WorldWideScience

Sample records for grade science learning

  1. Memorization techniques: Using mnemonics to learn fifth grade science terms

    Science.gov (United States)

    Garcia, Juan O.

    The purpose of this study was to determine whether mnemonic instruction could assist students in learning fifth-grade science terminology more effectively than traditional-study methods of recall currently in practice The task was to examine if fifth-grade students were able to learn a mnemonic and then use it to understand science vocabulary; subsequently, to determine if students were able to remember the science terms after a period of time. The problem is that in general, elementary school students are not being successful in science achievement at the fifth grade level. In view of this problem, if science performance is increased at the elementary level, then it is likely that students will be successful when tested at the 8th and 10th grade in science with the Texas Assessment of Knowledge and Skills (TAKS) in the future. Two research questions were posited: (1) Is there a difference in recall achievement when a mnemonic such as method of loci, pegword method, or keyword method is used in learning fifth-grade science vocabulary as compared to the traditional-study method? (2) If using a mnemonic in learning fifth-grade science vocabulary was effective on recall achievement, would this achievement be maintained over a span of time? The need for this study was to assist students in learning science terms and concepts for state accountability purposes. The first assumption was that memorization techniques are not commonly applied in fifth-grade science classes in elementary schools. A second assumption was that mnemonic devices could be used successfully in learning science terms and increase long term retention. The first limitation was that the study was conducted on one campus in one school district in South Texas which limited the generalization of the study. The second limitation was that it included random assigned intact groups as opposed to random student assignment to fifth-grade classroom groups.

  2. Student explanations of their science teachers' assessments, grading practices and how they learn science

    Science.gov (United States)

    del Carmen Gomez, María

    2018-03-01

    The current paper draws on data generated through group interviews with students who were involved in a larger ethnographic research project performed in three science classrooms. The purpose of the study from which this data was generated, was to understand science teachers' assessment practices in an upper-secondary school in Sweden. During group interviews students were asked about their conceptions of what were the assessment priority of teachers, why the students were silent during lecturing and their experiences regarding peer- and self-assessments. The research design and analysis of the findings derives from what students told us about their assessments and learning sciences experiences. Students related that besides the results of the written test, they do not know what else teachers assessed and used to determine their grades. It was also found that students did not participate in the discussion on science because of peer-pressure and a fear of disappointing their peers. Student silence is also linked with student conceptions of science learning and student experiences with methodologies of teaching and learning sciences.

  3. Too Close for (Brain) Comfort: Improving Science Vocabulary Learning in the Middle Grades

    Science.gov (United States)

    Shore, Rebecca; Ray, Jenna; Goolkasian, Paula

    2013-01-01

    This article describes how researchers take a multidisciplinary approach to investigating how middle grades students learn science vocabulary. The authors investigated teaching strategies for increasing retention of science vocabulary with seventh graders and stumbled upon an interesting finding that was not even a target for their study, yet it…

  4. Grade Level Differences in High School Students' Conceptions of and Motives for Learning Science

    Science.gov (United States)

    Wang, Ya-Ling; Tsai, Chin-Chung

    2017-08-01

    Students' conceptions of learning science and their relations with motive for learning may vary as the education level increases. This study aimed to compare the quantitative patterns in students' conceptions of learning science (COLS) and motives for learning science (MLS) across grade levels by adopting two survey instruments. A total of 768 high school students were surveyed in Taiwan, including 204 eighth graders, 262 tenth graders, and 302 12th graders. In the current research, memorizing, testing, and calculating and practicing were categorized as reproductive conceptions of learning science, while increase of knowledge, applying, understanding and seeing-in-a-new-way were regarded as constructivist conceptions. The results of multivariate analyses of variance (MANOVA) revealed that conceptions of learning science are more constructivist as education level increases. Both tenth graders and 12th graders endorsed understanding, seeing-in-a-new-way, and the constructivist COLS composite more strongly than the eighth graders did. In addition, the results of multigroup structural equation modeling (SEM) analysis indicated that the positive relations between testing and reproductive COLS were stronger as the grade level increased, while the negative relations between reproductive COLS and deep motive were tighter with the increase in grade level.

  5. The Effectiveness of Blended Learning in Improving Students' Achievement in Third Grade's Science in Bani Kenana

    Science.gov (United States)

    Khader, Nisreen Saleh Khader

    2016-01-01

    The study aimed at identifying the effectiveness of blended learning in improving students' achievement in the third grade's science in the traditional method. The study sample consisted of (108) male and female students, who were divided into two groups: experimental and control. The experimental group studied the units and changes of the…

  6. Developing Elementary Science PCK for Teacher Education: Lessons Learned from a Second Grade Partnership

    Science.gov (United States)

    Bradbury, Leslie U.; Wilson, Rachel E.; Brookshire, Laura E.

    2017-06-01

    In this self-study, two science educators partnered with two elementary teachers to plan, implement, and reflect on a unit taught in second grade classrooms that integrated science and language arts. The researchers hoped to increase their pedagogical content knowledge (PCK) for elementary science teaching so that they might use their experiences working in an elementary context to modify their practices in their elementary science method instruction. The research question guiding the study was: What aspects of our PCK for elementary science teaching do we as science educators develop by co-planning, co-teaching, and reflecting with second grade teachers? Data include transcripts of planning meetings, oral reflections about the experience, and videos of the unit being enacted. Findings indicate that managing resources for science teaching, organizing students for science learning, and reflecting on science teaching were themes prevalent in the data. These themes were linked to the model of PCK developed by Park and Oliver (Research in Science Education, 38, 261-284, 2008) and demonstrate that we developed PCK for elementary science teaching in several areas. In our discussion, we include several proposed changes for our elementary science methods course based on the outcomes of the study.

  7. The Delphi Technique in Identifying Learning Objectives for the Development of Science, Technology and Society Modules for Palestinian Ninth Grade Science Curriculum

    Science.gov (United States)

    Abualrob, Marwan M. A.; Daniel, Esther Gnanamalar Sarojini

    2013-01-01

    This article outlines how learning objectives based upon science, technology and society (STS) elements for Palestinian ninth grade science textbooks were identified, which was part of a bigger study to establish an STS foundation in the ninth grade science curriculum in Palestine. First, an initial list of STS elements was determined. Second,…

  8. Grade 7 students' normative decision making in science learning about global warming through science technology and society (STS) approach

    Science.gov (United States)

    Luengam, Piyanuch; Tupsai, Jiraporn; Yuenyong, Chokchai

    2018-01-01

    This study reported Grade 7 students' normative decision making in teaching and learning about global warming through science technology and society (STS) approach. The participants were 43 Grade 7 students in Sungkom, Nongkhai, Thailand. The teaching and learning about global warming through STS approach had carried out for 5 weeks. The global warming unit through STS approach was developed based on framework of Yuenyong (2006) that consisted of five stages including (1) identification of social issues, (2) identification of potential solutions, (3) need for knowledge, (4) decision-making, and (5) socialization stage. Students' normative decision making was collected during their learning by questionnaire, participant observation, and students' tasks. Students' normative decision making were analyzed from both pre-and post-intervention and students' ideas during the intervention. The aspects of normative include influences of global warming on technology and society; influences of values, culture, and society on global warming; and influences of technology on global warming. The findings revealed that students have chance to learn science concerning with the relationship between science, technology, and society through their giving reasons about issues related to global warming. The paper will discuss implications of these for science teaching and learning through STS in Thailand.

  9. Problem-based learning versus traditional science instruction: Achievement and interest in science of middle grades minority females

    Science.gov (United States)

    Mungin, Rochelle E.

    This quantitative study examined science interest and achievement of middle school minority females in both traditional science classes and Problem-based Learning (PBL) science classes. The purpose of this study was to determine if there is a significant difference between traditional teaching and the PBL teaching method. The researcher also looked for a significant relationship between interest in science and achievement in science. This study used survey data from parents of female middle school science students to measure student interest in science concepts. The population of interest for this study was 13--15 year old eighth grade females from various racial make-ups such as, African American, Hispanic, Bi-racial, Asian, and Other Pacific Islander. Student achievement data was retrieved from the 8th grade science fall common assessed benchmark exam of both test groups. The results of the survey along with the benchmark data was to shed light on the way adolescent females learn and come to embrace science. The findings may provide guidance for science educators seeking to reach their minority female students and guide their achievement levels higher than before. From the results of the t-test and Pearson correlation test of this study, it can be concluded that while this study did not show a significant difference in academic achievement or interest between the two teaching styles, it revealed that interest in science has a positive role to play in the academic success of minority girls in science. The practical implications for examining these issues are to further the research on solutions for closing the minority and gender achievement gaps. The results of this study have implications for researchers as well as practitioners in the field of education.

  10. The Effects of Using Diorama on 7th Grade Students' Academic Achievement and Science Learning Skills

    Science.gov (United States)

    Aslan Efe, Hulya

    2017-01-01

    This study aims to investigate the effects of using diorama on 7th grade students' academic achievement and science learning skills in "human being and environment relation" unit. The participants were 49 (E:25, C:24) 7th grade students studying during 2015-16 academic year in Diyarbakir, Turkey. An achievement test and "science…

  11. Effects of notetaking instruction on 3rd grade student's science learning and notetaking behavior

    Science.gov (United States)

    Lee, Pai-Lin

    The research examined effects of notetaking instruction on elementary-aged students' ability to recall science information and notetaking behavior. Classes of 3rd grade students were randomly assigned to three treatment conditions, strategic notetaking, partial strategic notetaking, and control, for 4 training sessions. The effects of the notetaking instruction were measured by their performances on a test on science information taught during the training, a long-term free recall of the information, and number of information units recalled with or without cues. Students' prior science achievement was used to group students into two levels (high vs. low) and functioned as another independent variable in analysis. Results indicated significant treatment effect on cued and non-cued recall of the information units in favor of the strategy instruction groups. Students with higher prior achievement in science performed better on cued recall and long-term free recall of information. The results suggest that students as young as at the third grade can be instructed to develop the ability of notetaking that promotes their learning.

  12. Development of Analytical Thinking Ability and Attitudes towards Science Learning of Grade-11 Students through Science Technology Engineering and Mathematics (STEM Education) in the Study of Stoichiometry

    Science.gov (United States)

    Chonkaew, Patcharee; Sukhummek, Boonnak; Faikhamta, Chatree

    2016-01-01

    The purpose of this study was to investigate the analytical thinking abilities and attitudes towards science learning of grade-11 students through science, technology, engineering, and mathematics (STEM) education integrated with a problem-based learning in the study of stoichiometry. The research tools consisted of a pre- and post-analytical…

  13. Determination of Motivations towards Science Learning of Eighth Grade Turkish and German Students (A Comparative Study

    Directory of Open Access Journals (Sweden)

    Ayşe SERT ÇIBIK

    2015-06-01

    Full Text Available In this study, eighth grade students’ motivations towards science learning in Turkey and Germany were determined and compared on the basis of countries. The sample of the research was consisted of 393 8th grade students of public schools in the city centre of Turkey/Adana and in Germany/Berlin who were selected through a basic random sample during the 2013-2014 education period. In the research in which the survey model was used “Science Motivation Questionnaire” as data collection tool. In the analysis of the sub-problems of the study, descriptive statistics like frequency (f-percentage (% and independent groups t-test were used. On the other hand, in the adaptation of the scale to the German, item analysis, exploratory factor analysis and Cronbach Alpha coefficient were performed. As a result of the factor analysis, we could accept the scale as compatible with the original form, acceptably reliable and valid. Since the items inside the Turkish and German forms indicated differences, mean scores were considered during the analysis of the sub-problems. Results exposed that there are differences between the total motivational scores of students and these differences were in favor of the students in Germany. Moreover, we confirmed that the distribution of total motivation scores of the male and female students in each country was close to each other

  14. Learning to write in science: A study of English language learners' writing experience in sixth-grade science classrooms

    Science.gov (United States)

    Qi, Yang

    Writing is a predictor of academic achievement and is essential for student success in content area learning. Despite its importance, many students, including English language learners (ELLs), struggle with writing. There is thus a need to study students' writing experience in content area classrooms. Informed by systemic functional linguistics, this study examined 11 ELL students' writing experience in two sixth grade science classrooms in a southeastern state of the United States, including what they wrote, how they wrote, and why they wrote in the way they did. The written products produced by these students over one semester were collected. Also collected were teacher interviews, field notes from classroom observations, and classroom artifacts. Student writing samples were first categorized into extended and nonextended writing categories, and each extended essay was then analyzed with respect to its schematic structure and grammatical features. Teacher interviews and classroom observation notes were analyzed thematically to identify teacher expectations, beliefs, and practices regarding writing instruction for ELLs. It was found that the sixth-grade ELLs engaged in mostly non-extended writing in the science classroom, with extended writing (defined as writing a paragraph or longer) constituting roughly 11% of all writing assignments. Linguistic analysis of extended writing shows that the students (a) conveyed information through nouns, verbs, adjectives, adverbial groups and prepositional phrases; (b) constructed interpersonal context through choices of mood, modality, and verb tense; and (c) structured text through thematic choices and conjunctions. The appropriateness of these lexicogrammatical choices for particular writing tasks was related to the students' English language proficiency levels. The linguistic analysis also uncovered several grammatical problems in the students' writing, including a limited range of word choices, inappropriate use of mood

  15. 3D Visualization Types in Multimedia Applications for Science Learning: A Case Study for 8th Grade Students in Greece

    Science.gov (United States)

    Korakakis, G.; Pavlatou, E. A.; Palyvos, J. A.; Spyrellis, N.

    2009-01-01

    This research aims to determine whether the use of specific types of visualization (3D illustration, 3D animation, and interactive 3D animation) combined with narration and text, contributes to the learning process of 13- and 14- years-old students in science courses. The study was carried out with 212 8th grade students in Greece. This…

  16. Determination of Motivation of 5th Grade Students Living in Rural and Urban Environments towards Science Learning and Their Attitudes towards Science-Technology Course

    Science.gov (United States)

    Kenar, Ismail; Köse, Mücahit; Demir, Halil Ibrahim

    2016-01-01

    In this research, determination of motivation of 5th grade students living in rural and urban environments towards science learning and their attitudes towards science-technology course is aimed. This research is conducted based on descriptive survey model. Samples are selected through teleological model in accordance with the aim of this…

  17. Effectiveness of Adaptive Contextual Learning Model of Integrated Science by Integrating Digital Age Literacy on Grade VIII Students

    Science.gov (United States)

    Asrizal, A.; Amran, A.; Ananda, A.; Festiyed, F.

    2018-04-01

    Educational graduates should have good competencies to compete in the 21st century. Integrated learning is a good way to develop competence of students in this century. Besides that, literacy skills are very important for students to get success in their learning and daily life. For this reason, integrated science learning and literacy skills are important in 2013 curriculum. However, integrated science learning and integration of literacy in learning can’t be implemented well. Solution of this problem is to develop adaptive contextual learning model by integrating digital age literacy. The purpose of the research is to determine the effectiveness of adaptive contextual learning model to improve competence of grade VIII students in junior high school. This research is a part of the research and development or R&D. Research design which used in limited field testing was before and after treatment. The research instruments consist of three parts namely test sheet of learning outcome for assessing knowledge competence, observation sheet for assessing attitudes, and performance sheet for assessing skills of students. Data of student’s competence were analyzed by three kinds of analysis, namely descriptive statistics, normality test and homogeneity test, and paired comparison test. From the data analysis result, it can be stated that the implementation of adaptive contextual learning model of integrated science by integrating digital age literacy is effective to improve the knowledge, attitude, and literacy skills competences of grade VIII students in junior high school at 95% confidence level.

  18. The effects of contextual learning instruction on science achievement of male and female tenth-grade students

    Science.gov (United States)

    Ingram, Samantha Jones

    The purpose of this study was to investigate the effects of the contextual learning method on science performance, attitudes toward science, and motivational factors that influence high school students to learn science. Gender differences in science performance and attitudes toward science were also investigated. The sample included four tenth-grade classes of African-American students enrolled in Chemistry I. All students were required to review for the Alabama High School Graduation Exam in Science. Students were administered a science pretest and posttest to measure science performance. A two-way analysis of covariance was performed on the test data. The results showed a main effect of contextual learning instruction on science achievement and no significant differences between females' and males' performance in science. The Science Attitude and the Alabama High School Graduation Exam (AHSGE) Review Class Surveys were administered to assess students' beliefs and attitudes toward science. The Science Attitude Survey results indicated a control effect in three subscales: perception of guardian's attitude, attitude toward success in science, and perception of teacher's attitude. No significant differences resulted between males and females in their beliefs about science from the attitude survey. However, students' attitudes toward science were more favorable in the contextual learning classes based on the results of the Review Class Survey. The survey data revealed that both males and females in the contextual classes had positive attitudes toward science and toward being active participants in the learning process. Qualitative data on student motivation were collected to examine the meaningfulness of the contextual learning content and materials. The majority of the students in the treatment (96%) and the control groups (86%) reported high interest in the lesson on Newton's three laws of motion. Both the treatment and the control groups indicated their interest

  19. Student Explanations of Their Science Teachers' Assessments, Grading Practices and How They Learn Science

    Science.gov (United States)

    del Carmen Gomez, María

    2018-01-01

    The current paper draws on data generated through group interviews with students who were involved in a larger ethnographic research project performed in three science classrooms. The purpose of the study from which this data was generated, was to understand science teachers' assessment practices in an upper-secondary school in Sweden. During…

  20. Learning about Marine Biology. Superific Science Book VI. A Good Apple Science Activity Book for Grades 5-8+.

    Science.gov (United States)

    Conway, Lorraine

    Based on the assumption that most students have a natural curiosity about the plant and animal life residing in the oceans, this document provides students in grades five through eight with activities in marine biology. The book provides illustrated information and learning activities dealing with: (1) diatoms; (2) the life cycle of the jellyfish;…

  1. Is there a correlation between students' perceptions of their middle school science classroom learning environment and their classroom grades?

    Science.gov (United States)

    Snyder, Wayne

    The purpose of this study was to determine if the marking period grades of middle school science students are correlated with their perception of the classroom learning environment, and if so could such an indicator be used in feedback loops for ongoing classroom learning environment evaluation and evolution. The study examined 24 classrooms in three districts representing several different types of districts and a diverse student population. The independent variable was the students' perceptions of their classroom learning environment (CLE). This variable was represented by their responses on the WIHIC (What Is Happening In This Class) questionnaire. The dependent variable was the students' marking period grades. Background data about the students was included, and for further elaboration and clarification, qualitative data was collected through student and teacher interviews. Middle school science students in this study perceived as most positive those domains over which they have more locus of control. Perceptions showed some variance by gender, ethnicity, teacher/district, and socio-economic status when viewing the absolute values of the domain variables. The patterns of the results show consistency between groups. Direct correlation between questionnaire responses and student grades was not found to be significant except for a small significance with "Task Orientation". This unexpected lack of correlation may be explained by inconsistencies between grading schemes, inadequacies of the indicator instrument, and/or by the one-time administration of the variables. Analysis of the qualitative and quantitative data led to the conclusion that this instrument is picking up information, but that revisions in both the variables and in the process are needed. Grading schemes need to be decomposed, the instrument needs to be revised, and the process needs to be implemented as a series of regular feed-back loops.

  2. Grade 10 Thai students' scientific argumentation in learning about electric field through science, technology, and society (STS) approach

    Science.gov (United States)

    Chitnork, Amporn; Yuenyong, Chokchai

    2018-01-01

    The research aimed to enhance Grade 10 Thai students' scientific argumentation in learning about electric field through science, technology, and society (STS) approach. The participants included 45 Grade 10 students who were studying in a school in Nongsonghong, Khon Kaen, Thailand. Methodology regarded interpretive paradigm. The intervention was the force unit which was provided based on Yuenyong (2006) STS approach. Students learned about the STS electric field unit for 4 weeks. The students' scientific argumentation was interpreted based on Toulmin's argument pattern or TAP. The TAP provided six components of argumentation including data, claim, warrants, qualifiers, rebuttals and backing. Tools of interpretation included students' activity sheets, conversation, journal writing, classroom observation and interview. The findings revealed that students held the different pattern of argumentation. Then, they change pattern of argumentation close to the TAP. It indicates that the intervention of STS electric field unit enhance students to develop scientific argumentation. This finding may has implication of further enhancing scientific argumentation in Thailand.

  3. Learning science through the medium of English: what do Grade 8 ...

    African Journals Online (AJOL)

    The TIMSS-R (Third International Mathematics and Science Study1 report) results served to focus attention on the long-standing problem of teaching and learning though the medium of English when it is not the home language of learners or teachers and proficiency levels are too low for learners to engage with the ...

  4. Grade 8 students' capability of analytical thinking and attitude toward science through teaching and learning about soil and its' pollution based on science technology and society (STS) approach

    Science.gov (United States)

    Boonprasert, Lapisarin; Tupsai, Jiraporn; Yuenyong, Chokchai

    2018-01-01

    This study reported Grade 8 students' analytical thinking and attitude toward science in teaching and learning about soil and its' pollution through science technology and society (STS) approach. The participants were 36 Grade 8 students in Naklang, Nongbualumphu, Thailand. The teaching and learning about soil and its' pollution through STS approach had carried out for 6 weeks. The soil and its' pollution unit through STS approach was developed based on framework of Yuenyong (2006) that consisted of five stages including (1) identification of social issues, (2) identification of potential solutions, (3) need for knowledge, (4) decision-making, and (5) socialization stage. Students' analytical thinking and attitude toward science was collected during their learning by participant observation, analytical thinking test, students' tasks, and journal writing. The findings revealed that students could gain their capability of analytical thinking. They could give ideas or behave the characteristics of analytical thinking such as thinking for classifying, compare and contrast, reasoning, interpreting, collecting data and decision making. Students' journal writing reflected that the STS class of soil and its' pollution motivated students. The paper will discuss implications of these for science teaching and learning through STS in Thailand.

  5. What is taking place in science classrooms?: A case study analysis of teaching and learning in seventh-grade science of one Alabama school and its impact on African American student learning

    Science.gov (United States)

    Norman, Lashaunda Renea

    This qualitative case study investigated the teaching strategies that improve science learning of African American students. This research study further sought the extent the identified teaching strategies that are used to improve African American science learning reflect culturally responsive teaching. Best teaching strategies and culturally responsive teaching have been researched, but there has been minimal research on the impact that both have on science learning, with an emphasis on the African American population. Consequently, the Black-White achievement gap in science persists. The findings revealed the following teaching strategies have a positive impact on African American science learning: (a) lecture-discussion, (b) notetaking, (c) reading strategies, (d) graphic organizers, (e) hands-on activities, (f) laboratory experiences, and (g) cooperative learning. Culturally responsive teaching strategies were evident in the seventh-grade science classrooms observed. Seven themes emerged from this research data: (1) The participating teachers based their research-based teaching strategies used in the classroom on all of the students' learning styles, abilities, attitudes towards science, and motivational levels about learning science, with no emphasis on the African American student population; (2) The participating teachers taught the state content standards simultaneously using the same instructional model daily, incorporating other content areas when possible; (3) The participating African American students believed their seventh-grade science teachers used a variety of teaching strategies to ensure science learning took place, that science learning was fun, and that science learning was engaging; (4) The participating African American students genuinely liked their teacher; (5) The participating African American students revealed high self-efficacy; (6) The African American student participants' parents value education and moved to Success Middle School

  6. Computational mediation as factor of motivation and meaningful learning in education of sciences of 9th grade: astronomy topics

    Science.gov (United States)

    Da Silva, F. M.; Furtado, W. W.

    2012-10-01

    The main purpose of this study was to analyze the contribution of using hypertext and pedagogic mediation in search of a Meaningful Learning Process in Sciences. We investigate the usage of hypertext in the teaching and learning methods of Astronomy modules. A survey was conducted with students from the 9th grade of Primary School of a public school in the city of Goiânia, Goiás in Brazil. We have analyzed the possibilities that hypermedia can offer in the teaching and learning process, using as reference David Ausubel's Theory of Meaningful Learning. The study was divided into four phases: application of an initial questionnaire on students, development of didactic material (hypertext), six classes held in a computer lab with the use of hypermedia and a final questionnaire applied in the lab after classes. This research indicated that the use of hypertext linked to pedagogical mediation processes is seen as a motivational tool and has potential to foster to Meaningful Learning.

  7. Teaching Grade Eight Science with Reference to the Science Curriculum

    Directory of Open Access Journals (Sweden)

    Rasel Babu

    2016-08-01

    Full Text Available A mixed methodological approach was used to explore to what extent the science curriculum was being reflected in science teaching-learning of grade VIII students in Bangladesh. 160 students were randomly selected and 10 science teachers were purposively selected as study respondents. Fifteen science lessons were observed. Data were collected via student questionnaires, teacher interviews, and classroom observation checklists. Grade VIII science teaching-learning activities were not conducted according to the instructions of the science curriculum. Most teachers did not adhere to the curriculum and teacher's guide. Teachers mainly depended on lecture methods for delivering lessons. Learning by doing, demonstrating experiments, scientific inquiry, rational thinking, and analysing cause-effect relationships were noticeably absent. Teachers reported huge workloads and a lack of ingredients as reasons for not practising these activities. Teachers did not use teaching aids properly. Science teaching-learning was fully classroom centred, and students were never involved in any creative activities. 

  8. Visual thinking networking promotes long-term meaningful learning and achievement for 9th grade earth science students

    Science.gov (United States)

    Longo, Palma Joni

    2001-12-01

    An experimental and interview-based design was used to test the efficacy of visual thinking networking (VTN), a new generation of metacognitive learning strategies. Students constructed network diagrams using semantic and figural elements to represent knowledge relationships. The findings indicated the importance of using color in VTN strategies. The use of color promoted the encoding and reconstruction of earth science knowledge in memory and enhanced higher order thinking skills of problem solving. Fifty-six ninth grade earth science students (13--15 years of age) in a suburban school district outside New York City were randomly assigned to three classes with the same instructor. Five major positive findings emerged in the areas of problem solving achievement, organization of knowledge in memory, problem solving strategy dimensionality, conceptual understanding, and gender differences. A multi-covariate analysis was conducted on the pre-post gain scores of the AGI/NSTA Earth Science Examination (Part 1). Students who used the color VTN strategies had a significantly higher mean gain score on the problem solving criterion test items than students who used the black/white VTN (p = .003) and the writing strategies for learning science (p color VTN strategies: (1) significantly recalled more earth science knowledge than students who used the black/white VTN (p = .021) and the writing strategies (p color VTNs had a significantly higher mean number of conceptually accurate propositions than students who used the black/white VTN (p = .018) and the writing strategies (p = .010). Gender influenced the choice of VTN strategy. Females used significantly more color VTN strategies, while males used predominately black/white VTN strategies (p = .01). A neurocognitive model, the encoding activation theory of the anterior cingulate (ENACT-AC), is proposed as an explanation for these findings.

  9. The Relationship Between the Learning Style Perceptual Preferences of Urban Fourth Grade Children and the Acquisition of Selected Physical Science Concepts Through Learning Cycle Instructional Methodology.

    Science.gov (United States)

    Adams, Kenneth Mark

    The purpose of this research was to investigate the relationship between the learning style perceptual preferences of fourth grade urban students and the attainment of selected physical science concepts for three simple machines as taught using learning cycle methodology. The sample included all fourth grade children from one urban elementary school (N = 91). The research design followed a quasi-experimental format with a single group, equivalent teacher demonstration and student investigation materials, and identical learning cycle instructional treatment. All subjects completed the Understanding Simple Machines Test (USMT) prior to instructional treatment, and at the conclusion of treatment to measure student concept attainment related to the pendulum, the lever and fulcrum, and the inclined plane. USMT pre and post-test scores, California Achievement Test (CAT-5) percentile scores, and Learning Style Inventory (LSI) standard scores for four perceptual elements for each subject were held in a double blind until completion of the USMT post-test. The hypothesis tested in this study was: Learning style perceptual preferences of fourth grade students as measured by the Dunn, Dunn, and Price Learning Style Inventory (LSI) are significant predictors of success in the acquisition of physical science concepts taught through use of the learning cycle. Analysis of pre and post USMT scores, 18.18 and 30.20 respectively, yielded a significant mean gain of +12.02. A controlled stepwise regression was employed to identify significant predictors of success on the USMT post-test from among USMT pre-test, four CAT-5 percentile scores, and four LSI perceptual standard scores. The CAT -5 Total Math and Total Reading accounted for 64.06% of the variance in the USMT post-test score. The only perceptual element to act as a significant predictor was the Kinesthetic standard score, accounting for 1.72% of the variance. The study revealed that learning cycle instruction does not appear

  10. A Cross-grade Comparison to Examine the Context Effect on the Relationships Among Family Resources, School Climate, Learning Participation, Science Attitude, and Science Achievement Based on TIMSS 2003 in Taiwan

    Science.gov (United States)

    Chen, Shin-Feng; Lin, Chien-Yu; Wang, Jing-Ru; Lin, Sheau-Wen; Kao, Huey-Lien

    2012-09-01

    This study aimed to examine whether the relationships among family resources, school climate, learning participation, science attitude, and science achievement are different between primary school students and junior high school students within one educational system. The subjects included 4,181 Grade 4 students and 5,074 Grade 8 students who participated in TIMSS 2003 in Taiwan. Using structural equation modeling, the results showed that family resources had significant positive effects for both groups of learners. Furthermore, a context effect for the structural relationship between school climate, learning participation, and science achievement was revealed. In the primary school context, Grade 4 students who perceived positive school climate participated in school activities more actively, and had better science performance. However, in the secondary school context, learning participation had a negative impact and led to lower science achievement. The implications about this result in relation to the characteristics of the two educational contexts in Taiwan were further discussed.

  11. Grade 6 Science Curriculum Specifications.

    Science.gov (United States)

    Alberta Dept. of Education, Edmonton. Curriculum Branch.

    This material describes curriculum specifications for grade 6 science in Alberta. Emphases recommended are: (1) process skills (50%); (2) psychomotor skills (10%); (3) attitudes (10%); and (4) subject matter (30%). Priorities within each category are identified. (YP)

  12. The Relationship between Family Experiences and Motivation to Learn Science for Different Groups of Grade 9 Students in South Africa

    Science.gov (United States)

    Schulze, Salomé; Lemmer, Eleanor

    2016-01-01

    Worldwide science education is a national priority due to the role played by science performance in economic growth and the supply and quality of the human capital pool in scientific fields. One factor that may impact on the motivation to learn science is family experiences. This study therefore explored the relationship between family experiences…

  13. Sustainability and Science Learning: Perceptions from 8th Grade Students Involved with a Role Playing Activity

    Science.gov (United States)

    Freire, Sofia; Baptista, Mónica; Freire, Ana

    2016-01-01

    Raising awareness about sustainability is an urgent need and as such education for sustainability has gained relevancy for the last decades. It is acknowledged that science education can work as an important context for educating for sustainability. The goal of the present paper is to describe a role-playing activity about the construction of a…

  14. The Predictive Effects of Motivation toward Learning Science on TIMSS Grade 8 Students' Science Achievement: A Comparative Study between Malaysia and Singapore

    Science.gov (United States)

    Lay, Yoon Fah; Chandrasegaran, A. L.

    2016-01-01

    TIMSS routinely presents very powerful evidence showing that students with more positive motivation toward learning science have substantially higher achievement. The results from TIMSS 2011 are consistent with previous assessments. This study explored the predictive effects of motivation toward learning science on science achievement among…

  15. The effect of fifth grade science teachers' pedagogical content knowledge on their decision making and student learning outcomes on the concept of chemical change

    Science.gov (United States)

    Ogletree, Glenda Lee

    This study investigated the science pedagogical content knowledge (PCK) among teachers as they taught the concept of chemical change to fifth grade students. The purpose was to identify teachers' PCK and its impact in middle grade science classrooms. A second purpose was to investigate the possible relationship of teachers' science PCK to teacher actions and student learning outcomes in the classroom. The instruments used to capture PCK were background and demographic information, Content Representations (CoRe), and Professional and Pedagogical experience Repertoire (PaP-eR). The study investigated CoRe and PaP-eR with seven classroom teachers as they planned and taught chemical change to fifth grade students. Four levels of a Pedagogical Content Knowledge rubric were used to describe varying levels of PCK. The four levels were content knowledge of chemical change; knowledge of students' thinking; knowledge of how to represent chemical change to promote student learning; and professional development, collaboration, and leadership roles in science. The Reformed Teaching Observation Protocol (RTOP) described and evaluated science teaching performance levels of the teachers. In this study, 176 students were assessed to determine understanding of chemical change. There was a significant correlation between teachers' PCK scores and student achievement. The study also determined that a significant correlation existed between teachers' PCK scores and their RTOP scores revealing that RTOP scores could be predictors of PCK. Through this approach, understandings of PCK emerged that are of interest to university preservice preparation programs, research in understanding effective teachers and teaching, and the planning and implementation of professional development for teachers of science with middle grade students.

  16. The Development and Validation of an Instrument to Monitor the Implementation of Social Constructivist Learning Environments in Grade 9 Science Classrooms in South Africa

    Science.gov (United States)

    Luckay, Melanie B.; Laugksch, Rudiger C.

    2015-02-01

    This article describes the development and validation of an instrument that can be used to assess students' perceptions of their learning environment as a means of monitoring and guiding changes toward social constructivist learning environments. The study used a mixed-method approach with priority given to the quantitative data collection. During the quantitative data collection phase, a new instrument—the Social Constructivist Learning Environment Survey (SCLES)—was developed and used to collect data from 1,955 grade 9 science students from 52 classes in 50 schools in the Western Cape province, South Africa. The data were analysed to evaluate the reliability and validity of the new instrument, which assessed six dimensions of the classroom learning environment, namely, Working with Ideas, Personal Relevance, Collaboration, Critical Voice, Uncertainty in Science and Respect for Difference. Two dimensions were developed specifically for the present study in order to contextualise the questionnaire to the requirements of the new South African curriculum (namely, Metacognition and Respect for Difference). In the qualitative data collection phase, two case studies were used to investigate whether profiles of class mean scores on the new instrument could provide an accurate and "trustworthy" description of the learning environment of individual science classes. The study makes significant contributions to the field of learning environments in that it is one of the first major studies of its kind in South Africa with a focus on social constructivism and because the instrument developed captures important aspects of the learning environment associated with social constructivism.

  17. Developing models to predict 8th grade students' achievement levels on timss science based on opportunity-to-learn variables

    Science.gov (United States)

    Whitford, Melinda M.

    Science educational reforms have placed major emphasis on improving science classroom instruction and it is therefore vital to study opportunity-to-learn (OTL) variables related to student science learning experiences and teacher teaching practices. This study will identify relationships between OTL and student science achievement and will identify OTL predictors of students' attainment at various distinct achievement levels (low/intermediate/high/advanced). Specifically, the study (a) address limitations of previous studies by examining a large number of independent and control variables that may impact students' science achievement and (b) it will test hypotheses of structural relations to how the identified predictors and mediating factors impact on student achievement levels. The study will follow a multi-stage and integrated bottom-up and top-down approach to identify predictors of students' achievement levels on standardized tests using TIMSS 2011 dataset. Data mining or pattern recognition, a bottom-up approach will identify the most prevalent association patterns between different student achievement levels and variables related to student science learning experiences, teacher teaching practices and home and school environments. The second stage is a top-down approach, testing structural equation models of relations between the significant predictors and students' achievement levels according.

  18. Sex, Grade-Level and Stream Differences in Learning Environment and Attitudes to Science in Singapore Primary Schools

    Science.gov (United States)

    Peer, Jarina; Fraser, Barry J.

    2015-01-01

    Learning environment research provides a well-established approach for describing and understanding what goes on in classrooms and has attracted considerable interest in Singapore. This article reports the first study of science classroom environments in Singapore primary schools. Ten scales from the What Is Happening In this Class?,…

  19. Teaching and learning grade 7 science concepts by elaborate analogies: Mainstream and East and South Asian ESL students' experiences

    Science.gov (United States)

    Kim, Judy Joo-Hyun

    This study explored the effectiveness of an instructional tool, elaborate analogy, in teaching the particle theory to both Grade 7 mainstream and East or South Asian ESL students. Ten Grade 7 science classes from five different schools in a large school district in the Greater Toronto area participated. Each of the ten classes were designated as either Group X or Y. Using a quasi-experimental counterbalanced design, Group X students were taught one science unit using the elaborate analogies, while Group Y students were taught by their teachers' usual methods of teaching. The instructional methods used for Group X and Y were interchanged for the subsequent science unit. Quantitative data were collected from 95 students (50 mainstream and 45 ESL) by means of a posttest and a follow-up test for each of the units. When the differences between mainstream and East or South Asian ESL students were analyzed, the results indicate that both groups scored higher on the posttests when they were instructed with elaborate analogies, and that the difference between the two groups was not significant. That is, the ESL students, as well as the mainstream students, benefited academically when they were instructed with the elaborate analogies. The students obtained higher inferential scores on the posttest when their teacher connected the features of less familiar and more abstract scientific concepts to the features of the familiar and easy-to-visualize concept of school dances. However, after two months, the students were unable to recall inferential content knowledge. This is perhaps due to the lack of opportunity for the students to represent and test their initial mental models. Rather than merely employing elaborate analogies, perhaps, science teachers can supplement the use of elaborate analogies with explicit guidance in helping students to represent and test the coherence of their mental models.

  20. Newspapers in Science Education: A Study Involving Sixth Grade Students

    Science.gov (United States)

    Lai, Ching-San; Wang, Yun-Fei

    2016-01-01

    The purpose of this study was to explore the learning performance of sixth grade elementary school students using newspapers in science teaching. A quasi-experimental design with a single group was used in this study. Thirty-three sixth grade elementary school students participated in this study. The research instruments consisted of three…

  1. Effects of classwide peer tutoring on the acquisition, maintenance, and generalization of science vocabulary words for seventh grade students with learning disabilities and/or low achievement

    Science.gov (United States)

    Nobel, Michele Mcmahon

    2005-07-01

    This study investigated the effects of classwide peer tutoring (CWPT) on the acquisition, maintenance, and generalization of science vocabulary words and definitions. Participants were 14 seventh grade students at-risk for failure in a general education science course; 3 students had learning disabilities and 2 had a communication disorder. CWPT was conducted daily for 20 minutes during the last period of the school day. Procedures for CWPT were consistent with the Ohio State University CWPT model. Students were engaged in dyadic, reciprocal tutoring. Tutors presented word cards to tutees to identify the word and definition. Tutors praised correct responses and used a correction procedure for incorrect responses. After practicing their vocabulary words, students completed a daily testing procedure and recorded and plotted data. Many of the study's findings are consistent with previous studies using CWPT to teach word identification. Results of this study indicate a functional relationship between CWPT and acquisition of science vocabulary. All students were able to acquire words and definitions. Results for maintenance and generalization varied. When acquisition criterion was changed, maintenance and generalization scores increased for some students, while other students remained consistently high. All students reported that they enjoyed CWPT, and all but student stated it helped them learn science vocabulary.

  2. Learning Science Through Visualization

    Science.gov (United States)

    Chaudhury, S. Raj

    2005-01-01

    In the context of an introductory physical science course for non-science majors, I have been trying to understand how scientific visualizations of natural phenomena can constructively impact student learning. I have also necessarily been concerned with the instructional and assessment approaches that need to be considered when focusing on learning science through visually rich information sources. The overall project can be broken down into three distinct segments : (i) comparing students' abilities to demonstrate proportional reasoning competency on visual and verbal tasks (ii) decoding and deconstructing visualizations of an object falling under gravity (iii) the role of directed instruction to elicit alternate, valid scientific visualizations of the structure of the solar system. Evidence of student learning was collected in multiple forms for this project - quantitative analysis of student performance on written, graded assessments (tests and quizzes); qualitative analysis of videos of student 'think aloud' sessions. The results indicate that there are significant barriers for non-science majors to succeed in mastering the content of science courses, but with informed approaches to instruction and assessment, these barriers can be overcome.

  3. Genetic Science Learning Center

    Science.gov (United States)

    Genetic Science Learning Center Making science and health easy for everyone to understand Home News Our Team What We Do ... Collaboration Conferences Current Projects Publications Contact The Genetic Science Learning Center at The University of Utah is a ...

  4. Learning about Science Graphs and Word Games. Superific Science Book V. A Good Apple Science Activity Book for Grades 5-8+.

    Science.gov (United States)

    Conway, Lorraine

    This packet of student materials contains a variety of worksheet activities dealing with science graphs and science word games. These reproducible materials deal with: (1) bar graphs; (2) line graphs; (3) circle graphs; (4) pictographs; (5) histograms; (6) artgraphs; (7) designing your own graphs; (8) medical prefixes; (9) color prefixes; (10)…

  5. Information-seeking strategies and science content understandings of sixth-grade students using on-line learning environments

    Science.gov (United States)

    Hoffman, Joseph Loris

    1999-11-01

    This study examined the information-seeking strategies and science content understandings learners developed as a result of using on-line resources in the University of Michigan Digital Library and on the World Wide Web. Eight pairs of sixth grade students from two teachers' classrooms were observed during inquiries for astronomy, ecology, geology, and weather, and a final transfer task assessed learners' capabilities at the end of the school year. Data included video recordings of students' screen activity and conversations, journals and completed activity sheets, final artifacts, and semi-structured interviews. Learners' information-seeking strategies included activities related to asking, planning, tool usage, searching, assessing, synthesizing, writing, and creating. Analysis of data found a majority of learners posed meaningful, openended questions, used technological tools appropriately, developed pertinent search topics, were thoughtful in queries to the digital library, browsed sites purposefully to locate information, and constructed artifacts with novel formats. Students faced challenges when planning activities, assessing resources, and synthesizing information. Possible explanations were posed linking pedagogical practices with learners' growth and use of inquiry strategies. Data from classroom-lab video and teacher interviews showed varying degrees of student scaffolding: development and critique of initial questions, utilization of search tools, use of journals for reflection on activities, and requirements for final artifacts. Science content understandings included recalling information, offering explanations, articulating relationships, and extending explanations. A majority of learners constructed partial understandings limited to information recall and simple explanations, and these occasionally contained inaccurate conceptualizations. Web site design features had some influence on the construction of learners' content understandings. Analysis of

  6. Interactive whiteboards in third grade science instruction

    Science.gov (United States)

    Rivers, Grier

    Strategies have been put into place to affect improvement in science achievement, including the use of Interactive Whiteboards (IWBs) in science instruction. IWBs enable rich resources, appropriate pacing, and multimodal presentation of content deemed as best practices. Professional development experiences, use of resources, instructional practices, and changes in professional behavior in science teachers were recorded. Also recorded were differences in the engagement and motivation of students in IWB classrooms versus IWB-free classrooms and observed differences in students' problem solving, critical thinking, and collaboration. Using a mixed-method research design quantitative data were collected to identify achievement levels of the target population on the assumption that all students, regardless of ability, will achieve greater mastery of science content in IWB classrooms. Qualitative data were collected through observations, interviews, videotapes, and a survey to identify how IWBs lead to increased achievement in third grade classrooms and to develop a record of teachers' professional practices, and students' measures of engagement and motivation. Comparative techniques determined whether science instruction is more effective in IWB classroom than in IWB-free classrooms. The qualitative findings concluded that, compared to science teachers who work in IWB-free settings, elementary science teachers who used IWBs incorporated more resources to accommodate learning objectives and the varied abilities and learning styles of their students. They assessed student understanding more frequently and perceived their classrooms as more collaborative and interactive. Furthermore, they displayed willingness to pursue professional development and employed different engagement strategies. Finally, teachers who used IWBs supported more instances of critical thinking and problem-solving. Quantitative findings concluded that students of all ability levels were more motivated

  7. A Kinesthetic Learning Approach to Earth Science for 3rd and 4th Grade Students on the Pajarito Plateau, Los Alamos, NM

    Science.gov (United States)

    Wershow, H. N.; Green, M.; Stocker, A.; Staires, D.

    2010-12-01

    Current efforts towards Earth Science literacy in New Mexico are guided by the New Mexico Science Benchmarks [1]. We are geoscience professionals in Los Alamos, NM who believe there is an important role for non-traditional educators utilizing innovative teaching methods. We propose to further Earth Science literacy for local 3rd and 4th grade students using a kinesthetic learning approach, with the goal of fostering an interactive relationship between the students and their geologic environment. We will be working in partnership with the Pajarito Environmental Education Center (PEEC), which teaches the natural heritage of the Pajarito Plateau to 3rd and 4th grade students from the surrounding area, as well as the Family YMCA’s Adventure Programs Director. The Pajarito Plateau provides a remarkable geologic classroom because minimal structural features complicate the stratigraphy and dramatic volcanic and erosional processes are plainly on display and easily accessible. Our methodology consists of two approaches. First, we will build an interpretive display of the local geology at PEEC that will highlight prominent rock formations and geologic processes seen on a daily basis. It will include a simplified stratigraphic section with field specimens and a map linked to each specimen’s location to encourage further exploration. Second, we will develop and implement a kinesthetic curriculum for an exploratory field class. Active engagement with geologic phenomena will take place in many forms, such as a scavenger hunt for precipitated crystals in the vesicles of basalt flows and a search for progressively smaller rhyodacite clasts scattered along an actively eroding canyon. We believe students will be more receptive to origin explanations when they possess a piece of the story. Students will be provided with field books to make drawings of geologic features. This will encourage independent assessment of phenomena and introduce the skill of scientific observation. We

  8. Effects of Engineering Design-Based Science on Elementary School Science Students' Engineering Identity Development across Gender and Grade

    Science.gov (United States)

    Capobianco, Brenda M.; Yu, Ji H.; French, Brian F.

    2015-01-01

    The integration of engineering concepts and practices into elementary science education has become an emerging concern for science educators and practitioners, alike. Moreover, how children, specifically preadolescents (grades 1-5), engage in engineering design-based learning activities may help science educators and researchers learn more about…

  9. Information Memory Processing and Retrieval: The Use of Information Theory to Study Primacy and Recency Characteristics of Ninth Grade Science Students Processing Learning Tasks.

    Science.gov (United States)

    Dunlop, David L.

    Reported is another study related to the Project on an Information Memory Model. This study involved using information theory to investigate the concepts of primacy and recency as they were exhibited by ninth-grade science students while processing a biological sorting problem and an immediate, abstract recall task. Two hundred randomly selected…

  10. Use of the Outdoor Classroom and Nature-Study to Support Science and Literacy Learning: A Narrative Case Study of a Third-Grade Classroom

    Science.gov (United States)

    Eick, Charles J.

    2012-01-01

    A case study of an exemplary third grade teacher's use of the outdoor classroom for meeting both state science and language arts standards is described. Data from the researcher's field journal, teacher lesson plans, and teacher interviews document how this teacher used nature-study to bridge outdoor classroom experiences with the state science…

  11. Learning from Action Research about Science Teacher Preparation

    Science.gov (United States)

    Mitchener, Carole P.; Jackson, Wendy M.

    2012-01-01

    In this article, we present a case study of a beginning science teacher's year-long action research project, during which she developed a meaningful grasp of learning from practice. Wendy was a participant in the middle grade science program designed for career changers from science professions who had moved to teaching middle grade science. An…

  12. Does Social Background Influence Political Science Grades?

    Science.gov (United States)

    Tiruneh, Gizachew

    2013-01-01

    This paper tests a hypothesized linear relationship between social background and final grades in several political science courses that I taught at the University of Central Arkansas. I employ a cross-sectional research design and ordinary least square (OLS) estimators to test the foregoing hypothesis. Relying on a sample of up to 204…

  13. Science teacher orientations and PCK across science topics in grade 9 earth science

    Science.gov (United States)

    Campbell, Todd; Melville, Wayne; Goodwin, Dawne

    2017-07-01

    While the literature is replete with studies examining teacher knowledge and pedagogical content knowledge (PCK), few studies have investigated how science teacher orientations (STOs) shape classroom instruction. Therefore, this research explores the interplay between a STOs and the topic specificity of PCK across two science topics within a grade 9 earth science course. Through interviews and observations of one teacher's classroom across two sequentially taught, this research contests the notion that teachers hold a single way of conceptualising science teaching and learning. In this, we consider if multiple ontologies can provide potential explanatory power for characterising instructional enactments. In earlier work with the teacher in this study, using generic interview prompts and general discussions about science teaching and learning, we accepted the existence of a unitary STO and its promise of consistent reformed instruction in the classroom. However, upon close examination of instruction focused on different science topics, evidence was found to demonstrate the explanatory power of multiple ontologies for shaping characteristically different epistemological constructions across science topics. This research points to the need for care in generalising about teacher practice, as it reveals that a teacher's practice, and orientation, can vary, dependent on the context and science topics taught.

  14. Effects of Engineering Design-Based Science on Elementary School Science Students' Engineering Identity Development across Gender and Grade

    Science.gov (United States)

    Capobianco, Brenda M.; Yu, Ji H.; French, Brian F.

    2015-04-01

    The integration of engineering concepts and practices into elementary science education has become an emerging concern for science educators and practitioners, alike. Moreover, how children, specifically preadolescents (grades 1-5), engage in engineering design-based learning activities may help science educators and researchers learn more about children's earliest identification with engineering. The purpose of this study was to examine the extent to which engineering identity differed among preadolescents across gender and grade, when exposing students to engineering design-based science learning activities. Five hundred fifty preadolescent participants completed the Engineering Identity Development Scale (EIDS), a recently developed measure with validity evidence that characterizes children's conceptions of engineering and potential career aspirations. Data analyses of variance among four factors (i.e., gender, grade, and group) indicated that elementary school students who engaged in the engineering design-based science learning activities demonstrated greater improvements on the EIDS subscales compared to those in the comparison group. Specifically, students in the lower grade levels showed substantial increases, while students in the higher grade levels showed decreases. Girls, regardless of grade level and participation in the engineering learning activities, showed higher scores in the academic subscale compared to boys. These findings suggest that the integration of engineering practices in the science classroom as early as grade one shows potential in fostering and sustaining student interest, participation, and self-concept in engineering and science.

  15. Comparisons between students' learning achievements of their conventional instruction and the science, technology and social conceptual instructional design on digestion system issue of secondary students at the 10th grade level

    Science.gov (United States)

    Wichalek, Supattra; Chayaburakul, Kanokporn; Santiboon, Toansakul

    2018-01-01

    The purposes of this action research study were 1) to develop learning activities according to the instructional designing model of science, technology, and social (STS) on Digestion Issue, 2) to compare students' learning achievements between their learning activities with the conventional instructional (CIM) and conceptual instructional designing methods of science, technology, and social (STS) on digestion system of secondary students at the 10th grade level with a sample size of 35 experimental student group of their STS learning method, and 91 controlling group in two classes in the first semester in academic year 2016. Using the 4-Instructional Innovative Lesson Plans, the Students' Learning Behaviour Observing Form, the Questionnaire on Teacher Behaviour Interaction (QTBI), the Researcher's Recording Form, the Learning Activity Form, and the Parallel Learning Achievement Test (LAT) were assessed. The results of this research have found that; the Index of Item Objective Congruence (IOC) value ranged from 0.67 to 1.00; the difficulty values were 0.47 and 0.79 for the CIM and STS methods, respectively, the discriminative validity for the LAT was ranged from 0.20 to 0.75. The reliability of the QTBI was 0.79. Students' responses of their learning achievements with the average means scores indicted of the normalized gain values of 0.79 for the STS group, and 0.50 and 0.36 for the CIM groups, respectively. Students' learning achievements of their post-test indicated that of a higher than pre-test, the pre-test and post-test assessments were also differentiated evidence at the 0.05 levels for the STS and CIM groups, significantly. The 22-students' learning outcomes from the STS group evidences at a high level, only of the 9-students' responses in a moderate level were developed of their learning achievements, responsibility.

  16. Teaching 5th grade science for aesthetic understanding

    Science.gov (United States)

    Girod, Mark A.

    Many scientists speak with great zeal about the role of aesthetics and beauty in their science and inquiry. Few systematic efforts have been made to teach science in ways that appeal directly to aesthetics and this research is designed to do just that. Drawing from the aesthetic theory of Dewey, I describe an analytic lens called learning for aesthetic understanding that finds power in the degree to which our perceptions of the world are transformed, our interests and enthusiasm piqued, and our actions changed as we seek further experiences in the world. This learning theory is contrasted against two other current and popular theories of science learning, that of learning for conceptual understanding via conceptual change theory and learning for a language-oriented or discourse-based understanding. After a lengthy articulation of the pedagogical strategies used to teach for aesthetic understanding the research is described in which comparisons are drawn between students in two 5th grade classrooms---one taught for the goal of conceptual understanding and the other taught for the goal of aesthetic understanding. Results of this comparison show that more students in the treatment classroom had aesthetic experiences with science ideas and came to an aesthetic understanding when studying weather, erosion, and structure of matter than students in the control group. Also statistically significant effects are shown on measures of interest, affect, and efficacy for students in the treatment class. On measures of conceptual understanding it appears that treatment class students learned more and forgot less over time than control class students. The effect of the treatment does not generally depend on gender, ethnicity, or prior achievement except in students' identity beliefs about themselves as science learners. In this case, a significant interaction for treatment class females on science identity beliefs did occur. A discussion of these results as well as elaboration and

  17. Learning Science, Learning about Science, Doing Science: Different Goals Demand Different Learning Methods

    Science.gov (United States)

    Hodson, Derek

    2014-01-01

    This opinion piece paper urges teachers and teacher educators to draw careful distinctions among four basic learning goals: learning science, learning about science, doing science and learning to address socio-scientific issues. In elaboration, the author urges that careful attention is paid to the selection of teaching/learning methods that…

  18. Science Teaching Methods Preferred by Grade 9 Students in Finland

    Science.gov (United States)

    Juuti, Kalle; Lavonen, Jari; Uitto, Anna; Byman, Reijo; Meisalo, Veijo

    2010-01-01

    Students find science relevant to society, but they do not find school science interesting. This survey study analyzes Finnish grade 9 students' actual experiences with science teaching methods and their preferences for how they would like to study science. The survey data were collected from 3,626 grade 9 students (1,772 girls and 1,832 boys)…

  19. Engaging in Argument from Evidence and the Ocean Sciences Sequence for Grades 3-5: A case study in complementing professional learning experiences with instructional materials aligned to instructional goals

    Science.gov (United States)

    Schoedinger, S. E.; Weiss, E. L.

    2016-12-01

    K-5 science teachers, who often lack a science background, have been tasked with a huge challenge in implementing NGSS—to completely change their instructional approach from one that views science as a body of knowledge to be imparted to one that is epistemic in nature. We have found that providing high-quality professional learning (PL) experiences is often not enough and that teachers must have instructional materials that align with their instructional goals. We describe a case study in which the Lawrence Hall of Science (the Hall) used the Hall-developed Ocean Sciences Sequence for Grades 3-5 (OSS 3-5) to support a rigorous PL program for grade 3-5 teachers focused on the NGSS science and engineering practice, engaging in argument from evidence. Developed prior to the release of NGSS, the Ocean Literacy Framework and the NGSS precursor, A Framework for K-12 Science Education, informed the content and instructional approaches of OSS 3-5. OSS 3-5 provides a substantial focus on making evidence-based explanations (and other science practices), while building students' ocean sciences content knowledge. From 2013-2015, the Hall engaged cohorts of teachers in a rigorous PL experience focused on engaging in argument from evidence. During the summer, teachers attended a week-long institute, in which exemplar activities from OSS 3-5 were used to model instructional practices to support arguing from evidence and related practices, e.g., developing and using models and constructing explanations. Immediately afterward, teachers enacted what they'd learned during a two-week summer school practicum. Here, they team-taught the OSS 3-5 curriculum, participated in video reflection groups, and received coaching and just-in-time input from instructors. In the subsequent academic year, many teachers began by teaching OSS 3-5 so that they could practice engaging students in argumentation in curriculum they'd already used for that purpose. Throughout the year, teachers

  20. How Teaching Science Using Project-Based Learning Strategies Affects the Classroom Learning Environment

    Science.gov (United States)

    Hugerat, Muhamad

    2016-01-01

    This study involved 458 ninth-grade students from two different Arab middle schools in Israel. Half of the students learned science using project-based learning strategies and the other half learned using traditional methods (non-project-based). The classes were heterogeneous regarding their achievements in the sciences. The adapted questionnaire…

  1. Exploring the Effects of Concreteness Fading across Grades in Elementary School Science Education

    Science.gov (United States)

    Jaakkola, Tomi; Veermans, Koen

    2018-01-01

    The present study investigates the effects that concreteness fading has on learning and transfer across three grade levels (4-6) in elementary school science education in comparison to learning with constantly concrete representations. 127 9- to 12-years-old elementary school students studied electric circuits in a computer-based simulation…

  2. Learning Science beyond the Classroom.

    Science.gov (United States)

    Ramey-Gassert, Linda

    1997-01-01

    Examines a cross-section of craft knowledge and research-based literature of science learning beyond the classroom. Describes informal science education programs, and discusses implications for science teaching, focusing on the importance of informal science learning for children and in-service and preservice teachers. Proposes a model for…

  3. Electromagnetic Spectrum. 7th and 8th Grade Agriculture Science Curriculum. Teacher Materials.

    Science.gov (United States)

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This curriculum guide, the second in a set of six, contains teacher and student materials for a unit on the electromagnetic spectrum prepared as part of a seventh- and eighth-grade agricultural science curriculum that is integrated with science instruction. The guide contains the state goals and sample learning objectives for each goal for…

  4. The Effect of Cooperative Learning on Grade 12 Learners' Performance in Projectile Motions, South Africa

    Science.gov (United States)

    Kibirige, Israel; Lehong, Moyahabo Jeridah

    2016-01-01

    The study explored the effect of cooperative learning on Grade 12 learners' performance in projectile motions. A quasi-experimental research design with non-equivalent control group was used. Two schools were purposively selected from Maleboho Central circuit in South Africa based on their performance in Physical Sciences Grade 12 results of 2011.…

  5. Extensive Graded Reading in the Liberal Arts and Sciences

    Science.gov (United States)

    Poulshock, Joseph

    2010-01-01

    For this research, learners did extensive graded reading (EGR) with traditional graded readers, and they also interacted with short graded stories in the liberal arts and sciences (LAS). This study describes the purpose and format of the LAS stories used by hundreds of university students and adult learners in Japan. It summarizes the results of…

  6. Science Song Project: Integration of Science, Technology and Music to Learn Science and Process Skills

    Directory of Open Access Journals (Sweden)

    Jiyoon Yoon

    2017-07-01

    Full Text Available It has been critical to find a way for teachers to motivate their young children to learn science and improve science achievement. Since music has been used as a tool for educating young students, this study introduces the science song project to teacher candidates that contains science facts, concepts, laws and theories, and combines them with music for motivating their young children to learn science and improve science achievement. The purpose of the study is to determine the effect of the science song project on teacher candidates’ understanding of science processing skills and their attitudes toward science. The participants were 45 science teacher candidates who were enrolled in an EC-6 (Early Childhood through Grade 6 program in the teacher certification program at a racially diverse Texas public research university. To collect data, this study used two instruments: pre-and post-self efficacy tests before and after the science teacher candidates experienced the science song project and final reflective essay at the end of the semester. The results show that while developing their songs, the participating teacher candidates experienced a process for science practice, understood science concepts and facts, and positively improved attitudes toward science. This study suggests that the science song project is a science instruction offering rich experiences of process-based learning and positive attitudes toward science.

  7. Cooperative Learning and Learning Achievement in Social Science Subjects for Sociable Students

    Science.gov (United States)

    Herpratiwi; Darsono; Sasmiati; Pujiyatli

    2018-01-01

    Purpose: The research objective was to compare students' learning achievement for sociable learning motivation students in social science (IPS) using cooperative learning. Research Methods: This research used a quasi-experimental method with a pre-test/post-test design involving 35 fifth-grade students. The learning process was conducted four…

  8. Automated Essay Grading using Machine Learning Algorithm

    Science.gov (United States)

    Ramalingam, V. V.; Pandian, A.; Chetry, Prateek; Nigam, Himanshu

    2018-04-01

    Essays are paramount for of assessing the academic excellence along with linking the different ideas with the ability to recall but are notably time consuming when they are assessed manually. Manual grading takes significant amount of evaluator’s time and hence it is an expensive process. Automated grading if proven effective will not only reduce the time for assessment but comparing it with human scores will also make the score realistic. The project aims to develop an automated essay assessment system by use of machine learning techniques by classifying a corpus of textual entities into small number of discrete categories, corresponding to possible grades. Linear regression technique will be utilized for training the model along with making the use of various other classifications and clustering techniques. We intend to train classifiers on the training set, make it go through the downloaded dataset, and then measure performance our dataset by comparing the obtained values with the dataset values. We have implemented our model using java.

  9. The role of differentiation and standards-based grading in the science learning of struggling and advanced learners in a detracked high school honors biology classroom

    Science.gov (United States)

    MacDonald, Michelina Ruth Carter

    and advanced learners. My fourth finding reflects what I learned about heterogeneous grouping: (4) Heterogeneously grouping students for argumentation through engagement in science inquiry serves both to reinforce proficiency of learning goals for struggling learners and simultaneously push all learners towards advanced proficiency. These findings indicate how planning for and implementing a differentiated, standards-based instructional unit can support the learning needs of both struggling and advanced learners in a detracked, honors biology classroom.

  10. Teaching and Learning Science for Transformative, Aesthetic Experience

    Science.gov (United States)

    Girod, Mark; Twyman, Todd; Wojcikiewicz, Steve

    2010-01-01

    Drawing from the Deweyan theory of experience (1934, 1938), the goal of teaching and learning for transformative, aesthetic experience is contrasted against teaching and learning from a cognitive, rational framework. A quasi-experimental design was used to investigate teaching and learning of fifth grade science from each perspective across an…

  11. An Evaluation of the Cooperative Learning Process by Sixth-Grade Students

    Science.gov (United States)

    Genç, Murat

    2016-01-01

    The purpose of this study is to investigate the effectiveness of cooperative learning on the science lessons achievement of primary school students and to designate their views on cooperative learning process. 135 sixth-grade students attending the same school took part in the study. The model of this study was the Solomon four-group model. In the…

  12. Effects of multisensory resources on the achievement and science attitudes of seventh-grade suburban students taught science concepts on and above grade level

    Science.gov (United States)

    Roberts, Patrice Helen

    This research was designed to determine the relationships among students' achievement scores on grade-level science content, on science content that was three years above-grade level, on attitudes toward instructional approaches, and learning-styles perceptual preferences when instructional approaches were multisensory versus traditional. The dependent variables for this investigation were scores on achievement posttests and scores on the attitude survey. The independent variables were the instructional strategy and students' perceptual preferences. The sample consisted of 74 educationally oriented seventh-grade students. The Learning Styles Inventory (LSI) (Dunn, Dunn, & Price, 1990) was administered to determine perceptual preferences. The control group was taught seventh-grade and tenth-grade science units using a traditional approach and the experimental group was instructed on the same units using multisensory instructional resources. The Semantic Differential Scale (SDS) (Pizzo, 1981) was administered to reveal attitudinal differences. The traditional unit included oral reading from the textbook, completing outlines, labeling diagrams, and correcting the outlines and diagrams as a class. The multisensory unit included five instructional stations established in different sections of the classroom to allow students to learn by: (a) manipulating Flip Chutes, (b) using Electroboards, (c) assembling Task Cards, (d) playing a kinesthetic Floor Game, and (e) reading an individual Programmed Learning Sequence. Audio tapes and scripts were provided at each location. Students circulated in groups of four from station to station. The data subjected to statistical analyses supported the use of a multisensory, rather than a traditional approach, for teaching science content that is above-grade level. T-tests revealed a positive and significant impact on achievement scores (p < 0.0007). No significance was detected on grade-level achievement nor on the perceptual

  13. Inclusive science education: learning from Wizard

    Science.gov (United States)

    Koomen, Michele Hollingsworth

    2016-06-01

    This case study reports on a student with special education needs in an inclusive seventh grade life science classroom using a framework of disability studies in education. Classroom data collected over 13 weeks consisted of qualitative (student and classroom observations, interviews, student work samples and video-taped classroom teaching and learning record using CETP-COP) methods. Three key findings emerged in the analysis and synthesis of the data: (1) The learning experiences in science for Wizard are marked by a dichotomy straddled between autonomy ["Sometimes I do" (get it)] and dependence ["Sometimes I don't (get it)], (2) the process of learning is fragmented for Wizard because it is underscored by an emerging disciplinary literacy, (3) the nature of the inclusion is fragile and functional. Implications for classroom practices that support students with learning disabilities include focusing on student strengths, intentional use of disciplinary literacy strategies, and opportunities for eliciting student voice in decision making.

  14. Ninth Grade Student Responses to Authentic Science Instruction

    Science.gov (United States)

    Ellison, Michael Steven

    This mixed methods case study documents an effort to implement authentic science and engineering instruction in one teacher's ninth grade science classrooms in a science-focused public school. The research framework and methodology is a derivative of work developed and reported by Newmann and others (Newmann & Associates, 1996). Based on a working definition of authenticity, data were collected for eight months on the authenticity in the experienced teacher's pedagogy and in student performance. Authenticity was defined as the degree to which a classroom lesson, an assessment task, or an example of student performance demonstrates construction of knowledge through use of the meaning-making processes of science and engineering, and has some value to students beyond demonstrating success in school (Wehlage et al., 1996). Instruments adapted for this study produced a rich description of the authenticity of the teacher's instruction and student performance. The pedagogical practices of the classroom teacher were measured as moderately authentic on average. However, the authenticity model revealed the teacher's strategy of interspersing relatively low authenticity instructional units focused on building science knowledge with much higher authenticity tasks requiring students to apply these concepts and skills. The authenticity of the construction of knowledge and science meaning-making processes components of authentic pedagogy were found to be greater, than the authenticity of affordances for students to find value in classroom activities beyond demonstrating success in school. Instruction frequently included one aspect of value beyond school, connections to the world outside the classroom, but students were infrequently afforded the opportunity to present their classwork to audiences beyond the teacher. When the science instruction in the case was measured to afford a greater level of authentic intellectual work, a higher level of authentic student performance on

  15. Family Experiences, the Motivation for Science Learning and Science Achievement of Different Learner Groups

    Science.gov (United States)

    Schulze, Salomé; Lemmer, Eleanor

    2017-01-01

    Science education is particularly important for both developed and developing countries to promote technological development, global economic competition and economic growth. This study explored the relationship between family experiences, the motivation for science learning, and the science achievement of a group of Grade Nine learners in South…

  16. The South Carolina Amazing Coast Program: Using Ocean Sciences to Address Next Generation Science Standards in Grades 3-5

    Science.gov (United States)

    Bell, E. V.; Thomas, C.; Weiss, B.; Bliss, A.; Spence, L.

    2013-12-01

    The Next Generation Science Standards (NGSS) are more inclusive of ocean sciences than the National Science Standards and respective state science standards. In response, the Center for Ocean Sciences Education Excellence-SouthEast (COSEE SE) is piloting the South Carolina's Amazing Coast (SCAC) program: a three-year initiative that incorporates ocean science concepts in grades 3-5 with the goals of addressing NGSS, STEM (science-technology-engineering-math) disciplines, and inquiry skills. The SCAC program targeted two Charleston County, South Carolina elementary schools that were demographically similar: Title 1 status (75% free or reduced lunch), > 90% African American student population, grade level size inquiry skills. Specifically, third grade students learn about coastal habitats, animal and plant adaptations, and human impacts to the environment, and engage in a salt marsh restoration capstone project. This part of the curriculum aligns with the NGSS Core Ideas 3-LS1, 3-LS3, 3-LS4, 3-ESS3. The fourth grade students learn about weather, organism responses to the environment, and engage in a weather buoy construction capstone project. This part of the curriculum aligns with the NGSSS Core Ideas 4-LS1, 4-ESS2, 4-ESS3, 3-5-ETS1. In 5th grade, students focus specifically on the ocean ecosystem, human impacts on the environment and engage in a capstone project of designing and constructing remotely operated vehicles. This part of the curriculum aligns with NGSS Core Ideas 5-PS2, 5-LS1, 5-LS2, 5-ESS2, 3-5-ETS1. Initial evaluation results indicate that the SCAC teachers value the coach mentor approach for teacher professional development as well as the impact of field based experiences, place-based learning, and a culminating capstone project on student learning. Teacher feedback also indicates elements of sustainability that extend beyond the scope of the pilot project.These initial evaluation results poise the SCAC curriculum to be replicated in other

  17. The Effects of Framing Grades on Student Learning and Preferences

    Science.gov (United States)

    Bies-Hernandez, Nicole J.

    2012-01-01

    Two experiments examined whether framing effects, in terms of losses and gains, can be extended to student learning and grading preferences. In Experiment 1, participants rated psychology course syllabi to investigate preferences for differently framed grading systems: a loss versus gain grading system. The results showed a clear framing effect…

  18. Project Based Learning in Multi-Grade Class

    Science.gov (United States)

    Ciftci, Sabahattin; Baykan, Ayse Aysun

    2013-01-01

    The purpose of this study is to evaluate project based learning in multi-grade classes. This study, based on a student-centered learning approach, aims to analyze students' and parents' interpretations. The study was done in a primary village school belonging to the Centre of Batman, already adapting multi-grade classes in their education system,…

  19. Children's learning of science through literature

    Science.gov (United States)

    O'Kelly, James B.

    This study examined the effects of picture books belonging to different literary genres on the learning of science by primary grade students. These genres included modern fantasy, fiction, and nonfiction. The students were exposed to two topics through books, butterflies and snails. The study focused on the effects of those books on children's expressions of (a) knowledge, (b) erroneous information, (c) creative ideas, and (d) the support required to elicit information and ideas from the children. Sixty-one children from three kindergarten and three second grade participated. Children were designated by their teachers as being high or low with respect to academic achievement. These categories allowed measurement of interactions between literary genres, grade levels, and academic achievement levels. Children first learned about butterflies, and then about snails. For each topic, children were interviewed about their knowledge and questions of the topic. Teachers engaged their classes with a book about the topic. The children were re-interviewed about their knowledge and questions about the topic. No class encountered the same genre of book twice. Comparisons of the children's prior knowledge of butterflies and snails indicated that the children possessed significantly more knowledge about butterflies than about snails. Literary genre had one significant effect on children's learning about snails. Contrary to expectations, children who encountered nonfiction produced significantly more creative expressions about snails than children who encountered faction or modern fantasy. No significant effects for literary genre were demonstrated with respect to children's learning about butterflies. The outcomes of the study indicated that nonfiction had its strongest impact on the learning of science when children have a relatively small fund of knowledge about a topic. This study has implications for future research. The inclusion of a larger number of students, classes, and

  20. Learning Science and the Science of Learning. Science Educators' Essay Collection.

    Science.gov (United States)

    Bybee, Rodger W., Ed.

    This yearbook addresses critical issues in science learning and teaching. Contents are divided into four sections: (1) "How Do Students Learn Science?"; (2) "Designing Curriculum for Student Learning"; (3) "Teaching That Enhances Student Learning"; and (4) "Assessing Student Learning." Papers include: (1) "How Students Learn and How Teachers…

  1. Instructional quality of lower grades natural science classes: the ...

    African Journals Online (AJOL)

    ... classes: the case of primary schools linked to Kemise College of Teacher Education. ... the quality of natural science education classroom instruction in lower grade ... on pedagogical and subject matter issue, closer support and supervision.

  2. An Analysis of Science Textbooks for Grade 6: The Electric Circuit Lesson

    Science.gov (United States)

    Sothayapetch, Pavinee; Lavonen, Jari; Juuti, Kalle

    2013-01-01

    Textbooks are a major tool in the teaching and learning process. This paper presents the results of an analysis of the Finnish and Thai 6th grade science textbooks: electric circuit lesson. Textual and pictorial information from the textbooks were analyzed under four main categories: 1) introduction of the concepts, 2) type of knowledge, 3)…

  3. Learning Science: Some Insights from Cognitive Science

    Science.gov (United States)

    Matthews, P. S. C.

    Theories of teaching and learning, including those associated with constructivism, often make no overt reference to an underlying assumption that they make; that is, human cognition depends on domain-free, general-purpose processing by the brain. This assumption is shown to be incompatible with evidence from studies of children's early learning. Rather, cognition is modular in nature, and often domain-specific. Recognition of modularity requires a re-evaluation of some aspects of current accounts of learning science. Especially, children's ideas in science are sometimes triggered rather than learned. It is in the nature of triggered conceptual structures that they are not necessarily expressible in language, and that they may not be susceptible to change by later learning.

  4. The Development and Validation of an Instrument to Monitor the Implementation of Social Constructivist Learning Environments in Grade 9 Science Classrooms in South Africa

    Science.gov (United States)

    Luckay, Melanie B.; Laugksch, Rudiger C.

    2015-01-01

    This article describes the development and validation of an instrument that can be used to assess students' perceptions of their learning environment as a means of monitoring and guiding changes toward social constructivist learning environments. The study used a mixed-method approach with priority given to the quantitative data collection. During…

  5. Use of Jigsaw Technique to Teach the Unit "Science within Time" in Secondary 7th Grade Social Sciences Course and Students' Views on This Technique

    Science.gov (United States)

    Yapici, Hakki

    2016-01-01

    The aim of this study is to apply the jigsaw technique in Social Sciences teaching and to unroll the effects of this technique on learning. The unit "Science within Time" in the secondary 7th grade Social Sciences text book was chosen for the research. It is aimed to compare the jigsaw technique with the traditional teaching method in…

  6. The Value of Supplementing Science Education with Outdoor Instruction for Sixth Grade Students

    Science.gov (United States)

    Jackson, Devin Joseph Guilford

    Science education is moving away from memorization of facts to inquiry based learning. Adding outdoor instruction can be an effective way to promote this exploratory method of learning. The limited number of empirical studies available have shown significant increase in attitudes and learning with outdoor science instruction. An eight-week quasi-experimental teacher research study was conducted to further this research and assess the value of schoolyard science instruction on student engagement and learning. Participants were 60 students in two sixth grade middle school Earth Science classes. A crossover study design was used with two classes alternating as experimental and control groups. NASA Global Precipitation Measurement mission curriculum was used (NASA/GPM, 2011). While the results did not show a clear increase in student engagement and content knowledge, the study adds to the body of knowledge on outdoor instruction and identifies limitations to consider in future studies.

  7. Demystify Learning Expectations to Address Grade Inflation

    Science.gov (United States)

    Hodges, Linda C.

    2014-01-01

    This article describes the subject of "grade inflation," a reference to educators giving higher grades to student work than their expectations for student achievement warrant. Of the many reasons why this practice happens, Hodges specifically discusses inflating grades as "a natural consequence" when the faculty really…

  8. EFFECTIVENESS OF QUIZ TEAM AND MURDER METHOD ON LEARNING ACTIVITIES AND PROBLEM SOLVING SKILLS IN SOCIAL SCIENCE LEARNING FOR 8th GRADE STUDENTS AT UPI LABORATORY JUNIOR HIGH SCHOOL

    Directory of Open Access Journals (Sweden)

    Darwanti Darwanti

    2017-06-01

    Full Text Available There are three objectives that shape the study, first, the study is aimed at identifying different problem-solving skills of the students' who were acquainted with quiz team, lecture and MURDER method. Secondly, the study is to point out the difference of students' problem-solving skills when they are exposed to the three methods in a high, moderate, and low intensity. The third objective is to determine interactions among learning methods, learning activities and problem-solving skills. Quasi experiment is used as a method of the study by applying two experiment classes, and one controlled factorial designed class. In analyzing the data, a two-way Anova analysis and variants analysis are implemented to measure the interaction level among the three variables. The results of the study indicate that (1 there are differences in students' problem-solving skills who were exposed to quiz team, lecture and MURDER method; (2 there are also differences in students' problem-solving skills when they were exposed by the mentioned methods in a high, moderate, and low intensity; there are no relevant interactions among learning methods, learning activities and problem-solving skills. The current results are presented such that they can be used as an aid to the methods of social science learning.

  9. Family experiences, the motivation for science learning and science ...

    African Journals Online (AJOL)

    Schulze, Salome

    Student Motivation for Science Learning questionnaire combined with items investigating family experiences. ... science achievement: inadequate school resources and weak household ..... informal interviews with the science teachers of the.

  10. A Cross Age Study of Elementary Students' Motivation towards Science Learning

    Science.gov (United States)

    Guvercin, Ozge; Tekkaya, Ceren; Sungur, Semra

    2010-01-01

    The purpose of this study was to investigate the effect of grade level and gender on elementary school students' motivation towards science learning. A total of 2231 sixth and eight grade students participated in the study. Data were collected through Students' Motivation towards Science Learning Questionnaire. Two-way Multivariate Analysis of…

  11. Teaching and Learning Science for Transformative, Aesthetic Experience

    Science.gov (United States)

    Girod, Mark; Twyman, Todd; Wojcikiewicz, Steve

    2010-11-01

    Drawing from the Deweyan theory of experience (1934, 1938), the goal of teaching and learning for transformative, aesthetic experience is contrasted against teaching and learning from a cognitive, rational framework. A quasi-experimental design was used to investigate teaching and learning of fifth grade science from each perspective across an entire school year including three major units of instruction. Detailed comparisons of teaching are given and pre and post measures of interest in learning science, science identity affiliation, and efficacy beliefs are investigated. Tests of conceptual understanding before, after, and one month after instruction reveal teaching for transformative, aesthetic experience fosters more, and more enduring, learning of science concepts. Investigations of transfer also suggest students learning for transformative, aesthetic experiences learn to see the world differently and find more interest and excitement in the world outside of school.

  12. An Exploration of Blended Learning in Fifth Grade Literacy Classrooms

    Science.gov (United States)

    Ramadan, Kimberly Heintschel

    2017-01-01

    The development of the Internet allows for hybrid models of instruction that marry face-to-face and online learning (Osguthorpe & Graham, 2003). The purpose of this study was to explore blended learning and traditional instruction in three fifth grade literacy classrooms, examining the teaching and learning students engaged in during the…

  13. The Effect of Context-Based Chemical Equilibrium on Grade 11 Students' Learning, Motivation and Constructivist Learning Environment

    Science.gov (United States)

    ilhan, Nail; Yildirim, Ali; Yilmaz, Sibel Sadi

    2016-01-01

    In recent years, many countries have adopted a context-based approach for designing science curricula for education at all levels. The aim of this study was to determine the effectiveness of a Context-Based Chemistry Course (CBCC) as compared with traditional/existing instruction, on 11th grade students' learning about chemical equilibrium,…

  14. Relationship between Active Learning Methodologies and Community College Students' STEM Course Grades

    Science.gov (United States)

    Lesk, Cherish Christina Clark

    2017-01-01

    Active learning methodologies (ALM) are associated with student success, but little research on this topic has been pursued at the community college level. At a local community college, students in science, technology, engineering, and math (STEM) courses exhibited lower than average grades. The purpose of this study was to examine whether the use…

  15. Spatial Visualization as Mediating between Mathematics Learning Strategy and Mathematics Achievement among 8th Grade Students

    Science.gov (United States)

    Rabab'h, Belal; Veloo, Arsaythamby

    2015-01-01

    Jordanian 8th grade students revealed low achievement in mathematics through four periods (1999, 2003, 2007 & 2011) of Trends in International Mathematics and Science Study (TIMSS). This study aimed to determine whether spatial visualization mediates the affect of Mathematics Learning Strategies (MLS) factors namely mathematics attitude,…

  16. common difficulties experienced by grade 12 students in learning

    African Journals Online (AJOL)

    Temechegn

    difficult topic student's experiences in learning chemistry is chemical bonding because ... students cooperative enterprise in science, organizing field trips, science ... related to organic, inorganic and physical chemistry that are to be learnt and ...

  17. Communicating Science to Impact Learning? A Phenomenological Inquiry into 4th and 5th Graders' Perceptions of Science Information Sources

    Science.gov (United States)

    Gelmez Burakgazi, Sevinc; Yildirim, Ali; Weeth Feinstein, Noah

    2016-01-01

    Rooted in science education and science communication studies, this study examines 4th and 5th grade students' perceptions of science information sources (SIS) and their use in communicating science to students. It combines situated learning theory with uses and gratifications theory in a qualitative phenomenological analysis. Data were gathered…

  18. Sex, grade, and course differences in attitudes that are related to cognitive performance in secondary science

    Science.gov (United States)

    Levin, James; Seymour Fowler, H.

    The purpose of this study was to collect and analyze data on sexual differences in secondary school students' attitudes towards science. Attitudinal differences were also analyzed for the independent variables of science programs and grade levels. Data were collected from 988 students using a modified version of the Fennema-Sherman Mathematics Attitude Scales to represent attitudes toward science. Reliabilities of the modified science subscales were all high ( > 0.83). Multivariate analysis of variance (MANOVA) was used to analyze the data for the main and interaction effects of the independent variables of sex (male, female), grade level (10th, 11th, 12th), and science program (advanced placement, academic, general, terminal). Significant differences (p Scale, Science as a Male Domain Scale, and Teacher Scale. Although not significant, males evidenced more positive attitudes on all the remaining five subscales. Eleventh graders evidenced significantly more positive attitudes than tenth graders on all but the Effectance Motivation Scale. Students in 11th grade had more positive attitudes than 12th-grade students on all scales but Science as a Male Domain Scale; however, these differences were not significant. Tenth graders differed significantly from 12th graders on three subscales; Science Usefulness Scale, Confidence in Learning Science Scale, and Teacher Scale. Positive attitudes decreased from advanced placement to terminal programs. Academic students did not differ significantly from general students except on the Father Scale; however, they were significantly different (more positive) from the terminal students for all subscales. General students were also significantly different from terminal students except on the three subscales of Attitudes Toward Success in Science, Science as a Male Domain, and Effectance Motivation.

  19. Active Learning in the Middle Grades

    Science.gov (United States)

    Edwards, Susan

    2015-01-01

    What is active learning and what does it look like in the classroom? If students are participating in active learning, they are playing a more engaged role in the learning process and are not overly reliant on the teacher (Bransford, Brown, & Cocking, 2003; Petress, 2008). The purpose of this article is to propose a framework to describe and…

  20. Metaconceptually-Enhanced Simulation-Based Inquiry: Effects on Eighth Grade Students' Conceptual Change and Science Epistemic Beliefs

    Science.gov (United States)

    Huang, Kun; Ge, Xun; Eseryel, Deniz

    2017-01-01

    This study investigated the effects of metaconceptually-enhanced, simulation-based inquiry learning on eighth grade students' conceptual change in science and their development of science epistemic beliefs. Two experimental groups studied the topics of motion and force using the same computer simulations but with different simulation guides: one…

  1. Science Learning Centres Roundup

    Science.gov (United States)

    Baker, Yvonne

    2013-01-01

    A recent YouGov poll indicated that almost half of eight to 18-year-olds aspire to a career in science. The latest Association of Colleges enrolment survey indicates a large increase in uptake of science, technology, engineering and mathematics (STEM) at further education (FE) colleges. These reports, along with other findings that suggest an…

  2. Grade six students' understanding of the nature of science

    Science.gov (United States)

    Cochrane, Donald Brian

    The goal of scientific literacy requires that students develop an understanding of the nature of science to assist them in the reasoned acquisition of science concepts and in their future role as citizens in a participatory democracy. The purpose of this study was to investigate and describe the range of positions that grade six students hold with respect to the nature of science and to investigate whether gender or prior science education was related to students' views of the nature of science. Two grade six classes participated in this study. One class was from a school involved in a long-term elementary science curriculum project. The science curriculum at this school involved constructivist epistemology and pedagogy and a realist ontology. The curriculum stressed hands-on, open-ended activities and the development of science process skills. Students were frequently involved in creating and testing explanations for physical phenomena. The second class was from a matched school that had a traditional science program. Results of the study indicated that students hold a wider range of views of the nature of science than previously documented. Student positions ranged from having almost no understanding of the nature of science to those expressing positions regarding the nature of science that were more developed than previous studies had documented. Despite the range of views documented, all subjects held realist views of scientific knowledge. Contrary to the literature, some students were able to evaluate a scientific theory in light of empirical evidence that they had generated. Results also indicated that students from the project school displayed more advanced views of the nature of science than their matched peers. However, not all students benefited equally from their experiences. No gender differences were found with respect to students' understanding of the nature of science.

  3. GRADE AS THE MOTIVATIONAL FACTOR IN LEARNING MATHEMATICS

    Directory of Open Access Journals (Sweden)

    Sead Rešić

    2017-09-01

    Full Text Available In this research the motivation for learning mathematics was tested,as well as the effect of grades on the motivation of primary school level students. On a sample of N=100 participants, primary school students, we conducted a survey, the results of which show that the participants are more motivated with extrinsic factors, then intrinsic factors for learning mathematics. Grades are the main factor that has the most influence on the motivation level of students for learning mathematics, because students need good grades for their further education. The results also show that punishment and rewards from parents for bad and good grades has no effect on the motivation level of students

  4. Sustaining Student Engagement in Learning Science

    Science.gov (United States)

    Ateh, Comfort M.; Charpentier, Alicia

    2014-01-01

    Many students perceive science to be a difficult subject and are minimally engaged in learning it. This article describes a lesson that embedded an activity to engage students in learning science. It also identifies features of a science lesson that are likely to enhance students' engagement and learning of science and possibly reverse students'…

  5. Negotiating Discourses: Sixth-Grade Students' Use of Multiple Science Discourses during a Science Fair Presentation

    Science.gov (United States)

    Gomez, Kimberley

    2007-01-01

    This study offers important insights into the coexistence of multiple discourses and the link between these discourses and science understanding. It offers concrete examples of students' movement between multiple discourses in sixth-grade science fair presentations, and shows how those multiple discourses in science practices illuminate students'…

  6. Family experiences, the motivation for science learning and science ...

    African Journals Online (AJOL)

    Family experiences, the motivation for science learning and science achievement of ... active learning and achievement goals); boys perceived family experiences ... Recommendations were made as to how schools can support families in ...

  7. The Science of Learning. 2nd Edition

    Science.gov (United States)

    Pear, Joseph J.

    2016-01-01

    For over a century and a quarter, the science of learning has expanded at an increasing rate and has achieved the status of a mature science. It has developed powerful methodologies and applications. The rise of this science has been so swift that other learning texts often overlook the fact that, like other mature sciences, the science of…

  8. Achievement of Serbian eighth grade students in science

    Directory of Open Access Journals (Sweden)

    Antonijević Radovan

    2006-01-01

    Full Text Available The paper considers the main results and some educational implications of the TIMSS 2003 assessment conducted in Serbia in the fields of the science achievement of Serbian eighth grade students and the science curriculum context of their achievement. There were 4264 students in the sample. It was confirmed that Serbian eighth graders had made average scale score of 468 points in the science, and with this achievement they are placed in the zone of the top of low international benchmarking level, very close to the point of intermediate benchmark. The average science achievement of the Serbian eighth graders is somewhat below the general international science achievement. The best results were achieved in the science content domain of "chemistry", and the lower results in the content domain of "environmental science". Across the defined science cognitive domains, it was confirmed that the Serbian students had achieved the best results in cognitive domain of "factual knowledge" and weaker results in "reasoning and analysis". The achieved results raise many questions about contents of the science curriculum in Serbia, its overall quality and basic characteristics of its implementation. These results can be eligibly used to improve the science curricula and teaching in Serbian primary school. .

  9. Scientific Representation and Science Learning

    Science.gov (United States)

    Matta, Corrado

    2014-01-01

    In this article I examine three examples of philosophical theories of scientific representation with the aim of assessing which of these is a good candidate for a philosophical theory of scientific representation in science learning. The three candidate theories are Giere's intentional approach, Suárez's inferential approach and Lynch and…

  10. An Investigation of Science and Technology Teachers’ Views on the 5th Grade Science Course

    OpenAIRE

    İkramettin Daşdemir

    2014-01-01

    This study was conducted to explore the science and technology teachers’ views on the implementation of 5th grade science course. Open-ended questions were used as a data collection tool. The study sample consisted of 28 science and technology teachers working in Erzurum in 2012-2013 education year. The data gathered were analysed via content analysis method. According to the results obtained from the open-ended questions, a great majority of science and technology teache...

  11. Physical experience enhances science learning.

    Science.gov (United States)

    Kontra, Carly; Lyons, Daniel J; Fischer, Susan M; Beilock, Sian L

    2015-06-01

    Three laboratory experiments involving students' behavior and brain imaging and one randomized field experiment in a college physics class explored the importance of physical experience in science learning. We reasoned that students' understanding of science concepts such as torque and angular momentum is aided by activation of sensorimotor brain systems that add kinetic detail and meaning to students' thinking. We tested whether physical experience with angular momentum increases involvement of sensorimotor brain systems during students' subsequent reasoning and whether this involvement aids their understanding. The physical experience, a brief exposure to forces associated with angular momentum, significantly improved quiz scores. Moreover, improved performance was explained by activation of sensorimotor brain regions when students later reasoned about angular momentum. This finding specifies a mechanism underlying the value of physical experience in science education and leads the way for classroom practices in which experience with the physical world is an integral part of learning. © The Author(s) 2015.

  12. Enhancing Laos Students' Understanding of Nature of Science in Physics Learning about Atom for Peace

    Science.gov (United States)

    Sengdala, Phoxay; Yuenyong, Chokchai

    2014-01-01

    This paper aimed to study of Grade 12 students' understanding of nature of science in learning about atom for peace through science technology and society (STS) approach. Participants were 51 Grade 12 who study in Thongphong high school Vientiane Capital City Lao PDR, 1st semester of 2012 academic year. This research regarded interpretive…

  13. A Problem-Based Learning Scenario That Can Be Used in Science Teacher Education

    Science.gov (United States)

    Sezgin Selçuk, Gamze

    2015-01-01

    The purpose of this study is to introduce a problem-based learning (PBL) scenario that elementary school science teachers in middle school (5th-8th grades) can use in their in-service training. The scenario treats the subjects of heat, temperature and thermal expansion within the scope of the 5th and 6th grade science course syllabi and has been…

  14. Analysis of Primary School Student's Science Learning Anxiety According to Some Variables

    Science.gov (United States)

    Karakaya, Ferhat; Avgin, Sakine Serap; Kumperli, Ethem

    2016-01-01

    On this research, it is analyzed if the science learning anxiety level shows difference according to variables which are gender, grade level, science lesson grade, mother education, father education level. Scanning Design is used for this study. Research working group is consisted of 294 primary school from 6th, 7th and 8th graders on 2015-2016…

  15. Drama-Based Science Teaching and Its Effect on Students' Understanding of Scientific Concepts and Their Attitudes towards Science Learning

    Science.gov (United States)

    Abed, Osama H.

    2016-01-01

    This study investigated the effect of drama-based science teaching on students' understanding of scientific concepts and their attitudes towards science learning. The study also aimed to examine if there is an interaction between students' achievement level in science and drama-based instruction. The sample consisted of (87) of 7th grade students…

  16. Learning Lunar Science Through the Selene Videogame

    Science.gov (United States)

    Reese, D. D.; Wood, C. A.

    2010-03-01

    Selene is a videogame to promote and assess learning of lunar science concepts. As players build and modify a Moon, Selene measures learning as it occurs. Selene is a model for 21st century learning and embedded assessment.

  17. An Inquiry into Flipped Learning in Fourth Grade Math Instruction

    Science.gov (United States)

    D'addato, Teresa; Miller, Libbi R.

    2016-01-01

    The objective of this action research project was to better understand the impact of flipped learning on fourth grade math students in a socioeconomically disadvantaged setting. A flipped instructional model was implemented with the group of students enrolled in the researcher's class. Data was collected in the form of classroom observations,…

  18. Common difficulties experienced by grade 12 students in learning ...

    African Journals Online (AJOL)

    The objective of this study was to examine the nature and causes of common difficulties experienced by grade twelve students in learning chemistry in Ebinat preparatory school. A qualitative method was employed to investigate the questions, which used interviews and questionnaires with students and teachers. The key ...

  19. Teaching the science of learning.

    Science.gov (United States)

    Weinstein, Yana; Madan, Christopher R; Sumeracki, Megan A

    2018-01-01

    The science of learning has made a considerable contribution to our understanding of effective teaching and learning strategies. However, few instructors outside of the field are privy to this research. In this tutorial review, we focus on six specific cognitive strategies that have received robust support from decades of research: spaced practice, interleaving, retrieval practice, elaboration, concrete examples, and dual coding. We describe the basic research behind each strategy and relevant applied research, present examples of existing and suggested implementation, and make recommendations for further research that would broaden the reach of these strategies.

  20. African American eighth-grade female students' perceptions and experiences as learners of science literacy

    Science.gov (United States)

    Crim, Sharan R.

    The National Assessment of Educational Progress (2000) reports an achievement gap between male and female students and majority and minority students in science literacy. Rutherford and Algren (2000) describe a scientifically literate person as one who is aware that science, mathematics, and technology are interdependent human enterprises with strengths and limitations; understands key concepts and principles of science; is familiar with the natural world and recognizes both its diversity and unity; and uses scientific knowledge and scientific ways of thinking for individual and social purposes. The purpose of this qualitative case study research was to investigate African American eighth grade female students' perceptions and experiences as learners of science literacy. A social learning theory (Bandura, 1986) and constructivist theory (Vygotsky, 1977) served as a guide for the researcher. Two questions were explored: (1) What are African American eighth grade female students' perceptions and experiences as learners of science literacy? (2) In what ways do the perceptions and experiences of African American eighth grade female students influence their learning of science literacy? Purposeful sampling (Merriam, 1998) was used with four African American eighth grade female students selected as participants for the study. Data collection and analysis occurred between February and August in a single year. Data sources included an open-ended questionnaire, two in-depth interviews with each participant (Seidman, 1991); classroom observations, participant reflective journals, student artifacts, and a researcher's log. Data were analyzed through the constant comparative method (Glaser & Strauss, 1967), and richly descriptive participant portraits and qualitative case studies (Merriam, 1998) were used to report the findings. Three themes emerged from the study that positively affected the perceptions and experiences of African American eighth grade female students as

  1. The Effect of Online Collaboration on Adolescent Sense of Community in Eighth-Grade Physical Science

    Science.gov (United States)

    Wendt, Jillian L.; Rockinson-Szapkiw, Amanda J.

    2015-10-01

    Using a quasi-experimental, nonequivalent pretest/posttest control group design, the researchers examined the effects of online collaborative learning on eighth-grade student's sense of community in a physical science class. For a 9-week period, students in the control group participated in collaborative activities in a face-to-face learning environment, whereas students in the experimental group participated in online collaborative activities using the Edmodo educational platform in a hybrid learning environment. Students completed the Classroom Community Scale survey as a pretest and posttest. Results indicated that the students who participated in the face-to-face classroom had higher overall sense of community and learning community than students who participated in collaborative activities in the online environment. Results and implications are discussed and suggestions for future research are provided.

  2. A critical hermeneutic study: Third grade elementary African American students' views of the nature of science

    Science.gov (United States)

    Walls, Leon

    Nature of Science is one of the most fundamental aspects of understanding science. How different cultures, races and ethnicities see and interpret science differently is critical. However, the NOS views specific to African American teachers and learners have gone largely unresearched. The views of a purposeful sample of African American third grade children reported in this study contribute to efforts to make science equitable for all students. Conducted in two Midwest urban settings, within the students' regular classrooms, three instruments were employed: Views of Nature of Science Elementary (an interview protocol), Elementary Draw a Scientist Test (a drawing activity supplemented by an explicating narrative), and Identify a Scientist (a simple select-a-photo technique supported by Likert-measured sureness). The responses provided by twenty-three students were coded using qualitative content analysis. The findings are represented in three main categories: Science - is governed by experimentation, invention and discovery teach us about the natural world, school is not the only setting for learning science; Scientists - intelligent, happy, studious men and women playing multiple roles, with distinct physical traits working in laboratories; Students - capable users and producers of science and who view science as fun. This study advocates for: use of such instruments for constant monitoring of student views, using the knowledge of these views to construct inquiry based science lessons, and increased research about students of color.

  3. Home Culture, Science, School and Science Learning: Is Reconciliation Possible?

    Science.gov (United States)

    Tan, Aik-Ling

    2011-01-01

    In response to Meyer and Crawford's article on how nature of science and authentic science inquiry strategies can be used to support the learning of science for underrepresented students, I explore the possibly of reconciliation between the cultures of school, science, school science as well as home. Such reconciliation is only possible when…

  4. Utilizing Multi-Modal Literacies in Middle Grades Science

    Science.gov (United States)

    Saurino, Dan; Ogletree, Tamra; Saurino, Penelope

    2010-01-01

    The nature of literacy is changing. Increased student use of computer-mediated, digital, and visual communication spans our understanding of adolescent multi-modal capabilities that reach beyond the traditional conventions of linear speech and written text in the science curriculum. Advancing technology opens doors to learning that involve…

  5. A content analysis of sixth-grade, seventh-grade, and eighth-grade science textbooks with regard to the nature of science

    Science.gov (United States)

    Phillips, Marianne C.

    Science teachers rely heavily on their textbooks; for many, it is the only curriculum they use (Weiss, 1993). Therefore, it is important these materials convey an accurate conception of the nature of science. Science for All Americans (AAAS, 1990) and the National Science Education Standards (NRC, 1996) call for teaching students about the nature of science. Including the nature of science throughout science textbooks will produce scientifically literate citizens (Driver and others, 1993) with an improved ability to make informed decisions (McComas, 1998). Teaching the nature of science supports the successful learning of science content and process (Driver and others, 1996), and bridges the gap between the two cultures of practicing scientists and school science (Sorsby, 2000). Do middle school science textbooks provide a balanced presentation of the nature of science throughout their text? To determine the answer, this investigation used a content analysis technique to analyze a random sample from the introduction chapter and the rest of the textbook chapters from twelve middle school science textbooks for the four aspects of the nature of science (Chiappetta, Fillman, & Sethna, 2004). Scoring procedures were used to determine interrater agreement using both Cohen's kappa (kappa) and Krippendorff's alpha (alpha). Kappa values were determined to be fair to excellent beyond chance among the three coders. The resulting values for Krippendorff's alpha ranged from acceptable (alpha > .80) to unacceptable (alpha imbalance is providing students with a rudimentary and fragmented view of how science works, despite the fact that science impacts every aspect of life (McComas, 1998). Given the impact of textbooks on learning, it is recommended that teachers be informed of these shortcomings to enable them to supplement content where it is lacking.

  6. Exploiting ensemble learning for automatic cataract detection and grading.

    Science.gov (United States)

    Yang, Ji-Jiang; Li, Jianqiang; Shen, Ruifang; Zeng, Yang; He, Jian; Bi, Jing; Li, Yong; Zhang, Qinyan; Peng, Lihui; Wang, Qing

    2016-02-01

    Cataract is defined as a lenticular opacity presenting usually with poor visual acuity. It is one of the most common causes of visual impairment worldwide. Early diagnosis demands the expertise of trained healthcare professionals, which may present a barrier to early intervention due to underlying costs. To date, studies reported in the literature utilize a single learning model for retinal image classification in grading cataract severity. We present an ensemble learning based approach as a means to improving diagnostic accuracy. Three independent feature sets, i.e., wavelet-, sketch-, and texture-based features, are extracted from each fundus image. For each feature set, two base learning models, i.e., Support Vector Machine and Back Propagation Neural Network, are built. Then, the ensemble methods, majority voting and stacking, are investigated to combine the multiple base learning models for final fundus image classification. Empirical experiments are conducted for cataract detection (two-class task, i.e., cataract or non-cataractous) and cataract grading (four-class task, i.e., non-cataractous, mild, moderate or severe) tasks. The best performance of the ensemble classifier is 93.2% and 84.5% in terms of the correct classification rates for cataract detection and grading tasks, respectively. The results demonstrate that the ensemble classifier outperforms the single learning model significantly, which also illustrates the effectiveness of the proposed approach. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Investigation the opinions of the primary science teachers toward practice of teaching and learning activities in science learning area

    Science.gov (United States)

    Chamnanwong, Pornpaka; Thathong, Kongsak

    2018-01-01

    In preparing a science lesson plan, teachers may deal with numerous difficulties. Having a deep understanding of their problems and their demands is extremely essential for the teachers in preparing themselves for the job. Moreover, it is also crucial for the stakeholders in planning suitable and in-need teachers' professional development programs, in school management, and in teaching aid. This study aimed to investigate the primary school science teachers' opinion toward practice of teaching and learning activities in science learning area. Target group was 292 primary science teachers who teach Grade 4 - 6 students in Khon Kaen Province, Thailand in the academic year of 2014. Data were collected using Questionnaire about Investigation the opinions of the primary science teachers toward practice of teaching and learning activities in science learning area. The questionnaires were consisted of closed questions scored on Likert scale and open-ended questions that invite a sentence response to cover from LS Process Ideas. Research findings were as follow. The primary science teachers' level of opinion toward teaching and learning science subject ranged from 3.19 - 3.93 (mean = 3.43) as "Moderate" level of practice. The primary school science teachers' needs to participate in a training workshop based on LS ranged from 3.66 - 4.22 (mean = 3.90) as "High" level. The result indicated that they were interested in attending a training course under the guidance of the Lesson Study by training on planning of management of science learning to solve teaching problems in science contents with the highest mean score 4.22. Open-ended questions questionnaire showed the needs of the implementation of the lesson plans to be actual classrooms, and supporting for learning Medias, innovations, and equipment for science experimentation.

  8. Flipped learning in science education

    DEFF Research Database (Denmark)

    Andersen, Thomas Dyreborg; Foss, Kristian Kildemoes; Nissen, Stine Karen

    2017-01-01

    During the last decade, massive investment in ICT has been made in Danish schools. There seems, however, to be a need to rethink how to better integrate ICT in education (Bundgaard et al. 2014 p. 216) Flipped learning might be a didactical approach that could contribute to finding a method to use...... research questions are “To what extent can teachers using the FL-teaching method improve Danish pupils' learning outcomes in science subject’s physics / chemistry, biology and geography in terms of the results of national tests?” And “What factors influence on whether FL-teaching improves pupils' learning...... will be addressed. Hereafter an array of different scaffolding activities will be conducted, among these are individual supervision, sharing of materials used in lessons and involving local school leaders in the program. During this 3-year period we will follow the progress of the students involved in the program...

  9. Interest of Grade Ten Students toward Physics among Other Science Subjects, Case of Wolaita Soddo Town Governmental Secondary Schools, Ethiopia

    Science.gov (United States)

    Hamelo, Shewangzaw

    2016-01-01

    This paper has proposed to investigate the interest in students towards physics among other science subjects. The investigation was carried out with 490 samples of grade ten students in Wolaita Soddo town governmental schools. Thus, overall result indicates that the interest in students towards physics is low and students hate to learn physics in…

  10. Investigation of 9th Grade High School Students’ Attitudes towards Science Course

    Directory of Open Access Journals (Sweden)

    Orhan Karamustafaoglu

    2017-12-01

    Full Text Available In this study, ninth grade students’ attitudes towards science were investigated in terms of self-regulation strategies, motivational beliefs and gender variables. The sample of this study includes 322 male and 296 female in total 618 students from 3 different high schools (Science high school, Anatolian high school, and Vocational high school in center district of Amasya city. To collect the data, the researchers employed “Motivated Strategies for Learning Questionnaire” which has been developed by Pintrich and De Groot in 1990, adapted into Turkish by Uredi in 2005 and consists of 44 items and “Colorado Learning Attitudes about Science Survey (CLASS” has been developed by Adams and others in 2006, adapted into Turkish by Bayar and Karamustafaoğlu in 2015 and consists of 36 items. For data analysis, mean, standard deviation, independent t-test and correlation were addressed. The results of this study show that there are statistically significant relationships between 9th grade students’ attitudes towards science and self-regulation strategies, motivational beliefs, and gender.

  11. Exploring Students' Conceptions of Science Learning via Drawing: A Cross-Sectional Analysis

    Science.gov (United States)

    Hsieh, Wen-Min; Tsai, Chin-Chung

    2017-01-01

    This cross-sectional study explored students' conceptions of science learning via drawing analysis. A total of 906 Taiwanese students in 4th, 6th, 8th, 10th, and 12th grade were asked to use drawing to illustrate how they conceptualise science learning. Students' drawings were analysed using a coding checklist to determine the presence or absence…

  12. How do students navigate and learn from nonlinear science texts: Can metanavigation support promote science learning?

    Science.gov (United States)

    Stylianou, Agni

    2003-06-01

    Digital texts which are based on hypertext and hypermedia technologies are now being used to support science learning. Hypertext offers certain opportunities for learning as well as difficulties that challenge readers to become metacognitively aware of their navigation decisions in order to trade both meaning and structure while reading. The goal of this study was to investigate whether supporting sixth grade students to monitor and regulate their navigation behavior while reading from hypertext would lead to better navigation and learning. Metanavigation support in the form of prompts was provided to groups of students who used a hypertext system called CoMPASS to complete a design challenge. The metanavigation prompts aimed at encouraging students to understand the affordances of the navigational aids in CoMPASS and use them to guide their navigation. The study was conducted in a real classroom setting during the implementation of CoMPASS in sixth grade science classes. Multiple sources of group and individual data were collected and analyzed. Measures included student's individual performance in a pre-science knowledge test, the Metacognitive Awareness of Reading Strategies Inventory (MARSI), a reading comprehension test and a concept map test. Process measures included log file information that captured group navigation paths during the use of CoMPASS. The results suggested that providing metanavigation support enabled the groups to make coherent transitions among the text units. Findings also revealed that reading comprehension, presence of metanavigation support and prior domain knowledge significantly predicted students' individual understanding of science. Implications for hypertext design and literacy research fields are discussed.

  13. Approaches to Learning and Kolb's Learning Styles of Undergraduates with Better Grades

    Science.gov (United States)

    Almeida, Patrícia; Teixeira-Dias, José Joaquim; Martinho, Mariana; Balasooriya, Chinthaka

    The purpose of this study is to investigate if the teaching, learning and assessment strategies conceived and implemented in a higher education chemistry course promote the development of conceptual understanding, as intended. Thus, our aim is to analyse the learning styles and the approaches to learning of chemistry undergraduates with better grades. The overall results show that the students with better grades possess the assimilator learning style, that is usually associated to the archetypal chemist. Moreover, the students with the highest grades revealed a conception of learning emphasising understanding. However, these students diverged both in their learning approaches and in their preferences for teaching strategies. The majority of students adopted a deep approach or a combination of a deep and a strategic approach, but half of them revealed their preference for teaching-centred strategies.

  14. The Effect of Blended Learning and Social Media-Supported Learning on the Students' Attitude and Self-Directed Learning Skills in Science Education

    Science.gov (United States)

    Akgunduz, Devrim; Akinoglu, Orhan

    2016-01-01

    The main purpose of this study is to investigate the effect of blended learning and social media supported learning on the students' attitude and self-directed learning skills in Science Education. This research took place with the 7th grade 74 students attending to a primary school in Kadikoy, Istanbul and carried out "Our Body Systems"…

  15. Learning Science through Talking Science in Elementary Classroom

    Science.gov (United States)

    Tank, Kristina Maruyama; Coffino, Kara

    2014-01-01

    Elementary students in grade two make sense of science ideas and knowledge through their contextual experiences. Mattis Lundin and Britt Jakobson find in their research that early grade students have sophisticated understandings of human anatomy and physiology. In order to understand what students' know about human body and various systems,…

  16. A Situative Metaphor for Teacher Learning: The Case of University Tutors Learning to Grade Student Coursework

    Science.gov (United States)

    Boyd, Pete; Bloxham, Sue

    2014-01-01

    In the continuing concern about academic standards in the higher education sector a great deal of emphasis has been placed on quality assurance procedures rather than on considering how university tutors learn to grade the quality of work produced by students. As part of a larger research project focused on how tutors grade student coursework,…

  17. Family experiences, the motivation for science learning and science ...

    African Journals Online (AJOL)

    Schulze, Salome

    Student Motivation for Science Learning questionnaire combined with items investigating family experiences. The findings .... decisions and formulate behavioural goals for their ..... science achievement, making interpretation diffi- cult and ...

  18. Examination of Pre-Service Science Teachers' Activities Using Problem Based Learning Method

    Science.gov (United States)

    Ekici, Didem Inel

    2016-01-01

    In this study, both the activities prepared by pre-service science teachers regarding the Problem Based Learning method and the pre-service science teachers' views regarding the method were examined before and after applying their activities in a real class environment. 69 pre-service science teachers studying in the 4th grade of the science…

  19. Multimodal Teacher Input and Science Learning in a Middle School Sheltered Classroom

    Science.gov (United States)

    Zhang, Ying

    2016-01-01

    This article reports the results of an ethnographic research about the multimodal science discourse in a sixth-grade sheltered classroom involving English Language Learners (ELLs) only. Drawing from the perspective of multimodality, this study examines how science learning is constructed in science lectures through multiple semiotic resources,…

  20. Increasing ocean sciences in K and 1st grade classrooms through ocean sciences curriculum aligned to A Framework for K-12 Science Education, and implementation support.

    Science.gov (United States)

    Pedemonte, S.; Weiss, E. L.

    2016-02-01

    Ocean and climate sciences are rarely introduced at the early elementary levels. Reasons for this vary, but include little direct attention at the national and state levels; lack of quality instructional materials; and, lack of teacher content knowledge. Recent recommendations by the National Research Council, "revise the Earth and Space sciences core ideas and grade band endpoints to include more attention to the ocean whenever possible" (NRC, 2012, p. 336) adopted in the Next Generation Science Standards (NGSS), may increase the call for ocean and climate sciences to be addressed. In response to these recommendations' and the recognition that an understanding of some of the Disciplinary Core Ideas (DCIs) would be incomplete without an understanding of processes or phenomena unique to the ocean and ocean organisms; the ocean Literacy community have created documents that show the alignment of NGSS with the Ocean Literacy Principles and Fundamental Concepts (Ocean Literacy, 2013) as well as the Ocean Literacy Scope and Sequence for Grades K-12 (Ocean Literacy, 2010), providing a solid argument for how and to what degree ocean sciences should be part of the curriculum. However, the percentage of science education curricula focused on the ocean remains very low. This session will describe a new project, that draws on the expertise of curriculum developers, ocean literacy advocates, and researchers to meet the challenges of aligning ocean sciences curriculum to NGSS, and supporting its implementation. The desired outcomes of the proposed project are to provide a rigorous standards aligned curricula that addresses all of the Life Sciences, and some Earth and Space Sciences and Engineering Design Core Ideas for Grades K and 1; and provides teachers with the support they need to understand the content and begin implementation. The process and lessons learned will be shared.

  1. Integration of Place-Based Education Into Science Classes From Prekindergarten Through Grade 5

    Science.gov (United States)

    Wade-Lyles, Terri A.

    In a large urban district in Ohio, 29.2% of Grade 5, 28.7% of Grade 8, and 45.7% of Grade 10 students passed the state test in science. School district administrators formed a community partnership with local science institutions in order to provide students with hands-on place-based learning experiences intended to improve science academic achievement in PK-Grade 5. The purpose of this qualitative program evaluation was to determine the level of implementation of that place-based program by examining the efficacy of the teachers' embedded professional development and their experiences with the training components. Bruner's theory of cognitive development was used to examine teachers' needs in facilitating the program. A stratified random sample of 659 PK-Grade 5 teachers from 73 district elementary schools was selected, and 57 teachers responded to an anonymous online survey of 5 open-ended questions. Data were analyzed using thematic analysis to identity factors that enhanced or impeded the implementation of place-based education programming based on their professional development. The key findings indicated that over half of the participants viewed resources as lacking, training as limited, and planning that is too time consuming, and complicated. Participants expressed the need for clarity regarding resources and more training on how to plan for and integrate the placed-based approach. The resulting project was an executive summary and interactive workshop for program stakeholders, such as administrators, teachers, and ultimately students, who would benefit from this project by improving the place-based program.

  2. Learning environments matter: Identifying influences on the motivation to learn science

    Directory of Open Access Journals (Sweden)

    Salomé Schulze

    2015-05-01

    Full Text Available In the light of the poor academic achievement in science by secondary school students in South Africa, students' motivation for science learning should be enhanced. It is argued that this can only be achieved with insight into which motivational factors to target, with due consideration of the diversity in schools. The study therefore explored the impact of six motivational factors for science learning in a sample of 380 Grade Nine boys and girls from three racial groups, in both public and independent schools. The students completed the Student Motivation for Science Learning questionnaire. Significant differences were identified between different groups and school types. The study is important for identifying the key role of achievement goals, science learning values and science self-efficacies. The main finding emphasises the significant role played by science teachers in motivating students for science in terms of the learning environments that they create. This has important implications for future research, aimed at a better understanding of these environments. Such insights are needed to promote scientific literacy among the school students, and so contribute to the improvement of science achievement in South Africa.

  3. Online Learning for Muon Science

    Science.gov (United States)

    Baker, Peter J.; Loe, Tom; Telling, Mark; Cottrell, Stephen P.; Hillier, Adrian D.

    As part of the EU-funded project SINE2020 we are developing an online learning environment to introduce people to muon spectroscopy and how it can be applied in a variety of science areas. Currently there are short interactive courses using cosmic ray muons to teach what muons are and how their decays are measured and a guide to analyzing muon data using the Mantid software package, as well as videos from the lectures at the ISIS Muon Spectroscopy Training School 2016. Here we describe the courses that have been developed and how they have already been used.

  4. The Effect of Thinking Maps on Fifth Grade Science Achievement

    Science.gov (United States)

    Hudson, Darlene

    Informational texts, such as those found in science education, have historically been reserved for secondary students. With the increased emphasis on elementary students' academic accountability, these high impact instructional strategies must also be utilized to support subject matter comprehension for younger students. This causal-comparative study, grounded in cognitive learning theory, sought to discover if 2 years of implementation and use of Thinking Maps, a visual tool program, had an effect on student achievement in elementary science as measured by Georgia's statewide assessment known as the Criterion-Referenced Competency Test (CRCT). Achievement data of 2 groups that received Thinking Maps instruction for 2 years was compared to 1 group that did not. An analysis of covariance was used to analyze the assessment data. The findings suggest that the students who did not use Thinking Maps performed significantly better than those who did use Thinking Maps, even though both groups showed positive mean score gains from 2010 to 2012 on the science portion of the CRCT. Limitations of the study, such as the lack of randomization and manipulation of the independent variable, suggest that further research is needed to fairly evaluate the program and its effectiveness. Also, the instructional setting and amount of time used for science instruction in the elementary classroom warrants additional investigation. Findings related to the implementation and use of graphic tools such as Thinking Maps will help school systems choose professional learning opportunities and effective instructional strategies to develop content literacy.

  5. Content, format, gender and grade level differences in elementary students' ability to read science materials as measured by the cloze procedure

    Science.gov (United States)

    Williams, Richard L.; Yore, Larry D.

    Present instructional trends in science indicate a need to reexamine a traditional concern in science education: the readability of science textbooks. An area of reading research not well documented is the effect of color, visuals, and page layout on readability of science materials. Using the cloze readability method, the present study explored the relationships between page format, grade level, sex, content, and elementary school students ability to read science material. Significant relationships were found between cloze scores and both grade level and content, and there was a significant interaction effect between grade and sex in favor of older males. No significant relationships could be attributed to page format and sex. In the area of science content, biological materials were most difficult in terms of readability followed by earth science and physical science. Grade level data indicated that grade five materials were more difficult for that level than either grade four or grade six materials were for students at each respective level. In eight of nine cases, the science text materials would be classified at or near the frustration level of readability. The implications for textbook writers and publishers are that science reading materials need to be produced with greater attention to readability and known design principles regarding visual supplements. The implication for teachers is that students need direct instruction in using visual materials to increase their learning from text material. Present visual materials appear to neither help nor hinder the student to gain information from text material.

  6. Designing for expansive science learning and identification across settings

    Science.gov (United States)

    Stromholt, Shelley; Bell, Philip

    2017-10-01

    In this study, we present a case for designing expansive science learning environments in relation to neoliberal instantiations of standards-based implementation projects in education. Using ethnographic and design-based research methods, we examine how the design of coordinated learning across settings can engage youth from non-dominant communities in scientific and engineering practices, resulting in learning experiences that are more relevant to youth and their communities. Analyses highlight: (a) transformative moments of identification for one fifth-grade student across school and non-school settings; (b) the disruption of societal, racial stereotypes on the capabilities of and expectations for marginalized youth; and (c) how youth recognized themselves as members of their community and agents of social change by engaging in personally consequential science investigations and learning.

  7. Science Textbooks' Use of Graphical Representation: A Descriptive Analysis of Four Sixth Grade Science Texts

    Science.gov (United States)

    Slough, Scott W.; McTigue, Erin M.; Kim, Suyeon; Jennings, Susan K.

    2010-01-01

    Middle school teachers tend to rely heavily on texts that have become increasing more visual. There is little information available about the graphical demands of general middle grades' science texts. The purpose of this study was to quantify the type and quality of the graphical representations and how they interacted with the textual material in…

  8. Examining Middle School Science Student Self-Regulated Learning in a Hypermedia Learning Environment through Microanalysis

    Science.gov (United States)

    Mandell, Brian E.

    The purpose of the present embedded mixed method study was to examine the self-regulatory processes used by high, average, and low achieving seventh grade students as they learned about a complex science topic from a hypermedia learning environment. Thirty participants were sampled. Participants were administered a number of measures to assess their achievement and self-efficacy. In addition, a microanalytic methodology, grounded in Zimmerman's cyclical model of self-regulated learning, was used to assess student self-regulated learning. It was hypothesized that there would be modest positive correlations between Zimmerman's three phases of self-regulated learning, that high achieving science students would deploy more self-regulatory subprocesses than average and low achieving science students, that high achieving science students would have higher self-efficacy beliefs to engage in self-regulated learning than average and low achieving science students, and that low achieving science students would over-estimate their self-efficacy for performance beliefs, average achieving science students would slightly overestimate their self-efficacy for performance beliefs, and high achieving science students would under-estimate their self-efficacy for performance beliefs. All hypotheses were supported except for the high achieving science students who under-estimated their self-efficacy for performance beliefs on the Declarative Knowledge Measure and slightly overestimated their self-efficacy for performance beliefs on the Conceptual Knowledge Measure. Finally, all measures of self-regulated learning were combined and entered into a regression formula to predict the students' scores on the two science tests, and it was revealed that the combined measure predicted 91% of the variance on the Declarative Knowledge Measure and 92% of the variance on the Conceptual Knowledge Measure. This study adds hypermedia learning environments to the contexts that the microanalytic

  9. The Comparison of Solitary and Collaborative Modes of Game-Based Learning on Students' Science Learning and Motivation

    Science.gov (United States)

    Chen, Ching-Huei; Wang, Kuan-Chieh; Lin, Yu-Hsuan

    2015-01-01

    In this study, we investigated and compared solitary and collaborative modes of game-based learning in promoting students' science learning and motivation. A total of fifty seventh grade students participated in this study. The results showed that students who played in a solitary or collaborative mode demonstrated improvement in learning…

  10. The Effect of Reflective Science Journal Writing on Students' Self-Regulated Learning Strategies

    Science.gov (United States)

    Al-Rawahi, Nawar M.; Al-Balushi, Sulaiman M.

    2015-01-01

    The current study investigates the effectiveness of grade-ten students' reflective science journal writing on their self-regulated learning strategies. We used a pre-post control group quasi-experimental design. The sample consisted of 62 tenth-grade students (15 years old) in Oman, comprising 32 students in the experimental group and 30 students…

  11. Teacher Tweets Improve Achievement for Eighth Grade Science Students

    Directory of Open Access Journals (Sweden)

    Carol Van Vooren

    2013-02-01

    Full Text Available In the Digital Age teachers have fallen far behind the technical skills of their "digital native" students. The implementation of technology as a tool for classroom communication is foreign for most teachers, but highly preferred by students. While teenagers are using Facebook, Twitter, and other social networks to communicate, teachers continue to respond through face-to-face conversations, telephone calls, and email messaging. Twitter, a platform for short message service text, is an online social network site that allows users to send and receive messages using 140 characters or less called Tweets. To analyze the relationship of the teacher's use of Twitter with student academic achievement, a correlation study conducted by Bess collected data from two matched samples of eighth grade science students: one utilizing Twitter and one not utilizing Twitter to reinforce classroom instruction. Two tests matching the science standards were given to both samples of students. The results of the tests were used as primary data. The findings suggested a positive correlation between the use of Twitter and student performance on the standardized tests. Implications for this study indicate that young teenagers may prefer Twitter as a mode of communication with their teacher, resulting in higher academic achievement in a middle school science class.

  12. Active Learning to Improve Fifth Grade Mathematics Achievement in Banten

    Directory of Open Access Journals (Sweden)

    Andri Suherman

    2011-12-01

    Full Text Available Teaching for active learning is a pedagogical technique that has been actively promoted in Indonesian education through government reform efforts and international development assistance projects for decades. Recently, elementary schools in Banten province received training in active learning instructional strategies from the USAID-funded project, Decentralized Basic Education 2. Post-training evaluations conducted by lecturers from the University of Sultan Ageng Tirtayasa (UNTIRTA: Universitas Sultan Ageng Tirtayasa suggested that teachers were successfully employing active learning strategies in some subjects, but not mathematics. In order to understand the difficulties teachers were having in teaching for active learning in mathematics, and to assist them in using active learning strategies, a team of lecturers from UNTIRTA designed and carried out an action research project to train teachers in an elementary school in the city of Cilegon to use a technique called Magic Fingers in teaching Grade 5 multiplication. During the course of the project the research team discovered that teachers were having problems transferring knowledge gained from training in one context and subject to other school subjects and contexts. Key Words: Mathematics, Teaching for Active Learning, Indonesia, Banten

  13. Science of learning is learning of science: why we need a dialectical approach to science education research

    Science.gov (United States)

    Roth, Wolff-Michael

    2012-06-01

    Research on learning science in informal settings and the formal (sometimes experimental) study of learning in classrooms or psychological laboratories tend to be separate domains, even drawing on different theories and methods. These differences make it difficult to compare knowing and learning observed in one paradigm/context with those observed in the other. Even more interestingly, the scientists studying science learning rarely consider their own learning in relation to the phenomena they study. A dialectical, reflexive approach to learning, however, would theorize the movement of an educational science (its learning and development) as a special and general case—subject matter and method—of the phenomenon of learning (in/of) science. In the dialectical approach to the study of science learning, therefore, subject matter, method, and theory fall together. This allows for a perspective in which not only disparate fields of study—school science learning and learning in everyday life—are integrated but also where the progress in the science of science learning coincides with its topic. Following the articulation of a contradictory situation on comparing learning in different settings, I describe the dialectical approach. As a way of providing a concrete example, I then trace the historical movement of my own research group as it simultaneously and alternately studied science learning in formal and informal settings. I conclude by recommending cultural-historical, dialectical approaches to learning and interaction analysis as a context for fruitful interdisciplinary research on science learning within and across different settings.

  14. The Effect of the Conceptual Change Oriented Instruction through Cooperative Learning on 4th Grade Students' Understanding of Earth and Sky Concepts

    Science.gov (United States)

    Celikten, Oksan; Ipekcioglu, Sevgi; Ertepinar, Hamide; Geban, Omer

    2012-01-01

    The purpose of this study was to compare the effectiveness of the conceptual change oriented instruction through cooperative learning (CCICL) and traditional science instruction (TI) on 4th grade students' understanding of earth and sky concepts and their attitudes toward earth and sky concepts. In this study, 56 fourth grade students from the…

  15. Visual, Critical, and Scientific Thinking Dispositions in a 3rd Grade Science Classroom

    Science.gov (United States)

    Foss, Stacy

    Many American students leave school without the required 21st century critical thinking skills. This qualitative case study, based on the theoretical concepts of Facione, Arheim, and Vygotsky, explored the development of thinking dispositions through the arts in science on the development of scientific thinking skills when used as a conceptual thinking routine in a rural 3rd grade classroom. Research questions examined the disposition to think critically through the arts in science and focused on the perceptions and experiences of 25 students with the Visual Thinking Strategy (VTS) process. Data were collected from classroom observations (n = 10), student interviews (n = 25), teacher interviews ( n = 1), a focus group discussion (n = 3), and artifacts of student work (n = 25); these data included perceptions of VTS, school culture, and classroom characteristics. An inductive analysis of qualitative data resulted in several emergent themes regarding disposition development and students generating questions while increasing affective motivation. The most prevalent dispositions were open-mindedness, the truth-seeking disposition, the analytical disposition, and the systematicity disposition. The findings about the teachers indicated that VTS questions in science supported "gradual release of responsibility", the internalization of process skills and vocabulary, and argumentation. This case study offers descriptive research that links visual arts inquiry and the development of critical thinking dispositions in science at the elementary level. A science curriculum could be developed, that emphasizes the development of thinking dispositions through the arts in science, which in turn, could impact the professional development of teachers and learning outcomes for students.

  16. Learning Multiplication Using Indonesian Traditional game in Third Grade

    Directory of Open Access Journals (Sweden)

    Rully Charitas Indra Prahmana

    2012-07-01

    Full Text Available Several previous researches showed that students had difficulty inunderstanding the basic concept of multiplication. Students are morelikely to be introduced by using formula without involving the conceptitself. This underlies the researcher to design a learning trajectory oflearning multiplication using Permainan Tradisional Tepuk Bergambar(PT2B as a context based on the student experience. The purpose ofthis research is to look at the role of PT2B in helping students'understanding in learning multiplication, which evolved from theinformal to formal level in third grade with Pendidikan MatematikaRealistik Indonesia (PMRI approach. The method used is designresearch starting from preliminary design, teaching experiments, andretrospective analysis. This research describes how PT2B make a realcontribution to the third grade students of SDN 179 Palembang tounderstand the concept of multiplication. The results showed PT2Bcontext can stimulate students to understand their knowledge of themultiplication concept. The whole strategy and model that studentsdiscover, describe, and discuss shows how the students construction orcontribution can uses to help their initial understanding of that concept.The stages in the learning trajectory of student have an important rolein understanding the concept of the operation number from informal tothe formal level.Keyword: Design Research, PMRI, Multiplication, Permainan TradisionalTepuk Bergambar DOI: http://dx.doi.org/10.22342/jme.3.2.1931.115-132

  17. Using Songs To Support Vocabulary Learning For Grade Four Pupils

    Directory of Open Access Journals (Sweden)

    Rashid Al-Azri

    2015-06-01

    Full Text Available Abstract Over the recent years the teaching of foreign language vocabulary has been the subject of much discussion and arguments and a number of research and methodology books on such topic have emerged as it is the case for example with Nation 2001 and Schmitt 2000. For a long time grammar seemed to have attracted more attention but this renewed interest in vocabulary reflects the belief that it is becoming a major component in knowing a language and as some recent scholars would admit even more important than grammar already. In addition to the various strategies used to promote vocabulary learning in the classroom environment songs are widely being used nowadays as a powerful tool in teaching new vocabulary to early grades pupils. Throughout our teaching of young learners we have noticed that they are amazingly captured by songs and they always enjoy listening to them. This might be one of the main reasons why songs have now become one of the cornerstones in the demanding and challenging process of teaching children. The purpose of this research paper is to find out as to what extent and how the use of songs may support new vocabulary learning for grade four pupils in Oman and how much it actually helps these young learners in developing their vocabulary learning habits.

  18. TRACX2: a connectionist autoencoder using graded chunks to model infant visual statistical learning.

    Science.gov (United States)

    Mareschal, Denis; French, Robert M

    2017-01-05

    Even newborn infants are able to extract structure from a stream of sensory inputs; yet how this is achieved remains largely a mystery. We present a connectionist autoencoder model, TRACX2, that learns to extract sequence structure by gradually constructing chunks, storing these chunks in a distributed manner across its synaptic weights and recognizing these chunks when they re-occur in the input stream. Chunks are graded rather than all-or-nothing in nature. As chunks are learnt their component parts become more and more tightly bound together. TRACX2 successfully models the data from five experiments from the infant visual statistical learning literature, including tasks involving forward and backward transitional probabilities, low-salience embedded chunk items, part-sequences and illusory items. The model also captures performance differences across ages through the tuning of a single-learning rate parameter. These results suggest that infant statistical learning is underpinned by the same domain-general learning mechanism that operates in auditory statistical learning and, potentially, in adult artificial grammar learning.This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'. © 2016 The Author(s).

  19. Science learning based on local potential: Overview of the nature of science (NoS) achieved

    Science.gov (United States)

    Wilujeng, Insih; Zuhdan Kun, P.; Suryadarma, IGP.

    2017-08-01

    The research concerned here examined the effectiveness of science learning conducted with local potential as basis from the point of a review of the NoS (nature of science) achieved. It used the non equivalent control group design and took place in the regions of Magelang and Pati, Province of Central Java, and the regions of Bantul and Sleman, Province of the Special Region of Yogyakarta. The research population consisted of students of the first and second grades at each junior high school chosen with research subjects sampled by means of cluster sampling. The instruments used included: a) an observation sheet, b) a written test, and c) a questionnaire. The learning and research instruments had been declared valid and reliable according to previous developmental research. In conclusion, the science learning based on local potential was effective in terms of all the NoS aspects.

  20. Science Integrating Learning Objectives: A Cooperative Learning Group Process

    Science.gov (United States)

    Spindler, Matt

    2015-01-01

    The integration of agricultural and science curricular content that capitalizes on natural and inherent connections represents a challenge for secondary agricultural educators. The purpose of this case study was to create information about the employment of Cooperative Learning Groups (CLG) to enhance the science integrating learning objectives…

  1. Science and Sandy: Lessons Learned

    Science.gov (United States)

    Werner, K.

    2013-12-01

    Following Hurricane Sandy's impact on the mid-Atlantic region, President Obama established a Task Force to '...ensure that the Federal Government continues to provide appropriate resources to support affected State, local, and tribal communities to improve the region's resilience, health, and prosperity by building for the future.' The author was detailed from NOAA to the Task Force between January and June 2013. As the Task Force and others began to take stock of the region's needs and develop plans to address them, many diverse approaches emerged from different areas of expertise including: infrastructure, management and construction, housing, public health, and others. Decision making in this environment was complex with many interests and variables to consider and balance. Although often relevant, science and technical expertise was not always at the forefront of this process. This talk describes the author's experience with the Sandy Task Force focusing on organizing scientific expertise to support the work of the Task Force. This includes a description of federal activity supporting Sandy recovery efforts, the role of the Task Force, and lessons learned from developing a science support function within the Task Force.

  2. Leading Learning: Science Departments and the Chair

    Science.gov (United States)

    Melville, Wayne; Campbell, Todd; Jones, Doug

    2016-01-01

    In this article, we have considered the role of the chair in leading the learning necessary for a department to become effective in the teaching and learning of science from a reformed perspective. We conceptualize the phrase "leading learning" to mean the chair's constitution of influence, power, and authority to intentionally impact…

  3. How Should Students Learn in the School Science Laboratory? The Benefits of Cooperative Learning

    Science.gov (United States)

    Raviv, Ayala; Cohen, Sarit; Aflalo, Ester

    2017-07-01

    Despite the inherent potential of cooperative learning, there has been very little research into its effectiveness in middle school laboratory classes. This study focuses on an empirical comparison between cooperative learning and individual learning in the school science laboratory, evaluating the quality of learning and the students' attitudes. The research included 67 seventh-grade students who undertook four laboratory experiments on the subject of "volume measuring skills." Each student engaged both in individual and cooperative learning in the laboratory, and the students wrote individual or group reports, accordingly. A total of 133 experiment reports were evaluated, 108 of which also underwent textual analysis. The findings show that the group reports were superior, both in terms of understanding the concept of "volume" and in terms of acquiring skills for measuring volume. The students' attitudes results were statistically significant and demonstrated that they preferred cooperative learning in the laboratory. These findings demonstrate that science teachers should be encouraged to implement cooperative learning in the laboratory. This will enable them to improve the quality and efficiency of laboratory learning while using a smaller number of experimental kits. Saving these expenditures, together with the possibility to teach a larger number of students simultaneously in the laboratory, will enable greater exposure to learning in the school science laboratory.

  4. Teacher Learning from Girls' Informal Science Experiences

    Science.gov (United States)

    Birmingham, Daniel J.

    2013-01-01

    School science continues to fail to engage youth from non-dominant communities (Carlone, Huan-Frank & Webb, 2011). However, recent research demonstrates that informal science learning settings support both knowledge gains and increased participation in science among youth from non-dominant communities (Dierking, 2007; Falk et al., 2007; HFRP,…

  5. The effect of science learning integrated with local potential to improve science process skills

    Science.gov (United States)

    Rahardini, Riris Riezqia Budy; Suryadarma, I. Gusti Putu; Wilujeng, Insih

    2017-08-01

    This research was aimed to know the effectiveness of science learning that integrated with local potential to improve student`s science process skill. The research was quasi experiment using non-equivalent control group design. The research involved all student of Muhammadiyah Imogiri Junior High School on grade VII as a population. The sample in this research was selected through cluster random sampling, namely VII B (experiment group) and VII C (control group). Instrument that used in this research is a nontest instrument (science process skill observation's form) adapted Desak Megawati's research (2016). The aspect of science process skills were making observation and communication. The data were using univariat (ANOVA) analyzed at 0,05 significance level and normalized gain score for science process skill increase's category. The result is science learning that integrated with local potential was effective to improve science process skills of student (Sig. 0,00). This learning can increase science process skill, shown by a normalized gain score value at 0,63 (medium category) in experiment group and 0,29 (low category) in control group.

  6. Changing Curriculum: A Critical Inquiry into the Revision of the British Columbia Science Curriculum For Grades K-9

    Science.gov (United States)

    Searchfield, Mary A.

    In 2010 British Columbia's Ministry of Education started the process of redesigning the provincial school curriculum, Kindergarten to Grade 12. Mandatory implementation of the new curriculum was set for the 2016/17 school year for Grades K-9, and 2017/18 for Grades 10-12. With a concerted emphasis on personalized learning and through the frame of a Know-Do-Understand curriculum model, the new curriculum aims to meet the needs of today's learners, described as living in a technology-rich, fast-paced and ever-changing world, through a concept-based and competency-driven emphasis. This thesis is a critical analysis of the BC K-9 Science curriculum as written and published, looking specifically at how science is treated as a form of knowledge, its claimed presentation as a story, and on whether the intentions claimed by the designers are matched in the curriculum's final form.

  7. Enacting Informal Science Learning: Exploring the Battle for Informal Learning

    Science.gov (United States)

    Clapham, Andrew

    2016-01-01

    Informal Science Learning (ISL) is a policy narrative of interest in the United Kingdom and abroad. This paper explores how a group of English secondary school science teachers, enacted ISL science clubs through employing the Periodic Table of Videos. It examines how these teachers "battled" to enact ISL policy in performative conditions…

  8. Relationship Between Active Learning Methodologies and Community College Students' STEM Course Grades

    Science.gov (United States)

    Clark Lesko, Cherish Christina

    Active learning methodologies (ALM) are associated with student success, but little research on this topic has been pursued at the community college level. At a local community college, students in science, technology, engineering, and math (STEM) courses exhibited lower than average grades. The purpose of this study was to examine whether the use of ALM predicted STEM course grades while controlling for academic discipline, course level, and class size. The theoretical framework was Vygotsky's social constructivism. Descriptive statistics and multinomial logistic regression were performed on data collected through an anonymous survey of 74 instructors of 272 courses during the 2016 fall semester. Results indicated that students were more likely to achieve passing grades when instructors employed in-class, highly structured activities, and writing-based ALM, and were less likely to achieve passing grades when instructors employed project-based or online ALM. The odds ratios indicated strong positive effects (greater likelihoods of receiving As, Bs, or Cs in comparison to the grade of F) for writing-based ALM (39.1-43.3%, 95% CI [10.7-80.3%]), highly structured activities (16.4-22.2%, 95% CI [1.8-33.7%]), and in-class ALM (5.0-9.0%, 95% CI [0.6-13.8%]). Project-based and online ALM showed negative effects (lower likelihoods of receiving As, Bs, or Cs in comparison to the grade of F) with odds ratios of 15.7-20.9%, 95% CI [9.7-30.6%] and 16.1-20.4%, 95% CI [5.9-25.2%] respectively. A white paper was developed with recommendations for faculty development, computer skills assessment and training, and active research on writing-based ALM. Improving student grades and STEM course completion rates could lead to higher graduation rates and lower college costs for at-risk students by reducing course repetition and time to degree completion.

  9. Project first and eye on the sky: strategies for teaching space science in the early grades

    Science.gov (United States)

    Paglierani, R.; Hawkins, I.

    Elementary educators typically have only limited opportunity to teach substantive science units. This is due, in great part, to the current primary focus on literacy and mathematics instruction in the early grades. It is not surprising then, that the time and resources allocated to science teaching are significantly less than those allocated to language arts and mathematics. The integration of elementary science curricula with language arts provides one means of addressing the challenge of maintaining a robust science presence in the elementary classroom. Project FIRST's Eye on the Sky suggests a model for the successful integration of science instruction with language arts through inquiry-based learning. The model has been adopted by other Education/Public Outreach efforts, most recently, the Cassini- Huygens Mission and the Space Telescope Institute. We will present Eye on the Sky: Our Star the Sun, a suite of integrated, inquiry-based lessons designed specifically for K-4 students and discuss data showing the program's impact on the user audience. These materials offer an exciting opportunity to explore the dynamic Sun and share research discoveries of NASA's Sun-Earth Connection with the elementary education community. The lessons were developed and tested by UC Berkeley educators and NASA scientists in partnership with classroom teachers. We will review the program components and examine the benefits and challenges inherent in implementing such a program in the elementary school setting.

  10. The Effect of Using 3E, 5E Learning Cycle in General Chemistry Laboratory to Prospective Science Teachers Attitude and Perceptions to the Science, Chemistry and Laboratory

    OpenAIRE

    Toprak, Fatih; Çelikler, Dilek

    2013-01-01

    The study aimed to investigate the emerging changes in prospective science teachers" attitudes and perceptions towards science, chemistry and laboratory resulting from the implementation of 3E. 5E learning cycles and traditional instruction in laboratory environment in which learning is achieved by doing and experiencing. The study included 74 first grade prospective science teachers from Ondokuz Mayıs University at the Department of Science Education. In the study, quasi-experimental pre-tes...

  11. The aurora, Mars, and more! Increasing science content in elementary grades through art and literacy programs in earth and space science

    Science.gov (United States)

    Renfrow, S.; Wood, E. L.

    2011-12-01

    Although reading, writing, and math examinations are often conducted early in elementary school, science is not typically tested until 4th or 5th grade. The result is a refocus on the tested topics at the expense of the untested ones, despite that standards exist for each topic at all grades. On a national level, science instruction is relegated to a matter of a few hours per week. A 2007 Education Policy study states that elementary school students spend an average of 178 minutes a week on science while spending 500 minutes on literacy. A recent NSTA report in July of elementary and middle school teachers confirms that teachers feel pressured to teach math and literacy at the expense of other programs. One unintended result is that teachers in grades where science is tested must play catch-up with students for them to be successful on the assessment. A unique way to combat the lack of science instruction at elementary grades is to combine literacy, social studies, and math into an integrated science program, thereby increasing the number of science contact hours. The Dancing Lights program, developed at the Laboratory for Atmospheric and Space Physics, is a science, art, and literacy program about the aurora designed to easily fit into a typical 3rd-5th grade instructional day. It mirrors other successful literacy programs and will provide a basis for the literacy program being developed for the upcoming MAVEN mission to Mars. We will present early findings, as well as "lessons learned" during our development and implementation of the Dancing Lights program and will highlight our goals for the MAVEN mission literacy program.

  12. Literacy events during science instruction in a fifth-grade classroom: Listening to teacher and student voices

    Science.gov (United States)

    Deal, Debby

    Concern with science literacy and how to achieve it has a long history in our education system. The goals and definitions established by the National Science Education Standards (1996) suggest that if we are to successfully prepare students for the information age, science education must blend the natural and social sciences. However, research indicates that connections between hands-on science and literacy, as a tool for processing information, do not regularly occur during school science instruction. This case study explored the use of literacy by a second year teacher in a fifth grade class during consecutive science units on chemistry and liquids. The research questions focused on how and why the teacher and students used literacy during science and how and why the teacher and selected focus students believed literacy influenced their learning in science. Data was collected through classroom observations and multiple interviews with the teacher and selected focus students. Interview data was analyzed and coded using an iterative process. Field notes and student artifacts were used to triangulate the data. The study found that the teacher and students used reading and writing to record and acquire content knowledge, learn to be organized, and to facilitate assessment. Although the teacher had learned content literacy strategies in her pre-service program, she did not implement them in the classroom and her practice seemed to reflect her limited science content knowledge and understanding of the nature of science. The focus students believed that recording and studying notes, reading books, drawing, and reading study guides helped them learn science. The findings suggest the following implications: (1) More data is needed on the relationship between teaching approach, science content knowledge, and beliefs about science. (2) Elementary student voices make a valuable contribution to our understanding of science learning. (3) Pre-service candidates should have

  13. Teachers' Obstacles in Implementing Numbered Head Together in Social Science Learning

    Science.gov (United States)

    Widyaningtyas, Harini; Winarni, Retno; Murwaningsih, Tri

    2018-01-01

    This study is aimed at describing teachers' obstacles in applying Numbered Head Together learning model in social science learning. The type of research is qualitative descriptive. The subject of the research is the third-grade teacher of elementary school in Sukoharjo Sub-district. The findings of the research were analyzed using interactive…

  14. Science Teaching Orientations and Technology-Enhanced Tools for Student Learning

    Science.gov (United States)

    Campbell, Todd; Longhurst, Max; Duffy, Aaron M.; Wolf, Paul G.; Shelton, Brett E.

    2013-01-01

    This qualitative study examines teacher orientations and technology-enhanced tools for student learning within a science literacy framework. Data for this study came from a group of 10 eighth grade science teachers. Each of these teachers was a participant in a professional development (PD) project focused on reformed and technology-enhanced…

  15. Improving Science Scores of Middle School Students with Learning Disabilities through Engineering Problem Solving Activities

    Science.gov (United States)

    Starling, A. Leyf Peirce; Lo, Ya-Yu; Rivera, Christopher J.

    2015-01-01

    This study evaluated the differential effects of three different science teaching methods, namely engineering teaching kit (ETK), explicit instruction (EI), and a combination of the two methods (ETK+EI), in two sixth-grade science classrooms. Twelve students with learning disabilities (LD) and/or attention deficit hyperactivity disorder (ADHD)…

  16. A Study to Understand the Role of Visual Arts in the Teaching and Learning of Science

    Science.gov (United States)

    Dhanapal, Saroja; Kanapathy, Ravi; Mastan, Jamilah

    2014-01-01

    This research was carried out to understand the role of visual arts in the teaching and learning of science among Grade 3 teachers and students. A mixture of qualitative and quantitative research design was used to discover the different perceptions of both teachers and students on the role of visual arts in science. The data for the research was…

  17. Deaf Children's Science Content Learning in Direct Instruction Versus Interpreted Instruction

    Science.gov (United States)

    Kurz, Kim B.; Schick, Brenda; Hauser, Peter C.

    2015-01-01

    This research study compared learning of 6-9th grade deaf students under two modes of educational delivery--interpreted vs. direct instruction using science lessons. Nineteen deaf students participated in the study in which they were taught six science lessons in American Sign Language. In one condition, the lessons were taught by a hearing…

  18. Research on same-gender grouping in eighth-grade science classrooms

    Science.gov (United States)

    Friend, Jennifer Ingrid

    This study examined two hypotheses related to same-gender grouping of eighth-grade science classes in a public middle-school setting in suburban Kansas City. The first hypothesis, male and female students enrolled in same-gender eighth-grade science classes demonstrate more positive science academic achievement than their male and female peers enrolled in mixed-gender science classes. The second hypothesis, same-gender grouping of students in eighth-grade science has a positive effect on classroom climate. The participants in this study were randomly assigned to class sections of eighth-grade science. The first experimental group was an eighth-grade science class of all-male students (n = 20) taught by a male science teacher. The control group used for comparison to the male same-gender class consisted of the male students (n = 42) in the coeducational eighth-grade science classes taught by the same male teacher. The second experimental group was an eighth-grade science class of all-female students (n = 23) taught by a female science teacher. The control group for the female same-gender class consisted of female students (n = 61) in the coeducational eighth-grade science classes taught by the same female teacher. The male teacher and the female teacher did not vary instruction for the same-gender and mixed-gender classes. Science academic achievement was measured for both groups through a quantitative analysis using grades on science classroom assessment and overall science course grades. Classroom climate was measured through qualitative observations and through qualitative and quantitative analysis of a twenty-question student survey administered at the end of each trimester grading period. The results of this study did not indicate support for either hypothesis. Data led to the conclusions that same-gender grouping did not produce significant differences in student science academic achievement, and that same-gender classes did not create a more positive

  19. BEST: Bilingual environmental science training: Grades 1--2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This booklet is one of a series of bilingual guides to environmental-science learning activities for students to do at home. Lesson objectives, materials required, procedure, vocabulary, and subjects integrated into the lesson are described in English for each lesson. A bilingual glossary, alphabetized by English entries, with Spanish equivalents and definitions in both English and Spanish, follows the lesson descriptions, and is itself followed by a bibliography of English-language references. This booklet includes descriptions of ten lessons covering surface tension in water, the life cycle of plants, the protective function of the skeletal system, functions and behavior of the circulatory system and how to measure its activities, structure and functions of the digestive system, simple food chains, how that many foods come from different plant parts, importance of a good diet, distinguishing living and non-living things, and the benefits of composting. 8 figs.

  20. Girls Doing Science: A Case Study of Science Literacy in All-Female Middle Grade Classrooms

    Science.gov (United States)

    Faller, Susan Elisabeth

    In the face of low adolescent literacy rates (NCES, 2012), concerns about the nation's prospects of remaining competitive in science and technology (Hill, Corbett, & St. Rose, 2010), a persistent gender gap in science (NCES, 2012; Reilly, 2012), and the continued rollout of college- and career-ready standards, there is a need to focus on adolescent girls' science literacy. Such science literacy involves not only general knowledge about science, but also the ability to engage in the advanced reading and writing practices fundamental to doing science (Norris & Phillips, 2003). In this thesis, I present three articles with findings that respond to this need. They are the results of a multiple-case embedded (Yin, 2009) study that I conducted over the course of 7 months in four science classrooms (grades 5 through 8; 50 students) taught by a single teacher in a small all-female middle school. I collected in-depth data focused on science literacy from multiple sources, including (a) fieldnotes (Emerson, Fretz & Shaw, 2011), (b) videorecorded classroom observations (102 classes, 113 hours, recorded on 29 days), (c) a survey of all students, (d) semi-structured interviews with the subsample of 12 focal students (ranging from 18 to 37 minutes) and (e) photographs of classroom artifacts and student work. In the first article, I provide a window into standard literacy practices in science classrooms by examining the reading and writing genres to which students are exposed. In the second article, I examine how a teacher's language and instructional practices within her classrooms, and popular images of science from the world beyond their classrooms might shape adolescent girls' science identities. Finally, in the third article, I explore different aspects of science identity using the words of three case study students. Taken together, these studies fill gaps in the literature by investigating science literacy in an understudied context, all-female classrooms. In addition

  1. Surrounded by Science: Learning Science in Informal Environments

    Science.gov (United States)

    Fenichel, Marilyn; Schweingruber, Heidi A.

    2010-01-01

    Practitioners in informal science settings--museums, after-school programs, science and technology centers, media enterprises, libraries, aquariums, zoos, and botanical gardens--are interested in finding out what learning looks like, how to measure it, and what they can do to ensure that people of all ages, from different backgrounds and cultures,…

  2. Science Hobbyists: Active Users of the Science-Learning Ecosystem

    Science.gov (United States)

    Corin, Elysa N.; Jones, M. Gail; Andre, Thomas; Childers, Gina M.; Stevens, Vanessa

    2017-01-01

    Science hobbyists engage in self-directed, free-choice science learning and many have considerable expertise in their hobby area. This study focused on astronomy and birding hobbyists and examined how they used organizations to support their hobby engagement. Interviews were conducted with 58 amateur astronomers and 49 birders from the midwestern…

  3. The effects of three concept mapping strategies on seventh-grade students' science achievement at an urban middle school

    Science.gov (United States)

    Dosanjh, Navdeep Kaur

    2011-12-01

    There is great concern over students' poor science achievement in the United States. Due to the lack of science achievement, students are not pursing science related careers resulting in an increase in outsourcing to other countries. Learning strategies such as concept mapping may ameliorate this situation by providing students with tools that encourage meaningful learning. The purpose of this quasi-experimental study was to measure the effects of three concept mapping learning strategies (concept identifying, proposition identifying, student generated) on urban middle school students' understanding of the circulatory system. Three intact classes of seventh-grade students were assigned to one of the three concept mapping strategies. The students were given a pretest on the circulatory system then learned and used their respective concept mapping strategies while learning about the circulatory system. At the conclusion of the study, students' science achievement was measured by performance on an achievement test and rubric scores of their respective concept identifying, proposition identifying, and student generated concept maps. The results of the study suggest that all three of the concept mapping strategies are effective in increasing students' science achievement. Additionally, the moderate significant correlations between the posttest and concept map scores of the current study established that concept maps are a useful measure of student knowledge. Lastly, the results of the current study also suggest that the concept identifying mapping strategy may be a useful scaffold in instructing students how to develop student generated concept maps.

  4. Foundations for a new science of learning.

    Science.gov (United States)

    Meltzoff, Andrew N; Kuhl, Patricia K; Movellan, Javier; Sejnowski, Terrence J

    2009-07-17

    Human learning is distinguished by the range and complexity of skills that can be learned and the degree of abstraction that can be achieved compared with those of other species. Homo sapiens is also the only species that has developed formal ways to enhance learning: teachers, schools, and curricula. Human infants have an intense interest in people and their behavior and possess powerful implicit learning mechanisms that are affected by social interaction. Neuroscientists are beginning to understand the brain mechanisms underlying learning and how shared brain systems for perception and action support social learning. Machine learning algorithms are being developed that allow robots and computers to learn autonomously. New insights from many different fields are converging to create a new science of learning that may transform educational practices.

  5. Engaging Karen refugee students in science learning through a cross-cultural learning community

    Science.gov (United States)

    Harper, Susan G.

    2017-02-01

    This research explored how Karen (first-generation refugees from Burma) elementary students engaged with the Next Generation Science Standards (NGSS) practice of constructing scientific explanations based on evidence within the context of a cross-cultural learning community. In this action research, the researcher and a Karen parent served as co-teachers for fourth- and fifth-grade Karen and non-Karen students in a science and culture after-school programme in a public elementary school in the rural southeastern United States. Photovoice provided a critical platform for students to create their own cultural discourses for the learning community. The theoretical framework of critical pedagogy of place provided a way for the learning community to decolonise and re-inhabit the learning spaces with knowledge they co-constructed. Narrative analysis of video transcripts of the after-school programme, ethnographic interviews, and focus group discussions from Photovoice revealed a pattern of emerging agency by Karen students in the scientific practice of constructing scientific explanations based on evidence and in Karen language lessons. This evidence suggests that science learning embedded within a cross-cultural learning community can empower refugee students to construct their own hybrid cultural knowledge and leverage that knowledge to engage in a meaningful way with the epistemology of science.

  6. The Effect of Guided Inquiry Learning with Mind Map to Science Process Skills and Learning Outcomes of Natural Sciences

    Directory of Open Access Journals (Sweden)

    Hilman .

    2015-04-01

    Full Text Available Pengaruh Pembelajaran Inkuiri Terbimbing dengan Mind Map terhadap Keterampilan Proses Sains dan Hasil Belajar IPA   Abstract: Science learning in junior high school aims to enable students conducts scientific inquiry, improves knowledge, concepts, and science skills. Organization materials for students supports learning process so that needs to be explored techniques that allows students to enable it. This study aimed to determine the effect of guided inquiry learning with mind map on science process skills and cognitive learning outcomes. This experimental quasi studey used pretest-posttest control group design and consisted eighth grade students of SMP Negeri 1 Papalang Mamuju of West Sulawesi. The results showed there where significant positive effect of guided inquiry learning with mind map on process science skills and cognitive learning outcomes. Key Words: guided inquiry, mind map, science process skills, cognitive learning outcomes   Abstrak: Pembelajaran Ilmu Pengetahuan Alam (IPA di SMP bertujuan agar siswa dapat melakukan inkuiri ilmiah, meningkatkan pengetahuan, konsep, dan keterampilan IPA. Dalam pembelajaran, organisasi materi berperan penting dalam memudahkan anak belajar sehingga perlu ditelaah teknik yang memudahkan siswa membuat organisasi materi. Penelitian ini bertujuan mengetahui pengaruh pembelajaran inkuiri terbimbing dengan mind map terhadap keterampilan proses sains dan hasil belajar kognitif. Penelitian kuasi eksperimen ini menggunakan rancangan pre test-post test control group design dengan subjek penelitian siswa kelas VIII SMP Negeri 1 Papalang. Hasil penelitian menunjukkan ada pengaruh positif yang signifikan pembelajaran inkuiri terbimbing dengan mind map terhadap kemampuan keterampilan proses sains dan hasil belajar kognitif siswa. Kata kunci:  inkuiri terbimbing, mind map, keterampilan proses sains,  hasil belajar kognitif

  7. The Effects of Aesthetic Science Activities on Improving At-Risk Families Children's Anxiety About Learning Science and Positive Thinking

    Science.gov (United States)

    Hong, Zuway-R.; Lin, Huann-shyang; Chen, Hsiang-Ting; Wang, Hsin-Hui; Lin, Chia-Jung

    2014-01-01

    The purpose of this study was to explore the effects of aesthetic science activities on improving elementary school at-risk families' children's positive thinking, attitudes toward science, and decreasing their anxiety about learning science. Thirty-six 4th-grade children from at-risk families volunteered to participate in a 12-week intervention and formed the experimental group; another 97 typical 4th graders were randomly selected to participant in the assessment and were used as the comparison group. The treatment for experimental group children emphasized scaffolding aesthetic science activities and inquiry strategies. The Elementary School Student Questionnaire was administered to assess all children's positive thinking, attitudes toward science, and anxiety about learning science. In addition, nine target children from the experimental group with the lowest scores on either positive thinking, or attitudes toward science, or with the highest scores on anxiety about learning science in the pre-test were recruited to be interviewed at the end of the intervention and observed weekly. Confirmatory factor analyses, analyses of covariance, and content theme analysis assessed the similarities and differences between groups. It was found that the at-risk families' children were motivated by the treatment and made significant progress on positive thinking and attitudes toward science, and also decreased their anxiety about learning science. The findings from interviews and classroom observations also revealed that the intervention made differences in children's affective perceptions of learning science. Implication and research recommendation are discussed.

  8. The equivalence of learning paths in early science instruction: effect of direct instruction and discovery learning.

    Science.gov (United States)

    Klahr, David; Nigam, Milena

    2004-10-01

    In a study with 112 third- and fourth-grade children, we measured the relative effectiveness of discovery learning and direct instruction at two points in the learning process: (a) during the initial acquisition of the basic cognitive objective (a procedure for designing and interpreting simple, unconfounded experiments) and (b) during the subsequent transfer and application of this basic skill to more diffuse and authentic reasoning associated with the evaluation of science-fair posters. We found not only that many more children learned from direct instruction than from discovery learning, but also that when asked to make broader, richer scientific judgments, the many children who learned about experimental design from direct instruction performed as well as those few children who discovered the method on their own. These results challenge predictions derived from the presumed superiority of discovery approaches in teaching young children basic procedures for early scientific investigations.

  9. The understandings and meanings eight seventh and eighth grade Latinas gave to science

    Science.gov (United States)

    Parker, Carolyn Ann

    My study examined the experiences of eight seventh and eighth grade girls of Central American descent, in and out of the science classroom. The study was interpretive in design and explored the question, "How did the eight participants understand and make meaning of science?" Guided by a sociocultural perspective and a socially critical stance, I explored issues of educational access, particularly to science, mediated by the relationships and experiences formed by families, peers, science classrooms, schools, and society. Data sources included monthly individual interviews, regular focus group meetings, school observations, and interviews with teachers and family members. Findings include the importance of school science experiences that emphasize hands-on activities and the study of topics relevant to students' everyday lives. School influences that I discuss include English-as-a-Second Language learning, English language ability and its effect on classroom interactions, ability grouping, standardized testing, and teachers' instructional practices. Out-of-school influences I examine include the national science education reform movement, familial expectations, and society and the media's portrayal of science and the scientist. The implications and recommendations of the study are particularly germane to practice. Recommendations for the science classroom include a continued emphasis on hands-on science experiences that incorporate high academic expectations for all students, including second-language learners. Moreover, curriculum should be connected and relevant to students' everyday experiences. Recommendations for outside-the-science classroom include a thoughtful examination of the educational environment created by a school's tracking policy and continued support of meaningful professional development experiences for teachers. Future research and the subsequent development of theory should include a further analysis of the influence of gender, ethnicity

  10. Constitutions of Nature by Teacher Practice and Discourse in Ontario Grade 9 and 10 Academic Science

    Science.gov (United States)

    Hoeg, Darren Glen

    This thesis presents an ethnographic study, based broadly on principles and methods of institutional ethnography, on the constitution of nature by nine Ontario Grade 9 and 10 Academic Science teachers. The intent of this methodological approach is to examine how the daily practice of participants works toward constituting nature in specific ways that are coordinated by the institution (Ontario public school and/or school science). Critical Discourse Analysis and general inductive analysis were performed on interview transcripts, texts related to teaching science selected by participants, and policy documents (i.e. curriculum; assessment policy) that coordinate science teacher practice. Findings indicate specific, dominant, and relatively uniform ontological and epistemological constitutions of nature. Nature was frequently constituted as a remote object, distant from and different than students studying it. More complex representations included constituting nature as a model, machine, or mathematical algorithm. Epistemological constitutions of nature were enacted through practices that engaged students in manipulating nature; controlling nature, and dominating nature. Relatively few practices that allow students to construct different constitutions of nature than those prioritized by the institution were observed. Dominant constitutions generally assume nature is simply the material to study, from which scientific knowledge can be obtained, with little ethical or moral consideration about nature itself, or how these constitutions produce discourse and relationships that may be detrimental to nature. Dominant constitutions of nature represent a type of objective knowledge that is prioritized, and made accessible to students, through science activities that attain a position of privilege in local science teacher cultures. The activities that allow students to attain the requisite knowledge of nature are collected, collated, and shared among existing science teachers

  11. Problem Solving Model for Science Learning

    Science.gov (United States)

    Alberida, H.; Lufri; Festiyed; Barlian, E.

    2018-04-01

    This research aims to develop problem solving model for science learning in junior high school. The learning model was developed using the ADDIE model. An analysis phase includes curriculum analysis, analysis of students of SMP Kota Padang, analysis of SMP science teachers, learning analysis, as well as the literature review. The design phase includes product planning a science-learning problem-solving model, which consists of syntax, reaction principle, social system, support system, instructional impact and support. Implementation of problem-solving model in science learning to improve students' science process skills. The development stage consists of three steps: a) designing a prototype, b) performing a formative evaluation and c) a prototype revision. Implementation stage is done through a limited trial. A limited trial was conducted on 24 and 26 August 2015 in Class VII 2 SMPN 12 Padang. The evaluation phase was conducted in the form of experiments at SMPN 1 Padang, SMPN 12 Padang and SMP National Padang. Based on the development research done, the syntax model problem solving for science learning at junior high school consists of the introduction, observation, initial problems, data collection, data organization, data analysis/generalization, and communicating.

  12. Understanding Curriculum, Instruction and Assessment within Eighth Grade Science Classrooms for Special Needs Students

    Science.gov (United States)

    Riedell, Kate Elizabeth

    The Individuals with Disabilities Education Act (IDEA, 2004) cemented the fact that students with disabilities must be placed in the least restrictive environment and be given the necessary supports to help them succeed (Lawrence-Brown, 2004). This provides significant challenges for general education teachers, especially in an era of standards based reform with the adoption of the Common Core State Standards (CCSSI, 2014) by most states, along with the Next Generation Science Standards (NGSS, 2013). While a variety of methods, strategies, and techniques are available to teachers, there is a dearth of literature that clearly investigates how teachers take into account the ability and motivation of students with special needs when planning and implementing curriculum, instruction, and assessment. Thus, this study sought to investigate this facet through the lens of differentiation, personalization, individualization and universal design for learning (UDL) (CAST, 2015), all of which are designed to meet the needs of diverse learners, including students with special needs. An embedded single-case study design (Yin, 2011) was used in this study with the case being differentiated and/or personalized curriculum, instruction and/or assessment, along with UDL for students with special needs, with each embedded unit of analysis being one eighth grade general education science teacher. Analyzing each sub-unit or case, along with a cross-case analysis, three eighth grade general education science teachers were observed over the course of two 10-day units of study in the fall and spring, as they collected artifacts and completed annotations within their electronic portfolios (ePortfolios). All three eighth grade general education science teachers collected ePortfolios as part of their participation in a larger study within California, "Measuring Next Generation Science Instruction Using Tablet-Based Teacher Portfolios," funded by the National Science Foundation. Each teacher

  13. Motivational component profiles in university students learning histology: a comparative study between genders and different health science curricula

    OpenAIRE

    Campos-Sánchez, Antonio; López-Núñez, Juan Antonio; Carriel, Víctor; Martín-Piedra, Miguel-Ángel; Sola, Tomás; Alaminos, Miguel

    2014-01-01

    Background: The students' motivation to learn basic sciences in health science curricula is poorly understood. The purpose of this study was to investigate the influence of different components of motivation (intrinsic motivation, self-determination, self-efficacy and extrinsic -career and grade-motivation) on learning human histology in health science curricula and their relationship with the final performance of the students in histology. Methods: Glynn Science Motivation Questionnaire ...

  14. Informal Science Learning in the Formal Classroom

    Science.gov (United States)

    Walsh, Lori; Straits, William

    2014-01-01

    In this article the authors share advice from the viewpoints of both a formal and informal educator that will help teachers identify the right Informal Science Institutions (ISIs)--institutions that specialize in learning that occurs outside of the school setting--to maximize their students' learning and use informal education to their…

  15. Strategic Game Moves Mediate Implicit Science Learning

    Science.gov (United States)

    Rowe, Elizabeth; Baker, Ryan S.; Asbell-Clarke, Jodi

    2015-01-01

    Educational games have the potential to be innovative forms of learning assessment, by allowing us to not just study their knowledge but the process that takes students to that knowledge. This paper examines the mediating role of players' moves in digital games on changes in their pre-post classroom measures of implicit science learning. We…

  16. SPORT SCIENCE STUDENTS‟ BELIEFS ABOUT LANGUAGE LEARNING

    Directory of Open Access Journals (Sweden)

    Suvi Akhiriyah

    2017-04-01

    Full Text Available There are many reasons for students of Sport Science to use English. Yet, knowing the importance of learning English is sometimes not enough to encourage them to learn English well. Based on the experience in teaching them, erroneous belief seems to be held by many of them. It arouses curiosity about the beliefs which might be revealed to help the students to be successful in language learning. By investigating sport science students‘ beliefs about language learning, it is expected that types of the beliefs which they hold can be revealed. Understanding students‘ beliefs about language learning is essential because these beliefs can have possible consequences for second language learning and instruction. This study is expected to provide empirical evidence. The subjects of this study were 1st semester students majoring in Sport Science of Sport Science Faculty. There were 4 classes with 38 students in each class. There were approximately 152 students as the population of the study. The sample was taken by using random sampling. All members of the population received the questionnaire. The questionnaire which was later handed back to the researcher is considered as the sample. The instrument in this study is the newest version of Beliefs About Language Learning Inventory (BALLI, version 2.0, developed by Horwitz to asses the beliefs about learning a foreign language.

  17. Psychological Implications of Discovery Learning in Science

    Science.gov (United States)

    Kaufman, Barry A

    1971-01-01

    Describes five aspects of learning as applied to science instruction. Learning readiness, meaningfulness of material, activity and passivity, motivation, and transfer of training are presented in relation to psychological views stated by Ausubel, Bruner, Gagne, Hendrix, Karplus, Piaget, and Suchman. Views given by Gagne and Karplus are considered…

  18. Game based learning for computer science education

    NARCIS (Netherlands)

    Schmitz, Birgit; Czauderna, André; Klemke, Roland; Specht, Marcus

    2011-01-01

    Schmitz, B., Czauderna, A., Klemke, R., & Specht, M. (2011). Game based learning for computer science education. In G. van der Veer, P. B. Sloep, & M. van Eekelen (Eds.), Computer Science Education Research Conference (CSERC '11) (pp. 81-86). Heerlen, The Netherlands: Open Universiteit.

  19. Recent Research in Science Teaching and Learning

    Science.gov (United States)

    Allen, Deborah

    2012-01-01

    This article features recent research in science teaching and learning. It presents three current articles of interest in life sciences education, as well as more general and noteworthy publications in education research. URLs are provided for the abstracts or full text of articles. For articles listed as "Abstract available," full text may be…

  20. Advancing Research on Undergraduate Science Learning

    Science.gov (United States)

    Singer, Susan Rundell

    2013-01-01

    This special issue of "Journal of Research in Science Teaching" reflects conclusions and recommendations in the "Discipline-Based Education Research" (DBER) report and makes a substantial contribution to advancing the field. Research on undergraduate science learning is currently a loose affiliation of related fields. The…

  1. Predictors of cultural capital on science academic achievement at the 8th grade level

    Science.gov (United States)

    Misner, Johnathan Scott

    The purpose of the study was to determine if students' cultural capital is a significant predictor of 8th grade science achievement test scores in urban locales. Cultural capital refers to the knowledge used and gained by the dominant class, which allows social and economic mobility. Cultural capital variables include magazines at home and parental education level. Other variables analyzed include socioeconomic status (SES), gender, and English language learners (ELL). This non-experimental study analyzed the results of the 2011 Eighth Grade Science National Assessment of Educational Progress (NAEP). The researcher analyzed the data using a multivariate stepwise regression analysis. The researcher concluded that the addition of cultural capital factors significantly increased the predictive power of the model where magazines in home, gender, student classified as ELL, parental education level, and SES were the independent variables and science achievement was the dependent variable. For alpha=0.05, the overall test for the model produced a R2 value of 0.232; therefore the model predicted 23.2% of variance in science achievement results. Other major findings include: higher measures of home resources predicted higher 2011 NAEP eighth grade science achievement; males were predicted to have higher 2011 NAEP 8 th grade science achievement; classified ELL students were predicted to score lower on the NAEP eight grade science achievement; higher parent education predicted higher NAEP eighth grade science achievement; lower measures of SES predicted lower 2011 NAEP eighth grade science achievement. This study contributed to the research in this field by identifying cultural capital factors that have been found to have statistical significance on predicting eighth grade science achievement results, which can lead to strategies to help improve science academic achievement among underserved populations.

  2. DIFFERENT LEVEL OF LEARNED-HELPLESSNESS AMONG HIGH SCHOOL STUDENTS WITH LOWER GRADE AND HIGHER GRADE IN SALATIGA INDONESIA

    Directory of Open Access Journals (Sweden)

    Berta Esti Ari Prasetya

    2013-06-01

    consisted of 190 of higher grade students and 127 of lower grade students. Mann-Whitney U was used to analyse the data, considering that the data were not normally distributed. This test result showed that there was a significant difference between high school students with higher grade and lower grade (the Mann-Whitney U coefficient of 10,644, with z value of -1795, p <0.05 (p = 0036, 1-tailed, with students of lower grade tend to be more prone to experience learned-helplessness. Additional results from their subjective perception on their achievement were also discussed and so were the implications of the study.

  3. Learning Achievement and the Efficiency of Learning the Concept of Vector Addition at Three Different Grade Levels

    Science.gov (United States)

    Gubrud, Allan R.; Novak, Joseph D.

    1973-01-01

    Empirical data relate to Bruner's and Ausubel's theories of learning concepts at different age levels. The concept of vector addition was taught to eighth, ninth, and tenth grade students. The concept was learned and retained by high ability ninth and all tenth grade students. (PS)

  4. Communicating Science to Impact Learning? A Phenomenological Inquiry into 4th and 5th Graders' Perceptions of Science Information Sources

    Science.gov (United States)

    Gelmez Burakgazi, Sevinc; Yildirim, Ali; Weeth Feinstein, Noah

    2016-04-01

    Rooted in science education and science communication studies, this study examines 4th and 5th grade students' perceptions of science information sources (SIS) and their use in communicating science to students. It combines situated learning theory with uses and gratifications theory in a qualitative phenomenological analysis. Data were gathered through classroom observations and interviews in four Turkish elementary schools. Focus group interviews with 47 students and individual interviews with 17 teachers and 10 parents were conducted. Participants identified a wide range of SIS, including TV, magazines, newspapers, internet, peers, teachers, families, science centers/museums, science exhibitions, textbooks, science books, and science camps. Students reported using various SIS in school-based and non-school contexts to satisfy their cognitive, affective, personal, and social integrative needs. SIS were used for science courses, homework/project assignments, examination/test preparations, and individual science-related research. Students assessed SIS in terms of the perceived accessibility of the sources, the quality of the content, and the content presentation. In particular, some sources such as teachers, families, TV, science magazines, textbooks, and science centers/museums ("directive sources") predictably led students to other sources such as teachers, families, internet, and science books ("directed sources"). A small number of sources crossed context boundaries, being useful in both school and out. Results shed light on the connection between science education and science communication in terms of promoting science learning.

  5. Effects of an Integrated Science and Societal Implication Intervention on Promoting Adolescents' Positive Thinking and Emotional Perceptions in Learning Science

    Science.gov (United States)

    Hong, Zuway R.; Lin, Huann-Shyang; Lawrenz, Frances P.

    2012-02-01

    The goal of this study was to test the effectiveness of integrating science and societal implication on adolescents' positive thinking and emotional perceptions about learning science. Twenty-five eighth-grade Taiwanese adolescents (9 boys and 16 girls) volunteered to participate in a 12-week intervention and formed the experimental group. Fifty-seven eighth-grade Taiwanese adolescents (30 boys and 27 girls) volunteered to participate in the assessments and were used as the comparison group. Additionally, 15 experimental students were recruited to be observed and interviewed. Paired t-tests, correlations, and analyses of covariance assessed the similarity and differences between groups. The findings were that the experimental group significantly outperformed its counterpart on positive thinking and emotional perceptions, and all participants' positive thinking scores were significantly related to their emotional perceptions about learning science. Recommendations for integrating science and societal implication for adolescents are provided.

  6. Sixth Grade Students' Content-Specific Competencies and Challenges in Learning the Seasons Through Modeling

    Science.gov (United States)

    Sung, Ji Young; Oh, Phil Seok

    2017-06-01

    Recent science education reform initiatives suggest that learning in science should be organized on the basis of scientists' actual practices including the development and use of models. In line with this, the current study adapted three types of modeling practices to teach two Korean 6th grade science classes the causes of the Earth's seasons. Specifically, the study aimed to identify the students' content-specific competencies and challenges based on fine-grained descriptions and analyses of two target groups' cases. Data included digital recordings of modeling-based science lessons in the two classes, the teacher's and students' artifacts, and interviews with the students. These multiple types of data were analyzed complementarily and qualitatively. It was revealed that the students had a competency in constructing models to generate the desired phenomenon (i.e., seasons). They had difficulty, however, in considering the tilt of the Earth's rotation axis as a cause of the seasons and in finding a proper way of representing the Sun's meridian altitude on a globe. But, when the students were helped and guided by the teacher and peers' interventions, they were able to revise their models in alignment with the scientific understanding of the seasons. Based on these findings, the teacher's pedagogical roles, which include using student competencies as resources, asking physical questions, and explicit guidance on experimentation skills, were recommended to support successful incorporations of modeling practices in the science classroom.

  7. BEST: Bilingual environmental science training, Grades 3--4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This booklet is one of a series of bilingual guides to environmental-science learning activities for students to do at home. Lesson objectives, materials required, procedure, vocabulary, and subjects integrated into the lesson are described in English for each lesson. A bilingual glossary, alphabetized by English entries, with Spanish equivalents and definitions in both English and Spanish, follows the lesson descriptions, and is itself followed by a bibliography of English-language references with annotations in English. This booklet includes descriptions of ten lessons that cover the following topics: the identification of primary and secondary colors in the environment; recognizing the basic food tastes; the variety of colors that can be made by crushing plant parts; the variety of animal life present in common soil; animal tracks; evidence of plant and animal life in the local environment; recycling, reducing, and composting as alternative means of garbage disposal; waste associated with packaging; paper- recycling principles; and how organic waste can be composted into usable soil. 2 figs.

  8. BEST: Bilingual environmental science training: Grades 5--6

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This booklet is one of a series of bilingual guides to environmental-science learning activities for students to do at home. Lesson objectives, materials required, procedure, vocabulary, and subjects integrated into the lesson are described in English. A bilingual glossary, alphabetized by English entries, with Spanish equivalents and definitions in both English and Spanish, follows the lesson descriptions, and is itself followed by a bibliography of English-language references. This booklet includes descriptions of ten lessons that cover the following topics: safe and unsafe conditions for chemical combinations; growth rates and environmental needs of plants; photosynthesis and effects of ozone-layer depletion; the circulatory system, the importance of exercise to the heart, and selected circulatory diseases; the nervous system; specific nutritional values of the different food groups; significance of including, reducing, or eliminating certain foods for a healthy diet; effects of some common chemicals on plant growth and animal life; plants` and animals` natural habitats; and dangers of non-biodegradable garbage.

  9. Perspectives on learning, learning to teach and teaching elementary science

    Science.gov (United States)

    Avraamidou, Lucy

    The framework that characterizes this work is that of elementary teachers' learning and development. Specifically, the ways in which prospective and beginning teachers' develop pedagogical content knowledge for teaching science in light of current recommendations for reform emphasizing teaching and learning science as inquiry are explored. Within this theme, the focus is on three core areas: (a) the use of technology tools (i.e., web-based portfolios) in support of learning to teach science at the elementary level; (b) beginning teachers' specialized knowledge for giving priority to evidence in science teaching; and (c) the applications of perspectives associated with elementary teachers' learning to teach science in Cyprus, where I was born and raised. The first manuscript describes a study aimed at exploring the influence of web-based portfolios and a specific task in support of learning to teach science within the context of a Professional Development School program. The task required prospective teachers to articulate their personal philosophies about teaching and learning science in the form of claims, evidence and justifications in a web-based forum. The findings of this qualitative case study revealed the participants' developing understandings about learning and teaching science, which included emphasizing a student-centered approach, connecting physical engagement of children with conceptual aspects of learning, becoming attentive to what teachers can do to support children's learning, and focusing on teaching science as inquiry. The way the task was organized and the fact that the web-based forum provided the ability to keep multiple versions of their philosophies gave prospective teachers the advantage of examining how their philosophies were changing over time, which supported a continuous engagement in metacognition, self-reflection and self-evaluation. The purpose of the study reported in the second manuscript was to examine the nature of a first

  10. Science Teacher Orientations and PCK across Science Topics in Grade 9 Earth Science

    Science.gov (United States)

    Campbell, Todd; Melville, Wayne; Goodwin, Dawne

    2017-01-01

    While the literature is replete with studies examining teacher knowledge and pedagogical content knowledge (PCK), few studies have investigated how science teacher orientations (STOs) shape classroom instruction. Therefore, this research explores the interplay between a STOs and the topic specificity of PCK across two science topics within a grade…

  11. CLIMANDES climate science e-learning course

    Science.gov (United States)

    Hunziker, Stefan; Giesche, Alena; Jacques-Coper, Martín; Brönnimann, Stefan

    2016-04-01

    Over the past three years, members of the Oeschger Centre for Climate Change Research (OCCR) and the Climatology group at the Institute of Geography at the University of Bern, have developed a new climate science e-learning course as part of the CLIMANDES project. This project is a collaboration between Peruvian and Swiss government, research, and education institutions. The aim of this e-learning material is to strengthen education in climate sciences at the higher education and professional level. The course was recently published in 2015 by Geographica Bernensia, and is hosted online by the Peruvian Servicio Nacional de Meteorología e Hidrología (SENAMHI): http://surmx.com/chamilo/climandes/e-learning/. The course is furthermore available for offline use through USB sticks, and a number of these are currently being distributed to regional training centers around the world by the WMO (World Meteorological Organization). There are eight individual modules of the course that each offer approximately 2 hours of individual learning material, featuring several additional learning activities, such as the online game "The Great Climate Poker" (http://www.climatepoker.unibe.ch/). Overall, over 50 hours of learning material are provided by this course. The modules can be integrated into university lectures, used as single units in workshops, or be combined to serve as a full course. This e-learning course presents a broad spectrum of topics in climate science, including an introduction to climatology, atmospheric and ocean circulation, climate forcings, climate observations and data, working with data products, and climate models. This e-learning course offers a novel approach to teaching climate science to students around the world, particularly through three important features. Firstly, the course is unique in its diverse range of learning strategies, which include individual reading material, video lectures, interactive graphics, responsive quizzes, as well as group

  12. Ocean Sciences Sequence for Grades 6-8: Climate Change Curriculum Developed Through a Collaboration Between Scientists and Educators

    Science.gov (United States)

    Weiss, E.; Skene, J.; Tran, L.

    2011-12-01

    Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, there are few high quality curricula available to teachers that address these topics in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8 aims to address this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. The Ocean Sciences Sequence for Grades 6-8 is developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified GEMS (Great Explorations in Math & Science) curriculum development team. Scientists are active partners throughout the whole development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. As with all GEMS Sequences, the Ocean Sciences Sequence for Grades 6-8 is designed to provide significant scientific and educational depth, systematic assessments and informational readings, and incorporate new learning technologies. The goal is to focus strategically and effectively on the core concepts within ocean and climate sciences that students need to understand. This curriculum is designed in accordance with the latest research from the learning sciences, and provides numerous opportunities for students to develop inquiry skills and abilities as they learn about the practice of science through hands-on activities. The Ocean Sciences Sequence for Grades 6-8 addresses in depth a significant number of national, state, and district standards and benchmarks. It

  13. Science Learning outside the Classroom

    Science.gov (United States)

    Robelen, Erik W.; Sparks, Sarah D.; Cavanagh, Sean; Ash, Katie; Deily, Mary-Ellen Phelps; Adams, Caralee

    2011-01-01

    As concern mounts that U.S. students lack sufficient understanding of science and related fields, it has become increasingly clear that schools can't tackle the challenge alone. This special report explores the field often called "informal science education," which is gaining broader recognition for its role in helping young people…

  14. Common Core Science Standards: Implications for Students with Learning Disabilities

    Science.gov (United States)

    Scruggs, Thomas E.; Brigham, Frederick J.; Mastropieri, Margo A.

    2013-01-01

    The Common Core Science Standards represent a new effort to increase science learning for all students. These standards include a focus on English and language arts aspects of science learning, and three dimensions of science standards, including practices of science, crosscutting concepts of science, and disciplinary core ideas in the various…

  15. Special ways of knowing in science: expansive learning opportunities with bilingual children with learning disabilities

    Science.gov (United States)

    Martínez-Álvarez, Patricia

    2017-09-01

    The field of bilingual special education is currently plagued with contradictions resulting in a serious underrepresentation of emergent bilinguals with learning disabilities in professional science fields. This underrepresentation is due in large part to the fact that educational systems around the world are inadequately prepared to address the educational needs of these children; this inadequacy is rooted in a lack of understanding of the linguistic and cultural factors impacting learning. Accepting such a premise and assuming that children learn in unexpected ways when instructional practices attend to culture and language, this study documents a place-based learning experience integrating geoscience and literacy in a fourth-grade dual language classroom. Data sources include transcribed audio-taped conversations from learning experience sessions and interviews that took place as six focus children, who had been identified as having specific learning disabilities, read published science texts (i.e. texts unaltered linguistically or conceptually to meet the needs of the readers). My analysis revealed that participants generated responses that were often unexpected if solely analyzed from those Western scientific perspectives traditionally valued in school contexts. However, these responses were also full of purposeful and rich understandings that revealed opportunities for expansive learning. Adopting a cultural historical activity theory perspective, instructional tools such as texts, visuals, and questions were found to act as mediators impacting the learning in both activity systems: (a) teacher- researcher learning from children, and (b) children learning from teachers. I conclude by suggesting that there is a need to understand students' ways of knowing to their full complexity, and to deliberately recognize teachers as learners, researchers, and means to expansive learning patterns that span beyond traditional learning boundaries.

  16. Middle school science curriculum design and 8th grade student achievement in Massachusetts public schools

    Science.gov (United States)

    Clifford, Betsey A.

    The Massachusetts Department of Elementary and Secondary Education (DESE) released proposed Science and Technology/Engineering standards in 2013 outlining the concepts that should be taught at each grade level. Previously, standards were in grade spans and each district determined the method of implementation. There are two different methods used teaching middle school science: integrated and discipline-based. In the proposed standards, the Massachusetts DESE uses grade-by-grade standards using an integrated approach. It was not known if there is a statistically significant difference in student achievement on the 8th grade science MCAS assessment for students taught with an integrated or discipline-based approach. The results on the 8th grade science MCAS test from six public school districts from 2010 -- 2013 were collected and analyzed. The methodology used was quantitative. Results of an ANOVA showed that there was no statistically significant difference in overall student achievement between the two curriculum models. Furthermore, there was no statistically significant difference for the various domains: Earth and Space Science, Life Science, Physical Science, and Technology/Engineering. This information is useful for districts hesitant to make the change from a discipline-based approach to an integrated approach. More research should be conducted on this topic with a larger sample size to better support the results.

  17. An exploration of equitable science teaching practices for students with learning disabilities

    Science.gov (United States)

    Morales, Marlene

    In this study, a mixed methods approach was used to gather descriptive exploratory information regarding the teaching of science to middle grades students with learning disabilities within a general education classroom. The purpose of this study was to examine teachers' beliefs and their practices concerning providing equitable opportunities for students with learning disabilities in a general education science classroom. Equitable science teaching practices take into account each student's differences and uses those differences to inform instructional decisions and tailor teaching practices based on the student's individualized learning needs. Students with learning disabilities are similar to their non-disabled peers; however, they need some differentiation in instruction to perform to their highest potential achievement levels (Finson, Ormsbee, & Jensen, 2011). In the quantitative phase, the purpose of the study was to identify patterns in the beliefs of middle grades science teachers about the inclusion of students with learning disabilities in the general education classroom. In the qualitative phase, the purpose of the study was to present examples of instruction in the classrooms of science education reform-oriented middle grades science teachers. The quantitative phase of the study collected data from 274 sixth through eighth grade teachers in the State of Florida during the 2007--2008 school year using The Teaching Science to Students with Learning Disabilities Inventory. Overall, the quantitative findings revealed that middle grades science teachers held positive beliefs about the inclusion of students with learning disabilities in the general education science classroom. The qualitative phase collected data from multiple sources (interviews, classroom observations, and artifacts) to develop two case studies of reform-oriented middle grades science teachers who were expected to provide equitable science teaching practices. Based on their responses to The

  18. ADAPTATION OF THE STUDENTS' MOTIVATION TOWARDS SCIENCE LEARNING QUESTIONNAIRE TO MEASURE GREEK STUDENTS’ MOTIVATION TOWARDS BIOLOGY LEARNING

    OpenAIRE

    Andressa, Helen; Mavrikaki, Evangelia; Dermitzaki, Irini

    2015-01-01

    The purpose of this study was to investigate students’ motivation towards biology learning and to determine the factors that are related to it: students’ gender and their parents’ occupation (relevant with biology or not) were investigated. The sample of the study consisted of 360 Greek high school students of the 10th grade (178 boys and 182 girls). The data were collected through Students’ Motivation Toward Science Learning (SMTSL) questionnaire. It was found that it was a valid and reliabl...

  19. How fifth grade Latino/a bilingual students use their linguistic resources in the classroom and laboratory during science instruction

    Science.gov (United States)

    Stevenson, Alma R.

    2013-12-01

    This qualitative, sociolinguistic research study examines how bilingual Latino/a students use their linguistic resources in the classroom and laboratory during science instruction. This study was conducted in a school in the southwestern United States serving an economically depressed, predominantly Latino population. The object of study was a fifth grade science class entirely comprised of language minority students transitioning out of bilingual education. Therefore, English was the means of instruction in science, supported by informal peer-to-peer Spanish-language communication. This study is grounded in a social constructivist paradigm. From this standpoint, learning science is a social process where social, cultural, and linguistic factors are all considered crucial to the process of acquiring scientific knowledge. The study was descriptive in nature, examining specific linguistic behaviors with the purpose of identifying and analyzing the linguistic functions of students' utterances while participating in science learning. The results suggest that students purposefully adapt their use of linguistic resources in order to facilitate their participation in science leaning. What is underscored in this study is the importance of explicitly acknowledging, supporting, and incorporating bilingual students' linguistic resources both in Spanish and English into the science classroom in order to optimize students' participation and facilitate their understanding.

  20. The Conceptual Complexity of Vocabulary in Elementary-Grades Core Science Program Textbooks

    Science.gov (United States)

    Fitzgerald, W. Jill; Elmore, Jeff; Kung, Melody; Stenner, A. Jackson

    2017-01-01

    The researchers explored the conceptual complexity of vocabulary in contemporary elementary-grades core science program textbooks to address two research questions: (1) Can a progression of concepts' complexity level be described across grades? (2) Was there gradual developmental growth of the most complex concepts' networks of associated concepts…

  1. The Influence of Documentary Films on 8th Grade Students' Views about Nature of Science

    Science.gov (United States)

    Seckin Kapucu, Munise; Cakmakci, Gultekin; Aydogdu, Cemil

    2015-01-01

    This quasi-experimental study aims to investigate the documentary films' influence on 8th grade students' nature of science views. The study's participants were 113 8th grade students from two different schools taught by two different teachers. The study was completed over a 6-week period, during which topics related to "Cell Division and…

  2. From learning science to teaching science: What transfers?

    Science.gov (United States)

    Harlow, Danielle Boyd

    As educational researchers and teacher educators, we have the responsibility to help teachers gain the skills and knowledge necessary to provide meaningful learning activities for their students. For elementary school science, this means helping teachers create situations in which children can participate in the practices associated with scientific inquiry. Through the framework of transfer I investigated how a professional development course based on an inquiry-based physics curriculum influenced five elementary teachers teaching practices and identified the factors that led to or hindered this transfer. In this study, evidence of transfer consisted of episodes where the teachers used the ideas learned in the physics course to solve new problems such as transforming activities to be appropriate for their students and responding to unexpected students' ideas. The findings of this study highlight the many different ways that teachers use what they learn in content courses to teach science to elementary children. While some teachers transferred pedagogical practices along with the content, others transformed the content to be useful in already existing pedagogical frameworks, and still others show little or no evidence of transfer. What the teachers transferred depended upon their existing teaching context as well as their prior ideas about teaching science and physics content. Specifically, the findings of this study suggest that the teachers transferred only what they sought from the course. One implication of this study is that the sort of science training we provide teachers can affect far more than just the teachers' conceptual understanding of science and performance on written conceptual exams. Science courses have the potential to impact the sort of science education that K-5 children receive in elementary classrooms in terms of the topics taught but the way that science is represented. An additional implication is that teaching science to teachers in ways

  3. Lateral Learning for Science Reporters

    International Development Research Centre (IDRC) Digital Library (Canada)

    Cathy Egan

    with social, religious, philosophical, ethical, and political ... they may even feel disconnected from the science carried out in their own ... “networking” is an effective tool in fostering communication for .... less-developed places. And mentors ...

  4. The relationship among critical thinking skill measured by science virtual test, gender, andmotivation in 9th grade students

    Science.gov (United States)

    Fernandi, R. A. U. I.; Firman, H.; Rusyati, L.

    2018-05-01

    The purpose of this study was to identify the relationship among critical thinking skill, gender and motivation in 9th grade students of Junior High School in Kuningan. This descriptive study used purposive sampling that comprised 110 ninth grade students taken from three junior high school that has good computer literacy and use 2013 curriculum. The data were obtained through Science Virtual Test on living things and environmental sustainability theme, respondent identity, and science motivation questionnaire (SMQ). Female students scored highest on generating purpose skill (M = 73.81), while male students performed better on generating implication and consequences skill (M = 78.01) where both groups differed significantly (p = 0.011). Students scored highest on generating purpose skill for high and moderate motivation group, while for the lowest score, moderate and low motivation group performed it on making assumption skill. Additionally, some critical thinking elements differed significantly by motivation to learn science. Despite, there was no correlation between students’ critical thinking and motivation (r = 0.155, p > 0.05). The finding indicated that students’ critical thinking is not differed by gender and not affected by motivation to learn science.

  5. Science Learning Cycle Method to Enhance the Conceptual Understanding and the Learning Independence on Physics Learning

    Science.gov (United States)

    Sulisworo, Dwi; Sutadi, Novitasari

    2017-01-01

    There have been many studies related to the implementation of cooperative learning. However, there are still many problems in school related to the learning outcomes on science lesson, especially in physics. The aim of this study is to observe the application of science learning cycle (SLC) model on improving scientific literacy for secondary…

  6. Laptop Use, Interactive Science Software, and Science Learning Among At-Risk Students

    Science.gov (United States)

    Zheng, Binbin; Warschauer, Mark; Hwang, Jin Kyoung; Collins, Penelope

    2014-08-01

    This year-long, quasi-experimental study investigated the impact of the use of netbook computers and interactive science software on fifth-grade students' science learning processes, academic achievement, and interest in further science, technology, engineering, and mathematics (STEM) study within a linguistically diverse school district in California. Analysis of students' state standardized science test scores indicated that the program helped close gaps in scientific achievement between at-risk learners (i.e., English learners, Hispanics, and free/reduced-lunch recipients) and their counterparts. Teacher and student interviews and classroom observations suggested that computer-supported visual representations and interactions supported diverse learners' scientific understanding and inquiry and enabled more individualized and differentiated instruction. Finally, interviews revealed that the program had a positive impact on students' motivation in science and on their interest in pursuing science-related careers. This study suggests that technology-facilitated science instruction is beneficial for improving at-risk students' science achievement, scaffolding students' scientific understanding, and strengthening students' motivation to pursue STEM-related careers.

  7. The Effect of Jigsaw Technique on 6th Graders' Learning of Force and Motion Unit and Their Science Attitudes and Motivation

    Science.gov (United States)

    Ural, Evrim; Ercan, Orhan; Gençoglan, Durdu Mehmet

    2017-01-01

    The study aims to investigate the effects of jigsaw technique on 6th graders' learning of "Force and Motion" unit, their science learning motivation and their attitudes towards science classes. The sample of the study consisted of 49 6th grade students from two different classes taking the Science and Technology course at a government…

  8. Machine Learning Techniques in Clinical Vision Sciences.

    Science.gov (United States)

    Caixinha, Miguel; Nunes, Sandrina

    2017-01-01

    This review presents and discusses the contribution of machine learning techniques for diagnosis and disease monitoring in the context of clinical vision science. Many ocular diseases leading to blindness can be halted or delayed when detected and treated at its earliest stages. With the recent developments in diagnostic devices, imaging and genomics, new sources of data for early disease detection and patients' management are now available. Machine learning techniques emerged in the biomedical sciences as clinical decision-support techniques to improve sensitivity and specificity of disease detection and monitoring, increasing objectively the clinical decision-making process. This manuscript presents a review in multimodal ocular disease diagnosis and monitoring based on machine learning approaches. In the first section, the technical issues related to the different machine learning approaches will be present. Machine learning techniques are used to automatically recognize complex patterns in a given dataset. These techniques allows creating homogeneous groups (unsupervised learning), or creating a classifier predicting group membership of new cases (supervised learning), when a group label is available for each case. To ensure a good performance of the machine learning techniques in a given dataset, all possible sources of bias should be removed or minimized. For that, the representativeness of the input dataset for the true population should be confirmed, the noise should be removed, the missing data should be treated and the data dimensionally (i.e., the number of parameters/features and the number of cases in the dataset) should be adjusted. The application of machine learning techniques in ocular disease diagnosis and monitoring will be presented and discussed in the second section of this manuscript. To show the clinical benefits of machine learning in clinical vision sciences, several examples will be presented in glaucoma, age-related macular degeneration

  9. Collaborative learning in radiologic science education.

    Science.gov (United States)

    Yates, Jennifer L

    2006-01-01

    Radiologic science is a complex health profession, requiring the competent use of technology as well as the ability to function as part of a team, think critically, exercise independent judgment, solve problems creatively and communicate effectively. This article presents a review of literature in support of the relevance of collaborative learning to radiologic science education. In addition, strategies for effective design, facilitation and authentic assessment of activities are provided for educators wishing to incorporate collaborative techniques into their program curriculum. The connection between the benefits of collaborative learning and necessary workplace skills, particularly in the areas of critical thinking, creative problem solving and communication skills, suggests that collaborative learning techniques may be particularly useful in the education of future radiologic technologists. This article summarizes research identifying the benefits of collaborative learning for adult education and identifying the link between these benefits and the necessary characteristics of medical imaging technologists.

  10. Promoting autonomous learning in English through the implementation of Content and Language Integrated Learning (CLIL in science and maths subjects

    Directory of Open Access Journals (Sweden)

    Andriani Putu Fika

    2018-01-01

    Full Text Available Autonomous learning is a concept in which the learner has the ability to take charge of their own learning. It becomes a notable aspect that should be perceived by students. The aim of this research is for finding out the strategies used by grade two teachers in Bali Kiddy Primary School to promote autonomous learning in English through the implementation of Content and Language Integrated Learning in science and maths subjects. This study was designed in the form of descriptive qualitative study. The data were collected through observation, interview, and document study. The result of the study shows that there are some strategies of promoting autonomous learning in English through the implementation of CLIL in Science and Maths subjects. Those strategies are table of content training, questioning & presenting, journal writing, choosing activities, and using online activity. Those strategies can be adopted or even adapted as the way to promote autonomous learning in English subject.

  11. Future Scenarios for Mobile Science Learning

    Science.gov (United States)

    Burden, Kevin; Kearney, Matthew

    2016-04-01

    This paper adopts scenario planning as a methodological approach and tool to help science educators reconceptualise their use of mobile technologies across various different futures. These `futures' are set out neither as predictions nor prognoses but rather as stimuli to encourage greater discussion and reflection around the use of mobile technologies in science education. Informed by the literature and our empirical data, we consider four alternative futures for science education in a mobile world, with a particular focus on networked collaboration and student agency. We conclude that `seamless learning', whereby students are empowered to use their mobile technologies to negotiate across physical and virtual boundaries (e.g. between school and out-of-school activities), may be the most significant factor in encouraging educators to rethink their existing pedagogical patterns, thereby realizing some of the promises of contextualised participatory science learning.

  12. Analyzing Turkey's data from TIMSS 2007 to investigate regional disparities in eighth grade science achievement

    Science.gov (United States)

    Erberber, Ebru

    Turkey is expected to be a full member of the European Union (EU) by 2013. In the course of its integration into the EU, Turkey has been simultaneously facing access, quality, and equity issues in education. Over the past decade, substantial progress has been made on increasing the access. However, improving the country's low level of education quality and achieving equity in quality education across the regions continue to be a monumental challenge in Turkey. Most recently, results from the Trends in International Mathematics and Science Study (TIMSS) 2007 indicated that Turkey's educational achievement at the eighth grade, the end of compulsory primary education in Turkey, was far below that of other countries in the EU. Considering Turkey's long standing socioeconomic disparities between the western and eastern parts of the country, the challenges of improving overall education quality are coupled with the challenges of achieving equity in learning outcomes for students across the regions. This dissertation used data from TIMSS 2007 to document the extent of Turkey's regional differences in science achievement at the eighth grade and to investigate factors associated with these differences. Findings from a series of analyses using hierarchical linear models suggested that attempts to increase Turkish students' achievement and close the achievement gaps between regions should target the students in the undeveloped regions, particularly in Southeastern Anatolia and Eastern Anatolia. Designing interventions to improve competency in Turkish and to compensate for the shortcomings of insufficient parental education, limited home educational resources, poor school climate for academic achievement, and inadequate instructional equipment and facilities might be expected to close the regional achievement gaps as well as raise the overall achievement level in Turkey.

  13. The Effect of Using Cooperative Learning Method on Tenth Grade Students' Learning Achievement and Attitude towards Biology

    Science.gov (United States)

    Rabgay, Tshewang

    2018-01-01

    The study investigated the effect of using cooperative learning method on tenth grade students' learning achievement in biology and their attitude towards the subject in a Higher Secondary School in Bhutan. The study used a mixed method approach. The quantitative component included an experimental design where cooperative learning was the…

  14. Grade Distribution Digests: A Novel Tool to Enhance Teaching and Student Learning in Laboratory Practicals

    Science.gov (United States)

    Arthur, Peter G.; Zareie, Reza; Kirkwood, Paul; Ludwig, Martha; Attwood, Paul V.

    2018-01-01

    Assessment is a central component of course curriculums and is used to certify student learning, but it can also be used as a tool to improve teaching and learning. Many laboratory courses are structured such that there is only a grade for a particular laboratory, which limits the insights that can be gained in student learning. We developed a…

  15. Sound Science

    Science.gov (United States)

    Sickel, Aaron J.; Lee, Michele H.; Pareja, Enrique M.

    2010-01-01

    How can a teacher simultaneously teach science concepts through inquiry while helping students learn about the nature of science? After pondering this question in their own teaching, the authors developed a 5E learning cycle lesson (Bybee et al. 2006) that concurrently embeds opportunities for fourth-grade students to (a) learn a science concept,…

  16. Multidimensionality of Teachers' Graded Responses for Preschoolers' Stylistic Learning Behavior: The Learning-to-Learn Scales

    Science.gov (United States)

    McDermott, Paul A.; Fantuzzo, John W.; Warley, Heather P.; Waterman, Clare; Angelo, Lauren E.; Gadsden, Vivian L.; Sekino, Yumiko

    2011-01-01

    Assessment of preschool learning behavior has become very popular as a mechanism to inform cognitive development and promote successful interventions. The most widely used measures offer sound predictions but distinguish only a few types of stylistic learning and lack sensitive growth detection. The Learning-to-Learn Scales was designed to…

  17. Facilitating long-term changes in student approaches to learning science.

    Science.gov (United States)

    Buchwitz, Brian J; Beyer, Catharine H; Peterson, Jon E; Pitre, Emile; Lalic, Nevena; Sampson, Paul D; Wakimoto, Barbara T

    2012-01-01

    Undergraduates entering science curricula differ greatly in individual starting points and learning needs. The fast pace, high enrollment, and high stakes of introductory science courses, however, limit students' opportunities to self-assess and modify learning strategies. The University of Washington's Biology Fellows Program (BFP) intervenes through a 20-session, premajors course that introduces students to the rigor expected of bioscience majors and assists their development as science learners. This study uses quantitative and qualitative approaches to assess whether the 2007-2009 BFP achieved its desired short- and long-term impacts on student learning. Adjusting for differences in students' high school grade point average and Scholastic Aptitude Test scores, we found that participation in the BFP was associated with higher grades in two subsequent gateway biology courses, across multiple quarters and instructors. Two to 4 yr after participating in the program, students attributed changes in how they approached learning science to BFP participation. They reported having learned to "think like a scientist" and to value active-learning strategies and learning communities. In addition, they reported having developed a sense of belonging in bioscience communities. The achievement of long-term impacts for a short-term instructional investment suggests a practical means to prepare diverse students for the rigors of science curricula.

  18. Literature, Science, and Cooking in the Primary Grades.

    Science.gov (United States)

    Donoghue, Mildred R.

    Since the balanced literacy program presently mandated in California makes literature an integral part of the curriculum and leaves even less time for study of the sciences, this annotated bibliography provides some recommended literature together with the science concepts that evolve from those books. The bibliography also offers cooking recipes…

  19. Prueba de Ciencia Primer Grado (Science Test for the First Grade). [In Spanish

    Science.gov (United States)

    Puerto Rico State Dept. of Education, Hato Rey.

    This document consists of three parts: (1) a manual for administering the science test to first graders (in Spanish), (2) a copy of the test itself (pictorial), and (3) a list of expected competencies in science for the first three grades (in English). The test consists of 25, four-choice items. For each item, the administrator reads a statement…

  20. A Longitudinal Study of a 5th Grade Science Curriculum Based on the 5E Model

    Science.gov (United States)

    Scott, Timothy P.; Schroeder, Carolyn; Tolson, Homer; Huang, Tse-Yang; Williams, Omah M.

    2014-01-01

    The Center for Mathematics and Science Education at Texas A&M University contracted with Region 4 Education Service Center (ESC) and a large, diverse school district to conduct a longitudinal study from 2005-2009. The state achievement test scores of 5th graders who were taught using a Grade 5 science textbook designed by Region 4 ESC were…

  1. Using Food as a Tool to Teach Science to 3rd Grade Students in Appalachian Ohio

    Science.gov (United States)

    Duffrin, Melani W.; Hovland, Jana; Carraway-Stage, Virginia; McLeod, Sara; Duffrin, Christopher; Phillips, Sharon; Rivera, David; Saum, Diana; Johanson, George; Graham, Annette; Lee, Tammy; Bosse, Michael; Berryman, Darlene

    2010-01-01

    The Food, Math, and Science Teaching Enhancement Resource (FoodMASTER) Initiative is a compilation of programs aimed at using food as a tool to teach mathematics and science. In 2007 to 2008, a foods curriculum developed by professionals in nutrition and education was implemented in 10 3rd-grade classrooms in Appalachian Ohio; teachers in these…

  2. Framework for Disciplinary Writing in Science Grades 6-12: A National Survey

    Science.gov (United States)

    Drew, Sally Valentino; Olinghouse, Natalie G.; Faggella-Luby, Michael; Welsh, Megan E.

    2017-01-01

    This study investigated the current state of writing instruction in science classes (Grades 6-12). A random sample of certified science teachers from the United States (N = 287) was electronically surveyed. Participants reported on their purposes for teaching writing, the writing assignments most often given to students, use of evidence-based…

  3. Science, Technology, and Society: Some Philosophical Reflections on a Grade 11 Course.

    Science.gov (United States)

    Gardner, Paul L.

    1993-01-01

    Speculates on factors that may influence the lack of status of a "Science and Technology" course for grade 11 in British Columbia. Suggests that Aristotelian conceptions of the superiority of pure science over practical knowledge affect the status of school subjects. Questions the course's portrayal of the nature of technology and…

  4. The Effect of Inquiry-Based Learning Method on Students' Academic Achievement in Science Course

    Science.gov (United States)

    Abdi, Ali

    2014-01-01

    The purpose of this study was to investigate the effects of inquiry-based learning method on students' academic achievement in sciences lesson. A total of 40 fifth grade students from two different classes were involved in the study. They were selected through purposive sampling method. The group which was assigned as experimental group was…

  5. Cross-Curricular Literacy: Writing for Learning in a Science Program

    Science.gov (United States)

    Peterson, Shelley Stagg; Rochwerger, Leonora

    2006-01-01

    Teacher educator and researcher Peterson works with eighth-grade science teacher, Rochwerger, who believes that writing is a learning tool that will enable her students to become scientifically literate. Here, we see this belief played out through an action research project that found students using a genre of their choice to write about what they…

  6. The Contribution of Perceived Classroom Learning Environment and Motivation to Student Engagement in Science

    Science.gov (United States)

    Tas, Yasemin

    2016-01-01

    This study investigated middle school students' engagement in science in relation to students' perceptions of the classroom learning environment (teacher support, student cohesiveness, and equity) and motivation (self-efficacy beliefs and achievement goals). The participants were 315 Turkish sixth and seventh grade students. Four hierarchical…

  7. Effects of Multimedia and Schema Induced Analogical Reasoning on Science Learning

    Science.gov (United States)

    Zheng, R. Z.; Yang, W.; Garcia, D.; McCadden, E. P.

    2008-01-01

    The present study investigates the effects of multimedia and schema induced analogical reasoning on science learning. It involves 89 fourth grade elementary students in the north-east of the United States. Participants are randomly assigned into four conditions: (a) multimedia with analogy; (b) multimedia without analogy; (c) analogy without…

  8. Effects of Brain-Based Learning Approach on Students' Motivation and Attitudes Levels in Science Class

    Science.gov (United States)

    Akyurek, Erkan; Afacan, Ozlem

    2013-01-01

    The purpose of the study was to examine the effect of brain-based learning approach on attitudes and motivation levels in 8th grade students' science classes. The main reason for examining attitudes and motivation levels, the effect of the short-term motivation, attitude shows the long-term effect. The pre/post-test control group research model…

  9. Effect of Learning Cycle Approach-Based Science Teaching on Academic Achievement, Attitude, Motivation and Retention

    Science.gov (United States)

    Uyanik, Gökhan

    2016-01-01

    The purpose of this study was to examine the effect of learning cycle approach-based teaching on academic achievement, attitude, motivation and retention at primary school 4th grade science lesson. It was conducted pretest-posttest quasi-experimental design in this study. The study was conducted on a total of 65 students studying in two different…

  10. Learning Achievement Packages in Sciences-Biology: Cell Theory, Mitosis, Magnification, Wounds.

    Science.gov (United States)

    Solis, Juan D.

    This publication presents four science curriculum units designed to meet the learning problems of students with special language handicaps. The materials are written in both English and Spanish, and deal with topics in biology suitable for students in grades 7 through 11. All four units were classroom tested during 1970-1972 in the Calexico…

  11. An Eye-Tracking Study of Learning from Science Text with Concrete and Abstract Illustrations

    Science.gov (United States)

    Mason, Lucia; Pluchino, Patrik; Tornatora, Maria Caterina; Ariasi, Nicola

    2013-01-01

    This study investigated the online process of reading and the offline learning from an illustrated science text. The authors examined the effects of using a concrete or abstract picture to illustrate a text and adopted eye-tracking methodology to trace text and picture processing. They randomly assigned 59 eleventh-grade students to 3 reading…

  12. Students' Perceptions of Vocabulary Knowledge and Learning in a Middle School Science Classroom

    Science.gov (United States)

    Brown, Patrick L.; Concannon, James P.

    2016-01-01

    This study investigated eighth-grade science students' (13-14-year-olds) perceptions of their vocabulary knowledge, learning, and content achievement. Data sources included pre- and posttest of students' perceptions of vocabulary knowledge, students' perceptions of vocabulary and reading strategies surveys, and a content achievement test.…

  13. How Does Mechanical Weathering Change Rocks? Using Reading-to-Learn Strategies to Teach Science Content

    Science.gov (United States)

    Wardrip, Peter; Tobey, Jennifer

    2009-01-01

    Many teachers fall into the pattern of "assumptive teaching" (Herber 1970), assuming that other instructors will teach students the important strategies they need for learning. In this case, tools and strategies may not be taught outside of reading or language arts because a science teacher can say, "It's not my job." However, a sixth-grade team…

  14. Problem-Based Learning in K-8 Mathematics and Science Education: A Literature Review

    Science.gov (United States)

    Merritt, Joi; Lee, Mi Yeon; Rillero, Peter; Kinach, Barbara M.

    2017-01-01

    This systematic literature review was conducted to explore the effectiveness of problem-based and project-based learning (PBL) implemented with students in early elementary to grade 8 (ages 3-14) in mathematics and science classrooms. Nine studies met the following inclusion criteria: (a) focus on PBL, (b) experimental study, (c) kindergarten to…

  15. Inquiry Learning in the Singaporean Context: Factors affecting student interest in school science

    Science.gov (United States)

    Jocz, Jennifer Ann; Zhai, Junqing; Tan, Aik Ling

    2014-10-01

    Recent research reveals that students' interest in school science begins to decline at an early age. As this lack of interest could result in fewer individuals qualified for scientific careers and a population unprepared to engage with scientific societal issues, it is imperative to investigate ways in which interest in school science can be increased. Studies have suggested that inquiry learning is one way to increase interest in science. Inquiry learning forms the core of the primary syllabus in Singapore; as such, we examine how inquiry practices may shape students' perceptions of science and school science. This study investigates how classroom inquiry activities relate to students' interest in school science. Data were collected from 425 grade 4 students who responded to a questionnaire and 27 students who participated in follow-up focus group interviews conducted in 14 classrooms in Singapore. Results indicate that students have a high interest in science class. Additionally, self-efficacy and leisure-time science activities, but not gender, were significantly associated with an increased interest in school science. Interestingly, while hands-on activities are viewed as fun and interesting, connecting learning to real-life and discussing ideas with their peers had a greater relation to student interest in school science. These findings suggest that inquiry learning can increase Singaporean students' interest in school science; however, simply engaging students in hands-on activities is insufficient. Instead, student interest may be increased by ensuring that classroom activities emphasize the everyday applications of science and allow for peer discussion.

  16. Science of Learning Is Learning of Science: Why We Need a Dialectical Approach to Science Education Research

    Science.gov (United States)

    Roth, Wolff-Michael

    2012-01-01

    Research on learning science in informal settings and the formal (sometimes experimental) study of learning in classrooms or psychological laboratories tend to be separate domains, even drawing on different theories and methods. These differences make it difficult to compare knowing and learning observed in one paradigm/context with those observed…

  17. Gender differences in an elementary school learning environment: A study on how girls learn science in collaborative learning groups

    Science.gov (United States)

    Greenspan, Yvette Frank

    Girls are marked by low self-confidence manifested through gender discrimination during the early years of socialization and culturalization (AAUW, 1998). The nature of gender bias affects all girls in their studies of science and mathematics, particularly in minority groups, during their school years. It has been found that girls generally do not aspire in either mathematical or science-oriented careers because of such issues as overt and subtle stereotyping, inadequate confidence in ability, and discouragement in scientific competence. Grounded on constructivism, a theoretical framework, this inquiry employs fourth generation evaluation, a twelve-step evaluative process (Guba & Lincoln, 1989). The focus is to discover through qualitative research how fifth grade girls learn science in a co-sexual collaborative learning group, as they engage in hands-on, minds-on experiments. The emphasis is centered on one Hispanic girl in an effort to understand her beliefs, attitudes, and behavior as she becomes a stakeholder with other members of her six person collaborative learning group. The intent is to determine if cultural and social factors impact the learning of scientific concepts based on observations from videotapes, interviews, and student opinion questionnaires. QSR NUD*IST 4, a computer software program is utilized to help categorize and index data. Among the findings, there is evidence that clearly indicates girls' attitudes toward science are altered as they interact with other girls and boys in a collaborative learning group. Observations also indicate that cultural and social factors affect girls' performance as they explore and discover scientific concepts with other girls and boys. Based upon what I have uncovered utilizing qualitative research and confirmed according to current literature, there seems to be an appreciable impact on the way girls appear to learn science. Rooted in the data, the results mirror the conclusions of previous studies, which

  18. The Learning Sciences and Liberal Education

    Science.gov (United States)

    Budwig, Nancy

    2013-01-01

    This article makes the case for a new framing of liberal education based on several decades of research emerging from the learning and developmental sciences. This work suggests that general knowledge stems from acquiring both the habits of mind and repertoires of practice that develop from participation in knowledge-building communities. Such…

  19. Science + Writing = Super Learning. Writing Workshop.

    Science.gov (United States)

    Bower, Paula Rogovin

    1993-01-01

    Article presents suggestions for motivating elementary students to learn by combining science and writing. The strategies include planning the right environment; teaching the scientific method; establishing a link to literature; and making time for students to observe, experiment, and write. (SM)

  20. Revisions of the Learning Mastery Systems for the Harper and Row Grades One and Two and the Macmillan Bank Street Grade One Reading Series.

    Science.gov (United States)

    Maeder, Jacqueline; And Others

    The revisions on the Learning Mastery Systems (LMSs) for the Harper & Row grade-one and grade-two and the Macmillan Bank Street grade-one reading programs are outlined in this document. A rationale for the revisions is presented. An LMS is a set of materials and procedures prepared by the southwest Regional Laboratory (SWRL) as an…

  1. Improving together: collaborative learning in science communication

    Science.gov (United States)

    Stiller-Reeve, Mathew

    2015-04-01

    Most scientists today recognise that science communication is an important part of the scientific process. Despite this recognition, science writing and communication are generally taught outside the normal academic schedule. If universities offer such courses, they are generally short-term and intensive. On the positive side, such courses rarely fail to motivate. At no fault of their own, the problem with such courses lies in their ephemeral nature. The participants rarely complete a science communication course with an immediate and pressing need to apply these skills. And so the skills fade. We believe that this stalls real progress in the improvement of science communication across the board. Continuity is one of the keys to success! Whilst we wait for the academic system to truly integrate science communication, we can test and develop other approaches. We suggest a new approach that aims to motivate scientists to continue nurturing their communication skills. This approach adopts a collaborative learning framework where scientists form writing groups that meet regularly at different institutes around the world. The members of the groups learn, discuss and improve together. The participants produce short posts, which are published online. In this way, the participants learn and cement basic writing skills. These skills are transferrable, and can be applied to scientific articles as well as other science communication media. In this presentation we reflect on an ongoing project, which applies a collaborative learning framework to help young and early career scientists improve their writing skills. We see that this type of project could be extended to other media such as podcasts, or video shorts.

  2. Effects of an intensive middle school science experience on the attitude toward science, self-esteem, career goal orientation, and science achievement of eighth-grade female students

    Science.gov (United States)

    Williams, Tammy Kay

    The purpose of this investigation was to examine the effects of a year long intensive extracurricular middle school science experience on the self-esteem, career goal orientation, and attitude toward science of eighth grade female students using both quantitative and qualitative methods. Sixteen self-selected eighth grade female students participated in extracurricular science experiences such as camping, rock climbing, specimen collecting and hiking, as well as meeting and interacting with female science role models. Data was collected using pre- and posttest methods using the Children's Attitude Toward Science Survey, the Coopersmith Self-Esteem Inventory, and the Self-Directed Search (SDS) Career Explorer. End of year science course grades were examined for seventh and eighth grades and compared to first semester high school grades. Qualitative data was in the form of: (1) focus group interviews conducted prior to field experiences, at the end of all field experiences, and at the end of the first semester of high school, and (2) journal entries from throughout the project. Qualitative data was examined for changes in student perceptions of science as a discipline, self as scientist, women in science, and social comparison of self in science.

  3. Determination of the Relationship between 8th Grade Students Learning Styles and TIMSS Mathematics Achievement

    Science.gov (United States)

    Yilmaz, Gül Kaleli; Koparan, Timur; Hanci, Alper

    2016-01-01

    In this study, it is aimed to determination of the relationship between learning styles and TIMSS mathematics achievements of eighth grade students. Correlational research design that is one of the quantitative research methods, was used in this study. The sample of the research consists of 652 8th grade students 347 are male and 305 are female…

  4. Establishing cross-curricular links between Science and English in ninth grade

    Directory of Open Access Journals (Sweden)

    Chala Bejarano Pedro Antonio

    2003-08-01

    Full Text Available For many years, English has been studied apart from the other subjects in nonbilingual centres, isolating it from other knowledge areas, underestimating its nature as a vehicle for communication. English has thus been considered just as a set of rules to be memorized with no communicative purpose. As English teachers our objective to design this proposal, was to show this language as a useful tool, not only to be practiced in the classroom, but also in the context of other areas, in this case, science. Throughout the piloting of this project at Gustavo Restrepo school, in the south of Bogotá, English was used to learn science and science was used to practice English during the performance of some tasks with a communicative purpose so that the students of ninth grade had the opportunity to learn by doing. Key Words: English-High School-Teaching, Sciences-High School-Teaching, English-Teaching-Methods Por muchos años, el inglés ha sido estudiado aparte de las otras materias en instituciones no bilingües, aislándolo de otras áreas del conocimiento y menospreciando su naturaleza como vehículo de comunicación. El inglés ha sido entonces considerado simplemente un conjunto de reglas que se memorizan sin un propósito comunicativo. Como profesores de inglés nuestro objetivo al diseñar esta propuesta fue mostrar este idioma como una herramienta útil, no sólo para ser usada en el aula, sino también en el contexto de otras áreas; en este caso ciencias naturales. A través del pilotaje de este proyecto en el colegio Gustavo Restrepo en el sur de Bogotá, el inglés fue usado para aprender ciencias naturales y las ciencias naturales fueron usadas para practicar inglés durante el desarrollo de algunas actividades, con un propósito comunicativo de manera que los estudiantes de noveno grado tuvieran la oportunidad de aprender haciendo. Palabras claves: Inglés-Enseñanza Secundaria, Ciencias Naturales-Enseñanza Secundaria, Inglés-Enseñanza-Métodos

  5. Assessment of work-integrated learning: comparison of the usage of a grading rubric by supervising radiographers and teachers

    Energy Technology Data Exchange (ETDEWEB)

    Kilgour, Andrew J, E-mail: akilgour@csu.edu.au [Charles Sturt University, Wagga Wagga, NSW (Australia); Kilgour, Peter W [Avondale College of Higher Education, Cooranbong, NSW (Australia); Gerzina, Tania [Dental Educational Research, Faculty of Dentistry, Jaw Function and Orofacial Pain Research Unit, Westmead Centre for Oral Health, C24- Westmead Hospital, The University of Sydney, Sydney, NSW, 2006 (Australia); Christian, Beverly [Avondale College of Higher Education, Cooranbong, NSW (Australia); Charles Sturt University, Wagga Wagga, NSW (Australia)

    2014-02-15

    Introduction: Professional work-integrated learning (WIL) that integrates the academic experience with off-campus professional experience placements is an integral part of many tertiary courses. Issues with the reliability and validity of assessment grades in these placements suggest that there is a need to strengthen the level of academic rigour of placements in these programmes. This study aims to compare the attitudes to the usage of assessment rubrics of radiographers supervising medical imaging students and teachers supervising pre-service teachers. Methods: WIL placement assessment practices in two programmes, pre-service teacher training (Avondale College of Higher Education, NSW) and medical diagnostic radiography (Faculty of Health Sciences, University of Sydney, NSW), were compared with a view to comparing assessment strategies across these two different educational domains. Educators (course coordinators) responsible for teaching professional development placements of teacher trainees and diagnostic radiography students developed a standards-based grading rubric designed to guide assessment of students’ work during WIL placement by assessors. After ∼12 months of implementation of the rubrics, assessors’ reaction to the effectiveness and usefulness of the grading rubric was determined using a specially created survey form. Data were collected over the period from March to June 2011. Quantitative and qualitative data found that assessors in both programmes considered the grading rubric to be a vital tool in the assessment process, though teacher supervisors were more positive about the benefits of its use than the radiographer supervisors. Results: Benefits of the grading rubric included accuracy and consistency of grading, ability to identify specific areas of desired development and facilitation of the provision of supervisor feedback. The use of assessment grading rubrics is of benefit to assessors in WIL placements from two very different

  6. Assessment of work-integrated learning: comparison of the usage of a grading rubric by supervising radiographers and teachers

    Energy Technology Data Exchange (ETDEWEB)

    Kilgour, Andrew J, E-mail: akilgour@csu.edu.au [Charles Sturt University, Wagga Wagga, NSW (Australia); Kilgour, Peter W [Avondale College of Higher Education, Cooranbong, NSW (Australia); Gerzina, Tania [Dental Educational Research, Faculty of Dentistry, Jaw Function and Orofacial Pain Research Unit, Westmead Centre for Oral Health, C24- Westmead Hospital, The University of Sydney, Sydney, NSW, 2006 (Australia); Christian, Beverly [Avondale College of Higher Education, Cooranbong, NSW (Australia); Charles Sturt University, Wagga Wagga, NSW (Australia)

    2014-02-15

    Introduction: Professional work-integrated learning (WIL) that integrates the academic experience with off-campus professional experience placements is an integral part of many tertiary courses. Issues with the reliability and validity of assessment grades in these placements suggest that there is a need to strengthen the level of academic rigour of placements in these programmes. This study aims to compare the attitudes to the usage of assessment rubrics of radiographers supervising medical imaging students and teachers supervising pre-service teachers. Methods: WIL placement assessment practices in two programmes, pre-service teacher training (Avondale College of Higher Education, NSW) and medical diagnostic radiography (Faculty of Health Sciences, University of Sydney, NSW), were compared with a view to comparing assessment strategies across these two different educational domains. Educators (course coordinators) responsible for teaching professional development placements of teacher trainees and diagnostic radiography students developed a standards-based grading rubric designed to guide assessment of students’ work during WIL placement by assessors. After ∼12 months of implementation of the rubrics, assessors’ reaction to the effectiveness and usefulness of the grading rubric was determined using a specially created survey form. Data were collected over the period from March to June 2011. Quantitative and qualitative data found that assessors in both programmes considered the grading rubric to be a vital tool in the assessment process, though teacher supervisors were more positive about the benefits of its use than the radiographer supervisors. Results: Benefits of the grading rubric included accuracy and consistency of grading, ability to identify specific areas of desired development and facilitation of the provision of supervisor feedback. The use of assessment grading rubrics is of benefit to assessors in WIL placements from two very different

  7. Assessment of work-integrated learning: comparison of the usage of a grading rubric by supervising radiographers and teachers

    International Nuclear Information System (INIS)

    Kilgour, Andrew J; Kilgour, Peter W; Gerzina, Tania; Christian, Beverly

    2014-01-01

    Introduction: Professional work-integrated learning (WIL) that integrates the academic experience with off-campus professional experience placements is an integral part of many tertiary courses. Issues with the reliability and validity of assessment grades in these placements suggest that there is a need to strengthen the level of academic rigour of placements in these programmes. This study aims to compare the attitudes to the usage of assessment rubrics of radiographers supervising medical imaging students and teachers supervising pre-service teachers. Methods: WIL placement assessment practices in two programmes, pre-service teacher training (Avondale College of Higher Education, NSW) and medical diagnostic radiography (Faculty of Health Sciences, University of Sydney, NSW), were compared with a view to comparing assessment strategies across these two different educational domains. Educators (course coordinators) responsible for teaching professional development placements of teacher trainees and diagnostic radiography students developed a standards-based grading rubric designed to guide assessment of students’ work during WIL placement by assessors. After ∼12 months of implementation of the rubrics, assessors’ reaction to the effectiveness and usefulness of the grading rubric was determined using a specially created survey form. Data were collected over the period from March to June 2011. Quantitative and qualitative data found that assessors in both programmes considered the grading rubric to be a vital tool in the assessment process, though teacher supervisors were more positive about the benefits of its use than the radiographer supervisors. Results: Benefits of the grading rubric included accuracy and consistency of grading, ability to identify specific areas of desired development and facilitation of the provision of supervisor feedback. The use of assessment grading rubrics is of benefit to assessors in WIL placements from two very different

  8. Improvement of Learning Process and Learning Outcomes in Physics Learning by Using Collaborative Learning Model of Group Investigation at High School (Grade X, SMAN 14 Jakarta)

    Science.gov (United States)

    Astra, I. Made; Wahyuni, Citra; Nasbey, Hadi

    2015-01-01

    The aim of this research is to improve the quality of physics learning through application of collaborative learning of group investigation at grade X MIPA 2 SMAN 14 Jakarta. The method used in this research is classroom action research. This research consisted of three cycles was conducted from April to May in 2014. Each cycle consists of…

  9. ONLINE SCIENCE LEARNING:Best Practices and Technologies

    OpenAIRE

    TOJDE

    2009-01-01

    This essential publication is for all research and academic libraries, especially those institutions with online and distance education courses available in their science education programs. This book will also benefit audiences within the science education community of practice and others interested in STEM education, virtual schools, e-learning, m-learning, natural sciences, physical sciences, biological sciences, geosciences, online learning models, virtual laboratories, virtual field trip...

  10. Participation in Informal Science Learning Experiences: The Rich Get Richer?

    Science.gov (United States)

    DeWitt, Jennifer; Archer, Louise

    2017-01-01

    Informal science learning (ISL) experiences have been found to provide valuable opportunities to engage with and learn about science and, as such, form a key part of the STEM learning ecosystem. However, concerns remain around issues of equity and access. The Enterprising Science study builds upon previous research in this area and uses the…

  11. Portable Tablets in Science Museum Learning

    DEFF Research Database (Denmark)

    Gronemann, Sigurd Trolle

    2016-01-01

    Despite the increasing use of portable tablets in learning, their impact has received little attention in research. In five different projects, this media-ethnographic and design-based analysis of the use of portable tablets as a learning resource in science museums investigates how young people...... is identified. It is argued that, paradoxically, museums’ decisions to innovate by introducing new technologies, such as portable tablets, and new pedagogies to support them conflict with many young people’s traditional ideas of museums and learning. The assessment of the implications of museums’ integration...... of portable tablets indicates that in making pedagogical transformations to accommodate new technologies, museums risk opposing didactic intention if pedagogies do not sufficiently attend to young learners’ systemic expectations to learning and to their expectations to the digital experience influenced...

  12. Associations among Attitudes, Perceived Difficulty of Learning Science, Gender, Parents' Occupation and Students' Scientific Competencies

    Science.gov (United States)

    Chi, ShaoHui; Wang, Zuhao; Liu, Xiufeng; Zhu, Lei

    2017-01-01

    This study investigated the associations among students' attitudes towards science, students' perceived difficulty of learning science, gender, parents' occupations and their scientific competencies. A sample of 1591 (720 males and 871 females) ninth-grade students from 29 junior high schools in Shanghai completed a scientific competency test and…

  13. The Effects of Using Jigsaw Method Based on Cooperative Learning Model in the Undergraduate Science Laboratory Practices

    Science.gov (United States)

    Karacop, Ataman

    2017-01-01

    The main aim of the present study is to determine the influence of a Jigsaw method based on cooperative learning and a confirmatory laboratory method on prospective science teachers' achievements of physics in science teaching laboratory practice courses. The sample of this study consisted of 33 female and 15 male third-grade prospective science…

  14. Associations among attitudes, perceived difficulty of learning science, gender, parents' occupation and students' scientific competencies

    Science.gov (United States)

    Chi, ShaoHui; Wang, Zuhao; Liu, Xiufeng; Zhu, Lei

    2017-11-01

    This study investigated the associations among students' attitudes towards science, students' perceived difficulty of learning science, gender, parents' occupations and their scientific competencies. A sample of 1591 (720 males and 871 females) ninth-grade students from 29 junior high schools in Shanghai completed a scientific competency test and a Likert scale questionnaire. Multiple regression analysis revealed that students' general interest of science, their parents' occupations and perceived difficulty of science significantly associated with their scientific competencies. However, there was no gender gap in terms of scientific competencies.

  15. Natural science textbooks for the fourth grade and their text difficulty

    Directory of Open Access Journals (Sweden)

    Libuše Hrabí

    2012-09-01

    Full Text Available This paper presents findings regarding an assessment of the difficulty of text in six current Czech natural science textbooks for the fourth grade. The textual analysis was carried out according to a modified Průcha method. The results indicate that textual difficulty varies in the textbooks examined (19 - 31 points. Textbooks published by the Alter, Fortuna and SPN publishing companies are suitable for teaching in the fourth grade.

  16. Learning Science Process Through Data Exploration and Writing

    Science.gov (United States)

    Prothero, W. A.

    2007-12-01

    One of the most effective ways of teaching science process is to have students take part in the same activities that practicing scientists engage in. These activities include studying the current research in the field, discussing ideas with colleagues, formulating a research problem, making a proposal defining the problem and plan of attack, presenting and writing about the results of the study, and critically reviewing the work of others. An inquiry curriculum can use these activities to guide the scaffolding of assignments and learning experiences that help students learn science process. At UCSB, students in a large general education oceanography class use real Earth data to study plate tectonics, the Indian Monsoon, climate change, and the health of the world fisheries. The end product for each subject has been a science paper based on Earth data. Over a period of approximately 15 years, the scaffolding of activities to prepare each student for the written assignments has been modified and improved, in response to student feedback and their success with the assignments. I have found that the following resources and sequence of activities help the oceanography students write good science papers. 1. Lecture: motivation and the opportunity for feedback and questions. 2. Textbook: background information. It is also possible to get the information from the internet, but unless the scope of reading is strictly defined, students don't know when to stop reading and become unhappy. 3. Online assignments: automatically graded assignments that force the student to keep up with reading. 4. Questions of the day: in-class handouts, with diagrams that the students either complete, or answer questions about. They are handed in and tallied, but not graded. They also inform the instructor of misconceptions. 5. Thought questions: student answers are posted on a threaded discussion list, and are due prior to lecture. The answers provide instructor feedback and guide the lecture

  17. A Primary Grade (K-3) Earth Science Program

    Science.gov (United States)

    Schwartz, Maurice L.; Slesnick, Irwin L.

    1973-01-01

    Describes the rationale and structure of a newly developed earth science program for elementary school children (K-3). The activities involve pre-operational and concrete operational stages, progressing from one to the other. Children show sustained interest and enthusiasm as they investigate landforms, the moon, fossils, and weather phenomena.…

  18. Roles of Teachers in Orchestrating Learning in Elementary Science Classrooms

    Science.gov (United States)

    Zhai, Junqing; Tan, Aik-Ling

    2015-01-01

    This study delves into the different roles that elementary science teachers play in the classroom to orchestrate science learning opportunities for students. Examining the classroom practices of three elementary science teachers in Singapore, we found that teachers shuttle between four key roles in enabling student learning in science. Teachers…

  19. The Role of Research on Science Teaching and Learning

    Science.gov (United States)

    National Science Teachers Association (NJ1), 2010

    2010-01-01

    Research on science teaching and learning plays an important role in improving science literacy, a goal called for in the National Science Education Standards (NRC 1996) and supported by the National Science Teachers Association (NSTA 2003). NSTA promotes a research agenda that is focused on the goal of enhancing student learning through effective…

  20. Investigating Your School's Science Teaching and Learning Culture

    Science.gov (United States)

    Sato, Mistilina; Bartiromo, Margo; Elko, Susan

    2016-01-01

    The authors report on their work with the Academy for Leadership in Science Instruction, a program targeted to help science teachers promote a science teaching and learning culture in their own schools.

  1. Reading Comprehension, Learning Styles, and Seventh Grade Students

    Science.gov (United States)

    Williams, Judy

    2010-01-01

    Reading is a basic life skill. Unfortunately, in 2007, only 29% of all eighth graders were able to comprehend at or above a proficient reading comprehension level. Sensory learning styles (kinesthetic, tactile, auditory, and visual) affect the way that students prefer to learn and the areas in which they will have difficulty learning. This study…

  2. The Impact of Multitasking Learning Environments in the Middle Grades

    Science.gov (United States)

    Drinkwine, Timothy

    2013-01-01

    This research study considers the status of middle school students in the 21st century in terms of their tendency to multitask in their daily lives and the overall influence this multitasking has on teaching and learning environments. Student engagement in the learning environment and students' various learning styles are discussed as primary…

  3. Using the Learning Together Strategy to Affect Student Achievement in Physical Science

    Science.gov (United States)

    Campbell, Manda D.

    Despite efforts mandated by national legislation, the state of Georgia has made little progress in improving Grade 5 students' standardized test scores in science, spurring the need for social change. The purpose of this quantitative causal-comparative study was to determine whether there was a significant difference in the student achievement in the conceptual understanding of science concepts in a classroom where the teacher applied the cooperative learning strategy, Learning Together, as compared to the classroom in which teacher-directed instruction was applied. The theories of positive social interdependence and social development, which posit that social interaction promotes cognitive gains, provided a framework for the study. A convenience sample of 38 students in Grade 5 participated in the 6-week study. Nineteen students received the cooperative learning strategy treatment, while 19 students did not. Pre- and post-tests were administered to students in both groups, and an analysis of variance was performed to examine differences between the 2 sample means. Results indicated that the group receiving the cooperative learning strategy scored significantly higher than did the control group receiving direct instruction. The experimental group also scored higher in vocabulary acquisition. Using the cooperative learning strategy of Learning Together could guide teachers' efforts to help students achieve excellent state-mandated test scores. Learning Together may be employed as a powerful teaching tool across grade levels and content areas, thus promoting positive gains in other state-mandated testing areas such as math, language arts, and social studies.

  4. The Effects of Gender and Type of Inquiry Curriculum on Sixth Grade Students' Science Process Skills and Epistemological Beliefs in Science

    Science.gov (United States)

    Zaleta, Kristy L.

    The purpose of this study was to investigate the impact of gender and type of inquiry curriculum (open or structured) on science process skills and epistemological beliefs in science of sixth grade students. The current study took place in an urban northeastern middle school. The researcher utilized a sample of convenience comprised of 303 sixth grade students taught by four science teachers on separate teams. The study employed mixed methods with a quasi-experimental design, pretest-posttest comparison group with 17 intact classrooms of students. Students' science process skills and epistemological beliefs in science (source, certainty, development, and justification) were measured before and after the intervention, which exposed different groups of students to different types of inquiry (structured or open). Differences between comparison and treatment groups and between male and female students were analyzed after the intervention, on science process skills, using a two-way analysis of covariance (ANCOVA), and, on epistemological beliefs in science, using a two-way multivariate analysis of covariance (MANCOVA). Responses from two focus groups of open inquiry students were cycle coded and examined for themes and patterns. Quantitative measurements indicated that girls scored significantly higher on science process skills than boys, regardless of type of inquiry instruction. Neither gender nor type of inquiry instruction predicted students' epistemological beliefs in science after accounting for students' pretest scores. The dimension Development accounted for 10.6% of the variance in students' science process skills. Qualitative results indicated that students with sophisticated epistemological beliefs expressed engagement with the open-inquiry curriculum. Students in both the sophisticated and naive beliefs groups identified challenges with the curriculum and improvement in learning as major themes. The types of challenges identified differed between the groups

  5. Expedition Zenith: Experiences of eighth grade girls in a non-traditional math/science program

    Science.gov (United States)

    Ulm, Barbara Jean

    2004-11-01

    This qualitative study describes the experiences of a group of sixteen, eighth grade girls participating in a single-sex, math/science program based on gender equity research and constructivist theory. This phenomenological case study highlights the individual changes each girl perceives in herself as a result of her involvement in this program which was based at a suburban middle school just north of New York City. Described in narrative form is what took place during this single-sex program. At the start of the program the girls worked cooperatively in groups to build canoes. The canoes were then used to study a wetland during the final days of the program. To further immerse the participants into nature, the girls also camped during these final days. Data were collected from a number of sources to uncover, as fully as possible, the true essence of the program and the girls' experiences in it. The data collection methods included direct observation; in-depth, open-ended interviews; and written documentation. As a result of data collection, the girls' perceived outcomes and assessment of the program, as well as their recommendations for future math/science programs are revealed. The researcher in this study also acted as teacher, directing the program, and as participant to better understand the experiences of the girls involved in the program. Thus, unique insights could be made. The findings in this study provide insight into the learning of the participants, as well as into the relationships they formed both inside and outside of the program. Their perceived experiences and assessment of the program were then used to develop a greater understanding as to the effectiveness of this non-traditional program. Although this study echoed much of what research says about the needs of girls in learning situations, and therefore, reinforces previously accepted beliefs, it also reveals significant findings in areas previously unaddressed by gender studies. For example

  6. Joint Science Education Project: Learning about polar science in Greenland

    Science.gov (United States)

    Foshee Reed, Lynn

    2014-05-01

    The Joint Science Education Project (JSEP) is a successful summer science and culture opportunity in which students and teachers from the United States, Denmark, and Greenland come together to learn about the research conducted in Greenland and the logistics involved in supporting the research. They conduct experiments first-hand and participate in inquiry-based educational activities alongside scientists and graduate students at a variety of locations in and around Kangerlussuaq, Greenland, and on the top of the ice sheet at Summit Station. The Joint Committee, a high-level forum involving the Greenlandic, Danish and U.S. governments, established the Joint Science Education Project in 2007, as a collaborative diplomatic effort during the International Polar Year to: • Educate and inspire the next generation of polar scientists; • Build strong networks of students and teachers among the three countries; and • Provide an opportunity to practice language and communication skills Since its inception, JSEP has had 82 student and 22 teacher participants and has involved numerous scientists and field researchers. The JSEP format has evolved over the years into its current state, which consists of two field-based subprograms on site in Greenland: the Greenland-led Kangerlussuaq Science Field School and the U.S.-led Arctic Science Education Week. All travel, transportation, accommodations, and meals are provided to the participants at no cost. During the 2013 Kangerlussuaq Science Field School, students and teachers gathered data in a biodiversity study, created and set geo- and EarthCaches, calculated glacial discharge at a melt-water stream and river, examined microbes and tested for chemical differences in a variety of lakes, measured ablation at the edge of the Greenland Ice Sheet, and learned about fossils, plants, animals, minerals and rocks of Greenland. In addition, the students planned and led cultural nights, sharing food, games, stories, and traditions of

  7. The Professional Learning of Grade Six Teachers of Mathematics Implementing the Flipped Classroom Approach

    Science.gov (United States)

    Goodnough, Karen; Murphy, Elizabeth

    2017-01-01

    The purpose of this paper is to make sense of the professional learning of four teachers implementing a flipped classroom approach in their grade six mathematics class. The professional learning took place within a two-year Action Research (AR) project that engaged teachers in collaborative and iterative planning, implementation, observation and…

  8. Hypermedia-Based Problem Based Learning in the Upper Elementary Grades: A Developmental Study.

    Science.gov (United States)

    Brinkerhoff, Jonathan D.; Glazewski, Krista

    This paper describes the application of problem-based learning (PBL) design principles and the inclusion of teacher and study scaffolds to the design and implementation of a hypermedia-based learning unit for the upper elementary/middle school grades. The study examined the following research questions: (1) Does hypermedia-based PBL represent an…

  9. Embedding spiritual value through science learning

    Science.gov (United States)

    Johan, H.; Suhandi, A.; Wulan, A. R.; Widiasih; Ruyani, A.; Karyadi, B.; Sipriyadi

    2018-05-01

    The purpose of this study was to embed spiritual value through science learning program especially earth planet. Various phenomena in earth planet describe a divinity of super power. This study used quasi experimental method with one group pre-test-post-test design. Convenience sampling was conducted in this study. 23 pre-service physics teacher was involved. Pre-test and post-test used a questionnaire had been conducted to collected data of spiritual attitude. Open ended question had been utilized at post-test to collected data. A fourth indicators of spiritual value related to divinity of God was used to embed spiritual value. The results show a shifted of students’ awareness to divinity of God. Before implementing the earth planet learning, 85.8% of total students strongly agree that learning activity embed spiritual value while after learning process, it increased be 93.4%. After learning earth planet, it known that students’ spiritual value was influenced by character of earth planet concept which unobservable and media visual which display each incredible phenomena process in our earth planet. It can be concluded that spiritual value can be embedded through unobservable phenomena of during learning earth planet process.

  10. Learning to teach science in urban schools

    Science.gov (United States)

    Tobin, Kenneth; Roth, Wolff-Michael; Zimmermann, Andrea

    2001-10-01

    Teaching in urban schools, with their problems of violence, lack of resources, and inadequate funding, is difficult. It is even more difficult to learn to teach in urban schools. Yet learning in those locations where one will subsequently be working has been shown to be the best preparation for teaching. In this article we propose coteaching as a viable model for teacher preparation and the professional development of urban science teachers. Coteaching - working at the elbow of someone else - allows new teachers to experience appropriate and timely action by providing them with shared experiences that become the topic of their professional conversations with other coteachers (including peers, the cooperating teacher, university supervisors, and high school students). This article also includes an ethnography describing the experiences of a new teacher who had been assigned to an urban high school as field experience, during which she enacted a curriculum that was culturally relevant to her African American students, acknowledged their minority status with respect to science, and enabled them to pursue the school district standards. Even though coteaching enables learning to teach and curricula reform, we raise doubts about whether our approaches to teacher education and enacting science curricula are hegemonic and oppressive to the students we seek to emancipate through education.

  11. Children's analogical reasoning in a third-grade science discussion

    Science.gov (United States)

    May, David B.; Hammer, David; Roy, Patricia

    2006-03-01

    Expert scientific inquiry involves the generation and use of analogies. How and when students might develop this aspect of expertise has implications for understanding how and when instruction might facilitate that development. In a study of K-8 student inquiry in physical science, we are examining cases of spontaneous analogy generation. In the case we present here, a third-grader generates an analogy and modifies it to reconcile his classmates' counterarguments, allowing us to identify in these third-graders specific aspects of nascent expertise in analogy use. Promoting abilities and inclinations such as these children display requires that educators recognize and respond to them.

  12. Cooperative learning and algebra performance of eighth grade students in United Arab Emirates.

    Science.gov (United States)

    Alkhateeb, Haitham M; Jumaa, Mustafa

    2002-02-01

    This study investigated the effect of cooperative learning on eighth grade students' performance in algebra. 54 boys and 57 girls in four middle-school mathematics classes of Grade 8 in the UAE participated. Over a 3-wk. period, two classes (57 students) were taught using a cooperative learning method, and the other two classes (54 students) were taught using the traditional lecture method. Analysis of covariance using pretest scores as a covariant showed no statistically significant increase in the algebra performance for students in the cooperative learning groups compared with the traditional groups. However, boys in the cooperative setting improved significantly on the performance test compared with boys in the traditional setting.

  13. The impact of a freshman academy on science performance of first-time ninth-grade students at one Georgia high school

    Science.gov (United States)

    Daniel, Vivian Summerour

    The purpose of this within-group experimental study was to find out to what extent ninth-grade students improved their science performance beyond their middle school science performance at one Georgia high school utilizing a freshman academy model. Freshman academies have been recognized as a useful tool for increasing academic performance among ninth-grade students because they address a range of academic support initiatives tailored to improve academic performance among ninth-grade students. The talent development model developed by Legters, Balfanz, Jordan, and McPartland (2002) has served as a foundational standard for many ninth grade academy programs. A cornerstone feature of this model is the creation of small learning communities used to increase ninth-grade student performance. Another recommendation was to offer credit recovery opportunities for ninth graders along with creating parent and community involvement activities to increase academic success among ninth-grade students. While the site's program included some of the initiatives outlined by the talent development model, it did not utilize all of them. The study concluded that the academy did not show a definitive increase in academic performance among ninth-grade students since most students stayed within their original performance category.

  14. Using Experiential Learning Through Science Experiments to Increase the Motivation of Students Classified as Emotionally Disturbed

    Science.gov (United States)

    Crozier, Marisa

    When learning is an adventure rather than an exercise in memorization, students can enjoy the process and be motivated to participate in classroom activities (Clem, Mennicke, & Beasley, 2014). Students classified as emotionally disturbed are prone to disruptive behaviors and struggle learning in a traditional science classroom consisting of lecture and demonstrations. They cannot maintain the necessary level of attention nor have the strong reading, writing or memory skills needed to succeed. Therefore, this study examined whether the use of experiential learning would increase on-task behavior and improve the motivation of emotionally disturbed, middle school students in science. Students completed four hands-on experiments aligned with the science curriculum. The data collection methods implemented were an observation checklist with corresponding journal entries, a summative assessment in the form of lab sheets, and student interviews. Through triangulation and analysis, data revealed that the students had more on-task behaviors, were engaged in the lessons, and improved grades in science.

  15. Application Methods Guided Discovery in the Effort Improving Skills Observing Student Learning IPA in the Fourth Grades in Primary School

    OpenAIRE

    Septikasari, Zela

    2015-01-01

    The purpose of this research was to improve improve the skills of observing in science learning by using guided discovery. This type of research is a collaborative classroom action research with teachers and research subjects Elementary School fourth grade students in SD Lempuyangan 1, Yogyakarta. The results showed that the percentace of students who has score B on pre- action of 23.53%; in the first cycle increased to 38.24%; and 91.18% in the second cycle. Thus in the first cycle an increa...

  16. It's not maths; it's science: exploring thinking dispositions, learning thresholds and mindfulness in science learning

    Science.gov (United States)

    Quinnell, R.; Thompson, R.; LeBard, R. J.

    2013-09-01

    Developing quantitative skills, or being academically numerate, is part of the curriculum agenda in science teaching and learning. For many of our students, being asked to 'do maths' as part of 'doing science' leads to disengagement from learning. Notions of 'I can't do maths' speak of a rigidity of mind, a 'standoff', forming a barrier to learning in science that needs to be addressed if we, as science educators, are to offer solutions to the so-called 'maths problem' and to support students as they move from being novice to expert. Moving from novice to expert is complex and we lean on several theoretical frameworks (thinking dispositions, threshold concepts and mindfulness in learning) to characterize this pathway in science, with a focus on quantitative skills. Fluid thinking and application of numeracy skills are required to manipulate experimental data sets and are integral to our science practice; we need to stop students from seeing them as optional 'maths' or 'statistics' tasks within our discipline. Being explicit about the ways those in the discipline think, how quantitative data is processed, and allowing places for students to address their skills (including their confidence) offer some ways forward.

  17. Implications of a Cognitive Science Model Integrating Literacy in Science on Achievement in Science and Reading: Direct Effects in Grades 3-5 with Transfer to Grades 6-7

    Science.gov (United States)

    Romance, Nancy; Vitale, Michael

    2017-01-01

    Reported are the results of a multiyear study in which reading comprehension and writing were integrated within an in-depth science instructional model (Science IDEAS) in daily 1.5 to 2 h daily lessons on a schoolwide basis in grades 3-4-5. Multilevel (HLM7) achievement findings showed the experimental intervention resulted in significant and…

  18. STEM Integration in Middle School Life Science: Student Learning and Attitudes

    Science.gov (United States)

    Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael; Moreno, Mario

    2016-08-01

    In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts (e.g., patterns, scale) and increase understanding of disciplinary core ideas (e.g., physical science, earth science). Engineering practices and engineering design are essential elements of this new vision of science teaching and learning. This paper presents a research study that evaluates the effects of an engineering design-based science curriculum on student learning and attitudes. Three middle school life science teachers and 275 seventh grade students participated in the study. Content assessments and attitude surveys were administered before and after the implementation of the curriculum unit. Statewide mathematics test proficiency scores were included in the data analysis as well. Results provide evidence of the positive effects of implementing the engineering design-based science unit on student attitudes and learning.

  19. Test-Enhanced Learning in Third-Grade Children

    Science.gov (United States)

    Jaeger, Antonio; Eisenkraemer, Raquel Eloísa; Stein, Lilian Milnitsky

    2015-01-01

    Several recent studies have shown that retrieval is more efficient than restudy in enhancing the long-term retention of memories. However, studies investigating this effect in children are still rare. Here, we report an experiment in which third-grade children initially read a brief encyclopaedic text twice and then either performed a cued recall…

  20. Making the Mark: Are Grades and Deep Learning Related?

    Science.gov (United States)

    Campbell, Corbin M.; Cabrera, Alberto F.

    2014-01-01

    Assessing gains in learning has received increased attention as one dimension of institutional accountability both in the USA (Arum and Roksa, Academically adrift: Limited learning on college campuses, 2011) and abroad (OECD, http://www.oecd.org/document/22/0,3746,en_2649_39263238_40624662_1_1_1_1,00.html, 2013,…

  1. The Effect of Using 3E, 5E Learning Cycle in General Chemistry Laboratory to Prospective Scinence Teachers’ Attitude and Perceptions to the Science, Chemistry and Laboratory

    OpenAIRE

    Toprak, Fatih; Çelikler, Dilek

    2013-01-01

    The study aimed to investigate the emerging changes in prospective science teachers" attitudes and perceptions towards science, chemistry and laboratory resulting from the implementation of 3E. 5E learning cycles and traditional instruction in laboratory environment in which learning is achieved by doing and experiencing. The study included 74 first grade prospective science teachers from Ondokuz Mayıs University at the Department of Science Education. In the study, quasi-experimental pr...

  2. Designing learning apparatus to promote twelfth grade students’ understanding of digital technology concept: A preliminary studies

    Science.gov (United States)

    Marlius; Kaniawati, I.; Feranie, S.

    2018-05-01

    A preliminary learning design using relay to promote twelfth grade student’s understanding of logic gates concept is implemented to see how well it’s to adopted by six high school students, three male students and three female students of twelfth grade. This learning design is considered for next learning of digital technology concept i.e. data digital transmition and analog. This work is a preliminary study to design the learning for large class. So far just a few researches designing learning design related to digital technology with relay. It may due to this concept inserted in Indonesian twelfth grade curriculum recently. This analysis is focus on student difficulties trough video analysis to learn the concept. Based on our analysis, the recommended thing for redesigning learning is: students understand first about symbols and electrical circuits; the Student Worksheet is made in more detail on the assembly steps to the project board; mark with symbols at points in certain places in the circuit for easy assembly; assembly using relays by students is enough until is the NOT’s logic gates and the others that have been assembled so that effective time. The design of learning using relays can make the relay a liaison between the abstract on the digital with the real thing of it, especially in the circuit of symbols and real circuits. Besides it is expected to also enrich the ability of teachers in classroom learning about digital technology.

  3. Quantifying the Value of Service-Learning: A Comparison of Grade Achievement between Service-Learning and Non-Service-Learning Students

    Science.gov (United States)

    Brail, Shauna

    2016-01-01

    This study evaluates whether students who participate voluntarily in a service-learning activity achieve higher learning outcomes, measured by grades, than students who voluntarily choose not to participate in service learning. Analysis is based on a study of an introductory urban studies course at a large North American research university over a…

  4. Map Resource Packet: Course Models for the History-Social Science Framework, Grade Seven.

    Science.gov (United States)

    California State Dept. of Education, Sacramento.

    This packet of maps is an auxiliary resource to the "World History and Geography: Medieval and Early Modern Times. Course Models for the History-Social Science Framework, Grade Seven." The set includes: outline, precipitation, and elevation maps; maps for locating key places; landform maps; and historical maps. The list of maps are…

  5. An Analysis of Global Problems Issues in Sixth and Seventh Grade Science Textbooks.

    Science.gov (United States)

    Hamm, Mary; Adams, Dennis

    The study examines the extent to which the global issues of population growth, world hunger, air quality and atmosphere, and water resources were treated in sixth and seventh grade science textbooks. Ten textbooks were examined by five raters to determine the amount of content presented by different textbooks on global issues, the number of pages…

  6. Teaching for Creativity by Science Teachers in Grades 5-10

    Science.gov (United States)

    Al-Abdali, Nasser S.; Al-Balushi, Sulaiman M.

    2016-01-01

    This classroom observation study explored how science teachers (N = 22) teach for creativity in grades 5-10 in Oman. We designed an observation form with 4 main categories that targeted the instructional practices related to teaching for creativity: questioning strategy, teacher's responses to students' ideas, classroom activities to support…

  7. Missouri Assessment Program (MAP), Spring 2000: Secondary Science, Released Items, Grade 10.

    Science.gov (United States)

    Missouri State Dept. of Elementary and Secondary Education, Jefferson City.

    This assessment sample provides information on the Missouri Assessment Program (MAP) for grade 10 science. The sample consists of six items taken from the test booklet and scoring guides for the six items. The items assess ecosystems, mechanics, and data analysis. (MM)

  8. Relations among Grade 4 Students' Perceptions of Autonomy, Engagement in Science, and Reading Motivation

    Science.gov (United States)

    Taboada Barber, Ana; Buehl, Michelle M.

    2013-01-01

    The authors extend previous work on students' perceptions of teachers' autonomy-enhancing and autonomy-suppressing behaviors in relation to students' engagement to a more situated context (i.e., two Grade 4 science instructional conditions instead of school in general) and a linguistically diverse population (i.e., Hispanic students). They also…

  9. Testing the Theory of Successful Intelligence in Teaching Grade 4 Language Arts, Mathematics, and Science

    Science.gov (United States)

    Sternberg, Robert J.; Jarvin, Linda; Birney, Damian P.; Naples, Adam; Stemler, Steven E.; Newman, Tina; Otterbach, Renate; Parish, Carolyn; Randi, Judy; Grigorenko, Elena L.

    2014-01-01

    This study addressed whether prior successes with educational interventions grounded in the theory of successful intelligence could be replicated on a larger scale as the primary basis for instruction in language arts, mathematics, and science. A total of 7,702 4th-grade students in the United States, drawn from 223 elementary school classrooms in…

  10. Development of a Large-Format Science-Grade CMOS Active Pixel Sensor, for Extreme Ultra Violet Spectroscopy and Imaging in Space Science

    National Research Council Canada - National Science Library

    Waltham, N. R; Prydderch, M; Mapson-Menard, H; Morrissey, Q; Turchetta, R; Pool, P; Harris, A

    2005-01-01

    We describe our programme to develop a large-format science-grade CMOS active pixel sensor for future space science missions, and in particular an extreme ultra-violet spectrograph for solar physics...

  11. Effects of explicit instruction on the acquisition of students' science inquiry skills in grades 5 and 6 of primary education

    Science.gov (United States)

    Kruit, P. M.; Oostdam, R. J.; van den Berg, E.; Schuitema, J. A.

    2018-03-01

    In most primary science classes, students are taught science inquiry skills by way of learning by doing. Research shows that explicit instruction may be more effective. The aim of this study was to investigate the effects of explicit instruction on the acquisition of inquiry skills. Participants included 705 Dutch fifth and sixth graders. Students in an explicit instruction condition received an eight-week intervention of explicit instruction on inquiry skills. In the lessons of the implicit condition, all aspects of explicit instruction were absent. Students in the baseline condition followed their regular science curriculum. In a quasi-experimental pre-test-post-test design, two paper-and-pencil tests and three performance assessments were used to examine the acquisition and transfer of inquiry skills. Additionally, questionnaires were used to measure metacognitive skills. The results of a multilevel analysis controlling for pre-tests, general cognitive ability, age, gender and grade level indicated that explicit instruction facilitates the acquisition of science inquiry skills. Specifically on the performance assessment with an unfamiliar topic, students in the explicit condition outperformed students of both the implicit and baseline condition. Therefore, this study provides a strong argument for including an explicit teaching method for developing inquiry skills in primary science education.

  12. Autonomous Acqisition of Science Grade Spectra From UAS's

    Science.gov (United States)

    Mandl, D.; Campbell, P. K. E.; Sohlberg, R. A.; Ong, L.; Cappelaere, P. G.

    2017-12-01

    We assembled a payload box which contains a QE Pro and a Flame hyperspectral instruments. The payload was mounted on a DJI Matrice 600 drone. The total weight of the drone and the payload was 38 lbs. It was flown over a United States Department of Agricultural (USDA) research field where corn and soybeans were grown. The fields were subdivided into areas that had a variety of treatments such as low nitrogen and high nitrogen. The research is centered on correlating the treatments with the year-end crop yields. Our effort was to monitor spectral data to recognize photosynthetic activity via proxies such as solar induced fluorescence (SIF). To detect SIF requires optimized spectra which is normalized into reflectance. We perform the optimization routine onboard. The intent is to demonstrate a viable measurement campaign that would enable a researcher to measure the fields diurnally over a growing season. What we found out is that there was more complexity to trying to make this happen then we originally thought. For one thing, we had limited battery life, limited payload capacity and sometimes the cloud cover did not cooperate. So the question was how to intelligently apply the resources using some onboard processing and software. Our long term vision is to have multiple drones act as an intelligent cluster and self-manage their own deployment at multiple locations and multiple altitudes, auto-adjustments and intelligent management of errors. This presentation will go over lessons learned, achievements and future directions.

  13. ONLINE SCIENCE LEARNING:Best Practices and Technologies

    Directory of Open Access Journals (Sweden)

    TOJDE

    2009-04-01

    Full Text Available This essential publication is for all research and academic libraries, especially those institutions with online and distance education courses available in their science education programs. This book will also benefit audiences within the science education community of practice and others interested in STEM education, virtual schools, e-learning, m-learning, natural sciences, physical sciences, biological sciences, geosciences, online learning models, virtual laboratories, virtual field trips, cyberinfrastructure, neurological learning and the neuro-cognitive model. The continued growth in general studies and liberal arts and science programs online has led to a rise in the number of students whose science learning experiences are partially or exclusively online. character and quality of online science instruction.

  14. Collaborative activities for improving the quality of science teaching and learning and learning to teach science

    Science.gov (United States)

    Tobin, Kenneth

    2012-03-01

    I have been involved in research on collaborative activities for improving the quality of teaching and learning high school science. Initially the collaborative activities we researched involved the uses of coteaching and cogenerative dialogue in urban middle and high schools in Philadelphia and New York (currently I have active research sites in New York and Brisbane, Australia). The research not only transformed practices but also produced theories that informed the development of additional collaborative activities and served as interventions for research and creation of heuristics for professional development programs and teacher certification courses. The presentation describes a collage of collaborative approaches to teaching and learning science, including coteaching, cogenerative dialogue, radical listening, critical reflection, and mindful action. For each activity in the collage I provide theoretical frameworks and empirical support, ongoing research, and priorities for the road ahead. I also address methodologies used in the research, illustrating how teachers and students collaborated as researchers in multilevel investigations of teaching and learning and learning to teach that included ethnography, video analysis, and sophisticated analyses of the voice, facial expression of emotion, eye gaze, and movement of the body during classroom interactions. I trace the evolution of studies of face-to-face interactions in science classes to the current focus on emotions and physiological aspects of teaching and learning (e.g., pulse rate, pulse strength, breathing patterns) that relate to science participation and achievement.

  15. Investigative Primary Science: A Problem-Based Learning Approach

    Science.gov (United States)

    Etherington, Matthew B.

    2011-01-01

    This study reports on the success of using a problem-based learning approach (PBL) as a pedagogical mode of learning open inquiry science within a traditional four-year undergraduate elementary teacher education program. In 2010, a problem-based learning approach to teaching primary science replaced the traditional content driven syllabus. During…

  16. Science Learning Motivation as Correlate of Students' Academic Performances

    Science.gov (United States)

    Libao, Nhorvien Jay P.; Sagun, Jessie John B.; Tamangan, Elvira A.; Pattalitan, Agaton P., Jr.; Dupa, Maria Elena D.; Bautista, Romiro G.

    2016-01-01

    This study was designed to analyze the relationship of students' learning motivation and their academic performances in science. The study made use of 21 junior and senior Biological Science students to conclude on the formulated research problems. The respondents had a good to very good motivation in learning science. In general, the extent of…

  17. "Getting Practical" and the National Network of Science Learning Centres

    Science.gov (United States)

    Chapman, Georgina; Langley, Mark; Skilling, Gus; Walker, John

    2011-01-01

    The national network of Science Learning Centres is a co-ordinating partner in the Getting Practical--Improving Practical Work in Science programme. The principle of training provision for the "Getting Practical" programme is a cascade model. Regional trainers employed by the national network of Science Learning Centres trained the cohort of local…

  18. Learning science and science education in a new era.

    Science.gov (United States)

    Aysan, Erhan

    2015-06-01

    Today, it takes only a few months for the amount of knowledge to double. The volume of information available has grown so much that it cannot be fully encompassed by the human mind. For this reason, science, learning, and education have to change in the third millennium. The question is thus: what is it that needs to be done? The answer may be found through three basic stages. The first stage is persuading scientists of the necessity to change science education. The second stage is more difficult, in that scientists must be told that they should not place an exaggerated importance on their own academic field and that they should see their field as being on an equal basis with other fields. In the last stage, scientists need to condense the bulk of information on their hands to a manageable size. "Change" is the magic word of our time. Change brings about new rules, and this process happens very quickly in a global world. If we scientists do not rapidly change our scientific learning and education, we will find our students and ourselves caught up in an irreversibly destructive and fatal change that sets its own rules, just like the Arab spring.

  19. Learning science and science education in a new era

    Directory of Open Access Journals (Sweden)

    Erhan Aysan

    2015-06-01

    Full Text Available Today, it takes only a few months for the amount of knowledge to double. The volume of information available has grown so much that it cannot be fully encompassed by the human mind. For this reason, science, learning, and education have to change in the third millennium. The question is thus: what is it that needs to be done? The answer may be found through three basic stages. The first stage is persuading scientists of the necessity to change science education. The second stage is more difficult, in that scientists must be told that they should not place an exaggerated importance on their own academic field and that they should see their field as being on an equal basis with other fields. In the last stage, scientists need to condense the bulk of information on their hands to a manageable size. “Change” is the magic word of our time. Change brings about new rules, and this process happens very quickly in a global world. If we scientists do not rapidly change our scientific learning and education, we will find our students and ourselves caught up in an irreversibly destructive and fatal change that sets its own rules, just like the Arab spring.

  20. Rowing Sport in Learning Fractions of the Fourth Grade Students

    Directory of Open Access Journals (Sweden)

    Marhamah Fajriyah Nasution

    2017-06-01

    Full Text Available This study aimed to produce learning trajectory with rowing context that can help students understand addition and subtraction of fractions. Subject of the research were students IV MIN 2 Palembang. The method used was research design with three stages, those are preparing for the experiment, the design experiments, and the retrospective analysis. Learning trajectory was designed from in-formal stage to the formal stage. At the informal stage, Rowing was used as a starting point to explore the students’ knowledge of fractions. Data collection conducted through video recordings and photos to see the learning process in the classroom, written tests, observation and interviews during the learning process with the students which is the subject of research. Research produced learning trajectory consisting of a series of learning addition and subtraction of fractions dealing with the rowing. The results showed that the use of the rowing can be a bridge of students' thinking and help students in understanding the operation of addition and subtraction of fractions.

  1. Undergraduate Students' Earth Science Learning: Relationships among Conceptions, Approaches, and Learning Self-Efficacy in Taiwan

    Science.gov (United States)

    Shen, Kuan-Ming; Lee, Min-Hsien; Tsai, Chin-Chung; Chang, Chun-Yen

    2016-01-01

    In the area of science education research, studies have attempted to investigate conceptions of learning, approaches to learning, and self-efficacy, mainly focusing on science in general or on specific subjects such as biology, physics, and chemistry. However, few empirical studies have probed students' earth science learning. This study aimed to…

  2. Story Telling: Research and Action to Improve 6th Grade Students' Views about Certain Aspects of Nature of Science

    Science.gov (United States)

    Kahraman, Feray; Karatas, Faik Özgür

    2015-01-01

    This study is a four-week section of ongoing attempts that aim to improve 6th grade students' understandings of the nature of science. The study was carried out in a sixth grade science and technology class at a rural middle school with 15 students on the basis of action research methodology. During the study, four different stories based on the…

  3. Teachers' and students' perceptions of seventh- and eighth-grade science education in a selected Seventh-day Adventist Union Conference

    Science.gov (United States)

    Sargeant, Marcel Andre Almont

    Problem. Science education has long been a great concern in the United States, where less than one-third of the students perform at or above the proficient level. The purpose of this study was to investigate the status of the science program in a selected Union Conference of the Seventh-day Adventist school system. Specifically, this study investigated the perceptions of teachers and students regarding the extent to which the science program meets the criteria of the National Commission on Mathematics and Science Teaching for the 21st century and to what extent these criteria are related to academic performance as indicated by Iowa Test of Basic Skills (ITBS) science scores. Method. Two questionnaires designed by the researcher were used to get responses from 424 students in seventh and eighth grades and 68 teachers to see how this school system compares to the criteria of National Commission on Mathematics and Science Teaching for the 21 st century. Three classroom configurations were investigated in this study, namely: (a) multigrade, (b) two-grade, and (c) single-grade. Crosstabulation, one-way analysis of variance, Kruskal-Wallis test, and linear regression were used to analyze the four research questions of this study. Results. The single-grade classroom configuration received a better rating for the science criteria (p century. Conclusions. The differences in teaching practices explained the discrepancies in the three classroom configurations. Schools can therefore develop policies and strategies to improve the practices in the teaching and learning process in science education that were identified as being deficient by the criteria of National Commission on Mathematics and Science Teaching for the 21st century.

  4. How Latino/a bilingual students use their language in a fifth grade classroom and in the science laboratory during science instruction

    Science.gov (United States)

    Stevenson, Alma R.

    This qualitative research study examines how Latino/a bilingual students use their linguistic resources in their homeroom classroom and in the science laboratory during science instruction. This study was conducted in a school district located in the southwestern part of the United States. The school was chosen based on the criterion that the school is located in an area considered economically depressed, with a predominantly Latino student, school, and neighborhood population. The object of study was a fifth grade bilingual (Spanish/English) classroom where English was the means of instruction. Classroom interaction was examined from a sociolinguistics perspective. The study was descriptive in nature with the objective of analyzing the students' use of their linguistic resources while participating in science learning. The results of this study suggest that the students used their linguistic resources purposefully in order to facilitate their participation in science leaning. In the same manner, it was observed the students' reliance on Spanish as a foundation to enhance their comprehension of the scientific concepts and the dynamics involved in the science lessons, with the purpose of making sense, and thus, to express their understanding (orally and in writing) using their linguistic resources, especially their English language, as it was expected from them. Further, the findings disclose the students' awareness of their own bilingualism, preference for speaking Spanish, and their conceptualization of English as the language to achieve academic success. It has also been observed how the pressure put upon the teacher and the students by the accountability system brings about an implicit bias against Spanish, causing the teacher to assume a paradoxical stance regarding the students' use of Spanish, and thereby, placing the students in an ambivalent position, that might affect, to a certain extent, how students use their Spanish language as a resource to

  5. Patterns of Motivational Beliefs in the Science Learning of Total, High-, and Low-Achieving Students: Evidence of Taiwanese TIMSS 2011 Data

    Science.gov (United States)

    Wang, Cheng-Lung; Liou, Pey-Yan

    2018-01-01

    The purpose of this study was to examine the pattern of the relationships among motivational beliefs and science achievement of 8th grade Taiwanese students, given that the students in Taiwan have high science academic achievement but low motivational beliefs in science learning on a series of international large-scale assessments. Three…

  6. Constructivist Learning Theory and Climate Science Communication

    Science.gov (United States)

    Somerville, R. C.

    2012-12-01

    Communicating climate science is a form of education. A scientist giving a television interview or testifying before Congress is engaged in an educational activity, though one not identical to teaching graduate students. Knowledge, including knowledge about climate science, should never be communicated as a mere catalogue of facts. Science is a process, a way of regarding the natural world, and a fascinating human activity. A great deal is already known about how to do a better job of science communication, but implementing change is not easy. I am confident that improving climate science communication will involve the paradigm of constructivist learning theory, which traces its roots to the 20th-century Swiss epistemologist Jean Piaget, among others. This theory emphasizes the role of the teacher as supportive facilitator rather than didactic lecturer, "a guide on the side, not a sage on the stage." It also stresses the importance of the teacher making a serious effort to understand and appreciate the prior knowledge and viewpoint of the student, recognizing that students' minds are not empty vessels to be filled or blank slates to be written on. Instead, students come to class with a background of life experiences and a body of existing knowledge, of varying degrees of correctness or accuracy, about almost any topic. Effective communication is also usually a conversation rather than a monologue. We know too that for many audiences, the most trusted messengers are those who share the worldview and cultural values of those with whom they are communicating. Constructivist teaching methods stress making use of the parallels between learning and scientific research, such as the analogies between assessing prior knowledge of the audience and surveying scientific literature for a research project. Meanwhile, a well-funded and effective professional disinformation campaign has been successful in sowing confusion, and as a result, many people mistakenly think climate

  7. Results and Implications of a 12-Year Longitudinal Study of Science Concept Learning

    Science.gov (United States)

    Novak, Joseph D.

    2005-03-01

    This paper describes the methods and outcomes of a 12-year longitudinal study into the effects of an early intervention program, while reflecting back on changes that have occurred in approaches to research, learning and instruction since the preliminary inception stages of the study in the mid 1960s. We began the study to challenge the prevailing consensus at the time that primary school children were either preoperational or concrete operational in their cognitive development and they could not learn abstract concepts. Our early research, based on Ausubelian theory, suggested otherwise. The paper describes the development and implementation of a Grade 1-2 audio tutorial science instructional sequence, and the subsequent tracing over 12 years, of the children's conceptual understandings in science compared to a matched control group. During the study the concept map was developed as a new tool to trace children's conceptual development. We found that students in the instruction group far outperformed their non-instructed counterparts, and this difference increased as they progressed through middle and high school. The data clearly support the earlier introduction of science instruction on basic science concepts, such as the particulate nature of matter, energy and energy transformations. The data suggest that national curriculum standards for science grossly underestimate the learning capabilities of primary-grade children. The study has helped to lay a foundation for guided instruction using computers and concept mapping that may help both teachers and students become more proficient in understanding science.

  8. Using food as a tool to teach science to 3 grade students in Appalachian Ohio.

    Science.gov (United States)

    Duffrin, Melani W; Hovland, Jana; Carraway-Stage, Virginia; McLeod, Sara; Duffrin, Christopher; Phillips, Sharon; Rivera, David; Saum, Diana; Johanson, George; Graham, Annette; Lee, Tammy; Bosse, Michael; Berryman, Darlene

    2010-04-01

    The Food, Math, and Science Teaching Enhancement Resource (FoodMASTER) Initiative is a compilation of programs aimed at using food as a tool to teach mathematics and science. In 2007-2008, a foods curriculum developed by professionals in nutrition and education was implemented in 10 3(rd)-grade classrooms in Appalachian Ohio; teachers in these classrooms implemented 45 hands-on foods activities that covered 10 food topics. Subjects included measurement; food safety; vegetables; fruits; milk and cheese; meat, poultry, and fish; eggs; fats; grains; and meal management. Students in four other classrooms served as the control group. Mainstream 3(rd)-grade students were targeted because of their receptiveness to the subject matter, science standards for upper elementary grades, and testing that the students would undergo in 4(th) grade. Teachers and students alike reported that the hands-on FoodMASTER curriculum experience was worthwhile and enjoyable. Our initial classroom observation indicated that the majority of students, girls and boys included, were very excited about the activities, became increasingly interested in the subject matter of food, and were able to conduct scientific observations.

  9. Correlation of Students' Brain Types to Their Conceptions of Learning Science and Approaches to Learning Science

    Science.gov (United States)

    Park, Jiyeon; Jeon, Dongryul

    2015-01-01

    The systemizing and empathizing brain type represent two contrasted students' characteristics. The present study investigated differences in the conceptions and approaches to learning science between the systemizing and empathizing brain type students. The instruments are questionnaires on the systematizing and empathizing, questionnaires on the…

  10. Electronic Learning in the German Science Project "NAWI-Interaktiv"

    Science.gov (United States)

    Wegner, Claas; Homann, Wiebke; Strehlke, Friederike

    2014-01-01

    The German science project "NAWI-Interaktiv" is an example of innovative use of E-Learning and new media education. Since 2009, the learning platform provides learners and teachers with high-quality learning tools, teaching material, useful information and E-learning programs for free. This is to raise the pupils' motivation to learn…

  11. Science Informational Trade Books: An Exploration of Text-based Practices and Interactions in a First-grade Classroom

    Science.gov (United States)

    Schreier, Virginia A.

    Although scholars have long advocated the use of informational texts in the primary grades, gaps and inconsistencies in research have produced conflicting reports on how teachers used these texts in the primary curriculum, and how primary students dealt with them during instruction and on their own (e.g., Saul & Dieckman, 2005). Thus, to add to research on informational texts in the primary grades, the purpose of this study was to examine: (a) a first-grade teacher's use of science informational trade books (SITBs) in her classroom, (b) the ways students responded to her instruction, and (c) how students interacted with these texts. My study was guided by a sociocultural perspective (e.g., Bakhtin, 1981; Vygotsky, 1978), providing me a lens to examine participants during naturally occurring social practices in the classroom, mediated by language and other symbolic tools. Data were collected by means of 28 observations, 6 semi-structured interviews, 21 unstructured interviews, and 26 documents over the course of 10 weeks. Three themes generated from the data to provide insight into the teacher's and students' practices and interactions with SITBs. First, the first-grade teacher used SITBs as teaching tools during guided conversations around the text to scaffold students' understanding of specialized vocabulary, science concepts, and text features. Her instruction with SITBs included shared reading lessons, interactive read-alouds and learning activities during two literacy/science units. However, there was limited use of SITBs during the rest of her reading program, in which she demonstrated a preference for narrative. Second, students responded to instruction by participating in guided conversations around the text, in which they used prior knowledge, shared ideas, and visual representations (e.g., illustrations, diagrams, labels, and captions) to actively make meaning of the text. Third, students interacted with SITBs on their own to make sense of science, in

  12. Integration of Collaborative Learning in Grade K-5 EFL Classrooms

    Science.gov (United States)

    Shahamat, Ailar; Mede, Enisa

    2016-01-01

    This study investigated the effectiveness of integrating collaborative learning in Turkish elementary (primary) classrooms where English is acquired as a foreign language. Specifically, it aimed at shedding light on how the participating students and teachers perceive such language classes, what are the effects of integrating this particular…

  13. The Impediments Encountered While Learning Mathematics by Eight Grade Students

    Science.gov (United States)

    Erbay, Hatice Nur; Yavuz, Gunes

    2016-01-01

    Mathematics is seen by many people as the best way to get a good life and a good career. It is also thought as an assistant to understand life and the world and to produce ideas about them. Therefore, new reform studies are being held to construct a new system that assists students to learn mathematics in a comprehensive way (Dursun & Dede,…

  14. Learning and teaching natural science in the early years: A case study of three different contexts

    Directory of Open Access Journals (Sweden)

    Angela James

    2012-07-01

    Full Text Available Currently many children in early childhood education cannot be accommodated in provincial department schools. Consequently, different non-governmental institutions offer Grade R programmes in an attempt to support the DBE. Pre-primary schools that traditionally took responsibility for early childhood education also offer Grade R education. The recent policy decision to include Grade R in the primary school is an innovation, which is still in its infancy. It is against this background that the national South African Curriculum (NCS has to be implemented. This paper focuses on the teaching of natural science in Grade R and attempts to determine if the teaching and learning of natural science has different outcomes in the different contexts described above. An oral questionnaire was administered to capture children’s understanding of natural science phenomena, while interviews provided data with regard to teachers’ understanding of natural science in the foundation phase. The results show that there are differences in children’s understanding of natural phenomena in the different contexts and these differences are related to teachers’ understanding of the curriculum, as well as their views of the nature of science.

  15. Immersion francaise precoce: Sciences de la nature 1-7 (Early French Immersion: Natural Sciences for Grades 1-7).

    Science.gov (United States)

    Burt, Andy; And Others

    This curriculum guide for the natural sciences is intended for use in grades 1-7 in the early French immersion program. The guide presents the following topics: (1) a list of general objectives; (2) a list of simple skills for children aged 5-8 and for children aged 8-12; (3) activities dealing with matter and its properties, space-time, and human…

  16. Using Robots to Motivate At-Risk Learners in Science over the Ninth Grade Hurdle

    Science.gov (United States)

    Cerge, Dora

    The ninth grade is a pivotal year in an adolescent's academic career; however, educators have failed to find a remedy for the high failure and dropout rates at this grade level. Students who lack basic skills and support as they enter high school can experience repeated failures, which often lead to a decrease in motivation and dropping out of school. Up to 15% of all ninth graders repeat ninth grade and 36% of all U. S. dropouts are ninth graders. It is imperative that researchers and educators find new ways to motivate at-risk students and augment basic skills in order to mitigate the dropout problem at this grade level. Robot teachers could be a viable solution to increase student motivation and achievement. However, before such strategies could be recommended for implementation, information about their efficacy in a high school setting is needed. The purpose of this quantitative, two-group experimental, pretest-posttest study was to determine the effects of a robot teacher/instructor on science motivation and science achievement in ninth grade at-risk learners. Approximately 40 at-risk, repeating ninth graders, ranging in age from 13 to 17 years old from one high school in the United States Virgin Islands, participated in the study. Half of the students received a robot teacher/instructor manipulation whereby a robot taught a science lesson for physical science assessments (experimental group), and the other half received the same instruction from a human teacher (control group). An analysis of covariance (ANCOVA) was used to compare the science achievement posttest scores, as measured by test scores, and science motivation posttest scores, as measured by the SMTSL, between the experimental and the control groups, while controlling for the pretest scores (covariate). The results demonstrated that posttest motivation and achievement scores in the human teacher condition were not significantly different than posttest motivation scores in the robot teacher

  17. The long-term impact of a math, science and technology program on grade school girls

    Science.gov (United States)

    Sullivan, Sandra Judd

    The purpose of this study was to determine if a math, science, and technology intervention program improved grade school girls' attitudes and stereotypes toward science and scientists, as well as participation levels in science-related activities, two years after their participating in the program. The intervention program evaluated was Operation SMART, developed by Girls Incorporated. Participants were recruited from the 6th and 7th grades from two public middle schools in Northern California. One hundred twenty-seven girls signed up for the survey and were assigned to either the SMART group (previous SMART participants) or Non-SMART group (no previous experience with SMART). The survey consisted of five parts: (1) a background information sheet, (2) the Modified Attitudes Toward Science Inventory, (3) the What Do You Do? survey, (4) the Draw-A-Scientist Test-Revised, and (5) a career interests and role models/influencer survey. Results indicated that there were no significant differences between the SMART and Non-SMART groups on any of the test measures. However, middle school attended did have a significant effect on the outcome variables. Girls from Middle School A reported more positive attitudes toward science, while girls from Middle School B reported higher participation levels in extracurricular science activities. Possible explanations for these findings suggest too much time had passed between treatment effect and time of measurement as well as the strong influence of teacher and school environment on girls' attitudes and stereotypes. Recommendations for future research are discussed.

  18. Science learning motivation as correlate of students’ academic performances

    OpenAIRE

    Libao, Nhorvien Jay P.; Sagun, Jessie John B.; Tamangan, Elvira A.; Pattalitan, Agaton P.; Dupa, Maria Elena D.; Bautista, Romiro Gordo

    2016-01-01

    This study was designed to analyze the relationship of students’ learning motivation and their academic performances in science. The study made use of 21 junior and senior Biological Science students to conclude on the formulated research problems. The respondents had a good to very good motivation in learning science. In general, the extent of their motivation do not vary across their sex, age, and curriculum year. Moreover, the respondents had good academic performances in science. Aptly, e...

  19. Blended learning as an effective pedagogical paradigm for biomedical science

    Directory of Open Access Journals (Sweden)

    Perry Hartfield

    2013-11-01

    Full Text Available Blended learning combines face-to-face class based and online teaching and learning delivery in order to increase flexibility in how, when, and where students study and learn. The development, integration, and promotion of blended learning in frameworks of curriculum design can optimize the opportunities afforded by information and communication technologies and, concomitantly, accommodate a broad range of student learning styles. This study critically reviews the potential benefits of blended learning as a progressive educative paradigm for the teaching of biomedical science and evaluates the opportunities that blended learning offers for the delivery of accessible, flexible and sustainable teaching and learning experiences. A central tenet of biomedical science education at the tertiary level is the development of comprehensive hands-on practical competencies and technical skills (many of which require laboratory-based learning environments, and it is advanced that a blended learning model, which combines face-to-face synchronous teaching and learning activities with asynchronous online teaching and learning activities, effectively creates an authentic, enriching, and student-centred learning environment for biomedical science. Lastly, a blending learning design for introductory biochemistry will be described as an effective example of integrating face-to-face and online teaching, learning and assessment activities within the teaching domain of biomedical science.   DOI: 10.18870/hlrc.v3i4.169

  20. Integrating SQ4R Technique with Graphic Postorganizers in the Science Learning of Earth and Space

    OpenAIRE

    Djudin, Tomo; Amir, R

    2018-01-01

    This study examined the effect of integrating SQ4R reading technique with graphic post organizers on the students' Earth and Space Science learning achievement and development of metacognitive knowledge. The pretest-posttest non-equivalent control group design was employed in this quasi-experimental method. The sample which consists of 103 seventh grade of secondary school students of SMPN 1 Pontianak was drawn by using intact group random sampling technique. An achievement test and a questio...

  1. Best practices for measuring students' attitudes toward learning science.

    Science.gov (United States)

    Lovelace, Matthew; Brickman, Peggy

    2013-01-01

    Science educators often characterize the degree to which tests measure different facets of college students' learning, such as knowing, applying, and problem solving. A casual survey of scholarship of teaching and learning research studies reveals that many educators also measure how students' attitudes influence their learning. Students' science attitudes refer to their positive or negative feelings and predispositions to learn science. Science educators use attitude measures, in conjunction with learning measures, to inform the conclusions they draw about the efficacy of their instructional interventions. The measurement of students' attitudes poses similar but distinct challenges as compared with measurement of learning, such as determining validity and reliability of instruments and selecting appropriate methods for conducting statistical analyses. In this review, we will describe techniques commonly used to quantify students' attitudes toward science. We will also discuss best practices for the analysis and interpretation of attitude data.

  2. Informal Science learning in PIBID: identifying and interpreting the strands

    Directory of Open Access Journals (Sweden)

    Thomas Barbosa Fejolo

    2013-10-01

    Full Text Available This paper presents a research on informal Science learning in the context of the Institutional Scholarship Program Initiation to Teaching (PIBID. We take as reference the strands of informal Science learning (FAC, representing six dimensions of learning, they are: 1 Development of interest in Science; 2 Understanding of scientific knowledge; 3 Engaging in scientific reasoning; 4 Reflection on Science; 5 Engagement in scientific practice; 6 Identification with Science. For the lifting data, it was used the filming record of the interactions and dialogues of undergraduate students while performing activities of Optical Spectroscopy in the laboratory. Based on the procedures of content analysis and interpretations through communication, we investigate which of the six strands were present during the action of the students in activities. As a result we have drawn a learning profile for each student by distributing communications in different strands of informal Science learning.

  3. A Computer Learning Center for Environmental Sciences

    Science.gov (United States)

    Mustard, John F.

    2000-01-01

    In the fall of 1998, MacMillan Hall opened at Brown University to students. In MacMillan Hall was the new Computer Learning Center, since named the EarthLab which was outfitted with high-end workstations and peripherals primarily focused on the use of remotely sensed and other spatial data in the environmental sciences. The NASA grant we received as part of the "Centers of Excellence in Applications of Remote Sensing to Regional and Global Integrated Environmental Assessments" was the primary source of funds to outfit this learning and research center. Since opening, we have expanded the range of learning and research opportunities and integrated a cross-campus network of disciplines who have come together to learn and use spatial data of all kinds. The EarthLab also forms a core of undergraduate, graduate, and faculty research on environmental problems that draw upon the unique perspective of remotely sensed data. Over the last two years, the Earthlab has been a center for research on the environmental impact of water resource use in and regions, impact of the green revolution on forest cover in India, the design of forest preserves in Vietnam, and detailed assessments of the utility of thermal and hyperspectral data for water quality analysis. It has also been used extensively for local environmental activities, in particular studies on the impact of lead on the health of urban children in Rhode Island. Finally, the EarthLab has also served as a key educational and analysis center for activities related to the Brown University Affiliated Research Center that is devoted to transferring university research to the private sector.

  4. Developing and Validating a Science Notebook Rubric for Fifth-Grade Non-Mainstream Students

    Science.gov (United States)

    Huerta, Margarita; Lara-Alecio, Rafael; Tong, Fuhui; Irby, Beverly J.

    2014-07-01

    We present the development and validation of a science notebook rubric intended to measure the academic language and conceptual understanding of non-mainstream students, specifically fifth-grade male and female economically disadvantaged Hispanic English language learner (ELL) and African-American or Hispanic native English-speaking students. The science notebook rubric is based on two main constructs: academic language and conceptual understanding. The constructs are grounded in second-language acquisition theory and theories of writing and conceptual understanding. We established content validity and calculated reliability measures using G theory and percent agreement (for comparison) with a sample of approximately 144 unique science notebook entries and 432 data points. Results reveal sufficient reliability estimates, indicating that the instrument is promising for use in future research studies including science notebooks in classrooms with populations of economically disadvantaged Hispanic ELL and African-American or Hispanic native English-speaking students.

  5. Ride On! Mini-Units and Learning Activities on Public Transportation for Grades 9 through 12.

    Science.gov (United States)

    Finn, Peter; And Others

    One of a series of eleven curriculum manuals which cover the four transportation topics of public transportation, transportation and the environment, transportation safety, and bicycles for elementary, secondary, and adult levels, this manual covers the public transportation topic for grades 9-12. It contains forty-nine learning activities grouped…

  6. Ride On! Mini-Units and Learning Activities on Public Transportation for Grades 6 through 9.

    Science.gov (United States)

    Finn, Peter; And Others

    One of a series of eleven curriculum manuals which cover the four transportation topics of public transportation, transportation and the environment, transportation safety, and bicycles for elementary, secondary, and adult levels, this manual covers the public transportation topic for grades 6-9. It contains forty-two learning activities grouped…

  7. Problem-Based Learning Method: Secondary Education 10th Grade Chemistry Course Mixtures Topic

    Science.gov (United States)

    Üce, Musa; Ates, Ismail

    2016-01-01

    In this research; aim was determining student achievement by comparing problem-based learning method with teacher-centered traditional method of teaching 10th grade chemistry lesson mixtures topic. Pretest-posttest control group research design is implemented. Research sample includes; two classes of (total of 48 students) an Anatolian High School…

  8. Turkish students' perceptions of their biology learning environments: the effects of gender and grade level

    NARCIS (Netherlands)

    Telli, S.; Brok, den P.J.; Tekkaya, C.; Cakiroglu, J.

    2009-01-01

    This study investigates the effects of gender and grade level on Turkish secondary school students’ perceptions of their biology learning environment. A total of 1474 high school students completed the What is Happening in This Classroom (WIHIC) questionnaire. The WIHIC maps several important

  9. Learning Barriers among Grade 6 Pupils Attending Rural Schools in Uganda: Implications to Policy and Practice

    Science.gov (United States)

    Hungi, Njora; Ngware, Moses; Mahuro, Gerald; Muhia, Nelson

    2017-01-01

    The paper uses multilevel analysis procedures to examine individual- and group-level learning barriers that have the greatest impact on pupil achievement in Uganda. The data for this study were collected in 2014 among 2711 Grade 6 pupils attending 82 schools in two rural districts of Iganga and Mayuge in Uganda. Data used in this paper are part of…

  10. Enhancing Argumentative Essay Writing of Fourth-Grade Students with Learning Disabilities

    Science.gov (United States)

    Deatline-Buchman, Andria; Jitendra, Asha K.

    2006-01-01

    A within-subject pretest-posttest comparison design was used to explore the effectiveness of a planning and writing intervention in improving the argumentative writing performance of five fourth-grade students with learning disabilities. Students were taught to collaboratively plan and revise their essays and independently write their essays using…

  11. Dialogic Learning and Collaboration through Video Chat in Two First-Grade Classrooms

    Science.gov (United States)

    Luft, Susan

    2014-01-01

    There is extensive research evidencing the value of developing early oral literacy skills within sociocultural experiences. However there is a lack of research examining first-grade students engaged in dialogic learning using Internet communication technology. The purpose of this study was to analyze the collaborative peer-talk process of…

  12. The Effect of Project Based Learning on Seventh Grade Students' Academic Achievement

    Science.gov (United States)

    Kizkapan, Oktay; Bektas, Oktay

    2017-01-01

    The purpose of this study is to investigate whether there is a significant effect of project based learning approach on seventh grade students' academic achievement in the structure and properties of matter. In the study, according to the characteristics of quantitative research methods, pretest-posttest control group quasi-experimental design was…

  13. The Effect on the 8th Grade Students' Attitude towards Statistics of Project Based Learning

    Science.gov (United States)

    Koparan, Timur; Güven, Bülent

    2014-01-01

    This study investigates the effect of the project based learning approach on 8th grade students' attitude towards statistics. With this aim, an attitude scale towards statistics was developed. Quasi-experimental research model was used in this study. Following this model in the control group the traditional method was applied to teach statistics…

  14. The Effect of Project Based Learning on the Statistical Literacy Levels of Student 8th Grade

    Science.gov (United States)

    Koparan, Timur; Güven, Bülent

    2014-01-01

    This study examines the effect of project based learning on 8th grade students' statistical literacy levels. A performance test was developed for this aim. Quasi-experimental research model was used in this article. In this context, the statistics were taught with traditional method in the control group and it was taught using project based…

  15. ICT media design for higher grade of elementary school mathematics learning using CS6 program

    Science.gov (United States)

    Zainil, M.; Prahmana, R. C. I.; Helsa, Y.; Hendri, S.

    2017-12-01

    Technological innovation contributes to the emerging of new possibilities to change the learning process. The development of technology could bring the higher quality of education through the integration of technology in the learning. The purpose of this research is to create an interactive multimedia using CS6 program for mathematics learning in higher grade of elementary school. It was a development research using ADDIE model which consists of analysis, design, and evaluation stages. It has successfully developed interactive multimedia in a form of learning CD used in the material of plane figures and solid figures. The prototype has been validated and then tested for the 4th grade of elementary schools. Two schools were involved and the students taught by utilizing the prototype, and then, in the end of learning, they are examined to determine the learning result. There were 72% of the students passed the examination as they classified at good and excellent categories. Finally, the use of CS6 program is promising to help the students learning plane and solid figure in mathematics learning.

  16. The comparison between science virtual and paper based test in measuring grade 7 students’ critical thinking

    Science.gov (United States)

    Dhitareka, P. H.; Firman, H.; Rusyati, L.

    2018-05-01

    This research is comparing science virtual and paper-based test in measuring grade 7 students’ critical thinking based on Multiple Intelligences and gender. Quasi experimental method with within-subjects design is conducted in this research in order to obtain the data. The population of this research was all seventh grade students in ten classes of one public secondary school in Bandung. There were 71 students within two classes taken randomly became the sample in this research. The data are obtained through 28 questions with a topic of living things and environmental sustainability constructed based on eight critical thinking elements proposed by Inch then the questions provided in science virtual and paper-based test. The data was analysed by using paired-samples t test when the data are parametric and Wilcoxon signed ranks test when the data are non-parametric. In general comparison, the p-value of the comparison between science virtual and paper-based tests’ score is 0.506, indicated that there are no significance difference between science virtual and paper-based test based on the tests’ score. The results are furthermore supported by the students’ attitude result which is 3.15 from the scale from 1 to 4, indicated that they have positive attitudes towards Science Virtual Test.

  17. Assessing predictors of science grades and career goals in university undergraduates

    Science.gov (United States)

    Patanella, Daniel Francis

    The utility of traditional predictors of both science grades and career goals (SAT and GPA) was compared to psychological predictors such as Piagetian stage (as measured by the Group Assessment of Logical Thinking), sex-role schema (as measured by the Bem Sex-Role Inventory, and self-schema in students enrolled in either psychology classes (n = 123) or biology classes (n = 56). While the overall predictive ability of the model was high (R = .73), the strongest predictors of grade in science class were traditional variables and not psychological ones as predicted. Prediction of career goal, while more modest (R = .19), was best served by the psychological variable of self-schema. Subsequent analyses indicated that Piagetian stage was best conceptualized as a mediating variable and that sex-role schema as measured played almost no role in either grade or career goal, as well as verifying the internal validity of the self-schema measure used. Biology students were more likely to possess a science self-schema than psychology students (chi2 (1,179) = 7.34, p < .01) and outperformed psychology students on the Piagetian questions (t(177) = 3.01, p < .01). Response latency was recorded for all participants' answer to the Piagetian questions; contrary to prediction however, the inclusion of response latency did not add to the predictive ability of the Piagetian measure used.

  18. On Safari: Animals and Their Habitats. Grades 2/3. Tapestries for Learning Series.

    Science.gov (United States)

    McDonald, Heather

    This thematic unit involves 2nd and 3rd grade students in an in-depth study of wild animals and their habitats. The interdisciplinary unit connects knowledge related to art, language arts, applied mathematics, social studies, and science. Students think about different types of animals from around the world and consider how they are alike and…

  19. Firefly, Firefly: First Grade Students Learn, Talk, and Write about Light

    Science.gov (United States)

    Mesa, Jennifer; Sorensen, Kirsten

    2016-01-01

    Inspired by a song to be sung by her daughter's first-grade class in an upcoming musical, a parent volunteer teacher used fireflies as the focus of a science lesson to build on the children's interest and experiences. She developed a 5E lesson (Bybee et al. 2006) using the backwards-design approach (Wiggins and McTighe 2005) to ensure meaningful…

  20. Adoption, adaptation, and abandonment: Appropriation of science education professional development learning

    Science.gov (United States)

    Longhurst, Max L.

    Understanding factors that impact teacher utilization of learning from professional development is critical in order maximize the educational and financial investment in teacher professional learning. This study used a multicase mixed quantitative and qualitative methodology to investigate the factors that influence teacher adoption, adaption, or abandonment of learning from science teacher professional development. The theoretical framework of activity theory was identified as a useful way to investigate the phenomenon of teacher appropriation of pedagogical practices from professional development. This framework has the capacity to account for a multitude of elements in the context of a learning experience. In this study educational appropriation is understood through a continuum of how an educator acquires and implements both practical and conceptual aspects of learning from professional development within localized context. The variability associated with instructional changes made from professional development drives this inquiry to search for better understandings of the appropriation of pedagogical practices. Purposeful sampling was used to identify two participants from a group of eighth-grade science teachers engaged in professional development designed to investigate how cyber-enabled technologies might enhance instruction and learning in integrated science classrooms. The data from this investigation add to the literature of appropriation of instructional practices by connecting eight factors that influence conceptual and practical tools with the development of ownership of pedagogical practices in the appropriation hierarchy. Recommendations are shared with professional development developers, providers, and participants in anticipation that future science teaching experiences might be informed by findings from this study.

  1. Development and Validation of an Instrument to Measure Students' Motivation and Self-Regulation in Science Learning

    Science.gov (United States)

    Velayutham, Sunitadevi; Aldridge, Jill; Fraser, Barry

    2011-10-01

    Students' motivational beliefs and self-regulatory practices have been identified as instrumental in influencing the engagement of students in the learning process. An important aim of science education is to empower students by nurturing the belief that they can succeed in science learning and to cultivate the adaptive learning strategies required to help to bring about that success. This article reports the development and validation of an instrument to measure salient factors related to the motivation and self-regulation of students in lower secondary science classrooms. The development of the instrument involved identifying key determinants of students' motivation and self-regulation in science learning based on theoretical and research underpinnings. Once the instrument was developed, a pilot study involving 52 students from two Grade 8 science classes was undertaken. Quantitative data were collected from 1,360 students in 78 classes across Grades 8, 9, and 10, in addition to in-depth qualitative information gathered from 10 experienced science teachers and 12 Grade 8 students. Analyses of the data suggest that the survey has strong construct validity when used with lower secondary students. This survey could be practically valuable as a tool for gathering information that may guide classroom teachers in refocusing their teaching practices and help to evaluate the effectiveness of intervention programmes.

  2. Assessment of Kolb's Learning Styles among College Students of Qom University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Elaheh rahiminia

    2017-06-01

    Full Text Available Background and Objective: Learning styles are effective factors in the learning. Learning is a relatively permanent change in the behavior or attitude of a person over time. Whereas improvement of existing conditions is pivotal in educational activities; therefore, the aim of this study was the assessment of stages and learning styles based on the Kolb theory among students of Qom University of Medical Sciences. Materials and Methods: This cross-sectional study was performed on 279 students of the QomUniversity of Medical Sciences, Iran in October 2015. The participants were selected using a stratified sampling method. The assessment instrument was the Kolb learning style inventory (KLSI V.3.1. Data analysis was performed by SPSS using descriptive statistics and Chi square test. Results: The mean age of students was 22.23±4.38 years, and the average grade was 16.85±1.65. Generally, the learning styles of students were convergent (% 38.9, assimilative (% 37.5, divergent (%13.2 and accommodative (%10.4. There was a significant relationship between learning styles with gender (P=0.01. Conclusion: Considering the predominance of convergent and assimilative learning styles in these students, it is recommended that faculty members use visual methods such as diagrams, self learning, individualized instruction and emphasize on practical methods in teaching.

  3. Confidence in Science and Achievement Outcomes of Fourth-Grade Students in Korea: Results from the TIMSS 2011 Assessment

    Science.gov (United States)

    House, J. Daniel; Telese, James A.

    2017-01-01

    Findings from assessments of fourth-grade science have indicated that students in Korea scored higher than international averages. Research results have also shown that attitudes toward science were related to achievement outcomes for Korean students. The purpose of this study was to examine the relationship between confidence in science and…

  4. Learning about the Nature of Science Using Algae

    Science.gov (United States)

    Edelmann, Hans G.; Martius, Thilo; Hahn, Achim; Schlüter, Kirsten; Nessler, Stefan H.

    2016-01-01

    Enquiry learning and teaching about the nature of science (NoS) is a key element of science education. We have designed an experimental setting for students aged 12-14 years to exercise enquiry-learning skills and to introduce students to the NoS aspects of creativity and imagination. It also illustrates the impact of carbon dioxide on the growth…

  5. Brain-Based Learning and Standards-Based Elementary Science.

    Science.gov (United States)

    Konecki, Loretta R.; Schiller, Ellen

    This paper explains how brain-based learning has become an area of interest to elementary school science teachers, focusing on the possible relationships between, and implications of, research on brain-based learning to the teaching of science education standards. After describing research on the brain, the paper looks at three implications from…

  6. A Pedagogical Model for Science Education through Blended Learning

    NARCIS (Netherlands)

    Bidarra, José; Rusman, Ellen

    2015-01-01

    This paper proposes a framework to support science education through blended learning, based on a participatory and interactive approach supported by ICT-based tools, called Science Learning Activities Model (SLAM). The study constitutes a work in progress and started as a response to complex

  7. Shoring Up Math and Science in the Elementary Grades: Schools Enlist Specialists to Teach Science Lessons

    Science.gov (United States)

    Jacobson, Linda

    2004-01-01

    As science gets squeezed in the elementary curriculum, at least two Florida districts are trying a new approach to keeping hands-on lessons a part of pupils' experiences. This article reports how Broward and Palm Beach county districts have increased the number of science specialists working in their elementary schools--teachers who, like physical…

  8. Deep learning for single-molecule science

    Science.gov (United States)

    Albrecht, Tim; Slabaugh, Gregory; Alonso, Eduardo; Al-Arif, SM Masudur R.

    2017-10-01

    Exploring and making predictions based on single-molecule data can be challenging, not only due to the sheer size of the datasets, but also because a priori knowledge about the signal characteristics is typically limited and poor signal-to-noise ratio. For example, hypothesis-driven data exploration, informed by an expectation of the signal characteristics, can lead to interpretation bias or loss of information. Equally, even when the different data categories are known, e.g., the four bases in DNA sequencing, it is often difficult to know how to make best use of the available information content. The latest developments in machine learning (ML), so-called deep learning (DL) offer interesting, new avenues to address such challenges. In some applications, such as speech and image recognition, DL has been able to outperform conventional ML strategies and even human performance. However, to date DL has not been applied much in single-molecule science, presumably in part because relatively little is known about the ‘internal workings’ of such DL tools within single-molecule science as a field. In this Tutorial, we make an attempt to illustrate in a step-by-step guide how one of those, a convolutional neural network (CNN), may be used for base calling in DNA sequencing applications. We compare it with a SVM as a more conventional ML method, and discuss some of the strengths and weaknesses of the approach. In particular, a ‘deep’ neural network has many features of a ‘black box’, which has important implications on how we look at and interpret data.

  9. The Effects of Self-Regulation on Science Vocabulary Acquisition of English Language Learners with Learning Difficulties

    Science.gov (United States)

    Kim, Woori; Linan-Thompson, Sylvia

    2013-01-01

    This multiple-probe study examined the effects of self-regulation on the acquisition of science vocabulary by four third-grade English language learners (ELLs) with learning difficulties. The students were provided only direct vocabulary instruction in a baseline phase, followed by intervention and maintenance phases into which self-regulation…

  10. Lessons Learned from Developing and Operating the Kepler Science Pipeline and Building the TESS Science Pipeline

    Science.gov (United States)

    Jenkins, Jon M.

    2017-01-01

    The experience acquired through development, implementation and operation of the KeplerK2 science pipelines can provide lessons learned for the development of science pipelines for other missions such as NASA's Transiting Exoplanet Survey Satellite, and ESA's PLATO mission.

  11. Performance in grade 12 mathematics and science predicts student nurses' performance in first year science modules at a university in the Western Cape.

    Science.gov (United States)

    Mthimunye, Katlego D T; Daniels, Felicity M

    2017-10-26

    The demand for highly qualified and skilled nurses is increasing in South Africa as well as around the world. Having a background in science can create a significant advantage for students wishing to enrol for an undergraduate nursing qualification because nursing as profession is grounded in scientific evidence. The aim of this study was to investigate the predictive validity of grade 12 mathematics and science on the academic performance of first year student nurses in science modules. A quantitative research method using a cross-sectional predictive design was employed in this study. The participants included first year Bachelor of Nursing students enrolled at a university in the Western Cape, South Africa. Descriptive and inferential statistics were performed to analyse the data by using the IBM Statistical Package for Social Sciences versions 24. Descriptive analysis of all variables was performed as well as the Spearman's rank correlation test to describe the relationship among the study variables. Standard multiple linear regressions analysis was performed to determine the predictive validity of grade 12 mathematics and science on the academic performance of first year student nurses in science modules. The results of this study showed that grade 12 physical science is not a significant predictor (p > 0.062) of performance in first year science modules. The multiple linear regression revealed that grade 12 mathematics and life science grades explained 37.1% to 38.1% (R2 = 0.381 and adj R2 = 0.371) of the variation in the first year science grade distributions. Based on the results of the study it is evident that performance in grade 12 mathematics (β = 2.997) and life science (β = 3.175) subjects is a significant predictor (p < 0.001) of the performance in first year science modules for student nurses at the university identified for this study.

  12. Does STES-Oriented Science Education Promote 10th-Grade Students' Decision-Making Capability?

    Science.gov (United States)

    Levy Nahum, Tami; Ben-Chaim, David; Azaiza, Ibtesam; Herskovitz, Orit; Zoller, Uri

    2010-07-01

    Today's society is continuously coping with sustainability-related complex issues in the Science-Technology-Environment-Society (STES) interfaces. In those contexts, the need and relevance of the development of students' higher-order cognitive skills (HOCS) such as question-asking, critical-thinking, problem-solving and decision-making capabilities within science teaching have been argued by several science educators for decades. Three main objectives guided this study: (1) to establish "base lines" for HOCS capabilities of 10th grade students (n = 264) in the Israeli educational system; (2) to delineate within this population, two different groups with respect to their decision-making capability, science-oriented (n = 142) and non-science (n = 122) students, Groups A and B, respectively; and (3) to assess the pre-post development/change of students' decision-making capabilities via STES-oriented HOCS-promoting curricular modules entitled Science, Technology and Environment in Modern Society (STEMS). A specially developed and validated decision-making questionnaire was used for obtaining a research-based response to the guiding research questions. Our findings suggest that a long-term persistent application of purposed decision-making, promoting teaching strategies, is needed in order to succeed in affecting, positively, high-school students' decision-making ability. The need for science teachers' involvement in the development of their students' HOCS capabilities is thus apparent.

  13. Children's science learning: A core skills approach.

    Science.gov (United States)

    Tolmie, Andrew K; Ghazali, Zayba; Morris, Suzanne

    2016-09-01

    Research has identified the core skills that predict success during primary school in reading and arithmetic, and this knowledge increasingly informs teaching. However, there has been no comparable work that pinpoints the core skills that underlie success in science. The present paper attempts to redress this by examining candidate skills and considering what is known about the way in which they emerge, how they relate to each other and to other abilities, how they change with age, and how their growth may vary between topic areas. There is growing evidence that early-emerging tacit awareness of causal associations is initially separated from language-based causal knowledge, which is acquired in part from everyday conversation and shows inaccuracies not evident in tacit knowledge. Mapping of descriptive and explanatory language onto causal awareness appears therefore to be a key development, which promotes unified conceptual and procedural understanding. This account suggests that the core components of initial science learning are (1) accurate observation, (2) the ability to extract and reason explicitly about causal connections, and (3) knowledge of mechanisms that explain these connections. Observational ability is educationally inaccessible until integrated with verbal description and explanation, for instance, via collaborative group work tasks that require explicit reasoning with respect to joint observations. Descriptive ability and explanatory ability are further promoted by managed exposure to scientific vocabulary and use of scientific language. Scientific reasoning and hypothesis testing are later acquisitions that depend on this integration of systems and improved executive control. © 2016 The British Psychological Society.

  14. Interactive Multimodal Molecular Set – Designing Ludic Engaging Science Learning Content

    DEFF Research Database (Denmark)

    Thorsen, Tine Pinholt; Christiansen, Kasper Holm Bonde; Jakobsen Sillesen, Kristian

    2014-01-01

    This paper reports on an exploratory study investigating 10 primary school students’ interaction with an interactive multimodal molecular set fostering ludic engaging science learning content in primary schools (8th and 9th grade). The concept of the prototype design was to bridge the physical...... and virtual worlds with electronic tags and, through this, blend the familiarity of the computer and toys, to create a tool that provided a ludic approach to learning about atoms and molecules. The study was inspired by the participatory design and informant design methodologies and included design...

  15. The exercises without paper or pencil: an alternative for learning science

    Directory of Open Access Journals (Sweden)

    Idelfonso Robaina Acosta

    2003-12-01

    Full Text Available In recent years it has been carried out in our province, by a group of specialists from the ISP and the Provincial Department of Education, the diagnostic study of the results obtained by 12th grade students. in the entrance examinations to higher education, regularly determined as the difficulties in solving problems, mainly caused by insufficient formation of the conceptual base. Learning from oral communication is the foundation that underpins this work, proposing exercises without paper or pen as an alternative to optimize the learning of science.

  16. Framing discourse for optimal learning in science and mathematics

    Science.gov (United States)

    Megowan, Mary Colleen

    2007-12-01

    This study explored the collaborative thinking and learning that occurred in physics and mathematics classes where teachers practiced Modeling Instruction. Four different classes were videotaped---a middle school mathematics resource class, a 9th grade physical science class, a high school honors physics class and a community college engineering physics course. Videotapes and transcripts were analyzed to discover connections between the conceptual structures and spatial representations that shaped students' conversations about space and time. Along the way, it became apparent that students' and teachers' cultural models of schooling were a significant influence, sometimes positive and sometimes negative, in students' engagement and metaphor selection. A growing number of researchers are exploring the importance of semiotics in physics and mathematics, but typically their unit of analysis is the individual student. To examine the distributed cognition that occurred in this unique learning setting, not just among students but also in connection with their tools, artifacts and representations, I extended the unit of analysis for my research to include small groups and their collaborative work with whiteboarded representations of contextual problems and laboratory exercises. My data revealed a number of interesting insights. Students who constructed spatial representations and used them to assist their reasoning, were more apt to demonstrate a coherent grasp of the elements, operations, relations and rules that govern the model under investigation than those who relied on propositional algebraic representations of the model. In classrooms where teachers permitted and encouraged students to take and hold the floor during whole-group discussions, students learned to probe one another more deeply and conceptually. Shared representations (whether spatial or propositional/algebraic), such as those that naturally occurred when students worked together in small groups to

  17. A study of a science-based peer reading assignment and its effects on first grade student understanding and use of describing words in science

    Science.gov (United States)

    Pearson, Meghan Jeanne

    The first grade curriculum for science in Colorado requires students be able to use describing words to depict and compare objects and people; however, first graders struggle with using specific enough language to create strong descriptions. With science education research encouraging teachers to use alternative teaching methods to approach these challenging topics, it is important to provide teachers with resources appropriate to their students. One such alternative learning method is a reading partner. Reading partners have been shown to increase vocabulary, boost school performance, and improve self-esteem in children. This study analyzed the effectiveness of using a science-based peer reading assignment about describing words on increasing a first grader's understanding of the topic. The book required the class to work together to help the characters describe different images and characters in the book with the intent that students were engaged during the reading. In pre-interview and post-interview, students described pictures, and their responses were analyzed for quality of the describing words provided and the number of strong (specific and not opinion) describing words provided. In the post-interview, students had an overall increase in the number of strong describing words provided. The quantitative data was analyzed by comparing strong describing words used pre-reading and post-reading, and the effect size was very large. The results indicate reading the book explaining describing words that asked for student participation did increase students understanding and use of describing words.

  18. Predicting Turkish Preservice Elementary Teachers' Orientations to Teaching Science with Epistemological Beliefs, Learning Conceptions, and Learning Approaches in Science

    Science.gov (United States)

    Sahin, Elif Adibelli; Deniz, Hasan; Topçu, Mustafa Sami

    2016-01-01

    The present study investigated to what extent Turkish preservice elementary teachers' orientations to teaching science could be explained by their epistemological beliefs, conceptions of learning, and approaches to learning science. The sample included 157 Turkish preservice elementary teachers. The four instruments used in the study were School…

  19. The impact of computer-based versus "traditional" textbook science instruction on selected student learning outcomes

    Science.gov (United States)

    Rothman, Alan H.

    This study reports the results of research designed to examine the impact of computer-based science instruction on elementary school level students' science content achievement, their attitude about science learning, their level of critical thinking-inquiry skills, and their level of cognitive and English language development. The study compared these learning outcomes resulting from a computer-based approach compared to the learning outcomes from a traditional, textbook-based approach to science instruction. The computer-based approach was inherent in a curriculum titled The Voyage of the Mimi , published by The Bank Street College Project in Science and Mathematics (1984). The study sample included 209 fifth-grade students enrolled in three schools in a suburban school district. This sample was divided into three groups, each receiving one of the following instructional treatments: (a) Mixed-instruction primarily based on the use of a hardcopy textbook in conjunction with computer-based instructional materials as one component of the science course; (b) Non-Traditional, Technology-Based -instruction fully utilizing computer-based material; and (c) Traditional, Textbook-Based-instruction utilizing only the textbook as the basis for instruction. Pre-test, or pre-treatment, data related to each of the student learning outcomes was collected at the beginning of the school year and post-test data was collected at the end of the school year. Statistical analyses of pre-test data were used as a covariate to account for possible pre-existing differences with regard to the variables examined among the three student groups. This study concluded that non-traditional, computer-based instruction in science significantly improved students' attitudes toward science learning and their level of English language development. Non-significant, positive trends were found for the following student learning outcomes: overall science achievement and development of critical thinking

  20. Portable Tablets in Science Museum Learning: Options and Obstacles

    Science.gov (United States)

    Gronemann, Sigurd Trolle

    2017-01-01

    Despite the increasing use of portable tablets in learning, their impact has received little attention in research. In five different projects, this media-ethnographic and design-based analysis of the use of portable tablets as a learning resource in science museums investigates how young people's learning with portable tablets matches the…

  1. The Use of Mobile Learning in Science: A Systematic Review

    Science.gov (United States)

    Crompton, Helen; Burke, Diane; Gregory, Kristen H.; Gräbe, Catharina

    2016-01-01

    The use of mobile learning in education is growing at an exponential rate. To best understand how mobile learning is being used, it is crucial to gain a collective understanding of the research that has taken place. This systematic review reveals the trends in mobile learning in science with a comprehensive analysis and synthesis of studies from…

  2. Career-Related Learning and Science Education: The Changing Landscape

    Science.gov (United States)

    Hutchinson, Jo

    2012-01-01

    Pupils ask STEM subject teachers about jobs and careers in science, but where else do they learn about work? This article outlines career-related learning within schools in England alongside other factors that influence pupils' career decisions. The effect of the Education Act 2011 will be to change career learning in schools. The impact on…

  3. Original Science-Based Music and Student Learning

    Science.gov (United States)

    Smolinski, Keith

    2010-01-01

    American middle school student science scores have been stagnating for several years, demonstrating a need for better learning strategies to aid teachers in instruction and students in content learning. It has also been suggested by researchers that music can be used to aid students in their learning and memory. Employing the theoretical framework…

  4. Data Science and Optimal Learning for Material Discovery and Design

    Science.gov (United States)

    ; Optimal Learning for Material Discovery & Design Data Science and Optimal Learning for Material inference and optimization methods that can constrain predictions using insights and results from theory directions in the application of information theoretic tools to materials problems related to learning from

  5. The Responsive Classroom approach and fifth grade students' math and science anxiety and self-efficacy.

    Science.gov (United States)

    Griggs, Marissa Swaim; Rimm-Kaufman, Sara E; Merritt, Eileen G; Patton, Christine L

    2013-12-01

    Self-efficacy forecasts student persistence and achievement in challenging subjects. Thus, it is important to understand factors that contribute to students' self-efficacy, a key factor in their success in math and science. The current cross-sectional study examined the contribution of students' gender and math and science anxiety as well as schools' use of Social and Emotional Learning (SEL) practices to students' math and science self-efficacy. Fifth graders (n = 1,561) completed questionnaires regarding their feelings about math and science. Approximately half of the students attended schools implementing the Responsive Classroom® (RC) approach, an SEL intervention, as part of a randomized controlled trial. Results suggested no difference in math and science self-efficacy between boys and girls. Students who self-reported higher math and science anxiety also reported less self-efficacy toward these subjects. However, the negative association between students' anxiety and self-efficacy was attenuated in schools using more RC practices compared with those using fewer RC practices. RC practices were associated with higher science self-efficacy. Results highlight anxiety as contributing to poor self-efficacy in math and science and suggest that RC practices create classroom conditions in which students' anxiety is less strongly associated with negative beliefs about their ability to be successful in math and science. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  6. Ocean Sciences Sequence for Grades 6-8: Climate Change Curriculum Developed Through a Collaboration Between Scientists and Educators

    Science.gov (United States)

    Halversen, C.; Weiss, E. L.; Pedemonte, S.

    2016-02-01

    Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, few high quality curriculum materials exist that address climate change in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8: The Ocean-Atmosphere Connection and Climate Change (OSS) addresses this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. OSS was developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified curriculum development team. Scientists were active partners throughout the entire development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. The goal was to focus strategically and effectively on core concepts within ocean and climate sciences that students should understand. OSS was designed in accordance with the latest research from the learning sciences and provides numerous opportunities for students to develop facility with science practices by "doing" science.Through hands-on activities, technology, informational readings, and embedded assessments, OSS deeply addresses a significant number of standards from the Next Generation Science Standards and is being used by many teachers as they explore the shifts required by NGSS. It also aligns with the Ocean Literacy and Climate Literacy Frameworks. OSS comprises 33 45-minute sessions organized into three thematic units, each driven by an exploratory question: (1) How do the ocean and atmosphere

  7. Factors Contributing to Lifelong Science Learning: Amateur Astronomers and Birders

    Science.gov (United States)

    Jones, M. Gail; Corin, Elysa Nicole; Andre, Thomas; Childers, Gina M.; Stevens, Vanessa

    2017-01-01

    This research examined lifelong science learning reported by amateur astronomers and birders. One hundred seven adults who reported engaging in an informal (out-of-school) science interest were interviewed as part of an ongoing series of studies of lifelong science learners. The goal of the study was to gain insight into how and why amateur…

  8. Understanding the Science-Learning Environment: A Genetically Sensitive Approach

    Science.gov (United States)

    Haworth, Claire M. A.; Davis, Oliver S. P.; Hanscombe, Ken B.; Kovas, Yulia; Dale, Philip S.; Plomin, Robert

    2013-01-01

    Previous studies have shown that environmental influences on school science performance increase in importance from primary to secondary school. Here we assess for the first time the relationship between the science-learning environment and science performance using a genetically sensitive approach to investigate the aetiology of this link. 3000…

  9. Building Future Directions for Teacher Learning in Science Education

    Science.gov (United States)

    Smith, Kathy; Lindsay, Simon

    2016-04-01

    In 2013, as part of a process to renew an overall sector vision for science education, Catholic Education Melbourne (CEM) undertook a review of its existing teacher in-service professional development programs in science. This review led to some data analysis being conducted in relation to two of these programs where participant teachers were positioned as active learners undertaking critical reflection in relation to their science teaching practice. The conditions in these programs encouraged teachers to notice critical aspects of their teaching practice. The analysis illustrates that as teachers worked in this way, their understandings about effective science pedagogy began to shift, in particular, teachers recognised how their thinking not only influenced their professional practice but also ultimately shaped the quality of their students' learning. The data from these programs delivers compelling evidence of the learning experience from a teacher perspective. This article explores the impact of this experience on teacher thinking about the relationship between pedagogical choices and quality learning in science. The findings highlight that purposeful, teacher-centred in-service professional learning can significantly contribute to enabling teachers to think differently about science teaching and learning and ultimately become confident pedagogical leaders in science. The future of quality school-based science education therefore relies on a new vision for teacher professional learning, where practice explicitly recognises, values and attends to teachers as professionals and supports them to articulate and share the professional knowledge they have about effective science teaching practice.

  10. Resource Handbook--Space Beyond the Earth. A Supplement to Basic Curriculum Guide--Science, Grades K-6.

    Science.gov (United States)

    Starr, John W., 3rd., Ed.

    GRADES OR AGES: Grades K-6. SUBJECT MATTER: Science; space. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into four units: 1) the sun, earth, and moon; 2) stars and planets; 3) exploring space; 4) man's existence in space. Each unit includes initiatory and developmental activities. There are also sections on evaluation, vocabulary,…

  11. Learning styles of students of Baqiyatallah University of Medical Sciences in 2012

    Directory of Open Access Journals (Sweden)

    Hojat Rashidi-jahan

    2013-06-01

    Full Text Available Introduction: Understanding the learning styles of students may help educational planning and improve the learning. This study aims to assess learning styles, and relevant determinants, of students who study in various disciplines of medical sciences at Baqiyatallah University of Medical Sciences (BUMS in 2012. Methods: In this cross-sectional study, 180 students from BUMS were selected randomly. Data were collected sing the Kolb learning style questionnaire during April/May 2012. One-way ANOVA, Student t-test, Chi-square or Fisher exact tests were used for analyzing the data. Results: The mean age of participants was 29.3±7.0, majority of them were males. The preferred learning styles were diverger (76.7%, accommodator (12.8%, assimilator (7.8% and converger (2.8% respectively. The results showed that the factors such as age, sex, marriage status, father and mother education, grade point average (GPA and academic degree could be important to determine learning style characteristics of students. The findings also indicate that the preferred learning style among the students with different GPAs or academic degrees are not different considerably. Conclusion: Regarding the most preferred leaning style by the, proper planning to address proper teaching styles according to the preferred learning styles is necessary.

  12. Initiating New Science Partnerships in Rural Education: STEM Graduate Students Bring Current Research into 7th-12th Grade Science Classrooms

    Science.gov (United States)

    Radencic, S.; Dawkins, K. S.; Jackson, B. S.; Walker, R. M.; Schmitz, D.; Pierce, D.; Funderburk, W. K.; McNeal, K.

    2014-12-01

    Initiating New Science Partnerships in Rural Education (INSPIRE), a NSF Graduate K-12 (GK-12) program at Mississippi State University, pairs STEM graduate students with local K-12 teachers to bring new inquiry and technology experiences to the classroom (www.gk12.msstate.edu). The graduate fellows prepare lessons for the students incorporating different facets of their research. The lessons vary in degree of difficulty according to the content covered in the classroom and the grade level of the students. The focus of each lesson is directed toward the individual research of the STEM graduate student using inquiry based designed activities. Scientific instruments that are used in STEM research (e.g. SkyMaster weather stations, GPS, portable SEM, Inclinometer, Soil Moisture Probe, Google Earth, ArcGIS Explorer) are also utilized by K-12 students in the activities developed by the graduate students. Creativity and problem solving skills are sparked by curiosity which leads to the discovery of new information. The graduate students work to enhance their ability to effectively communicate their research to members of society through the creation of research linked classroom activities, enabling the 7-12th grade students to connect basic processes used in STEM research with the required state and national science standards. The graduate students become respected role models for the high school students because of their STEM knowledge base and their passion for their research. Sharing enthusiasm for their chosen STEM field, as well as the application techniques to discover new ideas, the graduate students stimulate the interests of the classroom students and model authentic science process skills while highlighting the relevance of STEM research to K-12 student lives. The measurement of the student attitudes about science is gathered from pre and post interest surveys for the past four years. This partnership allows students, teachers, graduate students, and the public to

  13. Exploring PCK ability of prospective science teachers in reflective learning on heat and transfer

    Science.gov (United States)

    Nurmatin, S.; Rustaman, N. Y.

    2016-02-01

    Learning can be planned by the person him/herself when he or she tries to reflect his/her learning. A study involving prospective science teachers in junior secondary schools was carried out to analyze their ability on Pedagogical Content Knowledge (PCK) in reflective learning after teaching practice. The study was focused especially in creating Pedagogical and Professional Repertoires (PaP-eRs) as part of resource-folios. PaP-eRs as a narrative writing in the learning activities are created by prospective science teachers after lesson plan implementation. Making the narrative writing is intended that prospective science teachers can reflect their learning in teaching. Research subjects are six prospective science teachers who are implementing "Program Pengalaman Lapangan" (PPL) in two junior secondary schools in Bandung, West Java, Indonesia. All of them were assigned by supervisor teachers to teach VII grade students on certain topic "heat and its transfer". Instruments used as a means of collecting data in this study is PaP-eRs. Collected PaP-eRs were then analyzed using PaP-eRs analysis format as instruments for analysis. The result of analyzing PaP-eRs indicates that learning activities, which narrated, involve initial activities, core activities and final activities. However, any activity, which is narrated just superficial as its big line so the narration cannot be, used as reflective learning. It indicates that PCK ability of prospective science teachers in creating narrative writing (PaP-eRs) for reflective learning is still low.

  14. The relationship between nature of science understandings and science self-efficacy beliefs of sixth grade students

    Science.gov (United States)

    Parker, Elisabeth Allyn

    Bandura (1986) posited that self-efficacy beliefs help determine what individuals do with the knowledge and skills they have and are critical determinants of how well skill and knowledge are acquired. Research has correlated self-efficacy beliefs with academic success and subject interest (Pajares, Britner, & Valiante, 2000). Similar studies report a decreasing interest by students in school science beginning in middle school claiming that they don't enjoy science because the classes are boring and irrelevant to their lives (Basu & Barton, 2007). The hypothesis put forth by researchers is that students need to observe models of how science is done, the nature of science (NOS), so that they connect with the human enterprise of science and thereby raise their self-efficacy (Britner, 2008). This study examined NOS understandings and science self-efficacy of students enrolled in a sixth grade earth science class taught with explicit NOS instruction. The research questions that guided this study were (a) how do students' self-efficacy beliefs change as compared with changes in their nature of science understandings?; and (b) how do changes in students' science self-efficacy beliefs vary with gender and ethnicity segregation? A mixed method design was employed following an embedded experimental model (Creswell & Plano Clark, 2007). As the treatment, five NOS aspects were first taught by the teachers using nonintegrated activities followed by integrated instructional approach (Khishfe, 2008). Students' views of NOS using the Views on Nature of Science (VNOS) (Lederman, Abd-El-Khalick, & Schwartz, 2002) along with their self-efficacy beliefs using three Likert-type science self-efficacy scales (Britner, 2002) were gathered. Changes in NOS understandings were determined by categorizing student responses and then comparing pre- and post-instructional understandings. To determine changes in participants' self-efficacy beliefs as measured by the three subscales, a multivariate

  15. Under-represented students' engagement in secondary science learning: A non-equivalent control group design

    Science.gov (United States)

    Vann-Hamilton, Joy J.

    Problem. A significant segment of the U.S. population, under-represented students, is under-engaged or disengaged in secondary science education. International and national assessments and various research studies illuminate the problem and/or the disparity between students' aspirations in science and the means they have to achieve them. To improve engagement and address inequities among these students, more contemporary and/or inclusive pedagogy is recommended. More specifically, multicultural science education has been suggested as a potential strategy for increased equity so that all learners have access to and are readily engaged in quality science education. While multicultural science education emphasizes the integration of students' backgrounds and experiences with science learning , multimedia has been suggested as a way to integrate the fundamentals of multicultural education into learning for increased engagement. In addition, individual characteristics such as race, sex, academic track and grades were considered. Therefore, this study examined the impact of multicultural science education, multimedia, and individual characteristics on under-represented students' engagement in secondary science. Method. The Under-represented Students Engagement in Science Survey (USESS), an adaptation of the High School Survey of Student Engagement, was used with 76 high-school participants. The USESS was used to collect pretest and posttest data concerning their types and levels of student engagement. Levels of engagement were measured with Strongly Agree ranked as 5, down to Strongly Disagree ranked at 1. Participants provided this feedback prior to and after having interacted with either the multicultural or the non-multicultural version of the multimedia science curriculum. Descriptive statistics for the study's participants and the survey items, as well as Cronbach's alpha coefficient for internal consistency reliability with respect to the survey subscales, were

  16. To curve or not to curve? The effect of college science grading policies on implicit theories of intelligence, perceived classroom goal structures, and self-efficacy

    Science.gov (United States)

    Haley, James M.

    There is currently a shortage of students graduating with STEM (science, technology, engineering, or mathematics) degrees, particularly women and students of color. Approximately half of students who begin a STEM major eventually switch out. Many switchers cite the competitiveness, grading curves, and weed-out culture of introductory STEM classes as reasons for the switch. Variables known to influence resilience include a student's implicit theory of intelligence and achievement goal orientation. Incremental theory (belief that intelligence is malleable) and mastery goals (pursuit of increased competence) are more adaptive in challenging classroom contexts. This dissertation investigates the role that college science grading policies and messages about the importance of effort play in shaping both implicit theories and achievement goal orientation. College students (N = 425) were randomly assigned to read one of three grading scenarios: (1) a "mastery" scenario, which used criterion-referenced grading, permitted tests to be retaken, and included a strong effort message; (2) a "norm" scenario, which used norm-referenced grading (grading on the curve); or (3) an "effort" scenario, which combined a strong effort message with the norm-referenced policies. The dependent variables included implicit theories of intelligence, perceived classroom goal structure, and self-efficacy. A different sample of students (N = 15) were randomly assigned a scenario to read, asked to verbalize their thoughts, and responded to questions in a semi-structured interview. Results showed that students reading the mastery scenario were more likely to endorse an incremental theory of intelligence, perceived greater mastery goal structure, and had higher self-efficacy. The effort message had no effect on self-efficacy, implicit theory, and most of the goal structure measures. The interviews revealed that it was the retake policy in the mastery scenario and the competitive atmosphere in the norm

  17. Analysis Science Process Skills Content in Chemistry Textbooks Grade XI at Solubility and Solubility Product Concept

    Directory of Open Access Journals (Sweden)

    Bayu Antrakusuma

    2017-12-01

    Full Text Available The aim of this research was to determine the analysis of science process skills in textbooks of chemistry grade XI in SMA N 1 Teras, Boyolali. This research used the descriptive method. The instruments were developed based on 10 indicators of science process skills (observing, classifying, finding a conclusion, predicting, raising the question, hypothesizing, planning an experiment, manipulating materials, and equipment, Applying, and communicating. We analyzed 3 different chemistry textbooks that often used by teachers in teaching. The material analyzed in the book was solubility and solubility product concept in terms of concept explanation and student activity. The results of this research showed different science process skill criteria in 3 different chemistry textbooks. Book A appeared 50% of all aspects of science process skills, in Book B appeared 80% of all aspects of science process skills, and in Book C there was 40% of all aspects of the science process skills. The most common indicator in all books was observing (33.3%, followed by prediction (19.05%, classifying (11.90%, Applying (11.90% , planning experiments (9.52%, manipulating materials and equipment (7.14%, finding conclusion (4.76%, communicating (2.38%. Asking the question and hypothesizing did not appear in textbooks.

  18. When I grow up: the relationship of science learning activation to STEM career preferences

    Science.gov (United States)

    Dorph, Rena; Bathgate, Meghan E.; Schunn, Christian D.; Cannady, Matthew A.

    2018-06-01

    This paper proposes three new measures of components STEM career preferences (affinity, certainty, and goal), and then explores which dimensions of science learning activation (fascination, values, competency belief, and scientific sensemaking) are predictive of STEM career preferences. Drawn from the ALES14 dataset, a sample of 2938 sixth and eighth grade middle-school students from 11 schools in two purposefully selected diverse areas (Western Pennsylvania & the Bay Area of California) was used for the analyses presented in this paper. These schools were chosen to represent socio-economic and ethnic diversity. Findings indicate that, overall, youth who are activated towards science learning are more likely to have affinity towards STEM careers, certainty about their future career goals, and have identified a specific STEM career goal. However, different dimensions of science learning activation are more strongly correlated with different aspects career preference across different STEM career foci (e.g. science, engineering, technology, health, etc.). Gender, age, minority status, and home resources also have explanatory power. While many results are consistent with prior research, there are also novel results that offer important fodder for future research. Critically, our strategy of measuring affinity towards the specific disciplines that make up STEM, measuring STEM and health career goals separately, and looking at career affinity and career goals separately, offers interesting results and underscores the value of disentangling the conceptual melting pot of what has previously been known as 'career interest.' Study findings also have implications for design of science learning opportunities for youth.

  19. The Effect of Guided Inquiry Learning with Mind Map to Science Process Skills and Learning Outcomes of Natural Sciences

    OpenAIRE

    Hilman .

    2015-01-01

    Pengaruh Pembelajaran Inkuiri Terbimbing dengan Mind Map terhadap Keterampilan Proses Sains dan Hasil Belajar IPA   Abstract: Science learning in junior high school aims to enable students conducts scientific inquiry, improves knowledge, concepts, and science skills. Organization materials for students supports learning process so that needs to be explored techniques that allows students to enable it. This study aimed to determine the effect of guided inquiry learning with mind map on...

  20. Influence of Psychosocial Classroom Environment on Students' Motivation and Self-Regulation in Science Learning: A Structural Equation Modeling Approach

    Science.gov (United States)

    Velayutham, Sunitadevi; Aldridge, Jill M.

    2013-04-01

    The primary aim of this study was two-fold: 1) to identify salient psychosocial features of the classroom environment that influence students' motivation and self-regulation in science learning; and 2) to examine the effect of the motivational constructs of learning goal orientation, science task value and self-efficacy in science learning on students' self-regulation in science classrooms. Data collected from 1360 science students in grades 8, 9 and 10 in five public schools in Perth, Western Australia were utilized to validate the questionnaires and to investigate the hypothesized relationships. Structural Equation Modeling analysis suggested that student cohesiveness, investigation and task orientation were the most influential predictors of student motivation and self-regulation in science learning. In addition, learning goal orientation, task value and self-efficacy significantly influenced students' self-regulation in science. The findings offer potential opportunities for educators to plan and implement effective pedagogical strategies aimed at increasing students' motivation and self-regulation in science learning.

  1. Learning by doing? Prospective elementary teachers' developing understandings of scientific inquiry and science teaching and learning

    Science.gov (United States)

    Haefner, Leigh Ann; Zembal-Saul, Carla

    This study examined prospective elementary teachers' learning about scientific inquiry in the context of an innovative life science course. Research questions included: (1) What do prospective elementary teachers learn about scientific inquiry within the context of the course? and (2) In what ways do their experiences engaging in science investigations and teaching inquiry-oriented science influence prospective elementary teachers' understanding of science and science learning and teaching? Eleven prospective elementary teachers participated in this qualitative, multi-participant case study. Constant comparative analysis strategies attempted to build abstractions and explanations across participants around the constructs of the study. Findings suggest that engaging in scientific inquiry supported the development more appropriate understandings of science and scientific inquiry, and that prospective teachers became more accepting of approaches to teaching science that encourage children's questions about science phenomena. Implications include careful consideration of learning experiences crafted for prospective elementary teachers to support the development of robust subject matter knowledge.

  2. Applying the Science of Learning to the Learning of Science: Newton's Second Law of Motion

    Science.gov (United States)

    Lemmer, Miriam

    2018-01-01

    Science teaching and learning require knowledge about how learning takes place (cognition) and how learners interact with their surroundings (affective and sociocultural factors). The study reported on focussed on learning for understanding of Newton's second law of motion from a cognitive perspective that takes social factors into account. A…

  3. Learning and Memory Following Conformal Radiation Therapy for Pediatric Craniopharyngioma and Low-Grade Glioma

    Science.gov (United States)

    Pinto, Marcos Di; Conklin, Heather M.; Li, Chenghong; Merchant, Thomas E.

    2012-01-01

    Purpose The primary objective of this study was to examine whether children with low-grade glioma (LGG) or craniopharyngioma had impaired learning and memory after conformal radiation therapy (CRT). A secondary objective was to determine whether children who received chemotherapy before CRT, a treatment often used to delay radiation therapy in younger children with LGG, received any protective benefit with respect to learning. Methods and Materials Learning and memory in 57 children with LGG and 44 children with craniopharyngioma were assessed with the California Verbal Learning Test–Children’s Version and the Visual-Auditory Learning tests. Learning measures were administered before CRT, 6 months later, and then yearly for a total of 5 years. Results No decline in learning scores after CRT was observed when patients were grouped by diagnosis. For children with LGG, chemotherapy before CRT did not provide a protective effect on learning. Multiple regression analyses, which accounted for age and tumor volume and location, found that children treated with chemotherapy before CRT were at greater risk of decline on learning measures than those treated with CRT alone. Variables predictive of learning and memory decline included hydrocephalus, shunt insertion, younger age at time of treatment, female gender, and pre-CRT chemotherapy. Conclusions This study did not reveal any impairment or decline in learning after CRT in over-all aggregate learning scores. However, several important variables were found to have a significant effect on neurocognitive outcome. Specifically, chemotherapy before CRT was predictive of worse outcome on verbal learning in LGG patients. In addition, hydrocephalus and shunt insertion in craniopharyngioma were found to be predictive of worse neurocognitive outcome, suggesting a more aggressive natural history for those patients. PMID:22867897

  4. Learning and Memory Following Conformal Radiation Therapy for Pediatric Craniopharyngioma and Low-Grade Glioma

    Energy Technology Data Exchange (ETDEWEB)

    Di Pinto, Marcos [Department of Pediatric Psychology, Children' s Hospital of Orange County, Orange, California (United States); Conklin, Heather M. [Department of Psychology, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Li, Chenghong [Department of Biostatistics, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Merchant, Thomas E., E-mail: thomas.merchant@stjude.org [Division of Radiation Oncology, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States)

    2012-11-01

    Purpose: The primary objective of this study was to examine whether children with low-grade glioma (LGG) or craniopharyngioma had impaired learning and memory after conformal radiation therapy (CRT). A secondary objective was to determine whether children who received chemotherapy before CRT, a treatment often used to delay radiation therapy in younger children with LGG, received any protective benefit with respect to learning. Methods and Materials: Learning and memory in 57 children with LGG and 44 children with craniopharyngioma were assessed with the California Verbal Learning Test-Children's Version and the Visual-Auditory Learning tests. Learning measures were administered before CRT, 6 months later, and then yearly for a total of 5 years. Results: No decline in learning scores after CRT was observed when patients were grouped by diagnosis. For children with LGG, chemotherapy before CRT did not provide a protective effect on learning. Multiple regression analyses, which accounted for age and tumor volume and location, found that children treated with chemotherapy before CRT were at greater risk of decline on learning measures than those treated with CRT alone. Variables predictive of learning and memory decline included hydrocephalus, shunt insertion, younger age at time of treatment, female gender, and pre-CRT chemotherapy. Conclusions: This study did not reveal any impairment or decline in learning after CRT in overall aggregate learning scores. However, several important variables were found to have a significant effect on neurocognitive outcome. Specifically, chemotherapy before CRT was predictive of worse outcome on verbal learning in LGG patients. In addition, hydrocephalus and shunt insertion in craniopharyngioma were found to be predictive of worse neurocognitive outcome, suggesting a more aggressive natural history for those patients.

  5. Learning and Memory Following Conformal Radiation Therapy for Pediatric Craniopharyngioma and Low-Grade Glioma

    International Nuclear Information System (INIS)

    Di Pinto, Marcos; Conklin, Heather M.; Li, Chenghong; Merchant, Thomas E.

    2012-01-01

    Purpose: The primary objective of this study was to examine whether children with low-grade glioma (LGG) or craniopharyngioma had impaired learning and memory after conformal radiation therapy (CRT). A secondary objective was to determine whether children who received chemotherapy before CRT, a treatment often used to delay radiation therapy in younger children with LGG, received any protective benefit with respect to learning. Methods and Materials: Learning and memory in 57 children with LGG and 44 children with craniopharyngioma were assessed with the California Verbal Learning Test–Children's Version and the Visual-Auditory Learning tests. Learning measures were administered before CRT, 6 months later, and then yearly for a total of 5 years. Results: No decline in learning scores after CRT was observed when patients were grouped by diagnosis. For children with LGG, chemotherapy before CRT did not provide a protective effect on learning. Multiple regression analyses, which accounted for age and tumor volume and location, found that children treated with chemotherapy before CRT were at greater risk of decline on learning measures than those treated with CRT alone. Variables predictive of learning and memory decline included hydrocephalus, shunt insertion, younger age at time of treatment, female gender, and pre-CRT chemotherapy. Conclusions: This study did not reveal any impairment or decline in learning after CRT in overall aggregate learning scores. However, several important variables were found to have a significant effect on neurocognitive outcome. Specifically, chemotherapy before CRT was predictive of worse outcome on verbal learning in LGG patients. In addition, hydrocephalus and shunt insertion in craniopharyngioma were found to be predictive of worse neurocognitive outcome, suggesting a more aggressive natural history for those patients.

  6. ME science as mobile learning based on virtual reality

    Science.gov (United States)

    Fradika, H. D.; Surjono, H. D.

    2018-04-01

    The purpose of this article described about ME Science (Mobile Education Science) as mobile learning application learning of Fisika Inti. ME Science is a product of research and development (R&D) that was using Alessi and Trollip model. Alessi and Trollip model consists three stages that are: (a) planning include analysis of problems, goals, need, and idea of development product, (b) designing includes collecting of materials, designing of material content, creating of story board, evaluating and review product, (c) developing includes development of product, alpha testing, revision of product, validation of product, beta testing, and evaluation of product. The article describes ME Science only to development of product which include development stages. The result of development product has been generates mobile learning application based on virtual reality that can be run on android-based smartphone. These application consist a brief description of learning material, quizzes, video of material summery, and learning material based on virtual reality.

  7. Experiential learning for education on Earth Sciences

    Science.gov (United States)

    Marsili, Antonella; D'Addezio, Giuliana; Todaro, Riccardo; Scipilliti, Francesca

    2015-04-01

    The Laboratorio Divulgazione Scientifica e Attività Museali of the Istituto Nazionale di Geofisica e Vulcanologia (INGV's Laboratory for Outreach and Museum Activities) in Rome, organizes every year intense educational and outreach activities to convey scientific knowledge and to promote research on Earth Science, focusing on volcanic and seismic hazard. Focusing on kids, we designed and implemented the "greedy laboratory for children curious on science (Laboratorio goloso per bambini curiosi di scienza)", to intrigue children from primary schools and to attract their interest by addressing in a fun and unusual way topics regarding the Earth, seismicity and seismic risk. We performed the "greedy laboratory" using experiential teaching, an innovative method envisaging the use and handling commonly used substances. In particular, in the "greedy laboratory" we proposed the use of everyday life's elements, such as food, to engage, entertain and convey in a simple and interesting communication approach notions concerning Earth processes. We proposed the initiative to public during the "European Researchers Night" in Rome, on September 26, 2014. Children attending the "greedy laboratory", guided by researchers and technicians, had the opportunity to become familiar with scientific concepts, such as the composition of the Earth, the Plate tectonics, the earthquake generation, the propagation of seismic waves and their shaking effects on the anthropogenic environment. During the hand-on laboratory, each child used not harmful substances such as honey, chocolate, flour, barley, boiled eggs and biscuits. At the end, we administered a questionnaire rating the proposed activities, first evaluating the level of general satisfaction of the laboratory and then the various activities in which it was divided. This survey supplied our team with feedbacks, revealing some precious hints on appreciation and margins of improvement. We provided a semi-quantitative assessment with a

  8. An Examination of the Changes in Science Teaching Orientations and Technology-Enhanced Tools for Student Learning in the Context of Professional Development

    Science.gov (United States)

    Campbell, Todd; Zuwallack, Rebecca; Longhurst, Max; Shelton, Brett E.; Wolf, Paul G.

    2014-01-01

    This research examines how science teaching orientations and beliefs about technology-enhanced tools change over time in professional development (PD). The primary data sources for this study came from learning journals of 8 eighth grade science teachers at the beginning and conclusion of a year of PD. Based on the analysis completed, Information…

  9. Learning style preferences of Australian health science students.

    Science.gov (United States)

    Zoghi, Maryam; Brown, Ted; Williams, Brett; Roller, Louis; Jaberzadeh, Shapour; Palermo, Claire; McKenna, Lisa; Wright, Caroline; Baird, Marilyn; Schneider-Kolsky, Michal; Hewitt, Lesley; Sim, Jenny; Holt, Tangerine-Ann

    2010-01-01

    It has been identified that health science student groups may have distinctive learning needs. By university educators' and professional fieldwork supervisors' being aware of the unique learning style preferences of health science students, they have the capacity to adjust their teaching approaches to best fit with their students' learning preferences. The purpose of this study was to investigate the learning style preferences of a group of Australian health science students enrolled in 10 different disciplines. The Kolb Learning Style Inventory was distributed to 2,885 students enrolled in dietetics and nutrition, midwifery, nursing, occupational therapy, paramedics, pharmacy, physiotherapy, radiation therapy, radiography, and social work at one Australian university. A total of 752 usable survey forms were returned (response rate 26%). The results indicated the converger learning style to be most frequently preferred by health science students and that the diverger and accommodator learning styles were the least preferred. It is recommended that educators take learning style preferences of health science students into consideration when planning, implementing, and evaluating teaching activities, such as including more problem-solving activities that fit within the converger learning style.

  10. Pass-fail grading: laying the foundation for self-regulated learning.

    Science.gov (United States)

    White, Casey B; Fantone, Joseph C

    2010-10-01

    Traditionally, medical schools have tended to make assumptions that students will "automatically" engage in self-education effectively after graduation and subsequent training in residency and fellowships. In reality, the majority of medical graduates out in practice feel unprepared for learning on their own. Many medical schools are now adopting strategies and pedagogies to help students become self-regulating learners. Along with these changes in practices and pedagogy, many schools are eliminating a cornerstone of extrinsic motivation: discriminating grades. To study the effects of the switch from discriminating to pass-fail grading in the second year of medical school, we compared internal and external assessments and evaluations for a second-year class with a discriminating grading scale (Honors, High Pass, Pass, Fail) and for a second-year class with a pass-fail grading scale. Of the measures we compared (MCATs, GPAs, means on second-year examinations, USMLE Step 1 scores, residency placement, in which there were no statistically significant changes), the only statistically significant decreases (lower performance with pass fail) were found in two of the second-year courses. Performance in one other course also improved significantly. Pass-fail grading can meet several important intended outcomes, including "leveling the playing field" for incoming students with different academic backgrounds, reducing competition and fostering collaboration among members of a class, more time for extracurricular interests and personal activities. Pass-fail grading also reduces competition and supports collaboration, and fosters intrinsic motivation, which is key to self-regulated, lifelong learning.

  11. Joint multiple fully connected convolutional neural network with extreme learning machine for hepatocellular carcinoma nuclei grading.

    Science.gov (United States)

    Li, Siqi; Jiang, Huiyan; Pang, Wenbo

    2017-05-01

    Accurate cell grading of cancerous tissue pathological image is of great importance in medical diagnosis and treatment. This paper proposes a joint multiple fully connected convolutional neural network with extreme learning machine (MFC-CNN-ELM) architecture for hepatocellular carcinoma (HCC) nuclei grading. First, in preprocessing stage, each grayscale image patch with the fixed size is obtained using center-proliferation segmentation (CPS) method and the corresponding labels are marked under the guidance of three pathologists. Next, a multiple fully connected convolutional neural network (MFC-CNN) is designed to extract the multi-form feature vectors of each input image automatically, which considers multi-scale contextual information of deep layer maps sufficiently. After that, a convolutional neural network extreme learning machine (CNN-ELM) model is proposed to grade HCC nuclei. Finally, a back propagation (BP) algorithm, which contains a new up-sample method, is utilized to train MFC-CNN-ELM architecture. The experiment comparison results demonstrate that our proposed MFC-CNN-ELM has superior performance compared with related works for HCC nuclei grading. Meanwhile, external validation using ICPR 2014 HEp-2 cell dataset shows the good generalization of our MFC-CNN-ELM architecture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Incentive structure in team-based learning: graded versus ungraded Group Application exercises.

    Science.gov (United States)

    Deardorff, Adam S; Moore, Jeremy A; McCormick, Colleen; Koles, Paul G; Borges, Nicole J

    2014-04-21

    Previous studies on team-based learning (TBL) in medical education demonstrated improved learner engagement, learner satisfaction, and academic performance; however, a paucity of information exists on modifications of the incentive structure of "traditional" TBL practices. The current study investigates the impact of modification to conventional Group Application exercises by examining student preference and student perceptions of TBL outcomes when Group Application exercises are excluded from TBL grades. During the 2009-2010 and 2010-2011 academic years, 175 students (95.6% response rate) completed a 22-item multiple choice survey followed by 3 open response questions at the end of their second year of medical school. These students had participated in a TBL supplemented preclinical curriculum with graded Group Application exercises during year one and ungraded Group Application exercises during year two of medical school. Chi-square analyses showed significant differences between grading categories for general assessment of TBL, participation and communication, intra-team discussion, inter-team discussion, student perceptions of their own effort and development of teamwork skills. Furthermore, 83.8% of students polled prefer ungraded Group Application exercises with only 7.2% preferring graded and 9.0% indicating no preference. The use of ungraded Group Application exercises appears to be a successful modification of TBL, making it more "student-friendly" while maintaining the goals of active learning and development of teamwork skills.

  13. Automatic Gleason grading of prostate cancer using quantitative phase imaging and machine learning

    Science.gov (United States)

    Nguyen, Tan H.; Sridharan, Shamira; Macias, Virgilia; Kajdacsy-Balla, Andre; Melamed, Jonathan; Do, Minh N.; Popescu, Gabriel

    2017-03-01

    We present an approach for automatic diagnosis of tissue biopsies. Our methodology consists of a quantitative phase imaging tissue scanner and machine learning algorithms to process these data. We illustrate the performance by automatic Gleason grading of prostate specimens. The imaging system operates on the principle of interferometry and, as a result, reports on the nanoscale architecture of the unlabeled specimen. We use these data to train a random forest classifier to learn textural behaviors of prostate samples and classify each pixel in the image into different classes. Automatic diagnosis results were computed from the segmented regions. By combining morphological features with quantitative information from the glands and stroma, logistic regression was used to discriminate regions with Gleason grade 3 versus grade 4 cancer in prostatectomy tissue. The overall accuracy of this classification derived from a receiver operating curve was 82%, which is in the range of human error when interobserver variability is considered. We anticipate that our approach will provide a clinically objective and quantitative metric for Gleason grading, allowing us to corroborate results across instruments and laboratories and feed the computer algorithms for improved accuracy.

  14. Relationships among constructivist learning environment perceptions, motivational beliefs, self-regulation and science achievement

    Science.gov (United States)

    Kingir, Sevgi; Tas, Yasemin; Gok, Gulsum; Sungur Vural, Semra

    2013-11-01

    Background. There are attempts to integrate learning environment research with motivation and self-regulation research that considers social context influences an individual's motivation, self-regulation and, in turn, academic performance. Purpose. This study explored the relationships among constructivist learning environment perception variables (personal relevance, uncertainty, shared control, critical voice, student negotiation), motivational beliefs (self-efficacy, intrinsic interest, goal orientation), self-regulation, and science achievement. Sample. The sample for this study comprised 802 Grade 8 students from 14 public middle schools in a district of Ankara in Turkey. Design and methods. Students were administered 4 instruments: Constructivist Learning Environment Survey, Goal Achievement Questionnaire, Motivated Strategies for Learning Questionnaire, and Science Achievement Test. LISREL 8.7 program with SIMPLIS programming language was used to test the conceptual model. Providing appropriate fit indices for the proposed model, the standardized path coefficients for direct effects were examined. Results. At least one dimension of the constructivist learning environment was associated with students' intrinsic interest, goal orientation, self-efficacy, self-regulation, and science achievement. Self-efficacy emerged as the strongest predictor of both mastery and performance avoidance goals rather than the approach goals. Intrinsic value was found to be significantly linked to science achievement through its effect on self-regulation. The relationships between self-efficacy and self-regulation and between goal orientation and science achievement were not significant. Conclusion. In a classroom environment supporting student autonomy and control, students tend to develop higher interest in tasks, use more self-regulatory strategies, and demonstrate higher academic performance. Science teachers are highly recommended to consider these findings when designing

  15. Student engagement in the e-learning process and the impact on their grades

    Directory of Open Access Journals (Sweden)

    Timothy Rodgers

    2008-12-01

    Full Text Available This paper presents the results of a study that examines the impact on end-of-year examination grades of the level of student engagement in the e-learning process. The study relates to a level one undergraduate module delivered using a mixture of traditional lectures and e-learning based methods. Greater online interaction is found to have a positive and statistically significant impact on performance. One extra hour of e-learning participation is found to increase the module mark by approximately one percent. The paper also examines the data for the presence of interaction effects between e-learning engagement and personal characteristics. This is undertaken to identify whether or not personal-characteristic-related learning style differences influence the extent to which students benefit from e-learning. It is found that, after controlling for other factors, female students benefited less from e-leaning material than their male counterparts. Tentative evidence is also found of a negative interaction effect in relation to overseas students. It is concluded that in order to improve teaching effectiveness and academic achievement, higher education should consider aiming to develop e-learning teaching strategies that encourage greater engagement and also take into consideration the different learning styles found within the student body.

  16. Social Justice and Out-of-School Science Learning: Exploring Equity in Science Television, Science Clubs and Maker Spaces

    Science.gov (United States)

    Dawson, Emily

    2017-01-01

    This article outlines how social justice theories, in combination with the concepts of infrastructure access, literacies and community acceptance, can be used to think about equity in out-of-school science learning. The author applies these ideas to out-of-school learning via television, science clubs, and maker spaces, looking at research as well…

  17. Vocabulary knowledge mediates the link between socioeconomic status and word learning in grade school.

    Science.gov (United States)

    Maguire, Mandy J; Schneider, Julie M; Middleton, Anna E; Ralph, Yvonne; Lopez, Michael; Ackerman, Robert A; Abel, Alyson D

    2018-02-01

    The relationship between children's slow vocabulary growth and the family's low socioeconomic status (SES) has been well documented. However, previous studies have often focused on infants or preschoolers and primarily used static measures of vocabulary at multiple time points. To date, there is no research investigating whether SES predicts a child's word learning abilities in grade school and, if so, what mediates this relationship. In this study, 68 children aged 8-15 years performed a written word learning from context task that required using the surrounding text to identify the meaning of an unknown word. Results revealed that vocabulary knowledge significantly mediated the relationship between SES (as measured by maternal education) and word learning. This was true despite the fact that the words in the linguistic context surrounding the target word are typically acquired well before 8 years of age. When controlling for vocabulary, word learning from written context was not predicted by differences in reading comprehension, decoding, or working memory. These findings reveal that differences in vocabulary growth between grade school children from low and higher SES homes are likely related to differences in the process of word learning more than knowledge of surrounding words or reading skills. Specifically, children from lower SES homes are not as effective at using known vocabulary to build a robust semantic representation of incoming text to identify the meaning of an unknown word. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Perceived impact on student engagement when learning middle school science in an outdoor setting

    Science.gov (United States)

    Abbatiello, James

    Human beings have an innate need to spend time outside, but in recent years children are spending less time outdoors. It is possible that this decline in time spent outdoors could have a negative impact on child development. Science teachers can combat the decline in the amount of time children spend outside by taking their science classes outdoors for regular classroom instruction. This study identified the potential impacts that learning in an outdoor setting might have on student engagement when learning middle school science. One sixth-grade middle school class participated in this case study, and students participated in outdoor intervention lessons where the instructional environment was a courtyard on the middle school campus. The outdoor lessons consisted of the same objectives and content as lessons delivered in an indoor setting during a middle school astronomy unit. Multiple sources of data were collected including questionnaires after each lesson, a focus group, student work samples, and researcher observations. The data was triangulated, and a vignette was written about the class' experiences learning in an outdoor setting. This study found that the feeling of autonomy and freedom gained by learning in an outdoor setting, and the novelty of the outdoor environment did increase student engagement for learning middle school science. In addition, as a result of this study, more work is needed to identify how peer to peer relationships are impacted by learning outdoors, how teachers could best utilize the outdoor setting for regular science instruction, and how learning in an outdoor setting might impact a feeling of stewardship for the environment in young adults.

  19. Representation of Science Process Skills in the Chemistry Curricula for Grades 10, 11 and 12 / Turkey

    OpenAIRE

    Abdullah Aydin

    2013-01-01

    In one study conducted in Turkey, Berberoğlu et al. (2002) stressed that methods of designing and implementing especially laboratory experiments should inevitably be focused on developing one’s higher-level mental skills. (Berberoğlu et al., 2002). It was suggested in a study by Koray et al. (2006) entitled as “Conditions of Representing Science Process Skills in 9th grade Chemistry Course Books and Chemistry Curriculums” that scientific process abilities should be given more place in Chemist...

  20. Abstraction ability as an indicator of success for learning computing science?

    DEFF Research Database (Denmark)

    Bennedsen, Jens; Caspersen, Michael Edelgaard

    2008-01-01

    Computing scientists generally agree that abstract thinking is a crucial component for practicing computer science. We report on a three-year longitudinal study to confirm the hypothesis that general abstraction ability has a positive impact on performance in computing science. Abstraction ability...... is operationalized as stages of cognitive development for which validated tests exist. Performance in computing science is operationalized as grade in the final assessment of ten courses of a bachelor's degree programme in computing science. The validity of the operationalizations is discussed. We have investigated...... the positive impact overall, for two groupings of courses (a content-based grouping and a grouping based on SOLO levels of the courses' intended learning outcome), and for each individual course. Surprisingly, our study shows that there is hardly any correlation between stage of cognitive development...

  1. Gender differences in tenth-grade students' attitudes toward science: The effect of school type

    Science.gov (United States)

    Ndakwah, Ernestine Ajame

    The focus of this mixed methods study was on 10th grade students' attitudes towards science. Its purpose was to examine the effect of gender and school-type on attitudes toward science. Research on attitudes toward science has focused on gender, school level, and classroom environment. Relatively little has been done on the effect of school type. In the present study, school type refers to the following variables; private vs. public, single-sex vs. coeducational and high vs. low-achieving schools. The quantitative component of the study allowed the researcher to determine whether there are gender differences in attitudes toward science based on the school type variables being investigated. The Test of Science Related Attitudes (TOSRA) was the instrument used to provide quantitative data for this aspect of the study. TOSRA is a Likert scale consisting of seven subscales measuring different aspects of science attitudes. The qualitative component, on the other hand, explored students' perspectives on the factors, which were influential in the development of the attitudes that they hold. The events and experiences of their lives in and out-of-school, with respect to science, and the meanings that they make of these provided the data from which their attitudes toward science could be gleaned. Data for this component of the study was gathered by means of in-depth focus group interviews. The method of constant comparative analysis was used to analyze the interview transcripts. Statistical treatment of the questionnaire data involved the use of t tests and ANOVA. Findings did not reveal any gender differences on the total attitude scores although there were some differences on some of the subscales. School type did not appear to be a significant variable in students' attitudes to science. The results of both quantitative and qualitative components show that instructional strategy and teacher characteristics, both of which are components of the classroom environment are

  2. A New Dimension for Earth Science Learning

    Science.gov (United States)

    Bland, G.; Henry, A.; Bydlowski, D.

    2017-12-01

    NASA Science Objectives include capturing the global view of Earth from space. This unique perspective is often augmented by instrumented research aircraft, to provide in-situ and remote sensing observations in support of the world picture. Our "Advancing Earth Research Observations with Kites and Atmospheric /Terrestrial Sensors" (AEROKATS) project aims to bring this novel and exciting perspective into the hands of learners young and old. The practice of using instrumented kites as surrogate satellites and aircraft is gaining momentum, as our team undertakes the technical, operational, and scientific challenges in preparations to bring new and easy-to-field tools to broad audiences. The third dimension in spatial perception ("up") has previously been difficult to effectively incorporate in learning and local-scale research activities. AEROKATS brings simple to use instrumented aerial systems into the hands of students, educators, and scientists, with the tangible benefits of detailed, high resolution measurements and observations directly applicable to real-world studies of the environments around us.

  3. ``I Just Want The Credit!'' - Perceived Instrumentality as the Main Characteristic of Boys' Motivation in a Grade 11 Science Course

    Science.gov (United States)

    Nieswandt, Martina; Shanahan, Marie-Claire

    2008-01-01

    This case study examines the motivational structure of a group of male students ( n = 10) in a grade 11 General Science class at an independent single-sex school. We approach the concept of motivation through the integration of three different theoretical approaches: sociocultural theory, future time perspective and achievement goal theory. This framework allows us to stress the dialectical interdependence of motivation, as expressed through individual goals, and the socially and culturally influenced origins of these goals. Our results suggest that the boys internalised the administrative description of the course as meeting a diploma requirement, which they expressed in their perception of the course as being for “non-science” people who “just need a credit.” However, we also found situational changes in students’ motivational structure towards more intrinsic orientations when they were engaged in topics with personal everyday and future relevance. These situational changes in students’ goal structures illustrate that our participants did not internalise classroom and school goal messages wholly and, instead, selectively and constructively transformed these goal messages depending on their own motivational structure and beliefs. These results stress the importance of teachers scaffolding not only for conceptual learning but also for student motivation in science classes, especially those that purposefully teach towards scientific literacy.

  4. The impact of technology on the enactment of inquiry in a technology enthusiast's sixth grade science classroom

    Science.gov (United States)

    Waight, Noemi; Abd-El-Khalick, Fouad

    2007-01-01

    This study investigated the impact of the use of computer technology on the enactment of inquiry in a sixth grade science classroom. Participants were 42 students (38% female) enrolled in two sections of the classroom and taught by a technology-enthusiast instructor. Data were collected over the course of 4 months during which several inquiry activities were completed, some of which were supported with the use of technology. Non-participant observation, classroom videotaping, and semi-structured and critical-incident interviews were used to collect data. The results indicated that the technology in use worked to restrict rather than promote inquiry in the participant classroom. In the presence of computers, group activities became more structured with a focus on sharing tasks and accounting for individual responsibility, and less time was dedicated to group discourse with a marked decrease in critical, meaning-making discourse. The views and beliefs of teachers and students in relation to their specific contexts moderate the potential of technology in supporting inquiry teaching and learning and should be factored both in teacher training and attempts to integrate technology in science teaching.

  5. Crossing borders: High school science teachers learning to teach the specialized language of science

    Science.gov (United States)

    Patrick, Jennifer Drake

    The highly specialized language of science is both challenging and alienating to adolescent readers. This study investigated how secondary science teachers learn to teach the specialized language of science in their classrooms. Three research questions guided this study: (a) what do science teachers know about teaching reading in science? (b) what understanding about the unique language demands of science reading do they construct through professional development? and (c) how do they integrate what they have learned about these specialized features of science language into their teaching practices? This study investigated the experience of seven secondary science teachers as they participated in a professional development program designed to teach them about the specialized language of science. Data sources included participant interviews, audio-taped professional development sessions, field notes from classroom observations, and a prior knowledge survey. Results from this study suggest that science teachers (a) were excited to learn about disciplinary reading practices, (b) developed an emergent awareness of the specialized features of science language and the various genres of science writing, and (c) recognized that the challenges of science reading goes beyond vocabulary. These teachers' efforts to understand and address the language of science in their teaching practices were undermined by their lack of basic knowledge of grammar, availability of time and resources, their prior knowledge and experiences, existing curriculum, and school structure. This study contributes to our understanding of how secondary science teachers learn about disciplinary literacy and apply that knowledge in their classroom instruction. It has important implications for literacy educators and science educators who are interested in using language and literacy practices in the service of science teaching and learning. (Full text of this dissertation may be available via the University

  6. What if Learning Analytics Were Based on Learning Science?

    Science.gov (United States)

    Marzouk, Zahia; Rakovic, Mladen; Liaqat, Amna; Vytasek, Jovita; Samadi, Donya; Stewart-Alonso, Jason; Ram, Ilana; Woloshen, Sonya; Winne, Philip H.; Nesbit, John C.

    2016-01-01

    Learning analytics are often formatted as visualisations developed from traced data collected as students study in online learning environments. Optimal analytics inform and motivate students' decisions about adaptations that improve their learning. We observe that designs for learning often neglect theories and empirical findings in learning…

  7. Impact of the 3-D model strategy on science learning of the solar system

    Science.gov (United States)

    Alharbi, Mohammed

    The purpose of this mixed method study, quantitative and descriptive, was to determine whether the first-middle grade (seventh grade) students at Saudi schools are able to learn and use the Autodesk Maya software to interact and create their own 3-D models and animations and whether their use of the software influences their study habits and their understanding of the school subject matter. The study revealed that there is value to the science students regarding the use of 3-D software to create 3-D models to complete science assignments. Also, this study aimed to address the middle-school students' ability to learn 3-D software in art class, and then ultimately use it in their science class. The success of this study may open the way to consider the impact of 3-D modeling on other school subjects, such as mathematics, art, and geography. When the students start using graphic design, including 3-D software, at a young age, they tend to develop personal creativity and skills. The success of this study, if applied in schools, will provide the community with skillful young designers and increase awareness of graphic design and the new 3-D technology. Experimental method was used to answer the quantitative research question, are there significant differences applying the learning method using 3-D models (no 3-D, premade 3-D, and create 3-D) in a science class being taught about the solar system and its impact on the students' science achievement scores? Descriptive method was used to answer the qualitative research questions that are about the difficulty of learning and using Autodesk Maya software, time that students take to use the basic levels of Polygon and Animation parts of the Autodesk Maya software, and level of students' work quality.

  8. Pre-Service Teachers’ Attitudes Toward Teaching Science and Their Science Learning at Indonesia Open University

    Directory of Open Access Journals (Sweden)

    Nadi SUPRAPTO

    2017-10-01

    Full Text Available This study focuses on attitudes toward (teaching science and the learning of science for primary school among pre-service teachers at the Open University of Indonesia. A three-year longitudinal survey was conducted, involving 379 students as pre-service teachers (PSTs from the Open University in Surabaya regional office. Attitudes toward (teaching science’ (ATS instrument was used to portray PSTs’ preparation for becoming primary school teachers. Data analyses were used, including descriptive analysis and confirmatory factor analysis. The model fit of the attitudes toward (teaching science can be described from seven dimensions: self-efficacy for teaching science, the relevance of teaching science, gender-stereotypical beliefs, anxiety in teaching science, the difficulty of teaching science, perceived dependency on contextual factors, and enjoyment in teaching science. The results of the research also described science learning at the Open University of Indonesia looks like. Implications for primary teacher education are discussed.

  9. The Use of Mobile Learning in Science: A Systematic Review

    Science.gov (United States)

    Crompton, Helen; Burke, Diane; Gregory, Kristen H.; Gräbe, Catharina

    2016-04-01

    The use of mobile learning in education is growing at an exponential rate. To best understand how mobile learning is being used, it is crucial to gain a collective understanding of the research that has taken place. This systematic review reveals the trends in mobile learning in science with a comprehensive analysis and synthesis of studies from the year 2000 onward. Major findings include that most of the studies focused on designing systems for mobile learning, followed by a combination of evaluating the effects of mobile learning and investigating the affective domain during mobile learning. The majority of the studies were conducted in the area of life sciences in informal, elementary (5-11 years) settings. Mobile devices were used in this strand of science easily within informal environments with real-world connections. A variety of research methods were employed, providing a rich research perspective. As the use of mobile learning continues to grow, further research regarding the use of mobile technologies in all areas and levels of science learning will help science educators to expand their ability to embrace these technologies.

  10. Chemistry to music: Discovering how Music-based Teaching affects academic achievement and student motivation in an 8th grade science class

    Science.gov (United States)

    McCammon, William Gavin Lodge, Jr.

    Teachers should have access to new and innovative tools in order to engage and motivate their students in the classroom. This is especially important as many students view school as an antiquated and dull environment - which they must seemingly suffer through to advance. School need not be a dreaded environment. The use of music as a tool for learning can be employed by any teacher to create an engaging and exciting atmosphere where students actively participate and learn to value their classroom experience. Through this study, a product and process was developed that is now available for any 8th grade science teacher interested in using music to enhance their content. In this study 8th grade students (n=41) in a public school classroom actively interacted with modern songs created to enhance the teaching of chemistry. Data were collected and analyzed in order to determine the effects that the music treatment had on student achievement and motivation, compared to a control group (n=35). Current literature provides a foundation for the benefits for music listening and training, but academic research in the area of using music as a tool for teaching content was noticeably absent. This study identifies a new area of research called "Music-based Teaching" which results in increases in motivation for 8th grade students learning chemistry. The unintended results of the study are additionally significant as the teacher conducting the treatment experienced newfound enthusiasm, passion, and excitement for her profession.

  11. Attitudes toward Science among Grades 3 through 12 Arab Students in Qatar: Findings from a Cross-Sectional National Study

    Science.gov (United States)

    Said, Ziad; Summers, Ryan; Abd-El-Khalick, Fouad; Wang, Shuai

    2016-01-01

    This study assessed students' attitudes toward science in Qatar. A cross-sectional, nationwide probability sample representing all students enrolled in grades 3 through 12 in the various types of schools in Qatar completed the "Arabic Speaking Students' Attitudes toward Science Survey" (ASSASS). The validity and reliability of the…

  12. Investigating the Effects of a DNA Fingerprinting Workshop on 10th Grade Students' Self Efficacy and Attitudes toward Science.

    Science.gov (United States)

    Sonmez, Duygu; Simcox, Amanda

    The purpose of this study was investigate the effects of a DNA Fingerprinting Workshop on 10th grade students' self efficacy and attitudes toward science. The content of the workshop based on high school science curriculum and includes multimedia instruction, laboratory experiment and participation of undergraduate students as mentors. N=93…

  13. Women, Men, and Academic Performance in Science and Engineering: The Gender Difference in Undergraduate Grade Point Averages

    Science.gov (United States)

    Sonnert, Gerhard; Fox, Mary Frank

    2012-01-01

    Using longitudinal and multi-institutional data, this article takes an innovative approach in its analyses of gender differences in grade point averages (GPA) among undergraduate students in biology, the physical sciences, and engineering over a 16-year period. Assessed are hypotheses about (a) the gender ecology of science/engineering and (b) the…

  14. History of Science as an Instructional Context: Student Learning in Genetics and Nature of Science

    Science.gov (United States)

    Kim, Sun Young; Irving, Karen E.

    2010-01-01

    This study (1) explores the effectiveness of the contextualized history of science on student learning of nature of science (NOS) and genetics content knowledge (GCK), especially interrelationships among various genetics concepts, in high school biology classrooms; (2) provides an exemplar for teachers on how to utilize history of science in…

  15. Motivational component profiles in university students learning histology: a comparative study between genders and different health science curricula.

    Science.gov (United States)

    Campos-Sánchez, Antonio; López-Núñez, Juan Antonio; Carriel, Víctor; Martín-Piedra, Miguel-Ángel; Sola, Tomás; Alaminos, Miguel

    2014-03-10

    The students' motivation to learn basic sciences in health science curricula is poorly understood. The purpose of this study was to investigate the influence of different components of motivation (intrinsic motivation, self-determination, self-efficacy and extrinsic -career and grade- motivation) on learning human histology in health science curricula and their relationship with the final performance of the students in histology. Glynn Science Motivation Questionnaire II was used to compare students' motivation components to learn histology in 367 first-year male and female undergraduate students enrolled in medical, dentistry and pharmacy degree programs. For intrinsic motivation, career motivation and self-efficacy, the highest values corresponded to medical students, whereas dentistry students showed the highest values for self-determination and grade motivation. Genders differences were found for career motivation in medicine, self-efficacy in dentistry, and intrinsic motivation, self-determination and grade motivation in pharmacy. Career motivation and self-efficacy components correlated with final performance in histology of the students corresponding to the three curricula. Our results show that the overall motivational profile for learning histology differs among medical, dentistry and pharmacy students. This finding is potentially useful to foster their learning process, because if they are metacognitively aware of their motivation they will be better equipped to self-regulate their science-learning behavior in histology. This information could be useful for instructors and education policy makers to enhance curricula not only on the cognitive component of learning but also to integrate students' levels and types of motivation into the processes of planning, delivery and evaluation of medical education.

  16. Motivational component profiles in university students learning histology: a comparative study between genders and different health science curricula

    Science.gov (United States)

    2014-01-01

    Background The students’ motivation to learn basic sciences in health science curricula is poorly understood. The purpose of this study was to investigate the influence of different components of motivation (intrinsic motivation, self-determination, self-efficacy and extrinsic -career and grade- motivation) on learning human histology in health science curricula and their relationship with the final performance of the students in histology. Methods Glynn Science Motivation Questionnaire II was used to compare students’ motivation components to learn histology in 367 first-year male and female undergraduate students enrolled in medical, dentistry and pharmacy degree programs. Results For intrinsic motivation, career motivation and self-efficacy, the highest values corresponded to medical students, whereas dentistry students showed the highest values for self-determination and grade motivation. Genders differences were found for career motivation in medicine, self-efficacy in dentistry, and intrinsic motivation, self-determination and grade motivation in pharmacy. Career motivation and self-efficacy components correlated with final performance in histology of the students corresponding to the three curricula. Conclusions Our results show that the overall motivational profile for learning histology differs among medical, dentistry and pharmacy students. This finding is potentially useful to foster their learning process, because if they are metacognitively aware of their motivation they will be better equipped to self-regulate their science-learning behavior in histology. This information could be useful for instructors and education policy makers to enhance curricula not only on the cognitive component of learning but also to integrate students’ levels and types of motivation into the processes of planning, delivery and evaluation of medical education. PMID:24612878

  17. Architecting Learning Continuities for Families Across Informal Science Experiences

    Science.gov (United States)

    Perin, Suzanne Marie

    By first recognizing the valuable social and scientific practices taking place within families as they learn science together across multiple, everyday settings, this dissertation addresses questions of how to design and scaffold activities that build and expand on those practices to foster a deep understanding of science, and how the aesthetic experience of learning science builds connections across educational settings. Families were invited to visit a natural history museum, an aquarium, and a place or activity of the family's choice that they associated with science learning. Some families were asked to use a set of activities during their study visits based on the practices of science (National Research Council, 2012), which were delivered via smartphone app or on paper cards. I use design-based research, video data analysis and interaction analysis to examine how families build connections between informal science learning settings. Chapter 2 outlines the research-based design process of creating activities for families that fostered connections across multiple learning settings, regardless of the topical content of those settings. Implications of this study point to means for linking everyday family social practices such as questioning, observing, and disagreeing to the practices of science through activities that are not site-specific. The next paper delves into aesthetic experience of science learning, and I use video interaction analysis and linguistic analysis to show how notions of beauty and pleasure (and their opposites) are perfused throughout learning activity. Designing for aesthetic experience overtly -- building on the sensations of enjoyment and pleasure in the learning experience -- can motivate those who might feel alienated by the common conception of science as merely a dispassionate assembly of facts, discrete procedures or inaccessible theory. The third paper, a case study of a family who learns about salmon in each of the sites they visit

  18. Eighth-grade science teachers use of instructional time: Examining questions from the Third International Mathematics and Science Study (TIMSS) and comparing TIMSS and National Science Foundation questionnaires

    Science.gov (United States)

    Davidson, Anne Burgess

    Did the Third International Mathematics and Science Study (TIMSS) ask science teachers the right questions about their use of instructional time? Part I of this 2-part study used the TIMSS database to answer the question: Do 8th grade science teachers in the U.S., Czech Republic, Hungary, Japan, and Korea differ significantly in their perceived use of instructional time? Using the instructional activities in the TIMSS teacher question "How did the lesson proceed?" the teacher-reported times were analyzed using a repeated measures multivariate analysis. Significant differences were found between teacher-reported times in the U.S. and the other 4 TIMSS countries, whose 8th grade students outperformed U.S. students on TIMSS achievement tests. Post-hoc analysis indicated that TIMSS U.S. 8th grade science teachers report spending more time on homework in class, on group activities, and on lab activities, but less time on topic development, than TIMSS teachers from some or all of the other countries. Part II of this study further examined the question "How did the lesson proceed?" by videotaping 6 classes of 8th grade science in Alabama and Virginia and comparing observer coding of the video to the teachers' recalled descriptions of the same class. The difference between observer and teacher responses using TIMSS categories was not significant; however, 43% of the total variance was explained by whether the teacher or the observer reported the times for the instructional activities. The teachers also responded to questions from the NSF Local Systemic Change Through Teacher Enhancement K--8 Teacher Questionnaire to describe the same class. The difference found between the teacher and the observer coding was not significant, but the amount of variance explained by the data source (observer or teacher) dropped to 33% when using NSF student activity categories and to 26% when using NSF teacher activity categories. The conclusion of this study was that questionnaires to

  19. Improving the primary school science learning unit about force and motion through lesson study

    Science.gov (United States)

    Phaikhumnam, Wuttichai; Yuenyong, Chokchai

    2018-01-01

    The study aimed to develop primary school science lesson plan based on inquiry cycle (5Es) through lesson study. The study focused on the development of 4 primary school science lesson plans of force and motion for Grade 3 students in KKU Demonstration Primary School (Suksasart), first semester of 2015 academic year. The methodology is mixed method. The Inthaprasitha (2010) lesson study cycle was implemented in group of KKU Demonstration Primary School. Instruments of reflection of lesson plan developing included participant observation, meeting and reflection report, lesson plan and other document. The instruments of examining students' learning include classroom observation and achievement test. Data was categorized from these instruments to find the issues of changing and improving the good lesson plan of Thai primary school science learning. The findings revealed that teachers could develop the lesson plans through lesson study. The issues of changing and improving were disused by considering on engaging students related to societal issues, students' prior knowledge, scientific concepts for primary school students, and what they learned from their changing. It indicated that the Lesson Study allowed primary school science teachers to share ideas and develop ideas to improve the lesson. The study may have implications for Thai science teacher education through Lesson Study.

  20. Elementary Students' Learning of Materials Science Practices Through Instruction Based on Engineering Design Tasks

    Science.gov (United States)

    Wendell, Kristen Bethke; Lee, Hee-Sun

    2010-12-01

    Materials science, which entails the practices of selecting, testing, and characterizing materials, is an important discipline within the study of matter. This paper examines how third grade students' materials science performance changes over the course of instruction based on an engineering design challenge. We conducted a case study of nine students who participated in engineering design-based science instruction with the goal of constructing a stable, quiet, thermally comfortable model house. The learning outcome of materials science practices was assessed by clinical interviews conducted before and after the instruction, and the learning process was assessed by students' workbooks completed during the instruction. The interviews included two materials selection tasks for designing a sturdy stepstool and an insulated pet habitat. Results indicate that: (1) students significantly improved on both materials selection tasks, (2) their gains were significantly positively associated with the degree of completion of their workbooks, and (3) students who were highly engaged with the workbook's reflective record-keeping tasks showed the greatest improvement on the interviews. These findings suggest the important role workbooks can play in facilitating elementary students' learning of science through authentic activity such as engineering design.

  1. The integrated learning management using the STEM education for improve learning achievement and creativity in the topic of force and motion at the 9th grade level

    Science.gov (United States)

    Kakarndee, Nampetch; Kudthalang, Nukool; Jansawang, Natchanok

    2018-01-01

    The aims of this research study were to investigate and analyze the processing performances and the performance results (E1/E2) efficiency at the determining criteria for planning students' improvements to their learning processes toward their scientific knowledge were investigated, carry out the investigations, gathering evidence, and proposing explanations were developed and predicted. Students' engagements to their needs in unambiguous and clearly content of science teaching onto the instructional processes were attempted for establishing a national approach with the STEM education instructional method were strategized. Research administrations were designed to a sample size consisted of 40 secondary students in science class at the 9th grade level in Borabu School with the purposive sampling technique was selected. Using the STEM Education instructional innovation's lesson plans were managed learning activities. Students' learning achievements were assessed with the Pre-Test and Post-Test designs of 30 items. Students' creative thinking abilities were determined of their perceptions that obtained of the 3-item Creative Thinking Ability Test. The results for the effectiveness of the innovative instructional lesson plans based on the STEM Education Method, the lessoning effectiveness (E1/E2) evidences of 78.95/76.58 over the threshold setting is 75/75. Pretest-posttest designs for assessing students' learning achievements that impact a student's ability to achieve and explains with the STEM education instructional method were differences, significantly (ρ<.001) and the posttest of the 3-item Creative Thinking Ability Test designs for assessing Students' creative thinking abilities that impact a student's ability to have a good skill level in originality, fluency and flexibility thinking with the STEM education instructional method were differences, significantly (ρ<.001).

  2. Science learning motivation as correlate of students’ academic performances

    Directory of Open Access Journals (Sweden)

    Nhorvien Jay P. Libao

    2016-09-01

    Full Text Available This study was designed to analyze the relationship  of students’ learning motivation and their academic performances in science. The study made use of 21 junior and senior Biological Science students to conclude on the formulated research problems. The respondents had a good to very good motivation in learning science. In general, the extent of their motivation do not vary across their sex, age, and curriculum year. Moreover, the respondents had good academic performances in science. Aptly, extrinsic motivation was found to be related with their academic performances among the indicators of motivations in learning science.

  3. Development of Contextual Mathematics teaching Material integrated related sciences and realistic for students grade xi senior high school

    Science.gov (United States)

    Helma, H.; Mirna, M.; Edizon, E.

    2018-04-01

    Mathematics is often applied in physics, chemistry, economics, engineering, and others. Besides that, mathematics is also used in everyday life. Learning mathematics in school should be associated with other sciences and everyday life. In this way, the learning of mathematics is more realstic, interesting, and meaningful. Needs analysis shows that required contextual mathematics teaching materials integrated related sciences and realistic on learning mathematics. The purpose of research is to produce a valid and practical contextual mathematics teaching material integrated related sciences and realistic. This research is development research. The result of this research is a valid and practical contextual mathematics teaching material integrated related sciences and realistic produced

  4. Invitations to Life's Diversity. Teacher-Friendly Science Activities with Reproducible Handouts in English and Spanish. Grades 3-5. Living Things Science Series.

    Science.gov (United States)

    Camp, Carole Ann, Ed.

    This booklet, one of six in the Living Things Science series, presents activities about diversity and classification of living things which address basic "Benchmarks" suggested by the American Association for the Advancement of Science for the Living Environment for grades 3-5. Contents include background information, vocabulary (in…

  5. The Effectiveness of Cooperative Learning Model of Pair Checks Type on Motivation and Mathematics Learning Outcomes of 8th Grade Junior High School Students

    Directory of Open Access Journals (Sweden)

    Wahyu Budi Wicaksono

    2017-08-01

    Full Text Available The purpose of this research was to know the effectiveness of Pair Checks cooperative model towards students’ learning result and learning motivation of eight grade. Population of this research were students of eight grade Junior High School 2 Pati in the academic year 2016/1017. The research used cluster random sampling technique.Where the selected samples were students of class VIII H as experimental class and class VIII G as control class. The data collected by the method of documentation, test methods, and scale methods. The analyzed of data used completeness test and average different test. The results showed that: (1 students’ learning result who join Pair Checks cooperative model have classical study completeness; (2 students’ mathematics learning result who join Pair Checks cooperative model is better than students mathematics learning result who join ekspository learning; (3 students’ learning motivation who join Pair Checks cooperative model is better than students’ learning motivation who join ekspository learning.

  6. Original science-based music and student learning

    Science.gov (United States)

    Smolinski, Keith

    American middle school student science scores have been stagnating for several years, demonstrating a need for better learning strategies to aid teachers in instruction and students in content learning. It has also been suggested by researchers that music can be used to aid students in their learning and memory. Employing the theoretical framework of brain-based learning, the purpose of this study was to examine the impact of original, science-based music on student content learning and student perceptions of the music and its impact on learning. Students in the treatment group at a public middle school learned songs with lyrics related to the content of a 4-week cells unit in science; whereas an equally sized control group was taught the same material using existing methods. The content retention and learning experiences of the students in this study were examined using a concurrent triangulation, mixed-methods study. Independent sample t test and ANOVA analyses were employed to determine that the science posttest scores of students in the treatment group (N = 93) were significantly higher than the posttest scores of students in the control group (N = 93), and that the relative gains of the boys in the treatment group exceeded those of the girls. The qualitative analysis of 10 individual interviews and 3 focus group interviews followed Patton's method of a priori coding, cross checking, and thematic analysis to examine the perceptions of the treatment group. These results confirmed that the majority of the students thought the music served as an effective learning tool and enhanced recall. This study promoted social change because students and teachers gained insight into how music can be used in science classrooms to aid in the learning of science content. Researchers could also utilize the findings for continued investigation of the interdisciplinary use of music in educational settings.

  7. Virginia Standards of Learning (Grades 6 through 12) That Are Covered When Students Attend Live Performances of Shakespeare's Plays.

    Science.gov (United States)

    Brookshire, Cathy A.

    This paper outlines Standards of Learning for grades 6-12 students in Virginia that are covered when they attend live performances of William Shakespeare's plays. The paper details separate standards for each grade in English, subdivided into standards which fulfill requirements in Oral Language, Reading/Literature, Writing, and Research, along…

  8. Mixed-Method Research on Learning Vocabulary through Technology Reveals Vocabulary Growth in Second-Grade Students

    Science.gov (United States)

    Huang, SuHua

    2015-01-01

    A mixed-method embedded research design was employed to investigate the effectiveness of the integration of technology for second-grade students' vocabulary development and learning. Two second-grade classes with a total of 40 students (21 boys and 19 girls) were randomly selected to participate in this study for the course of a semester. One…

  9. The effects of school policies and practices on eighth-grade science achievement: A multilevel analysis of TIMSS

    Science.gov (United States)

    Smyth, Carol Ann Mary

    Identifying the relative importance of both alterable school policies and fairly stable contextual factors as they relate to middle level science achievement, a domain of identified national concern, requires simultaneous investigation of multilevel predictors (i.e., student level and school level) specific to the grade level and academic subject area. The school level factors are predictors associated with both the school (e.g., average socioeconomic status, tracking, and instructional time) and the classroom (e.g., average academic press of peers, teacher collaboration, and instructional strategies). The current study assessed the effects of school policies, practices, and contextual factors on the science achievement of eighth grade students. These influences were considered to be both additive (i.e., influencing the mean achievement in a school after controlling for student characteristics) and interactive (i.e., affecting the relationships between student background characteristics and individual achievement). To account for the nested structure of predictors and cross level interactions among predictors, a multilevel model for middle level science achievement was estimated using hierarchical linear modeling (HLM) with data collected from eighth grade students, science teachers, and administrators in 1995 as part of the Third International Mathematics and Science Study (TIMSS). The major findings of this research suggest that although average eighth grade science achievement in a school was primarily associated with the contextual characteristics of the classroom and the school (e.g., average socioeconomic status and average academic press), both the academic differentiating influence of prior achievement and the social differentiating influence of parental education on the science achievement of eighth grade students were related not only to contextual characteristics of the classroom and the school, but also to the instructional policies of the classroom

  10. Science Teacher Attitudes toward Inquiry-Based Teaching and Learning

    Science.gov (United States)

    DiBiase, Warren; McDonald, Judith R.

    2015-01-01

    The purpose of this study was to determine teachers' attitudes, values, and beliefs about inquiry. The participants of this study were 275 middle grade and secondary science teachers from four districts in North Carolina. Issues such as class size, accountability, curricular demands, and administrative support are perceived as constraints,…

  11. Bio-robots automatic navigation with graded electric reward stimulation based on Reinforcement Learning.

    Science.gov (United States)

    Zhang, Chen; Sun, Chao; Gao, Liqiang; Zheng, Nenggan; Chen, Weidong; Zheng, Xiaoxiang

    2013-01-01

    Bio-robots based on brain computer interface (BCI) suffer from the lack of considering the characteristic of the animals in navigation. This paper proposed a new method for bio-robots' automatic navigation combining the reward generating algorithm base on Reinforcement Learning (RL) with the learning intelligence of animals together. Given the graded electrical reward, the animal e.g. the rat, intends to seek the maximum reward while exploring an unknown environment. Since the rat has excellent spatial recognition, the rat-robot and the RL algorithm can convergent to an optimal route by co-learning. This work has significant inspiration for the practical development of bio-robots' navigation with hybrid intelligence.

  12. Learning Science through Computer Games and Simulations

    Science.gov (United States)

    Honey, Margaret A., Ed.; Hilton, Margaret, Ed.

    2011-01-01

    At a time when scientific and technological competence is vital to the nation's future, the weak performance of U.S. students in science reflects the uneven quality of current science education. Although young children come to school with innate curiosity and intuitive ideas about the world around them, science classes rarely tap this potential.…

  13. Conceptions, Self-Regulation, and Strategies of Learning Science among Chinese High School Students

    Science.gov (United States)

    Li, Mang; Zheng, Chunping; Liang, Jyh-Chong; Zhang, Yun; Tsai, Chin-Chung

    2018-01-01

    This study explored the structural relationships among secondary school students' conceptions, self-regulation, and strategies of learning science in mainland China. Three questionnaires, namely conceptions of learning science (COLS), self-regulation of learning science (SROLS), and strategies of learning science (SLS) were developed for…

  14. Merlin C. Wittrock's Enduring Contributions to the Science of Learning

    Science.gov (United States)

    Mayer, Richard E.

    2010-01-01

    Among his many accomplishments in educational psychology, Merlin C. Wittrock is perhaps best remembered for his enduring contributions to the science of learning. His vision of how learning works is best explicated in articles published in "Educational Psychologist" (Wittrock, 1974, 1978, 1989, 1991, 1992), beginning with his classic 1974 article,…

  15. Learning of science concepts within a traditional socio-cultural ...

    African Journals Online (AJOL)

    The learning of science concepts within a traditional socio-cultural environment were investigated by looking at: 1) the nature of \\"cognitive border crossing\\" exhibited by the students from the traditional to the scientific worldview, and 2) whether or not three learning theories / hypotheses: border crossing, collaterality, and ...

  16. Learning Styles of Mexican Food Science and Engineering Students

    Science.gov (United States)

    Palou, Enrique

    2006-01-01

    People have different learning styles that are reflected in different academic strengths, weaknesses, skills, and interests. Given the almost unlimited variety of job descriptions within food science and engineering, it is safe to say that students with every possible learning style have the potential to succeed as food scientists and engineers.…

  17. Using Wikis and Collaborative Learning for Science Teachers' Professional Development

    Science.gov (United States)

    Chen, Y-H.; Jang, S-J.; Chen, P-J.

    2015-01-01

    Wiki bears great potential to transform learning and instruction by scaffolding personal and social constructivism. Past studies have shown that proper application of wiki benefits both students and teachers; however, few studies have integrated wiki and collaborative learning to examine the growth of science teachers' "Technological,…

  18. Collaborative Action Research on Technology Integration for Science Learning

    Science.gov (United States)

    Wang, Chien-hsing; Ke, Yi-Ting; Wu, Jin-Tong; Hsu, Wen-Hua

    2012-01-01

    This paper briefly reports the outcomes of an action research inquiry on the use of blogs, MS PowerPoint [PPT], and the Internet as learning tools with a science class of sixth graders for project-based learning. Multiple sources of data were essential to triangulate the key findings articulated in this paper. Corresponding to previous studies,…

  19. Formal, Non-Formal and Informal Learning in the Sciences

    Science.gov (United States)

    Ainsworth, Heather L.; Eaton, Sarah Elaine

    2010-01-01

    This research report investigates the links between formal, non-formal and informal learning and the differences between them. In particular, the report aims to link these notions of learning to the field of sciences and engineering in Canada and the United States, including professional development of adults working in these fields. It offers…

  20. Globalising Service-Learning in the Social Sciences

    Science.gov (United States)

    Limoncelli, Stephanie A.

    2017-01-01

    The increasing internationalisation of social science curricula in undergraduate education along with the growth of service-learning has provided new opportunities to join the two. This article offers a refection and discussion of service-learning with placements in international nongovernmental organisations (INGOs), drawing from its application…

  1. Investigating Science Interest in a Game-Based Learning Project

    Science.gov (United States)

    Annetta, Leonard; Vallett, David; Fusarelli, Bonnie; Lamb, Richard; Cheng, Meng-Tzu; Holmes, Shawn; Folta, Elizabeth; Thurmond, Brandi

    2014-01-01

    The purpose of this study was to examine the effect Serious Educational Games (SEGs) had on student interest in science in a federally funded game-based learning project. It can be argued that today's students are more likely to engage in video games than they are to interact in live, face-to-face learning environments. With a keen eye on…

  2. An Argument for Formative Assessment with Science Learning Progressions

    Science.gov (United States)

    Alonzo, Alicia C.

    2018-01-01

    Learning progressions--particularly as defined and operationalized in science education--have significant potential to inform teachers' formative assessment practices. In this overview article, I lay out an argument for this potential, starting from definitions for "formative assessment practices" and "learning progressions"…

  3. Talking and learning physics: Predicting future grades from network measures and Force Concept Inventory pretest scores

    Directory of Open Access Journals (Sweden)

    Jesper Bruun

    2013-07-01

    Full Text Available The role of student interactions in learning situations is a foundation of sociocultural learning theory, and social network analysis can be used to quantify student relations. We discuss how self-reported student interactions can be viewed as processes of meaning making and use this to understand how quantitative measures that describe the position in a network, called centrality measures, can be understood in terms of interactions that happen in the context of a university physics course. We apply this discussion to an empirical data set of self-reported student interactions. In a weekly administered survey, first year university students enrolled in an introductory physics course at a Danish university indicated with whom they remembered having communicated within different interaction categories. For three categories pertaining to (1 communication about how to solve physics problems in the course (called the PS category, (2 communications about the nature of physics concepts (called the CD category, and (3 social interactions that are not strictly related to the content of the physics classes (called the ICS category in the introductory mechanics course, we use the survey data to create networks of student interaction. For each of these networks, we calculate centrality measures for each student and correlate these measures with grades from the introductory course, grades from two subsequent courses, and the pretest Force Concept Inventory (FCI scores. We find highly significant correlations (p<0.001 between network centrality measures and grades in all networks. We find the highest correlations between network centrality measures and future grades. In the network composed of interactions regarding problem solving (the PS network, the centrality measures hide and PageRank show the highest correlations (r=-0.32 and r=0.33, respectively with future grades. In the CD network, the network measure target entropy shows the highest correlation

  4. Open Science: Trends in the Development of Science Learning

    Science.gov (United States)

    Scanlon, Eileen

    2011-01-01

    This article comments on some trends in the evolution of science teaching at a distance using the Open University UK (OU UK) experience as a benchmark. Even from the first years of the university there was an understanding of the potential role for media in developing methods for teaching science at a distance, in particular the potential for…

  5. Russian Bilingual Science Learning: Perspectives from Secondary Students.

    Science.gov (United States)

    Lemberger, Nancy; Vinogradova, Olga

    2002-01-01

    Describes one secondary Russian/English bilingual science teacher's practice and her literate students' experiences as they learn science and adapt to a new school. Discusses the notion of whether literacy skills in the native language are transferable to a second language. (Author/VWL)

  6. Learning Science in Informal Environments: People, Places, and Pursuits

    Science.gov (United States)

    Bell, Philip, Ed.; Lewenstein, Bruce, Ed.; Shouse, Andrew W., Ed.; Feder, Michael A., Ed.

    2009-01-01

    Informal science is a burgeoning field that operates across a broad range of venues and envisages learning outcomes for individuals, schools, families, and society. The evidence base that describes informal science, its promise, and effects is informed by a range of disciplines and perspectives, including field-based research, visitor studies, and…

  7. Science Learning in Rural Australia: Not Necessarily the Poor Cousin

    Science.gov (United States)

    Tytler, Russell; Symington, David

    2015-01-01

    There is considerable evidence suggesting that students in rural schools lag behind their city counterparts in measures of science literacy and attitude to science learning. If we are to address this situation we need to build as full a picture as we can of the key features of what is a complex and varied rural schooling context. In this article…

  8. Science Achievement in TIMSS Cognitive Domains Based on Learning Styles

    Science.gov (United States)

    Kablan, Zeynel; Kaya, Sibel

    2013-01-01

    Problem Statement: The interest in raising levels of achievement in math and science has led to a focus on investigating the factors that shape achievement in these subjects. Understanding how different learning styles might influence science achievement may guide educators in their efforts to raise achievement. This study is an attempt to examine…

  9. Science Learning via Multimedia Portal Resources: The Scottish Case

    Science.gov (United States)

    Elliot, Dely; Wilson, Delia; Boyle, Stephen

    2014-01-01

    Scotland's rich heritage in the field of science and engineering and recent curricular developments led to major investment in education to equip pupils with improved scientific knowledge and skills. However, due to its abstract and conceptual nature, learning science can be challenging. Literature supports the role of multimedia technology in…

  10. Promising Teacher Practices: Students' Views about Their Science Learning

    Science.gov (United States)

    Moeed, Azra; Easterbrook, Matthew

    2016-01-01

    Internationally, conceptual and procedural understanding, understanding the Nature of Science, and scientific literacy are considered worthy goals of school science education in modern times. The empirical study presented here reports on promising teacher practices that in the students' views afford learning opportunities and support their science…

  11. Internet-Based Science Learning: A Review of Journal Publications

    Science.gov (United States)

    Lee, Silvia Wen-Yu; Tsai, Chin-Chung; Wu, Ying-Tien; Tsai, Meng-Jung; Liu, Tzu-Chien; Hwang, Fu-Kwun; Lai, Chih-Hung; Liang, Jyh-Chong; Wu, Huang-Ching; Chang, Chun-Yen

    2011-01-01

    Internet-based science learning has been advocated by many science educators for more than a decade. This review examines relevant research on this topic. Sixty-five papers are included in the review. The review consists of the following two major categories: (1) the role of demographics and learners' characteristics in Internet-based science…

  12. High School Students' Implicit Theories of What Facilitates Science Learning

    Science.gov (United States)

    Parsons, Eileen Carlton; Miles, Rhea; Petersen, Michael

    2011-01-01

    Background: Research has primarily concentrated on adults' implicit theories about high quality science education for all students. Little work has considered the students' perspective. This study investigated high school students' implicit theories about what helped them learn science. Purpose: This study addressed (1) What characterizes high…

  13. Exploring a Century of Advancements in the Science of Learning

    Science.gov (United States)

    Murphy, P. Karen; Knight, Stephanie L.

    2016-01-01

    The past century has yielded a plethora of advancements in the science of learning, from expansions in the theoretical frames that undergird education research to cultural and contextual considerations in educational practice. The overarching purpose of this chapter is to explore and document the growth and development of the science of learning…

  14. Inquiry-Based Learning in China: Lesson Learned for School Science Practices

    Science.gov (United States)

    Nuangchalerm, Prasart

    2014-01-01

    Inquiry-based learning is widely considered for science education in this era. This study aims to explore inquiry-based learning in teacher preparation program and the findings will help us to understanding what inquiry-based classroom is and how inquiry-based learning are. Data were collected by qualitative methods; classroom observation,…

  15. How A Flipped Learning Environment Affects Learning In A Course On Theoretical Computer Science

    DEFF Research Database (Denmark)

    Gnaur, Dorina; Hüttel, Hans

    2014-01-01

    This paper reports initial experiences with flipping the classroom in an undergraduate computer science course as part of an overall attempt to enhance the pedagogical support for student learning. Our findings indicate that, just as the flipped classroom implies, a shift of focus in the learning...... context influences the way students engage with the course and their learning strategies....

  16. Music education in the Grade R classroom: How three teachers learned in a participatory action inquiry

    Directory of Open Access Journals (Sweden)

    Aletta Delport

    2015-09-01

    Full Text Available The contribution of music education to the holistic development of the young learner is uncontested. However, in South Africa, the vast majority of Reception Year (Grade R teachers do not have the required competences to teach music in ways that optimally enhance the holistic growth of their learners, as this aspect has been largely neglected during their pre-service and in-service training. In this paper, we report on a year-long intervention aimed at enabling three Grade R non-music specialist teachers at one urban township school in the Eastern Cape to create music-based learning opportunities for their learners. We employed a participatory action learning and action research (PALAR approach to the inquiry, which combines research with development. Our findings indicate that after a series of collaborative interactions, the participants started to explore and tap into their own musical competences. They revisited notions of the self as (ill-equipped, (unconfident, (incompetent and (independent music teachers, and began to assume autonomy and agency with regard to effective music education in the Grade R classroom. We consequently argue that under-qualified in-service teachers can be enabled to improve their practice through research interventions that stimulate maximum participant involvement, such as PALAR.

  17. An overview of Grade R literacy teaching and learning in inclusive classrooms in South Africa

    Directory of Open Access Journals (Sweden)

    Mohangi, Kesh

    2016-12-01

    Full Text Available Pre-school literacy teaching in Early Childhood Education (ECD inclusive classrooms is crucial in preparing learners for the transition to formal literacy teaching and learning. This article describes a collaborative exploratory research project between a university in South Africa and one in China, in order to gain an overview of early literacy teaching and learning in the two countries. In the case of South Africa, the focus was on Grade R literacy teaching and learning. Teacher participants in three rural schools, three township schools and four inner city schools in Mpumalanga and Gauteng were purposively selected. Data were gathered by means of open-ended questions in a questionnaire, individual interviews with Heads of Departments (HOD and classroom observations. Coding, categorising and identifying themes were manually conducted. Persistent challenges were identified of which limited resources, low socio-economic conditions, English as the language of learning and teaching (LoLT, inadequate teaching strategies used to implement the Curriculum Assessment Policy Statement (CAPS and barriers to learning were highlighted. This overview of early literacy teaching and learning in South Africa served as a precursor for the second phase of the project between the two countries.

  18. Automated Grading of Gliomas using Deep Learning in Digital Pathology Images: A modular approach with ensemble of convolutional neural networks.

    Science.gov (United States)

    Ertosun, Mehmet Günhan; Rubin, Daniel L

    2015-01-01

    Brain glioma is the most common primary malignant brain tumors in adults with different pathologic subtypes: Lower Grade Glioma (LGG) Grade II, Lower Grade Glioma (LGG) Grade III, and Glioblastoma Multiforme (GBM) Grade IV. The survival and treatment options are highly dependent of this glioma grade. We propose a deep learning-based, modular classification pipeline for automated grading of gliomas using digital pathology images. Whole tissue digitized images of pathology slides obtained from The Cancer Genome Atlas (TCGA) were used to train our deep learning modules. Our modular pipeline provides diagnostic quality statistics, such as precision, sensitivity and specificity, of the individual deep learning modules, and (1) facilitates training given the limited data in this domain, (2) enables exploration of different deep learning structures for each module, (3) leads to developing less complex modules that are simpler to analyze, and (4) provides flexibility, permitting use of single modules within the framework or use of other modeling or machine learning applications, such as probabilistic graphical models or support vector machines. Our modular approach helps us meet the requirements of minimum accuracy levels that are demanded by the context of different decision points within a multi-class classification scheme. Convolutional Neural Networks are trained for each module for each sub-task with more than 90% classification accuracies on validation data set, and achieved classification accuracy of 96% for the task of GBM vs LGG classification, 71% for further identifying the grade of LGG into Grade II or Grade III on independent data set coming from new patients from the multi-institutional repository.

  19. Using Science to Take a Stand: Action-Oriented Learning in an Afterschool Science Club

    Science.gov (United States)

    Hagenah, Sara

    This dissertation study investigates what happens when students participate in an afterschool science club designed around action-oriented science instruction, a set of curriculum design principles based on social justice pedagogy. Comprised of three manuscripts written for journal publication, the dissertation includes 1) Negotiating community-based action-oriented science teaching and learning: Articulating curriculum design principles, 2) Middle school girls' socio-scientific participation pathways in an afterschool science club, and 3) Laughing and learning together: Productive science learning spaces for middle school girls. By investigating how action-oriented science design principles get negotiated, female identity development in and with science, and the role of everyday social interactions as students do productive science, this research fills gaps in the understanding of how social justice pedagogy gets enacted and negotiated among multiple stakeholders including students, teachers, and community members along what identity development looks like across social and scientific activity. This study will be of interest to educators thinking about how to enact social justice pedagogy in science learning spaces and those interested in identity development in science.

  20. An investigation of the artifacts, outcomes, and processes of constructing computer games about environmental science in a fifth grade science classroom

    Science.gov (United States)

    Baytak, Ahmet

    Among educational researchers and practitioners, there is a growing interest in employing computer games for pedagogical purposes. The present research integrated a technology education class and a science class where 5 th graders learned about environmental issues by designing games that involved environmental concepts. The purposes of this study were to investigate how designing computer games affected the development of students' environmental knowledge, programming knowledge, environmental awareness and interest in computers. It also explored the nature of the artifacts developed and the types of knowledge represented therein. A case study (Yin, 2003) was employed within the context of a 5 th grade elementary science classroom. Fifth graders designed computer games about environmental issues to present to 2nd graders by using Scratch software. The analysis of this study was based on multiple data sources: students' pre- and post-test scores on environmental awareness, their environmental knowledge, their interest in computer science, and their game design. Included in the analyses were also data from students' computer games, participant observations, and structured interviews. The results of the study showed that students were able to successfully design functional games that represented their understanding of environment, even though the gain between pre- and post-environmental knowledge test and environmental awareness survey were minimal. The findings indicate that all students were able to use various game characteristics and programming concepts, but their prior experience with the design software affected their representations. The analyses of the interview transcriptions and games show that students improved their programming skills and that they wanted to do similar projects for other subject areas in the future. Observations showed that game design appeared to lead to knowledge-building, interaction and collaboration among students. This, in turn

  1. Exploring Social Learning through Upstream Engagement in Science and Technology

    DEFF Research Database (Denmark)

    Mortensen, Jonas Egmose

    This discussion paper deliberates on how the concept of social learning can be used for evaluating upstream engagement initiatives in science and technology.  The paper briefly introduces to the concept of upstream engagement and a concrete case, the UK Citizen Science for Sustainability project...... (SuScit), as an outset for discussing how the concept of social learning can be used for analysing and understanding relations between citizen participation, Science and research, and sustainability. A number of relevant research questions and methodological considerations are distilled...

  2. Aspects of Teaching and Learning Science: What students' diaries reveal about inquiry and traditional modes

    Science.gov (United States)

    Kawalkar, Aisha; Vijapurkar, Jyotsna

    2015-09-01

    We present an analysis of students' reflective writing (diaries) of two cohorts of Grade 8 students, one undergoing inquiry and the other traditional science teaching. Students' writing included a summary of what students had learned in class on that day and their opinions and feelings about the class. The entries were analysed qualitatively and quantitatively. This analysis of students' first-person accounts of their learning experience and their notes taken during class was useful in two ways. First, it brought out a spectrum of differences in outcomes of these two teaching modes-conceptual, affective and epistemic. Second, this analysis brought out the significance and meaning of the learning experience for students in their own words, thus adding another dimension to researchers' characterisation of the two teaching methods.

  3. Do Science Teachers Distinguish Between Their own Learning and the Learning of Their Students?

    Science.gov (United States)

    Brauer, Heike; Wilde, Matthias

    2018-02-01

    Learning beliefs influence learning and teaching. For this reason, teachers and teacher educators need to be aware of them. To support students' knowledge construction, teachers must develop appropriate learning and teaching beliefs. Teachers appear to have difficulties when analysing students' learning. This seems to be due to the inability to differentiate the beliefs about their students' learning from those about their own learning. Both types of beliefs seem to be intertwined. This study focuses on whether pre-service teachers' beliefs about their own learning are identical to those about their students' learning. Using a sample of pre-service teachers, we measured general beliefs about "constructivist" and "transmissive" learning and science-specific beliefs about "connectivity" and "taking pre-concepts into account". We also analysed the development of these four beliefs during teacher professionalisation by comparing beginning and advanced pre-service teachers. Our results show that although pre-service teachers make the distinction between their own learning and the learning of their students for the general tenets of constructivist and transmissive learning, there is no significant difference for science-specific beliefs. The beliefs pre-service teachers hold about their students' science learning remain closely tied to their own.

  4. Learning design for science teacher training and educational development

    DEFF Research Database (Denmark)

    Bjælde, Ole Eggers; Caspersen, Michael E.; Godsk, Mikkel

    This paper presents the impact and perception of two initiatives at the Faculty of Science and Technology, Aarhus University: the teacher training module ‘Digital Learning Design’ (DiLD) for assistant professors and postdocs, and the STREAM learning design model and toolkit for enhancing and tran......This paper presents the impact and perception of two initiatives at the Faculty of Science and Technology, Aarhus University: the teacher training module ‘Digital Learning Design’ (DiLD) for assistant professors and postdocs, and the STREAM learning design model and toolkit for enhancing...... and transforming modules. Both DiLD and the STREAM model have proven to be effective and scalable approaches to encourage educators across all career steps to embrace the potentials of educational technology in science higher education. Moreover, the transformed modules have resulted in higher student satisfaction...

  5. Implementing SPRINTT [Student Polar Research with IPY National(and International)Teacher Training] in 5th Grade Science

    Science.gov (United States)

    Glass, D. S.

    2009-12-01

    I implemented the new NSF-funded SPRINTT (Student Polar Research with IPY National (and International) Teacher Training) curriculum with a 5th grade science class. SPRINTT, developed at U.S. Satellite Laboratory, Inc., is a 5-8 week science program teaching 5th through 10th graders to investigate climate change using polar data. The program includes perspectives of both Western scientists and the indigenous Northern population. The course contains three phases: Phase 1 includes content, data interpretation, and hands-on experiments to study Frozen Water, Frozen Land, and Food; Phase 2 (optional) includes further content on specific polar topics; and Phase 3 is a scaffolded research investigation. Before the course, teachers were trained via live webinars. This curriculum capitalizes on children’s innate fascination with our planet’s final frontier and combines it with the politically and scientifically relevant topic of climate change. In 2009, I used SPRINTT with 23 heterogeneous fifth grade students at National Presbyterian School in Washington DC for an environmental science unit. Overall, it was a success. The students met most of the learning objectives and showed enthusiasm for the material. I share my experiences to help other educators and curriculum developers. The Phase 1 course includes earth science (glaciers, sea ice, weather and climate, greenhouse gases, seasons, and human impacts on environments), life science (needs of living things, food and energy transfer, adaptations, and ecosystems and biomes) and physical science (phases of matter). Tailoring the program, I focused on Phase 1, the most accessible material and content, while deemphasizing the more cumbersome Phase 3 online research project. Pre-assessments documented the students’ misconceptions and informed instruction. The investigations were appropriately educational and interesting. For example, students enjoyed looking at environmental factors and their impact on the people in the

  6. An investigation into the opportunity to learn that is available to Grade 12 mathematics learners

    Directory of Open Access Journals (Sweden)

    Gerrit Stols

    2013-01-01

    Full Text Available This study investigated the opportunity to learn (OTL that is available to Grade 12 mathematics learners. Learner workbooks were analysed in terms of time on task, curriculum coverage, curriculum coherence, and cognitive demand. Based on these elements, experienced mathematics teachers judged the opportunity that the learners have to achieve more than 60% for each topic. According to the workbooks, the average number of active learning days in this sample was 54.1 days per annum. This resulted in limited curriculum coverage in almost all sections in 16 of the 18 under-performing schools. In these schools, learners spent most of their time practising routine procedures. The high correlation of 0.95 (p < 0.001 between the experts'prediction about the opportunity to learn in the different schools (based on the learner workbooks and learners' actual performance in the Grade 12 exam shows that the number, the coverage, the cognitive level, and the coherence of activities play a major role in understanding learner performance.

  7. Change over a service learning experience in science undergraduates' beliefs expressed about elementary school students' ability to learn science

    Science.gov (United States)

    Goebel, Camille A.

    This longitudinal investigation explores the change in four (3 female, 1 male) science undergraduates' beliefs expressed about low-income elementary school students' ability to learn science. The study sought to identify how the undergraduates in year-long public school science-teaching partnerships perceived the social, cultural, and economic factors affecting student learning. Previous service-learning research infrequently focused on science undergraduates relative to science and society or detailed expressions of their beliefs and field practices over the experience. Qualitative methodology was used to guide the implementation and analysis of this study. A sample of an additional 20 science undergraduates likewise involved in intensive reflection in the service learning in science teaching (SLST) course called Elementary Science Education Partners (ESEP) was used to examine the typicality of the case participants. The findings show two major changes in science undergraduates' belief expressions: (1) a reduction in statements of beliefs from a deficit thinking perspective about the elementary school students' ability to learn science, and (2) a shift in the attribution of students, underlying problems in science learning from individual-oriented to systemic-oriented influences. Additional findings reveal that the science undergraduates perceived they had personally and profoundly changed as a result of the SLST experience. Changes include: (1) the gain of a new understanding of others' situations different from their own; (2) the realization of and appreciation for their relative positions of privilege due to their educational background and family support; (3) the gain in ability to communicate, teach, and work with others; (4) the idea that they were more socially and culturally connected to their community outside the university and their college classrooms; and (5) a broadening of the way they understood or thought about science. Women participants stated

  8. Citizen science on a smartphone: Participants' motivations and learning.

    Science.gov (United States)

    Land-Zandstra, Anne M; Devilee, Jeroen L A; Snik, Frans; Buurmeijer, Franka; van den Broek, Jos M

    2016-01-01

    Citizen science provides researchers means to gather or analyse large datasets. At the same time, citizen science projects offer an opportunity for non-scientists to be part of and learn from the scientific process. In the Dutch iSPEX project, a large number of citizens turned their smartphones into actual measurement devices to measure aerosols. This study examined participants' motivation and perceived learning impacts of this unique project. Most respondents joined iSPEX because they wanted to contribute to the scientific goals of the project or because they were interested in the project topics (health and environmental impact of aerosols). In terms of learning impact, respondents reported a gain in knowledge about citizen science and the topics of the project. However, many respondents had an incomplete understanding of the science behind the project, possibly caused by the complexity of the measurements. © The Author(s) 2015.

  9. Preschool children's Collaborative Science Learning Scaffolded by Tablets

    Science.gov (United States)

    Fridberg, Marie; Thulin, Susanne; Redfors, Andreas

    2017-06-01

    This paper reports on a project aiming to extend the current understanding of how emerging technologies, i.e. tablets, can be used in preschools to support collaborative learning of real-life science phenomena. The potential of tablets to support collaborative inquiry-based science learning and reflective thinking in preschool is investigated through the analysis of teacher-led activities on science, including children making timelapse photography and Slowmation movies. A qualitative analysis of verbal communication during different learning contexts gives rise to a number of categories that distinguish and identify different themes of the discussion. In this study, groups of children work with phase changes of water. We report enhanced and focused reasoning about this science phenomenon in situations where timelapse movies are used to stimulate recall. Furthermore, we show that children communicate in a more advanced manner about the phenomenon, and they focus more readily on problem solving when active in experimentation or Slowmation producing contexts.

  10. The Development of Learning Model Based on Problem Solving to Construct High-Order Thinking Skill on the Learning Mathematics of 11th Grade in SMA/MA

    Science.gov (United States)

    Syahputra, Edi; Surya, Edy

    2017-01-01

    This paper is a summary study of team Postgraduate on 11th grade. The objective of this study is to develop a learning model based on problem solving which can construct high-order thinking on the learning mathematics in SMA/MA. The subject of dissemination consists of Students of 11th grade in SMA/MA in 3 kabupaten/kota in North Sumatera, namely:…

  11. A Study of Learning Achievement and Learning Behavior in Biology on “Genes and Chromosomes” Using Storyline Teaching for 12th Grade Students

    OpenAIRE

    Ubonwan Leawudomchai; Kittima Panprueksa; Somsiri Singlop; Thanawuth Latwong

    2016-01-01

    The objectives of this research were to study learning achievement and learning behavior in Biology on “genes and chromosomes” using storyline teaching for 12th grade students. The sample for this research consisted of 36 twelfth grade students from Piboonbumpen Demonstration School in the first semester of 2014. The sample was randomly selected for the experimental group using cluster random sampling. The research instruments were the lesson plans using storyline teaching on g...

  12. Colorado Student Assessment Program: 2001 Released Passages, Items, and Prompts. Grade 4 Reading and Writing, Grade 4 Lectura y Escritura, Grade 5 Mathematics and Reading, Grade 6 Reading, Grade 7 Reading and Writing, Grade 8 Mathematics, Reading and Science, Grade 9 Reading, and Grade 10 Mathematics and Reading and Writing.

    Science.gov (United States)

    Colorado State Dept. of Education, Denver.

    This document contains released reading comprehension passages, test items, and writing prompts from the Colorado Student Assessment Program for 2001. The sample questions and prompts are included without answers or examples of student responses. Test materials are included for: (1) Grade 4 Reading and Writing; (2) Grade 4 Lectura y Escritura…

  13. Closing the science achievement gap for ninth grade English learners through standards- and inquiry-based science instruction

    Science.gov (United States)

    Estrada, Myrna Hipol

    In light of the need to close the achievement gap among our culturally and linguistically diverse students, more specifically the Hispanics and the Hispanic English Learners (ELs), the effects of teacher professional development (2 year PD vs. 1 Year PD vs. no PD) on the implementation of a standards-aligned and inquiry-based science curriculum program---the Integrated Coordinated Science for the 21st Century published by It's About Time, Inc. (ICS-IAT)---on the LAUSD ninth graders science scores were examined. Participants included 8,937 9th grade students (7,356 Hispanics). The primary outcome measurement was scaled scores from the California Standard Test (CST) in Integrated Coordinated Science (CST_ICS1). Correlations between California English Language Development Test (CELDT) component subscores (reading, listening and speaking) and CST scores were also examined. Results indicated that the science scores of the students of teachers who participated in two year PD were significantly higher compared to the scores of students of the one year PD group and the control group. The results show that all ethnic groups benefited from two years of teacher PD, except the African American group. Among Hispanics, students classified as IFEP, RFEP and EO gained from the teachers having two years of professional development. But the target population, ELs did not benefit from two years of teacher PD. The correlations between the CELDT and CST_ELA were much higher than the CELDT and CST_ICS1 correlations. This finding validates Abedi's claim (2004) that EL students are disadvantaged because of their language handicap on tests that have a greater language load. Two year PD participation significantly enhanced the accessibility of science to the ninth graders. The essential features in the PD were classroom simulation of all the activities identified in the storyboard with the actual and correct use of needed equipment and materials; creation and presentation of sample or model

  14. Design and Assessment of a General Science STEM Course with a Blended Learning Approach

    Science.gov (United States)

    Courtier, A. M.; Liu, J. C.; St John, K. K.

    2015-12-01

    Blended learning, a combination of classroom- and computer-mediated teaching and learning, is becoming prominent in higher education, and structured assessment is necessary to determine pedagogical costs and benefits. Assessment of a blended general education science class at James Madison University used a mixed-method causal-comparative design: in Spring 2014, two classes with identical content and similar groups of non-science majors were taught by the same instructor in either blended or full face-to-face formats. The learning experience of 160 students in the two classes was compared based on course and exam grades, classroom observation, and student survey results. Student acquisition of content in both classes was measured with pre-post tests using published concept inventories, and surveys, quizzes, and grade reports in the Blackboard learning management system were additionally used for data collection. Exams were identical between the two sections, and exam questions were validated in advance by a faculty member who teaches other sections of the same course. A course experience questionnaire was administered to measure students' personal experiences in both classes, addressing dimensions of good teaching, clear goals and standards, generic skills, appropriate assessment and workload, and emphasis on independence. Using a STEM classroom observation checklist, two researchers conducted in-class observations for four 75-minute face-to-face meetings with similar content focus in both classes, which allowed assessment of student engagement and participation. We will present details of the course design and research plan, as well as assessment results from both quantitative and qualitative analysis. The preliminary findings include slightly higher average grade distribution and more ready responses to in-class activities in the blended class.

  15. Science learning and literacy performance of typically developing, at-risk, and disabled, non-English language background students

    Science.gov (United States)

    Larrinaga McGee, Patria Maria

    Current education reform calls for excellence, access, and equity in all areas of instruction, including science and literacy. Historically, persons of diverse backgrounds or with disabilities have been underrepresented in science. Gaps are evident between the science and literacy achievement of diverse students and their mainstream peers. The purpose of this study was to document, describe, and examine patterns of development and change in the science learning and literacy performance of Hispanic students. The two major questions of this study were: (1) How is science content knowledge, as evident in oral and written formats, manifested in the performance of typically developing, at-risk, and disabled non-English language background (NELB) students? and (2) What are the patterns of literacy performance in science, and as evident in oral and written formats, among typically developing, at-risk, and disabled NELB students? This case study was part of a larger research project, the Promise Project, undertaken at the University of Miami, Coral Gables, Florida, under the sponsorship of the National Science Foundation. The study involved 24 fourth-grade students in seven classrooms located in Promise Project schools where teachers were provided with training and materials for instruction on two units of science content: Matter and Weather. Four students were selected from among the fourth-graders for a closer analysis of their performance. Qualitative and quantitative data analysis methods were used to document, describe, and examine specific events or phenomena in the processes of science learning and literacy development. Important findings were related to (a) gains in science learning and literacy development, (b) students' science learning and literacy development needs, and (c) general and idiosyncratic attitudes toward science and literacy. Five patterns of science "explanations" identified indicated a developmental cognitive/linguistic trajectory in science

  16. The Conceptions of Learning Science by Laboratory among University Science-Major Students: Qualitative and Quantitative Analyses

    Science.gov (United States)

    Chiu, Yu-Li; Lin, Tzung-Jin; Tsai, Chin-Chung

    2016-01-01

    Background: The sophistication of students' conceptions of science learning has been found to be positively related to their approaches to and outcomes for science learning. Little research has been conducted to particularly investigate students' conceptions of science learning by laboratory. Purpose: The purpose of this research, consisting of…

  17. Why formal learning theory matters for cognitive science.

    Science.gov (United States)

    Fulop, Sean; Chater, Nick

    2013-01-01

    This article reviews a number of different areas in the foundations of formal learning theory. After outlining the general framework for formal models of learning, the Bayesian approach to learning is summarized. This leads to a discussion of Solomonoff's Universal Prior Distribution for Bayesian learning. Gold's model of identification in the limit is also outlined. We next discuss a number of aspects of learning theory raised in contributed papers, related to both computational and representational complexity. The article concludes with a description of how semi-supervised learning can be applied to the study of cognitive learning models. Throughout this overview, the specific points raised by our contributing authors are connected to the models and methods under review. Copyright © 2013 Cognitive Science Society, Inc.

  18. Learning and the transformative potential of citizen science.

    Science.gov (United States)

    Bela, Györgyi; Peltola, Taru; Young, Juliette C; Balázs, Bálint; Arpin, Isabelle; Pataki, György; Hauck, Jennifer; Kelemen, Eszter; Kopperoinen, Leena; Van Herzele, Ann; Keune, Hans; Hecker, Susanne; Suškevičs, Monika; Roy, Helen E; Itkonen, Pekka; Külvik, Mart; László, Miklós; Basnou, Corina; Pino, Joan; Bonn, Aletta

    2016-10-01

    The number of collaborative initiatives between scientists and volunteers (i.e., citizen science) is increasing across many research fields. The promise of societal transformation together with scientific breakthroughs contributes to the current popularity of citizen science (CS) in the policy domain. We examined the transformative capacity of citizen science in particular learning through environmental CS as conservation tool. We reviewed the CS and social-learning literature and examined 14 conservation projects across Europe that involved collaborative CS. We also developed a template that can be used to explore learning arrangements (i.e., learning events and materials) in CS projects and to explain how the desired outcomes can be achieved through CS learning. We found that recent studies aiming to define CS for analytical purposes often fail to improve the conceptual clarity of CS; CS programs may have transformative potential, especially for the development of individual skills, but such transformation is not necessarily occurring at the organizational and institutional levels; empirical evidence on simple learning outcomes, but the assertion of transformative effects of CS learning is often based on assumptions rather than empirical observation; and it is unanimous that learning in CS is considered important, but in practice it often goes unreported or unevaluated. In conclusion, we point to the need for reliable and transparent measurement of transformative effects for democratization of knowledge production. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  19. Development of The Students' Learning Process and Meta cognitive Strategies in Science on Nuclear Energy through Science, Technology and Society (STS) approach

    International Nuclear Information System (INIS)

    Siriuthen, Warawun; Yuenyong, Chokchai

    2009-07-01

    Full text: This research aimed to develop 48 Grade 10 students' learning process and meta cognitive strategies in the 'Nuclear Energy' topic through the Science, Technology and Society (STS) approach, which consists of five teaching stages: identification of social issues; identification of potential solutions; need for knowledge; decision-making; and socialization. The data were analyzed through rubric score of learning process and meta cognitive strategies, which consists of five strategies: recalling, planning, monitoring and maintaining, evaluating, and relating. The findings revealed that most students used learning process in a high level. However, they performed a very low level in almost all of the meta cognitive strategies. The factors potentially impeded their development of awareness about learning process and meta cognitive strategies were characteristics of content and students, learning processes, and student habit

  20. Teachers' Motivating Methods to Support Thai Ninth Grade Students' Levels of Motivation and Learning in Mathematics Classrooms

    Science.gov (United States)

    Nenthien, Sansanee; Loima, Jyrki

    2016-01-01

    The aims of this qualitative research were to investigate the level of motivation and learning of ninth grade students in mathematics classrooms in Thailand and to reveal how the teachers supported students' levels of motivation and learning. The participants were 333 students and 12 teachers in 12 mathematics classrooms from four regions of…