WorldWideScience

Sample records for graded materials fgms

  1. A Review on Functionally Gradient Materials (FGMs) and Their Applications

    Science.gov (United States)

    Bhavar, Valmik; Kattire, Prakash; Thakare, Sandeep; patil, Sachin; Singh, RKP, Dr.

    2017-09-01

    Functionally gradient materials (FGM) are innovative materials in which final properties varies gradually with dimensions. It is the recent development in traditional composite materials which retains their strengths and eliminates their weaknesses. It can be formed by varying chemical composition, microstructure or design attributes from one end to other as per requirement. This feature allows FGM to have best material properties in required quantities only where it is needed. Though there are several methods available for manufacturing FGMs, additive based metal deposition (by laser, electron beam, plasma etc.) technologies are reaping particular interest owing to their recent developments. This paper presents evolution, current status and challenges of functionally gradient materials (FGMs). Various manufacturing processes of different types of FGMs are also presented. In addition, applications of FGMs in various fields including aerospace, defence, mining, power and tools manufacturing sectors are discussed in detail.

  2. Functionally Graded Materials Database

    Science.gov (United States)

    Kisara, Katsuto; Konno, Tomomi; Niino, Masayuki

    2008-02-01

    Functionally Graded Materials Database (hereinafter referred to as FGMs Database) was open to the society via Internet in October 2002, and since then it has been managed by the Japan Aerospace Exploration Agency (JAXA). As of October 2006, the database includes 1,703 research information entries with 2,429 researchers data, 509 institution data and so on. Reading materials such as "Applicability of FGMs Technology to Space Plane" and "FGMs Application to Space Solar Power System (SSPS)" were prepared in FY 2004 and 2005, respectively. The English version of "FGMs Application to Space Solar Power System (SSPS)" is now under preparation. This present paper explains the FGMs Database, describing the research information data, the sitemap and how to use it. From the access analysis, user access results and users' interests are discussed.

  3. Interfacial adhesion of laser clad functionally graded materials

    NARCIS (Netherlands)

    Pei, Y. T.; Ocelik, V.; De Hosson, J. T. M.

    2003-01-01

    Specially designed samples of laser clad AlSi40 functionally graded materials (FGM) are made for evaluating the interfacial adhesion. To obtain the interfacial bond strength notches are made right at the interface of the FGMs. In-situ microstructural observations during straining in a field-emission

  4. Interfacial adhesion of laser clad functionally graded materials

    NARCIS (Netherlands)

    De Hosson, JTM; Pei, YT; Ocelik, [No Value; Sudarshan, TS; Stiglich, JJ; Jeandin, M

    2002-01-01

    Specially designed samples of laser clad AlSi40 functionally graded materials (FGM) are made for evaluating the interfacial adhesion. To obtain the interfacial bond strength notches are made right at the interface of the FGMs. In-sitit microstructural observations during straining in an FEG-ESEM

  5. Investigation of dynamic fracture behavior in functionally graded materials

    International Nuclear Information System (INIS)

    Yang, X B; Qin, Y P; Zhuang, Z; You, X C

    2008-01-01

    The fast running crack in functionally graded materials (FGMs) is investigated through numerical simulations under impact loading. Some fracture characterizations such as crack propagation and arrest are evaluated by the criterion of the crack tip opening angle. Based on the experimental results, the whole propagation process of the fast running crack is simulated by the finite element program. Thus, the dynamic fracture parameters can be obtained during the crack growing process. In this paper, the crack direction is assumed to be the graded direction of the materials, and the property gradation in FGMs is considered by varying the elastic modulus exponentially along the graded direction and keeping the mass density and Poisson's ratio constant. The influences of the non-homogeneity, the loading ratio and the crack propagation speed on the dynamic fracture response of FGMs are analyzed through the test and numerical analysis. Considering the potential application of FGMs in natural-gas transmission engineering, a functionally graded pipeline is designed to arrest the fast running crack for a short period in high pressure large diameter natural-gas pipelines

  6. Overview of processing technologies for tungsten-steel composites and FGMs for fusion applications

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Nevrlá, Barbara; Vilémová, Monika; Boldyryeva, Hanna

    2015-01-01

    Roč. 60, č. 2 (2015), s. 267-273 ISSN 0029-5922. [Kudowa Summer School „Towards Fusion Energy“. Kudowa Zdrój, 09.06.2014-13.06.2014] R&D Projects: GA ČR(CZ) GAP108/12/1872 Institutional support: RVO:61389021 Keywords : plasma-facing components * functionally graded materials (FGMs), * tungsten * steel * plasma spraying * powder metallurgy Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 0.546, year: 2015 http://www.nukleonika.pl/#/?p=1222

  7. Fabrication of Al/Diamond Particles Functionally Graded Materials by Centrifugal Sintered-Casting Method

    International Nuclear Information System (INIS)

    Watanabe, Yoshimi; Shibuya, Masafumi; Sato, Hisashi

    2013-01-01

    The continuous graded structure of functionally graded materials (FGMs) can be created under a centrifugal force. Centrifugal sintered-casting (CSC) method, proposed by the authors, is one of the fabrication methods of FGM under centrifugal force. This method is a combination of the centrifugal sintering method and centrifugal casting method. In this study, Al/diamond particle FGM was fabricated by the proposed method.

  8. Heat conduction analysis of multi-layered FGMs considering the finite heat wave speed

    International Nuclear Information System (INIS)

    Rahideh, H.; Malekzadeh, P.; Golbahar Haghighi, M.R.

    2012-01-01

    Highlights: ► Using a layerwise-incremental differential quadrature for heat transfer of FGMs. ► Superior accuracy with fewer degrees of freedom of the method with respect to FEM. ► Considering multi-layered functionally graded materials. ► Hyperbolic heat transfer analysis of thermal system with heat generation. ► Showing the effect of heat wave speed on thermal characteristic of the system. - Abstract: In this work, the heat conduction with finite wave heat speed of multi-layered domain made of functionally graded materials (FGMs) subjected to heat generation is simulated. For this purpose, the domain is divided into a set of mathematical layers, the number of which can be equal or greater than those of the physical layers. Then, in each mathematical layer, the non-Fourier heat transfer equations are employed. Since, the governing equations have variable coefficients due to FGM properties, as an efficient and accurate method the differential quadrature method (DQM) is adopted to discretize both spatial and temporal domains in each layer. This results in superior accuracy with fewer degrees of freedom than conventional finite element method (FEM). To verify this advantages through some comparison studies, a finite element solution are also obtained. After demonstrating the convergence and accuracy of the method, the effects of heat wave speed for two different set of boundary conditions on the temperature distribution and heat flux of the domain are studied.

  9. Additive manufacturing of a functionally graded material from Ti-6Al-4V to Invar: Experimental characterization and thermodynamic calculations

    International Nuclear Information System (INIS)

    Bobbio, Lourdes D.; Otis, Richard A.; Borgonia, John Paul; Dillon, R. Peter; Shapiro, Andrew A.; Liu, Zi-Kui; Beese, Allison M.

    2017-01-01

    In functionally graded materials (FGMs), the elemental composition, or structure, within a component varies gradually as a function of position, allowing for the gradual transition from one alloy to another, and the local tailoring of properties. One method for fabricating FGMs with varying elemental composition is through layer-by-layer directed energy deposition additive manufacturing. This work combines experimental characterization and computational analysis to investigate a material graded from Ti-6Al-4V to Invar 36 (64 wt% Fe, 36 wt% Ni). The microstructure, composition, phases, and microhardness were determined as a function of position within the FGM. During the fabrication process, detrimental phases associated with the compositional blending of the Ti-6Al-4V and Invar formed, leading to cracking in the final deposited part. Intermetallic phases (FeTi, Fe_2Ti, Ni_3Ti, and NiTi_2) were experimentally identified to occur throughout the gradient region, and were considered as the reason that the FGM cracked during fabrication. CALPHAD (CALculation of PHase Diagrams) thermodynamic calculations were used concurrently to predict phases that would form during the manufacturing process and were compared to the experimental results. The experimental-computational approach described herein for characterizing FGMs can be used to improve the understanding and design of other FGMs.

  10. Fabrication and characteristics of alumina-iron functionally graded materials

    DEFF Research Database (Denmark)

    He, Zeming; Ma, J.; Tan, G.E.B.

    2009-01-01

    . The microstructure and the composition of the prepared component were studied, and its flexural strength, fracture toughness, and fracture energy were tested and evaluated. The relative density and the Vickers hardness of each layer in the graded material were also measured. The correlation between microstructure...... and composition and mechanical properties was discussed. Flat, crack-free, and relatively high-density gradient components were obtained from this work. Compared to monolithic alumina ceramic, the remarkable improvement on fracture toughness and fracture energy of the investigated graded material system......In the present work, five-layered alumina–iron functionally graded materials (FGMs) were fabricated via a simple route of die pressing and pressureless sintering. The shrinkage differences among the layers in the FGM were minimized by particle size selection and processing control...

  11. Modeling of Cooling Channels of Injection Mould using Functionally Graded Material

    International Nuclear Information System (INIS)

    Shin, Ki Hoon

    2011-01-01

    The cycle time in injection moulding greatly depends on the cooling time of the plastic part that is controlled by cooling channels. Cooling channels are required to facilitate the heat transfer rate from the die to the coolant without reducing the strength of the die. Employing layered manufacturing techniques (LMT), a die embedding conformal cooling channels can be fabricated directly while conventional cooling channels are usually made of straight drilled hole. Meanwhile, H13 tool steel is widely used as the die material because of its high thermal resistance and dimensional stability. However, H13 with a low thermal conductivity is not efficient for certain part geometries. In this context, the use of functionally graded materials (FGMs) between H13 and copper may circumvent a tradeoff between the strength and the heat transfer rate. This paper presents a method for modeling of conformal cooling channels made of FGMs

  12. Analysis of Unsteady Propagation of Mode Ⅲ Crack in Arbitrary Direction in Functionally Graded Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Ho [Kyungpook National University, Daegu (Korea, Republic of); Cho, Sang Bong [Kyungnam University, Changwon (Korea, Republic of); Hawong, Jai Sug [Yeungnam University, Gyungsan (Korea, Republic of)

    2015-02-15

    The stress and displacement fields at the crack tip were studied during the unsteady propagation of a mode Ⅲ crack in a direction that was different from the property graduation direction in functionally graded materials (FGMs). The property graduation in FGMs was assumed based on the linearly varying shear modulus under a constant density and the exponentially varying shear modulus and density. To obtain the solution of the harmonic function, the general partial differential equation of the dynamic equilibrium equation was transformed into a Laplace equation. Based on the Laplace equation, the stress and displacement fields, which depended on the time rates of change in the crack tip speed and stress intensity factor, were obtained through an asymptotic analysis. Using the stress and displacement fields, the effects of the angled property variation on the stresses, displacements, and stress intensity factors are discussed.

  13. Fabrication of functionally graded materials between P21 tool steel and Cu by using laser aided layered manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Seol; Shin, Ki Hoon [Seoul Nat' l Univ., Seoul (Korea, Republic of)

    2013-01-15

    With the development of layered manufacturing, thermally conductive molds or molds embedding conformal cooling channels can be directly fabricated. Although P21 tool steel is widely used as a mold material because of its dimensional stability, it is not efficient for cooling molds owing to its low thermal conductivity. Hence, the use of functionally graded materials (FGMs) between P21 and Cu may circumvent a tradeoff between the strength and the heat transfer rate. As a preliminary study for the layered manufacturing of thermally conductive molds having FGM structures, one dimensional P21 Cu FGMs were fabricated by using laser aided direct metal tooling (DMT), and then, material properties such as the thermal conductivity and specific heat that are related to the heat transfer were measured and analyzed.

  14. Powder metallurgical processing of functionally graded p-Pb1-x Sn x Te materials for thermoelectric applications

    International Nuclear Information System (INIS)

    Gelbstein, Y.; Dashevsky, Z.; Dariel, M.P.

    2007-01-01

    Lead tin telluride-based compounds are p-type materials for thermoelectric applications, in the 50-600 deg. C temperature range. The electronic transport properties of PbTe and Pb 1- x Sn x Te materials are strongly dependent on the processing approach. Powder metallurgy is a suitable approach for the preparation of Functionally graded materials (FGMs) but its effects on the electronic properties have to be carefully checked. Powder metallurgical processing may introduce atomic defects and local strains into the material and, thereby, alter the carrier concentration. Such material may be in non-equilibrium conditions at the operating temperature with unstable thermoelectric properties. This effect can be reduced and eliminated by appropriate annealing procedures. In FGMs, annealing up to the stabilization of the thermoelectric properties is mandatory for achieving the desired carrier concentration profile along the sample. The design procedures of the FGMs, as well as the annealing effects on cold compacted and sintered Pb 1- x Sn x Te samples are described in details

  15. Functionally graded materials

    CERN Document Server

    Mahamood, Rasheedat Modupe

    2017-01-01

    This book presents the concept of functionally graded materials as well as their use and different fabrication processes. The authors describe the use of additive manufacturing technology for the production of very complex parts directly from the three dimension computer aided design of the part by adding material layer after layer. A case study is also presented in the book on the experimental analysis of functionally graded material using laser metal deposition process.

  16. Mechanical analyses of pipeline repair and reinforcement with use of composite functionally graded materials; Analise mecanica de reforco de dutos submarinos com materiais compositos com gradacao funcional

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Marcos S.M. [Sondotecnica Engenharia de Solos S.A., Rio de Janeiro, RJ (Brazil); Roehl, Deane de Mesquita [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil)

    2008-07-01

    This work presents a methodology for design of stiffener sleeve constituted by functionally graded composite materials in offshore pipelines located in extreme-deep waters, where high mechanical resistance allied to an efficient system of thermal isolation is necessary, in view of the excellent thermomechanical behavior of composites. For the case of FGMs, due to continuous variation in its featuring, is necessary to employ an adapted model, based on a model typically adopted for conventional composites (Rule of Mixture), as the model idealized by Tamura, Tomato e Ozawa, the TTO model. In this report, the influence of geometric and materials parameters in mechanical behavior of pipelines under propagating collapse is analyzed. (author)

  17. Coupled DQ-FE methods for two dimensional transient heat transfer analysis of functionally graded material

    Energy Technology Data Exchange (ETDEWEB)

    Golbahar Haghighi, M.R.; Eghtesad, M. [Department of Mechanical Engineering, School of Engineering, Shiraz University, Shiraz 71348-51154 (Iran, Islamic Republic of); Malekzadeh, P. [Department of Mechanical Engineering, School of Engineering, Persian Gulf University, Boushehr 75169-13798 (Iran, Islamic Republic of)], E-mail: malekzadeh@pgu.ac.ir

    2008-05-15

    In this paper, a mixed finite element (FE) and differential quadrature (DQ) method as a simple, accurate and computationally efficient numerical tool for two dimensional transient heat transfer analysis of functionally graded materials (FGMs) is developed. The method benefits from the high accuracy, fast convergence behavior and low computational efforts of the DQ in conjunction with the advantages of the FE method in general geometry, loading and systematic boundary treatment. Also, the boundary conditions at the top and bottom surfaces of the domain can be implemented more precisely and in strong form. The temporal derivatives are discretized using an incremental DQ method (IDQM), whose numerical stability is not sensitive to time step size. The effects of non-uniform convective-radiative conditions on the boundaries are investigated. The accuracy of the proposed method is demonstrated by comparing its results with those available in the literature. It is shown that using few grid points, highly accurate results can be obtained.

  18. Tailoring vibration mode shapes using topology optimization and functionally graded material concepts

    International Nuclear Information System (INIS)

    Rubio, Wilfredo Montealegre; Paulino, Glaucio H; Silva, Emilio Carlos Nelli

    2011-01-01

    Tailoring specified vibration modes is a requirement for designing piezoelectric devices aimed at dynamic-type applications. A technique for designing the shape of specified vibration modes is the topology optimization method (TOM) which finds an optimum material distribution inside a design domain to obtain a structure that vibrates according to specified eigenfrequencies and eigenmodes. Nevertheless, when the TOM is applied to dynamic problems, the well-known grayscale or intermediate material problem arises which can invalidate the post-processing of the optimal result. Thus, a more natural way for solving dynamic problems using TOM is to allow intermediate material values. This idea leads to the functionally graded material (FGM) concept. In fact, FGMs are materials whose properties and microstructure continuously change along a specific direction. Therefore, in this paper, an approach is presented for tailoring user-defined vibration modes, by applying the TOM and FGM concepts to design functionally graded piezoelectric transducers (FGPT) and non-piezoelectric structures (functionally graded structures—FGS) in order to achieve maximum and/or minimum vibration amplitudes at certain points of the structure, by simultaneously finding the topology and material gradation function. The optimization problem is solved by using sequential linear programming. Two-dimensional results are presented to illustrate the method

  19. Modeling of sintering of functionally gradated materials

    International Nuclear Information System (INIS)

    Gasik, M.; Zhang, B.

    2001-01-01

    The functionally gradated materials (FGMs) are distinguished from isotropic materials by gradients of composition, phase distribution, porosity, and related properties. For FGMs made by powder metallurgy, sintering control is one of the most important factors. In this study sintering process of FGMs is modeled and simulated with a computer. A new modeling approach was used to formulate equation systems and the model for sintering of gradated hard metals, coupled with heat transfer and grain growth. A FEM module was developed to simulate FGM sintering in conventional, microwave and hybrid conditions, to calculate density, stress and temperature distribution. Behavior of gradated WC-Co hardmetal plate and cone specimens was simulated for various conditions, such as mean particle size, green density distribution and cobalt gradation parameter. The results show that the deformation behavior and stress history of graded powder compacts during heating, sintering and cooling could be predicted for optimization of sintering process. (author)

  20. Functionally Graded Material: An overview

    CSIR Research Space (South Africa)

    Mahamood, RM

    2012-07-01

    Full Text Available -3146. [50] X. Jin, L. Wu, L. Guo, H. Yu, and Y. Sun, ?Experimental investigation of the mixed-mode crack propagation in ZrO2/NiCr functionally graded materials,? Engineering Fracture Mechanics, vol. 76(12), (2009), pp. 1800-1810. [51] Z. Cheng, D. Gao... by stable crack growth,? Engineering Fracture Mechanics, vol.72(15), (2005), pp. 2359-2372. [47] Z.-H. Jin, and R.H. Dodds Jr, ?Crack growth resistance behavior of a functionally graded material: computational studies,? Engineering Fracture Mechanics...

  1. Cracks in functionally graded materials

    International Nuclear Information System (INIS)

    Bahr, H.-A.; Balke, H.; Fett, T.; Hofinger, I.; Kirchhoff, G.; Munz, D.; Neubrand, A.; Semenov, A.S.; Weiss, H.-J.; Yang, Y.Y.

    2003-01-01

    The weight function method is described to analyze the crack growth behavior in functionally graded materials and in particular materials with a rising crack growth resistance curve. Further, failure of graded thermal barrier coatings (TBCs) under cyclic surface heating by laser irradiation is modeled on the basis of fracture mechanics. The damage of both graded and non-graded TBCs is found to develop in several distinct stages: vertical cracking→delamination→blistering→spalling. This sequence can be understood as an effect of progressive shrinkage due to sintering and high-temperature creep during thermal cycling, which increases the energy-release rate for vertical cracks which subsequently turn into delamination cracks. The results of finite element modeling, taking into account the TBC damage mechanisms, are compatible with experimental data. An increase of interface fracture toughness due to grading and a decrease due to ageing have been measured in a four-point bending test modified by a stiffening layer. Correlation with the damage observed in cyclic heating is discussed. It is explained in which way grading is able to reduce the damage

  2. Parametric study of development of Inconel-steel functionally graded materials by laser direct metal deposition

    International Nuclear Information System (INIS)

    Shah, Kamran; Haq, Izhar ul; Khan, Ashfaq; Shah, Shaukat Ali; Khan, Mushtaq; Pinkerton, Andrew J

    2014-01-01

    Highlights: • Functionally graded steel and nickel super-alloy structures have been developed. • Mechanical properties of FGMs can be controlled by process input parameters. • SDAS is strongly dependent on the laser power and powder mass flow rate. • Carbides provide a mechanism to control the hardness and wear resistance of FGM. • Tensile strength of FGM is dependent on the laser power and powder mass flow rate. - Abstract: Laser direct metal deposition (LDMD) has developed from a prototyping to a single and multiple metals manufacturing technique. It offers an opportunity to produce graded components, with differing elemental composition, phase and microstructure at different locations. In this work, continuously graded Stainless Steel 316L and Inconel 718 thin wall structures made by direct laser metal deposition process have been explored. The paper considers the effects of process parameters including laser power levels and powder mass flow rates of SS316L and Inconel 718 during the deposition of the Steel–Ni graded structures. Microstructure characterisation and phase identification are performed by optical microscopy and X-ray diffraction techniques. Mechanical testing, using methods such as hardness, wear resistance and tensile testing have been carried out on the structures. XRD results show the presence of the NbC and Fe 2 Nb phases formed during the deposition. The effect of experimental parameters on the microstructure and physical properties are determined and discussed. Work shows that mechanical properties can be controlled by input parameters and generation of carbides provides an opportunity to selectively control the hardness and wear resistance of the functionally graded material

  3. Functionally graded material of 304L stainless steel and inconel 625 fabricated by directed energy deposition: Characterization and thermodynamic modeling

    International Nuclear Information System (INIS)

    Carroll, Beth E.; Otis, Richard A.; Borgonia, John Paul; Suh, Jong-ook; Dillon, R. Peter; Shapiro, Andrew A.; Hofmann, Douglas C.; Liu, Zi-Kui; Beese, Allison M.

    2016-01-01

    Many engineering applications, particularly in extreme environments, require components with properties that vary with location in the part. Functionally graded materials (FGMs), which possess gradients in properties such as hardness or density, are a potential solution to address these requirements. The laser-based additive manufacturing process of directed energy deposition (DED) can be used to fabricate metallic parts with a gradient in composition by adjusting the volume fraction of metallic powders delivered to the melt pool as a function of position. As this is a fusion process, secondary phases may develop in the gradient zone during solidification that can result in undesirable properties in the part. This work describes experimental and thermodynamic studies of a component built from 304L stainless steel incrementally graded to Inconel 625. The microstructure, chemistry, phase composition, and microhardness as a function of position were characterized by microscopy, energy dispersive spectroscopy, X-ray diffraction, and microindentation. Particles of secondary phases were found in small amounts within cracks in the gradient zone. These were ascertained to consist of transition metal carbides by experimental results and thermodynamic calculations. The study provides a combined experimental and thermodynamic computational modeling approach toward the fabrication and evaluation of a functionally graded material made by DED additive manufacturing.

  4. Orientation of Al3Ti platelets in Al-Al3Ti functionally graded material manufactured by centrifugal method

    International Nuclear Information System (INIS)

    Watanabe, Y.; Fukui, Y.

    1997-01-01

    Al-Al 3 Ti functionally graded materials (FGMs) were manufactured by the centrifugal method with a commercial ingot of Al-5 mass% Ti master alloy. The alloy was melted at a liquid/solid coexisting temperature, at which Al 3 Ti remains as a solid, and then it was cast into a thick-walled ring. It was found that the Al-Al 3 Ti functionally graded material can be successfully fabricated by the centrifugal method. It was also found that the volume fraction of the Al 3 Ti can be increased by repetition of the centrifugal method. Since the shape of Al 3 Ti particles in a commercial alloy ingot is that of a platelet, the Al 3 Ti particles are arranged with their platelet planes nearly perpendicular to the radial direction. The orientation effects become stronger when the G number becomes larger. Although the final centrifugal casting was conducted under a very large centrifugal force for the specimen cast three times, the orientation effects were weaker than those in the specimen cast one time. From these observations, it is concluded that the origin of orientation of Al 3 Ti platelets can be attributed to the angular velocity gradient of the melt along the radial direction produced by the difference in the viscosity. (orig.)

  5. Development of functionally graded anti-oxidation coatings for carbon/carbon composites

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, J.H. [Dept. of Materials Technology, Korea Inst. of Machinery and Materials, Changwon (Korea); Fang Hai-Tao; Lai Zhong-Hong; Yin Zhong-Da [Materials Science and Engineering School, Harbin Inst. of Tech., Harbin (China)

    2005-07-01

    The concept of functionally graded materials (FGMs) was originated in the research field of thermal barrier coatings. Continuous changes in the composition, grain size, porosity, etc., of these materials result in gradients in such properties as mechanical strength and thermal conductivity. In recent years, functionally graded structural composite materials have received increased attention as promising candidate materials to exhibit better mechanical and functional properties than homogeneous materials or simple composite materials. Therefore the research area of FGMs has been expending in the development of various structural and functional materials, such as cutting tools, photonic crystals, dielectric and piezoelectric ceramics, thermoelectric semiconductors, and biomaterials. We have developed functionally graded structural ceramic/metal composite materials for relaxation of thermal stress, functionally graded anti-oxidation coatings for carbon/carbon composites, and functionally graded dielectric ceramic composites to develop advanced dielectric ceramics with flat characteristics of dielectric constant in a wide temperature range. This paper introduces functionally graded coatings for C/C composites with superior oxidation resistance at high temperatures. (orig.)

  6. Fracture Analysis of Functionally Graded Materials

    International Nuclear Information System (INIS)

    Zhang, Ch.; Gao, X. W.; Sladek, J.; Sladek, V.

    2010-01-01

    This paper reports our recent research works on crack analysis in continuously non-homogeneous and linear elastic functionally graded materials. A meshless boundary element method is developed for this purpose. Numerical examples are presented and discussed to demonstrate the efficiency and the accuracy of the present numerical method, and to show the effects of the material gradation on the crack-opening-displacements and the stress intensity factors.

  7. Three dimensional Free Vibration and Transient Analysis of Two Directional Functionally Graded Thick Cylindrical Panels Under Impact Loading

    Directory of Open Access Journals (Sweden)

    Hassan Zafarmand

    Full Text Available AbstractIn this paper three dimensional free vibration and transient response of a cylindrical panel made of two directional functionally graded materials (2D-FGMs based on three dimensional equations of elasticity and subjected to internal impact loading is considered. Material properties vary through both radial and axial directions continuously. The 3D graded finite element method (GFEM based on Rayleigh-Ritz energy formulation and Newmark direct integration method has been applied to solve the equations in space and time domains. The fundamental normalized natural frequency, time history of displacements and stresses in three directions and velocity of radial stress wave propagation for various values of span angel of cylindrical panel and different power law exponents have been investigated. The present results show that using 2D-FGMs leads to a more flexible design than conventional 1D-FGMs. The GFEM solution have been compared with the results of an FG thick hollow cylinder and an FG curved panel, where a good agreement between them is observed.

  8. Probabilistic Modeling of Graded Timber Material Properties

    DEFF Research Database (Denmark)

    Faber, M. H.; Köhler, J.; Sørensen, John Dalsgaard

    2004-01-01

    The probabilistic modeling of timber material characteristics is considered with special emphasis to the modeling of the effect of different quality control and selection procedures used as means for quality grading in the production line. It is shown how statistical models may be established...... on the basis of the same type of information which is normally collected as a part of the quality control procedures and furthermore, how the efficiency of different control procedures may be quantified and compared. The tail behavior of the probability distributions of timber material characteristics plays...... such that they may readily be applied in structural reliability analysis and their format appears to be appropriate for codification purposes of quality control and selection for grading procedures....

  9. An accurate higher order displacement model with shear and normal deformations effects for functionally graded plates

    International Nuclear Information System (INIS)

    Jha, D.K.; Kant, Tarun; Srinivas, K.; Singh, R.K.

    2013-01-01

    Highlights: • We model through-thickness variation of material properties in functionally graded (FG) plates. • Effect of material grading index on deformations, stresses and natural frequency of FG plates is studied. • Effect of higher order terms in displacement models is studied for plate statics. • The benchmark solutions for the static analysis and free vibration of thick FG plates are presented. -- Abstract: Functionally graded materials (FGMs) are the potential candidates under consideration for designing the first wall of fusion reactors with a view to make best use of potential properties of available materials under severe thermo-mechanical loading conditions. A higher order shear and normal deformations plate theory is employed for stress and free vibration analyses of functionally graded (FG) elastic, rectangular, and simply (diaphragm) supported plates. Although FGMs are highly heterogeneous in nature, they are generally idealized as continua with mechanical properties changing smoothly with respect to spatial coordinates. The material properties of FG plates are assumed here to vary through thickness of plate in a continuous manner. Young's modulii and material densities are considered to be varying continuously in thickness direction according to volume fraction of constituents which are mathematically modeled here as exponential and power law functions. The effects of variation of material properties in terms of material gradation index on deformations, stresses and natural frequency of FG plates are investigated. The accuracy of present numerical solutions has been established with respect to exact three-dimensional (3D) elasticity solutions and the other models’ solutions available in literature

  10. Controlling Thermal Conduction by Graded Materials

    Science.gov (United States)

    Ji, Qin; Huang, Ji-Ping

    2018-04-01

    Manipulating thermal conductivities are fundamentally important for controlling the conduction of heat at will. Thermal cloaks and concentrators, which have been extensively studied recently, are actually graded materials designed according to coordinate transformation approaches, and their effective thermal conductivity is equal to that of the host medium outside the cloak or concentrator. Here we attempt to investigate a more general problem: what is the effective thermal conductivity of graded materials? In particular, we perform a first-principles approach to the analytic exact results of effective thermal conductivities of materials possessing either power-law or linear gradation profiles. On the other hand, by solving Laplace’s equation, we derive a differential equation for calculating the effective thermal conductivity of a material whose thermal conductivity varies along the radius with arbitrary gradation profiles. The two methods agree with each other for both external and internal heat sources, as confirmed by simulation and experiment. This work provides different methods for designing new thermal metamaterials (including thermal cloaks and concentrators), in order to control or manipulate the transfer of heat. Support by the National Natural Science Foundation of China under Grant No. 11725521, by the Science and Technology Commission of Shanghai Municipality under Grant No. 16ZR1445100

  11. Gradient effects on the fracture of inhomogeneous materials

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Terrence Lee [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    Functionally Graded Materials (FGMs) have a spatial variation in physical properties that can be tailored to meet the needs of a specific application and/or to minimize internal stresses arising from thermal and elastic mismatch. Modeling these materials as inhomogeneous continua allows assessment of the role of the gradient without requiring detailed knowledge of the microstructure. Motivated by the relative difficulty of obtaining analytical solutions to boundary value problems for FGMs, an accurate finite-element code is developed for obtaining numerical planar and axisymmetric linear thermoelastic solutions. In addition an approximate analytical technique for mapping homogeneous-modulus solutions to those for FGMs is assessed and classes of problems to which it applies accurately are identified. The fracture mechanics analysis of FGMs can be characterized by the classic stress intensities, KI and KII, but there has been scarce progress in understanding the role of the modulus gradient in determining fracture initiation and propagation. To address this question, a statistical fracture model is used to correlate near-tip stresses with brittle fracture initiation behavior. This describes the behavior of a material experiencing fracture initiation away from the crack tip. Widely dispersed zones of fracture initiation sites are expected. Finite-length kinks are analyzed to describe the crack path for continuous crack growth. For kink lengths much shorter than the gradient dimension, a parallel stress term describes the deviation of the kinking angle from that for homogeneous materials. For longer kinks there is a divergence of the kink angle predicted by the maximum energy release rate and the pure opening mode criteria.

  12. Design, Manufacturing and Characterization of Functionally Graded Flextensional Piezoelectric Actuators

    International Nuclear Information System (INIS)

    Amigo, R C R; Vatanabe, S L; Silva, E C N

    2013-01-01

    Previous works have been shown several advantages in using Functionally Graded Materials (FGMs) for the performance of flextensional devices, such as reduction of stress concentrations and gains in reliability. In this work, the FGM concept is explored in the design of graded devices by using the Topology Optimization Method (TOM), in order to determine optimal topologies and gradations of the coupled structures of piezoactuators. The graded pieces are manufactured by using the Spark Plasma Sintering (SPS) technique and are bonded to piezoelectric ceramics. The graded actuators are then tested by using a modular vibrometer system for measuring output displacements, in order to validate the numerical simulations. The technological path developed here represents the initial step toward the manufacturing of an integral piezoelectric device, constituted by piezoelectric and non-piezoelectric materials without bonding layers.

  13. Micromechanical models for graded composite materials

    DEFF Research Database (Denmark)

    Reiter, T; Dvorak, G.J.; Tvergaard, Viggo

    1997-01-01

    of piecewise homogeneous layers with equivalent elastic properties estimated by Mori-Tanaka and self-consistent methods are also analysed under similar boundary conditions. Comparisons of the overall and local fields predicted by the discrete and homogenized models are made using a C/SiC composite system...... fields are predicted by Mori-Tanaka estimates. On the other hand, the response of graded materials with a skeletal microstructure in a wide transition zone between clearly defined matrix phases is better approximated by the self-consistent estimates. Certain exceptions are noted for loading by overall...... transverse shear stress; The results suggest that the averaging methods originally developed for statistically homogeneous aggregates may be selectively applied, with a reasonable degree of confidence, to aggregates dth composition gradients, subjected to both uniform and nonuniform overall loads. (C) 1997...

  14. Aeroelastic Tailoring of a Plate Wing with Functionally Graded Materials

    Science.gov (United States)

    Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia; Jutte, Christine V.

    2014-01-01

    This work explores the use of functionally graded materials for the aeroelastic tailoring of a metallic cantilevered plate-like wing. Pareto trade-off curves between dynamic stability (flutter) and static aeroelastic stresses are obtained for a variety of grading strategies. A key comparison is between the effectiveness of material grading, geometric grading (i.e., plate thickness variations), and using both simultaneously. The introduction of material grading does, in some cases, improve the aeroelastic performance. This improvement, and the physical mechanism upon which it is based, depends on numerous factors: the two sets of metallic material parameters used for grading, the sweep of the plate, the aspect ratio of the plate, and whether the material is graded continuously or discretely.

  15. Design and Fabrication of Aerospace-Grade Digital Composite Materials

    Data.gov (United States)

    National Aeronautics and Space Administration — This project aims to advance design rules and fabrication approaches to create aerospace-grade structures from digital composite materials. Digital materials are...

  16. Ceramic/polymer functionally graded material (FGM) lightweight armor system

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.; McClellan, K.J.

    1998-12-31

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Functionally graded material is an enabling technology for lightweight body armor improvements. The objective was to demonstrate the ability to produce functionally graded ceramic-polymer and ceramic-metal lightweight armor materials. This objective involved two aspects. The first and key aspect was the development of graded-porosity boron-carbide ceramic microstructures. The second aspect was the development of techniques for liquid infiltration of lightweight metals and polymers into the graded-porosity ceramic. The authors were successful in synthesizing boron-carbide ceramic microstructures with graded porosity. These graded-porosity boron-carbide hot-pressed pieces were then successfully liquid-infiltrated in vacuum with molten aluminum at 1,300 C, and with liquid polymers at room temperature. Thus, they were able to demonstrate the feasibility of producing boron carbide-aluminum and boron carbide-polymer functionally graded materials.

  17. Job Grading Standard for Materials Expediter WG-6705.

    Science.gov (United States)

    Civil Service Commission, Washington, DC. Bureau of Policies and Standards.

    The standard is used to grade nonsupervisory jobs involved in routing and expediting the movement of parts, end items, supplies, and materials within production and repair facilities to meet priority needs. The work requires knowledge of material characteristics, uses, condition, industrial production shop procedures, shop layout, and internal…

  18. An accurate higher order displacement model with shear and normal deformations effects for functionally graded plates

    Energy Technology Data Exchange (ETDEWEB)

    Jha, D.K., E-mail: dkjha@barc.gov.in [Civil Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kant, Tarun [Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India); Srinivas, K. [Civil Engineering Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Singh, R.K. [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2013-12-15

    Highlights: • We model through-thickness variation of material properties in functionally graded (FG) plates. • Effect of material grading index on deformations, stresses and natural frequency of FG plates is studied. • Effect of higher order terms in displacement models is studied for plate statics. • The benchmark solutions for the static analysis and free vibration of thick FG plates are presented. -- Abstract: Functionally graded materials (FGMs) are the potential candidates under consideration for designing the first wall of fusion reactors with a view to make best use of potential properties of available materials under severe thermo-mechanical loading conditions. A higher order shear and normal deformations plate theory is employed for stress and free vibration analyses of functionally graded (FG) elastic, rectangular, and simply (diaphragm) supported plates. Although FGMs are highly heterogeneous in nature, they are generally idealized as continua with mechanical properties changing smoothly with respect to spatial coordinates. The material properties of FG plates are assumed here to vary through thickness of plate in a continuous manner. Young's modulii and material densities are considered to be varying continuously in thickness direction according to volume fraction of constituents which are mathematically modeled here as exponential and power law functions. The effects of variation of material properties in terms of material gradation index on deformations, stresses and natural frequency of FG plates are investigated. The accuracy of present numerical solutions has been established with respect to exact three-dimensional (3D) elasticity solutions and the other models’ solutions available in literature.

  19. Overview of processing technologies for tungsten-steel composites and FGMs for fusion applications

    Directory of Open Access Journals (Sweden)

    Matějíček Jiří

    2015-06-01

    Full Text Available Tungsten is a prime candidate material for the plasma-facing components in future fusion devices, e.g. ITER and DEMO. Because of the harsh and complex loading conditions and the differences in material properties, joining of the tungsten armor to the underlying construction and/or cooling parts is a complicated issue. To alleviate the thermal stresses at the joint, a sharp interface may be replaced by a gradual one with a smoothly varying composition. In this paper, several techniques for the formation of tungsten-steel composites and graded layers are reviewed. These include plasma spraying, laser cladding, hot pressing and spark plasma sintering. Structure, composition and selected thermal and mechanical properties of representative layers produced by each of these techniques are presented. A summary of advantages and disadvantages of the techniques and an assessment of their suitability for the production of plasma-facing components is provided.

  20. Study on the preparation of the SiCp/Al-20Si-3Cu functionally graded material using spray deposition

    International Nuclear Information System (INIS)

    Su, B.; Yan, H.G.; Chen, G.; Shi, J.L.; Chen, J.H.; Zeng, P.L.

    2010-01-01

    Research highlights: → The SiCp/Al-20Si-3Cu functionally gradient material (FGM) was successfully prepared via the spray deposition technique. → The SiCp/Al-20Si-3Cu functionally gradient material (FGM) was successfully prepared via the spray deposition technique. → In the experimental setup, the novel devices play an important role in adjusting the output of SiCp to prepare the FGM. → The experiment results reveal that the SiCp weight fraction of the as-deposited preform from the top to the bottom ranges almost continuously from 0% to 30%. → The fraction of SiC particles has no obvious influence on the phase constitutions of the SiCp/Al-20Si-3Cu FGM. - Abstract: The SiCp/Al-20Si-3Cu functionally gradient material (FGMs) was successfully prepared via the spray deposition technique accompanied with an automatic control system. The results reveal that the SiCp weight fraction of the as-deposited preform from the top to the bottom ranges almost continuously from 0% to 30%. The part with the higher SiCp weight fraction exhibits a relatively smaller density than that with the lower SiCp weight fraction. However, the microhardness and the porosity increase with the increasing SiCp weight fraction in the as-deposited preform. The X-ray diffraction results exhibit that the secondary phases in the regions with the different amount of SiC particles are the same such as Al 2 Cu and AlCuMg. The spray deposition technology is promising to produce a wide range of other FGMs.

  1. Thermoelastic analysis of non-uniform pressurized functionally graded cylinder with variable thickness using first order shear deformation theory(FSDT) and perturbation method

    Science.gov (United States)

    Khoshgoftar, M. J.; Mirzaali, M. J.; Rahimi, G. H.

    2015-11-01

    Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs. Such composites with varying thickness and non-uniform pressure can be used in the aerospace engineering. Therefore, analysis of such composite is of high importance in engineering problems. Thermoelastic analysis of functionally graded cylinder with variable thickness under non-uniform pressure is considered. First order shear deformation theory and total potential energy approach is applied to obtain the governing equations of non-homogeneous cylinder. Considering the inner and outer solutions, perturbation series are applied to solve the governing equations. Outer solution for out of boundaries and more sensitive variable in inner solution at the boundaries are considered. Combining of inner and outer solution for near and far points from boundaries leads to high accurate displacement field distribution. The main aim of this paper is to show the capability of matched asymptotic solution for different non-homogeneous cylinders with different shapes and different non-uniform pressures. The results can be used to design the optimum thickness of the cylinder and also some properties such as high temperature residence by applying non-homogeneous material.

  2. Functionally graded materials for impedance matching in elastic media

    International Nuclear Information System (INIS)

    Chen, Shi; Zhang, Yinhong; Hao, Changchun; Lin, Shuyu; Fu, Zhiqiang

    2014-01-01

    When functionally graded material layers are inserted between two impedance mismatching media, passbands with extremely large bandwidths can appear in these layered systems. An accurate and effective iterative method is developed to deal with these layered systems with extremely large layer number.

  3. Functionally graded materials for impedance matching in elastic media

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shi; Zhang, Yinhong, E-mail: zyh5337@163.com; Hao, Changchun; Lin, Shuyu; Fu, Zhiqiang

    2014-01-03

    When functionally graded material layers are inserted between two impedance mismatching media, passbands with extremely large bandwidths can appear in these layered systems. An accurate and effective iterative method is developed to deal with these layered systems with extremely large layer number.

  4. Functionally graded materials produced with high power lasers

    NARCIS (Netherlands)

    De Hosson, J. T. M.; Ocelik, V.; Chandra, T; Torralba, JM; Sakai, T

    2003-01-01

    In this keynote paper two examples will be present of functionally graded materials produced with high power Nd:YAG lasers. In particular the conditions for a successful Laser Melt Injection (LMI) of SiC and WC particles into the melt pool of A18Si and Ti6Al4V alloys are presented. The formation of

  5. Optimum material gradient composition for the functionally graded ...

    African Journals Online (AJOL)

    This study investigates the relation between the material gradient properties and the optimum sensing/actuation design of the functionally graded piezoelectric beams. Three-dimensional (3D) finite element analysis has been employed for the prediction of an optimum composition profile in these types of sensors and ...

  6. Geometrically non linear analysis of functionally graded material ...

    African Journals Online (AJOL)

    user

    when compared to the other engineering materials (Akhavan and Hamed, 2010). However, FGM plates under mechanical loading may undergo elastic instability. Hence, the non-linear behavior of functionally graded plates has to be understood for their optimum design. Reddy (2000) proposed the theoretical formulation ...

  7. IFR starts to burn up weapons-grade material

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    With funding from different parts of the federal government, the Integral Fast Reactor (IFR) project has survived into fiscal year 1994 and is now embarking on a demonstration of how this type of liquid-metal-cooled reactor (LMR) can be used to burn fuel derived from weapons-grade plutonium. This month, an assembly made from weapons-grade material is to be loaded into Experimental Breeder Reactor-II in Idaho, which is serving as the prototype for the IFR concept. Although FY 1994 work is being funded by the DOE, this particular examination of plutonium burnup is backed by the Department of Defense

  8. Characterization of graded iron / tungsten layers for the first wall of fusion reactors

    International Nuclear Information System (INIS)

    Heuer, Simon

    2017-01-01

    The nuclear fusion has great potential to enable a CO 2 -neutral energy supply of future generations. The technical utilization of this energy source has hitherto been a challenge. In particular, high thermal loads and neutron-induced damage lead to extreme demands on the choice of materials for plasma-facing components (PFCs). These are therefore, as currently understood, made from a tungsten protective layer which is joined to a structure of low activation ferritic-martensitic (LAFM) steel. Due to the discrete transition of material properties at the LAFM-W joining zone as well as thermal loads, macroscopic stresses and plastic strains arise here. A feasible way to reduce this is to implement an intermediate layer with graded LAFM / W ratio, a so-called functional graded material (FGM). In the present work, macro-stresses and strains in the first wall of the fusion reactor DEMO are examined and evaluated by means of a finite element simulation. In this framework model components with and without graded interlayer are taken into account and the advantage of a FGM is emphasized. Parameter studies serve as a constructive guideline for the structural implementation of FGMs and components of the first wall. In addition, the feasibility of four methods (magnetron sputtering, liquid phase infiltration, modified atmospheric plasma spraying and electrodischarge sintering) with respect to the fabrication of FGMs is being studied. The resulting layers are microstructurally, thermo-physically and mechanically examined in detail. Based on this characterization and the finite element simulation, their suitability as a graded layer in the first wall of DEMO is evaluated and finally compared with alternative joining systems that are currently being tested in the research environment. [de

  9. Thermal behavior of the duct applied functionally graded material

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Sun; Yoon, Dong Young; Im, Jong Bin [Hankuk Aviation Univ., Goyang (Korea, Republic of)

    2004-07-01

    In Unmanned Aerial Vehicles (UAV), the high temperature results from friction among the air, combustion of fuel in engine and combustion gas of a nozzle. The high temperature may cause serious damages in UAV structure. The Functionally Graded Material(FGM) is chosen as a material of the engine duct structure. Thermal stress analysis of FGM is performed in this paper. FGM is composed of two constituent materials that are mixed up according to the specific volume fraction distribution in order to withstand high temperature. Therefore, hoop stress, axial stress and shear stress of duct with 2 layers, 4 layers and 8 layers FGM are compared and analyzed respectively. In addition, the creep behavior of FGM used in duct structure of an engine is analyzed for better understanding of FGM characteristics.

  10. Modelling of functionally graded materials by numerical homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Schmauder, S.; Weber, U. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt

    2001-03-01

    In this contribution, the mechanical behaviour of different ZrO{sub 2}/NiCr 80 20 compositions is analysed and compared with experimental findings. The microwave-sintered material is found to possess a slightly dominant ceramic matrix for intermediate volume fractions. Its thermal expansion coefficient deviates from the rule of mixture. The modulus and the stress strain behaviour can be simulated by a numerical homogenization procedure, and the influence of residual stresses is found to be negligible. A newly introduced parameter (matricity) describes the mutual circumvention of the phases and is found to strongly control the stress level of the composite, globally as well as locally. Finally, a graded component and a metal/ceramic bi-material are compared for thermal as well as mechanical loading. (orig.)

  11. The Influence of Al2O3 Powder Morphology on the Properties of Cu-Al2O3 Composites Designed for Functionally Graded Materials (FGM)

    Science.gov (United States)

    Strojny-Nędza, Agata; Pietrzak, Katarzyna; Węglewski, Witold

    2016-08-01

    In order to meet the requirements of an increased efficiency applying to modern devices and in more general terms science and technology, it is necessary to develop new materials. Combining various types of materials (such as metals and ceramics) and developing composite materials seem to be suitable solutions. One of the most interesting materials includes Cu-Al2O3 composite and gradient materials (FGMs). Due to their potential properties, copper-alumina composites could be used in aerospace industry as rocket thrusters and components in aircraft engines. The main challenge posed by copper matrix composites reinforced by aluminum oxide particles is obtaining the uniform structure with no residual porosity (existing within the area of the ceramic phase). In the present paper, Cu-Al2O3 composites (also in a gradient form) with 1, 3, and 5 vol.% of aluminum oxide were fabricated by the hot pressing and spark plasma sintering methods. Two forms of aluminum oxide (αAl2O3 powder and electrocorundum) were used as a reinforcement. Microstructural investigations revealed that near fully dense materials with low porosity and a clear interface between the metal matrix and ceramics were obtained in the case of the SPS method. In this paper, the properties (mechanical, thermal, and tribological) of composite materials were also collected and compared. Technological tests were preceded by finite element method analyses of thermal stresses generated in the gradient structure, and additionally, the role of porosity in the formation process of composite properties was modeled. Based on the said modeling, technological conditions for obtaining FGMs were proposed.

  12. Stress Distribution in Graded Cellular Materials Under Dynamic Compression

    Directory of Open Access Journals (Sweden)

    Peng Wang

    Full Text Available Abstract Dynamic compression behaviors of density-homogeneous and density-graded irregular honeycombs are investigated using cell-based finite element models under a constant-velocity impact scenario. A method based on the cross-sectional engineering stress is developed to obtain the one-dimensional stress distribution along the loading direction in a cellular specimen. The cross-sectional engineering stress is contributed by two parts: the node-transitive stress and the contact-induced stress, which are caused by the nodal force and the contact of cell walls, respectively. It is found that the contact-induced stress is dominant for the significantly enhanced stress behind the shock front. The stress enhancement and the compaction wave propagation can be observed through the stress distributions in honeycombs under high-velocity compression. The single and double compaction wave modes are observed directly from the stress distributions. Theoretical analysis of the compaction wave propagation in the density-graded honeycombs based on the R-PH (rigid-plastic hardening idealization is carried out and verified by the numerical simulations. It is found that stress distribution in cellular materials and the compaction wave propagation characteristics under dynamic compression can be approximately predicted by the R-PH shock model.

  13. German Language and Culture: 9-Year Program Classroom Assessment Materials, Grade 4

    Science.gov (United States)

    Alberta Education, 2008

    2008-01-01

    This document is designed to provide assessment materials for specific Grade 4 outcomes in the German Language and Culture Nine-year Program, Grades 4-5-6. The assessment materials are designed for the beginner level in the context of teaching for communicative competence. Grade 4 learning outcomes from the German Language and Culture Nine-year…

  14. Japanese Language and Culture: 9-Year Program Classroom Assessment Materials, Grade 4

    Science.gov (United States)

    Alberta Education, 2008

    2008-01-01

    This document is designed to provide assessment materials for specific Grade 4 outcomes in the Japanese Language and Culture Nine-year Program, Grades 4-5-6. The assessment materials are designed for the beginner level in the context of teaching for communicative competence. Grade 4 learning outcomes from the Japanese Language and Culture…

  15. Punjabi Language and Culture: 9-Year Program Classroom Assessment Materials, Grade 4

    Science.gov (United States)

    Alberta Education, 2008

    2008-01-01

    This document is designed to provide assessment materials for specific Grade 4 outcomes in the Punjabi Language and Culture Nine-year Program, Grades 4-5-6. The assessment materials are designed for the beginner level in the context of teaching for communicative competence. Grade 4 learning outcomes from the Punjabi Language and Culture Nine-year…

  16. The Application of materials attractiveness in a graded approach to nuclear materials security

    International Nuclear Information System (INIS)

    Ebbinghaus, B.; Bathke, C.; Dalton, D.; Murphy, J.

    2013-01-01

    The threat from terrorist groups has recently received greater attention. In this paper, material quantity and material attractiveness are addressed through the lens of a minimum security strategy needed to prevent the construction of a nuclear explosive device (NED) by an adversary. Nuclear materials are placed into specific security categories (3 or 4 categories) , which define a number of security requirements to protect the material. Materials attractiveness can be divided into four attractiveness levels, High, Medium, Low, and Very Low that correspond to the utility of the material to the adversary and to a minimum security strategy that is necessary to adequately protect the nuclear material. We propose a graded approach to materials attractiveness that recognizes for instance substantial differences in attractiveness between pure reactor-grade Pu oxide (High attractiveness) and fresh MOX fuel (Low attractiveness). In either case, an adversary's acquisition of a Category I quantity of plutonium would be a major incident, but the acquisition of Pu oxide by the adversary would be substantially worse than the acquisition of fresh MOX fuel because of the substantial differences in the time and complexity required of the adversary to process the material and fashion it into a NED

  17. The Application of materials attractiveness in a graded approach to nuclear materials security

    Energy Technology Data Exchange (ETDEWEB)

    Ebbinghaus, B. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551 (United States); Bathke, C. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Dalton, D.; Murphy, J. [National Nuclear Security Administration, US Department of Energy, 1000 Independent Ave., S. W. Washington, DC 20585 (United States)

    2013-07-01

    The threat from terrorist groups has recently received greater attention. In this paper, material quantity and material attractiveness are addressed through the lens of a minimum security strategy needed to prevent the construction of a nuclear explosive device (NED) by an adversary. Nuclear materials are placed into specific security categories (3 or 4 categories) , which define a number of security requirements to protect the material. Materials attractiveness can be divided into four attractiveness levels, High, Medium, Low, and Very Low that correspond to the utility of the material to the adversary and to a minimum security strategy that is necessary to adequately protect the nuclear material. We propose a graded approach to materials attractiveness that recognizes for instance substantial differences in attractiveness between pure reactor-grade Pu oxide (High attractiveness) and fresh MOX fuel (Low attractiveness). In either case, an adversary's acquisition of a Category I quantity of plutonium would be a major incident, but the acquisition of Pu oxide by the adversary would be substantially worse than the acquisition of fresh MOX fuel because of the substantial differences in the time and complexity required of the adversary to process the material and fashion it into a NED.

  18. Fracture of functionally graded materials: application to hydrided zircaloy

    International Nuclear Information System (INIS)

    Perales, F.

    2005-12-01

    This thesis is devoted to the dynamic fracture of functionally graded materials. More particularly, it deals with the toughness of nuclear cladding at high burnup submitted to transient loading. The fracture is studied at local scale using cohesive zone model in a multi body approach. Cohesive zone models include frictional contact to take into account mixed mode fracture. Non smooth dynamics problems are treated within the Non-Smooth Contact Dynamics framework. A multi scale study is necessary because of the dimension of the clad. At microscopic scale, the effective properties of surface law, between each body, are obtained by periodic numerical homogenization. A two fields Finite Element formulation is so written. An extended formulation of the NSCD framework is obtained. The associated software allows to simulate, in finite deformation, from the crack initiation to post-fracture behavior in heterogeneous materials. At microscopic scale, random RVE calculations are made to determine effective properties. At macroscopic scale, calculations of part of clad are made to determine the role of the mean hydrogen concentration and gradient of hydrogen parameters in the toughness of the clad under dynamic loading. (author)

  19. Resistivity measurements on the neutron irradiated detector grade silicon materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zheng

    1993-11-01

    Resistivity measurements under the condition of no or low electrical field (electrical neutral bulk or ENB condition) have been made on various device configurations on detector grade silicon materials after neutron irradiation. Results of the measurements have shown that the ENB resistivity increases with neutron fluence ({Phi}{sub n}) at low {phi}{sub n} (<10{sup 13} n/cm{sup 2}) and saturates at a value between 300 and 400 k{Omega}-cm at {phi}{sub n} {approximately}10{sup 13} n/cm{sup 2}. Meanwhile, the effective doping concentration N{sub eff} in the space charge region (SCR) obtained from the C-V measurements of fully depleted p{sup +}/n silicon junction detectors has been found to increase nearly linearly with {phi}{sub n} at high fluences ({phi}{sub n} > 10{sup 13} n/cm{sup 2}). The experimental results are explained by the deep levels crossing the Fermi level in the SCR and near perfect compensation in the ENB by all deep levels, resulting in N{sub eff} (SCR) {ne} n or p (free carrier concentrations in the ENB).

  20. W–steel and W–WC–steel composites and FGMs produced by hot pressing

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Boldyryeva, Hanna; Brožek, Vlastimil; Sachr, P.; Chráska, Tomáš; Pala, Zdeněk

    2015-01-01

    Roč. 100, November (2015), s. 364-370 ISSN 0920-3796 R&D Projects: GA ČR(CZ) GAP108/12/1872 EU Projects: European Commission(DE) WP11-MAT-WWALLOY Institutional support: RVO:61389021 Keywords : FGM * Composite * Tungsten * Steel * Fusion reactor material Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 1.301, year: 2015 http://www.sciencedirect.com/science/article/pii/S0920379615302106

  1. Optimum material gradient composition for the functionally graded ...

    African Journals Online (AJOL)

    user

    To this end, various static tests for functionally graded ... different poling directions, high stress concentrations are usually appeared at the layer interfaces under ...... Use of classical plate finite elements for the analysis of electroactive ...

  2. Bombs grade 'spent' nuclear material removed from Uzbekistan

    International Nuclear Information System (INIS)

    2006-01-01

    Full text: Spent nuclear fuel containing enough uranium to produce 2.5 nuclear weapons has been safely returned to Russia from Uzbekistan in a classified mission completed on 19 April 2006. It is the first time that fuel used in a nuclear research reactor - referred to as 'spent' - has been repatriated to Russia since the break-up of the Soviet Union. Under tight security, 63 kilograms of spent highly enriched uranium (HEU) was transported to Mayak in Russia, in four separate shipments. IAEA safeguards inspectors monitored and verified the packing of the fuel for transport over the course of 16 days. The secret operation, six years in the planning, was a joint undertaking of the IAEA, the United States, Uzbekistan, Russia and Kazakhstan as part of the Global Threat Reduction Initiative (GTRI). The aim of the GTRI is to identify, secure and recover high-risk vulnerable nuclear and radiological materials around the world. 'There was particular concern about the Uzbek spent fuel given its significant quantity and that it was no longer 'self protecting', 'the IAEA's Crosscutting Co-ordinator for Research Reactors, Mr. Pablo Adelfang, said. 'This means that the fuel has lost its high radioactivity. In other words, it would no longer injure anyone who handled it and would not deter potential thieves,' Mr. Adelfang said. 'The shipment is an important step to reduce stockpiles of high-risk, vulnerable nuclear materials. Russia, the US, Uzbekistan and Kazakhstan should be applauded for their successful cooperation. It will contribute to the security of both Uzbekistan and the international community,' he added. In Russia, the fuel will be processed so that it can not be used for atomic bombs. Russia originally supplied the nuclear fuel to Uzbekistan for use in its 10 megawatt research reactor. Located at the Institute of Nuclear Physics of Uzbekistan, 30 km from Tashkent, the reactor is currently used for research and to produce isotopes for medical purposes. The IAEA is

  3. Kinder Lernen Deutsch Materials Evaluation Project: Grades K-8.

    Science.gov (United States)

    American Association of Teachers of German.

    The Kinder Lernen Deutsch (Children Learn German) project, begun in 1987, is designed to promote German as a second language in grades K-8. The project is premised on the idea that the German program will contribute to the total development of the child and the child's personality. Included in this guide are a selection of recommended core…

  4. Characterization of graded iron / tungsten layers for the first wall of fusion reactors; Charakterisierung gradierter Eisen/Wolfram-Schichten fuer die erste Wand von Fusionsreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Heuer, Simon

    2017-07-01

    The nuclear fusion has great potential to enable a CO{sub 2}-neutral energy supply of future generations. The technical utilization of this energy source has hitherto been a challenge. In particular, high thermal loads and neutron-induced damage lead to extreme demands on the choice of materials for plasma-facing components (PFCs). These are therefore, as currently understood, made from a tungsten protective layer which is joined to a structure of low activation ferritic-martensitic (LAFM) steel. Due to the discrete transition of material properties at the LAFM-W joining zone as well as thermal loads, macroscopic stresses and plastic strains arise here. A feasible way to reduce this is to implement an intermediate layer with graded LAFM / W ratio, a so-called functional graded material (FGM). In the present work, macro-stresses and strains in the first wall of the fusion reactor DEMO are examined and evaluated by means of a finite element simulation. In this framework model components with and without graded interlayer are taken into account and the advantage of a FGM is emphasized. Parameter studies serve as a constructive guideline for the structural implementation of FGMs and components of the first wall. In addition, the feasibility of four methods (magnetron sputtering, liquid phase infiltration, modified atmospheric plasma spraying and electrodischarge sintering) with respect to the fabrication of FGMs is being studied. The resulting layers are microstructurally, thermo-physically and mechanically examined in detail. Based on this characterization and the finite element simulation, their suitability as a graded layer in the first wall of DEMO is evaluated and finally compared with alternative joining systems that are currently being tested in the research environment. [German] Die Kernfusion besitzt grosses Potenzial eine CO{sub 2}-neutrale Energieversorgung zukuenftiger Generationen zu ermoeglichen. Dabei stellt die technische Nutzbarmachung dieser

  5. Graded territories: Towards the design, specification and simulation of materially graded bending active structures

    DEFF Research Database (Denmark)

    Nicholas, Paul; Tamke, Martin; Ramsgaard Thomsen, Mette

    2012-01-01

    these structures, the property of bending is activated and varied through bespoke material means so as to match a desired form. Within the architectural design process, formal control depends upon design approaches for material specification and simulation that consider behavior at the level of the material...... element as well as the structure. We describe an evolving approach to material specification and simulation, and highlight the digital and material considerations that frame the process.......The ability to make materials with bespoke behavior affords new perspectives on incorporating material properties within the design process not available through natural materials. This paper reports the design and assembly of two bending-active, fibre-reinforced composite structures. Within...

  6. Low grade uranium ores as potential sources of raw material

    International Nuclear Information System (INIS)

    Venzlaff, H.

    1976-01-01

    Reports on the uranium requirement and the uranium reserves show that, even if the demand were to be stretched out slightly, the rate of new discoveries of uranium would have to be doubled or even tripled within a few years in order to ensure supply. Despite some spectacular discoveries of large scale deposits in Australia it must be said that only very few truly new uranium provinces have been discovered over the past twenty years. In this situation more attention is now being devoted to low grade uranium depositis, to findings whose concentration does not exceed 1,000 ppm. These deposits contain quantities of uranium many times larger than the deposits that can now be mined at prices up to 30/lb of U 3 O 8 . Even now low grade uranium ore is being mined as a byproduct, with the actual valuable mineral producing most of the income from mining activities. However, if one strikes a balance in this situation, one finds that only part of the requirement can be met in this way. Hence, all possibilities must be exhausted to mine uranium as a byproduct, new techniques of uranium production from low grade ores must be developed, and also conventional prospection must be intensified, if the continuity of supply of the nuclear power stations in the eighties and nineties is to be guaranteed. (orig.) [de

  7. Experimental Tape Casting of Adjacently Graded Materials for Magnetic Refrigeration

    DEFF Research Database (Denmark)

    Bulatova, Regina

    encompass modification of the entire tape caster into a multi chamber unit, establishment of the optimal operating parameters such as casting gap, speed, and slurry level in the tape caster reservoir, and elucidation of the impact of chamber partition design on the quality of the final tape. The second...... of the side-by-side tape casting technique: recognising critical parameters which affect the quality of a graded tape, shape and position of the interface area. Studied parameters can be divided into two categories: operational parameters and slurry formulation optimisation. The operational parameters...

  8. Three-Dimensional Finite Element Modeling of Thermomechanical Problems in Functionally Graded Hydroxyapatite/Titanium Plate

    Directory of Open Access Journals (Sweden)

    S. N. S. Jamaludin

    2014-01-01

    Full Text Available The composition of hydroxyapatite (HA as the ceramic phase and titanium (Ti as the metallic phase in HA/Ti functionally graded materials (FGMs shows an excellent combination of high biocompatibility and high mechanical properties in a structure. Because the gradation of these properties is one of the factors that affects the response of the functionally graded (FG plates, this paper is presented to show the domination of the grading parameter on the displacement and stress distribution of the plates. A three-dimensional (3D thermomechanical model of a 20-node brick quadratic element is used in the simulation of the thermoelastic behaviors of HA/Ti FG plates subjected to constant and functional thermal, mechanical, and thermomechanical loadings. The convergence properties of the present results are examined thoroughly in order to assess the accuracy of the theory applied and to compare them with the established research results. Instead of the grading parameter, this study reveals that the loading field distribution can be another factor that reflects the thermoelastic properties of the HA/Ti FG plates. The FG structure is found to be able to withstand the thermal stresses while preserving the high toughness properties and thus shows its ability to operate at high temperature.

  9. Development of functionally graded materials by ultrasonic consolidation

    CSIR Research Space (South Africa)

    Kumar, S

    2010-08-01

    Full Text Available parameters for welding various combinations of materials have been found for making a sample of aminimumo f62 foils of width 2” and length 3”. Optical microscopy and mirohardness test have been performed thereupon for the characterization....

  10. Geometrically non linear analysis of functionally graded material ...

    African Journals Online (AJOL)

    The nonlinear algebraic equations are solved using Newton Raphson iterative method. The numerical results are obtained for various boundary conditions, material variation parameter, aspect ratio, side to thickness ratio and compared with the available solutions. The effect of shear deformation and nonlinearity response ...

  11. Technical criteria for terminating or reducing domestic safeguards on low-grade special nuclear material

    International Nuclear Information System (INIS)

    Crawford, D.W.

    1996-01-01

    A graded table for terminating or reducing domestic safeguards has been developed for use by programs and facilities within the Department of Energy in decisions regarding the need for or levels of protection of low-grade nuclear materials. Contained in this table are technical criteria which can allow for complete removal of safeguards over many special nuclear material forms and concentrations of typical low-grade materials either currently located at generating or processing sites and materials which may arise from processing operations related to stabilization and disposition activities. In addition, these criteria include higher concentration levels which may warrant maintaining some level of (albeit reduced) security on low-grade materials while allowing reductions in materials control and accountability requirements. These reductions can range from complete removal of these materials from materials control and accountability requirements such as measurements, physical inventories and recordkeeping, to deferring these measurements and physical inventories until a time that either the material is removed from the site or resubmitted for processing. It is important to note that other conditions contained in current Departmental safeguards and security policy be met prior to safeguards termination or reduction

  12. Functionally Graded Materials by Laser Metal Deposition (PREPRINT)

    Science.gov (United States)

    2010-03-01

    composition of Fe-82 wt% V (powder-1) and Inconel - 625 (powder-2) powders are listed in Table 1. The substrate materials used for the experiment were cold...like laser power, travel speed and powder feed rate is yet to be determined to obtain a successful FGM. Inconel - 625 deposits showed macro-cracks...Composition (wt%) Powder-1: Fe-82 wt% V V (82), Al (0.68), Si (0.9), C (0.07), S (0.01), P (0.02), Fe (18) Powder-2: Inconel - 625 Ni (58), Cr (20-23

  13. Study on the Reflection Spectra of One Dimensional Plasma Photonic Crystals Having Exponentially Graded Materials

    International Nuclear Information System (INIS)

    Prasad, S.; Singh, Vivek; Singh, A. K.

    2013-01-01

    The transfer matrix method is used to study the effect of the permittivity profile on the reflectivity of a one dimensional plasma photonic crystal having exponentially graded material. The analysis shows that the proposed structure works as a perfect mirror within a certain frequency range. These frequency ranges can be completely controlled by the permittivity profile of a graded dielectric layer. As expected we observed that these frequency ranges are also controlled by plasma parameters. (plasma technology)

  14. Y2O3-W Continuous Graded Materials by Co-sedimentation

    Directory of Open Access Journals (Sweden)

    WANG Shi-yang

    2017-09-01

    Full Text Available The raw Y2O3 powder was classified and graded based on modified co-sedimentation mathematical model,using the size distribution of W particles as the known condition. Y2O3-W continuous graded materials with the composition distribution index P values of 1.0, 0.7, 0.3 and 0.1 were prepared by co-sedimentation and hot-pressing. The results show that the Y2O3 powder consistent with the design requirements can be obtained by graduation method. The gradient continuity of materials can be verified by microstructure observation and hardness testing.

  15. Deflection control of functionally graded material beams with bonded piezoelectric sensors and actuators

    International Nuclear Information System (INIS)

    Gharib, Ahmad; Salehi, Manouchehr; Fazeli, Saeed

    2008-01-01

    An analytical solution is developed for analysis of functionally graded material (FGM) beams containing two layers of piezoelectric material, used as sensor and actuator. The properties of FGM layer are functionally graded in the thickness direction according to the volume fraction power law distribution. The equations of motion are derived by using Hamilton's principle, based on the first-order shear deformation theory. By using a displacement potential function, and assumption of harmonic vibration, the equations of motion have been solved analytically. Finally, the effects of FGM constituent volume fraction in the peak responses for various volume fraction indexes have been graphically illustrated

  16. Material and Thickness Grading for Aeroelastic Tailoring of the Common Research Model Wing Box

    Science.gov (United States)

    Stanford, Bret K.; Jutte, Christine V.

    2014-01-01

    This work quantifies the potential aeroelastic benefits of tailoring a full-scale wing box structure using tailored thickness distributions, material distributions, or both simultaneously. These tailoring schemes are considered for the wing skins, the spars, and the ribs. Material grading utilizes a spatially-continuous blend of two metals: Al and Al+SiC. Thicknesses and material fraction variables are specified at the 4 corners of the wing box, and a bilinear interpolation is used to compute these parameters for the interior of the planform. Pareto fronts detailing the conflict between static aeroelastic stresses and dynamic flutter boundaries are computed with a genetic algorithm. In some cases, a true material grading is found to be superior to a single-material structure.

  17. Microstructure and properties of aluminium-aluminium oxide graded composite materials

    Science.gov (United States)

    Kamaruzaman, F. F.; Nuruzzaman, D. M.; Ismail, N. M.; Hamedon, Z.; Iqbal, A. K. M. A.; Azhari, A.

    2018-03-01

    In this research works, four-layered aluminium-aluminium oxide (Al-Al2O3) graded composite materials were fabricated using powder metallurgy (PM) method. In processing, metal-ceramic graded composite materials of 0%, 10%, 20% and 30% weight percentage of ceramic concentration were prepared under 30 ton compaction load using a cylindrical die-punch set made of steel. After that, two-step pressureless sintering was carried out at sintering temperature and time 600°C and 3 hours respectively. It was observed that the sintered cylindrical specimens of 30 mm diameter were prepared successfully. The graded composite specimens were analysed and the properties such as density, microstructure and hardness were measured. It was found that after sintering process, the diameter of the graded cylindrical structure was decreased. Using both Archimedes method and rule of mixture (ROM), he density of structure was measured. The obtained results revealed that the microvickers hardness was increased as the ceramic component increases in the graded layer. Moreover, it was observed that the interface of the graded structure is clearly distinguished within the multilayer stack and the ceramic particles are almost uniformly distributed in the Al matrix.

  18. The Hawaiian Monarchy: Instructional Materials/Resources for Grade 7 Social Studies. Draft.

    Science.gov (United States)

    Hawaii State Dept. of Education, Honolulu. Office of Instructional Services.

    Materials in this curriculum guide for a seventh grade social studies course focus on the development of the monarchy period in Hawaii's history. Following a course outline, 10 study units cover map skills, early historical background, and the reigns of the following kings and queens: Kamehameha, Liholiho, Kauikeaouli, Alexander Liholiho, Lot,…

  19. A Bibliography of English as a Second Language Materials: Grades K-3.

    Science.gov (United States)

    National Clearinghouse for Bilingual Education, Arlington, VA.

    This annotated bibliography of English as a second language (ESL) materials for grades K-3 is divided into four parts. The first part, ESL texts, lists a number of series or single texts that are designed to teach the spoken language and reading to the elementary school child. The second part is a list of readers that, although were mostly…

  20. Nutrition Education Materials: Grades Preschool through 6. 1979-March 1987. Quick Bibliography Series.

    Science.gov (United States)

    Irving, Holly Berry

    The citations in this annotated bibliography are of audiovisuals and books focusing on basic nutrition education for children in preschool through the sixth grade. There are 306 citations derived from online searches of the AGRICOLA database. Information is provided on obtaining the materials. (JD)

  1. Electromagnetic Spectrum. 7th and 8th Grade Agriculture Science Curriculum. Teacher Materials.

    Science.gov (United States)

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This curriculum guide, the second in a set of six, contains teacher and student materials for a unit on the electromagnetic spectrum prepared as part of a seventh- and eighth-grade agricultural science curriculum that is integrated with science instruction. The guide contains the state goals and sample learning objectives for each goal for…

  2. Manufacture of ribbon and solar cells of material of semiconductor grade

    International Nuclear Information System (INIS)

    1980-01-01

    A method is described of producing ribbon-like substantially monocrystalline bodies of silicon or other materials of semiconductor grade suitable for use in solar cells or other semiconductor devices. A tube of the material is made and a photovoltaic junction formed in it. The tube is then divided lengthwise into a number of ribbon-like bodies. The photovoltaic junction can be formed either by diffusion or by ion-implantation. (U.K.)

  3. PENGARUH PENGGUNAAN GAS PELINDUNG ARGON GRADE A DAN GRADE C TERHADAP KEKUATAN TARIK LASAN SAMBUNGAN BUTT PADA MATERIAL KAPAL ALUMINIUM 5083

    Directory of Open Access Journals (Sweden)

    Hartono Yudo

    2012-04-01

    Full Text Available Material aluminum 5083 banyak digunakan dalam industri perkapalan khususnya sebagai material konstruksi kapal aluminium. Jika dilakukan pengelasan untuk penyambungan material aluminum 5083 akan terdapat kekurangsempurnaan hasil  pengelasanya ditinjau dari kekuatanya. Penelitian ini bertujuan mengetahui kekuatan tarik hasil las material aluminum 5083 dengan menggunakan dua jenis gas pelindung yang berbeda yakni argon grade A dan argon grade C. Pada perancangan percobaan ini menggunakan material kapal aluminium crew boat KM. Pan Maitime dengan LOA (length over all 35 m, yaitu material aluminium 5083 dengan ketebalan 6 mm dengan Elektrode ER 5356 sesuai rekomdeasi ANSI/ AWS spesification A 5 10/ A 5 10 M dengan  proses pengelasan MIG (metal inert gas. Hasil penelitian menunjukan  bahwa penggunaan gas pelindung argon grade C sebagai gas pelindung pengelasan material aluminum 5083 memiliki kekuatan tarik yang lebih besar 57,89 %  untuk spesimen sambungan las dan 19,85 %  untuk spesimen logam las (weld metal daripada gas pelindung argon grade A. Dimana kekuatan tarik (s rata-rata spesimen sambungan las menggunakan argon grade C adalah 202.5 N/mm2, dan spesimen sambungan las menggunakan argon grade A adalah 128.25 N/mm2, sedangkan untuk kekuatan tarik (s rata-rata spesimen logam las menggunakan argon grade C adalah 299,01 N/mm2, dan spesimen logam las menggunakan argon grade A adalah  249,47 N/mm2. Selain pengujian juga dilakukan analisa menggunakan software Nastran 4.5  dengan hasil tegangan spesimen 111,40 N/mm2 untuk beban tarik 7700 N yang terjadi pada sambungan las.

  4. Research on Free Vibration Frequency Characteristics of Rotating Functionally Graded Material Truncated Conical Shells with Eccentric Functionally Graded Material Stringer and Ring Stiffeners

    Directory of Open Access Journals (Sweden)

    Dao Van Dung

    Full Text Available Abstract In this research work, an exact analytical solution for frequency characteristics of the free vibration of rotating functionally graded material (FGM truncated conical shells reinforced by eccentric FGM stringers and rings has been investigated by the displacement function method. Material properties of shell and stiffeners are assumed to be graded in the thickness direction according to a simple power law distribution. The change of spacing between stringers is considered. Using the Donnell shell theory, Leckhnisky smeared stiffeners technique and taking into account the influences of centrifugal force and Coriolis acceleration the governing equations are derived. For stiffened FGM conical shells, it is difficult that free vibration equations are a couple set of three variable coefficient partial differential equations. By suitable transformations and applying Galerkin method, this difficulty is overcome in the paper. The sixth order polynomial equation for w is obtained and it is used to analyze the frequency characteristics of rotating ES-FGM conical shells. Effects of stiffener, geometrics parameters, cone angle, vibration modes and rotating speed on frequency characteristics of the shell forward and backward wave are discussed in detail. The present approach proves to be reliable and accurate by comparing with published results available in the literature.

  5. Elasto-Plastic Stress Analysis in Rotating Disks and Pressure Vessels Made of Functionally Graded Materials

    Directory of Open Access Journals (Sweden)

    Amir T. Kalali

    Full Text Available Abstract A new elastio-plastic stress solution in axisymmetric problems (rotating disk, cylindrical and spherical vessel is presented. The rotating disk (cylindrical and spherical vessel was made of a ceramic/metal functionally graded material, i.e. a particle-reinforced composite. It was assumed that the material's plastic deformation follows an isotropic strain-hardening rule based on the von-Mises yield criterion. The mechanical properties of the graded material were modeled by the modified rule of mixtures. By assuming small strains, Hencky's stress-strain relation was used to obtain the governing differential equations for the plastic region. A numerical method for solving those differential equations was then proposed that enabled the prediction of stress state within the structure. Selected finite element results were also presented to establish supporting evidence for the validation of the proposed approach.

  6. Ductile fracture toughness of modified A 302 Grade B Plate materials, data analysis. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, D.E.; Manneschmidt, E.T.; Swain, R.L.

    1997-01-01

    The goal of this work was to develop ductile fracture toughness data in the form of J-R curves for modified A302 grade B plate materials typical of those used in reactor pressure vessels. A previous experimental study on one heat of A302 grade B plate showed decreasing J-R curves with increased specimen thickness. This characteristic has not been observed in tests made on recent production materials of A533 grade B and A508 class 2 pressure vessel steels. It was unknown if the departure from norm for the material was a generic characteristic for all heats of A302 grade B steels or unique to that particular plate. Seven heats of modified A302 grade B steel and one heat of vintage A533 grade B steel were tested for chemical content, tensile properties, Charpy transition temperature curves, drop-weight nil-ductility transition (NDT) temperature, and J-R curves. Tensile tests were made in the three principal orientations and at four temperatures, ranging from room temperature to 550F. Charpy V-notch transition temperature curves were obtained in longitudinal, transverse, and short transverse orientations. J-R curves were made using four specimen sizes (1/2T, 1T, 2T, and 4T). The fracture mechanics-based evaluation method covered three test orientations and three test temperatures (80, 400, and 550F). However, the coverage of these variables was contingent upon the amount of material provided. Drop-weight NDT temperature was determined for the T-L orientation only. None of the heats of modified A302 grade B showed size effects of any consequence on the J-R curve behavior. Crack orientation effects were present, but none were severe enough to be reported as atypical. A test temperature increase from 180 to 550F produced the usual loss in J-R curve fracture toughness. Generic J-R curves and curve fits were generated to represent each heat of material. This volume deals with the evaluation of data and the discussion of technical findings. 8 refs., 18 figs., 8 tabs.

  7. Ductile fracture toughness of modified A 302 grade B plate materials. Volume 2

    International Nuclear Information System (INIS)

    McCabe, D.E.; Manneschmidt, E.T.; Swain, R.L.

    1997-02-01

    The objective of this work was to develop ductile fracture toughness data in the form of J-R curves for modified A 302 grade B plate materials typical of those used in fabricating reactor pressure vessels. A previous experimental study at Materials Engineering Associates (MEA) on one particular heat of A 302 grade B plate showed decreasing J-R curves with increased specimen thickness. This characteristic has not been observed in numerous tests made on the more recent production materials of A 533 grade B and A 508 class 2 pressure vessel steels. It was unknown if the departure from norm for the MEA material was a generic characteristic for all heats of A 302 grade B steels or just unique to that one particular plate. Seven heats of modified A 302 grade B steel and one heat of vintage A 533 grade B steel were provided to this project by the General Electric Company of San Jose, California. All plates were tested for chemical content, tensile properties, Charpy transition temperature curves, drop-weight nil-ductility transition (NDT) temperature, and J-R curves. Tensile tests were made in the three principal orientations and at four temperatures, ranging from room temperature to 550 degrees F (288 degrees C). Charpy V-notch transition temperature curves were obtained in longitudinal, transverse, and short transverse orientations. J-R curves were made using four specimen sizes (1/2T, IT, 2T, and 4T). None of the seven heats of modified A 302 grade showed size effects of any consequence on the J-R curve behavior. Crack orientation effects were present, but none were severe enough to be reported as atypical. A test temperature increase from 180 to 550 degrees F (82 to 288 degrees C) produced the usual loss in J-R curve fracture toughness. Generic J-R curves and mathematical curve fits to the same were generated to represent each heat of material. This volume is a compilation of all data developed

  8. Ductile fracture toughness of modified A 302 Grade B Plate materials, data analysis. Volume 1

    International Nuclear Information System (INIS)

    McCabe, D.E.; Manneschmidt, E.T.; Swain, R.L.

    1997-01-01

    The goal of this work was to develop ductile fracture toughness data in the form of J-R curves for modified A302 grade B plate materials typical of those used in reactor pressure vessels. A previous experimental study on one heat of A302 grade B plate showed decreasing J-R curves with increased specimen thickness. This characteristic has not been observed in tests made on recent production materials of A533 grade B and A508 class 2 pressure vessel steels. It was unknown if the departure from norm for the material was a generic characteristic for all heats of A302 grade B steels or unique to that particular plate. Seven heats of modified A302 grade B steel and one heat of vintage A533 grade B steel were tested for chemical content, tensile properties, Charpy transition temperature curves, drop-weight nil-ductility transition (NDT) temperature, and J-R curves. Tensile tests were made in the three principal orientations and at four temperatures, ranging from room temperature to 550F. Charpy V-notch transition temperature curves were obtained in longitudinal, transverse, and short transverse orientations. J-R curves were made using four specimen sizes (1/2T, 1T, 2T, and 4T). The fracture mechanics-based evaluation method covered three test orientations and three test temperatures (80, 400, and 550F). However, the coverage of these variables was contingent upon the amount of material provided. Drop-weight NDT temperature was determined for the T-L orientation only. None of the heats of modified A302 grade B showed size effects of any consequence on the J-R curve behavior. Crack orientation effects were present, but none were severe enough to be reported as atypical. A test temperature increase from 180 to 550F produced the usual loss in J-R curve fracture toughness. Generic J-R curves and curve fits were generated to represent each heat of material. This volume deals with the evaluation of data and the discussion of technical findings. 8 refs., 18 figs., 8 tabs

  9. Determination of the Local Thermal Conductivity of Functionally Graded Materials by a Laser Flash Method

    DEFF Research Database (Denmark)

    Zajas, Jan Jakub; Heiselberg, Per

    2013-01-01

    Determination of thermal conductivity of construction materials is essential to estimate their insulation capabilities. In most cases, homogenous materials are used and well developed methods exist for measurements of their thermal conductivity. The task becomes more challenging when dealing...... by scanning them point by point and determining the thermal conductivity as a function of the spatial dimensions. The method proves to be repeatable and of reasonable accuracy and can be used to determine the local thermal properties on a scale of millimeters. In this study, the method was successfully...... applied to create a map of thermal conductivity of a functionally graded material sample....

  10. Deposition and Characterization of HVOF Thermal Sprayed Functionally Graded Coatings Deposited onto a Lightweight Material

    Science.gov (United States)

    Hasan, M.; Stokes, J.; Looney, L.; Hashmi, M. S. J.

    2009-02-01

    There is a significant interest in lightweight materials (like aluminum, magnesium, titanium, and so on) containing a wear resistance coating, in such industries as the automotive industry, to replace heavy components with lighter parts in order to decrease vehicle weight and increase fuel efficiency. Functionally graded coatings, in which the composition, microstructure, and/or properties vary gradually from the bond coat to the top coat, may be applied to lightweight materials, not only to decrease weight, but also to enhance components mechanical properties by ensuring gradual microstructural (changes) together with lower residual stress. In the current work, aluminum/tool-steel functionally graded coatings were deposited onto lightweight aluminum substrates. The graded coatings were then characterized in terms of residual stress and hardness. Results show that residual stress increased with an increase in deposition thickness and a decrease in number of layers. However, the hardness also increased with an increase in deposition thickness and decrease in number of layers. Therefore, an engineer must compromise between the hardness and stress values while designing a functionally graded coating-substrate system.

  11. Free Vibration Analysis of Functionally Graded Porous Doubly-Curved Shells Based on the First-Order Shear Deformation Theory

    Directory of Open Access Journals (Sweden)

    Farajollah Zare Jouneghani

    2017-12-01

    Full Text Available Due to some technical issues that can appear during the manufacturing process of Functionally Graded Materials (FGMs, it can be extremely difficult to produce perfect materials. Indeed, one of the biggest problems is the presence of porosities. For this purpose, the vibrational behavior of doubly-curved shells made of FGM including porosities is investigated in this paper. With respect to previous research, the porosity has been added to the mechanical model that characterizes the through-the-thickness distribution of the graded constituents and applied to doubly-curved shell structures. Few papers have been published on this topic. In fact, it is easier to find works related to one-dimensional structures and beam models that take account the effect of porosities. The First-order Shear Deformation Theory (FSDT is considered as the theoretical framework. In addition, the mechanical properties of the constituents vary along the thickness direction. For this purpose, two power-law distributions are employed to characterize their volume fraction. Strain components are established in an orthogonal curvilinear coordinate system and the governing equations are derived according to the Hamilton’s principle. Finally, Navier’s solution method is used and the numerical results concerning three different types of shell structures are presented.

  12. Stresses and Displacements in Functionally Graded Materials of Semi-Infinite Extent Induced by Rectangular Loadings

    Directory of Open Access Journals (Sweden)

    Zhong-Qi Yue

    2012-01-01

    Full Text Available This paper presents the stress and displacement fields in a functionally graded material (FGM caused by a load. The FGM is a graded material of Si3N4-based ceramics and is assumed to be of semi-infinite extent. The load is a distributed loading over a rectangular area that is parallel to the external surface of the FGM and either on its external surface or within its interior space. The point-load analytical solutions or so-called Yue’s solutions are used for the numerical integration over the distributed loaded area. The loaded area is discretized into 200 small equal-sized rectangular elements. The numerical integration is carried out with the regular Gaussian quadrature. Weak and strong singular integrations encountered when the field points are located on the loaded plane, are resolved with the classical methods in boundary element analysis. The numerical integration results have high accuracy.

  13. Preparation of Al/Si functionally graded materials using ultrasonic separation method

    Directory of Open Access Journals (Sweden)

    Zhang Zhongtao

    2008-08-01

    Full Text Available Functionally graded materials (FGM have been widely used in many industries such as aerospace, energy and electronics. In this experimental study of fabricating FGM, an approach was developed to prepare Al/Si FGM using power ultrasonic separation method. Material sample with continuously changing composition and performance/properties was successfully produced. Results showed that the microstructure of the FGM sample transited, from its top to bottom, from the hypereutectic structure with a large quantity of primary Si gradually to the eutectic, and fi nally to the hypoeutectic with numerous primary Al dendrites. The distribution of primary Si and microhardness of the FGM sample also presented graded characteristics, resulting that the wear resistance of the FGM sample decreased from top to bottom. Preliminary discussion was made on the mechanism of the formation of Al/Si FGM.

  14. Supply of equipment and components, materials of dedicated commercial grade, other services

    International Nuclear Information System (INIS)

    Perdices, D.; Perez Medina, E.

    2014-01-01

    The following article describes the course of action of Tecnatom as Procurement Agent and Manufacturing Manager for the supply materials, equipment and components for the Spanish Nuclear Power Plants. We have devoted a special mention to the supply of dedicated commercial grade items (CGI), bringing together the services of Manufacturing Manager, Engineering service and testing facilities, simplifying the control of the supply chain with total warranty. (Author)

  15. Weapons-grade nuclear material - open questions of a safe disposal

    International Nuclear Information System (INIS)

    Closs, K.D.; Giraud, J.P.; Grill, K.D.; Hensing, I.; Hippel, F. von; Holik, J.; Pellaud, B.

    1995-01-01

    There are suitable technologies available for destruction of weapons-grade uranium and plutonium. Weapons-grade uranium, consisting to 90% of the isotope U-235, can be diluted with the uranium isotope U-238 to make it non-weapons-grade, but it will then still be a material that can be used as a fuel in civil nuclear reactors. For safe plutonium disposal, several options are under debate. There is for instance a process called ''reverse reprocessing'', with the plutonium being blended with high-level radioactive fission products and then being put into a waste form accepted for direct ultimate disposal. The other option is to convert weapons-grade plutonium into MOX nuclear fuel elements and then ''burn'' them in civil nuclear power reactors. This is an option favoured by many experts. Such fuel elements should stay for a long time in the reactor core in order to achieve high burnups, and should then be ready for ultimate disposal. This disposal pathway offers essential advantages: the plutonium is used up or depleted as a component of reactor fuel, and thus is no longer available for illegal activities, and it serves as an energy source for power generation. (orig./HP) [de

  16. Bulk solar grade silicon: how chemistry and physics play to get a benevolent microstructured material

    Energy Technology Data Exchange (ETDEWEB)

    Pizzini, S. [University of Milano-Bicocca, Department of Materials Science, Milan (Italy); Nedsilicon SpA, Osimo, Ancona (Italy)

    2009-07-15

    The availability of low-cost alternatives to electronic grade silicon has been and still is the condition for the extensive use of photovoltaics as an efficient sun harvesting system. The first step towards this objective was positively carried out in the 1980s and resulted in the reduction in cost and energy of the growth process using as feedstock electronic grade scraps and a variety of solidification procedures, all of which deliver a multi-crystalline material of high photovoltaic quality. The second step was an intense R and D activity aiming at defining and developing at lab scale a new variety of silicon, called ''solar grade'' silicon, which should fulfil the requirement of both cost effectiveness and high conversion efficiency. The third step involved and still involves the development of cost-effective technologies for the manufacture of solar grade silicon, in alternative to the classical Siemens route, which relays, as is well-known, to the pyrolitic decomposition of high-purity trichlorosilane and which is, also in its more advanced versions, extremely energy intensive. Aim of this paper is to give the author's viewpoint about some open questions concerning bulk solar silicon for PV applications and about challenges and chances of novel feedstocks of direct metallurgical origin. (orig.)

  17. Analysis of macro and micro residual stresses in functionally graded materials by diffraction methods

    CERN Document Server

    Dantz, D; Reimers, W

    1999-01-01

    The residual stress state in microwave sintered metal-ceramic functionally graded materials (FGM) consisting of 8Y-ZrO/sub 2//Ni and 8Y-ZrO/sub 2//NiCr8020, respectively, was analysed by non- destructive diffraction methods. In $9 order to get knowledge of the complete residual stress state in the near surface region as well as in the interior of the material, complementary methods were applied. Whereas the surface was characterised by X-ray techniques using $9 conventional sources, the stresses within the bulk of the material were investigated by means of high energy synchrotron radiation. The stress state was found to obey the differences in the coefficients of thermal expansion $9 (micro-stresses) on the one hand and the inhomogeneous cooling conditions (macrostresses) on the other hand. (7 refs).

  18. Optimization of Natural Frequencies and Sound Power of Beams Using Functionally Graded Material

    Directory of Open Access Journals (Sweden)

    Nabeel T. Alshabatat

    2014-01-01

    Full Text Available This paper presents a design method to optimize the material distribution of functionally graded beams with respect to some vibration and acoustic properties. The change of the material distribution through the beam length alters the stiffness and the mass of the beam. This can be used to alter a specific beam natural frequency. It can also be used to reduce the sound power radiated from the vibrating beam. Two novel volume fraction laws are used to describe the material volume distributions through the length of the FGM beam. The proposed method couples the finite element method (for the modal and harmonic analysis, Lumped Parameter Model (for calculating the power of sound radiation, and an optimization technique based on Genetic Algorithm. As a demonstration of this technique, the optimization procedure is applied to maximize the fundamental frequency of FGM cantilever and clamped beams and to minimize the sound radiation from vibrating clamped FGM beam at a specific frequency.

  19. Dynamic propagation of a weak-discontinuous interface crack between two dissimilar functionally graded layers under anti-plane shear

    International Nuclear Information System (INIS)

    Shin, Jeong Woo; Lee, Young Shin

    2011-01-01

    The dynamic propagation of an interface crack between two functionally graded material (FGM) layers under anti-plane shear is analyzed using the integral transform method. The properties of the FGM layers vary continuously along their thicknesses. The properties of the two FGM layers vary and the two layers are connected weak-discontinuously. A constant velocity Yoffe-type moving crack is considered. The Fourier transform is used to reduce the problem to a dual integral equation, which is then expressed to a Fredholm integral equation of the second kind. Numerical values on the dynamic energy release rate (DERR) are presented for the FGM to show the effect of the gradient of material properties, crack moving velocity, and thickness of FGM layers. The following are helpful to increase resistance to interface crack propagation in FGMs: a) increasing the gradient of material properties, b) an increase of shear modulus and density from the interface to the upper and lower free surface, and c) increasing the thickness of the FGM layer. The DERR increases or decreases with increase of the crack moving velocity

  20. Rayleigh wave behavior in functionally graded magneto-electro-elastic material

    Science.gov (United States)

    Ezzin, Hamdi; Mkaoir, Mohamed; Amor, Morched Ben

    2017-12-01

    Piezoelectric-piezomagnetic functionally graded materials, with a gradual change of the mechanical and electromagnetic properties have greatly applying promises. Based on the ordinary differential equation and stiffness matrix methods, a dynamic solution is presented for the propagation of the wave on a semi-infinite piezomagnetic substrate covered with a functionally graded piezoelectric material (FGPM) layer. The materials properties are assumed to vary in the direction of the thickness according to a known variation law. The phase and group velocity of the Rayleigh wave is numerically calculated for the magneto-electrically open and short cases, respectively. The effect of gradient coefficients on the phase velocity, group velocity, coupled magneto-electromechanical factor, on the stress fields, the magnetic potential and the mechanical displacement are discussed, respectively. Illustration is achieved on the hetero-structure PZT-5A/CoFe2O4; the obtained results are especially useful in the design of high-performance acoustic surface devices and accurately prediction of the Rayleigh wave propagation behavior.

  1. Semi-analytical Vibration Characteristics of Rotating Timoshenko Beams Made of Functionally Graded Materials

    Directory of Open Access Journals (Sweden)

    Farzad Ebrahimia

    Full Text Available AbstractFree vibration analysis of rotating functionally graded (FG thick Timoshenko beams is presented. The material properties of FG beam vary along the thickness direction of the constituents according to power law model. Governing equations are derived through Hamilton's principle and they are solved applying differential transform method. The good agreement between the results of this article and those available in literature validated the presented approach. The emphasis is placed on investigating the effect of several beam parameters such as constituent volume fractions, slenderness ratios, rotational speed and hub radius on natural frequencies and mode shapes of the rotating thick FG beam.

  2. Material properties of Grade 91 steel at elevated temperature and their comparison with a design code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeong Yeon; Kim, Woo Gon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Han Sang; Kim, Yun Jae [Korea Univ., Seoul (Korea, Republic of)

    2013-10-15

    In this study, the material properties of tensile strength, creep properties, and creep crack growth model for Gr.91 steel at elevated temperature were obtained from material tests at KAERI, and the test data were compared with those of the French elevated temperature design code, RCC-MRx. The conservatism of the material properties in the French design code is highlighted. Mod.9Cr-1Mo (ASME Grade 91; Gr.91) steel is widely adopted as candidate material for Generation IV nuclear systems as well as for advanced thermal plants. In a Gen IV sodium-cooled fast reactor of the PGSFR (Prototype Gen IV Sodium-cooled Fast Reactor) being developed by KAERI (Korea Atomic Energy Research Institute), Gr.91 steel is selected as the material for the steam generator, secondary piping, and decay heat exchangers. However, as this material has a relatively shorter history of usage in an actual plant than austenitic stainless steel, there are still many issues to be addressed including the long-term creep rupture life extrapolation and ratcheting behavior with cyclic softening characteristics.

  3. An Overview of Promising Grades of Tool Materials Based on the Analysis of their Physical-Mechanical Characteristics

    Science.gov (United States)

    Kudryashov, E. A.; Smirnov, I. M.; Grishin, D. V.; Khizhnyak, N. A.

    2018-06-01

    The work is aimed at selecting a promising grade of a tool material, whose physical-mechanical characteristics would allow using it for processing the surfaces of discontinuous parts in the presence of shock loads. An analysis of the physical-mechanical characteristics of most common tool materials is performed and the data on a possible provision of the metal-working processes with promising composite grades are presented.

  4. Solid freeform fabrication of biological materials

    Science.gov (United States)

    Wang, Jiwen

    This thesis investigates solid freeform fabrication of biological materials for dental restoration and orthopedic implant applications. The basic approach in this study for solid freeform fabrication of biological materials is micro-extrusion of single or multiple slurries for 3D components and inkjet color printing of multiple suspensions for functionally graded materials (FGMs). Common issues associated with micro-extrusion and inkjet color printing are investigated. These common issues include (i) formulation of stable slurries with a pseudoplastic property, (ii) cross-sectional geometry of the extrudate as a function of the extrusion parameters, (iii) fabrication path optimization for extrusion process, (iv) extrusion optimization for multi-layer components, (v) composition control in functionally graded materials, and (vi) sintering optimization to convert the freeform fabricated powder compact to a dense body for biological applications. The present study clearly shows that the rheological and extrusion behavior of dental porcelain slurries depend strongly on the pH value of the slurry and extrusion conditions. A slurry with pseudoplastic properties is a basic requirement for obtaining extruded lines with rectangular cross-sections. The cross-sectional geometry of the extrudate is also strongly affected by extrusion parameters including the extrusion nozzle height, nozzle moving speed, extrusion rate, and critical nozzle height. Proper combinations of these extrusion parameters are necessary in order to obtain single line extrudates with near rectangular cross-sections and 3D objects with dimensional accuracy, uniform wall thickness, good wall uprightness, and no wall slumping. Based on these understandings, single-wall, multi-wall, and solid teeth have been fabricated via micro-extrusion of the dental slurry directly from a CAD digital model in 30 min. Inkjet color printing using stable Al2O3 and ZrO 2 aqueous suspensions has been developed to fabricate

  5. Synthesis and Characterization of High Aluminum Zeolite X from Technical Grade Materials

    Directory of Open Access Journals (Sweden)

    Seyed Kamal Masoudian

    2013-06-01

    Full Text Available Zeolites are widely used as ion exchangers, adsorbents, separation materials and catalyst due to their well-tailored and highly-reproducible structures; therefore, the synthesis of zeolite from low grade resources can be interested. In the present work, high aluminum zeolite X was prepared from mixing technical grade sodium aluminate and sodium silicate solutions at temperatures between 70°C and 100°C. The synthesized zeolite X was characterized by SEM and X-ray methods according to ASTM standard procedures. The results showed that aging of the synthesis medium at the room temperature considerably increased the selectivity of zeolite X formation. On the other hand, high temperature of reaction mixture during crystallization formed zeolite A in the product; therefore, it decreased the purity of zeolite X. In addition, it was found that increasing H2O/Na2O and decreasing Na2O/SiO2 molar ratios in the reaction mixture resulted product with higher purity. © 2013 BCREC UNDIP. All rights reservedReceived: 7th January 2013; Revised: 7th April 2013; Accepted: 19th April 2013[How to Cite: Masoudian, S. K., Sadighi, S., Abbasi, A. (2013. Synthesis and Characterization of High Alu-minum Zeolite X from Technical Grade Materials. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 54-60. (doi:10.9767/bcrec.8.1.4321.54-60][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4321.54-60] | View in  |

  6. Transverse Vibration of Axially Moving Functionally Graded Materials Based on Timoshenko Beam Theory

    Directory of Open Access Journals (Sweden)

    Suihan Sui

    2015-01-01

    Full Text Available The transverse free vibration of an axially moving beam made of functionally graded materials (FGM is investigated using a Timoshenko beam theory. Natural frequencies, vibration modes, and critical speeds of such axially moving systems are determined and discussed in detail. The material properties are assumed to vary continuously through the thickness of the beam according to a power law distribution. Hamilton’s principle is employed to derive the governing equation and a complex mode approach is utilized to obtain the transverse dynamical behaviors including the vibration modes and natural frequencies. Effects of the axially moving speed and the power-law exponent on the dynamic responses are examined. Some numerical examples are presented to reveal the differences of natural frequencies for Timoshenko beam model and Euler beam model. Moreover, the critical speed is determined numerically to indicate its variation with respect to the power-law exponent, axial initial stress, and length to thickness ratio.

  7. Elaboration of functionally graded materials for plasma facing components of the thermonuclear machines

    International Nuclear Information System (INIS)

    Autissier, Emmanuel

    2014-01-01

    The objective of this study was to develop a Functionally Graded Material (FGM) W/Cu to replace the compliance layer (Cu-OFHC) in the plasma facing components of thermonuclear fusion reactor like ITER. The peculiarity of this work is to elaborate these materials without exceeding the melting temperature of copper in order to control its microstructure. The co-sintering is the most attractive solution to achieve this goal. The first phase of this study has been to decrease the sintering temperature of the tungsten to achieve this co-sintering. The elaboration of a Functionally Graded Materials being delicate, thermomechanical calculations were performed in order to determine the number and chemical composition in order to increase the lifespan of Plasma Facing Components. Spark Plasma Sintering conditions were optimized in order to achieve maximum density of W x Cu 1-x composites. The effect of copper content and density of the W x Cu 1-x composites on thermal and mechanical properties was investigated. The SPS conditions were applied for W/CuCrZr assemblies with a compliance layer composed of several interlayers. The importance of time for the integrity of assemblies thereof has been highlighted. The study of the dwell time during W/CuCrZr assembly leads to identify a parameter to characterize the integrity of the interface regardless of the composition and the nature of the layer of compliance. Moreover, the phenomena associated with the formation of the interface assembly have been identified. The interface W/W x Cu 1-x is formed by the extrusion of the copper layer of the W x Cu 1-x inside the tungsten porosities. The W y Cu 1-y /CuCrZr interface is formed by copper migration of CuCrZr layer inside the W y Cu 1-y layer. Finally optimization assembly conditions showed that the mechanical stresses due to the densification of the Functionally Graded Materials can be limited by sintering the FGM before the assembly. (author)

  8. Analysis of students’ incorrect answers at triangle materials in the fifth-grade of primary school

    Science.gov (United States)

    Shintawati, E.; Jupri, Al

    2018-05-01

    This research aims to analyse the comparison of the predictions made by the author between learning methods with the reality that occur in the class and to analyse students' responses toward questions given by teachers at triangle materials. The method used in this research is the descriptive-qualitative method. The subjects of this research are all fifth-grade students from a primary school in the city of Bandung. The results of this research indicated that there are some influences between learning methods and students' responses shown by the way students answer the question. In reality, there are many students’ responses produced beyond the predictions of the author. It shows that as the good teachers, besides setting up learning methods, they should also make predictions toward the responses of the students in answering the questions given. The results of the predictions could be used as a lesson for teachers to run the learning processes as good as possible so the students' responses could being accordance with the concept of materials presented and could also achieve the expected learning goals. Based on this research’s results, as a teacher must have techniques and strategies to overcome things that are not expected during the learning so that learning can be conducive so that students can focus on learning and enjoy learning so that learning outcomes is the ability of students to increase in understanding the material and can construct the concept of material provided.

  9. Transverse vibration of pipe conveying fluid made of functionally graded materials using a symplectic method

    International Nuclear Information System (INIS)

    Wang, Zhong-Min; Liu, Yan-Zhuang

    2016-01-01

    Highlights: • We investigate the transverse vibration of FGM pipe conveying fluid. • The FGM pipe conveying fluid can be classified into two cases. • The variations between the frequency and the power law exponent are obtained. • “Case 1” is relatively more reasonable than “case 2”. - Abstract: Problems related to the transverse vibration of pipe conveying fluid made of functionally graded material (FGM) are addressed. Based on inside and outside surface material compositions of the pipe, FGM pipe conveying fluid can be classified into two cases. It is hypothesized that the physical parameters of the material along the direction of the pipe wall thickness change in the simple power law. A differential equation of motion expressed in non-dimensional quantities is derived by using Hamilton's principle for systems of changing mass. Using the assuming modal method, the pipe deflection function is expanded into a series, in which each term is expressed to admissible function multiplied by generalized coordinate. Then, the differential equation of motion is discretized into the two order differential equations expressed in the generalized coordinates. Based on symplectic elastic theory and the introduction of dual system and dual variable, Hamilton's dual equations are derived, and the original problem is reduced to eigenvalue and eigenvector problem in the symplectic space. Finally, a symplectic method is employed to analyze the vibration and stability of FGM pipe conveying fluid. For a clamped–clamped FGM pipe conveying fluid in “case 1” and “case 2”, the dimensionless critical flow velocity for first-mode divergence and the critical coupled-mode flutter flow velocity are obtained, and the variations between the real part and imaginary part of dimensionless complex frequency and fluid velocity, mass ratio and the power law exponent (or graded index, volume fraction) for FGM pipe conveying fluid are analyzed.

  10. Transverse vibration of pipe conveying fluid made of functionally graded materials using a symplectic method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhong-Min, E-mail: wangzhongm@xaut.edu.cn; Liu, Yan-Zhuang

    2016-03-15

    Highlights: • We investigate the transverse vibration of FGM pipe conveying fluid. • The FGM pipe conveying fluid can be classified into two cases. • The variations between the frequency and the power law exponent are obtained. • “Case 1” is relatively more reasonable than “case 2”. - Abstract: Problems related to the transverse vibration of pipe conveying fluid made of functionally graded material (FGM) are addressed. Based on inside and outside surface material compositions of the pipe, FGM pipe conveying fluid can be classified into two cases. It is hypothesized that the physical parameters of the material along the direction of the pipe wall thickness change in the simple power law. A differential equation of motion expressed in non-dimensional quantities is derived by using Hamilton's principle for systems of changing mass. Using the assuming modal method, the pipe deflection function is expanded into a series, in which each term is expressed to admissible function multiplied by generalized coordinate. Then, the differential equation of motion is discretized into the two order differential equations expressed in the generalized coordinates. Based on symplectic elastic theory and the introduction of dual system and dual variable, Hamilton's dual equations are derived, and the original problem is reduced to eigenvalue and eigenvector problem in the symplectic space. Finally, a symplectic method is employed to analyze the vibration and stability of FGM pipe conveying fluid. For a clamped–clamped FGM pipe conveying fluid in “case 1” and “case 2”, the dimensionless critical flow velocity for first-mode divergence and the critical coupled-mode flutter flow velocity are obtained, and the variations between the real part and imaginary part of dimensionless complex frequency and fluid velocity, mass ratio and the power law exponent (or graded index, volume fraction) for FGM pipe conveying fluid are analyzed.

  11. PREFACE: 12th International Symposium on Multiscale, Multifunctional and Functionally Graded Materials (FGM 2012)

    Science.gov (United States)

    Zhou, Zhangjian; Li, Jingfeng; Zhang, Lianmeng; Ge, Changchun

    2013-03-01

    The 12th International Symposium on Multiscale, Multifunctional and Functionally Graded Materials (FGM-2012) was held in Beijing, China, from 22-36 October 2012. This was part of a series of conferences organized every two years endorsed by International Advisory Committee for FGM's, which serves as a forum for scientists, educators, engineers and young students interested in the development of functionally graded materials (FGM). The series continues from the previous international symposium on FGM held in Sendai, Japan (1990), San Francisco, USA (1992), Lausanne, Switzerland (1994), Tsukuba, Japan (1996), Dresden, Germany (1998), Estes Park, USA (2000), Beijing, China (2002), Leuven, Belgium (2004), Hawaii, USA (2006), Sendai, Japan (2008) and Guimaraes, Portugal (2010). Functionally graded materials are non-uniform materials which are designed with embodied continuous spatial variations in composition and microstructure for the specific purpose of adjusting their thermal, structural, mechanical, biological or functional response to specific application conditions. Such multi-phase materials cover a range of space and time scales, and are best understood by means of a comprehensive multiscale, multiphysics approach. These kinds of materials are presently in the forefront of materials research, receiving worldwide attention. They have a broad range of applications including for example, biomedical, biomechanical, automotive, aerospace, mechanical, civil, nuclear, and naval engineering. New applications are continuously being discovered and developed. The objective of the FGM-2012 intends to provide opportunities for exchanging ideas and discussing state-of-the-art theories, techniques and applications in the fields of multiscale, multifunctional and FGM, through invited lectures, oral and poster presentations. FGM-2012 was organized and hosted by University of Science and Technology Beijing, China, together with Tsing-hua University and Wuhan University of

  12. Material development for grade X80 heavy-wall hot induction bends

    International Nuclear Information System (INIS)

    Wang Xu; Xiao Furen; Fu Yanhong; Chen Xiaowei; Liao Bo

    2011-01-01

    Highlights: ► The new material for X80 heavy wall thickness hot induction bend was designed. ► The continuous cooling transformation (CCT) diagrams were determined. ► The steel adapts to manufacture of X80 heavy-wall thickness hot induction bend. ► The optimum manufactural processes were obtained. ► The bending temperature is about 990 °C, and tempering is about 600 °C. - Abstract: A new steel for grade X80 heavy wall thickness hot induction bends was designed based on the chemical compositions of commercial X80 steels in this work. Then, its continuous cooling transformation (CCT) diagram was determined with Gleeble-3500 thermo-mechanical simulator. Furthermore, the effects of heat treatment technology on its microstructure and mechanical property were investigated, and the technology parameters of the heat treatment were optimized. The results show that the acicular ferrite and/or bainite transformations are promoted, the polygonal ferrite and pearlite transformation are restrained, because proper amount of alloying elements were added into the new steel. Therefore, the strength of this new steel is improved markedly, even if the cooling rate is lower, which ensure the higher strength distribution along cross section of the heavy wall thickness. It is significant for the manufacture of grade X80 heavy wall thickness hot induction bends in the second West-to-East gas transportation pipeline project of China.

  13. Material development for grade X80 heavy-wall hot induction bends

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xu [Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); CNPC Bohai Petroleum Equipment Manufacture Co. Ltd., Qingxian 062658 (China); Xiao Furen, E-mail: frxiao@ysu.edu.cn [Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Fu Yanhong [CNPC Bohai Petroleum Equipment Manufacture Co. Ltd., Qingxian 062658 (China); Chen Xiaowei [Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); CNPC Bohai Petroleum Equipment Manufacture Co. Ltd., Qingxian 062658 (China); Liao Bo, E-mail: cyddjyjs@263.net [Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The new material for X80 heavy wall thickness hot induction bend was designed. Black-Right-Pointing-Pointer The continuous cooling transformation (CCT) diagrams were determined. Black-Right-Pointing-Pointer The steel adapts to manufacture of X80 heavy-wall thickness hot induction bend. Black-Right-Pointing-Pointer The optimum manufactural processes were obtained. Black-Right-Pointing-Pointer The bending temperature is about 990 Degree-Sign C, and tempering is about 600 Degree-Sign C. - Abstract: A new steel for grade X80 heavy wall thickness hot induction bends was designed based on the chemical compositions of commercial X80 steels in this work. Then, its continuous cooling transformation (CCT) diagram was determined with Gleeble-3500 thermo-mechanical simulator. Furthermore, the effects of heat treatment technology on its microstructure and mechanical property were investigated, and the technology parameters of the heat treatment were optimized. The results show that the acicular ferrite and/or bainite transformations are promoted, the polygonal ferrite and pearlite transformation are restrained, because proper amount of alloying elements were added into the new steel. Therefore, the strength of this new steel is improved markedly, even if the cooling rate is lower, which ensure the higher strength distribution along cross section of the heavy wall thickness. It is significant for the manufacture of grade X80 heavy wall thickness hot induction bends in the second West-to-East gas transportation pipeline project of China.

  14. Materials and Techniques for Teaching the Esperanto Language in the Elementary Grades [and] 1996 Packet for Teachers.

    Science.gov (United States)

    Jones, Kent

    Materials presented here include a variety of resources for teachers of Esperanto: a brief guide to Esperanto teaching, including suggested teacher qualifications, a listing of instructional materials and resources, including serials, with details of publication, activities in preparation for teaching, grade-level class activities, notes on…

  15. High Efficient Enrichment and Activated Dissolution of Refractory Low Grade Rh-containing Material

    Institute of Scientific and Technical Information of China (English)

    WU Xiaofeng; DONG Haigang; TONG Weifeng; ZHAO Jiachun; ZENG Rui

    2012-01-01

    Aiming to the low-grade rhodium-containing waste materials,a new process was proposed to enrich and activate rhodium by smelting using iron oxide as a trapping agent and activator.A rhodium concentrate was obtained by the separation of base metals and precious metals.The concentrate was reacted with dilute aqua regia to obtain rhodium solution.The factors influencing the enrichment and activation effects were discussed in this paper.The results showed that the dissolution rate is greater than 99% under the optimum conditions.In this process,the activation of rhodium was finished in the enrichment process.The iron oxide is both a trapping agent and activator,which simplifies the process and reduce the cost.

  16. Design optimization of cementless metal-backed cup prostheses using the concept of functionally graded material

    Energy Technology Data Exchange (ETDEWEB)

    Hedia, H S; El-Midany, T T; Shabara, M A N; Fouda, N [Production Engineering and M/C Design Department, Faculty of Engineering, Mansoura University, Mansoura (Egypt)

    2006-09-15

    Metal backing has been widely used in acetabular cup design. A stiff backing for a polyethylene liner was initially believed to be mechanically favourable. Yet, recent studies of the load transfer around acetabular cups have shown that a stiff backing causes two problems. It generates higher stress peaks around the acetabular rim than those caused by full polyethylene cups and reduces the stresses transferred to the dome of the acetabulum causing stress shielding. The aim of this study is to overcome these two problems by improving the design of cementless metal-backed acetabular cups using the two-dimensional functionally graded material (FGM) concept through finite-element analysis and optimization techniques. It is found that the optimal 2D FGM model must have three bioactive materials of hydroxyapatite, Bioglass and collagen. This optimal material reduces the stress shielding at the dome of the acetabulum by 40% and 37% compared with stainless steel and titanium metal backing shells, respectively. In addition, using the 2D FGM model reduces the maximum interface shear stress in the bone by 31% compared to the titanium metal backing shell.

  17. Geometrically Nonlinear Static Analysis of Edge Cracked Timoshenko Beams Composed of Functionally Graded Material

    Directory of Open Access Journals (Sweden)

    Şeref Doğuşcan Akbaş

    2013-01-01

    Full Text Available Geometrically nonlinear static analysis of edge cracked cantilever Timoshenko beams composed of functionally graded material (FGM subjected to a nonfollower transversal point load at the free end of the beam is studied with large displacements and large rotations. Material properties of the beam change in the height direction according to exponential distributions. The cracked beam is modeled as an assembly of two subbeams connected through a massless elastic rotational spring. In the study, the finite element of the beam is constructed by using the total Lagrangian Timoshenko beam element approximation. The nonlinear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The convergence study is performed for various numbers of finite elements. In the study, the effects of the location of crack, the depth of the crack, and various material distributions on the nonlinear static response of the FGM beam are investigated in detail. Also, the difference between the geometrically linear and nonlinear analysis of edge cracked FGM beam is investigated in detail.

  18. Low grade heat driven adsorption system for cooling and power generation using advanced adsorbent materials

    International Nuclear Information System (INIS)

    Al-Mousawi, Fadhel Noraldeen; Al-Dadah, Raya; Mahmoud, Saad

    2016-01-01

    Highlights: • Adsorption system based on water and advanced physical adsorbents has the potential of producing cooling and power. • Adding an expander to physisorption system enhances efficiency by up to 11%. • MIL101Cr MOF can produce 95 W/kg and 1357 W/kg of specific power and cooling. • AQSOA Z02 can produce 73 W/kg and 640 W/kg of specific power and cooling. - Abstract: Globally there is abundance of low grade heat sources (around 150 °C) from renewables like solar energy or from industrial waste heat. The exploitation of such low grade heat sources will reduce fossil fuel consumption and CO_2 emissions. Adsorption technology offers the potential of using such low grade heat to generate cooling and power. In this work, the effect of using advanced adsorbent materials like AQSOA-Z02 (SAPO-34) zeolite and MIL101Cr Metal Organic Framework (MOF) at various operating conditions on power and cooling performance compared to that of commonly used silica-gel was investigated using water as refrigerant. A mathematical model for a two bed adsorption cooling cycle has been developed with the cycle modified to produce power by incorporating an expander between the desorber and the condenser. Results show that it is possible to produce power and cooling at the same time without affecting the cooling output. Results also show that for all adsorbents used as the heat source temperature increases, the cooling effect and power generated increase. As for increasing the cold bed temperature, this will decrease the cooling effect and power output except for SAPO-34 which shows slightly increasing trend of cooling and power output. As the condenser cooling temperature increases, the cooling effect and power output will decrease while for the chilled water temperature, the cooling load and power generated increased as the temperature increased. The maximum values of average specific power generation (SP), specific cooling power (SCP) and cycle efficiency are 73 W

  19. Investigation of trapped thickness-twist waves induced by functionally graded piezoelectric material in an inhomogeneous plate

    International Nuclear Information System (INIS)

    Li, Peng; Jin, Feng; Cao, Xiao-Shan

    2013-01-01

    The effect of functional graded piezoelectric materials on the propagation of thickness-twist waves is investigated through equations of the linear theory of piezoelectricity. The elastic and piezoelectric coefficients, dielectric permittivity, and mass density are assumed to change in a linear form but with different graded parameters along the wave propagation direction. We employ the power-series technique to solve the governing differential equations with variable coefficients attributed to the different graded parameters and prove the correction and convergence of this method. As a special case, the functional graded middle layer resulting from piezoelectric damage and material bonding is investigated. Piezoelectric damaged material can facilitate energy trapping, which is impossible in perfect materials. The increase in the damaged length and the reduction in the piezoelectric coefficient decrease the resonance frequency but increase the number of modes. Higher modes of thickness-twist waves appear periodically along the damaged length. Moreover, the displacement of the center of the damaged portion is neither symmetric nor anti-symmetric, unlike the non-graded plate. The conclusions are theoretically and practically significant for wave devices. (paper)

  20. Wsbnd Cu functionally graded material: Low temperature fabrication and mechanical characterization

    Science.gov (United States)

    Yusefi, Ali; Parvin, Nader; Mohammadi, Hossein

    2018-04-01

    In this study, we fabricated and characterized a Wsbnd Cu functionally graded material (FGM) with 11 layers, including a pure copper layer. Samples were prepared by mixing a mechanically alloyed Nisbnd Mnsbnd Cu powder with W and Cu powders, stacking the powders, pressing the stacked layers, and finally sintering at 1000 °C. The utilization of a Nisbnd Mnsbnd Cu system may reduce the cost but without losing the good sintering behavior and physical and mechanical properties. The composition of the material was analyzed based on scanning electron microscopy images and by energy dispersive X-ray spectroscopy mapping, which indicated that in the presence of Ni and Mn, the Cu atoms could diffuse into the W particles. All of the layers had a very high relative density, thereby indicating their densification and excellent sintering behavior. We also found that the porosity values in the Cu phase remained unchanged at approximately 2.39% across the FGM. Mechanical measurements showed that the hardness (72%), modulus of elasticity (61%), and ultimate tensile strength (58%) increased with the W content across the Wsbnd Cu FGM, whereas the fracture toughness (KIC) varied in the opposite manner (minimum of 4.52 MPa/m0.5).

  1. Love waves in functionally graded piezoelectric materials by stiffness matrix method.

    Science.gov (United States)

    Ben Salah, Issam; Wali, Yassine; Ben Ghozlen, Mohamed Hédi

    2011-04-01

    A numerical matrix method relative to the propagation of ultrasonic guided waves in functionally graded piezoelectric heterostructure is given in order to make a comparative study with the respective performances of analytical methods proposed in literature. The preliminary obtained results show a good agreement, however numerical approach has the advantage of conceptual simplicity and flexibility brought about by the stiffness matrix method. The propagation behaviour of Love waves in a functionally graded piezoelectric material (FGPM) is investigated in this article. It involves a thin FGPM layer bonded perfectly to an elastic substrate. The inhomogeneous FGPM heterostructure has been stratified along the depth direction, hence each state can be considered as homogeneous and the ordinary differential equation method is applied. The obtained solutions are used to study the effect of an exponential gradient applied to physical properties. Such numerical approach allows applying different gradient variation for mechanical and electrical properties. For this case, the obtained results reveal opposite effects. The dispersive curves and phase velocities of the Love wave propagation in the layered piezoelectric film are obtained for electrical open and short cases on the free surface, respectively. The effect of gradient coefficients on coupled electromechanical factor, on the stress fields, the electrical potential and the mechanical displacement are discussed, respectively. Illustration is achieved on the well known heterostructure PZT-5H/SiO(2), the obtained results are especially useful in the design of high-performance acoustic surface devices and accurately prediction of the Love wave propagation behaviour. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Analysis of Dynamic Fracture Parameters in Functionally Graded Material Plates with Cracks by Graded Finite Element Method and Virtual Crack Closure Technique

    Directory of Open Access Journals (Sweden)

    Li Ming Zhou

    2016-01-01

    Full Text Available Based on the finite element software ABAQUS and graded element method, we developed a dummy node fracture element, wrote the user subroutines UMAT and UEL, and solved the energy release rate component of functionally graded material (FGM plates with cracks. An interface element tailored for the virtual crack closure technique (VCCT was applied. Fixed cracks and moving cracks under dynamic loads were simulated. The results were compared to other VCCT-based analyses. With the implementation of a crack speed function within the element, it can be easily expanded to the cases of varying crack velocities, without convergence difficulty for all cases. Neither singular element nor collapsed element was required. Therefore, due to its simplicity, the VCCT interface element is a potential tool for engineers to conduct dynamic fracture analysis in conjunction with commercial finite element analysis codes.

  3. Fast plasma sintering delivers functional graded materials components with macroporous structures and osseointegration properties.

    Science.gov (United States)

    Godoy, R F; Coathup, M J; Blunn, G W; Alves, A L; Robotti, P; Goodship, A E

    2016-04-13

    We explored the osseointegration potential of two macroporous titanium surfaces obtained using fast plasma sintering (FPS): Ti macroporous structures with 400-600 µmØ pores (TiMac400) and 850-1000 µmØ pores (TiMac850). They were compared against two surfaces currently in clinical use: Ti-Growth® and air plasma spray (Ti-Y367). Each surface was tested, once placed over a Ti-alloy and once onto a CoCr bulk substrate. Implants were placed in medial femoral condyles in 24 sheep. Samples were explanted at four and eight weeks after surgery. Push-out loads were measured using a material-testing system. Bone contact and ingrowth were assessed by histomorphometry and SEM and EDX analyses. Histology showed early osseointegration for all the surfaces tested. At 8 weeks, TiMac400, TiMac850 and Ti-Growth® showed deep bone ingrowth and extended colonisation with newly formed bone. The mechanical push-out force was equal in all tested surfaces. Plasma spray surfaces showed greater bone-implant contact and higher level of pores colonisation with new bone than FPS produced surfaces. However, the void pore area in FPS specimens was significantly higher, yet the FPS porous surfaces allowed a deeper osseointegration of bone to implant. FPS manufactured specimens showed similar osseointegration potential to the plasma spray surfaces for orthopaedic implants. FPS is a useful technology for manufacturing macroporous titanium surfaces. Furthermore, its capability to combine two implantable materials, using bulk CoCr with macroporous titanium surfaces, could be of interest as it enables designers to conceive and manufacture innovative components. FPS delivers functional graded materials components with macroporous structures optimised for osseointegration.

  4. Nonlinear analysis of thermally and electrically actuated functionally graded material microbeam.

    Science.gov (United States)

    Li, Yingli; Meguid, S A; Fu, Yiming; Xu, Daolin

    2014-02-08

    In this paper, we provide a unified and self-consistent treatment of a functionally graded material (FGM) microbeam with varying thermal conductivity subjected to non-uniform or uniform temperature field. Specifically, it is our objective to determine the effect of the microscopic size of the beam, the electrostatic gap, the temperature field and material property on the pull-in voltage of the microbeam under different boundary conditions. The non-uniform temperature field is obtained by integrating the steady-state heat conduction equation. The governing equations account for the microbeam size by introducing an internal material length-scale parameter that is based on the modified couple stress theory. Furthermore, it takes into account Casimir and van der Waals forces, and the associated electrostatic force with the first-order fringing field effects. The resulting nonlinear differential equations were converted to a coupled system of algebraic equations using the differential quadrature method. The outcome of our work shows the dramatic effect and dependence of the pull-in voltage of the FGM microbeam upon the temperature field, its gradient for a given boundary condition. Specifically, both uniform and non-uniform thermal loading can actuate the FGM microbeam even without an applied voltage. Our work also reveals that the non-uniform temperature field is more effective than the uniform temperature field in actuating a FGM cantilever-type microbeam. For the clamped-clamped case, care must be taken to account for the effective use of thermal loading in the design of microbeams. It is also observed that uniform thermal loading will lead to a reduction in the pull-in voltage of a FGM microbeam for all the three boundary conditions considered.

  5. A Novel Higher-Order Shear and Normal Deformable Plate Theory for the Static, Free Vibration and Buckling Analysis of Functionally Graded Plates

    Directory of Open Access Journals (Sweden)

    Shi-Chao Yi

    2017-01-01

    Full Text Available Closed-form solution of a special higher-order shear and normal deformable plate theory is presented for the static situations, natural frequencies, and buckling responses of simple supported functionally graded materials plates (FGMs. Distinguished from the usual theories, the uniqueness is the differentia of the new plate theory. Each individual FGM plate has special characteristics, such as material properties and length-thickness ratio. These distinctive attributes determine a set of orthogonal polynomials, and then the polynomials can form an exclusive plate theory. Thus, the novel plate theory has two merits: one is the orthogonality, where the majority of the coefficients of the equations derived from Hamilton’s principle are zero; the other is the flexibility, where the order of the plate theory can be arbitrarily set. Numerical examples with different shapes of plates are presented and the achieved results are compared with the reference solutions available in the literature. Several aspects of the model involving relevant parameters, length-to-thickness, stiffness ratios, and so forth affected by static and dynamic situations are elaborate analyzed in detail. As a consequence, the applicability and the effectiveness of the present method for accurately computing deflection, stresses, natural frequencies, and buckling response of various FGM plates are demonstrated.

  6. DEVELOPING SIGNS AND SONGS MATERIALS DEALING WITH THE 2013 CURRICULUM FOR THE SEVENTH GRADE STUDENTS IN MTSN BALANG-BALANG

    Directory of Open Access Journals (Sweden)

    Mardiana

    2016-04-01

    Full Text Available This research aimed to develop Signs and Songs Materials based on 2013 curriculum for the Seventh Grade Student at MTsN. BalangBalang, Gowa. It was Research and Development (R&D applied ADDIE model standing for Analysis, Design, Develop, Implement, and Evaluate. The procedures were; 1 analyzing materials needed by students; 2designing the blueprint; 3 developing the materials through the syllabus of 2013 Curriculum; 4 implementing the product (try-out product; and 5 evaluating the product. The product was tried out to the seventh grade students at MTsN Balang-balang. Type of data obtained in this study was qualitative. The instruments used in this study were questionnaire and rubrics for teacher and expert. Then, the teacher and expert were involved in order to validate the product. They validated three systematic aspects of the product, namely; the organization of the Materials, English Teaching strategies or method, and the content of the materials. Finally, based on the teacher and expert judgment as well as try-out design result, it was found that the developed materials were applicable to be taught for the Seventh Grade of Junior High School as additional learning and teaching materials which help both students and teachers in learning process based on 2013 Curriculum.

  7. ‘Big Books’ as Mother Tongue-Based Instructional Materials in Bicol for Grade One Pupils

    Directory of Open Access Journals (Sweden)

    Magdalena M. Ocbian,

    2015-11-01

    Full Text Available Language experts claim that it is easier for pupils to learn when the mother tongue is used in the teaching learning process including the learning of a second language. This study determined the reading comprehension level of Grade I pupils in Bulusan Central School for school year 2013-2014 as input in developing big books written in the vernacular that can be used as reading materials for Grade 1 pupils. Results of the evaluation revealed that they belong to the frustration and instructional levels in the literal skill; mostly are frustration readers along interpretative and evaluative skills; but are independent readers along applied skills; hence, they have low level of reading comprehension. Based on the result of the study, three big books as MTB-MLE instructional materials in Bicol were produced to develop or enhance Grade 1 pupils’ reading comprehension. Teaching guides were likewise developed.

  8. STRUCTURAL OPTIMIZATION OF FUNCTIONALLY GRADED MATERIALS WITH SMALL CONCENTRATION OF INCLUSIONS

    Directory of Open Access Journals (Sweden)

    DISKOVSKY A. A.

    2017-01-01

    Full Text Available Raising of problem.With an optimal design of inner structure of functionally graded material (FGM based on the classical method of homogenization procedure, in cases of low concentration of inclusions, when the size of inclusions is essentially less than the distance between them, leads to computational difficulties. Purpose – the research to develop a homogenization procedure, allowing solving effectively the problem of optimizing the internal structure of FGM at low concentrations of inclusions and illustration with specific examples. Conclusion. The proposed method allows solving tasks of calculation and optimal design of the internal structure of FGM structures with variable inclusions and with a variable step between them using the same methodology. The optimization is performed using two mechanisms. The first allocation is fixed at the edges of the border areas in which inclusions are absent. The second optimization mechanism is the distribution of inclusions sizes under the law, coinciding with the distribution law of an external load. Alternate step for the step should be reduced in areas with greater intensity of the external load.

  9. Computer Assisted Educational Material Preparation for Fourth Grade Primary School Students' English Language Class in Teaching Numbers

    Science.gov (United States)

    Yüzen, Abdulkadir; Karamete, Aysen

    2016-01-01

    In this study, using ADDIE instructional design model, it is aimed to prepare English language educational material for 4th grade primary students to teach them numbers. At the same time, ARCS model of motivation's attention, relevance and satisfaction phases are also taken into consideration. This study also comprises of Design Based Research…

  10. Interdisciplinary Student/Teacher Materials in Energy, the Environment, and the Economy: 6, The Energy We Use, Grade 1.

    Science.gov (United States)

    Bloch, Lenore; And Others

    This instructional unit contains a set of nine lessons on energy for grade one. Each lesson contains complete teacher and student materials. Reading skills and language experiences are reinforced in each activity. The lessons cover such topics as energy from food, energy from the sun, fossil fuels, the wind, moving water, and energy conservation.…

  11. Strand I: Physical Health Nutrition. Health Curriculum Materials. Grades 4-6.

    Science.gov (United States)

    New York State Education Dept., Albany. Bureau of Elementary Curriculum Development.

    GRADES OR AGES: Grades 4-6. SUBJECT MATTER: Physical health and nutrition. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into five sections: factors determining what people eat, the role of food in growth and development, the uses of nutrients in food, selection of foods to meet bodily needs, and food in the history of man. The…

  12. Corrosion and wear behavior of functionally graded Al2024/SiC composites produced by hot pressing and consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, Fatih; Canakci, Aykut, E-mail: aykut@ktu.edu.tr; Varol, Temel; Ozkaya, Serdar

    2015-09-25

    Highlights: • Functionally graded Al2024/SiC composites were produced by hot pressing. • Effect of the number of graded layers was investigated on the corrosion behavior. • Functionally graded composites has the most corrosion resistant than composites. • Wear mechanisms of Al2024/SiC composites were explained. - Abstract: Functionally graded Al2024/SiC composites (FGMs) with varying percentage of SiC (30–60%) were produced by hot pressing and consolidation method. The effects of SiC content and number of layers of Al2024/SiC FGMs on the corrosion and wear behaviors were investigated. The microstructures of these composites were characterized by a scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS). The corrosion performances of composites were evaluated by potentiodynamic polarization scans in 3.5% NaCl solution. Corrosion experiments shows that corrosion rate (1109 mpy) of two layered FGMs which containing 50 wt.% SiC were much higher than Al2024 matrix (2569 mpy) and Al2024/50 wt.% SiC composite (2201 mpy). Mechanical properties of these composites were evaluated by microhardness measurements and ball-on-disk wear tests. As the applied load change from 15 to 20 N, the wear rates of the Al2024 increased significantly and wear mechanism transformed from mild to severe wear regime. It has been shown that Al2024/40 wt.% SiC composite has lower wear rate where adhesive and abrasive wear mechanisms play a major role.

  13. A quick in-situ estimating method for grading stone products as radiation protection standard of building materials

    International Nuclear Information System (INIS)

    Nanping, Wang; Shengli, Hou; Yexun, Chen

    2002-01-01

    Natural stone is word-widely used as building and decorating material, which is made of marble, granite or other kinds of rocks. Normally they are cut into rectangle with 20 mm thickness. In order to grade small size stone plank as radioactive protection standard (China Standard GB6566-2001), a quick in-situ technique and a special kind of portable -ray detector is developed. The detector is made of NaI (Tl) ( 30x50mm) with a shield (Model ZDD3901, China Patent No. 992080045). The difference modeling was established for small-size stone planks grading. About 96.3% stone plank samples which size are more than 300x300x20 mm could be determined radiation levels by in-situ techniques, by which the grading results (A, B or C) are coincided with quantity analysis in lab

  14. A quick in-situ estimating method for grading stone products as radiation protection standard of building materials

    Energy Technology Data Exchange (ETDEWEB)

    Nanping, Wang; Shengli, Hou; Yexun, Chen [China Univ. of Geosciences, Bijing (China)

    2002-07-01

    Natural stone is word-widely used as building and decorating material, which is made of marble, granite or other kinds of rocks. Normally they are cut into rectangle with 20 mm thickness. In order to grade small size stone plank as radioactive protection standard (China Standard GB6566-2001), a quick in-situ technique and a special kind of portable -ray detector is developed. The detector is made of NaI (Tl) ( 30x50mm) with a shield (Model ZDD3901, China Patent No. 992080045). The difference modeling was established for small-size stone planks grading. About 96.3% stone plank samples which size are more than 300x300x20 mm could be determined radiation levels by in-situ techniques, by which the grading results (A, B or C) are coincided with quantity analysis in lab.

  15. Content, format, gender and grade level differences in elementary students' ability to read science materials as measured by the cloze procedure

    Science.gov (United States)

    Williams, Richard L.; Yore, Larry D.

    Present instructional trends in science indicate a need to reexamine a traditional concern in science education: the readability of science textbooks. An area of reading research not well documented is the effect of color, visuals, and page layout on readability of science materials. Using the cloze readability method, the present study explored the relationships between page format, grade level, sex, content, and elementary school students ability to read science material. Significant relationships were found between cloze scores and both grade level and content, and there was a significant interaction effect between grade and sex in favor of older males. No significant relationships could be attributed to page format and sex. In the area of science content, biological materials were most difficult in terms of readability followed by earth science and physical science. Grade level data indicated that grade five materials were more difficult for that level than either grade four or grade six materials were for students at each respective level. In eight of nine cases, the science text materials would be classified at or near the frustration level of readability. The implications for textbook writers and publishers are that science reading materials need to be produced with greater attention to readability and known design principles regarding visual supplements. The implication for teachers is that students need direct instruction in using visual materials to increase their learning from text material. Present visual materials appear to neither help nor hinder the student to gain information from text material.

  16. Impact of interfacial imperfection on transverse wave in a functionally graded piezoelectric material structure with corrugated boundaries

    Science.gov (United States)

    Kumar Singh, Abhishek; Kumar, Santan; Kumari, Richa

    2018-03-01

    The propagation behavior of Love-type wave in a corrugated functionally graded piezoelectric material layered structure has been taken into account. Concretely, the layered structure incorporates a corrugated functionally graded piezoelectric material layer imperfectly bonded to a functionally graded piezoelectric material half-space. An analytical treatment has been employed to determine the dispersion relation for both cases of electrically open condition and electrically short condition. The phase velocity of the Love-type wave has been computed numerically and its dependence on the wave number has been depicted graphically for a specific type of corrugated boundary surfaces for both said conditions. The crux of the study lies in the fact that the imperfect bonding of the interface, the corrugated boundaries present in the layer, and the material properties of the layer and the half-space strongly influence the phase velocity of the Love-type wave. It can be remarkably noted that the imperfect bonding of the interface reduces the phase velocity of the Love-type wave significantly. As a special case of the problem, it is noticed that the procured dispersion relation for both cases of electrically open and electrically short conditions is in accordance with the classical Love wave equation.

  17. Boundary element method for normal non-adhesive and adhesive contacts of power-law graded elastic materials

    Science.gov (United States)

    Li, Qiang; Popov, Valentin L.

    2018-03-01

    Recently proposed formulation of the boundary element method for adhesive contacts has been generalized for contacts of power-law graded materials with and without adhesion. Proceeding from the fundamental solution for single force acting on the surface of an elastic half space, first the influence matrix is obtained for a rectangular grid. The inverse problem for the calculation of required stress in the contact area from a known surface displacement is solved using the conjugate-gradient technique. For the transformation between the stresses and displacements, the Fast Fourier Transformation is used. For the adhesive contact of graded material, the detachment criterion based on the energy balance is proposed. The method is validated by comparison with known exact analytical solutions as well as by proving the independence of the mesh size and the grid orientation.

  18. Graded approach for establishment of QA requirements for Type B packaging of radioactive material

    International Nuclear Information System (INIS)

    Fabian, R.R.; Woodruff, K.C.

    1988-01-01

    A study that was conducted by the Nuclear Regulatory Commission for the U.S. Congress to assess the effectiveness of quality assurance (QA) activities has demonstrated a need to modify and improve the application of QA requirements for the nuclear industry. As a result, the packaging community, along with the nuclear industry as a whole, has taken action to increase the efficacy of the QA function. The results of the study indicate that a graded approach for establishing QA requirements is the preferred method. The essence of the graded approach is the establishment of applicable QA requirements to an extent consistent with the importance to safety of an item, component, system, or activity. This paper describes the process that is used to develop the graded approach for QA requirements pertaining to Type B packaging

  19. Screening of various low-grade biomass materials for low temperature gasification: Method development and application

    DEFF Research Database (Denmark)

    Thomsen, Tobias Pape; Ravenni, Giulia; Holm, Jens Kai

    2015-01-01

    references. The technical assessment is supplemented by an evaluation of practical application and overall energy balance. Applying the developed method to 4 references and 18 unproven low-grade potential fuels, indicated that one of these unproven candidates was most likely unsuited for Pyroneer...... method and the subsequent use of the method to identify promising e but currently unproven, low-grade biomass resources for conversion in Pyroneer systems. The technical assessment is conducted by comparing the results from a series of physical-mechanical and thermochemical experiments to a set of proven...

  20. Consumer Law-Related Education Materials (Grades 4-7). Okeechobee County.

    Science.gov (United States)

    Allen, Rodney F., Ed.; Landry, Russell H., Ed.

    These teacher-developed learning activities for grades 4-7 deal with consumer law-related topics. The self-contained activities are organized into five sections. Section one contains a role-playing card game that helps students examine rules and feelings. For example, one role-playing situation involves a confrontation between a student and a bus…

  1. The Grading Entropy-based Criteria for Structural Stability of Granular Materials and Filters

    Directory of Open Access Journals (Sweden)

    Janos Lőrincz

    2015-05-01

    Full Text Available This paper deals with three grading entropy-based rules that describe different soil structure stability phenomena: an internal stability rule, a filtering rule and a segregation rule. These rules are elaborated on the basis of a large amount of laboratory testing and from existing knowledge in the field. Use is made of the theory of grading entropy to derive parameters which incorporate all of the information of the grading curve into a pair of entropy-based parameters that allow soils with common behaviours to be grouped into domains on an entropy diagram. Applications of the derived entropy-based rules are presented by examining the reason of a dam failure, by testing against the existing filter rules from the literature, and by giving some examples for the design of non-segregating grading curves (discrete particle size distributions by dry weight. A physical basis for the internal stability rule is established, wherein the higher values of base entropy required for granular stability are shown to reflect the closeness between the mean and maximum grain diameters, which explains how there are sufficient coarser grains to achieve a stable grain skeleton.

  2. Development of Integrated Natural Science Teaching Materials Webbed Type with Applying Discourse Analysis on Students Grade VIII in Physics Class

    Science.gov (United States)

    Sukariasih, Luh

    2017-05-01

    This study aims to produce teaching materials integrated natural science (IPA) webbed type of handout types are eligible for use in integrated science teaching. This type of research IS a kind of research and development / Research and Development (R & D) with reference to the 4D development model that is (define, design, develop, and disseminate). Data analysis techniques used to process data from the results of the assessment by the validator expert, and the results of the assessment by teachers and learners while testing is limited (12 students of class VIII SMPN 10 Kendari) using quantitative descriptive data analysis techniques disclosed in the distribution of scores on the scale of five categories grading scale that has been determined. The results of due diligence material gain votes validator material in the category of “very good” and “good”, of the data generated in the feasibility test presentation obtained the category of “good” and “excellent”, from the data generated in the feasibility of graphic test obtained the category of “very good “and” good “, as well as of the data generated in the test the feasibility of using words and language obtained the category of“very good “and” good “, so with qualifications gained the teaching materials IPA integrated type webbed by applying discourse analysis on the theme of energy and food for Junior High School (SMP) grade VIII suitable as teaching materials. In limited testing, data generated in response to a science teacher at SMPN 10 Kendari to product instructional materials as “excellent”, and from the data generated while testing is limited by the 12 students of class VIII SMPN 10 Kendari are more students who score indicates category “very good”, so that the qualification obtained by the natural science (IPA) teaching material integrated type webbed by applying discourse analysis on the theme of energy and food for SMP / class VIII fit for use as teaching material.

  3. The Effect of Material Property on the Critical Velocity of Randomly Excited Nonlinear Axially Travelling Functionally Graded Plates

    Directory of Open Access Journals (Sweden)

    M. Abedi

    Full Text Available Abstract In this paper, the critical axial speeds of three types of sigmoid, power law and exponential law functionally graded plates for both isotropic and orthotropic cases are obtained via a completely analytic method. The plates are subjected to lateral white noise excitation and show evidence of large deformations. Due to randomness, the conventional deterministic methods fail and a statistical approach must be selected. Here, the probability density function is evaluated analytically for prescribed plates and used to investigate the critical axial velocity of them. Specifically the effect of in-plane forces, mean value of lateral load and the material property on the critical axial speed are studied and discussed for both isotropic and orthotropic functionally graded plates. Since the governing equation is transformed to a non dimensional format, the results can be used for a wide range of plate dimensions. It is shown that the material heterogeneity palys an essential and significant role in increasing or decreasing the critical speed of both isotropic and orthotropic functionally graded plates.

  4. The Relative Impact of Aligning Tier 2 Intervention Materials with Classroom Core Reading Materials in Grades K-2

    Science.gov (United States)

    Foorman, Barbara R.; Herrera, Sarah; Dombek, Jennifer

    2018-01-01

    This randomized controlled trial in 55 low-performing schools across Florida compared 2 early literacy interventions--1 using stand-alone materials and 1 using materials embedded in the existing core reading/language arts program. A total of 3,447 students who were below the 30th percentile in vocabulary and reading-related skills participated in…

  5. Analytical solution for wave propagation through a graded index interface between a right-handed and a left-handed material.

    Science.gov (United States)

    Dalarsson, Mariana; Tassin, Philippe

    2009-04-13

    We have investigated the transmission and reflection properties of structures incorporating left-handed materials with graded index of refraction. We present an exact analytical solution to Helmholtz' equation for a graded index profile changing according to a hyperbolic tangent function along the propagation direction. We derive expressions for the field intensity along the graded index structure, and we show excellent agreement between the analytical solution and the corresponding results obtained by accurate numerical simulations. Our model straightforwardly allows for arbitrary spectral dispersion.

  6. Analytical solution for wave propagation through a graded index interface between a right-handed and a left-handed material

    OpenAIRE

    Dalarsson, Mariana; Tassin, Philippe

    2012-01-01

    We have investigated the transmission and reflection properties of structures incorporating left-handed materials with graded index of refraction. We present an exact analytical solution to Helmholtz' equation for a graded index profile changing according to a hyperbolic tangent function along the propagation direction. We derive expressions for the field intensity along the graded index structure, and we show excellent agreement between the analytical solution and the corresponding results o...

  7. Analysis of material flow in a utillzation technology of low grade manganese ore and sulphur coal complementary

    Science.gov (United States)

    Wang, Bo-Zhi; Deng, Biao; Su, Shi-Jun; Ding, Sang-Lan; Sun, Wei-Yi

    2018-03-01

    Electrolytic manganese is conventionally produced through low-grade manganese ore leaching in SO2, with the combustion of high sulfur coal. Subsequently the coal ash and manganese slag, produced by the combustion of high sulfur coal and preparation of electrolytic manganese, can be used as raw ingredients for the preparation of sulphoaluminate cement. In order to realize the `coal-electricity-sulfur-manganese-building material' system of complementary resource utilization, the conditions of material inflow and outflow in each process were determined using material flow analysis. The material flow models in each unit and process can be obtained by analyzed of material flow for new technology, and the input-output model could be obtained. Through the model, it is possible to obtain the quantity of all the input and output material in the condition of limiting the quantity of a substance. Taking one ton electrolytic manganese as a basis, the quantity of other input material and cements can be determined with the input-output model. The whole system had thusly achieved a cleaner production level. Therefore, the input-output model can be used for guidance in practical production.

  8. Analysis of the conductivity of commercial easy sintering grade 3 mol% Y{sub 2}O{sub 3}-ZrO{sub 2} materials

    Energy Technology Data Exchange (ETDEWEB)

    Badwal, Sukhvinder P.S.; Ciacchi, Fabio T.; Giampietro, Kristine M. [CSIRO, Manufacturing and Infrastructure Technology, Private Bag 33, Clayton South 3169, Victoria (Australia)

    2005-01-14

    Fine grain zirconia-yttria materials are required for enhanced performance in solid oxide fuel cells and related devices and in applications requiring good thermo-mechanical properties. Materials with about 3 mol% Y{sub 2}O{sub 3}-ZrO{sub 2} composition are good electrolyte materials for solid oxide fuel cell, ceramic membrane oxygen separation and a number of related devices because of their superior mechanical properties and ease of fabrication into thin self-supporting structures in comparison with a material in the 8-10 mol% Y{sub 2}O{sub 3}-ZrO{sub 2} composition range. In this study, sintering behaviour, impedance studies, four-probe DC conductivity measurements and microstructure analysis has been performed on various easy sintering grade materials from two commercial powder suppliers. These materials achieve near theoretical density at sintering temperatures as low as 1350-1400C. For direct comparison of the conductivity and impedance behaviour in easy sintering grade materials, several other 3 mol% Y{sub 2}O{sub 3}-ZrO{sub 2} powders were also investigated. The total ionic conductivity at 850C in easy sintering grade materials is comparable with normal-grade commercial materials of similar composition despite a slightly higher grain boundary impedance at lower temperatures (below circa 450C). There were no obvious differences in the grain boundary thickness, calculated from the impedance data, of normal and easy sintering grade materials.

  9. Suitability of Different Food Grade Materials for the Encapsulation of Some Functional Foods Well Reported for Their Advantages and Susceptibility.

    Science.gov (United States)

    Wani, Touseef Ahmed; Shah, Adil Gani; Wani, Sajad Mohd; Wani, Idrees Ahmed; Masoodi, Farooq Ahmad; Nissar, Nazia; Shagoo, Mudasir Ahmad

    2016-11-17

    Functional foods find a very important place in the modern era, where different types of cancer, diabetes, cardiovascular diseases, etc. are on a high. Irrespective of the abundance of bioactive components in different fruits and vegetables, their low solubility in aqueous solution, vulnerability to destruction in different environmental and gastrointestinal conditions and a low intestinal absorption becomes a concern. Because it is quite difficult to commercialize non food materials for the food encapsulation purposes due to their safety concerns in the human body, scientists in the recent times have come up with the idea of encapsulating the different bioactive components in different food grade materials that are able to safeguard these bioactive components against the different environmental and gastrointestinal conditions and ensure their safe and targeted delivery at their absorption sites. Different food grade encapsulation materials including various oligosaccharides, polysaccharides (starch, cyclodextrins, alginates, chitosan, gum arabic, and carboxymethyl cellulose) and proteins and their suitability for encapsulating various bioactive components like flavonoids (catechins, rutin, curcumin, hesperetin, and vanillin), nonflavonoids (resveratrol), carotenoids (β-carotene, lycopene, and lutein), and fatty acids (fish oil, flaxseed oil, and olive oil) of high medical and nutritional value are reviewed here.

  10. Advanced Thermal Protection Systems (ATPS), Aerospace Grade Carbon Bonded Carbon Fiber Material, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Carbon bonded carbon fiber (CBCF) insulating material is the basis for several highly successful NASA developed thermal protection systems (TPS). Included among...

  11. Sugar cane leaf: a potential raw material for cheap grades of paper and board

    Energy Technology Data Exchange (ETDEWEB)

    Tiwary, K. N.; Kulkarni, A. Y.

    1980-03-15

    About 6 to 7 million tons of sugar cane leaves are available per year as agricultural residue and can be utilized for manufacture of cheap grades of paper and board. An unbleached yield of 56% could be obtained using 10% NaOH at a temperature of 170/sup 0/C with a bath ratio of 1 to 4 and cooking time of 10 min. Sulfate pulping with equivalent conditions gave a bleached pulp with comparatively higher brightness values, other properties remaining almost same. Bleaching of 10% soda pulp with 10 and 12% chlorine have given 42 and 40% yields at 71 to 72 and 77 to 78% Elrepho brightness, respectively. In case of 9% sulfate pulp the yields are 36 to 37% at 77 to 79% brightness when bleached with the same sequence as above with 10 to 10.5% chlorine. The pulps are strong for preparation of cheap grades of bleached as well as unbleached varieties of paper. Double fold and tear are however medium to low and hence need long fibered pulp blending to improve these characteristics.

  12. Three-Dimensional Elasticity Solutions for Sound Radiation of Functionally Graded Materials Plates considering State Space Method

    Directory of Open Access Journals (Sweden)

    Tieliang Yang

    2016-01-01

    Full Text Available This paper presents an analytical study for sound radiation of functionally graded materials (FGM plate based on the three-dimensional theory of elasticity. The FGM plate is a mixture of metal and ceramic, and its material properties are assumed to have smooth and continuous variation in the thickness direction according to a power-law distribution in terms of volume fractions of the constituents. Based on the three-dimensional theory of elasticity and state space method, the governing equations with variable coefficients of the FGM plate are derived. The sound radiation of the vibration plate is calculated with Rayleigh integral. Comparisons of the present results with those of solutions in the available literature are made and good agreements are achieved. Finally, some parametric studies are carried out to investigate the sound radiation properties of FGM plates.

  13. Thermoelastic Theory for the Response of Materials Functionally Graded in Two Directions with Applications to the Free-Edge Problem

    Science.gov (United States)

    Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.

    1995-01-01

    A recently developed micromechanical theory for the thermoelastic response of functionally graded composites with nonuniform fiber spacing in the through-thickness direction is further extended to enable analysis of material architectures characterized by arbitrarily nonuniform fiber spacing in two directions. In contrast to currently employed micromechanical approaches applied to functionally graded materials, which decouple the local and global effects by assuming the existence of a representative volume element at every point within the composite, the new theory explicitly couples the local and global effects. The analytical development is based on volumetric averaging of the various field quantities, together with imposition of boundary and interfacial conditions in an average sense. Results are presented that illustrate the capability of the derived theory to capture local stress gradients at the free edge of a laminated composite plate due to the application of a uniform temperature change. It is further shown that it is possible to reduce the magnitude of these stress concentrations by a proper management of the microstructure of the composite plies near the free edge. Thus by an appropriate tailoring of the microstructure it is possible to reduce or prevent the likelihood of delamination at free edges of standard composite laminates.

  14. Affects of Microgravity on the Polymerization and Material Properties of Biomedical Grade Polymers

    Science.gov (United States)

    Crane, Deborah J.

    2002-01-01

    the material of choice in the production of acetabular cups for hip and tibial cradles for knee orthopeadic implant components for over 30 years. Although UHMWPE is used for more than 1.5 million implants a year in the United States alone and more than 3 million implant surgeries a year worldwide, problems with debris particle formation, pitting and fracture continue to induce premature failure of implant components. chains produced during polymerization are capable of packing into crystalline structures called lamellae, which are embedded within randomly oriented amorphous regions. Crosslinks, or tie molecules bridge the crystalline structures, which contribute to the materials' toughness and strength as a biomedical material. Research has been conducted providing evidence that a crosslinked gradient at the articulating surface of the polymer component provides resistance to surface degradation and subsequent debris formation. Recently, the introduction of highly crosslinked UHMWPE had proven to reduce some of the problems associated with the applications of this polymer as a biomedical material and was seen as the answer to solving the continuing problems associated with UHMWPE implant components. Yet current research into the fatigue characteristics of highly crosslinked UHMWPE has shown that subsurface crack propagation and subsequent delamination continues to produce problematic debris generation. Studies have shown that various sterilization and accelerated aging (to emulate natural oxidation rates) protocols adversely effects the material properties. Additional research has shown that alignment of the lamellae, caused by processing technique, fabrication or surface articulation may be the precursor to debris particle formation. Processing techniques performed under high pressure has proven to effect the width of the crystalline lamellae and therefore, the material's response to wear and fracture. UHMWP due to a microgravity environment, which could be

  15. Thermal shock tests to qualify different tungsten grades as plasma facing material

    Science.gov (United States)

    Wirtz, M.; Linke, J.; Loewenhoff, Th; Pintsuk, G.; Uytdenhouwen, I.

    2016-02-01

    The electron beam device JUDITH 1 was used to establish a testing procedure for the qualification of tungsten as plasma facing material. Absorbed power densities of 0.19 and 0.38 GW m-2 for an edge localized mode-like pulse duration of 1 ms were chosen. Furthermore, base temperatures of room temperature, 400 °C and 1000 °C allow investigating the thermal shock performance in the brittle, ductile and high temperature regime. Finally, applying 100 pulses under all mentioned conditions helps qualifying the general damage behaviour while with 1000 pulses for the higher power density the influence of thermal fatigue is addressed. The investigated reference material is a tungsten product produced according to the ITER material specifications. The obtained results provide a general overview of the damage behaviour with quantified damage characteristics and thresholds. In particular, it is shown that the damage strongly depends on the microstructure and related thermo-mechanical properties.

  16. Be-Cu gradient materials through controlled segregation. Basic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Muecklich, F.; Lorinser, M.; Hartmann, S.; Beinstingel, S. [Saarland Univ., Saarbruecken (Germany); Linke, J.; Roedig, M.

    1998-01-01

    The joining of materials has a fundamental problematic nature: Creating a sharp interface between two different materials causes a more or less extreme jump in the properties at this point. This may result in the failure of the component under mechanical or thermal loads. In some cases there are further difficulties caused by using a third component (e.g. the transformation of Ag-lead into Cd by neutron beams). The solution may be the creating of a functionally gradient material (FGM) Be-Cu. We discuss the advantage of such a FGM and the probabilities of an new procedure for manufacturing 1-dimensional FGMs. (author)

  17. Functionally Graded Thermoelectric Material though One Step Band Gap and Dopant Engineering

    DEFF Research Database (Denmark)

    Jensen, Ellen Marie; Borup, Kasper Andersen; Cederkrantz, Daniel

    , and dopant concentration. Parameters relevant to the thermoelectric properties have been determined along the pulling direction. All of these properties exhibit the wanted gradient. It has thereby been shown that engineering of the electrical contributions to the thermoelectric properties of a material...

  18. Nutrition Education Materials: Grades 7 through 12. 1979-March 1987. Quick Bibliography Series.

    Science.gov (United States)

    Irving, Holly Berry

    The citations in this annotated bibliography are of audiovisuals and books focusing on basic nutrition education for children in junior high and secondary schools. There are 233 citations derived from online searches of the AGRICOLA database. Information is provided on obtaining the materials. (JD)

  19. Fabrication of tubed functionally graded material by slurry dipping process. Thickness control of dip-coated layer

    International Nuclear Information System (INIS)

    Watanabe, Ryuzo

    1997-03-01

    In order to obtain long life fuel cladding tubes for the fast breeder reactor, the concept of functionally graded material was applied for the material combination of Molybdenum/stainless steel/Titanium, in which Titanium and Molybdenum were placed at the inner and outer sides, respectively. Slurry dipping method was employed because of its capability of shape forming and microstructural control. We have hitherto reported the design criteria for the graded layers, preparation of the slurry, and microstructural control of the dip-coated layers. In the present report, the thickness control of the dip-coated layer is described in detail. The thickness of the dip-coated layer depends primarily on the viscosity of the slurry. Nevertheless, for the stable dispersion of the powder in the slurry, which dominates the microstructural homogeneity, an optimum viscosity value is present for the individual slurries. With stable slurries of Ti, Mo, stainless steel powders and their mixtures, the thicknesses of dip-coated layers were controlled in dependence of their viscosities and yield values. For Ti and stainless steel powders and their mixture a PAANa was used as a dispersing agent. A NaHMP was found to be effective for the dispersion of Mo powder and Mo/stainless steel powder mixture. For all slurries tested in the present investigation PVA addition was helpful for the viscosity control. Dip-coating maps have been drawn for the stabilization of the slurries and for the formation of films with a sufficient strength for further manipulation for the slurries with low viscosity (∼10 mPa s). The final film thickness for the low-viscosity slurry with the optimum condition was about 200 μm. The slurries with high viscosities of several hundreds mPa s had a good stability and the yield value was easy to be controlled. The film thickness was able to be adjusted in the size range between several tens and several hundreds μm. The final thickness of the graded layer was determined

  20. Demonstration and Validation of Stainless Steel Materials for Critical Above Grade Piping in Highly Corrosive Locations

    Science.gov (United States)

    2017-05-01

    materials for corroded fire-suppression water pipelines at the Chimu- Wan tank farms on Okinawa Island, Japan. 1.3 Approach Members of the research... pipelines . As such, detailed designs for supports and seismic analysis were not required. Calculations were performed in accordance with ASME B31.3...The pipeline was assembled using tungsten inert gas (TIG) arc welding. Pipe segments were joined at a stationary location to form longer seg

  1. Irradiation effects of hydrogen and helium plasma on different grade tungsten materials

    Directory of Open Access Journals (Sweden)

    X. Liu

    2017-08-01

    Full Text Available Fine-grain tungsten alloys could be one of the solutions for the plasma facing materials of future DEMO reactors. In order to evaluate the service performances of the newly developed W alloys under edge plasma irradiation and the synergetic effect of fusion plasma together with high heat flux, both low energy He ions and high energy H, H/He mixed neutral beam irradiation on W-ZrC, W-K, W-Y2O3, W-La2O3 and CVD-W coating were performed respectively at a liner plasma facility (Dalian Nationality University, China and the neutral beam facility GLADIS (IPP, Germany. Surface damages were characterized, and the crack formation and extension behaviors under ELM-like transient loading after H and H/He mixed beam irradiation were also investigated in the 60kW EMS-60 facility (Electron beam Materials testing Scenario at SWIP (Southwestern Institute of Physics, China. The experimental results indicated that surface damages induced by low or high energy H/He ion/neutral beam didn't closely correlate with the type of tungsten materials. However, H/He (6at% He concentration neutral beam induced more significant surface damages of the tested W materials than only H neutral beam irradiation under the similar irradiation conditions. Similarly, the mixed H/He pre-exposure remarkably reduced the critical power of crack initiation compared with the un-irradiated samples under 100 repetitive loads of 1ms pulse, while no significant degeneration for the case of only H beam irradiation was observed.

  2. Direct laser metal deposition of WC/Co/Cr powder by means of the functionally graded materials strategy

    Science.gov (United States)

    Angelastro, A.; Campanelli, S. L.

    2017-12-01

    One of the many applications of direct laser metal deposition (DLMD) is the realization of multilayer thick coatings having particular mechanical characteristics, such as high hardness. The objective of this work was to obtain a thick, very hard and wear resistant coating, containing a high percentage of tungsten carbide (WC), on an AISI 304 stainless steel substrate. In order to achieve this result, a tungsten carbide-cobalt-chrome (WC/Co/Cr) powder was processed by the DLMD method. WC/Co/Cr is a composite widely used as a wear-resistant material for cutting tools, molds, coatings and other severe applications. Because of its high hardness, poor ductility and low thermal expansion coefficient, depositing this material directly on the stainless steel substrate is very difficult. In order to overcome this problem, the strategy of functionally graded materials (FGM) was used. Colmonoy 227-F nickel alloy was chosen for this purpose in order to generate a mixture with the WC/Co/Cr powder. Four different materials were deposited, layer by layer, by mixing Colmonoy 227-F with an increasing amount of WC/Co/Cr powders, until obtaining a thick surface coating with a maximum amount of WC of 77.4 wt%. For each powder mixture, a mathematical model was applied to calculate optimal values of translation speed and overlap percentages. A metallographic examination was performed in order to detect macro- and micro-structures of the different materials. Finally, Vickers micro-hardness was measured at various locations along the transverse section to appreciate the gradual increase of the FGM hardness, starting from the substrate and culminating at the top surface of the last deposited material.

  3. Effect of Projectile Materials on Foreign Object Damage of a Gas-Turbine Grade Silicon Nitride

    Science.gov (United States)

    Choi, Sung R.; Racz, Zsolt; Bhatt, Ramakrishna T.; Brewer, David N.; Gyekenyesi, John P.

    2005-01-01

    Foreign object damage (FOD) behavior of AS800 silicon nitride was determined using four different projectile materials at ambient temperature. The target test specimens rigidly supported were impacted at their centers by spherical projectiles with a diameter of 1.59 mm. Four different types of projectiles were used including hardened steel balls, annealed steel balls, silicon nitride balls, and brass balls. Post-impact strength of each target specimen impacted was determined as a function of impact velocity to better understand the severity of local impact damage. The critical impact velocity where target specimens fail upon impact was highest with brass balls, lowest with ceramic ball, and intermediate with annealed and hardened steel balls. Degree of strength degradation upon impact followed the same order as in the critical impact velocity with respect to projectile materials. For steel balls, hardened projectiles yielded more significant impact damage than annealed counterparts. The most important material parameter affecting FOD was identified as hardness of projectiles and was correlated in terms of critical impact velocity, impact deformation, and impact load.

  4. Manufacture of electrical and magnetic graded and anisotropic materials for novel manipulations of microwaves.

    Science.gov (United States)

    Grant, P S; Castles, F; Lei, Q; Wang, Y; Janurudin, J M; Isakov, D; Speller, S; Dancer, C; Grovenor, C R M

    2015-08-28

    Spatial transformations (ST) provide a design framework to generate a required spatial distribution of electrical and magnetic properties of materials to effect manipulations of electromagnetic waves. To obtain the electromagnetic properties required by these designs, the most common materials approach has involved periodic arrays of metal-containing subwavelength elements. While aspects of ST theory have been confirmed using these structures, they are often disadvantaged by narrowband operation, high losses and difficulties in implementation. An all-dielectric approach involves weaker interactions with applied fields, but may offer more flexibility for practical implementation. This paper investigates manufacturing approaches to produce composite materials that may be conveniently arranged spatially, according to ST-based designs. A key aim is to highlight the limitations and possibilities of various manufacturing approaches, to constrain designs to those that may be achievable. The article focuses on polymer-based nano- and microcomposites in which interactions with microwaves are achieved by loading the polymers with high-permittivity and high-permeability particles, and manufacturing approaches based on spray deposition, extrusion, casting and additive manufacture.

  5. Comparison of Crack Growth Test Results at Elevated Temperature and Design Code Material Properties for Grade 91 Steel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeong-Yeon; Kim, Woo-Gon; Kim, Nak-Hyun [Korea Atomic Energy Reserach Institute, Daejeon (Korea, Republic of)

    2015-01-15

    The material properties of crack growth models at an elevated temperature were derived from the results of numerous crack growth tests for Mod.9Cr-1Mo (ASME Grade 91) steel specimens under fatigue loading and creep loading at an elevated temperature. These crack growth models were needed for defect assessment under creep-fatigue loading. The mathematical crack growth rate models for fatigue crack growth (FCG) and creep crack growth (CCG) were determined based on the test results, and the models were compared with those of the French design code RCCMRx to investigate the conservatism of the code. The French design code RCC-MRx provides an FCG model and a CCG model for Grade 91 steel in Section III Tome 6. It was shown that the FCG model of RCC-MRx is conservative, while the CCG model is non-conservative compared with the present test data. Thus, it was shown that further validation of the property was required. Mechanical strength tests and creep tests were also conducted, and the test results were compared with those of RCC-MRx.

  6. Free vibration analysis of a rotary smart two directional functionally graded piezoelectric material in axial symmetry circular nanoplate

    Science.gov (United States)

    Mahinzare, Mohammad; Ranjbarpur, Hosein; Ghadiri, Majid

    2018-02-01

    In this article, free vibration of a rotating circular nanoplate made of two directional functionally graded piezo materials (two directional FGPM) is modeled based on the first shear deformation theory (FSDT). Based on the power-law model, electro-elastic properties of two directional FGP rotating circular nanoplates are supposed to change continuously along the thickness and radius. Employing the modified couple stress theory, the small size effect of the equations of the plate is considered. The governing equations of the first shear deformation theory (FSDT) for the studied plate are obtained based on Hamilton's principle; these equations are solved using differential quadrature method (DQM). It is shown that the vibration behavior of the plate is significantly affected by angular velocity, external electric voltage, size dependency and power-law index (thickness and radial directions).

  7. Development of a WebQuest as instructional material in teaching biodiversity for grade 8 learners

    Science.gov (United States)

    Genovia, Jerson A.; Eslit, April Rose C.; Tamse, Agnes Lera G.; Barquilla, Manuel B.

    2018-01-01

    WebQuest is an inquiry-based learning activity that allows students to learn the lesson using the information provided in the internet resources. The study aimed to develop and implement the WebQuest on Biodiversity. Primarily, this research determines the students' performances in the achievement test after WebQuest was implemented to them. Secondly, it is also to investigate on their attitudes towards Biology before and after the activity as well as the level of development of their 21st Century Skills. This research utilized Quasi-experimental Non-randomized One Group Pretest/Posttest Design. The developed WebQuest that is based from the K-12 curriculum competencies were evaluated by selected experts in the Content (2), Pedagogy (2) and ICT (2) to assess the said activity in terms of content, pedagogy and ICT effects. It was then implemented in an intact group of grade 8 students. Findings revealed that the developed WebQuest was rated "Excellent" for Content, Pedagogy and TCT effects. After utilizing the WebQuest activity on Biodiversity, students acquired more knowledge on the topic shows by the mean difference of 2.42, which is highly significant based on t-test result. The overall students' attitude towards Biology as a subject changed positively after they did the activity due to novelty effects and the WebQuest itself with the mean difference of 0.46. Moreover, results shows that the students can developed 21st century skills considering that the Likert scale survey was given only to the students after the activity. Based on the result, 97% of total responses favored to have developed Critical Thinking skills, 98% on Collaboration skills, 97% on Creativity and Innovative skills, 94% on Communication skills, 97% on Self-Decision skills, and 97% on ICT skills. The concentration of percentage of responses differed in two classes because Class A was composed of highlyselected students who underwent an entrance examination upon admission in school and Class B

  8. Green Chemistry: Effect of Microwave Irradiationon Synthesis of Chitosan for Biomedical Grade Applications of Biodegradable Materials

    Directory of Open Access Journals (Sweden)

    Amri Setyawati

    2016-10-01

    Full Text Available Microwave assisted chitosan synthesis as biodegradable material for biomedical application has been done. The purpose of this research is to synthesis of chitosan with high DD and low molecular weight using microwave energy, the study of reaction conditions include parameters of power and reaction time. Chitosan was prepared by deacetylation of chitin with 60% NaOH solution. Conventional method has been done by reflux for 90minutes, resulting chitosan with DD of 79.5%, 72.6% yields and molecular weight 6051 g/mol. Green chemistry method using microwave radiation at 800 Watts for 5 minutes has produced chitosan with highest DD, yield and molecular weight of 86%, 75% and 3797 g/mole respectively. Synthesis of Chitosan by microwave radiation method can save 10x electrical energy for the reaction, also rapidly and effectively to produce chitosan with low molecular weight compared to conventional methods

  9. Beginning German in Grade Three: MLA Teacher's Guide. A Course of Study Including Methods, Materials, and Aids for Teaching Conversational German to Third-Grade Children.

    Science.gov (United States)

    Wittman, Nora E.; And Others

    This guide is planned to help the FLES teacher develop pleasurable language learning experiences in spoken German for children at the third-grade level. Experiences included in this guide present German in life situations, as well as insight into German culture. The guide offers suggestions for classroom procedures, and detailed directions are…

  10. Processing of W-Cu functionally graded materials (FGM) through the powder metallurgy route: application as plasma facing components for ITER-like thermonuclear fusion reactor

    International Nuclear Information System (INIS)

    Raharijaona, J.J.

    2009-11-01

    The aim of this study was to study and optimize the sintering of W-Cu graded composition materials, for first wall of ITER-like thermonuclear reactor application. The graded composition in the material generates graded functional properties (Functionally Graded Materials - FGM). Rough thermomechanical calculations have shown the interest of W-Cu FGM to improve the lifetime of Plasma Facing Components (PFC). To process W-Cu FGM, powder metallurgy route was analyzed and optimized from W-CuO powder mixtures. The influence of oxide reduction on the sintering of powder mixtures was highlighted. An optimal heating treatment under He/H 2 atmosphere was determined. The sintering mechanisms were deduced from the analysis of the effect of the Cu-content. Sintering of W-Cu materials with a graded composition and grain size has revealed two liquid migration steps: i) capillary migration, after the Cu-melting and, ii) expulsion of liquid, at the end of sintering, from the dense part to the porous part, due to the continuation of W-skeleton sintering. These two steps were confirmed by a model based on capillary pressure calculation. In addition, thermal conductivity measurements were conducted on sintered parts and showed values which gradually increase with the Cu-content. Hardness tests on a polished cross-section in the bulk are consistent with the composition profiles obtained and the differential grain size. (author)

  11. A Modified Kirchhoff plate theory for Free Vibration analysis of functionally graded material plates using meshfree method

    Science.gov (United States)

    Nguyen Van Do, Vuong

    2018-04-01

    In this paper, a modified Kirchhoff theory is presented for free vibration analyses of functionally graded material (FGM) plate based on modified radial point interpolation method (RPIM). The shear deformation effects are taken account into modified theory to ignore the locking phenomenon of thin plates. Due to the proposed refined plate theory, the number of independent unknowns reduces one variable and exists with four degrees of freedom per node. The simulated free vibration results employed by the modified RPIM are compared with the other analytical solutions to verify the effectiveness and the accuracy of the developed mesh-free method. Detail parametric studies of the proposed method are then conducted including the effectiveness of thickness ratio, boundary condition and material inhomogeneity on the sample problems of square plates. Results illustrated that the modified mesh-free RPIM can effectively predict the numerical calculation as compared to the exact solutions. The obtained numerical results are indicated that the proposed method are stable and well accurate prediction to evaluate with other published analyses.

  12. Fracture of functionally graded materials: application to hydrided zircaloy; Fissuration des materiaux a gradient de proprietes: application au zircaloy hydrure

    Energy Technology Data Exchange (ETDEWEB)

    Perales, F

    2005-12-15

    This thesis is devoted to the dynamic fracture of functionally graded materials. More particularly, it deals with the toughness of nuclear cladding at high burnup submitted to transient loading. The fracture is studied at local scale using cohesive zone model in a multi body approach. Cohesive zone models include frictional contact to take into account mixed mode fracture. Non smooth dynamics problems are treated within the Non-Smooth Contact Dynamics framework. A multi scale study is necessary because of the dimension of the clad. At microscopic scale, the effective properties of surface law, between each body, are obtained by periodic numerical homogenization. A two fields Finite Element formulation is so written. An extended formulation of the NSCD framework is obtained. The associated software allows to simulate, in finite deformation, from the crack initiation to post-fracture behavior in heterogeneous materials. At microscopic scale, random RVE calculations are made to determine effective properties. At macroscopic scale, calculations of part of clad are made to determine the role of the mean hydrogen concentration and gradient of hydrogen parameters in the toughness of the clad under dynamic loading. (author)

  13. Love-type waves in functionally graded piezoelectric material (FGPM) sandwiched between initially stressed layer and elastic substrate

    Science.gov (United States)

    Saroj, Pradeep K.; Sahu, S. A.; Chaudhary, S.; Chattopadhyay, A.

    2015-10-01

    This paper investigates the propagation behavior of Love-type surface waves in three-layered composite structure with initial stress. The composite structure has been taken in such a way that a functionally graded piezoelectric material (FGPM) layer is bonded between initially stressed piezoelectric upper layer and an elastic substrate. Using the method of separation of variables, frequency equation for the considered wave has been established in the form of determinant for electrical open and short cases on free surface. The bisection method iteration technique has been used to find the roots of the dispersion relations which give the modes for electrical open and short cases. The effects of gradient variation of material constant and initial stress on the phase velocity of surface waves are discussed. Dependence of thickness on each parameter of the study has been shown explicitly. Study has been also done to show the existence of cut-off frequency. Graphical representation has been done to exhibit the findings. The obtained results are significant for the investigation and characterization of Love-type waves in FGPM-layered media.

  14. Dynamic fracture toughness of ASME SA508 Class 2a ASME SA533 grade A Class 2 base and heat affected zone material and applicable weld metals

    International Nuclear Information System (INIS)

    Logsdon, W.A.; Begley, J.A.; Gottshall, C.L.

    1978-03-01

    The ASME Boiler and Pressure Vessel Code, Section III, Article G-2000, requires that dynamic fracture toughness data be developed for materials with specified minimum yield strengths greater than 50 ksi to provide verification and utilization of the ASME specified minimum reference toughness K/sub IR/ curve. In order to qualify ASME SA508 Class 2a and ASME SA533 Grade A Class 2 pressure vessel steels (minimum yield strengths equal 65 kip/in. 2 and 70 kip/in. 2 , respectively) per this requirement, dynamic fracture toughness tests were performed on these materials. All dynamic fracture toughness values of SA508 Class 2a base and HAZ material, SA533 Grade A Class 2 base and HAZ material, and applicable weld metals exceeded the ASME specified minimum reference toughness K/sub IR/ curve

  15. Gender-Based Content of Educational Materials for the Study of Serbian Language in Lower-Stage Grades of Elementary Education

    Science.gov (United States)

    Trifunovic, Vesna; Petrovic, Ruzica

    2014-01-01

    This paper presents the results of analysis of educational materials for the study of Serbian language in lower-stage grades of elementary education (intended for students from 7 through 11 years old) from gender perspective. The first part of the paper presents the process of institutionalization of gender-based education in the Republic of…

  16. Strand V: Education for Survival. First Aid and Survival Education. Health Curriculum Materials Grades 10-12.

    Science.gov (United States)

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    GRADES OR AGES: Grades 10-12. SUBJECT MATTER: First aid and survival education. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into six sections: transportation of the injured, automobile accidents, conditions resulting from nuclear explosion, chemical warfare, natural catastrophes, and psychological first aid. The publication format…

  17. The Content Analysis, Material Presentation, and Readability of Curriculum 2013 Science Textbook for 1st Semester of Junior High School 7th Grade

    Directory of Open Access Journals (Sweden)

    Endik Deni Nugroho

    2017-07-01

    Full Text Available Based on the early observation by researchers of the two Science textbooks 7thGrade about biological material, 1stand 2ndsemester of curriculum 2013, there were errors in the material presentation and legibility. This study aimed to compare and find the contents suitability of the book based on standard of competence and basic competences, readability, materials presentation and supporting material in the science textbook VII grade, 1st and 2nd semester and measured student legibility. This study used a qualitative descriptive approach by using document analysis. The data resources were obtained by using purposive, the data collection was triangulation, data analysis was inductive/qualitative and the results emphasized the meaning. This research results showed that the Integrated Sciences and Sciences textbook 1st and 2nd semester meet the standards of the core competencies and basic competence on the syllabus curriculum 2013 and also meet the books standart. The results of the analysis conducted in misstatement concept and principles and material llustration in the Integrated Science textbook 1st semester were found 5 misstatement concept, for the presentation of the principles and material illustration was found no error. In the book Integrated Sciences there was no delivery errors concept, principle, and material illustration. Science textbook 1st semester found 8 concepts misstatements and 8 illustration material misstatements. In general, Integrated Sciences and Sciences textbooks 1st and 2nd semester are illegibility so not appropriate for students.

  18. Two-dimensional model for subthreshold current and subthreshold swing of graded-channel dual-material double-gate (GCDMDG) MOSFETs

    Science.gov (United States)

    Goel, Ekta; Kumar, Sanjay; Singh, Balraj; Singh, Kunal; Jit, Satyabrata

    2017-06-01

    The subthreshold performance of graded-channel dual-material double-gate (GCDMDG) MOSFETs is examined through two-dimensional (2D) analytical modeling of subthreshold-current (SC) and subthreshold-swing (SS). The potential function obtained by using the parabolic approach to solve the 2D Poisson's equation, has been used to formulate SC and SS characteristics of the device. The variations of SS against different device parameters have been obtained with the help of effective conduction path parameter. The SC and SS characteristics of the GCDMDG MOS transistor have been compared with those of the dual-material double-gate (DMDG) and simple graded-channel double-gate (GCDG) MOS structures to show its better subthreshold characteristics over the latter two devices. The results of the developed model are well-agreed with the commercially available SILVACO ATLAS™ simulator data.

  19. Supply of equipment and components, materials of dedicated commercial grade, other services; Suministro de equipos y respuestos. Materiales de grado comercial dedicados. Otros servicios

    Energy Technology Data Exchange (ETDEWEB)

    Perdices, D.; Perez Medina, E.

    2014-10-01

    The following article describes the course of action of Tecnatom as Procurement Agent and Manufacturing Manager for the supply materials, equipment and components for the Spanish Nuclear Power Plants. We have devoted a special mention to the supply of dedicated commercial grade items (CGI), bringing together the services of Manufacturing Manager, Engineering service and testing facilities, simplifying the control of the supply chain with total warranty. (Author)

  20. Interdisciplinary Student/Teacher Materials in Energy, the Environment, and the Economy: 4, Transportation and the City, Grades 8, 9.

    Science.gov (United States)

    Childs, Barbara; And Others

    This instructional unit for grades eight and nine tells why and how American small towns declined as a result of the availability and acceptance of automobiles, and it tells of the growth of suburbs and their effect on the city. The learning activities also relate the story of the demand for cars and explain the drain on the cities' sense of…

  1. Interdisciplinary Student/Teacher Materials in Energy, the Environment, and the Economy: Agriculture, Energy, and Society, Grades 10, 11, 12.

    Science.gov (United States)

    Brock, Phyllis; And Others

    This interdisciplinary instructional unit contains eleven lessons for grades 10-12 which focus on the energy component of food production. There are lessons which contrast food production systems in various cultures and also lessons which look at different systems and techniques in use in this country. There are lessons dealing with organic…

  2. Mathematical Communication Ability by Grade VII Students Using a Themed Problem Based Learning with Scaffolding on Rectangle Materials

    OpenAIRE

    Didik Adi Saputro; Masrukan Masrukan; Arief Agoestanto

    2017-01-01

    The aim of research to test students' mathematical communication used themed of PBL with scaffolding, themed of PBL and PBL achieve mastery learning;to test students' mathematical communication that used the themed of PBL with scaffolding, themed of PBL and PBL; and to test students' mathematical communication for the low, medium group, and a high-group themed of PBL with scaffolding, themed of PBL and PBL. This type of research is quantitative research. The Population is seventh grade studen...

  3. Micro-mechanical investigation of the effect of fine content on mechanical behavior of gap graded granular materials using DEM

    Directory of Open Access Journals (Sweden)

    Taha Habib

    2017-01-01

    Full Text Available In this paper, we present a micro-mechanical study of the effect of fine content on the behavior of gap graded granular samples by using numerical simulations performed with the Discrete Element Method. Different samples with fine content varied from 0% to 30% are simulated. The role of fine content in reinforcing the granular skeleton and in supporting the external deviatoric stress is then brought into the light.

  4. Classical entropy generation analysis in cooled homogenous and functionally graded material slabs with variation of internal heat generation with temperature, and convective–radiative boundary conditions

    International Nuclear Information System (INIS)

    Torabi, Mohsen; Zhang, Kaili

    2014-01-01

    This article investigates the classical entropy generation in cooled slabs. Two types of materials are assumed for the slab: homogeneous material and FGM (functionally graded material). For the homogeneous material, the thermal conductivity is assumed to be a linear function of temperature, while for the FGM slab the thermal conductivity is modeled to vary in accordance with the rule of mixtures. The boundary conditions are assumed to be convective and radiative concurrently, and the internal heat generation of the slab is a linear function of temperature. Using the DTM (differential transformation method) and resultant temperature fields from the DTM, the local and total entropy generation rates within slabs are derived. The effects of physically applicable parameters such as the thermal conductivity parameter for the homogenous slab, β, the thermal conductivity parameter for the FGM slab, γ, gradient index, j, internal heat generation parameter, Q, Biot number at the right side, Nc 2 , conduction–radiation parameter, Nr 2 , dimensionless convection sink temperature, δ, and dimensionless radiation sink temperature, η, on the local and total entropy generation rates are illustrated and explained. The results demonstrate that considering temperature- or coordinate-dependent thermal conductivity and radiation heat transfer at both sides of the slab have great effects on the entropy generation. - Highlights: • The paper investigates entropy generation in a slab due to heat generation and convective–radiative boundary conditions. • Both homogeneous material and FGM (functionally graded material) were considered. • The calculations are carried out using the differential transformation method which is a well-tested analytical technique

  5. Effect of gradient dielectric coefficient in a functionally graded material (FGM) substrate on the propagation behavior of love waves in an FGM-piezoelectric layered structure.

    Science.gov (United States)

    Cao, Xiaoshan; Shi, Junping; Jin, Feng

    2012-06-01

    The propagation behavior of Love waves in a layered structure that includes a functionally graded material (FGM) substrate carrying a piezoelectric thin film is investigated. Analytical solutions are obtained for both constant and gradient dielectric coefficients in the FGM substrate. Numerical results show that the gradient dielectric coefficient decreases phase velocity in any mode, and the electromechanical coupling factor significantly increases in the first- and secondorder modes. In some modes, the difference in Love waves' phase velocity between these two types of structure might be more than 1%, resulting in significant differences in frequency of the surface acoustic wave devices.

  6. Design and Fabrication of Al2O3-(W, TiC-TiN-Mo-Ni Nano-composite Cermet Tool Materials with Graded Structures

    Directory of Open Access Journals (Sweden)

    NI Xiu-ying

    2018-02-01

    Full Text Available Based on the analysis on temperature and stress distributions, as well as fatigue crack propagation in cutting tools, a model for designing compositional distribution and microstructure with graded characteristics was proposed. The addition of ductile phase and the introduction of the graded structure are beneficial to slow down the fatigue crack propagation rate and improve tool life.Al2O3-(W,TiC-TiN-Mo-Ni nano-composite tool material with graded structures was fabricated via two stage hot pressing sintering process, and the microstructure and mechanical properties were studied. The results show that the surface hardness, fracture toughness of inner layer and bending strength of the cermet with sintered gradient structure reach 19.258GPa, 10.015MPa·m1/2 and 1017.475MPa,respectively.The performance requirements to cutting tools were met. The dimple cleavage and torn edge of the binding phase in the fracture surfaces can be beneficial to the improvement of the fracture toughness and bending strength,so the resistance to fatigue crack propagation of tools is improved.

  7. Development of Contextual Mathematics teaching Material integrated related sciences and realistic for students grade xi senior high school

    Science.gov (United States)

    Helma, H.; Mirna, M.; Edizon, E.

    2018-04-01

    Mathematics is often applied in physics, chemistry, economics, engineering, and others. Besides that, mathematics is also used in everyday life. Learning mathematics in school should be associated with other sciences and everyday life. In this way, the learning of mathematics is more realstic, interesting, and meaningful. Needs analysis shows that required contextual mathematics teaching materials integrated related sciences and realistic on learning mathematics. The purpose of research is to produce a valid and practical contextual mathematics teaching material integrated related sciences and realistic. This research is development research. The result of this research is a valid and practical contextual mathematics teaching material integrated related sciences and realistic produced

  8. Testing of nuclear grade lubricants and their effects on A540 B24 and A193 B7 bolting materials

    International Nuclear Information System (INIS)

    Czajkowski, C.J.

    1985-01-01

    An investigation was performed on eleven commonly used lubricants by the nuclear power industry. The investigation included EDS analysis of the lubricants, notched-tensile constant extension rate testing of bolting materials with the lubricants, frictional testing of the lubricants and weight loss testing of a bonded solid film lubricant. The report generally concludes that there is a significant amount of variance in the mechanical properties of common bolting materials; that MoS 2 can hydrolyze to form H 2 S at 100 0 C and cause stress corrosion cracking (SCC) of bolting materials, and that the use of copper-containing lubricants can be potentially detrimental to high strength steels in an aqueous environment. Additionally, the testing of various lubricants disclosed that some lubricants contain potentially detrimental elements (e.g. S, Sb) which can promote SCC of the common bolting materials. One of the most significant findings of this report is the observation that both A193 B7 and A540 B24 bolting materials are susceptible to transgranular stress corrosion cracking in demineralized H 2 O at 280 0 C in notched tensile tests

  9. Mathematical Communication Ability by Grade VII Students Using a Themed Problem Based Learning with Scaffolding on Rectangle Materials

    Directory of Open Access Journals (Sweden)

    Didik Adi Saputro

    2017-08-01

    Full Text Available The aim of research to test students' mathematical communication used themed of PBL with scaffolding, themed of PBL and PBL achieve mastery learning;to test students' mathematical communication that used the themed of PBL with scaffolding, themed of PBL and PBL; and to test students' mathematical communication for the low, medium group, and a high-group themed of PBL with scaffolding, themed of PBL and PBL. This type of research is quantitative research. The Population is seventh grade students of SMPN 22 Semarang and the sample class VII E, F and VII VII G. Used normality test, homogenity test, equality test on average, the proportion of one-party test, one way anova test, and scheffe test. The results showed that (1 Student’s mathematical communication ability using themed of PBLwith Scaffolding strategy,themed of PBL, and PBL achieve the completeness of learning, (2 there is a difference in the classroom using the themed of PBL with scaffolding, themed of PBL, as well as PBL, (3 For the low, medium, high and there is a difference in the classroom using the themed of PBL with scaffolding, themed of PBL and PBL.

  10. Dynamic shock compaction of a ZrO2-RuO2 electronic nanocomposite: toward functionally graded materials

    NARCIS (Netherlands)

    van Zyl, W.E.; Carton, Erik P.; Raming, T.P.; ten Elshof, Johan E.; Verweij, H.

    2005-01-01

    An electronic ZrO2-RuO2 nanocomposite was fabricated by dynamic compaction (DC) at 1.5 GPa resulting in a maximum relative density of 88% in the material. The DC process formed pristine elongated conical-shaped compacts 3 cm in length. The compacts retained their original nanometer-sized grains (~20

  11. Ceramic-Based 4D Components: Additive Manufacturing (AM) of Ceramic-Based Functionally Graded Materials (FGM) by Thermoplastic 3D Printing (T3DP).

    Science.gov (United States)

    Scheithauer, Uwe; Weingarten, Steven; Johne, Robert; Schwarzer, Eric; Abel, Johannes; Richter, Hans-Jürgen; Moritz, Tassilo; Michaelis, Alexander

    2017-11-28

    In our study, we investigated the additive manufacturing (AM) of ceramic-based functionally graded materials (FGM) by the direct AM technology thermoplastic 3D printing (T3DP). Zirconia components with varying microstructures were additively manufactured by using thermoplastic suspensions with different contents of pore-forming agents (PFA), which were co-sintered defect-free. Different materials were investigated concerning their suitability as PFA for the T3DP process. Diverse zirconia-based suspensions were prepared and used for the AM of single- and multi-material test components. All of the samples were sintered defect-free, and in the end, we could realize a brick wall-like component consisting of dense (<1% porosity) and porous (approx. 5% porosity) zirconia areas to combine different properties in one component. T3DP opens the door to the AM of further ceramic-based 4D components, such as multi-color, multi-material, or especially, multi-functional components.

  12. Standard test method for analysis of isotopic composition of uranium in nuclear-grade fuel material by quadrupole inductively coupled plasma-mass spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This test method is applicable to the determination of the isotopic composition of uranium (U) in nuclear-grade fuel material. The following isotopic weight percentages are determined using a quadrupole inductively coupled plasma-mass spectrometer (Q-ICP-MS): 233U, 234U, 235U, 236U, and 238U. The analysis can be performed on various material matrices after acid dissolution and sample dilution into water or dilute nitric (HNO3) acid. These materials include: fuel product, uranium oxide, uranium oxide alloys, uranyl nitrate (UNH) crystals, and solutions. The sample preparation discussed in this test method focuses on fuel product material but may be used for uranium oxide or a uranium oxide alloy. Other preparation techniques may be used and some references are given. Purification of the uranium by anion-exchange extraction is not required for this test method, as it is required by other test methods such as radiochemistry and thermal ionization mass spectroscopy (TIMS). This test method is also described i...

  13. In vivo micronucleus studies with 6 titanium dioxide materials (3 pigment-grade & 3 nanoscale) in orally-exposed rats.

    Science.gov (United States)

    Donner, E M; Myhre, A; Brown, S C; Boatman, R; Warheit, D B

    2016-02-01

    Six pigment-grade (pg) or ultrafine (uf)/nanoscale (anatase and/or rutile) titanium dioxide (TiO2) particulates were evaluated for in vivo genotoxicity (OECD 474 Guidelines) in male and female rats by two different laboratories. All test materials were robustly characterized. The BET surface areas of the pg and uf samples ranged from 7 to 17 m(2)/g and 50 to 82 m(2)/g respectively. The materials were assessed for induction of micronuclei and toxicity in bone marrow by analyzing peripheral blood reticulocytes (RETs) by flow cytometry. Single oral gavage doses of 500, 1000 or 2000 mg/kg body weight (bw) of each material were implemented with concurrent negative (water) and positive controls (cyclophosphamide). Approximately 48 and 72 h after exposure, blood samples were collected and 20,000 RETs per animal were analyzed. For each of the six tests, there were no biologically or toxicologically relevant increases in the micronucleated RET frequency in any TiO2 exposed group at either time point at any dose level. In addition, there were a lack of biologically relevant decreases in %RETs among total erythrocytes. All six TiO2 test substances were negative for in vivo genotoxicity effects; however, it is noted that the exposure to target tissues was likely negligible. One pigment grade and one ultrafine material each were evaluated for potential systemic exposure/uptake from the gastrointestinal tract by analysis of TiO2 into blood and liver. No significant increases in TiO2 over controls were measured in blood (48 or 72 h) or liver (72 h) following exposures to 2000 mg/kg bw TiO2. These data indicate that there was no absorption of the test material from the gastrointestinal tract into the blood circulation and the lack of genotoxic effects is therefore attributed to a lack of exposure due to the inability of the test material to migrate from the gastrointestinal tract into the blood and then into target tissues. Copyright © 2015 Elsevier Inc. All rights

  14. Characterisation of the residual strain profiles in aluminium titanate/alumina functionally graded materials using x-ray diffraction data

    International Nuclear Information System (INIS)

    Skala, R.D.

    2002-01-01

    Full text: In previous studies of the aluminium titanate/alumina functionally graded system, it was proposed that the mechanisms responsible for the observed flaw tolerance and quasi-ductile behaviour of the composite system were due to the generation of residual strain fields in the bulk of the composite. These residual strain fields are induced by a combination of the thermal expansion coefficient mismatch between the alumina and aluminium titanate phases and also the high degree of thermal anisotropy exhibited by the aluminium titanate phase. In the current study, both the macro-strain (linear) and micro-strain (non-linear) were extracted from x-ray diffraction data. The macro-strains were extracted from variations in the lattice parameters, whilst the micro-strains were extracted from line broadening of the diffraction peaks. Strain profiles were obtained by carefully removing layers of the composite till the centre region was reached. Analysis of the data showed that the macro-strain in the alumina phase was compressive and decreased from -0.149 ± 0.012 % at the surface to -0.086 ± 0.006 % at the centre of the composite system. The macro-strain in the aluminium titanate phase was observed to remain constant at a value of 0.181 ± 0.013 % and be tensile in nature. The micro-strains within the composite system were also seen to exhibit a similar profile with the micro-strain in the alumina phase ranging from 0.065 ± 0.003 % to 0.008 ± 0.005 % from the surface to the centre respectively and the aluminium titanate phase displaying a mean micro-strain value of 0.117 ± 0.033 %. These results were also seen to correlate well with the compositional profiles observed in previous studies of the system. Copyright (2002) Australian X-ray Analytical Association Inc

  15. A Technological Comparison of Six Processes for the Production of Reduction-Grade Alumina from Non-Bauxitic Raw Materials

    Science.gov (United States)

    Bengtson, K. B.

    The U. S. Bureau of Mines, by means of a contract with Kaiser Engineers and with Kaiser Aluminum & Chemical Corporation as a subcontractor, has sponsored a technological and an economic evaluation of six candidate processes for the manufacture of alumina from certain U. S. raw materials other than bauxite. This paper describes each process. Flow diagrams and the total energy requirement for each process are included. Important characteristics affecting the economics of producing alumina by each process are discussed, and some presently unsolved technical problems are identified. The extraction of alumina from clay via hydrochloric acid with iron separation by solvent extraction, and the crystallization of intermediate AlCl3·6H2O through the introduction of HCl gas into the pregnant mother liquor, appears to be technically feasible and the most attractive of the six raw material/process combinations.

  16. Criteria for Selection of Graded Index Filter Materials Based on an Analysis of Wave Propagation in a Periodic Medium.

    Science.gov (United States)

    1986-01-01

    at 579.1 nm. These materials have high dispersion. 96 TABLE 14 OXIDES IN TELLEJRITE GLASSES .- Add it ive n TeO 2 -BaO TeO2 Wo 3 %*- La 2O 3 1.63...13 PbDeO3 and PbSiO 3 96 14 Oxides in Tellurite Glasses 97 15 Wurtzite Structure 98 16 Rocksalt Structure Chalcogenides 99 17 Zincblende or Sphalerite...alumina in glasses , SiO 2, was reported by Zuther, et al. who studied the glass system Ga 203-GeO 2-’v1 O5.56 The refractive indices of the monoclinic

  17. Student’s Misconception of Digestive System Materials in MTs Eight Grade of Malang City and the Role of Teacher’s Pedadogic Competency in MTs

    Directory of Open Access Journals (Sweden)

    Yuswa Istikomayanti

    2017-07-01

    Full Text Available Misconception research has important value in the development of students' thinking processes especially in science field. As the identification of important concepts that must be mastered by the students can be done, the teacher will easily able to emphasis the important or main concepts. This study aims to identify the students’ misconception in digestive system materials in eight grade of MTs and teacher pedagogic competence role. The survey was conducted in 8A (16 students and 8B (17 students MTs Muhammadiyah 1 and 8E (19 students Surya Buana Malang. The stages of research survey were: preparation of research goals (formulation, sample determination, preparation and instruments validation, data collection, and data analysis. The instruments used were: misconception test, student response questionnaire, learning observation guide, and teacher pedagogic competency form. The findings of the learning outcomes were discussed with the observer team, which then were assessed by using the assessment rubric and classified into the categories of student misconceptions. The results showed that the three teachers, neither certified nor uncertified were proved to be limited in overcoming misconceptions in the learning process; meanwhile, the results of students’ misconception test were mostly reach only level 3 (medium. Thus, the study of misconceptions of the digestive system material or other physiological material matter needs to get the attention of the teachers and educational practitioners.

  18. Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants.

    Science.gov (United States)

    Traini, T; Mangano, C; Sammons, R L; Mangano, F; Macchi, A; Piattelli, A

    2008-11-01

    This work focuses on a titanium alloy implants incorporating a gradient of porosity, from the inner core to the outer surface, obtained by laser sintering of metal powder. Surface appearance, microstructure, composition, mechanical properties and fractography were evaluated. All the specimens were prepared by a selective laser sintering procedure using a Ti-6Al-4V alloy powder with a particle size of 1-10 microm. The morphological and chemical analyses were performed by SEM and energy dispersive X-ray spectroscopy. The flexure strength was determined by a three-point bend test using a universal testing machine. The surface roughness was investigated using a confocal scanning laser microscope. The surface roughness variation was statistically evaluated by use of a Chi square test. A p value of metal core consisted of columnar beta grains with alpha and beta laths within the grains. The alloy was composed of 90.08% Ti, 5.67% Al and 4.25% V. The Young's modulus of the inner core material was 104+/-7.7 GPa; while that of the outer porous material was 77+/-3.5 GPa. The fracture face showed a dimpled appearance typical of ductile fracture. In conclusion, laser metal sintering proved to be an efficient means of construction of dental implants with a functionally graded material which is better adapted to the elastic properties of the bone. Such implants should minimize stress shielding effects and improve long-term performance.

  19. Application of the Materials-by-Design Methodology to Redesign a New Grade of the High-Strength Low-Alloy Class of Steels with Improved Mechanical Properties and Processability

    Science.gov (United States)

    Grujicic, M.; Snipes, J. S.; Ramaswami, S.

    2016-01-01

    An alternative to the traditional trial-and-error empirical approach for the development of new materials is the so-called materials-by-design approach. Within the latter approach, a material is treated as a complex system and its design and optimization is carried out by employing computer-aided engineering analyses, predictive tools, and available material databases. In the present work, the materials-by-design approach is utilized to redesign a grade of high-strength low-alloy (HSLA) class of steels with improved mechanical properties (primarily strength and fracture toughness), processability (e.g., castability, hot formability, and weldability), and corrosion resistance. Toward that end, a number of material thermodynamics, kinetics of phase transformations, and physics of deformation and fracture computational models and databases have been developed/assembled and utilized within a multi-disciplinary, two-level material-by-design optimization scheme. To validate the models, their prediction is compared against the experimental results for the related steel HSLA100. Then the optimization procedure is employed to determine the optimal chemical composition and the tempering schedule for a newly designed grade of the HSLA class of steels with enhanced mechanical properties, processability, and corrosion resistance.

  20. Graded geometry and Poisson reduction

    OpenAIRE

    Cattaneo, A S; Zambon, M

    2009-01-01

    The main result of [2] extends the Marsden-Ratiu reduction theorem [4] in Poisson geometry, and is proven by means of graded geometry. In this note we provide the background material about graded geometry necessary for the proof in [2]. Further, we provide an alternative algebraic proof for the main result. ©2009 American Institute of Physics

  1. Grade 6 Science Curriculum Specifications.

    Science.gov (United States)

    Alberta Dept. of Education, Edmonton. Curriculum Branch.

    This material describes curriculum specifications for grade 6 science in Alberta. Emphases recommended are: (1) process skills (50%); (2) psychomotor skills (10%); (3) attitudes (10%); and (4) subject matter (30%). Priorities within each category are identified. (YP)

  2. Developmental toxicity studies with 6 forms of titanium dioxide test materials (3 pigment-different grade & 3 nanoscale) demonstrate an absence of effects in orally-exposed rats.

    Science.gov (United States)

    Warheit, D B; Boatman, R; Brown, S C

    2015-12-01

    Six different commercial forms and sizes of titanium dioxide particles were tested in separate developmental toxicity assays. The three pigment-grade (pg) or 3 ultrafine (uf)/nanoscale (anatase and/or rutile) titanium dioxide (TiO2) particle-types were evaluated for potential maternal and developmental toxicity in pregnant rats by two different laboratories. All studies were conducted according to OECD Guideline 414 (Prenatal Developmental Toxicity Study). In addition, all test materials were robustly characterized. The BET surface areas of the pg and uf samples ranged from 7 to 17 m(2)/g and 50-82 m(2)/g respectively (see Table 1). The test substances were formulated in sterile water. In all of the studies, the formulations were administered by oral gavage to time-mated rats daily beginning around the time of implantation and continuing until the day prior to expected parturition. In 3 of the studies (uf-1, uf-3, & pg-1), the formulations were administered to Crl:CD(SD) rats beginning on gestation day (GD) 6 through GD 20. In 3 additional studies (uf-2, and pg-2, pg-3 TiO2 particles), the formulations were administered to Wistar rats beginning on GD 5 through 19. The dose levels used in all studies were 0, 100, 300, or 1000 mg/kg/day; control group animals were administered the vehicle. During the in-life portions of the studies, body weights, food consumption, and clinical observations before and after dosing were collected on a daily basis. All dams were euthanized just prior to expected parturition (GD 21 for Crl:CD(SD) rats and GD 20 for Wistar rats). The gross necropsies included an examination and description of uterine contents including counts of corpora lutea, implantation sites, resorptions, and live and dead fetuses. All live fetuses were sexed, weighed, and examined externally and euthanized. Following euthanasia, fresh visceral and head examinations were performed on selected fetuses. The fetal carcasses were then processed and examined for skeletal

  3. Using Leather Puppets as Local Wisdom Based Learning Mediafor Teaching the Material of Heredity of the Natural Sciencessubject for Grade IX Students

    OpenAIRE

    Rakhmawati, Yesi; Apriliani, Putri; Wulansari, Merya

    2013-01-01

    The objectives of this study were (1) to reveal the improvement of students'understanding about heredity by using the media of leather puppets, and (2) to findout the use of leather puppets as learning media for teaching heredity to the grade IXstudents.The method used in this study was quasi experiment post test only. The subjectand object of this study were leather puppets as learning media of heredity at gradeIX and the improvement of the students' understanding about the heredity. About 2...

  4. Materialism.

    Science.gov (United States)

    Melnyk, Andrew

    2012-05-01

    Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Bringing Energy to the People: Washington, D.C. and Ghana. Grades 6,7. Interdisciplinary Student/Teacher Materials in Energy, the Environment, and the Economy.

    Science.gov (United States)

    National Science Teachers Association, Washington, DC.

    This instructional unit contains four classroom lessons dealing with energy for use in grades six and seven. The overall objective is to provide students with a comparative overview of two basic energy concepts: energy is a basic need in all cultures; and energy use affects the way people live. In the lessons, which can easily be integrated into…

  6. U.S. Energy Policy -- Which Direction? Grades 11 and 12. Interdisciplinary Student/Teacher Materials in Energy, the Environment, and the Economy.

    Science.gov (United States)

    National Science Teachers Association, Washington, DC.

    This instructional unit for use in 11th and 12th grade social studies and science courses contains six classroom lessons dealing with United States energy policy. The overall objective is to help students understand how circumstances, present and proposed legislation, political action, and the Constitution itself become linked in the development…

  7. An Energy History of the United States. Grades 8-9. Interdisciplinary Student/Teacher Materials in Energy, the Environment, and the Economy.

    Science.gov (United States)

    National Science Teachers Association, Washington, DC.

    This instructional unit contains eight classroom lessons dealing with a history of energy in the United States for use in grade eight and nine social studies, science, and mathematics courses. The lessons were developed by teachers. The overall objective is to help students understand the present necessity to reexamine and perhaps alter our…

  8. Interdisciplinary Student/Teacher Materials in Energy, the Environment, and the Economy: 5, Community Workers and the Energy They Use, Grade 2.

    Science.gov (United States)

    Bloch, Lenore; And Others

    This instructional unit for the second grade is intended to stimulate the child's curiosity to know more and to grasp relationships through a blending of ideas about energy with a study of the effect of the use of energy on the livelihood of people in the community. There are four lessons in the unit. The first, Introduction to Energy, deals with…

  9. Energy in the Global Marketplace. Grades 9, 10, 11. Interdisciplinary Student/Teacher Materials in Energy, the Environment, and the Economy.

    Science.gov (United States)

    National Science Teachers Association, Washington, DC.

    This instructional unit contains six classroom lessons in which 9th, 10th, or 11th grade social studies students examine the effects of competition among nations and world regions as demand for oil outstrips supply. The overall objective is to help students understand the concept that energy is a commodity to be bought and sold like any other…

  10. Interdisciplinary Student/Teacher Materials in Energy, the Environment, and the Economy: 3, Energy, Engines, and the Industrial Revolution, Grades 8, 9.

    Science.gov (United States)

    Childs, Barbara; And Others

    This instructional unit for grades 8-9 combines science and social studies in a look at the broad social and economic upheavals that took place during the industrial revolution, giving special emphasis to the role of energy. The invention and development of the steam engine is highlighted in one lesson. Other lessons show how the industrial…

  11. Functionally Graded Mo sintered steels

    Directory of Open Access Journals (Sweden)

    Manuel Cisneros-Belmonte

    2016-12-01

    Full Text Available Functionally graded materials (FGM, the multi-materials, strive to satisfy the numerous requirements demanded of parts in a given combination of compositions and microstructures. The required material compatibility lead the manufacturing process and the achieving of an interface, not always diffuse. Powder metallurgy is one of the techniques used in manufacturing functionally graded materials, in particular the compaction matrix of the possible techniques for forming these materials. In this paper, a process of forming a functionally graded steel based on the use of a high molybdenum steel with cooper and other steel with copper, without molybdenum, is proposed with the aim of concentrating this element to the surface of the workpiece, increasing the mechanical strength. The study is completed with the evaluation of physical properties (density and porosity distribution, mechanical properties (hardness, tensile strength and elongation and microstructural analysis by optical and scanning electron microscopy.

  12. Materials

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2009-02-01

    Full Text Available . It is generally included as part of a structurally insulated panel (SIP) where the foam is sandwiched between external skins of steel, wood or cement. Cement composites Cement bonded composites are an important class of building materials. These products... for their stone buildings, including the Egyptians, Aztecs and Inca’s. As stone is a very dense material it requires intensive heating to become warm. Rocks were generally stacked dry but mud, and later cement, can be used as a mortar to hold the rocks...

  13. The Needs for Multicultural Knowledge in Instructional Material on Theme 7 "Beautiful Diversity in My Country" Grade 4th Elementary School

    Directory of Open Access Journals (Sweden)

    Latifatul Jannah

    2017-08-01

    Full Text Available The aims of research consist of the following (1 to know need analysis of Curriculum 2013 instructional materials in elementary school (2 to develop instructional material based on multicultural values.The study employs descriptive qualitative method which the data are collected by interview,  observation, and document analysis.The observation and interview results about instructional materials of Curriculum 2013 in some elementary school in Surakarta consist of the following (1 teachers need additional materials in order to deliver suitable material of Curriculum2013 for students. (2 teachers get difficulties in selecting suitable additional material. (3 teachers need additional material which can develop students good characters by adding Indonesian multicultural knowledge in all subjects. By enriching and developing multicultural values for students so it can be integrated in instructional materials such as tolerance, nationalism, and spirit of unity in diversities.

  14. Biological response of human mesenchymal stromal cells to titanium grade 4 implants coated with PCL/ZrO2 hybrid materials synthesized by sol–gel route: in vitro evaluation

    International Nuclear Information System (INIS)

    Catauro, M.; Bollino, F.; Papale, F.; Mozetic, P.; Rainer, A.; Trombetta, M.

    2014-01-01

    The surface modification of implantable materials in order to improve their biological proprieties, including tissue tolerance and osseointegration ability, by means of functional coating deposition is a promising strategy to provide a firm fixation of the implants. In this study, organic/inorganic hybrid materials consisting of an inorganic zirconia-based matrix, in which a biocompatible polymer, poly(ε-caprolactone) (PCL), has been incorporated at different percentages, have been synthesized via sol–gel route. Developed materials have been used to coat titanium grade 4 substrates by means of dip coating technique. Scanning electron microscopy (SEM) analysis of the obtained coatings has shown that films crack-free can be obtained for high levels of PCL. Chemical composition and interactions between organic and inorganic moieties have been studied by Attenuated Total Reflectance Fourier Transform InfraRed spectroscopy. The bone-bonding capability of the nanocomposite films has been evaluated in vitro by examining the appearance of an apatite layer on their surface when soaked in a simulated body fluid by means of SEM equipped with EDS microanalysis. In vitro biocompatibility assessment was performed in combination with human mesenchymal stromal cells (hMSCs). Materials were found to be non-toxic and supporting cell proliferation. Additionally, the coating material was not hampering the differentiation of hMSCs in an osteogenic medium. - Highlights: • ZrO 2 /PCL hybrid coatings on Ti grade 4 were obtained by sol–gel dip coating process. • The PCL acts as a plasticizer and allows us to prepare crack-free coatings. • Independent of PCL amount, the films improve the titanium substrates' bioactivity. • The coatings are non-toxic and supportive of cell proliferation at all compositions. • The coatings don't hamper hMSC differentiation in an osteogenic medium

  15. Biological response of human mesenchymal stromal cells to titanium grade 4 implants coated with PCL/ZrO{sub 2} hybrid materials synthesized by sol–gel route: in vitro evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Bollino, F.; Papale, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Mozetic, P.; Rainer, A.; Trombetta, M. [Tissue Engineering Lab, Center for Integrated Research, “Università Campus Bio-Medico di Roma”, via Alvaro del Portillo, 00128 Rome (Italy)

    2014-12-01

    The surface modification of implantable materials in order to improve their biological proprieties, including tissue tolerance and osseointegration ability, by means of functional coating deposition is a promising strategy to provide a firm fixation of the implants. In this study, organic/inorganic hybrid materials consisting of an inorganic zirconia-based matrix, in which a biocompatible polymer, poly(ε-caprolactone) (PCL), has been incorporated at different percentages, have been synthesized via sol–gel route. Developed materials have been used to coat titanium grade 4 substrates by means of dip coating technique. Scanning electron microscopy (SEM) analysis of the obtained coatings has shown that films crack-free can be obtained for high levels of PCL. Chemical composition and interactions between organic and inorganic moieties have been studied by Attenuated Total Reflectance Fourier Transform InfraRed spectroscopy. The bone-bonding capability of the nanocomposite films has been evaluated in vitro by examining the appearance of an apatite layer on their surface when soaked in a simulated body fluid by means of SEM equipped with EDS microanalysis. In vitro biocompatibility assessment was performed in combination with human mesenchymal stromal cells (hMSCs). Materials were found to be non-toxic and supporting cell proliferation. Additionally, the coating material was not hampering the differentiation of hMSCs in an osteogenic medium. - Highlights: • ZrO{sub 2}/PCL hybrid coatings on Ti grade 4 were obtained by sol–gel dip coating process. • The PCL acts as a plasticizer and allows us to prepare crack-free coatings. • Independent of PCL amount, the films improve the titanium substrates' bioactivity. • The coatings are non-toxic and supportive of cell proliferation at all compositions. • The coatings don't hamper hMSC differentiation in an osteogenic medium.

  16. Teachers' Grading Decision Making

    Science.gov (United States)

    Isnawati, Ida; Saukah, Ali

    2017-01-01

    This study investigated teachers' grading decision making, focusing on their beliefs underlying their grading decision making, their grading practices and assessment types, and factors they considered in grading decision making. Two teachers from two junior high schools applying different curriculum policies in grade reporting in Indonesian…

  17. Student Attitudes Toward Grades and Grading Practices.

    Science.gov (United States)

    Stallings, William M.; Leslie, Elwood K.

    The result of a study designed to assess student attitudes toward grading practices are discussed. Questionnaire responses of 3439 students in three institutions were tabulated. Responses were generally negative toward conventional grading systems. (MS)

  18. Energy production from waste with regard to the possibilities of high-grade insulating granulates for building material through the distension method

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, P

    1981-01-01

    A study is made of the extent to which energy contained in residual materials can be released and be used for making concretes, based on waste products from industry, domestic and communal refuse as well as filings from the coal mining industry, flotation and screening plants, and coal-pit power plants. Also examined is the organic composition of the residue for residual energy release. The studies indicate that significant energy savings can be obtained by the release of residual energy of original raw material in the making of concretes. 14 figures, 6 tables.

  19. DEVELOPMENT OF MULTIMEDIA-BASED INSTRUCTIONAL OF NATURAL SCIENCE IN SOLAR SYSTEM MATERIAL IN THE GRADE IX FOR HEARING IMPAIRMENT STUDENTS

    Directory of Open Access Journals (Sweden)

    Nurvita Dwi Andriani

    2016-12-01

    Full Text Available Hearing impairment students have limitation in obtaining information. Hearing impairment students needs a multimedia-based instructional to visualize a subject matter as a learning experience. This study was aimed at producing a theoretically and empirically valid multimedia-based instructional of Natural Science in Solar System material which is reviewed by experts and could be implemented in Segment B of SMPLB (Hearing impairment students. This study employed a research and development (R&D model by William W. Lee and Diana L. Owens. Overall, the multimedia-based instructional of Natural Science in Solar System material for Segment B of SMPLB (Hearing impairment students was valid

  20. SiC Nanoparticles Toughened-SiC/MoSi2-SiC Multilayer Functionally Graded Oxidation Protective Coating for Carbon Materials at High Temperatures

    Science.gov (United States)

    Abdollahi, Alireza; Ehsani, Naser; Valefi, Zia; Khalifesoltani, Ali

    2017-05-01

    A SiC nanoparticle toughened-SiC/MoSi2-SiC functionally graded oxidation protective coating on graphite was prepared by reactive melt infiltration (RMI) at 1773 and 1873 K under argon atmosphere. The phase composition and anti-oxidation behavior of the coatings were investigated. The results show that the coating was composed of MoSi2, α-SiC and β-SiC. By the variations of Gibbs free energy (calculated by HSC Chemistry 6.0 software), it could be suggested that the SiC coating formed at low temperatures by solution-reprecipitation mechanism and at high temperatures by gas-phase reactions and solution-reprecipitation mechanisms simultaneously. SiC nanoparticles could improve the oxidation resistance of SiC/MoSi2-SiC multiphase coating. Addition of SiC nanoparticles increases toughness of the coating and prevents spreading of the oxygen diffusion channels in the coating during the oxidation test. The mass loss and oxidation rate of the SiC nanoparticle toughened-SiC/MoSi2-SiC-coated sample after 10-h oxidation at 1773 K were only 1.76% and 0.32 × 10-2 g/cm3/h, respectively.

  1. FY17 Status Report on Testing Supporting the Inclusion of Grade 91 Steel as an Acceptable Material for Application of the EPP Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Messner, Mark C. [Argonne National Lab. (ANL), Argonne, IL (United States); Sham, Sam [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Yanli [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    This report summarizes the experiments performed in FY17 on Gr. 91 steels. The testing of Gr. 91 has technical significance because, currently, it is the only approved material for Class A construction that is strongly cyclic softening. Specific FY17 testing includes the following activities for Gr. 91 steel. First, two types of key feature testing have been initiated, including two-bar thermal ratcheting and Simplified Model Testing (SMT). The goal is to qualify the Elastic – Perfectly Plastic (EPP) design methodologies and to support incorporation of these rules for Gr. 91 into the ASME Division 5 Code. The preliminary SMT test results show that Gr. 91 is most damaging when tested with compression hold mode under the SMT creep fatigue testing condition. Two-bar thermal ratcheting test results at a temperature range between 350 to 650o C were compared with the EPP strain limits code case evaluation, and the results show that the EPP strain limits code case is conservative. The material information obtained from these key feature tests can also be used to verify its material model. Second, to provide experimental data in support of the viscoplastic material model development at Argonne National Laboratory, selective tests were performed to evaluate the effect of cyclic softening on strain rate sensitivity and creep rates. The results show the prior cyclic loading history decreases the strain rate sensitivity and increases creep rates. In addition, isothermal cyclic stress-strain curves were generated at six different temperatures, and a nonisothermal thermomechanical testing was also performed to provide data to calibrate the viscoplastic material model.

  2. Choosing the Adequate Level of Graded Readers--Preliminary Study

    Science.gov (United States)

    Prtljaga, Jelena; Palinkaševic, Radmila; Brkic, Jovana

    2015-01-01

    Graded readers have been used as second language teaching material since the end of the Second World War. They are an important source of simplified material which provides comprehensible input on all levels. It is of crucial importance for a successful usage of graded readers in the classroom and in studies which focus on graded readers, that an…

  3. Studies on the production of building material grade slag from hazardous-waste incineration plants; Untersuchungen zur Herstellung einer Schlacke mit Baustoffqualitaet aus Sondermuellverbrennungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Reich, J.; Herbel, J.D.; Pasel, C. [Duisburg Univ. (Gesamthochschule) (Germany). Fachgebiet Abfalltechnik

    1998-09-01

    In an attempt to restore the competitive power of hazardous-waste incineration within the present legal framework, plant operators have in some cases lowered disposal prices below the break-even point; in this respect there is no further room for improvement. One approach towards a new marketable solution could be to use rotary kilns not only for disposal but also as production plants. This could be achieved by means of input control and loading materials. If, for example, the slag remaining after combustion could be made to meet building material specifications, thus providing a marketable product, then rotary kilns would be able to serve as production plants for a secondary raw material. If it should prove possible in the course of manufacturing campaigns to develop slags from hazardous-waste incineration plants to a marketable product, then operators will thus have complied to the demand of the Law on Recycling and Waste Management for waste avoidance and that of the Emission Control Law for residue recycling. Targeted use of suitable loading materials for quality improvement could enable operators of hazardous-waste incineration plants to secure a new strategic position on the market as building material manufacturers and utilise existing plant capacities. [Deutsch] Um die Sonderabfallverbrennung im Rahmen der rechtlichen Vorgaben wieder konkurrenzfaehig zu machen, haben die Anlagenbetreiber die Entsorgungspreise teilweise unter die Grenze der Kostendeckung zurueckgenommen; hier besteht kein Spielraum mehr. Ein neuer, marktgerechter Ansatz koennte sich dann ergeben, wenn die Drehrohroefen statt als Beseitigungsaggregate durch Inputsteuerung und Zuschlaege eventuell auch als Produktionsanlagen einzusetzen waeren. Wenn z.B. die Schlacke, als Rueckstand aus der Verbrennung, als ein im Baustoffmarkt absetzbares Produkt nach Qualitaetskriterien gezielt hergestellt wuerde, koennte der Drehrohrofen als Produktionsanlage fuer einen Sekundaerrohstoff betrieben werden

  4. The effect of equal channel angular pressing on the tensile properties and microstructure of two medical implant materials: ASTM F-138 austenitic steel and Grade 2 titanium

    Science.gov (United States)

    Mendes Filho, A. de A.; Sordi, V. L.; Kliauga, A. M.; Ferrante, M.

    2010-07-01

    Titanium and F-138 stainless steel are employed in bone replacement and repair. The former material was ECAP-deformed at room temperature and at 300°C, followed in some cases by cold rolling. The steel was ECAP-deformed at room temperature only. Work-hardening behavior was studied by making use of the Kocks-mecking plots and microstructural evolution was followed by TEM. Conclusions show that for Ti, ECAP combined with cold rolling gives the best strength-ductility combination, whilst room temperature ECAP increases the tensile strength of the steel but caused substantial ductility loss.

  5. The effect of equal channel angular pressing on the tensile properties and microstructure of two medical implant materials: ASTM F-138 austenitic steel and Grade 2 titanium

    Energy Technology Data Exchange (ETDEWEB)

    Filho, A de A Mendes; Sordi, V L; Kliauga, A M; Ferrante, M, E-mail: ferrante@ufscar.b [Federal University of Sao Carlos, Materials Engineering Department, Sao Carlos, 13565-905 (Brazil)

    2010-07-01

    Titanium and F-138 stainless steel are employed in bone replacement and repair. The former material was ECAP-deformed at room temperature and at 300{sup 0}C, followed in some cases by cold rolling. The steel was ECAP-deformed at room temperature only. Work-hardening behavior was studied by making use of the Kocks-mecking plots and microstructural evolution was followed by TEM. Conclusions show that for Ti, ECAP combined with cold rolling gives the best strength-ductility combination, whilst room temperature ECAP increases the tensile strength of the steel but caused substantial ductility loss.

  6. Effects of Inhomogeneity and Thickness Parameters on the Elastic Response of a Pressurized Hyperbolic Annulus/Disc Made of Functionally Graded Material

    Directory of Open Access Journals (Sweden)

    Vebil Yıldırım

    2017-10-01

    Full Text Available A broad parametric study is carried out to investigate the effects of both the inhomogeneity parameter, and a profile index of Stodola’s hyperbolic function on the static response of such structures subjected to both the inner and outer pressures. The investigation is based on the analytical formulas lately published by the author. The effects of those parameters on the variation of the radial displacement, the radial and hoop stresses are all graphically illustrated for an annulus pressurized at its both surfaces. It is observed that, especially, the variation of the hoop stress in radial coordinate is closely sensible to variation of those parameters. For the chosen problems it was observed that one of two materials whose Young’s modulus is higher than the other is better to locate at the inner surface of the disc having divergent profile to get reasonable maximum hoop stresses. However much smaller radial displacements may be obtained by using positive inhomogeneity indexes for all discs whose surfaces host a material whose Young’s modulus is smaller than the other. To reach a final decision, analytical formulas such as those used in the present study together with a failure criteria such as Von Mises and Tresca become indispensable means in a design process.

  7. Water-cooled Pb-17Li test blanket module for ITER: impact of the structural material grade on the neutronic responses

    Energy Technology Data Exchange (ETDEWEB)

    Vella, G.; Aiello, G.; Oliveri, E. [Palermo Univ. (Italy). Dipt. di Ingegneria Nucl.; Fuetterer, M.A.; Giancarli, L. [CEA - Saclay, DRN/DMT/SERMA, Gif-sur-Yvette (France); Tavassoli, F. [CEA - Saclay, CEREM, Gif-sur-Yvette (France)

    1998-10-01

    The water-cooled lithium lead (WCLL) DEMO blanket is one of the two EU lines to be further developed with the aim of manufacturing by 2010 a test blanket module for ITER (TBM). In this paper results of a 3D-Monte Carlo neutronic analysis of the TBM design are reported. A fully 3D heterogeneous model of the WCLL-TBM has been inserted into an existing ITER model accounting for a proper D-T neutron source. The structural material assumed for the calculations was martensitic 9% Cr steel code named Z 10 CDV Nb 9-1. Results have been compared with those obtained using MANET. The main nuclear responses of the TBM have been determined, such as detailed power deposition density, material damage through DPA and He and H gas production rate, radial distribution of tritium production rate and total tritium production in the module. The impact of using natural lithium on the TBM system operation has also been evaluated. (orig.) 13 refs.

  8. Graded/Gradient Porous Biomaterials

    Directory of Open Access Journals (Sweden)

    Xigeng Miao

    2009-12-01

    Full Text Available Biomaterials include bioceramics, biometals, biopolymers and biocomposites and they play important roles in the replacement and regeneration of human tissues. However, dense bioceramics and dense biometals pose the problem of stress shielding due to their high Young’s moduli compared to those of bones. On the other hand, porous biomaterials exhibit the potential of bone ingrowth, which will depend on porous parameters such as pore size, pore interconnectivity, and porosity. Unfortunately, a highly porous biomaterial results in poor mechanical properties. To optimise the mechanical and the biological properties, porous biomaterials with graded/gradient porosity, pores size, and/or composition have been developed. Graded/gradient porous biomaterials have many advantages over graded/gradient dense biomaterials and uniform or homogenous porous biomaterials. The internal pore surfaces of graded/gradient porous biomaterials can be modified with organic, inorganic, or biological coatings and the internal pores themselves can also be filled with biocompatible and biodegradable materials or living cells. However, graded/gradient porous biomaterials are generally more difficult to fabricate than uniform or homogenous porous biomaterials. With the development of cost-effective processing techniques, graded/gradient porous biomaterials can find wide applications in bone defect filling, implant fixation, bone replacement, drug delivery, and tissue engineering.

  9. Electronic Module Design with Scientifically Character-Charged Approach on Kinematics Material Learning to Improve Holistic Competence of High School Students in 10th Grade

    Science.gov (United States)

    Anggraini, R.; Darvina, Y.; Amir, H.; Murtiani, M.; Yulkifli, Y.

    2018-04-01

    The availability of modules in schools is currently lacking. Learners have not used the module as a source in the learning process. In accordance with the demands of the 2013 curriculum, that learning should be conducted using a scientific approach and loaded with character values as well as learning using interactive learning resources. The solution of this problem is to create an interactive module with a scientifically charged character approach. This interactive module can be used by learners outside the classroom or in the classroom. This interactive module contains straight motion material, parabolic motion and circular motion of high school physics class X semester 1. The purpose of this research is to produce an interactive module with a scientific approach charged with character and determine the validity and practicality. The research is Research and Development. This study was conducted only until the validity test and practice test. The validity test was conducted by three lecturers of Physics of FMIPA UNP as experts. The instruments used in this research are validation sheet and worksheet sheet. Data analysis technique used is product validity analysis. The object of this research is electronic module, while the subject of this research is three validator.

  10. Asymmetric acoustic transmission in graded beam

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Li, E-mail: lj94172350@hotmail.com [School of Mechanical Engineering and State Key laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Wu, Jiu Hui, E-mail: ejhwu@mail.xjtu.edu.cn [School of Mechanical Engineering and State Key laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Guan, Dong; Lu, Kuan [School of Mechanical Engineering and State Key laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Gao, Nansha [School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China); Songhua, Cao [School of Mechanical Engineering and State Key laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China)

    2016-12-01

    We demonstrate the dynamic effective material parameters and vibration performance of a graded beam. The structure of the beam was composed of several unit cells with different fill factors. The dispersion relations and energy band structures of each unit cell were calculated using the finite element method (FEM). The dynamic effective material parameters in each unit cell of the graded beam were determined by the dispersion relations and energy band structures. Longitudinal wave propagation was investigated using a numerical method and FEM. The results show that the graded beam allows asymmetric acoustic transmission over a wide range of frequencies.

  11. On arbitrarily graded rings

    Indian Academy of Sciences (India)

    58

    paper is devoted to the study of arbitrary rings graded through arbitrary sets. .... which recover certain multiplicative relations among the homogeneous components ... instance the case in which the grading set A is an Abelian group, where the ...

  12. Graded manifolds and supermanifolds

    International Nuclear Information System (INIS)

    Batchelor, M.

    1984-01-01

    In this paper, a review is presented on graded manifolds and supermanifolds. Many theorems, propositions, corrollaries, etc. are given with proofs or sketch proofs. Graded manifolds, supereuclidian space, Lie supergroups, etc. are dealt with

  13. GRADE Equity Guidelines 3

    DEFF Research Database (Denmark)

    Welch, Vivian A; Akl, Elie A; Pottie, Kevin

    2017-01-01

    OBJECTIVE: The aim of this paper is to describe a conceptual framework for how to consider health equity in the GRADE (Grading Recommendations Assessment and Development Evidence) guideline development process. STUDY DESIGN AND SETTING: Consensus-based guidance developed by the GRADE working grou...

  14. 7 CFR 52.1855 - Grades of Sultana raisins.

    Science.gov (United States)

    2010-01-01

    ... § 52.1855 Grades of Sultana raisins. (a) “U.S. Grade A” is the quality of Sultana Raisins that have... in Table IV of this subpart. (b) “U.S. Grade B” is the quality of Sultana Raisins that have similar... than materially affected. Grit, sand, or silt None of any consequence may be present that affects the...

  15. Effect of temper and hydrogen embrittlement on mechanical properties of 2,25Cr–1Mo steel grades – Application to Minimum Pressurizing Temperature (MPT) issues. Part I: General considerations and materials' properties

    International Nuclear Information System (INIS)

    Pillot, Sylvain; Chauvy, Cédric; Corre, Stéphanie; Coudreuse, Lionel; Gingell, Andrew; Héritier, Déborah; Toussaint, Patrick

    2013-01-01

    Standard and Vanadium-alloyed 2,25Cr–1Mo steel grades (EN 10028-2 12CrMo9-10/ASTM A387 gr. 22 and 13CrMoV9-10/ASTM A542 tp. D) are commonly used for the fabrication of heavy pressure vessels for applications in petroleum refining plants. These reactors are made of heavy plates, forged shells, forged nozzles and fittings. They are subjected to thermal cycles (stop and go) and to severe service conditions (high temperatures and high hydrogen partial pressures). A primary concern for end-users is the definition of the Minimum Pressurizing Temperature (MPT) of the equipment. This temperature is the lowest temperature at which the vessel can be repressurized after shutdown and insures no risk of brittle failure of the containment body. The MPT is defined by fracture mechanics and/or CVN approaches and calculations. This first part of the paper presents the impact of thermal aging and exposure to hydrogen on materials' mechanical properties and consequently on the value of MPT

  16. Colorado Student Assessment Program: 2001 Released Passages, Items, and Prompts. Grade 4 Reading and Writing, Grade 4 Lectura y Escritura, Grade 5 Mathematics and Reading, Grade 6 Reading, Grade 7 Reading and Writing, Grade 8 Mathematics, Reading and Science, Grade 9 Reading, and Grade 10 Mathematics and Reading and Writing.

    Science.gov (United States)

    Colorado State Dept. of Education, Denver.

    This document contains released reading comprehension passages, test items, and writing prompts from the Colorado Student Assessment Program for 2001. The sample questions and prompts are included without answers or examples of student responses. Test materials are included for: (1) Grade 4 Reading and Writing; (2) Grade 4 Lectura y Escritura…

  17. Graded gauge theory

    International Nuclear Information System (INIS)

    Kerner, R.

    1983-01-01

    The mathematical background for a graded extension of gauge theories is investigated. After discussing the general properties of graded Lie algebras and what may serve as a model for a graded Lie group, the graded fiber bundle is constructed. Its basis manifold is supposed to be the so-called superspace, i.e. the product of the Minkowskian space-time with the Grassmann algebra spanned by the anticommuting Lorentz spinors; the vertical subspaces tangent to the fibers are isomorphic with the graded extension of the SU(N) Lie algebra. The connection and curvature are defined then on this bundle; the two different gradings are either independent of each other, or may be unified in one common grading, which is equivalent to the choice of the spin-statistics dependence. The Yang-Mills lagrangian is investigated in the simplified case. The conformal symmetry breaking is discussed, as well as some other physical consequences of the model. (orig.)

  18. Spectral finite element method wave propagation, diagnostics and control in anisotropic and inhomogeneous structures

    CERN Document Server

    Gopalakrishnan, Srinivasan; Roy Mahapatra, Debiprosad

    2008-01-01

    The use of composites and Functionally Graded Materials (FGMs) in structural applications has increased. FGMs allow the user to design materials for a specified functionality and have many uses in structural engineering. However, the behaviour of these structures under high-impact loading is not well understood. This book is the first to apply the Spectral Finite Element Method (SFEM) to inhomogeneous and anisotropic structures in a unified and systematic manner. It focuses on some of the problems with this media which were previously thought unmanageable. Types of SFEM for regular and damaged 1-D and 2-D waveguides, solution techniques, methods of detecting the presence of damages and their locations, and methods for controlling the wave propagation responses are discussed. Tables, figures and graphs support the theory and case studies are included. This book is of value to senior undergraduates and postgraduates studying in this field, and researchers and practicing engineers in structural integrity.

  19. The Effect Of Ceramic In Combination Of Two Sigmoid Functionally Graded Rotating Disks With Variable Thickness

    DEFF Research Database (Denmark)

    Bayat, M.; Sahari, B. B.; Saleem, M.

    2012-01-01

    In this paper the elastic solutions of a disk composed of FGM – Functionaly Graded Material, is presented.......In this paper the elastic solutions of a disk composed of FGM – Functionaly Graded Material, is presented....

  20. Engaging in Argument from Evidence and the Ocean Sciences Sequence for Grades 3-5: A case study in complementing professional learning experiences with instructional materials aligned to instructional goals

    Science.gov (United States)

    Schoedinger, S. E.; Weiss, E. L.

    2016-12-01

    K-5 science teachers, who often lack a science background, have been tasked with a huge challenge in implementing NGSS—to completely change their instructional approach from one that views science as a body of knowledge to be imparted to one that is epistemic in nature. We have found that providing high-quality professional learning (PL) experiences is often not enough and that teachers must have instructional materials that align with their instructional goals. We describe a case study in which the Lawrence Hall of Science (the Hall) used the Hall-developed Ocean Sciences Sequence for Grades 3-5 (OSS 3-5) to support a rigorous PL program for grade 3-5 teachers focused on the NGSS science and engineering practice, engaging in argument from evidence. Developed prior to the release of NGSS, the Ocean Literacy Framework and the NGSS precursor, A Framework for K-12 Science Education, informed the content and instructional approaches of OSS 3-5. OSS 3-5 provides a substantial focus on making evidence-based explanations (and other science practices), while building students' ocean sciences content knowledge. From 2013-2015, the Hall engaged cohorts of teachers in a rigorous PL experience focused on engaging in argument from evidence. During the summer, teachers attended a week-long institute, in which exemplar activities from OSS 3-5 were used to model instructional practices to support arguing from evidence and related practices, e.g., developing and using models and constructing explanations. Immediately afterward, teachers enacted what they'd learned during a two-week summer school practicum. Here, they team-taught the OSS 3-5 curriculum, participated in video reflection groups, and received coaching and just-in-time input from instructors. In the subsequent academic year, many teachers began by teaching OSS 3-5 so that they could practice engaging students in argumentation in curriculum they'd already used for that purpose. Throughout the year, teachers

  1. Fatigue Characterization of Functionally Graded Metallic Alloys

    International Nuclear Information System (INIS)

    Silva, F. S.

    2008-01-01

    Functionally graded components exhibit spatial variations of mechanical properties in contrast with, and as an alternative to, purely homogeneous components. A large class of graded materials, however, are in fact mostly homogeneous materials with property variations (chemical or mechanical) restricted to a specific area or layer produced by applying for example a coating or by introducing sub-surface residual stresses. However, it is also possible to obtain graded materials with a smooth transition of mechanical properties along the entire component, for example in a 40 mm component. This is possible, for example, by using centrifugal casting technique or incremental melting and solidification technique. In this paper we will study fully metallic functionally graded components with a smooth gradient, focusing on fatigue crack propagation. Fatigue propagation will be assessed in the direction parallel to the gradation (in different homogeneous layers of the functionally graded component) to assess what would be fatigue crack propagation on the direction perpendicular to the gradation. Fatigue crack growth rate (standard mode I fatigue crack growth) will be correlated to the mode I stress intensity factor range. Other mechanical properties of different layers of the component (Young's modulus) will also be considered in this analysis. The effect of residual stresses along the component gradation on crack propagation will also be taken into account. A qualitative analysis of the effects of some important features, present in functionally graded materials, will be made based on the obtained results

  2. Functionally Graded Adhesives for Composite Joints

    Science.gov (United States)

    Stapleton, Scott E.; Waas, Anthony M.; Arnold, Steven M.

    2012-01-01

    Adhesives with functionally graded material properties are being considered for use in adhesively bonded joints to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. An enhanced joint finite element, which uses an analytical formulation to obtain exact shape functions, is used to model the joint. Furthermore, proof of concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint.

  3. Graded tensor calculus

    International Nuclear Information System (INIS)

    Scheunert, M.

    1982-10-01

    We develop a graded tensor calculus corresponding to arbitrary Abelian groups of degrees and arbitrary commutation factors. The standard basic constructions and definitions like tensor products, spaces of multilinear mappings, contractions, symmetrization, symmetric algebra, as well as the transpose, adjoint, and trace of a linear mapping, are generalized to the graded case and a multitude of canonical isomorphisms is presented. Moreover, the graded versions of the classical Lie algebras are introduced and some of their basic properties are described. (orig.)

  4. Power calculation of grading device in desintegrator

    Science.gov (United States)

    Bogdanov, V. S.; Semikopenko, I. A.; Vavilov, D. V.

    2018-03-01

    This article describes the analytical method of measuring the secondary power consumption, necessitated by the installation of a grading device in the peripheral part of the grinding chamber in the desintegrator. There is a calculation model for defining the power input of the disintegrator increased by the extra power demand, required to rotate the grading device and to grind the material in the area between the external row of hammers and the grading device. The work has determined the inertia moments of a cylindrical section of the grading device with armour plates. The processing capacity of the grading device is adjusted to the conveying capacity of the auger feeder. The grading device enables one to increase the concentration of particles in the peripheral part of the grinding chamber and the amount of interaction between particles and armour plates as well as the number of colliding particles. The perforated sections provide the output of the ground material with the proper size granules, which together with the effects of armour plates, improves the efficiency of grinding. The power demand to rotate the grading device does not exceed the admissible value.

  5. Classroom: Efficient Grading

    Science.gov (United States)

    Shaw, David D.; Pease, Leonard F., III.

    2014-01-01

    Grading can be accelerated to make time for more effective instruction. This article presents specific time management strategies selected to decrease administrative time required of faculty and teaching assistants, including a multiple answer multiple choice interface for exams, a three-tier grading system for open ended problem solving, and a…

  6. Grain Grading and Handling.

    Science.gov (United States)

    Rendleman, Matt; Legacy, James

    This publication provides an introduction to grain grading and handling for adult students in vocational and technical education programs. Organized in five chapters, the booklet provides a brief overview of the jobs performed at a grain elevator and of the techniques used to grade grain. The first chapter introduces the grain industry and…

  7. Vascular grading of angiogenesis

    DEFF Research Database (Denmark)

    Hansen, S; Grabau, D A; Sørensen, Flemming Brandt

    2000-01-01

    The study aimed to evaluate the prognostic value of angiogenesis by vascular grading of primary breast tumours, and to evaluate the prognostic impact of adding the vascular grade to the Nottingham Prognostic Index (NPI). The investigation included 836 patients. The median follow-up time was 11...... years and 4 months. The microvessels were immunohistochemically stained by antibodies against CD34. Angiogenesis was graded semiquantitatively by subjective scoring into three groups according to the expected number of microvessels in the most vascular tumour area. The vascular grading between observers...... for 24% of the patients, who had a shift in prognostic group, as compared to NPI, and implied a better prognostic dissemination. We concluded that the angiogenesis determined by vascular grading has independent prognostic value of clinical relevance for patients with breast cancer....

  8. Vascular grading of angiogenesis

    DEFF Research Database (Denmark)

    Hansen, S; Grabau, D A; Sørensen, Flemming Brandt

    2000-01-01

    The study aimed to evaluate the prognostic value of angiogenesis by vascular grading of primary breast tumours, and to evaluate the prognostic impact of adding the vascular grade to the Nottingham Prognostic Index (NPI). The investigation included 836 patients. The median follow-up time was 11...... years and 4 months. The microvessels were immunohistochemically stained by antibodies against CD34. Angiogenesis was graded semiquantitatively by subjective scoring into three groups according to the expected number of microvessels in the most vascular tumour area. The vascular grading between observers...... impact for 24% of the patients, who had a shift in prognostic group, as compared to NPI, and implied a better prognostic dissemination. We concluded that the angiogenesis determined by vascular grading has independent prognostic value of clinical relevance for patients with breast cancer....

  9. CRA Grade Inflation

    OpenAIRE

    Kenneth H. Thomas

    2000-01-01

    Community Reinvestment Act of 1977 (CRA) ratings and performance evaluations are the only bank and thrift exam findings disclosed by financial institution regulators. Inflation of CRA ratings has been alleged by community activists for two decades, but there has been no quantification or empirical investigation of grade inflation. Using a unique grade inflation methodology on actual ratings and evaluation data for 1,407 small banks and thrifts under the revised CRA regulations, this paper con...

  10. Will bottle-grade PET demand lure fiber-grade capacity?

    International Nuclear Information System (INIS)

    Coeyman, M.

    1993-01-01

    As demand for bottle-grade polyethylene terephthalate (PET) continues strong and new capacity hastens to meet it, some industry observers wonder if conversions to bottle-grade from fiber-grade capacity will become an industry trend. Taiwan's Nan Ya Plastics was recently said to be considering such a switch, but company sources say it has no such plans. Peter Driscoll, senior partner at PCI Fibres ampersand Raw Materials (Crawley, UK), says that while it is true that demand for the bottle-grade material remains unsatisfied, he doubts that many conversions will take place. You must remember, says Driscoll, that it is not always possible to switch, and that even where it is possible there are limitations

  11. Clinical performance of a human papillomavirus messenger RNA test (Aptima HPV Assay) on residual material from archived 3-year-old PreservCyt samples with low-grade squamous intraepithelial lesion

    DEFF Research Database (Denmark)

    Waldstrøm, Marianne; Ornskov, Dorthe

    2011-01-01

    Human papillomavirus (HPV) testing is widely used in the triage of women with a borderline smear result but the efficiency of testing women with low-grade squamous intraepithelial lesion (LSIL) is less clear, mainly because of lack of specificity. New HPV tests are emerging, which detect E6/E7...

  12. What Can Readers Read after Graded Readers?

    Science.gov (United States)

    McQuillan, Jeff

    2016-01-01

    Nation (2014) concluded that most of the vocabulary one needs to read challenging texts in English can be acquired incidentally through voluminous reading. This study examines possible texts that second language (L2) readers can use to move from controlled-vocabulary materials such as graded readers, which go up through approximately the…

  13. Contractions from grading

    Science.gov (United States)

    Krishnan, Chethan; Raju, Avinash

    2018-04-01

    We note that large classes of contractions of algebras that arise in physics can be understood purely algebraically via identifying appropriate Zm-gradings (and their generalizations) on the parent algebra. This includes various types of flat space/Carroll limits of finite and infinite dimensional (A)dS algebras, as well as Galilean and Galilean conformal algebras. Our observations can be regarded as providing a natural context for the Grassmann approach of Krishnan et al. [J. High Energy Phys. 2014(3), 36]. We also introduce a related notion, which we call partial grading, that arises naturally in this context.

  14. Revisions of the Learning Mastery Systems for the Harper and Row Grades One and Two and the Macmillan Bank Street Grade One Reading Series.

    Science.gov (United States)

    Maeder, Jacqueline; And Others

    The revisions on the Learning Mastery Systems (LMSs) for the Harper & Row grade-one and grade-two and the Macmillan Bank Street grade-one reading programs are outlined in this document. A rationale for the revisions is presented. An LMS is a set of materials and procedures prepared by the southwest Regional Laboratory (SWRL) as an…

  15. Endangered Animals. Second Grade.

    Science.gov (United States)

    Popp, Marcia

    This second grade teaching unit centers on endangered animal species around the world. Questions addressed are: What is an endangered species? Why do animals become extinct? How do I feel about the problem? and What can I do? Students study the definition of endangered species and investigate whether it is a natural process. They explore topics…

  16. Calculating Student Grades.

    Science.gov (United States)

    Allswang, John M.

    1986-01-01

    This article provides two short microcomputer gradebook programs. The programs, written in BASIC for the IBM-PC and Apple II, provide statistical information about class performance and calculate grades either on a normal distribution or based on teacher-defined break points. (JDH)

  17. Grades as Information

    Science.gov (United States)

    Grant, Darren

    2007-01-01

    We determine how much observed student performance in microeconomics principles can be attributed, inferentially, to three kinds of student academic "productivity," the instructor, demographics, and unmeasurables. The empirical approach utilizes an ordered probit model that relates student performance in micro to grades in prior…

  18. First Grade Baseline Evaluation

    Science.gov (United States)

    Center for Innovation in Assessment (NJ1), 2013

    2013-01-01

    The First Grade Baseline Evaluation is an optional tool that can be used at the beginning of the school year to help teachers get to know the reading and language skills of each student. The evaluation is composed of seven screenings. Teachers may use the entire evaluation or choose to use those individual screenings that they find most beneficial…

  19. The Fifth Grade Classroom.

    Science.gov (United States)

    Hartman, Michael; And Others

    An interdisciplinary design project report investigates the relationship of the fifth grade educational facility to the student and teacher needs in light of human and environmental factors. The classroom, activity and teaching spaces are analyzed with regard to the educational curriculum. Specifications and design criteria concerning equipment…

  20. Cutting Class Harms Grades

    Science.gov (United States)

    Taylor, Lewis A., III

    2012-01-01

    An accessible business school population of undergraduate students was investigated in three independent, but related studies to determine effects on grades due to cutting class and failing to take advantage of optional reviews and study quizzes. It was hypothesized that cutting classes harms exam scores, attending preexam reviews helps exam…

  1. Study of thermal conductivity and thermal rectification in exponential mass graded lattices

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Tejal N. [Bhavan' s Sheth R.A. College of Science, Khanpur, Ahmedabad 380 001, Gujarat (India); Gajjar, P.N., E-mail: pngajjar@rediffmail.com [Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380 009, Gujarat (India)

    2012-01-09

    Concept of exponential mass variation of oscillators along the chain length of N oscillators is proposed in the present Letter. The temperature profile and thermal conductivity of one-dimensional (1D) exponential mass graded harmonic and anharmonic lattices are studied on the basis of Fermi–Pasta–Ulam (FPU) β model. Present findings conclude that the exponential mass graded chain provide higher conductivity than that of linear mass graded chain. The exponential mass graded anharmonic chain generates the thermal rectification of 70–75% which is better than linear mass graded materials, so far. Thus instead of using linear mass graded material, the use of exponential mass graded material will be a better and genuine choice for controlling the heat flow at nano-scale. -- Highlights: ► In PRE 82 (2010) 040101, use of mass graded material as a thermal devices is explored. ► Concept of exponential mass graded material is proposed. ► The rectification obtained is about 70–75% which is better than linear mass graded materials. ► The exponential mass graded material will be a better choice for the thermal devices at nano-scale.

  2. Production of Food Grade Yeasts

    Directory of Open Access Journals (Sweden)

    Argyro Bekatorou

    2006-01-01

    Full Text Available Yeasts have been known to humans for thousands of years as they have been used in traditional fermentation processes like wine, beer and bread making. Today, yeasts are also used as alternative sources of high nutritional value proteins, enzymes and vitamins, and have numerous applications in the health food industry as food additives, conditioners and flavouring agents, for the production of microbiology media and extracts, as well as livestock feeds. Modern scientific advances allow the isolation, construction and industrial production of new yeast strains to satisfy the specific demands of the food industry. Types of commercial food grade yeasts, industrial production processes and raw materials are highlighted. Aspects of yeast metabolism, with respect to carbohydrate utilization, nutritional aspects and recent research advances are also discussed.

  3. Report on the results of the fiscal 1997 international research cooperation project. `Joint R and D industrial base technology` (development of functionally graded materials); 1997 nendo kokusai kyoryoku jigyo. `Sangyo kiban gijutsu kyodo kenkyu kaihatsu` keisha kinosei zairyo no kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    For the purpose of developing functionally graded materials (FGM/LB) of thermal stress relaxation heat resistant large bulk state which are adoptable to high efficiency engine members, conducted in fiscal 1997 as intermediate target were the experiment for enlargement of the sintering process of FGM/LB with bore of up to 100mm, evaluation of physical properties, the basic development of the fabricating system facility for the commercialization. In the development of heat resistance use FGM/LB fabrication technology, to obtain ZrO2(3Y) stainless steel system FGM/LB, the following were fabricated in each bore size of 50-100mm by the research use large discharge plasma sintering machine: sintered bodies of ceramics/metal single substrate materials and mixed layer single substance materials, and FGM/LB sintered bodies without separation and crack which are composed of 9 intermediate graded layers. The survey was also made on the optimal composition and optimal sintering conditions toward the enlargement without unevenness. In the evaluation of physical properties, ZrO2(3Y)/stainless steel system was selected and test pieces were fabricated to obtain basic data on texture observation, distribution of hardness, fracture toughness, high temperature abrasion resistance, thermal expansion rates, etc. 27 refs., 108 figs., 43 tabs.

  4. Inflated Grades, Enrollments & Budgets

    Directory of Open Access Journals (Sweden)

    J. E. Stone

    1995-06-01

    Full Text Available Reports of the past 13 years that call attention to deficient academic standards in American higher education are enumerated. Particular attention is given the Wingspread Group's recent An American Imperative: Higher Expectations for Higher Education. Low academic standards, grade inflation, and budgetary incentives for increased enrollment are analyzed and a call is made for research at the state level. Reported trends in achievement and GPAs are extrapolated to Tennessee and combined with local data to support the inference that 15% of the state's present day college graduates would not have earned a diploma by mid 1960s standards. A conspicuous lack of interest by public oversight bodies is noted despite a growing public awareness of low academic expectations and lenient grading and an implicit budgetary impact of over $100 million. Various academic policies and the dynamics of bureaucratic control are discussed in relationship to the maintenance of academic standards. The disincentives for challenging course requirements and responsible grading are examined, and the growing movement to address academic quality issues through better training and supervision of faculty are critiqued. Recommendations that would encourage renewed academic integrity and make learning outcomes visible to students, parents, employers, and the taxpaying public are offered and briefly discussed.

  5. Role of cytologic grading in prognostication of invasive breast carcinoma

    Directory of Open Access Journals (Sweden)

    Khan Nazoora

    2009-01-01

    Full Text Available Background: Evaluation of cytologic features is indispensable in the preoperative diagnosis and grading of infiltrating ductal breast carcinoma (CA in fine-needle aspiration cytology (FNAC material and this method can also provide additional information regarding intrinsic features of the tumor as well as its prognosis. Aim: This study has been done to evaluate comparatively the cytologic and histomorphologic grading of infiltrating ductal carcinoma of breast with specific reference to lymph node metastasis and its role in prognostication. Materials and Methods: Forty three patients who underwent FNAC and mastectomy for infiltrating ductal carcinoma were cytologically and histologically graded (employing Robinson′s cytologic grading system and Elston′s modification of Bloom-Richardson system, respectively. Statistical analysis was done employing ′z′ test and c2 test to compare the two grading system and to examine the degree of correlation between the cytologic and histologic grades. Multiple regression analysis was done to assess the significance of every cytologic and histologic parameter. All 43 cases, graded cyto-histologically were also evaluated for presence or absence of metastasis to the regional lymph nodes employing c2 test. Results: With histologic grade taken as the standard, cytology was found to be fairly comparable, for grading breast carcinoma (overall sensitivity 89.1%, specificity 100%. Further comparison of the two grading systems by Z-test showed that difference between the cytologic and histologic grading was insignificant in all the three grade (p > 0.05. Of the six parameters studied, cell dissociation, nucleoli and chromatin pattern were the most influential features (p < 0.001. The statistically significant difference (p < 0.001 was found in incidences of axillary lymph node metastatic rate in three cytologic grades (15.4% in grade I vs. 83.3% in grade III as well. Conclusions: Apart from being simple and

  6. TCGA_LowerGradeGliomas

    Science.gov (United States)

    TCGA researchers analyzed nearly 300 cases of diffuse low- and intermediate-grade gliomas, which together comprise lower-grade gliomas. LGGs occur mainly in adults and include astrocytomas, oligodendrogliomas and oligoastrocytomas.

  7. Let's End the Grading Game.

    Science.gov (United States)

    Edwards, Clifford H.; Edwards, Laurie

    1999-01-01

    Argues that grades have negative effects on learning and self-concept. States that while grading has a long tradition of sorting children for college entrance, there is limited evidence that grades serve a valid purpose. Argues that this practice should be abolished and an evaluation system established that provides a more valid estimate of…

  8. Four Steps in Grading Reform

    Science.gov (United States)

    Guskey, Thomas R.; Jung, Lee Ann

    2012-01-01

    The field of education is moving rapidly toward a standards-based approach to grading. School leaders have become increasingly aware of the tremendous variation that exists in grading practices, even among teachers of the same courses in the same department in the same school. Consequently, students' grades often have little relation to their…

  9. Production of nuclear grade zirconium: A review

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L., E-mail: L.Xu-2@tudelft.nl [School of Materials Science and Metallurgy, Northeastern University, Shenyang 110004 (China); Department of Materials Science and Engineering, Delft University of Technology, Delft 2628 CD (Netherlands); Xiao, Y. [Department of Metallurgical Engineering, Anhui University of Technology, Ma' anshan 243002 (China); Zr-Hf-Ti Metallurgie B.V., Den Haag 2582 SB (Netherlands); Sandwijk, A. van [Zr-Hf-Ti Metallurgie B.V., Den Haag 2582 SB (Netherlands); Xu, Q. [School of Materials Science and Metallurgy, Northeastern University, Shenyang 110004 (China); Yang, Y. [Department of Materials Science and Engineering, Delft University of Technology, Delft 2628 CD (Netherlands)

    2015-11-15

    Zirconium is an ideal material for nuclear reactors due to its low absorption cross-section for thermal neutrons, whereas the typically contained hafnium with strong neutron-absorption is very harmful for zirconium as a fuel cladding material. This paper provides an overview of the processes for nuclear grade zirconium production with emphasis on the methods of Zr–Hf separation. The separation processes are roughly classified into hydro- and pyrometallurgical routes. The known pyrometallurgical Zr–Hf separation methods are discussed based on the following reaction features: redox characteristics, volatility, electrochemical properties and molten salt–metal equilibrium. In the present paper, the available Zr–Hf separation technologies are compared. The advantages and disadvantages as well as future directions of research and development for nuclear grade zirconium production are discussed.

  10. Buckling Response of Thick Functionally Graded Plates

    Directory of Open Access Journals (Sweden)

    BOUAZZA MOKHTAR

    2014-11-01

    Full Text Available In this paper, the buckling of a functionally graded plate is studied by using first order shear deformation theory (FSDT. The material properties of the plate are assumed to be graded continuously in the direction of thickness. The variation of the material properties follows a simple power-law distribution in terms of the volume fractions of constituents. The von Karman strains are used to construct the equilibrium equations of the plates subjected to two types of thermal loading, linear temperature rise and gradient through the thickness are considered. The governing equations are reduced to linear differential equation with boundary conditions yielding a simple solution procedure. In addition, the effects of temperature field, volume fraction distributions, and system geometric parameters are investigated. The results are compared with the results of the no shear deformation theory (classic plate theory, CPT.

  11. 77 FR 51581 - Request for a License To Export Nuclear Grade Graphite

    Science.gov (United States)

    2012-08-24

    ... NUCLEAR REGULATORY COMMISSION Request for a License To Export Nuclear Grade Graphite Pursuant to... 27, 2012, graphite for of nuclear grade graphite to the XMAT424, 11006032. nuclear end use. graphite. Shanghai Institute of Applied Physics in China to test various types of nuclear grade graphite material in...

  12. Typing and grading of cytological category C5 breast lesions

    International Nuclear Information System (INIS)

    Zafar, N.; Jamal, S.; Mamoon, N.; Luqman, M.; Anwar, M.

    2005-01-01

    Objective: To determine the tumour type, cytological grade and nuclear grade on fine-needle aspiration smears in cytological category C5 breast lesions and compare them with histopathological findings. Subjects and Methods: Out of all patients referred to AFIP, Rawalpindi for fine-needle aspiration of breast masses, those adjudged C5 (malignant) were chosen for this study. History, clinical details and mammographic findings were noted. Aspirated smears were examined and an attempt was made to ascertain tumour type, cytological grade and nuclear grade. On excision of these lesions, the cytological findings were compared with those on paraffin-embedded histological sections. Results: A total of 71 patients were included in this study. Of these, 64 (90.14%) were cytologically diagnosed as ductal carcinoma, 4 (5.63%) lobular carcinoma, 2 (2.82%) mucinous carcinoma and 1 (1.41%) as medullary carcinoma. Seventy (98.60%) tumours were correctly typed on aspiration smears. Sixty-eight (95.77%) cases were cytologically graded with accuracy. Nuclear grading was even better on cytology and, excluding one malignant lymphoma, all 70 (100%) smears were assessed correctly. Conclusion: Overall efficiency of the tumour typing, cytological grading and nuclear grading on aspirated material turned out to be quite accurate. In expert hands, cytological examination can be of great help in pre-operative planning and in cases where tumour morphology in paraffin-embedded material has been distorted by neo-adjuvant therapy prior to excision. (author)

  13. Achievement report in fiscal 2000 on technological development to recycle waste building materials and glasses. Development of waste building material recycling technology (Research and development of recycling technology corresponding to grades of demolished building lumbers); 2000 nendo kenchiku haizai glass nado recycle gijutsu kaihatsu seika hokokusho. Kenchiku haizai recycle gijutsu kaihatsu (kenchiku kaitai mokuzai no hin'i ni taioshita recycle gijutsu no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective to reduce wastes, and promote effective utilization of wood resources, research and development has been made on a demolished building material recycling technology. This paper summarizes the achievements in fiscal 2000. In developing the technology to manufacture high water resistant wood boards, discussions were given on resor type phenolic resin as an adhesive, and on the medium density fiberboard (MDF) being a substitute material for plywood as the wooden board. As a result, a highly water resistant MDF that can clear JIS E0 has been developed. In the research of a technology to enhance durability of wooden boards, the in-liquid roll press method was devised to perform impregnation of chemicals into board raw materials continually and simply, whose device was fabricated on a trial basis. With regard to recycling of medium to low grade wood-based wastes, researches were performed on pulverization of the wastes, fabrication of liquefied woods, and effective utilization of the liquefied woods. Both of a hammer mill and a chip saw crusher fabricated wood powder with nearly uniform grain size regardless of types of the wood-based wastes. Liquefaction of plywood and PB boards required more stringent reaction conditions than liquefaction of such ordinary members as pillar materials and laminated lumbers. (NEDO)

  14. Comparison of the reliability of two hydronephrosis grading systems: The Society for Foetal Urology grading system vs. the Onen grading system

    International Nuclear Information System (INIS)

    Kim, S.-Y.; Kim, M.-J.; Yoon, C.S.; Lee, M.S.; Han, K.H.; Lee, M.-J.

    2013-01-01

    Aim: To compare the reliability of the conventional ultrasonography grading system for hydronephrosis as suggested by the Society for Fetal Urology (SFU) in 1993 and that developed by Onen in 2007. Materials and methods: One hundred and eighty kidneys in 90 paediatric patients were assessed by four radiologists using each of the two grading systems twice. The SFU system was graded 0–4 (0 = no hydronephrosis; 1 = visualized only renal pelvis; 2 = plus a few caliceal dilatation; 3 = all calyceal dilatation; 4 = plus parenchymal thinning). The Onen system was graded 0–4 (0 = no hydronephrosis; 1 = only renal pelvic dilatation; 2 = plus caliceal dilatation; 3 = plus 50% renal parenchymal loss). Cohen's kappa statistic was used to estimate intra- and interobserver agreement. The weighted least-squares approach was used to compare the intra-observer agreement, and bootstrapping was used to compare the interobserver agreement between the two systems. Results: Intra-observer agreement was substantial to almost perfect in both the SFU (κ 0.79–0.95) and the Onen (κ 0.66–0.97) grading system without difference. The overall interobserver agreement was substantial in both the SFU (κ 0.61–0.68) and the Onen (κ 0.66–0.76) grading system. However, interobserver agreement was fair to moderate for SFU grades 1 and 2 and Onen grades 2 and 3. Conclusion: Both the SFU and Onen grading system are reliable with good intra- and interobserver agreement. However, decreased interobserver agreement was demonstrated for SFU grades 1 and 2 and Onen grades 2 and 3

  15. INAA of polyacrylic hydrogels of pharmaceutical grade

    International Nuclear Information System (INIS)

    Ponta, C.; Salagean, M.; Pantelica, A.; Georgescu, I.I.

    1998-01-01

    Polyacrylic acid (PA) and its salts are promising biomaterials used in the pharmaceutical industry. They could be used as pharmaceutical additives, as a burn dressing and also in the slow released implants or trans-derma patch formulations. Polyacrylic acid of pharmaceutical grade can be obtained by gamma irradiation polymerization. The influence of the raw materials and of the technological procedure on the final product purity has been investigated by Instrumental Neutron Activation Analysis (INAA) method. The following materials have been analyzed by INAA: 1) acrylic acid of technical grade; 2) acrylic acid purified by double crystallisation; 3) NaOH of analytical grade; 4) CaCl-2·6H 2 O of pharmaceutical grade; 5) CaCl 2 ·2H 2 O of analytical grade; 6) granulated PANa; 7) ungranulated PANa; 8) ungranulated PANaCa; 9) PANaCa granulated by milling in IFIN-HH using the mill nr. 1; 10) PANaCa granulated by milling in Institute of Chemical and Pharmaceutical Research (ICPR); 11) PANaCa granulated by milling in IFIN-HH using the mill nr. 2. The first five samples, marked from 1 to 5, are raw materials and the other six samples, marked from 6 to 11, are the final polyacrylic structures processed by various technological procedures. The samples together with the appropriate reference materials have been irradiated at WWR-S reactor in a neutron flux of 2.5·10 12 cm -2 s -1 and the induced radioactivity was registered by a HPGe detector (EG/G ORTEC) of 30% efficiency and 2.1 keV resolution. The concentrations of As, Br, Ce, Co, Cr, Fe, La, Sb, Sc, Zn have been determined. For the final polyacrylic structures, except for granulated PANa (sample 6), only the elements Co, Cr, Fe, Sc, Zn were found at the following concentration levels: tens of ppm (Co), ppm (Zn), hundreds of ppb (Cr), tens of ppb (Co), ppb (Co, Sc), 10 -1 ppb (Sc). In the granulated PANa, in comparison with the other analyzed final products, similar concentration values were found for Fe, Sc and Zn

  16. Automated tone grading of granite

    International Nuclear Information System (INIS)

    Catalina Hernández, J.C.; Fernández Ramón, G.

    2017-01-01

    The production of a natural stone processing plant is subject to the intrinsic variability of the stone blocks that constitute its raw material, which may cause problems of lack of uniformity in the visual appearance of the produced material that often triggers complaints from customers. The best way to tackle this problem is to classify the product according to its visual features, which is traditionally done by hand: an operator observes each and every piece that comes out of the production line and assigns it to the closest match among a number of predefined classes, taking into account visual features of the material such as colour, texture, grain, veins, etc. However, this manual procedure presents significant consistency problems, due to the inherent subjectivity of the classification performed by each operator, and the errors caused by their progressive fatigue. Attempts to employ automated sorting systems like the ones used in the ceramic tile industry have not been successful, as natural stone presents much higher variability than ceramic tiles. Therefore, it has been necessary to develop classification systems specifically designed for the treatment of the visual parameters that distinguish the different types of natural stone. This paper describes the details of a computer vision system developed by AITEMIN for the automatic classification of granite pieces according to their tone, which provides an integral solution to tone grading problems in the granite processing and marketing industry. The system has been designed to be easily trained by the end user, through the learning of the samples established as tone patterns by the user. [es

  17. High-grade renal injuries are often isolated in sports-related trauma

    OpenAIRE

    Patel, Darshan P.; Redshaw, Jeffrey D.; Breyer, Benjamin N.; Smith, Thomas G.; Erickson, Bradley A.; Majercik, Sarah D.; Gaither, Thomas W.; Craig, James R.; Gardner, Scott; Presson, Angela P.; Zhang, Chong; Hotaling, James M.; Brant, William O.; Myers, Jeremy B.

    2015-01-01

    © 2015 Elsevier Ltd. All rights reserved. Introduction: Most high-grade renal injuries (American Association for Surgery of Trauma (AAST) grades III-V) result from motor vehicle collisions associated with numerous concomitant injuries. Sports-related blunt renal injury tends to have a different mechanism, a solitary blow to the flank. We hypothesized that high-grade renal injury is often isolated in sports-related renal trauma. Material and methods: We identified patients with AAST grades III...

  18. ROMI 3.1 Least-cost lumber grade mix solver using open source statistical software

    Science.gov (United States)

    Rebecca A. Buck; Urs Buehlmann; R. Edward. Thomas

    2010-01-01

    The least-cost lumber grade mix solution has been a topic of interest to both industry and academia for many years due to its potential to help wood processing operations reduce costs. A least-cost lumber grade mix solver is a rough mill decision support system that describes the lumber grade or grade mix needed to minimize raw material or total production cost (raw...

  19. Developing Cognitive Test Based on the Revised Bloom’s Taxonomy on The Structure and Cell Function Material for XI Grade Students in Senior High School of Tarakan City

    Directory of Open Access Journals (Sweden)

    Zulfadli Zulfadli

    2017-07-01

    Full Text Available This research was to develop a cognitive test tool based on Revised Bloom’s Taxonomy. This study aimed to determine the quality of the test based on experts assessment, to measure the level of validity, reliability, and to determine the difficulty levels of the questions, discrimination power, and distractors. This research employed Research and Development (R&D method. The development test model used was the 4D procedure which was modified into three steps: define, design, and develop. The subjects were the Science students of XI grade at SMAN 2 Tarakan and SMA Muhammadiyah Tarakan. The results of the study were: (1 the experts validation analysis showed that the cognitive test has been categorized as valid which the value was 4.28 (2 The quality of cognitive test were: (A the 90% items were valid, while 10% were invalid. (B the reliability value was 0.79 (highly reliable (C the levels of difficulty were: easy (27%, moderate (53%, difficult (20%. (Dthe test discrimination index were: weak (10%, sufficient (33%, good (53%, and either once (3%. (E distractors effectiveness: effective category (85%, ineffective (15%. Assessment results from expert validators and empirical tests indicate that this cognitive test device is feasible to use and apply. The uniformity of this level of difficulty makes the quality of items were good to use. The discrimination power of these test tool, which has good value, indicate that the high diversity of items is able to measure students' abilities.

  20. Analysis of DTI-Derived Tensor Metrics in Differential Diagnosis between Low-grade and High-grade Gliomas.

    Science.gov (United States)

    Jiang, Liang; Xiao, Chao-Yong; Xu, Quan; Sun, Jun; Chen, Huiyou; Chen, Yu-Chen; Yin, Xindao

    2017-01-01

    Purpose: It is critical and difficult to accurately discriminate between high- and low-grade gliomas preoperatively. This study aimed to ascertain the role of several scalar measures in distinguishing high-grade from low-grade gliomas, especially the axial diffusivity (AD), radial diffusivity (RD), planar tensor (Cp), spherical tensor (Cs), and linear tensor (Cl) derived from diffusion tensor imaging (DTI). Materials and Methods: Fifty-three patients with pathologically confirmed brain gliomas (21 low-grade and 32 high-grade) were included. Contrast-enhanced T1-weighted images and DTI were performed in all patients. The AD, RD, Cp, Cs, and Cl values in the tumor zone, peritumoral edema zone, white matter (WM) adjacent to edema and contralateral normal-appearing white matter (NAWM) were calculated. The DTI parameters and tumor grades were statistically analyzed, and receiver operating characteristic (ROC) curve analysis was also performed. Results: The DTI metrics in the affected hemisphere showed significant differences from those in the NAWM, except for the AD values in the tumor zone and the RD values in WM adjacent to edema in the low-grade groups, as well as the Cp values in WM adjacent to edema in the high-grade groups. AD in the tumor zone as well as Cs and Cl in WM adjacent to edema revealed significant differences between the low- and high-grade gliomas. The areas under the curve (Az) of all three metrics were greater than 0.5 in distinguishing low-grade from high-grade gliomas by ROC curve analysis, and the best DTI metric was Cs in WM adjacent to edema (Az: 0.692). Conclusion: AD in the tumor zone as well as Cs and Cl in WM adjacent to edema will provide additional information to better classify gliomas and can be used as non-invasive reliable biomarkers in glioma grading.

  1. The Implications of Grade Inflation

    DEFF Research Database (Denmark)

    Smith, David E.; Fleisher, Steven

    2011-01-01

    The authors review current and past practices of the grade inflation controversy and present ways to return to each institution’s established grading guidelines. Students are graded based on knowledge gathered. Certain faculty members use thorough evaluative methods, such as written and oral pres...... have been profiled in the news. The model is provided to ensure that degree candidates are academic experts in their field, having earned the credential through rigorous study....

  2. Vibration of Elastic Functionally Graded Thick Rings

    Directory of Open Access Journals (Sweden)

    Guang-Hui Xu

    2017-01-01

    Full Text Available The free vibration behaviors of functionally graded rings were investigated theoretically. The material graded in the thickness direction according to the power law rule and the rings were assumed to be in plane stress and plane strain states. Based on the first-order shear deformation theory and the kinetic relation of von Kárman type, the frequency equation for free vibration of functionally graded ring was derived. The derived results were verified by those in literatures which reveals that the present theory can be appropriate to predict the free vibration characteristics for quite thick rings with the radius-to-thickness ratio from 60 down to 2.09. Comparison between the plane stress case and the plane strain case indicates a slight difference. Meanwhile, the effects of the structural dimensional parameters and the material inhomogeneous parameter are examined. It is interesting that the value of the logarithmic form of vibration frequency is inversely proportional to the logarithmic form of the radius-to-thickness ratio or the mean radius.

  3. Uranium production from low grade Swedish shale

    International Nuclear Information System (INIS)

    Carlsson, O.

    1977-01-01

    In view of the present nuclear programmes a steep increase in uranium demand is foreseen which will pose serious problems for the uranium industry. The annual additions to uranium ore reserves must almost triple within the next 15 years in order to support the required production rates. Although there are good prospects for the discovery of further conventional deposits of uranium there is a growing interest in low grade uranium deposits. Large quantities of uranium exist in black shales, phosphates, granites, sea water and other unconventional sources. There are however factors which limit the utilization of these low grade materials. These factors include the extraction costs, the environmental constrains on mining and milling of huge amounts of ore, the development of technologies for the beneficiation of uranium and, in the case of very low grade materials, the energy balance. The availability of by-product uranium is limited by the production rate of the main product. The limitations differ very much according to types of ores, mining and milling methods and the surroundings. As an illustration a description is given of the Swedish Ranstad uranium shale project, its potential, constraints and technical solutions

  4. Selection, development and characterisation of plasma facing materials for ITER

    International Nuclear Information System (INIS)

    Barabash, V.; Akiba, M.; Ulrickson, M.; Vieider, G.

    1996-01-01

    The current status of the selection of the armour materials for first wall, limiters and divertor are presented. The candidate armour materials are beryllium, tungsten and carbon base materials (mainly carbon fiber composites). The selection of the references grades from these material classes is discussed and the candidate grades are described. The main reasons for the selection of the reference grades are also discussed. The urgent materials R and D needs for the development of the design are described briefly. (orig.)

  5. Fiscal 2000 achievement report. Development of energy use rationalization-oriented silicon manufacturing process (Survey and study of analysis of commercialization of solar-grade silicon material manufacturing technology); 2000 nendo shin energy sangyo gijutsu sogo kaihatsu kiko kyodo kenkyu gyomu seika hokokusho. Energy shiyo gorika silicon seizo process kaihatsu (Taiyodenchiyou silicon genryo seizo gijutsu no jitsuyoka kaiseki ni kansuru chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The trend of technology development, problems harbored therein, trend of the market, and the like were investigated for supporting the development of technologies for the mass production and commercialization of solar-grade silicon materials. Concerning the future of production enhancement and cost reduction in the manufacture of polycrystalline silicon solar cells, studies were made from the technological viewpoint. The results are shown below. It is estimated that approximately 4,500 tons of material silicon will be necessary in 2005 and 6,500-10,700 tons in 2010. Since the melting purification method of NEDO (New Energy and Industrial Technology Development Organization) now under development step by step toward commercialization as well as the conventional source will provide the necessary amount of material silicon, it is inferred that the development of solar cells will go on without any restraint originating in the semiconductor industry. With the commercialization of the technologies so far developed and the development/commercialization of the fast-acting high-performance solar cell technology, probabilities are high that the polycrystalline silicon solar cell manufacturing cost in 2010 will be as low as to be on the 100 yen/W (93-118 yen/W) level which is the level now held up as the goal. (NEDO)

  6. Liquid phase sintered SiC ceramics from starting materials of different grade Cerâmicas à base de SiC sinterizadas via fase líquida a partir de matérias-primas de diferentes purezas

    Directory of Open Access Journals (Sweden)

    V. A. Izhevskyi

    2004-09-01

    Full Text Available Possibility of high performance ceramics manufactured from commercial SiC powder of technical grade has been shown. Sintering behavior and microstructure formation under conditions of liquid phase sintering (LPS with oxynitride sintering aids (AlN-Y2O3 of three SiC-based compositions have been investigated. Two of the compositions were based on Alcoa 1000 SiC powder of technical grade, and the third one, which was used as a reference, was based on H.C. Starck UF-15 fine grade commercial powder. Milling process used for Alcoa 1000 SiC powder granulometry improvement has been investigated in detail, while chemical treatment of milled SiC powders has been used for pick-up impurities removal. Dilatometric experiments showed that SiC powder of technical grade after appropriate treatment exhibits sinterability comparable with the fine grade SiC. Microstructural investigations performed on sintered samples showed that the final microstructure of the Alcoa 1000 SiC based materials was practically identical with the H.C. Starck SiC based reference ones. Preliminary investigations of hardness and fracture toughness were carried out revealing excellent results for the materials produced from cheaper, nationally produced starting powder.Neste trabalho é apresentada a possibilidade de obtenção de cerâmicas de SiC de alto desempenho a partir de matéria-prima comercial de grau técnico. Foi realizado o estudo de sinterização via fase líquida e desenvolvimento microestrutural de três composições à base de SiC tendo como aditivos de sinterização AlN e Y2O3 . Duas destas composições são à base de SiC-1000 da Alcoa, grau técnico, e a terceira, utilizada como referência, à base do UF-15 da H.C. Starck - Alemanha, pó comercial de granulometria fina. O processo de moagem do pó SiC-1000 da Alcoa foi acompanhado por medidas de distribuição granulométrica e posterior ataque químico, para remoção de impurezas. Os pós de grau técnico, ap

  7. Practicing Good Habits, Grade 4.

    Science.gov (United States)

    Van Cong Lau; And Others

    This illustrated textbook was designed for teaching civics and values to fourth grade students in Vietnam. It is divided into six chapters: (1) At School (recapitulation of the grade three program, friendship, respect for the teacher, team work, discipline, honor); (2) In the Street: Traffic Regulations; (3) At Home (the extended family spirit,…

  8. Compositionally Graded Multilayer Ceramic Capacitors.

    Science.gov (United States)

    Song, Hyun-Cheol; Zhou, Jie E; Maurya, Deepam; Yan, Yongke; Wang, Yu U; Priya, Shashank

    2017-09-27

    Multilayer ceramic capacitors (MLCC) are widely used in consumer electronics. Here, we provide a transformative method for achieving high dielectric response and tunability over a wide temperature range through design of compositionally graded multilayer (CGML) architecture. Compositionally graded MLCCs were found to exhibit enhanced dielectric tunability (70%) along with small dielectric losses (filters and power converters.

  9. Sixth-Grade Aeronauts.

    Science.gov (United States)

    Flick, Larry; Dejmal, Ked

    1989-01-01

    An activity which combines problem solving with the history and science of hot air balloons is presented. Instructions for making and launching tissue-paper balloons are provided. The advantage of using manipulative materials with middle school students is discussed. (CW)

  10. Low cost silicon solar array project silicon materials task: Establishment of the feasibility of a process capable of low-cost, high volume production of silane (step 1) and the pyrolysis of silane to semiconductor-grade silicon (step 2)

    Science.gov (United States)

    Breneman, W. C.; Cheung, H.; Farrier, E. G.; Morihara, H.

    1977-01-01

    A quartz fluid bed reactor capable of operating at temperatures of up to 1000 C was designed, constructed, and successfully operated. During a 30 minute experiment, silane was decomposed within the reactor with no pyrolysis occurring on the reactor wall or on the gas injection system. A hammer mill/roller-crusher system appeared to be the most practical method for producing seed material from bulk silicon. No measurable impurities were detected in the silicon powder produced by the free space reactor, using the cathode layer emission spectroscopic technique. Impurity concentration followed by emission spectroscopic examination of the residue indicated a total impurity level of 2 micrograms/gram. A pellet cast from this powder had an electrical resistivity of 35 to 45 ohm-cm and P-type conductivity.

  11. Commercial-grade motors in safety-related applications: Final report

    International Nuclear Information System (INIS)

    Holzman, P.M.

    1988-04-01

    The objective of this project was to discuss the process necessary to utilize commercial grade equipment in safety related applications and to provide utilities with guidance for accepting commercial grade motors for safety-related applications. The generic commercial-grade concepts presented in this report can be successfully applied to motors. Commercial grade item utilization has the greatest applicability to motors in ''mild'' environments, because these motors are essentially similar to commercial grade motors in materials, construction methods, and capabilities. The acceptance process is less applicable to motors that are subject to ''harsh'' environments during postulated accidents, because of the unique design features and testing required to qualify these motors

  12. GREEN OAK AS A SUSTAINABLE BUILDING MATERIAL

    Science.gov (United States)

    Technical documentation necessary for a project demonstrating the viability of green oak as a contemporary structural material. These will include material grading guidelines, mechanical testing, architectural construction documents and details, specifications, engineering cal...

  13. Laboratory study on subgrade soil stabilization using RBI grade 81

    Science.gov (United States)

    Cynthia, J. Bernadette; Kamalambikai, B.; Prasanna Kumar, R.; Dharini, K.

    2017-07-01

    The present study investigates the effect of reinforcing the sub grade soils with RBI 81 material. A soil nearby was collected and preliminary tests were conducted to classify the soil and it was found from the results that the sample collected was a poorly graded clay. Subsequently Tests such as Proctor Compaction, CBR, and UCC were conducted to study the various engineering properties of the identified soil. In addition to the above tests were also conducted on the soil by reinforcing with varying percentages of RBI 81. From the analysis of test results it was found that this material (RBI 81) will significantly improve the CBR value of the soil.

  14. Effect of Grade Retention in First Grade on Psychosocial Outcomes

    OpenAIRE

    Wu, Wei; West, Stephen G.; Hughes, Jan N.

    2010-01-01

    In a 4-year longitudinal study, the authors investigated effects of retention in first grade on children’s externalizing and internalizing behaviors; social acceptance; and behavioral, cognitive, and affective engagement. From a large multiethnic sample (n = 784) of children below the median on literacy at school entrance, 124 retained children were matched with 251 promoted children on the basis of propensity scores (probability of being retained in first grade estimated from 72 baseline var...

  15. Wear resistance and electrical properties of functionally graded epoxy-resin/silica composites

    International Nuclear Information System (INIS)

    Rihan, Y. A.; Abd El-Bary, B.

    2012-12-01

    In this paper graded Silica/Epoxy composite fabricated by controlled mold filling to obtain a stepwise graded structure. The generated graded structure was controlled by the w 1% content of silica particulates of size range from (45 μm-250 μm). Microstructural characterization was conducted using Scanning Electron Microscope (SEM). Electrical properties were conducted in High Voltage-Lab using Sphere-Plate Electrode System and Insulating resistance equipment s. Wear characteristics were studied using Block-on-Ring wear testing machine for the different layers of the graded silica/epoxy composites, The prepared materials are used as coating materials for the floors of chemical laboratories. (Author)

  16. Predictors of grade {>=}2 and grade {>=}3 radiation pneumonitis in patients with locally advanced non-small cell lung cancer treated with three-dimensional conformal radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Jun; Li, Guang; Ma, Lianghua; Han, Chong; Zhang, Shuo; Yao, Lei [Dept. of Radiation Oncology, The First Hospital of China Medical Univ., Shenyang (China)], e-mail: gl1963516@yahoo.cn; Diao, Rao [Dept. of Experimental Technology Center, China Medical Univ., Shenyang (China); Zang, Shuang [Dept. of Nursing, China Medical Univ., Shenyang (China)

    2013-08-15

    Grade {>=}3 radiation pneumonitis (RP) is generally severe and life-threatening. Predictors of grade {>=}2 are usually used for grade {>=}3 RP prediction, but it is unclear whether these predictors are appropriate. In this study, predictors of grade {>=}2 and grade {>=}3 RP were investigated separately. The increased risk of severe RP in elderly patients compared with younger patients was also evaluated. Material and methods: A total of 176 consecutive patients with locally advanced non-small cell lung cancer were followed up prospectively after three-dimensional conformal radiotherapy. RP was graded according to Common Terminology Criteria for Adverse Events version 3.0. Results: Mean lung dose (MLD), mean heart dose, ratio of planning target volume to total lung volume (PTV/Lung), and dose-volume histogram comprehensive value of both heart and lung were associated with both grade {>=}2 and grade {>=}3 RP in univariate analysis. In multivariate logistic regression analysis, age and MLD were predictors of both grade {>=}2 RP and grade {>=}3 RP; receipt of chemotherapy predicted grade {>=}3 RP only; and sex and PTV/Lung predicted grade {>=}2 RP only. Among patients who developed high-grade RP, MLD and PTV/Lung were significantly lower in patients aged {>=}70 years than in younger patients (p<0.05 for both comparisons). Conclusions: The predictors were not completely consistent between grade {>=}2 RP and grade {>=}3 RP. Elderly patients had a higher risk of severe RP than younger patients did, possibly due to lower tolerance of radiation to the lung.

  17. Effect of Different Concrete Grade on Radiation Linear Attenuation Coefficient (μ)

    International Nuclear Information System (INIS)

    Noor Azreen Masenwat; Mohammad Shahrizan Samsu; Mohamad Pauzi Ismail; Suhairy Sani; Ismail Mustapha; Nasharuddin Isa; Mohamad Haniza Mahmud

    2014-01-01

    In calculating the quantity of absorption of radiation and its relationship with the thickness of a material, linear attenuation coefficient (μ) of the material is one of the parameters to be taken into account. For normal concrete, the (μ) varies depending on the type of radiation used, 0.105 cm -1 for Co-60 and 0.123 cm -1 for Cs-137. Value (μ) is used in the calculation of the radiation absorption for concrete material does not take into account factors such concrete grades. In this research, concrete with different grades (Grade 15, Grade 20, Grade 25, Grade 30, Grade 35, Grade 40) are designed and manufactured with reference to the mixing method described in British Standard. Then, the linear attenuation (μ) for each grade are measured using the radiation from the source Co-60 and Cs-137 sources. This paper describes and discusses the impact of differences in concrete grade of linear attenuation (μ) for Co-60 source/ source Cs-137 and its relationship with the compressive strength. (author)

  18. Gender discrimination in exam grading?

    DEFF Research Database (Denmark)

    Rangvid, Beatrice Schindler

    2018-01-01

    Girls, on average, obtain higher test scores in school than boys, and recent research suggests that part of this difference may be due to discrimination against boys in grading. This bias is consequential if admission to subsequent education programs is based on exam scores. This study assesses t...... tendencies are in accordance with statistical discrimination as a mechanism for grading bias in essay writing and with gender-stereotyped beliefs of math being a male domain....... are scored twice (blind and non-blind). Both strategies use difference-in-differences methods. Although imprecisely estimated, the point estimates indicate a blind grading advantage for boys in essay writing of approximately 5-8% SD, corresponding to 9-15% of the gender gap in essay exam grades. The effect...

  19. Progressive problems higher grade physics

    CERN Document Server

    Kennedy, William

    2001-01-01

    This book fully covers all three Units studied in Scotland's Higher Grade Physics course, providing a systematic array of problems (from the simplest to the most difficult) to lead variously abled pupils to examination success.

  20. Improving GRADE evidence tables part 2

    DEFF Research Database (Denmark)

    Langendam, Miranda; Carrasco-Labra, Alonso; Santesso, Nancy

    2016-01-01

    OBJECTIVES: The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) working group has developed GRADE evidence profiles (EP) and summary of findings (SoF) tables to present evidence summaries in systematic reviews, clinical guidelines, and health technology assessments. Exp...

  1. Hardwood log grades and lumber grade yields for factory lumber logs

    Science.gov (United States)

    Leland F. Hanks; Glenn L. Gammon; Robert L. Brisbin; Everette D. Rast

    1980-01-01

    The USDA Forest Service Standard Grades for Hardwood Factory Lumber Logs are described, and lumber grade yields for 16 species and 2 species groups are presented by log grade and log diameter. The grades enable foresters, log buyers, and log sellers to select and grade those log suitable for conversion into standard factory grade lumber. By using the apropriate lumber...

  2. 7 CFR 810.2204 - Grades and grade requirements for wheat.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Grades and grade requirements for wheat. 810.2204... OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Wheat Principles Governing the Application of Standards § 810.2204 Grades and grade requirements for wheat. (a) Grades and grade requirements...

  3. Growth of optical grade germanium crystals

    International Nuclear Information System (INIS)

    Waris, M.; Akhtar, M.J.; Mehmood, N.; Ashraf, M.; Siddique, M.

    2011-01-01

    A novel design of Czochralski( CZ ) growth station in a low frequency induction furnace is described and growth of optical grade Ge crystal as a test material is performed achieving a flat solid-liquid interface shape. Grown Ge crystals are annealed in air at 450 -500 deg. C for 4 hrs and then characterized by determination of crystallographic orientation by Laue (back-reflection of X-rays) method, dislocation density studies by etch-pits formation, measuring electrical resistivity by 4-probe technique, conductivity type determination by hot probe method, measurement of hardness on Moh's scale and optical transmission measurement in IR region. The results obtained are compared to those reported in the literature. The use of this growth station for other materials is suggested. (author)

  4. Synthesis of battery grade reduced silver powder

    International Nuclear Information System (INIS)

    Qadeer, R.; Hameed, M.; Ikram, S.; Munir, A.

    2002-01-01

    Process for production of battery grade reduced silver powder, an active positive material for zinc-silver oxide batteries, having specific characteristics has been optimized and the synthesized reduced silver powder was characterized. Results reveal that the values of bulk density (1.25 0.1 g/cm3) and activity (73.27 %) of synthesized reduced silver powder lies within the recommended range for use as battery material. It has purity ≥ 98% and contains Fe and Cu as traces in the concentration range of 30 5 ppm and 15 7 ppm respectively. Others determined values of surface and pores parameters are: surface area 2.6 .4 m2/g: pore volume 3.10 cm3/g: pore diameter 0.043 mu m and porosity 20%. XRD studies reveal that reduced silver powder has a cubic structure. (author)

  5. Magnetothermoelastic creep analysis of functionally graded cylinders

    International Nuclear Information System (INIS)

    Loghman, A.; Ghorbanpour Arani, A.; Amir, S.; Vajedi, A.

    2010-01-01

    This paper describes time-dependent creep stress redistribution analysis of a thick-walled FGM cylinder placed in uniform magnetic and temperature fields and subjected to an internal pressure. The material creep, magnetic and mechanical properties through the radial graded direction are assumed to obey the simple power law variation. Total strains are assumed to be the sum of elastic, thermal and creep strains. Creep strains are time, temperature and stress dependent. Using equations of equilibrium, stress-strain and strain-displacement a differential equation, containing creep strains, for displacement is obtained. Ignoring creep strains in this differential equation a closed form solution for the displacement and initial magnetothermoelastic stresses at zero time is presented. Initial magnetothermoelastic stresses are illustrated for different material properties. Using Prandtl-Reuss relation in conjunction with the above differential equation and the Norton's law for the material uniaxial creep constitutive model, the radial displacement rate is obtained and then the radial and circumferential creep stress rates are calculated. Creep stress rates are plotted against dimensionless radius for different material properties. Using creep stress rates, stress redistributions are calculated iteratively using magnetothermoelastic stresses as initial values for stress redistributions. It has been found that radial stress redistributions are not significant for different material properties, however major redistributions occur for circumferential and effective stresses.

  6. Grade Inflation in Medical Student Radiation Oncology Clerkships: Missed Opportunities for Feedback?

    International Nuclear Information System (INIS)

    Grover, Surbhi; Swisher-McClure, Samuel; Sosnowicz, Stasha; Li, Jiaqi; Mitra, Nandita; Berman, Abigail T.; Baffic, Cordelia; Vapiwala, Neha; Freedman, Gary M.

    2015-01-01

    Purpose: To test the hypothesis that medical student radiation oncology elective rotation grades are inflated and cannot be used to distinguish residency applicants. Methods and Materials: The records of 196 applicants to a single radiation oncology residency program in 2011 and 2012 were retrospectively reviewed. The grades for each rotation in radiation oncology were collected and converted to a standardized 4-point grading scale (honors, high pass, pass, fail). Pass/fail grades were scored as not applicable. The primary study endpoint was to compare the distribution of applicants' grades in radiation oncology with their grades in medicine, surgery, pediatrics, and obstetrics/gynecology core clerkships. Results: The mean United States Medical Licensing Examination Step 1 score of the applicants was 237 (range, 188-269), 43% had additional Masters or PhD degrees, and 74% had at least 1 publication. Twenty-nine applicants were graded for radiation oncology rotations on a pass/fail basis and were excluded from the final analysis. Of the remaining applicants (n=167), 80% received the highest possible grade for their radiation oncology rotations. Grades in radiation oncology were significantly higher than each of the other 4 clerkships studied (P<.001). Of all applicants, 195 of 196 matched into a radiation oncology residency. Higher grades in radiation oncology were associated with significantly higher grades in the pediatrics core clerkship (P=.002). However, other medical school performance metrics were not significantly associated with higher grades in radiation oncology. Conclusions: Although our study group consists of a selected group of radiation oncology applicants, their grades in radiation oncology clerkships were highly skewed toward the highest grades when compared with grades in other core clerkships. Student grading in radiation oncology clerkships should be re-evaluated to incorporate more objective and detailed performance metrics to allow for

  7. Interference studies with two hospital-grade and two home-grade glucose meters.

    Science.gov (United States)

    Lyon, Martha E; Baskin, Leland B; Braakman, Sandy; Presti, Steven; Dubois, Jeffrey; Shirey, Terry

    2009-10-01

    Interference studies of four glucose meters (Nova Biomedical [Waltham, MA] StatStrip [hospital grade], Roche Diagnostics [Indianapolis, IN] Accu-Chek Aviva [home grade], Abbott Diabetes Care [Alameda, CA] Precision FreeStyle Freedom [home grade], and LifeScan [Milpitas, CA] SureStep Flexx [hospital grade]) were evaluated and compared to the clinical laboratory plasma hexokinase reference method (Roche Hitachi 912 chemistry analyzer). These meters were chosen to reflect the continuum of care from hospital to home grade meters commonly seen in North America. Within-run precision was determined using a freshly prepared whole blood sample spiked with concentrated glucose to give three glucose concentrations. Day-to-day precision was evaluated using aqueous control materials supplied by each vendor. Common interferences, including hematocrit, maltose, and ascorbate, were tested alone and in combination with one another on each of the four glucose testing devices at three blood glucose concentrations. Within-run precision for all glucose meters was glucose meters. Ascorbate caused differences (percentage change from a sample without added interfering substances) of >5% with pyrroloquinolinequinone (PQQ)-glucose dehydrogenase-based technologies (Aviva and Freestyle) and the glucose oxidase-based Flexx meter. Maltose strongly affected the PQQ-glucose dehydrogenase-based meter systems. When combinations of interferences (ascorbate, maltose, and hematocrit mixtures) were tested, the extent of the interference was up to 193% (Aviva), 179% (FreeStyle), 25.1% (Flexx), and 5.9% (StatStrip). The interference was most pronounced at low glucose (3.9-4.4 mmol/L). All evaluated glucose meter systems demonstrated varying degrees of interference by hematocrit, ascorbate, and maltose mixtures. PQQ-glucose dehydrogenase-based technologies showed greater susceptibility than glucose oxidase-based systems. However, the modified glucose oxidase-based amperometric method (Nova StatStrip) was

  8. Method of dry distillation of low-grade fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hellsing, G H; Wengstrom, R O.A.

    1920-05-20

    A method of dry distillation of low-grade fuels is characterized by having the process take place in a furnace that is charged alternately by partly cooled, red-hot, and fresh raw materials. The patent has one more claim.

  9. Numerical simulation of thermal fracture in functionally graded

    Indian Academy of Sciences (India)

    Numerical simulation of thermal fracture in functionally graded materials using element-free ... Initially, the temperature distribution over the domain is obtained by solving the heat transfer problem. ... Department of Mechanical Engineering, National Institute of Technology, Hamirpur 177005, India ... Contact | Site index.

  10. Low-grade hardwood lumber production, markets, and issues

    Science.gov (United States)

    Dan Cumbo; Robert Smith; Philip A. Araman

    2003-01-01

    Due to recent downturn in the economy and changes in traditional hardwood markets. U.S. hardwood manufacturers are facing significant difficulties. In particular, markets for low-grade lumber have been diminishing, while increased levels of the material are being produced at hardwood sawmills in the United States. A nationwide survey of hardwood lumber manufacturers...

  11. Secondary Schools Curriculum Guide, Mathematics, Grades 10-12. Revised.

    Science.gov (United States)

    Cranston School Dept., RI.

    Behavioral objectives for grades 10 through 12 are specified for plane geometry, algebra, general mathematics, computer mathematics, slide rule mathematics, basic college mathematics, trigonometry, analytic geometry, calculus and probability. Most sections present material in terms of portions of a school year. At least one major objective is…

  12. Catalogue of Videorecordings and Films, Kindergarten to Grade 6, 1993.

    Science.gov (United States)

    Manitoba Dept. of Education, Winnipeg. Instructional Resources Branch.

    This catalogue lists and indexes 2,233 videorecordings, 16mm film, and videodisc titles held by the Library, Manitoba Education and Training for borrowing; some are also available for dubbing. The catalog indexes materials intended for children in kindergarten through grade 6, and is divided into three parts: an annotated title and series index, a…

  13. A Computer Vision System for Automated Grading of Rough Hardwood Lumber Using a Knowledge-Based Approach

    Science.gov (United States)

    Tai-Hoon Cho; Richard W. Conners; Philip A. Araman

    1990-01-01

    A sawmill cuts logs into lumber and sells this lumber to secondary remanufacturers. The price a sawmiller can charge for a volume of lumber depends on its grade. For a number of species the price of a given volume of material can double in going from one grade to the next higher grade. Thus, accurately establishing the grade of a volume of hardwood lumber is very...

  14. Understanding Thermal Transport in Graded, Layered and Hybrid Materials

    Science.gov (United States)

    2014-04-01

    infrared pyrometer aimed at the sample surface. In year 2 of the effort, TEM grids were acquired from Ted Pella, which consist of perforated membrane of...calibrated infrared pyrometer aimed at the sample surface. The sputter-coated diamond substrates were characterized with electron probe microanalysis...The acoustic mismatch model (AMM) [52] predicts a value of 48 MW/m2-K for the hc across Cu/diamond interfaces [53,54,55]. The values of hc

  15. Functionally Graded Materials using Plasma Spray with Nano Structured Ceramic

    International Nuclear Information System (INIS)

    Sioh, E L; Tok, A I Y

    2013-01-01

    In this paper, nano structured FGM was fabricated using DC plasma spray technique. Nano structured and micro structured powder were used as the feeding powder with steel substrate. The spray parameters was optimized and characterisation of nano-ceramic FGM and micro-ceramic FGM were done using bending test and micro-hardness test. Experimental results have shown that the nano-structured FGM exhibit 20% improvement flexure strength and 10% in hardness. A comparison was made between sintered micro ceramic tile and nano ceramic FGM using simple drop test method.

  16. Composites of Upgraded Metallurgical Grade (UMG) Si with Photovoltaic (PV) Grade Si

    Energy Technology Data Exchange (ETDEWEB)

    Hovel, Harold; Prettyman, Kevin; Krause, Rainer; Dipankar, Roy

    2015-03-27

    At the beginning of this project 125 wafers of UMG material blended with non-UMG were obtained in the various blends; 50/50,70/30,80/20. 90/10 and 100% UMG. Solar grade , non-UMG material was used for comparison. Many techniques for starting substrate evaluation were used including lifetime, resitivity, SEM, IPCMS. Some degree of gettering was implemented by lengthening the time of phosphorous diffusion. The UMG/solar blends resulted in 14.5% -15% efficiencies, and even 100% UMG showed 14.5% values, not less than standard cells manufactured at the time and an encouraging result for the prospects of using UMG material due to the lower $/watt. A later decline in the cost of Si and an emphasis on reaching higher efficiencies in general led to a vanishing interest in the use of UMG.

  17. 7 CFR 51.304 - Combination grades.

    Science.gov (United States)

    2010-01-01

    ... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946... Standards for Grades of Apples Grades § 51.304 Combination grades. (a) Combinations of the above grades may...

  18. On-Demand Grades: The Effect of Online Grade Book Access on Student Mastery and Performance Goal Orientations, Grade Orientation, Academic Self Efficacy, and Grades

    Science.gov (United States)

    Seldow, Adam Lowell

    2010-01-01

    With the widespread growth of broadband Internet access, teachers, and in many cases, schools and school districts are transitioning from traditional paper-based grade books to student accessible online (Web-based) grade books. Online grade books offer students 24/7, on demand access to grades and various other student data, and have the potential…

  19. Developing test materials for dyscalculia

    DEFF Research Database (Denmark)

    Lindenskov, Lena; Bent, Lindhardt,

    Aims, requirements and context for the development of test materials for dyscalculia are analyzed. The test materials are to be used for Grade 4 pupils in Danish primary schools. Preliminary results are presented from focus group interview with adolescents and adults, who see themselves as being...

  20. Potential of Reinforced Indonesian Glulam Beams Using Grade I (Bengkirai, Grade II (Kamper, Grade III (Nyatoh Woods for Use in Structural Wood Design

    Directory of Open Access Journals (Sweden)

    Saptahari Sugiri

    2016-05-01

    Full Text Available Wood is a natural resource that is renewable and available in various species in tropical countries. Its abundancy in nature makes it easy to obtain, thus making it a nature friendly material for use in construction. Indonesia is the most important source of tropical wood in the world after Brazil, making the use of wood for structural elements very desirable. It is estimated that 4000 different varieties of wood exist in Indonesia. This estimate is based on the herbarium species collected by the Forestry Research Institute, currently counting nearly 4000 types of trees with a diameter of more than 40 cm. In the Indonesian wood structure code, the strength of woods is divided into 3 grades (grade I, II and III. This paper presents an evaluation of the mechanical properties of glulam wood sourced from native Indonesian timber: Bengkirai wood (grade I, Kamper wood (grade II, and Nyatoh wood (grade III, thus proving the potential for Indonesian wood as industrial structural elements in wooden constructions.

  1. Man's Basic Needs. Resource Units, Grade 1. Providence Social Studies Curriculum Project.

    Science.gov (United States)

    Providence Public Schools, RI.

    GRADES OR AGES: Grade 1. SUBJECT MATTER: Social studies; man's basic needs. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into 11 chapters, five of which outline the basic curriculum subunits. These five chapters are laid out in three columns, one each for topics, activities, and materials. Other chapters are in list form. The guide…

  2. Eighth Grade Social Studies. An Experimental Program in Geography and Anthropology.

    Science.gov (United States)

    Hanson, James; And Others

    GRADES OR AGES: Grade 8. SUBJECT MATTER: Geography and Anthropology. ORGANIZATION AND PHYSICAL APPEARANCE: The introductory material includes descriptions of geography and anthropology as disciplines, the basic course objectives, techniques for evaluating objectives and a student self-evaluation form. The guide covers six units: 1) "What Kind of…

  3. Pharmacokinetic MRI of the prostate. Parameters for differentiating low-grade and high-grade prostate cancer

    International Nuclear Information System (INIS)

    Franiel, T.; Taupitz, M.; Asbach, P.; Beyersdorff, D.; Luedemann, L.; Rost, J.

    2009-01-01

    Purpose: to investigate whether pharmacokinetic MRI parameters ''perfusion, blood volume, mean transit time (MTT), interstitial volume, permeability, extraction coefficient, delay, and dispersion'' allow the differentiation of low-grade (Gleason score ≤ 6) and high-grade (Gleason score ≥ 7) prostate cancer. Materials and method: forty-two patients with prostate cancer verified by biopsy (PSA 2.7 to 31.4ng/ml) and scheduled for prostatectomy underwent MRI at 1.5 Tesla using the dynamic contrast-enhanced inversion-prepared dual-contrast gradient echo sequence (temporal resolution, 1.65 s) and a combined endorectal body phased array coil. Parametric maps were computed using a sequential 3-compartment model and the corresponding post-processing algorithms. A total of 41 areas of prostate cancer (15 low-grade, 26 high-grade cancers) in 32 patients were able to be correlated with the prostatectomy specimens and were included in the analysis. Results: low-grade prostate cancers had a higher mean blood volume (1.76% vs. 1.64%, p = 0.039), longer MTT (6.39 s vs. 3.25 s, p -1 vs. 3.86 min -1 , p = 0.011) than high-grade cancers. No statistically significant difference was found for perfusion (p = 0.069), interstitial volume (p = 0.849), extraction coefficient (p = 0.615), delay (p = 0.489), and dispersion (p = 0.306). (orig.)

  4. On the union of graded prime ideals

    Directory of Open Access Journals (Sweden)

    Uregen Rabia Nagehan

    2016-01-01

    Full Text Available In this paper we investigate graded compactly packed rings, which is defined as; if any graded ideal I of R is contained in the union of a family of graded prime ideals of R, then I is actually contained in one of the graded prime ideals of the family. We give some characterizations of graded compactly packed rings. Further, we examine this property on h – Spec(R. We also define a generalization of graded compactly packed rings, the graded coprimely packed rings. We show that R is a graded compactly packed ring if and only if R is a graded coprimely packed ring whenever R be a graded integral domain and h – dim R = 1.

  5. Low grade gastric MALT lymphoma: Radiographic findings

    International Nuclear Information System (INIS)

    Brown, J.A.; Carson, B.W.; Gascoyne, R.D.; Cooperberg, P.L.; Connors, J.M.; Mason, A.C.

    2000-01-01

    AIMS: Gastric MALT (mucosa-associated lymphoid tissue) lymphoma is now recognized as a distinct entity within extranodal non-Hodgkin's lymphoma. The purpose of this study was to describe the radiographic findings in low grade gastric MALT lymphoma. MATERIALS AND METHODS: We retrospectively reviewed the radiographic findings in 22 cases of low-grade gastric MALT lymphoma. The study group consisted of 15 men and seven women (median age 68 years, range 41-91 years). Lesions were designated as infiltrative or polypoid by consensus of two radiologists. Polypoid lesions were categorized by number and size. Anatomical site within the stomach and presence of transpyloric or oesophagogastric extension was determined for each case. The presence of abdominal lymphadenopathy was categorized as regional or distant. The presence of Helicobacter pylori was determined from endoscopic and surgical biopsies. RESULTS: Computed tomography (CT) revealed abnormalities of the stomach in 19 cases of the 21 in which it was performed. There were 14 infiltrative lesions and five polypoid lesions. Of the 14 infiltrative lesions, the mean gastric wall thickness was 2.2 cm (range 0.8-6.0 cm). There were three single and two multiple polypoid lesions (mean size 2.2 cm, range 1.5-2.7 cm). Transpyloric extension was observed in two cases and oesophagogastric extension in one. Abdominal lymphadenopathy was observed in 10 of 21 patients. Helicobacter pylori was found in 19 of 22 cases (86%). CONCLUSION: Low grade B cell gastric MALT lymphomas present with an infiltrative form on CT in about three-quarters of cases and a polypoid pattern in the remainder. Abdominal lymphadenopathy is seen in approximately one-half of cases. There is a high association with Helicobacter pylori. Brown, J.A. 2000. Clinical Radiology 55, 384-389

  6. EDF specifications on nuclear grade resins

    International Nuclear Information System (INIS)

    Mascarenhas, Darren; Gressier, Frederic; Taunier, Stephane; Le-Calvar, Marc; Ranchoux, Gilles; Marteau, Herve; Labed, Veronique

    2012-09-01

    Ion exchange resins are widely used across EDF, especially within the nuclear division for the purification of water. Important applications include primary circuit, secondary circuit and effluent treatment, which require high quality nuclear grade resins to retain the dissolved species, some of which may be radioactive. There is a need for more and more efficient purification in order to decrease worker dose during maintenance but also to decrease volumes of radioactive resin waste. Resin performance is subject to several forms of degradation, including physical, chemical, thermal and radioactive, therefore appropriate resin properties have to be selected to reduce such effects. Work has been done with research institutes, manufacturers and on EDF sites to select these properties, create specifications and to continuously improve on these specifications. An interesting example of research regarding resin performance is the resin degradation under irradiation. Resins used in the CVCS circuit of EDF nuclear power plants are subject to irradiation over their lifetime. A study was carried out on the effects of total integrated doses of 0.1, 1 and 10 MGy on typically used EDF mixed bed resins in a 'mini-CVCS' apparatus to simultaneously test actual primary circuit fluid. The tests confirmed that the resins still perform efficiently after a typical CVCS radiation dose. Certain resins also need additional specifications in order to maintain the integrity of the particular circuits they are used in. Recently, EDF has updated its requirements on these high purity nuclear grade resins, produced generic doctrines for all products and materials used on site which include resins of all grades, and as a result have also updated a guide on recommended resin usage for the French fleet of reactors. An overview of the evolutions will be presented. (authors)

  7. Strategies for denaturing the weapons-grade plutonium stockpile

    International Nuclear Information System (INIS)

    Buckner, M.R.; Parks, P.B.

    1992-10-01

    In the next few years, approximately 50 metric tons of weapons-grade plutonium and 150 metric tons of highly-enriched uranium (HEU) may be removed from nuclear weapons in the US and declared excess. These materials represent a significant energy resource that could substantially contribute to our national energy requirements. HEU can be used as fuel in naval reactors, or diluted with depleted uranium for use as fuel in commercial reactors. This paper proposes to use the weapons-grade plutonium as fuel in light water reactors. The first such reactor would demonstrate the dual objectives of producing electrical power and denaturing the plutonium to prevent use in nuclear weapons

  8. 7 CFR 810.404 - Grades and grade requirements for corn.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Grades and grade requirements for corn. 810.404... OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Corn Principles Governing the Application of Standards § 810.404 Grades and grade requirements for corn. Grade Minimum test weight per...

  9. 7 CFR 810.1804 - Grades and grade requirements for sunflower seed.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Grades and grade requirements for sunflower seed. 810... AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Sunflower Seed Principles Governing the Application of Standards § 810.1804 Grades and grade requirements for sunflower seed. Grade...

  10. Attendance Policies and Student Grades

    Science.gov (United States)

    Risen, D. Michael

    2007-01-01

    The details described in this case study examine the issues related to attendance policies and how such policies might be legally used to affect student grades. Concepts discussed should cause graduate students in educational administration to reflect on the issues presented from various points of view when the students complete an analysis of the…

  11. Grading Rubrics: Hoopla or Help?

    Science.gov (United States)

    Howell, Rebecca J.

    2014-01-01

    The purpose of the study was to offer some quantitative, multivariate evidence concerning the impact of grading rubric use on academic outcome among American higher education students. Using a pre-post, quasi-experimental research design, cross-sectional data were derived from undergraduates enrolled in an elective during spring and fall 2009 at…

  12. Transportation: Grade 8. Cluster IV.

    Science.gov (United States)

    Calhoun, Olivia H.

    A curriculum guide for grade 8, the document is devoted to the occupational cluster "Transportation." It is divided into five units: surface transportation, interstate transportation, air transportation, water transportation, and subterranean transportation (the Metro). Each unit is introduced by a statement of the topic, the unit's…

  13. Smartphone-based grading of apple quality

    Science.gov (United States)

    Li, Xianglin; Li, Ting

    2018-02-01

    Apple quality grading is a critical issue in apple industry which is one economical pillar of many countries. Artificial grading is inefficient and of poor accuracy. Here we proposed to develop a portable, convenient, real-time, and low cost method aimed at grading apple. Color images of the apples were collected with a smartphone and the grade of sampled apple was assessed by a customized smartphone app, which offered the functions translating RGB color values of the apple to color grade and translating the edge of apple image to weight grade. The algorithms are based on modeling with a large number of apple image at different grades. The apple grade data evaluated by the smartphone are in accordance with the actual data. This study demonstrated the potential of smart phone in apple quality grading/online monitoring at gathering and transportation stage for apple industry.

  14. Ability Of Mathematical Reasoning in SMK 10th Grade with LAPS- Heuristic using Performance Assessment

    OpenAIRE

    Aulia Nur Arivina; Masrukan Masrukan; Ardhi Prabowo

    2017-01-01

    The purposes of this research are: (1) Test the learning with LAPS-Heuristic model using performance assessment on 10th grade of Trigonometry material is complete, (2) to test the difference of students' mathematical reasoning ability on 10th grade of Trigonometry material between the learning model of LAPS-Heuristic using performance assessment, LAPS-Heuristic learning model with Expository learning model, (3) test the ability of mathematical reasoning with learning model of LAPS-Heuristik o...

  15. Differentiation between grade 3 and grade 4 articular cartilage defects of the knee: Fat-suppressed proton density-weighted versus fat-suppressed three-dimensional gradient-echo MRI

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Yeon; Jee, Won-Hee; Kim, Sun Ki (Dept. of Radiology, Seoul St Mary' s Hospital, Catholic Univ. of Korea, Seoul (Korea)), e-mail: whjee@catholic.ac.kr; Koh, In-Jun (Dept. of Joint Reconstruction Center, Seoul National Univ. Bundang Hospital, Seoul (Korea)); Kim, Jung-Man (Dept. of Orthopedic Surgery, Seoul St Mary' s Hospital, Catholic Univ. of Korea, Seoul (Korea))

    2010-05-15

    Background: Fat-suppressed (FS) proton density (PD)-weighted magnetic resonance imaging (MRI) and FS three-dimensional (3D) gradient-echo imaging such as spoiled gradient-recalled (SPGR) sequence have been established as accurate methods for detecting articular cartilage defects. Purpose: To retrospectively compare the diagnostic efficacy between FS PD-weighted and FS 3D gradient-echo MRI for differentiating between grade 3 and grade 4 cartilage defects of the knee with arthroscopy as the standard of reference. Material and Methods: Twenty-one patients who had grade 3 or 4 cartilage defects in medial femoral condyle at arthroscopy and knee MRI were included in this study: grade 3, >50% cartilage defects; grade 4, full thickness cartilage defects exposed to the bone. Sagittal FS PD-weighted MR images and FS 3D gradient-echo images with 1.5 T MR images were independently graded for the cartilage abnormalities of medial femoral condyle by two musculoskeletal radiologists. Statistical analysis was performed by Fisher's exact test. Inter-observer agreement in grading of cartilage was assessed using ? coefficients. Results: Arthroscopy revealed grade 3 defects in 17 patients and grade 4 defects in 4 patients in medial femoral condyles. For FS 3D gradient-echo images grade 3 defects were graded as grade 3 (n=15) and grade 4 (n=2), and all grade 4 defects (n=4) were correctly graded. However, for FS PD-weighted MR images all grade 3 defects were misinterpreted as grade 1 (n=1) and grade 4 (n=16), whereas all grade 4 defects (n=4) were correctly graded. FS 3D gradient-echo MRI could differentiate grade 3 from grade 4 defects (P=0.003), whereas FS PD-weighted imaging could not (P=1.0). Inter-observer agreement was substantial (?=0.70) for grading of cartilage using FS PD-weighted imaging, whereas it was moderate (?=0.46) using FS 3D gradient-echo imaging. Conclusion: FS 3D gradient-echo MRI is more helpful for differentiating between grade 3 and grade 4 cartilage

  16. A new MRI grading system for chondromalacia patellae.

    Science.gov (United States)

    Özgen, Ali; Taşdelen, Neslihan; Fırat, Zeynep

    2017-04-01

    Background Chondromalacia patellae is a very common disorder. Although magnetic resonance imaging (MRI) is widely used to investigate patellar cartilage lesions, there is no descriptive MRI-based grading system for chondromalacia patellae. Purpose To propose a new MRI grading system for chondromalacia patellae with corresponding high resolution images which might be useful in precisely reporting and comparing knee examinations in routine daily practice and used in predicting natural course and clinical outcome of the patellar cartilage lesions. Material and Methods High resolution fat-saturated proton density (FS PD) images in the axial plane with corresponding T2 mapping images were reviewed. A detailed MRI grading system covering the deficiencies of the existing gradings has been set and presented on these images. Two experienced observers blinded to clinical data examined 44 knee MR images and evaluated patellar cartilage changes according to the proposed grading system. Inter- and intra-rater validity testing using kappa statistics were calculated. Results A descriptive and detailed grading system with corresponding FS PD and T2 mapping images has been presented. Inter-rater agreement was 0.80 (95% confidence interval [CI], 0.71-0.89). Intra-rater agreements were 0.83 (95% CI, 0.74-0.91) for observer A and 0.79 (95% CI, 0.70-0.88) for observer B (k-values). Conclusion We present a new MRI grading system for chondromalacia patellae with corresponding images and good inter- and intra-rater agreement which might be useful in reporting and comparing knee MRI examinations in daily practice and may also have the potential for using more precisely predicting prognosis and clinical outcome of the patients.

  17. Prognostic significance of multiple kallikreins in high-grade astrocytoma

    International Nuclear Information System (INIS)

    Drucker, Kristen L.; Gianinni, Caterina; Decker, Paul A.; Diamandis, Eleftherios P.; Scarisbrick, Isobel A.

    2015-01-01

    Kallikreins have clinical value as prognostic markers in a subset of malignancies examined to date, including kallikrein 3 (prostate specific antigen) in prostate cancer. We previously demonstrated that kallikrein 6 is expressed at higher levels in grade IV compared to grade III astrocytoma and is associated with reduced survival of GBM patients. In this study we determined KLK1, KLK6, KLK7, KLK8, KLK9 and KLK10 protein expression in two independent tissue microarrays containing 60 grade IV and 8 grade III astrocytoma samples. Scores for staining intensity, percent of tumor stained and immunoreactivity scores (IR, product of intensity and percent) were determined and analyzed for correlation with patient survival. Grade IV glioma was associated with higher levels of kallikrein-immunostaining compared to grade III specimens. Univariable Cox proportional hazards regression analysis demonstrated that elevated KLK6- or KLK7-IR was associated with poor patient prognosis. In addition, an increased percent of tumor immunoreactive for KLK6 or KLK9 was associated with decreased survival in grade IV patients. Kaplan-Meier survival analysis indicated that patients with KLK6-IR < 10, KLK6 percent tumor core stained < 3, or KLK7-IR < 9 had a significantly improved survival. Multivariable analysis indicated that the significance of these parameters was maintained even after adjusting for gender and performance score. These data suggest that elevations in glioblastoma KLK6, KLK7 and KLK9 protein have utility as prognostic markers of patient survival. The online version of this article (doi:10.1186/s12885-015-1566-5) contains supplementary material, which is available to authorized users

  18. Ability Of Mathematical Reasoning in SMK 10th Grade with LAPS- Heuristic using Performance Assessment

    Directory of Open Access Journals (Sweden)

    Aulia Nur Arivina

    2017-11-01

    Full Text Available The purposes of this research are: (1 Test the learning with LAPS-Heuristic model using performance assessment on 10th grade of Trigonometry material is complete, (2 to test the difference of students' mathematical reasoning ability on 10th grade of Trigonometry material between the learning model of LAPS-Heuristic using performance assessment, LAPS-Heuristic learning model with Expository learning model, (3 test the ability of mathematical reasoning with learning model of LAPS-Heuristik on Trigonometry material of SMK on 10th grade using performance assessment is increase. This is a quantitative research. The population is students of 10th grade of SMK 10 Semarang academic year 2016/2017 and the subject of research is selected by clustering random sampling. The results show that (1 Learning by model LAPS-Heuristic using performance assessment on 10th grade of Trigonometry material is complete (2 there are differences in students' mathematical reasoning ability on 10th grade of Trigonometry materials between LAPS-Heuristic learning model using performance assessment, LAPS-Heuristic learning model, and Expository learning model, (3 The ability of mathematical reasoning with learning model of LAPS-Heuristic on Trigonometry material of SMK class X using performance assessment increased.

  19. Maximization of the Thermoelectric Cooling of a Graded Peltier Device by Analytical Heat-Equation Resolution

    Science.gov (United States)

    Thiébaut, E.; Goupil, C.; Pesty, F.; D'Angelo, Y.; Guegan, G.; Lecoeur, P.

    2017-12-01

    Increasing the maximum cooling effect of a Peltier cooler can be achieved through material and device design. The use of inhomogeneous, functionally graded materials may be adopted in order to increase maximum cooling without improvement of the Z T (figure of merit); however, these systems are usually based on the assumption that the local optimization of the Z T is the suitable criterion to increase thermoelectric performance. We solve the heat equation in a graded material and perform both analytical and numerical analysis of a graded Peltier cooler. We find a local criterion that we use to assess the possible improvement of graded materials for thermoelectric cooling. A fair improvement of the cooling effect (up to 36%) is predicted for semiconductor materials, and the best graded system for cooling is described. The influence of the equation of state of the electronic gas of the material is discussed, and the difference in term of entropy production between the graded and the classical system is also described.

  20. A practical MRI grading system for osteoarthritis of the knee: Association with Kellgren–Lawrence radiographic scores

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hee-Jin, E-mail: parkhiji@gmail.com [Department of Radiology, Sungkyunkwan University School of Medicine, Kangbuk Samsung Hospital, #108 Pyung-dong, Jongno-gu, Seoul 110-746 (Korea, Republic of); Department of Radiology, Kangwon National University School of Medicine, Baengnyeong-ro 156, Chuncheon-Si, Gangwon-Do Kangwon National University Hospital 200-722 (Korea, Republic of); Kim, Sam Soo, E-mail: samskim@kangwon.ac.kr [Department of Radiology, Kangwon National University School of Medicine, Baengnyeong-ro 156, Chuncheon-Si, Gangwon-Do Kangwon National University Hospital 200-722 (Korea, Republic of); Lee, So-Yeon, E-mail: parkhiji@kwandong.ac.kr [Department of Radiology, Sungkyunkwan University School of Medicine, Kangbuk Samsung Hospital, #108 Pyung-dong, Jongno-gu, Seoul 110-746 (Korea, Republic of); Park, Noh-Hyuck, E-mail: nhpark904@kwandong.ac.kr [Department of Radiology, Myongji Hospital, Kwandong University, College of Medicine, 697-24 Hwajung-dong, Dukyang-ku, Koyang, Kyunggi 412-270 (Korea, Republic of); Park, Ji-Yeon, E-mail: zzzz3@hanmail.net [Department of Radiology, Myongji Hospital, Kwandong University, College of Medicine, 697-24 Hwajung-dong, Dukyang-ku, Koyang, Kyunggi 412-270 (Korea, Republic of); Choi, Yoon-Jung, E-mail: yoonchoi99@gmail.com [Department of Radiology, Sungkyunkwan University School of Medicine, Kangbuk Samsung Hospital, #108 Pyung-dong, Jongno-gu, Seoul 110-746 (Korea, Republic of); Jeon, Hyun-Jun, E-mail: ostrich-13@hanmail.net [Department of Occupational Medicine, Dongsan Medical Center, Keimyung University School of Medicine, 194 Dongsan-Dong, Jung-ku, Taegu (Korea, Republic of)

    2013-01-15

    Purpose: To propose a reproducible and constant MR grading system for osteoarthritis of the knee joint that provides high interobserver and intraoberver agreement and that does not require complicated calculation procedures. Materials and methods: This retrospective study sample included 44 men and 65 women who underwent both MRI and plain radiography of the knee at our institution. All patients were older than 50 years of age (mean 57.7) and had clinically suspected osteoarthritis of the knee. The standard of 4 grades on the MR grade scale was based mainly on cartilage injury and additional findings. Kellgren–Lawrence grades were assessed for the same patient group. The relationship between the results was determined. Statistical analyses were performed including kappa statistics, categorical regression analysis and nonparametric correlation analysis. Results: The interobserver and intraoberver agreements between the two readers in the grading of osteoarthritis were found to be almost perfect. Interobserver and intraobserver agreements were slightly lower for the MR grading system than for the Kellgren–Lawrence grading scale. The correlation between the MR grade and Kellgren–Lawrence grade was very high and did not differ with patient age. The MR grades were highly correlated with the Kellgren–Lawrence grades and showed excellent interobserver and intraobserver agreements. Conclusion: This new MR grading system for osteoarthritis of the knee joint is reproducible and may be helpful for the grading of osteoarthritis of the knee without requiring reference to plain radiography.

  1. A practical MRI grading system for osteoarthritis of the knee: Association with Kellgren–Lawrence radiographic scores

    International Nuclear Information System (INIS)

    Park, Hee-Jin; Kim, Sam Soo; Lee, So-Yeon; Park, Noh-Hyuck; Park, Ji-Yeon; Choi, Yoon-Jung; Jeon, Hyun-Jun

    2013-01-01

    Purpose: To propose a reproducible and constant MR grading system for osteoarthritis of the knee joint that provides high interobserver and intraoberver agreement and that does not require complicated calculation procedures. Materials and methods: This retrospective study sample included 44 men and 65 women who underwent both MRI and plain radiography of the knee at our institution. All patients were older than 50 years of age (mean 57.7) and had clinically suspected osteoarthritis of the knee. The standard of 4 grades on the MR grade scale was based mainly on cartilage injury and additional findings. Kellgren–Lawrence grades were assessed for the same patient group. The relationship between the results was determined. Statistical analyses were performed including kappa statistics, categorical regression analysis and nonparametric correlation analysis. Results: The interobserver and intraoberver agreements between the two readers in the grading of osteoarthritis were found to be almost perfect. Interobserver and intraobserver agreements were slightly lower for the MR grading system than for the Kellgren–Lawrence grading scale. The correlation between the MR grade and Kellgren–Lawrence grade was very high and did not differ with patient age. The MR grades were highly correlated with the Kellgren–Lawrence grades and showed excellent interobserver and intraobserver agreements. Conclusion: This new MR grading system for osteoarthritis of the knee joint is reproducible and may be helpful for the grading of osteoarthritis of the knee without requiring reference to plain radiography

  2. Anaplasia and grading in medulloblastomas.

    Science.gov (United States)

    Eberhart, Charles G; Burger, Peter C

    2003-07-01

    The variable clinical outcomes of medulloblastoma patients have prompted a search for markers with which to tailor therapies to individuals. In this review, we discuss clinical, histological and molecular features that can be used in such treatment customization, focusing on how histopathological grading can impact both patient care and research on the molecular basis of CNS embryonal tumors. Medulloblastomas span a histological spectrum ending in overtly malignant large cell/anaplastic lesions characterized by increased nuclear size, marked cytological anaplasia, and increased mitotic and apoptotic rates. These "high-grade" lesions make up approximately one quarter of medulloblastomas, and recur and metastasize more frequently than tumors lacking anaplasia. We believe anaplastic change represents a type of malignant progression common to many medulloblastoma subtypes and to other CNS embryonal lesions as well. Correlation of these histological changes with the accumulation of genetic events suggests a model for the histological and molecular progression of medulloblastoma.

  3. Gradings on simple Lie algebras

    CERN Document Server

    Elduque, Alberto

    2013-01-01

    Gradings are ubiquitous in the theory of Lie algebras, from the root space decomposition of a complex semisimple Lie algebra relative to a Cartan subalgebra to the beautiful Dempwolff decomposition of E_8 as a direct sum of thirty-one Cartan subalgebras. This monograph is a self-contained exposition of the classification of gradings by arbitrary groups on classical simple Lie algebras over algebraically closed fields of characteristic not equal to 2 as well as on some nonclassical simple Lie algebras in positive characteristic. Other important algebras also enter the stage: matrix algebras, the octonions, and the Albert algebra. Most of the presented results are recent and have not yet appeared in book form. This work can be used as a textbook for graduate students or as a reference for researchers in Lie theory and neighboring areas.

  4. Grading of quality assurance requirements

    International Nuclear Information System (INIS)

    1991-01-01

    The present Manual provides guidance and illustrative examples for applying a method by which graded quality assurance requirements may be determined and adapted to the items and services of a nuclear power plant in conformance with the requirements of the IAEA Nuclear Safety Standards (NUSS) Code and Safety Guides on quality assurance. The Manual replaces the previous publication IAEA-TECDOC-303 on the same subject. Various methods of grading quality assurance are available in a number of Member States. During the development of the present Manual it was not considered practical to attempt to resolve the differences between those methods and it was preferred to identify and benefit from the good practices available in all the methods. The method presented in this Manual deals with the aspects of management, documentation, control, verification and administration which affect quality. 1 fig., 4 tabs

  5. Grade Expectations: Rationality and Overconfidence

    Science.gov (United States)

    Magnus, Jan R.; Peresetsky, Anatoly A.

    2018-01-01

    Confidence and overconfidence are essential aspects of human nature, but measuring (over)confidence is not easy. Our approach is to consider students' forecasts of their exam grades. Part of a student's grade expectation is based on the student's previous academic achievements; what remains can be interpreted as (over)confidence. Our results are based on a sample of about 500 second-year undergraduate students enrolled in a statistics course in Moscow. The course contains three exams and each student produces a forecast for each of the three exams. Our models allow us to estimate overconfidence quantitatively. Using these models we find that students' expectations are not rational and that most students are overconfident, in agreement with the general literature. Less obvious is that overconfidence helps: given the same academic achievement students with larger confidence obtain higher exam grades. Female students are less overconfident than male students, their forecasts are more rational, and they are also faster learners in the sense that they adjust their expectations more rapidly. PMID:29375449

  6. Grade Expectations: Rationality and Overconfidence

    Directory of Open Access Journals (Sweden)

    Jan R. Magnus

    2018-01-01

    Full Text Available Confidence and overconfidence are essential aspects of human nature, but measuring (overconfidence is not easy. Our approach is to consider students' forecasts of their exam grades. Part of a student's grade expectation is based on the student's previous academic achievements; what remains can be interpreted as (overconfidence. Our results are based on a sample of about 500 second-year undergraduate students enrolled in a statistics course in Moscow. The course contains three exams and each student produces a forecast for each of the three exams. Our models allow us to estimate overconfidence quantitatively. Using these models we find that students' expectations are not rational and that most students are overconfident, in agreement with the general literature. Less obvious is that overconfidence helps: given the same academic achievement students with larger confidence obtain higher exam grades. Female students are less overconfident than male students, their forecasts are more rational, and they are also faster learners in the sense that they adjust their expectations more rapidly.

  7. ABALONE (HALIOTIS SQUAMATA ANESTHESIA WITH ETHANOL ON GRADING PROCESS

    Directory of Open Access Journals (Sweden)

    Fanni N.A.

    2018-02-01

    Full Text Available An abalone is a group of marine molluscs that have high economic value. To increase abalone production, such cultivation needs to be done considering that abalone production still dominating. However, there are still obstacles in the cultivation which is the high mortality rates on the grading process of juvenile abalone. The fatality occurs due to the traditional grading process by gouging abalone to separate abalone that is attached to the substrate. The use of ethanol as an anesthetic material is expected to minimize the mortality and increase the survival rate of abalone. In this study, the use of ethanol by 30 ml/L as an anesthetic material can separate the abalone from its substrate 447.67 seconds faster than the dose of 10 ml/L. However, the 30 ml/L dose also showed the lowest survival rate of 86.67%. The best recovery test is at 10 ml/L with the fastest recovery time of 143.33 seconds which has a high survival rate of 98.33%. The success of anesthesia by using ethanol in this study can also be done in the grading process of abalone seed and can minimize death due to the traditional grading process.

  8. Energy Education Materials Inventory

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    The two volumes of the Energy Education Materials Inventory (EEMI) comprise an annotated bibliography of widely available energy education materials and reference sources. This systematic listing is designed to provide a source book which will facilitate access to these educational resources and hasten the inclusion of energy-focused learning experiences in kindergarten through grade twelve. EEMI Volume II expands Volume I and contains items that have become available since its completion in May, 1976. The inventory consists of three major parts. A core section entitled Media contains titles and descriptive information on educational materials, categorized according to medium. The other two major sections - Grade Level and Subject - are cross indexes of the items for which citations appear in the Media Section. These contain titles categorized according to grade level and subject and show the page numbers of the full citations. The general subject area covered includes the following: alternative energy sources (wood, fuel from organic wastes, geothermal energy, nuclear power, solar energy, tidal power, wind energy); energy conservation, consumption, and utilization; energy policy and legislation, environmental/social aspects of energy technology; and fossil fuels (coal, natural gas, petroleum). (RWR)

  9. Development of Bi-Sb-Te ternary alloy with compositionally graded structure

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, A; Ohta, T

    1997-07-01

    Compositionally graded p-type Bi-Sb-Te thermoelectric material was synthesized by PIES (Pulverized and Intermixed Elements Sintering) method. The materials consisted of three segmented regions of different alloy composition, i.e., y = 0.8/0.825/0.9 in (Bi{sub 2}Te{sub 3}){sub 1{minus}y} (Sb{sub 2}Te{sub 3}){sub y} system. It was found that the electrical power output of the compositionally graded material was larger than that of the best single composition material when the temperature difference was the designed value.

  10. Measure of uncertainty in regional grade variability

    NARCIS (Netherlands)

    Tutmez, B.; Kaymak, U.; Melin, P.; Castillo, O.; Gomez Ramirez, E.; Kacprzyk, J.; Pedrycz, W.

    2007-01-01

    Because the geological events are neither homogeneous nor isotropic, the geological investigations are characterized by particularly high uncertainties. This paper presents a hybrid methodology for measuring of uncertainty in regional grade variability. In order to evaluate the fuzziness in grade

  11. Does the Compliance of the Bladder Affect the Grade of Vesicoureteral Reflux?

    Directory of Open Access Journals (Sweden)

    Ferhat Kilinc

    2013-10-01

    Full Text Available Aim: We retrospectively reviewed videourodynamic outcomes in children with primary vesicoureteral reflux. The aim of this study to evaluate the relationship between vesicoureteral reflux grade and bladder compliance. Material and Method: Videourodynamic traces of 53 children with primary vesicoureteral reflux investigated between January 2004 and January 2012 were reviewed. The detrusor pressures of the point when the reflux started were recorded. The detrusor pressures 10 cmH2O or less at that point was accepted as normal compliance (Group 1, the detrusor pressures more than10 cm H2O was accepted as hipocompliance (Group 2. The reflux grades were divided into two grades, low-grade reflux (grades 1 and 2, high-grade reflux (grades 3, 4 and 5. Data were analyzed using the chi-square test. Results: Patients’ ages ranged between 5 and 11 years (mean 7.09±1.81 years. Of the 53 patients, 29 (54.7% had normal compliance (Group 1, 24 (45.3% had hipocompliance (Group 2. Twenty-four (82.8% patients in-group 1 had a low-grade reflux, 5 (17.2% patients had a high-grade reflux. In group 2, 8 (33.3% patients had a low-grade reflux, 16 (66.7% patients had a high-grade reflux. The detected high-grade reflux in-group 2 was significantly higher than in-group 1 (p<0.001. Discussion: The physicians should be considering the bladder compliance at the point when the reflux started in primary vesicoureteral reflux cases. The bladder hipocompliance may play a secondary role in reflux grade.

  12. The grading management of the quality assurance

    International Nuclear Information System (INIS)

    Ma Xiaozheng; Han Shufang; Yu Bei; Tian Xuehang

    2009-01-01

    This paper introduces the quality assurance grading management of the items, services and technology process on nuclear power plants (nuclear island, conventional island, BOP), such as the requirements and aim in the related code, guide, technical document, the requirements for the related units, the grading principle and grading, the considering method for the differences of QA requirements of the each QA grand, as well as the status and propositions in the QA grading management in China. (authors)

  13. The pathologist's mean grade is constant and individualizes the prognostic value of bladder cancer grading.

    Science.gov (United States)

    van Rhijn, Bas W G; van Leenders, Geert J L H; Ooms, Bert C M; Kirkels, Wim J; Zlotta, Alexandre R; Boevé, Egbert R; Jöbsis, Adriaan C; van der Kwast, Theo H

    2010-06-01

    A new grading system for bladder cancer (BCa) was adopted in 2004 to reduce observer variability and provide better prognostic information. We compared the World Health Organization (WHO) 1973 and 2004 systems for observer variability and prognosis. Slides of 173 primary non-muscle-invasive BCa were reviewed two times by four pathologists. Intra- and interobserver variability were assessed using κ statistics. We determined the mean grade (eg, G1/low malignant potential is 1 grade point, G2/low grade is 2 grade points) of the pathologists per grading cycle. Kaplan-Meier analyses were applied for prediction of recurrence and progression. For WHO 2004 and 1973 grading, the agreement between the pathologists was 39-74% (κ: 0.14-0.58) and 39-64% (κ: 0.15-0.41), respectively. The intraobserver agreement varied from 71% to 88% (κ: 0.55-0.81). The mean grade of a pathologist was constant (difference below 0.1 grade point) irrespective of the grading system. Conversely, mean-grade differences among the pathologists were high, up to 0.7 grade point. The mean grades for the WHO 2004 system were 0.3-0.5 grade point higher than those of WHO 1973. Mean grade distinguished low and high graders among the pathologists and was strongly linked with risk of progression in each grade category. The variation in mean grade among individual pathologists exceeded the grade shift caused by WHO 2004 grading. Knowledge of the pathologist's mean grade allows a better assessment of the prognostic value of grading. Mean grade has the potential to become a tool for quality assurance in pathology. Copyright © 2009 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  14. Dictionary materials engineering, materials testing

    International Nuclear Information System (INIS)

    1994-01-01

    This dictionary contains about 9,500 entries in each part of the following fields: 1) Materials using and selection; 2) Mechanical engineering materials -Metallic materials - Non-metallic inorganic materials - Plastics - Composites -Materials damage and protection; 3) Electrical and electronics materials -Conductor materials - Semiconductors - magnetic materials - Dielectric materials - non-conducting materials; 4) Materials testing - Mechanical methods - Analytical methods - Structure investigation - Complex methods - Measurement of physical properties - Non-destructive testing. (orig.) [de

  15. Examining Text Complexity in the Early Grades

    Science.gov (United States)

    Fitzgerald, Jill; Elmore, Jeff; Hiebert, Elfrieda H.; Koons, Heather H.; Bowen, Kimberly; Sanford-Moore, Eleanor E.; Stenner, A. Jackson

    2016-01-01

    The Common Core raises the stature of texts to new heights, creating a hubbub. The fuss is especially messy at the early grades, where children are expected to read more complex texts than in the past. But early-grades teachers have been given little actionable guidance about text complexity. The authors recently examined early-grades texts to…

  16. Registration Patterns Under Two Different Grading Systems.

    Science.gov (United States)

    Remley, Audrey W.

    In the early 1960's, Westminster College adopted a new grading system, with the traditional grade levels of A, B, C, D, and F converted to DN (Distinction), HP (High Pass), P (Pass), and NC (No Credit). NC replaced both D and F of the old system, and grade point averages were abolished, in an effort to encourage students to register in more…

  17. Forecasting and recruitment in graded manpower systems

    NARCIS (Netherlands)

    van Nunen, J.A.E.E.; Wessels, J.

    1977-01-01

    In this paper a generalized Markov model is introduced to describe the dynamic behaviour of an individual employee in a graded Manpower system. Characteristics like the employee's grade, his educational level, his age and the time spent in his actual grade, can be incorporated in the Markov model.

  18. Demystify Learning Expectations to Address Grade Inflation

    Science.gov (United States)

    Hodges, Linda C.

    2014-01-01

    This article describes the subject of "grade inflation," a reference to educators giving higher grades to student work than their expectations for student achievement warrant. Of the many reasons why this practice happens, Hodges specifically discusses inflating grades as "a natural consequence" when the faculty really…

  19. Grade Inflation: An Issue for Higher Education?

    Science.gov (United States)

    Caruth, Donald L.; Caruth, Gail D.

    2013-01-01

    Grade inflation impacts university credibility, student courses of study, choices of institution, and other areas. There has been an upward shift in grades without a corresponding upward shift in knowledge gained. Some of the most frequently mentioned causes of grade inflation are: (1) student evaluations of professors; (2) student teacher…

  20. Does Education Corrupt? Theories of Grade Inflation

    Science.gov (United States)

    Oleinik, Anton

    2009-01-01

    Several theories of grade inflation are discussed in this review article. It is argued that grade inflation results from the substitution of criteria specific to the search for truth by criteria of quality control generated outside of academia. Particular mechanisms of the grade inflation that occurs when a university is transformed into a…

  1. CHARACTERIZATION OF METAL GRADES IN A STOCKPILE OF AN IRON MINE (CASE STUDY- CHOGHART IRON MINE, IRAN

    Directory of Open Access Journals (Sweden)

    Francesco Tinti

    2018-01-01

    Full Text Available In any mining operation due to the cut-off grade (economic criteria, materials classify into the ore and waste. The material with grade equal to or higher than the cut-off grade is considered as ore and the material with grade less than the cut-off grade is transported as wastes to the waste dumps. However, because of increasing metal demand, depleting of in situ ore reserves and so the reduction of cut-off grades for many metals, the mentioned waste dumps were considered as valuable ore reserves named stockpiles. In this paper, multivariate geostatistics was used to estimate the iron grades of two stockpiles following the sequential of piling procedures from the main source - the ore deposit - to the piling field. One stockpile is characterized by phosphorous concentration ((P % > 0.6 %, while the other by iron concentration ((Fe %< 50%. Since economic and physical constraints made sampling physically and economically problematic, the grade distribution and variability were estimated on the basis of primary blast-hole data from the main ore body and the mine’s long-term planning policy. A geostatistical model was applied to the excavated part of the iron deposit and the stockpile, by reconstructing ore selection, haulage and piling method. Results were validated through spatial variability of iron and phosphorous concentrations by comparing grade variability (Fe and P with mining and pilling units. This methodology allows characterizing the iron grades within stockpiles without any extra sampling.

  2. Disposal of Surplus Weapons Grade Plutonium

    International Nuclear Information System (INIS)

    Alsaed, H.; Gottlieb, P.

    2000-01-01

    The Office of Fissile Materials Disposition is responsible for disposing of inventories of surplus US weapons-usable plutonium and highly enriched uranium as well as providing, technical support for, and ultimate implementation of, efforts to obtain reciprocal disposition of surplus Russian plutonium. On January 4, 2000, the Department of Energy issued a Record of Decision to dispose of up to 50 metric tons of surplus weapons-grade plutonium using two methods. Up to 17 metric tons of surplus plutonium will be immobilized in a ceramic form, placed in cans and embedded in large canisters containing high-level vitrified waste for ultimate disposal in a geologic repository. Approximately 33 metric tons of surplus plutonium will be used to fabricate MOX fuel (mixed oxide fuel, having less than 5% plutonium-239 as the primary fissile material in a uranium-235 carrier matrix). The MOX fuel will be used to produce electricity in existing domestic commercial nuclear reactors. This paper reports the major waste-package-related, long-term disposal impacts of the two waste forms that would be used to accomplish this mission. Particular emphasis is placed on the possibility of criticality. These results are taken from a summary report published earlier this year

  3. Graded core/shell semiconductor nanorods and nanorod barcodes

    Science.gov (United States)

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2010-12-14

    Graded core/shell semiconductor nanorods and shaped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  4. Fracture toughness testing of a reactor grade graphite

    Energy Technology Data Exchange (ETDEWEB)

    Roeding, M.; Klein, G.; Schiffers, H.; Nickel, H.

    1976-03-15

    Fracture mechanics is a well established tool for the assessment of brittle fracture in metallic structural materials. In this paper an attempt is made to apply fracture mechanics to a reactor-grade graphite. The effect of several test parameters on the stress intensity factor was measured; this was found to lie in the range 25 and 50 N/mm/sup -3/2/. The results are discussed in terms of the well known mechanical characteristics of graphite.

  5. Standard specification for nuclear-grade beryllium oxide powder

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    This specification defines the physical and chemical requirements of nuclear-grade beryllium oxide (BeO) powder to be used in fabricating nuclear components. This specification does not include requirements for health and safety. It recognizes the material as a Class B poison and suggests that producers and users become thoroughly familiar with and comply to applicable federal, state and local regulations and handling guidelines. Special tests and procedures are given

  6. The Relationship of Grade Span in 9th Grade to Math Achievement in High School

    Science.gov (United States)

    West, John; Miller, Mary Lou; Myers, Jim; Norton, Timothy

    2015-01-01

    Purpose, Scope, and Method of Study: The purpose of this study was to determine if a correlation exists between grade span for ninth grade and gains in math achievement test scores in 10th grade and 12th grade. A quantitative, longitudinal, correlational research design was employed to investigate the research questions. The population was high…

  7. High grade glioma: Imaging combined with pathological grade defines management and predicts prognosis

    International Nuclear Information System (INIS)

    Burnet, Neil G.; Lynch, Andrew G.; Jefferies, Sarah J.; Price, Stephen J.; Jones, Phil H.; Antoun, Nagui M.; Xuereb, John H.; Pohl, Ute

    2007-01-01

    Introduction: There is ambiguity in pathological grading of high grade gliomas within the WHO 2000 classification, especially those with predominant oligodendroglial differentiation. Patients and methods: All adult high grade gliomas treated radically, 1996-2005, were assessed. Cases in which pathology was grade III but radiology suggested glioblastoma (GBM) were classified as 'grade III/IV'; their pathology was reviewed. Results: Data from 245 patients (52 grade III, 18 grade III/IV, 175 GBM) were analysed using a Cox Proportional Hazards model. On pathology review, features suggestive of more aggressive behaviour were found in all 18 grade III/IV tumours. Oligodendroglial components with both necrosis and microvascular proliferation were present in 7. MIB-1 counts for the last 8 were all above 14%, mean 27%. Median survivals were: grade III 34 months, grade III/IV 10 months, GBM 11 months. Survival was not significantly different between grade III/IV and GBM. Patients with grade III/IV tumours had significantly worse outcome than grade III, with a hazard of death 3.7 times higher. Conclusions: The results highlight the current inconsistency in pathological grading of high grade tumours, especially those with oligodendroglial elements. Patients with histological grade III tumours but radiological appearances suggestive of GBM should be managed as glioblastoma

  8. Association of Grade Configuration with School Climate for 7th and 8th Grade Students

    Science.gov (United States)

    Malone, Marisa; Cornell, Dewey; Shukla, Kathan

    2017-01-01

    Educational authorities have questioned whether middle schools provide the best school climate for 7th and 8th grade students, and proposed that other grade configurations such as K-8th grade schools may provide a better learning environment. The purpose of this study was to compare 7th and 8th grade students' perceptions of 4 key features of…

  9. Comparing Dropout Predictors for Two State-Level Panels Using Grade 6 and Grade 8 Data

    Science.gov (United States)

    Franklin, Bobby J.; Trouard, Stephen B.

    2016-01-01

    The purpose of this study was to examine the effectiveness of dropout predictors across time. Two state-level high school graduation panels were selected to begin with the seventh and ninth grades but end at the same time. The first panel (seventh grade) contained 29,554 students and used sixth grade predictors. The second panel (ninth grade)…

  10. Grade Inflation Marches On: Grade Increases from the 1990s to 2000s

    Science.gov (United States)

    Kostal, Jack W.; Kuncel, Nathan R.; Sackett, Paul R.

    2016-01-01

    Grade inflation threatens the integrity of college grades as indicators of academic achievement. In this study, we contribute to the literature on grade inflation by providing the first estimate of the size of grade increases at the student level between the mid-1990s and mid-2000s. By controlling for student characteristics and course-taking…

  11. The effect of various grading scales on student grade point averages.

    Science.gov (United States)

    Barnes, Kelli D; Buring, Shauna M

    2012-04-10

    To investigate changes in and the impact of grading scales from 2005 to 2010 and explore pharmacy faculty and student perceptions of whole-letter and plus/minus grading scales on cumulative grade point averages (GPAs) in required courses. Grading scales used in 2010 at the University of Cincinnati College of Pharmacy were retrospectively identified and compared to those used in 2005. Mean GPA was calculated using a whole-letter grading scale and a plus/minus grading scale to determine the impact of scales on GPA. Faculty members and students were surveyed regarding their perceptions of plus/minus grading. Nine unique grading scales were used throughout the curriculum, including plus/minus (64%) and whole-letter (21%) grading scales. From 2005 to 2010 there was transition from use of predominantly whole-letter scales to plus/minus grading scales. The type of grading scale used did not affect the mean cumulative GPA. Students preferred use of a plus-only grading scale while faculty members preferred use of a plus/minus grading scale. The transition from whole-letter grading to plus/minus grading in courses from 2005 to 2010 reflects pharmacy faculty members' perception that plus/minus grading allows for better differentiation between students' performances.

  12. The Materiality of Learning

    DEFF Research Database (Denmark)

    Sørensen, Estrid

    or postgraduate students interested in a variety of fields, including educational studies, educational psychology, social anthropology, and STS. Original ethnographic descriptions showing the fine details of how materials influence the learning process Introduces the advanced and complex Actor-Network Theory......The field of educational research lacks a methodology for the study of learning that does not begin with humans, their aims, and their interests. The Materiality of Learning seeks to overcome this human-centered mentality by developing a novel spatial approach to the materiality of learning....... Drawing on science and technology studies (STS), Estrid Sørensen compares an Internet-based 3D virtual environment project in a fourth-grade class with the class's work with traditional learning materials, including blackboards, textbooks, notebooks, pencils, and rulers. Taking into account pupils...

  13. Laparoscopic adrenalectomy: Gaining experience by graded approach

    Directory of Open Access Journals (Sweden)

    Dalvi Abhay

    2006-01-01

    Full Text Available INTRODUCTION: Laparoscopic adrenalectomy (LA has become a gold standard in management of most of the adrenal disorders. Though report on the first laparoscopic adrenalectomy dates back to 1992, there is no series of LA reported from India. Starting Feb 2001, a graded approach to LA was undertaken in our center. Till March 2006, a total of 34 laparoscopic adrenalectomies were performed with success. MATERIALS AND METHODS: The endocrinology department primarily evaluated all patients. Patients were divided into Group A - unilateral LA and Group B - bilateral LA (BLA. The indications in Group A were pheochromocytoma (n=7, Conn′s syndrome (n=3, Cushing′s adenoma (n=2, incidentaloma (n=2; and in Group B, Cushing′s disease (CD following failed trans-sphenoid pituitary surgery (n = 8; ectopic ACTH- producing Cushing′s syndrome (n=1 and congenital adrenal hyperplasia (CAH (n=1. The lateral transabdominal route was used. RESULTS: The age group varied from 12-54 years, with mean age of 28.21 years. Average duration of surgery in Group A was 166.43 min (40-270 min and 190 min (150- 310 min in Group B. Average blood loss was 136.93 cc (20-400 cc in Group A and 92.5 cc (40-260 cc in Group B. There was one conversion in each group. Mean duration of surgical stay was 1.8 days (1-3 days in Group A and 2.6 days (2-4 days in Group B. All the patients in both groups were cured of their illness. Three patients in Group B developed Nelson′s syndrome. The mean follow up was of 24.16 months (4-61 months. CONCLUSION: LA though technically demanding, is feasible and safe. Graded approach to LA is the key to success.

  14. Material Science

    Energy Technology Data Exchange (ETDEWEB)

    Won, Dong Yeon; Kim, Heung

    1987-08-15

    This book introduces material science, which includes key of a high-tech industry, new materials of dream like new metal material and semiconductor, classification of materials, microstructure of materials and characteristic. It mentions magic new materials such as shape memory alloy, fine ceramics, engineering fine ceramics, electronic ceramics, engineering plastic, glass, silicone conductor, optical fiber mixed materials and integrated circuit, challenge for new material and development of new materials.

  15. Material Science

    International Nuclear Information System (INIS)

    Won, Dong Yeon; Kim, Heung

    1987-08-01

    This book introduces material science, which includes key of a high-tech industry, new materials of dream like new metal material and semiconductor, classification of materials, microstructure of materials and characteristic. It mentions magic new materials such as shape memory alloy, fine ceramics, engineering fine ceramics, electronic ceramics, engineering plastic, glass, silicone conductor, optical fiber mixed materials and integrated circuit, challenge for new material and development of new materials.

  16. Materials and material testing

    International Nuclear Information System (INIS)

    Joergens, H.

    1978-01-01

    A review based on 105 literature quotations is given on the latest state of development in the steel sector and in the field of non-ferrous metals and plastics. The works quoted also include, preparation, working, welding including simulation methods, improvement of weldability, material mechanics (explanation of defects mechanisms by means of fracture mechanics), defect causes (corrosion, erosion, hydrogen influence), mechanical-technological and non-destructive material testing. Examples from the field of reactor building are also given within there topics. (IHOE) [de

  17. Materials Frontiers to Empower Quantum Computing

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Antoinette Jane [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sarrao, John Louis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Richardson, Christopher [Laboratory for Physical Sciences, College Park, MD (United States)

    2015-06-11

    This is an exciting time at the nexus of quantum computing and materials research. The materials frontiers described in this report represent a significant advance in electronic materials and our understanding of the interactions between the local material and a manufactured quantum state. Simultaneously, directed efforts to solve materials issues related to quantum computing provide an opportunity to control and probe the fundamental arrangement of matter that will impact all electronic materials. An opportunity exists to extend our understanding of materials functionality from electronic-grade to quantum-grade by achieving a predictive understanding of noise and decoherence in qubits and their origins in materials defects and environmental coupling. Realizing this vision systematically and predictively will be transformative for quantum computing and will represent a qualitative step forward in materials prediction and control.

  18. Grade control and the determination of ore reserves at a low-grade uranium mine

    International Nuclear Information System (INIS)

    Reid, J.A.F.; Robertson, B.

    1982-01-01

    In 1966 an intensive exploration programme was conducted by Rio Tinto South Africa Ltd, involving airborne and ground radiometric surveys, percussion and diamond drilling, and pilot-plant tests. This investigation established the presence of a large deposit of low-grade uranium that could be mined on a large scale by open-pitting. Soon after production started in June 1974, it was realized that the original presentation of the ore reserves did not give a true reflection of the orebody. A comparison between the estimates and the ore mined from reserve blocks over the period 1975 to 1977 showed that the reserve grades were over-optimistic. In 1977 Rio Tinto Zinc Consultants were commissioned to re-evaluate the ore reserves from exploration diamond-drill data with the help of The Centre de Geostatistique at Fontainebleau, France. A new global reserve using disjunctive kriging techniques was developed, and is now the long-term reserve used for planning purposes at the Roessing Mine. For short-term planning, ore-reserve data are replaced by information from an intermediate drilling programme and blast-hole assays if these are available. A computerized short-term planning system has been established that reconciles the ore mined against the reserve blocks, as well as a system by which composited blast-hole assays are analysed for grade-control purposes. Owing to the complexity of the orebody, additional monitoring is achieved by the scanning of each truckload of ore with a group of scintillation crystal heads that evaluate the material mined

  19. Thermal and mechanical stresses in a functionally graded thick sphere

    International Nuclear Information System (INIS)

    Eslami, M.R.; Babaei, M.H.; Poultangari, R.

    2005-01-01

    In this paper, a general solution for the one-dimensional steady-state thermal and mechanical stresses in a hollow thick sphere made of functionally graded material is presented. The temperature distribution is assumed to be a function of radius, with general thermal and mechanical boundary conditions on the inside and outside surfaces of the sphere. The material properties, except Poisson's ratio, are assumed to vary along the radius r according to a power law function. The analytical solution of the heat conduction equation and the Navier equation lead to the temperature profile, radial displacement, radial stress, and hoop stress as a function of radial direction

  20. Energy education resources: Kindergarten through 12th grade

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    Energy Education Resources: Kindergarten Through 12th Grade is published by the National Energy Information Center (NEIC) a service of the Energy Information Administration (EIA), to provide students, educators, and other information users, a list of generally available free or low-cost energy-related educational materials. Each entry includes the address, telephone number, and description of the organization and the energy-related materials available. Most of the entries also include Internet (Web) and electronic mail (E-Mail) addresses. Each entry is followed by a number, which is referenced in the subject index in the back of this book.

  1. In-service behavior of creep strength enhanced ferritic steels Grade 91 and Grade 92 – Part 1 parent metal

    International Nuclear Information System (INIS)

    Parker, Jonathan

    2013-01-01

    In creep strength enhanced ferritic steels, such as Grade 91 and Grade 92, control of both composition and heat treatment of the parent steel is necessary to avoid producing components which have creep strength below the minimum expected by applicable ASME and other International Codes. These efforts are required to ensure that the steel develops a homogeneous fully tempered martensitic microstructure, with the appropriate distribution of precipitates and the required dislocation substructure. In-service creep related problems with Grade 91 steel have been reported associated with factors such as incorrect microstructure and heat treatment, welded connections in headers and piping, dissimilar metal welds as well as the manufacture and performance of castings. Difficulties associated with remediation of in-service damage include challenges over detection and removal of damaged material as well as the selection and qualification of appropriate methodologies for repair. Since repeated heat treatment leads to continued tempering, and a potential degradation of properties, specific procedures for performing and then lifing repair welds are a key aspect of Asset Management. This paper presents a summary of in-service experience with Grade 91 steel and outlines approaches for repair welding. Highlights: ► The steel alloy known as Grade 91 is widely used to fabricate critical pressure part components. ► Designers favor Grade 91 because it provides superior elevated temperature strength at substantially lower cost than the austenitic stainless steels. ► Service experience has confirmed that early failures can occur. ► Life management solutions involved attention to detail at Purchase, during design and all stages of fabrication.

  2. Formation of helium induced nanostructure 'fuzz' on various tungsten grades

    International Nuclear Information System (INIS)

    Baldwin, M.J.; Doerner, R.P.

    2010-01-01

    The response of a variety of W material grades to nanostructure 'fuzz' formation is explored. W targets are exposed to He or D 2 -0.2He plasmas in PISCES-B at 900-1320 K to below sputter threshold He + ions of energy 25-60 eV for up to 2.2 x 10 4 s. SEM and XPS reveal nanoscopic reorganization of the W surface to a layer of 'fuzz' of porosity ∼90% as determined by a 'fuzz' removal/weight loss method. The variability of 'fuzz' growth is examined at 1120 K for 1 h durations: SR, SC and doped W grades - La 2 O 3 (1% wt.), Re (5% and 10% wt.), and TiC (1.5% wt.) developed 2-3 μm thick 'fuzz' layers, while a VPS grade developed a layer 4 μm thick. An RC grade revealed additional 'fuzz' at deep (>100 μm) grain boundaries. However, heat treatment up to 1900 K produced reintegration of 'fuzz' with the bulk and He release at ∼1000 K and ∼1400-1800 K due to depopulation from vacancy complexes.

  3. Get on Board the Underground Railroad: A Sample Unit for Fifth-Grade History Students.

    Science.gov (United States)

    Ferguson, Phyllis M.; Young, Terrell A.

    1996-01-01

    Reviews the materials and procedures used in a fifth-grade history unit on the Underground Railroad. The unit integrated a variety of teaching methods and materials making extensive use of historical literature, K-W-L (what we Know, what we Want to find out, what we Learned) charts, and activities aimed at different learning styles. (MJP)

  4. Is the Sky Falling? Grade Inflation and the Signaling Power of Grades.

    Science.gov (United States)

    Pattison, Evangeleen; Grodsky, Eric; Muller, Chandra

    2013-06-01

    Grades are the fundamental currency of our educational system; they signal academic achievement and non-cognitive skills to parents, employers, postsecondary gatekeepers, and students themselves. Grade inflation compromises the signaling value of grades, undermining their capacity to achieve the functions for which they are intended. We challenge the 'increases in grade point average' definition of grade inflation and argue that grade inflation must be understood in terms of the signaling power of grades. Analyzing data from four nationally representative samples, we find that in the decades following 1972: (a) grades have risen at high schools and dropped at four-year colleges, in general, and selective four-year institutions, in particular; and (b) the signaling power of grades has attenuated little, if at all.

  5. Leveraging comprehensive baseline datasets to quantify property variability in nuclear-grade graphites

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Mark C., E-mail: mark.carroll@inl.gov [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415-2213 (United States); Windes, William E.; Rohrbaugh, David T. [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415-2213 (United States); Strizak, Joseph P.; Burchell, Timothy D. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6088 (United States)

    2016-10-15

    Highlights: • An effort is underway to fully quantify the properties of nuclear-grade graphites. • Physical and mechanical properties of graphite are best characterized by distributions. • The Weibull distribution is most representative of graphite based on goodness-of-fit. • Fine-grained isomolded grades exhibit higher Weibull modulus values, indicative of more homogeneous properties. - Abstract: The full characterization of the physical and mechanical properties of candidate nuclear-grade graphites is highly dependent upon an understanding of the distribution of values that are inherent to graphite. Not only do the material properties of graphites vary considerably between grades owing to the raw materials sources, filler particle type and size, methods of compaction, and production process parameters, but variability is observed between billets of the same grade from a single batch and even across spatial positions within a single billet. Properly enveloping the expected properties of interest requires both a substantial amount of data to statistically capture this variability and a representative distribution capable of accurately describing the range of values. A two-parameter Weibull distribution is confirmed to be representative of the distribution of physical (density, modulus) and mechanical (compressive, flexure, and tensile strength) values in five different nuclear-grades of graphite. The fine-grained isomolded grades tend toward higher Weibull modulus and characteristic strength values, while the extruded grade being examined exhibits relatively large distributions in property values. With the number of candidate graphite specimens that can undergo full irradiation exposure and subsequent testing having limited feasibility with regard to economics and timely evaluations, a proper capture of the raw material variability in an unirradiated state can provide crucial supplementary resolution to the limited amount of available data on irradiated

  6. Processing of low-grade uranium ores

    International Nuclear Information System (INIS)

    Michel, P.

    1975-01-01

    Four types of low grade ores are studied. Low grade ores which must be extracted because they are enclosed in a normal grade deposit. Heap leaching is the processing method which is largely used. It allows to obtain solutions or preconcentrates which may be delivered at the nearest plant. Normal grade ores contained in a low amplitude deposit which can be processed using leaching as far as the operation does not need any large expensive equipment. Medium grade ores in medium amplitude deposits to which a simplified conventional process can be applied using fast heap leaching. Low grade ores in large deposits. The processing possibilities leading to use in place leaching are explained. The operating conditions of the method are studied (leaching agent, preparation of the ore deposit to obtain a good tightness with regard to the hydrological system and to have a good contact between ore and reagent) [fr

  7. Processing of low grade uranium ores

    International Nuclear Information System (INIS)

    Michel, P.

    1978-10-01

    Four types of low-grade ores are studied: (1) Low-grade ores that must be extracted because they are enclosed in a normal-grade deposit. Heap leaching is the processing method which is largely used. (2) Normal-grade ores contained in low-amplitude deposits. They can be processed using in-place leaching as far as the operation does not need any large and expensive equipment. (3) Medium-grade ores in medium-amplitude deposits. A simplified conventional process can be applied using fast heap leaching. (4) Low-grade ores in large deposits. The report explains processing possibilities leading in most cases to the use of in-place leaching. The operating conditions of this method are laid out, especially the selection of the leaching agents and the preparation of the ore deposit

  8. Influence of grade on the reliability of corroding pipelines

    International Nuclear Information System (INIS)

    Maes, M.A.; Dann, M.; Salama, M.M.

    2008-01-01

    This paper focuses on a comparative analysis of the reliability associated with the evolution of corrosion between normal and high-strength pipe material. The use of high strength steel grades such as X100 and X120 for high pressure gas pipeline in the arctic is currently being considered. To achieve this objective, a time-dependent reliability analysis using variable Y/T ratios in a multiaxial finite strain analysis of thin-walled pipeline is performed. This analysis allows for the consideration of longitudinal grooves and the presence of companion axial tension and bending loads. Limit states models are developed based on suitable strain hardening models for the ultimate behavior of corroded medium and high strength pipeline material. In an application, the evolution of corrosion is modeled in pipelines of different grades that have been subjected to an internal corrosion inspection after a specified time which allows for a Bayesian updating of long-term corrosion estimates and, hence, the derivation of annual probabilities of failure as a function of time. The effect of grade and Y/T is clearly demonstrated

  9. Micromechanics of Composite Materials

    CERN Document Server

    Dvorak, George

    2013-01-01

    This book presents a broad exposition of analytical and numerical methods for modeling composite materials, laminates, polycrystals and other heterogeneous solids, with emphasis on connections between material properties and responses on several length scales, ranging from the nano and microscales to the macroscale. Many new results and methods developed by the author are incorporated into a rich fabric of the subject, which has been explored by several researchers over the last 40 years.   The first  part of the book reviews anisotropic elasticity theory, and then it describes the frequently used procedures and theorems for bounding and estimating overall properties, local fields and energy changes in elastic inhomogeneities, heterogeneous media, fiber composites and functionally graded materials.  Those are caused by mechanical loads and by phase eigenstrains, such as thermal, transformation and inelastic strains, and also by cavities and cracks.    Worked examples show that the eigendeformations may...

  10. Materials and test methods

    International Nuclear Information System (INIS)

    Kasen, M.B.

    1984-01-01

    The industrial specification for production of the G-10CR grade of cryogenic high-pressure laminate has been revised and accepted by US manufacturers. The objective was to make the specification as generic as possible without adversely affecting performance and to add a material performance criteria to the specification. G-10CR and G-11CR products have been produced by five US industrial laminating forms. No significant differences in cryogenic mechanical properties were found among G-10CR material produced by these manufacturers. This indicates that the specifications are fulfilling their intended purpose. An efficient system for producing research materials for systematic screening of the parameters influencing cryogenic radiation resistance was devised. Laboratories in Japan and England have agreed to actively cooperate with NBS in further development of this system

  11. Using Cut-off grade isograms to delineate ore body and calculate parameter

    International Nuclear Information System (INIS)

    Yu Yongfeng; Zhu Xiaobing; Deng Yonghui

    2014-01-01

    Taking a uranium mine for an example, using cut-off grade isograms to achieve automatic delineation of ore body and calculation of parameters are explored. With center line of catalog sampling as baseline, the number of sampling and length of sampling constructing rectangular grid and grade as elevation value, isograms of cut-off grade were drawn, thus achieving the delineation of the ore body. Then, the other parameters of the ore body can be calculated. Compared with the traditional hand drawing method, the work efficiency was greatly improved, and the material inquiry was more convenient. (authors)

  12. Cost effective nuclear commercial grade dedication

    International Nuclear Information System (INIS)

    Maletz, J.J.; Marston, M.J.

    1991-01-01

    This paper describes a new computerized database method to create/edit/view specification technical data sheets (mini-specifications) for procurement of spare parts for nuclear facility maintenance and to develop information that could support possible future facility life extension efforts. This method may reduce cost when compared with current manual methods. The use of standardized technical data sheets (mini-specifications) for items of the same category improves efficiency. This method can be used for a variety of tasks, including: Nuclear safety-related procurement; Non-safety related procurement; Commercial grade item procurement/dedication; Evaluation of replacement items. This program will assist the nuclear facility in upgrading its procurement activities consistent with the recent NUMARC Procurement Initiative. Proper utilization of the program will assist the user in assuring that the procured items are correct for the applications, provide data to assist in detecting fraudulent materials, minimize human error in withdrawing database information, improve data retrievability, improve traceability, and reduce long-term procurement costs

  13. MRI differentiation of low-grade from high-grade appendicular chondrosarcoma

    International Nuclear Information System (INIS)

    Douis, Hassan; Singh, Leanne; Saifuddin, Asif

    2014-01-01

    To identify magnetic resonance imaging (MRI) features which differentiate low-grade chondral lesions (atypical cartilaginous tumours/grade 1 chondrosarcoma) from high-grade chondrosarcomas (grade 2, grade 3 and dedifferentiated chondrosarcoma) of the major long bones. We identified all patients treated for central atypical cartilaginous tumours and central chondrosarcoma of major long bones (humerus, femur, tibia) over a 13-year period. The MRI studies were assessed for the following features: bone marrow oedema, soft tissue oedema, bone expansion, cortical thickening, cortical destruction, active periostitis, soft tissue mass and tumour length. The MRI-features were compared with the histopathological tumour grading using univariate, multivariate logistic regression and receiver operating characteristic curve (ROC) analyses. One hundred and seventy-nine tumours were included in this retrospective study. There were 28 atypical cartilaginous tumours, 79 grade 1 chondrosarcomas, 36 grade 2 chondrosarcomas, 13 grade 3 chondrosarcomas and 23 dedifferentiated chondrosarcomas. Multivariate analysis demonstrated that bone expansion (P = 0.001), active periostitis (P = 0.001), soft tissue mass (P < 0.001) and tumour length (P < 0.001) were statistically significant differentiating factors between low-grade and high-grade chondral lesions with an area under the ROC curve of 0.956. On MRI, bone expansion, active periostitis, soft tissue mass and tumour length can reliably differentiate high-grade chondrosarcomas from low-grade chondral lesions of the major long bones. (orig.)

  14. MRI differentiation of low-grade from high-grade appendicular chondrosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Douis, Hassan; Singh, Leanne; Saifuddin, Asif [The Royal National Orthopaedic Hospital NHS Trust, Department of Radiology, Stanmore, Middlesex (United Kingdom)

    2014-01-15

    To identify magnetic resonance imaging (MRI) features which differentiate low-grade chondral lesions (atypical cartilaginous tumours/grade 1 chondrosarcoma) from high-grade chondrosarcomas (grade 2, grade 3 and dedifferentiated chondrosarcoma) of the major long bones. We identified all patients treated for central atypical cartilaginous tumours and central chondrosarcoma of major long bones (humerus, femur, tibia) over a 13-year period. The MRI studies were assessed for the following features: bone marrow oedema, soft tissue oedema, bone expansion, cortical thickening, cortical destruction, active periostitis, soft tissue mass and tumour length. The MRI-features were compared with the histopathological tumour grading using univariate, multivariate logistic regression and receiver operating characteristic curve (ROC) analyses. One hundred and seventy-nine tumours were included in this retrospective study. There were 28 atypical cartilaginous tumours, 79 grade 1 chondrosarcomas, 36 grade 2 chondrosarcomas, 13 grade 3 chondrosarcomas and 23 dedifferentiated chondrosarcomas. Multivariate analysis demonstrated that bone expansion (P = 0.001), active periostitis (P = 0.001), soft tissue mass (P < 0.001) and tumour length (P < 0.001) were statistically significant differentiating factors between low-grade and high-grade chondral lesions with an area under the ROC curve of 0.956. On MRI, bone expansion, active periostitis, soft tissue mass and tumour length can reliably differentiate high-grade chondrosarcomas from low-grade chondral lesions of the major long bones. (orig.)

  15. Multiparametric analysis of magnetic resonance images for glioma grading and patient survival time prediction

    International Nuclear Information System (INIS)

    Garzon, Benjamin; Emblem, Kyrre E.; Mouridsen, Kim; Nedregaard, Baard; Due-Toennessen, Paulina; Nome, Terje; Hald, John K.; Bjoernerud, Atle; Haaberg, Asta K.; Kvinnsland, Yngve

    2011-01-01

    Background. A systematic comparison of magnetic resonance imaging (MRI) options for glioma diagnosis is lacking. Purpose. To investigate multiple MR-derived image features with respect to diagnostic accuracy in tumor grading and survival prediction in glioma patients. Material and Methods. T1 pre- and post-contrast, T2 and dynamic susceptibility contrast scans of 74 glioma patients with histologically confirmed grade were acquired. For each patient, a set of statistical features was obtained from the parametric maps derived from the original images, in a region-of-interest encompassing the tumor volume. A forward stepwise selection procedure was used to find the best combinations of features for grade prediction with a cross-validated logistic model and survival time prediction with a cox proportional-hazards regression. Results. Presence/absence of enhancement paired with kurtosis of the FM (first moment of the first-pass curve) was the feature combination that best predicted tumor grade (grade II vs. grade III-IV; median AUC 0.96), with the main contribution being due to the first of the features. A lower predictive value (median AUC = 0.82) was obtained when grade IV tumors were excluded. Presence/absence of enhancement alone was the best predictor for survival time, and the regression was significant (P < 0.0001). Conclusion. Presence/absence of enhancement, reflecting transendothelial leakage, was the feature with highest predictive value for grade and survival time in glioma patients

  16. Multiparametric analysis of magnetic resonance images for glioma grading and patient survival time prediction

    Energy Technology Data Exchange (ETDEWEB)

    Garzon, Benjamin (Dept. of Circulation and Medical Imaging, NTNU, Trondheim (Norway)), email: benjamin.garzon@ntnu.no; Emblem, Kyrre E. (The Interventional Center, Rikshospitalet, Oslo Univ. Hospital, Oslo (Norway); Dept. of Radiology, MGH-HST AA Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston (United States)); Mouridsen, Kim (Center of Functionally Integrative Neuroscience, Aarhus Univ., Aarhus (Denmark)); Nedregaard, Baard; Due-Toennessen, Paulina; Nome, Terje; Hald, John K. (Dept. of Radiology and Nuclear Medicine, Rikshospitalet, Oslo Univ. Hospital, Oslo (Norway)); Bjoernerud, Atle (The Interventional Center, Rikshospitalet, Oslo Univ. Hospital, Oslo (Norway)); Haaberg, Asta K. (Dept. of Circulation and Medical Imaging, NTNU, Trondheim (Norway); Dept. of Medical Imaging, St Olav' s Hospital, Trondheim (Norway)); Kvinnsland, Yngve (NordicImagingLab, Bergen (Norway))

    2011-11-15

    Background. A systematic comparison of magnetic resonance imaging (MRI) options for glioma diagnosis is lacking. Purpose. To investigate multiple MR-derived image features with respect to diagnostic accuracy in tumor grading and survival prediction in glioma patients. Material and Methods. T1 pre- and post-contrast, T2 and dynamic susceptibility contrast scans of 74 glioma patients with histologically confirmed grade were acquired. For each patient, a set of statistical features was obtained from the parametric maps derived from the original images, in a region-of-interest encompassing the tumor volume. A forward stepwise selection procedure was used to find the best combinations of features for grade prediction with a cross-validated logistic model and survival time prediction with a cox proportional-hazards regression. Results. Presence/absence of enhancement paired with kurtosis of the FM (first moment of the first-pass curve) was the feature combination that best predicted tumor grade (grade II vs. grade III-IV; median AUC 0.96), with the main contribution being due to the first of the features. A lower predictive value (median AUC = 0.82) was obtained when grade IV tumors were excluded. Presence/absence of enhancement alone was the best predictor for survival time, and the regression was significant (P < 0.0001). Conclusion. Presence/absence of enhancement, reflecting transendothelial leakage, was the feature with highest predictive value for grade and survival time in glioma patients

  17. Peer Victimization in Fifth Grade and Health in Tenth Grade

    Science.gov (United States)

    Elliott, Marc N.; Klein, David J.; Tortolero, Susan R.; Mrug, Sylvie; Peskin, Melissa F.; Davies, Susan L.; Schink, Elizabeth T.; Schuster, Mark A.

    2014-01-01

    BACKGROUND AND OBJECTIVES: Children who experience bullying, a type of peer victimization, show worse mental and physical health cross-sectionally. Few studies have assessed these relationships longitudinally. We examined longitudinal associations of bullying with mental and physical health from elementary to high school, comparing effects of different bullying histories. METHODS: We analyzed data from 4297 children surveyed at 3 time points (fifth, seventh, and tenth grades) in 3 cities. We used multivariable regressions to test longitudinal associations of bullying with mental and physical health by comparing youth who experienced bullying in both the past and present, experienced bullying in the present only, experienced bullying in the past only, or did not experience bullying. RESULTS: Bullying was associated with worse mental and physical health, greater depression symptoms, and lower self-worth over time. Health was significantly worse for children with both past and present bullying experiences, followed by children with present-only experiences, children with past-only experiences, and children with no experiences. For example, 44.6% of children bullied in both the past and present were at the lowest decile of psychosocial health, compared with 30.7% of those bullied in the present only (P = .005), 12.1% of those bullied in the past only (P bullied (P bullying are associated with substantially worse health. Clinicians who recognize bullying when it first starts could intervene to reverse the downward health trajectory experienced by youth who are repeated targets. PMID:24534401

  18. From Russian weapons grade plutonium to MOX fuel

    International Nuclear Information System (INIS)

    Braehler, G.; Kudriavtsev, E.G.; Seyve, C.

    1997-01-01

    The April 1996, G7 Moscow Summit on nuclear matters provided a political framework for one of the most current significant challenges: ensuring a consistent answer to the weapons grade fissile material disposition issue resulting from the disarmament effort engaged by both the USA and Russia. International technical assessments have showed that the transformation of Weapons grade Plutonium in MOX fuel is a very efficient, safe, non proliferant and economically effective solution. In this regard, COGEMA and SIEMENS, have set up a consistent technical program properly addressing incineration of weapons grade plutonium in MOX fuels. The leading point of this program would be the construction of a Weapons grade Plutonium dedicated MOX fabrication plant in Russia. Such a plant would be based on the COGEMA-SIEMENS industrial capabilities and experience. This facility would be operated by MINATOM which is the partner for COGEMA-SIEMENS. MINATOM is in charge of coordination of the activity of the Russian research and construction institutes. The project take in account international standards for non-proliferation, safety and waste management. France and Germany officials reasserted this position during their last bilateral summits held in Fribourg in February and in Dijon in June 1996. MINATOM and the whole Russian nuclear community have already expressed their interest to cooperate with COGEMA-SIEMENS in the MOX field. This follows governmental-level agreements signed in 1992 by French, German and Russian officials. For years, Russia has been dealing with research and development on MOX fabrication and utilization. So, the COGEMA-SIEMENS MOX proposal gives a realistic answer to the management of weapons grade plutonium with regard to the technical, industrial, cost and schedule factors. (author)

  19. Semisolid forming of S48C steel grade

    Science.gov (United States)

    Plata, Gorka; Lozares, Jokin; Azpilgain, Zigor; Hurtado, Iñaki; Loizaga, Iñigo; Idoyaga, Zuriñe

    2017-10-01

    Steel production and component manufacturing industries have to face the challenge of globalization, trying to overcome the economic pressure to remain competitive. Moreover, the lightweighting trend of the latter years implies an even higher challenge to maintain the steel use. Therefore, advanced manufacturing processes will be the cornerstone. In this field, Semisolid forming (SSF) has demonstrated the capability of obtaining complex geometries and saving raw material and energy. Despite it is complicated the SSF of sound components, in Mondragon Unibertsitatea it has been successfully demonstrated the capability of producing strong enough automotive components with 42CrMo4 steel grade. In this work, we demonstrate the capability of SSF S48C steel grade with great mechanical properties.

  20. Vibration analysis of a functionally graded piezoelectric cylindrical actuator

    International Nuclear Information System (INIS)

    Zhang, T T; Shi, Z F; Spencer, B F Jr

    2008-01-01

    This paper focuses on the response of a functionally graded piezoelectric cylindrical actuator placed in a harmonic electric field based on elastic membrane theory and shell theory. The actuator is polarized in the radial direction with its piezoelectric coefficient d 31 varying linearly along the axial direction. In the present investigation, non-dimensional expressions are introduced, and analytical solutions for this class of actuator are obtained. The results provided in the present study are compared with other investigations, with good agreement being found. The major differences between a functionally graded actuator and an actuator with homogeneous material properties are identified, and the advantages of the former are demonstrated. In the last section of this paper, limitations of membrane theory and shell theory models are discussed

  1. Thermal emission characteristics of a graded index semitransparent medium

    International Nuclear Information System (INIS)

    Huang Yong; Dong Sujun; Yang Min; Wang Jun

    2008-01-01

    This paper develops a numerical model for thermal radiative transfer in a two-dimensional semitransparent graded index medium. A piecewise continuous refractive index model, the linear refractive index bar model, is presented. This model is established based on three hypotheses, and has a higher precision than the bar model used previously. This paper also studies the thermal emission from a two-dimensional graded index medium, which is scattering or non-scattering. We find that it can present an obvious pattern of directional distribution at times. The refractive index distribution and absorption coefficient are the two main influential factors. This finding differs from the common belief that thermal sources, such as the incandescent filament of a light bulb, emit a quasi-isotropic light. The finding also suggests that there maybe other important applications of artificial GRIN materials

  2. Optical materials

    International Nuclear Information System (INIS)

    Poker, D.B.; Ortiz, C.

    1989-01-01

    This book reports on: Diamond films, Synthesis of optical materials, Structure related optical properties, Radiation effects in optical materials, Characterization of optical materials, Deposition of optical thin films, and Optical fibers and waveguides

  3. What's in a Grade? Grading Policies and Practices in Principles of Economics

    Science.gov (United States)

    Walstad, William B.; Miller, Laurie A.

    2016-01-01

    Survey results from a national sample of economics instructors describe the grading policies and practices in principles of economics courses. The survey results provide insights about absolute and relative grading systems used by instructors, the course components and their weights that determine grades, and the type of assessment items used for…

  4. [Reproducibility of Fuhrman nuclear grade: advantages of a two-grade system].

    Science.gov (United States)

    Letourneux, Hervé; Lindner, Véronique; Lang, Hervé; Massfelder, Thierry; Meyer, Nicolas; Saussine, Christian; Jacqmin, Didier

    2006-06-01

    The Fuhrman nuclear grade is the reference histoprognostic grading system routinely used all over the world for renal cell carcinoma. Studies measuring the inter-observer and intra-observer concordance of Fuhrman grade show poor results in terms of reproducibility and repeatability. These variations are due to a certain degree of subjectivity of the pathologist in application of the definition of tumour grade, particularly nuclear grade. Elements able to account for this subjectivity in renal cell carcinoma are identified from a review of the literature. To improve the reliability of nuclear grade, the territory occupied by the highest grade must be specified and the grades should probably be combined. At the present time, regrouping of grade 1 and 2 tumours as low grade and grade 3 and 4 tumours as high grade would achieve better reproducibility, while preserving the prognostic: value for overall survival. The development of new treatment modalities and their use in adjuvant situations will imply the use of reliable histoprognostic factors to specify, indications.

  5. Teachers grading practices : an analysis of the reliability of teacher-assigned grade point average (GPA)

    NARCIS (Netherlands)

    van der Lans, R. M.; van de Grift, W. J. C. M.; van Veen, K.

    2015-01-01

    In previous research, teachers report that they use a hodgepodge of factors when grading students. This has led researchers to suspect that teacher-assigned grades are inflated by teacher-student interactions; the hodgepodge hypothesis. Teachers also are reported to differ in grading leniency; the

  6. The Impact of Early Exposure of Eighth Grade Math Standards on End of Grade Assessments

    Science.gov (United States)

    Robertson, Tonjai E.

    2016-01-01

    The purpose of this study was to examine the Cumberland County Schools district-wide issue surrounding the disproportional performance of eighth grade Math I students' proficiency scores on standardized end-of-grade and end-of-course assessments. The study focused on the impact of the school district incorporating eighth grade math standards in…

  7. Are Flunkers Social Outcasts? A Multilevel Study of Grade Retention Effects on Same-Grade Friendships

    Science.gov (United States)

    Demanet, Jannick; Van Houtte, Mieke

    2016-01-01

    We examine the association between grade retention and the number of same-grade friendships. Moreover, we investigate the effect of a school's proportion of retained students on these friendships and the moderating effect of this school characteristic on the relationship between retention and the number of same-grade friendships. Multilevel…

  8. Fifth Grade Elementary Students' Conceptions of Earthquakes

    Science.gov (United States)

    Savasci, Funda; Uluduz, Hatice

    2013-01-01

    This study intends to investigate the fifth grade students' conceptions of earthquakes. Twenty two grade 5 students (11-12 years old) from five different elementary schools in Istanbul voluntarily participated in the study. Data were collected from semi-structured interviews with each participant. Six interview questions were designed by…

  9. Matriculation Research Report: Incomplete Grades; Data & Analysis.

    Science.gov (United States)

    Gerda, Joe

    The policy on incomplete grades at California's College of the Canyons states that incompletes may only be given under circumstances beyond students' control and that students must make arrangements with faculty prior to the end of the semester to clear the incomplete. Failure to complete an incomplete may result in an "F" grade. While…

  10. The Leap into 4th Grade

    Science.gov (United States)

    Anderson, Mike

    2011-01-01

    Fourth grade is a pivotal year, in which students commonly face increased academic demands. According to Anderson, teachers can help students make a smooth transition to 4th grade by introducing these new challenges in ways that are in line with 4th graders' common developmental characteristics: incredible energy and emotion, industriousness and…

  11. Bruxism defined and graded: an international consensus

    NARCIS (Netherlands)

    Lobbezoo, F.; Ahlberg, J.; Glaros, A.G.; Kato, T.; Koyano, K.; Lavigne, G.J.; de Leeuw, R.; Manfredini, D.; Svensson, P.; Winocur, E.

    2013-01-01

    To date, there is no consensus about the definition and diagnostic grading of bruxism. A written consensus discussion was held among an international group of bruxism experts as to formulate a definition of bruxism and to suggest a grading system for its operationalisation. The expert group defined

  12. Perceptions of restaurateurs on quality grading

    Directory of Open Access Journals (Sweden)

    Joseph Roberson

    2014-01-01

    Full Text Available A restaurateur's strategic focus is to maximise wealth for the owner(s. To achieve wealth maximisation, a restaurateur could implement one or more of the following strategies: focus strategy, cost-leadership strategy and/or differentiation strategy. A management intervention a restaurateur could implement to achieve this is quality differentiation. Grading of an establishment will assist a restaurateur in becoming a market leader. Currently there no national restaurant grading system exists in South Africa. As support and participation of restaurateurs in any future quality grading system are essential, it is imperative to test their perceptions of the implementation of a quality grading scale. The aim of this paper is to gather the perceptions of restaurateurs of an envisaged scale that could be used to grade independent full-service restaurants. In this study the researcher tested the perceptions of restaurateurs using nine possible outcomes of implementing quality grading in the independent fullservice restaurant segment. The outcomes to be tested were presented to restaurateurs in a questionnaire uploaded on "survey monkey". This was emailed to 3 286 restaurateurs and 265 responses were received. Respondents who were positive regarding grading indicated that they were enthusiastic about the impact grading would have on international tourism, as well as the fact that it could contribute to an increase in the value of their establishments.

  13. 7 CFR 51.2556 - Grades.

    Science.gov (United States)

    2010-01-01

    ... Standards for Grades of Shelled Pistachio Nuts § 51.2556 Grades. (a) “U.S. Fancy,” “U.S. Extra No. 1,” and “U.S. No. 1” consist of pistachio kernels which meet the following requirements: (1) Well dried, or...

  14. Contraction of graded su(2) algebra

    International Nuclear Information System (INIS)

    Patra, M.K.; Tripathy, K.C.

    1989-01-01

    The Inoenu-Wigner contraction scheme is extended to Lie superalgebras. The structure and representations of extended BRS algebra are obtained from contraction of the graded su(2) algebra. From cohomological consideration, we demonstrate that the graded su(2) algebra is the only superalgebra which, on contraction, yields the full BRS algebra. (orig.)

  15. What's ahead in automated lumber grading

    Science.gov (United States)

    D. Earl Kline; Richard Conners; Philip A. Araman

    1998-01-01

    This paper discusses how present scanning technologies are being applied to automatic lumber grading. The presentation focuses on 1) what sensing and scanning devices are needed to measure information for accurate grading feature detection, 2) the hardware and software needed to efficiently process this information, and 3) specific issues related to softwood lumber...

  16. Liberal Grading Improves Evaluations But Not Performance.

    Science.gov (United States)

    Vasta, Ross; Sarmiento, Robert F.

    Two grading distributions--a liberal and a more stringent curve--were compared between two sections of an undergraduate psychology course. The two classes were team taught and treated as similarly as possible. Four unit exams and an optional final were administered, with one section consistently receiving a more lenient grade distribution. No…

  17. Examining First Grade Teachers' Handwriting Instruction

    Science.gov (United States)

    Arslan, Derya

    2012-01-01

    The purpose of this study is to examine the first grade teachers' practices of handwriting instructions in terms of teaching, evaluation and handwriting difficulties. From qualitative research patterns, phenomenology was used. The study was applied to the 54 First grade teachers who work at central Burdur and Burdur county centre primary education…

  18. Extrauterine Low-Grade Endometrial Stromal Sarcoma

    Directory of Open Access Journals (Sweden)

    Yu-Ju Chen

    2005-12-01

    Conclusions: Low-grade endometrial stromal sarcoma typically has an indolent clinical course and favorable prognosis. Surgical resection is the primary therapeutic approach, and adjuvant therapy with radiotherapy, chemotherapy, or progesterone therapy should be considered for the management of residual or recurrent low-grade endometrial stromal sarcomas.

  19. Grade Repetition in Queensland State Prep Classes

    Science.gov (United States)

    Anderson, Robyn

    2012-01-01

    The current study considers grade repetition rates in the early years of schooling in Queensland state schools with specific focus on the pre-schooling year, Prep. In particular, it provides empirical evidence of grade repetition in Queensland state schools along with groups of students who are more often repeated. At the same time, much of the…

  20. Consumer Preference for Graded Maple Syrup

    Science.gov (United States)

    Paul E. Sendak

    1978-01-01

    The three grades of maple syrup and a commercial table syrup containing artificial flavor and 3 percent pure maple syrup were evaluated by 1,018 women in four cities. The results indicate that differences in preference for flavor are related to how close the respondents are to a maple syrup-production region. Differences in preference among grades of pure maple syrup...

  1. Determinants of College Grade Point Averages

    Science.gov (United States)

    Bailey, Paul Dean

    2012-01-01

    Chapter 2: The Role of Class Difficulty in College Grade Point Averages. Grade Point Averages (GPAs) are widely used as a measure of college students' ability. Low GPAs can remove a students from eligibility for scholarships, and even continued enrollment at a university. However, GPAs are determined not only by student ability but also by the…

  2. Grading sugar pine saw logs in trees.

    Science.gov (United States)

    John W. Henley

    1972-01-01

    Small limbs and small overgrown limbs cause problems when grading saw logs in sugar pine trees. Surface characteristics and lumber recovery information for 426 logs from 64 sugar pine trees were examined. Resulting modifications in the grading specification that allow a grader to ignore small limbs and small limb indicators do not appear to decrease the performance of...

  3. Strategic Materials

    National Research Council Canada - National Science Library

    Buhler, Carl; Burke, Adrian; Davis, Kirk; Gerhard, Michelle; Heil, Valerie; Hulse, Richard; Kwong, Ralph; Mahoney, Michael; Moran, Scott; Peek, Michael

    2006-01-01

    Some materials possess greater value than others. Materials that provide essential support for the nation's economic viability or enable critical military capabilities warrant special attention in security studies...

  4. Mode Shape Analysis of Multiple Cracked Functionally Graded Timoshenko Beams

    Directory of Open Access Journals (Sweden)

    Tran Van Lien

    Full Text Available Abstract The present paper addresses free vibration of multiple cracked Timoshenko beams made of Functionally Graded Material (FGM. Cracks are modeled by rotational spring of stiffness calculated from the crack depth and material properties vary according to the power law throughout the beam thickness. Governing equations for free vibration of the beam are formulated with taking into account actual position of the neutral plane. The obtained frequency equation and mode shapes are used for analysis of the beam mode shapes in dependence on the material and crack parameters. Numerical results validate usefulness of the proposed herein theory and show that mode shapes are good indication for detecting multiple cracks in Timoshenko FGM beams.

  5. Kinder Lernen Deutsch. Materials Project Part I. Revised.

    Science.gov (United States)

    American Association of Teachers of German.

    The Kinder Lernen Deutsch (LKD) materials evaluation project identifies materials appropriate for the elementary school German classrooms in grades K-8. This guide consists of an annotated bibliography, with ratings, of these materials. The guiding principles by which the materials were assessed were: use of the communicative approach; integration…

  6. Performance Analysis of Functionally Graded Coatings in Contact with Cylindrical Rollers

    Directory of Open Access Journals (Sweden)

    Reza Jahedi

    2015-01-01

    Full Text Available This work presents finite element analysis (FEA and results for rolling contact of a cylindrical roller on an elastic substrate coated by functionally graded material (FGM. The rolling process and the graded coating material property and layers arrangement are modeled using finite element codes which lead to a new methodology. This novel methodology provides a trend in determining surface contact stresses, deformations, contact zones, and energy dissipation through the contact area. Effects of stiffness ratio, friction, and exponentially variation of material property on the contact stresses and deformations are studied. Some of the results are verified with analytical solutions. The study results may be beneficial in graded coated cylindrical components analysis against rolling contact failure and wear.

  7. Graded activity: legacy of the sanatorium.

    Science.gov (United States)

    Creighton, C

    1993-08-01

    Occupational therapists in all areas of practice grade therapeutic activities to help patients progress toward their goals. It is proposed in this paper that the concept of graded activity originated in German tuberculosis sanatoria in the late 1800s, when patients were required to walk on graded (sloped) land for exercise. British physician Marcus Paterson included work, as well as walking, in his graduated exercise program for tuberculosis patients and was honored for this innovation at the founding meeting of the National Society for the Promotion of Occupational Therapy (NSPOT). George Barton, Susan Tracy, and Herbert Hall were among the NSPOT members who contributed to the development of graded activity as a principle in occupational therapy intervention. The military rehabilitation programs established during World War I provided additional impetus, and by the mid-1920s, graded activity was recognized as central to the profession.

  8. Foraminal syringomyelia: suggestion for a grading system.

    Science.gov (United States)

    Versari, P P; D'Aliberti, G; Talamonti, G; Collice, M

    1993-01-01

    The standard treatment of foraminal syringomyelia includes foramen magnum decompression and duraplasty. Improvement or stabilization of the disease are achieved in most of cases. However, at least one third of patients are reported to receive little or no benefit. In this paper we retrospectively reviewed a series of 40 consecutive foramen magnum decompressions in order to identify the possible pre-operative outcome predictors. Based on clinical evolution, neurological impairment and radiological features, a scale of severity was fixed and retrospectively tested. A pre-operative score was obtained for each patient and was correlated with the surgical results. Then a four level grading system was derived. All grade I and grade II patients achieved good results (improvement or stabilization), whereas grade III patients showed intermediate behaviour and grade IV invariably worsened. On this basis, surgical results of foramen magnum decompression might be further improved provided that a careful pre-operative selection is made.

  9. Functionally graded Ti6Al4V and Inconel 625 by Laser Metal Deposition

    Science.gov (United States)

    Pulugurtha, Syamala R.

    The objective of the current work was to fabricate a crack-free functionally graded Ti6Al4V and Inconel 625 thin wall structure by Laser Metal Deposition (LMD). One potential application for the current material system is the ability to fabricate a functionally graded alloy that can be used in a space heat exchanger. The two alloys, Inconel 625 and Ti6Al4V are currently used for aerospace applications. They were chosen as candidates for grading because functionally grading those combines the properties of high strength/weight ratio of Ti6Al4V and high temperature oxidation resistance of Inconel 625 into one multifunctional material for the end application. However, there were challenges associated with the presence of Ni-Ti intermetallic phases (IMPs). The study focused on several critical areas such as (1) understanding microstructural evolution, (2) reducing macroscopic cracking, and (3) reducing mixing between graded layers. Finite element analysis (FEA) was performed to understand the effect of process conditions on multilayer claddings for simplified material systems such as SS316L and Inconel 625 where complex microstructures did not form. The thermo-mechanical models were developed using Abaqus(TM) (and some of them experimentally verified) to predict temperature-gradients; remelt layer depths and residual stresses. Microstructure evolution along the functionally graded Ti6Al4V and Inconel 625 was studied under different processing and grading conditions. Thermodynamic modeling using Factsage (v 6.1) was used to construct phase diagrams and predict the possible equilibrium major/minor phases (verified experimentally by XRD) that may be present along the functionally graded Ti6Al4V and Inconel 625 thin wall structures.

  10. Changes and Trends in the Pallet Industry: The Use of New Wood Materials

    Science.gov (United States)

    Robert J. Bush; Philip A. Araman

    1998-01-01

    Wood has dominated the pallet industry as its principal raw material since palletized material handling began. Pallet production and use grew dramatically after World War II and wood remained the material of choice. Throughout this period the pallet industry has been an important market for lower grades of hardwood lumber and cants. Today, the demand for pallet grade...

  11. Selective Oxidation of Soft Grade Carbon

    Directory of Open Access Journals (Sweden)

    Zecevic, N.

    2007-12-01

    Full Text Available Oil-furnace carbon black is produced by pyrolysis of gaseous or liquid hydrocarbons or their mixtures. The oil feedstock for the production of oil-furnace carbon black is mainly composed of high-boiling aromatic hydrocarbons, which are residues of petroleum cracking, while the gaseous raw material is commonly natural gas. Most of the oil-furnace carbon black production (> 99 % is used as a reinforcing agent in rubber compounds. Occasionally, oil-furnace carbon blacks are used in contact with other rubber compounds and fillers that have different pigments, particularly with the color white. It has been observed that frequently a migrating rubber soluble colorant would enter the white or light colored rubber composition from the adjacent carbon black filled rubber, resulting in a highly undesirable staining effect. Methods for determining non-oxidized residue on the surface of the oil-furnace carbon black include extraction of carbon black with the appropriate organic solvent, and measuring the color of the organic solvent by means of a colorimeter on 425 nm (ASTM D 1618-99. Transmittance values of 85 % or more are indicative of a practically non-staining carbon black, while transmittance values below 50 % generally lead to a carbon black with pronounced staining characteristics. Many oil-furnace carbon blacks, particularly those with a larger particle size (dp > 50 nm which are produced by pyrolysis, have strongly adsorbed non-reacted oil on their surfaces. Upon incorporation in a rubber compound, the colored materials are gradually dissolved by the rubber matrix and migrate freely into adjacent light colored rubber compounds, causing a highly objectionable staining effect. Adjusting furnace parameters in the industrial process of producing specific soft grades of carbon black cannot obtain minimal values of toluene discoloration. The minimal value of toluene discoloration is very important in special applications. Therefore, after-treatment of

  12. Electrically active defects in solar grade multicrystalline silicon

    DEFF Research Database (Denmark)

    Dahl, Espen

    2013-01-01

    Shortage in high purity silicon feedstock, as a result of the formidable increased demand for solar cell devices during the last two decades, can be mitigated by the introduction of cheaper feedstock of solar grade (So-G) quality. Silicon produced through the metallurgical process route has shown...... the potential to be such a feedstock. However, this feedstock has only few years of active commercial history and the detailed understanding of the nature of structural defects in this material still has fundamental shortcomings. In this thesis the electrical activity of structural defects, commonly associated...

  13. REPORT FOR COMMERCIAL GRADE NICKEL CHARACTERIZATION AND BENCHMARKING

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-12-20

    Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, has completed the collection, sample analysis, and review of analytical results to benchmark the concentrations of gross alpha-emitting radionuclides, gross beta-emitting radionuclides, and technetium-99 in commercial grade nickel. This report presents methods, change management, observations, and statistical analysis of materials procured from sellers representing nine countries on four continents. The data suggest there is a low probability of detecting alpha- and beta-emitting radionuclides in commercial nickel. Technetium-99 was not detected in any samples, thus suggesting it is not present in commercial nickel.

  14. Bamboo-inspired optimal design for functionally graded hollow cylinders.

    Directory of Open Access Journals (Sweden)

    Motohiro Sato

    Full Text Available The optimal distribution of the reinforcing fibers for stiffening hollow cylindrical composites is explored using the linear elasticity theory. The spatial distribution of the vascular bundles in wild bamboo, a nature-designed functionally graded material, is the basis for the design. Our results suggest that wild bamboos maximize their flexural rigidity by optimally regulating the radial gradation of their vascular bundle distribution. This fact provides us with a plant-mimetic design principle that enables the realization of high-stiffness and lightweight cylindrical composites.

  15. GRADE INFLATION: An Issue for Higher Education?

    Directory of Open Access Journals (Sweden)

    Donald L. CARUTH,

    2013-01-01

    Full Text Available Grade inflation impacts university credibility, student courses of study, choices of institution, and other areas. There has been an upward shift in grades without a corresponding upward shift in knowledge gained. Some of the most frequently mentioned causes of grade inflation are: Ø student evaluations of professors, Ø student teacher dynamics, Ø merit-based financial aid, and Ø student expectations. Ø Among the reasons for higher student grades on the part of professors are: Ø fear of student evaluations, Ø avoidance of bad relations with students, Ø below average teaching skills,Ø lack of experience, Ø a lack of clearly stated objectives, and Ø job security. While grades are not a perfect answer to assessing student performance in a course they are still the best answer we have for evaluating students. In order to evaluate students more accurately, universities must identify the problems in grading and grading practices. Once this is accomplished new practices can be designed and policies implemented.

  16. Alternative Grading Systems. The Practitioner, Vol. III, No. 3.

    Science.gov (United States)

    De Leonibus, Nancy; Thomson, Scott

    After examining some of the pros and cons of traditional grading, the demands colleges make on grading practices, and the responses of people interested in grading, a number of examples of operating alternative systems are given. The alternatives include a dual (pass/withdraw grading in some courses, traditional grading in others) system, a…

  17. 7 CFR 51.1578 - Off-Grade potatoes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Off-Grade potatoes. 51.1578 Section 51.1578... STANDARDS) United States Consumer Standards for Potatoes Off-Grade § 51.1578 Off-Grade potatoes. Potatoes which fail to meet the requirements of any of the foregoing grades shall be Off-Grade potatoes...

  18. Preparation and characterization of PMMA graded microporous foams via one-step supercritical carbon dioxide foaming

    International Nuclear Information System (INIS)

    Yuan Huan; Li Junguo; Xiong Yuanlu; Luo Guoqiang; Shen Qiang; Zhang Lianmeng

    2013-01-01

    Supercritical carbon dioxide (ScCO 2 ) foaming which is inexpensive and environmental friendly has been widely used to prepare polymer-based microporous materials. In this paper, PMMA graded microporous materials were foamed by PMMA matrix after an unstable saturation process which was done under supercritical condition of 28MPa and 50 °C. The scanning electron microscopy (SEM) was utilized to observe the morphology of the graded foam. A gas adsorption model was proposed to predict the graded gas concentration in the different region of the polymer matrix. The SEM results showed that the solid and foam region of the graded foam can be connected without laminated layers. With the increasing thickness position of the graded microporous foam, the cell size increased from 3.4 to 27.5 μm, while the cell density decreased from 1.04 × 10 9 to 1.96 × 10 7 cells/cm 3 . It also found that the gradient microporous structure of the foam came from graded gas concentration which was obtained in the initial saturation process.

  19. Design of cost-effective M 25 grade of self compacting concrete

    International Nuclear Information System (INIS)

    Guru Jawahar, J.; Sashidhar, C.; Ramana Reddy, I.V.; Annie Peter, J.

    2013-01-01

    Highlights: ► Design of cost-effective M 25 grade of self compacting concrete is done. ► Mechanical properties of SCC compared with M 25 grade of conventional concrete. ► Effect of class F fly ash is studied on the SCC mechanical properties. ► Cost analysis is done between M 25 grade of CC and SCC. ► Recommendation of M 25 grade of SCC for normal building constructions. - Abstract: This investigation is mainly focused on the development of cost-effective normal strength M 25 grade of self compacting concrete (SCC) for the use of normal building constructions. Keeping in view of the normal strength, cost, quality and durability of SCC and greenhouse gas emissions, a combination type of SCC was developed with 35% replacement of cement with class F fly ash. This study recommended a SCC mix with moderate fines to obtain a cost-effective normal strength SCC for the normal building constructions. Studies also revealed that further reduction in fines content in SCC with the same replacement level of fly ash decreased the SCC strength and its performance. Cost analysis has been done between M 25 grade of SCC and conventional concrete (CC). Results shown that the SCC material cost is slightly higher than that of CC of the same strength class, but the savings in labour cost and construction time and quality of SCC would offset the SCC material cost and reduce the total life cycle cost of SCC

  20. Postoperative radiation therapy for grade II and III intracranial ependymoma

    International Nuclear Information System (INIS)

    Mansur, David B.; Perry, Arie; Rajaram, Veena; Michalski, Jeff M.; Park, T.S.; Leonard, Jeffrey R.; Luchtman-Jones, Lori; Rich, Keith M.; Grigsby, Perry W.; Lockett, Mary Ann; Wahab, Sasha H.; Simpson, Joseph

    2005-01-01

    Purpose: To retrospectively determine the long-term outcome of intracranial ependymoma patients treated with surgery and postoperative radiation therapy. Methods and materials: Sixty patients were treated at our institution between 1964 and 2000. Forty patients had World Health Organization Grade II ependymoma, and 20 patients had Grade III ependymoma. The median patient age was 10.7 years. The majority of patients were male (55%), had infratentorial tumors (80%), and had subtotal resections (72%). Postoperative radiation therapy was delivered to all patients to a median total dose of 50.4 Gy. Craniospinal radiation therapy was used in the earlier era in only 12 patients (20%). Results: The median follow-up of surviving patients was 12.5 years. The 5-year and 10-year disease-free survival rates for all patients were 58.4% and 49.5%, respectively. The 5-year and 10-year overall survival rates for all patients were 71.2% and 55.0%, respectively. Supratentorial tumor location was independently associated with a worse disease-free survival. Subtotal resection and supratentorial location predicted a worse overall survival, but this failed to reach statistical significance. No statistically significant effect on prognosis was observed with tumor grade, patient age, or radiation dose or volume. Conclusion: Our long-term follow-up indicates that half of ependymoma patients will have disease recurrences, indicating the need for more effective treatments

  1. Comparative thermal buckling analysis of functionally graded plate

    Directory of Open Access Journals (Sweden)

    Čukanović Dragan V.

    2017-01-01

    Full Text Available A thermal buckling analysis of functionally graded thick rectangular plates accord¬ing to von Karman non-linear theory is presented. The material properties of the functionally graded plate, except for the Poisson’s ratio, were assumed to be graded in the thickness direction, according to a power-law distribution, in terms of the volume fractions of the metal and ceramic constituents. Formulations of equilibrium and stability equations are derived using the high order shear deformation theory based on different types of shape functions. Analytical method for determination of the critical buckling temperature for uniform increase of temperature, linear and non-linear change of temperature across thickness of a plate is developed. Numeri¬cal results were obtained in МATLAB software using combinations of symbolic and numeric values. The paper presents comparative results of critical buckling tempera¬ture for different types of shape functions. The accuracy of the formulation presented is verified by comparing to results available from the literature.

  2. Grading Scale of Radiographic Findings in the Pubic Bone and Symphysis in Athletes

    International Nuclear Information System (INIS)

    Besjakov, J.; Scheele, C. von; Ekberg, O.; Gentz, C. F.; Westlin, N.E.

    2003-01-01

    Purpose: Radiographic abnormalities in the pubic bone and symphysis are often seen in athletes with groin pain. The aim was to create a grading scale of such radiologic changes. Material and Methods: Plain radiography of the pelvic ring including the pubic bone and the symphysis was performed in 20 male athletes, age 19-35, with long-standing uni- or bilateral groin pain. We used two control groups: Control group 1: 20 healthy age-matched men who had undergone radiologic examination of the pelvis due to trauma. Control group 2: 120 adults (66 men and 54 women) in 9 age groups between 15 and 90 years of age. These examinations were also evaluated for interobserver variance. Results and Conclusion: The grading scale was based on the type and the amount of the different changes, which were classified as follows: No bone changes (grade 0), slight bone changes (grade 1), intermediate changes (grade 2), and advanced changes (grade 3). The grading scale is easy to interpret and an otherwise troublesome communication between the radiologist and the physician was avoided. There was a high interobserver agreement with a high kappa value (0.8707). Male athletes with long-standing groin pain had abnormal bone changes in the symphysis significantly more frequently and more severely (p>0.001) than their age-matched references. In asymptomatic individuals such abnormalities increased in frequency with age both in men and women

  3. Graded Alternating-Time Temporal Logic

    Science.gov (United States)

    Faella, Marco; Napoli, Margherita; Parente, Mimmo

    Graded modalities enrich the universal and existential quantifiers with the capability to express the concept of at least k or all but k, for a non-negative integer k. Recently, temporal logics such as μ-calculus and Computational Tree Logic, Ctl, augmented with graded modalities have received attention from the scientific community, both from a theoretical side and from an applicative perspective. Both μ-calculus and Ctl naturally apply as specification languages for closed systems: in this paper, we add graded modalities to the Alternating-time Temporal Logic (Atl) introduced by Alur et al., to study how these modalities may affect specification languages for open systems.

  4. Enhanced safety in the storage of fissile materials

    International Nuclear Information System (INIS)

    Williams, G.E.; Alvares, N.J.

    1979-01-01

    A ''plastic-like'' supporting material impregnated with a neutron-absorbing agent that is suitable for ''lining'' the inner surfaces of fissile-material storage containers was fabricated. The material consists, by weight, of 50% food-grade borax, 25% coal tar, and 25% epoxy resin. It costs much less than commercially available materials, can absorb enough neutrons to isolate units of fissile material, and possesses such structural qualities as flexibility and machinability. Properties and performance of the material are discussed

  5. Superhard nanophase materials for rock drilling applications

    Energy Technology Data Exchange (ETDEWEB)

    Sadangi, R.K.; Voronov, O.A.; Tompa, G.S. [Diamond Materials Inc., Pisctaway, NJ (United States); Kear, B.H. [Rutgers Univ., Piscataway, NJ (United States)

    1997-12-31

    Diamond Materials Incorporated is developing new class of superhard materials for rock drilling applications. In this paper, we will describe two types of superhard materials, (a) binderless polycrystalline diamond compacts (BPCD), and (b) functionally graded triphasic nanocomposite materials (FGTNC). BPCDs are true polycrystalline diamond ceramic with < 0.5 wt% binders and have demonstrated to maintain their wear properties in a granite-log test even after 700{degrees}C thermal treatment. FGTNCs are functionally-graded triphasic superhard material, comprising a nanophase WC/Co core and a diamond-enriched surface, that combine high strength and toughness with superior wear resistance, making FGTNC an attractive material for use as roller cone stud inserts.

  6. The compatibility approach in the classical theory of thermoelectricity seen from the perspective of variational calculus

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, Wolfgang [Institute of Physics, Martin Luther University, Halle-Wittenberg (Germany); Zabrocki, Knud; Mueller, Eckhard [Institute of Materials Research, German Aerospace Center (DLR), 51170 Koeln (Germany); Snyder, G.J. [California Institute of Technology, Pasadena, California 91125 (United States)

    2010-03-15

    The compatibility approach introduced by Snyder and Ursell opens a new pathway for the improvement of thermoelectric (TE) device performance. It has been shown that sufficient compatibility is - besides an increase of the averaged figure of merit Z - essential for efficient operation of a TE device, and that compatibility will facilitate rational materials selection, device design, and the engineering of functionally graded materials (FGMs). In this paper, the authors give an overview of the fundamental results and present a new approach from the perspective of variational calculus. A particular focus is on the role of ideal self-compatibility, i.e., adjusting compatibility locally at any position along a TE leg. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  7. Materials Chemistry

    CERN Document Server

    Fahlman, Bradley D

    2011-01-01

    The 2nd edition of Materials Chemistry builds on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field. The 2nd edition continues to offer innovative coverage and practical perspective throughout. After briefly defining materials chemistry and its history, seven chapters discuss solid-state chemistry, metals, semiconducting materials, organic "soft" materials, nanomaterials, and materials characterization. All chapters have been thoroughly updated and expanded with, for example, new sections on ‘soft lithographic’ patterning, ‘click chemistry’ polymerization, nanotoxicity, graphene, as well as many biomaterials applications. The polymer and ‘soft’ materials chapter represents the largest expansion for the 2nd edition. Each ch...

  8. Readability of pediatric health materials for preventive dental care

    Directory of Open Access Journals (Sweden)

    Riedy Christine A

    2006-11-01

    Full Text Available Abstract Background This study examined the content and general readability of pediatric oral health education materials for parents of young children. Methods Twenty-seven pediatric oral health pamphlets or brochures from commercial, government, industry, and private nonprofit sources were analyzed for general readability ("usability" according to several parameters: readability, (Flesch-Kincaid grade level, Flesch Reading Ease, and SMOG grade level; thoroughness, (inclusion of topics important to young childrens' oral health; textual framework (frequency of complex phrases, use of pictures, diagrams, and bulleted text within materials; and terminology (frequency of difficult words and dental jargon. Results Readability of the written texts ranged from 2nd to 9th grade. The average Flesch-Kincaid grade level for government publications was equivalent to a grade 4 reading level (4.73, range, 2.4 – 6.6; F-K grade levels for commercial publications averaged 8.1 (range, 6.9 – 8.9; and industry published materials read at an average Flesch-Kincaid grade level of 7.4 (range, 4.7 – 9.3. SMOG readability analysis, based on a count of polysyllabic words, consistently rated materials 2 to 3 grade levels higher than did the Flesch-Kincaid analysis. Government sources were significantly lower compared to commercial and industry sources for Flesch-Kincaid grade level and SMOG readability analysis. Content analysis found materials from commercial and industry sources more complex than government-sponsored publications, whereas commercial sources were more thorough in coverage of pediatric oral health topics. Different materials frequently contained conflicting information. Conclusion Pediatric oral health care materials are readily available, yet their quality and readability vary widely. In general, government publications are more readable than their commercial and industry counterparts. The criteria for usability and results of the analyses

  9. Potassium Silicate Foliar Fertilizer Grade from Geothermal Sludge and Pyrophyllite

    Directory of Open Access Journals (Sweden)

    Muljani Srie

    2016-01-01

    Full Text Available Potassium silicate fertilizer grade were successfully produced by direct fusion of silica (SiO2 and potasium (KOH and K2CO3 in furnaces at temperatures up to melting point of mixture. The geothermal sludge (98% SiO2 and the pyrophyllite (95% SiO2 were used as silica sources. The purposes of the study was to synthesise potassium silicate fertilizer grade having solids concentrations in the range of 31-37% K2O, and silica in the range of 48-54% SiO2. The weight ratio of silicon dioxide/potasium solid being 1:1 to 5:1. Silica from geothermal sludge is amorphous, whereas pyrophylite is crystalline phase. The results showed that the amount of raw materials needed to get the appropriate molar ratio of potassium silicate fertilizer grade are different, as well as the fusion temperature of the furnace. Potassium silicate prepared from potassium hydroxide and geothermal sludge produced a low molar ratio (2.5: 1 to 3: 1. The potassium required quite small (4:1 in weight ratio, and on a fusion temperature of about 900 °C. Meanwhile, the potassium silicate prepared from pyrophyllite produced a high molar ratio (1.4 - 9.4 and on a fusion temperature of about 1350 °C, so that potassium needed large enough to meet the required molar ratio for the fertilizer grade. The product potassium silicate solid is amorphous with a little trace of crystalline.

  10. Characterization of Anisotropic Behavior for High Grade Pipes

    Science.gov (United States)

    Yang, Kun; Huo, Chunyong; Ji, Lingkang; Li, Yang; Zhang, Jiming; Ma, Qiurong

    With the developing requirement of nature gas, the property needs of steel for pipe line are higher and higher, especially in strength and toughness. It is necessary to improve the steel grade in order to ensure economic demand and safety. However, with the rise of steel grade, the differences on properties in different orientations (anisotropic behaviors) become more and more obvious after the process of hot rolling, which may affect the prediction of fracture for the pipes seriously (Thinking of isotropic mechanical properties for material in traditional predict way). In order to get the reason for anisotropic mechanics, a series of tests are carried out for high grade steel pipes, including not only mechanical properties but also microstructures. Result indicates that there are obviously anisotropic behaviors for high grade steel pipes in two orientations (rolling orientation and transverse orientation). Strength is better in T orientation because Rm is higher and Rt 0.5 rises more in T orientation, and toughness is better in L orientation because of the higher Akv and SA in L orientation under a same temperature. Banded structures are formed in T orientation, and the spatial distribution of inclusion and precipitated phases are different in T, L and S orientation. The anisotropic arrangement for the matrix in space (banded structures), which is formed after the process of hot rolling, may affect the mechanical properties in different orientation. Moreover, the elasticity modulus of particles is different from the elasticity modulus of matrix, deformation between particles and matrix may cause stress concentration, and damage forms in this place. Because of the different distribution of particles in space, the level of damage is anisotropic in different orientations, and the anisotropic mechanical properties occur finally. Therefore, the anisotropic mechanical properties are determined by the anisotropic microstructures, both the anisotropic of matrix and the

  11. ENERGY STAR Laboratory Grade Refrigerators and Freezers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Laboratory Grade Refrigerators and Freezers that...

  12. High Performance Graded Index Polymer Optical Fibers

    National Research Council Canada - National Science Library

    Garito, Anthony

    1998-01-01

    ...) plastic optical fibers (POF) and graded index (GI) POFs are reported. A set of criteria and analyses of physical parameters are developed in context to the major issues of POF applications in short-distance communication systems...

  13. Bruxism defined and graded: an international consensus.

    Science.gov (United States)

    Lobbezoo, F; Ahlberg, J; Glaros, A G; Kato, T; Koyano, K; Lavigne, G J; de Leeuw, R; Manfredini, D; Svensson, P; Winocur, E

    2013-01-01

    To date, there is no consensus about the definition and diagnostic grading of bruxism. A written consensus discussion was held among an international group of bruxism experts as to formulate a definition of bruxism and to suggest a grading system for its operationalisation. The expert group defined bruxism as a repetitive jaw-muscle activity characterised by clenching or grinding of the teeth and/or by bracing or thrusting of the mandible. Bruxism has two distinct circadian manifestations: it can occur during sleep (indicated as sleep bruxism) or during wakefulness (indicated as awake bruxism). For the operationalisation of this definition, the expert group proposes a diagnostic grading system of 'possible', 'probable' and 'definite' sleep or awake bruxism. The proposed definition and grading system are suggested for clinical and research purposes in all relevant dental and medical domains. © 2012 Blackwell Publishing Ltd.

  14. Kindergarten Predictors of Third Grade Writing

    Science.gov (United States)

    Kim, Young-Suk; Al Otaiba, Stephanie; Wanzek, Jeanne

    2015-01-01

    The primary goal of the present study was to examine the relations of kindergarten transcription, oral language, word reading, and attention skills to writing skills in third grade. Children (N = 157) were assessed on their letter writing automaticity, spelling, oral language, word reading, and attention in kindergarten. Then, they were assessed on writing in third grade using three writing tasks – one narrative and two expository prompts. Children’s written compositions were evaluated in terms of writing quality (the extent to which ideas were developed and presented in an organized manner). Structural equation modeling showed that kindergarten oral language and lexical literacy skills (i.e., word reading and spelling) were independently predicted third grade narrative writing quality, and kindergarten literacy skill uniquely predicted third grade expository writing quality. In contrast, attention and letter writing automaticity were not directly related to writing quality in either narrative or expository genre. These results are discussed in light of theoretical and practical implications. PMID:25642118

  15. Statistical Content in Middle Grades Mathematics Textbooks

    Science.gov (United States)

    Pickle, Maria Consuelo Capiral

    2012-01-01

    This study analyzed the treatment and scope of statistical concepts in four, widely-used, contemporary, middle grades mathematics textbook series: "Glencoe Math Connects," "Prentice Hall Mathematics," "Connected Mathematics Project," and "University of Chicago School Mathematics Project." There were three…

  16. Doubly graded sigma model with torsion

    International Nuclear Information System (INIS)

    Kowalski-Glikman, J.

    1986-08-01

    Using the Hull-Witten construction we show how to introduce torsion to the doubly graded sigma model. This construction enables us to find a link between this model and the ten-dimensional supergravity theory in superspace. (Auth.)

  17. Graded contractions of Jordan algebras and of their representations

    International Nuclear Information System (INIS)

    Kashuba, Iryna; Patera, JirI

    2003-01-01

    Contractions of Jordan algebras and Jordan superalgebras which preserve a chosen grading are defined and studied. Simultaneous grading of Jordan algebras and their representation spaces is used to develop a theory of grading, preserving contractions of representations of Jordan algebras

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Discrete functionally graded composites are the novel composites which have high potential in the brake friction material applications. In this paper, we have prepared discrete functional graded Cu/10%SiC/20%graphite(Gr)/10%boron nitride (h-BN) hybrid composites by the layer stacking compaction and pressure sintering ...

  19. WAGNER’S GRADING OF DIABETIC FOOT LESIONS-A TERTIARY CARE EXPERIENCE

    Directory of Open Access Journals (Sweden)

    Krishna Mohan

    2015-11-01

    Full Text Available PURPOSE OF STUDY: Diabetic foot is the most common complication of diabetes. Amputation which is the end result of diabetic foot disease is associated with significant morbidity and mortality. Since it is crucial to identify those at an increased risk of diabetic foot complications, a detailed study of the natural history of diabetic foot, various clinical characteristics, according to Wagner grading of lesions, their outcome and management protocol followed in our hospital was undertaken in our hospital. AIM AND OBJECTIVE: Evaluation of diabetic foot lesions based on Wagner grading system, outcome and management protocol followed in our hospital. MATERIALS AND METHODS: A prospective study done on hundred diabetic foot patients in our own hospital over a period of one and half year. Data was obtained from a questionnaire developed to record the medical history, examination details, investigations reports, treatment details and final outcome at the end of stay. Infection was classified based on Meggitt-Wagner, classification/grading. RESULTS: Diabetic foot was very common in elderly age group (>55yrs 54% and male dominant (87%. Majority of them had diabetes for more than five years (47% and complications of diabetes were present on admission in 15% of them. Grade I(29%, Grade III (27% & Grade IV (24% lesions based on Wagner’s grading accounted for majority of diabetic foot lesions. Multiple toe disarticulation/ above knee / below knee amputation accounted for a quarter (23% of surgical interventions in our hospital. The glycemic control in most of patients was very poor with RBS>200 mg/dl (70% and glycosylated hemoglobin>7g% (74% of them. A quarter of the patients stayed for at least a month in the hospital (25%. CONCLUSION: It can be concluded that diabetic foot in various forms accounts for significant morbidity in the surgical wards. Wagner’s grade I (29% Grade III (27%, Grade IV (24% constituted majority of lesions. Factors contributing

  20. Pollination biology of basal angiosperms (ANITA Grade)

    Science.gov (United States)

    Leonard B. Thien; Peter Bernhardt; Margaret S. Devall; Zhi-Duan Chen; Yi-bo Luo; Jian-Hua Fan; Liang-Chen Yuan; Joseph H. Williams

    2009-01-01

    The fi rst three branches of the angiosperm phylogenetic tree consist of eight families with ~201 species of plants (the ANITA grade). The oldest fl ower fossil for the group is dated to the Early Cretaceous (115 – 125 Mya) and identifi ed to the Nymphaeales. The fl owers of extant plants in the ANITA grade are small, and pollen is the edible reward (rarely nectar or...

  1. Meat standards and grading: a world view.

    Science.gov (United States)

    Polkinghorne, R J; Thompson, J M

    2010-09-01

    This paper addresses the principles relating to meat standards and grading of beef and advances the concept that potential exists to achieve significant desirable change from adopting more consumer focused systems within accurate value-based payment frameworks. The paper uses the definitions that classification is a set of descriptive terms describing features of the carcass that are useful to those involved in the trading of carcasses, whereas grading is the placing of different values on carcasses for pricing purposes, depending on the market and requirements of traders. A third definition is consumer grading, which refers to grading systems that seek to define or predict consumer satisfaction with a cooked meal. The development of carcass classification and grading schemes evolved from a necessity to describe the carcass using standard terms to facilitate trading. The growth in world trade of meat and meat products and the transition from trading carcasses to marketing individual meal portions raises the need for an international language that can service contemporary needs. This has in part been addressed by the United Nations promoting standard languages on carcasses, cuts, trim levels and cutting lines. Currently no standards exist for describing consumer satisfaction. Recent Meat Standards Australia (MSA) research in Australia, Korea, Ireland, USA, Japan and South Africa showed that consumers across diverse cultures and nationalities have a remarkably similar view of beef eating quality, which could be used to underpin an international language on palatability. Consumer research on the willingness to pay for eating quality shows that consumers will pay higher prices for better eating quality grades and generally this was not affected by demographic or meat preference traits of the consumer. In Australia the MSA eating quality grading system has generated substantial premiums to retailers, wholesalers and to the producer. Future grading schemes which measure

  2. Contrast Materials

    Science.gov (United States)

    ... is mixed with water before administration liquid paste tablet When iodine-based and barium-sulfate contrast materials ... for patients with kidney failure or allergies to MRI and/or computed tomography (CT) contrast material. Microbubble ...

  3. Dirac materials

    OpenAIRE

    Wehling, T. O.; Black-Schaffer, A. M.; Balatsky, A. V.

    2014-01-01

    A wide range of materials, like d-wave superconductors, graphene, and topological insulators, share a fundamental similarity: their low-energy fermionic excitations behave as massless Dirac particles rather than fermions obeying the usual Schrodinger Hamiltonian. This emergent behavior of Dirac fermions in condensed matter systems defines the unifying framework for a class of materials we call "Dirac materials''. In order to establish this class of materials, we illustrate how Dirac fermions ...

  4. Magnetic Materials

    Science.gov (United States)

    Spaldin, Nicola A.

    2003-04-01

    Magnetic materials are the foundation of multi-billion dollar industries and the focus of intensive research across many disciplines. This book covers the fundamentals, basic theories and applications of magnetism and conventional magnetic materials. Based on a lecture course given by Nicola Spaldin in the Materials Department at University of California, Santa Barbara, the book is ideal for a one- semester course in magnetic materials. It contains numerous homework problems and solutions.

  5. Sonographic features of invasive ductal breast carcinomas predictive of malignancy grade

    Directory of Open Access Journals (Sweden)

    Kanika Gupta

    2018-01-01

    Full Text Available Context: Assessment of individual sonographic features provides vital clues about the biological behavior of breast masses and can assist in determining histological grade of malignancy and thereby prognosis. Aims: Assessment of individual sonographic features of biopsy proven invasive ductal breast carcinomas as predictors of malignancy grade. Settings and Design: A retrospective analysis of sonographic findings of 103 biopsy proven invasive ductal breast carcinomas. Materials and Methods: Tumor characteristics on gray-scale ultrasound and color flow were assessed using American College of Radiology (ACR Breast Imaging Reporting and Data System (BI-RADS Atlas Fifth Edition. The sonographic findings of masses were individually correlated with their histopathologic grades. Statistical Analysis Used: Chi square test, ordinal regression, and Goodman and Kruskal tau test. Results: Breast mass showing reversal/lack of diastolic flow has a high probability of belonging to histological high grade tumor ( β 1.566, P 0.0001. The masses with abrupt interface boundary are more likely grade 3 ( β 1.524, P 0.001 in comparison to masses with echogenic halos. The suspicious calcifications present in and outside the mass is a finding associated with histologically high grade tumors. The invasive ductal carcinomas (IDCs with complex solid and cystic echotexture are more likely to be of high histological grade ( β 1.146, P 0.04 as compared to masses with hypoechoic echotexture. Conclusions: Certain ultrasound features are associated with tumor grade on histopathology. If the radiologist is cognizant of these sonographic features, ultrasound can be a potent modality for predicting histopathological grade of IDCs of the breast, especially in settings where advanced tests such as receptor and molecular analyses are limited.

  6. Evaluation of Tumor Heterogeneity of Prostate Carcinoma by Flow- and Image DNA Cytometry and Histopathological Grading

    Directory of Open Access Journals (Sweden)

    Naining Wang

    2000-01-01

    Full Text Available Background. Heterogeneity of prostate carcinoma is one of the reasons for pretreatment underestimation of tumor aggressiveness. We studied tumor heterogeneity and the probability of finding the highest tumor grade and DNA aneuploidy with relation to the number of biopsies. Material and methods. Specimens simulating core biopsies from five randomly selected tumor areas from each of 16 Böcking’s grade II and 23 grade III prostate carcinomas were analyzed for tumor grade and DNA ploidy by flow‐ and fluorescence image cytometry (FCM, FICM. Cell cycle composition was measured by FCM. Results. By determination of ploidy and cell cycle composition, morphologically defined tumors can further be subdivided. Heterogeneity of tumor grade and DNA ploidy (FCM was 54% and 50%. Coexistence of diploid tumor cells in aneuploid specimens represents another form of tumor heterogeneity. The proportion of diploid tumor cells decreased significantly with tumor grade and with increase in the fraction of proliferating cell of the aneuploid tumor part. The probability of estimating the highest tumor grade or aneuploidy increased from 40% for one biopsy to 95% for 5 biopsies studied. By combining the tumor grade with DNA ploidy, the probability of detecting a highly aggressive tumor increased from 40% to 70% and 90% for one and two biopsies, respectively. Conclusion. Specimens of the size of core biopsies can be used for evaluation of DNA ploidy and cell cycle composition. Underestimation of aggressiveness of prostate carcinoma due to tumor heterogeneity is minimized by simultaneous study of the tumor grade and DNA ploidy more than by increasing the number of biopsies. The biological significance of coexistent diploid tumor cell in aneuploid lesions remains to be evaluated.

  7. In the assessment of supratentorial glioma grade: The combined role of multivoxel proton MR spectroscopy and diffusion tensor imaging

    International Nuclear Information System (INIS)

    Zou, Q.-G.; Xu, H.-B.; Liu, F.; Guo, W.; Kong, X.-C.; Wu, Y.

    2011-01-01

    Aim: To detect a difference in the parameters derived from proton magnetic resonance spectroscopy ( 1 H-MRS) and diffusion tensor imaging (DTI) between low-grade and high-grade gliomas, and to evaluate whether the combination of these two techniques can improve the diagnostic accuracy of conventional magnetic resonance imaging (MRI) in supratentorial glioma grading. Materials and methods: Thirty patients with histologically proved supratentorial brain gliomas (12 low grade, 18 high grade) were prospectively evaluated with contrast material-enhanced MRI, DTI, and multivoxel 1 H-MRS (135 ms echo time). The tumour grades determined using the three methods were then compared with those obtained at histopathology. Receiver operating characteristic (ROC) analyses were performed to determine the optimum thresholds for glioma grading. Independent sample t-test, Spearman's rank correlation, and the Fisher's exact test were also carried out for statistical analysis. p -6 mm 2 /s for the calculated ADC value, corresponding to the maximum Youden index from the ROC curve of the above-selected parameters, the resultant sensitivities, specificities, positive predictive values (PPVs), negative predictive values (NPVs), and Kappa values were all higher and the fraction of misclassified tumour was lower when compared with conventional MRI. However, only NAA/Cho and ADC calculation contributed to the significant difference (p < 0.01) in the assessment of glioma grade compared to conventional MRI alone, and the grading results of statistical tests comparing those two parameters were highly consistent (kappa value = 0.798). Conclusion: Thresholds for NAA/Cho and calculated ADC values, corresponding to maximum Youden index from ROC curve analyses, helped to improve the accuracy of supratentorial glioma grading when compared with conventional MRI alone. In addition, a combination of NAA/Cho and ADC calculation were more useful together than each alone in a clinical setting to evaluate

  8. Readability of Online Materials for Rhinoplasty.

    Science.gov (United States)

    Santos, Pauline Joy F; Daar, David A; Paydar, Keyianoosh Z; Wirth, Garrett A

    2018-01-01

    Rhinoplasty is a popular aesthetic and reconstructive surgical procedure. However, little is known about the content and readability of online materials for patient education. The recommended grade level for educational materials is 7th to 8th grade according to the National Institutes of Health (NIH). This study aims to assess the readability of online patient resources for rhinoplasty. The largest public search engine, Google, was queried using the term "rhinoplasty" on February 26, 2016. Location filters were disabled and sponsored results excluded to avoid any inadvertent search bias. The 10 most popular websites were identified and all relevant, patient-directed information within one click from the original site was downloaded and saved as plain text. Readability was analyzed using five established analyses (Readability-score.com, Added Bytes, Ltd., Sussex, UK). Analysis of ten websites demonstrates an average grade level of at least 12 th grade. No material was at the recommended 7 th to 8 th grade reading level (Flesch-Kincaid, 11.1; Gunning-Fog, 14.1; Coleman-Liau, 14.5; SMOG 10.4; Automated Readability, 10.7; Average Grade Level, 12.2). Overall Flesch-Kincaid Reading Ease Index was 43.5, which is rated as "difficult." Online materials available for rhinoplasty exceed NIH-recommended reading levels, which may prevent appropriate decision-making in patients considering these types of surgery. Outcomes of this study identify that Plastic Surgeons should be cognizant of available online patient materials and make efforts to develop and provide more appropriate materials. Readability results can also contribute to marketing strategy and attracting a more widespread interest in the procedure.

  9. Neutron irradiation behavior of ITER candidate beryllium grades

    Energy Technology Data Exchange (ETDEWEB)

    Kupriyanov, I.B.; Gorokhov, V.A.; Nikolaev, G.N. [A.A.Bochvar All-Russia Scientific Research Inst. of Inorganic Materials (VNIINM), Moscow (Russian Federation); Melder, R.R.; Ostrovsky, Z.E.

    1998-01-01

    Beryllium is one of the main candidate materials both for the neutron multiplier in a solid breeding blanket and for the plasma facing components. That is why its behaviour under the typical for fusion reactor loading, in particular, under the neutron irradiation is of a great importance. This paper presents mechanical properties, swelling and microstructure of six beryllium grades (DshG-200, TR-30, TshG-56, TRR, TE-30, TIP-30) fabricated by VNIINM, Russia and also one - (S-65) fabricated by Brush Wellman, USA. The average grain size of the beryllium grades varied from 8 to 25 {mu}m, beryllium oxide content was 0.8-3.2 wt. %, initial tensile strength was 250-680 MPa. All the samples were irradiated in active zone of SM-3 reactor up to the fast neutron fluence (5.5-6.2) {center_dot} 10{sup 21} cm{sup -2} (2.7-3.0 dpa, helium content up to 1150 appm), E > 0.1 MeV at two temperature ranges: T{sub 1} = 130-180degC and T{sub 2} = 650-700degC. After irradiation at 130-180degC no changes in samples dimensions were revealed. After irradiation at 650-700degC swelling of the materials was found to be in the range 0.1-2.1 %. Beryllium grades TR-30 and TRR, having the smallest grain size and highest beryllium oxide content, demonstrated minimal swelling, which was no more than 0.1 % at 650-700degC and fluence 5.5 {center_dot} 10{sup 21} cm{sup -2}. Tensile and compression test results and microstructure parameters measured before and after irradiation are also presented. (author)

  10. Ductility in hot isostatically pressed 250-grade maraging steel

    International Nuclear Information System (INIS)

    German, R.M.; Smugeresky, J.E.

    1978-01-01

    Prealloyed 250-grade maraging steel powder produced by the rotating electrode process was fully consolidated by hot isostatic pressing (HIP) at 1100 and 1200 0 C. The strength following aging (3 h at 480 0 C) equalled that of wrought material; however, ductility was negligible. This lack of ductility in the powder metallurgy product was traced to titanium segregation which occurred at the powder surface during power production. The formation of a titanium intermetallic at the prior particle boundaries during aging caused failure at low plastic strains. Altered aging treatments successfully broke up the embrittling film and resulted in a significant ductility recovery for the HIP material. Analysis of the fracture process indicates that further ductility gains are possible by reducing the titanium content, refining the particle size, and optimizing the thermal cycles

  11. Thermo-Electro-Mechanical Analysis of a Curved Functionally Graded Piezoelectric Actuator with Sandwich Structure

    Directory of Open Access Journals (Sweden)

    Liying Jiang

    2011-12-01

    Full Text Available In this work, the problem of a curved functionally graded piezoelectric (FGP actuator with sandwich structure under electrical and thermal loads is investigated. The middle layer in the sandwich structure is functionally graded with the piezoelectric coefficient g31 varying continuously along the radial direction of the curved actuator. Based on the theory of linear piezoelectricity, analytical solutions are obtained by using Airy stress function to examine the effects of material gradient and heat conduction on the performance of the curved actuator. It is found that the material gradient and thermal load have significant influence on the electroelastic fields and the mechanical response of the curved FGP actuator. Without the sacrifice of actuation deflection, smaller internal stresses are generated by using the sandwich actuator with functionally graded piezoelectric layer instead of the conventional bimorph actuator. This work is very helpful for the design and application of curved piezoelectric actuators under thermal environment.

  12. Stress corrosion cracking of L-grade stainless steels in boiling water reactor (BWR) plants

    International Nuclear Information System (INIS)

    Suzuki, Shunichi; Fukuda, Toshihiko; Yamashita, Hironobu

    2004-01-01

    L-grade stainless steels as 316NG, SUS316L and SUS304L have been used for the BWR reactor internals and re-circulation pipes as SCC resistant materials. However, SCC of the L-grade material components were reported recently in many Japanese BWR plants. The detail investigation of the components showed the fabrication process such as welding, machining and surface finishing strongly affected SCC occurrence. In this paper, research results of SCC of L-grade stainless steels, metallurgical investigation of core shrouds and re-circulation pipings, and features of SCC morphology were introduced. Besides, the structural integrity of components with SCC, countermeasures for SCC and future R and D planning were introduced. (author)

  13. Thermo-Electro-Mechanical Analysis of a Curved Functionally Graded Piezoelectric Actuator with Sandwich Structure.

    Science.gov (United States)

    Yan, Zhi; Zaman, Mostafa; Jiang, Liying

    2011-12-12

    In this work, the problem of a curved functionally graded piezoelectric (FGP) actuator with sandwich structure under electrical and thermal loads is investigated. The middle layer in the sandwich structure is functionally graded with the piezoelectric coefficient g 31 varying continuously along the radial direction of the curved actuator. Based on the theory of linear piezoelectricity, analytical solutions are obtained by using Airy stress function to examine the effects of material gradient and heat conduction on the performance of the curved actuator. It is found that the material gradient and thermal load have significant influence on the electroelastic fields and the mechanical response of the curved FGP actuator. Without the sacrifice of actuation deflection, smaller internal stresses are generated by using the sandwich actuator with functionally graded piezoelectric layer instead of the conventional bimorph actuator. This work is very helpful for the design and application of curved piezoelectric actuators under thermal environment.

  14. Initial Comparison of Baseline Physical and Mechanical Properties for the VHTR Candidate Graphite Grades

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Mark C. [Idaho National Lab. (INL), Idaho Falls, ID (United States). VHTR Program

    2014-09-01

    High-purity graphite is the core structural material of choice in the Very High Temperature Reactor (VHTR) design, a graphite-moderated, helium-cooled configuration capable of producing thermal energy for power generation as well as process heat for industrial applications that require temperatures higher than the outlet temperatures of present nuclear reactors. The Baseline Graphite Characterization Program is establishing accurate as-manufactured mechanical and physical property distributions in nuclear-grade graphites by providing comprehensive data that captures the level of variation in measured values. In addition to providing a thorough comparison between these values in different graphite grades, the program is also carefully tracking individual specimen source, position, and orientation information in order to provide comparisons both in specific properties and in the associated variability between different lots, different billets, and different positions from within a single billet. This report is a preliminary comparison between each of the grades of graphite that are considered “candidate” grades from four major international graphite producers. These particular grades (NBG-18, NBG-17, PCEA, IG-110, and 2114) are the major focus of the evaluations presently underway on irradiated graphite properties through the series of Advanced Graphite Creep (AGC) experiments. NBG-18, a medium-grain pitch coke graphite from SGL from which billets are formed via vibration molding, was the favored structural material in the pebble-bed configuration. NBG-17 graphite from SGL is essentially NBG-18 with the grain size reduced by a factor of two. PCEA, petroleum coke graphite from GrafTech with a similar grain size to NBG-17, is formed via an extrusion process and was initially considered the favored grade for the prismatic layout. IG-110 and 2114, from Toyo Tanso and Mersen (formerly Carbone Lorraine), respectively, are fine-grain grades produced via an isomolding

  15. Composite materials

    International Nuclear Information System (INIS)

    Sambrook, D.J.

    1976-01-01

    A superconductor composite is described comprising at least one longitudinally extending superconductor filament or bundle of sub-filaments, each filament or bundle of sub-filaments being surrounded by and in good electrical contact with a matrix material, the matrix material comprising a plurality of longitudinally extending cells of a metal of high electrical conductivity surrounded by a material of lower electrical conductivity. The high electrical conductivity material surrounding the superconducting filament or bundle of sub-filaments is interrupted by a radially extending wall of the material of the lower electrical conductivity, the arrangement being such that at least two superconductor filaments or sub-filaments are circumferentially circumscribed by a single annulus of the material of high electrical conductivity. The annulus is electrically interrupted by a radially extending wall of the material of low electrical conductivity

  16. Aerospace materials and material technologies

    CERN Document Server

    Wanhill, R

    2017-01-01

    This book is a comprehensive compilation of chapters on materials (both established and evolving) and material technologies that are important for aerospace systems. It considers aerospace materials in three Parts. Part I covers Metallic Materials (Mg, Al, Al-Li, Ti, aero steels, Ni, intermetallics, bronzes and Nb alloys); Part II deals with Composites (GLARE, PMCs, CMCs and Carbon based CMCs); and Part III considers Special Materials. This compilation has ensured that no important aerospace material system is ignored. Emphasis is laid in each chapter on the underlying scientific principles as well as basic and fundamental mechanisms leading to processing, characterization, property evaluation and applications. A considerable amount of materials data is compiled and presented in appendices at the end of the book. This book will be useful to students, researchers and professionals working in the domain of aerospace materials.

  17. Bespoke Materials For Bespoke Textile Architecture

    DEFF Research Database (Denmark)

    Tamke, Martin; Baranovskaya, Yuliya; Holden Deleuran, Anders

    2016-01-01

    Membrane architecture uses currently off the shelf materials and produces the shapes and details through cutting and laborsome joining of textile patterns. This paper discusses investigations into an alternative material practice - knit - which engages bespoke membrane materials. A practice which...... allows for customised and graded material properties, the direct fabrication of shaped patterns and the integration of detailing directly into the membrane material. Based on two demonstrators built as hybrids of bespoke CNC knit and bending active GFRP rods this paper discusses the affordances...

  18. Plane strain analytical solutions for a functionally graded elastic-plastic pressurized tube

    International Nuclear Information System (INIS)

    Eraslan, Ahmet N.; Akis, Tolga

    2006-01-01

    Plane strain analytical solutions to functionally graded elastic and elastic-plastic pressurized tube problems are obtained in the framework of small deformation theory. The modulus of elasticity and the uniaxial yield limit of the tube material are assumed to vary radially according to two parametric parabolic forms. The analytical plastic model is based on Tresca's yield criterion, its associated flow rule and ideally plastic material behaviour. Elastic, partially plastic and fully plastic stress states are investigated. It is shown that the elastoplastic response of the functionally graded pressurized tube is affected significantly by the material nonhomogeneity. Different modes of plasticization may take place unlike the homogeneous case. It is also shown mathematically that the nonhomogeneous elastoplastic solution presented here reduces to that of a homogeneous one by appropriate choice of the material parameters

  19. Design and evaluation of foamed asphalt base materials.

    Science.gov (United States)

    2013-05-01

    Foamed asphalt stabilized base (FASB) combines reclaimed asphalt pavement (RAP), recycled : concrete (RC), and/or graded aggregate base (GAB) with a foamed asphalt binder to produce a : partially stabilized base material. The objectives of this study...

  20. Age-Related Grade Inflation Expectancies in a University Environment

    Directory of Open Access Journals (Sweden)

    Donald A. Loffredo

    2012-01-01

    Full Text Available Grade inflation is a recognized problem in higher education in the United States. Age, gender, and ethnic differences in discrepancies between student reports of their expected grade in each course and their expectations for general university grading practices were explored in a survey of 166 (mostly female participants at a small upper-division university. Results revealed that while a small minority of students agreed that grading systems in college should only include A or B grades, a large majority of students expected A or B grades. Thus, student discrepancies between their expectations for grading systems and their expected class grades were in line with expectations that they should receive inflated grades. Results also revealed statistically significant age differences in grade expectation with students older than the age of 55 expecting lower grades relative to their younger counterparts.

  1. Materials Discovery | Materials Science | NREL

    Science.gov (United States)

    Discovery Materials Discovery Images of red and yellow particles NREL's research in materials characterization of sample by incoming beam and measuring outgoing particles, with data being stored and analyzed Staff Scientist Dr. Zakutayev specializes in design of novel semiconductor materials for energy

  2. An Evaluation of Grades 9 and 10 Mathematics Textbooks Vis-À-Vis ...

    African Journals Online (AJOL)

    An Evaluation of Grades 9 and 10 Mathematics Textbooks Vis-À-Vis Fostering Problem Solving Skills. ... Document analysis was carried out on the two textbooks using Mathematics Material Analysis Instrument (MMAI) developed by Karen (1997). Interview was held with two experts from Institute of Curriculum Development ...

  3. To Design and Evaluate a 12th Grade Course in the Principles of Economics; Final Report.

    Science.gov (United States)

    Wiggins, Suzanne E.; Sperling, John G.

    Reported is the design, development, and evaluation of a one-semester course on the principles of economics for twelfth grade students. The course is intended to develop students' capacity for economic reasoning through economic theory and empirical research. To do this, teaching materials and innovative techniques for teacher training were…

  4. The Auto Industry. Grade Nine. Resource Unit (Unit IV). Project Social Studies.

    Science.gov (United States)

    Minnesota Univ., Minneapolis. Project Social Studies Curriculum Center.

    Unit four of this curriculum plan for ninth grade social studies outlines a study of the automobile industry in the United States. Objectives state the desired generalizations, skills, and attitudes to be developed. A condensed outline of course content precedes expanded guidelines for teaching procedures and suggested resource materials. A…

  5. Implementation of GPS Machine Controlled Grading - Phase III (2008) and Technical Training

    Science.gov (United States)

    2009-02-01

    Beginning in 2006, WisDOT and the Construction Material and Support Center (CMSC) at UW-Madison worked together to develop the specifications and the QA/QC procedures for GPS machine guidance on highway grading projects. These specifications and proc...

  6. Problem Solving vs. Troubleshooting Tasks: The Case of Sixth-Grade Students Studying Simple Electric Circuits

    Science.gov (United States)

    Safadi, Rafi'; Yerushalmi, Edit

    2014-01-01

    We compared the materialization of knowledge integration processes in class discussions that followed troubleshooting (TS) and problem-solving (PS) tasks and examined the impact of these tasks on students' conceptual understanding. The study was conducted in two sixth-grade classes taught by the same teacher, in six lessons that constituted a…

  7. Latin America: A Cultural Region of the World; An Instructional Unit for Grades 8, 9, 10.

    Science.gov (United States)

    Gill, Clark C.; Conroy, William B.

    This teaching package or unit is part of a sequence of materials developed by the Latin American Curriculum Project. Concepts, key ideas and facts introduced in earlier grades on socio-cultural patterns are reinforced by this multidisciplinary approach. The major topic emphasis is the history of the periods since the beginning of the Independence…

  8. Consistent stress-strain ductile fracture model as applied to two grades of beryllium

    International Nuclear Information System (INIS)

    Priddy, T.G.; Benzley, S.E.; Ford, L.M.

    1980-01-01

    Published yield and ultimate biaxial stress and strain data for two grades of beryllium are correlated with a more complete method of characterizing macroscopic strain at fracture initiation in ductile materials. Results are compared with those obtained from an exponential, mean stress dependent, model. Simple statistical methods are employed to illustrate the degree of correlation for each method with the experimental data

  9. Science Textbooks' Use of Graphical Representation: A Descriptive Analysis of Four Sixth Grade Science Texts

    Science.gov (United States)

    Slough, Scott W.; McTigue, Erin M.; Kim, Suyeon; Jennings, Susan K.

    2010-01-01

    Middle school teachers tend to rely heavily on texts that have become increasing more visual. There is little information available about the graphical demands of general middle grades' science texts. The purpose of this study was to quantify the type and quality of the graphical representations and how they interacted with the textual material in…

  10. A Multiliteracies Pedagogy: Exploring Semiotic Possibilities of a Disney Video in a Third Grade Diverse Classroom

    Science.gov (United States)

    Ajayi, Lasisi

    2011-01-01

    Disney videos are used across the US as important materials for teaching language arts and literacy in elementary schools. However, how pupils make meaning of the videos has not been sufficiently investigated in educational research. Twenty-five third-grade pupils were taught comprehension skills using "Sleeping Beauty." The students created their…

  11. Modeling of the interface behavior in tape casting of functionally graded ceramics for magnetic refrigeration parts

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Spangenberg, Jon; Hattel, Jesper Henri

    2013-01-01

    of a graded configuration of the magnetocaloric materials. The Newtonian flow behavior with relatively high viscosity is assumed for each fluid and used in the simulation with a commercial CFD code (ANSYS FLUENT). The results show that the density difference does not affect the interface between the adjacent...

  12. Second-order polynomial model to solve the least-cost lumber grade mix problem

    Science.gov (United States)

    Urs Buehlmann; Xiaoqiu Zuo; R. Edward. Thomas

    2010-01-01

    Material costs when cutting solid wood parts from hardwood lumber for secondary wood products manufacturing account for 20 to 50 percent of final product cost. These costs can be minimized by proper selection of the lumber quality used. The lumber quality selection problem is referred to as the least-cost lumber grade mix problem in the industry. The objective of this...

  13. Structural and Morphological Difference Between Ti/TiN/TiCN Coatings Grown in Multilayer and Graded Form

    International Nuclear Information System (INIS)

    Restrepo, E.; Baena, A.; Agudelo, C.; Castillo, H.; Devia, A.; Marino, A.

    2006-01-01

    Thin films can be grown in super-lattice, multilayers and graded form, having each one advantages and disadvantages. The difference between multilayer and graded coatings is the interface. In multilayers the interface is abrupt and in graded coatings it is diffuse. The interface influences many chemical and physical properties of the materials, and its choice depends on the application. Graded coatings have the advantage of having gradual properties such as thermal expansion coefficient and lattice parameter, avoiding adherence problems due to good match between their component materials. In this work the comparison between some properties of coatings grown as multilayer and graded is performed. The materials are produced using the sputtering DC technique because of its facility to control the deposition parameters and generate a slow growth. The target is a disc of titanium and the samples are made of stainless steel 304. The working gases are argon, nitrogen and methane, which are mixed according to the material to be produced, i.e. Ti layer is grown with argon, the TiN film is produced with a mixture of argon and nitrogen, and the TiCN material is obtained mixing argon, nitrogen and methane. These materials are characterized with AFM in order to determine grain size and with XPS studying the chemical composition and performing depth profiles

  14. Compressive evaluation of homogeneous and graded epoxy-glass particulate composites.

    Science.gov (United States)

    Seaglar, J; Rousseau, C-E

    2015-04-01

    The propagation of stress waves in epoxy-glass particulate composites and graded materials was studied experimentally. Materials tested in this study consisted of an epoxy matrix with various concentrations of spherical glass particles having a mean diameter of 42μm. Plate impact experiments were performed using a gas gun. Embedded within the specimens were manganin stress gauges used to record propagating compressive longitudinal stress waves through the material. High strain rate experiments using a Split Hopkinson Pressure Bar (SHPB) apparatus were also performed to evaluate the dynamic strength of the specimens, while quasi-static compression tests were undertaken to characterize their quasi-static behavior. Ultrasonic wave speed measurements were carried-out in order to obtain additional material properties and characterize the gradation in functionally graded materials (FGM). It was found that low volume fractions of particles are detrimental to the performance of the material under impact loading, while concentrations in the range of about 30 to 45% by volume exhibit characteristics of higher degrees of scattering. This suggests that materials in this latter range would be more effective in the thwarting of destructive shock waves than the homogeneous matrix material. Impact testing of FGM specimens suggests that impact loading on the stiff (high volume fraction) face results in much higher levels of scattering. Therefore, such materials would be effective for use in light weight armor or as shielding materials due to their effective attenuation of mechanical impulses. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Hunger: The World Food Crisis. An NSTA Environmental Materials Guide.

    Science.gov (United States)

    Fowler, Kathryn Mervine

    This document provides a materials guide containing annotated bibliographies of literature for teachers and students, a film guide, and a curriculum materials guide for educational sources relating to hunger, food, and the world food crisis. Materials span the range from pre-school to grade 12. (SL)

  16. MATERIAL CONTROL ACCOUNTING INMM

    Energy Technology Data Exchange (ETDEWEB)

    Hasty, T.

    2009-06-14

    Since 1996, the Mining and Chemical Combine (MCC - formerly known as K-26), and the United States Department of Energy (DOE) have been cooperating under the cooperative Nuclear Material Protection, Control and Accounting (MPC&A) Program between the Russian Federation and the U.S. Governments. Since MCC continues to operate a reactor for steam and electricity production for the site and city of Zheleznogorsk which results in production of the weapons grade plutonium, one of the goals of the MPC&A program is to support implementation of an expanded comprehensive nuclear material control and accounting (MC&A) program. To date MCC has completed upgrades identified in the initial gap analysis and documented in the site MC&A Plan and is implementing additional upgrades identified during an update to the gap analysis. The scope of these upgrades includes implementation of MCC organization structure relating to MC&A, establishing material balance area structure for special nuclear materials (SNM) storage and bulk processing areas, and material control functions including SNM portal monitors at target locations. Material accounting function upgrades include enhancements in the conduct of physical inventories, limit of error inventory difference procedure enhancements, implementation of basic computerized accounting system for four SNM storage areas, implementation of measurement equipment for improved accountability reporting, and both new and revised site-level MC&A procedures. This paper will discuss the implementation of MC&A upgrades at MCC based on the requirements established in the comprehensive MC&A plan developed by the Mining and Chemical Combine as part of the MPC&A Program.

  17. Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering.

    Science.gov (United States)

    Zhou, Changchun; Deng, Congying; Chen, Xuening; Zhao, Xiufen; Chen, Ying; Fan, Yujiang; Zhang, Xingdong

    2015-08-01

    Functionally graded materials (FGM) open the promising approach for bone tissue repair. In this study, a novel functionally graded hydroxyapatite (HA) bioceramic with micrograin and nanograin structure was fabricated. Its mechanical properties were tailored by composition of micrograin and nanograin. The dynamic mechanical analysis (DMA) indicated that the graded HA ceramics had similar mechanical property compared to natural bones. Their cytocompatibility was evaluated via fluorescent microscopy and MTT colorimetric assay. The viability and proliferation of rabbit bone marrow mesenchymal stem cells (BMSCs) on ceramics indicated that this functionally graded HA ceramic had better cytocompatibility than conventional HA ceramic. This study demonstrated that functionally graded HA ceramics create suitable structures to satisfy both the mechanical and biological requirements of bone tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Burning weapons-grade plutonium in reactors

    International Nuclear Information System (INIS)

    Newman, D.F.

    1993-06-01

    As a result of massive reductions in deployed nuclear warheads, and their subsequent dismantlement, large quantities of surplus weapons- grade plutonium will be stored until its ultimate disposition is achieved in both the US and Russia. Ultimate disposition has the following minimum requirements: (1) preclude return of plutonium to the US and Russian stockpiles, (2) prevent environmental damage by precluding release of plutonium contamination, and (3) prevent proliferation by precluding plutonium diversion to sub-national groups or nonweapons states. The most efficient and effective way to dispose of surplus weapons-grade plutonium is to fabricate it into fuel and use it for generation of electrical energy in commercial nuclear power plants. Weapons-grade plutonium can be used as fuel in existing commercial nuclear power plants, such as those in the US and Russia. This recovers energy and economic value from weapons-grade plutonium, which otherwise represents a large cost liability to maintain in safeguarded and secure storage. The plutonium remaining in spent MOX fuel is reactor-grade, essentially the same as that being discharged in spent UO 2 fuels. MOX fuels are well developed and are currently used in a number of LWRs in Europe. Plutonium-bearing fuels without uranium (non-fertile fuels) would require some development. However, such non-fertile fuels are attractive from a nonproliferation perspective because they avoid the insitu production of additional plutonium and enhance the annihilation of the plutonium inventory on a once-through fuel cycle

  19. A New Class of Functionally Graded Cearamic-Metal Composites for Next Generation Very High Temperature Reactors

    International Nuclear Information System (INIS)

    Jain, Mohit; Skandan, Ganesh; Khose, Gordon E.; Maro, Judith

    2008-01-01

    Generation IV Very High Temperature power generating nuclear reactors will operate at temperatures greater than 900 C. At these temperatures, the components operating in these reactors need to be fabricated from materials with excellent thermo-mechanical properties. Conventional pure or composite materials have fallen short in delivering the desired performance. New materials, or conventional materials with new microstructures, and associated processing technologies are needed to meet these materials challenges. Using the concept of functionally graded materials, we have fabricated a composite material which has taken advantages of the mechanical and thermal properties of ceramic and metals. Functionally-graded composite samples with various microstructures were fabricated. It was demonstrated that the composition and spatial variation in the composition of the composite can be controlled. Some of the samples were tested for irradiation resistance to neutrons. The samples did not degrade during initial neutron irradiation testing.

  20. "A New Class od Functionally Graded Cearamic-Metal Composites for Next Generation Very High Temperature Reactors"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Mohit Jain; Dr. Ganesh Skandan; Dr. Gordon E. Khose; Mrs. Judith Maro, Nuclear Reactor Laboratory, MIT

    2008-05-01

    Generation IV Very High Temperature power generating nuclear reactors will operate at temperatures greater than 900 oC. At these temperatures, the components operating in these reactors need to be fabricated from materials with excellent thermo-mechanical properties. Conventional pure or composite materials have fallen short in delivering the desired performance. New materials, or conventional materials with new microstructures, and associated processing technologies are needed to meet these materials challenges. Using the concept of functionally graded materials, we have fabricated a composite material which has taken advantages of the mechanical and thermal properties of ceramic and metals. Functionally-graded composite samples with various microstructures were fabricated. It was demonstrated that the composition and spatial variation in the composition of the composite can be controlled. Some of the samples were tested for irradiation resistance to neutrons. The samples did not degrade during initial neutron irradiation testing.