept, allowing the indoor coverage of wireless signals transmitted using the Radio over Fiber technology. The simultaneous transmission of a 10 GbE signal and a wireless signal is done respectively at 850 nm and 1,300 nm on a single plastic fiber using wavelength division multiplexing commercially available devices. The penalties have been evaluated both in digital (Bit Error Rate measurement and radiofrequency (Error Vector Magnitude measurement domains.

  14. Streak camera measurements of laser pulse temporal dispersion in short graded-index optical fibers

    International Nuclear Information System (INIS)

    Lerche, R.A.; Phillips, G.E.

    1981-01-01

    Streak camera measurements were used to determine temporal dispersion in short (5 to 30 meter) graded-index optical fibers. Results show that 50-ps, 1.06-μm and 0.53-μm laser pulses can be propagated without significant dispersion when care is taken to prevent propagation of energy in fiber cladding modes

  15. Nonlinear High-Energy Pulse Propagation in Graded-Index Multimode Optical Fibers for Mode-Locked Fiber Lasers

    Science.gov (United States)

    2014-12-23

    power kW at nm in a C-GIMF segment in the lowest order mode ; this pulse can be ob- tained from a typical titanium –sapphire mode-locked laser . A much...single- andmulticore double- clad and PCF lasers . He was a Senior Research Scientist at Corning Inc. from 2005 to 2008. He is currently an Assistant...High-Energy Pulse Propagation in Graded-Index Multimode Optical Fibers for Mode-Locked Fiber Lasers 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1

  16. Near field intensity pattern at the output of silica-based graded-index multimode fibers under selective excitation with a single-mode fiber

    NARCIS (Netherlands)

    Tsekrekos, C.P.; Smink, R.W.; Hon, de B.P.; Tijhuis, A.G.; Koonen, A.M.J.

    2007-01-01

    Abstract: Selective excitation of graded-index multimode fibers (GIMMFs) with a single-mode fiber (SMF) has gained increased interest for telecommunication applications. It has been proposed as a way to enhance the transmission bandwidth of GI-MMF links and/or create parallel communication channels

  17. Analysis of the Behaviour of Composite Steel and Steel Fiber Reinforced Concrete Slabs

    Directory of Open Access Journals (Sweden)

    Mindaugas Petkevičius

    2011-04-01

    Full Text Available There was a pending influence of steel fiber on the strength and stiffness of composite steel–concrete slabs under statical short–time load. Steel profiled sheeting and steel fiber reinforced concrete were used for specimens. Four composite slabs were made. Experimental investigations into the behaviour and influence of steel fiber reinforced concrete in composite slabs were conducted. Transverse, longitudinal, shear deformation and deflection of the slab were measured. The results indicated that the use of steel fiber in composite slabs was effective: strength was 20–24 % higher and the meanings of deflections under the action of the bending moment were 0,6MR (where MR is the bending moment at failure of the slabs and were 16–18 % lower for slabs with usual concrete. Article in Lithuanian

  18. Optimization of the Refractive-Index Distribution of Graded-Index Polymer Optical Fiber by the Diffusion-Assisted Fabrication Process

    Science.gov (United States)

    Mukawa, Yoshiki; Kondo, Atsushi; Koike, Yasuhiro

    2012-04-01

    Graded-index polymer optical fiber (GI-POF) is a promising high-speed communication medium for very-short-reach networks, such as home or office networks. The refractive-index distribution of GI-POF needs to be accurately controlled to maximize the bandwidth. We attempted to control the refractive-index distribution by developing a simulation for dopant diffusion. In the rod-in-tube method, GI-POF with an optimal refractive-index distribution was obtained by adjusting the diffusion temperature and the diffusion time, whereas in the coextrusion process, GI-POF with an optimal refractive-index distribution was fabricated by controlling the length of the diffusion tube and the rate of discharge of polymer.

  19. 40-Gb/s transmission over 100m graded-index plastic optical fiber based on discrete multitone modulation

    NARCIS (Netherlands)

    Yang, H.; Lee, S.C.J.; Tangdiongga, E.; Breyer, F.; Randel, S.; Koonen, A.M.J.

    2009-01-01

    Spectral-efficient 40-Gb/s discrete multitone transmission over 100m of graded-index plastic optical fiber is experimentally demonstrated by intensity-modulation of a 10-GHz DFB-laser (1302nm) and direct-detection with a 25-µm large diameter photodetector.

  20. High Performance Slab-on-Grade Foundation Insulation Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Mosiman, Garrett E. [NorthernSTAR, St. Paul, MN (United States)

    2015-09-01

    ?A more accurate assessment of SOG foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulation at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated). The optimum insulation strategy was applied to single and multi-family residential buildings in climate zone 4 - 7. The highest site energy savings of 5% was realized for a single family home in Duluth, MN, and the lowest savings of 1.4 % for a 4-unit townhouse in Richmond, VA. SOG foundation insulation retrofit simple paybacks ranged from 18 to 47 years. There are other benefits of SOG foundation insulation resulting from the increase in the slab surface temperatures. These include increased occupant thermal comfort, and a decrease in slab surface condensation particularly around the slab perimeter.

  1. Cohesive cracked-hinge model for simulation of fracture in one-way slabs on grade

    DEFF Research Database (Denmark)

    Skar, Asmus; Poulsen, Peter Noe; Olesen, John Forbes

    2017-01-01

    Numerical analysis of slab on grade structures subjected to mechanical loads is a complex matter often requiring computationally expensive models. In order to develop a simplified and general concept for non-linear analysis of slab on grade structures, this paper presents a cohesive cracked-hinge...

  2. Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Stefani, Alessio

    2016-01-01

    We have fabricated the first single-mode step-index and humidity insensitive polymer optical fiber operating in the 850 nm wavelength ranges. The step-index preform is fabricated using injection molding, which is an efficient method for cost effective, flexible and fast preparation of the fiber...... preform. The fabricated single-mode step-index (SI) polymer optical fiber (POF) has a 4.8µm core made from TOPAS grade 5013S-04 with a glass transition temperature of 134°C and a 150 µm cladding made from ZEONEX grade 480R with a glass transition temperature of 138°C. The key advantages of the proposed...... SIPOF are low water absorption, high operating temperature and chemical inertness to acids and bases and many polar solvents as compared to the conventional poly-methyl-methacrylate (PMMA) and polystyrene based POFs. In addition, the fiber Bragg grating writing time is short compared to microstructured...

  3. Space-division-multiplexed transmission of 3x3 multiple-input multiple-output wireless signals over conventional graded-index multimode fiber

    NARCIS (Netherlands)

    Lei, Yi; Li, Jianqiang; Fan, Yuting; Yu, Dawei; Fu, Songnian; Yin, Feifei; Dai, Yitang; Xu, Kun

    2016-01-01

    In this paper, we experimentally demonstrate space-division-multiplexed (SDM) transmission of IEEE 802.11ac-compliant 3-spatial-stream WLAN signals over 3 spatial modes of conventional 50um graded-index (GI) multimode fiber (MMF) employing non-mode-selective 3D-waveguide photonic lantern. Two kinds

  4. Behaviour of fiber reinforced concrete slabs under impact loading

    International Nuclear Information System (INIS)

    Huelsewig, M.; Stilp, A.; Pahl, H.

    1982-01-01

    The behaviour of steel fiber reinforced concrete slabs under impact loads has been investigated. The results obtained show that fracturing and spallation effects are reduced to a large extend due to the high energy absorption and the increased yield strength of this material. Crater depths are comparable to those obtained using normal concrete targets. Systematic tests using different fiber types and dimensions show that the terminal ballistic behaviour is strongly dependent on these parameters. (orig.) [de

  5. Space-division-multiplexed transmission of 3x3 multiple-input multiple-output wireless signals over conventional graded-index multimode fiber.

    Science.gov (United States)

    Lei, Yi; Li, Jianqiang; Fan, Yuting; Yu, Dawei; Fu, Songnian; Yin, Feifei; Dai, Yitang; Xu, Kun

    2016-12-12

    In this paper, we experimentally demonstrate space-division-multiplexed (SDM) transmission of IEEE 802.11ac-compliant 3-spatial-stream WLAN signals over 3 spatial modes of conventional 50um graded-index (GI) multimode fiber (MMF) employing non-mode-selective 3D-waveguide photonic lantern. Two kinds of scenarios, including fiber-only transmission and fiber-wireless hybrid transmission, were investigated by measuring error vector magnitude (EVM) performance for each stream and condition number (CN) of the channel matrix. The experimental results show that, SDM-based MMF link could offer a CNwireless MIMO signals over existing in-building commercially-available MMFs with enormous cost-saving.

  6. Automated grading of wood-slabs. The development of a prototype system

    DEFF Research Database (Denmark)

    Ersbøll, Bjarne Kjær; Conradsen, Knut

    1992-01-01

    This paper proposes a method for automatically grading small beechwood slabs. The method involves two classification steps: the first step detects defects based on local visual texture; the second step utilizes the relative distribution of defects to perform a final grading assessment. At a major...... as much as possible. A vast range of types of defects has to be considered when the grading is done. This and the fact that wood is a 'natural' material means it is not easily described using ordinary vision systems. The proposed method assumes a 3-D feature space which depends on local texture......-based measures of 'lightness', 'speckle' and 'dark deviation'. These measures are calculated for each pixel in an image of a slab. The feature space is separated into 12 decision regions corresponding to 12 'defect types'; these 'defects' are labeled as clear wood, wavy grain, split, black knots, ingrown bark...

  7. High-Performance Slab-on-Grade Foundation Insulation Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Mosiman, Garrett E. [NorthernSTAR, St. Paul, MN (United States)

    2015-09-01

    A more accurate assessment of slab-on-grade foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulation at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated).

  8. Graded-index fibers, Wigner-distribution functions, and the fractional Fourier transform.

    Science.gov (United States)

    Mendlovic, D; Ozaktas, H M; Lohmann, A W

    1994-09-10

    Two definitions of a fractional Fourier transform have been proposed previously. One is based on the propagation of a wave field through a graded-index medium, and the other is based on rotating a function's Wigner distribution. It is shown that both definitions are equivalent. An important result of this equivalency is that the Wigner distribution of a wave field rotates as the wave field propagates through a quadratic graded-index medium. The relation with ray-optics phase space is discussed.

  9. Overlap relation between free-space Laguerre Gaussian modes and step-index fiber modes

    CSIR Research Space (South Africa)

    Bruning, R

    2015-09-01

    Full Text Available to control the optical proper- ties of the emerging beam or the excited field distributions at the fiber input. The simplest connection is given by fibers with an parabolic refractive index profile, typical of graded-index fibers, whose modes can be described..., in general free space modes are not suitable to excite selective pure fiber modes and additional beam shaping techniques are required, such as the use of computer generated holograms [5]. The main disadvan- tages of such beam shaping techniques are the low...

  10. Classical entropy generation analysis in cooled homogenous and functionally graded material slabs with variation of internal heat generation with temperature, and convective–radiative boundary conditions

    International Nuclear Information System (INIS)

    Torabi, Mohsen; Zhang, Kaili

    2014-01-01

    This article investigates the classical entropy generation in cooled slabs. Two types of materials are assumed for the slab: homogeneous material and FGM (functionally graded material). For the homogeneous material, the thermal conductivity is assumed to be a linear function of temperature, while for the FGM slab the thermal conductivity is modeled to vary in accordance with the rule of mixtures. The boundary conditions are assumed to be convective and radiative concurrently, and the internal heat generation of the slab is a linear function of temperature. Using the DTM (differential transformation method) and resultant temperature fields from the DTM, the local and total entropy generation rates within slabs are derived. The effects of physically applicable parameters such as the thermal conductivity parameter for the homogenous slab, β, the thermal conductivity parameter for the FGM slab, γ, gradient index, j, internal heat generation parameter, Q, Biot number at the right side, Nc 2 , conduction–radiation parameter, Nr 2 , dimensionless convection sink temperature, δ, and dimensionless radiation sink temperature, η, on the local and total entropy generation rates are illustrated and explained. The results demonstrate that considering temperature- or coordinate-dependent thermal conductivity and radiation heat transfer at both sides of the slab have great effects on the entropy generation. - Highlights: • The paper investigates entropy generation in a slab due to heat generation and convective–radiative boundary conditions. • Both homogeneous material and FGM (functionally graded material) were considered. • The calculations are carried out using the differential transformation method which is a well-tested analytical technique

  11. Slab-coupled optical sensor fabrication using side-polished Panda fibers.

    Science.gov (United States)

    King, Rex; Seng, Frederick; Stan, Nikola; Cuzner, Kevin; Josephson, Chad; Selfridge, Richard; Schultz, Stephen

    2016-11-01

    A new device structure used for slab-coupled optical sensor (SCOS) technology was developed to fabricate electric field sensors. This new device structure replaces the D-fiber used in traditional SCOS technology with a side-polished Panda fiber. Unlike the D-fiber SCOS, the Panda fiber SCOS is made from commercially available materials and is simpler to fabricate. The Panda SCOS interfaces easier with lab equipment and exhibits ∼3  dB less loss at link points than the D-fiber SCOS. The optical system for the D-fiber is bandwidth limited by a transimpedance amplifier (TIA) used to amplify to the electric signal. The Panda SCOS exhibits less loss than the D-fiber and, as a result, does not require as high a gain setting on the TIA, which results in an overall higher bandwidth range. Results show that the Panda sensor also achieves comparable sensitivity results to the D-fiber SCOS. Although the Panda SCOS is not as sensitive as other side-polished fiber electric field sensors, it can be fabricated much easier because the fabrication process does not require special alignment techniques, and it is made from commercially available materials.

  12. Repairing reinforced concrete slabs using composite layers

    International Nuclear Information System (INIS)

    Naghibdehi, M. Ghasemi; Sharbatdar, M.K.; Mastali, M.

    2014-01-01

    There are several strengthening methods for rehabilitation of RC structural elements. The efficiency of these methods has been demonstrated by many researchers. Due to their mechanical properties, using fibrous materials in rehabilitation applications is growing fast. Therefore, this study presents rehabilitation of slabs in such a way that plain concrete layers on top, on bottom, on the entire cross section are replaced by reinforced concrete layers. In order to reinforce the concrete, Polypropylene (PP) and steel fibers were used by 0.5%, 1% and 2% fiber volume fractions. Nineteen slabs were studied under flexural loadings and fibrous material effects on the initial crack force, the maximum loading carrying capacity, absorbed energy and ductility were investigated. The obtained results demonstrated that increasing the fiber volume fraction or using reinforced concrete layer on top, bottom, or at the entire cross section of the slabs not only always leads to improvement in the slab performance, but also sometimes debilitates the slab performance. Hence, this study will propose the best positioning of reinforced concrete layer, fiber volume fraction and fiber type to achieve the best flexural performance of slabs. - Highlights: • Using PP fibers at the bottom layer led to the best slab performance in bending. • Using steel fiber at the top layer and entire cross-section led to the best slab performance. • Maximum increase in the initial crack force and loading were obtained at 2% steel fiber. • Maximum increase in the initial crack force and loading were obtained at 1% PP fiber

  13. Thermal and strength performance of reinforced self-compacting concrete slabs mixed with basalt and PVA fibers in high intensity fire

    Directory of Open Access Journals (Sweden)

    Mohd Jani Noraniza

    2017-01-01

    Full Text Available Fibers addition to concrete and the innovation of self-compacting concrete technology lead to the development of high-performance concrete. However, high intensity fire may adversely affect the performance of this type of concrete. A series of fire resistance test experiments to evaluate the performance of fiber reinforced self-compacting concrete (FR-SCC slabs consisting of various mix of basalt and PVA fibers were carried out by subjecting the concrete slabs as an element of construction to high intensity Hydrocarbon fire heating condition. The fire testing condition was in accordance with the standard time-temperature fire curve for 120 minutes up to 1100°C heating temperature. The temperatures on the surface and within the concrete slabs were recorded and the performance of each type of FRSCC slabs were evaluated. The performance of Basalt FR-SCC was found to be more resistant to fire in comparison to PVA FRSCC. There residual compressive strength of core samples were tested and SEM analysis were carried out to determine the effect of high intensity fire on the basalt and PVA FR-SCC slabs.

  14. Propagation Properties of Airy Beam through Periodic Slab System with Negative Index Materials

    Directory of Open Access Journals (Sweden)

    Long Jin

    2018-01-01

    Full Text Available Based on light transfer matrix and electric field vector equation, the evolution of Airy beam propagating in periodic slab system with three negative index materials (NIMs and its transmission mechanism are investigated. The intensity profiles on emergent surface of periodic slab system and side view of Airy beam propagating in each right handed material (RHM and double negative material (DNM unit including lossless and losses DNMs are discussed. It is revealed that the self-recovery Airy beam can be achieved in long distance by using lossless periodic slab system as long as the negative refractive index nl=-nr and each unit length L=Z. As to losses slab system contained DNMs, the smaller the collision frequencies are, the better the Airy beam quality is formed. It is expected that the proposed manner of beam transmission and corresponding conclusions can be useful for extension applications of optical control, especially for optical communication and optical encryption technique.

  15. Monte Carlo simulation of radiative transfer in scattering, emitting, absorbing slab with gradient index

    International Nuclear Information System (INIS)

    Huang Yong; Liang Xingang; Xia Xinlin

    2005-01-01

    The Monte Carlo method is used to simulate the thermal emission of absorbing-emitting-scattering slab with gradient index. Three Monte Carlo ray-tracing strategies are considered. The first strategy is keeping the real distribution of the refractive index and to trace bundles in a curve route. The second strategy is discretizing the slab into sub-layers, each having constant refractive index. The bundle is traced in a straight route in each sub-layer and the reflection at the inner interface is taken into account. The third strategy is similar to the second one but only the total reflection at the inner interface is computed. Little difference is observed among the results of apparent thermal emission by these three different Monte Carlo ray tracing strategies. The results also show that the apparent hemispherical emissivity non-monotonously varies with increasing optical thickness of the slab with strong scattering gradient index. Many parameters can influence the apparent thermal emission greatly

  16. Properties of textile grade ceramic fibers

    International Nuclear Information System (INIS)

    Pudnos, E.

    1992-01-01

    The availability of textile grade ceramic fibers has sparked great interest for applications in composite reinforcement and high temperature insulation. This paper summarizes the properties of various small diameter textile grade ceramic fibers currently available. Room temperature mechanical and electrical properties of the fibers are discussed for three cases: ambient conditions, after heat aging in argon, and after heat aging in wet air. Dow Corning (R) HPZ Ceramic Fiber, a silicon nitride type fiber, is shown to have improved retention of mechanical and electrical properties above 1200 C

  17. Micro-deformation measurement on the concrete roadway surface slabs using Fiber Bragg Grating and analysis by computational simulation

    Energy Technology Data Exchange (ETDEWEB)

    Serpa, C M; Gomez, N D [Instituto Tecnologico Metropolitano Institucion Universitaria (ITM), Medellin A. A. 54954 (Colombia); Velez, F J, E-mail: claudiaserpa@itm.edu.co [Universidad EAFIT, Medellin (Colombia)

    2011-01-01

    This work shows a non-invasive method for micro-deformation measurements on concrete structures using Bragg grating sensors in optical fibers adhered to the surface. We present the measurements on roadway slabs under a load of 10 kN, and we find an approximated ratio of 2:1 between the deformation registered by the sensors and the values from a computational simulation with the finite element method. We propose the use of these sensors for structural monitoring of the slabs and this installation shape for avoiding bends that can damage the edges in the optical fiber in embebed sensors in vertical shape.

  18. Predicting fiber refractive index from a measured preform index profile

    Science.gov (United States)

    Kiiveri, P.; Koponen, J.; Harra, J.; Novotny, S.; Husu, H.; Ihalainen, H.; Kokki, T.; Aallos, V.; Kimmelma, O.; Paul, J.

    2018-02-01

    When producing fiber lasers and amplifiers, silica glass compositions consisting of three to six different materials are needed. Due to the varying needs of different applications, substantial number of different glass compositions are used in the active fiber structures. Often it is not possible to find material parameters for theoretical models to estimate thermal and mechanical properties of those glass compositions. This makes it challenging to predict accurately fiber core refractive index values, even if the preform index profile is measured. Usually the desired fiber refractive index value is achieved experimentally, which is expensive. To overcome this problem, we analyzed statistically the changes between the measured preform and fiber index values. We searched for correlations that would help to predict the Δn-value change from preform to fiber in a situation where we don't know the values of the glass material parameters that define the change. Our index change models were built using the data collected from preforms and fibers made by the Direct Nanoparticle Deposition (DND) technology.

  19. Structural Test and Analysis of RC Slab After Fire Loading

    International Nuclear Information System (INIS)

    Chung, Chulhun; Im, Cho Rong; Park, Jaegyun

    2013-01-01

    In the present study the behavior of fire and the residual strength of fire-ignited RC slabs are investigated by experimental tests and numerical simulations. The fire tests of RC slabs were carried out in a furnace using the ISO 834 standard fire. The load capacity of the cooled RC slabs that were not loaded during the fire tests was evaluated by additional 3 point bending tests. The influence of the proportion of PP (polypropylene) fibers in the RC slabs on the structural behavior of the RC slabs after the fire loading was investigated. The results of the fire tests showed that the maximum temperature of concrete with PP fiber was lower than that of concrete without PP fiber. As the concrete was heated, the ultimate compressive strength decreased and the ultimate strain increased. The load-deflection relations of RC slabs after fire loading were compared by using existing stress-strain-temperature models. The comparison between the numerical analysis and the experimental tests showed that some numerical analyses were reliable and therefore, can be applied to evaluate the ultimate load of RC slabs after fire loading. The ultimate load capacity after cooling down the RC slabs without PP fiber showed a considerable reduction from that of the RC slabs with PP fiber

  20. Structural Test and Analysis of RC Slab After Fire Loading

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chulhun; Im, Cho Rong; Park, Jaegyun [Dankook Univ., Yongin (Korea, Republic of)

    2013-04-15

    In the present study the behavior of fire and the residual strength of fire-ignited RC slabs are investigated by experimental tests and numerical simulations. The fire tests of RC slabs were carried out in a furnace using the ISO 834 standard fire. The load capacity of the cooled RC slabs that were not loaded during the fire tests was evaluated by additional 3 point bending tests. The influence of the proportion of PP (polypropylene) fibers in the RC slabs on the structural behavior of the RC slabs after the fire loading was investigated. The results of the fire tests showed that the maximum temperature of concrete with PP fiber was lower than that of concrete without PP fiber. As the concrete was heated, the ultimate compressive strength decreased and the ultimate strain increased. The load-deflection relations of RC slabs after fire loading were compared by using existing stress-strain-temperature models. The comparison between the numerical analysis and the experimental tests showed that some numerical analyses were reliable and therefore, can be applied to evaluate the ultimate load of RC slabs after fire loading. The ultimate load capacity after cooling down the RC slabs without PP fiber showed a considerable reduction from that of the RC slabs with PP fiber.

  1. Fast and accurate modeling of nonlinear pulse propagation in graded-index multimode fibers.

    Science.gov (United States)

    Conforti, Matteo; Mas Arabi, Carlos; Mussot, Arnaud; Kudlinski, Alexandre

    2017-10-01

    We develop a model for the description of nonlinear pulse propagation in multimode optical fibers with a parabolic refractive index profile. It consists of a 1+1D generalized nonlinear Schrödinger equation with a periodic nonlinear coefficient, which can be solved in an extremely fast and efficient way. The model is able to quantitatively reproduce recently observed phenomena like geometric parametric instability and broadband dispersive wave emission. We envisage that our equation will represent a valuable tool for the study of spatiotemporal nonlinear dynamics in the growing field of multimode fiber optics.

  2. Parametric performance of circumferentially grooved heat pipes with homogeneous and graded-porosity slab wicks at cryogenic temperatures. [methane and ethane working fluids

    Science.gov (United States)

    Groll, M.; Pittman, R. B.; Eninger, J. E.

    1976-01-01

    A recently developed, potentially high-performance nonarterial wick was extensively tested. This slab wick has an axially varying porosity which can be tailored to match the local stress imposed on the wick. The purpose of the tests was to establish the usefulness of the graded-porosity slab wick at cryogenic temperatures between 110 and 260 K, with methane and ethane as working fluids. For comparison, a homogeneous (i.e., uniform porosity) slab wick was also tested. The tests included: maximum heat pipe performance as a function of fluid inventory, maximum performance as a function of operating temperature, maximum performance as a function of evaporator elevation, and influence of slab wick orientation on performance. The experimental data were compared with theoretical predictions obtained with the GRADE computer program.

  3. Behavior of hybrid high-strength fiber reinforced concrete slab-column connections under the effect of high tempera

    Directory of Open Access Journals (Sweden)

    Reham H. Ahmed

    2016-04-01

    Full Text Available Concrete can be modified to perform in a more ductile form by the addition of randomly distributed discrete fibers in the concrete matrix. The combined effect of the addition of two types of fibers (steel fiber and polypropylene fiber with different percentages to concrete matrix, which is called hybrid effect is currently under investigation worldwide. The current research work presents the conducted experimental program to observe the behavior of hybrid high strength reinforced concrete slab-column connections under the effect of high temperature. For this purpose, ten slab-column connections were casted and tested. The experimental program was designed to investigate the effect of different variables such as concrete mixture, column location and temperature fighting system. All specimens were exposed to a temperature of 500 °C for duration of two hours. To observe the effect of each variable, specimens were divided into four groups according to the studied parameters. The test results revealed that using hybrid high strength concrete HFHSC produced more strength in punching failure compared with high strength concrete HSC when exposed to elevated temperature. Fighting by air had higher initial crack load compared with that for without fighting and fighting by water. On the other hand, fighting by water decreased the ultimate load.

  4. Use of wet concrete spraying in building technology of reinforced-concrete fiber slabs according to «Monofant» system

    OpenAIRE

    BUGAYEVSKIY S.

    2016-01-01

    Technology of cementation of reinforced-concrete slabs with non-extractable-liners for the «Monofant» system, using wet concrete spraying is implemented. A compression test for obtained columns made of fiber concrete is carried out.

  5. Will bottle-grade PET demand lure fiber-grade capacity?

    International Nuclear Information System (INIS)

    Coeyman, M.

    1993-01-01

    As demand for bottle-grade polyethylene terephthalate (PET) continues strong and new capacity hastens to meet it, some industry observers wonder if conversions to bottle-grade from fiber-grade capacity will become an industry trend. Taiwan's Nan Ya Plastics was recently said to be considering such a switch, but company sources say it has no such plans. Peter Driscoll, senior partner at PCI Fibres ampersand Raw Materials (Crawley, UK), says that while it is true that demand for the bottle-grade material remains unsatisfied, he doubts that many conversions will take place. You must remember, says Driscoll, that it is not always possible to switch, and that even where it is possible there are limitations

  6. Effect of CFRP and TRM Strengthening of RC Slabs on Punching Shear Strength

    Directory of Open Access Journals (Sweden)

    Husain Abbas

    Full Text Available Abstract The paper presents experiments involving punching of RC slabs strengthened using externally bonded carbon fiber reinforced polymer (CFRP sheet and textile reinforced mortar (TRM. Twelve RC slab specimens of two concrete grades (39.9 and 63.2 MPa and employing two strengthening schemes (CFRP and TRM were tested. Specimens were supported on two opposite edges. Experimental load-displacement variations show two peak loads in strengthened slabs and one peak followed by a plateau in control. Second peak or the plateau corresponds to the combined action of aggregate interlock and the dowel action of back face rebars and strengthening layers. The dowel action of back face rebars and strengthening layers had no role in ultimate punching load (i.e. first peak. Strengthened slabs showed 9-18% increase in ultimate punching load (i.e. first peak whereas there was significant increase in the second peak load (190-276% for CFRP; 55-136% for TRM and energy absorption (~66% for CFRP and 22-56% for TRM. An analytical model was also developed for predicting the punching shear strength (first and second peaks of strengthened slabs showing good comparison with experiments.

  7. Modeling radon entry into Florida slab-on-grade houses

    International Nuclear Information System (INIS)

    Revzan, K.L.; Fisk, W.J.; Sextro, R.G.

    1993-01-01

    Radon entry into a Florida house whose concrete slab is supported by a permeable concrete-block stem wall and a concrete footer is modeled. The slab rests on backfill material; the same material is used to fill the footer trench. A region of undisturbed soil is assumed to extend 10 m beyond and below the footer. The soil is assumed homogeneous and isotropic except for certain simulations in which soil layers of high permeability or radium content are introduced. Depressurization of the house induces a pressure field in the soil and backfill. The Laplace equation, resulting from Darcy's law and the continuity equation, is solved using a steady-state finite-difference model to determine this field. The mass-transport equation is then solved to obtain the diffusive and advective radon entry rates through the slab; the permeable stem wall; gaps at the intersections of the slab, stem wall, and footer; and gaps in the slab. These rates are determined for variable soil, backfill, and stem-wall permeability and radium content, slab-opening width and position, slab and stem-wall diffusivity, and water table depth. The variations in soil permeability and radium content include cases of horizontally stratified soil. We also consider the effect of a gap between the edge of the slab and the stem wall that restricts the passage of soil gas from the stem wall into the house. Calculations indicate that the total radon entry rate is relatively low unless the soil or backfill permeability or radium content is high. Variations in most of the factors, other than the soil permeability and radium content, have only a small effect on the total radon entry rate. However, for a fixed soil permeability, the total radon entry rate may be reduced by a factor of 2 or more by decreasing the backfill permeability, by making the stem wall impermeable and gap-free, (possibly by constructing a one-piece slab/stem-wall/footer), or by increasing the pressure in the interior of the stem wall

  8. Uncladded sensing fiber for refractive index measurement

    International Nuclear Information System (INIS)

    Bhardwaj, V.; Gangwar, R. K.; Pathak, A. K.; Singh, V. K.

    2016-01-01

    The formation of chemically etched optical fiber for use in refractive index sensor is addressed. This presented design of a refractive index (RI) sensor is based on recording the power loss exhibited by radiation propagating through an etched multimode fiber (MMF) immersed in the liquid under study. The decreasing diameters of fibers are found to be strongly dependent on the temperature and etchant composition. This experiment was performed for different unclad etched fibers for same sensing length and the RI changes from 1.33 RIU to 1.38 RIU. When the multimode fiber (MMF) is etched for 12 hours the sensitivity of the sensor is approximately 204.25dBm/RIU, which is larger than without etched fiber having sensitivity 127.2dBm/RIU.

  9. Uncladded sensing fiber for refractive index measurement

    Science.gov (United States)

    Bhardwaj, V.; Gangwar, R. K.; Pathak, A. K.; Singh, V. K.

    2016-05-01

    The formation of chemically etched optical fiber for use in refractive index sensor is addressed. This presented design of a refractive index (RI) sensor is based on recording the power loss exhibited by radiation propagating through an etched multimode fiber (MMF) immersed in the liquid under study. The decreasing diameters of fibers are found to be strongly dependent on the temperature and etchant composition. This experiment was performed for different unclad etched fibers for same sensing length and the RI changes from 1.33 RIU to 1.38 RIU. When the multimode fiber (MMF) is etched for 12 hours the sensitivity of the sensor is approximately 204.25dBm/RIU, which is larger than without etched fiber having sensitivity 127.2dBm/RIU.

  10. Uncladded sensing fiber for refractive index measurement

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, V., E-mail: bhardwajphyism@gmail.com; Gangwar, R. K.; Pathak, A. K.; Singh, V. K. [Department of Applied Physics Indian School of Mines Dhanbad, Jharkhand (India)

    2016-05-06

    The formation of chemically etched optical fiber for use in refractive index sensor is addressed. This presented design of a refractive index (RI) sensor is based on recording the power loss exhibited by radiation propagating through an etched multimode fiber (MMF) immersed in the liquid under study. The decreasing diameters of fibers are found to be strongly dependent on the temperature and etchant composition. This experiment was performed for different unclad etched fibers for same sensing length and the RI changes from 1.33 RIU to 1.38 RIU. When the multimode fiber (MMF) is etched for 12 hours the sensitivity of the sensor is approximately 204.25dBm/RIU, which is larger than without etched fiber having sensitivity 127.2dBm/RIU.

  11. Refractive Index Sensor Using a Two-Hole Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Cortes, D; Sanchez-Mondragon, J J [Photonics and Optical Physics Laboratory, Optics Department, INAOE Apdo. Postal 51 and 216, Tonantzintla, Puebla 72000 (Mexico); Margulis, W [Department Fiber Photonics, ACREO, Electrum 236, 16440 Stockholm (Sweden); Dominguez-Cruz, R; May-Arrioja, D A, E-mail: darrioja@uat.edu.mx [Depto. de Ingenieria Electronica, UAM Reynosa Rodhe, Universidad Autonoma de Tamaulipas, Carr. Reynosa-San Fernando S/N, Reynosa, Tamaulipas 88779 (Mexico)

    2011-01-01

    We propose to use a twin-hole fiber to measure refractive index of liquids. The key idea is to have a single mode fiber (SMF) having two large air-holes running along the fiber length, the holes do not interact with the core. However, using wet chemical etching we can have access to the hole around the fiber, and further etching increases the holes diameter. The diameter is increased until the fiber exhibits a specific birefringence. Since the holes are open, by immersing the fiber in different liquids (n=1.33 to n=1.42) the value of the birefringence is modified and the refractive index of the liquid can be estimated from the change on the beat length. This process provides a very simple and highly sensitive mechanism for sensing refractive index in liquids, and can also be used for other applications.

  12. Discrete curved ray-tracing method for radiative transfer in an absorbing-emitting semitransparent slab with variable spatial refractive index

    International Nuclear Information System (INIS)

    Liu, L.H.

    2004-01-01

    A discrete curved ray-tracing method is developed to analyze the radiative transfer in one-dimensional absorbing-emitting semitransparent slab with variable spatial refractive index. The curved ray trajectory is locally treated as straight line and the complicated and time-consuming computation of ray trajectory is cut down. A problem of radiative equilibrium with linear variable spatial refractive index is taken as an example to examine the accuracy of the proposed method. The temperature distributions are determined by the proposed method and compared with the data in references, which are obtained by other different methods. The results show that the discrete curved ray-tracing method has a good accuracy in solving the radiative transfer in one-dimensional semitransparent slab with variable spatial refractive index

  13. Multimode optical fibers: steady state mode exciter.

    Science.gov (United States)

    Ikeda, M; Sugimura, A; Ikegami, T

    1976-09-01

    The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.

  14. Multimode optical fiber

    Science.gov (United States)

    Bigot-Astruc, Marianne; Molin, Denis; Sillard, Pierre

    2014-11-04

    A depressed graded-index multimode optical fiber includes a central core, an inner depressed cladding, a depressed trench, an outer depressed cladding, and an outer cladding. The central core has an alpha-index profile. The depressed claddings limit the impact of leaky modes on optical-fiber performance characteristics (e.g., bandwidth, core size, and/or numerical aperture).

  15. Mechanical Properties of Domestic T700 Grade Carbon Fibers/QY9611 BMI Matrix Composites

    Directory of Open Access Journals (Sweden)

    LI Guoli

    2017-04-01

    Full Text Available The morphologies,surface energies and surface chemical properties of the domestic T700 grade carbon fiber and the T700S carbon fiber were characterized by using scanning electronic microscopy (SEM, inverse gas chromatography(IGC and X-ray photoelectron spectroscopy (XPSrespectively.The mechanical properties of the two carbon fibers/QY9611 composites were also discussed. The results indicate that the surface properties of carbon fibers have an important influence on the interfacial properties of composites. The interfacial properties of domestic T700 grade carbon fibers/QY9611 composite at room temperature/dry conditions are superior to T700S/QY9611 composite. The toughness of domestic T700 grade carbon fibers/QY9611composite is outstanding as well. The value of CAI has reached the level of foreign advanced composite IM7/5250-4. After hydrothermal treatment,the interfacial strength of domestic T700 grade carbon fibers/QY9611 composite is equal to that of T700S/QY9611 composite. It shows that domestic T700 grade carbon fibers/QY9611 composite has good hydrothermal-resistant properties.

  16. Recent progress in high-power slab lasers in Japan

    International Nuclear Information System (INIS)

    Fujii, Y.

    1988-01-01

    Recently, many solid-state lasers have been widely employed in Japanese industries, especially in the electronics industries for precise and reliable processing. To expand the use of solid-state lasers and to achieve higher processing speed, the authors are developing slab lasers of high power, high repetition rate, and high beam quality. Metal processing systems with optical fibers for large and complex 3-D work, multiwork station systems linked to only one laser with optical fibers, and compact x-ray sources for lithography are promising areas for such lasers. Surnitomo Metal Mining is growing Nd:GGG and Nd:YAG crystals 60 mm in diameter and 200 mm long. From 2 at.% Nd-doped GGG crystals without central core regions. The authors obtained two slab materials with dimensions of 35 X 9 X 192 and 55 X 15 X 213 mm/sup 3/. By using the smaller slab, they constructed a slab laser and obtained 370-W laser output power at 24-kW lamp input power and 10-pps repetition rate. Now they are constructing a 1-kW slab laser using the other larger size slab

  17. Refractive index modulation in LiNbO3: MgO slab through Lamb wave

    Science.gov (United States)

    Prakash, Suraj; Sharma, Gaurav; Yadav, Gulab Chand; Singh, Vivek

    2018-05-01

    Present theoretical analysis deals with inducing refractive index contrast in Y-Z LiNbO3:MgO plate via GHz Lamb wave perturbation for photonic applications. Dispersion curves for Lamb wave in plate are plotted by employing displacement potential technique. Selecting wave parameters from dispersion curve, fundamental symmetric Lamb mode (S0) is excited in slab for 6GHz frequency. Produced displacement field by propagating S0 mode and thus developed strain is estimated to calculate refractive index modulation by applying photo-elastic relations. Modulated refractive index is of sinusoidal nature with period of modulation dependence on Lamb's wavelength. This plate having periodically modulated refractive index can be used as photonic crystal for different applications with acoustically tunable photonic band gap.

  18. Experimental refractive index determination of the optic fiber's core

    International Nuclear Information System (INIS)

    Oezelsoy, S.

    2005-01-01

    In this work, the Fresnel's fundamental Law was used to be able to obtain the refractive index of the fiber optic's core. The intensity of light reflected from the boundary between two mediums was measured by the optical powermeter (Melles Griot, Universal optical powermeter). In recent technology, the light that is illuminated from the light source can be transported to the boundary region and measured with minimum loss by using the optic fibers which make the measurement more sensitively. The liquid and the optic fiber's core whose refractive indices will be measured are the two mediums and the surface of the optic fiber's core is the boundary region. By dipping the fiber optic probe to the liquids, the reflected light intensities were measured with powermeter via Silicon Detector for single mode fiber and multimode fiber respectively to obtain the refractive index of the optic fiber's core. At this work, because of the using the diode laser with 661,4 nm (FWHM) and He-Ne laser with 632,8 nm (FWHM) the refractive indices were measured at this wavelengthes with the Refractometer (Abbe 60-70, Bellingham+Stanley). If the refractive indices of two mediums are equal, the light doesn't reflect from the boundary. The graphic is drawn depend upon the refractive index of the liquids versus the back reflected light energy and from the minimum point of the curve the effective refractive index of the fiber optic's core is calculated for 661,4 nm and 780 nm

  19. The Theory for the Dielectric Slab Waveguide with Complex Refractive Index Applied to GaAs Lasers

    DEFF Research Database (Denmark)

    Buus, Jens

    1977-01-01

    In this paper we investigate the homogeneous dielectric slab waveguide in the case of complex dielectric constants. A method for calculating the field distribution in a dielectric waveguide with an arbitrary symmetrical variation in the refractive index is developed, and some of the results are p...

  20. Microstructured optical fiber refractive index sensor

    DEFF Research Database (Denmark)

    Town, Graham E.; McCosker, Ravi; Yuan, Scott Wu

    2010-01-01

    We describe a dual-core microstructured optical fiber designed for refractive index sensing of fluids. We show that by using the exponential dependence of intercore coupling on analyte refractive index, both large range and high sensitivity can be achieved in the one device. We also show...

  1. Fast propagation of electromagnetic fields through graded-index media.

    Science.gov (United States)

    Zhong, Huiying; Zhang, Site; Shi, Rui; Hellmann, Christian; Wyrowski, Frank

    2018-04-01

    Graded-index (GRIN) media are widely used for modeling different situations: some components are designed considering GRIN modulation, e.g., multi-mode fibers, optical lenses, or acousto-optical modulators; on the other hand, there are other components where the refractive-index variation is undesired due to, e.g., stress or heating; and finally, some effects in nature are characterized by a GRIN variation, like turbulence in air or biological tissues. Modeling electromagnetic fields propagating in GRIN media is then of high importance for optical simulation and design. Though ray tracing can be used to evaluate some basic effects in GRIN media, the field properties are not considered and evaluated. The general physical optics techniques, like finite element method or finite difference time domain, can be used to calculate fields in GRIN media, but they need great numerical effort or may even be impractical for large-scale components. Therefore, there still exists a demand for a fast physical optics model of field propagation through GRIN media on a large scale, which will be explored in this paper.

  2. Finite-Element Investigation of the Structural Behavior of Basalt Fiber Reinforced Polymer (BFRP- Reinforced Self-Compacting Concrete (SCC Decks Slabs in Thompson Bridge

    Directory of Open Access Journals (Sweden)

    Lingzhu Zhou

    2018-06-01

    Full Text Available The need for a sustainable development and improved whole life performance of concrete infrastructure has led to the requirement of more durable and sustainable concrete bridges alongside accurate predictive analysis tools. Using the combination of Self-Compacting Concrete (SCC with industrial by-products and fiber-reinforced polymer (FRP, reinforcement is anticipated to address the concerns of high carbon footprint and corrosion in traditional steel-reinforced concrete structures. This paper presents a numerical investigation of the structural behavior of basalt fiber-reinforced polymer (BFRP-reinforced SCC deck slabs in a real bridge, named Thompson Bridge, constructed in Northern Ireland, U.K. A non-linear finite element (FE model is proposed by using ABAQUS 6.10 in this study, which is aimed at extending the previous investigation of the field test in Thompson Bridge. The results of this field test were used to validate the accuracy of the proposed finite element model. The results showed good agreement between the test results and the numerical results; more importantly, the compressive membrane action (CMA inside the slabs could be well demonstrated by this FE model. Subsequently, a series of parametric studies was conducted to investigate the influence of different parameters on the structural performance of the deck slabs in Thompson Bridge. The results of the analyses are discussed, and conclusions on the behavior of the SCC deck slabs reinforced by BFRP bars are presented.

  3. Semi-analytical approach for guided mode resonance in high-index-contrast photonic crystal slab: TE polarization.

    Science.gov (United States)

    Yang, Yi; Peng, Chao; Li, Zhengbin

    2013-09-09

    In high-contrast (HC) photonic crystals (PC) slabs, the high-order coupling is so intense that it is indispensable for analyzing the guided mode resonance (GMR) effect. In this paper, a semi-analytical approach is proposed for analyzing GMR in HC PC slabs with TE-like polarization. The intense high-order coupling is included by using a convergent recursive procedure. The reflection of radiative waves at high-index-contrast interfaces is also considered by adopting a strict Green's function for multi-layer structures. Modal properties of interest like band structure, radiation constant, field profile are calculated, agreeing well with numerical finite-difference time-domain simulations. This analysis is promising for the design and optimization of various HC PC devices.

  4. Waveguide-loaded silica fibers for coupling to high-index micro-resonators

    Science.gov (United States)

    Latawiec, P.; Burek, M. J.; Venkataraman, V.; Lončar, M.

    2016-01-01

    Tapered silica fibers are often used to rapidly probe the optical properties of micro-resonators. However, their low refractive index precludes phase-matching when coupling to high-index micro-resonators, reducing efficiency. Here, we demonstrate efficient optical coupling from tapered fibers to high-index micro-resonators by loading the fibers with an ancillary adiabatic waveguide-coupler fabricated via angled-etching. We demonstrate greatly enhanced coupling to a silicon multimode micro-resonator when compared to coupling via the bare fiber only. Signatures of resonator optical bistability are observed at high powers. This scheme can be applied to resonators of any size and material, increasing the functional scope of fiber coupling.

  5. Single Mode Optical Fiber based Refractive Index Sensor using Etched Cladding

    OpenAIRE

    Kumar, Ajay; Gupta, Geeta; Mallik, Arun; Bhatnagar, Anuj

    2011-01-01

    The use of optical fiber for sensor applications is a topic of current interest. We report the fabrication of etched single mode optical fiber based refractive index sensor. Experiments are performed to determine the etch rate of fiber in buffered hydrofluoric acid, which can be high or low depending upon the temperature at which etching is carried out. Controlled wet etching of fiber cladding is performed using these measurements and etched fiber region is tested for refractive index sensing...

  6. Propagation of Electromagnetic Waves in Slab Waveguide Structure Consisting of Chiral Nihility Claddings and Negative-Index Material Core Layer

    Science.gov (United States)

    Helal, Alaa N. Abu; Taya, Sofyan A.; Elwasife, Khitam Y.

    2018-06-01

    The dispersion equation of an asymmetric three-layer slab waveguide, in which all layers are chiral materials is presented. Then, the dispersion equation of a symmetric slab waveguide, in which the claddings are chiral materials and the core layer is negative index material, is derived. Normalized cut-off frequencies, field profile, and energies flow of right-handed and left-handed circularly polarized modes are derived and plotted. We consider both odd and even guided modes. Numerical results of guided low-order modes are provided. Some novel features, such as abnormal dispersion curves, are found.

  7. Analysis of circular fibers with an arbitrary index profile by the Galerkin method.

    Science.gov (United States)

    Guo, Shangping; Wu, Feng; Ikram, Khalid; Albin, Sacharia

    2004-01-01

    We propose a full-vectorial Galerkin method for the analysis of circular symmetric fibers with arbitrary index profiles. A set of orthogonal Laguerre-Gauss functions is used to calculate the dispersion relation and mode fields of TE and TM modes. Examples are given for both standard step-index fibers and Bragg fibers. For standard step-index fiber with low or high index contrast, the Galerkin method agrees well with the analytical results. In the case of the TE mode of a Bragg fiber it agrees well with the asymptotic results.

  8. Standing Wave Field Distribution in Graded-Index Antireflection Coatings

    Directory of Open Access Journals (Sweden)

    Hongxiang Deng

    2018-01-01

    Full Text Available Standing wave field distributions in three classic types of graded-index antireflection coatings are studied. These graded-index antireflection coatings are designed at wavelengths from 200 nm to 1200 nm, which is the working wavelength range of high energy laser system for inertial-fusion research. The standing wave field distributions in these coatings are obtained by the numerical calculation of electromagnetic wave equation. We find that standing wave field distributions in these three graded-index anti-reflection coatings are quite different. For the coating with linear index distribution, intensity of standing wave field decreases periodically from surface to substrate with narrow oscillation range and the period is proportional to the incident wavelength. For the coating with exponential index distribution, intensity of standing wave field decreases periodically from surface to substrate with large oscillation range and the period is also proportional to the incident wavelength. Finally, for the coating with polynomial index, intensity of standing wave field is quickly falling down from surface to substrate without an obvious oscillation. We find that the intensity of standing wave field in the interface between coating and substrate for linear index, exponential index and polynomial index are about 0.7, 0.9 and 0.7, respectively. Our results indicate that the distributions of standing wave field in linear index coating and polynomial index coating are better than that in exponential index coating for the application in high energy laser system. Moreover, we find that the transmittance of linear index coating and polynomial index coating are also better than exponential index coating at the designed wavelength range. Present simulation results are useful for the design and application of graded-index antireflection coating in high energy laser system.

  9. Cohesive fracture model for functionally graded fiber reinforced concrete

    International Nuclear Information System (INIS)

    Park, Kyoungsoo; Paulino, Glaucio H.; Roesler, Jeffery

    2010-01-01

    A simple, effective, and practical constitutive model for cohesive fracture of fiber reinforced concrete is proposed by differentiating the aggregate bridging zone and the fiber bridging zone. The aggregate bridging zone is related to the total fracture energy of plain concrete, while the fiber bridging zone is associated with the difference between the total fracture energy of fiber reinforced concrete and the total fracture energy of plain concrete. The cohesive fracture model is defined by experimental fracture parameters, which are obtained through three-point bending and split tensile tests. As expected, the model describes fracture behavior of plain concrete beams. In addition, it predicts the fracture behavior of either fiber reinforced concrete beams or a combination of plain and fiber reinforced concrete functionally layered in a single beam specimen. The validated model is also applied to investigate continuously, functionally graded fiber reinforced concrete composites.

  10. MODOS GUIADOS EM SLABS METAMATERIAIS GUIDED MODES IN METAMATERIAL SLABS

    Directory of Open Access Journals (Sweden)

    Leonardo André Ambrosio

    2006-12-01

    Full Text Available Este trabalho apresenta um estudo de revisão de modos propagantes em um guia-de-onda slab constituído de materiais com índices de refração negativo, os chamados metamateriais, Mostra-se que os modos guiados em um slab metamaterial possuem algumas propriedades particulares, tais como a propagação de ondas lentas simétricas ou anti-simétricas, a ausência de modos fundamentais para ondas rápidas e a possibilidade de propagação de ondas guiadas em um meio menos denso. A análise é baseada em expansões de campo no guia e nos espaços superior e inferior ao mesmo.This paper presents a review of the propagation modes in a slab waveguide consisting of negative refraction index materials, known as metamaterials. Some particular properties of guided modes in a metamaterial slab, such as slow symmetric or antisymmetric slow wave propagation, the absence of fundamental modes for fast waves and the possibility of guided waves in a less dense medium. The analysis is based on field expansions in the guide and the upper and lower spaces of it.

  11. Revisiting the Balazs thought experiment in the case of a left-handed material: electromagnetic-pulse-induced displacement of a dispersive, dissipative negative-index slab.

    Science.gov (United States)

    Chau, Kenneth J; Lezec, Henri J

    2012-04-23

    We propose a set of postulates to describe the mechanical interaction between a plane-wave electromagnetic pulse and a dispersive, dissipative slab having a refractive index of arbitrary sign. The postulates include the Abraham electromagnetic momentum density, a generalized Lorentz force law, and a model for absorption-driven mass transfer from the pulse to the medium. These opto-mechanical mechanisms are incorporated into a one-dimensional finite-difference time-domain algorithm that solves Maxwell's equations and calculates the instantaneous force densities exerted by the pulse onto the slab, the momentum-per-unit-area of the pulse and slab, and the trajectories of the slab and system center-of-mass. We show that the postulates are consistent with conservation of global energy, momentum, and center-of-mass velocity at all times, even for cases in which the refractive index of the slab is negative or zero. Consistency between the set of postulates and well-established conservation laws reinforces the Abraham momentum density as the one true electromagnetic momentum density and enables, for the first time, identification of the correct form of the electromagnetic mass density distribution and development of an explicit model for mass transfer due to absorption, for the most general case of a ponderable medium that is both dispersive and dissipative. © 2012 Optical Society of America

  12. Optical fiber design with orbital angular momentum light purity higher than 99.9.

    Science.gov (United States)

    Zhang, Zhishen; Gan, Jiulin; Heng, Xiaobo; Wu, Yuqing; Li, Qingyu; Qian, Qi; Chen, Dongdan; Yang, Zhongmin

    2015-11-16

    The purity of the synthesized orbital-angular-momentum (OAM) light in the fiber is inversely proportional to channel crosstalk level in the OAM optical fiber communication system. Here the relationship between the fiber structure and the purity is firstly demonstrated in theory. The graded-index optical fiber is proposed and designed for the OAM light propagation with the purity higher than 99.9%. 16 fiber modes (10 OAM modes) have been supported by a specific designed graded-index optical fiber with dispersion less than 35 ps/(km∙nm). Such fiber design has suppressed the intrinsic crosstalk to be lower than -30 dB, and can be potentially used for the long distance OAM optical communication system.

  13. Computer Aided Analysis of TM-Multimode Planar Graded-index Optical Waveguides

    International Nuclear Information System (INIS)

    Ashry, M.; Nasr, A.S.; Abou El-Fadl, A.A.

    2000-01-01

    An algorithm is developed for analysis TM-Multimode Planar graded-index optical waveguides. A Modified Impedance Boundary Method of Moments (MIBMOM) for the analysis of planar graded-index optical waveguide structures is presented. The algorithm is used to calculate the dispersion characteristics and the field distribution of TM-multimode planar graded-index optical waveguides. The technique is based on Galerkin s procedure and the exact boundary condition at the interfaces between the graded index region and the step index cladding. Legendre polynomials are used as basis functions. The efficiency of this algorithm is examined with waveguides having various index profiles such as exponential, Gaussian and complementary error functions. The advantage of the MIBMOM is the complete solution of TM-multimode as presented which is very difficult by the other methods. With this algorithm a minimum number of basis functions to give accurate results is used. The obtained results show good agreement with the experimental results

  14. Flexural performance of steel fiber reinforced concrete (SFRC) ribbed slab with various topping thicknesses

    Science.gov (United States)

    Rahman, Fadhillah Abdul; Bakar, Afidah Abu; Hashim, Mohd Hisbany Mohd; Ahmad, Hazrina

    2017-11-01

    Ribbed slab provides lighter slab than an equivalent solid slab which helps in reducing the weight with its voids. However, in order to overcome the drawbacks in the construction process, the application of steel fibre reinforcement concrete (SFRC) is seen as an alternative material to be used in the slab. This study is performed to investigate the behaviour of SFRC as the main material in ribbed slab, omitting the conventional reinforcements, under four-point bending test. Three equivalent samples of ribbed slabs were prepared for this study with variations in the topping thickness of 100, 75 and 50 mm. The flexural strength of ribbed slab with 100 mm topping shows similar loading carrying capacity with the 75mm topping while 50 mm gave the lowest ultimate loading. First cracks for all slabs occurred at the topping. The cracks began from the external ribs and propagates toward the internal rib. Incorporation of steel fibres help in giving a longer deflection softening than a sudden brittle failure, thus proves its ability to increase energy absorption capacity and improving cracking behaviour.

  15. Stimulated Brillouin scattering continuous wave phase conjugation in step-index fiber optics.

    Science.gov (United States)

    Massey, Steven M; Spring, Justin B; Russell, Timothy H

    2008-07-21

    Continuous wave (CW) stimulated Brillouin scattering (SBS) phase conjugation in step-index optical fibers was studied experimentally and modeled as a function of fiber length. A phase conjugate fidelity over 80% was measured from SBS in a 40 m fiber using a pinhole technique. Fidelity decreases with fiber length, and a fiber with a numerical aperture (NA) of 0.06 was found to generate good phase conjugation fidelity over longer lengths than a fiber with 0.13 NA. Modeling and experiment support previous work showing the maximum interaction length which yields a high fidelity phase conjugate beam is inversely proportional to the fiber NA(2), but find that fidelity remains high over much longer fiber lengths than previous models calculated. Conditions for SBS beam cleanup in step-index fibers are discussed.

  16. Sub-wavelength grating mode transformers in silicon slab waveguides.

    Science.gov (United States)

    Bock, Przemek J; Cheben, Pavel; Schmid, Jens H; Delâge, André; Xu, Dan-Xia; Janz, Siegfried; Hall, Trevor J

    2009-10-12

    We report on several new types of sub-wavelength grating (SWG) gradient index structures for efficient mode coupling in high index contrast slab waveguides. Using a SWG, an adiabatic transition is achieved at the interface between silicon-on-insulator waveguides of different geometries. The SWG transition region minimizes both fundamental mode mismatch loss and coupling to higher order modes. By creating the gradient effective index region in the direction of propagation, we demonstrate that efficient vertical mode transformation can be achieved between slab waveguides of different core thickness. The structures which we propose can be fabricated by a single etch step. Using 3D finite-difference time-domain simulations we study the loss, polarization dependence and the higher order mode excitation for two types (triangular and triangular-transverse) of SWG transition regions between silicon-on-insulator slab waveguides of different core thicknesses. We demonstrate two solutions to reduce the polarization dependent loss of these structures. Finally, we propose an implementation of SWG structures to reduce loss and higher order mode excitation between a slab waveguide and a phase array of an array waveguide grating (AWG). Compared to a conventional AWG, the loss is reduced from -1.4 dB to < -0.2 dB at the slab-array interface.

  17. Detailed phase matching characterization of inter-modal four-wave mixing in a two-mode fiber

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Jung, Y.; Begleris, I.

    2016-01-01

    We experimentally characterize the phase matching properties of two inter-modal four-wave mixing processes in a graded index fiber guiding the LP01 and LP11 mode-groups.......We experimentally characterize the phase matching properties of two inter-modal four-wave mixing processes in a graded index fiber guiding the LP01 and LP11 mode-groups....

  18. Radiative transfer equation for graded index medium in cylindrical and spherical coordinate systems

    International Nuclear Information System (INIS)

    Liu, L.H.; Zhang, L.; Tan, H.P.

    2006-01-01

    In graded index medium, the ray goes along a curved path determined by Fermat principle, and the curved ray-tracing is very difficult and complex. To avoid the complicated and time-consuming computation of curved ray trajectory, the methods not based on ray-tracing technique need to be developed for the solution of radiative transfer in graded index medium. For this purpose, in this paper the streaming operator along a curved ray trajectory in original radiative transfer equation for graded index medium is transformed and expressed in spatial and angular ordinates and the radiative transfer equation for graded index medium in cylindrical and spherical coordinate systems are derived. The conservative and the non-conservative forms of radiative transfer equation for three-dimensional graded index medium are given, which can be used as base equations to develop the numerical simulation methods, such as finite volume method, discrete ordinates method, and finite element method, for radiative transfer in graded index medium in cylindrical and spherical coordinate systems

  19. structural behavior of fibrous reinforced concrete hollowcore one-way slabs strengthening by C.F.R.P

    Directory of Open Access Journals (Sweden)

    wassif khudair majeed

    2016-02-01

    Full Text Available Abstract A reinforced concrete hollow core one-way slab is one of the types of slabs used widely around the world in residential and industrial buildings to take advantage of them Economic and thermal insulation as well as to reduce the self weight of the construction . The aim of the present study is to examine the structural behavior of the reinforced concrete hollow core one-way slabs  reduce failure using the normal concrete and fibrous concrete and then strengthened using carbon fiber(CFRP This study include molding of ( 6 specimens differ in terms of the voids volume (Vv , volumetric percentage of steel fibers ( , and then strengthened by using fibers of carbon , with the aim of rehabilitation by fibers, carbon polymer (CFRP is to find out how efficient element structural when treated after the occurrence of the failure and the validity of its use in the event of a failure has occurred entirely or partly in the roof, and re- examined using the same method and conditions that were examined ceilings is affected through it, knowing that these ceilings have been addressed and strengthened in the same way , the results of the tests of the models that have been rehabilitated using carbon fiber (CFRP, compared with the same models before strengthening and examined reduce failure, increased very high susceptibility endurance extreme , with the increase ranging from (51.6% to ( 96.2% , as has been observed decrease in deflection value of models after strengthening by (CFRP. It is concluded through this study the possibility of using its concrete hollow core one-way slab as a roofing system for buildings also proved the highly efficient for this slab after rehabilitation using carbon fiber (CFRP .

  20. Thermal emission characteristics of a graded index semitransparent medium

    International Nuclear Information System (INIS)

    Huang Yong; Dong Sujun; Yang Min; Wang Jun

    2008-01-01

    This paper develops a numerical model for thermal radiative transfer in a two-dimensional semitransparent graded index medium. A piecewise continuous refractive index model, the linear refractive index bar model, is presented. This model is established based on three hypotheses, and has a higher precision than the bar model used previously. This paper also studies the thermal emission from a two-dimensional graded index medium, which is scattering or non-scattering. We find that it can present an obvious pattern of directional distribution at times. The refractive index distribution and absorption coefficient are the two main influential factors. This finding differs from the common belief that thermal sources, such as the incandescent filament of a light bulb, emit a quasi-isotropic light. The finding also suggests that there maybe other important applications of artificial GRIN materials

  1. Displacement monitoring of switch track and its slab on a bridge of high speed railway by FBG

    Science.gov (United States)

    Li, Weilai; Li, He; Cheng, Jian; Huang, Xiaomei; Pan, Jianjun; Zhou, Ciming; Yang, Minghong

    2011-05-01

    In a 350km/h high speed railway line, there is a seamless switch with ballastless slabs built on a bridge. 54 Fiber Bragg Grating detecting cells are employed to monitor the displacement of track and slab. The cell is of extending function of measurement range, up to 50mm displacement, and is of good linearity. Protecting methods for cells and fiber are adopted to keep them surviving from the harsh conditions. The results show that in 75 days, the displacement of the track and sleeper slab was 8-9mm, and the displacement is of high correlation with daily environmental temperature change.

  2. Comparison of sizing effect of T700 grade carbon fiber on interfacial properties of fiber/BMI and fiber/epoxy

    International Nuclear Information System (INIS)

    Yao Lirui; Li Min; Wu Qing; Dai Zhishuang; Gu Yizhuo; Li Yanxia; Zhang Zuoguang

    2012-01-01

    Highlights: ► Carbon fiber sizings can react itself and with resin at high temperature. ► Sizings improve IFSS of carbon fiber/epoxy, but reduce that of BMI matrix. ► IFSS of carbon fiber/epoxy is larger than corresponding carbon fiber/BMI. ► Partially desized carbon fiber shows the effect of polymeric sizing component. ► The results are helpful for optimizing sizing agent of carbon fiber composites. - Abstract: This paper aims to study impact of sizing agents on interfacial properties of two T700 grade high strength carbon fibers with bismaleimide (BMI) and epoxy (EP) resin matrix. The fiber surface roughness and chemical properties are analyzed for sized, desized, and partially desized carbon fibers, using atom force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), respectively. FTIR analysis indicates that the sizing agents are chemically reactive, and they can react with BMI and EP at high temperatures. The micro-droplet tests exhibit that the desized carbon fibers have lower interfacial strengths with EP than the sized fibers, however, for BMI matrix, opposite trend is revealed. This is consistent with the chemical reactions of the sizing agents with the EP and BMI resins, in which sufficient reactions are observed for the sizing/EP mixture, while only partial reactions are probed for the sizing/BMI mixture. Interestingly, un-extracted epoxy type sizing particles are observed on partially desized carbon fiber surface, which significantly improves the interfacial adhesion with EP matrix.

  3. Prediction of punching shear capacities of two-way concrete slabs reinforced with FRP bars

    Directory of Open Access Journals (Sweden)

    Ibrahim M. Metwally

    2013-08-01

    Full Text Available Where corrosion of steel reinforcement is a concern, fiber-reinforced polymer (FRP reinforcing bar or grid reinforcement provides an alternative reinforcement for concrete flat slabs. The existing provisions for punching of slabs in most international design standards for reinforced concrete are based on tests of steel reinforced slabs. The elastic stiffness and bonding characteristics of FRP reinforcement are sufficiently different from those of steel to affect punching strength [1]. This paper evaluates the punching shear strength of concrete flat slabs reinforced with different types of fiber-reinforced polymer (FRP. A total of 59 full-size slabs were constructed and tested collected from the literature of FRP bars reinforced concrete slabs. The test parameters were the amount of FRP reinforcing bars, Young’s modulus of FRP bars, slab thickness, loaded areas and concrete compressive strength. The experimental punching shear strengths were compared with the available theoretical predictions, including the ACI 318 Code, BS 8110 Code, ACI 440 design guidelines, and a number of models proposed by some researchers in the literature. Two approaches for predicting the punching strength of FRP-reinforced slabs are examined. The first is an empirical new model which is considered as a modification of El-Gamal et al. [2] model. The second is a Neural Networks Technique; which has been developed to predict the punching shear capacity of FRP reinforced concrete slabs. The accuracies of both methods were evaluated against the experimental test data. They attained excellent agreement with available test results compared to the existing design formulas.

  4. Generalized q-sampling imaging fiber tractography reveals displacement and infiltration of fiber tracts in low-grade gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Celtikci, Pinar; Fernandes-Cabral, David T.; Yeh, Fang-Cheng; Panesar, Sandip S.; Fernandez-Miranda, Juan C. [University of Pittsburgh Medical Center, Department of Neurological Surgery, Pittsburgh, PA (United States)

    2018-03-15

    Low-grade gliomas (LGGs) are slow growing brain tumors that often cause displacement and/or infiltration of the surrounding white matter pathways. Differentiation between infiltration and displacement of fiber tracts remains a challenge. Currently, there is no reliable noninvasive imaging method capable of revealing such white matter alteration patterns. We employed quantitative anisotropy (QA) derived from generalized q-sampling imaging (GQI) to identify patterns of fiber tract alterations by LGGs. Sixteen patients with a neuropathological diagnosis of LGG (WHO grade II) were enrolled. Peritumoral fiber tracts underwent qualitative and quantitative evaluation. Contralateral hemisphere counterparts were used for comparison. Tracts were qualitatively classified as unaffected, displaced, infiltrated or displaced, and infiltrated at once. The average QA of whole tract (W), peritumoral tract segment (S), and their ratio (S/W) were obtained and compared to the healthy side for quantitative evaluation. Qualitative analysis revealed 9 (13.8%) unaffected, 24 (36.9%) displaced, 13 (20%) infiltrated, and 19 (29.2%) tracts with a combination of displacement and infiltration. There were no disrupted tracts. There was a significant increase in S/W ratio among displaced tracts in the pre-operative scans in comparison with the contralateral side. QA values of peritumoral tract segments (S) were significantly lower in infiltrated tracts. WHO grade II LGGs might displace, infiltrate, or cause a combination of displacement and infiltration of WM tracts. QA derived from GQI provides valuable information that helps to differentiate infiltration from displacement. Anisotropy changes correlate with qualitative alterations, which may serve as a potential biomarker of fiber tract integrity. (orig.)

  5. Strengthening of RC bridge slabs using CFRP sheets

    Directory of Open Access Journals (Sweden)

    Fahmy A. Fathelbab

    2014-12-01

    Full Text Available Many old structures became structurally insufficient to carry the new loading conditions requirements. Moreover, they suffer from structural degradation, reinforcement steel bars corrosion, bad weather conditions…etc. Many official authorities in several countries had recognized many old bridges and buildings as structurally deficient by today’s standards. Due to these reasons, structural strengthening became an essential requirement and different strengthening techniques appeared in market. Fiber Reinforced Polymer (FRP strengthening techniques established a good position among all other techniques, giving excellent structural results, low time required and moderate cost compared with the other techniques. The main purpose of this research is to study analytically the strengthening of a reinforced concrete bridge slabs due to excessive loads, using externally bonded FRP sheets technique. A commercial finite element program ANSYS was used to perform a structural linear and non-linear analysis for strengthened slab models using several schemes of FRP sheets. A parametric study was performed to evaluate analytically the effect of changing both FRP stiffness and FRP schemes in strengthening RC slabs. Comparing the results with control slab (reinforced concrete slab without strengthening it is obvious that attaching FRP sheets to the RC slab increases its capacity and enhances the ductility/toughness.

  6. Structural Behavior of Fibrous Reinforced Concrete Hollow Core One-Way Slabs Strengthening by C.F.R.P

    Directory of Open Access Journals (Sweden)

    وصيف مجيد

    2016-02-01

    Full Text Available A reinforced concrete hollow core one-way slab is one of the types of slabs used widely around the world in residential and industrial buildings to take advantage of them Economic and thermal insulation as well as to reduce the self-weight of the construction. The aim of the present study is to examine the structural behavior of the reinforced concrete hollow core one-way slabs reduce failure using the normal concrete and fibrous concrete and then strengthened using carbon fiber(CFRPThis study include molding of ( 6 specimens differ in terms of the voids volume (Vv , volumetric percentage of steel fibers (ا, and then strengthened by using fibers of carbon , with the aim of rehabilitation by fibers, carbon polymer (CFRP is to find out how efficient element structural when treated after the occurrence of the failure and the validity of its use in the event of a failure has occurred entirely or partly in the roof, and re- examined using the same method and conditions that were examined ceilings is affected through it, knowing that these ceilings have been addressed and strengthened in the same way , the results of the tests of the models that have been rehabilitated using carbon fiber (CFRP, compared with the same models before strengthening and examined reduce failure, increased very high susceptibility endurance extreme , with the increase ranging from (51.6% to (96.2%, as has been observed decrease in deflection value of models after strengthening by (CFRP.It is concluded through this study the possibility of using its concrete hollow core one-way slab as a roofing system for buildings also proved the highly efficient for this slab after rehabilitation using carbon fiber (CFRP.

  7. Plasmonic nanoshell functionalized etched fiber Bragg gratings for highly sensitive refractive index measurements.

    Science.gov (United States)

    Burgmeier, Jörg; Feizpour, Amin; Schade, Wolfgang; Reinhard, Björn M

    2015-02-15

    A novel fiber optical refractive index sensor based on gold nanoshells immobilized on the surface of an etched single-mode fiber including a Bragg grating is demonstrated. The nanoparticle coating induces refractive index dependent waveguide losses, because of the variation of the evanescently guided part of the light. Hence the amplitude of the Bragg reflection is highly sensitive to refractive index changes of the surrounding medium. The nanoshell functionalized fiber optical refractive index sensor works in reflectance mode, is suitable for chemical and biochemical sensing, and shows an intensity dependency of 4400% per refractive index unit in the refractive index range between 1.333 and 1.346. Furthermore, the physical length of the sensor is smaller than 3 mm with a diameter of 6 μm, and therefore offers the possibility of a localized refractive index measurement.

  8. Optical Characterization of Doped Thermoplastic and Thermosetting Polymer-Optical-Fibers

    Directory of Open Access Journals (Sweden)

    Igor Ayesta

    2017-03-01

    Full Text Available The emission properties of a graded-index thermoplastic polymer optical fiber and a step-index thermosetting one, both doped with rhodamine 6G, have been studied. The work includes a detailed analysis of the amplified spontaneous emission together with a study of the optical gains and losses of the fibers. The photostability of the emission of both types of fibers has also been investigated. Comparisons between the results of both doped polymer optical fibers are presented and discussed.

  9. Quasi-D-shaped optical fiber plasmonic refractive index sensor

    Science.gov (United States)

    An, Guowen; Li, Shuguang; Wang, Haiyang; Zhang, Xuenan; Yan, Xin

    2018-03-01

    A quasi-D-shaped photonic crystal fiber plasmonic sensor with a rectangular lattice is proposed by using Au as a plasmonic layer and graphene to enhance the sensing performance. By moving the core to the edge of the fiber, a shorter polishing depth is achieved, which makes the fiber proposed have a greater mechanical strength than other common D-shaped fibers. Benefiting from the natural advantage of the rectangular lattice, the dual sensing channels make the proposed sensor show a maximum wavelength interrogation sensitivity of 3877 nm/RIU with the dynamic refractive index range from 1.33 to 1.42 and a maximum amplitude sensitivity of 1236 RIU-1 with the analyte RI = 1.41 in the visible region. The corresponding resolutions are 2.58 × 10-5 and 8.1 × 10-6 with the methods of the wavelength interrogation method and amplitude- or phase-based method. These advantages make the proposed sensor a competitive candidate for biosensing in the field of refractive index detection, such as water quality analysis, clinical medicine detection, and pharmaceutical testing.

  10. Flexural strength and behaviour of SFRSCC ribbed slab under four point bending

    Science.gov (United States)

    Ahmad, Hazrina; Hashim, Mohd Hisbany Mohd; Bakar, Afidah Abu; Hamzah, Siti Hawa; Rahman, Fadhillah Abdul

    2017-11-01

    An experimental investigation was carried out to study the ultimate strength and behaviour of SFRSCC ribbed slab under four point bending. Comparison was been made between ribbed slab that was fully reinforced with steel fibres (SFWS) with conventionally reinforced concrete ribbed slab (CS and CRC). The volume fraction of the 35 mm hooked end steel fibres used in the mix was 1% (80 kg/m3) with the aspect ratio of 65. Three full scale slab samples with the dimension of 2.8 x 1.2 m with 0.2 m thickness was constructed for the purpose of this study. The slab samples was loaded until failure in a four point bending test. As a whole, based on the results, it can be concluded that the performance of the steel fiber reinforced samples (SFWS) was found to be almost equivalent to the conventionally reinforced concrete ribbed slab sample (CRC).

  11. Statistical model for predicting correct amount of deoxidizer of Al-killed grade casted at slab continuous caster of Pakistan steel

    International Nuclear Information System (INIS)

    Siddiqui, A.R.; Khan, M.M.A.; Ismail, B.M.

    1999-01-01

    Oxygen is blown in Converter process to oxidize hot metal. This introduces dissolved oxygen in the metal, which may cause embrittlement, voids, inclusion and other undesirable properties in steel. The steel bath at the time of tapping contains 400 to 800 ppm oxygen. Deoxidation is carried out during tapping by adding into the tap ladle appropriate amounts of ferromanganese, ferrosilicon and/or aluminum or other special deoxidizers. In the research aluminum killed grade steel which are casted at the slab caster of Pakistan Steel were investigated. Amount of aluminum added is very critical because if we add lesser amount of aluminum then the required quantity then there will be an incomplete killing of oxygen which results uncleanness in steel. Addition of larger amount of aluminum not only increases the cost of the production but also results as higher amount of alumina, which results in nozzle clogging and increase, loses. The purpose of the research is to develop a statistical model which would predict correct amount of aluminum addition for complete deoxidation of aluminum killed grade casted at slab continuous caster of Pakistan Steel. In the model aluminum added is taken as dependent variable while tapping temperature, turn down carbon composition, turndown manganese composition and oxygen content in steel would be the independent variable. This work is based on operational practice on 130 tons Basic Oxygen furnace. (author)

  12. Fiber optic neutron imaging system: calibration

    International Nuclear Information System (INIS)

    Malone, R.M.; Gow, C.E.; Thayer, D.R.

    1981-01-01

    Two neutron imaging experiments using fiber optics have been performed at the Nevada Test Site. In each experiment, an array of scintillator fluor tubes is exposed to neutrons. Light is coupled out through radiation resistant PCS fibers (8-m long) into high-bandwidth, graded index fibers. For image reconstruction to be accurate, common timing differences and transmission variations between fiber optic channels are needed. The calibration system featured a scanning pulsed dye laser, a specially designed fiber optic star coupler, a tektronix 7912AD transient digitizer, and a DEC PDP 11/34 computing system

  13. Simultaneous measurement of strain, temperature and refractive index based on multimode interference, fiber tapering and fiber Bragg gratings

    International Nuclear Information System (INIS)

    Oliveira, Ricardo; Osório, Jonas H; Aristilde, Stenio; Cordeiro, Cristiano M B; Bilro, Lúcia; Nogueira, Rogerio N

    2016-01-01

    We report the development of an optical fiber sensor capable of simultaneously measuring strain, temperature and refractive index. The sensor is based on the combination of two fiber Bragg gratings written in a standard single-mode fiber, one in an untapered region and another in a tapered region, spliced to a no-core fiber. The possibility of simultaneously measuring three parameters relies on the different sensitivity responses of each part of the sensor. The results have shown the possibility of measuring three parameters simultaneously with a resolution of 3.77 με , 1.36 °C and 5  ×  10 −4 , respectively for strain, temperature and refractive index. On top of the multiparameter ability, the simple production and combination of all the parts involved on this optical-fiber-based sensor is an attractive feature for several sensing applications. (paper)

  14. Extrinsic fiber-optic Fabry-Perot interferometer sensor for refractive index measurement of optical glass

    International Nuclear Information System (INIS)

    Chen Jihuan; Zhao Jiarong; Huang Xuguang; Huang Zhenjian

    2010-01-01

    A simple fiber-optic sensor based on Fabry-Perot interference for refractive index measurement of optical glass is investigated both theoretically and experimentally. A broadband light source is coupled into an extrinsic fiber Fabry-Perot cavity formed by the surfaces of a sensing fiber end and the measured sample. The interference signals from the cavity are reflected back into the same fiber. The refractive index of the sample can be obtained by measuring the contrast of the interference fringes. The experimental data meet with the theoretical values very well. The proposed technique is a new method for glass refractive index measurement with a simple, solid, and compact structure.

  15. Refractive index retrieving of polarization maintaining optical fibers

    Science.gov (United States)

    Ramadan, W. A.; Wahba, H. H.; Shams El-Din, M. A.; Abd El-Sadek, I. G.

    2018-01-01

    In this paper, the cross-section images, of two different types of polarization maintaining (PM) optical fibers, are employed to estimate the optical phase variation due to transverse optical rays passing through these optical fibers. An adaptive algorithm is proposed to recognize the different areas constituting the PM optical fibers cross-sections. These areas are scanned by a transverse beam to calculate the optical paths for given values of refractive indices. Consequently, the optical phases across the PM optical fibers could be recovered. PM optical fiber is immersed in a matching fluid and set in the object arm of Mach-Zehnder interferometer. The produced interferograms are analyzed to extract the optical phases caused by the PM optical fibers. The estimated optical phases could be optimized to be in good coincidence with experimentally extracted ones. This has been achieved through changing of the PM optical fibers refractive indices to retrieve the correct values. The correct refractive indices values are confirmed by getting the best fit between the estimated and the extracted optical phases. The presented approach is a promising one because it provides a quite direct and accurate information about refractive index, birefringence and beat length of PM optical fibers comparing with different techniques handle the same task.

  16. Controlling a three dimensional electron slab of graded Al{sub x}Ga{sub 1−x}N

    Energy Technology Data Exchange (ETDEWEB)

    Adhikari, R., E-mail: rajdeep.adhikari@jku.at; Capuzzo, G.; Bonanni, A., E-mail: alberta.bonanni@jku.at [Institut für Halbleiter-und-Festkörperphysik, Johannes Kepler University, Altenbergerstr. 69, A-4040 Linz (Austria); Li, Tian [Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, PL-02 668 Warszawa (Poland)

    2016-01-11

    Polarization induced degenerate n-type doping with electron concentrations up to ∼10{sup 20 }cm{sup −3} is achieved in graded Al{sub x}Ga{sub 1−x}N layers (x: 0% → 37%) grown on unintentionally doped and on n-doped GaN:Si buffer/reservoir layers by metal organic vapor phase epitaxy. High resolution x-ray diffraction, transmission electron microscopy, and electron dispersive x-ray spectroscopy confirm the gradient in the composition of the Al{sub x}Ga{sub 1−x}N layers, while Hall effect studies reveal the formation of a three dimensional electron slab, whose conductivity can be adjusted through the GaN(:Si) buffer/reservoir.

  17. Reconstruction of fiber grating refractive-index profiles from complex bragg reflection spectra.

    Science.gov (United States)

    Huang, D W; Yang, C C

    1999-07-20

    Reconstruction of the refractive-index profiles of fiber gratings from their complex Bragg reflection spectra is experimentally demonstrated. The amplitude and phase of the complex reflection spectrum were measured with a balanced Michelson interferometer. By integrating the coupled-mode equations, we built the relationship between the complex coupling coefficient and the complex reflection spectrum as an iterative algorithm for reconstructing the index profile. This method is expected to be useful for reconstructing the index profiles of fiber gratings with any apodization, chirp, or dc structures. An apodized chirped grating and a uniform grating with a depression of index modulation were used to demonstrate the technique.

  18. Surface refractive index of the eye lens determined with an optic fiber sensor

    International Nuclear Information System (INIS)

    Pierscionek, B.K.

    1993-01-01

    The use of a fiber optic sensor for measurement of refractive index on the surface of eye lenses is described. The technique makes use of the fact that the amount of light reflected at the interface of two media (Fresnel reflectance) depends on the refractive-index difference between them. The sample is probed with a single-mode fiber, and the refractive index is calculated from the proportion of light reflected at the probe--sample interface

  19. Extraction and characterization of Retama monosperma fibers

    African Journals Online (AJOL)

    XPERT

    monosperma leaves and their mechanical, physical and chemical characteristics. The fibers .... The hook was removed gently, and the behavior of the fiber was observed ..... fibers reinforced cement mortar slabs: a comparative study. Cement.

  20. Medición de microdeformaciones en losas viales usando sensores de redes de Braggen fibras ópticas Microdeformation measurement of concrete roadway slabs using fiber Bragg gratings

    Directory of Open Access Journals (Sweden)

    Francisco Javier Vélez Hoyos

    2010-06-01

    Full Text Available En este trabajo se presenta un método no invasivo para la medición de microdeformaciones en estructuras de concreto usando sensores de redes de Bragg en fibras ópticas adheridos a su superficie. Se realizan mediciones en losas viales de concreto bajo una carga estática de 10 kN, encontrándose una relación aproximada de 2 : 1 entre la deformación registrada por los sensores y los valores arrojados por una simulación computacional con el método de elementos finitos. Se propone el uso de estos sensores para el monitoreo estructural de losas en una malla vial con sensores distribuidos y multiplexados por longitud de onda. Este es el primer reporte en Colombia de medición de deformación de losas viales usando sensores de fibra óptica.This work shows a non–invasive method for micro–deformation measurements of concrete structures using Bragg grating sensors in optical fibers adhered to the surface. Measurements on roadway slabs under a 10 kN static load are made, finding an approximated ratio of 2 : 1 between the deformation registered by the sensors and the values from a computational simulation with the finite element method. We propose the use of these sensors for slab structural monitoring in a road network employing distributed and wavelength multiplexed sensors. This is a first report in Colombia of roadway slabs microdeformation measurement using fiber optic sensors.

  1. Benchmark numerical solutions for radiative heat transfer in two-dimensional medium with graded index distribution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L.H. [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China)]. E-mail: lhliu@hit.edu.cn

    2006-11-15

    In graded index media, the ray goes along a curved path determined by Fermat principle. Generally, the curved ray trajectory in graded index media is a complex implicit function, and the curved ray tracing is very difficult and complex. Only for some special refractive index distributions, the curved ray trajectory can be expressed as a simple explicit function. Two important examples are the layered and the radial graded index distributions. In this paper, the radiative heat transfer problems in two-dimensional square semitransparent with layered and radial graded index distributions are analyzed. After deduction of the ray trajectory, the radiative heat transfer problems are solved by using the Monte Carlo curved ray-tracing method. Some numerical solutions of dimensionless net radiative heat flux and medium temperature are tabulated as the benchmark solutions for the future development of approximation techniques for multi-dimensional radiative heat transfer in graded index media.

  2. Structure with improved self-imaging in its graded-index multimode interference region

    International Nuclear Information System (INIS)

    Yin Rui; Jiang Xiaoqing; Yang Jianyi; Wang Minghua

    2002-01-01

    Propagation constant errors (PCEs) of guided modes in regions of multimode interference in optical networks were analyzed. Results show that a graded-index waveguide can effectively decrease the PCEs. An example based on an exponential function is presented. Numerical results show that addition of a graded-index waveguide greatly improves device performance in this structure

  3. Optical property of few-mode fiber with non-uniform refractive index for cylindrical vector beam generation

    Science.gov (United States)

    Li, Hongye; Wan, Hongdan; Zhang, Zuxing; Sun, Bing; Zhang, Lin

    2016-10-01

    This paper investigates optical properties of few-mode fiber with non-uniform refractive index, namely: the few mode fiber with U-shape refractive index and the two-mode and four-mode few-mode fiber with bent radius. Finite element method is used to analyze the mode distributions based on their non-uniform refractive index. Effective mode control can be achieved through these few mode fibers to achieve vector beam generation. Finally, reflection spectra of a few-mode fiber Bragg grating are calculated theoretically and then measured under different bending conditions. Experimental results are in good accordance with the theoretical ones. These few mode fibers show potential applications in generation of cylindrical vector beam both for optical lasing and sensing systems.

  4. Flexible biodegradable citrate-based polymeric step-index optical fiber.

    Science.gov (United States)

    Shan, Dingying; Zhang, Chenji; Kalaba, Surge; Mehta, Nikhil; Kim, Gloria B; Liu, Zhiwen; Yang, Jian

    2017-10-01

    Implanting fiber optical waveguides into tissue or organs for light delivery and collection is among the most effective ways to overcome the issue of tissue turbidity, a long-standing obstacle for biomedical optical technologies. Here, we report a citrate-based material platform with engineerable opto-mechano-biological properties and demonstrate a new type of biodegradable, biocompatible, and low-loss step-index optical fiber for organ-scale light delivery and collection. By leveraging the rich designability and processibility of citrate-based biodegradable polymers, two exemplary biodegradable elastomers with a fine refractive index difference and yet matched mechanical properties and biodegradation profiles were developed. Furthermore, we developed a two-step fabrication method to fabricate flexible and low-loss (0.4 db/cm) optical fibers, and performed systematic characterizations to study optical, spectroscopic, mechanical, and biodegradable properties. In addition, we demonstrated the proof of concept of image transmission through the citrate-based polymeric optical fibers and conducted in vivo deep tissue light delivery and fluorescence sensing in a Sprague-Dawley (SD) rat, laying the groundwork for realizing future implantable devices for long-term implantation where deep-tissue light delivery, sensing and imaging are desired, such as cell, tissue, and scaffold imaging in regenerative medicine and in vivo optogenetic stimulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Eelgrass slabs, a soilless culture substrate that inhibits adhesion of fungi and oomycetes and enhances antioxidant activity in tomato.

    Science.gov (United States)

    Meot-Duros, Laetitia; Le Floch, Gaëtan; Meot, Benoit; Letousey, Patricia; Jacob, Bruno; Barbier, Georges

    2011-10-26

    Composed of a marine plant, Zostera sp., eelgrass slabs are a novel organic substrate for soilless cultures used in tomato production. The benefit of using eelgrass slabs for growing tomatoes was assessed by comparing it with coconut fiber slabs in regard to contamination by Pythium spp. and to the antioxidant properties of tomato fruits. First, tomato root contamination by Pythium spp. was studied by direct plate counting, and a molecular comparison of fungal and oomycete communities was conducted using PCR-DHPLC. Second, the antioxidant properties of tomato fruits were analyzed by measuring total phenol and carotenoid contents and by evaluating radical scavenging activity. Compared to plants grown on coconut fiber slabs, those on eelgrass slabs presented a lower rate of Pythium spp. root contamination. Moreover, culture on eelgrass slabs produced fruits with better radical scavenging activity and higher total phenol content compared to controls. Carotenoid content was not affected by the type of substrate. This study highlights the value of detrital leaves of Zostera sp. as a substrate for soilless culture that reduces root contamination and also promotes the production of tomato fruits with better nutritional value.

  6. Use of fiber reinforced concrete for concrete pavement slab replacement.

    Science.gov (United States)

    2014-03-01

    Unlike ordinary concrete pavement, replacement concrete slabs need to be open to traffic within 24 hours (sooner in : some cases). Thus, high early-strength concrete is used; however, it frequently cracks prematurely as a result of high : heat of hyd...

  7. Fiber optics: A brief introduction

    International Nuclear Information System (INIS)

    Gruchalla, M.E.

    1989-01-01

    A basic introduction into the principles of fiber optics is presented. A review of both the underlying physical principles and the individual elements of typical fiber-optic systems are presented. The optical phenomenon of total internal reflection is reviewed. The basic construction of the optical fiber is presented. Both step-index and graded-index fiber designs are reviewed. Multimode and single-mode fiber constructions are considered and typical performance parameters given. Typical optical-fiber bandwidth and loss characteristics are compared to various common coaxial cables, waveguides, and air transmission. The constructions of optical-fiber cables are reviewed. Both loose-tube and tightly-buffered designs are considered. Several optical connection approaches are presented. Photographs of several representative optical connectors are included. Light Emitting Diode and Laser Diode emitters for fiber-optic applications are reviewed, and some advantages and shortcomings of each are considered. The phenomenon of modal noise is briefly explained. Both PIN and Avalanche photodetectors are reviewed and their performance parameters compared. Methods of data transmission over optical fiber are introduced. Principles of Wavelength, Frequency, and Time Division Multiplexing are briefly presented. The technology of fiber-optic sensors is briefly reviewed with basic principles introduced. The performance of a fiber-optic strain sensor is included as a practical example. 7 refs., 10 figs

  8. Investigation on the performance of bridge approach slab

    Directory of Open Access Journals (Sweden)

    Abdelrahman Amr

    2018-01-01

    Full Text Available In Egypt, where highway bridges are to be constructed on soft cohesive soils, the bridge abutments are usually founded on rigid piles, whereas the earth embankments for the bridge approaches are directly founded on the natural soft ground. Consequently, excessive differential settlement frequently occurs between the bridge deck and the bridge approaches resulting in a “bump” at both ends of the bridge deck. Such a bump not only creates a rough and uncomfortable ride but also represents a hazardous condition to traffic. One effective technique to cope with the bump problem is to use a reinforced concrete approach slab to provide a smooth grade transition between the bridge deck and the approach pavement. Investigating the geotechnical and structural performance of approach slabs and revealing the fundamental affecting factors have become mandatory. In this paper, a 2-D finite element model is employed to investigate the performance of approach slabs. Moreover, an extensive parametric study is carried out to appraise the relatively optimum geometries of approach slab, i.e. slab length, thickness, embedded depth and slope, that can yield permissible bumps. Different geo-mechanical conditions of the cohesive foundation soil and the fill material of the bridge embankment are examined.

  9. Evaluation of the Impact of Slab Foundation Heat Transfer on Heating and Cooling in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Parker, D. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Kono, J. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Vieira, R. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States); Gu, L. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States)

    2016-09-01

    During the last three decades of energy-efficiency research, there has been limited study of heat transfer to slab-on-grade foundations in cooling-dominated climates. Most experimental research has focused on the impact of slab-on-grade foundations and insulation schemes on heat losses in heating-dominated climates. This is surprising because the floor area in single-family homes is generally equal to wall area, window area, or attic area, all of which have been extensively evaluated for heat-transfer properties. Moreover, slab foundations are the most common foundation type in cooling-dominated climates. Slab-on-grade construction is very popular in southern states, accounting for 77% of new home floors according to 2014 U.S. Census data. There is a widespread perception that tile flooring, as opposed to carpet, provides a cooler home interior in warm climates. Empirical research is needed because building energy simulation software programs running DOE-2 and EnergyPlus engines often rely on simplified models to evaluate the influence of flooring on interior temperature, even though in some cases more detailed models exist. The U.S. Department of Energy Building America Partnership for Improved Residential Construction (BA-PIRC) performed experiments in the Florida Solar Energy Center’s Flexible Residential Test Facility intended to assess for the first time (1) how slab-on-grade construction influences interior cooling in a cooling-dominated climate and (2) how the difference in a carpeted versus uncarpeted building might influence heating and cooling energy use. Two nominally identical side-by-side residential buildings were evaluated during the course of 1 year, from 2014 to 2015: the east building with a pad and carpet floor and the west building with a bare slab floor. A detailed grid shows temperature measurements taken on the slab surface at various locations as well as at depths of 1.0 ft, 2 ft, 5.0 ft, 10.0 ft, and 20.0 ft below the surface. Temperature

  10. Effect of surface roughness variation on the transmission characteristics of D-shaped fibers with ambient index change

    International Nuclear Information System (INIS)

    Kim, Hyun-Joo; Kwon, Oh-Jang; Han, Young-Geun

    2010-01-01

    The influence of surface roughness on the sensitivity of D-shaped fibers to changes in the ambient index was investigated. In order to obtain D-shaped fibers with different surface roughness, we polished one side of the fibers by using different abrasive grits. The topographies of the surfaces of the polished D-shaped fibers were then observed by using atomic force microscopy (AFM). The light scattered from the rough surfaces of the D-shaped fibers was measured by using optical microscopy. The effect of an ambient index change on the transmission characteristics of D-shaped fibers was measured for various values of the surface roughness. The experimental results indicate that variations in the surface roughness have a considerable influence on the sensitivity of the transmission characteristics of D-shaped fibers to changes in the ambient index.

  11. Zero-velocity solitons in high-index photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2011-01-01

    Nonlinear propagation in slow-light states of high-index photonic crystal fibers (PCFs) is studied numerically. To avoid divergencies in dispersion and nonlinear parameters around the zero-velocity mode, a time-propagating generalized nonlinear Schrödinger equation is formulated. Calculated slow-...

  12. Polymer-Optical-Fiber Lasers and Amplifiers Doped with Organic Dyes

    Directory of Open Access Journals (Sweden)

    Joseba Zubia

    2011-07-01

    Full Text Available Polymer optical fibers (POFs doped with organic dyes can be used to make efficient lasers and amplifiers due to the high gains achievable in short distances. This paper analyzes the peculiarities of light amplification in POFs through some experimental data and a computational model capable of carrying out both power and spectral analyses. We investigate the emission spectral shifts and widths and on the optimum signal wavelength and pump power as functions of the fiber length, the fiber numerical aperture and the radial distribution of the dopant. Analyses for both step-index and graded-index POFs have been done.

  13. A Refractive Index Sensor Based on the Resonant Coupling to Cladding Modes in a Fiber Loop

    Science.gov (United States)

    Reyes, Mauricio; Monzón-Hernández, David; Martínez-Ríos, Alejandro; Silvestre, Enrique; Díez, Antonio; Cruz, José Luis; Andrés, Miguel V.

    2013-01-01

    We report an easy-to-build, compact, and low-cost optical fiber refractive index sensor. It consists of a single fiber loop whose transmission spectra exhibit a series of notches produced by the resonant coupling between the fundamental mode and the cladding modes in a uniformly bent fiber. The wavelength of the notches, distributed in a wavelength span from 1,400 to 1,700 nm, can be tuned by adjusting the diameter of the fiber loop and are sensitive to refractive index changes of the external medium. Sensitivities of 170 and 800 nm per refractive index unit for water solutions and for the refractive index interval 1.40–1.442, respectively, are demonstrated. We estimate a long range resolution of 3 × 10−4 and a short range resolution of 2 × 10−5 for water solutions. PMID:23979478

  14. Effect of Graded Levels of Dates Dietary Fiber on Weight Gain ...

    African Journals Online (AJOL)

    Objective: The aim of the study was to evaluate the effect of graded levels of dates dietary fiber on diabetes mellitus induced by streptozotocin (STZ) in male Sprague-Dawley (SD) rats. Methodology: Rats were divided into eight groups, among which four groups (Groups 1-4) were normal and the other four groups were ...

  15. Experimental and numerical investigation of slabs on ground subjected to concentrated loads

    Science.gov (United States)

    Øverli, Jan

    2014-09-01

    An experimental program is presented where a slab on ground is subjected to concentrated loading at the centre, the edges and at the corners. Analytical solutions for the ultimate load capacity fit well with the results obtained in the tests. The non-linear behaviour of the slab is captured by performing nonlinear finite element analyses. The soil is modelled as a no-tension bedding and a smeared crack approach is employed for the concrete. Through a parametric study, the finite element model has been used to assess the influence of subgrade stiffness and shrinkage. The results indicate that drying shrinkage can cause severe cracking in slabs on grade.

  16. Temperature independent refractive index measurement using a fiber Bragg grating on abrupt tapered tip

    Science.gov (United States)

    Gomes, André D.; Silveira, Beatriz; Warren-Smith, Stephen C.; Becker, Martin; Rothhardt, Manfred; Frazão, Orlando

    2018-05-01

    A fiber Bragg grating was inscribed in an abrupt fiber taper using a femtosecond laser and phase-mask interferometer. The abrupt taper transition allows to excite a broad range of guided modes with different effective refractive indices that are reflected at different wavelengths according to Bragg's law. The multimode-Bragg reflection expands over 30 nm in the telecom-C-band. This corresponds to a mode-field overlap of up to 30% outside of the fiber, making the device suitable for evanescent field sensing. Refractive index and temperature measurements are performed for different reflection peaks. Temperature independent refractive index measurements are achieved by considering the difference between the wavelength shifts of two measured reflection peaks. A minimum refractive index sensitivity of 16 ± 1 nm/RIU was obtained in a low refractive index regime (1.3475-1.3720) with low influence of temperature (-0.32 ± 0.06 pm/°C). The cross sensitivity for this structure is 2.0 × 10-5 RIU/°C. The potential for simultaneous measurement of refractive index and temperature is also studied.

  17. Highly reflective Bragg gratings in slightly etched step-index polymer optical fiber.

    Science.gov (United States)

    Hu, Xuehao; Pun, Chi-Fung Jeff; Tam, Hwa-Yaw; Mégret, Patrice; Caucheteur, Christophe

    2014-07-28

    During the past few years, a strong progress has been made in the photo-writing of fiber Bragg gratings (FBGs) in polymer optical fibers (POFs), animated by the constant wish to enhance the grating reflectivity and improve the sensing performances. In this paper, we report the photo-inscription of highly reflective gratings in step-index POFs, obtained thanks to a slight etching of the cladding. We demonstrate that a cladding diameter decrease of ~12% is an ideal trade-off to produce highly reflective gratings with enhanced axial strain sensitivity, while keeping almost intact their mechanical resistance. For this, we make use of Trans-4-stilbenemethanol-doped photosensitive step-index poly(methyl methacrylate) (PMMA) POFs. FBGs are inscribed at ~1550 nm by the scanning phase mask technique in POFs of different external diameters. Reflectivity reaching 97% is achieved for 6 mm long FBGs, compared to 25% for non-etched POFs. We also report that a cladding decrease enhances the FBG axial tension while keeping unchanged temperature and surrounding refractive index sensitivities. Finally and for the first time, a measurement is conducted in transmission with polarized light, showing that a photo-induced birefringence of 7 × 10(-6) is generated (one order of magnitude higher than the intrinsic fiber birefringence), which is similar to the one generated in silica fiber using ultra-violet laser.

  18. Modal noise impact in radio over fiber multimode fiber links.

    Science.gov (United States)

    Gasulla, I; Capmany, J

    2008-01-07

    A novel analysis is given on the statistics of modal noise for a graded-index multimode fiber (MMF) link excited by an analog intensity modulated laser diode. We present the speckle contrast as a function of the power spectrum of the modulated source and the transfer function of the MMF which behaves as an imperfect transversal microwave photonic filter. The theoretical results confirm that the modal noise is directly connected with the coherence properties of the optical source and show that the performance of high-frequency Radio Over Fiber (ROF) transmission through MMF links for short and middle reach distances is not substantially degraded by modal noise.

  19. Finite element method for radiation heat transfer in multi-dimensional graded index medium

    International Nuclear Information System (INIS)

    Liu, L.H.; Zhang, L.; Tan, H.P.

    2006-01-01

    In graded index medium, ray goes along a curved path determined by Fermat principle, and curved ray-tracing is very difficult and complex. To avoid the complicated and time-consuming computation of curved ray trajectories, a finite element method based on discrete ordinate equation is developed to solve the radiative transfer problem in a multi-dimensional semitransparent graded index medium. Two particular test problems of radiative transfer are taken as examples to verify this finite element method. The predicted dimensionless net radiative heat fluxes are determined by the proposed method and compared with the results obtained by finite volume method. The results show that the finite element method presented in this paper has a good accuracy in solving the multi-dimensional radiative transfer problem in semitransparent graded index medium

  20. Electrophoretic deposition of carbon nanotubes on a carbon fiber surface with different index graphitization

    International Nuclear Information System (INIS)

    Almeida, E.C.; Baldan, M.R.; Ferreira, N.G.; Edwards, E.R.

    2009-01-01

    Full text: The purpose of this work is to examine the electrophoretic deposition of carbon nanotubes powder on carbon fibers, produced at different heat treatments temperatures. Besides, a systematic study of the effects of graphitization index from substrate on the structure and morphology of CNTs has been available. Carbon fibers were produced from polyacrylonitrile at three different heat treatments temperatures, 1000, 1500 and 2000 deg C. The carbon fibers microstructure or its graphitization index may be controlled by the heat treatments temperatures. The electrophoretic deposition of carbon nanotubes was obtained with the powder of carbon nanotubes dispersed in water by ultrasonication to obtain dispersions of 0.05 mg/mL. The carbon fibers were immersed in the nanotube dispersion, and a positive potential of 10 V/cm was applied. Morphology and microstructure of carbon nanotubes on carbon fibers were obtained by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. (author)

  1. DESIGN AND TESTING OF SUB-SLAB DEPRESSURIZATION FOR RADON MITIGATION IN NORTH FLORIDA HOUSES - PART I. PERFORMANCE AND DURABILITY - VOLUME 1. TECHNICAL REPORT

    Science.gov (United States)

    The report gives results of a demonstration/research project to evaluate sub-slab depressurization (SSD) techniques for radon mitigation in North Florida where the housing stock is primarily slab-on-grade and the sub-slab medium typically consists of native soil and sand. Objecti...

  2. DESIGN AND TESTING OF SUB-SLAB DEPRESSURIZATION FOR RADON MITIGATION IN NORTH FLORIDA HOUSES - PART I. PERFORMANCE AND DURABILITY - VOLUME 2. DATA APPENDICES

    Science.gov (United States)

    The report gives results of a demonstration/research project to evaluate sub-slab depressurization (SSD) techniques for radon mitigation in North Florida where the housing stock is primarily slab-on-grade and the sub-slab medium typically consists of native soil and sand. Objecti...

  3. Determination of femtosecond-laser-induced refractive-index changes in an optical fiber from far-field measurements

    DEFF Research Database (Denmark)

    Savolainen, Juha-Matti; Grüner-Nielsen, Lars; Kristensen, Poul

    2014-01-01

    A new method for direct writing of localized, circularly symmetric refractive-index changes in optical fibers with a femtosecond laser is demonstrated. The refractive-index changes are characterized using a novel approach employing comparison of numerical simulations to the measured far......-field profiles of unmodified and modified fibers. From the analysis, a negative refractive-index change of −0.015 0.005 within a radius of 0.6 0.1 μm is determined....

  4. Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Bang, Ole

    2008-01-01

    We study the sensitivity of fiber grating sensors in the applications of strain, temperature, internal label-free biosensing, and internal refractive index sensing. New analytical expressions for the sensitivities, valid for photonic crystal fibers are rigorously derived. These are generally vali...

  5. Building America Case Study: Impact of Slab-Foundation Heat Transfer on Space-Conditioning Energy Use in Florida, Cocoa, Florida

    Energy Technology Data Exchange (ETDEWEB)

    2016-12-01

    Heat transfer to slab foundations has remained an area of building science with poor understanding over the last three decades of energy efficiency research. This is somewhat surprising since the area of floors in single family homes is generally equal to wall, or windows or attics which have been extensively evaluated. Research that has been done has focused in the impact of slab on grade foundations and insulation schemes on heat losses associated with heating in predominantly heating dominated climates. Slab on grade construction is very popular in cooling-dominated southern states where it accounts for 77 percent of new home floors according to U.S. Census data in 2014. There is a widespread conception that tile flooring, as opposed to carpet, makes for a cooler home interior in warm climates. Empirical research is needed as building energy simulations such as DOE-2 and EnergyPlus rely on simplified models to evaluate these influences. BA-PIRC performed experiments over an entire year from 2014-2015 in FSEC's Flexible Residential Test Facilities (FRTF) intended to assess for the first time 1) slab on grade influence in a cooling dominated climate, and 2) how the difference in a carpeted vs. uncarpeted building might influence heating and cooling. Two identical side by side residential buildings were evaluated, the East with pad and carpet and the west with a bare slab floor. A highly detailed grid of temperature measurements were taken on the slab surface at various locations as well as at depths of 1, 2.5, 5, 10 and 20 feet.

  6. Modeling of slab-on-grade heat transfer in EnergyPlus simulation program

    Directory of Open Access Journals (Sweden)

    Vanessa Aparecida Caieiro da Costa

    Full Text Available Resumo O fluxo de calor entre o piso e o solo de uma edificação térrea é um dos aspectos mais influentes em seu desempenho térmico e energético. No entanto, há ainda um grande número de incertezas e poucos estudos nessa área. Neste trabalho comparam-se diferentes alternativas de modelagem nos programas EnergyPlus (8.5.0 e Slab (.75 dos parâmetros relacionados à transferência de calor entre o piso e o solo, e sua influência no desempenho térmico de uma edificação térrea naturalmente ventilada, localizada em São Carlos, Brasil. A comparação das alternativas de modelagem indicou grande variação nos resultados. Quando comparado ao Slab, o método KusudaAchenbach do objeto Ground Domain apresentou a maior variação, com diferença de 55,2 % no número de horas de desconforto. Observou-se que mesmo a forma de uso do Slab pode causar diferenças significativas nos resultados; por exemplo, a adoção ou não do procedimento de convergência. A condutividade térmica do solo foi um parâmetro de grande impacto, que implicou diferenças de até 57,5 % no desconforto. Tais resultados fornecem indicações da variabilidade e do impacto de uso das diferentes opções de modelagem desse fluxo de calor no EnergyPlus.

  7. Behavior of Low Grade Steel Fiber Reinforced Concrete Made with Fresh and Recycled Brick Aggregates

    Directory of Open Access Journals (Sweden)

    Md. Shariful Islam

    2017-01-01

    Full Text Available In recent years, recycled aggregates from construction and demolition waste (CDW have been widely accepted in construction sectors as the replacement of coarse aggregate in order to minimize the excessive use of natural resources. In this paper, an experimental investigation is carried out to observe the influence of low grade steel fiber reinforcements on the stress-strain behavior of concrete made with recycled and fresh brick aggregates. In addition, compressive strength by destructive and nondestructive tests, splitting tensile strength, and Young’s modulus are determined. Hooked end steel wires with 50 mm of length and an aspect ratio of 55.6 are used as fiber reinforcements in a volume fraction of 0% (control case, 0.50%, and 1.00% in concrete mixes. The same gradation of aggregates and water-cement ratio (w/c=0.44 were used to assess the effect of steel fiber in all these concrete mixes. All tests were conducted at 7, 14, and 28 days to perceive the effect of age on different mechanical properties. The experimental results show that around 10%~15% and 40%~60% increase in 28 days compressive strength and tensile strength of steel fiber reinforced concrete, respectively, compared to those of the control case. It is observed that the effect of addition of 1% fiber on the concrete compressive strength is little compared to that of 0.5% steel fiber addition. On the other hand, strain of concrete at failure of steel fiber reinforced concrete has increased almost twice compared to the control case. A simple analytical model is also proposed to generate the ascending portions of the stress-strain curve of concrete. There exists a good correlation between the experimental results and the analytical model. A relatively ductile failure is observed for the concrete made with low grade steel fibers.

  8. Fracture Behavior and Properties of Functionally Graded Fiber-Reinforced Concrete

    International Nuclear Information System (INIS)

    Roesler, Jeffery; Bordelon, Amanda; Gaedicke, Cristian; Park, Kyoungsoo; Paulino, Glaucio

    2008-01-01

    In concrete pavements, a single concrete mixture design is selected to resist mechanical loading without attempting to adversely affect the concrete pavement shrinkage, ride quality, or noise attenuation. An alternative approach is to design distinct layers within the concrete pavement surface which have specific functions thus achieving higher performance at a lower cost. The objective of this research was to address the structural benefits of functionally graded concrete materials (FGCM) for rigid pavements by testing and modeling the fracture behavior of different combinations of layered plain and synthetic fiber-reinforced concrete materials. Fracture parameters and the post-peak softening behavior were obtained for each FGCM beam configuration by the three point bending beam test. The peak loads and initial fracture energy between the plain, fiber-reinforced, and FGCM signified similar crack initiation. The total fracture energy indicated improvements in fracture behavior of FGCM relative to full-depth plain concrete. The fracture behavior of FGCM depended on the position of the fiber-reinforced layer relative to the starter notch. The fracture parameters of both fiber-reinforced and plain concrete were embedded into a finite element-based cohesive zone model. The model successfully captured the experimental behavior of the FGCMs and predicted the fracture behavior of proposed FGCM configurations and structures. This integrated approach (testing and modeling) demonstrates the viability of FGCM for designing layered concrete pavements system

  9. Research and Development of the Solidification of Slab Ingots from Special Tool Steels

    Directory of Open Access Journals (Sweden)

    Tkadlečková M.

    2017-09-01

    Full Text Available The paper describes the research and development of casting and solidification of slab ingots from special tool steels by means of numerical modelling using the finite element method. The pre-processing, processing and post-processing phases of numerical modelling are outlined. Also, problems with determining the thermophysical properties of materials and heat transfer between the individual parts of the casting system are discussed. Based on the type of grade of tool steel, the risk of final porosity is predicted. The results allowed to improve the production technology of slab ingots, and also to verify the ratio, the chamfer and the external/ internal shape of the wall of the new designed slab ingots.

  10. Self-imaging of partially coherent light in graded-index media.

    Science.gov (United States)

    Ponomarenko, Sergey A

    2015-02-15

    We demonstrate that partially coherent light beams of arbitrary intensity and spectral degree of coherence profiles can self-image in linear graded-index media. The results can be applicable to imaging with noisy spatial or temporal light sources.

  11. Characterization of Chromatic Dispersion and Refractive Index of Polymer Optical Fibers

    Directory of Open Access Journals (Sweden)

    Igor Ayesta

    2017-12-01

    Full Text Available The chromatic dispersion and the refractive index of poly(methyl methacrylate polymer optical fibers (POFs have been characterized in this work by using a tunable femtosecond laser and a Streak Camera. The characterization technique is based on the measurement of the time delays of light pulses propagating along POFs at different wavelengths. Polymer fibers of three different lengths made by two manufacturers have been employed for that purpose, and discrepancies lower than 3% have been obtained in all cases.

  12. Dispersion in laser-based polymer optical fiber links

    NARCIS (Netherlands)

    Yabre, G.S.; Khoe, G.D.; Boom, van den H.P.A.; Li, W.; Bennekom, van P.K.

    1999-01-01

    We show that factors that have until now been given little attention can have a large impact on the data rate transmission performance of graded-index polymer optical fibers (GIPOF). Our model presents a full description of the dispersion which incorporates all the parameters involved in the

  13. Femtosecond refractive-index tailoring of an optical fiber and phase retrieval from far-field measurements

    DEFF Research Database (Denmark)

    Savolainen, Juha-Matti; Grüner-Nielsen, Lars; Kristensen, Poul

    2013-01-01

    A refractive-index change is written inside an optical fiber close to the end face by femtosecond laser light. The induced phase change is measured by analyzing the far-field intensity profiles before and after the irradiation.......A refractive-index change is written inside an optical fiber close to the end face by femtosecond laser light. The induced phase change is measured by analyzing the far-field intensity profiles before and after the irradiation....

  14. A numerical study on the importance of non-uniform index modification during femtosecond grating inscription in microstructured optical fibers

    Science.gov (United States)

    Baghdasaryan, Tigran; Geernaert, Thomas; Thienpont, Hugo; Berghmans, Francis

    2016-04-01

    Fiber Bragg grating (FBG) inscription methods based on femtosecond laser sources are becoming increasingly popular owing to the (usually) non-linear nature of the index modification mechanism and to the resulting advantages. They allow, for example, fabricating fiber gratings that can survive temperatures exceeding 700°C, which can be an asset in the domain of fiber sensing. However applying femtosecond laser based grating fabrication to microstructured optical fibers (MOFs) can be challenging due to the presence of the air holes in the fiber cladding. The microstructured cladding not only impedes light delivery to the core in most cases, but also causes a non-uniform intensity distribution in the MOF core. To deal with these challenges we present a modeling approach that allows simulating how the reflectivity of the grating and the nature of the index modulation are affected by the inscription conditions. We rely on transverse coupling simulations, empirical data and coupled mode analysis to model the induced index change and the resulting grating reflectivity. For IR femtosecond grating inscription we show that due to the intensity redistribution in the core region, irreversible Type II index changes can be induced in a MOF at laser peak intensities below the Type II threshold for step-index fibers. The resulting non-uniform induced index change has repercussions on the reflection spectrum of the grating as well. Our coupled mode analysis reveals, for example, that although the average index change in the core region can be high, the partial overlap of the core mode with the index change region limits the reflectivity of the grating.

  15. Stabilized fiber-reinforced pavement base course with recycled aggregate

    Science.gov (United States)

    Sobhan, Khaled

    's assumptions for rigid pavements), which has been found to explain reasonably well the field behavior of unreinforced and fiber-reinforced concrete slabs on grade. Finally, a preliminary cost analysis demonstrated that the use of stabilized recycled aggregate instead of a standard crushed stone base course can result in a meaningful economic savings.

  16. Field Enhancement in a Grounded Dielectric Slab by Using a Single Superstrate Layer

    Directory of Open Access Journals (Sweden)

    Constantinos A. Valagiannopoulos

    2012-01-01

    Full Text Available The addition of a dielectric layer on a slab configuration is frequently utilized in various electromagnetic devices in order to give them certain desired operational characteristics. In this work, we consider a grounded dielectric film-slab, which is externally excited by a normally-incident Gaussian beam. On top of the film-slab, we use an additional suitably selected single isotropic superstrate layer in order to increase the field concentration inside the slab and hence achieve optimal power transfer from the external source to the internal region. We define a quantity of interest, called “enhancement factor,” expressing the increase of the field concentration in the film-slab when the superstrate is present compared to the case that it is absent. It is shown that large enhancement factor values may be achieved by choosing properly the permittivity, the permeability, and the thickness of the superstrate. In particular, it is demonstrated that the field in the film-slab is significantly enhanced when the slab is composed by an ϵ-near-zero (ENZ or low-index metamaterial.

  17. Identification method of non-reflective faults based on index distribution of optical fibers.

    Science.gov (United States)

    Lee, Wonkyoung; Myong, Seung Il; Lee, Jyung Chan; Lee, Sangsoo

    2014-01-13

    This paper investigates an identification method of non-reflective faults based on index distribution of optical fibers. The method identifies not only reflective faults but also non-reflective faults caused by tilted fiber-cut, lateral connector-misalignment, fiber-bend, and temperature variation. We analyze the reason why wavelength dependence of the fiber-bend is opposite to that of the lateral connector-misalignment, and the effect of loss due to temperature variation on OTDR waveforms through simulation and experimental results. This method can be realized by only upgrade of fault-analysis software without the hardware change, it is, therefore, competitive and cost-effective in passive optical networks.

  18. Influence of the power law index on the fiber breakage during injection molding by numerical simulations

    Science.gov (United States)

    Desplentere, Frederik; Six, Wim; Bonte, Hilde; Debrabandere, Eric

    2013-04-01

    In predictive engineering for polymer processes, the proper prediction of material microstructure from known processing conditions and constituent material properties is a critical step forward properly predicting bulk properties in the finished composite. Operating within the context of long-fiber thermoplastics (LFT, length > 15mm) this investigation concentrates on the influence of the power law index on the final fiber length distribution within the injection molded part. To realize this, the Autodesk Simulation Moldflow Insight Scandium 2013 software has been used. In this software, a fiber breakage algorithm is available from this release on. Using virtual material data with realistic viscosity levels allows to separate the influence of the power law index on the fiber breakage from the other material and process parameters. Applying standard settings for the fiber breakage parameters results in an obvious influence on the fiber length distribution through the thickness of the part and also as function of position in the part. Finally, the influence of the shear rate constant within the fiber breakage model has been investigated illustrating the possibility to fit the virtual fiber length distribution to the possible experimentally available data.

  19. Fiber cavities with integrated mode matching optics.

    Science.gov (United States)

    Gulati, Gurpreet Kaur; Takahashi, Hiroki; Podoliak, Nina; Horak, Peter; Keller, Matthias

    2017-07-17

    In fiber based Fabry-Pérot Cavities (FFPCs), limited spatial mode matching between the cavity mode and input/output modes has been the main hindrance for many applications. We have demonstrated a versatile mode matching method for FFPCs. Our novel design employs an assembly of a graded-index and large core multimode fiber directly spliced to a single mode fiber. This all-fiber assembly transforms the propagating mode of the single mode fiber to match with the mode of a FFPC. As a result, we have measured a mode matching of 90% for a cavity length of ~400 μm. This is a significant improvement compared to conventional FFPCs coupled with just a single mode fiber, especially at long cavity lengths. Adjusting the parameters of the assembly, the fundamental cavity mode can be matched with the mode of almost any single mode fiber, making this approach highly versatile and integrable.

  20. Empirical Strengths of Concrete Roof Slabs After 34 Years Service ...

    African Journals Online (AJOL)

    The results were compared with those from standard compressive strength machine in the laboratory, and subjected to statistical analysis. The final results showed that the lowest slab compressive strength was 14 N/mm2 below the minimum concrete grade of 25N/mm2; and percentage defective was 29.5% more than the ...

  1. Highly sensitive refractive index fiber inline Mach-Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching

    Science.gov (United States)

    Sun, Xiao-Yan; Chu, Dong-Kai; Dong, Xin-Ran; Zhou, Chu; Li, Hai-Tao; Luo-Zhi; Hu, You-Wang; Zhou, Jian-Ying; Cong-Wang; Duan, Ji-An

    2016-03-01

    A High sensitive refractive index (RI) sensor based on Mach-Zehnder interferometer (MZI) in a conventional single-mode optical fiber is proposed, which is fabricated by femtosecond laser transversal-scanning inscription method and chemical etching. A rectangular cavity structure is formed in part of fiber core and cladding interface. The MZI sensor shows excellent refractive index sensitivity and linearity, which exhibits an extremely high RI sensitivity of -17197 nm/RIU (refractive index unit) with the linearity of 0.9996 within the refractive index range of 1.3371-1.3407. The experimental results are consistent with theoretical analysis.

  2. Hybrid finite volume/ finite element method for radiative heat transfer in graded index media

    Science.gov (United States)

    Zhang, L.; Zhao, J. M.; Liu, L. H.; Wang, S. Y.

    2012-09-01

    The rays propagate along curved path determined by the Fermat principle in the graded index medium. The radiative transfer equation in graded index medium (GRTE) contains two specific redistribution terms (with partial derivatives to the angular coordinates) accounting for the effect of the curved ray path. In this paper, the hybrid finite volume with finite element method (hybrid FVM/FEM) (P.J. Coelho, J. Quant. Spectrosc. Radiat. Transf., vol. 93, pp. 89-101, 2005) is extended to solve the radiative heat transfer in two-dimensional absorbing-emitting-scattering graded index media, in which the spatial discretization is carried out using a FVM, while the angular discretization is by a FEM. The FEM angular discretization is demonstrated to be preferable in dealing with the redistribution terms in the GRTE. Two stiff matrix assembly schemes of the angular FEM discretization, namely, the traditional assembly approach and a new spherical assembly approach (assembly on the unit sphere of the solid angular space), are discussed. The spherical assembly scheme is demonstrated to give better results than the traditional assembly approach. The predicted heat flux distributions and temperature distributions in radiative equilibrium are determined by the proposed method and compared with the results available in other references. The proposed hybrid FVM/FEM method can predict the radiative heat transfer in absorbing-emitting-scattering graded index medium with good accuracy.

  3. Hybrid finite volume/ finite element method for radiative heat transfer in graded index media

    International Nuclear Information System (INIS)

    Zhang, L.; Zhao, J.M.; Liu, L.H.; Wang, S.Y.

    2012-01-01

    The rays propagate along curved path determined by the Fermat principle in the graded index medium. The radiative transfer equation in graded index medium (GRTE) contains two specific redistribution terms (with partial derivatives to the angular coordinates) accounting for the effect of the curved ray path. In this paper, the hybrid finite volume with finite element method (hybrid FVM/FEM) (P.J. Coelho, J. Quant. Spectrosc. Radiat. Transf., vol. 93, pp. 89-101, 2005) is extended to solve the radiative heat transfer in two-dimensional absorbing-emitting-scattering graded index media, in which the spatial discretization is carried out using a FVM, while the angular discretization is by a FEM. The FEM angular discretization is demonstrated to be preferable in dealing with the redistribution terms in the GRTE. Two stiff matrix assembly schemes of the angular FEM discretization, namely, the traditional assembly approach and a new spherical assembly approach (assembly on the unit sphere of the solid angular space), are discussed. The spherical assembly scheme is demonstrated to give better results than the traditional assembly approach. The predicted heat flux distributions and temperature distributions in radiative equilibrium are determined by the proposed method and compared with the results available in other references. The proposed hybrid FVM/FEM method can predict the radiative heat transfer in absorbing-emitting-scattering graded index medium with good accuracy.

  4. Ultra-weak FBG and its refractive index distribution in the drawing optical fiber.

    Science.gov (United States)

    Guo, Huiyong; Liu, Fang; Yuan, Yinquan; Yu, Haihu; Yang, Minghong

    2015-02-23

    For the online writing of ultra-weak fiber Bragg gratings (FBGs) in the drawing optical fibers, the effects of the intensity profile, pulse fluctuation and pulse width of the excimer laser, as well as the transverse and longitudinal vibrations of the optical fiber have been investigated. Firstly, using Lorentz-Loren equation, Gladstone-Dale mixing rule and continuity equation, we have derived the refractive index (RI) fluctuation along the optical fiber and the RI distribution in the FBG, they are linear with the gradient of longitudinal vibration velocity. Then, we have prepared huge amounts of ultra-weak FBGs in the non-moving optical fiber and obtained their reflection spectra, the measured reflection spectra shows that the intensity profile and pulse fluctuation of the excimer laser, as well as the transverse vibration of the optical fiber are little responsible for the inconsistency of ultra-weak FBGs. Finally, the effect of the longitudinal vibration of the optical fiber on the inconsistency of ultra-weak FBGs has been discussed, and the vibration equations of the drawing optical fiber are given in the appendix.

  5. μ-near-zero metamaterial slabs for a new concept of plasmonic sensing platforms

    Science.gov (United States)

    Girón-Sedas, J. A.; Oliveira, Osvaldo N.; Mejía-Salazar, J. R.

    2018-05-01

    We demonstrate that the excitation of magnetic bulk plasmon-like resonances in μ-near-zero double-negative metamaterial slabs is suitable for the design of new sensing platforms, where light-to-plasmon coupling is reached without requiring a prism or grating coupler. This allows for excitation with light coming directly from the air and for dielectric substrates with any refractive index. In the microwave region this architecture is able to detect changes as small as 10-2 in the refractive index of the superstrate. If the metamaterial slab is backed by a metallic substrate, on the other hand, the system can be used as a light-absorber for light harvesting applications.

  6. SPECIFICITIES OF ENDOMETRIAL PROLIFERATION/STEM CELL INDEX DISTRIBUTION IN ENDOMETRIOID CARCINOMA OF DIFFERENT GRADE OF MALIGNANCY.

    Science.gov (United States)

    Kikalishvili, N; Beriashvili, R; Muzashvili, T; Burkadze, G

    2018-03-01

    Endometrial neoplasia is the most common malignant tumor of female genital system in developed countries. The incidence of endometrial cancer has increased in the last years and despite advances in diagnosis and treatment, the death rates have steadily been increasing over the past 20 years. Therefore aspects of endometrial cancer development, pathogenesis and effective treatment is especially urgent to this day, as much of the risk for endometrial cancer development is influenced by the environment and lifestyle. Endometrial stem cells take the special place among somatic stem cells of female reproductive system-the detection of them and identification of their location in the complex cellular hierarchy still remains challenging. Further study of endometrial stem cells will clarify their role in gynecologic pathologies associated with hyper-proliferative states of endometrium. The aim of our study was to explore the specificities of endometrial proliferative/stem cell index distribution under endometrioid carcinoma of different grade of malignancy. The study represents a retrospective research. The coded and depersonalized material data from Acad. N. Kipshidze Central University Clinic was used in the study. 3 study groups - 1st study group "Endometrioid Carcinoma Grade 1" (14 cases), 2nd study group "Endometrioid Carcinoma Grade 2" (23 cases) and 3rd study group "Endometrioid Carcinoma Grade 3" were selected from routine histopathology tissue specimens of uterus. Hematoxilyn-eosin technology and immunohistochemistry with proliferation marker ki67 and stem cell marker CD146 was performed. The proliferative/stem cell index was calculated by the ratio of Ki67-positive cell percentage value divided by CD146-positive cell percentage value. The study showed that in the 1st study group labeled as "Endometrioid Carcinoma Grade 1", the proliferative/stem cell index ranges between 21.7 and 25.5. Its mean average value in the age distribution subgroups accounts for: 1

  7. Analytical solution for wave propagation through a graded index interface between a right-handed and a left-handed material

    OpenAIRE

    Dalarsson, Mariana; Tassin, Philippe

    2012-01-01

    We have investigated the transmission and reflection properties of structures incorporating left-handed materials with graded index of refraction. We present an exact analytical solution to Helmholtz' equation for a graded index profile changing according to a hyperbolic tangent function along the propagation direction. We derive expressions for the field intensity along the graded index structure, and we show excellent agreement between the analytical solution and the corresponding results o...

  8. Radiation resistant characteristics of optical fibers

    International Nuclear Information System (INIS)

    Nakasuji, Masaaki; Tanaka, Gotaro; Watanabe, Minoru; Kyodo, Tomohisa; Mukunashi, Hiroaki

    1983-01-01

    It is required to develop the optical fibers with good radiation resistivity because the fibers cause the increase of transmission loss due to glass colouring when they are used under the presence of radiation such as γ-ray. Generally, it is known that SI (step index) fibers are more resistive to radiation than GI (graded index) fibers. However, since a wide band can not be obtained with SI fibers, the development of radiation resistive GI optical fibers is desirable. In this report, the production for trial of the GI fibers of fluorine-doped silica core, the examination of radiation effect on their optical transmission loss by exposing them to γ-ray, thermal and fast neutron beams and also of mechanical strength are described. The GI fibers of fluorine-doped silica core show better radiation resistivity than Ge-doped ones. The B- and F-doped GI fibers show small increase of loss due to γ-ray, but large increase of loss due to thermal neutron beam. This is supposed to be caused by the far greater neutron absorption cross-section of boron than that of other elements. Significant increase of loss was not recognized when 14 MeV fast neutrons (8.6 x 10 4 n/cm 2 .s) were applied by 1.8 x 10 9 n/cm 2 . It was found that ETFE-covered fiber cores generated fluorine-containing gas due to γ irradiation, and the strength was remarkably lowered, but the lowering of strength can be prevented by adding titanium-white to the covering material. (Wakatsuki, Y.)

  9. Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing.

    Science.gov (United States)

    Klantsataya, Elizaveta; François, Alexandre; Ebendorff-Heidepriem, Heike; Hoffmann, Peter; Monro, Tanya M

    2015-09-29

    Refractometric sensors based on optical excitation of surface plasmons on the side of an optical fiber is an established sensing architecture that has enabled laboratory demonstrations of cost effective portable devices for biological and chemical applications. Here we report a Surface Plasmon Resonance (SPR) configuration realized in an Exposed Core Microstructured Optical Fiber (ECF) capable of optimizing both sensitivity and resolution. To the best of our knowledge, this is the first demonstration of fabrication of a rough metal coating suitable for spectral interrogation of scattered plasmonic wave using chemical electroless plating technique on a 10 μm diameter exposed core of the ECF. Performance of the sensor in terms of its refractive index sensitivity and full width at half maximum (FWHM) of SPR response is compared to that achieved with an unstructured bare core fiber with 140 μm core diameter. The experimental improvement in FWHM, and therefore the detection limit, is found to be a factor of two (75 nm for ECF in comparison to 150 nm for the large core fiber). Refractive index sensitivity of 1800 nm/RIU was achieved for both fibers in the sensing range of aqueous environment (1.33-1.37) suitable for biosensing applications.

  10. Fiber lightguide-coupled high frequency analog data system

    International Nuclear Information System (INIS)

    Davies, T.J.; Nelson, M.A.; Morton, J.R.; Pruett, B.

    1976-06-01

    An experimental system is described for measuring the time history of a high voltage, high frequency electrical pulse from a radiation detector. The system employs several fibers of a 500-m graded index light-guide cable to carry modelocked laser pulses from a safe location to an electro-optical Kerr cell located near the detector. These 200-ps pulses are widened to 500 ps at the cell by fiber dispersion. They are intensity-modulated in the cell by the electrical signal and returned over other cable fibers to an optical detector and recorder located near the laser. System frequency response exceeds 500 MHz over an amplitude dynamic range of 1000:1

  11. Influence of the column rectangularity index and of the boundary conditions in the punching resistance of slab-column connections

    Directory of Open Access Journals (Sweden)

    O. S. PAIVA

    Full Text Available Experimental evidence indicates that both the column rectangularity index and the boundary conditions of the connection may affect the ultimate punching resistance. This paper presents general aspects of these topics and, through the analysis of experimental results of tests on 131 slabs, evaluates the accuracy and suitability of recommendations presented by ABNT NBR 6118, Eurocode 2, ACI 318 and fib Model Code 2010. Experimental results showed that the security level of normative estimates trend to reduce as the column rectangularity increases, and in some cases, the punching resistance was overestimated. Finally, adjustments are suggested in equations presented by NBR 6118 and MC2010 in order to eliminate this trend of unsafe results.

  12. Effects of ionizing radiation on various core/clad ratio step index pure silica fibers

    International Nuclear Information System (INIS)

    Greenwell, R.A.; Barnes, C.E.; Nelson, G.W.

    1988-01-01

    Radiation testing was performed on polyimide-coated pure-silica-core step-index fibers fabricated from different preform core/clad ratios. Preliminary results indicate that the smaller the core/clad ratio, the better the radiation response of the fiber. These results are fortuitous for space applications, since the polyimide coating is also a low-outgassing wide-temperature-range small-size fiber coating material. The variations in radiation response may be due to a postdrawing anneal occurring during coating cure, which minimizes drawing-induced defects. 8 references

  13. Construction of the Classification and Grading Index System of Cultivated Land Based on the Viewpoint of Sustainable Development

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In order to objectively and reasonably evaluate the actual and potential value of cultivated land, both social and ecological values are introduced into the classification and grading index system of cultivated land based on the viewpoint of sustainable development, after considering the natural and economic values of cultivated land. Index system construction of the sustainable utilization of cultivated land should follow the principles of economic viability, social acceptability, and ecological protection. Classification of cultivated land should take into account the soil fertility of cultivated land. Then, grading of cultivated land is carried out from the practical productivity (or potential productivity) of cultivated land. According to the existing classification index system of cultivated land, the soil, natural and environmental factors in plains, mountains and hills are mainly modified in the classification index system of cultivated land. And index systems for the cultivated land classification in plains, mountains and hills are set up. The grading index system of cultivated land is established based on the economic viability (economic value), social acceptability (social value) and protection of cultivated land (ecological value). Quantitative expression of cultivated land grading index is also carried out.

  14. Interlaboratory comparison of radiation-induced attenuation in optical fibers

    International Nuclear Information System (INIS)

    Friebele, E.J.; Lyons, P.B.; Blackburn, J.C.

    1989-08-01

    A comparison of the losses induced in step index multimode, graded index multimode and single mode fibers by pulsed radiation exposure has been made among 12 laboratories over a period of 5 years. The recoveries of the incremental attenuations from 10 -9 to 10 1 s are reported. Although a standard set of measurement parameters was attempted, differences between the laboratories are evident; possible origins for these are discussed. 18 refs., 18 figs., 7 tabs

  15. Growth of rare-earth doped single crystal yttrium aluminum garnet fibers

    Science.gov (United States)

    Bera, Subhabrata; Nie, Craig D.; Harrington, James A.; Cheng, Long; Rand, Stephen C.; Li, Yuan; Johnson, Eric G.

    2018-02-01

    Rare-earth doped single crystal (SC) yttrium aluminum garnet (YAG) fibers have great potential as high-power laser gain media. SC fibers combine the superior material properties of crystals with the advantages of a fiber geometry. Improving processing techniques, growth of low-loss YAG SC fibers have been reported. A low-cost technique that allows for the growth of optical quality Ho:YAG single crystal (SC) fibers with different dopant concentrations have been developed and discussed. This technique is a low-cost sol-gel based method which offers greater flexibility in terms of dopant concentration. Self-segregation of Nd ions in YAG SC fibers have been observed. Such a phenomenon can be utilized to fabricate monolithic SC fibers with graded index.

  16. Highly Sensitive Refractive Index Sensor Based on a Cladding-Etched Thin-Core Fiber Sandwiched between Two Single-Mode Fibers

    International Nuclear Information System (INIS)

    Xu Ben; Li Yi; Dong Xin-Yong; Jin Shang-Zhong; Zhang Zai-Xuan

    2012-01-01

    A refractive index (RI) sensor based on a cladding-etched thin-core single-mode fiber (TCSMF) sandwiched between two single-mode fibers is demonstrated. The experimental results show that the sensitivity, within the RI range of 1.333–1.340, is enhanced at least 6 times by etching. It increases with the surrounding RI and reaches 857.5 nm/RIU at RI of 1.3684, and it can be expected to be higher with the decrease of the cladding diameter of the TCSMF

  17. Comparison of discrete ordinate and Monte Carlo simulations of polarized radiative transfer in two coupled slabs with different refractive indices.

    Science.gov (United States)

    Cohen, D; Stamnes, S; Tanikawa, T; Sommersten, E R; Stamnes, J J; Lotsberg, J K; Stamnes, K

    2013-04-22

    A comparison is presented of two different methods for polarized radiative transfer in coupled media consisting of two adjacent slabs with different refractive indices, each slab being a stratified medium with no change in optical properties except in the direction of stratification. One of the methods is based on solving the integro-differential radiative transfer equation for the two coupled slabs using the discrete ordinate approximation. The other method is based on probabilistic and statistical concepts and simulates the propagation of polarized light using the Monte Carlo approach. The emphasis is on non-Rayleigh scattering for particles in the Mie regime. Comparisons with benchmark results available for a slab with constant refractive index show that both methods reproduce these benchmark results when the refractive index is set to be the same in the two slabs. Computed results for test cases with coupling (different refractive indices in the two slabs) show that the two methods produce essentially identical results for identical input in terms of absorption and scattering coefficients and scattering phase matrices.

  18. Semi-analytical model for a slab one-dimensional photonic crystal

    Science.gov (United States)

    Libman, M.; Kondratyev, N. M.; Gorodetsky, M. L.

    2018-02-01

    In our work we justify the applicability of a dielectric mirror model to the description of a real photonic crystal. We demonstrate that a simple one-dimensional model of a multilayer mirror can be employed for modeling of a slab waveguide with periodically changing width. It is shown that this width change can be recalculated to the effective refraction index modulation. The applicability of transfer matrix method of reflection properties calculation was demonstrated. Finally, our 1-D model was employed to analyze reflection properties of a 2-D structure - a slab photonic crystal with a number of elliptic holes.

  19. Correlation Between Ki-67 Index, World Health Organization Grade and Patient Survival in Glial Tumors With Astrocytic Differentiation

    Science.gov (United States)

    Dzhenkov, Deyan L; Kitanova, Martina; Donev, Ivan S; Ghenev, Peter

    2017-01-01

    Background Glioblastoma multiforme (GBM) is a class IV astrocytic tumor, the most malignant of the four groups of World Health Organization (WHO) tumors with astrocytic differentiation. Aim The aim of this study was to estab­lish whether a correlation exists between the Ki-67 index of tumors with astrocytic differentiation, WHO grade, and patient survival. Materials and methods A retrospective non-clinical approach to patient selection was chosen for the aim of the study. A total of 47 patients diagnosed and treated for CNS tumors with astrocytic differentiation in the St. Marina University Hospital, Varna, Bulgaria, from September 2012 to July 2016 were retrospectively included into the study cohort. The cases were tested for their immunohistochemistry (IHC) reaction with Ki-67 after their original Hematoxylin and Eosin and IHC slides were reviewed by a single author and blind coded. The Ki-67 positivity index of the nuclei was estimated after digitalization of the slides and calculated by the ImmunoRatio automated count­ing tool. The individual Ki-67 index and patient survival of each case were statistically compared. Results The histopathological groups, after the blind Ki-67 index automated calculation was carried out, revealed no WHO grade I, two WHO grade II samples, four WHO grade III samples and 41 WHO grade IV cases, and these were included in the analysis. The two samples of WHO grade II astrocytic tumors had a mean Ki-67 index of 25%; however, they comprised tumors with an individual index of 43% and 7%, both individual values with a highly unlikely index for this group. The four samples of WHO grade III had a mean Ki-67 index of 4%, standard deviation ±2.16 (p>0.05), with the lowest index being 1% and the highest one being 6%. Both WHO grade II and III did not include enough samples to allow for a proper statistical analysis of patient survival. The 41 GBM cases had a mean Ki-67 index of 17.34%, standard deviation ±10.79 (p>0

  20. High-efficiency, 154  W CW, diode-pumped Raman fiber laser with brightness enhancement.

    Science.gov (United States)

    Glick, Yaakov; Fromzel, Viktor; Zhang, Jun; Ter-Gabrielyan, Nikolay; Dubinskii, Mark

    2017-01-20

    We demonstrate a high-power, high-efficiency Raman fiber laser pumped directly by laser diode modules at 978 nm. 154 W of CW power were obtained at a wavelength of 1023 nm with an optical to optical efficiency of 65%. A commercial graded-index (GRIN) core fiber acts as the Raman fiber in a power oscillator configuration, which includes spectral selection to prevent generation of the second Stokes. In addition, brightness enhancement of the pump beam by a factor of 8.4 is attained due to the Raman gain distribution profile in the GRIN fiber. To the best of our knowledge this is the highest power and highest efficiency Raman fiber laser demonstrated in any configuration allowing brightness enhancement (i.e., in either cladding-pumped configuration or with GRIN fibers, excluding step-index core pumped), regardless of pumping scheme (i.e., either diode pumped or fiber laser pumped).

  1. Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Wang, Fei; Savenko, Alexey

    2011-01-01

    We introduce a highly compact fiber-optic Fabry-Pérot refractive index sensor integrated with a fluid channel that is fabricated directly near the tip of a 32 μm in diameter single-mode fiber taper. The focused ion beam technique is used to efficiently mill the microcavity from the fiber side...... and finely polish the end facets of the cavity with a high spatial resolution. It is found that a fringe visibility of over 15 dB can be achieved and that the sensor has a sensitivity of ∼1731 nm/RIU (refractive index units) and a detection limit of ∼5.78 × 10−6 RIU. This miniature integrated all-in-fiber...

  2. The dynamics of double slab subduction

    Science.gov (United States)

    Holt, A. F.; Royden, L. H.; Becker, T. W.

    2017-04-01

    We use numerical models to investigate the dynamics of two interacting slabs with parallel trenches. Cases considered are: a single slab reference, outward dipping slabs (out-dip), inward dipping slabs (in-dip) and slabs dipping in the same direction (same-dip). Where trenches converge over time (same-dip and out-dip systems), large positive dynamic pressures in the asthenosphere are generated beneath the middle plate and large trench-normal extensional forces are transmitted through the middle plate. This results in slabs that dip away from the middle plate at depth, independent of trench geometry. The single slab, the front slab in the same-dip case and both out-dip slabs undergo trench retreat and exhibit stable subduction. However, slabs within the other double subduction systems tend to completely overturn at the base of the upper mantle, and exhibit either trench advance (rear slab in same-dip), or near-stationary trenches (in-dip). For all slabs, the net slab-normal dynamic pressure at 330 km depth is nearly equal to the slab-normal force induced by slab buoyancy. For double subduction, the net outward force on the slabs due to dynamic pressure from the asthenosphere is effectively counterbalanced by the net extensional force transmitted through the middle plate. Thus, dynamic pressure at depth, interplate coupling and lithospheric stresses are closely linked and their effects cannot be isolated. Our results provide insights into both the temporal evolution of double slab systems on Earth and, more generally, how the various components of subduction systems, from mantle flow/pressure to interplate coupling, are dynamically linked.

  3. A sensitivity-enhanced refractive index sensor using a single-mode thin-core fiber incorporating an abrupt taper.

    Science.gov (United States)

    Shi, Jie; Xiao, Shilin; Yi, Lilin; Bi, Meihua

    2012-01-01

    A sensitivity-enhanced fiber-optic refractive index (RI) sensor based on a tapered single-mode thin-core diameter fiber is proposed and experimentally demonstrated. The sensor head is formed by splicing a section of tapered thin-core diameter fiber (TCF) between two sections of single-mode fibers (SMFs). The cladding modes are excited at the first SMF-TCF interface, and then interfere with the core mode at the second interface, thus forming an inter-modal interferometer (IMI). An abrupt taper (tens of micrometers long) made by the electric-arc-heating method is utilized, and plays an important role in improving sensing sensitivity. The whole manufacture process only involves fiber splicing and tapering, and all the fabrication process can be achieved by a commercial fiber fusion splicer. Using glycerol and water mixture solution as an example, the experimental results show that the refractive index sensitivity is measured to be 0.591 nm for 1% change of surrounding RI. The proposed sensor structure features simple structure, low cost, easy fabrication, and high sensitivity.

  4. A Sensitivity-Enhanced Refractive Index Sensor Using a Single-Mode Thin-Core Fiber Incorporating an Abrupt Taper

    Directory of Open Access Journals (Sweden)

    Jie Shi

    2012-04-01

    Full Text Available A sensitivity-enhanced fiber-optic refractive index (RI sensor based on a tapered single-mode thin-core diameter fiber is proposed and experimentally demonstrated. The sensor head is formed by splicing a section of tapered thin-core diameter fiber (TCF between two sections of single-mode fibers (SMFs. The cladding modes are excited at the first SMF-TCF interface, and then interfere with the core mode at the second interface, thus forming an inter-modal interferometer (IMI. An abrupt taper (tens of micrometers long made by the electric-arc-heating method is utilized, and plays an important role in improving sensing sensitivity. The whole manufacture process only involves fiber splicing and tapering, and all the fabrication process can be achieved by a commercial fiber fusion splicer. Using glycerol and water mixture solution as an example, the experimental results show that the refractive index sensitivity is measured to be 0.591 nm for 1% change of surrounding RI. The proposed sensor structure features simple structure, low cost, easy fabrication, and high sensitivity.

  5. All-solid tellurite optical fiber with transversely disordered refractive index profile and its optical image transport performance

    Science.gov (United States)

    Tong, Hoang Tuan; Kuroyanagi, Shunei; Suzuki, Takenobu; Ohishi, Yasutake

    2018-02-01

    All-solid tellurite-glass optical rod and fiber with transversely-disordered refractive index profile were successfully fabricated to study the transport of infrared images by using transverse localization of light. The fabrication was carried out by using stack-and-draw and rod-in-tube techniques. The fabricated tellurite optical rod and fiber were composed of high-index and low-index units which were arranged randomly in the transverse plane but were invariant in the longitudinal direction. The diameter of each unit was approximately 1.0 μm. The high-index and low-index materials were TeO2-Li2O-WO3-MoO3-Nb2O5 (TLWMN) glass and TeO2-ZnO-Na2O-La2O3 (TZNL) glass, respectively. At 1550 nm, their refractive index difference Δn is 0.096. To investigate the optical image transport capability, A CW laser light at 1550 nm was used as an input probe beam and the 1951 U.S. Air Force test target was installed in front of 10-cm-long segments of the fabricated rod and fiber in the experimental setup. The output signal was recorded by a beam profiler. As a result, clear transported images of numbers and lines on the test target were obtained.

  6. Experimental sensitivity analysis of subsoil-slab behaviour regarding degree of fibre-concrete slab reinforcement

    Science.gov (United States)

    Hrubesova, E.; Lahuta, H.; Mohyla, M.; Quang, T. B.; Phi, N. D.

    2018-04-01

    The paper is focused on the sensitivity analysis of behaviour of the subsoil – foundation system as regards the variant properties of fibre-concrete slab resulting into different relative stiffness of the whole cooperating system. The character of slab and its properties are very important for the character of external load transfer, but the character of subsoil cannot be neglected either because it determines the stress-strain behaviour of the all system and consequently the bearing capacity of structure. The sensitivity analysis was carried out based on experimental results, which include both the stress values in soil below the foundation structure and settlements of structure, characterized by different quantity of fibres in it. Flat dynamometers GEOKON were used for the stress measurements below the observed slab, the strains inside slab were registered by tensometers, the settlements were monitored geodetically. The paper is focused on the comparison of soil stresses below the slab for different quantity of fibres in structure. The results obtained from the experimental stand can contribute to more objective knowledge of soil – slab interaction, to the evaluation of real carrying capacity of the slab, to the calibration of corresponding numerical models, to the optimization of quantity of fibres in the slab, and finally, to higher safety and more economical design of slab.

  7. Analytical solution for wave propagation through a graded index interface between a right-handed and a left-handed material.

    Science.gov (United States)

    Dalarsson, Mariana; Tassin, Philippe

    2009-04-13

    We have investigated the transmission and reflection properties of structures incorporating left-handed materials with graded index of refraction. We present an exact analytical solution to Helmholtz' equation for a graded index profile changing according to a hyperbolic tangent function along the propagation direction. We derive expressions for the field intensity along the graded index structure, and we show excellent agreement between the analytical solution and the corresponding results obtained by accurate numerical simulations. Our model straightforwardly allows for arbitrary spectral dispersion.

  8. Dynamics of Nonlinear Excitation of the High-Order Mode in a Single-Mode Step-Index Optical Fiber

    Science.gov (United States)

    Burdin, V.; Bourdine, A.

    2018-04-01

    This work is concerned with approximate model of higher-order mode nonlinear excitation in a singlemode silica optical fiber. We present some results of simulation for step-index optical fiber under femtosecond optical pulse launching, which confirm ability of relatively stable higher-order mode excitation in such singlemode optical fiber over sufficiently narrow range of launched optical power variation.

  9. Analysis of beam propagation characteristics in gain-guided, index antiguided fibers with the beam propagation method.

    Science.gov (United States)

    Ai, Fei; Qian, Jianqiang; Shi, Junfeng; Zhang, Machi

    2017-10-10

    The transmission properties of beams in gain fibers are studied with the complex refractive index beam propagation method (CRI-BPM). The method is checked by comparison with an analytic method. The behavior of a gain-guided, index antiguided (GG-IAG) fiber with different gain coefficients is studied. The simulation results show that the signal can transfer in the fiber with almost no loss when the gain coefficient reaches the threshold of the fundamental mode, and the shape of output spot will have no major changes when the gain coefficient is over the thresholds of high-order modes, even when the mode competition is not obvious. The CRI-BPM can predict the changes in light power and light mode at the same time, and will be very useful in the designing of fiber amplifiers and lasers with complex structures. More factors will be considered in this method to provide reference for practical application in our further research.

  10. Compact, efficient diode-end-pumped Nd:GdVO4 slab continuous-wave 912-nm laser

    International Nuclear Information System (INIS)

    Liu Huan; Gong Ma-Li

    2012-01-01

    A fiber-coupled laser-diode (LD) end-pumped Nd:GdVO 4 slab continuous-wave (CW) 912-nm laser and an LD bar end-pumped Nd:GdVO 4 slab CW 912-nm laser are both demonstrated in this paper. Using the fiber-coupled LD of end-pumped type, a highest CW 912-nm laser output power of 10.17 W is obtained with a high optical-to-optical conversion efficiency of 24.6% and a slope efficiency of 34.5%. The measured M 2 factors of beam quality in x and y directions are 5.3 and 5.1, respectively. Besides, an LD bar of end-pumped type is used to realize CW 912-nm laser output, which has the advantages of compactness and low cost. When the pump power is 38.8 W, the output power is 8.87 W and the measured M 2 factors of beam quality in x and y directions are 16 and 1.31, respectively. In order to improve the beam quality of the 912-nm laser at x direction, a new quasi-concentric laser resonator will be designed, and an LD bar end-pumped Nd:GdVO 4 slab high-power CW 912-nm TEM 00 laser will be realized in the future. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  11. Scintillators for fiber optics: system sensitivity and bandwidth as a function of fiber length

    International Nuclear Information System (INIS)

    Lutz, S.S.; Franks, L.A.; Fluornoy, J.M.; Lyons, P.B.

    1981-01-01

    Scintillators have been employed for several years as ionizing radiation-to-light converters in plasma diagnostic experiments that utilize fiber optics. Until recently, nanosecond and subnanosecond scintillators were available only in the near ultraviolet. However, the bandwidth and transmission properties of fiber optics both strongly favor operation at longer wavelengths. More recently, nanosecond and subnanosecond scintillators with emission peaks around 480 nm have been reported. A time-resolved plasma-imaging experiment using one of these scintillators and 100 channels of graded-index fiber, each 500 m long, has been successfully tested on a nuclear event at the Nevada Test Site. During the past year we have developed several new scintillator systems with emission wavelengths more compatible with fiber optics and with response times in the nanosecond and subnanosecond time region. One scintillator, based on Kodak dye 14567 (DCM), has an emission maximum at 650 nm and a response time (FWHM) of 1.2 ns. Experimental data on system sensitivity and bandwidth versus fiber length are presented for three fluor-fiber systems. Data on fluor formulation, response time, and linearity-of-response are given, and a model for scintillator nonlinearity, based on solvent, radiation-induced, transient absorption, is presented

  12. Fiber optic refractive index sensor using optofluidic anti-resonant reflecting guidance

    Science.gov (United States)

    Gao, Ran; Lu, Danfeng; Cheng, Jin; Qi, Zhi-mei

    2017-10-01

    An optofluidic anti-resonant reflecting guidance has been proposed and experimental demonstrated for the measurement of liquid refractive index. Two micro-channels were fabricated for the delivery of the liquid sample in the hollow core photonic crystal fiber by using femtosecond laser micromachining, serving as an inlet and outlet. The refractive index can be detected by using the resonant condition of the Fabry-Perot resonator, which is interrogated through the wavelength shift and of the lossy dip in the transmission spectrum. The experimental results show that the sensitivity of up to 1328 nm/RIU is achieved for the refractive index in the range from 1.345 to 1.363 RIU, respectively. The proposed sensor appears to have potential applications of precise measurement in chemistry, medicine, and biology.

  13. Design, Fabrication, and Measurement of Two-Dimensional Photonic Crystal Slab Waveguides

    International Nuclear Information System (INIS)

    Chao, Zhang; Xuan, Tang; Xiao-Yu, Mao; Kai-Yu, Cui; Lei, Cao; Yi-Dong, Huang; Wei, Zhang; Jiang-De, Peng

    2008-01-01

    Two-dimensional photonic crystal slab waveguides on SOI wafer are designed and fabricated. Photonic band gap, band gap guided mode, and index guided mode are observed by measuring the transmission spectra. The experimental results are in good agreement with the theoretical ones

  14. Measurement of spatial refractive index distributions of fusion spliced optical fibers by digital holographic microtomography

    Science.gov (United States)

    Pan, Feng; Deng, Yating; Ma, Xichao; Xiao, Wen

    2017-11-01

    Digital holographic microtomography is improved and applied to the measurements of three-dimensional refractive index distributions of fusion spliced optical fibers. Tomographic images are reconstructed from full-angle phase projection images obtained with a setup-rotation approach, in which the laser source, the optical system and the image sensor are arranged on an optical breadboard and synchronously rotated around the fixed object. For retrieving high-quality tomographic images, a numerical method is proposed to compensate the unwanted movements of the object in the lateral, axial and vertical directions during rotation. The compensation is implemented on the two-dimensional phase images instead of the sinogram. The experimental results exhibit distinctly the internal structures of fusion splices between a single-mode fiber and other fibers, including a multi-mode fiber, a panda polarization maintaining fiber, a bow-tie polarization maintaining fiber and a photonic crystal fiber. In particular, the internal structure distortion in the fusion areas can be intuitively observed, such as the expansion of the stress zones of polarization maintaining fibers, the collapse of the air holes of photonic crystal fibers, etc.

  15. Anomalous transparency in photonic crystals and its application to point-by-point grating inscription in photonic crystal fibers.

    Science.gov (United States)

    Baghdasaryan, Tigran; Geernaert, Thomas; Chah, Karima; Caucheteur, Christophe; Schuster, Kay; Kobelke, Jens; Thienpont, Hugo; Berghmans, Francis

    2018-04-03

    It is common belief that photonic crystals behave similarly to isotropic and transparent media only when their feature sizes are much smaller than the wavelength of light. Here, we counter that belief and we report on photonic crystals that are transparent for anomalously high normalized frequencies up to 0.9, where the crystal's feature sizes are comparable with the free space wavelength. Using traditional photonic band theory, we demonstrate that the isofrequency curves can be circular in the region above the first stop band for triangular lattice photonic crystals. In addition, by simulating how efficiently a tightly focused Gaussian beam propagates through the photonic crystal slab, we judge on the photonic crystal's transparency rather than on isotropy only. Using this approach, we identified a wide range of photonic crystal parameters that provide anomalous transparency. Our findings indicate the possibility to scale up the features of photonic crystals and to extend their operational wavelength range for applications including optical cloaking and graded index guiding. We applied our result in the domain of femtosecond laser micromachining, by demonstrating what we believe to be the first point-by-point grating inscribed in a multi-ring photonic crystal fiber.

  16. Monitoring the Wobbe Index of Natural Gas Using Fiber-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Sandfort, Vincenz; Trabold, Barbara M; Abdolvand, Amir; Bolwien, Carsten; Russell, Philip St. J; Wöllenstein, Jürgen; Palzer, Stefan

    2017-11-24

    The fast and reliable analysis of the natural gas composition requires the simultaneous quantification of numerous gaseous components. To this end, fiber-enhanced Raman spectroscopy is a powerful tool to detect most components in a single measurement using a single laser source. However, practical issues such as detection limit, gas exchange time and background Raman signals from the fiber material still pose obstacles to utilizing the scheme in real-world settings. This paper compares the performance of two types of hollow-core photonic crystal fiber (PCF), namely photonic bandgap PCF and kagomé-style PCF, and assesses their potential for online determination of the Wobbe index. In contrast to bandgap PCF, kagomé-PCF allows for reliable detection of Raman-scattered photons even below 1200 cm -1 , which in turn enables fast and comprehensive assessment of the natural gas quality of arbitrary mixtures.

  17. Mid-infrared supercontinuum generation spanning more than 11 μm in a chalcogenide step-index fiber

    DEFF Research Database (Denmark)

    Petersen, Christian Rosenberg; Møller, Uffe Visbech; Kubat, Irnis

    2015-01-01

    Supercontinuum generation covering an ultra-broad spectrum from 1.5-11.7μm and 1.4-13.3μm is experimentally demonstrated by pumping an 85mm chalcogenide step-index fiber with 100fs pulses at a wavelength of 4.5μm and 6.3μm, respectively.......Supercontinuum generation covering an ultra-broad spectrum from 1.5-11.7μm and 1.4-13.3μm is experimentally demonstrated by pumping an 85mm chalcogenide step-index fiber with 100fs pulses at a wavelength of 4.5μm and 6.3μm, respectively....

  18. Long-life slab replacement concrete.

    Science.gov (United States)

    2015-03-01

    This research was initiated following reports of high incidence of cracking on FDOT concrete pavement replacement : slab projects. Field slabs were instrumented for data acquisition from high-early-strength concrete pavement : replacement slabs place...

  19. Effect of reflecting modes on combined heat transfer within an anisotropic scattering slab

    International Nuclear Information System (INIS)

    Yi Hongliang; Tan Heping; Lu Yiping

    2005-01-01

    Under various interface reflecting modes, different transient thermal responses will occur in the media. Combined radiative-conductive heat transfer is investigated within a participating, anisotropic scattering gray planar slab. The two interfaces of the slab are considered to be diffuse and semitransparent. Using the ray tracing method, an anisotropic scattering radiative transfer model for diffuse reflection at boundaries is set up, and with the help of direct radiative transfer coefficients, corresponding radiative transfer coefficients (RTCs) are deduced. RTCs are used to calculate the radiative source term in energy equation. Transient energy equation is solved by the full implicit control-volume method under the external radiative-convective boundary conditions. The influences of two reflecting modes including both specular reflection and diffuse reflection on transient temperature fields and steady heat flux are examined. According to numerical results obtained in this paper, it is found that there exits great difference in thermal behavior between slabs with diffuse interfaces and that with specular interfaces for slabs with big refractive index

  20. Influence of slab length on dynamic characteristics of subway train-steel spring floating slab track-tunnel coupled system

    Directory of Open Access Journals (Sweden)

    Qing-yuan Xu

    Full Text Available A subway train-steel spring floating slab track-tunnel coupling dynamic model, considering short and middle-long wavelength random track irregularities, and longitudinal connection between adjacent slabs of steel spring floating slab track, was developed. And the influence of slab length on dynamic characteristics of the system under different track conditions and train speeds are theoretically studied. The calculated results show: (1 In general, the acceleration of each component of the coupled system decreases with the increase of slab length under the perfectly smooth track condition; (2 Slab length has different influence laws on acceleration of each component of subway train-steel spring floating slab track-tunnel coupled system under random irregularity of track condition. The lower the dominant frequency distribution of vibration acceleration is, the higher influence slab length has; (3 With the increase of slab length, the force of rail, fastener and steel spring also decreases significantly, which helps to lengthen the service life of these components; (4 With the increase of slab length, the longitudinal bending moment of slab increases sharply at first, then it begins to drop slightly. When slab length exceeds the distance between two bogies of a vehicle, the longitudinal bending moment of slab changes little; (5 Slab length has significant influence on the dynamic force and displacement of the coupled system when train speed is higher.

  1. Design of fiber optic probes for laser light scattering

    Science.gov (United States)

    Dhadwal, Harbans S.; Chu, Benjamin

    1989-01-01

    A quantitative analysis is presented of the role of optical fibers in laser light scattering. Design of a general fiber optic/microlens probe by means of ray tracing is described. Several different geometries employing an optical fiber of the type used in lightwave communications and a graded index microlens are considered. Experimental results using a nonimaging fiber optic detector probe show that due to geometrical limitations of single mode fibers, a probe using a multimode optical fiber has better performance, for both static and dynamic measurements of the scattered light intensity, compared with a probe using a single mode fiber. Fiber optic detector probes are shown to be more efficient at data collection when compared with conventional approaches to measurements of the scattered laser light. Integration of fiber optic detector probes into a fiber optic spectrometer offers considerable miniaturization of conventional light scattering spectrometers, which can be made arbitrarily small. In addition static and dynamic measurements of scattered light can be made within the scattering cell and consequently very close to the scattering center.

  2. Characterization of Fabricated Photonic Crystal Fibers Using Effective Index Method

    OpenAIRE

    Faramarz E. Seraji

    2009-01-01

    In this paper, the characteristics of photonic crystal fibers (PCFs), which have been experimentally determined in the last few years in Iran's Telecom Research Center are analyzed and compared theoretically using an effective index method. The PCFs under investigation are fabricated with a high speed drawing process that has not yet been reported elsewhere. It was shown that at higher wavelengths in PCFs; the light field is confined in the core where in shorter wavelengths the field spread...

  3. Monitoring the Wobbe Index of Natural Gas Using Fiber-Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Vincenz Sandfort

    2017-11-01

    Full Text Available The fast and reliable analysis of the natural gas composition requires the simultaneous quantification of numerous gaseous components. To this end, fiber-enhanced Raman spectroscopy is a powerful tool to detect most components in a single measurement using a single laser source. However, practical issues such as detection limit, gas exchange time and background Raman signals from the fiber material still pose obstacles to utilizing the scheme in real-world settings. This paper compares the performance of two types of hollow-core photonic crystal fiber (PCF, namely photonic bandgap PCF and kagomé-style PCF, and assesses their potential for online determination of the Wobbe index. In contrast to bandgap PCF, kagomé-PCF allows for reliable detection of Raman-scattered photons even below 1200 cm−1, which in turn enables fast and comprehensive assessment of the natural gas quality of arbitrary mixtures.

  4. Refractive index sensor based on optical fiber end face using pulse reference-based compensation technique

    Science.gov (United States)

    Bian, Qiang; Song, Zhangqi; Zhang, Xueliang; Yu, Yang; Chen, Yuzhong

    2018-03-01

    We proposed a refractive index sensor based on optical fiber end face using pulse reference-based compensation technique. With good compensation effect of this compensation technique, the power fluctuation of light source, the change of optic components transmission loss and coupler splitting ratio can be compensated, which largely reduces the background noise. The refractive index resolutions can achieve 3.8 × 10-6 RIU and1.6 × 10-6 RIU in different refractive index regions.

  5. Fabrication and characterization of functionally graded poly(vinylidine fluoride)-silver nanocomposite hollow fibers for sustainable water recovery

    KAUST Repository

    Francis, Lijo

    2014-12-01

    Poly(vinylidine fluoride) (PVDF) asymmetric hydrophobic hollow fibers were fabricated successfully using dryjet wet spinning. Hydrophobic silver nanoparticles were synthesized and impregnated into the PVDF polymer matrix and functionally graded PVDF-silver nanocomposite hollow fibers are fabricated and tested in the direct contact membrane distillation (DCMD) process. The as-synthesized silver nanoparticles were characterized for Transmission Electron Microscopy (TEM), particle size distribution (PSD) and Ultra Violet (UV) visible spectroscopy. Both the PVDF and PVDF-silver nanocomposite asymmetric hollow fibers were characterized for their morphology, water contact angle and mechanical strength. Addition of hydrophobic silver nanoparticles was found to enhance the hydrophobicity and ~ 2.5 fold increase the mechanical strength of the hollow fibers. A water vapor flux of 31.9kg m-2 h-1 was observed at a feed inlet temperature of 80 °C and at a permeate temperature of 20 °C in the case of hollow fiber membrane modules fabricated using PVDF hollow fibers; the water vapor flux was found to be increased by about 8% and to reach 34.6kg m-2 h-1 for the hollow fiber membrane modules fabricated from the PVDF-silver nanocomposite hollow fibers at the same operating conditions with 99.99% salt rejection.

  6. Development of Flexible Link Slabs using Ductile Fiber Reinforced Concrete

    DEFF Research Database (Denmark)

    Lárusson, Lárus Helgi

    Civil engineering structures with large dimensions, such as multi-span bridges, overpasses and viaducts, are typically equipped with mechanical expansion joints. These joints allow the individual spans of the structure to undergo unrestrained deformations due to thermal expansions and load......-deformation response and crack development of representative sections of the reinforced composites, and iv) detailing, designing and testing of large scale prefabricated link slab elements. In addition, an application of ductile Engineered Cementitious Composite (ECC) in prefabricated floor panels is presented...... crack widths and crack spacing measurements are obtained, which can characterize the tensile behavior of ECC. In chapter 3 on interfacial bond, the bond slip behavior and crack development, between the reinforcement and surrounding cementitious matrix is investigated in a unique test setup with special...

  7. Noncontact Optical Fiber Sensor for Measuring the Refractive Index of Liquids

    Directory of Open Access Journals (Sweden)

    R. Selvas-Aguilar

    2016-01-01

    Full Text Available A noncontact optical fiber sensor for measuring the refractive index of transparent liquids is proposed. It operates by calculating the path of a focused laser beam at 635 nm that travels across the boundaries of a liquid sample. The optical power Fresnel reflections are detected and, subsequently, the refractive index is determined as the ratio between the traveled beam paths when the liquid is deposited versus a reference without the liquid sample. Additionally, a mathematical analysis of the geometrical case is included. The theoretical data from our sensor are in good agreement with the experimental results. The resolution achieved by the sensor is better than 10−3 RIU.

  8. Effective refractive index modulation based optical fiber humidity sensor employing etched fiber Bragg grating

    Science.gov (United States)

    Mundendhar, Pathi; Khijwania, Sunil K.

    2015-09-01

    Relative humidity (RH) sensor employing etched fiber Bragg grating (FBG) is reported where RH variations are captured using effective-index-modulation, rather than traditional strain-modulation. Additionly, linear sensor response over wide dynamic range with optimum characteristics is focused. Comprehensive experimental investigation is carried out for the sensor that comprises uniformly etched cladding in the FBG region. Obtained results are observed to be in agreement with the theoretical analysis. Sensor response is observed to be linear over dynamic range 3-94%RH with ~ 0.082 pm/%RH sensitivity, ~0.6%RH resolution, ~ +/-2.5%RH accuracy, ~ +/-0.2 pm average discrepancy and ~ 0.2s response time during humidification/desiccation.

  9. Refractive index sensors based on the fused tapered special multi-mode fiber

    Science.gov (United States)

    Fu, Xing-hu; Xiu, Yan-li; Liu, Qin; Xie, Hai-yang; Yang, Chuan-qing; Zhang, Shun-yang; Fu, Guang-wei; Bi, Wei-hong

    2016-01-01

    In this paper, a novel refractive index (RI) sensor is proposed based on the fused tapered special multi-mode fiber (SMMF). Firstly, a section of SMMF is spliced between two single-mode fibers (SMFs). Then, the SMMF is processed by a fused tapering machine, and a tapered fiber structure is fabricated. Finally, a fused tapered SMMF sensor is obtained for measuring external RI. The RI sensing mechanism of tapered SMMF sensor is analyzed in detail. For different fused tapering lengths, the experimental results show that the RI sensitivity can be up to 444.517 81 nm/RIU in the RI range of 1.334 9—1.347 0. The RI sensitivity is increased with the increase of fused tapering length. Moreover, it has many advantages, including high sensitivity, compact structure, fast response and wide application range. So it can be used to measure the solution concentration in the fields of biochemistry, health care and food processing.

  10. A differentiated plane wave: its passage through a slab

    International Nuclear Information System (INIS)

    Hannay, J H; Nye, J F

    2013-01-01

    Differentiating a monochromatic uniform plane electromagnetic wavefield with respect to its direction produces, from a field that is completely lacking in localized specific features, one that contains a straight vortex-like line, a ‘C-line’ of defined circular polarization. There is also a second separate C-line of opposite handedness; indeed, in a sense, a straight line of every polarization is realized. Because of its primitive construction it is analytically simple to study the passage of a differentiated wave obliquely through a plane interface into a medium of different refractive index, to trace its C-line. This was done in an earlier paper. Here we extend the method to passage through a parallel-sided transparent slab. There are multiple reflections within the slab, as in a Fabry–Pérot interferometer. The exiting wave, as a single differentiated plane wave, has a straight oblique C-line. Inside the slab, and in front of it, there is wave interference. The result is a coiled, helix-like, C-line in front of the slab and another inside it. The two coils wrap around separate hyperboloids of one sheet, like cooling towers. The emerging straight C-line is shifted (with respect to a C-line in a notional undisturbed incident plane wave) both in the plane of incidence and transversely to it, and the second C-line behaves similarly. The analysis is exact and could be extended in a straightforward way to a general stratified medium. (paper)

  11. Eyewear-style three-dimensional endoscope derived from microstructured polymer fiber with the function of image transmission

    International Nuclear Information System (INIS)

    Kong De-Peng; Wang Li-Li; He Zheng-Quan; Ma Tian; Chu Jiu-Rong

    2013-01-01

    A method of fabricating multi-core polymer image fiber is proposed. Image fiber preform is fabricated by stacking thousands of polymer fibers each with a 0.25-mm diameter orderly in a die by only one step. The preform is heated and stretched into image fiber with an outer diameter of 2 mm. Then a portable eyewear-style three-dimensional (3D) endoscope system is designed, fabricated, and characterized. This endoscopic system is composed of two graded index lenses, two pieces of 0.35-m length image guide fibers, and a pair of oculars. It shows good flexibility and portability, and can provide the depth information accordingly. (general)

  12. Preface: Deep Slab and Mantle Dynamics

    Science.gov (United States)

    Suetsugu, Daisuke; Bina, Craig R.; Inoue, Toru; Wiens, Douglas A.

    2010-11-01

    We are pleased to publish this special issue of the journal Physics of the Earth and Planetary Interiors entitled "Deep Slab and Mantle Dynamics". This issue is an outgrowth of the international symposium "Deep Slab and Mantle Dynamics", which was held on February 25-27, 2009, in Kyoto, Japan. This symposium was organized by the "Stagnant Slab Project" (SSP) research group to present the results of the 5-year project and to facilitate intensive discussion with well-known international researchers in related fields. The SSP and the symposium were supported by a Grant-in-Aid for Scientific Research (16075101) from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government. In the symposium, key issues discussed by participants included: transportation of water into the deep mantle and its role in slab-related dynamics; observational and experimental constraints on deep slab properties and the slab environment; modeling of slab stagnation to constrain its mechanisms in comparison with observational and experimental data; observational, experimental and modeling constraints on the fate of stagnant slabs; eventual accumulation of stagnant slabs on the core-mantle boundary and its geodynamic implications. This special issue is a collection of papers presented in the symposium and other papers related to the subject of the symposium. The collected papers provide an overview of the wide range of multidisciplinary studies of mantle dynamics, particularly in the context of subduction, stagnation, and the fate of deep slabs.

  13. Graded gauge theory

    International Nuclear Information System (INIS)

    Kerner, R.

    1983-01-01

    The mathematical background for a graded extension of gauge theories is investigated. After discussing the general properties of graded Lie algebras and what may serve as a model for a graded Lie group, the graded fiber bundle is constructed. Its basis manifold is supposed to be the so-called superspace, i.e. the product of the Minkowskian space-time with the Grassmann algebra spanned by the anticommuting Lorentz spinors; the vertical subspaces tangent to the fibers are isomorphic with the graded extension of the SU(N) Lie algebra. The connection and curvature are defined then on this bundle; the two different gradings are either independent of each other, or may be unified in one common grading, which is equivalent to the choice of the spin-statistics dependence. The Yang-Mills lagrangian is investigated in the simplified case. The conformal symmetry breaking is discussed, as well as some other physical consequences of the model. (orig.)

  14. On the derivation of vector radiative transfer equation for polarized radiative transport in graded index media

    International Nuclear Information System (INIS)

    Zhao, J.M.; Tan, J.Y.; Liu, L.H.

    2012-01-01

    Light transport in graded index media follows a curved trajectory determined by Fermat's principle. Besides the effect of variation of the refractive index on the transport of radiative intensity, the curved ray trajectory will induce geometrical effects on the transport of polarization ellipse. This paper presents a complete derivation of vector radiative transfer equation for polarized radiation transport in absorption, emission and scattering graded index media. The derivation is based on the analysis of the conserved quantities for polarized light transport along curved trajectory and a novel approach. The obtained transfer equation can be considered as a generalization of the classic vector radiative transfer equation that is only valid for uniform refractive index media. Several variant forms of the transport equation are also presented, which include the form for Stokes parameters defined with a fixed reference and the Eulerian forms in the ray coordinate and in several common orthogonal coordinate systems.

  15. Micro-structured optical fiber sensor for simultaneous measurement of temperature and refractive index

    Science.gov (United States)

    Liu, Ying-gang; Liu, Xin; Ma, Cheng-ju; Zhou, Yu-min

    2018-03-01

    Through using micro-machining method for optical fiber sensor, a kind of miniature, compact and composite structural all-fiber sensor is presented. Based on manufacturing two micro-holes with certain distance in ordinary single-mode fiber Bragg grating (FBG) by excimer laser processing technique, we fabricate a dual Fabry-Perot-FBG (FP-FBG) composite fiber interferometric sensor, which can be used in simultaneous measurement for liquid's refractive index (RI) and temperature change. Due to every micro-hole and the dual micro-holes in fiber acting as different Fabry-Perot (FP) cavities, this kind of sensor has not only different RI sensitivities but also different temperature sensitivities, which are corresponding to the wavelength shifts of the fine interference fringes and spectral envelope, respectively. The experimental results show that the spectral wavelength shift keep better linear response for temperature and RI change, so that we can select the higher temperature and RI sensitivities as well as the analyzed sensitivities of FBG to utilize them for constituting a sensitivity coefficients matrix. Finally, the variations of liquid's temperature and RI are detected effectively, and the resolutions can reach to 0.1 °C and 1.0 ×10-5 RIU. These characteristics are what other single-type sensors don't have, so that this kind of all-fiber dual FP-FBG composite fiber interferometric sensor can be used in extremely tiny liquid environment for measuring different physical quantities simultaneously.

  16. Bridge approach slabs for Missouri DOT field evaluation of alternative and cost efficient bridge approach slabs.

    Science.gov (United States)

    2013-05-01

    Based on a recent study on cost efficient alternative bridge approach slab (BAS) designs (Thiagarajan et : al. 2010) has recommended three new BAS designs for possible implementation by MoDOT namely a) 20 feet cast-inplace : slab with sleeper slab (C...

  17. Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber.

    Science.gov (United States)

    Tian, Zhaobing; Yam, Scott S-H; Loock, Hans-Peter

    2008-05-15

    A simple refractive index sensor based on a Michelson interferometer in a single-mode fiber is constructed and demonstrated. The sensor consists of a single symmetrically abrupt taper region in a short piece of single-mode fiber that is terminated by approximately 500 nm thick gold coating. The sensitivity of the new sensor is similar to that of a long-period-grating-type sensor, and its ease of fabrication offers a low-cost alternative to current sensing applications.

  18. Investigating the Strain, Temperature and Humidity Sensitivity of a Multimode Graded-Index Perfluorinated Polymer Optical Fiber with Bragg Grating.

    Science.gov (United States)

    Zheng, Yulong; Bremer, Kort; Roth, Bernhard

    2018-05-05

    In this work we investigate the strain, temperature and humidity sensitivity of a Fiber Bragg Grating (FBG) inscribed in a near infrared low-loss multimode perfluorinated polymer optical fiber based on cyclic transparent optical polymer (CYTOP). For this purpose, FBGs were inscribed into the multimode CYTOP fiber with a core diameter of 50 µm by using a krypton fluoride (KrF) excimer laser and the phase mask method. The evolution of the reflection spectrum of the FBG detected with a multimode interrogation technique revealed a single reflection peak with a full width at half maximum (FHWM) bandwidth of about 9 nm. Furthermore, the spectral envelope of the single FBG reflection peak can be optimized depending on the KrF excimer laser irradiation time. A linear shift of the Bragg wavelength due to applied strain, temperature and humidity was measured. Furthermore, depending on irradiation time of the KrF excimer laser, both the failure strain and strain sensitivity of the multimode fiber with FBG can be controlled. The inherent low light attenuation in the near infrared wavelength range (telecommunication window) of the multimode CYTOP fiber and the single FBG reflection peak when applying the multimode interrogation set-up will allow for new applications in the area of telecommunication and optical sensing.

  19. Etching twin core fiber for the temperature-independent refractive index sensing

    Science.gov (United States)

    Zhang, Chuanbiao; Ning, Tigang; Li, Jing; Zheng, Jingjing; Gao, Xuekai; Lin, Heng; Pei, Li

    2018-04-01

    We proposed an ultra-compact chemically etched twin core fiber (TCF) based optic refractive index (RI) sensor, in which the etched fiber was fabricated by immersing in an aqueous solution of hydrofluoric acid (HF) to etch the cladding. Due to the multipath evolutions of light during the TCF, the mode induced interference pattern can be used for measurement. Numerical simulations were performed, demonstrating that only the cladding mode strongly interacts with the surrounding media, and the higher cladding modes will be more sensitive to external medium. In the experiment demonstration, the RI response characteristics of the sensor were investigated, which shows a relatively high RI sensitivity and a much low temperature cross-sensitivity with about 1.06 × 10-6 RIU °C-1. Due to low cost and easy fabrication, the sensor can be a suitable candidate in the biochemical field.

  20. Displacement sensing based on modal interference in polymer optical fibers with partially applied strain

    Science.gov (United States)

    Mizuno, Yosuke; Hagiwara, Sonoko; Kawa, Tomohito; Lee, Heeyoung; Nakamura, Kentaro

    2018-05-01

    Strain sensing based on modal interference in multimode fibers (MMFs) has been extensively studied, but no experimental or theoretical reports have been given as to how the system works when strain is applied not to the whole MMF but only to part of the MMF. Here, using a perfluorinated graded-index polymer optical fiber as the MMF, we investigate the strain sensing characteristics of this type of sensor when strain is partially applied to fiber sections with different lengths. The strain sensitivity dependence on the length of the strained section reveals that this strain sensor actually behaves as a displacement sensor.

  1. Finite Element Modeling of GFRP-Reinforced Concrete Interior Slab-Column Connections Subjected to Moment Transfer

    Directory of Open Access Journals (Sweden)

    Ahmed Gouda

    2015-10-01

    Full Text Available A finite element model (FEM was constructed using specialized three-dimensional (3D software to investigate the punching shear behavior of interior slab-column connections subjected to a moment-to-shear ratio of 0.15 m. The FEM was then verified against the experimental results of full-scale interior slab-column connections reinforced with glass fiber reinforcement polymer (GFRP bars previously tested by the authors. The FEM results showed that the constructed model was able to predict the behavior of the slabs with reasonable accuracy. Afterward, the verified model was used to conduct a parametric study to investigate the effects of reinforcement ratio, perimeter-to-depth ratio, and column aspect ratio on the punching shear behavior of such connections. The test results showed that increasing the tested parameters enhanced the overall behavior of the connections in terms of decreasing deflections and reinforcement strain and increasing the ultimate capacity. In addition, the obtained punching shear stresses of the connections were compared to the predictions of the Canadian standard and the American guideline for FRP-reinforced concrete structures.

  2. Development of a Leave-in-Place Slab Edge Insulating Form System

    Energy Technology Data Exchange (ETDEWEB)

    Marc Hoeschele; Eric Lee

    2009-08-31

    homes with radiant floor heating), the most practical insulation strategy is to secure rigid foam insulation, such as Dow Styrofoam{trademark}, to the inside of the wooden slab edge forms. An alternative is to clad insulation to the perimeter of the slab after the slab has been poured and cured. In either case, the foam must have a 'termite strip' that prevents termites from creating hidden tunnels through or behind the foam on their way to the wall framing above. Frequently this termite strip is a piece of sheet metal that must be fabricated for each project. The above-grade portion of the insulation also needs to be coated for appearance and to prevent damage from construction and UV degradation. All these steps add time, complexity, and expense to the insulating process.

  3. Spread prestressed concrete slab beam bridges.

    Science.gov (United States)

    2015-04-01

    TxDOT uses prestressed slab beam bridges for short-span bridges ranging from approximately 3050 ft in : length. These bridges have precast, pretensioned slab beams placed immediately adjacent to one another : with a cast-in-place slab made composi...

  4. Generating Atomistic Slab Surfaces with Adsorbates

    Science.gov (United States)

    2017-12-01

    slabs of various thickness and with various vacuum spacing need be calculated. This can occur in serial or simultaneously . If performed in serial, the...the user. Although the optimization of the slab thickness and vacuum padding can be done simultaneously , it is more computationally conservative to...monolayer is a slab (True if slab), the type of mesh desired (adsorbates.py was written for “Gamma”), how detailed the mesh should be (in units of inverse

  5. Applications Of Measurement Techniques To Develop Small-Diameter, Undersea Fiber Optic Cables

    Science.gov (United States)

    Kamikawa, Neil T.; Nakagawa, Arthur T.

    1984-12-01

    Attenuation, strain, and optical time domain reflectometer (OTDR) measurement techniques were applied successfully in the development of a minimum-diameter, electro-optic sea floor cable. Temperature and pressure models for excess attenuation in polymer coated, graded-index fibers were investigated analytically and experimentally using these techniques in the laboratory. The results were used to select a suitable fiber for the cable. Measurements also were performed on these cables during predeployment and sea-trial testing to verify laboratory results. Application of the measurement techniques and results are summarized in this paper.

  6. Fabrication Quality Analysis of a Fiber Optic Refractive Index Sensor Created by CO2 Laser Machining

    Directory of Open Access Journals (Sweden)

    Wei-Te Wu

    2013-03-01

    Full Text Available This study investigates the CO2 laser-stripped partial cladding of silica-based optic fibers with a core diameter of 400 μm, which enables them to sense the refractive index of the surrounding environment. However, inappropriate treatments during the machining process can generate a number of defects in the optic fiber sensors. Therefore, the quality of optic fiber sensors fabricated using CO2 laser machining must be analyzed. The results show that analysis of the fiber core size after machining can provide preliminary defect detection, and qualitative analysis of the optical transmission defects can be used to identify imperfections that are difficult to observe through size analysis. To more precisely and quantitatively detect fabrication defects, we included a tensile test and numerical aperture measurements in this study. After a series of quality inspections, we proposed improvements to the existing CO2 laser machining parameters, namely, a vertical scanning pathway, 4 W of power, and a feed rate of 9.45 cm/s. Using these improved parameters, we created optical fiber sensors with a core diameter of approximately 400 μm, no obvious optical transmission defects, a numerical aperture of 0.52 ± 0.019, a 0.886 Weibull modulus, and a 1.186 Weibull-shaped parameter. Finally, we used the optical fiber sensor fabricated using the improved parameters to measure the refractive indices of various solutions. The results show that a refractive-index resolution of 1.8 × 10−4 RIU (linear fitting R2 = 0.954 was achieved for sucrose solutions with refractive indices ranging between 1.333 and 1.383. We also adopted the particle plasmon resonance sensing scheme using the fabricated optical fibers. The results provided additional information, specifically, a superior sensor resolution of 5.73 × 10−5 RIU, and greater linearity at R2 = 0.999.

  7. Enhanced refractive index sensor using a combination of a long period fiber grating and a small core singlemode fiber structure

    International Nuclear Information System (INIS)

    Wu, Qiang; Ma, Youqiao; Yang, Minwei; Semenova, Yuliya; Wang, Pengfei; Farrell, Gerald; Chan, Hai Ping; Yuan, Jinhui; Yan, Binbin; Yu, Chongxiu

    2013-01-01

    An enhanced refractive index (RI) sensor based on a combination of a long period fiber grating (LPG) and a small core singlemode fiber (SCSMF) structure is proposed and developed. Since the LPG and SCSMF transmission spectra experience a blue and a red shift respectively as the surrounding RI (SRI) increases, the sensitivity is improved by measuring the separation between the resonant wavelengths of the LPG and SCSMF structures. Experimental results show that the sensor has a sensitivity of 1028 nm/SRI unit in the SRI range from 1.422 to 1.429, which is higher than individual sensitivities of either structure alone used in the experiment. Experimental results agree well with simulation results. (paper)

  8. Differential modal delay measurements in a graded-index multimode fibre waveguide, using a single-mode fibre pro mode selection

    International Nuclear Information System (INIS)

    Sunak, H.R.D.; Soares, S.M.

    1981-01-01

    Differential model delay (DMD) measurements in graded-index multimode optical fibre waveguides, which are very promising for many types of communication system were carried out. These DMD measurements give a direct indication of the deviation of the refractive index profile, from the optimum value, at a given wavelength. For the first time, by using a single-mode fibre, a few guided modes in the graded-index fibre were selected, in two different ways: launching a few modes at the input end or selecting a few modes at the output end. By doing so important features of propagation in the fibre were revealed, especially the intermodal coupling that may exist. The importance of this determination of intermodal coupling or mode mixing, particularly when many fibres are joined together in a link, and the merits of DMD measurements in general and their importance for the production of high bandwidth graded-index fibres are discussed. (Author) [pt

  9. High-directionality fiber-chip grating coupler with interleaved trenches and subwavelength index-matching structure.

    Science.gov (United States)

    Benedikovic, Daniel; Alonso-Ramos, Carlos; Cheben, Pavel; Schmid, Jens H; Wang, Shurui; Xu, Dan-Xia; Lapointe, Jean; Janz, Siegfried; Halir, Robert; Ortega-Moñux, Alejandro; Wangüemert-Pérez, J Gonzalo; Molina-Fernández, Iñigo; Fédéli, Jean-Marc; Vivien, Laurent; Dado, Milan

    2015-09-15

    We present the first experimental demonstration of a new fiber-chip grating coupler concept that exploits the blazing effect by interleaving the standard full (220 nm) and shallow etch (70 nm) trenches in a 220 nm thick silicon layer. The high directionality is obtained by controlling the separation between the deep and shallow trenches to achieve constructive interference in the upward direction and destructive interference toward the silicon substrate. Utilizing this concept, the grating directionality can be maximized independent of the bottom oxide thickness. The coupler also includes a subwavelength-engineered index-matching region, designed to reduce the reflectivity at the interface between the injection waveguide and the grating. We report a measured fiber-chip coupling efficiency of -1.3  dB, the highest coupling efficiency achieved to date for a surface grating coupler in a 220 nm silicon-on-insulator platform fabricated in a conventional dual-etch process without high-index overlays or bottom mirrors.

  10. Flexural Behavior of RC Members Using Externally Bonded Aluminum-Glass Fiber Composite Beams

    Directory of Open Access Journals (Sweden)

    Ki-Nam Hong

    2014-03-01

    Full Text Available This study concerns improvement of flexural stiffness/strength of concrete members reinforced with externally bonded, aluminum-glass fiber composite (AGC beams. An experimental program, consisting of seven reinforced concrete slabs and seven reinforced concrete beams strengthened in flexure with AGC beams, was initiated under four-point bending in order to evaluate three parameters: the cross-sectional shape of the AGC beam, the glass fiber fabric array, and the installation of fasteners. The load-deflection response, strain distribution along the longitudinal axis of the beam, and associated failure modes of the tested specimens were recorded. It was observed that the AGC beam led to an increase of the initial cracking load, yielding load of the tension steels and peak load. On the other hand, the ductility of some specimens strengthened was reduced by more than 50%. The A-type AGC beam was more efficient in slab specimens than in beam specimens and the B-type was more suitable for beam specimens than for slabs.

  11. Assessing the effectiveness of slab flooring as a barrier to soil gas and radon infiltration

    International Nuclear Information System (INIS)

    Williamson, A.D.; Fowler, C.S.; McDonough, S.E.

    1995-01-01

    Experimental studies on the entry of soil gas and radon into slab-on-grade buildings have been carried out in instrumented, single-zone test structures. This work, as part of the Florida Radon Research Program, focused on the effectiveness of slab flooring variants as barriers to soil gas/radon entry. A second objective was the study of the role of subslab fill soil as both a potential source of and barrier to radon entry. Studies were made in well-sealed (∼ 600 mm 2 ELA) unoccupied test buildings placed on well-characterized, radium-bearing sandy fill soil. The buildings were instrumented with data acquisition systems to continuously monitor indoor radon concentrations, differential pressures at several subsurface locations, weather conditions, and soil moisture. The response of the structures to mechanical depressurization as well as natural driving forces was measured. Limited measurements were made regarding direct diffusive transport of radon through apparently intact concrete slabs, as well as transport through cracks in the floor structure

  12. Method for Forming Fiber Reinforced Composite Bodies with Graded Composition and Stress Zones

    Science.gov (United States)

    Singh, Mrityunjay (Inventor); Levine, Stanley R. (Inventor); Smialek, James A. (Inventor)

    1999-01-01

    A near-net, complex shaped ceramic fiber reinforced silicon carbide based composite bodies with graded compositions and stress zones is disclosed. To provide the composite a fiber preform is first fabricated and an interphase is applied by chemical vapor infiltration, sol-gel or polymer processes. This first body is further infiltrated with a polymer mixture containing carbon, and/or silicon carbide, and additional oxide, carbide, or nitride phases forming a second body. One side of the second body is spray coated or infiltrated with slurries containing high thermal expansion and oxidation resistant. crack sealant phases and the other side of this second body is coated with low expansion phase materials to form a third body. This third body consisting of porous carbonaceous matrix surrounding the previously applied interphase materials, is then infiltrated with molten silicon or molten silicon-refractory metal alloys to form a fourth body. The resulting fourth body comprises dense composites consisting of fibers with the desired interphase which are surrounded by silicon carbide and other second phases materials at the outer and inner surfaces comprising material of silicon, germanium, refractory metal suicides, borides, carbides, oxides, and combinations thereof The resulting composite fourth body has different compositional patterns from one side to the other.

  13. Monitoring of high refractive index edible oils using coated long period fiber grating sensors

    Science.gov (United States)

    Coelho, Luís.; Viegas, Diana; Santos, José Luís.; de Almeida, Jose Manuel M. M.

    2015-05-01

    Monitoring the quality of high refractive index edible oils is of great importance for the human health. Uncooked edible oils in general are healthy foodstuff, olive oil in particular, however, they are frequently used for baking and cooking. High quality edible oils are made from seeds, nuts or fruits by mechanical processes. Nevertheless, once the mechanical extraction is complete, up to 15% of the oil remains in oil pomace and in the mill wastewater, which can be extracted using organic solvents, often hexane. Optical fiber sensors based on long period fiber gratings (LPFG) have very low wavelength sensitivity when the surround refractive index is higher than the refractive index of the cladding. Titanium dioxide (TiO2) coated LPFG could lead to the realization of high sensitivity chemical sensor for the food industry. In this work LPFG coated with a TiO2 thin film were successfully used for to detect small levels of hexane diluted in edible oils and for real time monitoring the thermal deterioration of edible oils. For a TiO2 coating of 30 nm a wavelength sensitivity of 1361.7 nm/RIU (or 0.97 nm / % V/V) in the 1.4610-1.4670 refractive index range was achieved, corresponding to 0 to 12 % V/V of hexane in olive oil. A sensitivity higher than 638 nm/RIU at 225 ºC was calculated, in the 1.4670-1.4735 refractive index range with a detection limit of thermal deterioration of about 1 minute.

  14. A simplified analytical approach to calculation of the electromagnetic behavior of left-handed metamaterials with a graded refractive index profile

    Directory of Open Access Journals (Sweden)

    Dalarsson N.

    2007-01-01

    Full Text Available We investigated the spectral properties of a new class of nanostructured artificial composite materials with tailored electromagnetic response, i.e. negative refractive index materials, also known as "left-handed" metamaterials. We analyzed structures incorporating both ordinary positive index media and negative refractive index metamaterials where the interface may be graded to an arbitrary degree. Utilizing a modified version of the Rosen-Morse function, we derived analytical expressions for the field intensity and spectral reflection and transmission through a graded interface between positive and negative index materials. We compared our results to numerical solutions obtained using the transfer matrix technique. .

  15. Transmutation of singularities and zeros in graded index optical instruments: a methodology for designing practical devices.

    Science.gov (United States)

    Hooper, I R; Philbin, T G

    2013-12-30

    We describe a design methodology for modifying the refractive index profile of graded-index optical instruments that incorporate singularities or zeros in their refractive index. The process maintains the device performance whilst resulting in graded profiles that are all-dielectric, do not require materials with unrealistic values, and that are impedance matched to the bounding medium. This is achieved by transmuting the singularities (or zeros) using the formalism of transformation optics, but with an additional boundary condition requiring the gradient of the co-ordinate transformation be continuous. This additional boundary condition ensures that the device is impedance matched to the bounding medium when the spatially varying permittivity and permeability profiles are scaled to realizable values. We demonstrate the method in some detail for an Eaton lens, before describing the profiles for an "invisible disc" and "multipole" lenses.

  16. Flexural Behavior of RC Slabs Strengthened in Flexure with Basalt Fabric-Reinforced Cementitious Matrix

    Directory of Open Access Journals (Sweden)

    Sugyu Lee

    2018-01-01

    Full Text Available This paper presents both experimental and analytical research results for predicting the flexural capacity of reinforced concrete (RC slabs strengthened in flexure with basalt fabric-reinforced cementitious matrix (FRCM. A total of 13 specimens were fabricated to evaluate the flexural behavior of RC slabs strengthened with basalt FRCM composite and were tested under four-point loading. The fiber type, tensile reinforcement ratio, and the number of fabric layers were chosen as experimental variables. The maximum load of FRCM-strengthened specimens increased from 11.2% to 98.2% relative to the reference specimens. The energy ratio and ductility of the FRCM-strengthened specimens decreased with the higher amount of fabric and tensile reinforcement. The effective stress level of FRCM fabric can be accurately predicted by a bond strength of ACI 549 and Jung’s model.

  17. Refractive index and temperature sensitivity characteristics of a micro-slot fiber Bragg grating.

    Science.gov (United States)

    Saffari, Pouneh; Yan, Zhijun; Zhou, Kaiming; Zhang, Lin

    2012-07-10

    Fabrication and characterization of a UV inscribed fiber Bragg grating (FBG) with a micro-slot liquid core is presented. Femtosecond (fs) laser patterning/chemical etching technique was employed to engrave a micro-slot with dimensions of 5.74 μm(h)×125 μm(w)×1388.72 μm(l) across the whole grating. The device has been evaluated for refractive index (RI) and temperature sensitivities and exhibited distinctive thermal response and RI sensitivity beyond the detection limit of reported fiber gratings. This structure has not just been RI sensitive, but also maintained the robustness comparing with the bare core FBGs and long-period gratings with the partial cladding etched off.

  18. Analytical approximate solutions of the time-domain diffusion equation in layered slabs.

    Science.gov (United States)

    Martelli, Fabrizio; Sassaroli, Angelo; Yamada, Yukio; Zaccanti, Giovanni

    2002-01-01

    Time-domain analytical solutions of the diffusion equation for photon migration through highly scattering two- and three-layered slabs have been obtained. The effect of the refractive-index mismatch with the external medium is taken into account, and approximate boundary conditions at the interface between the diffusive layers have been considered. A Monte Carlo code for photon migration through a layered slab has also been developed. Comparisons with the results of Monte Carlo simulations showed that the analytical solutions correctly describe the mean path length followed by photons inside each diffusive layer and the shape of the temporal profile of received photons, while discrepancies are observed for the continuous-wave reflectance or transmittance.

  19. Evaluation of a multimode fiber optic low coherence interferometer for path length resolved Doppler measurments of diffuse light

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton; Steenbergen, Wiendelt

    2007-01-01

    The performance of a graded index multimode fiber optic low coherence Mach-Zehnder interferometer with phase modulation is analyzed. Investigated aspects were its ability to measure path length distributions and to perform path length resolved Doppler measurements of multiple scattered photons in a

  20. Evaluation of a multimode fiber optic low coherence interferometer for path length resolved Doppler measurements of diffuse light

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton G.; Steenbergen, Wiendelt

    2007-01-01

    The performance of a graded index multimode fiber optic low coherence Mach-Zehnder interferometer with phase modulation is analyzed. Investigated aspects were its ability to measure path length distributions and to perform path length resolved Doppler measurements of multiple scattered photons in a

  1. Spectral singularities, threshold gain, and output intensity for a slab laser with mirrors

    Science.gov (United States)

    Doğan, Keremcan; Mostafazadeh, Ali; Sarısaman, Mustafa

    2018-05-01

    We explore the consequences of the emergence of linear and nonlinear spectral singularities in TE modes of a homogeneous slab of active optical material that is placed between two mirrors. We use the results together with two basic postulates regarding the behavior of laser light emission to derive explicit expressions for the laser threshold condition and output intensity for these modes of the slab and discuss their physical implications. In particular, we reveal the details of the dependence of the threshold gain and output intensity on the position and properties of the mirrors and on the real part of the refractive index of the gain material.

  2. Theoretical analysis on the refractive-index distribution and bandwidth of gradient-index polymer optical fibers from a centrifugal field.

    Science.gov (United States)

    Wei, Ming-Hsin; Chen, Wen-Chang

    2003-04-20

    Theoretical analysis was applied to analyze the refractive-index distribution (RID) and bandwidth (BW) of gradient-index polymer optical fibers (GI POFs) prepared by a centrifugal field process. The RID of the prepared GI POF could be represented by the equation of n(r) = n1[1 - 2delta(r/alpha)g](1/2). The studied material systems were poly(hexafluoroisopropyl 2-fluoroacrylate) (PHFIP 2-FA)/dibutyl phthalate (DBP) and poly(methyl methacrylate) (PMMA)/benzyl benzoate (BEN). The RID and the BW were significantly affected by an essential parameter k, which was related to thematerial properties (density difference and molecular weight) and processing properties (rotating speed, temperature, and radius). As k increased, the characteristic constant of RID, g, decreased to a minimum and then increased sharply, owing to the separation of the polymer and the dopant. On the other hand, the relative refractive-index difference of RID, delta, increased to a steady value after k increased to a certain value. The variation of RID with k resulted in a local minimum of intermodal dispersion, and thus a maximum bandwidth was obtained. The maximum BW of the PHFIP 2-FA/DBP and PMMA/BEN systems at 1550 nm (100-m fiber length and 2-nm spectral width) for the case of k not equal to 0 were 6.7 and 3.2 Gb/s, respectively. The wavelength of light source affects the BW significantly only at k around zero because of the importance of the intramodal dispersion in this case.

  3. Determining the group velocity dispersion by field analysis for the LP0X, LP1X, and LP2X mode groups independently of the fiber length: applications to step-index fibers

    DEFF Research Database (Denmark)

    Israelsen, Stine Møller; Usuga Castaneda, Mario A.; Rottwitt, Karsten

    2017-01-01

    By knowing the electric field distribution of a guided mode in an optical fiber, we are able to evaluate the group velocity dispersion in a weakly guiding step-index fiber for a pure mode in the LP0X, LP1X, and LP2X mode groups independently of the fiber length. We demonstrate the method numerica...

  4. Method for Bubbledeck Concrete Slab with Gaps

    Directory of Open Access Journals (Sweden)

    Sergiu Călin

    2009-01-01

    Full Text Available The composite slabs are made of BubbleDeck type slab elements with spherical gaps, poured in place on transversal and longitudinal directions. By introducing the gaps leads to a 30...50\\% lighter slab which reduces the loads on the columns, walls and foundations, and of course of the entire building. BubbleDeck slab elements are plates with ribs on two directions made of reinforced concrete or precast concrete with spherical shaped bubbles. These slab elements have a bottom and an upper concrete part connected with vertical ribs that go around the gaps.

  5. Multiband LTE-A and 4-PAM signals over large-core plastic fibers for in-home networks

    NARCIS (Netherlands)

    Forni, F.; Shi, Y.; van den Boom, H.P.A.; Tangdiongga, E.; Koonen, A.M.J.

    2016-01-01

    This letter presents the transmission of eight standard compliant 64-QAM long term evolution advanced (LTE-A) bands and 1.4 Gb/s 4-pulse amplitude modulation (PAM) signals over 20 m of 1 mm core diameter graded-index polymethyl methacrylate plastic optical fiber. The optical transceiver consists of

  6. Inverse radiation problem of temperature distribution in one-dimensional isotropically scattering participating slab with variable refractive index

    International Nuclear Information System (INIS)

    Namjoo, A.; Sarvari, S.M. Hosseini; Behzadmehr, A.; Mansouri, S.H.

    2009-01-01

    In this paper, an inverse analysis is performed for estimation of source term distribution from the measured exit radiation intensities at the boundary surfaces in a one-dimensional absorbing, emitting and isotropically scattering medium between two parallel plates with variable refractive index. The variation of refractive index is assumed to be linear. The radiative transfer equation is solved by the constant quadrature discrete ordinate method. The inverse problem is formulated as an optimization problem for minimizing an objective function which is expressed as the sum of square deviations between measured and estimated exit radiation intensities at boundary surfaces. The conjugate gradient method is used to solve the inverse problem through an iterative procedure. The effects of various variables on source estimation are investigated such as type of source function, errors in the measured data and system parameters, gradient of refractive index across the medium, optical thickness, single scattering albedo and boundary emissivities. The results show that in the case of noisy input data, variation of system parameters may affect the inverse solution, especially at high error values in the measured data. The error in measured data plays more important role than the error in radiative system parameters except the refractive index distribution; however the accuracy of source estimation is very sensitive toward error in refractive index distribution. Therefore, refractive index distribution and measured exit intensities should be measured accurately with a limited error bound, in order to have an accurate estimation of source term in a graded index medium.

  7. Proceedings of the Fiber Optics in the Nuclear Environment Symposium 25-27 March 1980. Volume II. Radiation Physics,

    Science.gov (United States)

    1980-04-30

    800 900 1000 Wavelength (nm) 4. Comparison of material dispersion characteristic between Corning and ITT graded index fiber. 170 _0 10 e 1060 mn Corning...Accelerator (REBA) subjected this device and conmercially available photodiodes (made from silicon, germanium, and indium gallium arsenide phosphide ) to...of wavelength and is shown in Fig. 2. Since approximately one-third of the incident light is reflected at the top surface due to index of refraction

  8. Refractive index and strain sensor based on twin-core fiber with a novel T-shaped taper

    Science.gov (United States)

    Zhang, Chuanbiao; Ning, Tigang; Li, Jing; Zheng, JingJing; Gao, Xuekai; Pei, Li

    2018-06-01

    A compact in-fiber Mach-Zehnder interferometer (MZI) based on twin-core fiber (TCF) with a novel T-shaped taper is proposed and demonstrated. The taper was firstly fabricated by a short section of TCF, and then spliced with a section of cleaved single mode fiber (SMF). When the light transmit into the TCF, multiple modes will be excited and will propagate within the TCF. In experiment, the proposed device had a maximum interferometric extinction ratio about 17 dB. And the refractive index (RI), strain, and temperature response properties of the sensor have been investigated, which show a relatively high RI, strain sensitivity and low temperature cross sensitivity. Hence, the sensor can be a suitable candidate in the biochemical and physical sensing applications. And due to its easy and controllable fabrication, the novel drawing technology can be applied to more multicore optical fibers.

  9. Thin slab processing of acicular ferrite steels with high toughness

    Energy Technology Data Exchange (ETDEWEB)

    Reip, Carl-Peter; Hennig, Wolfgang; Hagmann, Rolf [SMS Demag Aktiengesellschaft, Duesseldorf (Germany); Sabrudin, Bin Mohamad Suren; Susanta, Ghosh; Lee, Weng Lan [Megasteel Sdn Bhd, Banting (Malaysia)

    2005-07-01

    Near-net-shape casting processes today represent an important option in steelmaking. High productivity and low production cost as well as the variety of steel grades that can be produced plus an excellent product quality are key factors for the acceptance of such processes in markets all over the world. Today's research focuses on the production of pipe steel with special requirements in terms of toughness at low temperatures. The subject article describes the production of hot strip made from acicular ferritic / bainitic steel grades using the CSP thin-slab technology. In addition, the resulting strength and toughness levels as a function of the alloying concepts are discussed. Optimal control of the CSP process allows the production of higher-strength hot-rolled steel grades with a fine-grain acicular-ferritic/bainitic microstructure. Hot strip produced in this way is characterized by a high toughness at low temperatures. In a drop weight tear test, transition temperatures of up to -50 deg C can be achieved with a shear-fracture share of 85%. (author)

  10. Comparison of OOK- and PAM-4 modulation for 10 Gbit/s transmission over up to 300 m polymer optical fiber

    NARCIS (Netherlands)

    Breyer, F.; Lee, S.C.J.; Randel, S.; Hanik, N.

    2008-01-01

    10 Gbit/s Transmission over up to 300 m of multimode 62.5 µm core-diameter perfluorinated graded-index polymer optical fiber is compared using on-off-keying (OOK) or 4-level pulse amplitude modulation (PAM-4) and feed-forward or decision-feedback equalization.

  11. Surface Waves Propagating on Grounded Anisotropic Dielectric Slab

    Directory of Open Access Journals (Sweden)

    Zhuozhu Chen

    2018-01-01

    Full Text Available This paper investigates the characteristics of surface waves propagating on a grounded anisotropic dielectric slab. Distinct from the existing analyses that generally assume that the fields of surface wave uniformly distribute along the transverse direction of the infinitely large grounded slab, our method takes into account the field variations along the transverse direction of a finite-width slab. By solving Maxwell’s equations in closed-form, it is revealed that no pure transverse magnetic (TM or transverse electric (TE mode exists if the fields are non-uniformly distributed along the transverse direction of the grounded slab. Instead, two hybrid modes, namely quasi-TM and quasi-TE modes, are supported. In addition, the propagation characteristics of two hybrid modes supported by the grounded anisotropic slab are analyzed in terms of the slab thickness, slab width, as well as the relative permittivity tensor of the anisotropic slab. Furthermore, different methods are employed to compare the analyses, as well as to validate our derivations. The proposed method is very suitable for practical engineering applications.

  12. The usage of carbon fiber reinforcement polymer and glass fiber reinforcement polymer for retrofit technology building

    Science.gov (United States)

    Tarigan, Johannes; Meka, Randi; Nursyamsi

    2018-03-01

    Fiber Reinforcement Polymer has been used as a material technology since the 1970s in Europe. Fiber Reinforcement Polymer can reinforce the structure externally, and used in many types of buildings like beams, columns, and slabs. It has high tensile strength. Fiber Reinforcement Polymer also has high rigidity and strength. The profile of Fiber Reinforcement Polymer is thin and light, installation is simple to conduct. One of Fiber Reinforcement Polymer material is Carbon Fiber Reinforcement Polymer and Glass Fiber Reinforcement Polymer. These materials is tested when it is installed on concrete cylinders, to obtain the comparison of compressive strength CFRP and GFRP. The dimension of concrete is diameter of 15 cm and height of 30 cm. It is amounted to 15 and divided into three groups. The test is performed until it collapsed to obtain maximum load. The results of research using CFRP and GFRP have shown the significant enhancement in compressive strength. CFRP can increase the compressive strength of 26.89%, and GFRP of 14.89%. For the comparison of two materials, CFRP is more strengthening than GFRP regarding increasing compressive strength. The usage of CFRP and GFRP can increase the loading capacity.

  13. Broadband mid-infrared supercontinuum generation in novel As2Se3-As2Se2 S step-index fibers

    Science.gov (United States)

    Wang, Yingying; Dai, Shixun; Han, Xin; Zhang, Peiqing; Liu, Yongxing; Wang, Xunsi; Sun, Shaochao

    2018-03-01

    We experimentally demonstrate the mid-infrared supercontinuum generation in a chalcogenide step-index fiber consisting of an As2Se3 core and an As2Se2 S cladding. The fiber with the core diameter of 21 μm was fabricated through the rod-in-tube technique and fiber-drawing process. The effect of pump wavelength, fiber length, and pump power on the spectral bandwidth and output power of the supercontinuum spectra generated from the fiber pumped by the ultrashort pulses of ∼ 150 fs with a repetition rate of 1000 Hz was systematically investigated. When pumping a 12-cm-long fiber at a wavelength of 6 . 5 μm with 14 mW pump laser power, a broadband supercontinuum spanning from 2 . 0 μm to 12 . 7 μm with an output power of 300 μW was obtained.

  14. The Raetrad model of radon generation and transport from soils into slab-on-grade houses

    International Nuclear Information System (INIS)

    Nielson, K.K.; Rogers, V.C.; Rogers, V.; Holt, R.B.

    1994-01-01

    Remediation planning and 222 Rn-related construction zoning require knowledge of how close and strong 226 Ra sources can be in different foundation soils under different groundwater conditions without excessively elevating indoor 222 Rn levels. A two-dimensional numerical-analytical model was developed to simulate (a) 222 Rn emanation, decay, and movement by diffusion and advection in soils around houses and in their understructures; and (b) 222 Rn accumulation in a single-zone house. The model represents foundation soils and a house in elliptical-cylindrical geometry. 222 Rn may diffuse through its floor slab or may enter via idealized cracks and openings. The model was validated with analytical calculations of two-dimensional air pressure fields and with one-dimensional calculations of 222 Rn generation with diffusion and diffusion combined with advection. Agreement generally was within 222 Rn measurements in two test-cell structures under passive and depressurized conditions averaged within 11% of measured values, well within measurement uncertainty. The corresponding average bias was only 3%. Larger variations were observed when applying the model to 50 houses. In this application, a negative bias of nearly 50% was observed due to data gaps and to poorly-characterized floor slabs and crack distributions. 41 refs., 11 fig., 3 tabs

  15. Nonimaging concentrators for diode-pumped slab lasers

    Science.gov (United States)

    Lacovara, Philip; Gleckman, Philip L.; Holman, Robert L.; Winston, Roland

    1991-10-01

    Diode-pumped slab lasers require concentrators for high-average power operation. We detail the properties of diode lasers and slab lasers which set the concentration requirements and the concentrator design methodologies that are used, and describe some concentrator designs used in high-average power slab lasers at Lincoln Laboratory.

  16. Evidence of fire resistance of hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Sørensen, Lars Schiøtt; Giuliani, Luisa

    is therefore going on in the Netherlands about the fire resistance of hollow-core slabs. In 2014 the producers of hollow-core slabs have published a report of a project called Holcofire containing a collection of 162 fire tests on hollow-core slabs giving for the first time an overview of the fire tests made....... The present paper analyses the evidence now available for assessment of the fire resistance of extruded hollow-core slabs. The 162 fire tests from the Holcofire report are compared against the requirements for testing from the product standard for hollow-core slabs EN1168 and knowledge about the possible......Hollow-core slabs have during the past 50 years comprised a variety of different structures with different cross-sections and reinforcement. At present the extruded hollow-core slabs without cross-reinforcement in the bottom flange and usually round or oval longitudinal channels (holes...

  17. Nonautonomous Vortices in (2+1)-Dimensional Graded-Index Waveguide

    International Nuclear Information System (INIS)

    Lai Xian-Jing; Zhang Jie-Fang; Cai Xiao-Ou

    2015-01-01

    With the help of self-similarity transformation, we construct and study the nonautonomous vortices with different topological charges inside a planar graded-index nonlinear waveguide, analytically, and numerically. Although these vortices are approximate, they can reflect the real properties of self-similar optical beam during a short-term propagation. Existence of these autonomous vortices require delicate balances between the system parameters such as diffraction, nonlinearity, gain, and external potential. We are concerned with some special but interesting situations, and discussing the changes of the height, width, energy, and central position of the vortices as the increase of propagation distance. Moreover, we are also interested in the azimuthal modulational instability of the system, and comparing our prediction for the modulational instability growth rates to numerical results. (paper)

  18. Flowing Air-Water Cooled Slab Nd: Glass Laser

    Science.gov (United States)

    Lu, Baida; Cai, Bangwei; Liao, Y.; Xu, Shifa; Xin, Z.

    1989-03-01

    A zig-zag optical path slab geometry Nd: glass laser cooled through flowing air-water is developed by us. Theoretical studies on temperature distribution of slab and rod configurations in the unsteady state clarify the advantages of the slab geometry laser. The slab design and processing are also reported. In our experiments main laser output characteristics, e. g. laser efficiency, polarization, far-field divergence angle as well as resonator misalignment are investigated. The slab phosphate glass laser in combination with a crossed Porro-prism resonator demonstrates a good laser performance.

  19. Evaluation of material dispersion using a nanosecond optical pulse radiator.

    Science.gov (United States)

    Horiguchi, M; Ohmori, Y; Miya, T

    1979-07-01

    To study the material dispersion effects on graded-index fibers, a method for measuring the material dispersion in optical glass fibers has been developed. Nanosecond pulses in the 0.5-1.7-microm region are generated by a nanosecond optical pulse radiator and grating monochromator. These pulses are injected into a GeO(2)-P(2)0(5)-doped silica graded-index fiber. Relative time delay changes between different wavelengths are used to determine material dispersion, core glass refractive index, material group index, and optimum profile parameter of the graded-index fiber. From the measured data, the optimum profile parameter on the GeO(2)-P(2)O(5)-doped silica graded-index fiber could be estimated to be 1.88 at 1.27 microm of the material dispersion free wavelength region and 1.82 at 1.55 microm of the lowest-loss wavelength region in silica-based optical fiber waveguides.

  20. Refractive index and temperature-sensing characteristics of a cladding-etched thin core fiber interferometer

    Science.gov (United States)

    Wang, Weiying; Dong, Xinran; Chu, Dongkai; Hu, Youwang; Sun, Xiaoyan; Duan, Ji-An

    2018-05-01

    A high refractive index (RI) sensor based on an in-line Mach-Zehnder mode interferometer (MZI) is proposed. The sensor was realized by splicing a 2-cm length of cladding-etched thin core fiber (TCF) between two single mode fibers (SMFs). The TCF-structured MZI exhibited good fringe visibility as high as 15 dB in air and the high RI sensitivity attained a value of 1143.89 nm/RIU at a RI of 1.447. The experimental data revealed that the MZI has high RI sensitivity after HF etching realizing 2599.66 nm/RIU. Studies were performed on the temperature characteristics of the device. It is anticipated that this high RI sensor will be deployed in new and diverse applications in the chemical and biological fields.

  1. Multiband super-resolution imaging of graded-index photonic crystal flat lens

    Science.gov (United States)

    Xie, Jianlan; Wang, Junzhong; Ge, Rui; Yan, Bei; Liu, Exian; Tan, Wei; Liu, Jianjun

    2018-05-01

    Multiband super-resolution imaging of point source is achieved by a graded-index photonic crystal flat lens. With the calculations of six bands in common photonic crystal (CPC) constructed with scatterers of different refractive indices, it can be found that the super-resolution imaging of point source can be realized by different physical mechanisms in three different bands. In the first band, the imaging of point source is based on far-field condition of spherical wave while in the second band, it is based on the negative effective refractive index and exhibiting higher imaging quality than that of the CPC. However, in the fifth band, the imaging of point source is mainly based on negative refraction of anisotropic equi-frequency surfaces. The novel method of employing different physical mechanisms to achieve multiband super-resolution imaging of point source is highly meaningful for the field of imaging.

  2. Refractometers for different refractive index range by surface plasmon resonance sensors in multimode optical fibers with different metals

    Science.gov (United States)

    Zuppella, P.; Corso, Alain J.; Pelizzo, Maria G.; Cennamo, N.; Zeni, L.

    2016-09-01

    We have realized a plasmonic sensor based on Au/Pd metal bilayer in a multimode plastic optical fiber. This metal bilayer, based on a metal with high imaginary part of the refractive index and gold, shows interesting properties in terms of sensitivity and performances, in different refractive index ranges. The development of highly sensitive platforms for high refractive index detection (higher than 1.38) is interesting for chemical applications based on molecularly imprinted polymer as receptors, while the aqueous medium is the refractive index range of biosensors based on bio-receptors. In this work we have presented an Au/Pd metal bilayer optimized for 1.38-1.42 refractive index range.

  3. 0-6722 : spread prestressed concrete slab beam bridges.

    Science.gov (United States)

    2014-08-01

    The Texas Department of Transportation uses : precast prestressed concrete slab beam bridges for : shorter-span bridges of approximately 3050 ft in : length. Conventional slab beam bridges have slab : beams placed immediately adjacent to one anoth...

  4. Mantle wedge serpentinization effects on slab dips

    Directory of Open Access Journals (Sweden)

    Eh Tan

    2017-01-01

    Full Text Available The mechanical coupling between a subducting slab and the overlying mantle wedge is an important factor in controlling the subduction dip angle and the flow in mantel wedge. This paper investigates the role of the amount of mantle serpentinization on the subduction zone evolution. With numerical thermos-mechanical models with elasto-visco-plastic rheology, we vary the thickness and depth extent of mantle serpentinization in the mantle wedge to control the degree of coupling between the slab and mantle wedge. A thin serpentinized mantle layer is required for stable subduction. For models with stable subduction, we find that the slab dip is affected by the down-dip extent and the mantle serpentinization thickness. A critical down-dip extent exists in mantle serpentinization, determined by the thickness of the overriding lithosphere. If the down-dip extent does not exceed the critical depth, the slab is partially coupled to the overriding lithosphere and has a constant dip angle regardless of the mantle serpentinization thickness. However, if the down-dip extent exceeds the critical depth, the slab and the base of the overriding lithosphere would be separated and decoupled by a thick layer of serpentinized peridotite. This allows further slab bending and results in steeper slab dip. Increasing mantle serpentinization thickness will also result in larger slab dip. We also find that with weak mantle wedge, there is no material flowing from the asthenosphere into the serpentinized mantle wedge. All of these results indicate that serpentinization is an important ingredient when studying the subduction dynamics in the mantle wedge.

  5. Long-life slab replacement concrete : [summary].

    Science.gov (United States)

    2015-04-01

    Concrete slab replacement projects in Florida have demonstrated a high incidence of : replacement slab cracking. Causes of cracking have not been reliably determined. University of South Florida researchers : sought to identify the factors or : param...

  6. Cost analysis of reinforced concrete slabs and columns

    OpenAIRE

    Spuś, Piotr

    2013-01-01

    The construction industry is increasingly looking for solutions that are both simple and effective and that provide cost savings, speed and flexibility of execution. Two-way slabs are a form of construction unique to reinforced concrete comparing with the other major structural materials. It is an efficient, economical, and widely used structural system. The present dissertation aims to analyze and compare costs between four types of slabs: waffle slab with recuperate molds, flat slabs wit...

  7. Numerical Investigation of Slab-Column Connection by Finite Element Method

    International Nuclear Information System (INIS)

    Akram, T.; Shaikh, M.A.; Memon, A.A.

    2007-01-01

    The flat slab-on-column construction subjected to high transverse stresses concentrated at the slab-column connection can lead to a non-ductile, sudden and brittle punching failure and results in the accidental collapse of flat slab buildings. The major parameters affecting the slab-column connection are the concrete strength, slab thickness, slab reinforcement and aspect ratio of column. The application of numerical methods based on the finite element theory for solving practical tasks allow to perform virtual testing of structures and explore their behavior under load and other effects in different conditions taking into account the elastic and plastic behavior of materials, appearance and development of cracks and other damages (disintegrations), and finally to simulate the failure mechanism and its consequences. In this study, the models are developed to carry out the finite element analysis of slab- column connection using ADINA (Automatic Dynamic Incremental Nonlinear Analysis) by varying the slab thickness and slab confining reinforcement and to investigate their effect on the deflection and load carrying capacity. Test results indicate that by increasing the slab thickness, the deflection and the load carrying capacity of slab-column connection increases, more over, by increasing the slab confining reinforcement, the deflection decreases where as the load carrying capacity increases. (author)

  8. Singularities of the transmission coefficient and anomalous scattering by a dielectric slab

    Science.gov (United States)

    Shestopalov, Yury

    2018-03-01

    We prove the existence and describe the distribution on the complex plane of the singularities, resonant states (RSs), of the transmission coefficient in the problem of the plane wave scattering by a parallel-plate dielectric slab in free space. It is shown that the transmission coefficient has isolated poles all with nonzero imaginary parts that form countable sets in the complex plane of the refraction index or permittivity of the slab with the only accumulation point at infinity. The transmission coefficient never vanishes and anomalous scattering, when its modulus exceeds unity, occurs at arbitrarily small loss of the dielectric filling the layer. These results are extended to the cases of scattering by arbitrary multi-layer parallel-plane media. Connections are established between RSs, spectral singularities, eigenvalues of the associated Sturm-Liouville problems on the line, and zeros of the corresponding Jost function.

  9. Storm-time slab thickness at low latitudes

    International Nuclear Information System (INIS)

    Chauhan, N.S.; Gurm, H.S.

    1981-01-01

    The ATS-6 data for a period of 1975-76 is used for the study of slab thickness during two moderate storms (Ksub(p) - ) around the crest of the anomaly, Ahmedabad and a very great (Ksub(p) + ) outside the equatorial anomaly region, Delhi. While at Ahmedabad, on the average, the slab thickness is found to be above the frequency. Comparison of slab thickness with foF2 and the equatorial magnetic record (for Ahmedabad only) shows that the foF2 changes alone cannot be held responsible for the slab thickness variation and thus entry of the plasma flux from the plasmasphere cannot be ruled out. The pressure variation effect of storm-time heating on the slab thickness at Ahmedabad is that even for Ksub(p)=8, the thermal expansion and the contraction effects are unable to explain complete quantitative and qualitative features of the observations

  10. Pulping and paper properties of Palmyra palm fruit fibers

    Directory of Open Access Journals (Sweden)

    Waranyou Sridach

    2010-05-01

    Full Text Available Palmyra palm fruit fibers have the properties to be used as an alternative raw material of cellulosic pulps for papermaking.Acid and alkali pulping were investigated by using nitric acid and caustic soda on a laboratory scale, with the purpose of producing printing or writing grade pulp. The chemical composition of fiber strands from palmyra palm fruits were examined, such as holocellulose, cellulose, pentosan, lignin and extractives. The yields of acid and soda pulps were below 40%. The main physical and mechanical properties of hand sheets produced from acid and soda processes were evaluated on 80 g/m2 test sheets as functions of the following parameters: tensile index, tear index, and brightness. The mechanical properties of soda pulps were developed by twin-roll press while it was not necessary to fibrillate acidic pulps through the beating step. The soda pulp sheets presented a lower brightness than that of acidic pulp sheets. The mechanicaland physical properties of the acidic and alkaline pulps verified that they were of an acceptable quality for papermaking.

  11. Rewetting of composite slab

    International Nuclear Information System (INIS)

    Satapathy, A.K.; Singh, K.C.

    1996-01-01

    The process of re-establishment of wetting of hot surface is of practical importance in chemical, metallurgical and nuclear industries. Rewetting is considered in emergency core cooling in nuclear reactors in the event of postulated loss of coolant accident (LOCA). This paper deals with numerical solution of the two-dimensional quasi-static conduction controlled rewetting of an infinite parallel sided composite slab assuming perfect contact is maintained at the interface. On the wetted side upstream of the quench front, a constant heat transfer coefficient is assumed. The downstream of quench front and unwetted side of slab are supposed to be adiabatic. The solution gives the quench front temperature as a function of various model parameters such as Peclet number, wet side Blot number, dimensionless thickness of slab and cladding to fuel ratio of thermal conductivities. The results show that for large values of rewetting velocities, the dimensionless rewetting temperature is unaffected by fuel properties for all values of Blot numbers. (author). 7 refs., 2 tabs., 1 fig

  12. Prefabricated floor panels composed of fiber reinforced concrete and a steel substructure

    DEFF Research Database (Denmark)

    Lárusson, Lárus H.; Fischer, Gregor; Jönsson, Jeppe

    2013-01-01

    This paper reports on a study on prefabricated composite and modular floor deck panels composed of relatively thin fiber reinforced concrete slabs connected to steel substructures. The study focuses on the design, manufacturing, structural improvements and behavior of the floor systems during...

  13. In-line open-cavity Fabry-Pérot interferometer formed by C-shaped fiber fortemperature-insensitive refractive index sensing.

    Science.gov (United States)

    Wu, Chuang; Liu, Zhengyong; Zhang, A Ping; Guan, Bai-Ou; Tam, Hwa-Yaw

    2014-09-08

    We report an open-cavity optical fiber Fabry-Pérot interferometer (FPI) capable of measuring refractive index with very low temperature cross-sensitivity. The FPI was constructed by splicing a thin piece of C-shaped fiber between two standard single-mode fibers. The refractive index (RI) response of the FPI was characterized using water-ethanol mixtures with RI in the range of 1.33 to 1.36. The RI sensitivity was measured to be 1368 nm/RIU at the wavelength of 1600 nm with good linearity. Thanks to its all-glass structure, the FPI exhibits very low temperature cross-sensitivity of 3.04 × 10⁻⁷ RIU/°C. The effects of cavity length on the performance of the sensor were also studied. A shorter cavity gives rise to broader measurement range while offering larger detection limit, and vice versa. What's more, the effect of material dispersion of analyte on the sensitivity of open-cavity FPIs was identified for the first time. The sensor is compact in size and easy to fabricate. It is potentially useful for label-free optical sensing of chemical and biological samples.

  14. AN APPROACH TO CHARACTERIZING and EVALUATING ALTERNATIVES FOR THE DECOMMISSIONING OF SUB-GRADE STRUCTURES AT THE PLUTONIUM FINISHING PLANT

    International Nuclear Information System (INIS)

    HOPKINS, A.M.; KLOS, D.B.

    2007-01-01

    In 2002, the Richland Operations Office (RL) of the US Department of Energy (DOE), the US Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) developed milestones for transitioning the Plutonium Finishing Plant (PFP) facility to a clean slab-on-grade configuration. These milestones required developing an engineering evaluation/cost analysis (EF/CA) for the facility's sub-grade structures and installations as part of a series of evaluations intended to provide for the transition of the facility to a clean slab-on-grade configuration. In addition to supporting decisions for interim actions, the analyses of sub-grade structures and installations performed through this EE/CA will contribute to the remedial investigation feasibility study(ies) and subsequently to the final records of decision for the relevant operable units responsible for site closure in the 200 West Area of the Hanford Site

  15. Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in ZBLAN step-index fibers

    DEFF Research Database (Denmark)

    Ramsay, Jacob Søndergaard; Dupont, Sune Vestergaard Lund; Johansen, Mikkel Willum

    2013-01-01

    Using femtosecond upconversion we investigate the time and wavelength structure of infrared supercontinuum generation. It is shown that radiation is scattered into higher order spatial modes (HOMs) when generating a supercontinuum using fibers that are not single-moded, such as a step-index ZBLAN...... fiber. As a consequence of intermodal scattering and the difference in group velocity for the modes, the supercontinuum splits up spatially and temporally. Experimental results indicate that a significant part of the radiation propagates in HOMs. Conventional simulations of super-continuum generation do...

  16. Control of exceptional points in photonic crystal slabs

    DEFF Research Database (Denmark)

    Kaminski, Piotr Marek; Taghizadeh, Alireza; Breinbjerg, Olav

    2017-01-01

    Various ways of controlling the extent of the ring of exceptional points in photonic crystal slabs are investigated. The extent of the ring in photonic crystal slabs is found to vary with the thickness of the slab. This enables recovery of Dirac cones in open, non-Hermitian systems, such as a pho...

  17. Analysis of Double Skin Composite Slabs

    Directory of Open Access Journals (Sweden)

    Husain M. Husain

    2018-03-01

    Full Text Available This paper deals with finite element modeling of the ultimate load behavior of double skin composite (DSC slabs. In a DSC slab, shear connectors in the form of nut bolt technique studs are used to transfer shear between the outer skin made of steel plates and the concrete core. The current study is based on finite element analysis using ANSYS Version 11 APDL release computer program. Experimental programmes were carried out by the others, two simply supported DSC beams were tested until failure under a concentrated load applied at the center. These test specimens were analyzed by the finite element method and the analyses have shown that these slabs displayed a high degree of flexural characteristics, ultimate strength, and ductility. The close agreement has been observed between the finite element and experimental results for ultimate loads and load–deflection responses. The finite element model was thus found to be capable of predicting the behavior of DSC slabs accurately.

  18. CAISSON TYPE HOLLOW FLOOR SLABS OF MONOLITHIC MULTI-STOREYED BUILDINGS

    Directory of Open Access Journals (Sweden)

    Malakhova Anna Nikolaevna

    2016-06-01

    Full Text Available One of the disadvantages of building structures made of reinforced concrete is their considerable weight. One of the trends to decrease the weight of concrete structures, including floor slabs, is the arrangement of voids in the cross-sectional building structures. In Russian and foreign practice paper, cardboard and plastic tubes has been used for creation of voids in the construction of monolithic floor slabs. Lightweight concretes were also used for production of precast hollow core floor slabs. The article provides constructive solutions of precast hollow core floor slabs and solid monolithic slabs that were used in the construction of buildings before wide use of large precast hollow core floor slabs. The article considers the application of caisson hollow core floor slabs for modern monolithic multi-storeyed buildings. The design solutions of such floor slabs, experimental investigations and computer modeling of their operation under load were described in this article. The comparative analysis of the calculation results of computer models of a hollow slabs formed of rod or plastic elements showed the similarity of calculation results.

  19. Calculating seismic of slabs ITA NNP Garona

    International Nuclear Information System (INIS)

    Ezeberry, J. I.; Guerrero, A.; Gamarra, J.; Beltran, F.

    2014-01-01

    This article describes the methodology that Idom has employed to perform the seismic evaluation of slabs within the ITA project of the NPP Santa Maria de Garona. Seismic calculations that have been conducted include consideration of the effects of the interaction of soil structure as well as the possible take-off containers with respect to slab during the earthquake. Therefore, the main contribution of the work is the study of the coupling of rolling containers with the flexibility of the whole ground-slab For calculations has been used ABAQUS/Explicit program, allowing to solve effectively the nonlinearities listed above using explicit integration algorithms over time. The results of the calculations reflect the importance of jointly analyse the seismic responses of slab and containers. (Author)

  20. Effect of macronutrients and fiber on postprandial glycemic responses and meal glycemic index and glycemic load value determinations123

    Science.gov (United States)

    Meng, Huicui; Matthan, Nirupa R; Ausman, Lynne M; Lichtenstein, Alice H

    2017-01-01

    Background: The potential confounding effect of different amounts and proportions of macronutrients across eating patterns on meal or dietary glycemic index (GI) and glycemic load (GL) value determinations has remained partially unaddressed. Objective: The study aimed to determine the effects of different amounts of macronutrients and fiber on measured meal GI and GL values. Design: Four studies were conducted during which participants [n = 20–22; women: 50%; age: 50–80 y; body mass index (in kg/m2): 25–30)] received food challenges containing different amounts of the variable nutrient in a random order. Added to the standard 50 g available carbohydrate from white bread was 12.5, 25, or 50 g carbohydrate; 12.5, 25, or 50 g protein; and 5.6, 11.1, or 22.2 g fat from rice cereal, tuna, and unsalted butter, respectively, and 4.8 or 9.6 g fiber from oat cereal. Arterialized venous blood was sampled for 2 h, and measured meal GI and GL and insulin index (II) values were calculated by using the incremental area under the curve (AUCi) method. Results: Adding carbohydrate to the standard white-bread challenge increased glucose AUCi (P < 0.0001), measured meal GI (P = 0.0066), and mean GL (P < 0.0001). Adding protein (50 g only) decreased glucose AUCi (P = 0.0026), measured meal GI (P = 0.0139), and meal GL (P = 0.0140). Adding fat or fiber had no significant effect on these variables. Adding carbohydrate (50 g), protein (50 g), and fat (11.1 g) increased the insulin AUCi or II; fiber had no effect. Conclusions: These data indicate that uncertainty in the determination of meal GI and GL values is introduced when carbohydrate-containing foods are consumed concurrently with protein (equal amount of carbohydrate challenge) but not with carbohydrate-, fat-, or fiber-containing foods. Future studies are needed to evaluate whether this uncertainty also influences the prediction of average dietary GI and GL values for eating patterns. This trial was registered at

  1. Photon transport in thin disordered slabs

    Indian Academy of Sciences (India)

    We examine using Monte Carlo simulations, photon transport in optically `thin' slabs whose thickness is only a few times the transport mean free path *, with particles of different scattering anisotropies. The confined geometry causes an auto-selection of only photons with looping paths to remain within the slab.

  2. Effect of macronutrients and fiber on postprandial glycemic responses and meal glycemic index and glycemic load value determinations.

    Science.gov (United States)

    Meng, Huicui; Matthan, Nirupa R; Ausman, Lynne M; Lichtenstein, Alice H

    2017-04-01

    Background: The potential confounding effect of different amounts and proportions of macronutrients across eating patterns on meal or dietary glycemic index (GI) and glycemic load (GL) value determinations has remained partially unaddressed. Objective: The study aimed to determine the effects of different amounts of macronutrients and fiber on measured meal GI and GL values. Design: Four studies were conducted during which participants [ n = 20-22; women: 50%; age: 50-80 y; body mass index (in kg/m 2 ): 25-30)] received food challenges containing different amounts of the variable nutrient in a random order. Added to the standard 50 g available carbohydrate from white bread was 12.5, 25, or 50 g carbohydrate; 12.5, 25, or 50 g protein; and 5.6, 11.1, or 22.2 g fat from rice cereal, tuna, and unsalted butter, respectively, and 4.8 or 9.6 g fiber from oat cereal. Arterialized venous blood was sampled for 2 h, and measured meal GI and GL and insulin index (II) values were calculated by using the incremental area under the curve (AUC i ) method. Results: Adding carbohydrate to the standard white-bread challenge increased glucose AUC i ( P < 0.0001), measured meal GI ( P = 0.0066), and mean GL ( P < 0.0001). Adding protein (50 g only) decreased glucose AUC i ( P = 0.0026), measured meal GI ( P = 0.0139), and meal GL ( P = 0.0140). Adding fat or fiber had no significant effect on these variables. Adding carbohydrate (50 g), protein (50 g), and fat (11.1 g) increased the insulin AUC i or II; fiber had no effect. Conclusions: These data indicate that uncertainty in the determination of meal GI and GL values is introduced when carbohydrate-containing foods are consumed concurrently with protein (equal amount of carbohydrate challenge) but not with carbohydrate-, fat-, or fiber-containing foods. Future studies are needed to evaluate whether this uncertainty also influences the prediction of average dietary GI and GL values for eating patterns. This trial was registered at

  3. Influence of slab connection in case of expanded concrete pavements

    OpenAIRE

    Deluka-Tibljaš, Aleksandra; Prager, Andrija; Rukavina, Tatjana

    2002-01-01

    Load transfer from the stressed slab to the neighboring unstressed slab is analyzed in order to establish possibilities for stress reduction in concrete. The contact between slabs is established by means of reinforcing steel shear studs while the influence of friction in the concrete to concrete contact is neglected. The influence of slab thickness, slab cross-section and spacing of shear studs is analyzed, and the expansion joint movement due to change in temperature is studied. Conditions e...

  4. Bending Characteristics Change of Long-Period fiber Grating due to Co-doping of Boron for Optical fiber Sensors

    International Nuclear Information System (INIS)

    Moon, Dae Seung; Chung, Young Joo

    2005-01-01

    In long-period fiber grating (LPFG) to be made up optical fiber sensors, resonance coupling occurs between the forward-propagating core mode and cladding modes at the wavelength that satisfy the Phase matching condition. The resonance wavelength and the coupling strength depends strongly on the external environment like temperature, strain, and ambient index. These characteristics can be utilized for various applications as optical fiber sensors. Fabrication of optical fiber gratings is typically based on the photosensitivity effect, i.e. the permanent change of the refractive index upon irradiation of the UV beam, and therefore, fabrication of the optical fiber with high phososensitivity is an important part of the research on optical fiber gratings. In this work, we measured the effort of to-doping of boron on the index difference between the core and cladding of the optical fiber and the sensitivity of the LPFC to the temperature and bending changes. We observed that the index difference between the core and the cladding decreased by (1.69x10 -4 /SCCM) and the temperature sensitivity of the resonance wavelength shirt decreased by (0.01145nm/ .deg. C/SCCM). The dependence or the bending-induced changes or the transmission characteristics of LPFG on the tore-cladding index difference was investigated experimentally. The measurement results indicate that the bending sensitivity increases as the index difference decreases

  5. Numerical Analysis of Effectiveness of Strengthening Concrete Slab in Tension of the Steel-Concrete Composite Beam Using Pretensioned CFRP Strips

    Directory of Open Access Journals (Sweden)

    Jankowiak Iwona

    2017-12-01

    Full Text Available One of the methods to increase the load carrying capacity of the reinforced concrete (RC structure is its strengthening by using carbon fiber (CFRP strips. There are two methods of strengthening using CFRP strips - passive method and active method. In the passive method a strip is applied to the concrete surface without initial strains, unlike in the active method a strip is initially pretensioned before its application. In the case of a steel-concrete composite beam, strips may be used to strengthen the concrete slab located in the tension zone (in the parts of beams with negative bending moments. The finite element model has been developed and validated by experimental tests to evaluate the strengthening efficiency of the composite girder with pretensioned CFRP strips applied to concrete slab in its tension zone.

  6. Numerical Analysis of Effectiveness of Strengthening Concrete Slab in Tension of the Steel-Concrete Composite Beam Using Pretensioned CFRP Strips

    Science.gov (United States)

    Jankowiak, Iwona; Madaj, Arkadiusz

    2017-12-01

    One of the methods to increase the load carrying capacity of the reinforced concrete (RC) structure is its strengthening by using carbon fiber (CFRP) strips. There are two methods of strengthening using CFRP strips - passive method and active method. In the passive method a strip is applied to the concrete surface without initial strains, unlike in the active method a strip is initially pretensioned before its application. In the case of a steel-concrete composite beam, strips may be used to strengthen the concrete slab located in the tension zone (in the parts of beams with negative bending moments). The finite element model has been developed and validated by experimental tests to evaluate the strengthening efficiency of the composite girder with pretensioned CFRP strips applied to concrete slab in its tension zone.

  7. Restoration of s-polarized evanescent waves and subwavelength imaging by a single dielectric slab

    International Nuclear Information System (INIS)

    El Gawhary, Omar; Schilder, Nick J; Costa Assafrao, Alberto da; Pereira, Silvania F; Paul Urbach, H

    2012-01-01

    It was predicted a few years ago that a medium with negative index of refraction would allow for perfect imaging. Although no material has been found so far that behaves as a perfect lens, some experiments confirmed the theoretical predictions in the near-field, or quasi-static, regime where the behaviour of a negative index medium can be mimicked by a thin layer of noble metal, such as silver. These results are normally attributed to the excitation of surface plasmons in the metal, which only leads to the restoration of p-polarized evanescent waves. In this work, we show that the restoration of s-polarized evanescent waves and, correspondingly, sub-wavelength imaging by a single dielectric slab are possible. Specifically, we show that at λ = 632 nm a thin layer of GaAs behaves as a superlens for s-polarized waves. Replacing the single-metal slab by a dielectric is not only convenient from a technical point of view, it being much easier to deposit and control the thickness and flatness of dielectric films than metal ones, but also invites us to re-think the connection between surface plasmon excitation and the theory of negative refraction. (paper)

  8. Low-loss negative index metamaterials for X, Ku, and K microwave bands

    Directory of Open Access Journals (Sweden)

    David A. Lee

    2015-04-01

    Full Text Available Low-loss, negative-index of refraction metamaterials were designed and tested for X, Ku, and K microwave frequency bands. An S-shaped, split-ring resonator was used as a unit cell to design homogeneous slabs of negative-index metamaterials. Then, the slabs of metamaterials were cut unto prisms to measure experimentally the negative index of refraction of a plane electromagnetic wave. Theoretical simulations using High-Frequency Structural Simulator, a finite element equation solver, were in good agreement with experimental measurements. The negative index of refraction was retrieved from the angle- and frequency-dependence of the transmitted intensity of the microwave beam through the metamaterial prism and compared well to simulations; in addition, near-field electromagnetic intensity mapping was conducted with an infrared camera, and there was also a good match with the simulations for expected frequency ranges for the negative index of refraction.

  9. Strain monitoring of a newly developed precast concrete track for high speed railway traffic using embedded fiber optic sensors

    Science.gov (United States)

    Crail, Stephanie; Reichel, D.; Schreiner, U.; Lindner, E.; Habel, Wolfgang R.; Hofmann, Detlef; Basedau, Frank; Brandes, K.; Barner, A.; Ecke, Wolfgang; Schroeder, Kerstin

    2002-07-01

    In a German slab track system (Feste Fahrbahn FF, system Boegl) for speeds up to 300 km/h and more different fiber optic sensors have been embedded in several levels and locations of the track system. The track system consists of prestressed precast panels of steel fiber concrete which are supported by a cat-in-situ concrete or asphalt base course. The sensors are to measure the bond behavior or the stress transfer in the track system. For that, tiny fiber-optic sensors - fiber Fabry-Perot and Bragg grating sensors - have been embedded very near to the interface of the layers. Measurements were taken on a full scale test sample (slab track panel of 6.45 m length) as well as on a real high speed track. The paper describes the measurement task and discusses aspects with regard to sensor design and prefabrication of the sensor frames as well as the embedding procedure into the concrete track. Results from static and dynamic full scale tests carried out in the testing laboratory of BAM and from measurements on a track are given.

  10. Optical and non-optical characterization of Nb2O5-SiO2 compositional graded-index layers and rugate structures

    International Nuclear Information System (INIS)

    Leitel, Robert; Stenzel, Olaf; Wilbrandt, Steffen; Gaebler, Dieter; Janicki, Vesna; Kaiser, Norbert

    2006-01-01

    The deposition of graded-index layers and rugate structures was performed by coevaporation of silicon dioxide as the low index material and niobium pentoxide as the high index material. To obtain information about the composition depth profile of the films, we used cross-sectional transmission electron microscopy to supplement deposition rate data recorded by two independent crystal quartz monitors during film preparation. The concentration depth profile was transformed to a refractive index profile using the effective medium approximation. The thus obtained refractive index profiles turned out to represent efficient initial approximations for re-engineering purposes

  11. Transmission of laser pulses with high output beam quality using step-index fibers having large cladding

    Science.gov (United States)

    Yalin, Azer P; Joshi, Sachin

    2014-06-03

    An apparatus and method for transmission of laser pulses with high output beam quality using large core step-index silica optical fibers having thick cladding, are described. The thick cladding suppresses diffusion of modal power to higher order modes at the core-cladding interface, thereby enabling higher beam quality, M.sup.2, than are observed for large core, thin cladding optical fibers. For a given NA and core size, the thicker the cladding, the better the output beam quality. Mode coupling coefficients, D, has been found to scale approximately as the inverse square of the cladding dimension and the inverse square root of the wavelength. Output from a 2 m long silica optical fiber having a 100 .mu.m core and a 660 .mu.m cladding was found to be close to single mode, with an M.sup.2=1.6. Another thick cladding fiber (400 .mu.m core and 720 .mu.m clad) was used to transmit 1064 nm pulses of nanosecond duration with high beam quality to form gas sparks at the focused output (focused intensity of >100 GW/cm.sup.2), wherein the energy in the core was laser pulses was about 6 ns. Extending the pulse duration provided the ability to increase the delivered pulse energy (>20 mJ delivered for 50 ns pulses) without damaging the silica fiber.

  12. Direct writing of fiber optic components in photonic crystal fibers and other specialty fibers

    Science.gov (United States)

    Fernandes, Luis Andre; Sezerman, Omur; Best, Garland; Ng, Mi Li; Kane, Saidou

    2016-04-01

    Femtosecond direct laser writing has recently shown great potential for the fabrication of complex integrated devices in the cladding of optical fibers. Such devices have the advantage of requiring no bulk optical components and no breaks in the fiber path, thus reducing the need for complicated alignment, eliminating contamination, and increasing stability. This technology has already found applications using combinations of Bragg gratings, interferometers, and couplers for the fabrication of optical filters, sensors, and power monitors. The femtosecond laser writing method produces a local modification of refractive index through non-linear absorption of the ultrafast laser pulses inside the dielectric material of both the core and cladding of the fiber. However, fiber geometries that incorporate air or hollow structures, such as photonic crystal fibers (PCFs), still present a challenge since the index modification regions created by the writing process cannot be generated in the hollow regions of the fiber. In this work, the femtosecond laser method is used together with a pre-modification method that consists of partially collapsing the hollow holes using an electrical arc discharge. The partial collapse of the photonic band gap structure provides a path for femtosecond laser written waveguides to couple light from the core to the edge of the fiber for in-line power monitoring. This novel approach is expected to have applications in other specialty fibers such as suspended core fibers and can open the way for the integration of complex devices and facilitate miniaturization of optical circuits to take advantage of the particular characteristics of the PCFs.

  13. Coffered slabs as a perspective type of the reinforced concrete structures

    OpenAIRE

    Kibkalo Anton; Volkov Mikhail; Vodolagina Anna; Murgul Vera

    2016-01-01

    The article discusses coffered slabs. In this paper considered the technology of arrangement of this slabs. Cast-in-place and precast ways of construction of coffered slab are reviewed. Сast-in-place and precast coffered slabs has been analysed in this article. Among other things construction of coffered slabs has an economical and technical advantages.

  14. Coffered slabs as a perspective type of the reinforced concrete structures

    Directory of Open Access Journals (Sweden)

    Kibkalo Anton

    2016-01-01

    Full Text Available The article discusses coffered slabs. In this paper considered the technology of arrangement of this slabs. Cast-in-place and precast ways of construction of coffered slab are reviewed. Сast-in-place and precast coffered slabs has been analysed in this article. Among other things construction of coffered slabs has an economical and technical advantages.

  15. Determinação dos índices de cristalinidade de fibras celulósicas Crystallinity index determination on cellulosic fibers

    Directory of Open Access Journals (Sweden)

    Rose Marry Araújo Gondim Tomaz

    1994-01-01

    Full Text Available No presente estudo, foi avaliada a introdução de métodos de análises de micro-estrutura de fibras celulósicas. O algodão utilizado, proveniente das variedades IAC 17, IAC 19 e IAC 20, foi colhido em dez localidades do ensaio regional de variedades do Estado de São Paulo, no ano agrícola de 1985/86. Amostras de fibras de viscose, rami e rami tratado quimicamente com ácido clorídrico, também foram usadas, a fim de estabelecer uma relação entre os dois sistemas de determinação dos índices de cristalinidade. Utilizaram-se os métodos empíricos de difratometria de raios X e espectroscopia de infravermelho para as determinações dos índices de cristalinidade: o obtido por espectroscopia de infravermelho permitiu a diferenciação de variedades de algodoeiro IAC, enquanto o proposto por difratometria de raios X não possibilitou essa diferença. As propriedades físicas das fibras de variedades de algodoeiro IAC não se correlacionaram com os índices de cristalinidade obtidos nos dois processos. Os métodos usados para a determinação de tais índices foram altamente correlacionados (r = 0,95, empregando-se amostras de celulose com tratamento diferenciado.The purpose of this work was to develop analytical techniques for structural characterization of cellulosic fibers. To establish a relationship between the two methods that determine crystallinity index, three varieties of cotton (IAC 17, IAC 19, and IAC 20 and fibers of viscose, rami and rami chemical treated were used. Two empirical methods, x-ray diffraction and infrared spectroscopy, were used to evaluate the crystallinity index. Differentiation of IAC cotton varieties was possible with the crystallinity index obtained by infrared spectroscopy; but, not with the x-ray diffraction method. The crystallinity index obtained by these two methods had no correlation with physical properties of cotton fibers. When cellulose fibers with different treatment were assayed, there was a

  16. Fire resistance of extruded hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Sørensen, Lars Schiøtt; Giuliani, Luisa

    2017-01-01

    to the structural codes with data derived from a standard fire test and from a thorough examination of the comprehensive test documentation available on fire exposed hollow-core slabs. Findings – Mechanisms for loss of load-bearing capacity are clarified, and evidence of the fire resistance is found. Originality......Purpose – Prefabricated extruded hollow-core slabs are preferred building components for floor structures in several countries. It is therefore important to be able to document the fire resistance of these slabs proving fulfilment of standard fire resistance requirements of 60 and 120 min found...... in most national building regulations. The paper aims to present a detailed analysis of the mechanisms responsible for the loss of loadbearing capacity of hollow-core slabs when exposed to fire. Design/methodology/approach – Furthermore, it compares theoretica calculation and assessment according...

  17. Flexible concrete link slabs used as expansion joints in bridge decks

    DEFF Research Database (Denmark)

    Lárusson, Lárus Helgi; Fischer, Gregor

    2011-01-01

    of water through the expansion joint and subsequent corrosion of girders and girder bearings. Investigations on joint-less superstructures using conventional steel reinforcement in so-called concrete link slabs indicate improved performance and economic feasibility. However, this concept requires...... relatively large amounts of steel reinforcement for crack control purposes and consequently provides a relatively large flexural stiffness and negative moment capacity at the joint between the spans. These contradicting requirements and effects in existing replacement concepts for damaged mechanical bridge...... joints are currently unresolved. In the proposed system described in this paper, a ductile cement-based composite section reinforced with Glass Fiber Reinforced Polymers (GFRP) replaces the damaged expansion joint. The combination of this ductile concrete together with corrosion resistant GFRP...

  18. Estimation of the Reliability of Plastic Slabs

    DEFF Research Database (Denmark)

    Pirzada, G. B. : Ph.D.

    In this thesis, work related to fundamental conditions has been extended to non-fundamental or the general case of probabilistic analysis. Finally, using the ss-unzipping technique a door has been opened to system reliability analysis of plastic slabs. An attempt has been made in this thesis...... to give a probabilistic treatment of plastic slabs which is parallel to the deterministic and systematic treatment of plastic slabs by Nielsen (3). The fundamental reason is that in Nielsen (3) the treatment is based on a deterministic modelling of the basic material properties for the reinforced...

  19. Analytical expressions for group delay in the far field from an optical fiber having an arbitrary index profile

    DEFF Research Database (Denmark)

    Danielsen, Per Lander

    1981-01-01

    A general and efficient model for optical fibers with a few modes and arbitrary index profiles is established. The model yields a solution of the vectorial wave equation and analytical expressions for the group delay and the far field. Convergence tests have shown that the dispersion can...

  20. Experimental and theoretical investigation of column - flat slab joint ductility

    International Nuclear Information System (INIS)

    Iskhakov, I.; Ribakov, Y.; Shah, A.

    2009-01-01

    Most modern seismic codes use ductility as one of the basic design parameters. Actually, ductility defines the ability of a structure or its elements to absorb energy by plastic deformations. Until the end of the previous century ductility was defined qualitatively. Most research works related to ductility are focused on structural elements' sections. This study was aimed at complex experimental and theoretical investigation of flat slab-column joints ductility. It is one of the first attempts to obtain quantitative values of joint's ductility for the case of high strength concrete columns and normal strength concrete slabs. It was shown that the flat slab-column joint is a three-dimension (3D) element and its ductility in horizontal and vertical directions are different. This is the main difference between ductility of elements and joint ductility. In case of flat slab-column joints, essential contribution to joint's ductility can be obtained due to the slab's confining effect. Based on experimental data, the authors demonstrate that flat slab-column joint's ductility depends on the joint's confining effect in two horizontal and vertical directions. Furthermore, the influence of slab load intensity and slab reinforcement ratio on the joint's ductility is performed in this study. It is also demonstrated that the effect of the ratio between the slab thickness and the column's section dimension on the ductility parameter is significant. Equations for obtaining a quantitative value of a flat slab-column joint's ductility parameter were developed.

  1. Orbital angular momentum mode groups multiplexing transmission over 2.6-km conventional multi-mode fiber.

    Science.gov (United States)

    Zhu, Long; Wang, Andong; Chen, Shi; Liu, Jun; Mo, Qi; Du, Cheng; Wang, Jian

    2017-10-16

    Twisted light carrying orbital angular momentum (OAM) is a special kind of structured light that has a helical phase front, a phase singularity, and a doughnut intensity profile. Beyond widespread developments in manipulation, microscopy, metrology, astronomy, nonlinear and quantum optics, OAM-carrying twisted light has seen emerging application of optical communications in free space and specially designed fibers. Instead of specialty fibers, here we show the direct use of a conventional graded-index multi-mode fiber (MMF) for OAM communications. By exploiting fiber-compatible mode exciting and filtering elements, we excite the first four OAM mode groups in an MMF. We demonstrate 2.6-km MMF transmission using four data-carrying OAM mode groups (OAM 0,1 , OAM +1,1 /OAM -1,1 , OAM +2,1 , OAM +3,1 ). Moreover, we demonstrate two data-carrying OAM mode groups multiplexing transmission over the 2.6-km MMF with low-level crosstalk free of multiple-input multiple-output digital signal processing (MIMO-DSP). The demonstrations may open up new perspectives to fiber-based OAM communication/non-communication applications using already existing conventional fibers.

  2. Fiber optic based multiparametric spectroscopy in vivo: Toward a new quantitative tissue vitality index

    Science.gov (United States)

    Kutai-Asis, Hofit; Barbiro-Michaely, Efrat; Deutsch, Assaf; Mayevsky, Avraham

    2006-02-01

    In our previous publication (Mayevsky et al SPIE 5326: 98-105, 2004) we described a multiparametric fiber optic system enabling the evaluation of 4 physiological parameters as indicators of tissue vitality. Since the correlation between the various parameters may differ in various pathophysiological conditions there is a need for an objective quantitative index that will integrate the relative changes measured in real time by the multiparametric monitoring system into a single number-vitality index. Such an approach to calculate tissue vitality index is critical for the possibility to use such an instrument in clinical environments. In the current presentation we are reporting our preliminary results indicating that calculation of an objective tissue vitality index is feasible. We used an intuitive empirical approach based on the comparison between the calculated index by the computer and the subjective evaluation made by an expert in the field of physiological monitoring. We used the in vivo brain of rats as an animal model in our current studies. The rats were exposed to anoxia, ischemia and cortical spreading depression and the responses were recorded in real time. At the end of the monitoring session the results were analyzed and the tissue vitality index was calculated offline. Mitochondrial NADH, tissue blood flow and oxy-hemoglobin were used to calculate the vitality index of the brain in vivo, where each parameter received a different weight, in each experiment type based on their significance. It was found that the mitochondrial NADH response was the main factor affected the calculated vitality index.

  3. The Relationship between Ionospheric Slab Thickness and the Peak Density Height, hmF2

    Science.gov (United States)

    Meehan, J.; Sojka, J. J.

    2017-12-01

    The electron density profile is one of the most critical elements in the ionospheric modeling-related applications today. Ionosphere parameters, hmF2, the height of the peak density layer, and slab thickness, the ratio of the total electron content, TEC, to the peak density value, NmF2, are generally obtained from any global sounding observation network and are easily incorporated into models, theoretical or empirical, as numerical representations. Slab thickness is a convenient one-parameter summary of the electron density profile and can relate a variety of elements of interest that effect the overall electron profile shape, such as the neutral and ionospheric temperatures and gradients, the ionospheric composition, and dynamics. Using ISR data from the 2002 Millstone Hill ISR data campaign, we found, for the first time, slab thickness to be correlated to hmF2. For this, we introduce a new ionospheric index, k, which ultimately relates electron density parameters and can be a very useful tool for describing the topside ionosphere shape. Our study is an initial one location, one season, 30-day study, and future work is needed to verify the robustness of our claim. Generally, the ionospheric profile shape, requires knowledge of several ionospheric parameters: electron, ion and neutral temperatures, ion composition, electric fields, and neutral winds, and is dependent upon seasons, local time, location, and the level of solar and geomagnetic activity; however, with this new index, only readily-available, ionospheric density information is needed. Such information, as used in this study, is obtained from a bottomside electron density profile provided by an ionosonde, and TEC data provided by a local, collocated GPS receiver.

  4. Refractive Index Measurement of Liquids Based on Microstructured Optical Fibers

    Directory of Open Access Journals (Sweden)

    Susana Silva

    2014-12-01

    Full Text Available This review is focused on microstructured optical fiber sensors developed in recent years for liquid RI sensing. The review is divided into three parts: the first section introduces a general view of the most relevant refractometric sensors that have been reported over the last thirty years. Section 2 discusses several microstructured optical fiber designs, namely, suspended-core fiber, photonic crystal fiber, large-core air-clad photonic crystal fiber, and others. This part is also divided into two main groups: the interferometric-based and resonance-based configurations. The sensing methods rely either on full/selective filling of the microstructured fiber air holes with a liquid analyte or by simply immersing the sensing fiber into the liquid analyte. The sensitivities and resolutions are tabled at the end of this section followed by a brief discussion of the obtained results. The last section concludes with some remarks about the microstructured fiber-based configurations developed for RI sensing and their potential for future applications.

  5. P-polarized surface waves in a slab waveguide with left-handed material for sensing applications

    International Nuclear Information System (INIS)

    Taya, Sofyan A.

    2015-01-01

    In this paper, surface waves excited at the interface between left-handed and right-handed materials are employed for sensing applications. The propagation of p-polarized (TM) surface waves in a three-layer slab waveguide structure with air core layer as an analyte and anisotropic left-handed materials as claddings is investigated for detection of any changes in the refractive index of the analyte. The dispersion equations and the sensitivity of the effective refractive index to any change in the air layer index are derived, plotted, and discussed in details. The field profile is also explored. It is found that the sensitivity of the proposed surface wave sensor is almost independent of the wavelength of the propagating wave. A considerable sensitivity improvement can be obtained with the increase of transverse components of the left-handed material permittivity. - Highlights: • P-polarized surface waves in a three-layer slab waveguide are employed for sensing applications. • The structure contains air core layer as an analyte and anisotropic left-handed material in the claddings. • The sensitivity is found to be almost independent of the wavelength of the propagating wave. • Unusual sensitivity enhancement is observed as the transverse components of the LHM permittivity increase. • The asymmetric waveguide structure exhibits much higher sensitivity compared to the symmetric one

  6. Fabrication and characterization of a hybrid four-hole AsSe₂-As₂S₅ microstructured optical fiber with a large refractive index difference.

    Science.gov (United States)

    Cheng, Tonglei; Kanou, Yasuhire; Deng, Dinghuan; Xue, Xiaojie; Matsumoto, Morio; Misumi, Takashi; Suzuki, Takenobu; Ohishi, Yasutake

    2014-06-02

    A hybrid four-hole AsSe2-As2S5 microstructured optical fiber (MOF) with a large refractive index difference is fabricated by the rod-in-tube drawing technique. The core and the cladding are made from the AsSe2 glass and As2S5 glass, respectively. The propagation loss is ~1.8 dB/m and the nonlinear coefficient is ~2.03 × 10(4) km(-1)W(-1) at 2000 nm. Raman scattering is observed in the normal dispersion regime when the fiber is pumped by a 2 μm mode-locked picosecond fiber laser. Additionally, soliton is generated in the anomalous dispersion regime when the fiber is pumped by an optical parametric oscillator (OPO) at the pump wavelength of ~3000 nm.

  7. An autostratigraphic view of the long-term dynamics of delta distributary channels: A new step forward with the grade index model

    Science.gov (United States)

    Naruse, H.; Muto, T.

    2017-12-01

    Autostratigraphy is the stratigraphy that is generated by large-scale, deterministic autogenic processes of depositional systems, based on the full recognition of non-equilibrium behavior in response to steady external forcing. Recent experimental studies to explore the effects of basin water depth on the dynamics of distributary channels have brought a new geometrical scheme, here referred to as the grade index model, which is expected to make a significant step forward for development of the autostratigraphy of river deltas. Grade index (0 ≤ Gindex ≤1) is a dimensionless number that describes how close the alluvial river is to a graded state and is given as the ratio of subaerial allocation of the supplied sediment to both subaerial and subaqueous allocation of the sediment, in the form of a function of dimensionless basin water depth (h*). The grade index model for a particular geometrical setting suggests that as h* increase toward +∞, all of dimensionless magnitudes of delta progradation rate (Rpro*), alluvial aggradation rate (Ragg*), channel migration rate (Rmig*), avulsion frequency decrease toward 0, and all of dimensionless timescales of channel shifting (τs*), recurrence of channels (τr*), channel avulsion (τA*) increase toward +∞, and also that Rpro* = Ragg* = Rmig* = fA* = (τs*)-1 = (τr*)-1 = (τA* )-1 = Gindex. This grade index model, despite its simple structure, offers deep insight into the rationale of shoreline autoretreat, a typical large-scale, deterministic autogenic process that is realized by non-equilibrium response to steady base level rise. A simple geometrical modeling leads to a finding that Ppro* = (1 - Ab*) Gindex, where Ab* is a dimensionless form of the bottom surface of the deltaic deposit (Ab) given by dividing Ab with the square of autostratigraphic length scale (Λ). As the delta grows with base level rise, Ab progressively increases and then inevitably meets an event that Ab* exceeds 1 (i.e. Ab exceeds Λ2). We also

  8. Fiber-optic refractometer based on an etched high-Q π-phase-shifted fiber-Bragg-grating.

    Science.gov (United States)

    Zhang, Qi; Ianno, Natale J; Han, Ming

    2013-07-10

    We present a compact and highly-sensitive fiber-optic refractometer based on a high-Q π-phase-shifted fiber-Bragg-grating (πFBG) that is chemically etched to the core of the fiber. Due to the p phase-shift, a strong πFBG forms a high-Q optical resonator and the reflection spectrum features an extremely narrow notch that can be used for highly sensitivity refractive index measurement. The etched πFBG demonstrated here has a diameter of ~9.3 μm and a length of only 7 mm, leading to a refractive index responsivity of 2.9 nm/RIU (RIU: refractive index unit) at an ambient refractive index of 1.318. The reflection spectrum of the etched πFBG features an extremely narrow notch with a linewidth of only 2.1 pm in water centered at ~1,550 nm, corresponding to a Q-factor of 7.4 × 10(5), which allows for potentially significantly improved sensitivity over refractometers based on regular fiber Bragg gratings.

  9. General analysis of slab lasers using geometrical optics.

    Science.gov (United States)

    Chung, Te-yuan; Bass, Michael

    2007-02-01

    A thorough and general geometrical optics analysis of a slab-shaped laser gain medium is presented. The length and thickness ratio is critical if one is to achieve the maximum utilization of absorbed pump power by the laser light in such a medium; e.g., the fill factor inside the slab is to be maximized. We point out that the conditions for a fill factor equal to 1, laser light entering and exiting parallel to the length of the slab, and Brewster angle incidence on the entrance and exit faces cannot all be satisfied at the same time. Deformed slabs are also studied. Deformation along the width direction of the largest surfaces is shown to significantly reduce the fill factor that is possible.

  10. Liquid Crystal photonic Bandgap Fiber Devices

    DEFF Research Database (Denmark)

    Wei, Lei

    In this Ph.D. thesis, an experimental investigation of liquid crystal photonic bandgap (LCPBG) fiber devices and applications is presented. Photonic crystal fibers (PCFs) consist of a cladding microstructure with periodic index variations and a core defined by a defect of the structure. The prese......In this Ph.D. thesis, an experimental investigation of liquid crystal photonic bandgap (LCPBG) fiber devices and applications is presented. Photonic crystal fibers (PCFs) consist of a cladding microstructure with periodic index variations and a core defined by a defect of the structure...... of each LCPBG fiber. Finally, the applications for LCPBG fiber devices based on the on-chip platform design have been demonstrated in realizing microwave true-time delay and creating an electrically tunable fiber laser. Referatet mailes...

  11. Mid-infrared supercontinuum generation in chalcogenide step-index fibers pumped at 2.9 and 4.5µm

    DEFF Research Database (Denmark)

    Kubat, Irnis; Agger, Christian; Møller, Uffe Visbech

    The Mid-InfraRed (MIR) spectral range (2-12µm) contains the spectral fingerprint of many organic molecules, which can be probed nondestructively for e.g. detection of skin cancer. For this SuperContinuum (SC) laser sources are good candidates since they can have broadband bandwidths together...... with high spectral densities. Here we consider a MIR SC laser sources based on chalcogenide step-index fibers with exceptionally high numerical aperture of ~1 pumped either with Er:ZBLAN and Pr:CHALC fiber laser operating at 2.9 and 4.5µm, respectively, having P0=1kW, T0=50ps, ν_R=4MHz and Pavg=200m......W. The optical properties of fibers (dispersion, nonlinearity and confinement loss) are modeled using the finite element tools based on measured refractive indices of the core and the cladding chalcogenide compositions. Generation of MIR SC is investigated using the Generalized Nonlinear Schrödinger Equation...

  12. Behaviour of a stiffened circular slab

    International Nuclear Information System (INIS)

    Kulkarni, M.G.; Subramanian, K.V.

    1975-01-01

    Configuration of intake structure for cooling water system for Madras Atomic Power Project was studied on a hydraulic model and it was recommended to provide a circular slab in the structure to give directional property to the inflow and reduce air entrainment. This slab, as indicated by hydraulic model tests was required to withstand hydrodynamic pressures of the order of 10T/m 2 due to breaking waves of about 6 m height. Analysis of this circular cover slab, Stiffened by radial and circumferential beams, carried with the help of an analysis based on grid idealisation is presented. Results of approximate design analysis to assess behaviour of radial stiffener have been compared. Actual design is based on judgement of actual degree of fixity possessed by the supports or restraints. (author)

  13. Solitonic supercontinuum of femtosecond mid-IR pulses in W-type index tellurite fibers with two zero dispersion wavelengths

    Directory of Open Access Journals (Sweden)

    S. Kedenburg

    2016-11-01

    Full Text Available We present a detailed experimental parameter study on mid-IR supercontinuum generation in W-type index tellurite fibers, which reveals how the core diameter, pump wavelength, fiber length, and pump power dramatically influence the spectral broadening. As pump source, we use femtosecond mid-IR pulses from a post-amplified optical parametric oscillator tunable between 1.7 μm and 4.1 μm at 43 MHz repetition rate. We are able to generate red-shifted dispersive waves up to a wavelength of 5.1 μm by pumping a tellurite fiber in the anomalous dispersion regime between its two zero dispersion wavelengths. Distinctive soliton dynamics can be identified as the main broadening mechanism resulting in a maximum spectral width of over 2000 nm with output powers of up to 160 mW. We experimentally demonstrated that efficient spectral broadening with considerably improved power proportion in the important first atmospheric transmission window between 3 and 5 μm can be achieved in robust W-type tellurite fibers pumped at long wavelengths by ultra-fast lasers.

  14. Fiber facet gratings for high power fiber lasers

    Science.gov (United States)

    Vanek, Martin; Vanis, Jan; Baravets, Yauhen; Todorov, Filip; Ctyroky, Jiri; Honzatko, Pavel

    2017-12-01

    We numerically investigated the properties of diffraction gratings designated for fabrication on the facet of an optical fiber. The gratings are intended to be used in high-power fiber lasers as mirrors either with a low or high reflectivity. The modal reflectance of low reflectivity polarizing grating has a value close to 3% for TE mode while it is significantly suppressed for TM mode. Such a grating can be fabricated on laser output fiber facet. The polarizing grating with high modal reflectance is designed as a leaky-mode resonant diffraction grating. The grating can be etched in a thin layer of high index dielectric which is sputtered on fiber facet. We used refractive index of Ta2O5 for such a layer. We found that modal reflectance can be close to 0.95 for TE polarization and polarization extinction ratio achieves 18 dB. Rigorous coupled wave analysis was used for fast optimization of grating parameters while aperiodic rigorous coupled wave analysis, Fourier modal method and finite difference time domain method were compared and used to compute modal reflectance of designed gratings.

  15. Computation of mode eigenfunctions in graded-index optical fibers by the propagating beam method

    International Nuclear Information System (INIS)

    Feit, M.D.; Fleck, J.A. Jr.

    1980-01-01

    The propagating beam method utilizes discrete Fourier transforms for generating configuration-space solutions to optical waveguide problems without reference to modes. The propagating beam method can also give a complete description of the field in terms of modes by a Fourier analysis with respect to axial distance of the computed fields. Earlier work dealt with the accurate determination of mode propagation constants and group delays. In this paper the method is extended to the computation of mode eigenfunctions. The method is efficient, allowing generation of a large number of eigenfunctions from a single propagation run. Computations for parabolic-index profiles show excellent agreement between analytic and numerically generated eigenfunctions

  16. Post-Tensioned Concrete Long-Span Slabs in Projects of Modern Building Construction

    Science.gov (United States)

    Szydlowski, Rafal; Labuzek, Barbara

    2017-10-01

    Nowadays, design of modern an architectural building structures requires the use of slender and free from numerous supports slabs. The most suitable solution for above requirements are the post-tensioned slabs with unbounded tendons. Slabs prestressed by unbounded tendons are successfully used worldwide for several decades. During that time many recommendations dealing with the forming of geometry and prestressing, dimensioning and erection technology were issued. During the recent years prestressed slabs characterized by span and slenderness substantially exceeding recommended limitations were designed and erected with success in Poland. During the slabs erection and in two years of their using, the deflection of three oversized slabs were monitoring. In spite of designed the slabs significantly larger and slenderer than the recommended maximum value of span and span to depth ratio, the deflection of the slabs is definitely far from the limit value. The paper shows the geometry, characteristic and deflection of erected slabs and conclusion. Description of a very large span slab (21.3m), that was designed regarded to the information obtained from the previous realisation, is presented in this paper.

  17. Dynamic Eigenvalue Problem of Concrete Slab Road Surface

    Science.gov (United States)

    Pawlak, Urszula; Szczecina, Michał

    2017-10-01

    The paper presents an analysis of the dynamic eigenvalue problem of concrete slab road surface. A sample concrete slab was modelled using Autodesk Robot Structural Analysis software and calculated with Finite Element Method. The slab was set on a one-parameter elastic subsoil, for which the modulus of elasticity was separately calculated. The eigen frequencies and eigenvectors (as maximal vertical nodal displacements) were presented. On the basis of the results of calculations, some basic recommendations for designers of concrete road surfaces were offered.

  18. Studying of Compressive, Tensile and Flexural Strength of Concrete by Using Steel Fibers

    Directory of Open Access Journals (Sweden)

    Muslim Abdul-Ameer

    2016-12-01

    Full Text Available This research aims to study the effect of adding steel fibers on the mechanical properties of concrete. Steel fiber has a very significant effect on concrete because it delays the propagation of micro cracks that generate due to loading on concrete members such as beams and slabs, therefore ,it increases the strength of concrete. The steel fiber was used in this study as a percentage of the volume of concrete. Mix proportion was 1: 2:4 (cement: sand: gravel by volume for all mixes and using 0% as (control mix,0.1 %,0.2%,0.5 % and 1.0% of steel fibers, these ratios leads to increase the compressive, tensile ,and flexural strength of concrete, where the improvement in flexural strength was significant

  19. Untangling Slab Dynamics Using 3-D Numerical and Analytical Models

    Science.gov (United States)

    Holt, A. F.; Royden, L.; Becker, T. W.

    2016-12-01

    Increasingly sophisticated numerical models have enabled us to make significant strides in identifying the key controls on how subducting slabs deform. For example, 3-D models have demonstrated that subducting plate width, and the related strength of toroidal flow around the plate edge, exerts a strong control on both the curvature and the rate of migration of the trench. However, the results of numerical subduction models can be difficult to interpret, and many first order dynamics issues remain at least partially unresolved. Such issues include the dominant controls on trench migration, the interdependence of asthenospheric pressure and slab dynamics, and how nearby slabs influence each other's dynamics. We augment 3-D, dynamically evolving finite element models with simple, analytical force-balance models to distill the physics associated with subduction into more manageable parts. We demonstrate that for single, isolated subducting slabs much of the complexity of our fully numerical models can be encapsulated by simple analytical expressions. Rates of subduction and slab dip correlate strongly with the asthenospheric pressure difference across the subducting slab. For double subduction, an additional slab gives rise to more complex mantle pressure and flow fields, and significantly extends the range of plate kinematics (e.g., convergence rate, trench migration rate) beyond those present in single slab models. Despite these additional complexities, we show that much of the dynamics of such multi-slab systems can be understood using the physics illuminated by our single slab study, and that a force-balance method can be used to relate intra-plate stress to viscous pressure in the asthenosphere and coupling forces at plate boundaries. This method has promise for rapid modeling of large systems of subduction zones on a global scale.

  20. Visualizing Three-dimensional Slab Geometries with ShowEarthModel

    Science.gov (United States)

    Chang, B.; Jadamec, M. A.; Fischer, K. M.; Kreylos, O.; Yikilmaz, M. B.

    2017-12-01

    Seismic data that characterize the morphology of modern subducted slabs on Earth suggest that a two-dimensional paradigm is no longer adequate to describe the subduction process. Here we demonstrate the effect of data exploration of three-dimensional (3D) global slab geometries with the open source program ShowEarthModel. ShowEarthModel was designed specifically to support data exploration, by focusing on interactivity and real-time response using the Vrui toolkit. Sixteen movies are presented that explore the 3D complexity of modern subduction zones on Earth. The first movie provides a guided tour through the Earth's major subduction zones, comparing the global slab geometry data sets of Gudmundsson and Sambridge (1998), Syracuse and Abers (2006), and Hayes et al. (2012). Fifteen regional movies explore the individual subduction zones and regions intersecting slabs, using the Hayes et al. (2012) slab geometry models where available and the Engdahl and Villasenor (2002) global earthquake data set. Viewing the subduction zones in this way provides an improved conceptualization of the 3D morphology within a given subduction zone as well as the 3D spatial relations between the intersecting slabs. This approach provides a powerful tool for rendering earth properties and broadening capabilities in both Earth Science research and education by allowing for whole earth visualization. The 3D characterization of global slab geometries is placed in the context of 3D slab-driven mantle flow and observations of shear wave splitting in subduction zones. These visualizations contribute to the paradigm shift from a 2D to 3D subduction framework by facilitating the conceptualization of the modern subduction system on Earth in 3D space.

  1. Bragg grating induced cladding mode coupling due to asymmetrical index modulation in depressed cladding fibers

    DEFF Research Database (Denmark)

    Berendt, Martin Ole; Grüne-Nielsen, Lars; Soccolich, C.F.

    1998-01-01

    to reduce this problem. None of these designs seems to give complete solutions. In particular, the otherwise promising depressed cladding design gives a pronounced coupling to one LP01 mode, this has been referred to as a Ghost grating. To find the modes of the fiber we have established a numerical mode......UV-written Bragg gratings find wide spread use as wavelength selective components. In reflection high extinction ratios are routinely obtained. However, coupling to cladding modes gives excess loss on the short wavelength side of the main reflection. Different fiber-designs have been proposed......-solver based on the staircase-approximation method. The Bragg grating causes coupling between the fundamental LP01 mode and higher order LP1p modes that satisfy phase-matching. The coupling strength is determined by the overlap integral of the LP01, the LP1p mode, and the UV-induced index perturbation. For LP0...

  2. Laboratory Equipment Type Fiber Optic Refractometer

    Directory of Open Access Journals (Sweden)

    E. F. Carome

    2002-09-01

    Full Text Available Using fiber optics and micro optics technologies we designed aninnovative fiber optic index of refraction transducer that has uniqueproperties. On the base of this transducer a laboratory equipment typefiber optic refractometer was developed for liquid index of refractionmeasurements. Such refractometer may be used for medical,pharmaceutical, industrial fluid, petrochemical, plastic, food, andbeverage industry applications. For example, it may be used formeasuring the concentrations of aqueous solutions: as the concentrationor density of a solute increase, the refractive index increasesproportionately. The paper describes development work related to designof laboratory type fiber optic refractometer and describes experimentsto evaluation of its basic properties.

  3. Fire resistance of prefabricated monolithic slab

    Directory of Open Access Journals (Sweden)

    Gravit Marina

    2017-01-01

    Full Text Available A prefabricated monolithic slab (PMS has a number of valuable advantages, they allow to significantly decrease the weight of construction keeping the necessary structural-load capacity, to speed up and cheapen work conduction, to increase the heat isolating properties of an enclosure structure [1]. In order to create a design method of prefabricated monolithic slab fire-resistance, it's necessary to perform a series of PMS testing, one of which is being described in this article. Subjected to the test is a fragment of prefabricated monolithic slab with polystyrene concrete inserts along the beams with bent metal profile 250 mm thick, with a 2.7 m span loaded with evenly spread load equal to 600 kg/m2. After 3 hour testing for fire-resistance [2] no signs of construction ultimate behavior were detected.

  4. Role of the electron blocking layer in the graded-index separate confinement heterostructure nitride laser diodes

    Science.gov (United States)

    Bojarska, Agata; Goss, Jakub; Stanczyk, Szymon; Makarowa, Irina; Schiavon, Dario; Czernecki, Robert; Suski, Tadeusz; Perlin, Piotr

    2018-04-01

    In this work, we investigate the role of the electron blocking layer (EBL) in laser diodes based on a graded index separate confinement heterostructure. We compare two sets of devices with very different EBL aluminum composition (3% and 12%) and design (graded and superlattice). The results of electro-optical characterization of these laser diodes reveal surprisingly modest role of electron blocking layer composition in determination of the threshold current and the differential efficiency values. However, EBL structure influences the operating voltage, which is decreased for devices with lower EBL and superlattice EBL. We observe also the differences in the thermal stability of devices - characteristic temperature is lower for lasers with 3% Al in EBL.

  5. Tiny optical fiber temperature sensor based on temperature-dependent refractive index of zinc telluride film

    Science.gov (United States)

    Bian, Qiang; Song, Zhangqi; Song, Dongyu; Zhang, Xueliang; Li, Bingsheng; Yu, Yang; Chen, Yuzhong

    2018-03-01

    The temperature-dependent refractive index of zinc telluride film can be used to develop a tiny, low cost and film-coated optical fiber temperature sensor. Pulse reference-based compensation technique is used to largely reduce the background noise which makes it possible to detect the minor reflectivity change of the film in different temperatures. The temperature sensitivity is 0.0034dB/° and the background noise is measured to be 0.0005dB, so the resolution can achieve 0.2°.

  6. Reinforcement of the concrete base slab of the ATLAS cavern

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Photo 02: UX15 cavern, preparation for concreting of base slab first lift. Photo 05: UX15 cavern, placing of reinforcement for base slab first lift. Photo 07: UX15 cavern, preparation for concreting of base slab first lift. Photo 09: UX15 cavern, placing of reinforcement for base slab first lift. Photo 10: UX15 cavern, view into PX14 shaft above. Photo 12: UX15 cavern, temporary access platform of RB16 tunnel. Photo 15: UJ17 chamber, invert excavation.

  7. Self-shielding for thick slabs in a converging neutron beam

    CERN Document Server

    Mildner, D F R

    1999-01-01

    We have previously given a correction to the neutron self-shielding for a thin slab to account for the increased average path length through the slab when irradiated in a converging neutron beam. This expression overstates the case for the self-shielding for a thick (or highly absorbing) slab. We give a better approximation to the increase in effective shielding correction for a slab placed in a converging neutron beam. It is negligible at large absorption mean free paths. (author)

  8. Coexistence of collapse and stable spatiotemporal solitons in multimode fibers

    Science.gov (United States)

    Shtyrina, Olga V.; Fedoruk, Mikhail P.; Kivshar, Yuri S.; Turitsyn, Sergei K.

    2018-01-01

    We analyze spatiotemporal solitons in multimode optical fibers and demonstrate the existence of stable solitons, in a sharp contrast to earlier predictions of collapse of multidimensional solitons in three-dimensional media. We discuss the coexistence of blow-up solutions and collapse stabilization by a low-dimensional external potential in graded-index media, and also predict the existence of stable higher-order nonlinear waves such as dipole-mode spatiotemporal solitons. To support the main conclusions of our numerical studies we employ a variational approach and derive analytically the stability criterion for input powers for the collapse stabilization.

  9. 1 Tb/s x km multimode fiber link combining WDM transmission and low-linewidth lasers.

    Science.gov (United States)

    Gasulla, I; Capmany, J

    2008-05-26

    We have successfully demonstrated an error-free transmission of 10 x 20 Gb/s 200 GHz-spaced ITU channels through a 5 km link of 62.5-microm core-diameter graded-index multimode silica fiber. The overall figure corresponds to an aggregate bit rate per length product of 1 Tb/s x km, the highest value ever reported to our knowledge. Successful transmission is achieved by a combination of low-linewidth DFB lasers and the central launch technique.

  10. Modified bond model for shear in slabs under concentrated loads

    NARCIS (Netherlands)

    Lantsoght, E.O.L.; Van der Veen, C.; De Boer, A.

    2015-01-01

    Slabs subjected to concentrated loads close to supports, as occurring for truck loads on slab bridges, are less studied than beams in shear or slab-column connections in punching. To predict the shear capacity for this case, the Bond Model for concentric punching shear was studied initially.

  11. Fiber-Optic Refractometer Based on an Etched High-Q π-Phase-Shifted Fiber-Bragg-Grating

    Directory of Open Access Journals (Sweden)

    Ming Han

    2013-07-01

    Full Text Available We present a compact and highly-sensitive fiber-optic refractometer based on a high-Q p-phase-shifted fiber-Bragg-grating (pFBG that is chemically etched to the core of the fiber. Due to the p phase-shift, a strong pFBG forms a high-Q optical resonator and the reflection spectrum features an extremely narrow notch that can be used for highly sensitivity refractive index measurement. The etched pFBG demonstrated here has a diameter of ~9.3 μm and a length of only 7 mm, leading to a refractive index responsivity of 2.9 nm/RIU (RIU: refractive index unit at an ambient refractive index of 1.318. The reflection spectrum of the etched pFBG features an extremely narrow notch with a linewidth of only 2.1 pm in water centered at ~1,550 nm, corresponding to a Q-factor of 7.4 ´ 105, which allows for potentially significantly improved sensitivity over refractometers based on regular fiber Bragg gratings.

  12. Distributed strain measurement with polymer optical fibers integrated into multifunctional geotextiles

    Science.gov (United States)

    Liehr, Sascha; Lenke, Philipp; Krebber, Katerina; Seeger, Monika; Thiele, Elke; Metschies, Heike; Gebreselassie, Berhane; Münich, Johannes Christian; Stempniewski, Lothar

    2008-04-01

    Fiber optic sensors based on polymer optical fibers (POF) have the advantage of being very elastic and robust at the same time. Unlike silica fibers, standard PMMA POF fibers can be strained to more than 40% while fully maintaining their light guiding properties. We investigated POF as a distributed strain sensor by analysing the backscatter increase at the strained section using the optical time domain reflectometry (OTDR) technique. This sensing ability together with its high robustness and break-down strain makes POF well-suited for integration into technical textiles for structural health monitoring purposes. Within the European research project POLYTECT (Polyfunctional textiles against natural hazards) technical textiles with integrated POF sensors, among others sensors are being developed for online structural health monitoring of geotechnical structures. Mechanical deformation in slopes, dams, dikes, embankments and retrofitted masonry structures is to be detected before critical damage occurs. In this paper we present the POF strain sensor properties, reactions to disturbing influences as temperature and bends as well as the results of the different model tests we conducted within POLYTECT. We further show the potential of perfluorinated graded-index POF for distributed strain sensing with increased spatial resolution and measurement lengths.

  13. Bragg gratings inscription at 1550 nm in photosensitive step-index polymer optical fiber

    Science.gov (United States)

    Hu, X.; Kinet, D.; Chah, K.; Mégret, Patrice; Caucheteur, C.

    2013-05-01

    In this paper, we report photo-inscription of uniform Bragg gratings in Trans-4-stilbenemethanol-doped photosensitive step-index polymer optical fiber characterized by a core diameter of 8.2 μm. Single-mode gratings were produced at ~1550 nm by the phase mask technique with a Helium-Cadmium emitting at 325 nm with an average power of 30 mW. The grating growth was monitored during the manufacturing process, showing that the reflected band is blue shifted by a few hundreds of picometers. Finally, the gratings were characterized in temperature in the range 25 - 50 °C. Their sensitivity has been computed equal to - 47 pm/°C.

  14. Non-invasive perfusion imaging by modified STAR using asymmetric inversion slabs (ASTAR)

    International Nuclear Information System (INIS)

    Kimura, Tokunori

    2000-01-01

    Arterial spin labeling (ASL) such as STAR, EPISTAR, and FAIR have been used as imaging techniques of tissue perfusion and blood vessels (in MRA). We have developed 'ASTAR', a modified version of STAR by using asymmetric inversion slabs. ASTAR solves the problems of suppression of venous inflow and subtraction error of stationary tissue signal caused by the imbalance of signal variations. The signal variations are dependent on MT effects. In order to avoid overlapping the control slab to the tissue (including large veins), the control and tag slabs are arranged asymmetrically to preserve the same offset of modulation frequency. We evaluated both the subtraction error caused by the MT effects, and the imperfection of an IR slab using a stationary phantom. We then measured the vessel signal on the brain of a volunteer, using the above methods. Two indexes were used for the evaluation: ASL signal to control signal ratio (ASLR [%]=100*deltaS/S cont ) and ASL signal to noise ratio (ASLNR=delatS/Noise) where deltaS=|S cont -S tag |. Phantom study: each ASLR and ASLNR between ASTAR and EPISTAR was comparable and showed a decrease in noise signal level. This means that the ASL signal from the stationary tissue with an imbalance in MT effects and the imperfection in inversion slab profiles were cancelled out almost perfectly. When calculating CBF, ASLR for zero perfusion stationary tissue should be below 0.1%. We were able to satisfy this requirement in our ASTAR experiment. ASLR and ASLNR in FAIR were 40% larger than in EPISTAR and ASTAR. Volunteer brain study: compared with each ASL image, the MT effects were cancelled out in EPISTAR and ASTAR. Veins (sagittal sinus etc) disappeared in STAR and ASTAR, but were visible in EPISTAR and FAIR. Perfusion signals were similar in ASTAR and EPISTAR, indicating that both cancellation of MT effects and venous inflow from the opposite side of the tag were suppressed in ASTAR. In conclusion, ASTAR is a practical method to image blood

  15. Rayleigh-Taylor instability in accelerated elastic-solid slabs

    Science.gov (United States)

    Piriz, S. A.; Piriz, A. R.; Tahir, N. A.

    2017-12-01

    We develop the linear theory for the asymptotic growth of the incompressible Rayleigh-Taylor instability of an accelerated solid slab of density ρ2, shear modulus G , and thickness h , placed over a semi-infinite ideal fluid of density ρ110.1007/s000330050121] to arbitrary values of AT and unveil the singular feature of an instability threshold below which the slab is stable for any perturbation wavelength. As a consequence, an accelerated elastic-solid slab is stable if ρ2g h /G ≤2 (1 -AT) /AT .

  16. Production of High Quality Die Steels from Large ESR Slab Ingots

    Science.gov (United States)

    Geng, Xin; Jiang, Zhou-hua; Li, Hua-bing; Liu, Fu-bin; Li, Xing

    With the rapid development of manufacture industry in China, die steels are in great need of large slab ingot of high quality and large tonnage, such as P20, WSM718R and so on. Solidification structure and size of large slab ingots produced with conventional methods are not satisfied. However, large slab ingots manufactured by ESR process have a good solidification structure and enough section size. In the present research, the new slab ESR process was used to produce the die steels large slab ingots with the maximum size of 980×2000×3200mm. The compact and sound ingot can be manufactured by the slab ESR process. The ultra-heavy plates with the maximum thickness of 410 mm can be obtained after rolling the 49 tons ingots. Due to reducing the cogging and forging process, the ESR for large slab ingots process can increase greatly the yield and production efficiency, and evidently cut off product costs.

  17. Shear strength of end slabs of prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Cheung, K.C.; Gotschall, H.L.; Liu, T.C.

    1975-01-01

    Prestressed concrete reactor vessels (PCRV's) have been adopted for primary containments in most large high-temperature gas-cooled reactor installations. The most common configuration for PCRVs is a right-vertical cylinder with thick end slabs. In order to assess the integrity of a PCRV it is necessary to predict the ultimate strength of the end slabs. The complexity of the basic mechanism of shear failure in the PCRV end slabs has thus far prohibited the development of a completely analytical solution. However, many experimental investigations of PCRV end slabs have been conducted over the past decade. This information makes it possible to establish empirical formulae for the ultimate strength of PCRV end slabs. The basis and development of an empirical shear-flexure interaction expression is presented. (Auth.)

  18. Analytical expressions for group delay in the far field from an optical fiber having an arbitrary index profile

    OpenAIRE

    Danielsen, Per Lander

    1981-01-01

    A general and efficient model for optical fibers with a few modes and arbitrary index profiles is established. The model yields a solution of the vectorial wave equation and analytical expressions for the group delay and the far field. Convergence tests have shown that the dispersion can be calculated with an accuracy better than 0.2 ps/(km . nm).

  19. Slab2 - Updated Subduction Zone Geometries and Modeling Tools

    Science.gov (United States)

    Moore, G.; Hayes, G. P.; Portner, D. E.; Furtney, M.; Flamme, H. E.; Hearne, M. G.

    2017-12-01

    The U.S. Geological Survey database of global subduction zone geometries (Slab1.0), is a highly utilized dataset that has been applied to a wide range of geophysical problems. In 2017, these models have been improved and expanded upon as part of the Slab2 modeling effort. With a new data driven approach that can be applied to a broader range of tectonic settings and geophysical data sets, we have generated a model set that will serve as a more comprehensive, reliable, and reproducible resource for three-dimensional slab geometries at all of the world's convergent margins. The newly developed framework of Slab2 is guided by: (1) a large integrated dataset, consisting of a variety of geophysical sources (e.g., earthquake hypocenters, moment tensors, active-source seismic survey images of the shallow slab, tomography models, receiver functions, bathymetry, trench ages, and sediment thickness information); (2) a dynamic filtering scheme aimed at constraining incorporated seismicity to only slab related events; (3) a 3-D data interpolation approach which captures both high resolution shallow geometries and instances of slab rollback and overlap at depth; and (4) an algorithm which incorporates uncertainties of contributing datasets to identify the most probable surface depth over the extent of each subduction zone. Further layers will also be added to the base geometry dataset, such as historic moment release, earthquake tectonic providence, and interface coupling. Along with access to several queryable data formats, all components have been wrapped into an open source library in Python, such that suites of updated models can be released as further data becomes available. This presentation will discuss the extent of Slab2 development, as well as the current availability of the model and modeling tools.

  20. Contribution to the study of slab thickness

    International Nuclear Information System (INIS)

    Moraitis, G.A.; Rorris, G.P.

    1978-01-01

    A method is proposed for calculating the time-independent values of the equivalent slab thickness of the ionosphere, defined as the ratio of the total electron content to the corresponding maximum electron density of the F region. Periodic variations of slab thickness are studied and are correlated to relative changes in exospheric temperature, deduced from the OGO-6 model

  1. Damage detection in concrete precast slabs: a quick assessment through modal tests

    Directory of Open Access Journals (Sweden)

    Leal Pimentel Roberto

    2015-01-01

    Full Text Available The use of modal tests for detecting damage in reinforced concrete precast slabs is evaluated. A set of eight slabs were tested, each belonging to flats constructed for residential use. Two groups of slabs were identified and, in each group, both cracked and uncracked slabs were found. This made it possible to compare the responses of the slabs when subjected to modal tests. The tests were carried out employing an instrumented hammer and heel drops as excitation sources. Responses were measured using an accelerometer. The lowest natural frequencies of the slabs could be identified and after filtering the results, plots indicating the variation of the lowest natural frequency versus the number of cycles of free decay were obtained for each slab. Such a plot is of more general use than the value of the natural frequency by itself, as it does not depend on slab configuration. It was observed that the cracked slabs presented a similar pattern of variation of the natural frequencies throughout the decay, being distinctive from the pattern observed for their uncracked counterparts. This provided evidence that a quick assessment of the structural condition of such slabs through the use of the tests were feasible.

  2. Spectral collocation method with a flexible angular discretization scheme for radiative transfer in multi-layer graded index medium

    Science.gov (United States)

    Wei, Linyang; Qi, Hong; Sun, Jianping; Ren, Yatao; Ruan, Liming

    2017-05-01

    The spectral collocation method (SCM) is employed to solve the radiative transfer in multi-layer semitransparent medium with graded index. A new flexible angular discretization scheme is employed to discretize the solid angle domain freely to overcome the limit of the number of discrete radiative direction when adopting traditional SN discrete ordinate scheme. Three radial basis function interpolation approaches, named as multi-quadric (MQ), inverse multi-quadric (IMQ) and inverse quadratic (IQ) interpolation, are employed to couple the radiative intensity at the interface between two adjacent layers and numerical experiments show that MQ interpolation has the highest accuracy and best stability. Variable radiative transfer problems in double-layer semitransparent media with different thermophysical properties are investigated and the influence of these thermophysical properties on the radiative transfer procedure in double-layer semitransparent media is also analyzed. All the simulated results show that the present SCM with the new angular discretization scheme can predict the radiative transfer in multi-layer semitransparent medium with graded index efficiently and accurately.

  3. Accidents due to falls from roof slabs.

    Science.gov (United States)

    Rudelli, Bruno Alves; Silva, Marcelo Valerio Alabarce da; Akkari, Miguel; Santili, Claudio

    2013-01-01

    CONTEXT AND OBJECTIVE Falls from the roof slabs of houses are accidents of high potential severity that occur in large Brazilian cities and often affect children and adolescents. The aims of this study were to characterize the factors that predispose towards this type of fall involving children and adolescents, quantify the severity of associated lesions and suggest preventive measures. DESIGN AND SETTING Descriptive observational prospective longitudinal study in two hospitals in the metropolitan region of São Paulo. METHODS Data were collected from 29 cases of falls from roof slabs involving children and adolescents between October 2008 and October 2009. RESULTS Cases involving males were more prevalent, accounting for 84%. The predominant age group was schoolchildren (7 to 12 years old; 44%). Leisure activities were most frequently being practiced on the roof slab at the time of the fall (86%), and flying a kite was the most prevalent game (37.9%). In 72% of the cases, the children were unaccompanied by an adult responsible for them. Severe conditions such as multiple trauma and traumatic brain injuries resulted from 79% of the accidents. CONCLUSION Falls from roof slabs are accidents of high potential severity, and preventive measures aimed towards informing parents and guardians about the dangers and risk factors associated with this type of accident are needed, along with physical protective measures, such as low walls around the slab and gates with locks to restrict free access to these places.

  4. Accidents due to falls from roof slabs

    Directory of Open Access Journals (Sweden)

    Bruno Alves Rudelli

    Full Text Available CONTEXT AND OBJECTIVE Falls from the roof slabs of houses are accidents of high potential severity that occur in large Brazilian cities and often affect children and adolescents. The aims of this study were to characterize the factors that predispose towards this type of fall involving children and adolescents, quantify the severity of associated lesions and suggest preventive measures. DESIGN AND SETTING Descriptive observational prospective longitudinal study in two hospitals in the metropolitan region of São Paulo. METHODS Data were collected from 29 cases of falls from roof slabs involving children and adolescents between October 2008 and October 2009. RESULTS Cases involving males were more prevalent, accounting for 84%. The predominant age group was schoolchildren (7 to 12 years old; 44%. Leisure activities were most frequently being practiced on the roof slab at the time of the fall (86%, and flying a kite was the most prevalent game (37.9%. In 72% of the cases, the children were unaccompanied by an adult responsible for them. Severe conditions such as multiple trauma and traumatic brain injuries resulted from 79% of the accidents. CONCLUSION Falls from roof slabs are accidents of high potential severity, and preventive measures aimed towards informing parents and guardians about the dangers and risk factors associated with this type of accident are needed, along with physical protective measures, such as low walls around the slab and gates with locks to restrict free access to these places.

  5. Extraordinary wavelength reduction in terahertz graphene-cladded photonic crystal slabs

    Science.gov (United States)

    Williamson, Ian A. D.; Mousavi, S. Hossein; Wang, Zheng

    2016-01-01

    Photonic crystal slabs have been widely used in nanophotonics for light confinement, dispersion engineering, nonlinearity enhancement, and other unusual effects arising from their structural periodicity. Sub-micron device sizes and mode volumes are routine for silicon-based photonic crystal slabs, however spectrally they are limited to operate in the near infrared. Here, we show that two single-layer graphene sheets allow silicon photonic crystal slabs with submicron periodicity to operate in the terahertz regime, with an extreme 100× wavelength reduction from graphene’s large kinetic inductance. The atomically thin graphene further leads to excellent out-of-plane confinement, and consequently photonic-crystal-slab band structures that closely resemble those of ideal two-dimensional photonic crystals, with broad band gaps even when the slab thickness approaches zero. The overall photonic band structure not only scales with the graphene Fermi level, but more importantly scales to lower frequencies with reduced slab thickness. Just like ideal 2D photonic crystals, graphene-cladded photonic crystal slabs confine light along line defects, forming waveguides with the propagation lengths on the order of tens of lattice constants. The proposed structure opens up the possibility to dramatically reduce the size of terahertz photonic systems by orders of magnitude. PMID:27143314

  6. Refractive Index Sensing with D-Shaped Plastic Optical Fibers for Chemical and Biochemical Applications.

    Science.gov (United States)

    Sequeira, Filipa; Duarte, Daniel; Bilro, Lúcia; Rudnitskaya, Alisa; Pesavento, Maria; Zeni, Luigi; Cennamo, Nunzio

    2016-12-13

    We report the optimization of the length of a D-shaped plastic optical fiber (POF) sensor for refractive index (RI) sensing from a numerical and experimental point of view. The sensing principle is based on total internal reflection (TIR). POFs with 1 mm in diameter were embedded in grooves, realized in planar supports with different lengths, and polished to remove the cladding and part of the core. All D-shaped POF sensors were tested using aqueous medium with different refractive indices (from 1.332 to 1.471) through intensity-based configuration. Results showed two different responses. Considering the refractive index (RI) range (1.33-1.39), the sensitivity and the resolution of the sensor were strongly dependent on the sensing region length. The highest sensitivity (resolution of 6.48 × 10 -3 refractive index units, RIU) was obtained with 6 cm sensing length. In the RI range (1.41-1.47), the length of the sensing region was not a critical aspect to obtain the best resolution. These results enable the application of this optical platform for chemical and biochemical evanescent field sensing. The sensor production procedure is very simple, fast, and low-cost.

  7. Imaging performance of an isotropic negative dielectric constant slab.

    Science.gov (United States)

    Shivanand; Liu, Huikan; Webb, Kevin J

    2008-11-01

    The influence of material and thickness on the subwavelength imaging performance of a negative dielectric constant slab is studied. Resonance in the plane-wave transfer function produces a high spatial frequency ripple that could be useful in fabricating periodic structures. A cost function based on the plane-wave transfer function provides a useful metric to evaluate the planar slab lens performance, and using this, the optimal slab dielectric constant can be determined.

  8. High-definition fiber tractography for the evaluation of perilesional white matter tracts in high-grade glioma surgery.

    Science.gov (United States)

    Abhinav, Kumar; Yeh, Fang-Cheng; Mansouri, Alireza; Zadeh, Gelareh; Fernandez-Miranda, Juan C

    2015-09-01

    Conventional white matter (WM) imaging approaches, such as diffusion tensor imaging (DTI), have been used to preoperatively identify the location of affected WM tracts in patients with intracranial tumors in order to maximize the extent of resection and potentially reduce postoperative morbidity. DTI, however, has limitations that include its inability to resolve multiple crossing fibers and its susceptibility to partial volume effects. Therefore, recent focus has shifted to more advanced WM imaging techniques such as high-definition fiber tractography (HDFT). In this paper, we illustrate the application of HDFT, which in our preliminary experience has enabled accurate depiction of perilesional tracts in a 3-dimensional manner in multiple anatomical compartments including edematous zones around high-grade gliomas. This has facilitated accurate surgical planning. This is illustrated by using case examples of patients with glioblastoma multiforme. We also discuss future directions in the role of these techniques in surgery for gliomas. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Requalification analysis of a circular composite slab for seismic load

    International Nuclear Information System (INIS)

    Srinivasan, M.G.; Kot, C.A.

    1993-01-01

    The circular roof slab of an existing facility was analyzed to requalify the structure for supporting a significant seismic load that it was not originally designed for. The slab has a clear span of 66 ft and consists of a 48 in. thick reinforced concrete member and a steel liner plate. Besides a number of smaller penetrations, the slab contains two significant cutouts. The dominant load for the slab came from seismic excitation. It was characterized by a response spectrum with a peak spectral acceleration of 0.72 g in the vertical direction. The first part of the analysis showed that the nature of attachment between the liner plate and the reinforced concrete (RC) slab would justify assuming composite action between the two. A finite clement analysis, with the ANSYS code, was made to investigate the region surrounding the openings. As the reinforcement in the slab was quite inhomogeneous, it was necessary to determine the stresses in other areas of the slab also. These were obtained with closed form expressions. Finally it is shown that the strength design provisions of the Code Requirements for Nuclear Safety Related Concrete Structures were met by the reinforced concrete slab and the allowable stress provisions of the American National Standard for safety related steel structures in nuclear facilities were met by the liner plate. The composite action between the RC slab and the liner plate provides for the additional strength required to support the enhanced seismic load. The issues that complicated the analysis of this nontypical structure, i.e., composite action and nonlinear stiffness of RC sections, are discussed. It was possible to circumvent the difficulties by making conservative and simplifying assumptions. If design codes incorporate guidelines on practical methods for dynamic analysis of RC structures, some of the unneeded conservatism could be eliminated in future designs

  10. Nonlinear fiber-optic strain sensor based on four-wave mixing in microstructured optical fiber

    DEFF Research Database (Denmark)

    Gu, Bobo; Yuan, Scott Wu; Frosz, Michael H.

    2012-01-01

    We demonstrate a nonlinear fiber-optic strain sensor, which uses the shifts of four-wave mixing Stokes and anti-Stokes peaks caused by the strain-induced changes in the structure and refractive index of a microstructured optical fiber. The sensor thus uses the inherent nonlinearity of the fiber a...

  11. Fire resistance of extruded hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Giuliani, Luisa; Sørensen, Lars Schiøtt

    2016-01-01

    Prefabricated extruded hollow-core slabs are preferred building components for floor structures in several countries. It is therefore important to be able to document the fire resistance of these slabs proving fulfilment of standard fire resistance requirements of 60- and 120 minutes found in most...... a standard fire test and from a thorough examination of the comprehensive test documentation available on fire exposed hollow-core slabs. Mechanisms for loss of load-bearing capacity are clarified, and evidence of the fire resistance is found. For the first time the mechanisms responsible for loss of load......-bearing capacity are identified and test results and calculation approach are for the first time Applied in accordance with each other for assessment of fire resistance of the structure....

  12. Processing and properties of large-sized ceramic slabs

    Energy Technology Data Exchange (ETDEWEB)

    Raimondo, M.; Dondi, M.; Zanelli, C.; Guarini, G.; Gozzi, A.; Marani, F.; Fossa, L.

    2010-07-01

    Large-sized ceramic slabs with dimensions up to 360x120 cm{sup 2} and thickness down to 2 mm are manufactured through an innovative ceramic process, starting from porcelain stoneware formulations and involving wet ball milling, spray drying, die-less slow-rate pressing, a single stage of fast drying-firing, and finishing (trimming, assembling of ceramic-fiberglass composites). Fired and unfired industrial slabs were selected and characterized from the technological, compositional (XRF, XRD) and microstructural (SEM) viewpoints. Semi-finished products exhibit a remarkable microstructural uniformity and stability in a rather wide window of firing schedules. The phase composition and compact microstructure of fired slabs are very similar to those of porcelain stoneware tiles. The values of water absorption, bulk density, closed porosity, functional performances as well as mechanical and tribological properties conform to the top quality range of porcelain stoneware tiles. However, the large size coupled with low thickness bestow on the slab a certain degree of flexibility, which is emphasized in ceramic-fiberglass composites. These outstanding performances make the large-sized slabs suitable to be used in novel applications: building and construction (new floorings without dismantling the previous paving, ventilated facades, tunnel coverings, insulating panelling), indoor furnitures (table tops, doors), support for photovoltaic ceramic panels. (Author) 24 refs.

  13. Processing and properties of large-sized ceramic slabs

    International Nuclear Information System (INIS)

    Raimondo, M.; Dondi, M.; Zanelli, C.; Guarini, G.; Gozzi, A.; Marani, F.; Fossa, L.

    2010-01-01

    Large-sized ceramic slabs with dimensions up to 360x120 cm 2 and thickness down to 2 mm are manufactured through an innovative ceramic process, starting from porcelain stoneware formulations and involving wet ball milling, spray drying, die-less slow-rate pressing, a single stage of fast drying-firing, and finishing (trimming, assembling of ceramic-fiberglass composites). Fired and unfired industrial slabs were selected and characterized from the technological, compositional (XRF, XRD) and microstructural (SEM) viewpoints. Semi-finished products exhibit a remarkable microstructural uniformity and stability in a rather wide window of firing schedules. The phase composition and compact microstructure of fired slabs are very similar to those of porcelain stoneware tiles. The values of water absorption, bulk density, closed porosity, functional performances as well as mechanical and tribological properties conform to the top quality range of porcelain stoneware tiles. However, the large size coupled with low thickness bestow on the slab a certain degree of flexibility, which is emphasized in ceramic-fiberglass composites. These outstanding performances make the large-sized slabs suitable to be used in novel applications: building and construction (new floorings without dismantling the previous paving, ventilated facades, tunnel coverings, insulating panelling), indoor furnitures (table tops, doors), support for photovoltaic ceramic panels. (Author) 24 refs.

  14. Novel variational approach for analysis of photonic crystal slabs

    International Nuclear Information System (INIS)

    Aram, Mohammad Hasan; Khorasani, Sina

    2015-01-01

    We propose a new method, based on variational principle, for the analysis of photonic crystal (PC) slabs. Most of the methods used today treat PC slabs as three-dimensional (3D) crystal, and this makes these methods very time and/or memory consuming. In our proposed method, we use the Bloch theorem to expand the field on infinite plane waves, whose amplitudes depend on the component perpendicular to the slab surface. By approximating these amplitudes with appropriate functions, we can find modes of PC slabs almost as fast as we can find modes of two-dimensional crystals. In addition to this advantage, we can also calculate radiation modes with this method, which is not feasible with the 3D plane wave expansion method. (paper)

  15. Slab replacement maturity guidelines.

    Science.gov (United States)

    2014-04-01

    This study investigated the use of maturity method to determine early age strength of concrete in slab : replacement application. Specific objectives were (1) to evaluate effects of various factors on the compressive : maturity-strength relationship ...

  16. Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in ZBLAN step-index fibers

    DEFF Research Database (Denmark)

    Ramsay, Jacob Søndergaard; Dupont, Sune Vestergaard Lund; Johansen, Mikkel Willum

    2013-01-01

    Using femtosecond upconversion we investigate the time and wavelength structure of infrared supercontinuum generation. It is shown that radiation is scattered into higher order spatial modes (HOMs) when generating a supercontinuum using fibers that are not single-moded, such as a step-index ZBLAN...... not include scattering into HOMs, and including this provides an extra degree of freedom for tailoring supercontinuum sources....

  17. Engineering modes in optical fibers with metamaterial

    DEFF Research Database (Denmark)

    Yan, Min; Mortensen, Asger; Qiu, Min

    2009-01-01

    In this paper, we report a preliminary theoretical study on optical fibers with fine material inclusions whose geometrical inhomogeneity is almost indistinguishable by the operating wavelength.We refer to such fibers as metamaterial optical fibers, which can conceptually be considered...... as an extension from the previously much publicized microstructured optical fibers. Metamaterials can have optical properties not obtainable in naturally existing materials, including artificial anisotropy as well as graded material properties. Therefore, incorporation of metamaterial in optical fiber designs can...

  18. Tensor-guided fitting of subduction slab depths

    Science.gov (United States)

    Bazargani, Farhad; Hayes, Gavin P.

    2013-01-01

    Geophysical measurements are often acquired at scattered locations in space. Therefore, interpolating or fitting the sparsely sampled data as a uniform function of space (a procedure commonly known as gridding) is a ubiquitous problem in geophysics. Most gridding methods require a model of spatial correlation for data. This spatial correlation model can often be inferred from some sort of secondary information, which may also be sparsely sampled in space. In this paper, we present a new method to model the geometry of a subducting slab in which we use a data‐fitting approach to address the problem. Earthquakes and active‐source seismic surveys provide estimates of depths of subducting slabs but only at scattered locations. In addition to estimates of depths from earthquake locations, focal mechanisms of subduction zone earthquakes also provide estimates of the strikes of the subducting slab on which they occur. We use these spatially sparse strike samples and the Earth’s curved surface geometry to infer a model for spatial correlation that guides a blended neighbor interpolation of slab depths. We then modify the interpolation method to account for the uncertainties associated with the depth estimates.

  19. Slab tears and intermediate-depth seismicity

    Science.gov (United States)

    Meighan, Hallie E.; ten Brink, Uri S.; Pulliam, Jay

    2013-01-01

    Active tectonic regions where plate boundaries transition from subduction to strike slip can take several forms, such as triple junctions, acute, and obtuse corners. Well-documented slab tears that are associated with high rates of intermediate-depth seismicity are considered here: Gibraltar arc, the southern and northern ends of the Lesser Antilles arc, and the northern end of Tonga trench. Seismicity at each of these locations occurs, at times, in the form of swarms or clusters, and various authors have proposed that each marks an active locus of tear propagation. The swarms and clusters start at the top of the slab below the asthenospheric wedge and extend 30–60 km vertically downward within the slab. We propose that these swarms and clusters are generated by fluid-related embrittlement of mantle rocks. Focal mechanisms of these swarms generally fit the shear motion that is thought to be associated with the tearing process.

  20. Vertical slab sinking and westward subduction offshore of Mesozoic North America

    Science.gov (United States)

    Sigloch, Karin; Mihalynuk, Mitchell G.

    2013-04-01

    Subducted slabs in the mantle, as imaged by seismic tomography, preserve a record of ancient subduction zones. Ongoing debate concerns how direct this link is. How long ago did each parcel of slab subduct, and where was the trench located relative to the imaged slab position? Resolving these questions will benefit paleogeographic reconstructions, and restrict the range of plausible rheologies for mantle convection simulations. We investigate one of the largest and best-constrained Mesozoic slab complexes, the "Farallon" in the transition zone and lower mantle beneath North America. We quantitatively integrate observations from whole-mantle P-wave tomography, global plate reconstructions, and land geological evidence from the North American Cordillera. These three data sets permit us to test the simplest conceivable hypothesis for linking slabs to paleo-trenches: that each parcel of slab sank only vertically shortly after entering the trench That is, we test whether within the limits of tomographic resolution, all slab material lies directly below the location where it subducted beneath its corresponding arc. Crucially and in contrast to previous studies, we do not accept or impose an Andean-style west coast trench (Farallon-beneath-continent subduction) since Jurassic times, as this scenario is inconsistent with many geological observations. Slab geometry alone suggests that trenches started out as intra-oceanic because tomography images massive, linear slab "walls" in the lower mantle, extending almost vertically from about 800 km to 2000+ km depth. Such steep geometries would be expected from slabs sinking vertically beneath trenches that were quasi-stationary over many tens of millions of years. Intra-oceanic trenches west of Mesozoic North America could have been stationary, whereas a coastal Farallon trench could not, because the continent moved westward continuously as the Atlantic opened. Overlap of North American west-coast positions, as reconstructed in a

  1. Roof slab cooling device in a FBR type reactor

    International Nuclear Information System (INIS)

    Tarutani, Kohei

    1987-01-01

    Purpose: To obtain a roof slab cooling device capable of retaining cooling performance even in a case of electric power supply stop or failure and effective from economical point of view. Constitution: Atmospheric air is introduced into the cooling chamber of a proof slab and spontaneously passed to a exit pipeway connected to a stack thereby cooling the roof slab. Specifically, atmospheric air entered from the inlet pipeway is introduced to the cooling chamber and absorbs heat generate from the inside of the reactor container. Warmed air is sucked from the exit pipeway and then released into the atmosphere passing through the stack. The air cools the roof slab during circulation due to spontaneous passage and keeps the slab at a low temperature. Since the air is passed spontaneously, no power such as for a blower is required at all and, if the electric power supply should be lost, the cooling power can be maintained as it is to provide a high reliability. Further, since no electric power is required for the blowing power, it has high economical merit. (Horiuchi, T.)

  2. Study of light transmission through optical fiber-to-fiber connector assemblies

    International Nuclear Information System (INIS)

    Chung, M.; Gutowski, M.; Adams, M.; Solomon, J.

    1998-01-01

    Optical fiber-to-fiber connectors are now being used widely in particle tracking detectors. We describe the properties of the connectors, their production, and measurements of the light transmission through the gap of the connector assembly. We studied light transmission for various types of connectors illuminated by several different light sources. The light transmission was found to be dependent on the angular distribution of the light rays passing through a connector assembly. Two arrangements were studied, a point source and a diffuse source. A green LED with a diffuser is believed to best reproduce the angular distributions of light in the real detector applications. We also studied the transmission as a function of the index of refraction of the optical couplants. The light transmission depends on the index of refraction of an optical couplant placed in the gap, and improves as it approaches the index of refraction of the fiber core. Light transmissions of 80%∼88% were obtained without any optical couplant in the connector gap and transmissions of 89%∼99% with various optical couplants. A Monte Carlo study using measured light distributions from a fiber end produced a reasonable agreement with the transmission measurements made on a connector assembly

  3. Study of light transmission through optical fiber-to-fiber connector assemblies

    International Nuclear Information System (INIS)

    Chung, M.; Gutowski, M.; Adams, M.; Solomon, J.

    1998-01-01

    Optical fiber-to-fiber connectors are now being used widely in particle tracking detectors. We describe the properties of the connectors, their production, and measurements of the light transmission through the gap of the connector assembly. We studied light transmission for various types of connectors illuminated by several different light sources. The light transmission was found to be dependent on the angular distribution of the light rays passing through a connector assembly. Two arrangements were studied, a point source and a diffuse source. A green LED with a diffuser is believed to best reproduce the angular distributions of light in the real detector applications. We also studied the transmission as a function of the index of refraction of the optical couplants. The light transmission depends on the index of refraction of an optical couplant placed in the gap, and improves as it approaches the index of refraction of the fiber core. Light transmissions of 80%∼88% were obtained without any optical couplant in the connector gap and transmissions of 89%∼99% with various optical couplants. A Monte Carlo study using measured light distributions from a fiber end produced a reasonable agreement with the transmission measurements made on a connector assembly. copyright 1998 American Institute of Physics

  4. Proliferative activity (MIB-1 index) is an independent prognostic parameter in patients with high-grade soft tissue sarcomas of subtypes other than malignant fibrous histiocytomas

    DEFF Research Database (Denmark)

    Jensen, V; Sørensen, Flemming Brandt; Bentzen, S M

    1998-01-01

    . The proliferative activity was assessed by use of the monoclonal antibody MIB-1 and evaluated in multiple, random systematic sampled fields of vision. The percentage of proliferating cells (the MIB-1 index) ranged between 1% and 85% (median 12%). A significant increase in mean MIB-1 index was seen with increasing...... histological malignancy grade. Variation in the incidence of p53 accumulation and bcl-2 positivity among different histological subtypes was observed. p53 accumulation was frequent in synovial sarcomas and leiomyo- and rhabdomyosarcomas, whereas bcl-2 preferentially was expressed in synovial sarcomas....... Univariate analysis identified patient age, tumour size, histological grade of malignancy, MIB-1 index and p53 accumulation as significant prognostic parameters. Multivariate Cox analysis, including tests for interaction terms between histological subtypes and MIB-1 index, showed independent prognostic...

  5. Hybrid Effect Evaluation of Steel Fiber and Carbon Fiber on the Performance of the Fiber Reinforced Concrete.

    Science.gov (United States)

    Song, Weimin; Yin, Jian

    2016-08-18

    Fiber reinforcement is an important method to enhance the performance of concrete. In this study, the compressive test and impact test were conducted, and then the hybrid effect between steel fiber (SF) and carbon fiber (CF) was evaluated by employing the hybrid effect index. Compressive toughness and impact toughness of steel fiber reinforced concrete (SFRC), carbon fiber reinforced concrete (CFRC) and hybrid fiber reinforced concrete (HFRC) were explored at steel fiber volume fraction 0.5%, 1%, 1.5% and carbon fiber 0.1%, 0.2%, 0.3%. Results showed that the addition of steel fiber and carbon fiber can increase the compressive strength. SF, CF and the hybridization between them could increase the compressive toughness significantly. The impact test results showed that as the volume of fiber increased, the impact number of the first visible crack and the ultimate failure also increased. The improvement of toughness mainly lay in improving the crack resistance after the first crack. Based on the test results, the positive hybrid effect of steel fiber and carbon fiber existed in hybrid fiber reinforced concrete. The relationship between the compressive toughness and impact toughness was also explored.

  6. Research on dual-parameter optical fiber sensor based on thin-core fiber and spherical structure

    Science.gov (United States)

    Tong, Zhengrong; Wang, Xue; Zhang, Weihua; Xue, Lifang

    2018-04-01

    A novel dual-parameter optical fiber sensor is proposed and experimentally demonstrated. The proposed sensor is based on a fiber in-line Mach-Zehnder interferometer, which is fabricated by sandwiching a section of thin-core fiber between two spherical structures made of single-mode fibers. The transmission spectrum exhibits the response of the interference between the core and the different cladding modes. Due to the different wavelength shifts of the two selected dips, the simultaneous measurement of temperature and the surrounding refractive index can be achieved. The measured temperature sensitivities are 0.067 nm/°C and 0.050 nm/°C, and the refractive index sensitivities are  -119.9 nm/RIU and  -69.71 nm/RIU, respectively. In addition, the compact size, simple fabrication and cost-effectiveness of the fiber sensor are also advantages.

  7. Influence of core diameter and length of polymer optical fiber on Brillouin scattering properties

    Science.gov (United States)

    Mizuno, Yosuke; Ishigure, Takaaki; Nakamura, Kentaro

    2012-02-01

    Brillouin scattering in perfluorinated graded-index polymer optical fibers (PFGI-POFs) is potentially useful in developing high-accuracy distributed temperature sensors with reduced strain sensitivity. In this study, we investigate, both experimentally and theoretically, the influence of the fiber core diameter and length on the Brillouin gain spectra (BGS) in PFGI-POFs. First, we show that smaller core diameter drastically enhances the Stokes power using PFGI-POFs with 62.5-μm and 120-μm core diameters, and discuss the Brillouin threshold power. Then, we demonstrate that the PFGI-POF length has little influence on the BGS when the length is longer than 50 m. We also predict that, at 1.55-μm wavelength, it is difficult to reduce the Brillouin threshold power of PFGI-POFs below that of long silica single-mode fibers even if their core diameter is sufficiently reduced to satisfy the single-mode condition. Finally, making use of the enhanced Stokes signal, we confirm the Brillouin linewidth narrowing effect.

  8. Use of optical fibers in spectrophotometry

    Science.gov (United States)

    Ramsey, Lawrence W.

    1988-01-01

    The use of single or small numbers of fiber optic fibers in astronomical spectroscopy with the goal of greater spectrophotometric and radial velocity accuracy is discussed. The properties of multimode step index fibers which are most important for this application are outlined, as are laboratory tests of currently available fibers.

  9. Closure behavior of spherical void in slab during hot rolling process

    Science.gov (United States)

    Cheng, Rong; Zhang, Jiongming; Wang, Bo

    2018-04-01

    The mechanical properties of steels are heavily deteriorated by voids. The influence of voids on the product quality should be eliminated through rolling processes. The study on the void closure during hot rolling processes is necessary. In present work, the closure behavior of voids at the center of a slab at 800 °C during hot rolling processes has been simulated with a 3D finite element model. The shape of the void and the plastic strain distribution of the slab are obtained by this model. The void decreases along the slab thickness direction and spreads along the rolling direction but hardly changes along the strip width direction. The relationship between closure behavior of voids and the plastic strain at the center of the slab is analyzed. The effects of rolling reduction, slab thickness and roller diameter on the closure behavior of voids are discussed. The larger reduction, thinner slab and larger roller diameter all improve the closure of voids during hot rolling processes. Experimental results of the closure behavior of a void in the slab during hot rolling process mostly agree with the simulation results..

  10. Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Markos, Christos

    2017-01-01

    In the quest of finding the ideal polymer optical fiber (POF) for Bragg grating sensing, we have fabricated and characterized an endlessly single mode microstructured POF (mPOF). This fiber is made from cyclo-olefin homopolymer Zeonex grade 480R which has a very high glass transition temperature...

  11. Development Length for Headed Bars in Slab-Column Joints of RC Slab Bridges

    Science.gov (United States)

    2015-12-04

    In accordance with the Caltrans Seismic Design Criteria, the superstructure in a slab bridge should remain essentially elastic and only the pile extensions/columns are permitted to develop inelastic deformations during a seismic event. Hence, the lon...

  12. Moisture transfer in a concrete slab

    International Nuclear Information System (INIS)

    Huang, C.L.D.; Siang, H.H.; Kirmser, P.G.

    1979-01-01

    A diffusion theory with a linear or a nonlinear coefficient of diffusivity is insufficient for the characterization of the drying behaviour of hydrated concrete slabs. A general mathematical model, based on nonequilibrium, irreversible flows of heat and mass, yields a set of nonlinear partial differential equations of parabolic type. Implicit finite difference calculations for a concrete slab yield moisture, temperature, and pressure histories as well as global average drying rates. Graphs show that during the pendular state of dessication, diffusion, capillary, and evaporation-condensation processes are the governing mechanisms in drying. (orig.)

  13. Analisis Perbandingan Material Slab Beton Pada Perkerasan Apron Dengan Menggunakan Program Bantu Elemen Hingga

    Directory of Open Access Journals (Sweden)

    Hendrawan Setyo Warsito

    2016-04-01

    Full Text Available Kekuatan slab beton sangat dipengaruhi oleh jenis material yang dipakai. Jenis material yang dimaksud adalah material beton dengan menggunakan PC (Portland Cement dan penggunaan geopolimer dalam komposisi campuran slab beton. Beton geopolimer merupakan beton yang ramah lingkungan. Permasalahan lain yang timbul adalah letak roda pesawat tidak selalu berada pada titik yang sama disuatu permukaan slab beton apron. Pada tugas akhir ini dimaksudkan untuk menganalisis suatu slab beton yang dibebani roda pesawat dengan campuran variasi material beton dan variasi letak roda pesawat pada slab beton dengan program bantu metode elemen hingga. Dengan data pergerakan pesawat, spesifikasi apron bandara Juanda kondisi eksisting. Dilakukan perhitungan tebal slab beton menggunakan software FAARFIELD dan diperoleh tebal slab beton sebesar 442,5 mm. Dari analisis program bantu elemen hingga dapat diperoleh tegangan pada slab beton yang ditimbulkan oleh pembebanan roda pesawat. Hasil validasi dari analisis tegangan menggunakan program bantu elemen hingga dengan analisis Westergaard yaitu memiliki nilai tegangan yang hampir sama pada ketebalan slab beton 450mm. Nilai tegangan tiap-tiap material beton menunjukan nilai tebal slab beton yang diijinkan untuk tipe pesawat tertentu. Dari analisis menggunakan program bantu elemen hingga tebal slab beton yang diijinkan untuk material slab beton PC yaitu sebesar 425mm. Sedangkan untuk material beton geopolimer yaitu sebesar  415 mm.

  14. Effect of steel fibers on plastic shrinkage cracking of normal and high strength concretes

    Directory of Open Access Journals (Sweden)

    Özgür Eren

    2010-06-01

    Full Text Available Naturally concrete shrinks when it is subjected to a drying environment. If this shrinkage is restrained, tensile stresses develop and concrete may crack. Plastic shrinkage cracks are especially harmful on slabs. One of the methods to reduce the adverse effects of shrinkage cracking of concrete is by reinforcing concrete with short randomly distributed fibers. The main objective of this study was to investigate the effect of fiber volume and aspect ratio of hooked steel fibers on plastic shrinkage cracking behavior together with some other properties of concrete. In this research two different compressive strength levels namely 56 and 73 MPa were studied. Concretes were produced by adding steel fibers of 3 different volumes of 3 different aspect ratios. From this research study, it is observed that steel fibers can significantly reduce plastic shrinkage cracking behavior of concretes. On the other hand, it was observed that these steel fibers can adversely affect some other properties of concrete during fresh and hardened states.

  15. Healthy Eating Index-2010 and food groups consumed by US adults who meet or exceed fiber intake recommendations NHANES 2001–2010

    Directory of Open Access Journals (Sweden)

    Carla R. McGill

    2016-04-01

    Full Text Available Background: The proportion of the US adult population who meet fiber intake recommendations is very low. Information about food groups consumed and diet quality for the adults who consume recommended amounts of fiber are scarce. Objective: To examine food groups consumed and Healthy Eating Index (HEI-2010 scores for US adults meeting the fiber adequate intake (AI based on National Health and Nutrition Examination Survey (NHANES data 2001–2010. Design: A secondary analysis of NHANES data from 2001 to 2010. Participants included adults aged 19 and older (n=24,807 with complete day 1 dietary records. Variables measured were food group sources of fiber and HEI-2010 scores. Sample-weighted data were used to calculate least square means (LSM±standard error of the mean (SEM by fiber intake quartile along with HEI-2010 scores. Significance was set at P<0.05. Results: Major fiber food sources for US adults meeting the AI were grain products, vegetables, legumes, and fruits. The top grain products consumed were grain mixtures, ready-to-eat (RTE cereals, and breads/rolls. The mean HEI-2010 score for adults meeting the AI for fiber was significantly (P<0.001 higher compared with all adult participants. The mean HEI-2010 score increased with increasing fiber intake in both groups. Conclusions: Adults who meet the AI for fiber have a higher quality diet. Fiber may be an important dietary component that predicts diet quality.

  16. Instrumentation by distributed optical fiber sensors of a new ballastless track structure

    Science.gov (United States)

    Chapeleau, Xavier; Cottineau, Louis-Marie; Sedran, Thierry; Gueguen, Ivan; Cailliau, Joël

    2013-04-01

    While relatively expensive to build, ballastless track structures are presently seen as an attractive alternative to conventional ballast. With its service life of at least 60 years, they require little maintenance and hence they offer great availability. Other reasons for using ballastless tracks instead of ballasted tracks are the lack of suitable ballast material and the need of less noise and vibration for high-speed, in particularly. A new ballastless track structure has been designed to be circulated up to 300km/h, with a target life of 100 years. It is an interoperable way on concrete slabs that are cast-in-place and slip formed. This structure has been built and tested at the scale one in our laboratory. Indeed, ten millions cyclic loads were applied at 2.5Hz to evaluate the fatigue behaviour under selected mechanical and thermal conditions. To monitor the thermo-mechanical behavior of this new structure and to verify the numerical simulations used for its design, a lot of sensors have been embedded. In particularly, we have tested an optical fiber as distributed sensors to measure strain distribution in the railway model. This sensor can also be used to detect, localize and monitor cracks in concrete slabs. The optical fiber sensing technique ("Rayleigh technique") used in this experimentation has a centimetric spatial resolution which allows to measure complex strain profiles unlike electrical strain gauges which only give local information. Firstly, optical cables used as sensors have been successfully embedded and attached to the reinforcing steel bars in the structure. We have noted that they are resistant enough to resist concrete pouring and working activities. Secondly, strains measured by conventional strain gauges has confirmed the quality of the strain profiles measurements obtained by optical fiber sensors. Moreover, we have found a good agreement between experimental profiles measurements and those obtained by numerical simulations. Early

  17. Refractive Index Sensing with D-Shaped Plastic Optical Fibers for Chemical and Biochemical Applications

    Directory of Open Access Journals (Sweden)

    Filipa Sequeira

    2016-12-01

    Full Text Available We report the optimization of the length of a D-shaped plastic optical fiber (POF sensor for refractive index (RI sensing from a numerical and experimental point of view. The sensing principle is based on total internal reflection (TIR. POFs with 1 mm in diameter were embedded in grooves, realized in planar supports with different lengths, and polished to remove the cladding and part of the core. All D-shaped POF sensors were tested using aqueous medium with different refractive indices (from 1.332 to 1.471 through intensity-based configuration. Results showed two different responses. Considering the refractive index (RI range (1.33–1.39, the sensitivity and the resolution of the sensor were strongly dependent on the sensing region length. The highest sensitivity (resolution of 6.48 × 10−3 refractive index units, RIU was obtained with 6 cm sensing length. In the RI range (1.41–1.47, the length of the sensing region was not a critical aspect to obtain the best resolution. These results enable the application of this optical platform for chemical and biochemical evanescent field sensing. The sensor production procedure is very simple, fast, and low-cost.

  18. Influence of the refractive index core profile on modal scattering of terminated two-dimensional waveguides.

    Science.gov (United States)

    Koukoutsaki, Panagiota A; Dasyras, Nikolaos F; Tigelis, Ioannis G; Manenkov, Alexander B; Amditis, Angelos J

    2007-06-01

    We examine the influence of the refractive index core profile on the modal scattering of abruptly terminated slab waveguides. The analysis is based on the integral equation method with accelerating parameters, while for the field description in the waveguide core, an appropriate Lanczos-Fourier expansion is employed. The electric-field distribution on the terminal plane, the reflection and transformation coefficient of the TE guided modes, and the far-field radiation pattern are computed. Numerical results are presented for slab waveguides with step, linear, and parabolic refractive index profiles of the core. Finally, several approximate analytical solutions are derived to study the problem in question and to explain the results obtained.

  19. Study of thermal annealing effect on Bragg gratings photo-inscribed in step-index polymer optical fibers

    Science.gov (United States)

    Hu, X.; Kinet, D.; Mégret, P.; Caucheteur, C.

    2016-04-01

    In this paper, both non-annealed and annealed trans-4-stilbenemethanol-doped step-index polymer optical fibers were photo-inscribed using a 325 nm HeCd laser with two different beam power densities reaching the fiber core. In the high density regime where 637 mW/mm2 are used, the grating reflectivity is stable over time after the photo-writing process but the reflected spectrum is of limited quality, as the grating physical length is limited to 1.2 mm. To produce longer gratings exhibiting more interesting spectral features, the beam is enlarged to 6 mm, decreasing the power density to 127 mW/mm2. In this second regime, the grating reflectivity is not stable after the inscription process but tends to decay for both kinds of fibers. A fortunate property in this case results from the possibility to fully recover the initial reflectivity using a post-inscription thermal annealing, where the gratings are annealed at 80 °C during 2 days. The observed evolutions for both regimes are attributed to the behavior of the excited intermediate states between the excited singlet and the ground singlet state of trans- and cis-isomers as well as the temperature-dependent glassy polymer matrix.

  20. Ge-rich graded-index Si1-xGex devices for MID-IR integrated photonics

    Science.gov (United States)

    Ramirez, J. M.; Vakarin, V.; Liu, Q.; Frigerio, J.; Ballabio, A.; Le Roux, X.; Benedikovic, D.; Alonso-Ramos, C.; Isella, G.; Vivien, L.; Marris-Morini, D.

    2018-02-01

    Mid-infrared (mid-IR) silicon photonics is becoming a prominent research with remarkable potential in several applications such as in early medical diagnosis, safe communications, imaging, food safety and many more. In the quest for the best material platform to develop new photonic systems, Si and Ge depart with a notable advantage over other materials due to the high processing maturity accomplished during the last part of the 20th century through the deployment of the CMOS technology. From an optical viewpoint, combining Si with Ge to obtain SiGe alloys with controlled stoichiometry is also of interest for the photonic community since permits to increase the effective refractive index and the nonlinear parameter, providing a fascinating playground to exploit nonlinear effects. Furthermore, using Ge-rich SiGe gives access to a range of deep mid-IR wavelengths otherwise inaccessible (λ 2-20 μm). In this paper, we explore for the first time the limits of this approach by measuring the spectral loss characteristic over a broadband wavelength range spanning from λ = 5.5 μm to 8.5 μm. Three different SiGe waveguide platforms are compared, each one showing higher compactness than the preceding through the engineering of the vertical Ge profile, giving rise to different confinement characteristics to the propagating modes. A flat propagation loss characteristic of 2-3 dB/cm over the entire wavelength span is demonstrated in Ge-rich graded-index SiGe waveguides of only 6 μm thick. Also, the role of the overlap fraction of the confined optical mode with the Si-rich area at the bottom side of the epitaxial SiGe waveguide is put in perspective, revealing a lossy characteristic compared to the other designs were the optical mode is located in the Ge-rich area at the top of the waveguide uniquely. These Ge-rich graded-index SiGe waveguides may pave the way towards a new generation of photonic integrated circuits operating at deep mid-IR wavelengths.

  1. First-principles approach for superconducting slabs and heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Csire, Gabor [Wigner Research Centre for Physics, Budapest (Hungary)

    2016-07-01

    We present a fully ab-initio method to calculate the transition temperature for superconducting slabs and heterostructures. In the case of thin superconductor layers the electron-phonon interaction may change significantly. Therefore we calculate the layer dependent phonon spectrum to determine the layer dependence of the electron-phonon coupling for such systems. The phonon spectrum is than coupled to the Kohn-Sham-Bogoliubov-de Gennes equation via the McMillan-Hopfield parameter, and it is solved self-consistently. The theory is applied to niobium slabs and niobium-gold heterostructures. Based on these calculations we investigate both the dependence of the superconducting transition temperature on the thickness of superconducting slabs and the inverse proximity effect observed in thin superconducting heterostructures.

  2. Estimation of RC slab-column joints effective strength using neural networks

    Directory of Open Access Journals (Sweden)

    A. A. Shah

    Full Text Available The nominal strength of slab-column joints made of highstrength concrete (HSC columns and normal strength concrete (NSC slabs is of great importance in structural design and construction of concrete buildings. This topic has been intensively studied during the last decades. Different types of column-slab joints have been investigated experimentally providing a basis for developing design provisions. However, available data does not cover all classes of concretes, reinforcements, and possible loading cases for the proper calculation of joint stresses necessary for design purposes. New numerical methods based on modern software seem to be effective and may allow reliable prediction of column-slab joint strength. The current research is focused on analysis of available experimental data on different slab-to-column joints with the aim of predicting the nominal strength of slabcolumn joint. Neural networks technique is proposed herein using MATLAB routines developed to analyze available experimental data. The obtained results allow prediction of the effective strength of column-slab joints with accuracy and good correlation coefficients when compared to regression based models. The proposed method enables the user to predict the effective design of column-slab joints without the need for conservative safety coefficients generally promoted and used by most construction codes.

  3. Seismic Evidence for Possible Slab Melting from Strong Scattering Waves

    Directory of Open Access Journals (Sweden)

    Cheng-Horng Lin

    2011-01-01

    Full Text Available Slab melting in young and hot subduction zones has been studied using geochemical observations and thermal modelling, but there are few data from seismic studies to confirm slab melting. Also the detailed geometry in the deep part of the melting slab is often ambiguous in that the intraslab earthquakes within the Wadati-Benioff zone are only limited to shallower depths. To improve our understanding of both the seismic features and geometry found in a young and hot subducted slab, I analyzed anomalous moonquake-like seismograms that were generated by an intermediate-depth earthquake recorded in central Japan. For this study, possible reflected (or scattered sources were examined using detailed analyses of particle motions and a grid search for travel-time differences between the direct and later P-waves. The results show that using strong seismic scattering, slab melting is likely occurring in the deeper, flexing part of the subducted Philippine Sea plate. Because the subducted Philippine Sea plate in central Japan is young and therefore hot, partial melting might have taken place to produce abundant melting spots in the subducted slab. Melting spots, identified as ¡§bright spots,¡¨ could efficiently reflect or scatter seismic energy and generate many later phases with large amplitudes.

  4. Axial contraction in etched optical fiber due to internal stress reduction.

    Science.gov (United States)

    Lim, Kok-Sing; Yang, Hang-Zhou; Chong, Wu-Yi; Cheong, Yew-Ken; Lim, Chin-Hong; Ali, Norfizah M; Ahmad, Harith

    2013-02-11

    When an optical fiber is dipped in an etching solution, the internal stress profile in the fiber varies with the fiber diameter. We observed a physical contraction as much as 0.2% in the fiber axial dimension when the fiber was reduced from its original diameter to ~6 µm through analysis using high resolution microscope images of the grating period of an etched FBG at different fiber diameters. This axial contraction is related to the varying axial stress profile in the fiber when the fiber diameter is reduced. On top of that, the refractive index of fiber core increases with reducing fiber diameter due to stress-optic effect. The calculated index increment is as much as 1.8 × 10(-3) at the center of fiber core after the diameter is reduced down to ~6 µm. In comparison with the conventional model that assumes constant grating period and neglects the variation in stress-induced index change in fiber core, our proposed model indicates a discrepancy as much as 3nm in Bragg wavelength at a fiber diameter of ~6 µm.

  5. Improved Optical Fiber Chemical Sensors

    Science.gov (United States)

    Egalon, Claudio O.; Rogowski, Robert S.

    1994-01-01

    Calculations, based on exact theory of optical fiber, have shown how to increase optical efficiency sensitivity of active-core, step-index-profile optical-fiber fluorosensor. Calculations result of efforts to improve efficiency of optical-fiber chemical sensor of previous concept described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525). Optical fiber chemical detector of enhanced sensitivity made in several configurations. Portion of fluorescence or chemiluminescence generated in core, and launched directly into bound electromagnetic modes that propagate along core to photodetector.

  6. Periodical rocking long period gratings in PANDA fibers for high temperature and refractive index sensing

    Science.gov (United States)

    Jin, Wa; Bi, Wei-hong; Fu, Xing-hu; Fu, Guang-wei

    2017-09-01

    We report periodical rocking long period gratings (PR-LPGs) in PANDA fibers fabricated with CO2 laser. The PR-LPGs achieve very high coupling efficiency of 19 dB with 12 periods and a 3.5° twist angle in just one scanning cycle, which is much more effective than the conventional CO2 laser fabrication technique. This type of LPGs exhibits polarization-selective resonance dips which demonstrate different sensitivities to environmental parameters. The high temperature and external refractive index sensitivities are measured simultaneously, so it can be used as a wavelength-selective polarization filter and sensor.

  7. The use of erbium fiber laser relaxation frequency for sensing refractive index and solute concentration of aqueous solutions

    International Nuclear Information System (INIS)

    Arellano-Sotelo, H; Barmenkov, Yu O; Kir'yanov, A V

    2008-01-01

    We report a novel-principle fiber-laser intra-cavity sensor for measuring refractive index and solute concentration of aqueous solutions. The sensor operation is based on a variation of the laser oscillation relaxation frequency (the measured parameter), sensitive to the intra-cavity loss change. The sensor capacity is demonstrated on the example of measurements of sugar concentration in water. A modeling of the sensor operation is presented, allowing its performance optimization

  8. Modeling of SBS Phase Conjugation in Multimode Step Index Fibers

    National Research Council Canada - National Science Library

    Spring, Justin B

    2008-01-01

    ... limited, double-pass high-power amplifiers or coherent beam combination. Little modeling of such a fiber-based phase-conjugator has been done, making it difficult to make decisions about the right fiber to use...

  9. Radii and refractive index changes in γ-irradiated optical fibers

    International Nuclear Information System (INIS)

    Bertolotti, M.; Ferrari, A; Scudieri, F.; Serra, A.

    1979-01-01

    Radiation effects in bulk glasses have received great attention in the last few years. In optical fibers the parameters studied have been the optical attenuation at different wavelengths and the luminescence generated by irradiation. A report is presented on some preliminary experiments showing that sensible changes in both dimensions and refractive indices occur even in the case of simple defect introduction, as it is for γ-rays, and even at relatively low irradiation doses (e.g. 1 Krad). Moreover the effects anneal out at room temperature in a few days. The measurements have been made with an optical interferometric technique in which a comparison is made between an unirradiated reference fiber sample and the irradiated specimen. The fiber examined was a Pb-silicate core/borosilicate clad fiber. (U.K.)

  10. Measuring Method for Fuzz Mass of Carbon Fiber Tow

    Directory of Open Access Journals (Sweden)

    LI Tan

    2017-07-01

    Full Text Available In order to quantitatively test fuzz degree of carbon fiber (CF tow, a measuring method for fuzz mass of CF tow was developed, and the testing device was built. Fuzz mass of two kinds of domestic T800-grade CF were tested using the established method. The effects of spreading width of CF tow, tension and fuzz-adsorption material on the fuzz mass of the two fibers were investigated. Several kinds of imported, domestic T700-grade CF and T800-grade CF were tested using optimized testing conditions. The experimental results show that the testing method is easy to operate and has wide applicability. Under 1-2N tension, 0.1-0.6mm pore size of sponge and 1-4N load applied on sponge, the measured values of T800-grade CF with 12K yield are reasonable. For CF tow with high fuzz mass, certain spreading width makes fuzz inside fiber bundle expose, which is needed to ensure the accuracy of testing result.

  11. Interaction of an ion bunch with a plasma slab

    Energy Technology Data Exchange (ETDEWEB)

    Krasovitskiy, V. B., E-mail: krasovit@mail.ru [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Turikov, V. A. [Peoples’ Friendship University of Russia (Russian Federation)

    2016-11-15

    Charge neutralization of a short ion bunch passing through a plasma slab is studied by means of numerical simulation. It is shown that a fraction of plasma electrons are trapped by the bunch under the action of the collective charge separation field. The accelerated electrons generated in this process excite beam−plasma instability, thereby violating the trapping conditions. The process of electron trapping is also strongly affected by the high-frequency electric field caused by plasma oscillations at the slab boundaries. It is examined how the degree of charge neutralization depends on the parameters of the bunch and plasma slab.

  12. Light-assisted templated self assembly using photonic crystal slabs.

    Science.gov (United States)

    Mejia, Camilo A; Dutt, Avik; Povinelli, Michelle L

    2011-06-06

    We explore a technique which we term light-assisted templated self-assembly. We calculate the optical forces on colloidal particles over a photonic crystal slab. We show that exciting a guided resonance mode of the slab yields a resonantly-enhanced, attractive optical force. We calculate the lateral optical forces above the slab and predict that stably trapped periodic patterns of particles are dependent on wavelength and polarization. Tuning the wavelength or polarization of the light source may thus allow the formation and reconfiguration of patterns. We expect that this technique may be used to design all-optically reconfigurable photonic devices.

  13. Evidence for Slab Melt Contributions to the Mexican Volcanic Belt and Other Young Hot Slab Arcs from Lu-Hf Isotopes

    Science.gov (United States)

    Goldstein, S. L.; Cai, Y. M.; Langmuir, C. H.; Lagatta, A.; Straub, S. M.; Gomez-Tuena, A.; Martin Del Pozzo, A.

    2007-12-01

    Despite major advances in delineating the processes that govern magma generation at convergent margins, the problem persists of distinguishing slab, mantle wedge, and crustal contributions. A corrollary question is whether there is significant melting of subducted ocean crust. Especially in thick crust regions, the importance of crustal versus mantle contributions to lavas represents a long-standing fundamental issue in arc magma geochemistry. We show that frontal arc magmas from the Central Mexican Volcanic Belt (CMVB), including the large andesitic stratovolcanoes Popocatepetl and Nevado de Toluca, display negligible crustal contamination, and contain substantial contributions from melting of subducted Pacific ocean crust. Despite ca. 50 km thick continental crust, the CMVB erupts near primitive lavas including "high-Nb" alkaline basalts that show negligible "subduction signatures" in their trace element patterns. These "high-Nb" basalts define the regional mantle wedge composition in isotope-trace element space. The "normal" calcalkaline lavas form a negative correlation between Hf isotopes and Lu/Hf. One endmember is like the high Nb basalts representing the regional mantle wedge. The other endmember has higher Hf isotopes (approaching values of Pacific MORB) and very low Lu/Hf of less than 0.04 (e.g. compared to typical values of ca. 0.2 in Pacific MORB). The low Lu/Hf values require low degree partial melting of a source rich in garnet. The high Hf isotopes require a depleted mantle source with isotopes like Pacific MORB. Together the Lu-Hf data indicate a substantial component derived from melting of eclogitic Pacific ocean crust. A key feature of the data is that the stratovolcano lavas showing the largest slab melt signature also show the highest Hf isotope ratios and thus are more "depleted mantle-like" than the regional mantle wedge. Thus, the integrated data allow us to clearly distinguish between mantle and crustal sources in the CMVB and point to

  14. On Early Age Crack Formation in FRC Slabs

    DEFF Research Database (Denmark)

    Olesen, John Forbes; Stang, Henrik

    1997-01-01

    The problem of early age crack formation in FRC slabs due to restrained temperature and shrinkage deformations, is given an analytical treatment. A model taking into account the ageing properties of the tensile softening curve and the continued development in the temperature and shrinkage...... deformations after crack initiation, is presented. Based on this model a design strategy for FRC slabs is outlined....

  15. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    Despite the general recession in the global economy and the collapse of the optical telecommunication market, research within specialty fibers is thriving. This is, more than anything else, due to the technology transition from standard all-glass fibers to photonic crystal fibers, which, instead....... The freedom to design the dispersion profile of the fibers is much larger and it is possible to create fibers, which support only a single spatial mode, regardless of wavelength. In comparison, the standard dispersion-shifted fibers are limited by a much lower index-contrast between the core and the cladding...... in 1996, and are today on their way to become the dominating technology within the specialty fiber field. Whether they will replace the standard fiber in the more traditional areas like telecommunication transmission, is not yet clear, but the nonlinear photonic crystal fibers are here to stay....

  16. Numerical Analysis of Index-Guiding Photonic Crystal Fibers with Low Confinement Loss and Ultra-Flattened Dispersion by FDFD Method

    Directory of Open Access Journals (Sweden)

    M. Pourmahyabadi

    2009-09-01

    Full Text Available In this article, perfectly matched layer (PML for the boundary treatment and an efficient compact two dimensional finite-difference frequency-domain (2-D FDFD method were combined to model photonic crystal fibers (PCF. For photonic crystal fibers, if we assume that the propagation constant along the propagation direction is fixed, three-dimensional hybrid guided modes can be calculated by using only a two-dimensional mesh. An index-guiding PCF with an array of air-holes surrounding the silica core region has special characteristics compared with conventional single-mode fibers (SMFs. Using this model, the fundamental characteristics of single mode photonic crystal fibers (SMPCFs such as confinement loss, bending loss, effective mode area and chromatic dispersion are numerically investigated. The results revealed that low confinement loss and zero-flattened chromatic dispersion can be obtained by varying the air-holes diameter of each ring along the PCF radius. In this work, an especial PCF with nearly zero-flattened dispersion (1.3 ps/nm/km over a wide wavelength range which covers O, E, S, C, L and U telecommunication wavelength bands and low confinement loss (0.06 dB/km at 1.55μm is designed. Macro-bending loss performance of the designed PCF is also studied and it is found that the fiber shows low bending losses for the smallest feasible bending radius of 5 mm. Also, it is revealed that the temperature sensitivity of PCFs is very low in compared with the conventional fibers.

  17. Ultimate deformation capacity of reinforced concrete slabs underblast load

    NARCIS (Netherlands)

    Doormaal, J.C.A.M. van; Weerheijm, J.

    1996-01-01

    In this paper a test method to determine the deformation capacity and the resistance-deformation curve of blast-loaded slabs is described. This method was developed at TNO-PML. The method has been used to determine the ultimate deformation capacity of some simply supported reinforced concrete slabs

  18. Photonic crystal fiber design for broadband directional coupling

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Bang, Ole; Bjarklev, Anders Overgaard

    2004-01-01

    A novel design for a broadband directional coupler based on a photonic crystal fiber is investigated numerically. It is shown that suitable index-depressing doping of the core regions in an index-guiding twin-core photonic crystal fiber can stabilize the coupling coefficient between the cores over...

  19. Interferometric measurement of refractive index modification in a single mode microfiber

    Science.gov (United States)

    Ahmed, Farid; Ahsani, Vahid; Jun, Martin B. G.

    2017-02-01

    Efficient and cost effective measurement of the refractive index profile in an optical fiber is a significant technical job to design and manufacture in-fiber photonic devices and communication systems. For instance, to design fiber gratings, it is required to estimate the refractive index modulation to be inscribed by the fabrication apparatus such as ultraviolet or infrared lasers. Mach-Zehnder interferometer (MZI) based quantification of refractive index change written in single mode microfiber by femtosecond laser radiation is presented in this study. The MZI is constructed by splicing a microfiber (core diameter: 3.75 μm, cladding diameter: 40 μm) between standard single mode fibers. To measure the RI inscribed by infrared femtosecond laser, 200 μm length of the core within the MZI was scanned with laser radiation. As the higher index was written within 200 μm length of the core, the transmission spectrum of the interferometer displayed a corresponding red shift. The observed spectral shift was used to calculate the amount of refractive index change inscribed by the femtosecond irradiation. For the MZI length of 3.25 mm, and spectral shift of 0.8 nm, the calculated refractive index was found to be 0.00022. The reported results display excellent agreement between theory and experimental findings. Demonstrated method provides simple yet very effective on-site measurement of index change in optical fibers. Since the MZI can be constructed in diverse fiber types, this technique offers flexibility to quantify index change in various optical fibers.

  20. Non-Gaussian diffusion MR imaging of glioma: comparisons of multiple diffusion parameters and correlation with histologic grade and MIB-1 (Ki-67 labeling) index

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Ren; Haopeng, Pang; Xiaoyuan, Feng; Jiawen, Zhang; Zhenwei, Yao [Fudan University, Department of Radiology, Huashan Hospital, Shanghai (China); Jinsong, Wu; Chengjun, Yao; Tianming, Qiu [Fudan University, Department of Neurosurgery, Huashan Hospital, Shanghai (China); Ji, Xiong [Fudan University, Department of Neuropathology, Huashan Hospital, Shanghai (China); Mao, Sheng; Yueyue, Ding [Department of Imaging, Suzhou Children' s Hospital, Suzhou, Jiangsu (China); Yong, Zhang [MR Research, GE Healthcare, Shanghai (China); Jianfeng, Luo [Fudan University, Department of Biostatistics, Public Health School, Shanghai (China)

    2016-02-15

    This study was conducted to compare the association of Gaussian and non-Gaussian magnetic resonance imaging (MRI)-derived parameters with histologic grade and MIB-1 (Ki-67 labeling) index (MI) in brain glioma. Sixty-five patients with pathologically confirmed glioma, who underwent diffusion-weighted MRI with 2 b values (0, 1000 s/mm{sup 2}) and 22 b values (≤5000 s/mm{sup 2}), respectively, were divided into three groups of grade II (n = 35), grade III (n = 8), and grade IV (n = 22). Comparisons by two groups were made for apparent diffusion coefficient (ADC), slow diffusion coefficient (Dslow), distributed diffusion coefficient (DDC), and heterogeneity index α. Analyses of receiver operating characteristic (ROC) curve were performed to maximize the area under the curve (AUC) for differentiating grade III + IV (high-grade glioma, HGG) from grade II (low-grade glioma, LGG) and grade IV (glioblastoma multiforme, GBM) from grade II + III (other grade glioma, OGG). Correlations with MI were analyzed for the MRI parameters. On tumor regions, the values of ADC, Dslow, DDC, and α were significantly higher in grade II [(1.37 ± 0.29, 0.70 ± 0.11, 1.39 ± 0.34) (x 10{sup -3} mm{sup 2}/s) and 0.88 ± 0.05, respectively] than in grade III [(0.99 ± 0.13, 0.55 ± 0.07, 1.04 ± 0.20) (x 10{sup -3} mm{sup 2}/s) and 0.80 ± 0.03, respectively] and grade IV [(1.03 ± 0.14, 0.50 ± 0.05, 1.02 ± 0.16) (x 10{sup -3} mm{sup 2}/s) and 0.76 ± 0.04, respectively] (all P < 0.001). The parameter α showed the highest AUCs of 0.950 and 0.922 in discriminating HGG from LGG and GBM from OGG, respectively. Significant correlations with histologic grade and MI were observed for the MRI parameters. The non-Gaussian MRI-derived parameters α and Dslow are superior to ADC in glioma grading, which are comparable with ADC as reliable biomarkers in noninvasively predicting the proliferation level of glioma malignancy. (orig.)

  1. Non-Gaussian diffusion MR imaging of glioma: comparisons of multiple diffusion parameters and correlation with histologic grade and MIB-1 (Ki-67 labeling) index

    International Nuclear Information System (INIS)

    Yan, Ren; Haopeng, Pang; Xiaoyuan, Feng; Jiawen, Zhang; Zhenwei, Yao; Jinsong, Wu; Chengjun, Yao; Tianming, Qiu; Ji, Xiong; Mao, Sheng; Yueyue, Ding; Yong, Zhang; Jianfeng, Luo

    2016-01-01

    This study was conducted to compare the association of Gaussian and non-Gaussian magnetic resonance imaging (MRI)-derived parameters with histologic grade and MIB-1 (Ki-67 labeling) index (MI) in brain glioma. Sixty-five patients with pathologically confirmed glioma, who underwent diffusion-weighted MRI with 2 b values (0, 1000 s/mm 2 ) and 22 b values (≤5000 s/mm 2 ), respectively, were divided into three groups of grade II (n = 35), grade III (n = 8), and grade IV (n = 22). Comparisons by two groups were made for apparent diffusion coefficient (ADC), slow diffusion coefficient (Dslow), distributed diffusion coefficient (DDC), and heterogeneity index α. Analyses of receiver operating characteristic (ROC) curve were performed to maximize the area under the curve (AUC) for differentiating grade III + IV (high-grade glioma, HGG) from grade II (low-grade glioma, LGG) and grade IV (glioblastoma multiforme, GBM) from grade II + III (other grade glioma, OGG). Correlations with MI were analyzed for the MRI parameters. On tumor regions, the values of ADC, Dslow, DDC, and α were significantly higher in grade II [(1.37 ± 0.29, 0.70 ± 0.11, 1.39 ± 0.34) (x 10 -3 mm 2 /s) and 0.88 ± 0.05, respectively] than in grade III [(0.99 ± 0.13, 0.55 ± 0.07, 1.04 ± 0.20) (x 10 -3 mm 2 /s) and 0.80 ± 0.03, respectively] and grade IV [(1.03 ± 0.14, 0.50 ± 0.05, 1.02 ± 0.16) (x 10 -3 mm 2 /s) and 0.76 ± 0.04, respectively] (all P < 0.001). The parameter α showed the highest AUCs of 0.950 and 0.922 in discriminating HGG from LGG and GBM from OGG, respectively. Significant correlations with histologic grade and MI were observed for the MRI parameters. The non-Gaussian MRI-derived parameters α and Dslow are superior to ADC in glioma grading, which are comparable with ADC as reliable biomarkers in noninvasively predicting the proliferation level of glioma malignancy. (orig.)

  2. Effect of fiber sources on fatty acids profile, glycemic index, and phenolic compound content of in vitro digested fortified wheat bread.

    Science.gov (United States)

    Kurek, Marcin Andrzej; Wyrwisz, Jarosław; Karp, Sabina; Wierzbicka, Agnieszka

    2018-05-01

    In this study, some dietary fiber (DF) sources were investigated as fortifiers of wheat bread: oat (OB), flax (FB), and apple (AB). Adding oat and flax fibers to bread significantly changed the fatty acid profiles. OB was highest in oleic acid (33.83% of lipids) and linoleic acid (24.31% of lipids). Only in FB, γ-linolenic fatty acid was present in a significant amount-18.32%. The bioaccessibility trails revealed that the DF slow down the intake of saturated fatty acids. PUFA were least bioaccessible from all fatty acids groups in the range of (72% in OB to 87% in FB). The control bread had the greatest value (80.5) and was significantly higher than values for OB, FB, and AB in terms of glycemic index. OB, FB and AB addition led to obtain low glycemic index. AB had a significant highest value of total phenolic (897.2 mg/kg) with the lowest values in FB (541.2 mg/kg). The only significant lowering of caloric values in this study was observed in AB. The study could address the gap in the area of research about taking into consideration glycemic index, fatty acid profile and phenolic content in parallel in terms of DF application in breads.

  3. Radon Sub-slab Suctioning System Integrated in Insulating Layer

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    This poster presents a new radon sub-slab suctioning system. This system makes use of a grid of horizontal pressurised air ducts located within the lower part of the rigid insulation layer of the ground floor slab. For this purpose a new system of prefabricated lightweight elements is introduced...

  4. Grade Assignment by Ki-67 Proliferative Index, Mitotic Count, and Phosphohistone H3 Count in Surgically Resected Gastrointestinal and Pancreatic Neuroendocrine Tumors.

    Science.gov (United States)

    Murphy, Claire E; McCormick, Kinsey A; Shankaran, Veena; Reddi, Deepti M; Swanson, Paul E; Upton, Melissa P; Papanicolau-Sengos, Antonios; Khor, Sara; Westerhoff, Maria

    The aim of this study was to evaluate the concordance in grade assignment for gastroenteropancreatic neuroendocrine tumors using mitotic count (MC), Ki-67 proliferative index (KPI), and phosphohistone H3 count (PHH3C). Resected gastroenteropancreatic neuroendocrine tumors were graded based on MC, KPI, and PHH3C. Concordance was determined using a weighted κ statistic. Median survival across each grade category was determined using Kaplan-Meier methods. Of the 110 patients, the majority had gastrointestinal primaries and grade 1 or 2 tumors. Rates of discordance in grade assignment were 29% of cases for KPI versus MC (κW = 0.26), 32% for PHH3C versus MC (κW = 0.34), and 32% for PHH3C versus KPI (κW = 0.37). There was fair agreement between grading by KPI and MC. Relative to grade by KPI and MC, PHH3C tended to upgrade tumors. The proportion alive at 3 and 5 years was not significantly different for patients with grade 1 versus grade 2 tumors. The concordance between KPI and MC was fair. Phosphohistone H3 count tended to upgrade tumors using the cutoffs established by MC. Grade 1 and grade 2 tumors were associated with similar survival regardless of grading method. The overall relevance of the current cutoff values used in grading neuroendocrine tumors may need to be revisited.

  5. UV irradiation improves the bond strength of resin cement to fiber posts.

    Science.gov (United States)

    Zhong, Bo; Zhang, Yong; Zhou, Jianfeng; Chen, Li; Li, Deli; Tan, Jianguo

    2011-01-01

    The purpose is to evaluate the effect of UV irradiation on the bond strength between epoxy-based glass fiber posts and resin cement. Twelve epoxy-based glass fiber posts were randomly divided into three groups. Group 1 (Cont.): No surface treatment. Group 2 (Low-UV): UV irradiation was conducted from a distance of 10 cm for 10 min. Group 3 (High-UV): UV irradiation was conducted from a distance of 1 cm for 3 min. A resin cement (CLEARFIL SA LUTING) was used for the post cementation to form resin slabs which contained fiber posts in the center. Microtensile bond strengths were tested and the mean bond strengths (MPa) were 18.81 for Cont. group, 23.65 for Low-UV group, 34.75 for High-UV group. UV irradiation had a significant effect on the bond strength (pUV irradiation demonstrates its capability to improve the bond strength between epoxy-based glass fiber posts and resin cement.

  6. Out-of-plane ultimate shear strength of RC mat-slab foundations

    International Nuclear Information System (INIS)

    Kumagai, Hitoshi; Nukui, Yasushi; Imamura, Akira; Terayama, Takeshi; Hagiwara, Tetsuya; Kojima, Isao

    2011-01-01

    There have been few studies on the out-of-plane shear in RC mat-slab foundations, and the reasonable method has been demanded to estimate ultimate shear strength of RC mat-slab foundations in the nuclear facilities. In the previous study, the out-of-plane loading tests on the 20 square slab specimens had been performed to collect the fundamental data. In this study, the test results were successfully predicted by 3D non-linear Finite Element Analysis. It has been confirmed that the ultimate shear stress in the slab specimen can be estimated by the Arakawa's formula, which is commonly used to estimate the shear strength of RC beams. (author)

  7. Optical fiber refractometer based on tapered tilted-fiber Bragg grating

    Science.gov (United States)

    Wang, Tao; Liu, Tiegen; Liu, Kun; Jiang, Junfeng; Yu, Zhe; Xue, Meng

    2016-11-01

    Tilted fiber Bragg gratings (TFBGs) have been demonstrated to be accurate refractometers as they couple light from the fiber core to the cladding. In our experiment, we changed the physical structure of the TFBGs to improve the refractive index sensing ability. One way is to stretch the grating section 5 mm longer. The result showed that not only the number of the cladding mode of the TFBG decreases but also the full width half-maximum (FWHM) of the cladding modes and core mode changes. The FWHM of the cladding mode of the tapered TFBG is more than twice than that of the original. However, the refractive index sensitivity of the tapered TFBG has no obvious improvement. Another way is to etch the grating section with 20% hydrofluoric acid solution. We find that the smaller the clad diameter, the higher the refractive index sensitivity of the TFBG.

  8. New Packaging for Amplifier Slabs

    Energy Technology Data Exchange (ETDEWEB)

    Riley, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thorsness, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Suratwala, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Steele, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rogowski, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-03-18

    The following memo provides a discussion and detailed procedure for a new finished amplifier slab shipping and storage container. The new package is designed to maintain an environment of <5% RH to minimize weathering.

  9. Optimal Material Layout - Applied on Reinforced Concrete Slabs

    DEFF Research Database (Denmark)

    Dollerup, Niels; Jepsen, Michael S.; Damkilde, Lars

    2015-01-01

    This paper introduces a general, finite-element-based optimisation tool for improving the material layout of concrete structures. The application presented is general and exemplified by material optimisation of reinforced concrete slabs. By utilising the optimisation tool, it is possible to deter......This paper introduces a general, finite-element-based optimisation tool for improving the material layout of concrete structures. The application presented is general and exemplified by material optimisation of reinforced concrete slabs. By utilising the optimisation tool, it is possible...... to determine the optimal material layout of a slab in the ultimate load state, based on simple inputs such as outer geometry, boundary conditions, multiple load cases and design domains. The material layout of the optimal design can either be fully orthotropic or isotropic, or a combination with a predefined...

  10. Analytical extraction of leaky modes in circular slab waveguides with arbitrary refractive index profile.

    Science.gov (United States)

    Sarrafi, P; Zareian, N; Mehrany, K

    2007-12-20

    Circular slab waveguides are conformally transformed into straight inhomogeneous waveguides, whereupon electromagnetic fields in the core are expanded in terms of Legendre polynomial basis functions. Thereafter, different analytical expression of electromagnetic fields in the cladding region, viz. Wentzel-Kramers-Brillouin solution, modified Airy function expansion, and the exact field solution for circular waveguides, i.e., Hankel function of complex order, are each matched to the polynomial expansion of the transverse electric field within the guide. This field matching process renders different boundary conditions to be satisfied by the set of orthogonal Legendre polynomial basis functions. In this fashion, the governing wave equation is converted into an algebraic and easy to solve eigenvalue problem, which is associated with a matrix whose elements are analytically given. Various numerical examples are presented and the accuracy of each of the abovementioned different boundary conditions is assessed. Furthermore, the computational efficiency and the convergence rate of the proposed method with increasing number of basis functions are briefly discussed.

  11. Monitoring Poisson's ratio of glass fiber reinforced composites as damage index using biaxial Fiber Bragg Grating sensors

    OpenAIRE

    Yılmaz, Çağatay; Yilmaz, Cagatay; Akalın, Çağdaş; Akalin, Cagdas; Kocaman, Esat Selim; Suleman, A.; Yıldız, Mehmet; Yildiz, Mehmet

    2016-01-01

    Damage accumulation in Glass Fiber Reinforced Polymer (GFRP) composites is monitored based on Poisson's ratio measurements for three different fiber stacking sequences subjected to both quasi-static and quasi-static cyclic tensile loadings. The sensor systems utilized include a dual-extensometer, a biaxial strain gage and a novel embedded-biaxial Fiber Bragg Grating (FBG) sensor. These sensors are used concurrently to measure biaxial strain whereby the evolution of Poisson's ratio as a functi...

  12. Breakfast consumption by African-American and white adolescent girls correlates positively with calcium and fiber intake and negatively with body mass index

    NARCIS (Netherlands)

    Affenito, SG; Thompson, DR; Barton, BA; Franko, DL; Daniels, [No Value; Obarzanek, E; Schreiber, GB; Striegel-Moore, RH

    Objective To describe age- and race-related differences in breakfast consumption and to examine the association of breakfast intake with dietary calcium and fiber and body mass index (BMI). Design Data from the National Heart, Lung, and Blood Institute Growth and Health Study, a 9-year, longitudinal

  13. Design and analysis of three-layer-core optical fiber

    Science.gov (United States)

    Zheng, Siwen; Liu, Yazhuo; Chang, Guangjian

    2018-03-01

    A three-layer-core single-mode large-mode-area fiber is investigated. The three-layer structure in the core, which is composed of a core-index layer, a cladding-index layer, and a depression-index layer, could achieve a large effective area Aeff while maintaining an ultralow bending loss without deteriorating cutoff behaviors. The single-mode large mode area of 100 to 330 μm2 could be achieved in the fiber. The effective area Aeff can be further enlarged by adjusting the layer parameters. Furthermore, the bending property could be improved in this three-layer-core structure. The bending loss could decrease by 2 to 4 orders of magnitude compared with the conventional step-index fiber with the same Aeff. These characteristics of three-layer-core fiber suggest that it can be used in large-mode-area wide-bandwidth high-capacity transmission or high-power optical fiber laser and amplifier in optical communications, which could be used for the basic physical layer structure of big data storage, reading, calculation, and transmission applications.

  14. Radon exhalation study from cement, cement slabs and concrete slabs with variation in fly ash

    International Nuclear Information System (INIS)

    Sharma, Nisha; Singh, Jaspal

    2012-01-01

    Fly ash is a waste product from coal-fired power plants. Fly ash has become a subject of world-wide interest in recent years because of its diverse uses, e.g. in the manufacture of concrete for building purposes, for the filling of underground cavities, or as a component of building material. The fly ash may contain enhanced levels of the natural radionuclides in the uranium and thorium series and by using the fly ash in building materials, the radiation levels in houses may thus be technologically enhanced. Because of its relatively high radionuclide contents (including 226 Ra), fly ash may, however, present a potential hazard to the population through its radon emanation, which would be highly undesirable. Since fly ash is frequently used as a building material, the idea of the experiment was to mix fly ash in different proportions in the cement in the powder form, cemented slabs and concrete slabs to study the combined behaviors. Alpha sensitive LR-115 type II plastic track detector, commonly known as Solid State Nuclear Track Detectors (SSNTDs), were used to measure the radon concentration. The alpha particles emitted from the radon causes the radiation damaged tracks. The chemical etching in NaOH at 60°C for about 90 minutes was done to reveal these latent tracks, which were then scanned and counted by an optical microscope of suitable magnification. By calculating the track density of registered tracks, the radon concentrations were determined. In case of cement in the powder form and in cemented slab, starting from the pure cement, fly ash was added up to 70% by weight. In this case the radon exhalation rate has increased by addition of fly ash in the cement and in case of concrete slabs by the addition of fly ash in the cement the radon exhalation increases up to 60% and then decreases. Therefore, on the basis of our investigations we concluded that in general radon exhalation rate increases with the addition of fly ash. (author)

  15. Flexural Strengthening of RC Slabs Using a Hybrid FRP-UHPC System Including Shear Connector

    Directory of Open Access Journals (Sweden)

    Jiho Moon

    2017-01-01

    Full Text Available A polymeric hybrid composite system made of UHPC and CFRP was proposed as a retrofit system to enhance flexural strength and ductility of RC slabs. While the effectiveness of the proposed system was confirmed previously through testing three full-scale one-way slabs having two continuous spans, the slabs retrofitted with the hybrid system failed in shear. This sudden shear failure would stem from the excessive enhancement of the flexural strength over the shear strength. In this study, shear connectors were installed between the hybrid system and a RC slab. Using simple beam, only positive moment section was examined. Two full-scale RC slabs were cast and tested to failure: the first as a control and the second using this new strengthening technique. The proposed strengthening system increased the ultimate load carrying capacity of the slab by 70%, the stiffness by 60%, and toughness by 128%. The efficiency of shear connectors on ductile behavior of the retrofitted slab was also confirmed. After the UHPC top is separated from the slab, the shear connector transfer shear load and the slab system were in force equilibrium by compression in UHPC and tension in CFRP.

  16. Analysis of instability of tall buildings with prestressed and waffle slabs

    Directory of Open Access Journals (Sweden)

    V. M. Passos

    Full Text Available ABSTRACT The construction system of prestressed flat slabs has been gaining market in Brazil, since it eliminates the use of beams, allows you to perform structures under coluns by area and reduces the cycle of concrete slabs. Thus the analysis of global stability of buildings, takes into account the effects of 2nd order, and these additional effects to the structure obtained from the deformation thereof, calculated by the iterative method P-Delta. The Brazilian ABNT NBR 6118: 2014 [2] assesses the overall stability of reinforced concrete structures through practical parameters, which are the parameter a (Alpha and gz (Gamma z coefficient. In this research we seek to study the global stability of slender buildings consist of flat slabs, with slenderness (ratio of the smaller width with the height of the building approximately one to six, from the modeling of a building with prestressed slabs nonadherent and waffle slabs. To model will use the commercial software CAD / TQS.

  17. Calculation of shear strength of prestressed hollow core slabs by use of plastic theory

    DEFF Research Database (Denmark)

    Hoang, Linh Cao; Jørgensen, H.G.; Nielsen, Mogens Peter

    2014-01-01

    Th is paper deals with calculations of the shear capacity of precast, prestressed hollow core slabs. Such slabs are often used as floor systems in building structures. A common way to produce hollow core slabs is to use the extrusion technique where long strips of slabs are extruded and thereafter...

  18. Optimising the Slab Yard Planning and Crane Scheduling Problem using a two-stage heuristic

    DEFF Research Database (Denmark)

    Hansen, Anders Dohn; Clausen, Jens

    2010-01-01

    In this paper, we present the Slab Yard Planning and Crane Scheduling Problem. The problem has its origin in steel production facilities with a large throughput. A slab yard is used as a buffer for slabs that are needed in the upcoming production. Slabs are transported by cranes and the problem...

  19. Analysis and design of composite slab by varying different parameters

    Science.gov (United States)

    Lambe, Kedar; Siddh, Sharda

    2018-03-01

    Composite deck slabs are in demand because of its faster, lighter and economical construction work. Composite slab consists of cold formed deck profiled sheet and concrete either lightweight or normal. Investigation of shear behaviour of the composite slab is very complex. Shear bond strength depends on the various parameter such as a shape of sheeting, a thickness of the sheet, type of embossment and its frequency of use, shear stiffener or intermediate stiffener, type of load, an arrangement of load, length of shear span, the thickness of concrete and support friction etc. In present study finite element analysis is carried out with ABAQUS 6.13, a simply supported composite slab is considered for the investigation of the shear bond behaviour of the composite slab by considering variation in three different parameters, the shape of a sheet, thickness of sheet and shear span. Different shear spans of two different shape of cold formed deck profiled sheet i.e. with intermediate stiffeners and without intermediate stiffeners are considered with two different thicknesses (0.8 mm and 1.2 mm) for simulation. In present work, simulation of models has done for static loading with 20 mm mesh size is considered.

  20. Probabilistic Approach to Structural Appraisal of a Building During ...

    African Journals Online (AJOL)

    The design strength of concrete in the structure (grade of concrete) is obtained from schmidt hammer test. The concrete in the structure gave a safety index value of 2.83 which is less than the target reliability index value of 3.7 for concrete for safety class 1 BKR[1] and less than the target reliability index of 4.5 for slabs, 4.9 for ...

  1. Slab replacement maturity guidelines : [summary].

    Science.gov (United States)

    2014-04-01

    Concrete sets in hours at moderate temperatures, : but the bonds that make concrete strong continue : to mature over days to years. However, for : replacement concrete slabs on highways, it is : crucial that concrete develop enough strength : within ...

  2. Why and Where do Large Shallow Slab Earthquakes Occur?

    Science.gov (United States)

    Seno, T.; Yoshida, M.

    2001-12-01

    Within a shallow portion (20-60 km depth) of subducting slabs, it has been believed that large earthquakes seldom occur because the differential stress is generally expected to be low between bending at the trench-outer rise and unbending at the intermediate-depth. However, there are several regions in which large ( M>=7.0 ) earthquakes, including three events early in this year, have occurred in this portion. Searching such events from published individual studies and Harvard University centroid moment tensor catalogue, we find nineteen events in eastern Hokkaido, Kyushu-SW Japan, Mariana, Manila, Sumatra, Vanuatu, Chile, Peru, El Salvador, Mexico, and Cascadia. Slab stresses revealed from the mechanism solutions of those large events and smaller events are tensional in a slab dip direction. However, ages of the subducting oceanic plates are generally young, which denies a possibility that the slab pull works as a cause. Except for Manila and Sumatra, the stresses in the overriding plates are characterized by the change in {σ }Hmax direction from arc-parallel in the back-arc to arc-perpendicular in the fore-arc, which implies that a horizontal stress gradient exists in the across-arc direction. Peru and Chile, where the back-arc is compressional, can be categorized into this type, because a horizontal stress gradient exists over the continent from tension in east to compression in the west. In these regions, it is expected that mantle drag forces are operating beneath the upper plates, which drive the upper plates to the trenchward overriding the subducting oceanic plates. Assuming that the mantle drag forces beneath the upper plates originate from the mantle convection currents or upwelling plumes, we infer that the upper plates driven by the convection suck the oceanic plates, making the shallow portion of the slabs in extra-tension, thus resulting in the large shallow slab earthquakes in this tectonic regime.

  3. Reliability of Plastic Slabs

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    1989-01-01

    In the paper it is shown how upper and lower bounds for the reliability of plastic slabs can be determined. For the fundamental case it is shown that optimal bounds of a deterministic and a stochastic analysis are obtained on the basis of the same failure mechanisms and the same stress fields....

  4. Structural behavior of lightweight bamboo reinforced concrete slab with EPS infill panel

    Science.gov (United States)

    Wibowo, Ari; Wijatmiko, Indradi; Nainggolan, Christin Remayanti

    2017-09-01

    Eco-friendly, green, and natural materials have become increasingly important issues in supporting sustainable development, for the substitution of nonrenewable materials such as steel. Bamboo has been considered in many studies to replace steel in reinforced concrete elements. Further investigation has been carried out to obtain lightweight and eco-friendly reinforced concrete slabs by using bamboo bars as reinforcement and recycled materials such as EPS (expanded polystyrene) as infill panel. The flexural loading test on full scale one-way slabs test has been conducted. The results showed that the flexural strength of specimens decreased marginally of about 6% but with the weight advantage of 27% less compared with those of steel rebar reinforced concrete slab with the same dimension. Two type shear-connectors comprising of concrete and bamboo studs were also investigated which showed that the bamboo stud provided better ductility compared to that of slab with concrete as shear connector. Overall, the reinforced concrete slab with bamboo reinforcement and EPS infill panel showed reasonably good performance compared to slabs with steel rebar.

  5. Criticality Benchmark Analysis of Water-Reflected Uranium Oxyfluoride Slabs

    International Nuclear Information System (INIS)

    Marshall, Margaret A.; Bess, John D.

    2009-01-01

    A series of twelve experiments were conducted in the mid 1950's at the Oak Ridge National Laboratory Critical Experiments Facility to determine the critical conditions of a semi-infinite water-reflected slab of aqueous uranium oxyfluoride (UO2F2). A different slab thickness was used for each experiment. Results from the twelve experiment recorded in the laboratory notebook were published in Reference 1. Seven of the twelve experiments were determined to be acceptable benchmark experiments for the inclusion in the International Handbook of Evaluated Criticality Safety Benchmark Experiments. This evaluation will not only be available to handbook users for the validation of computer codes and integral cross-section data, but also for the reevaluation of experimental data used in the ANSI/ANS-8.1 standard. This evaluation is important as part of the technical basis of the subcritical slab limits in ANSI/ANS-8.1. The original publication of the experimental results was used for the determination of bias and bias uncertainties for subcritical slab limits, as documented by Hugh Clark's paper 'Subcritical Limits for Uranium-235 Systems'.

  6. Optical Fiber Sensor Based on Localized Surface Plasmon Resonance Using Silver Nanoparticles Photodeposited on the Optical Fiber End

    Directory of Open Access Journals (Sweden)

    J. Gabriel Ortega-Mendoza

    2014-10-01

    Full Text Available This paper reports the implementation of an optical fiber sensor to measure the refractive index in aqueous media based on localized surface plasmon resonance (LSPR. We have used a novel technique known as photodeposition to immobilize silver nanoparticles on the optical fiber end. This technique has a simple instrumentation, involves laser light via an optical fiber and silver nanoparticles suspended in an aqueous medium. The optical sensor was assembled using a tungsten lamp as white light, a spectrometer, and an optical fiber with silver nanoparticles. The response of this sensor is such that the LSPR peak wavelength is linearly shifted to longer wavelengths as the refractive index is increased, showing a sensitivity of 67.6 nm/RIU. Experimental results are presented.

  7. Failure analysis of edge flat-slab column connections with shear reinforcement

    OpenAIRE

    Bompa, Dan V.; Muttoni, Aurelio

    2013-01-01

    Flat-slab column connections are susceptible to brittle failure, which lead to the necessity of improving ductility and ultimate strength. In case of edge connections, the behaviour at ultimate state is highly influenced by nonsymmetrical distribution of stresses originated by a moment transfer between the slab and the column. The paper presents the test results of three full-scale reinforced concrete flat-slab edge connections with stud-rail shear reinforcement subjected to concentrated load...

  8. Fiber optic refractive index and magnetic field sensors based on microhole-induced inline Mach-Zehnder interferometers

    Science.gov (United States)

    Chen, Feifei; Jiang, Yi; Zhang, Liuchao; Jiang, Lan; Wang, Sumei

    2018-04-01

    A compact microhole-induced fiber optic inline Mach-Zehnder interferometer (MZI) is demonstrated for measurements of refractive index (RI) and magnetic field. Inline MZIs with different etched diameters, different interaction lengths and different sizes of microholes are fabricated and assessed. The optical transmission spectra of the inline MZIs immersed into a series of liquids are characterized and analysed. Experimental results show that liquid RI sensitivity as high as 539.8436 nm RIU-1 in the RI range of 1.3352-1.4113 RIU is achieved and also exhibits good linearity with a correlation coefficient  >93%. An inline MZI is also fabricated to be a magnetic field sensor by using magnetic fluid material. The experimental results show that this magnetic field sensor has a high sensitivity of  -275.6 pm Oe-1. The inline MZI-based fiber optic sensors possess many advantages, such as small size, simple fabrication, high sensitivity and good linearity, which has a wide application potential in chemical, biological and environmental sensing fields.

  9. Critical Coupling Between Optical Fibers and WGM Resonators

    Science.gov (United States)

    Matsko, Andrey; Maleki, Lute; Itchenko, Vladimir; Savchenkov, Anatoliy

    2009-01-01

    Two recipes for ensuring critical coupling between a single-mode optical fiber and a whispering-gallery-mode (WGM) optical resonator have been devised. The recipes provide for phase matching and aperture matching, both of which are necessary for efficient coupling. There is also a provision for suppressing intermodal coupling, which is detrimental because it drains energy from desired modes into undesired ones. According to one recipe, the tip of the single-mode optical fiber is either tapered in diameter or tapered in effective diameter by virtue of being cleaved at an oblique angle. The effective index of refraction and the phase velocity at a given position along the taper depend on the diameter (or effective diameter) and the index of refraction of the bulk fiber material. As the diameter (or effective diameter) decreases with decreasing distance from the tip, the effective index of refraction also decreases. Critical coupling and phase matching can be achieved by placing the optical fiber and the resonator in contact at the proper point along the taper. This recipe is subject to the limitation that the attainable effective index of refraction lies between the indices of refraction of the bulk fiber material and the atmosphere or vacuum to which the resonator and fiber are exposed. The other recipe involves a refinement of the previously developed technique of prism coupling, in which the light beam from the optical fiber is collimated and focused onto one surface of a prism that has an index of refraction greater than that of the resonator. Another surface of the prism is placed in contact with the resonator. The various components are arranged so that the collimated beam is focused at the prism/resonator contact spot. The recipe includes the following additional provisions:

  10. Field Enhancement in a Grounded Dielectric Slab by Using a Single Superstrate Layer

    OpenAIRE

    Valagiannopoulos, Constantinos A.; Tsitsas, Nikolaos L.

    2012-01-01

    The addition of a dielectric layer on a slab configuration is frequently utilized in various electromagnetic devices in order to give them certain desired operational characteristics. In this work, we consider a grounded dielectric film-slab, which is externally excited by a normally-incident Gaussian beam. On top of the film-slab, we use an additional suitably selected single isotropic superstrate layer in order to increase the field concentration inside the slab and hence achieve optimal po...

  11. Tomography of the subducting Pacific slab and the 2015 Bonin deepest earthquake (Mw 7.9)

    Science.gov (United States)

    Zhao, Dapeng; Fujisawa, Moeto; Toyokuni, Genti

    2017-03-01

    On 30 May 2015 an isolated deep earthquake (~670 km, Mw 7.9) occurred to the west of the Bonin Islands. To clarify its causal mechanism and its relationship to the subducting Pacific slab, we determined a detailed P-wave tomography of the deep earthquake source zone using a large number of arrival-time data. Our results show that this large deep event occurred within the subducting Pacific slab which is penetrating into the lower mantle. In the Izu-Bonin region, the Pacific slab is split at ~28° north latitude, i.e., slightly north of the 2015 deep event hypocenter. In the north the slab becomes stagnant in the mantle transition zone, whereas in the south the slab is directly penetrating into the lower mantle. This deep earthquake was caused by joint effects of several factors, including the Pacific slab’s fast deep subduction, slab tearing, slab thermal variation, stress changes and phase transformations in the slab, and complex interactions between the slab and the ambient mantle.

  12. Lateral force resisting mechanisms in slab-column connections: An analytical approach

    OpenAIRE

    Drakatos, Iaonnis; Beyer, Katrin; Muttoni, Aurelio

    2014-01-01

    In many countries reinforced concrete (RC) flat slabs supported on columns is one of the most commonly used structural systems for office and industrial buildings. To increase the lateral stiffness and strength of the structure, RC walls are typically added and carry the largest portion of the horizontal loads generated during earthquakes. While the slab-column system is typically not relevant with regard to the lateral stiffness and strength of the structure, each slab-column connection has ...

  13. Evolution and diversity of subduction zones controlled by slab width

    NARCIS (Netherlands)

    Schellart, W. P.; Freeman, J.A.; Stegman, D. R.; Moresi, L.; May, D.

    2007-01-01

    Subducting slabs provide the main driving force for plate motion and flow in the Earth's mantle, and geodynamic, seismic and geochemical studies offer insight into slab dynamics and subduction-induced flow. Most previous geodynamic studies treat subduction zones as either infinite in trench-parallel

  14. Feasibility of Steel Fiber-Reinforced Rubberized Concrete in Cold Regions for High Volume Intersections

    Science.gov (United States)

    Abou Eid, Mahear A.

    There are many challenges faced with the use of Portland Cement Concrete (PCC) in cold regions, but with the inclusion of new technologies such as steel fibers and recycled tire crumb rubber efficient construction may be possible. Research was conducted on a modified concrete material that included both steel fibers and crumb rubber. The composite material was called Steel Fiber-Reinforced Rubberized Concrete (SFRRC). The objective of this investigation was to provide evidence showing that SFRRC can reduce tire rutting compared to asphaltic pavement. In addition, the research showed that the SFRRC could withstand freeze-thaw cycles and increase service life of roadways. Several tests were performed to determine the characteristics of the material. Freeze-thaw testing was performed to determine compressive strength loss and visual deterioration of the material. Wheel tracker rut testing was performed both with the standard steel wheel and with a modified studded rubber tire to determine plastic deformation and rut resistance. An experimental test slab was cast in place on a public approach to observe the construction procedures, the effects of studded tire wear and the frost actions in cold region conditions. Based on freeze-thaw and wheel tracker test results and observations of the experimental test slab, the SFRRC material shows viability in cold regions for resisting freeze-thaw actions. The freeze-thaw testing resulted in increased compressive strength after 300 freeze-thaw cycles and very low deterioration of material compared to standard PCC. The wheel tracker testing resulted in very low plastic deformation and minor material rutting with use of the studded rubber tire. The test slab showed very minor surface wear, no freeze-thaw cracking and no rutting after one winter of use. It is recommended that further testing of the material be conducted by means of a large-scale trial section. This would provide information with respect to cost analysis and

  15. Validity of Three Recently Proposed Prognostic Grading Indexes for Breast Cancer Patients With Radiosurgically Treated Brain Metastases

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Masaaki, E-mail: BCD06275@nifty.com [Katsuta Hospital Mito GammaHouse, Hitachi-naka (Japan); Department of Neurosurgery, Tokyo Women' s Medical University Medical Center E, Tokyo (Japan); Kawabe, Takuya [Katsuta Hospital Mito GammaHouse, Hitachi-naka (Japan); Department of Neurosurgery, Kyoto Prefectural University of Medicine Graduate School of Medical Sciences, Kyoto (Japan); Higuchi, Yoshinori [Department of Neurosurgery, Chiba University Graduate School of Medicine, Chiba (Japan); Sato, Yasunori [Clinical Research Center, Chiba University Graduate School of Medicine, Chiba (Japan); Barfod, Bierta E. [Katsuta Hospital Mito GammaHouse, Hitachi-naka (Japan); Kasuya, Hidetoshi [Department of Neurosurgery, Tokyo Women' s Medical University Medical Center E, Tokyo (Japan); Urakawa, Yoichi [Katsuta Hospital Mito GammaHouse, Hitachi-naka (Japan)

    2012-12-01

    Purpose: We tested the validity of 3 recently proposed prognostic indexes for breast cancer patients with brain metastases (METs) treated radiosurgically. The 3 indexes are Diagnosis-Specific Graded Prognostic Assessment (DS-GPA), New Breast Cancer (NBC)-Recursive Partitioning Analysis (RPA), and our index, sub-classification of RPA class II patients into 3 sub-classes (RPA class II-a, II-b and II-c) based on Karnofsky performance status, tumor number, original tumor status, and non-brain METs. Methods and Materials: This was an institutional review board-approved, retrospective cohort study using our database of 269 consecutive female breast cancer patients (mean age, 55 years; range, 26-86 years) who underwent Gamma Knife radiosurgery (GKRS) alone, without whole-brain radiation therapy, for brain METs during the 15-year period between 1996 and 2011. The Kaplan-Meier method was used to estimate the absolute risk of each event. Results: Kaplan-Meier plots of our patient series showed statistically significant survival differences among patients stratified into 3, 4, or 5 groups based on the 3 systems (P<.001). However, the mean survival time (MST) differences between some pairs of groups failed to reach statistical significance with all 3 systems. Thus, we attempted to regrade our 269 breast cancer patients into 3 groups by modifying our aforementioned index along with the original RPA class I and III, (ie, RPA I+II-a, II-b, and II-c+III). There were statistically significant MST differences among these 3 groups without overlap of 95% confidence intervals (CIs) between any 2 pairs of groups: 18.4 (95% CI = 14.0-29.5) months in I+II-a, 9.2 in II-b (95% CI = 6.8-12.9, P<.001 vs I+II-a) and 5.0 in II-c+III (95% CI = 4.2-6.8, P<.001 vs II-b). Conclusions: As none of the new grading systems, DS-GPS, BC-RPA and our system, was applicable to our set of radiosurgically treated patients for comparing survivals after GKRS, we slightly modified our system for breast cancer

  16. Behavior of one-way reinforced concrete slabs subjected to fire

    Directory of Open Access Journals (Sweden)

    Said M. Allam

    2013-12-01

    Full Text Available A finite difference analysis was performed to investigate the behavior of one-way reinforced concrete slabs exposed to fire. The objective of the study was to investigate the fire resistance and the fire risk after extinguishing the fire. Firstly, the fire resistance was obtained using the ISO834 standard fire without cooling phase. Secondly, the ISO834 parametric fire with cooling phase was applied to study the effect of cooling time. Accordingly, the critical time for cooling was identified and the corresponding failure time was calculated. Moreover, the maximum risk time which is the time between the fire extinguishing and the collapse of slab was obtained. Sixteen one-way reinforced concrete slabs were considered to study the effect of important parameters namely: the concrete cover thickness; the plaster; and the live load ratio. Equations for heat transfer through the slab thickness were used in the fire resistance calculations. Studying the cooling time revealed that the slabs are still prone to collapse although they were cooled before their fire resistance. Moreover, increasing the concrete cover thickness and the presence of plaster led to an increase in the maximum risk time. However, the variation in the live load ratio has almost no effect on such time.

  17. IMPROVED SPECTROPHOTOMETER FIBER SAMPLING SYSTEM FOR COTTON FIBER COLOR MEASUREMENTS

    Science.gov (United States)

    Cotton in the U.S. is classified for color using the Uster® High Volume Instrument (HVI), and the parameters Rd and +b are used to designate color grades for cotton fiber. However, Rd and +b are cotton-specific color parameters, and the need existed to demonstrate the relationships of Rd and +b to...

  18. Retrieving the characteristics of slab ice covering snow by remote sensing

    Directory of Open Access Journals (Sweden)

    F. Andrieu

    2016-09-01

    Full Text Available We present an effort to validate a previously developed radiative transfer model, and an innovative Bayesian inversion method designed to retrieve the properties of slab-ice-covered surfaces. This retrieval method is adapted to satellite data, and is able to provide uncertainties on the results of the inversions. We focused on surfaces composed of a pure slab of water ice covering an optically thick layer of snow in this study. We sought to retrieve the roughness of the ice–air interface, the thickness of the slab layer and the mean grain diameter of the underlying snow. Numerical validations have been conducted on the method, and showed that if the thickness of the slab layer is above 5 mm and the noise on the signal is above 3 %, then it is not possible to invert the grain diameter of the snow. In contrast, the roughness and the thickness of the slab can be determined, even with high levels of noise up to 20 %. Experimental validations have been conducted on spectra collected from laboratory samples of water ice on snow using a spectro-radiogoniometer. The results are in agreement with the numerical validations, and show that a grain diameter can be correctly retrieved for low slab thicknesses, but not for bigger ones, and that the roughness and thickness are correctly inverted in every case.

  19. Construction of foundation slab of Temelin reactor building

    International Nuclear Information System (INIS)

    Lebr, P.; Vyleta, M.

    1988-01-01

    The concreting is described of the foundation slab under the WWER-1000 reactor in the Temelin nuclear power plant. The slab area is 68x68 m and thickness 2.4 m. For ease of concreting, the slab was divided in 12 blocks with vertical partition walls of steel mesh. The total thickness was concreted in three stages in which the partial thicknesses slightly differed for operating reasons. The first two partial thicknesses were concreted in layers of 0.45 m each, the third thickness consisted of two layers of 0.30 m each. The reinforcement was completely cleaned of the concrete residues from the previous stages in the break between the second and the third stages. Totally, 11,050 m 3 concrete were used. Briefly described is quality control during concreting and experiences and recommendations are summed up for other concreting jobs. (Z.M.). 19 figs

  20. Cost Effectiveness of Precast Reinforced Concrete Roof Slabs

    Science.gov (United States)

    Parskiy, N. D.; Molodtsov, M. V.; Molodtsova, V. E.

    2017-11-01

    Engineers always seek to free interior space from intermediate supporting elements. Nowadays plants, being at the forefront of technology, produce a new generation of exclusive patented prefabricated reinforced concrete elements with a high load-bearing capacity, excellent heat resistance characteristics combined with the aesthetics and beauty. It is a system of Seagull Gabbiano prestressed roof slabs for the spans of 12m - 40m. The article shows the advantages of the Seagull slabs over conventional precast reinforced concrete and metal roof trusses. It also gives the analysis of the technical and economic indices of design and construction of a building with the Seagull slabs depending on the size of spans to cover. The use of structural systems with increased spans allows for the modern buildings and structures of prefabricated reinforced concrete with enhanced functionality and aesthetics alongside with a wide range of planning solutions.

  1. 330 mJ single-frequency Ho:YLF slab amplifier

    CSIR Research Space (South Africa)

    Strauss, HJ

    2013-04-01

    Full Text Available We report on a double-pass Ho:YLF slab amplifier which delivered 350 ns long single-frequency pulses of up to 330 mJ at 2064 nm, with a maximum M(sup2) of 1.5 at 50 Hz. It was end pumped with a diode-pumped Tm:YLF slab laser and seeded with up to 50...

  2. Structure and properties of tempo-oxidized cotton fibers

    Directory of Open Access Journals (Sweden)

    Milanovic Jovana

    2012-01-01

    Full Text Available In this paper, the influence of the catalytic oxidation using water soluble and stable nitroxyl radical 2,2´,6,6´-tetramethylpiperidine-1-oxyl (TEMPO on structure and properties of cotton fibers was studied. In particular, the selective TEMPO-mediated oxidation has become very interesting way for introduction of functional groups into cellulose fibers with the aim to obtain oxycellulose fibers with specific properties. Unmodified and modified fibers were characterized in terms of weight loss values, introduced functional groups and crystallinity index. Also, oxidized fibers were characterized in terms of the sorption, morphological, and physico-mechanical properties. The TEMPO-oxidized cotton fibers show a minimum increase of fineness (from 1.32 to 1.28 dtex and increase of crystallinity index (up to 91.9%, while the tensile strength of fibers decreases (up to 10.82 cN/tex. By the TEMPO-mediated oxidation of cotton fibers significant amount of carboxyl groups (up to 0.795 mmol/g cell can be introduced into cellulose fibers. Introduced hydrophilic carboxyl groups increases the sorption properties of oxidized fibers, that can be used directly or for further chemical modification.

  3. Evaluation of anterior urethral stricture using thick slab SSFSE MR urethrography

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byung Kwan; Kim, Chan Kyo (Dept. of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan Univ. School of Medicine, Seoul (Korea)), e-mail: rapark@skku.edu; Lee, Sung Won (Dept. of Urology, Samsung Medical Center, Sungkyunkwan Univ. School of Medicine, Seoul (Korea))

    2010-12-15

    Background: Magnetic resonance urethrography (MRU) can be used for depicting not only anterior urethral strictures but also periurethral anatomy in order to produce a management plan. Purpose: To determine if thick slab single-shot fast spin echo (SSFSE) MRU is useful for evaluating anterior urethral stricture compared to fast recovery fast spin echo (FRFSE) MRU. Material and Methods: Ten patients with benign anterior urethral stricture underwent both thick slab SSFSE MRU and FRFSE MRU using sterile jelly for urethral distension before retrograde urethrography. The glans penis was tied at the time of MRU. The two types of MR image were compared regarding stricture length, scan time, and image quality. We also determined whether or not both of the two MR sequences could display an entire anterior urethra on one image. Results: The stricture length on thick slab SSFSE and FRFSE MRU ranged from 4.0 to 71.3 mm (36.4 {+-} 21.8 mm) and from 4.0 to 67.5 mm (35.7 {+-} 20.8 mm), respectively (P > 0.05). The mean scan time for thick slab SSFSE and FRFSE sequences was 2 s and 194 s, respectively (P < 0.05). However, regarding image quality, thick slab SSFSE MRU was inferior to FRFSE MRU (P < 0.05). All the thick slab SSFSE MRU displayed the entire anterior urethra on one image, while only five FRFSE MRU did so (P < 0.05). Conclusion: Thick slab SSFSE MRU can provide a concordant stricture length when compared to the FRFSE MRU and imaging of the entire length of the anterior urethral stricture with subjective reduced image quality and scan time.

  4. Evaluation of anterior urethral stricture using thick slab SSFSE MR urethrography

    International Nuclear Information System (INIS)

    Park, Byung Kwan; Kim, Chan Kyo; Lee, Sung Won

    2010-01-01

    Background: Magnetic resonance urethrography (MRU) can be used for depicting not only anterior urethral strictures but also periurethral anatomy in order to produce a management plan. Purpose: To determine if thick slab single-shot fast spin echo (SSFSE) MRU is useful for evaluating anterior urethral stricture compared to fast recovery fast spin echo (FRFSE) MRU. Material and Methods: Ten patients with benign anterior urethral stricture underwent both thick slab SSFSE MRU and FRFSE MRU using sterile jelly for urethral distension before retrograde urethrography. The glans penis was tied at the time of MRU. The two types of MR image were compared regarding stricture length, scan time, and image quality. We also determined whether or not both of the two MR sequences could display an entire anterior urethra on one image. Results: The stricture length on thick slab SSFSE and FRFSE MRU ranged from 4.0 to 71.3 mm (36.4 21.8 mm) and from 4.0 to 67.5 mm (35.7 20.8 mm), respectively (P > 0.05). The mean scan time for thick slab SSFSE and FRFSE sequences was 2 s and 194 s, respectively (P < 0.05). However, regarding image quality, thick slab SSFSE MRU was inferior to FRFSE MRU (P < 0.05). All the thick slab SSFSE MRU displayed the entire anterior urethra on one image, while only five FRFSE MRU did so (P < 0.05). Conclusion: Thick slab SSFSE MRU can provide a concordant stricture length when compared to the FRFSE MRU and imaging of the entire length of the anterior urethral stricture with subjective reduced image quality and scan time.

  5. Temperature-referenced high-sensitivity point-probe optical fiber chem-sensors based on cladding etched fiber Bragg gratings

    OpenAIRE

    Zhou, Kaiming; Chen, Xianfeng F.; Zhang, Lin; Bennion, Ian

    2004-01-01

    Point-probe optical fiber chem-sensors have been implemented using cladding etched fiber Bragg gratings. The sensors possess refractive index sensing capability that can be utilized to measure chemical concentrations. The Bragg wavelength shift reaches 8 nm when the index of surrounding medium changes from 1.33 to 1.44, giving maximum sensitivity more than 10 times higher than that of previously reported devices. More importantly, the dual-grating configuration of the point-probe sensors offe...

  6. A vibrating wire parallel to a high temperature superconducting slab. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Saif, A G; El-sabagh, M A [Department of Mathematic and Theoretical physics, Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    The power losses problem for an idealized high temperature type II superconducting system of a simple geometry is studied. This system is composed of a vibrating normal conducting wire (two wires) carrying a direct current parallel to an uniaxial anisotropic type II superconducting slab (moving slab). First, the electromagnetic equation governing the dynamics of this system, and its solutions are obtained. Secondly, a modified anisotropic london equation is developed to study these systems in the case of the slab moving. Thirdly, it is found that, the power losses is dependent on the frequency, london penetration depth, permeability, conductivity, velocity, and the distance between the normal conductors and the surfaces of the superconducting slab. Moreover, the power losses decreases as the distance between the normal conductors and the surface of the superconducting slab decreases; and increases as the frequency, the london penetration depth, permeability, conductivity, and velocity are increased. These losses along the versor of the anisotropy axis is increased as {lambda}{sub |}| increases. Moreover, it is greater than the power losses along the crystal symmetry direction. In the isotropic case as well as the slab thickness tends to infinity, agreement with previous results are obtained. 2 figs.

  7. Active isotropic slabs: conditions for amplified reflection

    Science.gov (United States)

    Perez, Liliana I.; Matteo, Claudia L.; Etcheverry, Javier; Duplaá, María Celeste

    2012-12-01

    We analyse in detail the necessary conditions to obtain amplified reflection (AR) in isotropic interfaces when a plane wave propagates from a transparent medium towards an active one. First, we demonstrate analytically that AR is not possible if a single interface is involved. Then, we study the conditions for AR in a very simple configuration: normal incidence on an active slab immersed in transparent media. Finally, we develop an analysis in the complex plane in order to establish a geometrical method that not only describes the behaviour of active slabs but also helps to simplify the calculus.

  8. Active isotropic slabs: conditions for amplified reflection

    International Nuclear Information System (INIS)

    Perez, Liliana I; Duplaá, María Celeste; Matteo, Claudia L; Etcheverry, Javier

    2012-01-01

    We analyse in detail the necessary conditions to obtain amplified reflection (AR) in isotropic interfaces when a plane wave propagates from a transparent medium towards an active one. First, we demonstrate analytically that AR is not possible if a single interface is involved. Then, we study the conditions for AR in a very simple configuration: normal incidence on an active slab immersed in transparent media. Finally, we develop an analysis in the complex plane in order to establish a geometrical method that not only describes the behaviour of active slabs but also helps to simplify the calculus. (paper)

  9. Cross-field flow and electric potential in a plasma slab

    Directory of Open Access Journals (Sweden)

    J. De Keyser

    2013-08-01

    Full Text Available We consider cross-field plasma flow inside a field-aligned plasma slab embedded in a uniform background in a 1-dimensional geometry. This situation may arise, for instance, when long-lasting reconnection pulses inject plasma into the inner magnetosphere. The present paper presents a detailed analysis of the structure of the interfaces that separate the slab from the background plasma on either side; a fully kinetic model is used to do so. Since the velocity shear across both interfaces has opposite signs, and given the typical gyroradius differences between injected and background ions and electrons, the structure of both interfaces can be very different. The behaviour of the slab and its interfaces depends critically on the flow of the plasma transverse to the magnetic field; in particular, it is shown that there are bounds to the flow speed that can be supported by the magnetised plasma. Further complicating the picture is the effect of the potential difference between the slab and its environment.

  10. Slab Geometry and Stress State of the Southwestern Colombia Subduction Zone

    Science.gov (United States)

    Chang, Ying

    A high rate of intermediate-depth earthquakes is concentrates in the Cauca cluster (3.5°N-5.5°N) and isolated from nearby seismicity in the southwestern Colombia subduction zone. Previously-studied nests of intermediate-depth earthquakes show that a high seismicity rate is often associated with a slab tear, detachment, or contortion. The cause of the less-studied Cauca cluster is unknown. To investigate the cause, we image the slab geometry using precise relative locations of intermediate-depth earthquakes. We use the earthquake catalog produced and seismic waveforms recorded by the Colombian National Seismic Network from January 2010 to March 2014. We calculate the focal mechanisms to examine whether the earthquakes reactivate pre-existing faults or form new fractures. The focal mechanisms are inverted for the intraslab stress field to check the stress guide hypothesis and to evaluate the stress orientations with regard to the change in the slab geometry. The earthquake relocations indicate that the Cauca segment has a continuous 20 km thick seismic zone and increases in dip angle from north to south. Two 40-km-tall fingers of earthquakes extend out of the slab and into the mantle wedge. Different from the previously-studied nests, the Cauca cluster does not correspond to slab contortions or tearing. The cluster may be associated with a high amount of dehydrated fluid. The determined focal mechanisms of 69 earthquakes have various types and variably-oriented nodal planes, corresponding to the reactivation of pre-existing faults and the formation of new fractures. The results of stress inversion show that the extensional axis in the northern Cauca segment is in the plane of the slab and 25° from the downdip direction, and the southern part has along-strike extension. The compression is subnormal to the plane of the slab. The stress field supports the stress guide hypothesis and shows a consistent rotation with increase in slab dip angle.

  11. Polymer Optical Fiber Sensor and the Prediction of Sensor Response Utilizing Artificial Neural Networks

    Science.gov (United States)

    Haroglu, Derya

    The global market researches showed that there is a growing trend in the field of polymer optical fiber (POF) and POF sensors. Telecommunications, medicine, defense, aerospace, and automotive are the application areas of fiber optic sensors, where the automotive industry is the most promising application area for innovations in the field of POF sensors. The POF sensors in automobiles are particularly for detection of seat occupancy, and intelligent pedestrian protection systems. This dissertation investigates graded index perfluorinated polymer optical fiber as an intensity modulated intrinsic sensor for application in automotive seat occupancy sensing. Since a fiber optic sensor has a high bandwidth, is small in size, is lightweight, and is immune to electromagnetic interference (EMI) it offers higher performance than that of its electrical based counterparts such as strain gauge, elastomeric bladder, and resistive sensor systems. This makes the fiber optic sensor a potential suitable material for seat occupancy sensing. A textile-based fiber optic sensor was designed to be located in the area beneath the typical seated human's thighs. The pressure interval under which the proposed POF sensor design could perform well was found to be between 0.18 and 0.21 N/cm2, where perfluorinated (PF) graded index (GI) POF (62.5/750 mum) was used as the POF material. In addition, the effect of the automotive seat covering including face material (fabric) and foam backing to the sensor's performance was analyzed. The face fabric structure and the thickness of foam backing were not found to be significant factors to change the sensor results. A research study, survey, was conducted of which purpose was to better understand market demands in terms of sensor performance characteristics for automotive seat weight sensors, as a part of the Quality Function Deployment (QFD) House of Quality analysis. The companies joined the survey agreed on the first 5 most important sensor

  12. Evaluation of neutron irradiated near-stoichiometric silicon carbide fiber composites

    International Nuclear Information System (INIS)

    Snead, L.L.; Katoh, Y.; Kohyama, A.; Bailey, J.L.; Vaughn, N.L.; Lowden, R.A.

    2000-01-01

    Composites have been fabricated by chemical vapor infiltration of silicon carbide (SiC) into SiC-based fiber preforms. Fibers were Ceramic Grade Nicalon TM , Hi-Nicalon TM and Hi-Nicalon TM Type-S. Results are presented for two parallel studies on the effects of neutron irradiation on these materials. In the first study, neutron irradiation induced changes in mechanical properties, as measured by bend testing, for Hi-Nicalon TM fiber materials of varied interphase structures is measured. Results indicate that both the Ceramic Grade Nicalon TM and Hi-Nicalon TM materials degrade substantially under irradiation, though the higher oxygen content Ceramic Grade fiber degrades more rapidly and more substantially. Of the three interfaces studied in the Hi-Nicalon TM system, the multilayer SiC is the most radiation resistant. At a dose of ∼1 dpa the mechanical property degradation of the Hi-Nicalon TM composite is consistent with a fiber densification-induced debonding. At a dose of 10 dpa the properties continue to degrade raising the question of degradation in the CVD SiC matrix as well. Low-dose results on the Hi-Nicalon TM Type-S fabricated material are encouraging, as they appear to not lose, and perhaps slightly increase, in ultimate bend strength. This result is consistent with the supposition that as the oxygen content in SiC-based fibers is reduced, the irradiation stability and hence composite performance under irradiation will improve

  13. Active constrained layer damping of geometrically nonlinear vibrations of functionally graded plates using piezoelectric fiber-reinforced composites

    International Nuclear Information System (INIS)

    Panda, Satyajit; Ray, M C

    2008-01-01

    In this paper, a geometrically nonlinear dynamic analysis has been presented for functionally graded (FG) plates integrated with a patch of active constrained layer damping (ACLD) treatment and subjected to a temperature field. The constraining layer of the ACLD treatment is considered to be made of the piezoelectric fiber-reinforced composite (PFRC) material. The temperature field is assumed to be spatially uniform over the substrate plate surfaces and varied through the thickness of the host FG plates. The temperature-dependent material properties of the FG substrate plates are assumed to be graded in the thickness direction of the plates according to a power-law distribution while the Poisson's ratio is assumed to be a constant over the domain of the plate. The constrained viscoelastic layer of the ACLD treatment is modeled using the Golla–Hughes–McTavish (GHM) method. Based on the first-order shear deformation theory, a three-dimensional finite element model has been developed to model the open-loop and closed-loop nonlinear dynamics of the overall FG substrate plates under the thermal environment. The analysis suggests the potential use of the ACLD treatment with its constraining layer made of the PFRC material for active control of geometrically nonlinear vibrations of FG plates in the absence or the presence of the temperature gradient across the thickness of the plates. It is found that the ACLD treatment is more effective in controlling the geometrically nonlinear vibrations of FG plates than in controlling their linear vibrations. The analysis also reveals that the ACLD patch is more effective for controlling the nonlinear vibrations of FG plates when it is attached to the softest surface of the FG plates than when it is bonded to the stiffest surface of the plates. The effect of piezoelectric fiber orientation in the active constraining PFRC layer on the damping characteristics of the overall FG plates is also discussed

  14. Active constrained layer damping of geometrically nonlinear vibrations of functionally graded plates using piezoelectric fiber-reinforced composites

    Science.gov (United States)

    Panda, Satyajit; Ray, M. C.

    2008-04-01

    In this paper, a geometrically nonlinear dynamic analysis has been presented for functionally graded (FG) plates integrated with a patch of active constrained layer damping (ACLD) treatment and subjected to a temperature field. The constraining layer of the ACLD treatment is considered to be made of the piezoelectric fiber-reinforced composite (PFRC) material. The temperature field is assumed to be spatially uniform over the substrate plate surfaces and varied through the thickness of the host FG plates. The temperature-dependent material properties of the FG substrate plates are assumed to be graded in the thickness direction of the plates according to a power-law distribution while the Poisson's ratio is assumed to be a constant over the domain of the plate. The constrained viscoelastic layer of the ACLD treatment is modeled using the Golla-Hughes-McTavish (GHM) method. Based on the first-order shear deformation theory, a three-dimensional finite element model has been developed to model the open-loop and closed-loop nonlinear dynamics of the overall FG substrate plates under the thermal environment. The analysis suggests the potential use of the ACLD treatment with its constraining layer made of the PFRC material for active control of geometrically nonlinear vibrations of FG plates in the absence or the presence of the temperature gradient across the thickness of the plates. It is found that the ACLD treatment is more effective in controlling the geometrically nonlinear vibrations of FG plates than in controlling their linear vibrations. The analysis also reveals that the ACLD patch is more effective for controlling the nonlinear vibrations of FG plates when it is attached to the softest surface of the FG plates than when it is bonded to the stiffest surface of the plates. The effect of piezoelectric fiber orientation in the active constraining PFRC layer on the damping characteristics of the overall FG plates is also discussed.

  15. Vibration Analysis of Beam and Block Precast Slab System due to Human Vibrations

    Science.gov (United States)

    Chik, T. N. T.; Kamil, M. R. H.; Yusoff, N. A.

    2018-04-01

    Beam and block precast slabs system are very efficient which generally give maximum structural performance where their voids based on the design of the unit soffit block allow a significant reduction of the whole slab self-weight. Initially for some combinations of components or the joint connection of the structural slab, this structural system may be susceptible to excessive vibrations that could effects the performance and also serviceability. Dynamic forces are excited from people walking and jumping which produced vibrations to the slab system in the buildings. Few studies concluded that human induced vibration on precast slabs system may be harmful to structural performance and mitigate the human comfort level. This study will investigate the vibration analysis of beam and block precast slab by using finite element method at the school building. Human activities which are excited from jumping and walking will induce the vibrations signal to the building. Laser Doppler Vibrometer (LDV) was used to measure the dynamic responses of slab towards the vibration sources. Five different points were assigned specifically where each of location will determine the behaviour of the entire slabs. The finite element analyses were developed in ABAQUS software and the data was further processed in MATLAB ModalV to assess the vibration criteria. The results indicated that the beam and block precast systems adequate enough to the vibration serviceability and human comfort criteria. The overall vibration level obtained was fell under VC-E curve which it is generally under the maximum permissible level of vibrations. The vibration level on the slab is acceptable within the limit that have been used by Gordon.

  16. Tunable Beam Diffraction in Infiltrated Microstructured Fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis H.; Neshev, Dragomir N.

    We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites.......We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites....

  17. STUDY JARINGAN FIBER-OPTIK dan SONET

    OpenAIRE

    Syarif, Syafruddin; Katu, Umar; Suyuti, Saidah

    2006-01-01

    Optical Fiber communication system is a communication system using fiber optic as a transmission media. This communication system is able to transmit information in high capacity and high fidelity. Fiber optic consist of cylinder glass, the inside part of the cylinder is called core surrounded a cladding. The outside part of this cylinder made by elastic plastic called coating. ?? Based on the bias index and the waves mode in light propagation, optic fiber can be elassified into...

  18. Review of Punching Shear Behaviour of Flat Slabs Reinforced with FRP Bars

    Science.gov (United States)

    Mohamed, Osama A.; Khattab, Rania

    2017-10-01

    Using Fibre Reinforced Polymer (FRP) bars to reinforce two-way concrete slabs can extend the service life, reduce maintenance cost and improve-life cycle cost efficiency. FRP reinforcing bars are more environmentally friendly alternatives to traditional reinforcing steel. Shear behaviour of reinforced concrete structural members is a complex phenomenon that relies on the development of internal load-carrying mechanisms, the magnitude and combination of which is still a subject of research. Many building codes and design standards provide design formulas for estimation of punching shear capacity of FRP reinforced flat slabs. Building code formulas take into account the effects of the axial stiffness of main reinforcement bars, the ratio of the perimeter of the critical section to the slab effective depth, and the slab thickness on the punching shear capacity of two-way slabs reinforced with FRP bars or grids. The goal of this paper is to compare experimental data published in the literature to the equations offered by building codes for the estimation of punching shear capacity of concrete flat slabs reinforced with FRP bars. Emphasis in this paper is on two North American codes, namely, ACI 440.1R-15 and CSA S806-12. The experimental data covered in this paper include flat slabs reinforced with GFRP, BFRP, and CFRP bars. Both ACI 440.1R-15 and CSA S806-12 are shown to be in good agreement with test results in terms of predicting the punching shear capacity.

  19. In-line microfluidic refractometer based on C-shaped fiber assisted photonic crystal fiber Sagnac interferometer.

    Science.gov (United States)

    Wu, Chuang; Tse, Ming-Leung Vincent; Liu, Zhengyong; Guan, Bai-Ou; Lu, Chao; Tam, Hwa-Yaw

    2013-09-01

    We propose and demonstrate a highly sensitive in-line photonic crystal fiber (PCF) microfluidic refractometer. Ultrathin C-shaped fibers are spliced in-between the PCF and standard single-mode fibers. The C-shaped fibers provide openings for liquid to flow in and out of the PCF. Based on a Sagnac interferometer, the refractive index (RI) response of the device is investigated theoretically and experimentally. A high sensitivity of 6621 nm/RIU for liquid RI from 1.330 to 1.333 is achieved in the experiment, which agrees well with the theoretical analysis.

  20. Guided mode gain competition in Yb-doped rod-type photonic crystal fibers

    DEFF Research Database (Denmark)

    Poli, Federica; Passaro, Davide; Cucinotta, Annamaria

    2009-01-01

    The gain competition among the guided modes in Yb-doped rod-type photonic crystal fibers with a low refractive index core is investigated with a spatial model to demonstrate the fiber effective single-mode behaviour.......The gain competition among the guided modes in Yb-doped rod-type photonic crystal fibers with a low refractive index core is investigated with a spatial model to demonstrate the fiber effective single-mode behaviour....

  1. Novel biometric flow slab design for improvement of PEMFC performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chin-Tsan; Hu, Yuh-Chung; Zheng, Pei-Lun [Department of Mechanical and Electro-Mechanical Engineering, Center of Green Technology, National I Lan University, I Lan 26047 (China)

    2010-04-15

    Designing a better flow slab is important to cell performance because of its significant influence on the total pressure drop and flow uniformity. Two novel biometric flow slabs, BFF1 and BFF2, which are addressed in this study, are believed to enhance the capability of oxygen transportation and promote the liquid water removal. Hence, its possession of a higher flow uniformity and lower pressure drop would produce a better power performance than the serpentine and parallel flow. These findings with respect to the design of biometric flow slab could be useful to promote the cell performance of PEMFC, and could even be expanded to other cell types. (author)

  2. Study on the electromagnetic waves propagation characteristics in partially ionized plasma slabs

    Directory of Open Access Journals (Sweden)

    Zhi-Bin Wang

    2016-05-01

    Full Text Available Propagation characteristics of electromagnetic (EM waves in partially ionized plasma slabs are studied in this paper. Such features are significant to applications in plasma antennas, blackout of re-entry flying vehicles, wave energy injection to plasmas, and etc. We in this paper developed a theoretical model of EM wave propagation perpendicular to a plasma slab with a one-dimensional density inhomogeneity along propagation direction to investigate essential characteristics of EM wave propagation in nonuniform plasmas. Particularly, the EM wave propagation in sub-wavelength plasma slabs, where the geometric optics approximation fails, is studied and in comparison with thicker slabs where the geometric optics approximation applies. The influences of both plasma and collisional frequencies, as well as the width of the plasma slab, on the EM wave propagation characteristics are discussed. The results can help the further understanding of propagation behaviours of EM waves in nonuniform plasma, and applications of the interactions between EM waves and plasmas.

  3. Effects of Metamaterial Slabs Applied to Wireless Power Transfer at 13.56 MHz

    Directory of Open Access Journals (Sweden)

    Gunyoung Kim

    2015-01-01

    Full Text Available This paper analyzes the effects of a metamaterial slab (or a practical “perfect lens” with negative permeability applied to a two loop magnetically coupled wireless power transfer (WPT system at 13.56 MHz, based on theory, full-wave electromagnetic- (EM- simulations, and measurements. When using lossless slabs with ideal negative permeability in EM-simulations, the WPT efficiencies have been found to be enhanced close to 100% due to the magnetic field focusing. For the case of using a realistic slab made of ring resonators (RR μr=-1-j0.23 with s/d=0.5 (s: slab width, d: distance between the transmitting and receiving loops, the WPT efficiency has been found to significantly decrease to about 20%, even lower than that of a free space case (32% due to the heavy power absorption in the slab. However, some efficiency enhancement can be achieved when s/d is optimized between 0.1 and 0.3. Overall, the significant enhancement of efficiencies when using a lossless slab becomes moderate or only marginal when employing a realistic slab.

  4. Graded index and randomly oriented core-shell silicon nanowires for broadband and wide angle antireflection

    Directory of Open Access Journals (Sweden)

    P. Pignalosa

    2011-09-01

    Full Text Available Antireflection with broadband and wide angle properties is important for a wide range of applications on photovoltaic cells and display. The SiOx shell layer provides a natural antireflection from air to the Si core absorption layer. In this work, we have demonstrated the random core-shell silicon nanowires with both broadband (from 400nm to 900nm and wide angle (from normal incidence to 60º antireflection characteristics within AM1.5 solar spectrum. The graded index structure from the randomly oriented core-shell (Air/SiOx/Si nanowires may provide a potential avenue to realize a broadband and wide angle antireflection layer.

  5. The Green's function method for critical heterogeneous slabs

    International Nuclear Information System (INIS)

    Kornreich, D.E.

    1996-01-01

    Recently, the Green's Function Method (GFM) has been employed to obtain benchmark-quality results for nuclear engineering and radiative transfer calculations. This was possible because of fast and accurate calculations of the Green's function and the associated Fourier and Laplace transform inversions. Calculations have been provided in one-dimensional slab geometries for both homogeneous and heterogeneous media. A heterogeneous medium is analyzed as a series of homogeneous slabs, and Placzek's lemma is used to extend each slab to infinity. This allows use of the infinite medium Green's function (the anisotropic plane source in an infinite homogeneous medium) in the solution. To this point, a drawback of the GFM has been the limitation to media with c 1; however, mathematical solutions exist which result in oscillating Green's functions. Such calculations are briefly discussing. The limitation to media with c < 1 has been relaxed so that the Green's function may also be calculated for media with c ≥ 1. Thus, materials that contain fissionable isotopes may be modeled

  6. Use of Fiber-Reinforced Cements in Masonry Construction and Structural Rehabilitation

    Directory of Open Access Journals (Sweden)

    Ece Erdogmus

    2015-02-01

    Full Text Available The use of fiber reinforcement in traditional concrete mixes has been extensively studied and has been slowly finding its regular use in practice. In contrast, opportunities for the use of fibers in masonry applications and structural rehabilitation projects (masonry and concrete structures have not been as deeply investigated, where the base matrix may be a weaker cementitious mixture. This paper will summarize the findings of the author’s research over the past 10 years in these particular applications of fiber reinforced cements (FRC. For masonry, considering both mortar and mortar-unit bond characteristics, a 0.5% volume fraction of micro fibers in type N Portland cement lime mortar appear to be a viable recipe for most masonry joint applications both for clay and concrete units. In general, clay units perform better with high water content fiber reinforced mortar (FRM while concrete masonry units (CMUs perform better with drier mixtures, so 130% and 110% flow rates should be targeted, respectively. For earth block masonry applications, fibers’ benefits are observed in improving local damage and water pressure resistance. The FRC retrofit technique proposed for the rehabilitation of reinforced concrete two-way slabs has exceeded expectations in terms of capacity increase for a relatively low cost in comparison to the common but expensive fiber reinforced polymer applications. For all of these applications of fiber-reinforced cements, further research with larger data pools would lead to further optimization of fiber type, size, and amount.

  7. Convection in Slab and Spheroidal Geometries

    Science.gov (United States)

    Porter, David H.; Woodward, Paul R.; Jacobs, Michael L.

    2000-01-01

    Three-dimensional numerical simulations of compressible turbulent thermally driven convection, in both slab and spheroidal geometries, are reviewed and analyzed in terms of velocity spectra and mixing-length theory. The same ideal gas model is used in both geometries, and resulting flows are compared. The piecewise-parabolic method (PPM), with either thermal conductivity or photospheric boundary conditions, is used to solve the fluid equations of motion. Fluid motions in both geometries exhibit a Kolmogorov-like k(sup -5/3) range in their velocity spectra. The longest wavelength modes are energetically dominant in both geometries, typically leading to one convection cell dominating the flow. In spheroidal geometry, a dipolar flow dominates the largest scale convective motions. Downflows are intensely turbulent and up drafts are relatively laminar in both geometries. In slab geometry, correlations between temperature and velocity fluctuations, which lead to the enthalpy flux, are fairly independent of depth. In spheroidal geometry this same correlation increases linearly with radius over the inner 70 percent by radius, in which the local pressure scale heights are a sizable fraction of the radius. The effects from the impenetrable boundary conditions in the slab geometry models are confused with the effects from non-local convection. In spheroidal geometry nonlocal effects, due to coherent plumes, are seen as far as several pressure scale heights from the lower boundary and are clearly distinguishable from boundary effects.

  8. Seismic evidence for hydration of the Central American slab: Guatemala through Costa Rica

    Science.gov (United States)

    Syracuse, E. M.; Thurber, C. H.

    2011-12-01

    The Central American subduction zone exhibits a wide variability in along-arc slab hydration as indicated by geochemical studies. These studies generally show maximum slab contributions to magma beneath Nicaragua and minimum contributions beneath Costa Rica, while intermediate slab fluid contributions are found beneath El Salvador and Guatemala. Geophysical studies suggest strong slab serpentinization and fluid release beneath Nicaragua, and little serpentinization beneath Costa Rica, but the remainder of the subduction zone is poorly characterized seismically. To obtain an integrated seismic model for the Central American subduction zone, we combine 250,000 local seismic arrivals and 1,000,000 differential arrivals for 6,500 shallow and intermediate-depth earthquakes from the International Seismic Centre, the Central American Seismic Center, and the temporary PASSCAL TUCAN array. Using this dataset, we invert for Vp, Vs, and hypocenters using a variable-mesh double-difference tomography algorithm. By observing low-Vp areas within the normally high-Vp slab, we identify portions of the slab that are likely to contain serpentinized mantle, and thus contribute to higher degrees of melting and higher volatile components observable in arc lavas.

  9. Multiplexed displacement fiber sensor using thin core fiber exciter.

    Science.gov (United States)

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2015-06-01

    This letter reports a multiplexed optical displacement sensor using a thin core fiber (TCF) exciter. The TCF exciter is followed by a stripped single mode optical fiber. A small section of buffer is used as the movable component along the single mode fiber. Ultra-weak cladding mode reflection (< - 75 dB) was employed to probe the refractive index discontinuity between the air and buffer coating boundary. The position change of the movable buffer segment results in a delay change of the cladding mode reflection. Thus, it is a measure of the displacement of the buffer segment with respect to the glass fiber. The insertion loss of one sensor was measured to be less than 3 dB. A linear relationship was evaluated between the measurement position and absolute position of the moving actuator. Multiplexed capability was demonstrated and no cross talk was found between the sensors.

  10. Simulation of curing of a slab of rubber

    International Nuclear Information System (INIS)

    Abhilash, P.M.; Kannan, K.; Varkey, Bijo

    2010-01-01

    The objective of the present work is to predict the degree of curing for a rectangular slab of rubber, which was subjected to non-uniform thermal history. As the thermal conductivity of rubber is very low, the temperature gradient across a slab is quite large, which leads to non-uniform vulcanization, and hence non-uniform mechanical properties-an inhomogeneous material. Since curing is an exothermic reaction, heat transfer and chemical reactions are solved in a coupled manner. The effect of heat generation on curing is also discussed.

  11. Simulation of curing of a slab of rubber

    Energy Technology Data Exchange (ETDEWEB)

    Abhilash, P.M. [Department of Mechanical Engineering, IIT Madras, Chennai 600036 (India); Kannan, K., E-mail: krishnakannan@iitm.ac.i [Department of Mechanical Engineering, IIT Madras, Chennai 600036 (India); Varkey, Bijo [Advanced Design Department, MRF Ltd., Chennai 600019 (India)

    2010-04-15

    The objective of the present work is to predict the degree of curing for a rectangular slab of rubber, which was subjected to non-uniform thermal history. As the thermal conductivity of rubber is very low, the temperature gradient across a slab is quite large, which leads to non-uniform vulcanization, and hence non-uniform mechanical properties-an inhomogeneous material. Since curing is an exothermic reaction, heat transfer and chemical reactions are solved in a coupled manner. The effect of heat generation on curing is also discussed.

  12. Juan de Fuca slab geometry and its relation to Wadati-Benioff zone seismicity

    Science.gov (United States)

    McCrory, Patricia A.; Blair, J. Luke; Waldhause, Felix; Oppenheimer, David H.

    2012-01-01

    A new model of the subducted Juan de Fuca plate beneath western North America allows first-order correlations between the occurrence of Wadati-Benioff zone earthquakes and slab geometry, temperature, and hydration state. The geo-referenced 3D model, constructed from weighted control points, integrates depth information from earthquake locations and regional seismic velocity studies. We use the model to separate earthquakes that occur in the Cascadia forearc from those that occur within the underlying Juan de Fuca plate and thereby reveal previously obscured details regarding the spatial distribution of earthquakes. Seismicity within the slab is most prevalent where the slab is warped beneath northwestern California and western Washington suggesting that slab flexure, in addition to expected metamorphic dehydration processes, promotes earthquake occurrence within the subducted oceanic plate. Earthquake patterns beneath western Vancouver Island are consistent with slab dehydration processes. Conversely, the lack of slab earthquakes beneath western Oregon is consistent with an anhydrous slab. Double-differenced relocated seismicity resolves a double seismic zone within the slab beneath northwestern California that strongly constrains the location of the plate interface and delineates a cluster of seismicity 10 km above the surface that includes the 1992 M7.1 Mendocino earthquake. We infer that this earthquake ruptured a surface within the Cascadia accretionary margin above the Juan de Fuca plate. We further speculate that this earthquake is associated with a detached fragment of former Farallon plate. Other subsurface tectonic elements within the forearc may have the potential to generate similar damaging earthquakes.

  13. Effectiveness of Fiber Reinforcement on the Mechanical Properties and Shrinkage Cracking of Recycled Fine Aggregate Concrete.

    Science.gov (United States)

    Nam, Jeongsoo; Kim, Gyuyong; Yoo, Jaechul; Choe, Gyeongcheol; Kim, Hongseop; Choi, Hyeonggil; Kim, Youngduck

    2016-02-26

    This paper presents an experimental study conducted to investigate the effect of fiber reinforcement on the mechanical properties and shrinkage cracking of recycled fine aggregate concrete (RFAC) with two types of fiber-polyvinyl alcohol (PVA) and nylon. A small fiber volume fraction, such as 0.05% or 0.1%, in RFAC with polyvinyl alcohol or nylon fibers was used for optimum efficiency in minimum quantity. Additionally, to make a comparative evaluation of the mechanical properties and shrinkage cracking, we examined natural fine aggregate concrete as well. The test results revealed that the addition of fibers and fine aggregates plays an important role in improving the mechanical performance of the investigated concrete specimens as well as controlling their cracking behavior. The mechanical properties such as compressive strength, splitting tensile strength, and flexural strength of fiber-reinforced RFAC were slightly better than those of non-fiber-reinforced RFAC. The shrinkage cracking behavior was examined using plat-ring-type and slab-type tests. The fiber-reinforced RFAC showed a greater reduction in the surface cracks than non-fiber-reinforced concrete. The addition of fibers at a small volume fraction in RFAC is more effective for drying shrinkage cracks than for improving mechanical performance.

  14. Unusually deep Bonin earthquake of 30 May 2015: A precursory signal to slab penetration?

    Science.gov (United States)

    Obayashi, Masayuki; Fukao, Yoshio; Yoshimitsu, Junko

    2017-02-01

    An M7.9 earthquake occurred on 30 May 2015 at an unusual depth of 680 km downward and away from the well-defined Wadati-Benioff (WB) zone of the southern Bonin arc. To the north (northern Bonin), the subducted slab is stagnant above the upper-lower mantle boundary at 660-km depth, where the WB zone bends forward to sub-horizontal. To the south (northern Mariana), it penetrates the boundary, where the WB zone extends near-vertically down to the boundary. Thus, the southern Bonin slab can be regarded as being in a transitional state from slab stagnation to penetration. The transition is shown to happen rapidly within the northern half of the southern Bonin slab where the heel part of the shoe-like configured stagnant slab hits the significantly depressed 660-km discontinuity. The mainshock and aftershocks took place in this heel part where they are sub-vertically aligned in approximate parallel to their maximum compressional axes. Here, the dips of the compressional axes of WB zone earthquakes change rapidly across the thickness of the slab from the eastern to western side and along the strike of the slab from the northern to southern side, suggesting rapid switching of the downdip compression axis in the shoe-shaped slab. Elastic deformation associated with the WB zone seismicity is calculated by viewing it as an integral part of the slab deformation process. With this deformation, the heel part is deepened relative to the arch part and is compressed sub-vertically and stretched sub-horizontally, a tendency consistent with the idea of progressive decent of the heel part in which near-vertical compressional stress is progressively accumulated to generate isolated shocks like the 2015 event and eventually to initiate slab penetration.

  15. Study on strength characteristics of concrete using M-Sand and coconut fibers

    Science.gov (United States)

    Neeraja, D.; Wani, Amir Iqbal; Kamili, Zainulabideen; Agarwal, Krishnakant

    2017-11-01

    In the current world, concrete has become a very important part of the construction industry and the materials which are used in making concrete have evolved due to better quality of cement and better grade of coarse aggregates. The sand is an important part of concrete. It is mainly procured from natural sources. Thus the grade of sand is not under our control. The methods of removing sand from river beds are causing various environmental issues and river sand is depleting at a faster rate than it is replaced by natural methods. Hence, various replacements for the river sand are being done, one of which is manufactured-sand. It is obtained from various granite quarries. Manufactured-sand or M-sand is slowly replacing the fine aggregate in the concrete as the sand is well graded and gives higher strength of concrete. There are various fibers used for reinforcing concrete which consist mainly of artificial or steel fibers. Some of these fibers are quite costly and sometimes difficult to obtain. So there are many natural fibers which can be used in place of these fibers, one of which is coconut fiber, extracted from the shell of a coconut. Coconut fibers are used in various industries like rope making, coir mattresses etc. Since these fibers are one of the strongest fibers among naturally occuring fibers, they can be used in the concrete mix to increase the resistance in concrete. They are also light weight and easily available and thus can be used in reinforcement of concrete. The studies up till now have tested the use of coconut fibers in normal concrete involving river sand but in this study a particular ratio of M-sand and river sand is used to get the maximum possible strength. Hence, in this project an attempt was made to use M-sand and coconut fiber in concrete. Based on the test results, it can be concluded that combination of M-sand and coconut fibers gave favorable results in strength criteria.

  16. Studi Komparasi Antara Pracetak Masif Dan Fly Slab Studi Kasus : Struktur Gedung Rusunawa Surakarta

    OpenAIRE

    Wirawan, Aria; Wicaksono, Budi; Nuroji, Nuroji; Partono, Windu

    2013-01-01

    Fly slab is one of the precast concrete slab technological development that has been researched and patented by Ir . Sulistyana in 2011. The concept is how to reduce the mass of precast concrete slab with makes ribs on the concrete slab. To minimize the volume of concrete plate and while maintaining tensile area to makes the style transfer mechanism of concrete to reinforcement or otherwise, are expected to reduce the mass of the structure without reducing strength.Comparative study will be c...

  17. Transport of radon through cracks in a concrete slab

    Energy Technology Data Exchange (ETDEWEB)

    Landman, K A; Cohen, D S

    1983-03-01

    A model involving the use of line sources is developed to describe the transport of radon through the cracks or gaps which appear in concrete slabs used in building foundations. The strength of these sources is determined from the results of the diffusion model proposed by Landman in a previous work. Once the strength of the source is known, additional transport mechanisms can be treated in a simple manner. Pressure differences across the slab and in the underlying soil are discussed. The rate of exhalation through a portion of the cracked slab is determined and compared to the rate of exhalation from the same surface area of bare soil. In typical cases, their ratios vary from 0.25 to 0.50. Therefore, these transport mechanisms account for a larger portion of the levels of radon found in many houses than do previous models.

  18. First wall fusion blanket temperature variation - slab geometry

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1978-01-01

    The first wall of a fusion blanket is approximated by a slab, with the surface facing the plasma subjected to an applied heat flux, while the rear surface is convectively cooled. The relevant parameters affecting the heat transfer during the early phases of heating as well as for large times are established. Analytical solutions for the temperature variation with time and space are derived. Numerical calculations for an aluminum and stainless steel slab are performed for a wall loading of 1 MW(th)/m 2 . Both helium and water cooling are considered. (Auth.)

  19. Slab melting and magma formation beneath the southern Cascade arc

    Science.gov (United States)

    Walowski, Kristina J.; Wallace, Paul J.; Clynne, Michael A.; Rasmussen, D.J.; Weis, D.

    2016-01-01

    The processes that drive magma formation beneath the Cascade arc and other warm-slab subduction zones have been debated because young oceanic crust is predicted to largely dehydrate beneath the forearc during subduction. In addition, geochemical variability along strike in the Cascades has led to contrasting interpretations about the role of volatiles in magma generation. Here, we focus on the Lassen segment of the Cascade arc, where previous work has demonstrated across-arc geochemical variations related to subduction enrichment, and H-isotope data suggest that H2O in basaltic magmas is derived from the final breakdown of chlorite in the mantle portion of the slab. We use naturally glassy, olivine-hosted melt inclusions (MI) from the tephra deposits of eight primitive (MgO>7 wt%) basaltic cinder cones to quantify the pre-eruptive volatile contents of mantle-derived melts in this region. The melt inclusions have B concentrations and isotope ratios that are similar to mid-ocean ridge basalt (MORB), suggesting extensive dehydration of the downgoing plate prior to reaching sub-arc depths and little input of slab-derived B into the mantle wedge. However, correlations of volatile and trace element ratios (H2O/Ce, Cl/Nb, Sr/Nd) in the melt inclusions demonstrate that geochemical variability is the result of variable addition of a hydrous subduction component to the mantle wedge. Furthermore, correlations between subduction component tracers and radiogenic isotope ratios show that the subduction component has less radiogenic Sr and Pb than the Lassen sub-arc mantle, which can be explained by melting of subducted Gorda MORB beneath the arc. Agreement between pMELTS melting models and melt inclusion volatile, major, and trace element data suggests that hydrous slab melt addition to the mantle wedge can produce the range in primitive compositions erupted in the Lassen region. Our results provide further evidence that chlorite-derived fluids from the mantle portion of the

  20. Optical refractometer based on an asymmetrical twin-core fiber Michelson interferometer.

    Science.gov (United States)

    Zhou, Ai; Zhang, Yanhui; Li, Guangping; Yang, Jun; Wang, Yuzhuo; Tian, Fengjun; Yuan, Libo

    2011-08-15

    We report and demonstrate an optical refractometer based on a compact fiber Michelson interferometer. The Michelson interferometer is composed of an asymmetrical twin-core fiber containing a central core and a side core. By chemically etching a segment of the twin-core fiber until the side core is exposed, the effective index of the side core in the etched region is sensitive to the environmental refractive index, which leads to a shift of the transmission spectrum of the Michelson interferometer. The experimental results show that such a device has a refractive index resolution of more than 800 nm/refractive index unit in the range of 1.34-1.37. © 2011 Optical Society of America

  1. Double seismic zone in downgoing slabs and the viscosity of the mesosphere

    International Nuclear Information System (INIS)

    Sleep, N.H.

    1979-01-01

    The seismic zone beneath several island arcs between about 100 and 200 km depth consists of an upper zone having down-dip compression and a lower zone having down-dip tension. Several numerical models of the Aleutina arc were computed to test the hypothesis that these double seismic zones are due to sagging of the slab under its own weight. This sagging occurs because the asthenosphere (between about 100 and 200 km) provides little support or resistance to the slab, which is supported from below by the more viscous mesosphere and from above by the lithosphere. The viscosity of the mesosphere was constrained to the interval between 0.25 x 10 22 and 0.5 x 10 22 P by noting that the slab would have mainly down-dip compression at higher viscosities and mainly down-dip tension at lower viscosities. The deviatoric stress in the slab and the fault plane between the slab and the island arc is about 200--300 bars (expressed as shear stress). The models were calibrated to the observed depth and gravity anomalies in the trench

  2. Inspection method of optical fiber preforms by x-ray absorption measurements

    International Nuclear Information System (INIS)

    Takahashi, H.; Nakamura, K.; Shibuya, S.; Kuroha, T.

    1980-01-01

    A method for measuring the refractive index distribution of optical fiber preforms has been developed by application of the theory of X-ray radiography. The composition of quartz optical fiber materials is, in most cases, limited to the group of five elements - Ge, P, Si, O and B. Of them, Ge is an essential element to determine the structure of refractive index of an optical fiber and the distribution of its density can be regarded approximately as the distribution of refractive index. On the other hand, the coefficient of low-energy X-ray absorption by the elements depends markedly on their atomic numbers, and Ge has a far larger absorption coefficient than the other four elements. Therefore, analysis of the intensity of X-ray absorbed by optical fiber preforms makes it possible to determine the distribution of Ge density and consequently the distribution of refractive index. (author)

  3. Micromachining structured optical fibers using focused ion beam milling

    NARCIS (Netherlands)

    Martelli, C.; Olivero, P.; Canning, J.; Groothoff, N.; Gibson, B.; Huntington, S.

    2007-01-01

    A focused ion beam is used to mill side holes in air-silica structured fibers. By way of example, side holes are introduced in two types of air-structured fiber, (1) a photonic crystal four-ring fiber and (2) a six-hole single-ring step-index structured fiber. © 2007 Optical Society of America.

  4. Influence of transverse reinforcement on perforation resistance of reinforced concrete slabs under hard missile impact

    International Nuclear Information System (INIS)

    Orbovic, Nebojsa; Sagals, Genadijs; Blahoianu, Andrei

    2015-01-01

    This paper describes the work conducted by the Canadian Nuclear Safety Commission (CNSC) related to the influence of transverse reinforcement on perforation capacity of reinforced concrete (RC) slabs under “hard” missile impact (impact with negligible missile deformations). The paper presents the results of three tests on reinforced concrete slabs conducted at VTT Technical Research Centre (Finland), along with the numerical simulations as well as a discussion of the current code provisions related to impactive loading. Transverse reinforcement is widely used for improving the shear and punching strength of concrete structures. However, the effect of this reinforcement on the perforation resistance under localized missile impact is still unclear. The goal of this paper is to fill the gap in the current literature related to this topic. Based on similar tests designed by the authors with missile velocity below perforation velocity, it was expected that transverse reinforcement would improve the perforation resistance. Three slabs were tested under almost identical conditions with the only difference being the transverse reinforcement. One slab was designed without transverse reinforcement, the second one with the transverse reinforcement in form of conventional stirrups with hooks and the third one with the transverse reinforcement in form of T-headed bars. Although the transverse reinforcement reduced the overall damage of the slabs (the rear face scabbing), the conclusion from the tests is that the transverse reinforcement does not have important influence on perforation capacity of concrete slabs under rigid missile impact. The slab with T-headed bars presented a slight improvement compared to the baseline specimen without transverse reinforcement. The slab with conventional stirrups presented slightly lower perforation capacity (higher residual missile velocity) than the slab without transverse reinforcement. In conclusion, the performed tests show slightly

  5. Calculation of spin and orbital magnetizations in Fe slab systems at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Garibay-Alonso, R [Facultad de Ciencias FIsico Matematicas, Universidad Autonoma de Coahuila, Conjunto Universitario Camporredondo, Edificio ' D' , 25000 Saltillo (Mexico); Reyes-Reyes, M [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis PotosI, Alvaro Obregon 64, San Luis PotosI (Mexico); Urrutia-Banuelos, EfraIn [Departamento de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, Hermosillo, Sonora 83190 (Mexico); Lopez-Sandoval, R [Instituto Potosino de Investigacion CientIfica y Tecnologica, Camino a la presa San Jose 2055, CP 78216, San Luis PotosI (Mexico)

    2010-02-10

    The temperature dependence of spin and orbital local magnetizations is theoretically determined for the non-bulk atomic region of (001) and (110) Fe slab systems. A d band Hamiltonian, including spin-orbit coupling terms, was used to model the slabs, which were emulated by using Fe films of sufficient thickness to reach a bulk behavior at their most inner atomic layers. The temperature effects were considered within the static approximation and a simple mean field theory was used to integrate the local magnetic moment and charge thermal fluctuations. The results reflect a clear interplay between electronic itinerancy and the local atomic environment and they can be physically interpreted from the local small charge transfers occurring in the superficial region of the slabs. For recovering the experimental behavior on the results for the (001) slab system, the geometrical relaxations at its non-bulk atomic layers and a d band filling variation are required. A study on the magnetic anisotropy aspects in the superficial region of the slabs is additionally performed by analyzing the results for the orbital local magnetization calculated along two different magnetization directions in both slab systems.

  6. Effectiveness of Fiber Reinforcement on the Mechanical Properties and Shrinkage Cracking of Recycled Fine Aggregate Concrete

    Science.gov (United States)

    Nam, Jeongsoo; Kim, Gyuyong; Yoo, Jaechul; Choe, Gyeongcheol; Kim, Hongseop; Choi, Hyeonggil; Kim, Youngduck

    2016-01-01

    This paper presents an experimental study conducted to investigate the effect of fiber reinforcement on the mechanical properties and shrinkage cracking of recycled fine aggregate concrete (RFAC) with two types of fiber—polyvinyl alcohol (PVA) and nylon. A small fiber volume fraction, such as 0.05% or 0.1%, in RFAC with polyvinyl alcohol or nylon fibers was used for optimum efficiency in minimum quantity. Additionally, to make a comparative evaluation of the mechanical properties and shrinkage cracking, we examined natural fine aggregate concrete as well. The test results revealed that the addition of fibers and fine aggregates plays an important role in improving the mechanical performance of the investigated concrete specimens as well as controlling their cracking behavior. The mechanical properties such as compressive strength, splitting tensile strength, and flexural strength of fiber-reinforced RFAC were slightly better than those of non-fiber-reinforced RFAC. The shrinkage cracking behavior was examined using plat-ring-type and slab-type tests. The fiber-reinforced RFAC showed a greater reduction in the surface cracks than non-fiber-reinforced concrete. The addition of fibers at a small volume fraction in RFAC is more effective for drying shrinkage cracks than for improving mechanical performance. PMID:28773256

  7. Seismic Behaviour of Masonry Vault-Slab Structures

    International Nuclear Information System (INIS)

    Chesi, Claudio; Butti, Ferdinando; Ferrari, Marco

    2008-01-01

    Spandrel walls typically play a structural role in masonry buildings, transferring load from a slab to the supporting vault. Some indications are given in the literature on the behaviour of spandrels under the effect of vertical loads, but little attention is given to the effect coming from lateral forces acting on the building. An opportunity to investigate this problem has come from the need of analyzing a monumental building which was damaged by the Nov. 24, 2004 Val Sabbia earthquake in the north of Italy. The finite element model set up for the analysis of the vault-spandrel-slab system is presented and the structural role resulting for the spandrels is discussed

  8. Experimental research of slab cast over precast joists with prestressed reinforcement

    Directory of Open Access Journals (Sweden)

    Koyankin Aleksandr Aleksandrovich

    2016-03-01

    Full Text Available At the present time reinforced concrete is the main construction material in civil and industrial construction. Cast-in-place and precast construction is gradually becoming a more widespread type of house-building, but still there is a lack of data, including experimental data, which allows evaluating the stress and strain state of a construction of a slab cast over precast joists. Experimental research of stress and strain state of slab cast over precast joists with prestressed reinforcement was carried out. An experimental model of a fragment of a hybrid precast/cast-in-place building was produced and tested (reduction scale 1:6. The experimental investigations of slab cast over precast joists with prestressed reinforcement proved that the construction solution of the framework offered in the previous works of the authors possess good stiffness, crack-resistance and bearing capacity. It well fits for constructing the slabs of long spans in residential and public buildings.

  9. Preparation and Characterization of Bragg Fibers for Delivery of Laser Radiation at 1064 nm

    Directory of Open Access Journals (Sweden)

    V. Matejec

    2013-04-01

    Full Text Available Bragg fibers offer new performance for transmission of high laser energies over long distances. In this paper theoretical modeling, preparation and characterization of Bragg fibers for delivery laser radiation at 1064 nm are presented. Investigated Bragg fibers consist of the fiber core with a refractive index equal to that of silica which is surrounded by three pairs of circular layers. Each pair is composed of one layer with a high and one layer with a low refractive index and characterized by a refractive-index difference around 0.03. Propagation constants and radiation losses of the fundamental mode in such a structure were calculated on the basis of waveguide optics. Preforms of the Bragg fibers were prepared by the MCVD method using germanium dioxide, phosphorous pentoxide and fluorine as silica dopants. The fibers with a diameter of 170 m were drawn from the preforms. Refractive-index profiles, angular distributions of the output power and optical losses of the prepared fibers were measured. Results of testing the fibers for delivery radiation of a pulse Nd:YAG laser at 1064 nm are also shown.

  10. Wave propagation through a dielectric layer containing densely packed fibers

    International Nuclear Information System (INIS)

    Lee, Siu-Chun

    2011-01-01

    This paper presents the theoretical formulation for the propagation of electromagnetic wave through a dielectric layer containing a random dense distribution of fibers. The diameter of the fibers is comparable to the inter-fiber spacing and wavelength of the incident radiation, but is much smaller than the thickness of the layer. Discontinuity of refractive index across the boundaries of the dielectric layer resulted in multiple internal reflection of both the primary source wave and the scattered waves. As a result the incident waves on the fibers consist of the multiply-reflected primary waves, scattered waves from other fibers, and scattered-reflected waves from the boundaries. The effective propagation constant of the dielectric fiber layer was developed by utilizing the Effective field-Quasicrystalline approximation. The influence of the refractive index of the dielectric medium on the radiative properties of a dense fiber layer was examined by means of numerical analyses.

  11. Conjecture with water and rheological control for subducting slab in the mantle transition zone

    Directory of Open Access Journals (Sweden)

    Fumiko Tajima

    2015-01-01

    Full Text Available Seismic observations have shown structural variation near the base of the mantle transition zone (MTZ where subducted cold slabs, as visualized with high seismic speed anomalies (HSSAs, flatten to form stagnant slabs or sink further into the lower mantle. The different slab behaviors were also accompanied by variation of the “660 km” discontinuity depths and low viscosity layers (LVLs beneath the MTZ that are suggested by geoid inversion studies. We address that deep water transport by subducted slabs and dehydration from hydrous slabs could affect the physical properties of mantle minerals and govern slab dynamics. A systematic series of three-dimensional numerical simulation has been conducted to examine the effects of viscosity reduction or contrast between slab materials on slab behaviors near the base of the MTZ. We found that the viscosity reduction of subducted crustal material leads to a separation of crustal material from the slab main body and its transient stagnation in the MTZ. The once trapped crustal materials in the MTZ eventually sink into the lower mantle within 20–30 My from the start of the plate subduction. The results suggest crustal material recycle in the whole mantle that is consistent with evidence from mantle geochemistry as opposed to a two-layer mantle convection model. Because of the smaller capacity of water content in lower mantle minerals than in MTZ minerals, dehydration should occur at the phase transformation depth, ∼660 km. The variation of the discontinuity depths and highly localized low seismic speed anomaly (LSSA zones observed from seismic P waveforms in a relatively high frequency band (∼1 Hz support the hypothesis of dehydration from hydrous slabs at the phase boundary. The LSSAs which correspond to dehydration induced fluids are likely to be very local, given very small hydrogen (H+ diffusivity associated with subducted slabs. The image of such local LSSA zones embedded in HSSAs may not

  12. Performance and damages of R.C. slabs in fire

    DEFF Research Database (Denmark)

    Giuliani, Luisa; Gentili, Filippo

    2015-01-01

    Contrary to a common misconception, concrete structures are particularly vulnerable to fire, as witnesses by several cases of fire-induced collapses of buildings with a primary concrete structural system. Even when no collapse occurs, concrete elements are permanently damaged by the fire and may...... on the vulnerability of the slab to the fire action and can be used for optimizing the design on the basis of the required class of resistance or for choosing between different slab alternatives....

  13. Benefits of glass fibers in solar fiber optic lighting systems.

    Science.gov (United States)

    Volotinen, Tarja T; Lingfors, David H S

    2013-09-20

    The transmission properties and coupling of solar light have been studied for glass core multimode fibers in order to verify their benefits for a solar fiber optic lighting system. The light transportation distance can be extended from 20 m with plastic fibers to over 100 m with the kind of glass fibers studied here. A high luminous flux, full visible spectrum, as well as an outstanding color rendering index (98) and correlated color temperature similar to the direct sun light outside have been obtained. Thus the outstanding quality of solar light transmitted through these fibers would improve the visibility of all kinds of objects compared to fluorescent and other artificial lighting. Annual relative lighting energy savings of 36% in Uppsala, Sweden, and 76% in Dubai were estimated in an office environment. The absolute savings can be doubled by using glass optical fibers, and are estimated to be in the order of 550 kWh/year in Sweden and 1160 kWh/year in Dubai for one system of only 0.159 m(2) total light collecting area. The savings are dependent on the fiber length, the daily usage time of the interior, the type of artificial lighting substituted, the system light output flux, and the available time of sunny weather at the geographic location.

  14. Fiber-Optic Refractometer Based on an Etched High-Q ?-Phase-Shifted Fiber-Bragg-Grating

    OpenAIRE

    Zhang, Qi; Ianno, Natale J.; Han, Ming

    2013-01-01

    We present a compact and highly-sensitive fiber-optic refractometer based on a high-Q p-phase-shifted fiber-Bragg-grating (pFBG) that is chemically etched to the core of the fiber. Due to the p phase-shift, a strong pFBG forms a high-Q optical resonator and the reflection spectrum features an extremely narrow notch that can be used for highly sensitivity refractive index measurement. The etched pFBG demonstrated here has a diameter of ~9.3 μm and a length of only 7 mm, leading to a refractive...

  15. Microinstabilities in a radially contracting inhomogeneous cylindrical plasma slab

    International Nuclear Information System (INIS)

    Deutsch, R.; Kaeppeler, H.J.

    1980-07-01

    In order to study the development of microinstabilities in a collapsing cylindrical plasma sheath, corresponding to the situations in a z-pinch or a plasma focus, the dispersion relation for electromagnetic perturbations is derived with the aid of a newly established slab-model for an inhomogeneous, radially contracting plasma. In contrast to previously used slab-models, the orientation of the electric field is in direction of the cylinder axis and the azimuthal magnetic field is induced by the current flowing through the cylindrical plasma slab. The Vlasov equation is used together with the Krook collision term in order to include the influence of collisions. The results of this theory presented in this report will be used to calculate the growth of drift instabilities in the compression phase of a plasma focus, and shall serve as a basis for further development of a more general dispersion relation including runaway-effects. (orig.)

  16. Controllable pulse width of bright similaritons in a tapered graded index diffraction decreasing waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, S. Arun [Department of EEE, Anna University, Ramanathapuram 623513 (India); Malathi, V. [Department of EEE, Anna University, Regional office, Madurai (India); Mani Rajan, M. S., E-mail: senthilmanirajanofc@gmail.com [Department of Physics, Anna University, Ramanathapuram 623513 (India); Loomba, Shally [Department of Physics, Panjab University, Chandigarh 160014 (India)

    2016-03-15

    We obtain the bright similariton solutions for generalized inhomogeneous nonlinear Schrödinger equation (GINLSE) which governs the pulse propagation in a tapered graded index diffraction decreasing waveguide (DDW). The exact solutions have been worked out by employing similarity transformations which involve the mapping of the GINLSE to standard NLSE for the certain conditions of the parameters. By making use of the exact analytical solutions, we have investigated the dynamical behavior of optical similariton pairs and have suggested the methods to control them as they propagate through DDW. Moreover, pulse width of similariton is controlled through various profiles. These results are helpful to understand the similaritons in DDW and can be potentially useful for future experiments in optical communications which involve optical amplifiers and long-haul telecommunication networks.

  17. Quality of Slab Track Construction - Track Alignment Design and Track Geometry

    Science.gov (United States)

    Šestáková, Janka

    2015-05-01

    The slab track superstructure design (without ballast) is a perspective construction especially for building tunnels and bridges in the modernized sections of railway tracks in Slovakia. Monitoring of the structure described in this article is focused on the transition areas between standard structure with ballast and slab track construction.

  18. Disorders influences on the focusing effect of all-dielectric photonic crystal slab superlens

    Energy Technology Data Exchange (ETDEWEB)

    Hu Xiaoyong; Xin Cheng [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Gong Qihuang [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China)], E-mail: qhgong@pku.edu.cn

    2009-04-13

    The influences of structure disorders on the subwavelength focusing properties of an all-dielectric photonic crystal slab superlens are theoretically studied. The structure disorders are considered as randomly perturbing the position or diameter of air holes of the photonic crystal slab. The results show that the photonic crystal slab superlens can tolerate within 10% degree of positional disorder or 15% degree of diameter disorder without destroying the focusing function.

  19. Disorders influences on the focusing effect of all-dielectric photonic crystal slab superlens

    International Nuclear Information System (INIS)

    Hu Xiaoyong; Xin Cheng; Gong Qihuang

    2009-01-01

    The influences of structure disorders on the subwavelength focusing properties of an all-dielectric photonic crystal slab superlens are theoretically studied. The structure disorders are considered as randomly perturbing the position or diameter of air holes of the photonic crystal slab. The results show that the photonic crystal slab superlens can tolerate within 10% degree of positional disorder or 15% degree of diameter disorder without destroying the focusing function.

  20. Photonic slab heterostructures based on opals

    Science.gov (United States)

    Palacios-Lidon, Elisa; Galisteo-Lopez, Juan F.; Juarez, Beatriz H.; Lopez, Cefe

    2004-09-01

    In this paper the fabrication of photonic slab heterostructures based on artificial opals is presented. The innovated method combines high-quality thin-films growing of opals and silica infiltration by Chemical Vapor Deposition through a multi-step process. By varying structure parameters, such as lattice constant, sample thickness or refractive index, different heterostructures have been obtained. The optical study of these systems, carried out by reflectance and transmittance measurements, shows that the prepared samples are of high quality further confirmed by Scanning Electron Microscopy micrographs. The proposed novel method for sample preparation allows a high control of the involved structure parameters, giving the possibility of tunning their photonic behavior. Special attention in the optical response of these materials has been addressed to the study of planar defects embedded in opals, due to their importance in different photonic fields and future technological applications. Reflectance and transmission measurements show a sharp resonance due to localized states associated with the presence of planar defects. A detailed study of the defect mode position and its dependance on defect thickness and on the surrounding photonic crystal is presented as well as evidence showing the scalability of the problem. Finally, it is also concluded that the proposed method is cheap and versatile allowing the preparation of opal-based complex structures.

  1. In-fiber quasi-Michelson interferometer with a core-cladding-mode fiber end-face mirror.

    Science.gov (United States)

    Rong, Qiangzhou; Qiao, Xueguang; Du, Yanying; Feng, Dingyi; Wang, Ruohui; Ma, Yue; Sun, Hao; Hu, Manli; Feng, Zhongyao

    2013-03-01

    An in-fiber quasi-Michelson interferometer working on reflection is proposed and experimentally demonstrated. The device consists of a short section of multimode fiber (MMF) followed by a single-mode fiber (SMF) whose end face is terminated by a thick silver film. The MMF excites cladding modes into downstream SMF via the mismatched-core splicing interface. The core-cladding modes are reflected back by the silver film and recoupled to the core of lead-in SMF through the MMF. A well-defined interference pattern is obtained as the result of core-cladding mode interference. A configuration with a 40 mm pigtail SMF at a wavelength of 1528 nm exhibits a water level sensitivity of -49.8 pm/mm and a liquid refractive index sensitivity of -574.6 (pm/mm)/RIU (refractive index unit). In addition, the selected dip provides a considered temperature sensitivity of -61.26 pm/°C and a high displacement sensitivity of -1018.6 pm/mm.

  2. Optofluidic in-fiber interferometer based on hollow optical fiber with two cores.

    Science.gov (United States)

    Yuan, Tingting; Yang, Xinghua; Liu, Zhihai; Yang, Jun; Li, Song; Kong, Depeng; Qi, Xiuxiu; Yu, Wenting; Long, Qunlong; Yuan, Libo

    2017-07-24

    We demonstrate a novel integrated optical fiber interferometer for in-fiber optofluidic detection. It is composed of a specially designed hollow optical fiber with a micro-channel and two cores. One core on the inner surface of the micro-channel is served as sensing arm and the other core in the annular cladding is served as reference arm. Fusion-and-tapering method is employed to couple light from a single mode fiber to the hollow optical fiber in this device. Sampling is realized by side opening a microhole on the surface of the hollow optical fiber. Under differential pressure between the end of the hollow fiber and the microhole, the liquids can form steady microflows in the micro-channel. Simultaneously, the interference spectrum of the interferometer device shifts with the variation of the concentration of the microfluid in the channel. The optofluidic in-fiber interferometer has a sensitivity of refractive index around 2508 nm/RIU for NaCl. For medicine concentration detection, its sensitivity is 0.076 nm/mmolL -1 for ascorbic acid. Significantly, this work presents a compact microfluidic in-fiber interferometer with a micro-channel which can be integrated with chip devices without spatial optical coupling and without complex manufacturing procedure of the waveguide on the chips.

  3. Study of entropy generation in a slab with non-uniform internal heat generation

    Directory of Open Access Journals (Sweden)

    El Haj Assad Mamdouh

    2013-01-01

    Full Text Available Analysis of entropy generation in a rectangular slab with a nonuniform internal heat generation is presented. Dimensionless local and total entropy generation during steady state heat conduction through the slab are obtained. Two different boundary conditions have been considered in the analysis, the first with asymmetric convection and the second with constant slab surface temperature. Temperature distribution within the slab is obtained analytically. The study investigates the effect of some relevant dimensionless heat transfer parameters on entropy generation. The results show that there exists a minimum local entropy generation but there does not exist a minimum total entropy generation for certain combinations of the heat transfer parameters. The results of calculations are presented graphically.

  4. Hierarchically Structured Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Nicole E. Zander

    2013-01-01

    Full Text Available Traditional electrospun nanofibers have a myriad of applications ranging from scaffolds for tissue engineering to components of biosensors and energy harvesting devices. The generally smooth one-dimensional structure of the fibers has stood as a limitation to several interesting novel applications. Control of fiber diameter, porosity and collector geometry will be briefly discussed, as will more traditional methods for controlling fiber morphology and fiber mat architecture. The remainder of the review will focus on new techniques to prepare hierarchically structured fibers. Fibers with hierarchical primary structures—including helical, buckled, and beads-on-a-string fibers, as well as fibers with secondary structures, such as nanopores, nanopillars, nanorods, and internally structured fibers and their applications—will be discussed. These new materials with helical/buckled morphology are expected to possess unique optical and mechanical properties with possible applications for negative refractive index materials, highly stretchable/high-tensile-strength materials, and components in microelectromechanical devices. Core-shell type fibers enable a much wider variety of materials to be electrospun and are expected to be widely applied in the sensing, drug delivery/controlled release fields, and in the encapsulation of live cells for biological applications. Materials with a hierarchical secondary structure are expected to provide new superhydrophobic and self-cleaning materials.

  5. Multi-kW single fiber laser based on an extra large mode area fiber design

    Science.gov (United States)

    Langner, Andreas; Such, Mario; Schötz, Gerhard; Just, Florian; Leich, Martin; Schwuchow, Anka; Grimm, Stephan; Zimer, Hagen; Kozak, Marcin; Wedel, Björn; Rehmann, Georg; Bachert, Charley; Krause, Volker

    2012-02-01

    The quality of Yb-doped fused bulk silica produced by sintering of Yb-doped fused silica granulates has improved greatly in the past five years [1 - 4]. In particular, the refractive index and doping level homogeneity of such materials are excellent and we achieved excellent background fiber attenuation of the active core material down to about 20 dB/km at 1200 nm. The improvement of the Yb-doped fused bulk silica has enabled the development of multi-kW fiber laser systems based on a single extra large multimode laser fiber (XLMA fiber). When a single active fiber is used in combination with the XLMA multimode fiber of 1200 μm diameter simple and robust high power fiber laser setups without complex fiber coupling and fiber combiner systems become possible. In this papper, we will discuss in detail the development of the core material based on Yb-doped bulk silica and the characterization of Yb-doped fibers with different core compositions. We will also report on the excellent performance of a 4 kW fiber laser based on a single XLMA-fiber and show the first experimental welding results of steel sheets achieved with such a laser.

  6. Extended diffusion weighted magnetic resonance imaging with two-compartment and anomalous diffusion models for differentiation of low-grade and high-grade brain tumors in pediatric patients

    Energy Technology Data Exchange (ETDEWEB)

    Burrowes, Delilah; Deng, Jie [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States); Northwestern University, Feinberg School of Medicine, Department of Radiology, Chicago, IL (United States); Fangusaro, Jason R. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Hematology/Oncology, Chicago, IL (United States); Northwestern University, Feinberg School of Medicine, Department of Pediatrics-Hematology, Oncology, and Stem Cell Transplantation, Chicago, IL (United States); Nelson, Paige C.; Rozenfeld, Michael J. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States); Zhang, Bin [Cincinnati Children' s Hospital Medical Center, Department of Biostatistics and Epidemiology, Cincinnati, OH (United States); Wadhwani, Nitin R. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Pathology and Laboratory Medicine, Chicago, IL (United States); Northwestern University, Feinberg School of Medicine, Department of Pathology, Chicago, IL (United States)

    2017-08-15

    The purpose of this study was to examine advanced diffusion-weighted magnetic resonance imaging (DW-MRI) models for differentiation of low- and high-grade tumors in the diagnosis of pediatric brain neoplasms. Sixty-two pediatric patients with various types and grades of brain tumors were evaluated in a retrospective study. Tumor type and grade were classified using the World Health Organization classification (WHO I-IV) and confirmed by pathological analysis. Patients underwent DW-MRI before treatment. Diffusion-weighted images with 16 b-values (0-3500 s/mm{sup 2}) were acquired. Averaged signal intensity decay within solid tumor regions was fitted using two-compartment and anomalous diffusion models. Intracellular and extracellular diffusion coefficients (D{sub slow} and D{sub fast}), fractional volumes (V{sub slow} and V{sub fast}), generalized diffusion coefficient (D), spatial constant (μ), heterogeneity index (β), and a diffusion index (index{sub d}iff = μ x V{sub slow}/β) were calculated. Multivariate logistic regression models with stepwise model selection algorithm and receiver operating characteristic (ROC) analyses were performed to evaluate the ability of each diffusion parameter to distinguish tumor grade. Among all parameter combinations, D and index{sub d}iff jointly provided the best predictor for tumor grades, where lower D (p = 0.03) and higher index{sub d}iff (p = 0.009) were significantly associated with higher tumor grades. In ROC analyses of differentiating low-grade (I-II) and high-grade (III-IV) tumors, index{sub d}iff provided the highest specificity of 0.97 and D provided the highest sensitivity of 0.96. Multi-parametric diffusion measurements using two-compartment and anomalous diffusion models were found to be significant discriminants of tumor grading in pediatric brain neoplasms. (orig.)

  7. Gaps, tears and seismic anisotropy around the subducting slabs of the Antilles

    Science.gov (United States)

    Schlaphorst, David; Kendall, J.-Michael; Baptie, Brian; Latchman, Joan L.; Tait, Steve

    2017-02-01

    Seismic anisotropy in and beneath the subducting slabs of the Antilles is investigated using observations of shear-wave splitting. We use a combination of teleseismic and local events recorded at three-component broadband seismic stations on every major island in the area to map anisotropy in the crust, the mantle wedge and the slab/sub-slab mantle. To date this is the most comprehensive study of anisotropy in this region, involving 52 stations from 8 seismic networks. Local event delay times (0.21 ± 0.12 s) do not increase with depth, indicating a crustal origin in anisotropy and an isotropic mantle wedge. Teleseismic delay times are much larger (1.34 ± 0.47 s), with fast shear-wave polarisations that are predominantly parallel to trend of the arc. These observations can be interpreted three ways: (1) the presence of pre-existing anisotropy in the subducting slab; (2) anisotropy due to sub-slab mantle flow around the eastern margin of the nearly stationary Caribbean plate; (3) some combination of both mechanisms. However, there are two notable variations in the trench-parallel pattern of anisotropy - trench-perpendicular alignment is observed in narrow regions east of Puerto Rico and south of Martinique. These observations support previously proposed ideas of eastward sublithospheric mantle flow through gaps in the slab. Furthermore, the pattern of anisotropy south of Martinique, near Saint Lucia is consistent with a previously proposed location for the boundary between the North and South American plates.

  8. Slab Geometry and Segmentation on Seismogenic Subduction Zone; Insight from gravity gradients

    Science.gov (United States)

    Saraswati, A. T.; Mazzotti, S.; Cattin, R.; Cadio, C.

    2017-12-01

    Slab geometry is a key parameter to improve seismic hazard assessment in subduction zones. In many cases, information about structures beneath subduction are obtained from geophysical dedicated studies, including geodetic and seismic measurements. However, due to the lack of global information, both geometry and segmentation in seismogenic zone of many subductions remain badly-constrained. Here we propose an alternative approach based on satellite gravity observations. The GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission enables to probe Earth deep mass structures from gravity gradients, which are more sensitive to spatial structure geometry and directional properties than classical gravitational data. Gravity gradients forward modeling of modeled slab is performed by using horizontal and vertical gravity gradient components to better determine slab geophysical model rather than vertical gradient only. Using polyhedron method, topography correction on gravity gradient signal is undertaken to enhance the anomaly signal of lithospheric structures. Afterward, we compare residual gravity gradients with the calculated signals associated with slab geometry. In this preliminary study, straightforward models are used to better understand the characteristic of gravity gradient signals due to deep mass sources. We pay a special attention to the delineation of slab borders and dip angle variations.

  9. Finite element analysis-based study of fiber Bragg grating sensor for cracks detection in reinforced concrete

    Science.gov (United States)

    Wang, Lili; Xin, Xiangjun; Song, Jun; Wang, Honggang; Sai, Yaozhang

    2018-02-01

    Fiber Bragg sensor is applied for detecting and monitoring the cracks that occur in the reinforced concrete. We use the three-dimensional finite element model to provide the three-axial stresses along the fiber Bragg sensor and then converted the stresses as a wavelength deformation of fiber Bragg grating (FBG) reflected spectrum. For the crack detection, an FBG sensor with 10-mm length is embedded in the reinforced concrete, and its reflection spectrum is measured after loading is applied to the concrete slab. As a result, the main peak wavelength and the ratio of the peak reflectivity to the maximal side-mode reflectivity of the optic-fiber grating represent the fracture severity. The fact that the sharp decreasing of the ratio of the peak reflectivity to the maximal side-mode reflectivity represents the early crack is confirmed by the theoretical calculation. The method can be used to detect the cracks in the reinforced concrete and give safety evaluation of large-scale infrastructure.

  10. Ductile Tearing Resistance Indexing of Automotive Grade DP 590 Steel Sheets: EWF Testing Using DENT Specimens

    Science.gov (United States)

    Sahoo, Subhadra; Padmapriya, N.; De, Partha Sarathi; Chakraborti, P. C.; Ray, S. K.

    2018-03-01

    The essential work of fracture (EWF) method has been explored for indexing the ductile tearing resistance of DP 590 automotive grade dual-phase steel sheet both in longitudinal (L-T) and transverse (T-L) orientations. The simplest possible test and analysis procedures have been adopted. The EWF method is found to be eminently suitable for routine quality control and product development purposes for such materials. Areas for further research for improving the experimental strategy are highlighted. For the investigated steel sheet, the estimated tearing resistance is found to be distinctly higher for the L-T orientation compared to the T-L orientation; the reason thereof merits further investigation.

  11. Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering

    International Nuclear Information System (INIS)

    Bao Xiaoyi; Zhang Chunshu; Li Wenhai; Eisa, M; El-Gamal, S; Benmokrane, B

    2008-01-01

    For the first time to our knowledge, distributed impact waves due to the highway traffic on concrete slabs reinforced with FRP bars are monitored in real time using stimulated Brillouin scattering. The impact wave is caused by the traffic passing on the highway pavement at high speed (>100 km h −1 ), which induced pressure on the concrete slabs, and in turn created a local birefringence change, leading to variation of the local state of polarization change (SOP). The pump and probe waves of the stimulated Brillouin scattering 'see' the SOP change and react with a decrease of the Brillouin gain or loss signal, when the pump and probe waves have the same input polarization state. The frequency difference between the pump and probe waves are locked at the static-strain-related Brillouin frequency. Optical fiber was embedded throughout the concrete pavement continuously reinforced with FRP bars in Highway 40 East, Montréal, Quebec to detect impact waves caused by cars and trucks passing on these pavements at a sampling rate of 10 kHz. A spatial resolution of 2 m was used over a sensing length of 300 m

  12. Evaluation of the possibility to use thick slabs of reconstructed outer breast tomosynthesis slice images

    Science.gov (United States)

    Petersson, Hannie; Dustler, Magnus; Tingberg, Anders; Timberg, Pontus

    2016-03-01

    The large image volumes in breast tomosynthesis (BT) have led to large amounts of data and a heavy workload for breast radiologists. The number of slice images can be decreased by combining adjacent image planes (slabbing) but the decrease in depth resolution can considerably affect the detection of lesions. The aim of this work was to assess if thicker slabbing of the outer slice images (where lesions seldom are present) could be a viable alternative in order to reduce the number of slice images in BT image volumes. The suggested slabbing (an image volume with thick outer slabs and thin slices between) were evaluated in two steps. Firstly, a survey of the depth of 65 cancer lesions within the breast was performed to estimate how many lesions would be affected by outer slabs of different thicknesses. Secondly, a selection of 24 lesions was reconstructed with 2, 6 and 10 mm slab thickness to evaluate how the appearance of lesions located in the thicker slabs would be affected. The results show that few malignant breast lesions are located at a depth less than 10 mm from the surface (especially for breast thicknesses of 50 mm and above). Reconstruction of BT volumes with 6 mm slab thickness yields an image quality that is sufficient for lesion detection for a majority of the investigated cases. Together, this indicates that thicker slabbing of the outer slice images is a promising option in order to reduce the number of slice images in BT image volumes.

  13. Design of Matched Cladding Fiber with UV-sensitive Cladding for Minimization of Claddingmode Losses in Fiber Bragg Gratings

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup; Berendt, Martin Ole; Bjarklev, Anders Overgaard

    2000-01-01

    The effect on the Bragg-grating-induced cladding-mode coupling of varying the extent of the photosensitive region in a step-index fiber is analyzed. We introduce a figure of merit for the suppression of cladding-mode loss and compare different matched cladding fiber designs. It is found to be adv......The effect on the Bragg-grating-induced cladding-mode coupling of varying the extent of the photosensitive region in a step-index fiber is analyzed. We introduce a figure of merit for the suppression of cladding-mode loss and compare different matched cladding fiber designs. It is found...... to be advantageous to increase the extent of the photosensitive region. However, no significant improvement is obtained by extending the photosensitive region more than approximately 10 mu m into the cladding. This result is not in agreement with a simple analysis that neglects UV absorption, which suggests...... that the radius of the photosensitive region should be close to twice as large. (C) 2000 Academic Press....

  14. Optics of turbid slabs

    International Nuclear Information System (INIS)

    Kokhanovsky, A.A.

    2002-01-01

    This paper is devoted to an alternative derivation of the asymptotic equations for the reflection and transmission functions of turbid slabs. The derivation is based on the reciprocity principle and the law of conservation of energy. Thus it is very general. This allows us to apply the obtained equations even in cases where the foundations of the radiative transfer theory are in question (e.g. for highly concentrated suspensions and pastes). (author)

  15. A device for heat-proofing the closing slab of a fast neutron nuclear reactor

    International Nuclear Information System (INIS)

    Lemercier, Guy.

    1973-01-01

    A device proofing the closing-slab comprising a metal-shoe against which is applied said device, the latter being constituted by a plurality of panels, each of which is formed by a padding of superimposed metal-cloths arranged in parallel relationship to the slab to be heat-proofed. Said device is characterized in that each panel is contained in a casing applied against the slab, constituted by two metal half-boxes of parallelepipedic shape embedded into each other. This can be applied to high-power reactors for protecting the slab against the aerosols of the coolant liquid-metal [fr

  16. Ionic Liquids as a New Platform for Fiber Brittleness Removal

    Directory of Open Access Journals (Sweden)

    Zhili Zhang

    2015-08-01

    Full Text Available In the present study, three ionic liquids, 1-butyl-3-methylimidazolium chloride ([BMIM]Cl, 1-allyl-3-methylimidazolium ([AMIM]Cl, and 1-ethyl-3-methylimidazolium chloride dimethyphosphate ([EMIM]DMP, were used to eliminate the brittleness of recycled fibers. The results showed that the pretreatments with ionic liquids were able to modify and improve the properties of recycled fibers even at high moisture contents. [EMIM]DMP gave better performance compared to [BMIM]Cl and [AMIM]Cl, which can tolerate higher moisture contents. The optimal conditions of EMIM]DMP pretreatment were moisture content of 65%, [EMIM]DMP dosage of 20 wt-%, 80 °C, and 60 min, for which a higher brittleness removal was obtained. The tensile index, bursting index, and tearing index of handsheets were increased by 32.4%, 57.0%, and 46.5%, respectively. Fiber quality was improved as demonstrated by fiber length, lowered fines content, and increased swellability. Such results imply that ionic liquids pretreatment can promote the swelling of recycled fibers and remove their brittleness.

  17. IMPROVEMENT OF SLAB REHEATING PROCESS AT USIMINAS THROUGH MATHEMATICAL SIMULATION

    Directory of Open Access Journals (Sweden)

    Antônio Adel dos Santos

    2012-09-01

    Full Text Available Basic characteristics and application examples of the mathematical simulator for reheating process in walking-beam type furnaces, that has been developed and applied to Usiminas plate mill line at Ipatinga, are shown in this paper. This is a bi-dimensional mathematical model solved by the finite volume method, validated by temperature measurements inside the slab during heating and coded as a visual tool. Among these applications, the following can be highlighted: (i determination of suitable furnace zone temperatures and residence times for processing steels by accelerated cooling technology; (ii determination of slab average temperature at discharging as well as at each zone exit, supplying data to be fed to the automation system at the comissioning stage; (iii analyses of slab thermal distribution through the reheating process, enabling operational optimization

  18. Influence of a variable Rayleigh scattering-loss coefficient on the light backscattering in multimode optical fibers.

    Science.gov (United States)

    Bisyarin, M A; Kotov, O I; Hartog, A H; Liokumovich, L B; Ushakov, N A

    2017-06-01

    The recently developed diffraction technique of analytical investigation of the Rayleigh backscattering produced by an incident fundamental mode in a multimode optical fiber with an arbitrary refractive index profile is supplemented by taking into account the Rayleigh scattering-loss coefficient, which could be variable within the fiber cross section. The relative changes in various radial and azimuthal modes' excitation levels, due to some typical radial dependences of this coefficient, are computed for the quadratic- and step-index fibers. It is stated that the excitation efficiency could either rise or decay for different modes. The effect of the variable Rayleigh scattering-loss coefficient is shown to be more noticeable in the fibers with a quadratic refractive index profile, whereas it is negligible in actual multimode step-index fibers.

  19. High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees

    DEFF Research Database (Denmark)

    Markos, Christos; Stefani, Alessio; Nielsen, Kristian

    2013-01-01

    We present the fabrication and characterization of fiber Bragg gratings (FBGs) in an endlessly single-mode microstructured polymer optical fiber (mPOF) made of humidity-insensitive high-Tg TOPAS cyclic olefin copolymer. The mPOF is the first made from grade 5013 TOPAS with a glass transition...... temperature of Tg = 135°C and we experimentally demonstrate high strain operation (2.5%) of the FBG at 98°C and stable operation up to a record high temperature of 110°C. The Bragg wavelengths of the FBGs are around 860 nm, where the propagation loss is 5.1dB/m, close to the fiber loss minimum of 3.67d...

  20. Novel Radon Sub-Slab Suctioning System

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    A new principle for radon protection is currently presented which makes use of a system of horizontal pressurised air ducts located within the lower part of the rigid insulation layer of the ground-floor slab. The function of this system is based on the principles of pressure reduction within...... a grid of horizontal air ducts with low pressure which are able to remove air and radon from the ground. Results showed the system to be effective in preventing radon infiltrating from the ground through the ground-floor slab, avoiding high concentrations of radon being accumulated inside houses....... For the system to be effective, the pressure within the ducts must be lower than the pressure inside the house. The new principle was shown to be effective in preventing radon from polluting the indoor air by introducing low pressure in the horizontal grid of air ducts. A lower pressure than the pressure inside...