WorldWideScience

Sample records for gps system performance

  1. The Performance Analysis of a Real-Time Integrated INS/GPS Vehicle Navigation System with Abnormal GPS Measurement Elimination

    Directory of Open Access Journals (Sweden)

    Jhen-Kai Liao

    2013-08-01

    Full Text Available The integration of an Inertial Navigation System (INS and the Global Positioning System (GPS is common in mobile mapping and navigation applications to seamlessly determine the position, velocity, and orientation of the mobile platform. In most INS/GPS integrated architectures, the GPS is considered to be an accurate reference with which to correct for the systematic errors of the inertial sensors, which are composed of biases, scale factors and drift. However, the GPS receiver may produce abnormal pseudo-range errors mainly caused by ionospheric delay, tropospheric delay and the multipath effect. These errors degrade the overall position accuracy of an integrated system that uses conventional INS/GPS integration strategies such as loosely coupled (LC and tightly coupled (TC schemes. Conventional tightly coupled INS/GPS integration schemes apply the Klobuchar model and the Hopfield model to reduce pseudo-range delays caused by ionospheric delay and tropospheric delay, respectively, but do not address the multipath problem. However, the multipath effect (from reflected GPS signals affects the position error far more significantly in a consumer-grade GPS receiver than in an expensive, geodetic-grade GPS receiver. To avoid this problem, a new integrated INS/GPS architecture is proposed. The proposed method is described and applied in a real-time integrated system with two integration strategies, namely, loosely coupled and tightly coupled schemes, respectively. To verify the effectiveness of the proposed method, field tests with various scenarios are conducted and the results are compared with a reliable reference system.

  2. Using GPS to evaluate productivity and performance of forest machine systems

    Science.gov (United States)

    Steven E. Taylor; Timothy P. McDonald; Matthew W. Veal; Ton E. Grift

    2001-01-01

    This paper reviews recent research and operational applications of using GPS as a tool to help monitor the locations, travel patterns, performance, and productivity of forest machines. The accuracy of dynamic GPS data collected on forest machines under different levels of forest canopy is reviewed first. Then, the paper focuses on the use of GPS for monitoring forest...

  3. GPS system simulation methodology

    Science.gov (United States)

    Ewing, Thomas F.

    1993-01-01

    The following topics are presented: background; Global Positioning System (GPS) methodology overview; the graphical user interface (GUI); current models; application to space nuclear power/propulsion; and interfacing requirements. The discussion is presented in vugraph form.

  4. Bridge Performance Assessment Based on an Adaptive Neuro-Fuzzy Inference System with Wavelet Filter for the GPS Measurements

    Directory of Open Access Journals (Sweden)

    Mosbeh R. Kaloop

    2015-10-01

    Full Text Available This study describes the performance assessment of the Huangpu Bridge in Guangzhou, China based on long-term monitoring in real-time by the kinematic global positioning system (RTK-GPS technique. Wavelet transformde-noising is applied to filter the GPS measurements, while the adaptive neuro-fuzzy inference system (ANFIS time series output-only model is used to predict the deformations of GPS-bridge monitoring points. In addition, GPS and accelerometer monitoring systems are used to evaluate the bridge oscillation performance. The conclusions drawn from investigating the numerical results show that: (1the wavelet de-noising of the GPS measurements of the different recording points on the bridge is a suitable tool to efficiently eliminate the signal noise and extract the different deformation components such as: semi-static and dynamic displacements; (2 the ANFIS method with two multi-input single output model is revealed to powerfully predict GPS movement measurements and assess the bridge deformations; and (3 The installed structural health monitoring system and the applied ANFIS movement prediction performance model are solely sufficient to assure bridge safety based on the analyses of the different filtered movement components.

  5. Performance analysis of a GPS Interferometric attitude determination system for a gravity gradient stabilized spacecraft. M.S. Thesis

    Science.gov (United States)

    Stoll, John C.

    1995-01-01

    The performance of an unaided attitude determination system based on GPS interferometry is examined using linear covariance analysis. The modelled system includes four GPS antennae onboard a gravity gradient stabilized spacecraft, specifically the Air Force's RADCAL satellite. The principal error sources are identified and modelled. The optimal system's sensitivities to these error sources are examined through an error budget and by varying system parameters. The effects of two satellite selection algorithms, Geometric and Attitude Dilution of Precision (GDOP and ADOP, respectively) are examined. The attitude performance of two optimal-suboptimal filters is also presented. Based on this analysis, the limiting factors in attitude accuracy are the knowledge of the relative antenna locations, the electrical path lengths from the antennae to the receiver, and the multipath environment. The performance of the system is found to be fairly insensitive to torque errors, orbital inclination, and the two satellite geometry figures-of-merit tested.

  6. A Low-Cost GPS GSM/GPRS Telemetry System: Performance in Stationary Field Tests and Preliminary Data on Wild Otters (Lutra lutra)

    Science.gov (United States)

    Quaglietta, Lorenzo; Martins, Bruno Herlander; de Jongh, Addy; Mira, António; Boitani, Luigi

    2012-01-01

    Background Despite the increasing worldwide use of global positioning system (GPS) telemetry in wildlife research, it has never been tested on any freshwater diving animal or in the peculiar conditions of the riparian habitat, despite this latter being one of the most important habitat types for many animal taxa. Moreover, in most cases, the GPS devices used have been commercial and expensive, limiting their use in low-budget projects. Methodology/Principal Findings We have developed a low-cost, easily constructed GPS GSM/GPRS (Global System for Mobile Communications/General Packet Radio Service) and examined its performance in stationary tests, by assessing the influence of different habitat types, including the riparian, as well as water submersion and certain climatic and environmental variables on GPS fix-success rate and accuracy. We then tested the GPS on wild diving animals, applying it, for the first time, to an otter species (Lutra lutra). The rate of locations acquired during the stationary tests reached 63.2%, with an average location error of 8.94 m (SD = 8.55). GPS performance in riparian habitats was principally affected by water submersion and secondarily by GPS inclination and position within the riverbed. Temporal and spatial correlations of location estimates accounted for some variation in the data sets. GPS-tagged otters also provided accurate locations and an even higher GPS fix-success rate (68.2%). Conclusions/Significance Our results suggest that GPS telemetry is reliably applicable to riparian and even diving freshwater animals. They also highlight the need, in GPS wildlife studies, for performing site-specific pilot studies on GPS functioning as well as for taking into account eventual spatial and temporal correlation of location estimates. The limited price, small dimensions, and high performance of the device presented here make it a useful and cost-effective tool for studies on otters and other aquatic or terrestrial medium

  7. A low-cost GPS GSM/GPRS telemetry system: performance in stationary field tests and preliminary data on wild otters (Lutra lutra.

    Directory of Open Access Journals (Sweden)

    Lorenzo Quaglietta

    Full Text Available BACKGROUND: Despite the increasing worldwide use of global positioning system (GPS telemetry in wildlife research, it has never been tested on any freshwater diving animal or in the peculiar conditions of the riparian habitat, despite this latter being one of the most important habitat types for many animal taxa. Moreover, in most cases, the GPS devices used have been commercial and expensive, limiting their use in low-budget projects. METHODOLOGY/PRINCIPAL FINDINGS: We have developed a low-cost, easily constructed GPS GSM/GPRS (Global System for Mobile Communications/General Packet Radio Service and examined its performance in stationary tests, by assessing the influence of different habitat types, including the riparian, as well as water submersion and certain climatic and environmental variables on GPS fix-success rate and accuracy. We then tested the GPS on wild diving animals, applying it, for the first time, to an otter species (Lutra lutra. The rate of locations acquired during the stationary tests reached 63.2%, with an average location error of 8.94 m (SD = 8.55. GPS performance in riparian habitats was principally affected by water submersion and secondarily by GPS inclination and position within the riverbed. Temporal and spatial correlations of location estimates accounted for some variation in the data sets. GPS-tagged otters also provided accurate locations and an even higher GPS fix-success rate (68.2%. CONCLUSIONS/SIGNIFICANCE: Our results suggest that GPS telemetry is reliably applicable to riparian and even diving freshwater animals. They also highlight the need, in GPS wildlife studies, for performing site-specific pilot studies on GPS functioning as well as for taking into account eventual spatial and temporal correlation of location estimates. The limited price, small dimensions, and high performance of the device presented here make it a useful and cost-effective tool for studies on otters and other aquatic or

  8. Overcoming urban GPS navigation challenges through the use of MEMS inertial sensors and proper verification of navigation system performance

    Science.gov (United States)

    Vinande, Eric T.

    This research proposes several means to overcome challenges in the urban environment to ground vehicle global positioning system (GPS) receiver navigation performance through the integration of external sensor information. The effects of narrowband radio frequency interference and signal attenuation, both common in the urban environment, are examined with respect to receiver signal tracking processes. Low-cost microelectromechanical systems (MEMS) inertial sensors, suitable for the consumer market, are the focus of receiver augmentation as they provide an independent measure of motion and are independent of vehicle systems. A method for estimating the mounting angles of an inertial sensor cluster utilizing typical urban driving maneuvers is developed and is able to provide angular measurements within two degrees of truth. The integration of GPS and MEMS inertial sensors is developed utilizing a full state navigation filter. Appropriate statistical methods are developed to evaluate the urban environment navigation improvement due to the addition of MEMS inertial sensors. A receiver evaluation metric that combines accuracy, availability, and maximum error measurements is presented and evaluated over several drive tests. Following a description of proper drive test techniques, record and playback systems are evaluated as the optimal way of testing multiple receivers and/or integrated navigation systems in the urban environment as they simplify vehicle testing requirements.

  9. GPS synchronized power system phase angle measurements

    Science.gov (United States)

    Wilson, Robert E.; Sterlina, Patrick S.

    1994-09-01

    This paper discusses the use of Global Positioning System (GPS) synchronized equipment for the measurement and analysis of key power system quantities. Two GPS synchronized phasor measurement units (PMU) were installed before testing. It was indicated that PMUs recorded the dynamic response of the power system phase angles when the northern California power grid was excited by the artificial short circuits. Power system planning engineers perform detailed computer generated simulations of the dynamic response of the power system to naturally occurring short circuits. The computer simulations use models of transmission lines, transformers, circuit breakers, and other high voltage components. This work will compare computer simulations of the same event with field measurement.

  10. Developing a GPS-based truck freight performance measure platform.

    Science.gov (United States)

    2010-05-01

    Although trucks move the largest volume and value of goods in urban areas, relatively little is known about their travel : patterns and how the roadway network performs for trucks. Global positioning systems (GPS) used by trucking : companies to mana...

  11. GPS Civil Monitoring Performance Specification

    Science.gov (United States)

    2009-02-10

    This Civil Monitoring Performance Specification (CMPS) is published and maintained at : the direction of the Program Manager for Civil Applications, Global Positioning Systems : Wing (GPSW). The purpose of this document is to provide a comprehensive ...

  12. Performance of GPS-devices for environmental exposure assessment.

    Science.gov (United States)

    Beekhuizen, Johan; Kromhout, Hans; Huss, Anke; Vermeulen, Roel

    2013-01-01

    Integration of individual time-location patterns with spatially resolved exposure maps enables a more accurate estimation of personal exposures to environmental pollutants than using estimates at fixed locations. Current global positioning system (GPS) devices can be used to track an individual's location. However, information on GPS-performance in environmental exposure assessment is largely missing. We therefore performed two studies. First, a commute-study, where the commute of 12 individuals was tracked twice, testing GPS-performance for five transport modes and two wearing modes. Second, an urban-tracking study, where one individual was tracked repeatedly through different areas, focused on the effect of building obstruction on GPS-performance. The median error from the true path for walking was 3.7 m, biking 2.9 m, train 4.8 m, bus 4.9 m, and car 3.3 m. Errors were larger in a high-rise commercial area (median error=7.1 m) compared with a low-rise residential area (median error=2.2 m). Thus, GPS-performance largely depends on the transport mode and urban built-up. Although ~85% of all errors were 50 m. Modern GPS-devices are useful tools for environmental exposure assessment, but large GPS-errors might affect estimates of exposures with high spatial variability.

  13. GPS-based system for satellite tracking and geodesy

    Science.gov (United States)

    Bertiger, Willy I.; Thornton, Catherine L.

    1989-01-01

    High-performance receivers and data processing systems developed for GPS are reviewed. The GPS Inferred Positioning System (GIPSY) and the Orbiter Analysis and Simulation Software (OASIS) are described. The OASIS software is used to assess GPS system performance using GIPSY for data processing. Consideration is given to parameter estimation for multiday arcs, orbit repeatability, orbit prediction, daily baseline repeatability, agreement with VLBI, and ambiguity resolution. Also, the dual-frequency Rogue receiver, which can track up to eight GPS satellites simultaneously, is discussed.

  14. GPS radio collar 3D performance as influenced by forest structure and topography

    Science.gov (United States)

    R. Scott Gamo; Mark A. Rumble; Fred Lindzey; Matt Stefanich

    2000-01-01

    Global Positioning System (GPS) telemetry enables biologists to obtain accurate and systematic locations of animals. Vegetation can block signals from satellites to GPS radio collars. Therefore, a vegetation dependent bias to telemetry data may occur which if quantified, could be accounted for. We evaluated the performance of GPS collars in 6 structural stage...

  15. Performance Enhancement of Land Vehicle Positioning Using Multiple GPS Receivers in an Urban Area

    OpenAIRE

    Song, Jong-Hwa; Jee, Gyu-In

    2016-01-01

    The Global Positioning System (GPS) is the most widely used navigation system in land vehicle applications. In urban areas, the GPS suffers from insufficient signal strength, multipath propagation and non-line-of-sight (NLOS) errors, so it thus becomes difficult to obtain accurate and reliable position information. In this paper, an integration algorithm for multiple receivers is proposed to enhance the positioning performance of GPS for land vehicles in urban areas. The pseudoranges of multi...

  16. Accurate Localization of Communicant Vehicles using GPS and Vision Systems

    Directory of Open Access Journals (Sweden)

    Georges CHALLITA

    2009-07-01

    Full Text Available The new generation of ADAS systems based on cooperation between vehicles can offer serious perspectives to the road security. The inter-vehicle cooperation is made possible thanks to the revolution in the wireless mobile ad hoc network. In this paper, we will develop a system that will minimize the imprecision of the GPS used to car tracking, based on the data given by the GPS which means the coordinates and speed in addition to the use of the vision data that will be collected from the loading system in the vehicle (camera and processor. Localization information can be exchanged between the vehicles through a wireless communication device. The creation of the system must adopt the Monte Carlo Method or what we call a particle filter for the treatment of the GPS data and vision data. An experimental study of this system is performed on our fleet of experimental communicating vehicles.

  17. Data Integration from GPS and Inertial Navigation Systems for Pedestrians in Urban Area

    OpenAIRE

    Krzysztof Bikonis; Jerzy Demkowicz

    2013-01-01

    The GPS system is widely used in navigation and the GPS receiver can offer long-term stable absolute positioning information. The overall system performance depends largely on the signal environments. The position obtained from GPS is often degraded due to obstruction and multipath effect caused by buildings, city infrastructure and vegetation, whereas, the current performance achieved by inertial navigation systems (INS) is still relatively poor due to the large inertial sensor errors. The c...

  18. Performance evaluation of GPS receiver under equatorial scintillation

    Directory of Open Access Journals (Sweden)

    Alison de Oliveira Moraes

    2009-06-01

    Full Text Available Equatorial scintillation is a phenomenon that occurs daily in the equatorial region after the sunset and affects radio signals that propagate through the ionosphere. Depending on the temporal and spatial situation, equatorial scintillation can represent a problem in the availability and precision of the Global Positioning System (GPS. This work is concerned with evaluating the impact of equatorial scintillation on the performance of GPS receivers. First, the morphology and statistical model of equatorial scintillation is briefly presented. A numerical model that generates synthetic scintillation data to simulate the effects of equatorial scintillation is presented. An overview of the main theoretical principles on GPS receivers is presented. The analytical models that describe the effects of scintillation at receiver level are presented and compared with numerical simulations using a radio software receiver and synthetic data. The results achieved by simulation agreed quite well with those predicted by the analytical models. The only exception is for links with extreme levels of scintillation and when weak signals are received.

  19. High accuracy autonomous navigation using the global positioning system (GPS)

    Science.gov (United States)

    Truong, Son H.; Hart, Roger C.; Shoan, Wendy C.; Wood, Terri; Long, Anne C.; Oza, Dipak H.; Lee, Taesul

    1997-01-01

    The application of global positioning system (GPS) technology to the improvement of the accuracy and economy of spacecraft navigation, is reported. High-accuracy autonomous navigation algorithms are currently being qualified in conjunction with the GPS attitude determination flyer (GADFLY) experiment for the small satellite technology initiative Lewis spacecraft. Preflight performance assessments indicated that these algorithms are able to provide a real time total position accuracy of better than 10 m and a velocity accuracy of better than 0.01 m/s, with selective availability at typical levels. It is expected that the position accuracy will be increased to 2 m if corrections are provided by the GPS wide area augmentation system.

  20. Evaluation on the performance of single and dual frequency low cost GPS module observation using geodetic antenna

    Directory of Open Access Journals (Sweden)

    Dedi Atunggal

    2018-06-01

    Full Text Available GPS modules have been used for various applications in recent years. Its early development came in parallel with the advancement of Unmanned Aerial Vehicle (UAV technology. Nowadays, it is also used in in geographic information system (GIS data acquisition/census, mapping surveys, structure stability monitoring systems and many other applications. GPS modules generally have several positioning features, including standard positioning service (SPS, static positioning, precise point positioning (PPP, post processing kinematic (PPK and real time kinematic (RTK GPS. GPS modules in general are only equipped with a microstrip-type antenna or better known as patch antenna. Results from related research show that GPS module with this type of antenna has sub meter accuracy when used for PPK or RTK GPS method. The use of geodetic antennas is very potential to increase GPS position accuracy by up to centimeter level. This paper discusses the evaluation of GPS module measurements with geodetic type antennas for precise positioning using RTK GPS. This paper is focused on the resolution of GPS cycle ambiguity that is often expressed by the term fixing ratio and the accuracy of measurement results obtained. To provide a comprehensive description of the performance of GPS module, in this research two types of GPS module were used; single and dual frequency. Both types of GPS modules were used to conduct simultaneous observation on an open and obstructed observation location.

  1. The Evolution of Global Positioning System (GPS) Technology.

    Science.gov (United States)

    Kumar, Sameer; Moore, Kevin B.

    2002-01-01

    Describes technological advances in the Global Positioning System (GPS), which is also known as the NAVSTAR GPS satellite constellation program developed in 1937, and changes in the nature of our world by GPS in the areas of agriculture, health, military, transportation, environment, wildlife biology, surveying and mapping, space applications, and…

  2. Location - Global Positioning System (GPS) Photos

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — Digital photos tagged with GPS location information. The St. Paul District maintains a digital library of over 10,000 GPS photos. Photos are often associated with...

  3. Data Integration from GPS and Inertial Navigation Systems for Pedestrians in Urban Area

    Directory of Open Access Journals (Sweden)

    Krzysztof Bikonis

    2013-09-01

    Full Text Available The GPS system is widely used in navigation and the GPS receiver can offer long-term stable absolute positioning information. The overall system performance depends largely on the signal environments. The position obtained from GPS is often degraded due to obstruction and multipath effect caused by buildings, city infrastructure and vegetation, whereas, the current performance achieved by inertial navigation systems (INS is still relatively poor due to the large inertial sensor errors. The complementary features of GPS and INS are the main reasons why integrated GPS/INS systems are becoming increasingly popular. GPS/INS systems offer a high data rate, high accuracy position and orientation that can work in all environments, particularly those where satellite availability is restricted. In the paper integration algorithm of GPS and INS systems data for pedestrians in urban area is presented. For data integration an Extended Kalman Filter (EKF algorithm is proposed. Complementary characteristics of GPS and INS with EKF can overcome the problem of huge INS drifts, GPS outages, dense multipath effect and other individual problems associated with these sensors.

  4. Environmental radiation monitoring system with GPS (global positioning system)

    International Nuclear Information System (INIS)

    Komoto, Itsuro

    2000-01-01

    This system combines a radiation monitoring car with GPS and a data processor (personal computer). It distributes the position information acquired through GPS to the data such as measured environmental radiation dose rate and energy spectrum. It also displays and edits the data for each measuring position on a map. Transmitting the data to the power station through mobile phone enables plan managers to easily monitor the environmental radiation dose rate nearby and proper emergency monitoring. (author)

  5. A GPS measurement system for precise satellite tracking and geodesy

    Science.gov (United States)

    Yunck, T. P.; Wu, S.-C.; Lichten, S. M.

    1985-01-01

    NASA is pursuing two key applications of differential positioning with the Global Positioning System (GPS): sub-decimeter tracking of earth satellites and few-centimeter determination of ground-fixed baselines. Key requirements of the two applications include the use of dual-frequency carrier phase data, multiple ground receivers to serve as reference points, simultaneous solution for use position and GPS orbits, and calibration of atmospheric delays using water vapor radiometers. Sub-decimeter tracking will be first demonstrated on the TOPEX oceanographic satellite to be launched in 1991. A GPS flight receiver together with at least six ground receivers will acquire delta range data from the GPS carriers for non-real-time analysis. Altitude accuracies of 5 to 10 cm are expected. For baseline measurements, efforts will be made to obtain precise differential pseudorange by resolving the cycle ambiguity in differential carrier phase. This could lead to accuracies of 2 or 3 cm over a few thousand kilometers. To achieve this, a high-performance receiver is being developed, along with improved calibration and data processing techniques. Demonstrations may begin in 1986.

  6. Connected motorcycle system performance.

    Science.gov (United States)

    2016-01-15

    This project characterized the performance of Connected Vehicle Systems (CVS) on motorcycles based on two key components: global positioning and wireless communication systems. Considering that Global Positioning System (GPS) and 5.9 GHz Dedicated Sh...

  7. Rip current monitoring using GPS buoy system

    Science.gov (United States)

    Song, DongSeob; Kim, InHo; Kang, DongSoo

    2014-05-01

    The occurrence of rip current in the Haeundae beach, which is one of the most famous beaches in South Korea, has been threatening beach-goers security in summer season annually. Many coastal scientists have been investigating rip currents by using field observations and measurements, laboratory measurements and wave tank experiments, and computer and numerical modeling. Rip current velocity is intermittent and may rapidly increase within minutes due to larger incoming wave groups or nearshore circulation instabilities. It is important to understand that changes in rip current velocity occur in response to changes in incoming wave height and period as well as changes in water level. GPS buoys have been used to acquire sea level change data, atmospheric parameters and other oceanic variables in sea for the purposes of vertical datum determination, tide correction, radar altimeter calibration, ocean environment and marine pollution monitoring. Therefore, we adopted GPS buoy system for an experiment which is to investigate rip current velocity; it is sporadic and may quickly upsurge within minutes due to larger arriving wave groups or nearshore flow uncertainties. In this study, for high accurate positioning of buy equipment, a Satellite Based Argumentation System DGPS data logger was deployed to investigate within floating object, and it can be acquired three-dimensional coordinate or geodetic position of buoy with continuous NMEA-0183 protocol during 24 hours. The wave height measured by in-situ hydrometer in a cross-shore array clearly increased before and after occurrence of rip current, and wave period also was lengthened around an event. These results show that wave height and period correlate reasonably well with long-shore current interaction in the Haeundae beach. Additionally, current meter data and GPS buoy data showed that rip current velocities, about 0.2 m/s, may become dangerously strong under specific conditions. Acknowledgement This research was

  8. Positioning performance of the NTCM model driven by GPS Klobuchar model parameters

    Science.gov (United States)

    Hoque, Mohammed Mainul; Jakowski, Norbert; Berdermann, Jens

    2018-03-01

    Users of the Global Positioning System (GPS) utilize the Ionospheric Correction Algorithm (ICA) also known as Klobuchar model for correcting ionospheric signal delay or range error. Recently, we developed an ionosphere correction algorithm called NTCM-Klobpar model for single frequency GNSS applications. The model is driven by a parameter computed from GPS Klobuchar model and consecutively can be used instead of the GPS Klobuchar model for ionospheric corrections. In the presented work we compare the positioning solutions obtained using NTCM-Klobpar with those using the Klobuchar model. Our investigation using worldwide ground GPS data from a quiet and a perturbed ionospheric and geomagnetic activity period of 17 days each shows that the 24-hour prediction performance of the NTCM-Klobpar is better than the GPS Klobuchar model in global average. The root mean squared deviation of the 3D position errors are found to be about 0.24 and 0.45 m less for the NTCM-Klobpar compared to the GPS Klobuchar model during quiet and perturbed condition, respectively. The presented algorithm has the potential to continuously improve the accuracy of GPS single frequency mass market devices with only little software modification.

  9. Performance Evaluation of Block Acquisition and Tracking Algorithms Using an Open Source GPS Receiver Platform

    Science.gov (United States)

    Ramachandran, Ganesh K.; Akopian, David; Heckler, Gregory W.; Winternitz, Luke B.

    2011-01-01

    Location technologies have many applications in wireless communications, military and space missions, etc. US Global Positioning System (GPS) and other existing and emerging Global Navigation Satellite Systems (GNSS) are expected to provide accurate location information to enable such applications. While GNSS systems perform very well in strong signal conditions, their operation in many urban, indoor, and space applications is not robust or even impossible due to weak signals and strong distortions. The search for less costly, faster and more sensitive receivers is still in progress. As the research community addresses more and more complicated phenomena there exists a demand on flexible multimode reference receivers, associated SDKs, and development platforms which may accelerate and facilitate the research. One of such concepts is the software GPS/GNSS receiver (GPS SDR) which permits a facilitated access to algorithmic libraries and a possibility to integrate more advanced algorithms without hardware and essential software updates. The GNU-SDR and GPS-SDR open source receiver platforms are such popular examples. This paper evaluates the performance of recently proposed block-corelator techniques for acquisition and tracking of GPS signals using open source GPS-SDR platform.

  10. A Performance Improvement Method for Low-Cost Land Vehicle GPS/MEMS-INS Attitude Determination

    Directory of Open Access Journals (Sweden)

    Li Cong

    2015-03-01

    Full Text Available Global positioning system (GPS technology is well suited for attitude determination. However, in land vehicle application, low-cost single frequency GPS receivers which have low measurement quality are often used, and external factors such as multipath and low satellite visibility in the densely built-up urban environment further degrade the quality of the GPS measurements. Due to the low-quality receivers used and the challenging urban environment, the success rate of the single epoch ambiguity resolution for dynamic attitude determination is usually quite low. In this paper, a micro-electro-mechanical system (MEMS—inertial navigation system (INS-aided ambiguity resolution method is proposed to improve the GPS attitude determination performance, which is particularly suitable for land vehicle attitude determination. First, the INS calculated baseline vector is augmented with the GPS carrier phase and code measurements. This improves the ambiguity dilution of precision (ADOP, resulting in better quality of the unconstrained float solution. Second, the undesirable float solutions caused by large measurement errors are further filtered and replaced using the INS-aided ambiguity function method (AFM. The fixed solutions are then obtained by the constrained least squares ambiguity decorrelation (CLAMBDA algorithm. Finally, the GPS/MEMS-INS integration is realized by the use of a Kalman filter. Theoretical analysis of the ADOP is given and experimental results demonstrate that our proposed method can significantly improve the quality of the float ambiguity solution, leading to high success rate and better accuracy of attitude determination.

  11. A Performance Improvement Method for Low-Cost Land Vehicle GPS/MEMS-INS Attitude Determination

    Science.gov (United States)

    Cong, Li; Li, Ercui; Qin, Honglei; Ling, Keck Voon; Xue, Rui

    2015-01-01

    Global positioning system (GPS) technology is well suited for attitude determination. However, in land vehicle application, low-cost single frequency GPS receivers which have low measurement quality are often used, and external factors such as multipath and low satellite visibility in the densely built-up urban environment further degrade the quality of the GPS measurements. Due to the low-quality receivers used and the challenging urban environment, the success rate of the single epoch ambiguity resolution for dynamic attitude determination is usually quite low. In this paper, a micro-electro-mechanical system (MEMS)—inertial navigation system (INS)-aided ambiguity resolution method is proposed to improve the GPS attitude determination performance, which is particularly suitable for land vehicle attitude determination. First, the INS calculated baseline vector is augmented with the GPS carrier phase and code measurements. This improves the ambiguity dilution of precision (ADOP), resulting in better quality of the unconstrained float solution. Second, the undesirable float solutions caused by large measurement errors are further filtered and replaced using the INS-aided ambiguity function method (AFM). The fixed solutions are then obtained by the constrained least squares ambiguity decorrelation (CLAMBDA) algorithm. Finally, the GPS/MEMS-INS integration is realized by the use of a Kalman filter. Theoretical analysis of the ADOP is given and experimental results demonstrate that our proposed method can significantly improve the quality of the float ambiguity solution, leading to high success rate and better accuracy of attitude determination. PMID:25760057

  12. GNSS global navigation satellite systems : GPS, GLONASS, Galileo, and more

    CERN Document Server

    Hofmann-Wellenhof, Bernhard; Wasle, Elmar

    2008-01-01

    This book is an extension to the acclaimed scientific bestseller "GPS - Theory and Practice". It covers Global Navigation Satellite Systems (GNSS) and includes the Russian GLONASS, the European system Galileo, and additional systems.

  13. Global Positioning System (GPS) Energetic Particle Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Energetic particle data from the CXD and BDD instrument on the GPS constellation are available to the space weather research community. The release of these data...

  14. Localization system for use in GPS denied environments

    Energy Technology Data Exchange (ETDEWEB)

    Trueblood, J. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-01

    The military uses to autonomous platforms to complete missions to provide standoff for the warfighters. However autonomous platforms rely on GPS to provide their global position. In many missions spaces the autonomous platforms may encounter GPS denied environments which limits where the platform operates and requires the warfighters to takes its place. GPS denied environments can occur due to tall building, trees, canyon wall blocking the GPS satellite signals or a lack of coverage. An Inertial Navigation System (INS) uses sensors to detect the vehicle movement and direction its traveling to calculate the vehicle. One of biggest challenges with an INS system is the accuracy and accumulation of errors over time of the sensors. If these challenges can be overcome the INS would provide accurate positioning information to the autonomous vehicle in GPS denied environments and allow them to provide the desired standoff for the warfighters.

  15. Reinforced Ultra-Tightly Coupled GPS/INS System for Challenging Environment

    Directory of Open Access Journals (Sweden)

    Xueyun Wang

    2014-01-01

    Full Text Available Among all integration levels currently available for Global Positioning System (GPS and Inertial Navigation System (INS Integrated System, ultra-tightly coupled (UTC GPS/INS system is the best choice for accurate and reliable navigation. Nevertheless the performance of UTC GPS/INS system degrades in challenging environments, such as jamming, changing noise of GPS signals, and high dynamic maneuvers. When low-end Inertial Measurement Units (IMUs based on MEMS sensors are employed, the performance degradation will be more severe. To solve this problem, a reinforced UTC GPS/INS system is proposed. Two techniques are adopted to deal with jamming and high dynamics. Firstly, adaptive integration Kalman filter (IKF based on fuzzy logics is developed to reinforce the antijamming ability. The parameters of membership functions (MFs are adjusted and optimized through self-developed neutral network. Secondly, a Doppler frequency error estimator based on Kalman filter is designed to improve the navigation performance under high dynamics. A complete simulation platform is established to evaluate the reinforced system. Results demonstrate that the proposed system architecture significantly improves navigation performance in challenging environments and it is a more advanced solution to accurate and reliable navigation than traditional UTC GPS/INS system.

  16. Performance Enhancement of Land Vehicle Positioning Using Multiple GPS Receivers in an Urban Area

    Directory of Open Access Journals (Sweden)

    Jong-Hwa Song

    2016-10-01

    Full Text Available The Global Positioning System (GPS is the most widely used navigation system in land vehicle applications. In urban areas, the GPS suffers from insufficient signal strength, multipath propagation and non-line-of-sight (NLOS errors, so it thus becomes difficult to obtain accurate and reliable position information. In this paper, an integration algorithm for multiple receivers is proposed to enhance the positioning performance of GPS for land vehicles in urban areas. The pseudoranges of multiple receivers are integrated based on a tightly coupled approach, and erroneous measurements are detected by testing the closeness of the pseudoranges. In order to fairly compare the pseudoranges, GPS errors and terms arising due to the differences between the positions of the receivers need to be compensated. The double-difference technique is used to eliminate GPS errors in the pseudoranges, and the geometrical distance is corrected by projecting the baseline vector between pairs of receivers. In order to test and analyze the proposed algorithm, an experiment involving live data was performed. The positioning performance of the algorithm was compared with that of the receiver autonomous integrity monitoring (RAIM-based integration algorithm for multiple receivers. The test results showed that the proposed algorithm yields more accurate position information in urban areas.

  17. A New Indoor Positioning System Architecture Using GPS Signals.

    Science.gov (United States)

    Xu, Rui; Chen, Wu; Xu, Ying; Ji, Shengyue

    2015-04-29

    The pseudolite system is a good alternative for indoor positioning systems due to its large coverage area and accurate positioning solution. However, for common Global Positioning System (GPS) receivers, the pseudolite system requires some modifications of the user terminals. To solve the problem, this paper proposes a new pseudolite-based indoor positioning system architecture. The main idea is to receive real-world GPS signals, repeat each satellite signal and transmit those using indoor transmitting antennas. The transmitted GPS-like signal can be processed (signal acquisition and tracking, navigation data decoding) by the general receiver and thus no hardware-level modification on the receiver is required. In addition, all Tx can be synchronized with each other since one single clock is used in Rx/Tx. The proposed system is simulated using a software GPS receiver. The simulation results show the indoor positioning system is able to provide high accurate horizontal positioning in both static and dynamic situations.

  18. GPS-based satellite tracking system for precise positioning

    Science.gov (United States)

    Yunck, T. P.; Melbourne, W. G.; Thornton, C. L.

    1985-01-01

    NASA is developing a Global Positioning System (GPS) based measurement system to provide precise determination of earth satellite orbits, geodetic baselines, ionospheric electron content, and clock offsets between worldwide tracking sites. The system will employ variations on the differential GPS observing technique and will use a network of nine fixed ground terminals. Satellite applications will require either a GPS flight receiver or an on-board GPS beacon. Operation of the system for all but satellite tracking will begin by 1988. The first major satellite application will be a demonstration of decimeter accuracy in determining the altitude of TOPEX in the early 1990's. By then the system is expected to yield long-baseline accuracies of a few centimeters and instantaneous time synchronization to 1 ns.

  19. Assessing the role of GPs in Nordic health care systems.

    Science.gov (United States)

    Quaye, Randolph K

    2016-05-03

    Purpose This paper examines the changing role of general practitioners (GPs) in Nordic countries of Sweden, Norway and Denmark. It aims to explore the "gate keeping" role of GPs in the face of current changes in the health care delivery systems in these countries. Design/methodology/approach Data were collected from existing literature, interviews with GPs, hospital specialists and representatives of Danish regions and Norwegian Medical Association. Findings The paper contends that in all these changes, the position of the GPs in the medical division of labor has been strengthened, and patients now have increased and broadened access to choice. Research limitations/implications Health care cost and high cancer mortality rates have forced Nordic countries of Sweden, Norway and Denmark to rethink their health care systems. Several attempts have been made to reduce health care cost through market reform and by strenghtening the position of GPs. The evidence suggests that in Norway and Denmark, right incentives are in place to achieve this goal. Sweden is not far behind. The paper has limitations of a small sample size and an exclusive focus on GPs. Practical implications Anecdotal evidence suggests that physicians are becoming extremely unhappy. Understanding the changing status of primary care physicians will yield valuable information for assessing the effectiveness of Nordic health care delivery systems. Social implications This study has wider implications of how GPs see their role as potential gatekeepers in the Nordic health care systems. The role of GPs is changing as a result of recent health care reforms. Originality/value This paper contends that in Norway and Denmark, right incentives are in place to strengthen the position of GPs.

  20. Wireless GPS fleet tracking system at the University of Albany.

    Science.gov (United States)

    2014-07-01

    This report provides an overview of the project undertaken at the University at Albany to make alternative transportation a more : viable option by implementing a GPS Tracking System on the University bus fleet and broadcasting the bus locations to c...

  1. GPS-Based Highway Performance Monitoring Performance Monitoring Using GPS: Characterization of Travel Speeds on any Roadway Segment

    OpenAIRE

    Kornhauser, Alain L.

    2012-01-01

    Presented is a characterization of travel speed on any roadway segment based on probe vehicle position data. Most of the characterization is based position data obtained from GPS receivers because of their high precision and their increasing availability. Comparison is also made to Qualcomm’s Automatic Satellite Position Reporting (QASPR) system because of its long history (10+ years) of extensive use by the long-haul trucking industry. Described is the use of these data in conjunction with d...

  2. Development of GPS data remote retrieval system using wireless LAN

    Directory of Open Access Journals (Sweden)

    Koichiro Doi

    2012-11-01

    Full Text Available A remote retrieval system, using a wireless LAN, was developed to retrieve dual-frequency GPS data. The system consists of a ground observation unit (comprising a dual-frequency GPS logger and a data transmission unit and a data retrieval unit. In this system, we use the ZigBee communication protocol to transmit control commands (2.4 GHz, 250 Kbps and a wireless LAN communication to transmit GPS data (2.4 GHz, 54 Mbps. Data of every 30 seconds to transmit to the data retrieval unit are re-sampled from 1-second data at 00 UT each day. We conducted three data-transmission tests with the system: (1 a ground data retrieval test, (2 a data retrieval test from the atmosphere of a few hundred meters high using a small unmanned aircraft, and (3 actual GPS-data retrieval tests from a GPS buoy deployed on sea ice at Nisi-no-ura Cove, Syowa Station, Antarctica. In test (1, we successfully received all the data from the ground observation unit when situated at distances of less than 400 m from the data retrieval unit. In test (2, we obtained approximately 24.5 MB of data from the aircraft at heights of less than 250 m. In test (3, we obtained approximately 23.5 MB of data from the GPS buoy within 10 minutes. The proposed system has the advantage of enabling continuous measurements without aborting the measurement at the data retrievals.

  3. Comparison of attitude determination approaches using multiple Global Positioning System (GPS antennas

    Directory of Open Access Journals (Sweden)

    Wang Bing

    2013-02-01

    Full Text Available GPS-based attitude system is an important research field, since it is a valuable technique for the attitude determination of platforms. There exist two classes approaches for attitude determination using the GPS. The one determines attitude via baseline estimates in two frames, the other one solves for attitude by incorporating the attitude parameters directly into the GPS measurements. However, comparisons between these two classes approaches have been unexplored. First of all, two algorithms are introduced in detail which on behalf of these two kinds of approaches. Then we present numerical simulations demonstrating the performance of our algorithms and provide a comparison evaluating.

  4. Application of GPS systems on a mobile robot

    Science.gov (United States)

    Cao, Peter; Saxena, Mayank; Tedder, Maurice; Mischalske, Steve; Hall, Ernest L.

    2001-10-01

    The purpose of this paper is to describe the use of Global Positioning Systems (GPS) as geographic information and navigational system for a ground based mobile robot. Several low cost wireless systems are now available for a variety of innovative automobile applications including location, messaging and tracking and security. Experiments were conducted with a test bed mobile robot, Bearcat II, for point-to-point motion using a Motorola GPS in June 2001. The Motorola M12 Oncore GPS system is connected to the Bearcat II main control computer through a RS232 interface. A mapping program is used to define a desired route. Then GPS information may be displayed for verification. However, the GPS information is also used to update the control points of the mobile robot using a reinforcement learning method. Local position updates are also used when found in the environment. The significance of the method is in extending the use of GPS to local vehicle control that requires more resolution that is available from the raw data using the adaptive control method.

  5. Retained satellite information influences performance of GPS devices in a forested ecosystem

    Science.gov (United States)

    Katie M. Moriarty; Clinton W. Epps

    2015-01-01

    Global Positioning System (GPS) units used in animal telemetry often suffer from nonrandom data loss and location error. GPS units use stored satellite information to estimate locations, including almanac and ephemeris data reflecting satellite positions at weekly and at <4-hr temporal scales, respectively. Using the smallest GPS collars (45–51 g) available for...

  6. GPS-based tracking system for TOPEX orbit determination

    Science.gov (United States)

    Melbourne, W. G.

    1984-01-01

    A tracking system concept is discussed that is based on the utilization of the constellation of Navstar satellites in the Global Positioning System (GPS). The concept involves simultaneous and continuous metric tracking of the signals from all visible Navstar satellites by approximately six globally distributed ground terminals and by the TOPEX spacecraft at 1300-km altitude. Error studies indicate that this system could be capable of obtaining decimeter position accuracies and, most importantly, around 5 cm in the radial component which is key to exploiting the full accuracy potential of the altimetric measurements for ocean topography. Topics covered include: background of the GPS, the precision mode for utilization of the system, past JPL research for using the GPS in precision applications, the present tracking system concept for high accuracy satellite positioning, and results from a proof-of-concept demonstration.

  7. GPS water level measurements for Indonesia's Tsunami Early Warning System

    Directory of Open Access Journals (Sweden)

    T. Schöne

    2011-03-01

    Full Text Available On Boxing Day 2004, a severe tsunami was generated by a strong earthquake in Northern Sumatra causing a large number of casualties. At this time, neither an offshore buoy network was in place to measure tsunami waves, nor a system to disseminate tsunami warnings to local governmental entities. Since then, buoys have been developed by Indonesia and Germany, complemented by NOAA's Deep-ocean Assessment and Reporting of Tsunamis (DART buoys, and have been moored offshore Sumatra and Java. The suite of sensors for offshore tsunami detection in Indonesia has been advanced by adding GPS technology for water level measurements.

    The usage of GPS buoys in tsunami warning systems is a relatively new approach. The concept of the German Indonesian Tsunami Early Warning System (GITEWS (Rudloff et al., 2009 combines GPS technology and ocean bottom pressure (OBP measurements. Especially for near-field installations where the seismic noise may deteriorate the OBP data, GPS-derived sea level heights provide additional information.

    The GPS buoy technology is precise enough to detect medium to large tsunamis of amplitudes larger than 10 cm. The analysis presented here suggests that for about 68% of the time, tsunamis larger than 5 cm may be detectable.

  8. BDS/GPS Dual Systems Positioning Based on the Modified SR-UKF Algorithm

    Directory of Open Access Journals (Sweden)

    JaeHyok Kong

    2016-05-01

    Full Text Available The Global Navigation Satellite System can provide all-day three-dimensional position and speed information. Currently, only using the single navigation system cannot satisfy the requirements of the system’s reliability and integrity. In order to improve the reliability and stability of the satellite navigation system, the positioning method by BDS and GPS navigation system is presented, the measurement model and the state model are described. Furthermore, the modified square-root Unscented Kalman Filter (SR-UKF algorithm is employed in BDS and GPS conditions, and analysis of single system/multi-system positioning has been carried out, respectively. The experimental results are compared with the traditional estimation results, which show that the proposed method can perform highly-precise positioning. Especially when the number of satellites is not adequate enough, the proposed method combine BDS and GPS systems to achieve a higher positioning precision.

  9. Error and Performance Analysis of MEMS-based Inertial Sensors with a Low-cost GPS Receiver

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2008-03-01

    Full Text Available Global Navigation Satellite Systems (GNSS, such as the Global Positioning System (GPS, have been widely utilized and their applications are becoming popular, not only in military or commercial applications, but also for everyday life. Although GPS measurements are the essential information for currently developed land vehicle navigation systems (LVNS, GPS signals are often unavailable or unreliable due to signal blockages under certain environments such as urban canyons. This situation must be compensated in order to provide continuous navigation solutions. To overcome the problems of unavailability and unreliability using GPS and to be cost and size effective as well, Micro Electro Mechanical Systems (MEMS based inertial sensor technology has been pushing for the development of low-cost integrated navigation systems for land vehicle navigation and guidance applications. This paper will analyze the characterization of MEMS based inertial sensors and the performance of an integrated system prototype of MEMS based inertial sensors, a low-cost GPS receiver and a digital compass. The influence of the stochastic variation of sensors will be assessed and modeled by two different methods, namely Gauss-Markov (GM and AutoRegressive (AR models, with GPS signal blockage of different lengths. Numerical results from kinematic testing have been used to assess the performance of different modeling schemes.

  10. Rail inspection system based on iGPS

    Science.gov (United States)

    Fu, Xiaoyan; Wang, Mulan; Wen, Xiuping

    2018-05-01

    Track parameters include gauge, super elevation, cross level and so on, which could be calculated through the three-dimensional coordinates of the track. The rail inspection system based on iGPS (indoor/infrared GPS) was composed of base station, receiver, rail inspection frame, wireless communication unit, display and control unit and data processing unit. With the continuous movement of the inspection frame, the system could accurately inspect the coordinates of rail; realize the intelligent detection and precision measurement. According to principle of angle intersection measurement, the inspection model was structured, and detection process was given.

  11. Study on index system of GPS interference effect evaluation

    Science.gov (United States)

    Zhang, Kun; Zeng, Fangling; Zhao, Yuan; Zeng, Ruiqi

    2018-05-01

    Satellite navigation interference effect evaluation is the key technology to break through the research of Navigation countermeasure. To evaluate accurately the interference degree and Anti-jamming ability of GPS receiver, this text based on the existing research results of Navigation interference effect evaluation, build the index system of GPS receiver effectiveness evaluation from four levels of signal acquisition, tracking, demodulation and positioning/timing and establish the model for each index. These indexes can accurately and quantitatively describe the interference effect at all levels.

  12. Communication plan of GPS monitoring system based on the Internet

    Science.gov (United States)

    Xing, Xiangpeng; Liu, Zhenan; Bao, Yuanlu

    2005-11-01

    In GPS monitoring system, wireless communications network is necessary to keep base station in contact with mobile stations. Public communications network and personal communications network can't work well all the time. In this article, an economical communications network that can be competent for communication of GPS monitoring system is introduced. Personal communications network is used in this GPS monitoring system. In order to enlarge the coverage area and to expand the capacity of the personal communications network, the concept of cellular radio system is introduced. Because only the non-adjacent cells can use the same frequency channel, handoff of mobile station is extremely important when it goes in another cell. The mobile station of the system will know its own longitude and latitude by receiving data from GPS satellites all the time, so it can change its working frequency channel according to its position. Internet, instead of personal communication cable, is used to connect the base stations. So the communications network has the advantage of public communications network and personal one.

  13. Automatic radiation measuring system connected with GPS

    International Nuclear Information System (INIS)

    Tanigaki, Minoru

    2014-01-01

    The most serious nuclear disaster in Japan has broken out at Fukushima Daiichi Nuclear Power Plant due to Great East Japan Earthquake. Prompt and exact mapping of the contamination is of great importance for radiation protection and for the environment restoration. We have developed radiation survey systems KURAMA and KURAMA-2 for rapid and exact measurement of radiation dose distribution. The system is composed of a mobile radiation monitor and the computer in office which is for the storage and visualization of the data. They are connected with internet and are operated for continuous radiation measurement while the monitor is moving. The mobile part consists of a survey meter, an interface to transform the output of the survey meter for the computer, a global positioning system, a computer to process the data for connecting to the network, and a mobile router. Thus they are effective for rapid mapping of the surface contamination. The operation and the performance of the equipment at the site are presented. (J.P.N.)

  14. Seamless Guidance System Combining GPS, BLE Beacon, and NFC Technologies

    Directory of Open Access Journals (Sweden)

    Rung-Shiang Cheng

    2016-01-01

    Full Text Available Users rely increasingly on Location-Based Services (LBS and automated navigation/guidance systems nowadays. However, while such services are easily implemented in outdoor environments using Global Positioning System (GPS technology, a requirement still exists for accurate localization and guidance schemes in indoor settings. Accordingly, the present study proposes a system based on GPS, Bluetooth Low Energy (BLE beacons, and Near Field Communication (NFC technology. Through establishing graphic information and the design of algorithm, this study develops a guidance system for indoors and outdoors on smart phones, wishing to give user perfect smart life through this system. The proposed system is implemented on a smart phone and evaluated on a student campus environment. The experimental results confirm the ability of the proposed app to switch automatically from an outdoor mode to an indoor mode and to guide the user to requested target destination via the shortest possible route.

  15. Norwegians GPs' use of electronic patient record systems.

    Science.gov (United States)

    Christensen, Tom; Faxvaag, Arild; Loerum, Hallvard; Grimsmo, Anders

    2009-12-01

    To evaluate GPs use of three major electronic patient record systems with emphasis on the ability of the systems to support important clinical tasks and to compare the findings with results from a study of the three major hospital-wide systems. A national, cross-sectional questionnaire survey was conducted in Norwegian primary care. 247 (73%) of 338 GPs responded. Proportions of the respondents who reported to use the EPR system to conduct 23 central clinical tasks, differences in the proportions of users of different EPR systems and user satisfaction and perceived usefulness of the EPR system were measured. The GPs reported extensive use of their EPR systems to support clinical tasks. There were no significant differences in functionality between the systems, but there were differences in reported software and hardware dysfunction and user satisfaction. The respondents reported high scores in computer literacy and there was no correlation between computer usage and respondent age or gender. A comparison with hospital physicians' use of three hospital-wide EPR systems revealed that GPs had higher usage than the hospital-based MDs. Primary care EPR systems support clinical tasks far better than hospital systems with better overall user satisfaction and reported impact on the overall quality of the work. EPR systems in Norwegian primary care that have been developed in accordance with the principles of user-centered design have achieved widespread adoption and highly integrated use. The quality and efficiency of the clinical work has increased in contrast to the situation of their hospital colleagues, who report more modest use and benefits of EPR systems.

  16. Performance Analysis of Several GPS/Galileo Precise Point Positioning Models.

    Science.gov (United States)

    Afifi, Akram; El-Rabbany, Ahmed

    2015-06-19

    This paper examines the performance of several precise point positioning (PPP) models, which combine dual-frequency GPS/Galileo observations in the un-differenced and between-satellite single-difference (BSSD) modes. These include the traditional un-differenced model, the decoupled clock model, the semi-decoupled clock model, and the between-satellite single-difference model. We take advantage of the IGS-MGEX network products to correct for the satellite differential code biases and the orbital and satellite clock errors. Natural Resources Canada's GPSPace PPP software is modified to handle the various GPS/Galileo PPP models. A total of six data sets of GPS and Galileo observations at six IGS stations are processed to examine the performance of the various PPP models. It is shown that the traditional un-differenced GPS/Galileo PPP model, the GPS decoupled clock model, and the semi-decoupled clock GPS/Galileo PPP model improve the convergence time by about 25% in comparison with the un-differenced GPS-only model. In addition, the semi-decoupled GPS/Galileo PPP model improves the solution precision by about 25% compared to the traditional un-differenced GPS/Galileo PPP model. Moreover, the BSSD GPS/Galileo PPP model improves the solution convergence time by about 50%, in comparison with the un-differenced GPS PPP model, regardless of the type of BSSD combination used. As well, the BSSD model improves the precision of the estimated parameters by about 50% and 25% when the loose and the tight combinations are used, respectively, in comparison with the un-differenced GPS-only model. Comparable results are obtained through the tight combination when either a GPS or a Galileo satellite is selected as a reference.

  17. Forecasting Space Weather-Induced GPS Performance Degradation Using Random Forest

    Science.gov (United States)

    Filjar, R.; Filic, M.; Milinkovic, F.

    2017-12-01

    Space weather and ionospheric dynamics have a profound effect on positioning performance of the Global Satellite Navigation System (GNSS). However, the quantification of that effect is still the subject of scientific activities around the world. In the latest contribution to the understanding of the space weather and ionospheric effects on satellite-based positioning performance, we conducted a study of several candidates for forecasting method for space weather-induced GPS positioning performance deterioration. First, a 5-days set of experimentally collected data was established, encompassing the space weather and ionospheric activity indices (including: the readings of the Sudden Ionospheric Disturbance (SID) monitors, components of geomagnetic field strength, global Kp index, Dst index, GPS-derived Total Electron Content (TEC) samples, standard deviation of TEC samples, and sunspot number) and observations of GPS positioning error components (northing, easting, and height positioning error) derived from the Adriatic Sea IGS reference stations' RINEX raw pseudorange files in quiet space weather periods. This data set was split into the training and test sub-sets. Then, a selected set of supervised machine learning methods based on Random Forest was applied to the experimentally collected data set in order to establish the appropriate regional (the Adriatic Sea) forecasting models for space weather-induced GPS positioning performance deterioration. The forecasting models were developed in the R/rattle statistical programming environment. The forecasting quality of the regional forecasting models developed was assessed, and the conclusions drawn on the advantages and shortcomings of the regional forecasting models for space weather-caused GNSS positioning performance deterioration.

  18. Evaluation of Mobile Phone Interference With Aircraft GPS Navigation Systems

    Science.gov (United States)

    Pace, Scott; Oria, A. J.; Guckian, Paul; Nguyen, Truong X.

    2004-01-01

    This report compiles and analyzes tests that were conducted to measure cell phone spurious emissions in the Global Positioning System (GPS) radio frequency band that could affect the navigation system of an aircraft. The cell phone in question had, as reported to the FAA (Federal Aviation Administration), caused interference to several GPS receivers on-board a small single engine aircraft despite being compliant with data filed at the time with the FCC by the manufacturer. NASA (National Aeronautics and Space Administration) and industry tests show that while there is an emission in the 1575 MHz GPS band due to a specific combination of amplifier output impedance and load impedance that induces instability in the power amplifier, these spurious emissions (i.e., not the intentional transmit signal) are similar to those measured on non-intentionally transmitting devices such as, for example, laptop computers. Additional testing on a wide sample of different commercial cell phones did not result in any emission in the 1575 MHz GPS Band above the noise floor of the measurement receiver.

  19. IAE-adaptive Kalman filter for INS/GPS integrated navigation system

    Institute of Scientific and Technical Information of China (English)

    Bian Hongwei; Jin Zhihua; Tian Weifeng

    2006-01-01

    A marine INS/GPS adaptive navigation system is presented in this paper. GPS with two antenna providing vessel's altitude is selected as the auxiliary system fusing with INS to improve the performance of the hybrid system. The Kalman filter is the most frequently used algorithm in the integrated navigation system, which is capable of estimating INS errors online based on the measured errors between INS and GPS. The standard Kalman filter (SKF) assumes that the statistics of the noise on each sensor are given. As long as the noise distributions do not change, the Kalman filter will give the optimal estimation. However GPS receiver will be disturbed easily and thus temporally changing measurement noise will join into the outputs of GPS, which will lead to performance degradation of the Kalman filter. Many researchers introduce fuzzy logic control method into innovation-based adaptive estimation adaptive Kalman filtering (IAE-AKF) algorithm, and accordingly propose various adaptive Kalman filters. However how to design the fuzzy logic controller is a very complicated problem still without a convincing solution. A novel IAE-AKF is proposed herein, which is based on the maximum likelihood criterion for the proper computation of the filter innovation covariance and hence of the filter gain. The approach is direct and simple without having to establish fuzzy inference rules. After having deduced the proposed IAE-AKF algorithm theoretically in detail, the approach is tested by the simulation based on the system error model of the developed INS/GPS integrated marine navigation system. Simulation results show that the adaptive Kalman filter outperforms the SKF with higher accuracy, robustness and less computation. It is demonstrated that this proposed approach is a valid solution for the unknown changing measurement noise exited in the Kalman filter.

  20. Use and Protection of GPS Sidelobe Signals for Enhanced Navigation Performance in High Earth Orbit

    Science.gov (United States)

    Parker, Joel J. K.; Valdez, Jennifer E.; Bauer, Frank H.; Moreau, Michael C.

    2016-01-01

    GPS (Global Positioning System) Space Service Volume (SSV) signal environment is from 3,000-36,000 kilometers altitude. Current SSV specifications only capture performance provided by signals transmitted within 23.5(L1) or 26(L2-L5) off-nadir angle. Recent on-orbit data lessons learned show significant PNT (Positioning, Navigation and Timing) performance improvements when the full aggregate signal is used. Numerous military civil operational missions in High Geosynchronous Earth Orbit (HEOGEO) utilize the full signal to enhance vehicle PNT performance

  1. Adaptive Federal Kalman Filtering for SINS/GPS Integrated System

    Institute of Scientific and Technical Information of China (English)

    杨勇; 缪玲娟

    2003-01-01

    A new adaptive federal Kalman filter for a strapdown integrated navigation system/global positioning system (SINS/GPS) is given. The developed federal Kalman filter is based on the trace operation of parameters estimation's error covariance matrix and the spectral radius of update measurement noise variance-covariance matrix for the proper choice of the filter weight and hence the filter gain factors. Theoretical analysis and results from simulation in which the SINS/GPS was compared to conventional Kalman filter are presented. Results show that the algorithm of this adaptive federal Kalman filter is simpler than that of the conventional one. Furthermore, it outperforms the conventional Kalman filter when the system is undertaken measurement malfunctions because of its possession of adaptive ability. This filter can be used in the vehicle integrated navigation system.

  2. Profile of English salaried GPs: labour mobility and practice performance.

    Science.gov (United States)

    Ding, Alexander; Hann, Mark; Sibbald, Bonnie

    2008-01-01

    Recent national policy changes have provided greater flexibility in GPs' contracts. One such policy is salaried employment, which offers reduced hours and freedom from out-of-hours and administrative responsibilities, aimed at improving recruitment and retention in a labour market facing regional shortages. To profile salaried GPs and assess their mobility within the labour market. Serial cross-sectional study. All GPs practising in England during the years 1996/1997, 2000/2001, and 2004/2005. Descriptive analyses, logistic regression. Salaried GPs tended to be either younger ( or =65 years), female, or overseas-qualified; they favoured part-time working and personal medical services contracts. Salaried GPs were more mobile than GP principals, and have become increasingly so, despite a trend towards reduced overall mobility in the GP workforce. Practices with salaried GPs scored more Quality and Outcomes Framework points and were located in slightly more affluent areas. Salaried status appears to have reduced limitations in the labour market, leading to better workforce deployment from a GP's perspective. However, there is no evidence to suggest it has relieved inequalities in GP distribution.

  3. Pre- and post-flight radiation performance evaluation of the space GPS receiver (SGR)

    International Nuclear Information System (INIS)

    Oldfield, M.K.; Underwood, C.I.; Unwin, M.J.; Asenek, V.; Harboe-Sorensen, R.

    1999-01-01

    SSTL (Survey Satellite Technology Ltd), in collaboration with ESA/ESTEC, recently developed a state-of-the-art low cost GPS (Global Positioning System) receiver payload for use on small satellites. The space GPS Receiver (SGR), will be flown on the TiungSAT-1 micro-satellite, UoSAT-12 mini-satellite and ESA's PROBA satellite. The SGR payload is currently flying on the TMSAT micro-satellite in low Earth orbit (LEO) and has carried out autonomous on-board positioning whilst also providing an experimental test-bed for evaluating spacecraft attitude determination algorithms. In order to reduce development time and costs, the SGR consists solely of industry standard COTS (commercial off-the-shelf) devices. This paper describes the ground-based radiation testing of several payload-critical COTS devices used in the SGR payload and describes its on-orbit performance. (authors)

  4. 78 FR 13396 - 90th Meeting: RTCA Special Committee 159, Global Positioning Systems (GPS)

    Science.gov (United States)

    2013-02-27

    ... 159, Global Positioning Systems (GPS) AGENCY: Federal Aviation Administration (FAA), U.S. Department... 159, Global Positioning Systems (GPS) SUMMARY: The FAA is issuing this notice to advise the public of the eighty-ninth meeting of the RTCA Special Committee 159, Global Positioning Systems (GPS). DATES...

  5. 75 FR 2581 - Eighty-First Meeting: RTCA Special Committee 159: Global Positioning System (GPS)

    Science.gov (United States)

    2010-01-15

    ... Committee 159: Global Positioning System (GPS) AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 159 meeting: Global Positioning System (GPS). SUMMARY: The FAA is... System (GPS). DATES: The meeting will be held February 2-5, 2010, from 9 a.m. to 4:30 p.m. (unless stated...

  6. 76 FR 27744 - Eighty-Fifth Meeting: RTCA Special Committee 159: Global Positioning System (GPS)

    Science.gov (United States)

    2011-05-12

    ... Committee 159: Global Positioning System (GPS) AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 159 meeting: Global Positioning System (GPS). SUMMARY: The FAA is... System (GPS). DATES: The meeting will be held May 26, 2011, from 9 a.m. to 11:45 a.m. ADDRESSES: The...

  7. 76 FR 67019 - Eighty-Seventh: RTCA Special Committee 159: Global Positioning System (GPS)

    Science.gov (United States)

    2011-10-28

    ... Committee 159: Global Positioning System (GPS) AGENCY: Federal Aviation Administration (FAA), U.S... System (GPS). SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 159: Global Positioning System (GPS) 87th meeting. DATES: The meeting will be held November 14-18...

  8. 76 FR 33022 - Eighty-Sixth Meeting: RTCA Special Committee 159: Global Positioning System (GPS)

    Science.gov (United States)

    2011-06-07

    ... Committee 159: Global Positioning System (GPS) AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 159 meeting: Global Positioning System (GPS). SUMMARY: The FAA is... System (GPS). DATES: The meeting will be held June 13-17, 2011, from 9 a.m. to 4:30 p.m. ADDRESSES: The...

  9. 78 FR 57672 - 91st Meeting: RTCA Special Committee 159, Global Positioning Systems (GPS)

    Science.gov (United States)

    2013-09-19

    ... 159, Global Positioning Systems (GPS) AGENCY: Federal Aviation Administration (FAA), U.S. Department... 159, Global Positioning Systems (GPS). SUMMARY: The FAA is issuing this notice to advise the public of the ninety-first meeting of the RTCA Special Committee 159, Global Positioning Systems (GPS) DATES...

  10. 77 FR 12106 - 88th Meeting: RTCA Special Committee 159, Global Positioning System (GPS)

    Science.gov (United States)

    2012-02-28

    ... 159, Global Positioning System (GPS) AGENCY: Federal Aviation Administration (FAA), U.S. Department of Transportation (DOT). ACTION: Notice of RTCA Special Committee 159, Global Positioning System (GPS). SUMMARY: The..., Global Positioning System (GPS). DATES: The meeting will be held March 13-16, 2012, from 9 a.m.-4:30 p.m...

  11. Autonomous Navigation of the SSTI/Lewis Spacecraft Using the Global Positioning System (GPS)

    Science.gov (United States)

    Hart, R. C.; Long, A. C.; Lee, T.

    1997-01-01

    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) is pursuing the application of Global Positioning System (GPS) technology to improve the accuracy and economy of spacecraft navigation. High-accuracy autonomous navigation algorithms are being flight qualified in conjunction with GSFC's GPS Attitude Determination Flyer (GADFLY) experiment on the Small Satellite Technology Initiative (SSTI) Lewis spacecraft, which is scheduled for launch in 1997. Preflight performance assessments indicate that these algorithms can provide a real-time total position accuracy of better than 10 meters (1 sigma) and velocity accuracy of better than 0.01 meter per second (1 sigma), with selective availability at typical levels. This accuracy is projected to improve to the 2-meter level if corrections to be provided by the GPS Wide Area Augmentation System (WAAS) are included.

  12. A transportation security system applying RFID and GPS

    Directory of Open Access Journals (Sweden)

    Ruijian Zhang

    2013-03-01

    Full Text Available Purpose: This paper is about developing a centralized, internet based security tool which utilizes RFID and GPS technology to identify drivers and track the load integrity. Design/methodology/approach: The system will accomplish the security testing in real-time using the internet and the U.S. Customs’ database (ACE. A central database and the interfaces and communication between the database and ACE will be established. After the vehicle is loaded, all openings of the tanker are sealed with disposable RFID tag seals. Findings/value: An RFID reader and GPS tracker wirelessly connected with the databases will serve as testing grounds for the implementation of security measures that can help prevent future terrorist attacks and help in ensuring that the goods and products are not compromised while in transit. The system will also reduce the labor work of security check to its minimum. 

  13. The International GPS Service (IGS) as a Continuous Reference System for Precise GPS Positioning

    Science.gov (United States)

    Neilan, Ruth; Heflin, Michael; Watkins, Michael; Zumberge, James

    1996-01-01

    The International GPS Service for Geodynamics (IGS) is an organization which operates under the auspices of the International Association of Geodesy (IAG) and has been operational since January 1994. The primary objective of the IGS is to provide precise GPS data and data products to support geodetic and geophysical research activities.

  14. Performance Analysis of Constrained Loosely Coupled GPS/INS Integration Solutions

    Directory of Open Access Journals (Sweden)

    Fabio Dovis

    2012-11-01

    Full Text Available The paper investigates approaches for loosely coupled GPS/INS integration. Error performance is calculated using a reference trajectory. A performance improvement can be obtained by exploiting additional map information (for example, a road boundary. A constrained solution has been developed and its performance compared with an unconstrained one. The case of GPS outages is also investigated showing how a Kalman filter that operates on the last received GPS position and velocity measurements provides a performance benefit. Results are obtained by means of simulation studies and real data.

  15. Study of Robust H∞ Filtering Application in Loosely Coupled INS/GPS System

    Directory of Open Access Journals (Sweden)

    Lin Zhao

    2014-01-01

    model, unstable model case is considered. We give an explanation for Kalman filter divergence under uncertain dynamic system and simultaneously investigate the relationship between H∞ filter and Kalman filter. A loosely coupled INS/GPS simulation system is given here to verify this application. Result shows that the robust H∞ filter has a better performance when system suffers uncertainty; also it is more robust compared to the conventional Kalman filter.

  16. A Pedestrian Dead Reckoning System Integrating Low-Cost MEMS Inertial Sensors and GPS Receiver

    Directory of Open Access Journals (Sweden)

    Jin-feng Li

    2014-04-01

    Full Text Available The body-mounted inertial systems for pedestrian navigation do not require any preinstalled facilities and can run autonomously. The advantages over other technologies make it especially attractive for the applications such as first responders, military and consumer markets. The hardware platform integrating the low-cost, low-power and small-size MEMS (micro-electro-mechanical systems inertial sensors and GPS (global positioning system receiver is proposed. When the satellite signals are available, the location of the pedestrian is directly obtained from the GPS receiver. The inertial sensors are the complement of the GPS receiver in places where the GPS signals are not available, such as indoors, urban canyons and places under dense foliages. The height tracking is achieved by the barometer. The proposed PDR (pedestrian dead reckoning algorithm is real-timely implemented in the platform. The simple but effective step detection and step length estimation method are realized to reduce the computation and memory requirements on the microprocessor. A complementary filter is proposed to fuse the data from the accelerometer, gyroscope and digital compass for decreasing the heading error, which is the main error source in positioning. The reliability and accuracy of the proposed system is verified by field pedestrian walking tests in outdoors and indoors. The positioning error is less than 4% of the total traveled distance. The results indicate that the pedestrian dead reckoning system is able to provide satisfactory tracking performance.

  17. Hacking GPS

    CERN Document Server

    Kingsley-Hughes, Kathie

    2005-01-01

    * This is the "user manual" that didn't come with any of the 30 million GPS receivers currently in use, showing readers how to modify, tweak, and hack their GPS to take it to new levels!* Crazy-cool modifications include exploiting secret keycodes, revealing hidden features, building power cords and cables, hacking the battery and antenna, protecting a GPS from impact and falls, making a screen protector, and solar-powering a GPS* Potential power users will take the function and performance of their GPS to a whole new level by hacking into the firmware and hacking into a PC connection with a GPS* Fear not! Any potentially dangerous mod (to the device) is clearly labeled, with precautions listed that should be taken* Game time! Readers can check out GPS games, check into hacking geocaching, and even use a GPS as a metal detector

  18. A Low Cost GPS System for Real-Time Tracking of Sounding Rockets

    Science.gov (United States)

    Markgraf, M.; Montenbruck, O.; Hassenpflug, F.; Turner, P.; Bull, B.; Bauer, Frank (Technical Monitor)

    2001-01-01

    This paper describes the development as well as the on-ground and the in-flight evaluation of a low cost Global Positioning System (GPS) system for real-time tracking of sounding rockets. The flight unit comprises a modified ORION GPS receiver and a newly designed switchable antenna system composed of a helical antenna in the rocket tip and a dual-blade antenna combination attached to the body of the service module. Aside from the flight hardware a PC based terminal program has been developed to monitor the GPS data and graphically displays the rocket's path during the flight. In addition an Instantaneous Impact Point (IIP) prediction is performed based on the received position and velocity information. In preparation for ESA's Maxus-4 mission, a sounding rocket test flight was carried out at Esrange, Kiruna, on 19 Feb. 2001 to validate existing ground facilities and range safety installations. Due to the absence of a dedicated scientific payload, the flight offered the opportunity to test multiple GPS receivers and assess their performance for the tracking of sounding rockets. In addition to the ORION receiver, an Ashtech G12 HDMA receiver and a BAE (Canadian Marconi) Allstar receiver, both connected to a wrap-around antenna, have been flown on the same rocket as part of an independent experiment provided by the Goddard Space Flight Center. This allows an in-depth verification and trade-off of different receiver and antenna concepts.

  19. Crustal Deformation along San Andreas Fault System revealed by GPS and Sentinel-1 InSAR

    Science.gov (United States)

    Xu, X.; Sandwell, D. T.

    2017-12-01

    We present a crustal deformation velocity map along the San Andreas Fault System by combining measurements from Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) velocity models (CGM V1). We assembled 5 tracks of descending Sentinel-1 InSAR data spanning 2014.11-2017.02, and produced 545 interferograms, each of which covers roughly 250km x 420km area ( 60 bursts). These interferograms are unwrapped using SNAPHU [Chen & Zebker, 2002], with the 2Npi unwrapping ambiguity corrected with a sparse recovery method. We used coherence-based small baseline subset (SBAS) method [Tong & Schmidt, 2016] together with atmospheric correction by common-point stacking [Tymofyeyeva and Fialko, 2015] to construct deformation time series [Xu et. al., 2017]. Then we project the horizontal GPS model and vertical GPS data into satellite line-of-sight directions separately. We first remove the horizontal GPS model from InSAR measurements and perform elevation-dependent atmospheric phase correction. Then we compute the discrepancy between the remaining InSAR measurements and vertical GPS data. We interpolate this discrepancy and remove it from the residual InSAR measurements. Finally, we restore the horizontal GPS model. Preliminary results show that fault creep over the San Jacinto fault, the Elsinore fault, and the San Andreas creeping section is clearly resolved. During the period of drought, the Central Valley of California was subsiding at a high rate (up to 40 cm/yr), while the city of San Jose is uplifting due to recharge, with a quaternary fault acting as a ground water barrier. These findings will be reported during the meeting.

  20. GPS Technology for the Development of Business Information Systems

    Directory of Open Access Journals (Sweden)

    Mihaela MURESAN

    2006-01-01

    Full Text Available The use of the GPS system opens the way for a new generation of information systems using geospatial information. The geoinformation provided by the GPS system could be used in various applications, such as: positioning and monitoring the behavior of the objects static or in movement, navigating, measuring the surfaces etc. These new approach introduces the concept of image handling for decision support which involves a better geoimage handling in order to make easier for decision makers to discover, access, and integrate geospatial information in decision-support scenarios. A very useful application is the risk management for the vehicles with direct benefits in terms of competitivity, for the transport organizations, and of road transport safety, for the society. The safety of the road transport is a priority in the light of the policy on trans-European networks for transport (TEN-T and according to the actual and future trend related to the freight on the road (75% of the freight goes by road according to the Third report on Economic and social Cohesion, February 2004. The implementation of a high technology solution based on GPS communication for the monitoring of transports along the whole itinerary and the immediate alert in case of various non-procedural behavior, increases the road transport security and avoids accidents and disasters. Minimizing the risk for the road transport is a general concern at the EU level, as well as at the national level. The design and the development of transport risk management information systems will contribute to stimulate the implementation of the new technologies in the current transport organizations' activity and to change the internal processes according to the philosophy introduced by the information society. The transport risk management system integrates detection and communication intelligent equipment, various communication technologies and networking solutions with powerful computers and

  1. Implementation and Performance of a GPS/INS Tightly Coupled Assisted PLL Architecture Using MEMS Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Youssef Tawk

    2014-02-01

    Full Text Available The use of global navigation satellite system receivers for navigation still presents many challenges in urban canyon and indoor environments, where satellite availability is typically reduced and received signals are attenuated. To improve the navigation performance in such environments, several enhancement methods can be implemented. For instance, external aid provided through coupling with other sensors has proven to contribute substantially to enhancing navigation performance and robustness. Within this context, coupling a very simple GPS receiver with an Inertial Navigation System (INS based on low-cost micro-electro-mechanical systems (MEMS inertial sensors is considered in this paper. In particular, we propose a GPS/INS Tightly Coupled Assisted PLL (TCAPLL architecture, and present most of the associated challenges that need to be addressed when dealing with very-low-performance MEMS inertial sensors. In addition, we propose a data monitoring system in charge of checking the quality of the measurement flow in the architecture. The implementation of the TCAPLL is discussed in detail, and its performance under different scenarios is assessed. Finally, the architecture is evaluated through a test campaign using a vehicle that is driven in urban environments, with the purpose of highlighting the pros and cons of combining MEMS inertial sensors with GPS over GPS alone.

  2. Implementation and Performance of a GPS/INS Tightly Coupled Assisted PLL Architecture Using MEMS Inertial Sensors

    Science.gov (United States)

    Tawk, Youssef; Tomé, Phillip; Botteron, Cyril; Stebler, Yannick; Farine, Pierre-André

    2014-01-01

    The use of global navigation satellite system receivers for navigation still presents many challenges in urban canyon and indoor environments, where satellite availability is typically reduced and received signals are attenuated. To improve the navigation performance in such environments, several enhancement methods can be implemented. For instance, external aid provided through coupling with other sensors has proven to contribute substantially to enhancing navigation performance and robustness. Within this context, coupling a very simple GPS receiver with an Inertial Navigation System (INS) based on low-cost micro-electro-mechanical systems (MEMS) inertial sensors is considered in this paper. In particular, we propose a GPS/INS Tightly Coupled Assisted PLL (TCAPLL) architecture, and present most of the associated challenges that need to be addressed when dealing with very-low-performance MEMS inertial sensors. In addition, we propose a data monitoring system in charge of checking the quality of the measurement flow in the architecture. The implementation of the TCAPLL is discussed in detail, and its performance under different scenarios is assessed. Finally, the architecture is evaluated through a test campaign using a vehicle that is driven in urban environments, with the purpose of highlighting the pros and cons of combining MEMS inertial sensors with GPS over GPS alone. PMID:24569773

  3. The Integration of GPS Navigator Device with Vehicles Tracking System for Rental Cars Firms

    OpenAIRE

    Omarah O. Alharaki; Fahad S. Alaieri; Akram M. Zeki

    2010-01-01

    The aim of this research is to integrate the GPS tracking system (tracking device and web-based application) with GPS navigator for rental cars, allowing the company to use various applications to monitor and manage the cars. This is enable the firms and customers to communicate with each other via the GPS navigator. The system should be developed by applying new features in GPS tracking application devices in vehicles. This paper also proposes new features that can be applied to the GPS Navi...

  4. Fuzzy adaptive integration scheme for low-cost SINS/GPS navigation system

    Science.gov (United States)

    Nourmohammadi, Hossein; Keighobadi, Jafar

    2018-01-01

    Due to weak stand-alone accuracy as well as poor run-to-run stability of micro-electro mechanical system (MEMS)-based inertial sensors, special approaches are required to integrate low-cost strap-down inertial navigation system (SINS) with global positioning system (GPS), particularly in long-term applications. This paper aims to enhance long-term performance of conventional SINS/GPS navigation systems using a fuzzy adaptive integration scheme. The main concept behind the proposed adaptive integration is the good performance of attitude-heading reference system (AHRS) in low-accelerated motions and its degradation in maneuvered or accelerated motions. Depending on vehicle maneuvers, gravity-based attitude angles can be intelligently utilized to improve orientation estimation in the SINS. Knowledge-based fuzzy inference system is developed for decision-making between the AHRS and the SINS according to vehicle maneuvering conditions. Inertial measurements are the main input data of the fuzzy system to determine the maneuvering level during the vehicle motions. Accordingly, appropriate weighting coefficients are produced to combine the SINS/GPS and the AHRS, efficiently. The assessment of the proposed integrated navigation system is conducted via real data in airborne tests.

  5. Railway automatic safety protection system based on GPS

    Directory of Open Access Journals (Sweden)

    Fu Hai Juan

    2016-01-01

    Full Text Available The automatic protection system of railway safety is designed for the railway construction workers to protect alarm, and the safety protection device by using GPS satellite positioning system to acquire location information of the operating point, through the CTC/TDCS system and computer monitoring system for the running of the train position and the arithmetic distance. Achieving timely and continuously forecasts about the distance of the train which is apart from the operating point to prompt the voice alarm of the approaching train. Using digital technology to realize the function of the traditional analog interphone, eliminates the quality problems of the call. With the GSM-R, mobile wireless transmission channel and terminal technology, it overcomes the restrictions of the analog interphone which influenced by communication distance and more problems of blind areas. Finally to achieve practical, convenient, applicable and adaptable design goals.

  6. Performance enhancement for a GPS vector-tracking loop utilizing an adaptive iterated extended Kalman filter.

    Science.gov (United States)

    Chen, Xiyuan; Wang, Xiying; Xu, Yuan

    2014-12-09

    This paper deals with the problem of state estimation for the vector-tracking loop of a software-defined Global Positioning System (GPS) receiver. For a nonlinear system that has the model error and white Gaussian noise, a noise statistics estimator is used to estimate the model error, and based on this, a modified iterated extended Kalman filter (IEKF) named adaptive iterated Kalman filter (AIEKF) is proposed. A vector-tracking GPS receiver utilizing AIEKF is implemented to evaluate the performance of the proposed method. Through road tests, it is shown that the proposed method has an obvious accuracy advantage over the IEKF and Adaptive Extended Kalman filter (AEKF) in position determination. The results show that the proposed method is effective to reduce the root-mean-square error (RMSE) of position (including longitude, latitude and altitude). Comparing with EKF, the position RMSE values of AIEKF are reduced by about 45.1%, 40.9% and 54.6% in the east, north and up directions, respectively. Comparing with IEKF, the position RMSE values of AIEKF are reduced by about 25.7%, 19.3% and 35.7% in the east, north and up directions, respectively. Compared with AEKF, the position RMSE values of AIEKF are reduced by about 21.6%, 15.5% and 30.7% in the east, north and up directions, respectively.

  7. A Self-Tuning Kalman Filter for Autonomous Navigation using the Global Positioning System (GPS)

    Science.gov (United States)

    Truong, S. H.

    1999-01-01

    Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman filter and GPS data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. These systems, however, still rely on manual tuning from analysts. A sophisticated neuro-fuzzy component fully integrated with the flight navigation system can perform the self-tuning capability for the Kalman filter and help the navigation system recover from estimation errors in real time.

  8. Automated time activity classification based on global positioning system (GPS) tracking data.

    Science.gov (United States)

    Wu, Jun; Jiang, Chengsheng; Houston, Douglas; Baker, Dean; Delfino, Ralph

    2011-11-14

    Air pollution epidemiological studies are increasingly using global positioning system (GPS) to collect time-location data because they offer continuous tracking, high temporal resolution, and minimum reporting burden for participants. However, substantial uncertainties in the processing and classifying of raw GPS data create challenges for reliably characterizing time activity patterns. We developed and evaluated models to classify people's major time activity patterns from continuous GPS tracking data. We developed and evaluated two automated models to classify major time activity patterns (i.e., indoor, outdoor static, outdoor walking, and in-vehicle travel) based on GPS time activity data collected under free living conditions for 47 participants (N = 131 person-days) from the Harbor Communities Time Location Study (HCTLS) in 2008 and supplemental GPS data collected from three UC-Irvine research staff (N = 21 person-days) in 2010. Time activity patterns used for model development were manually classified by research staff using information from participant GPS recordings, activity logs, and follow-up interviews. We evaluated two models: (a) a rule-based model that developed user-defined rules based on time, speed, and spatial location, and (b) a random forest decision tree model. Indoor, outdoor static, outdoor walking and in-vehicle travel activities accounted for 82.7%, 6.1%, 3.2% and 7.2% of manually-classified time activities in the HCTLS dataset, respectively. The rule-based model classified indoor and in-vehicle travel periods reasonably well (Indoor: sensitivity > 91%, specificity > 80%, and precision > 96%; in-vehicle travel: sensitivity > 71%, specificity > 99%, and precision > 88%), but the performance was moderate for outdoor static and outdoor walking predictions. No striking differences in performance were observed between the rule-based and the random forest models. The random forest model was fast and easy to execute, but was likely less robust

  9. Multiple Interference Cancellation Performance for GPS Receivers with Dual-Polarized Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Moeness G. Amin

    2008-11-01

    Full Text Available This paper examines the interference cancellation performance in global positioning system (GPS receivers equipped with dual-polarized antenna arrays. In dense jamming environment, different types of interferers can be mitigated by the dual-polarized antennas, either acting individually or in conjunction with other receiver antennas. We apply minimum variance distorntionless response (MVDR method to a uniform circular dual-polarized antenna array. The MVDR beamformer is constructed for each satellite. Analysis of the eigenstructures of the covariance matrix and the corresponding weight vector polarization characteristics are provided. Depending on the number of jammers and jammer polarizations, the array chooses to expend its degrees of freedom to counter the jammer polarization or/and use phase coherence to form jammer spatial nulls. Results of interference cancellations demonstrate that applying multiple MVDR beamformers, each for one satellite, has a superior cancellation performance compared to using only one MVDR beamformer for all satellites in the field of view.

  10. An Improved Strong Tracking Cubature Kalman Filter for GPS/INS Integrated Navigation Systems.

    Science.gov (United States)

    Feng, Kaiqiang; Li, Jie; Zhang, Xi; Zhang, Xiaoming; Shen, Chong; Cao, Huiliang; Yang, Yanyu; Liu, Jun

    2018-06-12

    The cubature Kalman filter (CKF) is widely used in the application of GPS/INS integrated navigation systems. However, its performance may decline in accuracy and even diverge in the presence of process uncertainties. To solve the problem, a new algorithm named improved strong tracking seventh-degree spherical simplex-radial cubature Kalman filter (IST-7thSSRCKF) is proposed in this paper. In the proposed algorithm, the effect of process uncertainty is mitigated by using the improved strong tracking Kalman filter technique, in which the hypothesis testing method is adopted to identify the process uncertainty and the prior state estimate covariance in the CKF is further modified online according to the change in vehicle dynamics. In addition, a new seventh-degree spherical simplex-radial rule is employed to further improve the estimation accuracy of the strong tracking cubature Kalman filter. In this way, the proposed comprehensive algorithm integrates the advantage of 7thSSRCKF’s high accuracy and strong tracking filter’s strong robustness against process uncertainties. The GPS/INS integrated navigation problem with significant dynamic model errors is utilized to validate the performance of proposed IST-7thSSRCKF. Results demonstrate that the improved strong tracking cubature Kalman filter can achieve higher accuracy than the existing CKF and ST-CKF, and is more robust for the GPS/INS integrated navigation system.

  11. Anti-Jam GPS Antennas for Wearable Dismounted Soldier Navigation Systems

    Science.gov (United States)

    2016-06-01

    GPS antenna, the Novatel GAJT-700M/ L CRPA is currently being considered, as shown in Fig. 6. Fig. 6 A basic 7-element CRPA (right) compared with a...ARL-TR-7670 ● JUNE 2016 US Army Research Laboratory Anti-Jam GPS Antennas for Wearable Dismounted Soldier Navigation Systems...longer needed. Do not return it to the originator. ARL-TR-7670 ● JUNE 2016 US Army Research Laboratory Anti-Jam GPS Antennas for

  12. Global positioning systems (GPS) and microtechnology sensors in team sports: a systematic review.

    Science.gov (United States)

    Cummins, Cloe; Orr, Rhonda; O'Connor, Helen; West, Cameron

    2013-10-01

    Use of Global positioning system (GPS) technology in team sport permits measurement of player position, velocity, and movement patterns. GPS provides scope for better understanding of the specific and positional physiological demands of team sport and can be used to design training programs that adequately prepare athletes for competition with the aim of optimizing on-field performance. The objective of this study was to conduct a systematic review of the depth and scope of reported GPS and microtechnology measures used within individual sports in order to present the contemporary and emerging themes of GPS application within team sports. A systematic review of the application of GPS technology in team sports was conducted. We systematically searched electronic databases from earliest record to June 2012. Permutations of key words included GPS; male and female; age 12-50 years; able-bodied; and recreational to elite competitive team sports. The 35 manuscripts meeting the eligibility criteria included 1,276 participants (age 11.2-31.5 years; 95 % males; 53.8 % elite adult athletes). The majority of manuscripts reported on GPS use in various football codes: Australian football league (AFL; n = 8), soccer (n = 7), rugby union (n = 6), and rugby league (n = 6), with limited representation in other team sports: cricket (n = 3), hockey (n = 3), lacrosse (n = 1), and netball (n = 1). Of the included manuscripts, 34 (97 %) detailed work rate patterns such as distance, relative distance, speed, and accelerations, with only five (14.3 %) reporting on impact variables. Activity profiles characterizing positional play and competitive levels were also described. Work rate patterns were typically categorized into six speed zones, ranging from 0 to 36.0 km·h⁻¹, with descriptors ranging from walking to sprinting used to identify the type of activity mainly performed in each zone. With the exception of cricket, no standardized speed zones or definitions were observed within or

  13. Remote reference processing in MT survey using GPS clock; MT ho ni okeru GPS wo mochiita jikoku doki system

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, K; Inoue, J; Takasugi, S [Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan); Kosuge, S [DRICO Co. Ltd., Tokyo (Japan)

    1996-05-01

    A report is given about the application of a synchronizing system using clock signals from GPS satellites to a remote reference method which is a technique to reject noise from the MT method. This system uses the C/A code out of the L1 band waves from NAVSTAR/GPS satellites. The new system was operated in MT method-using investigations conducted at China Peninsula, Aichi Prefecture, and Izu Peninsula, Shizuoka Prefecture, with the reference points placed several 100km away in Iwate Prefecture on both occasions. It was found as the result that it is basically possible to catch signals from the GPS at any place, that the signals are accurate enough to be applied to time synchronization for the MT method, and that the signals assure a far remote reference method with a separation of several 100km between the sites involved. The referencing process at high frequencies whose feasibility had been doubted proved a success when highly correlated signals were exchanged between two stations over a distance of several 100km. 5 refs., 9 figs.

  14. Railway testing using a portable ride quality and vibration measurement system with GPS

    Science.gov (United States)

    Mee, Brian; Whitten, Brian; Neijikovsky, Boris

    1995-06-01

    To conduct the testing and evaluation of railway and railway vehicles, the Federal Railroad Administration developed a protable system that consists of accelerometers oriented in the vertical and horizontal directions, a Global Positioning System (GPS) receiver, data collection and power systems, and a portable computer. Commercial software was used to collect and display the data, while software, developed by ENSCO, was used to analyze and display results. The GPS provided dynamic location to an accuracy of 30 meters or better, and vehicle speed to within one mile per hour. The system was used in the demonstration tests of several advanced high-speed trains on Amtrak's Northeast Corrider and on other tracks in the US. The portable measurement system proved to be a simple and effective device to characterize the vibration environment of any transportation system. It is ideal for use in the assessment of the safe performance of high-speed trains operating at high cant deficiency. The system has also been used for other field tests, including braking performance and bridge monitoring. This report discusses the portable measurement system, the test applications that the system has been used for, the results of thoses tests, and the potential for improvements.

  15. Investigating the performance of neural network backpropagation algorithms for TEC estimations using South African GPS data

    Science.gov (United States)

    Habarulema, J. B.; McKinnell, L.-A.

    2012-05-01

    In this work, results obtained by investigating the application of different neural network backpropagation training algorithms are presented. This was done to assess the performance accuracy of each training algorithm in total electron content (TEC) estimations using identical datasets in models development and verification processes. Investigated training algorithms are standard backpropagation (SBP), backpropagation with weight delay (BPWD), backpropagation with momentum (BPM) term, backpropagation with chunkwise weight update (BPC) and backpropagation for batch (BPB) training. These five algorithms are inbuilt functions within the Stuttgart Neural Network Simulator (SNNS) and the main objective was to find out the training algorithm that generates the minimum error between the TEC derived from Global Positioning System (GPS) observations and the modelled TEC data. Another investigated algorithm is the MatLab based Levenberg-Marquardt backpropagation (L-MBP), which achieves convergence after the least number of iterations during training. In this paper, neural network (NN) models were developed using hourly TEC data (for 8 years: 2000-2007) derived from GPS observations over a receiver station located at Sutherland (SUTH) (32.38° S, 20.81° E), South Africa. Verification of the NN models for all algorithms considered was performed on both "seen" and "unseen" data. Hourly TEC values over SUTH for 2003 formed the "seen" dataset. The "unseen" dataset consisted of hourly TEC data for 2002 and 2008 over Cape Town (CPTN) (33.95° S, 18.47° E) and SUTH, respectively. The models' verification showed that all algorithms investigated provide comparable results statistically, but differ significantly in terms of time required to achieve convergence during input-output data training/learning. This paper therefore provides a guide to neural network users for choosing appropriate algorithms based on the availability of computation capabilities used for research.

  16. Global Positioning System (GPS) Receiver Design For Multipaths Mitigation

    National Research Council Canada - National Science Library

    Gadallah, El-Sayed

    1998-01-01

    .... This research introduces a new estimator that can detect the presence of multipath, can determine the unknown number of multipath components and can estimate multipath parameters in the GPS receiver...

  17. INS/GPS/LiDAR Integrated Navigation System for Urban and Indoor Environments Using Hybrid Scan Matching Algorithm.

    Science.gov (United States)

    Gao, Yanbin; Liu, Shifei; Atia, Mohamed M; Noureldin, Aboelmagd

    2015-09-15

    This paper takes advantage of the complementary characteristics of Global Positioning System (GPS) and Light Detection and Ranging (LiDAR) to provide periodic corrections to Inertial Navigation System (INS) alternatively in different environmental conditions. In open sky, where GPS signals are available and LiDAR measurements are sparse, GPS is integrated with INS. Meanwhile, in confined outdoor environments and indoors, where GPS is unreliable or unavailable and LiDAR measurements are rich, LiDAR replaces GPS to integrate with INS. This paper also proposes an innovative hybrid scan matching algorithm that combines the feature-based scan matching method and Iterative Closest Point (ICP) based scan matching method. The algorithm can work and transit between two modes depending on the number of matched line features over two scans, thus achieving efficiency and robustness concurrently. Two integration schemes of INS and LiDAR with hybrid scan matching algorithm are implemented and compared. Real experiments are performed on an Unmanned Ground Vehicle (UGV) for both outdoor and indoor environments. Experimental results show that the multi-sensor integrated system can remain sub-meter navigation accuracy during the whole trajectory.

  18. Modular Software for Spacecraft Navigation Using the Global Positioning System (GPS)

    Science.gov (United States)

    Truong, S. H.; Hartman, K. R.; Weidow, D. A.; Berry, D. L.; Oza, D. H.; Long, A. C.; Joyce, E.; Steger, W. L.

    1996-01-01

    The Goddard Space Flight Center Flight Dynamics and Mission Operations Divisions have jointly investigated the feasibility of engineering modular Global Positioning SYSTEM (GPS) navigation software to support both real time flight and ground postprocessing configurations. The goals of this effort are to define standard GPS data interfaces and to engineer standard, reusable navigation software components that can be used to build a broad range of GPS navigation support applications. The paper discusses the GPS modular software (GMOD) system and operations concepts, major requirements, candidate software architecture, feasibility assessment and recommended software interface standards. In additon, ongoing efforts to broaden the scope of the initial study and to develop modular software to support autonomous navigation using GPS are addressed,

  19. UNITED STATES DEPARTMENT OF TRANSPORTATION GLOBAL POSITIONING SYSTEM (GPS) ADJACENT BAND COMPATIBILITY ASSESSMENT

    Science.gov (United States)

    2018-04-01

    The goal of the U.S. Department of Transportation (DOT) Global Positioning System (GPS) Adjacent Band Compatibility Assessment is to evaluate the maximum transmitted power levels of adjacent band radiofrequency (RF) systems that can be tolerated by G...

  20. GPS Device Testing Based on User Performance Metrics

    Science.gov (United States)

    2015-10-02

    1. Rationale for a Test Program Based on User Performance Metrics ; 2. Roberson and Associates Test Program ; 3. Status of, and Revisions to, the Roberson and Associates Test Program ; 4. Comparison of Roberson and DOT/Volpe Programs

  1. IMPELEMENTASI SISTEM PEMANTAUAN OBJEK BERGERAK DENGAN MEMANFAATKAN FREKUENSI RADIO MENGGUNAKAN GPS (GLOBAL POSITIONING SYSTEM)

    OpenAIRE

    Budi Triandi

    2010-01-01

    GPS was developed by the United States Department of Defense as a reliable means for accurate navigation. The system provides highly accurate position and velocity information and precise time on a continuous global basis to an unlimited number of properly equipped users. By using combined GPS receiver and microcontroller together with radio system, we can design a monitoring system for our vehicles and display the result on the computer. This system consists of a master module that transmits...

  2. VEHICLE TRACKING AND MONITORING SYSTEM USING GPS AND GSM/GPRS.

    OpenAIRE

    *Arsheen Barnagarwala, *Aziz Buriwala

    2017-01-01

    Abstract: This system offers an affordable and compact design implemented for tracking and monitoring vehicle’s Instantaneous speed, peak speed, distance and current location with the help of Global Positioning System (GPS) and Global System for Mobile Communication (GSM). The system consist of two parts, one is ambulatory and incorporated in the target vehicle which comprises of a GPS receiver, a microcontroller and a GSM modem with periphery display and power units. Other is stable at a rem...

  3. Real-Time Vehicle Data Logging System Using GPS And GSM

    OpenAIRE

    Win Minn Thet; MyoMaung Maung; Hla Myo Tun

    2015-01-01

    Abstract This paper proposes and implements a low cost Vehicle Data Logging System using GPS and GSM. This system allows a user to trace the present and past positions recorded in SD card. This system also reads the current position of the vehicle using GPS the data is sent via GSM service from the GSM network. The vehicles position including the driving speed the UTC time and data are stored in the SD card for live and past tracking. All of that GPS data is sent to PIC 18F4520 by the Uni...

  4. A comparison between different error modeling of MEMS applied to GPS/INS integrated systems.

    Science.gov (United States)

    Quinchia, Alex G; Falco, Gianluca; Falletti, Emanuela; Dovis, Fabio; Ferrer, Carles

    2013-07-24

    Advances in the development of micro-electromechanical systems (MEMS) have made possible the fabrication of cheap and small dimension accelerometers and gyroscopes, which are being used in many applications where the global positioning system (GPS) and the inertial navigation system (INS) integration is carried out, i.e., identifying track defects, terrestrial and pedestrian navigation, unmanned aerial vehicles (UAVs), stabilization of many platforms, etc. Although these MEMS sensors are low-cost, they present different errors, which degrade the accuracy of the navigation systems in a short period of time. Therefore, a suitable modeling of these errors is necessary in order to minimize them and, consequently, improve the system performance. In this work, the most used techniques currently to analyze the stochastic errors that affect these sensors are shown and compared: we examine in detail the autocorrelation, the Allan variance (AV) and the power spectral density (PSD) techniques. Subsequently, an analysis and modeling of the inertial sensors, which combines autoregressive (AR) filters and wavelet de-noising, is also achieved. Since a low-cost INS (MEMS grade) presents error sources with short-term (high-frequency) and long-term (low-frequency) components, we introduce a method that compensates for these error terms by doing a complete analysis of Allan variance, wavelet de-nosing and the selection of the level of decomposition for a suitable combination between these techniques. Eventually, in order to assess the stochastic models obtained with these techniques, the Extended Kalman Filter (EKF) of a loosely-coupled GPS/INS integration strategy is augmented with different states. Results show a comparison between the proposed method and the traditional sensor error models under GPS signal blockages using real data collected in urban roadways.

  5. A Comparison between Different Error Modeling of MEMS Applied to GPS/INS Integrated Systems

    Directory of Open Access Journals (Sweden)

    Fabio Dovis

    2013-07-01

    Full Text Available Advances in the development of micro-electromechanical systems (MEMS have made possible the fabrication of cheap and small dimension accelerometers and gyroscopes, which are being used in many applications where the global positioning system (GPS and the inertial navigation system (INS integration is carried out, i.e., identifying track defects, terrestrial and pedestrian navigation, unmanned aerial vehicles (UAVs, stabilization of many platforms, etc. Although these MEMS sensors are low-cost, they present different errors, which degrade the accuracy of the navigation systems in a short period of time. Therefore, a suitable modeling of these errors is necessary in order to minimize them and, consequently, improve the system performance. In this work, the most used techniques currently to analyze the stochastic errors that affect these sensors are shown and compared: we examine in detail the autocorrelation, the Allan variance (AV and the power spectral density (PSD techniques. Subsequently, an analysis and modeling of the inertial sensors, which combines autoregressive (AR filters and wavelet de-noising, is also achieved. Since a low-cost INS (MEMS grade presents error sources with short-term (high-frequency and long-term (low-frequency components, we introduce a method that compensates for these error terms by doing a complete analysis of Allan variance, wavelet de-nosing and the selection of the level of decomposition for a suitable combination between these techniques. Eventually, in order to assess the stochastic models obtained with these techniques, the Extended Kalman Filter (EKF of a loosely-coupled GPS/INS integration strategy is augmented with different states. Results show a comparison between the proposed method and the traditional sensor error models under GPS signal blockages using real data collected in urban roadways.

  6. IMPELEMENTASI SISTEM PEMANTAUAN OBJEK BERGERAK DENGAN MEMANFAATKAN FREKUENSI RADIO MENGGUNAKAN GPS (GLOBAL POSITIONING SYSTEM

    Directory of Open Access Journals (Sweden)

    Budi Triandi

    2010-05-01

    Full Text Available GPS was developed by the United States Department of Defense as a reliable means for accurate navigation. The system provides highly accurate position and velocity information and precise time on a continuous global basis to an unlimited number of properly equipped users. By using combined GPS receiver and microcontroller together with radio system, we can design a monitoring system for our vehicles and display the result on the computer. This system consists of a master module that transmits and receives signals from computer and two slave modules to collect GPS data from vehicles. The result of experiment shows that this system is able to track the vehicle on digital map with accuracy as high as 95%.Keywords: GPS, microcontroller, monitoring, RF

  7. Near real-time GPS applications for tsunami early warning systems

    Directory of Open Access Journals (Sweden)

    C. Falck

    2010-02-01

    Full Text Available GPS (Global Positioning System technology is widely used for positioning applications. Many of them have high requirements with respect to precision, reliability or fast product delivery, but usually not all at the same time as it is the case for early warning applications. The tasks for the GPS-based components within the GITEWS project (German Indonesian Tsunami Early Warning System, Rudloff et al., 2009 are to support the determination of sea levels (measured onshore and offshore and to detect co-seismic land mass displacements with the lowest possible latency (design goal: first reliable results after 5 min. The completed system was designed to fulfil these tasks in near real-time, rather than for scientific research requirements. The obtained data products (movements of GPS antennas are supporting the warning process in different ways. The measurements from GPS instruments on buoys allow the earliest possible detection or confirmation of tsunami waves on the ocean. Onshore GPS measurements are made collocated with tide gauges or seismological stations and give information about co-seismic land mass movements as recorded, e.g., during the great Sumatra-Andaman earthquake of 2004 (Subarya et al., 2006. This information is important to separate tsunami-caused sea height movements from apparent sea height changes at tide gauge locations (sensor station movement and also as additional information about earthquakes' mechanisms, as this is an essential information to predict a tsunami (Sobolev et al., 2007.

    This article gives an end-to-end overview of the GITEWS GPS-component system, from the GPS sensors (GPS receiver with GPS antenna and auxiliary systems, either onshore or offshore to the early warning centre displays. We describe how the GPS sensors have been installed, how they are operated and the methods used to collect, transfer and process the GPS data in near real-time. This includes the sensor system design, the communication

  8. LIDAR AND INS FUSION IN PERIODS OF GPS OUTAGES FOR MOBILE LASER SCANNING MAPPING SYSTEMS

    Directory of Open Access Journals (Sweden)

    I. Klein

    2012-09-01

    Full Text Available Mobile laser scanning systems are becoming an increasingly popular means to obtain 3D coverage on a large scale. To perform the mapping, the exact position of the vehicle must be known throughout the trajectory. Exact position is achieved via integration of Global Positioning Systems (GPS and Inertial Navigation Systems (INS. Yet, in urban environments, cases of complete or even partial GPS outages may occur leaving the navigation solution to rely only on the INS. The INS navigation solution degrades with time as the Inertial Measurement Unit (IMU measurements contains noise, which permeates into the navigation equations. Degradation of the position determination leads to loss of data in such segments. To circumvent such drift and its effects, we propose fusing INS with lidar data by using building edges. This detection of edges is then translated into position data, which is used as an aiding to the INS. It thereby enables the determination of the vehicle position with a satisfactory level accuracy, sufficient to perform the laser-scanning based mapping in those outage periods.

  9. Military/Civilian Mixed-Mode Global Positioning System (GPS) Receiver (MMGR)

    National Research Council Canada - National Science Library

    Peczalski, Andy; Kriz, Jeff; Carlson, Stephen G; Sampson, Steven J

    2004-01-01

    ... AND T) MMGR objective of meeting pervasive defense system requirements and civilian needs for ultra-small GPS receiver technology is dependent in part upon the creation of multi- L-band reconfigurable...

  10. Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW) data set measures atmospheric water vapor using ground-based...

  11. MDOT implementation plan for global positioning systems (GPS) technology in planning, design, and construction delivery.

    Science.gov (United States)

    2010-09-13

    Global Positioning System (GPS) technology offers advantages to transportation agencies in the planning, design and construction stages of project delivery. This research study will develop a guide for Mississippi Department of Transportation (MDOT) ...

  12. Global Positioning Systems (GPS) Technology to Study Vector-Pathogen-Host Interactions

    Science.gov (United States)

    2016-12-01

    Award Number: W81XWH-11-2-0175 TITLE: Global Positioning Systems (GPS) Technology to Study Vector-Pathogen-Host Interactions PRINCIPAL...Positioning Systems (GPS) Technology to Study Vector-Pathogen-Host Interactions 5b. GRANT NUMBER W81XWH-11-2-0175 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...genetic diversity in the population, in hospitalized children with severe dengue illness and cluster investigation of their neighborhoods, and by using

  13. A System to Produce Precise Global GPS Network Solutions for all Geodetic GPS Stations in the World

    Science.gov (United States)

    Blewitt, G.; Kreemer, C. W.

    2010-12-01

    We have developed an end-to-end system that automatically seeks and routinely retrieves geodetic GPS data from ~5000 stations (currently) around the globe, reduces the data into unique, daily global network solutions, and produces high precision time series for station coordinates ready for time-series analysis, geophysical modeling and interpretation. Moreover, “carrier range” data are produced for all stations, enabling epoch-by-epoch tracking of individual station motions by precise point positioning for investigation of sub-daily processes, such as post-seismic after-slip and ocean tidal loading. Solutions are computed in a global reference frame aligned to ITRF, and optionally in user-specified continental-scale reference frames that can filter out common-mode signals to enhance regional strain anomalies. We describe the elements of this system, the underlying signal processing theory, the products, operational statistics, and scientific applications of our system. The system is fundamentally based on precise point positioning using JPL's GIPSY OASIS II software, coupled with ambiguity resolution and a global network adjustment of ~300,000 parameters per day using our newly developed Ambizap3 software. The system is designed to easily and efficiently absorb stations that deliver data very late, by recycling prior computations in the network adjustment, such that the resulting network solution is identical to starting from scratch. Thus, it becomes possible to trawl continuously the Internet for late arriving data, or for newly discovered data, and seamlessly update all GPS station time series using the new information content. As new stations are added to the processing archive, automated e-mail requests are made to H.-G. Scherneck's server at Chalmers University to compute ocean loading coefficients used by the station motion model. Rinex file headers are parsed and compared with alias tables in order to infer the correct receiver type and antenna

  14. Error Analysis System for Spacecraft Navigation Using the Global Positioning System (GPS)

    Science.gov (United States)

    Truong, S. H.; Hart, R. C.; Hartman, K. R.; Tomcsik, T. L.; Searl, J. E.; Bernstein, A.

    1997-01-01

    The Flight Dynamics Division (FDD) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is currently developing improved space-navigation filtering algorithms to use the Global Positioning System (GPS) for autonomous real-time onboard orbit determination. In connection with a GPS technology demonstration on the Small Satellite Technology Initiative (SSTI)/Lewis spacecraft, FDD analysts and programmers have teamed with the GSFC Guidance, Navigation, and Control Branch to develop the GPS Enhanced Orbit Determination Experiment (GEODE) system. The GEODE system consists of a Kalman filter operating as a navigation tool for estimating the position, velocity, and additional states required to accurately navigate the orbiting Lewis spacecraft by using astrodynamic modeling and GPS measurements from the receiver. A parallel effort at the FDD is the development of a GPS Error Analysis System (GEAS) that will be used to analyze and improve navigation filtering algorithms during development phases and during in-flight calibration. For GEAS, the Kalman filter theory is extended to estimate the errors in position, velocity, and other error states of interest. The estimation of errors in physical variables at regular intervals will allow the time, cause, and effect of navigation system weaknesses to be identified. In addition, by modeling a sufficient set of navigation system errors, a system failure that causes an observed error anomaly can be traced and accounted for. The GEAS software is formulated using Object Oriented Design (OOD) techniques implemented in the C++ programming language on a Sun SPARC workstation. The Phase 1 of this effort is the development of a basic system to be used to evaluate navigation algorithms implemented in the GEODE system. This paper presents the GEAS mathematical methodology, systems and operations concepts, and software design and implementation. Results from the use of the basic system to evaluate

  15. The future of GPS-based electric power system measurements, operation and control

    Energy Technology Data Exchange (ETDEWEB)

    Rizy, D.T. [Oak Ridge National Lab., TN (United States); Wilson, R.E. [Western Area Power Administration, Golden, CO (United States); Martin, K.E.; Litzenberger, W.H. [Bonneville Power Administration, Portland, OR (United States); Hauer, J.F. [Pacific Northwest National Lab., Richland, WA (United States); Overholt, P.N. [Dept. of Energy, Washington, DC (United States); Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1998-11-01

    Much of modern society is powered by inexpensive and reliable electricity delivered by a complex and elaborate electric power network. Electrical utilities are currently using the Global Positioning System-NAVSTAR (GPS) timekeeping to improve the network`s reliability. Currently, GPS synchronizes the clocks on dynamic recorders and aids in post-mortem analysis of network disturbances. Two major projects have demonstrated the use of GPS-synchronized power system measurements. In 1992, the Electric Power Research Institute`s (EPRI) sponsored Phase Measurements Project used a commercially available Phasor Measurements Unit (PMU) to collect GPS-synchronized measurements for analyzing power system problems. In 1995, Bonneville Power Administration (BPA) and Western Area Power Administration (WAPA) under DOE`s and EPRI`s sponsorship launched the Wide Area Measurements (WAMS) project. WAMS demonstrated GPS-synchronized measurements over a large area of their power networks and demonstrated the networking of GPS-based measurement systems in BPA and WAPA. The phasor measurement technology has also been used to conduct dynamic power system tests. During these tests, a large dynamic resistor was inserted to simulate a small power system disturbance.

  16. Individuals' preferences for GPs Choice analysis from the establishment of a list patient system in Norway

    OpenAIRE

    Lurås, Hilde

    2009-01-01

    The purpose of this paper is to gain more knowledge concerning individuals’ preferences for alternative GPs within a municipality. We have data on the population’s first, second and third choice of GPs. The data stem from the entry form the inhabitant filled in as a result of the implementation of a list patient system in general practice in Norway. To assess the potential demand for GPs3 or individuals’ request for a position on a certain GP’s list, we formulate and estimate a structural dem...

  17. Geomagnetic storms, super-storms, and their impacts on GPS-based navigation systems

    Science.gov (United States)

    Astafyeva, E.; Yasyukevich, Yu.; Maksikov, A.; Zhivetiev, I.

    2014-07-01

    Using data of GPS receivers located worldwide, we analyze the quality of GPS performance during four geomagnetic storms of different intensity: two super-storms and two intense storms. We show that during super-storms the density of GPS Losses-of-Lock (LoL) increases up to 0.25% at L1 frequency and up to 3% at L2 frequency, and up to 0.15% (at L1) and 1% (at L2) during less intense storms. Also, depending on the intensity of the storm time ionospheric disturbances, the total number of total electron content (TEC) slips can exceed from 4 to 40 times the quiet time level. Both GPS LoL and TEC slips occur during abrupt changes of SYM-H index of geomagnetic activity, i.e., during the main phase of geomagnetic storms and during development of ionospheric storms. The main contribution in the total number of GPS LoL was found to be done by GPS sites located at low and high latitudes, whereas the area of numerous TEC slips seemed to mostly correspond to the boundary of the auroral oval, i.e., region with intensive ionospheric irregularities. Our global maps of TEC slips show where the regions with intense irregularities of electron density occur during geomagnetic storms and will let us in future predict appearance of GPS errors for geomagnetically disturbed conditions.

  18. Estimation of heading gyrocompass error using a GPS 3DF system: Impact on ADCP measurements

    Directory of Open Access Journals (Sweden)

    Simón Ruiz

    2002-12-01

    Full Text Available Traditionally the horizontal orientation in a ship (heading has been obtained from a gyrocompass. This instrument is still used on research vessels but has an estimated error of about 2-3 degrees, inducing a systematic error in the cross-track velocity measured by an Acoustic Doppler Current Profiler (ADCP. The three-dimensional positioning system (GPS 3DF provides an independent heading measurement with accuracy better than 0.1 degree. The Spanish research vessel BIO Hespérides has been operating with this new system since 1996. For the first time on this vessel, the data from this new instrument are used to estimate gyrocompass error. The methodology we use follows the scheme developed by Griffiths (1994, which compares data from the gyrocompass and the GPS system in order to obtain an interpolated error function. In the present work we apply this methodology on mesoscale surveys performed during the observational phase of the OMEGA project, in the Alboran Sea. The heading-dependent gyrocompass error dominated. Errors in gyrocompass heading of 1.4-3.4 degrees have been found, which give a maximum error in measured cross-track ADCP velocity of 24 cm s-1.

  19. Relative navigation and attitude determination using a GPS/INS integrated system near the International Space Station

    Science.gov (United States)

    Um, Jaeyong

    2001-08-01

    The Space Integrated GPS/INS (SIGI) sensor is the primary navigation and attitude determination source for the International Space Station (ISS). The SIGI was successfully demonstrated on-orbit for the first time in the SIGI Orbital Attitude Readiness (SOAR) demonstration on the Space Shuttle Atlantis in May 2000. Numerous proximity operations near the ISS have been and will be performed over the lifetime of the Station. The development of an autonomous relative navigation system is needed to improve the safety and efficiency of vehicle operations near the ISS. A hardware simulation study was performed for the GPS-based relative navigation using the state vector difference approach and the interferometric approach in the absence of multipath. The interferometric approach, where the relative states are estimated directly, showed comparable results for a 1 km baseline. One of the most pressing current technical issues is the design of an autonomous relative navigation system in the proximity of the ISS, where GPS signals are blocked and maneuvers happen frequently. An integrated GPS/INS system is investigated for the possibility of a fully autonomous relative navigation system. Another application of GPS measurements is determination of the vehicle's orientation in space. This study used the SOAR experiment data to characterize the SICI's on-orbit performance for attitude determination. A cold start initialization algorithm was developed for integer ambiguity resolution in any initial orientation. The original algorithm that was used in the SIGI had an operational limitation in the integer ambiguity resolution, which was developed for terrestrial applications, and limited its effectiveness in space. The new algorithm was tested using the SOAR data and has been incorporated in the current SIGI flight software. The attitude estimation performance was examined using two different GPS/INS integration algorithms. The GPS/INS attitude solution using the SOAR data was as

  20. The limits of direct satellite tracking with the Global Positioning System (GPS)

    Science.gov (United States)

    Bertiger, W. I.; Yunck, T. P.

    1988-01-01

    Recent advances in high precision differential Global Positioning System-based satellite tracking can be applied to the more conventional direct tracking of low earth satellites. To properly evaluate the limiting accuracy of direct GPS-based tracking, it is necessary to account for the correlations between the a-priori errors in GPS states, Y-bias, and solar pressure parameters. These can be obtained by careful analysis of the GPS orbit determination process. The analysis indicates that sub-meter accuracy can be readily achieved for a user above 1000 km altitude, even when the user solution is obtained with data taken 12 hours after the data used in the GPS orbit solutions.

  1. Performance evaluation of ionospheric time delay forecasting models using GPS observations at a low-latitude station

    Science.gov (United States)

    Sivavaraprasad, G.; Venkata Ratnam, D.

    2017-07-01

    Ionospheric delay is one of the major atmospheric effects on the performance of satellite-based radio navigation systems. It limits the accuracy and availability of Global Positioning System (GPS) measurements, related to critical societal and safety applications. The temporal and spatial gradients of ionospheric total electron content (TEC) are driven by several unknown priori geophysical conditions and solar-terrestrial phenomena. Thereby, the prediction of ionospheric delay is challenging especially over Indian sub-continent. Therefore, an appropriate short/long-term ionospheric delay forecasting model is necessary. Hence, the intent of this paper is to forecast ionospheric delays by considering day to day, monthly and seasonal ionospheric TEC variations. GPS-TEC data (January 2013-December 2013) is extracted from a multi frequency GPS receiver established at K L University, Vaddeswaram, Guntur station (geographic: 16.37°N, 80.37°E; geomagnetic: 7.44°N, 153.75°E), India. An evaluation, in terms of forecasting capabilities, of three ionospheric time delay models - an Auto Regressive Moving Average (ARMA) model, Auto Regressive Integrated Moving Average (ARIMA) model, and a Holt-Winter's model is presented. The performances of these models are evaluated through error measurement analysis during both geomagnetic quiet and disturbed days. It is found that, ARMA model is effectively forecasting the ionospheric delay with an accuracy of 82-94%, which is 10% more superior to ARIMA and Holt-Winter's models. Moreover, the modeled VTEC derived from International Reference Ionosphere, IRI (IRI-2012) model and new global TEC model, Neustrelitz TEC Model (NTCM-GL) have compared with forecasted VTEC values of ARMA, ARIMA and Holt-Winter's models during geomagnetic quiet days. The forecast results are indicating that ARMA model would be useful to set up an early warning system for ionospheric disturbances at low latitude regions.

  2. FPGA-based real-time embedded system for RISS/GPS integrated navigation.

    Science.gov (United States)

    Abdelfatah, Walid Farid; Georgy, Jacques; Iqbal, Umar; Noureldin, Aboelmagd

    2012-01-01

    Navigation algorithms integrating measurements from multi-sensor systems overcome the problems that arise from using GPS navigation systems in standalone mode. Algorithms which integrate the data from 2D low-cost reduced inertial sensor system (RISS), consisting of a gyroscope and an odometer or wheel encoders, along with a GPS receiver via a Kalman filter has proved to be worthy in providing a consistent and more reliable navigation solution compared to standalone GPS receivers. It has been also shown to be beneficial, especially in GPS-denied environments such as urban canyons and tunnels. The main objective of this paper is to narrow the idea-to-implementation gap that follows the algorithm development by realizing a low-cost real-time embedded navigation system capable of computing the data-fused positioning solution. The role of the developed system is to synchronize the measurements from the three sensors, relative to the pulse per second signal generated from the GPS, after which the navigation algorithm is applied to the synchronized measurements to compute the navigation solution in real-time. Employing a customizable soft-core processor on an FPGA in the kernel of the navigation system, provided the flexibility for communicating with the various sensors and the computation capability required by the Kalman filter integration algorithm.

  3. Travel patterns during pregnancy: comparison between Global Positioning System (GPS) tracking and questionnaire data.

    Science.gov (United States)

    Wu, Jun; Jiang, Chengsheng; Jaimes, Guillermo; Bartell, Scott; Dang, Andy; Baker, Dean; Delfino, Ralph J

    2013-10-09

    Maternal exposures to traffic-related air pollution have been associated with adverse pregnancy outcomes. Exposures to traffic-related air pollutants are strongly influenced by time spent near traffic. However, little is known about women's travel activities during pregnancy and whether questionnaire-based data can provide reliable information on travel patterns during pregnancy. Examine women's in-vehicle travel behavior during pregnancy and examine the difference in travel data collected by questionnaire and global positioning system (GPS) and their potential for exposure error. We measured work-related travel patterns in 56 pregnant women using a questionnaire and one-week GPS tracking three times during pregnancy (30 weeks of gestation). We compared self-reported activities with GPS-derived trip distance and duration, and examined potentially influential factors that may contribute to differences. We also described in-vehicle travel behavior by pregnancy periods and influences of demographic and personal factors on daily travel times. Finally, we estimated personal exposure to particle-bound polycyclic aromatic hydrocarbon (PB-PAH) and examined the magnitude of exposure misclassification using self-reported vs. GPS travel data. Subjects overestimated both trip duration and trip distance compared to the GPS data. We observed moderately high correlations between self-reported and GPS-recorded travel distance (home to work trips: r = 0.88; work to home trips: r = 0.80). Better agreement was observed between the GPS and the self-reported travel time for home to work trips (r = 0.77) than work to home trips (r = 0.64). The subjects on average spent 69 and 93 minutes traveling in vehicles daily based on the GPS and self-reported data, respectively. Longer daily travel time was observed among participants in early pregnancy, and during certain pregnancy periods in women with higher education attainment, higher income, and no children. When comparing

  4. A Real Time Differential GPS Tracking System for NASA Sounding Rockets

    Science.gov (United States)

    Bull, Barton; Bauer, Frank (Technical Monitor)

    2000-01-01

    Sounding rockets are suborbital launch vehicles capable of carrying scientific payloads to several hundred miles in altitude. These missions return a variety of scientific data including: chemical makeup and physical processes taking place in the atmosphere, natural radiation surrounding the Earth, data on the Sun, stars, galaxies and many other phenomena. In addition, sounding rockets provide a reasonably economical means of conducting engineering tests for instruments and devices to be used on satellites and other spacecraft prior to their use in these more expensive missions. Typically around thirty of these rockets are launched each year, from established ranges at Wallops Island, Virginia; Poker Flat Research Range, Alaska; White Sands Missile Range, New Mexico and from a number of ranges outside the United States. Many times launches are conducted from temporary launch ranges in remote parts of the world requiring considerable expense to transport and operate tracking radars. In order to support these missions, an inverse differential GPS system has been developed. The flight system consists of a small, inexpensive receiver, a preamplifier and a wrap-around antenna. A rugged, compact, portable ground station extracts GPS data from the raw payload telemetry stream, performs a real time differential solution and graphically displays the rocket's path relative to a predicted trajectory plot. In addition to generating a real time navigation solution, the system has been used for payload recovery, timing, data timetagging, precise tracking of multiple payloads and slaving of optical tracking systems for over the horizon acquisition. This paper discusses, in detail, the flight and ground hardware, as well as data processing and operational aspects of the system, and provides evidence of the system accuracy.

  5. Flight Performance Evaluation of Three GPS Receivers for Sounding Rocket Tracking

    Science.gov (United States)

    Bull, Barton; Diehl, James; Montenbruck, Oliver; Markgraf, Markus; Bauer, Frank (Technical Monitor)

    2002-01-01

    In preparation for the European Space Agency Maxus-4 mission, a sounding rocket test flight was carried out at Esrange, near Kiruna, Sweden on February 19, 2001 to validate existing ground facilities and range safety installations. Due to the absence of a dedicated scientific payload, the flight offered the opportunity to test multiple GPS receivers and assess their performance for the tracking of sounding rockets. The receivers included an Ashtech G12 HDMA receiver, a BAE (Canadian Marconi) Allstar receiver and a Mitel Orion receiver. All of them provide C/A code tracking on the L1 frequency to determine the user position and make use of Doppler measurements to derive the instantaneous velocity. Among the receivers, the G12 has been optimized for use under highly dynamic conditions and has earlier been flown successfully on NASA sounding rockets. The Allstar is representative of common single frequency receivers for terrestrial applications and received no particular modification, except for the disabling of the common altitude and velocity constraints that would otherwise inhibit its use for space application. The Orion receiver, finally, employs the same Mitel chipset as the Allstar, but has received various firmware modifications by DLR to safeguard it against signal losses and improve its tracking performance. While the two NASA receivers were driven by a common wrap-around antenna, the DLR experiment made use of a switchable antenna system comprising a helical antenna in the tip of the rocket and two blade antennas attached to the body of the vehicle. During the boost a peak acceleration of roughly l7g's was achieved which resulted in a velocity of about 1100 m/s at the end of the burn. At apogee, the rocket reached an altitude of over 80 km. A detailed analysis of the attained flight data is given together with a evaluation of different receiver designs and antenna concepts.

  6. In-flight performance analysis of MEMS GPS receiver and its application to precise orbit determination of APOD-A satellite

    Science.gov (United States)

    Gu, Defeng; Liu, Ye; Yi, Bin; Cao, Jianfeng; Li, Xie

    2017-12-01

    An experimental satellite mission termed atmospheric density detection and precise orbit determination (APOD) was developed by China and launched on 20 September 2015. The micro-electro-mechanical system (MEMS) GPS receiver provides the basis for precise orbit determination (POD) within the range of a few decimetres. The in-flight performance of the MEMS GPS receiver was assessed. The average number of tracked GPS satellites is 10.7. However, only 5.1 GPS satellites are available for dual-frequency navigation because of the loss of many L2 observations at low elevations. The variations in the multipath error for C1 and P2 were estimated, and the maximum multipath error could reach up to 0.8 m. The average code noises are 0.28 m (C1) and 0.69 m (P2). Using the MEMS GPS receiver, the orbit of the APOD nanosatellite (APOD-A) was precisely determined. Two types of orbit solutions are proposed: a dual-frequency solution and a single-frequency solution. The antenna phase center variations (PCVs) and code residual variations (CRVs) were estimated, and the maximum value of the PCVs is 4.0 cm. After correcting the antenna PCVs and CRVs, the final orbit precision for the dual-frequency and single-frequency solutions were 7.71 cm and 12.91 cm, respectively, validated using the satellite laser ranging (SLR) data, which were significantly improved by 3.35 cm and 25.25 cm. The average RMS of the 6-h overlap differences in the dual-frequency solution between two consecutive days in three dimensions (3D) is 4.59 cm. The MEMS GPS receiver is the Chinese indigenous onboard receiver, which was successfully used in the POD of a nanosatellite. This study has important reference value for improving the MEMS GPS receiver and its application in other low Earth orbit (LEO) nanosatellites.

  7. Cryospheric monitoring with new low power RTK dGPS systems

    Science.gov (United States)

    Martinez, K.; Hart, J. K.; Bragg, G. M.; Curry, J. S.

    2017-12-01

    Differential GPS is often used to measure the movement of glaciers. It requires data to be recorded at a fixed base station as well as the moving rover unit, followed by post-processing in order to compute the rover's positions. The typical dGPS units used consume considerable power and the recording times are often around one hour per reading. While this provides very precise (typically millimetre) precision it comes at a cost of power used and the data is rather large to send offsite regularly. Real-time kinematic modes of dGPS are typically used for rapid mapping and autonomous vehicles. New devices are lower cost and smaller size. They also provide a fix within a few minutes, which can be transmitted home. We describe the design, deployment and preliminary results of two tracking systems to monitor ice movement. The first used a normal GPS and Iridium satellite messaging to track the movement of a Greenland iceberg which calved from the Nattivit Apusiiat glacier (south west Greenland). This system followed the iceberg as it flowed 660 km south along the coast of Greenland. The second system was installed in Iceland to track the movement of glaciers using 2 different dGPS systems. A low power ARM Cortex M4-based controller ran Python code to schedule dGPS activity periodically and gather fixes. An Iridium short messaging unit (Rockblock) was used to transmit RTK location fixes. The aim was to experiment with the use of RTK dGPS as an alternative to recordings to measure how the glaciers responded to small scale changes in temperature and precipitation throughout the year.

  8. Supporting EarthScope Cyber-Infrastructure with a Modern GPS Science Data System

    Science.gov (United States)

    Webb, F. H.; Bock, Y.; Kedar, S.; Jamason, P.; Fang, P.; Dong, D.; Owen, S. E.; Prawirodirjo, L.; Squibb, M.

    2008-12-01

    Building on NASA's investment in the measurement of crustal deformation from continuous GPS, we are developing and implementing a Science Data System (SDS) that will provide mature, long-term Earth Science Data Records (ESDR's). This effort supports NASA's Earth Surface and Interiors (ESI) focus area and provide NASA's component to the EarthScope PBO. This multi-year development is sponsored by NASA's Making Earth System data records for Use in Research Environments (MEaSUREs) program. The SDS integrates the generation of ESDRs with data analysis and exploration, product generation, and modeling tools based on daily GPS data that include GPS networks in western North America and a component of NASA's Global GPS Network (GGN) for terrestrial reference frame definition. The system is expandable to multiple regional and global networks. The SDS builds upon mature data production, exploration, and analysis algorithms developed under NASA's REASoN, ACCESS, and SENH programs. This SDS provides access to positions, time series, velocity fields, and strain measurements derived from continuous GPS data obtained at tracking stations in both the Plate Boundary Observatory and other regional Western North America GPS networks, dating back to 1995. The SDS leverages the IT and Web Services developments carried out under the SCIGN/REASoN and ACCESS projects, which have streamlined access to data products for researchers and modelers, and which have created a prototype an on-the-fly interactive research environment through a modern data portal, GPS Explorer. This IT system has been designed using modern IT tools and principles in order to be extensible to any geographic location, scale, natural hazard, and combination of geophysical sensor and related data. We have built upon open GIS standards, particularly those of the OGC, and have used the principles of Web Service-based Service Oriented Architectures to provide scalability and extensibility to new services and capabilities.

  9. A New Algorithm for ABS/GPS Integration Based on Fuzzy-Logic in Vehicle Navigation System

    Directory of Open Access Journals (Sweden)

    Ali Amin Zadeh

    2011-10-01

    Full Text Available GPS based vehicle navigation systems have difficulties in tracking vehicles in urban canyons due to poor satellite availability. ABS (Antilock Brake System Navigation System consists of self-contained optical encoders mounted on vehicle wheels that can continuously provide accurate short-term positioning information. In this paper, a new concept regarding GPS/ABS integration, based on Fuzzy Logic is presented. The proposed algorithm is used to identify GPS position accuracy based on environment and vehicle dynamic knowledge. The GPS is used as reference during the time it is in a good condition and replaced by ABS positioning system when GPS information is unreliable. We compare our proposed algorithm with other common algorithm in real environment. Our results show that the proposed algorithm can significantly improve the stability and reliability of ABS/GPS navigation system.

  10. Upper Troposphere Lower Stratosphere structure during convective systems using GPS radio occultations

    DEFF Research Database (Denmark)

    Biondi, Riccardo

    The deep convective systems play a fundamental role in atmospheric circulation and climate. Thunderstorms and meso-scale convective systems produce fast vertical transport, redistributing water vapor and trace gases and influencing the thermal structure of the upper troposphere and lower...... stratosphere (UTLS) contributing to the troposphere-stratosphere transport and affecting the Earth global circulation and the climate changes. The Global Positioning System (GPS) Radio Occultation (RO) technique enables measurement of atmospheric density structure in any meteorological condition...... to the analysis of tropical storms for the future mission ACES will also be evaluated. Using data from the past and ongoing GPS RO missions we have defined an algorithm to detect the clouds top of the convective systems and their thermal structure. Other satellite and in-situ measurements co-located with GPS ROs...

  11. Development of a High Precision Displacement Measurement System by Fusing a Low Cost RTK-GPS Sensor and a Force Feedback Accelerometer for Infrastructure Monitoring.

    Science.gov (United States)

    Koo, Gunhee; Kim, Kiyoung; Chung, Jun Yeon; Choi, Jaemook; Kwon, Nam-Yeol; Kang, Doo-Young; Sohn, Hoon

    2017-11-28

    A displacement measurement system fusing a low cost real-time kinematic global positioning system (RTK-GPS) receiver and a force feedback accelerometer is proposed for infrastructure monitoring. The proposed system is composed of a sensor module, a base module and a computation module. The sensor module consists of a RTK-GPS rover and a force feedback accelerometer, and is installed on a target structure like conventional RTK-GPS sensors. The base module is placed on a rigid ground away from the target structure similar to conventional RTK-GPS bases, and transmits observation messages to the sensor module. Then, the initial acceleration, velocity and displacement responses measured by the sensor module are transmitted to the computation module located at a central monitoring facility. Finally, high precision and high sampling rate displacement, velocity, and acceleration are estimated by fusing the acceleration from the accelerometer, the velocity from the GPS rover, and the displacement from RTK-GPS. Note that the proposed displacement measurement system can measure 3-axis acceleration, velocity as well as displacement in real time. In terms of displacement, the proposed measurement system can estimate dynamic and pseudo-static displacement with a root-mean-square error of 2 mm and a sampling rate of up to 100 Hz. The performance of the proposed system is validated under sinusoidal, random and steady-state vibrations. Field tests were performed on the Yeongjong Grand Bridge and Yi Sun-sin Bridge in Korea, and the Xihoumen Bridge in China to compare the performance of the proposed system with a commercial RTK-GPS sensor and other data fusion techniques.

  12. Development of a High Precision Displacement Measurement System by Fusing a Low Cost RTK-GPS Sensor and a Force Feedback Accelerometer for Infrastructure Monitoring

    Directory of Open Access Journals (Sweden)

    Gunhee Koo

    2017-11-01

    Full Text Available A displacement measurement system fusing a low cost real-time kinematic global positioning system (RTK-GPS receiver and a force feedback accelerometer is proposed for infrastructure monitoring. The proposed system is composed of a sensor module, a base module and a computation module. The sensor module consists of a RTK-GPS rover and a force feedback accelerometer, and is installed on a target structure like conventional RTK-GPS sensors. The base module is placed on a rigid ground away from the target structure similar to conventional RTK-GPS bases, and transmits observation messages to the sensor module. Then, the initial acceleration, velocity and displacement responses measured by the sensor module are transmitted to the computation module located at a central monitoring facility. Finally, high precision and high sampling rate displacement, velocity, and acceleration are estimated by fusing the acceleration from the accelerometer, the velocity from the GPS rover, and the displacement from RTK-GPS. Note that the proposed displacement measurement system can measure 3-axis acceleration, velocity as well as displacement in real time. In terms of displacement, the proposed measurement system can estimate dynamic and pseudo-static displacement with a root-mean-square error of 2 mm and a sampling rate of up to 100 Hz. The performance of the proposed system is validated under sinusoidal, random and steady-state vibrations. Field tests were performed on the Yeongjong Grand Bridge and Yi Sun-sin Bridge in Korea, and the Xihoumen Bridge in China to compare the performance of the proposed system with a commercial RTK-GPS sensor and other data fusion techniques.

  13. The EVS: a computerized decision support system for GPs in the Netherlands.

    NARCIS (Netherlands)

    Wolters, I.; Hoogen, H. van den; Bakker, D. de

    2003-01-01

    Background: In 1998 a project was started to introduce nationally a decision support system in general practice in the Netherlands, called EVS (electronic prescription support system). The system contains national guidelines developed by the Dutch Council of GPs (NHG) for approximately 80 diagnoses.

  14. Assessing the Performance of GPS Precise Point Positioning Under Different Geomagnetic Storm Conditions during Solar Cycle 24

    Directory of Open Access Journals (Sweden)

    Xiaomin Luo

    2018-06-01

    Full Text Available The geomagnetic storm, which is an abnormal space weather phenomenon, can sometimes severely affect GPS signal propagation, thereby impacting the performance of GPS precise point positioning (PPP. However, the investigation of GPS PPP accuracy over the global scale under different geomagnetic storm conditions is very limited. This paper for the first time presents the performance of GPS dual-frequency (DF and single-frequency (SF PPP under moderate, intense, and super storms conditions during solar cycle 24 using a large data set collected from about 500 international GNSS services (IGS stations. The global root mean square (RMS maps of GPS PPP results show that stations with degraded performance are mainly distributed at high-latitude, and the degradation level generally depends on the storm intensity. The three-dimensional (3D RMS of GPS DF PPP for high-latitude during moderate, intense, and super storms are 0.393 m, 0.680 m and 1.051 m, respectively, with respect to only 0.163 m on quiet day. RMS errors of mid- and low-latitudes show less dependence on the storm intensities, with values less than 0.320 m, compared to 0.153 m on quiet day. Compared with DF PPP, the performance of GPS SF PPP is inferior regardless of quiet or disturbed conditions. The degraded performance of GPS positioning during geomagnetic storms is attributed to the increased ionospheric disturbances, which have been confirmed by our global rate of TEC index (ROTI maps. Ionospheric disturbances not only lead to the deteriorated ionospheric correction but also to the frequent cycle-slip occurrence. Statistical results show that, compared with that on quiet day, the increased cycle-slip occurrence are 13.04%, 56.52%, and 69.57% under moderate, intense, and super storms conditions, respectively.

  15. A web-based GPS system for displacement monitoring and failure mechanism analysis of reservoir landslide.

    Science.gov (United States)

    Li, Yuanyao; Huang, Jinsong; Jiang, Shui-Hua; Huang, Faming; Chang, Zhilu

    2017-12-07

    It is important to monitor the displacement time series and to explore the failure mechanism of reservoir landslide for early warning. Traditionally, it is a challenge to monitor the landslide displacements real-timely and automatically. Globe Position System (GPS) is considered as the best real-time monitoring technology, however, the accuracies of the landslide displacements monitored by GPS are not assessed effectively. A web-based GPS system is developed to monitor the landslide displacements real-timely and automatically in this study. And the discrete wavelet transform (DWT) is proposed to assess the accuracy of the GPS monitoring displacements. Wangmiao landslide in Three Gorges Reservoir area in China is used as case study. The results show that the web-based GPS system has advantages of high precision, real-time, remote control and automation for landslide monitoring; the Root Mean Square Errors of the monitoring landslide displacements are less than 5 mm. Meanwhile, the results also show that a rapidly falling reservoir water level can trigger the reactivation of Wangmiao landslide. Heavy rainfall is also an important factor, but not a crucial component.

  16. A GPS Phase-Locked Loop Performance Metric Based on the Phase Discriminator Output.

    Science.gov (United States)

    Stevanovic, Stefan; Pervan, Boris

    2018-01-19

    We propose a novel GPS phase-lock loop (PLL) performance metric based on the standard deviation of tracking error (defined as the discriminator's estimate of the true phase error), and explain its advantages over the popular phase jitter metric using theory, numerical simulation, and experimental results. We derive an augmented GPS phase-lock loop (PLL) linear model, which includes the effect of coherent averaging, to be used in conjunction with this proposed metric. The augmented linear model allows more accurate calculation of tracking error standard deviation in the presence of additive white Gaussian noise (AWGN) as compared to traditional linear models. The standard deviation of tracking error, with a threshold corresponding to half of the arctangent discriminator pull-in region, is shown to be a more reliable/robust measure of PLL performance under interference conditions than the phase jitter metric. In addition, the augmented linear model is shown to be valid up until this threshold, which facilitates efficient performance prediction, so that time-consuming direct simulations and costly experimental testing can be reserved for PLL designs that are much more likely to be successful. The effect of varying receiver reference oscillator quality on the tracking error metric is also considered.

  17. Derivation of some geometric parameters from GPS measurements

    Directory of Open Access Journals (Sweden)

    Marcel Mojzeš

    2005-11-01

    Full Text Available Combining GPS and terrestrial data requires a common coordinate system. When the original GPS vectors do not form a network, the 3D network adjustment can not be performed. In this case, in order to integrate the GPS measurements with the terrestrial observations and to perform a combined network adjustment, the GPS measurements should be transformed to this common system. The GPS measurements which are the usual output of the GPS post processing softwares are based on the WGS84 ellipsoid and the S-JTSK local datum is based on the Bessel ellipsoid. Thus, the reduction of measurements to the S-JTSK mapping plane can not be started from the measurements resulting from GPS post processing softwares because GPS and S-JTSK don’t have the same ellipsoid. Another view of this reduction will be described in this paper.

  18. 77 FR 56254 - 89th Meeting: RTCA Special Committee 159, Global Positioning Systems (GPS)

    Science.gov (United States)

    2012-09-12

    ... held March 16, 2012. Review Working Group (WG) Progress and Identify Issues for Resolution. GPS/3nd... Standards for Global Positioning System/Wide Area Augmentation System Airborne Equipment Assignment/Review of Future Work. Other Business. Date and Place of Next Meeting. Adjourn Attendance is open to the...

  19. Evaluation of a regional real-time precise positioning system based on GPS/BeiDou observations in Australia

    Science.gov (United States)

    Ding, Wenwu; Tan, Bingfeng; Chen, Yongchang; Teferle, Felix Norman; Yuan, Yunbin

    2018-02-01

    The performance of real-time (RT) precise positioning can be improved by utilizing observations from multiple Global Navigation Satellite Systems (GNSS) instead of one particular system. Since the end of 2012, BeiDou, independently established by China, began to provide operational services for users in the Asia-Pacific regions. In this study, a regional RT precise positioning system is developed to evaluate the performance of GPS/BeiDou observations in Australia in providing high precision positioning services for users. Fixing three hourly updated satellite orbits, RT correction messages are generated and broadcasted by processing RT observation/navigation data streams from the national network of GNSS Continuously Operating Reference Stations in Australia (AUSCORS) at the server side. At the user side, RT PPP is realized by processing RT data streams and the RT correction messages received. RT clock offsets, for which the accuracy reached 0.07 and 0.28 ns for GPS and BeiDou, respectively, can be determined. Based on these corrections, an accuracy of 12.2, 30.0 and 45.6 cm in the North, East and Up directions was achieved for the BeiDou-only solution after 30 min while the GPS-only solution reached 5.1, 15.3 and 15.5 cm for the same components at the same time. A further improvement of 43.7, 36.9 and 45.0 percent in the three directions, respectively, was achieved for the combined GPS/BeiDou solution. After the initialization process, the North, East and Up positioning accuracies were 5.2, 8.1 and 17.8 cm, respectively, for the BeiDou-only solution, while 1.5, 3.0, and 4.7 cm for the GPS-only solution. However, we only noticed a 20.9% improvement in the East direction was obtained for the GPS/BeiDou solution, while no improvements in the other directions were detected. It is expected that such improvements may become bigger with the increasing accuracy of the BeiDou-only solution.

  20. Performance Analysis of Low-Cost Single-Frequency GPS Receivers in Hydrographic Surveying

    Science.gov (United States)

    Elsobeiey, M.

    2017-10-01

    The International Hydrographic Organization (IHO) has issued standards that provide the minimum requirements for different types of hydrographic surveys execution to collect data to be used to compile navigational charts. Such standards are usually updated from time to time to reflect new survey techniques and practices and must be achieved to assure both surface navigation safety and marine environment protection. Hydrographic surveys can be classified to four orders namely, special order, order 1a, order 1b, and order 2. The order of hydrographic surveys to use should be determined in accordance with the importance to the safety of navigation in the surveyed area. Typically, geodetic-grade dual-frequency GPS receivers are utilized for position determination during data collection in hydrographic surveys. However, with the evolution of high-sensitivity low-cost single-frequency receivers, it is very important to evaluate the performance of such receivers. This paper investigates the performance of low-cost single-frequency GPS receivers in hydrographic surveying applications. The main objective is to examine whether low-cost single-frequency receivers fulfil the IHO standards for hydrographic surveys. It is shown that the low-cost single-frequency receivers meet the IHO horizontal accuracy for all hydrographic surveys orders at any depth. However, the single-frequency receivers meet only order 2 requirements for vertical accuracy at depth more than or equal 100 m.

  1. Map matching and heuristic elimination of gyro drift for personal navigation systems in GPS-denied conditions

    International Nuclear Information System (INIS)

    Aggarwal, Priyanka; Thomas, David; Ojeda, Lauro; Borenstein, Johann

    2011-01-01

    This paper introduces a method for the substantial reduction of heading errors in inertial navigation systems used under GPS-denied conditions. Presumably, the method is applicable for both vehicle-based and personal navigation systems, but experiments were performed only with a personal navigation system called 'personal dead reckoning' (PDR). In order to work under GPS-denied conditions, the PDR system uses a foot-mounted inertial measurement unit (IMU). However, gyro drift in this IMU can cause large heading errors after just a few minutes of walking. To reduce these errors, the map-matched heuristic drift elimination (MAPHDE) method was developed, which estimates gyro drift errors by comparing IMU-derived heading to the direction of the nearest street segment in a database of street maps. A heuristic component in this method provides tolerance to short deviations from walking along the street, such as when crossing streets or intersections. MAPHDE keeps heading errors almost at zero, and, as a result, position errors are dramatically reduced. In this paper, MAPHDE was used in a variety of outdoor walks, without any use of GPS. This paper explains the MAPHDE method in detail and presents experimental results

  2. Hybrid Kalman and unscented Kalman filters for INS/GPS integrated system considering constant lever arm effect

    Institute of Scientific and Technical Information of China (English)

    常国宾; 柳明

    2015-01-01

    In inertial navigation system (INS) and global positioning system (GPS) integrated system, GPS antennas are usually not located at the same location as the inertial measurement unit (IMU) of the INS, so the lever arm effect exists, which makes the observation equation highly nonlinear. The INS/GPS integration with constant lever arm effect is studied. The position relation of IMU and GPS’s antenna is represented in the earth centered earth fixed frame, while the velocity relation of these two systems is represented in local horizontal frame. Due to the small integration time interval of INS, i.e. 0.1 s in this work, the nonlinearity in the INS error equation is trivial, so the linear INS error model is constructed and addressed by Kalman filter’s prediction step. On the other hand, the high nonlinearity in the observation equation due to lever arm effect is addressed by unscented Kalman filter’s update step to attain higher accuracy and better applicability. Simulation is designed and the performance of the hybrid filter is validated.

  3. Tractor-mounted, GPS-based spot fumigation system manages Prunus replant disease

    Science.gov (United States)

    Our research goal was to use recent advances in global positioning system (GPS) and computer technology to apply just the right amount of fumigant where it is most needed (i.e., in a small target treatment zone in and around each tree replanting site) to control Prunus replant disease (PRD). We deve...

  4. Allocation of time under different payment systems by GPs in Europe.

    NARCIS (Netherlands)

    Boerma, W.; Groenewegen, P.; Spreeuwenberg, P.

    2003-01-01

    Background: Payment of GPs is relevant from two points of view: fair payment and effects on the quality of care. Fair pay is especially important in capitation systems (does the amount correctly reflect the invested work). Secondly, payment affects the allocation of time, and thus indirect the

  5. Reduced variability and execution time to reach a target with a needle GPS system: Comparison between physicians, residents and nurse anaesthetists.

    Science.gov (United States)

    Fevre, Marie-Cécile; Vincent, Caroline; Picard, Julien; Vighetti, Arnaud; Chapuis, Claire; Detavernier, Maxime; Allenet, Benoît; Payen, Jean-François; Bosson, Jean-Luc; Albaladejo, Pierre

    2018-02-01

    Ultrasound (US) guided needle positioning is safer than anatomical landmark techniques for central venous access. Hand-eye coordination and execution time depend on the professional's ability, previous training and personal skills. Needle guidance positioning systems (GPS) may theoretically reduce execution time and facilitate needle positioning in specific targets, thus improving patient comfort and safety. Three groups of healthcare professionals (41 anaesthesiologists and intensivists, 41 residents in anaesthesiology and intensive care, 39 nurse anaesthetists) were included and required to perform 3 tasks (positioning the tip of a needle in three different targets in a silicon phantom) by using successively a conventional US-guided needle positioning and a needle GPS. We measured execution times to perform the tasks, hand-eye coordination and the number of repositioning occurrences or errors in handling the needle or the probe. Without the GPS system, we observed a significant inter-individual difference for execution time (Pgaming were found to be independent factors associated with a shorter execution time. Use of GPS attenuated the inter-individual and group variability. We observed a reduced execution time and improved hand-eye coordination in all groups as compared to US without GPS. Neither US training, video gaming nor demographic personal or professional factors were found to be significantly associated with reduced execution time when GPS was used. US associated with GPS systems may improve safety and decrease execution time by reducing inter-individual variability between professionals for needle-handling procedures. Copyright © 2016 Société française d'anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.

  6. Scintillation-Hardened GPS Receiver

    Science.gov (United States)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  7. Tractor-mounted, GPS-based spot fumigation system manages Prunus replant disease

    Directory of Open Access Journals (Sweden)

    V. Udompetaikul

    2013-10-01

    Full Text Available Our research goal was to use recent advances in global positioning system (GPS and computer technology to apply just the right amount of fumigant where it is most needed (i.e., in a small target treatment zone in and around each tree replanting site to control Prunus replant disease (PRD. We developed and confirmed the function of (1 GPS-based software that can be used on cleared orchard land to flexibly plan and map all of an orchard's future tree sites and associated spot fumigation treatment zones and 2 a tractor-based GPS-controlled spot fumigation system to quickly and safely treat the targeted tree site treatment zones. In trials in two almond orchards and one peach orchard, our evaluations of the composite mapping and application system, which examined spatial accuracy of the spot treatments, delivery rate accuracy of the spot treatments, and tree growth responses to the spot treatments, all indicated that GPS spot fumigation has excellent potential to greatly reduce fumigant usage while adequately managing the PRD complex.

  8. Evaluating the performance of a low-cost GPS in precision agriculture applications

    DEFF Research Database (Denmark)

    Jensen, Kjeld; Larsen, Morten; Simonsen, Tom

    2012-01-01

    Field Robots are often equipped with a Real Time Kinematic (RTK) GPS to obtain precise positioning. In many precision agriculture applications, however, the robot operates in semi-structured environments like orchards and row crops, where local sensors such as computer vision and laser range...... scanners can produce accurate positioning relative to the crops. GPS is then primarily needed for robust inter-row navigation. This work evaluates a new low-cost GPS. Static tests were used to test the absolute accuracy. To test the GPS in a precision agriculture environment it was installed on a robot...

  9. The impact of a diagnostic decision support system on the consultation: perceptions of GPs and patients.

    Science.gov (United States)

    Porat, Talya; Delaney, Brendan; Kostopoulou, Olga

    2017-06-02

    Clinical decision support systems (DSS) aimed at supporting diagnosis are not widely used. This is mainly due to usability issues and lack of integration into clinical work and the electronic health record (EHR). In this study we examined the usability and acceptability of a diagnostic DSS prototype integrated with the EHR and in comparison with the EHR alone. Thirty-four General Practitioners (GPs) consulted with 6 standardised patients (SPs) using only their EHR system (baseline session); on another day, they consulted with 6 different but matched for difficulty SPs, using the EHR with the integrated DSS prototype (DSS session). GPs were interviewed twice (at the end of each session), and completed the Post-Study System Usability Questionnaire at the end of the DSS session. The SPs completed the Consultation Satisfaction Questionnaire after each consultation. The majority of GPs (74%) found the DSS useful: it helped them consider more diagnoses and ask more targeted questions. They considered three user interface features to be the most useful: (1) integration with the EHR; (2) suggested diagnoses to consider at the start of the consultation and; (3) the checklist of symptoms and signs in relation to each suggested diagnosis. There were also criticisms: half of the GPs felt that the DSS changed their consultation style, by requiring them to code symptoms and signs while interacting with the patient. SPs sometimes commented that GPs were looking at their computer more than at them; this comment was made more often in the DSS session (15%) than in the baseline session (3%). Nevertheless, SP ratings on the satisfaction questionnaire did not differ between the two sessions. To use the DSS effectively, GPs would need to adapt their consultation style, so that they code more information during rather than at the end of the consultation. This presents a potential barrier to adoption. Training GPs to use the system in a patient-centred way, as well as improvement of the

  10. A GPS-based Real-time Road Traffic Monitoring System

    Science.gov (United States)

    Tanti, Kamal Kumar

    In recent years, monitoring systems are astonishingly inclined towards ever more automatic; reliably interconnected, distributed and autonomous operation. Specifically, the measurement, logging, data processing and interpretation activities may be carried out by separate units at different locations in near real-time. The recent evolution of mobile communication devices and communication technologies has fostered a growing interest in the GIS & GPS-based location-aware systems and services. This paper describes a real-time road traffic monitoring system based on integrated mobile field devices (GPS/GSM/IOs) working in tandem with advanced GIS-based application software providing on-the-fly authentications for real-time monitoring and security enhancement. The described system is developed as a fully automated, continuous, real-time monitoring system that employs GPS sensors and Ethernet and/or serial port communication techniques are used to transfer data between GPS receivers at target points and a central processing computer. The data can be processed locally or remotely based on the requirements of client’s satisfaction. Due to the modular architecture of the system, other sensor types may be supported with minimal effort. Data on the distributed network & measurements are transmitted via cellular SIM cards to a Control Unit, which provides for post-processing and network management. The Control Unit may be remotely accessed via an Internet connection. The new system will not only provide more consistent data about the road traffic conditions but also will provide methods for integrating with other Intelligent Transportation Systems (ITS). For communication between the mobile device and central monitoring service GSM technology is used. The resulting system is characterized by autonomy, reliability and a high degree of automation.

  11. Design of Mobile Operation and Maintenance System Based on Power GIS and GPS

    Directory of Open Access Journals (Sweden)

    Jing TAO

    2017-01-01

    Full Text Available In order to solve the low efficiency of operation and maintenance and the problems of management coordination caused by the coexistence of off-line operation and maintenance and multi system coexistence in current power telecommunication operation and maintenance, this paper proposes a mobile operation and maintenance system based on power GIS and GPS location technology. The system is based on the C/S architecture, and the mobile operation and maintenance terminal is connected with the operation and maintenance management terminal through wireless and wired network. In addition to meeting basic business requirements, the system integrates power GIS functions to visually demonstrate communication resources, personnel, and failures. The staff can use the wireless mobile terminal which integrated GPS module for to operate and maintain, and can locate accurately in real time.

  12. Multi-Modal Intelligent Traffic Signal Systems GPS

    Data.gov (United States)

    Department of Transportation — Data were collected during the Multi-Modal Intelligent Transportation Signal Systems (MMITSS) study. MMITSS is a next-generation traffic signal system that seeks to...

  13. Transition of NOAA's GPS-Met Data Acquisition and Processing System to the Commercial Sector

    Science.gov (United States)

    Jackson, M. E.; Holub, K.; Callahan, W.; Blatt, S.

    2014-12-01

    In April of 2014, NOAA/OAR/ESRL Global Systems Division (GSD) and Trimble, in collaboration with Earth Networks, Inc. (ENI) signed a Cooperative Research and Development Agreement (CRADA) to transfer the existing NOAA GPS-Met Data Acquisition and Processing System (GPS-Met DAPS) technology to a commercial Trimble/ENI partnership. NOAA's GPS-Met DAPS is currently operated in a pseudo-operational mode but has proven highly reliable and running at over 95% uptime. The DAPS uses the GAMIT software to ingest dual frequency carrier phase GPS/GNSS observations and ancillary information such as real-time satellite orbits to estimate the zenith-scaled tropospheric (ZTD) signal delays and, where surface MET data are available, retrieve integrated precipitable water vapor (PWV). The NOAA data and products are made available to end users in near real-time. The Trimble/ENI partnership will use the Trimble Pivot™ software with the Atmosphere App to calculate zenith tropospheric (ZTD), tropospheric slant delay, and integrated precipitable water vapor (PWV). Evaluation of the Trimble software is underway starting with a comparison of ZTD and PWV values determined from GPS stations located near NOAA Radiosonde Observation (Upper-Air Observation) launch sites. A success metric was established that requires Trimble's PWV estimates to match ESRL/GSD's to within 1.5 mm 95% of the time, which corresponds to a ZTD uncertainty of less than 10 mm 95% of the time. Initial results indicate that Trimble/ENI data meet and exceed the ZTD metric, but for some stations PWV estimates are out of specification. These discrepancies are primarily due to how offsets between MET and GPS stations are handled and are easily resolved. Additional test networks are proposed that include low terrain/high moisture variability stations, high terrain/low moisture variability stations, as well as high terrain/high moisture variability stations. We will present results from further testing along with a timeline

  14. Application of Cyclostationary Signal Selectivity to the Carry-On Multi-Platform GPS Assisted Time Difference of Arrival System

    National Research Council Canada - National Science Library

    Streight, David

    1997-01-01

    .... The Applied Research Lab at the University of Texas at Austin (ARL:UT) has developed a prototype TDOA system, the Carry-on Multi-platform GPS Assisted Time Difference of Arrival System for the Naval Information Warfare Activity...

  15. Global Positioning System (GPS) Receiver Autonomous Integrity Monitoring (RAIM) web service to support Area Navigation (RNAV) flight planning

    Science.gov (United States)

    2008-01-28

    The Volpe Center designed, implemented, and deployed a Global Positioning System (GPS) Receiver Autonomous Integrity Monitoring (RAIM) prediction system in the mid 1990s to support both Air Force and Federal Aviation Administration (FAA) use of TSO C...

  16. Comparison of global positioning system (GPS) tracking and parent-report diaries to characterize children's time-location patterns.

    Science.gov (United States)

    Elgethun, Kai; Yost, Michael G; Fitzpatrick, Cole T E; Nyerges, Timothy L; Fenske, Richard A

    2007-03-01

    Respondent error, low resolution, and study participant burden are known limitations of diary timelines used in exposure studies such as the National Human Exposure Assessment Survey (NHEXAS). Recent advances in global positioning system (GPS) technology have produced tracking devices sufficiently portable, functional and affordable to utilize in exposure assessment science. In this study, a differentially corrected GPS (dGPS) tracking device was compared to the NHEXAS diary timeline. The study also explored how GPS can be used to evaluate and improve such diary timelines by determining which location categories and which respondents are least likely to record "correct" time-location responses. A total of 31 children ages 3-5 years old wore a dGPS device for all waking hours on a weekend day while their parents completed the NHEXAS diary timeline to document the child's time-location pattern. Parents misclassified child time-location approximately 48% of the time using the NHEXAS timeline in comparison to dGPS. Overall concordance between methods was marginal (kappa=0.33-0.35). The dGPS device found that on average, children spent 76% of the 24-h study period in the home. The diary underestimated time the child spent in the home by 17%, while overestimating time spent inside other locations, outside at home, outside in other locations, and time spent in transit. Diary data for time spent outside at home and time in transit had the lowest response concordance with dGPS. The diaries of stay-at-home mothers and mothers working unskilled labor jobs had lower concordance with dGPS than did those of the other participants. The ability of dGPS tracking to collect continuous rather than categorical (ordinal) data was also demonstrated. It is concluded that automated GPS tracking measurements can improve the quality and collection efficiency of time-location data in exposure assessment studies, albeit for small cohorts.

  17. Determination of global positioning system (GPS) receiver clock errors: impact on positioning accuracy

    International Nuclear Information System (INIS)

    Yeh, Ta-Kang; Hwang, Cheinway; Xu, Guochang; Wang, Chuan-Sheng; Lee, Chien-Chih

    2009-01-01

    Enhancing the positioning precision is the primary pursuit of global positioning system (GPS) users. To achieve this goal, most studies have focused on the relationship between GPS receiver clock errors and GPS positioning precision. This study utilizes undifferentiated phase data to calculate GPS clock errors and to compare with the frequency of cesium clock directly, to verify estimated clock errors by the method used in this paper. The frequency stability calculated from this paper (the indirect method) and measured from the National Standard Time and Frequency Laboratory (NSTFL) of Taiwan (the direct method) match to 1.5 × 10 −12 (the value from this study was smaller than that from NSTFL), suggesting that the proposed technique has reached a certain level of quality. The built-in quartz clocks in the GPS receivers yield relative frequency offsets that are 3–4 orders higher than those of rubidium clocks. The frequency stability of the quartz clocks is on average two orders worse than that of the rubidium clock. Using the rubidium clock instead of the quartz clock, the horizontal and vertical positioning accuracies were improved by 26–78% (0.6–3.6 mm) and 20–34% (1.3–3.0 mm), respectively, for a short baseline. These improvements are 7–25% (0.3–1.7 mm) and 11% (1.7 mm) for a long baseline. Our experiments show that the frequency stability of the clock, rather than relative frequency offset, is the governing factor of positioning accuracy

  18. Transition of NOAA's GPS-Met Data Acquisition and Processing System to the Commercial Sector: Inital Results

    Science.gov (United States)

    Jackson, Michael; Blatt, Stephan; Holub, Kirk

    2015-04-01

    In April of 2014, NOAA/OAR/ESRL Global Systems Division (GSD) and Trimble, in collaboration with Earth Networks, Inc. (ENI) signed a Cooperative Research and Development Agreement (CRADA) to transfer the existing NOAA GPS-Met Data Acquisition and Processing System (GPS-Met DAPS) technology to a commercial Trimble/ENI partnership. NOAA's GPS-Met DAPS is currently operated in a pseudo-operational mode but has proven highly reliable and running at over 95% uptime. The DAPS uses the GAMIT software to ingest dual frequency carrier phase GPS/GNSS observations and ancillary information such as real-time satellite orbits to estimate the zenith-scaled tropospheric (ZTD) signal delays and, where surface MET data are available, retrieve integrated precipitable water vapor (PWV). The NOAA data and products are made available to end users in near real-time. The Trimble/ENI partnership will use the Trimble Pivot™ software with the Atmosphere App to calculate zenith tropospheric (ZTD), tropospheric slant delay, and integrated precipitable water vapor (PWV). Evaluation of the Trimble software is underway starting with a comparison of ZTD and PWV values determined from four sub networks of GPS stations located 1. near NOAA Radiosonde Observation (Upper-Air Observation) launch sites; 2. Stations with low terrain/high moisture variability (Gulf Coast); 3. Stations with high terrain/low moisture variability (Southern California); and 4. Stations with high terrain/high moisture variability (high terrain variability elev. > 1000m). For each network GSD and T/ENI run the same stations for 30 days, compare results, and perform an evaluation of the long-term solution accuracy, precision and reliability. Metrics for success include T/ENI PWV estimates within 1.5 mm of ESRL/GSD's estimates 95% of the time (ZTD uncertainty of less than 10 mm 95% of the time). The threshold for allowable variations in ZTD between NOAA GPS-Met and T/ENI processing are 10mm. The CRADA 1&2 Trimble processing

  19. Real-Time Vehicle Data Logging System Using GPS And GSM

    Directory of Open Access Journals (Sweden)

    Win Minn Thet

    2015-07-01

    Full Text Available Abstract This paper proposes and implements a low cost Vehicle Data Logging System using GPS and GSM. This system allows a user to trace the present and past positions recorded in SD card. This system also reads the current position of the vehicle using GPS the data is sent via GSM service from the GSM network. The vehicles position including the driving speed the UTC time and data are stored in the SD card for live and past tracking. All of that GPS data is sent to PIC 18F4520 by the Universal Asynchronous ReceiverTransmitter UART and also store in SD card. GSM also uses UART to transmit. To know the position of the vehicle the owner sends a request through a SMS. The SMS sends to the authorized person through the GSM network. The travel history of the vehicle are stored in a file on an SD card in FAT format.This system is very useful for car tracking for adolescent driver being checked by parent speed limit exceeding leaving a specific area. V The developed system is easy to use requires no additional hardware and permits the selection of the amount of data and the time intervals between the data recordings. In addition the collected data can easily be transferred to a computer via a connected serial port.

  20. Design of γ-ray vehicle patrol system based on GPS

    International Nuclear Information System (INIS)

    Zhang Wen; Li Changjin

    2011-01-01

    In order to detect the radiation in the surrounding environment of Nuclear facilities in a wide range, the γ-Ray vehicle patrol system based radiation on GPS and composed of γ-Ray detection terminal and PC is designed. The γ-Ray detection terminal uses controller ATmega128L as control core, detecting the radiation intensity of γ-Ray with G-M counter tube and getting the location with GPS module LR9548S, packing a data frame with γ-Ray radiation and location information according to the agreed protocol which will be sent to PC through UART interface; The PC can processes, display and analyze the data, backup to database Access2003, also can paint the measuring track and distributed picture of radiation intensity. The system can be equipped with a variety of vehicles for mobile patrol to use in the fields of searching radioactive sources, emergency monitoring and measurement of environmental radiation levels. (authors)

  1. Fast interpolation for Global Positioning System (GPS) satellite orbits

    OpenAIRE

    Clynch, James R.; Sagovac, Christopher Patrick; Danielson, D. A. (Donald A.); Neta, Beny

    1995-01-01

    In this report, we discuss and compare several methods for polynomial interpolation of Global Positioning Systems ephemeris data. We show that the use of difference tables is more efficient than the method currently in use to construct and evaluate the Lagrange polynomials.

  2. GPS Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Global Positioning System (GPS) Test Facility Instrumentation Suite (GPSIS) provides great flexibility in testing receivers by providing operational control of...

  3. Implementation of a GPS-RO data processing system for the KIAPS-LETKF data assimilation system

    Science.gov (United States)

    Kwon, H.; Kang, J.-S.; Jo, Y.; Kang, J. H.

    2015-03-01

    The Korea Institute of Atmospheric Prediction Systems (KIAPS) has been developing a new global numerical weather prediction model and an advanced data assimilation system. As part of the KIAPS package for observation processing (KPOP) system for data assimilation, preprocessing, and quality control modules for bending-angle measurements of global positioning system radio occultation (GPS-RO) data have been implemented and examined. The GPS-RO data processing system is composed of several steps for checking observation locations, missing values, physical values for Earth radius of curvature, and geoid undulation. An observation-minus-background check is implemented by use of a one-dimensional observational bending-angle operator, and tangent point drift is also considered in the quality control process. We have tested GPS-RO observations utilized by the Korean Meteorological Administration (KMA) within KPOP, based on both the KMA global model and the National Center for Atmospheric Research Community Atmosphere Model with Spectral Element dynamical core (CAM-SE) as a model background. Background fields from the CAM-SE model are incorporated for the preparation of assimilation experiments with the KIAPS local ensemble transform Kalman filter (LETKF) data assimilation system, which has been successfully implemented to a cubed-sphere model with unstructured quadrilateral meshes. As a result of data processing, the bending-angle departure statistics between observation and background show significant improvement. Also, the first experiment in assimilating GPS-RO bending angle from KPOP within KIAPS-LETKF shows encouraging results.

  4. On the Realistic Stochastic Model of GPS Observables: Implementation and Performance

    Science.gov (United States)

    Zangeneh-Nejad, F.; Amiri-Simkooei, A. R.; Sharifi, M. A.; Asgari, J.

    2015-12-01

    High-precision GPS positioning requires a realistic stochastic model of observables. A realistic GPS stochastic model of observables should take into account different variances for different observation types, correlations among different observables, the satellite elevation dependence of observables precision, and the temporal correlation of observables. Least-squares variance component estimation (LS-VCE) is applied to GPS observables using the geometry-based observation model (GBOM). To model the satellite elevation dependent of GPS observables precision, an exponential model depending on the elevation angles of the satellites are also employed. Temporal correlation of the GPS observables is modelled by using a first-order autoregressive noise model. An important step in the high-precision GPS positioning is double difference integer ambiguity resolution (IAR). The fraction or percentage of success among a number of integer ambiguity fixing is called the success rate. A realistic estimation of the GNSS observables covariance matrix plays an important role in the IAR. We consider the ambiguity resolution success rate for two cases, namely a nominal and a realistic stochastic model of the GPS observables using two GPS data sets collected by the Trimble R8 receiver. The results confirm that applying a more realistic stochastic model can significantly improve the IAR success rate on individual frequencies, either on L1 or on L2. An improvement of 20% was achieved to the empirical success rate results. The results also indicate that introducing the realistic stochastic model leads to a larger standard deviation for the baseline components by a factor of about 2.6 on the data sets considered.

  5. A Nonlinear Observer for Integration of GPS and Inertial Navigation Systems

    Directory of Open Access Journals (Sweden)

    Bjørnar Vik

    2000-10-01

    Full Text Available GPS and INS have complementary properties and they are therefore well suited for integration. The integrated solution offers better long term accuracy than a stand-alone INS, and better integrity, availability and continuity than a stand-alone GPS receiver, making it suitable for demanding applications. The integrated filter is nonlinear both in state and measurements, and the extended Kalman-filter has been used with good results, but it has not been proven globally stable, and it is also computationally intensive, especially within a direct integration architecture. In this work a nonlinear observer suitable for direct integration is presented. Global exponent ial stability of the origin of the combined attitude and velocity error systems is proven along with robust stability in the presence of noise and unmodelled dynamics.

  6. Ground-Based Global Navigation Satellite System (GNSS) GPS Broadcast Ephemeris Data (daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) GPS Broadcast Ephemeris Data (daily files) from the NASA Crustal Dynamics Data...

  7. COSMIC Payload in NCAR-NASPO GPS Satellite System for Severe Weather Prediction

    Science.gov (United States)

    Lai-Chen, C.

    Severe weather, such as cyclones, heavy rainfall, outburst of cold air, etc., results in great disaster all the world. It is the mission for the scientists to design a warning system, to predict the severe weather systems and to reduce the damage of the society. In Taiwan, National Satellite Project Office (NSPO) initiated ROCSAT-3 program at 1997. She scheduled the Phase I conceptual design to determine the mission for observation weather system. Cooperating with National Center of Atmospheric Research (NCAR), NSPO involved an international cooperation research and operation program to build a 32 GPS satellites system. NCAR will offer 24 GPS satellites. The total expanse will be US 100 millions. NSPO also provide US 80 millions for launching and system engineering operation. And NCAR will be responsible for Payload Control Center and Fiducial Network. The cooperative program contract has been signed by Taiwan National Science Council, Taipei Economic Cultural Office of United States and American Institute in Taiwan. One of the payload is COSMIC, Constellation Observation System for Meteorology, Ionosphere and Climate. It is a GPS meteorology instrument system. The system will observe the weather information, e. g. electron density profiles, horizontal and vertical TEC and CFT scintillation and communication outage maps. The mission is to obtain the weather data such as vertical temperature profiles, water vapor distribution and pressure distribution over the world for global weather forecasting, especially during the severe weather period. The COSMIC Conference held on November, 1998. The export license was also issued by Department of Commerce of Unites States at November, 1998. Recently, NSPO begun to train their scientists to investigate the system. Scientists simulate the observation data to combine the existing routine satellite infrared cloud maps, radar echo and synoptic weather analysis for severe weather forecasting. It is hopeful to provide more accurate

  8. GPS/INS Sensor Fusion Using GPS Wind up Model

    Science.gov (United States)

    Williamson, Walton R. (Inventor)

    2013-01-01

    A method of stabilizing an inertial navigation system (INS), includes the steps of: receiving data from an inertial navigation system; and receiving a finite number of carrier phase observables using at least one GPS receiver from a plurality of GPS satellites; calculating a phase wind up correction; correcting at least one of the finite number of carrier phase observables using the phase wind up correction; and calculating a corrected IMU attitude or velocity or position using the corrected at least one of the finite number of carrier phase observables; and performing a step selected from the steps consisting of recording, reporting, or providing the corrected IMU attitude or velocity or position to another process that uses the corrected IMU attitude or velocity or position. A GPS stabilized inertial navigation system apparatus is also described.

  9. A GPS Sensing Strategy for Accurate and Energy-Efficient Outdoor-to-Indoor Handover in Seamless Localization Systems

    Directory of Open Access Journals (Sweden)

    Yungeun Kim

    2012-01-01

    Full Text Available Indoor localization systems typically locate users on their own local coordinates, while outdoor localization systems use global coordinates. To achieve seamless localization from outdoors to indoors, a handover technique that accurately provides a starting position to the indoor localization system is needed. However, existing schemes assume that a starting position is known a priori or uses a naïve approach to consider the last location obtained from GPS as the handover point. In this paper, we propose an accurate handover scheme that monitors the signal-to-noise ratio (SNR of the effective GPS satellites that are selected according to their altitude. We also propose an energy-efficient handover mechanism that reduces the GPS sampling interval gradually. Accuracy and energy efficiency are experimentally validated with the GPS logs obtained in real life.

  10. Systemic insulin sensitivity is regulated by GPS2 inhibition of AKT ubiquitination and activation in adipose tissue

    Directory of Open Access Journals (Sweden)

    Carly T. Cederquist

    2017-01-01

    Conclusions: Our findings characterize a novel layer of regulation of the insulin signaling pathway based on non-proteolytic ubiquitination of AKT and define GPS2 as a previously unrecognized component of the insulin signaling cascade. In accordance with this role, we have shown that GPS2 presence in adipocytes modulates systemic metabolism by restricting the activation of insulin signaling during the fasted state, whereas in absence of GPS2, the adipose tissue is more efficient at lipid storage, and obesity becomes uncoupled from inflammation and insulin resistance.

  11. Systemic insulin sensitivity is regulated by GPS2 inhibition of AKT ubiquitination and activation in adipose tissue.

    Science.gov (United States)

    Cederquist, Carly T; Lentucci, Claudia; Martinez-Calejman, Camila; Hayashi, Vanessa; Orofino, Joseph; Guertin, David; Fried, Susan K; Lee, Mi-Jeong; Cardamone, M Dafne; Perissi, Valentina

    2017-01-01

    Insulin signaling plays a unique role in the regulation of energy homeostasis and the impairment of insulin action is associated with altered lipid metabolism, obesity, and Type 2 Diabetes. The main aim of this study was to provide further insight into the regulatory mechanisms governing the insulin signaling pathway by investigating the role of non-proteolytic ubiquitination in insulin-mediated activation of AKT. The molecular mechanism of AKT regulation through ubiquitination is first dissected in vitro in 3T3-L1 preadipocytes and then validated in vivo using mice with adipo-specific deletion of GPS2, an endogenous inhibitor of Ubc13 activity (GPS2-AKO mice). Our results indicate that K63 ubiquitination is a critical component of AKT activation in the insulin signaling pathway and that counter-regulation of this step is provided by GPS2 preventing AKT ubiquitination through inhibition of Ubc13 enzymatic activity. Removal of this negative checkpoint, through GPS2 downregulation or genetic deletion, results in sustained activation of insulin signaling both in vitro and in vivo . As a result, the balance between lipid accumulation and utilization is shifted toward storage in the adipose tissue and GPS2-AKO mice become obese under normal laboratory chow diet. However, the adipose tissue of GPS2-AKO mice is not inflamed, the levels of circulating adiponectin are elevated, and systemic insulin sensitivity is overall improved. Our findings characterize a novel layer of regulation of the insulin signaling pathway based on non-proteolytic ubiquitination of AKT and define GPS2 as a previously unrecognized component of the insulin signaling cascade. In accordance with this role, we have shown that GPS2 presence in adipocytes modulates systemic metabolism by restricting the activation of insulin signaling during the fasted state, whereas in absence of GPS2, the adipose tissue is more efficient at lipid storage, and obesity becomes uncoupled from inflammation and insulin

  12. Comparing Global Positioning System (GPS) and Global Navigation Satellite System (GNSS) Measures of Team Sport Movements.

    Science.gov (United States)

    Jackson, Benjamin M; Polglaze, Ted; Dawson, Brian; King, Trish; Peeling, Peter

    2018-02-21

    To compare data from conventional GPS and new GNSS-enabled tracking devices, and to examine the inter-unit reliability of GNSS devices. Inter-device differences between 10 Hz GPS and GNSS devices were examined during laps (n=40) of a simulated game circuit (SGC) and during elite hockey matches (n=21); GNSS inter-unit reliability was also examined during the SGC laps. Differences in distance values and measures in three velocity categories (low 5 m.s -1 ) and acceleration/deceleration counts (>1.46 m.s -2 and GPS devices in all conditions. These findings suggest that GNSS devices may be more sensitive than GPS in quantifying the physical demands of team sport movements, but further study into the accuracy of GNSS devices is required.

  13. Development of a GPS buoy system for monitoring tsunami, sea waves, ocean bottom crustal deformation and atmospheric water vapor

    Science.gov (United States)

    Kato, Teruyuki; Terada, Yukihiro; Nagai, Toshihiko; Koshimura, Shun'ichi

    2010-05-01

    We have developed a GPS buoy system for monitoring tsunami for over 12 years. The idea was that a buoy equipped with a GPS antenna and placed offshore may be an effective way of monitoring tsunami before its arrival to the coast and to give warning to the coastal residents. The key technology for the system is real-time kinematic (RTK) GPS technology. We have successfully developed the system; we have detected tsunamis of about 10cm in height for three large earthquakes, namely, the 23 June 2001 Peru earthquake (Mw8.4), the 26 September 2003 Tokachi earthquake (Mw8.3) and the 5 September 2004 earthquake (Mw7.4). The developed GPS buoy system is also capable of monitoring sea waves that are mainly caused by winds. Only the difference between tsunami and sea waves is their frequency range and can be segregated each other by a simple filtering technique. Given the success of GPS buoy experiments, the system has been adopted as a part of the Nationwide Ocean Wave information system for Port and HArborS (NOWPHAS) by the Ministry of Land, Infrastructure, Transport and Tourism of Japan. They have established more than eight GPS buoys along the Japanese coasts and the system has been operated by the Port and Airport Research Institute. As a future scope, we are now planning to implement some other additional facilities for the GPS buoy system. The first application is a so-called GPS/Acoustic system for monitoring ocean bottom crustal deformation. The system requires acoustic waves to detect ocean bottom reference position, which is the geometrical center of an array of transponders, by measuring distances between a position at the sea surface (vessel) and ocean bottom equipments to return the received sonic wave. The position of the vessel is measured using GPS. The system was first proposed by a research group at the Scripps Institution of Oceanography in early 1980's. The system was extensively developed by Japanese researchers and is now capable of detecting ocean

  14. An Integrated GPS/PDA/GIS Telegeoprocessing System for Traffic and Environment

    Directory of Open Access Journals (Sweden)

    Ana Luísa Ramos

    2009-12-01

    Full Text Available The development of sustainable urban transport networks is a present priority for world leaders, national governors and local authorities. The challenge is to increase mobility reducing the adverse impacts of transport. The potential of Intelligent Transportation Systems (ITS to provide solutions for the 21 st century sustainable urban transport system has already been demonstrated in several piecewise applications. An integrated framework that addresses the needs of municipal authorities, that integrates the data spread through different sources, that supports the intelligent traffic and environment operations, and that provides information to the citizens steering their involvement and commitment is of critical importance and can be the enabler towards the creation of more efficient, safety, and environmental-friendly transport networks that promote the citizens' quality of life. This work describes an integrated GPS (Global Positioning System / PDA (Personal Digital Assistant / GIS (Geographical Information System system which is part of the mentioned framework. The system includes prototypes for mobile urban traffic data acquisition, with a GPS -equipped vehicle, a PDA application and wireless communications, and for a geodatabase with a related Web application for urban traffic and environment. Their integrated operation is exemplified for a real urban transport system.

  15. A new analytical method for the classification of time-location data obtained from the global positioning system (GPS).

    Science.gov (United States)

    Kim, Taehyun; Lee, Kiyoung; Yang, Wonho; Yu, Seung Do

    2012-08-01

    Although the global positioning system (GPS) has been suggested as an alternative way to determine time-location patterns, its use has been limited. The purpose of this study was to evaluate a new analytical method of classifying time-location data obtained by GPS. A field technician carried a GPS device while simulating various scripted activities and recorded all movements by the second in an activity diary. The GPS device recorded geological data once every 15 s. The daily monitoring was repeated 18 times. The time-location data obtained by the GPS were compared with the activity diary to determine selection criteria for the classification of the GPS data. The GPS data were classified into four microenvironments (residential indoors, other indoors, transit, and walking outdoors); the selection criteria used were used number of satellites (used-NSAT), speed, and distance from residence. The GPS data were classified as indoors when the used-NSAT was below 9. Data classified as indoors were further classified as residential indoors when the distance from the residence was less than 40 m; otherwise, they were classified as other indoors. Data classified as outdoors were further classified as being in transit when the speed exceeded 2.5 m s(-1); otherwise, they were classified as walking outdoors. The average simple percentage agreement between the time-location classifications and the activity diary was 84.3 ± 12.4%, and the kappa coefficient was 0.71. The average differences between the time diary and the GPS results were 1.6 ± 2.3 h for the time spent in residential indoors, 0.9 ± 1.7 h for the time spent in other indoors, 0.4 ± 0.4 h for the time spent in transit, and 0.8 ± 0.5 h for the time spent walking outdoors. This method can be used to determine time-activity patterns in exposure-science studies.

  16. Integrating GPS, GYRO, vehicle speed sensor, and digital map to provide accurate and real-time position in an intelligent navigation system

    Science.gov (United States)

    Li, Qingquan; Fang, Zhixiang; Li, Hanwu; Xiao, Hui

    2005-10-01

    The global positioning system (GPS) has become the most extensively used positioning and navigation tool in the world. Applications of GPS abound in surveying, mapping, transportation, agriculture, military planning, GIS, and the geosciences. However, the positional and elevation accuracy of any given GPS location is prone to error, due to a number of factors. The applications of Global Positioning System (GPS) positioning is more and more popular, especially the intelligent navigation system which relies on GPS and Dead Reckoning technology is developing quickly for future huge market in China. In this paper a practical combined positioning model of GPS/DR/MM is put forward, which integrates GPS, Gyro, Vehicle Speed Sensor (VSS) and digital navigation maps to provide accurate and real-time position for intelligent navigation system. This model is designed for automotive navigation system making use of Kalman filter to improve position and map matching veracity by means of filtering raw GPS and DR signals, and then map-matching technology is used to provide map coordinates for map displaying. In practical examples, for illustrating the validity of the model, several experiments and their results of integrated GPS/DR positioning in intelligent navigation system will be shown for the conclusion that Kalman Filter based GPS/DR integrating position approach is necessary, feasible and efficient for intelligent navigation application. Certainly, this combined positioning model, similar to other model, can not resolve all situation issues. Finally, some suggestions are given for further improving integrated GPS/DR/MM application.

  17. Observability analysis of a MEMS INS/GPS integration system with gyroscope G-sensitivity errors.

    Science.gov (United States)

    Fan, Chen; Hu, Xiaoping; He, Xiaofeng; Tang, Kanghua; Luo, Bing

    2014-08-28

    Gyroscopes based on micro-electromechanical system (MEMS) technology suffer in high-dynamic applications due to obvious g-sensitivity errors. These errors can induce large biases in the gyroscope, which can directly affect the accuracy of attitude estimation in the integration of the inertial navigation system (INS) and the Global Positioning System (GPS). The observability determines the existence of solutions for compensating them. In this paper, we investigate the observability of the INS/GPS system with consideration of the g-sensitivity errors. In terms of two types of g-sensitivity coefficients matrix, we add them as estimated states to the Kalman filter and analyze the observability of three or nine elements of the coefficient matrix respectively. A global observable condition of the system is presented and validated. Experimental results indicate that all the estimated states, which include position, velocity, attitude, gyro and accelerometer bias, and g-sensitivity coefficients, could be made observable by maneuvering based on the conditions. Compared with the integration system without compensation for the g-sensitivity errors, the attitude accuracy is raised obviously.

  18. Observability Analysis of a MEMS INS/GPS Integration System with Gyroscope G-Sensitivity Errors

    Directory of Open Access Journals (Sweden)

    Chen Fan

    2014-08-01

    Full Text Available Gyroscopes based on micro-electromechanical system (MEMS technology suffer in high-dynamic applications due to obvious g-sensitivity errors. These errors can induce large biases in the gyroscope, which can directly affect the accuracy of attitude estimation in the integration of the inertial navigation system (INS and the Global Positioning System (GPS. The observability determines the existence of solutions for compensating them. In this paper, we investigate the observability of the INS/GPS system with consideration of the g-sensitivity errors. In terms of two types of g-sensitivity coefficients matrix, we add them as estimated states to the Kalman filter and analyze the observability of three or nine elements of the coefficient matrix respectively. A global observable condition of the system is presented and validated. Experimental results indicate that all the estimated states, which include position, velocity, attitude, gyro and accelerometer bias, and g-sensitivity coefficients, could be made observable by maneuvering based on the conditions. Compared with the integration system without compensation for the g-sensitivity errors, the attitude accuracy is raised obviously.

  19. GPS: Public Utility or Software Platform

    Science.gov (United States)

    2016-09-01

    train for GPS loss, encourage use of GPS signal integrity monitors , develop in- vehicle GPS backups, and evaluate the range of radio...literature prevent the full quantification of exactly how vulnerable GPS is to service interruption. This thesis used constant comparison analysis to...criticality, resilience, and vulnerability. This methodology overcomes research limitations by using GPS system design, operations, and policies as

  20. A pilot study using global positioning systems (GPS) devices and surveys to ascertain older adults' travel patterns.

    Science.gov (United States)

    Yen, Irene H; Leung, Cindy W; Lan, Mars; Sarrafzadeh, Majid; Kayekjian, Karen C; Duru, O Kenrik

    2015-04-01

    Some studies indicate that older adults lead active lives and travel to many destinations including those not in their immediate residential neighborhoods. We used global positioning system (GPS) devices to track the travel patterns of 40 older adults (mean age: 69) in San Francisco and Los Angeles. Study participants wore the GPS devices for 7 days in fall 2010 and winter 2011. We collected survey responses concurrently about travel patterns. GPS data showed a mean of four trips/day, and a mean trip distance of 7.6 km. Survey data indicated that older adults commonly made trips for four activities (e.g., volunteering, work, visiting friends) at least once each week. Older adults regularly travel outside their residential neighborhoods. GPS can document the mode of travel, the path of travel, and the destinations. Surveys can document the purpose of the travel and the impressions or experiences in the specific locations. © The Author(s) 2013.

  1. An improvement of the GPS buoy system for detecting tsunami at far offshore

    Science.gov (United States)

    Kato, T.; Terada, Y.; Nagai, T.; Kawaguchi, K.; Koshimura, S.; Matsushita, Y.

    2012-12-01

    We have developed a GPS buoy system for detecting a tsunami before its arrival at coasts and thereby mitigating tsunami disaster. The system was first deployed in 1997 for a short period in the Sagami bay, south of Tokyo, for basic experiments, and then deployed off Ofunato city, northeastern part of Japan, for the period 2001-2004. The system was then established at about 13km south of Cape Muroto, southwestern part of Japan, since 2004. Five tsunamis of about 10cm have been observed in these systems, including 2001 Peru earthquake (Mw8.3), 2003 Tokachi-oki earthquake (Mw8.3), 2004 Off Kii Peninsula earthquake (Mw7.4), 2010 Chile earthquake (Mw8.8), and 2011 Tohoku-Oki earthquake (Mw9.0). These experiments clearly showed that GPS buoy is capable of detecting tsunami with a few centimeter accuracy and can be monitored in near real time by applying an appropriate filter, real-time data transmission using radio and dissemination of obtained records of sea surface height changes through internet. Considering that the system is a powerful tool to monitor sea surface variations due to wind as well as tsunami, the Ministry of Land, Infrastructure, Transport and Tourism implemented the system in a part of the Nationwide Ocean Wave information network for Ports and HArbourS (NOWPHAS) system and deployed the system at 15 sites along the coasts around the Japanese Islands. The system detected the tsunami due to the 11th March 2011 Tohoku-Oki earthquake with higher than 6m of tsunami height at the site Off South Iwate (Kamaishi). The Japan Meteorological Agency that was monitoring the record updated the level of the tsunami warning to the greatest value due to the result. Currently, the GPS buoy system uses a RTK-GPS which requires a land base for obtaining precise location of the buoy by a baseline analysis. This algorithm limits the distance of the buoy to, at most, 20km from the coast as the accuracy of positioning gets much worse as the baseline distance becomes longer

  2. A New GPS-based Digital Protection System for Smart Grids in Loop Structure

    Directory of Open Access Journals (Sweden)

    X. Liu

    2014-12-01

    Full Text Available This paper presents a new digital protection system to solve the protection challenges in future smart grids, i.e., fast protection and fault isolation in a loop-structured system with limited magnitude of fault current. The new system combines two protection algorithms, i.e., a differential protection as the primary algorithm and an overcurrent protection as the backup one. The new system uses real-time Ethernet and digital data acquisition techniques to overcome the restriction on data transmission over large grids. The current measurements at different locations are time-synchronized by GPS clocks, and then transmitted to a central computer via the Ethernet. As opposed to digital relays which often contain PMU functionality nowadays, this approach uses time stamps on the instantaneous current values. We build a prototype of the new system on a test-bed. The results from simulations and experiments have demonstrated that the protection system achieves fast and accurate protection.

  3. GPS test range mission planning

    Science.gov (United States)

    Roberts, Iris P.; Hancock, Thomas P.

    The principal features of the Test Range User Mission Planner (TRUMP), a PC-resident tool designed to aid in deploying and utilizing GPS-based test range assets, are reviewed. TRUMP features time history plots of time-space-position information (TSPI); performance based on a dynamic GPS/inertial system simulation; time history plots of TSPI data link connectivity; digital terrain elevation data maps with user-defined cultural features; and two-dimensional coverage plots of ground-based test range assets. Some functions to be added during the next development phase are discussed.

  4. Looking Back and Looking Forward: Reprising the Promise and Predicting the Future of Formation Flying and Spaceborne GPS Navigation Systems

    Science.gov (United States)

    Bauer, Frank H.; Dennehy, Neil

    2015-01-01

    A retrospective consideration of two 15-year old Guidance, Navigation and Control (GN&C) technology 'vision' predictions will be the focus of this paper. A look back analysis and critique of these late 1990s technology roadmaps out-lining the future vision, for two then nascent, but rapidly emerging, GN&C technologies will be performed. Specifically, these two GN&C technologies were: 1) multi-spacecraft formation flying and 2) the spaceborne use and exploitation of global positioning system (GPS) signals to enable formation flying. This paper reprises the promise of formation flying and spaceborne GPS as depicted in the cited 1999 and 1998 papers. It will discuss what happened to cause that promise to be mostly unfulfilled and the reasons why the envisioned formation flying dream has yet to become a reality. The recent technology trends over the past few years will then be identified and a renewed government interest in spacecraft formation flying/cluster flight will be highlighted. The authors will conclude with a reality-tempered perspective, 15 years after the initial technology roadmaps were published, predicting a promising future of spacecraft formation flying technology development over the next decade.

  5. An Outdoor Navigation System for Blind Pedestrians Using GPS and Tactile-Foot Feedback

    Directory of Open Access Journals (Sweden)

    Ramiro Velázquez

    2018-04-01

    Full Text Available This paper presents a novel, wearable navigation system for visually impaired and blind pedestrians that combines a global positioning system (GPS for user outdoor localization and tactile-foot stimulation for information presentation. Real-time GPS data provided by a smartphone are processed by dedicated navigation software to determine the directions to a destination. Navigational directions are then encoded as vibrations and conveyed to the user via a tactile display that inserts into the shoe. The experimental results showed that users were capable of recognizing with high accuracy the tactile feedback provided to their feet. The preliminary tests conducted in outdoor locations involved two blind users who were guided along 380–420 m predetermined pathways, while sharing the space with other pedestrians and facing typical urban obstacles. The subjects successfully reached the target destinations. The results suggest that the proposed system enhances independent, safe navigation of blind pedestrians and show the potential of tactile-foot stimulation in assistive devices.

  6. Interseismic Coupling on the Quito Fault System in Ecuador Using New GPS and InSAR Data and Its Implication on Seismic Hazard Assessment.

    Science.gov (United States)

    Mariniere, J.; Champenois, J.; Nocquet, J. M.; Beauval, C. M.; Audin, L.; Baize, S.; Alvarado, A. P.; Yepes, H. A.; Jomard, H.

    2017-12-01

    Quito, the capital of Ecuador hosting two million inhabitants lies on an active reverse fault system within the Andes. Regular moderate size earthquakes (M 5) occur on these faults, widely felt within the city and its surrounding. Despite a relatively small magnitude of Mw 5.1, the 2014 August 12 earthquake triggered landslides that killed 4 people, cut off one of the main highways for several weeks and caused the temporary shutdown of the airport. Quantifying the seismic potential of the Quito fault system is therefore crucial for a better preparation and mitigation to seismic risk. Previous work using a limited GPS data set found that the Quito fault accommodates 4 mm/yr of EW shortening (Alvarado et al., 2014) at shallow locking depths (3-7 km). We combine GPS and new InSAR data to extend the previous analysis and better quantify the spatial distribution of locking of the Quito fault. GPS dataset includes new continuous sites operating since 2013. 18 ERS SAR scenes, spanning the 1993-2000 time period and covering an area of 85 km by 30 km, were processed using a Permanent Scatter strategy. We perform a joint inversion of both data set (GPS and InSAR) to infer a new and better-constrained kinematic model of the fault to determine both the slip rate and the locking distribution at depth. We find a highly variable level of locking which changes along strike. At some segments, sharp displacement gradients observed both for GPS and InSAR suggest that the fault is creeping up to the surface, while shallow locking is found for other segments. Previous Probabilistic Seismic Hazard Assessment studies have shown that the Quito fault fully controls the hazard in Quito city (Beauval et al. 2014). The results will be used to improve the forecast of earthquakes on the Quito fault system for PSHA studies.

  7. Accuracy, intra- and inter-unit reliability, and comparison between GPS and UWB-based position-tracking systems used for time-motion analyses in soccer.

    Science.gov (United States)

    Bastida Castillo, Alejandro; Gómez Carmona, Carlos D; De la Cruz Sánchez, Ernesto; Pino Ortega, José

    2018-05-01

    There is interest in the accuracy and inter-unit reliability of position-tracking systems to monitor players. Research into this technology, although relatively recent, has grown exponentially in the last years, and it is difficult to find professional team sport that does not use Global Positioning System (GPS) technology at least. The aim of this study is to know the accuracy of both GPS-based and Ultra Wide Band (UWB)-based systems on a soccer field and their inter- and intra-unit reliability. A secondary aim is to compare them for practical applications in sport science. Following institutional ethical approval and familiarization, 10 healthy and well-trained former soccer players (20 ± 1.6 years, 1.76 ± 0.08 cm, and 69.5 ± 9.8 kg) performed three course tests: (i) linear course, (ii) circular course, and (iii) a zig-zag course, all using UWB and GPS technologies. The average speed and distance covered were compared with timing gates and the real distance as references. The UWB technology showed better accuracy (bias: 0.57-5.85%), test-retest reliability (%TEM: 1.19), and inter-unit reliability (bias: 0.18) in determining distance covered than the GPS technology (bias: 0.69-6.05%; %TEM: 1.47; bias: 0.25) overall. Also, UWB showed better results (bias: 0.09; ICC: 0.979; bias: 0.01) for mean velocity measurement than GPS (bias: 0.18; ICC: 0.951; bias: 0.03).

  8. Design and Implementation of Browser based GPS/GPRS Vehicle Positioning and Tracking System

    Directory of Open Access Journals (Sweden)

    Zhang Keqiang

    2015-01-01

    Full Text Available This paper mainly describes a vehicle positioning and tracking system which is based on browser, GPS and GPRS. And this system takes advantage of Baidu Map as basic material to show vehicle status, which enables drivers and supervisor to monitor the vehicle’s current and past positions. The vehicle’s location data is got from satellites, and these data is sent to the central server through GPRS, the central server will store formatted data into the database after the data is parsed; Later, these data stored in the database will be used by web application and displayed on the map as markers. This paper also involves the implementation on mobile side, and this system used Baidu map JavaScript interface, Ajax, JSP and JSON to implement the vehicle positioning and tracking system.

  9. Cooperative Monocular-Based SLAM for Multi-UAV Systems in GPS-Denied Environments.

    Science.gov (United States)

    Trujillo, Juan-Carlos; Munguia, Rodrigo; Guerra, Edmundo; Grau, Antoni

    2018-04-26

    This work presents a cooperative monocular-based SLAM approach for multi-UAV systems that can operate in GPS-denied environments. The main contribution of the work is to show that, using visual information obtained from monocular cameras mounted onboard aerial vehicles flying in formation, the observability properties of the whole system are improved. This fact is especially notorious when compared with other related visual SLAM configurations. In order to improve the observability properties, some measurements of the relative distance between the UAVs are included in the system. These relative distances are also obtained from visual information. The proposed approach is theoretically validated by means of a nonlinear observability analysis. Furthermore, an extensive set of computer simulations is presented in order to validate the proposed approach. The numerical simulation results show that the proposed system is able to provide a good position and orientation estimation of the aerial vehicles flying in formation.

  10. System Proposal for Mass Transit Service Quality Control Based on GPS Data.

    Science.gov (United States)

    Padrón, Gabino; Cristóbal, Teresa; Alayón, Francisco; Quesada-Arencibia, Alexis; García, Carmelo R

    2017-06-16

    Quality is an essential aspect of public transport. In the case of regular public passenger transport by road, punctuality and regularity are criteria used to assess quality of service. Calculating metrics related to these criteria continuously over time and comprehensively across the entire transport network requires the handling of large amounts of data. This article describes a system for continuously and comprehensively monitoring punctuality and regularity. The system uses location data acquired continuously in the vehicles and automatically transferred for analysis. These data are processed intelligently by elements that are commonly used by transport operators: GPS-based tracking system, onboard computer and wireless networks for mobile data communications. The system was tested on a transport company, for which we measured the punctuality of one of the routes that it operates; the results are presented in this article.

  11. Indoor Positioning Using GPS Revisited

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Blunck, Henrik; Godsk, Torben

    2010-01-01

    It has been considered a fact that GPS performs too poorly inside buildings to provide usable indoor positioning. We analyze results of a measurement campaign to improve on the understanding of indoor GPS reception characteristics. The results show that using state-of-the-art receivers GPS...... low signal-to-noise ratios, multipath phenomena or bad satellite constellation geometry. We have also measured the indoor performance of embedded GPS receivers in mobile phones which provided lower availability and accuracy than state-of-the-art ones. Finally, we consider how the GPS performance...

  12. Evaluation of operating experience: The precursor study (GPS) performed in the Federal Republic of Germany. Working material

    International Nuclear Information System (INIS)

    1991-01-01

    Probabilistic Safety Assessments (PSAs) are systematic and quantitative predictions of possible accident scenarios at technical installations on the basis of data gained from the past experience on similar technical installations. For supporting PSAs by operational experience as far as possible Precursor studies are performed. An Accident Sequence Precursor is defined as an observed event which could results, in coincidence with additional postulated events, in a potential severe core damage accident. In the presented case study the procedure of such Precursor studies is explained. Particularly, the methodology and the results of the plant-specific Precursor (GPS) performed in the Federal Republic of Germany are shown in detail. 26 refs, 13 figs, 8 tabs

  13. Evaluation of operating experience: The precursor study (GPS) performed in the Federal Republic of Germany. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    Probabilistic Safety Assessments (PSAs) are systematic and quantitative predictions of possible accident scenarios at technical installations on the basis of data gained from the past experience on similar technical installations. For supporting PSAs by operational experience as far as possible Precursor studies are performed. An Accident Sequence Precursor is defined as an observed event which could results, in coincidence with additional postulated events, in a potential severe core damage accident. In the presented case study the procedure of such Precursor studies is explained. Particularly, the methodology and the results of the plant-specific Precursor (GPS) performed in the Federal Republic of Germany are shown in detail. 26 refs, 13 figs, 8 tabs.

  14. Comparison of an inflammation-based prognostic score (GPS) with performance status (ECOG-ps) in patients receiving palliative chemotherapy for gastroesophageal cancer.

    Science.gov (United States)

    Crumley, Andrew B C; Stuart, Robert C; McKernan, Margaret; McDonald, Alexander C; McMillan, Donald C

    2008-08-01

    The aim of the present study was to compare an inflammation-based prognostic score (Glasgow Prognostic Score, GPS) with performance status (ECOG-ps) in patients receiving platinum-based chemotherapy for palliation of gastroesophageal cancer. Sixty-five patients presenting with gastroesophageal carcinoma to the Royal Infirmary, Glasgow between January 1999 and December 2005 and who received palliative chemotherapy or chemo-radiotherapy were studied. ECOG-ps, C-reactive protein, and albumin were recorded at diagnosis. Patients with both an elevated C-reactive protein (>10 mg/L) and hypoalbuminemia (L) were allocated a GPS of 2. Patients in whom only one of these biochemical abnormalities was present were allocated a GPS of 1 and patients with a normal C-reactive protein and albumin were allocated a score of 0. Toxicity was recorded using the Common Toxicity Criteria. The minimum follow up was 14 months. During the follow-up period, 59 (91%) of the patients died. On univariate and multivariate survival analysis, only the GPS (hazard ratios 1.65, 95% CI 1.10-2.47, P GPS of 0, those patients with a GPS of 1 or 2 required more frequent chemotherapy dose reduction (P GPS, appears to be superior to the subjective assessment of performance status (ECOG-ps) in predicting the response to platinum-based chemotherapy in patients with advanced gastroesophageal cancer.

  15. The Statistics of GPS

    National Research Council Canada - National Science Library

    Matsakis, Demetrios

    2007-01-01

    The Global Positioning System (GPS) is an extremely effective satellite-based system that broadcasts sufficient information for a user to determine time and position from any location on or near the Earth...

  16. PMU Placement Methods in Power Systems based on Evolutionary Algorithms and GPS Receiver

    Directory of Open Access Journals (Sweden)

    M. R. Mosavi

    2013-06-01

    Full Text Available In this paper, optimal placement of Phasor Measurement Unit (PMU using Global Positioning System (GPS is discussed. Ant Colony Optimization (ACO, Simulated Annealing (SA, Particle Swarm Optimization (PSO and Genetic Algorithm (GA are used for this problem. Pheromone evaporation coefficient and the probability of moving from state x to state y by ant are introduced into the ACO. The modified algorithm overcomes the ACO in obtaining global optimal solution and convergence speed, when applied to optimizing the PMU placement problem. We also compare this simulink with SA, PSO and GA that to find capability of ACO in the search of optimal solution. The fitness function includes observability, redundancy and number of PMU. Logarithmic Least Square Method (LLSM is used to calculate the weights of fitness function. The suggested optimization method is applied in 30-bus IEEE system and the simulation results show modified ACO find results better than PSO and SA, but same result with GA.

  17. Robust GPS autonomous signal quality monitoring

    Science.gov (United States)

    Ndili, Awele Nnaemeka

    The Global Positioning System (GPS), introduced by the U.S. Department of Defense in 1973, provides unprecedented world-wide navigation capabilities through a constellation of 24 satellites in global orbit, each emitting a low-power radio-frequency signal for ranging. GPS receivers track these transmitted signals, computing position to within 30 meters from range measurements made to four satellites. GPS has a wide range of applications, including aircraft, marine and land vehicle navigation. Each application places demands on GPS for various levels of accuracy, integrity, system availability and continuity of service. Radio frequency interference (RFI), which results from natural sources such as TV/FM harmonics, radar or Mobile Satellite Systems (MSS), presents a challenge in the use of GPS, by posing a threat to the accuracy, integrity and availability of the GPS navigation solution. In order to use GPS for integrity-sensitive applications, it is therefore necessary to monitor the quality of the received signal, with the objective of promptly detecting the presence of RFI, and thus provide a timely warning of degradation of system accuracy. This presents a challenge, since the myriad kinds of RFI affect the GPS receiver in different ways. What is required then, is a robust method of detecting GPS accuracy degradation, which is effective regardless of the origin of the threat. This dissertation presents a new method of robust signal quality monitoring for GPS. Algorithms for receiver autonomous interference detection and integrity monitoring are demonstrated. Candidate test statistics are derived from fundamental receiver measurements of in-phase and quadrature correlation outputs, and the gain of the Active Gain Controller (AGC). Performance of selected test statistics are evaluated in the presence of RFI: broadband interference, pulsed and non-pulsed interference, coherent CW at different frequencies; and non-RFI: GPS signal fading due to physical blockage and

  18. Research on Single Base-Station Distance Estimation Algorithm in Quasi-GPS Ultrasonic Location System

    International Nuclear Information System (INIS)

    Cheng, X C; Su, S J; Wang, Y K; Du, J B

    2006-01-01

    In order to identify each base-station in quasi-GPS ultrasonic location system, a unique pseudo-random code is assigned to each base-station. This article primarily studies the distance estimation problem between Autonomous Guide Vehicle (AGV) and single base-station, and then the ultrasonic spread-spectrum distance measurement Time Delay Estimation (TDE) model is established. Based on the above model, the envelope correlation fast TDE algorithm based on FFT is presented and analyzed. It shows by experiments that when the m sequence used in the received signal is as same as the reference signal, there will be a sharp correlation value in their envelope correlation function after they are processed by the above algorithm; otherwise, the will be no prominent correlation value. So, the AGV can identify each base-station easily

  19. Research on Single Base-Station Distance Estimation Algorithm in Quasi-GPS Ultrasonic Location System

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, X C; Su, S J; Wang, Y K; Du, J B [Instrument Department, College of Mechatronics Engineering and Automation, National University of Defense Technology, ChangSha, Hunan, 410073 (China)

    2006-10-15

    In order to identify each base-station in quasi-GPS ultrasonic location system, a unique pseudo-random code is assigned to each base-station. This article primarily studies the distance estimation problem between Autonomous Guide Vehicle (AGV) and single base-station, and then the ultrasonic spread-spectrum distance measurement Time Delay Estimation (TDE) model is established. Based on the above model, the envelope correlation fast TDE algorithm based on FFT is presented and analyzed. It shows by experiments that when the m sequence used in the received signal is as same as the reference signal, there will be a sharp correlation value in their envelope correlation function after they are processed by the above algorithm; otherwise, the will be no prominent correlation value. So, the AGV can identify each base-station easily.

  20. Assessment of LightSquared Terrestrial Broadband System Effects on GPS Receivers and GPS-dependent Applications

    Science.gov (United States)

    2011-06-01

    The Executive Steering Group (ESG) of the National Executive Committee (EXCOM) for : Space-Based Positioning, Navigation, and Timing (PNT) directed the National Space-Based : PNT Systems Engineering Forum (NPEF) to conduct an assessment of the effect...

  1. EFFICIENCY OPTIMIZATION OF ATTENDANCE SYSTEM WITH GPS AND BIOMETRIC METHOD USING MOBILE DEVICES

    Directory of Open Access Journals (Sweden)

    Benfano Soewito

    2014-05-01

    Full Text Available The existing attendance system still has drawbacks, namely the queue in front of the finger scanner, the attendance data are not integrated with Human Resources Systems, and also the employees who work outside the office cannot get in the attendance system to roll presence. In the other hand, everyone has the mobile devices and all the mobile devices will be embedded a finger scanner in the future. In this paper, it is proposed the absence system using one own device. The finger scanner and coordinate Global Position System (GPS are used as inputs for the attendance system that integrated with payroll system and human resource management tools. Application base on android platform is developed because the android is the most platforms that have been using in the most mobile devices. Using our proposed methodology, the employee can roll presence using their mobile devices and the do not need to be in queue and the employees who work outside the office also can roll presence. Research showed that proposed methodology can be used for the next generation attendance system.

  2. 75 FR 28318 - Eighty-Second Meeting: RTCA Special Committee 159: Global Positioning System (GPS)

    Science.gov (United States)

    2010-05-20

    ..., GPS/Inertial, Colson Board Room. Wednesday, June 9th All Day, Working Group 2, GPS/WAAS, Hilton-ATA...-NBAA Room & Hilton-ATA Room. Friday, June 11th Plenary Session--See Agenda Below Agenda--Plenary Session--Agenda June 11th, 2010--starting at 9 a.m. MacIntosh-NBAA & Hilton-ATA Rooms Chairman's...

  3. On stochastic modeling of the modernized global positioning system (GPS) L2C signal

    International Nuclear Information System (INIS)

    Elsobeiey, Mohamed; El-Rabbany, Ahmed

    2010-01-01

    In order to take full advantage of the modernized GPS L2C signal, it is essential that its stochastic characteristics and code bias be rigorously determined. In this paper, long sessions of GPS measurements are used to study the stochastic characteristics of the modernized GPS L2C signal. As a byproduct, the stochastic characteristics of the legacy GPS signals, namely C/A and P2 codes, are also determined, which are used to verify the developed stochastic model of the modernized signal. The differential code biases between P2 and C2, DCB P2-C2 , are also estimated using the Bernese GPS software. It is shown that the developed models improved the precise point positioning (PPP) solution and convergence time

  4. Geomagnetic storm effects on GPS based navigation

    Directory of Open Access Journals (Sweden)

    P. V. S. Rama Rao

    2009-05-01

    Full Text Available The energetic events on the sun, solar wind and subsequent effects on the Earth's geomagnetic field and upper atmosphere (ionosphere comprise space weather. Modern navigation systems that use radio-wave signals, reflecting from or propagating through the ionosphere as a means of determining range or distance, are vulnerable to a variety of effects that can degrade the performance of the navigational systems. In particular, the Global Positioning System (GPS that uses a constellation of earth orbiting satellites are affected due to the space weather phenomena.

    Studies made during two successive geomagnetic storms that occurred during the period from 8 to 12 November 2004, have clearly revealed the adverse affects on the GPS range delay as inferred from the Total Electron Content (TEC measurements made from a chain of seven dual frequency GPS receivers installed in the Indian sector. Significant increases in TEC at the Equatorial Ionization anomaly crest region are observed, resulting in increased range delay during the periods of the storm activity. Further, the storm time rapid changes occurring in TEC resulted in a number of phase slips in the GPS signal compared to those on quiet days. These phase slips often result in the loss of lock of the GPS receivers, similar to those that occur during strong(>10 dB L-band scintillation events, adversely affecting the GPS based navigation.

  5. A Police and Insurance Joint Management System Based on High Precision BDS/GPS Positioning

    Science.gov (United States)

    Zuo, Wenwei; Guo, Chi; Liu, Jingnan; Peng, Xuan; Yang, Min

    2018-01-01

    Car ownership in China reached 194 million vehicles at the end of 2016. The traffic congestion index (TCI) exceeds 2.0 during rush hour in some cities. Inefficient processing for minor traffic accidents is considered to be one of the leading causes for road traffic jams. Meanwhile, the process after an accident is quite troublesome. The main reason is that it is almost always impossible to get the complete chain of evidence when the accident happens. Accordingly, a police and insurance joint management system is developed which is based on high precision BeiDou Navigation Satellite System (BDS)/Global Positioning System (GPS) positioning to process traffic accidents. First of all, an intelligent vehicle rearview mirror terminal is developed. The terminal applies a commonly used consumer electronic device with single frequency navigation. Based on the high precision BDS/GPS positioning algorithm, its accuracy can reach sub-meter level in the urban areas. More specifically, a kernel driver is built to realize the high precision positioning algorithm in an Android HAL layer. Thus the third-party application developers can call the general location Application Programming Interface (API) of the original standard Global Navigation Satellite System (GNSS) to get high precision positioning results. Therefore, the terminal can provide lane level positioning service for car users. Next, a remote traffic accident processing platform is built to provide big data analysis and management. According to the big data analysis of information collected by BDS high precision intelligent sense service, vehicle behaviors can be obtained. The platform can also automatically match and screen the data that uploads after an accident to achieve accurate reproduction of the scene. Thus, it helps traffic police and insurance personnel to complete remote responsibility identification and survey for the accident. Thirdly, a rapid processing flow is established in this article to meet the

  6. A Police and Insurance Joint Management System Based on High Precision BDS/GPS Positioning

    Directory of Open Access Journals (Sweden)

    Wenwei Zuo

    2018-01-01

    Full Text Available Car ownership in China reached 194 million vehicles at the end of 2016. The traffic congestion index (TCI exceeds 2.0 during rush hour in some cities. Inefficient processing for minor traffic accidents is considered to be one of the leading causes for road traffic jams. Meanwhile, the process after an accident is quite troublesome. The main reason is that it is almost always impossible to get the complete chain of evidence when the accident happens. Accordingly, a police and insurance joint management system is developed which is based on high precision BeiDou Navigation Satellite System (BDS/Global Positioning System (GPS positioning to process traffic accidents. First of all, an intelligent vehicle rearview mirror terminal is developed. The terminal applies a commonly used consumer electronic device with single frequency navigation. Based on the high precision BDS/GPS positioning algorithm, its accuracy can reach sub-meter level in the urban areas. More specifically, a kernel driver is built to realize the high precision positioning algorithm in an Android HAL layer. Thus the third-party application developers can call the general location Application Programming Interface (API of the original standard Global Navigation Satellite System (GNSS to get high precision positioning results. Therefore, the terminal can provide lane level positioning service for car users. Next, a remote traffic accident processing platform is built to provide big data analysis and management. According to the big data analysis of information collected by BDS high precision intelligent sense service, vehicle behaviors can be obtained. The platform can also automatically match and screen the data that uploads after an accident to achieve accurate reproduction of the scene. Thus, it helps traffic police and insurance personnel to complete remote responsibility identification and survey for the accident. Thirdly, a rapid processing flow is established in this article to

  7. A Police and Insurance Joint Management System Based on High Precision BDS/GPS Positioning.

    Science.gov (United States)

    Zuo, Wenwei; Guo, Chi; Liu, Jingnan; Peng, Xuan; Yang, Min

    2018-01-10

    Car ownership in China reached 194 million vehicles at the end of 2016. The traffic congestion index (TCI) exceeds 2.0 during rush hour in some cities. Inefficient processing for minor traffic accidents is considered to be one of the leading causes for road traffic jams. Meanwhile, the process after an accident is quite troublesome. The main reason is that it is almost always impossible to get the complete chain of evidence when the accident happens. Accordingly, a police and insurance joint management system is developed which is based on high precision BeiDou Navigation Satellite System (BDS)/Global Positioning System (GPS) positioning to process traffic accidents. First of all, an intelligent vehicle rearview mirror terminal is developed. The terminal applies a commonly used consumer electronic device with single frequency navigation. Based on the high precision BDS/GPS positioning algorithm, its accuracy can reach sub-meter level in the urban areas. More specifically, a kernel driver is built to realize the high precision positioning algorithm in an Android HAL layer. Thus the third-party application developers can call the general location Application Programming Interface (API) of the original standard Global Navigation Satellite System (GNSS) to get high precision positioning results. Therefore, the terminal can provide lane level positioning service for car users. Next, a remote traffic accident processing platform is built to provide big data analysis and management. According to the big data analysis of information collected by BDS high precision intelligent sense service, vehicle behaviors can be obtained. The platform can also automatically match and screen the data that uploads after an accident to achieve accurate reproduction of the scene. Thus, it helps traffic police and insurance personnel to complete remote responsibility identification and survey for the accident. Thirdly, a rapid processing flow is established in this article to meet the

  8. Precision GPS orbit determination strategies for an earth orbiter and geodetic tracking system

    Science.gov (United States)

    Lichten, Stephen M.; Bertiger, Willy I.; Border, James S.

    1988-01-01

    Data from two 1985 GPS field tests were processed and precise GPS orbits were determined. With a combined carrier phase and pseudorange, the 1314-km repeatability improves substantially to 5 parts in 10 to the 9th (0.6 cm) in the north and 2 parts in 10 to the 8th (2-3 cm) in the other components. To achieve these levels of repeatability and accuracy, it is necessary to fine-tune the GPS solar radiation coefficients and ground station zenith tropospheric delays.

  9. Indoor/Outdoor Seamless Positioning Using Lighting Tags and GPS Cellular Phones for Personal Navigation

    Science.gov (United States)

    Namie, Hiromune; Morishita, Hisashi

    The authors focused on the development of an indoor positioning system which is easy to use, portable and available for everyone. This system is capable of providing the correct position anywhere indoors, including onboard ships, and was invented in order to evaluate the availability of GPS indoors. Although the performance of GPS is superior outdoors, there has been considerable research regarding indoor GPS involving sensitive GPS, pseudolites (GPS pseudo satellite), RFID (Radio Frequency IDentification) tags, and wireless LAN .However, the positioning rate and the precision are not high enough for general use, which is the reason why these technologies have not yet spread to personal navigation systems. In this regard, the authors attempted to implement an indoor positioning system using cellular phones with built-in GPS and infrared light data communication functionality, which are widely used in Japan. GPS is becoming increasingly popular, where GPGGS sentences of the NMEA outputted from the GPS receiver provide spatiotemporal information including latitude, longitude, altitude, and time or ECEF xyz coordinates. As GPS applications grow rapidly, spatiotemporal data becomes key to the ubiquitous outdoor and indoor seamless positioning services at least for the entire area of Japan, as well as to becoming familiar with satellite positioning systems (e.g. GPS). Furthermore, the authors are also working on the idea of using PDAs (Personal Digital Assistants), as cellular phones with built-in GPS and PDA functionality are also becoming increasingly popular.

  10. The Traffic Signal Acquisition System Based on GPS and SD Card Storage

    Directory of Open Access Journals (Sweden)

    LIU Chang-yuan

    2017-06-01

    Full Text Available In terms of the issues where traffic lights’ positions and traffic status information cannot be managed automatically,in this system,STC12C5A60S2 microcontroller can be used as the master chip in conjunction with the GPS position module,Neo-5Q. The wireless transceiver module,PT2262 /2272 and the portable installing SD card are used to design a new type of real-time information acquisition solution for positions of traffic lights and signal status. And the system can determine the traffic lights’ positions and the process of lighting in a real time. Then the data will be stored in SD card by the SD card module. Furthermore,the equipment can be implemented on existing facilities with a simple circuit. According to the result of experiments,the system contains a convenient storage,works in a real time and it is also advisable to help with the data reading and analysis. Thus, implementation of the system is of great significance to acquire and analyze the traffic status information in recent times.

  11. Analysis of GPS Satellite Allocation for the United States Nuclear Detonation Detection System (USNDS)

    National Research Council Canada - National Science Library

    Bell, Aaron

    2002-01-01

    ...) satellites to detect atmospheric nuclear detonations. Though there are currently over 24 operational GPS satellites, USNDS ground based antennas are only capable of actively monitoring 24 satellites at a time...

  12. A design proposal of a certain missile tactical command system based on Beidou satellite communication and GPS positioning techniques

    Science.gov (United States)

    Ma, Jian; Hao, Yongsheng; Miao, Jian; Zhang, Jianmao

    2007-11-01

    This paper introduced a design proposal of tactical command system that applied to a kind of anti-tank missile carriers. The tactical command system was made up of embedded computer system based on PC104 bus, Linux operating system, digital military map, Beidou satellite communication equipments and GPS positioning equipments. The geographic coordinates was measured by the GPS receiver, the positioning data, commands and information were transmitted real-time between tactical command systems, tactical command systems and command center, by the Beidou satellite communication systems. The Beidou satellite communication equipments and GPS positioning equipments were integrated to an independent module, exchanging data with embedded computer through RS232 serial ports and USB ports. The decision support system software based on information fusion, calculates positioning data, geography information and battle field information synthetically, shows the position of allies and the position of enemy on the military map, and assesses the various threats of different enemy objects, educes a situation assessment and threat assessment.

  13. Integrated navigation of aerial robot for GPS and GPS-denied environment

    International Nuclear Information System (INIS)

    Suzuki, Satoshi; Min, Hongkyu; Nonami, Kenzo; Wada, Tetsuya

    2016-01-01

    In this study, novel robust navigation system for aerial robot in GPS and GPS- denied environments is proposed. Generally, the aerial robot uses position and velocity information from Global Positioning System (GPS) for guidance and control. However, GPS could not be used in several environments, for example, GPS has huge error near buildings and trees, indoor, and so on. In such GPS-denied environment, Laser Detection and Ranging (LIDER) sensor based navigation system have generally been used. However, LIDER sensor also has an weakness, and it could not be used in the open outdoor environment where GPS could be used. Therefore, it is desired to develop the integrated navigation system which is seamlessly applied to GPS and GPS-denied environments. In this paper, the integrated navigation system for aerial robot using GPS and LIDER is developed. The navigation system is designed based on Extended Kalman Filter, and the effectiveness of the developed system is verified by numerical simulation and experiment. (paper)

  14. Optimization Algorithm for Kalman Filter Exploiting the Numerical Characteristics of SINS/GPS Integrated Navigation Systems.

    Science.gov (United States)

    Hu, Shaoxing; Xu, Shike; Wang, Duhu; Zhang, Aiwu

    2015-11-11

    Aiming at addressing the problem of high computational cost of the traditional Kalman filter in SINS/GPS, a practical optimization algorithm with offline-derivation and parallel processing methods based on the numerical characteristics of the system is presented in this paper. The algorithm exploits the sparseness and/or symmetry of matrices to simplify the computational procedure. Thus plenty of invalid operations can be avoided by offline derivation using a block matrix technique. For enhanced efficiency, a new parallel computational mechanism is established by subdividing and restructuring calculation processes after analyzing the extracted "useful" data. As a result, the algorithm saves about 90% of the CPU processing time and 66% of the memory usage needed in a classical Kalman filter. Meanwhile, the method as a numerical approach needs no precise-loss transformation/approximation of system modules and the accuracy suffers little in comparison with the filter before computational optimization. Furthermore, since no complicated matrix theories are needed, the algorithm can be easily transplanted into other modified filters as a secondary optimization method to achieve further efficiency.

  15. Implementasi Sistem Informasi Geografis Daerah Pariwisata Kabupaten Temanggung Berbasis Android dengan Global Positioning System (GPS

    Directory of Open Access Journals (Sweden)

    Kartika Imam Santoso

    2016-02-01

    Full Text Available Pariwisata merupakan aspek yang berharga bagi suatu daerah, dan semakin banyak pengunjung maka dapat memajukan kesejahteraan masyarakat di sekitar obyek pariwisata. Kabupaten Temanggung memiliki banyak obyek pariwisata, penggunaan teknologi informasi seperti menggunakan aplikasi smartphone berbasis Android dapat digunakan untuk membantu wisatawan untuk mengenal daerah pariwisata dan mengetahui rute menuju ke obyek pariwisata yang diinginkan. Implementasi Sistem Informasi Geografis (SIG di daerah wisata Temanggung bertujuan untuk membangun aplikasi Wisata Temanggung berbasis Android dan menerapkan layanan Google Maps Application Programming Interface (API untuk memudahkan wisatawan dalam memperoleh informasi pemetaan lokasi objek wisata, rute dan fasilitas pendukung wisata yang ada di Kabupaten Temanggung. Metode yang digunakan adalah model proses air terjun (waterfall. Implementasi Aplikasi Wisata Temanggung menggunakan pemrograman Javascript dengan Eclipse Luna, basis data SQLite, serta peta yang bersumber dari Google Maps API. Hasilnya berupa aplikasi Wisata Temanggung berbasis Android yang membantu memudahkan wisatawan dalam memperoleh informasi tentang obyek wisata alam, buatan, budaya, kuliner, hotel dan rute dari lokasi sekarang ke lokasi obyek wisata yang diinginkan di Kabupaten Temanggung dengan bantuan Global Positioning System (GPS.  

  16. Implementasi Sistem Informasi Geografis Daerah Pariwisata Kota Semarang Berbasis Android dengan Global Positioning System (GPS

    Directory of Open Access Journals (Sweden)

    Richard RF Siahaan

    2014-01-01

    Full Text Available Pariwisata merupakan aspek yang berharga bagi suatu daerah, dengan adanya daerah wisata maka dapat memajukan kesejahteraan masyarakat sekitar. Kota Semarang memiliki daerah pariwisata yang sangat banyak, apabila sarana dan prasarana yang ada dikembangkan lebih lanjut maka dipastikan peningkatan parwisata di Kota Semarang akan semakin bertambah. Penggunaan Teknologi Informasi dapat memajukan daerah pariwisata, sehingga daerah pariwisata dapat dikenal oleh wisatawan yang ingin berkunjung ke Semarang. Sistem Informasi Geografis yang dibangun menggunakan platform android. Pada Tugas Akhir ini menggunakan Java sebagai bahasa pemorgraman dengan eclipse sebagai perangkat lunak pengembangan. Penggunaan Google Map API sebagai fungsi utama peta dalam menjalankan aplikasi serta PHP sebagai bahasa pemorgaraman sisi server dan MySQL dalam penggunaan basis data. Hasil dari perancangan Aplikasi Sistem Infomasi Geografis Kota Semarang berbasis Android ini nantinya akan memberikan informasi dalam bentuk peta yang dapat digunakan sebagai referensi bagi wisatawan yang berkunjung. Penggunaan Global Positioning System (GPS dalam aplikasi ini menjadi hal yang sangat penting dalam menentukan keberadaan wisatawan. Selain itu terdapat rute untuk menuju objek wisata yang dipilih, dalam aplikasi ini juga tersedia fasilitas-fasilitas umum seperti ATM dan Bank, Bandara, Mesjid, Gereja, Rumah Sakit dan lainnya.

  17. Road safety alerting system with radar and GPS cooperation in a VANET environment

    Science.gov (United States)

    Santamaria, Amilcare Francesco; Sottile, Cesare; De Rango, Floriano; Voznak, Miroslav

    2014-05-01

    New applications in wireless environments are increasing and keeping even more interests from the developer companies and researchers. In particular, in these last few years the government and institutional organization for road safety spent a lot of resources and money to promote Vehicular Ad-Hoc Network (VANET) technology, also car manufactures are giving a lot of contributions on this field as well. In our paper, we propose an innovative system to increase road safety, matching the requests of the market allowing a cooperation between on-board devices. The vehicles are equipped with On Board Unit (OBU) and On Board Radar Unit (OBRU), which can spread alerting messages around the network regarding warning and dangerous situations exploiting IEEE802.llp standard. Vehicles move along roads observing the environment, traffic and road conditions, and vehicles parameters as well. These information can be elaborated and shared between neighbors, Road Side Unit (RSU)s and, of course, with Internet, allowing inter-system communications exploiting an Road Traffic Manager (RTM). Radar systems task it the detection of the environment in order to increase the knowledge of current conditions of the roads, for example it is important to identify obstacles, road accidents, dangerous situations and so on. Once detected exploiting onboard devices, such as Global Position System (GPS) receiver it is possible to know the exact location of the caught event and after a data elaboration the information is spread along the network. Once the drivers are advised, they can make some precautionary actions such as reduction of traveling speed or modification of current road path. In this work the routing algorithms, which have the main goal to rapidly disseminate information, are also been investigated.

  18. GPS Composite Clock Analysis

    OpenAIRE

    Wright, James R.

    2008-01-01

    The GPS composite clock defines GPS time, the timescale used today in GPS operations. GPS time is illuminated by examination of its role in the complete estimation and control problem relative to UTC/TAI. The phase of each GPS clock is unobservable from GPS pseudorange measurements, and the mean phase of the GPS clock ensemble (GPS time) is unobservable. A new and useful observability definition is presented, together with new observability theorems, to demonstrate explicitly that GPS time is...

  19. Characterization of Personal Privacy Devices (PPD) radiation pattern impact on the ground and airborne segments of the local area augmentation system (LAAS) at GPS L1 frequency

    Science.gov (United States)

    Alkhateeb, Abualkair M. Khair

    Personal Privacy Devices (PPDs) are radio-frequency transmitters that intentionally transmit in a frequency band used by other devices for the intent purpose of denying service to those devices. These devices have shown the potential to interfere with the ground and air sub-systems of the Local Area Augmentation Systems (LAAS), a GPS-based navigation aids at commercial airports. The Federal Aviation Administration (FAA) is concerned by the potential impact of these devices to GPS navigation aids at airports and has commenced an activity to determine the severity of this threat. In support of this situation, the research in this dissertation has been conducted under (FAA) Cooperative Agreement 2011-G-012, to investigate the impact of these devices on the LAAS. In order to investigate the impact of PPDs Radio Frequency Interference (RFI) on the ground and air sub-systems of the LAAS, the work presented in phase one of this research is intended to characterize the vehicle's impact on the PPD's Effective Isotropic Radiated Power (EIRP). A study was conceived in this research to characterize PPD performance by examining the on-vehicle radiation patterns as a function of vehicle type, jammer type, jammer location inside a vehicle and jammer orientation at each location. Phase two was to characterize the GPS Radiation Pattern on Multipath Limiting Antenna. MLA has to meet stringent requirements for acceptable signal detection and multipath rejection. The ARL-2100 is the most recent MLA antenna proposed to be used in the LAAS ground segment. The ground-based antenna's radiation pattern was modeled. This was achieved via (HFSS) a commercial-off the shelf CAD-based modeling code with a full-wave electromagnetic software simulation package that uses the Finite Element Analysis. Phase three of this work has been conducted to study the characteristics of the GPS Radiation Pattern on Commercial Aircraft. The airborne GPS antenna was modeled and the resulting radiation pattern on

  20. Performance evaluation of linear time-series ionospheric Total Electron Content model over low latitude Indian GPS stations

    Science.gov (United States)

    Dabbakuti, J. R. K. Kumar; Venkata Ratnam, D.

    2017-10-01

    Precise modeling of the ionospheric Total Electron Content (TEC) is a critical aspect of Positioning, Navigation, and Timing (PNT) services intended for the Global Navigation Satellite Systems (GNSS) applications as well as Earth Observation System (EOS), satellite communication, and space weather forecasting applications. In this paper, linear time series modeling has been carried out on ionospheric TEC at two different locations at Koneru Lakshmaiah University (KLU), Guntur (geographic 16.44° N, 80.62° E; geomagnetic 7.55° N) and Bangalore (geographic 12.97° N, 77.59° E; geomagnetic 4.53° N) at the northern low-latitude region, for the year 2013 in the 24th solar cycle. The impact of the solar and geomagnetic activity on periodic oscillations of TEC has been investigated. Results confirm that the correlation coefficient of the estimated TEC from the linear model TEC and the observed GPS-TEC is around 93%. Solar activity is the key component that influences ionospheric daily averaged TEC while periodic component reveals the seasonal dependency of TEC. Furthermore, it is observed that the influence of geomagnetic activity component on TEC is different at both the latitudes. The accuracy of the model has been assessed by comparing the International Reference Ionosphere (IRI) 2012 model TEC and TEC measurements. Moreover, the absence of winter anomaly is remarkable, as determined by the Root Mean Square Error (RMSE) between the linear model TEC and GPS-TEC. On the contrary, the IRI2012 model TEC evidently failed to predict the absence of winter anomaly in the Equatorial Ionization Anomaly (EIA) crest region. The outcome of this work will be useful for improving the ionospheric now-casting models under various geophysical conditions.

  1. Implementing GPS into Pave-IR.

    Science.gov (United States)

    2009-03-01

    To further enhance the capabilities of the Pave-IR thermal segregation detection system developed at the Texas Transportation Institute, researchers incorporated global positioning system (GPS) data collection into the thermal profiles. This GPS capa...

  2. Comparative Analysis of Several Real-Time Systems for Tracking People and/or Moving Objects using GPS

    OpenAIRE

    Radinski, Gligorcho; Mileva, Aleksandra

    2015-01-01

    When we talk about real-time systems for tracking people and/or moving objects using a Global Positioning System (GPS), there are several categories of such systems and the ways in which they work. Some uses additional hardware to extend the functionality of the offered opportunities, some are free, some are too complex and cost too much money. This paper aims to provide a clearer picture of several such systems and to show results from a comparative analysis of some popular systems for trac...

  3. The Global Positioning System (GPS) and attitude determination: Applications and activities in the Flight Dynamics Division

    Science.gov (United States)

    Ketchum, Eleanor; Garrick, Joe

    1995-01-01

    The application of GPS to spacecraft attitude determination is a new and growing field. Although the theoretical literature is extensive, space flight testing is currently sparse and inadequate. As an operations organization, the Flight Dynamics Division (FDD) has the responsibility to investigate this new technology, and determine how best to implement the innovation to provide adequate support for future missions. This paper presents some of the current efforts within FDD with regard to GPS attitude determination. This effort specifically addresses institutional capabilities to accommodate a new type of sensor, critically evaluating the literature for recent advancements, and in examining some available -albeit crude- flight data.

  4. The performance of GPS time and frequency transfer: comment on ‘A detailed comparison of two continuous GPS carrier-phase time transfer techniques’

    Science.gov (United States)

    Petit, Gérard; Defraigne, Pascale

    2016-06-01

    The paper ‘A detailed comparison of two continuous GPS carrier-phase time transfer techniques’ (Yao et al 2015 Metrologia 52 666) presents the revised RINEX-shift (RRS) method, a technique using ‘classical precise point positioning (PPP)’ solutions on sliding batches and aiming at providing continuous time links. The authors claim the superiority of the RRS technique with respect to ‘classical PPP’ in terms of frequency stability and solving for discontinuities due to data gaps. It is shown here that these conclusions do not rely on physical principles, and are erroneous as they are driven by misinterpreted or corrupted PPP solutions. Using state-of-the-art PPP computation on the same data sets used in Yao et al’s paper (2015 Metrologia 52 666), we show that the stability of RRS is at best similar to that of ‘classical PPP’ (within statistical uncertainties). Furthermore, the RRS method of removing discontinuities in case of data gaps by interpolating the phase data should not be applied systematically as it can cause erroneous clock solutions when the data gaps are associated with a true phase discontinuity.

  5. Global Positioning System (GPS) and Geographic Information System (GIS) analysis of mobile harvesting equipment and sediment delivery to streams during forest harvest operations on steep terrain: Experimental design

    Science.gov (United States)

    Daniel Bowker; Jeff Stringer; Chris Barton; Songlin Fei

    2011-01-01

    Sediment mobilized by forest harvest machine traffic contributes substantially to the degradation of headwater stream systems. This study monitored forest harvest machine traffic to analyze how it affects sediment delivery to stream channels. Harvest machines were outfitted with global positioning system (GPS) dataloggers, recording machine movements and working status...

  6. Two laboratory methods for the calibration of GPS speed meters

    International Nuclear Information System (INIS)

    Bai, Yin; Sun, Qiao; Du, Lei; Yu, Mei; Bai, Jie

    2015-01-01

    The set-ups of two calibration systems are presented to investigate calibration methods of GPS speed meters. The GPS speed meter calibrated is a special type of high accuracy speed meter for vehicles which uses Doppler demodulation of GPS signals to calculate the measured speed of a moving target. Three experiments are performed: including simulated calibration, field-test signal replay calibration, and in-field test comparison with an optical speed meter. The experiments are conducted at specific speeds in the range of 40–180 km h −1 with the same GPS speed meter as the device under calibration. The evaluation of measurement results validates both methods for calibrating GPS speed meters. The relative deviations between the measurement results of the GPS-based high accuracy speed meter and those of the optical speed meter are analyzed, and the equivalent uncertainty of the comparison is evaluated. The comparison results justify the utilization of GPS speed meters as reference equipment if no fewer than seven satellites are available. This study contributes to the widespread use of GPS-based high accuracy speed meters as legal reference equipment in traffic speed metrology. (paper)

  7. 75 FR 61818 - Eighty-Third Meeting: RTCA Special Committee 159: Global Positioning System (GPS).

    Science.gov (United States)

    2010-10-06

    ..., Working Group 2C, GPS/Inertial, MacIntosh-NBAA Room and Hilton-ATA Room. Tuesday, October 26 All Day... and Hilton-ATA Room. Thursday, October 28 (Proposed) 9--Noon, Joint Working Groups 2 & 4, Discussion--Nav and ADS-B Out Equipment Requirements, MacIntosh-NBAA Room and Hilton-ATA Room. (Otherwise WG-4...

  8. Comparison of a GPS needle-tracking system, multiplanar imaging and 2D imaging for real-time ultrasound-guided epidural anaesthesia: A randomized, comparative, observer-blinded study on phantoms.

    Science.gov (United States)

    Menacé, Cécilia; Choquet, Olivier; Abbal, Bertrand; Bringuier, Sophie; Capdevila, Xavier

    2017-04-01

    The real-time ultrasound-guided paramedian sagittal oblique approach for neuraxial blockade is technically demanding. Innovative technologies have been developed to improve nerve identification and the accuracy of needle placement. The aim of this study was to evaluate three types of ultrasound scans during ultrasound-guided epidural lumbar punctures in a spine phantom. Eleven sets of 20 ultrasound-guided epidural punctures were performed with 2D, GPS, and multiplanar ultrasound machines (660 punctures) on a spine phantom using an in-plane approach. For all punctures, execution time, number of attempts, bone contacts, and needle redirections were noted by an independent physician. Operator comfort and visibility of the needle (tip and shaft) were measured using a numerical scale. The use of GPS significantly decreased the number of punctures, needle repositionings, and bone contacts. Comfort of the physician was also significantly improved with the GPS system compared with the 2D and multiplanar systems. With the multiplanar system, the procedure was not facilitated and execution time was longer compared with 2D imaging after Bonferroni correction but interaction between the type of ultrasound system and mean execution time was not significant in a linear mixed model. There were no significant differences regarding needle tip and shaft visibility between the systems. Multiplanar and GPS needle-tracking systems do not reduce execution time compared with 2D imaging using a real-time ultrasound-guided paramedian sagittal oblique approach in spine phantoms. The GPS needle-tracking system can improve performance in terms of operator comfort, the number of attempts, needle redirections and bone contacts. Copyright © 2016 Société française d'anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.

  9. Development of GPS survey data management protocols/policy.

    Science.gov (United States)

    2010-08-01

    This project developed a statewide policy and criteria for collecting, analyzing, and managing global position system (GPS) survey data. The research project determined the needs of the Department in adopting the GPS real time kinetic (GPS RTK) stake...

  10. Accuracy of a 10 Hz GPS Unit in Measuring Shuttle Velocity Performed at Different Speeds and Distances (5 – 20 M

    Directory of Open Access Journals (Sweden)

    Beato Marco

    2016-12-01

    Full Text Available The aim of this study was to validate the accuracy of a 10 Hz GPS device (STATSports, Ireland by comparing the instantaneous values of velocity determined with this device with those determined by kinematic (video analysis (25 Hz. Ten male soccer players were required to perform shuttle runs (with 180° change of direction at three velocities (slow: 2.2 m·s-1; moderate: 3.2 m·s-1; high: maximal over four distances: 5, 10, 15 and 20 m. The experiments were video-recorded; the “point by point” values of speed recorded by the GPS device were manually downloaded and analysed in the same way as the “frame by frame” values of horizontal speed as obtained by video analysis. The obtained results indicated that shuttle distance was smaller in GPS than video analysis (p < 0.01. Shuttle velocity (shuttle distance/shuttle time was thus smaller in GPS than in video analysis (p < 0.001; the percentage difference (bias, % in shuttle velocity between methods was found to decrease with the distance covered (5 m: 9 ± 6%; 20 m: 3 ± 3%. The instantaneous values of speed were averaged; from these data and from data of shuttle time, the distance covered was recalculated; the error (criterion distance-recalculated distance was negligible for video data (0.04 ± 0.28 m whereas GPS data underestimated criterion distance (0.31 ± 0.55 m. In conclusion, the inaccuracy of this GPS unit in determining shuttle speed can be attributed to inaccuracy in determining the shuttle distance.

  11. A Robust High-Performance GPS L1 Receiver with Single-stage Quadrature Redio-Frequency Circuit

    Science.gov (United States)

    Liu, Jianghua; Xu, Weilin; Wan, Qinq; Liu, Tianci

    2018-03-01

    A low power current reuse single-stage quadrature raido-frequency part (SQRF) is proposed for GPS L1 receiver in 180nm CMOS process. The proposed circuit consists of LNA, Mixer, QVCO, is called the QLMV cell. A two blocks stacked topology is adopted in this design. The parallel QVCO and mixer placed on the top forms the upper stacked block, and the LNA placed on the bottom forms the other stacked block. The two blocks share the current and achieve low power performance. To improve the stability, a float current source is proposed. The float current isolated the local oscillation signal and the input RF signal, which bring the whole circuit robust high-performance. The result shows conversion gain is 34 dB, noise figure is three dB, the phase noise is -110 dBc/Hz at 1MHz and IIP3 is -20 dBm. The proposed circuit dissipated 1.7mW with 1 V supply voltage.

  12. Comparative Analysis of GPS Clock Performance Using Both Code-Phase and Carrier-Derived Pseudorange Observations

    National Research Council Canada - National Science Library

    Oaks, Jay; Largay, Marie M; Reid, Wilson G; Buisson, James A

    2004-01-01

    The Naval Research Laboratory (NRL) has, for many years, determined the GPS space vehicle clock offsets by differencing the pseudorange observations and the post-fit orbit provided by the National Geospatial-Intelligence Agency (NGA...

  13. MIVIS image geocoding experience on merging position attitude system data and public domain GPS stream (ASI-GeoDAF

    Directory of Open Access Journals (Sweden)

    S. Pignatti

    2006-06-01

    Full Text Available The use of airborne scanners involves geo-referencing problems, which are difficult because of the need to know the exact platform position and attitude for each scan line. The errors of the onboard navigation system are normally corrected using ground control point on the image. This post-processing correction procedure is too long in case of multiple flight campaigns, and besides it implies the need to have available 1:10000 orthophotoimages or maps in digital format. To optimize the above procedure a new method to correct MIVIS navigational data in the post-processing phase has been implemented. The procedure takes into consideration the GPS stream in Rinex format of common knowledge and findable on the web, acquired at the ground stations of the Geodetic Data Archiving Facilities provided by ASI. The application of this correction entails the assumption that the environmental variables affecting both onboard and geodetic GPS equally affect the position measurements. The airborne data correction was carried out merging the two data sets (onboard and ground station GPS to achieve a more precise aircraft trajectory. The present study compares the geo-coded images obtained by means of the two post-processing methods.

  14. Kinematic-PPP using Single/Dual Frequency Observations from (GPS, GLONASS and GPS/GLONASS) Constellations for Hydrography

    Science.gov (United States)

    Farah, Ashraf

    2018-03-01

    Global Positioning System (GPS) technology is ideally suited for inshore and offshore positioning because of its high accuracy and the short observation time required for a position fix. Precise point positioning (PPP) is a technique used for position computation with a high accuracy using a single GNSS receiver. It relies on highly accurate satellite position and clock data that can be acquired from different sources such as the International GNSS Service (IGS). PPP precision varies based on positioning technique (static or kinematic), observations type (single or dual frequency) and the duration of observations among other factors. PPP offers comparable accuracy to differential GPS with safe in cost and time. For many years, PPP users depended on GPS (American system) which considered the solely reliable system. GLONASS's contribution in PPP techniques was limited due to fail in maintaining full constellation. Yet, GLONASS limited observations could be integrated into GPS-based PPP to improve availability and precision. As GLONASS reached its full constellation early 2013, there is a wide interest in PPP systems based on GLONASS only and independent of GPS. This paper investigates the performance of kinematic PPP solution for the hydrographic applications in the Nile river (Aswan, Egypt) based on GPS, GLONASS and GPS/GLONASS constellations. The study investigates also the effect of using two different observation types; single-frequency and dual frequency observations from the tested constellations.

  15. Road Charging in Copenhagen: A Comparative Study of the GPS Performance

    DEFF Research Database (Denmark)

    Zabic, Martina

    2009-01-01

    improvement obtainable after 5 years. The performance assessment addresses the subjects of satellite visibility and positioning quality and results from the two experiments are compared respectively. The results of this assessment show that the satellite visibility and positioning quality have improved...

  16. Arctic Tides from GPS on sea-ice

    DEFF Research Database (Denmark)

    Kildegaard Rose, Stine; Skourup, Henriette; Forsberg, René

    2013-01-01

    The presence of sea-ice in the Arctic Ocean plays a significant role in the Arctic climate. Sea-ice dampens the ocean tide amplitude with the result that global tidal models perform less accurately in the polar regions. This paper presents, a kinematic processing of global positioning system (GPS....... The results show coherence between the GPS buoy measurements, and the tide model. Furthermore, we have proved that the reference ellipsoid of WGS84, can be interpolated to the tidal defined zero level by applying geophysical corrections to the GPS data....

  17. System performance optimization

    International Nuclear Information System (INIS)

    Bednarz, R.J.

    1978-01-01

    The System Performance Optimization has become an important and difficult field for large scientific computer centres. Important because the centres must satisfy increasing user demands at the lowest possible cost. Difficult because the System Performance Optimization requires a deep understanding of hardware, software and workload. The optimization is a dynamic process depending on the changes in hardware configuration, current level of the operating system and user generated workload. With the increasing complication of the computer system and software, the field for the optimization manoeuvres broadens. The hardware of two manufacturers IBM and CDC is discussed. Four IBM and two CDC operating systems are described. The description concentrates on the organization of the operating systems, the job scheduling and I/O handling. The performance definitions, workload specification and tools for the system stimulation are given. The measurement tools for the System Performance Optimization are described. The results of the measurement and various methods used for the operating system tuning are discussed. (Auth.)

  18. Tracking Small Satellites using Translated GPS

    OpenAIRE

    Lefevre, Don; Mulally, Daniel

    1991-01-01

    This paper discusses using translated GPS for tracking small satellites, the technical trade-offs involved, and the position and timing accuracies which are achievable using translated GPS. The Global Positioning System (GPS) uses the relative times-of-arrival of multiple spread-spectrum signals at an antenna to determine the position of the antenna. The system can also determine the time the antenna was at that position. The direct sequence spread spectrum signals are transmitted from GPS sa...

  19. Global Positioning System Technology (GPS for Psychological Research: A Test of Convergent and Nomological Validity

    Directory of Open Access Journals (Sweden)

    Pedro eWolf

    2013-06-01

    Full Text Available The purpose of this paper is to examine the convergent and nomological validity of a GPS-based measure of daily activity, operationalized as Number of Places Visited (NPV. Relations among the GPS-based measure and two self-report measures of NPV, as well as relations among NPV and two factors made up of self-reported individual differences were examined. The first factor was composed of variables related to an Active Lifestyle (AL (e.g. positive affect, extraversion… and the second factor was composed of variables related to a Sedentary Lifestyle (SL (e.g. depression, neuroticism…. NPV was measured over a four-day period. This timeframe was made up of two week and two weekend days. A bi-variate analysis established one level of convergent validity and a Split-Plot GLM examined convergent validity, nomological validity, and alternative hypotheses related to constraints on activity throughout the week simultaneously. The first analysis revealed significant correlations among NPV measures- weekday, weekend, and the entire four day blocks, supporting the convergent validity of the Diary-, Google Maps-, and GPS-NPV measures. Results from the second analysis, indicating non-significant mean differences in NPV regardless of method, also support this conclusion. We also found that AL is a statistically significant predictor of NPV no matter how NPV was measured. We did not find a statically significant relation among NPV and SL. These results permit us to infer that the GPS-based NPV measure has convergent and nomological validity.

  20. Pengembangan Sistem Navigasi Otomatis Pada UAV (Unmanned Aerial Vehicle dengan GPS(Global Positioning System Waypoint

    Directory of Open Access Journals (Sweden)

    Rahmad Hidayat

    2017-01-01

    Full Text Available UAV adalah salah satu wahana tanpa awak di udara yang mana dapat terbang tanpa pilot, menggunakan gaya aerodinamik untuk menghasilkan gaya angkat (lift, dapat terbang secara autonomous atau dioperasikan dengan radio kontrol. UAV digunakan untuk berbagai keperluan baik di lingkup militer maupun sipil. Pada tugas akhir ini dirancang dan direalisasikan pengembangan sistem navigasi otomatis pada UAV dengan GPS waypoint. Sistem ini menggunakan kontrol manual dan autopilot. Pada mode manual, pengguna secara manual mengendalikan pergerakan pesawat melalui radio kontroler sedangkan pada mode autopilot pesawat dikendalikan oleh mikrokontroler Arduino Mega 2560 yang mengolah data-data sensor IMU (Inertial Measurement Unit yang didalamnya terdapat gyroscope dan accelerometer, GPS dan barometric altimeter sehingga dapat terbang secara otomatis dengan sesuai waypoint GPS yang dimasukkan. Mikrokontroler menerima dan menolah data dari sensor dan menghasilkan keluaran untuk menggerakkan servo aktuator. Pengolahan data dari sensor menggunakan kontrol PID (Proportional Integral Derivative. Pesawat akan terkoneksi dengan ground station melalui perangkat telemetri untuk mengirimkan data penerbangan ke darat. Sistem navigasi ini diharapkan dapat secara tepat mengarahkan pesawat menuju satu titik atau lebih dengan toleransi kesalahan ≤ 30 meter pada ketinggian 30-100 meter. Selain itu pesawat diharapkan dapat terbang dengan radius ± 2 km dari ground station. Hasil dari pengujian dapat dilaksanakan kontrol manual dan otomatis pada UAV melalui 5 channel (aileron, elevator, throttle, rudder dan saklar. Distorsi pada kontrol manual diminimalisir dengan memperbesar faktor pembagi sinyal PWM sebesar 50μs-100μs. Kontrol otomatis dapat menstabilkan sikap pesawat di udara (sudut roll 45° dan sudut pitch 30° Setting Kp 1,2 dan Ki 0,01, setting Kp navigasi GPS 0,2 Ki 0,01 dan Kd 4 dengan sudut roll maksimal 15°.

  1. Ionospheric Scintillation Effects on GPS

    Science.gov (United States)

    Steenburgh, R. A.; Smithtro, C.; Groves, K.

    2007-12-01

    . Ionospheric scintillation of Global Positioning System (GPS) signals threatens navigation and military operations by degrading performance or making GPS unavailable. Scintillation is particularly active, although not limited to, a belt encircling the earth within 20 degrees of the geomagnetic equator. As GPS applications and users increases, so does the potential for detrimental impacts from scintillation. We examined amplitude scintillation data spanning seven years from Ascension Island, U.K.; Ancon, Peru; and Antofagasta, Chile in the Atlantic/Americas longitudinal sector at as well as data from Parepare, Indonesia; Marak Parak, Malaysia; Pontianak, Indonesia; Guam; and Diego Garcia, U.K.; in the Pacific longitudinal sector. From these data, we calculate percent probability of occurrence of scintillation at various intensities described by the S4 index. Additionally, we determine Dilution of Precision at one minute resolution. We examine diurnal, seasonal and solar cycle characteristics and make spatial comparisons. In general, activity was greatest during the equinoxes and solar maximum, although scintillation at Antofagasta, Chile was higher during 1998 rather than at solar maximum.

  2. System Performance and Testing

    NARCIS (Netherlands)

    Frei, U.; Oversloot, H.

    2004-01-01

    This chapter compares and contrasts the system performance of two widely used solar thermal systems using testing and simulation programs. Solar thermal systems are used in many countries for heating domestically used water. In addition to the simple thermosiphon systems, better designed pumped

  3. A Mobile GPS Application: Mosque Tracking with Prayer Time Synchronization

    Science.gov (United States)

    Hashim, Rathiah; Ikhmatiar, Mohammad Sibghotulloh; Surip, Miswan; Karmin, Masiri; Herawan, Tutut

    Global Positioning System (GPS) is a popular technology applied in many areas and embedded in many devices, facilitating end-users to navigate effectively to user's intended destination via the best calculated route. The ability of GPS to track precisely according to coordinates of specific locations can be utilized to assist a Muslim traveler visiting or passing an unfamiliar place to find the nearest mosque in order to perform his prayer. However, not many techniques have been proposed for Mosque tracking. This paper presents the development of GPS technology in tracking the nearest mosque using mobile application software embedded with the prayer time's synchronization system on a mobile application. The prototype GPS system developed has been successfully incorporated with a map and several mosque locations.

  4. Assessment of Compatibility between Ultrawideband (UWB) Systems and Global Positioning System (GPS) Receivers

    National Research Council Canada - National Science Library

    Anderson, David

    2001-01-01

    ...) of the proposed UWB transmitting devices to those spectrum-dependent systems currently in operation The NTIA, as the Executive Branch agency principally responsible for developing and articulating...

  5. Evidential recovery from GPS devices

    Directory of Open Access Journals (Sweden)

    Brian Cusack

    Full Text Available Global Positioning Systems (GPS have become more affordable, are now widely used in motor vehicles and in other frequently used applications. As a consequence GPS are increasingly becoming an important source of evidential data for digital forensic investigations. This paper acknowledges there are only disparate documents for the guidance of an investigator when extracting evidence form such systems. The focus of this paper is to provide the technical details of recovering artifacts from four GPS currently available to the New Zealand market. Navman brand GPS are used, following a forensically robust process. The steps of the process are described, results analysed and the associated risks are discussed. In addition, the paper discusses techniques related to the visual presentation of evidence suitable for Google Maps. Automation attempts to speed up the analysis to visualization steps are also included. The outcome is a road map that may assist digital forensic investigators develop GPS examination strategies for implementation in their own organizations.

  6. Letting in-vehicle navigation lead the way: Older drivers' perceptions of and ability to follow a GPS navigation system.

    Science.gov (United States)

    Stinchcombe, Arne; Gagnon, Sylvain; Kateb, Matthew; Curtis, Meredith; Porter, Michelle M; Polgar, Jan; Bédard, Michel

    2017-09-01

    In-vehicle navigation systems have the potential to simplify the driving task by reducing the drivers' need to engage in wayfinding, especially in unfamiliar environments. This study sought to characterize older drivers' overall assessment of using in-vehicle GPS technology as part of a research study and to explore whether the use of this technology has an impact on participants' driving behaviour. Forty-seven older drivers completed an on-road evaluation where directions were provided by an in-vehicle GPS navigation system and their behaviour was recorded using video technology. They later completed a questionnaire to assess their perception of the navigation system. After the study, participants were grouped based on whether they were able to accurately follow the instructions provided by the navigation system. The results indicated that most drivers were satisfied with the navigation technology and found the directions it provided to be clear. There were no statistically significant differences in the number of on-road errors committed by drivers who did not follow the directions from the navigation system in comparison to drivers who did follow the directions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A high accuracy vehicle positioning system implemented in a lane assistance system when GPS Is unavailable.

    Science.gov (United States)

    2011-07-01

    The use of lane assistance systems can reduce the stress levels experienced by drivers and allow for better lane : keeping in narrow, bus-dedicated lanes. In 2008, the Intelligent Vehicles (IV) Lab at the University of Minnesota : has developed such ...

  8. GPS Position Time Series @ JPL

    Science.gov (United States)

    Owen, Susan; Moore, Angelyn; Kedar, Sharon; Liu, Zhen; Webb, Frank; Heflin, Mike; Desai, Shailen

    2013-01-01

    Different flavors of GPS time series analysis at JPL - Use same GPS Precise Point Positioning Analysis raw time series - Variations in time series analysis/post-processing driven by different users. center dot JPL Global Time Series/Velocities - researchers studying reference frame, combining with VLBI/SLR/DORIS center dot JPL/SOPAC Combined Time Series/Velocities - crustal deformation for tectonic, volcanic, ground water studies center dot ARIA Time Series/Coseismic Data Products - Hazard monitoring and response focused center dot ARIA data system designed to integrate GPS and InSAR - GPS tropospheric delay used for correcting InSAR - Caltech's GIANT time series analysis uses GPS to correct orbital errors in InSAR - Zhen Liu's talking tomorrow on InSAR Time Series analysis

  9. Signal existence verification (SEV) for GPS low received power signal detection using the time-frequency approach.

    Science.gov (United States)

    Jan, Shau-Shiun; Sun, Chih-Cheng

    2010-01-01

    The detection of low received power of global positioning system (GPS) signals in the signal acquisition process is an important issue for GPS applications. Improving the miss-detection problem of low received power signal is crucial, especially for urban or indoor environments. This paper proposes a signal existence verification (SEV) process to detect and subsequently verify low received power GPS signals. The SEV process is based on the time-frequency representation of GPS signal, and it can capture the characteristic of GPS signal in the time-frequency plane to enhance the GPS signal acquisition performance. Several simulations and experiments are conducted to show the effectiveness of the proposed method for low received power signal detection. The contribution of this work is that the SEV process is an additional scheme to assist the GPS signal acquisition process in low received power signal detection, without changing the original signal acquisition or tracking algorithms.

  10. Design and implementation of a GPS guidance system for agricultural tractors using augmented reality technology.

    Science.gov (United States)

    Santana-Fernández, Javier; Gómez-Gil, Jaime; del-Pozo-San-Cirilo, Laura

    2010-01-01

    Current commercial tractor guidance systems present to the driver information to perform agricultural tasks in the best way. This information generally includes a treated zones map referenced to the tractor's position. Unlike actual guidance systems where the tractor driver must mentally associate treated zone maps and the plot layout, this paper presents a guidance system that using Augmented Reality (AR) technology, allows the tractor driver to see the real plot though eye monitor glasses with the treated zones in a different color. The paper includes a description of the system hardware and software, a real test done with image captures seen by the tractor driver, and a discussion predicting that the historical evolution of guidance systems could involve the use of AR technology in the agricultural guidance and monitoring systems.

  11. Design and Implementation of a GPS Guidance System for Agricultural Tractors Using Augmented Reality Technology

    Directory of Open Access Journals (Sweden)

    Laura del-Pozo-San-Cirilo

    2010-11-01

    Full Text Available Current commercial tractor guidance systems present to the driver information to perform agricultural tasks in the best way. This information generally includes a treated zones map referenced to the tractor’s position. Unlike actual guidance systems where the tractor driver must mentally associate treated zone maps and the plot layout, this paper presents a guidance system that using Augmented Reality (AR technology, allows the tractor driver to see the real plot though eye monitor glasses with the treated zones in a different color. The paper includes a description of the system hardware and software, a real test done with image captures seen by the tractor driver, and a discussion predicting that the historical evolution of guidance systems could involve the use of AR technology in the agricultural guidance and monitoring systems.

  12. The interchangeability of global positioning system and semiautomated video-based performance data during elite soccer match play.

    Science.gov (United States)

    Harley, Jamie A; Lovell, Ric J; Barnes, Christopher A; Portas, Matthew D; Weston, Matthew

    2011-08-01

    In elite-level soccer, player motion characteristics are commonly generated from match play and training situations using semiautomated video analysis systems and global positioning system (GPS) technology, respectively. Before such data are used collectively to quantify global player load, it is necessary to understand both the level of agreement and direction of bias between the systems so that specific interventions can be made based on the reported results. The aim of this report was to compare data derived from both systems for physical match performances. Six elite-level soccer players were analyzed during a competitive match using semiautomated video analysis (ProZone® [PZ]) and GPS (MinimaxX) simultaneously. Total distances (TDs), high speed running (HSR), very high speed running (VHSR), sprinting distance (SPR), and high-intensity running distance (HIR; >4.0 m·s(-1)) were reported in 15-minute match periods. The GPS reported higher values than PZ did for TD (GPS: 1,755.4 ± 245.4 m; PZ: 1,631.3 ± 239.5 m; p < 0.05); PZ reported higher values for SPR and HIR than GPS did (SPR: PZ, 34.1 ± 24.0 m; GPS: 20.3 ± 15.8 m; HIR: PZ, 368.1 ± 129.8 m; GPS: 317.0 ± 92.5 m; p < 0.05). Caution should be exercised when using match-load (PZ) and training-load (GPS) data interchangeably.

  13. Precise GPS orbits for geodesy

    Science.gov (United States)

    Colombo, Oscar L.

    1994-01-01

    The Global Positioning System (GPS) has become, in recent years, the main space-based system for surveying and navigation in many military, commercial, cadastral, mapping, and scientific applications. Better receivers, interferometric techniques (DGPS), and advances in post-processing methods have made possible to position fixed or moving receivers with sub-decimeter accuracies in a global reference frame. Improved methods for obtaining the orbits of the GPS satellites have played a major role in these achievements; this paper gives a personal view of the main developments in GPS orbit determination.

  14. Special Features in the Structure of Resonant Perturbations of Uncontrollable Objects of Glonass and GPS Navigating Systems. Influence on the Orbital Evolution

    Science.gov (United States)

    Tomilova, I. V.; Bordovitsyna, T. V.

    2017-08-01

    Results of investigation into the resonant structure of perturbations and long-term orbital evolution of space vehicles of GLONASS and GPS global navigating satellite systems (GNSS) under assumption that all of them have lost control on 08/01/2015 are presented. It is demonstrated that the majority of the examined objects are in the range of action of the secular resonances of various types. In addition, practically all satellites of the GPS system are within the scope of the 2:1 orbital resonance with rotation of the Earth. Results of the MEGNO analysis demonstrate that the motion of all objects of the GLONASS system during the 100-year period is regular, whereas the motion of the majority of objects of the GPS system is subject to chaotization.

  15. The use of radiological guidelines to achieve a sustained reduction in the number of radiographic examinations of the cervical spine, lumbar spine and knees performed for GPs

    International Nuclear Information System (INIS)

    Glaves, J.

    2005-01-01

    AIM: To determine if the use of request guidelines can achieve a sustained reduction in the number of radiographic examinations of the cervical spine, lumbar spine and knee joints performed for general practitioners (GPs). METHODS: GPs referring to three community hospitals and a district general hospital were circulated with referral guidelines for radiography of the cervical spine, lumbar spine and knee, and all requests for these three examinations were checked. Requests that did not fit the guidelines were returned to the GP with an explanatory letter and a further copy of the guidelines. Where applicable, a large-joint replacement algorithm was also enclosed. If the GP maintained the opinion that the examination was indicated, she or he had the option of supplying further justifying information in writing or speaking to a consultant radiologist. RESULTS: Overall the number of radiographic examinations fell by 68% in the first year, achieving a 79% reduction in the second year. For knees, lumbar spine and cervical spine radiographs the total reductions were 77%, 78% and 86%, respectively. CONCLUSION: The use of referral guidelines, reinforced by request checking and clinical management algorithms, can produce a dramatic and sustained reduction in the number of radiographs of the cervical spine, lumbar spine and knees performed for GPs

  16. Accuracy and coverage of the modernized Polish Maritime differential GPS system

    Science.gov (United States)

    Specht, Cezary

    2011-01-01

    The DGPS navigation service augments The NAVSTAR Global Positioning System by providing localized pseudorange correction factors and ancillary information which are broadcast over selected marine reference stations. The DGPS service position and integrity information satisfy requirements in coastal navigation and hydrographic surveys. Polish Maritime DGPS system has been established in 1994 and modernized (in 2009) to meet the requirements set out in IMO resolution for a future GNSS, but also to preserve backward signal compatibility of user equipment. Having finalized installation of the new technology L1, L2 reference equipment performance tests were performed.The paper presents results of the coverage modeling and accuracy measuring campaign based on long-term signal analyses of the DGPS reference station Rozewie, which was performed for 26 days in July 2009. Final results allowed to verify the coverage area of the differential signal from reference station and calculated repeatable and absolute accuracy of the system, after the technical modernization. Obtained field strength level area and position statistics (215,000 fixes) were compared to past measurements performed in 2002 (coverage) and 2005 (accuracy), when previous system infrastructure was in operation.So far, no campaigns were performed on differential Galileo. However, as signals, signal processing and receiver techniques are comparable to those know from DGPS. Because all satellite differential GNSS systems use the same transmission standard (RTCM), maritime DGPS Radiobeacons are standardized in all radio communication aspects (frequency, binary rate, modulation), then the accuracy results of differential Galileo can be expected as a similar to DGPS.Coverage of the reference station was calculated based on unique software, which calculate the signal strength level based on transmitter parameters or field signal strength measurement campaign, done in the representative points. The software works

  17. GPS operations at Olkiluoto in 2011

    Energy Technology Data Exchange (ETDEWEB)

    Koivula, H.; Kallio, U.; Nyberg, S.; Jokela, J.; Poutanen, M. [Finnish Geodetic Institute, Masala (Finland)

    2012-06-15

    The Finnish Geodetic Institute has studied crustal deformations at Olkiluoto, Kivetty and Romuvaara in co-operation with Posiva Oy since 1995. At Olkiluoto a total of 32 GPS campaigns have been carried out at inner network since 1995 and 17 campaigns at outer network since 2003. Kivetty and Romuvaara were not measured in 2011. In the Olkiluoto inner network 80 percent of the estimated change rates are smaller than 0.10 mm/a. One third of the change rates are statistically significant. They are mainly related to the Olkiluoto permanent station (GPS1) and to the pillars GPS6 and GPS13. The change rates related to GPS6 are not realistic due to the site-specific changes affecting the time series. The maximum change rate (-0.20 mm/a {+-} 0.05 mm/a) is related to GPS13. The time series of GPS13 is half the length of other pillars and therefore, the change rates are more uncertain. In the Olkiluoto outer network the maximum and statistically significant change rate is between GPS1-GPS11 (0.39 mm/a {+-} 0.06 mm/a). Pillar GPS12 was not observed this year. The change rates of baselines GPS1-GPS14 and GPS1-GPS15 are first time statistically significant. The change rates indicate a small movement of the GPS1 pillar. The baseline GPS1-GPS11 crosses an old fracture zone locating in the direction of the Eurajoensalmi, which might be a reason for the deformation. On the other hand, the Onkalo excavations in the vicinity of the Olkiluoto permanent station (GPS1) may cause some movement. Electronic distance measurements have been performed at Olkiluoto at the baseline GPS7-GPS8 using the Mekometer since 2002. The measurements have been carried out simultaneously with GPS campaigns. Based on 19 measurements in 10 years, the trends of the two time series seems to be similar. Due to unmodelled or dismodelled geometrical offsets and the scale difference between GPS measurements and EDM there is about 0.3 mm difference between distances GPS7-GPS8 derived from GPS measurements and EDM

  18. GPS operations at Olkiluoto in 2011

    International Nuclear Information System (INIS)

    Koivula, H.; Kallio, U.; Nyberg, S.; Jokela, J.; Poutanen, M.

    2012-06-01

    The Finnish Geodetic Institute has studied crustal deformations at Olkiluoto, Kivetty and Romuvaara in co-operation with Posiva Oy since 1995. At Olkiluoto a total of 32 GPS campaigns have been carried out at inner network since 1995 and 17 campaigns at outer network since 2003. Kivetty and Romuvaara were not measured in 2011. In the Olkiluoto inner network 80 percent of the estimated change rates are smaller than 0.10 mm/a. One third of the change rates are statistically significant. They are mainly related to the Olkiluoto permanent station (GPS1) and to the pillars GPS6 and GPS13. The change rates related to GPS6 are not realistic due to the site-specific changes affecting the time series. The maximum change rate (-0.20 mm/a ± 0.05 mm/a) is related to GPS13. The time series of GPS13 is half the length of other pillars and therefore, the change rates are more uncertain. In the Olkiluoto outer network the maximum and statistically significant change rate is between GPS1-GPS11 (0.39 mm/a ± 0.06 mm/a). Pillar GPS12 was not observed this year. The change rates of baselines GPS1-GPS14 and GPS1-GPS15 are first time statistically significant. The change rates indicate a small movement of the GPS1 pillar. The baseline GPS1-GPS11 crosses an old fracture zone locating in the direction of the Eurajoensalmi, which might be a reason for the deformation. On the other hand, the Onkalo excavations in the vicinity of the Olkiluoto permanent station (GPS1) may cause some movement. Electronic distance measurements have been performed at Olkiluoto at the baseline GPS7-GPS8 using the Mekometer since 2002. The measurements have been carried out simultaneously with GPS campaigns. Based on 19 measurements in 10 years, the trends of the two time series seems to be similar. Due to unmodelled or dismodelled geometrical offsets and the scale difference between GPS measurements and EDM there is about 0.3 mm difference between distances GPS7-GPS8 derived from GPS measurements and EDM. It is

  19. LADOTD GPS technology management plan.

    Science.gov (United States)

    2012-02-01

    Over many years, Global Positioning System (GPS) technology has been adopted by different sections within the Louisiana : Department of Transportation and Development (DOTD), with no uniform standards for accuracy, operation, hardware, or : software....

  20. GPS Navigation and Tracking Device

    Directory of Open Access Journals (Sweden)

    Yahya Salameh Khraisat

    2011-10-01

    Full Text Available Since the introduction of GPS Navigation systems in the marketplace, consumers and businesses have been coming up with innovative ways to use the technology in their everyday life. GPS Navigation and Tracking systems keep us from getting lost when we are in strange locations, they monitor children when they are away from home, keep track of business vehicles and can even let us know where a philandering partner is at all times. Because of this we attend to build a GPS tracking device to solve the mentioned problems. Our work consists of the GPS module that collects data from satellites and calculates the position information before transmitting them to the user’s PC (of Navigation system or observers (of Tracking System using wireless technology (GSM.

  1. GPS & Roadpricing

    DEFF Research Database (Denmark)

    Zabic, Martina

    2005-01-01

    den enkelte bil med en computer, der ved hjælp af signaler fra satellitter, kan bestemme bilens placering på vejnettet. Herved kan bilens computer ved hjælp af elektroniske vejkort udregne kilometertaksten det pågældende sted, således at det skyldige beløb enten trækkes direkte eller akkumuleres til...... estimeringskvaliteten af positionen, som specielt ses når bilerne accelererer, deaccelererer og drejer hurtigt i sving m.m. Hver GPS-baseret observations nøjagtighed afhænger af antallet af satellitter inden for ”sigt”, kvaliteten af hvert signal (HDOP) og den retning satellitterne befinder sig i forhold til enheden og...

  2. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou.

    Science.gov (United States)

    Li, Xingxing; Zhang, Xiaohong; Ren, Xiaodong; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2015-02-09

    The world of satellite navigation is undergoing dramatic changes with the rapid development of multi-constellation Global Navigation Satellite Systems (GNSSs). At the moment more than 70 satellites are already in view, and about 120 satellites will be available once all four systems (BeiDou + Galileo + GLONASS + GPS) are fully deployed in the next few years. This will bring great opportunities and challenges for both scientific and engineering applications. In this paper we develop a four-system positioning model to make full use of all available observations from different GNSSs. The significant improvement of satellite visibility, spatial geometry, dilution of precision, convergence, accuracy, continuity and reliability that a combining utilization of multi-GNSS brings to precise positioning are carefully analyzed and evaluated, especially in constrained environments.

  3. Autonomous GPS/INS navigation experiment for Space Transfer Vehicle

    Science.gov (United States)

    Upadhyay, Triveni N.; Cotterill, Stephen; Deaton, A. W.

    1993-01-01

    An experiment to validate the concept of developing an autonomous integrated spacecraft navigation system using on board Global Positioning System (GPS) and Inertial Navigation System (INS) measurements is described. The feasibility of integrating GPS measurements with INS measurements to provide a total improvement in spacecraft navigation performance, i.e. improvement in position, velocity and attitude information, was previously demonstrated. An important aspect of this research is the automatic real time reconfiguration capability of the system designed to respond to changes in a spacecraft mission under the control of an expert system.

  4. Orbit Determination of GPS and Koreasat 2 Satellite Using Angle-Only Data and Requirements for Optical Tracking System

    Directory of Open Access Journals (Sweden)

    Woo-Kyoung Lee

    2004-09-01

    Full Text Available Gauss method for the initial orbit determination was tested using angle-only data obtained by orbit propagation using TLE and SGP4/SDP4 orbit propagation model. As the analysis of this simulation, a feasible time span between observation time of satellite resulting the minimum error to the true orbit was found. Initial orbit determination is performed using observational data of GPS 26 and Koreasat 2 from 0.6m telescope of KAO(Korea Astronomy Observatory and precise orbit determination is also performed using simulated data. The result of precise orbit determination shows that the accuracy of resulting orbit is related to the accuracy of the observations and the number of data.

  5. Performance Analysis of Measurement Inaccuracies of IMU/GPS on Airborne Repeat-pass Interferometric SAR in the Presence of Squint

    Directory of Open Access Journals (Sweden)

    Deng Yuan

    2014-08-01

    Full Text Available In the MOtion COmpensation (MOCO approach to airborne repeat-pass interferometric Synthetic Aperture Radar (SAR based on motion measurement data, the measurement inaccuracies of Inertial Measurement Unit/Global Positioning System (IMU/GPS and the positioning errors of the target, which may contribute to the residual uncompensated motion errors, affect the imaging result and interferometric measurement. Considering the effects of the two types of error, this paper builds a mathematical model of residual motion errors in presence of squint, and analyzes the effects on the residual motion errors induced by the measurement inaccuracies of IMU/GPS and the positioning errors of the target. In particular, the effects of various measurement inaccuracies of IMU/GPS on interferometric SAR image quality, interferometric phase, and digital elevation model precision are disscussed. Moreover, the paper quantitatively researches the effects of residual motion errors on airborne repeat-pass interferometric SAR through theoretical and simulated analyses and provides theoretical bases for system design and signal processing.

  6. An evaluation of a UAV guidance system with consumer grade GPS receivers

    Science.gov (United States)

    Rosenberg, Abigail Stella

    Remote sensing has been demonstrated an important tool in agricultural and natural resource management and research applications, however there are limitations that exist with traditional platforms (i.e., hand held sensors, linear moves, vehicle mounted, airplanes, remotely piloted vehicles (RPVs), unmanned aerial vehicles (UAVs) and satellites). Rapid technological advances in electronics, computers, software applications, and the aerospace industry have dramatically reduced the cost and increased the availability of remote sensing technologies. Remote sensing imagery vary in spectral, spatial, and temporal resolutions and are available from numerous providers. Appendix A presented results of a test project that acquired high-resolution aerial photography with a RPV to map the boundary of a 0.42 km2 fire area. The project mapped the boundaries of the fire area from a mosaic of the aerial images collected and compared this with ground-based measurements. The project achieved a 92.4% correlation between the aerial assessment and the ground truth data. Appendix B used multi-objective analysis to quantitatively assess the tradeoffs between different sensor platform attributes to identify the best overall technology. Experts were surveyed to identify the best overall technology at three different pixel sizes. Appendix C evaluated the positional accuracy of a relatively low cost UAV designed for high resolution remote sensing of small areas in order to determine the positional accuracy of sensor readings. The study evaluated the accuracy and uncertainty of a UAV flight route with respect to the programmed waypoints and of the UAV's GPS position, respectively. In addition, the potential displacement of sensor data was evaluated based on (1) GPS measurements on board the aircraft and (2) the autopilot's circuit board with 3-axis gyros and accelerometers (i.e., roll, pitch, and yaw). The accuracies were estimated based on a 95% confidence interval or similar methods. The

  7. Performances of different global positioning system devices for time-location tracking in air pollution epidemiological studies.

    Science.gov (United States)

    Wu, Jun; Jiang, Chengsheng; Liu, Zhen; Houston, Douglas; Jaimes, Guillermo; McConnell, Rob

    2010-11-23

    People's time-location patterns are important in air pollution exposure assessment because pollution levels may vary considerably by location. A growing number of studies are using global positioning systems (GPS) to track people's time-location patterns. Many portable GPS units that archive location are commercially available at a cost that makes their use feasible for epidemiological studies. We evaluated the performance of five portable GPS data loggers and two GPS cell phones by examining positional accuracy in typical locations (indoor, outdoor, in-vehicle) and factors that influence satellite reception (building material, building type), acquisition time (cold and warm start), battery life, and adequacy of memory for data storage. We examined stationary locations (eg, indoor, outdoor) and mobile environments (eg, walking, traveling by vehicle or bus) and compared GPS locations to highly-resolved US Geological Survey (USGS) and Digital Orthophoto Quarter Quadrangle (DOQQ) maps. The battery life of our tested instruments ranged from acquisition of location time after startup ranged from a few seconds to >20 minutes and varied significantly by building structure type and by cold or warm start. No GPS device was found to have consistently superior performance with regard to spatial accuracy and signal loss. At fixed outdoor locations, 65%-95% of GPS points fell within 20-m of the corresponding DOQQ locations for all the devices. At fixed indoor locations, 50%-80% of GPS points fell within 20-m of the corresponding DOQQ locations for all the devices except one. Most of the GPS devices performed well during commuting on a freeway, with >80% of points within 10-m of the DOQQ route, but the performance was significantly impacted by surrounding structures on surface streets in highly urbanized areas. All the tested GPS devices had limitations, but we identified several devices which showed promising performance for tracking subjects' time location patterns in

  8. Human Performance Evaluation System

    International Nuclear Information System (INIS)

    Hardwick, R.J. Jr.

    1985-01-01

    Operating nuclear power plants requires high standards of performance, extensive training and responsive management. Despite our best efforts inappropriate human actions do occur, but they can be managed. An extensive review of License Event Reports (LERs) was conducted which indicated continual inadequacy in human performance and in evaluation of root causes. Of some 31,000 LERs, about 5,000 or 16% were directly attributable to inappropriate actions. A recent analysis of 87 Significant Event Reports (issued by INPO in 1983) identified inappropriate actions as being the most frequent root cause (44% of the total). A more recent analysis of SERs issued in 1983 and 1984 indicate that 52% of the root causes were attributed to human performance. The Human Performance Evaluation System (HPES) is a comprehensive, coordinated utility/industry system for evaluating and reporting human performance situtations. HPES is a result of the realization that current reporting system provide limited treatment of human performance and rarely provide adequate information about root causes of inappropriate actions by individuals. The HPES was implemented to identify and eliminate root causes of inappropriate actions

  9. A motion-based integer ambiguity resolution method for attitude determination using the global positioning system (GPS)

    International Nuclear Information System (INIS)

    Wang, Bo; Deng, Zhihong; Wang, Shunting; Fu, Mengyin

    2010-01-01

    Loss of the satellite signal and noise disturbance will cause cycle slips to occur in the carrier phase observation of the attitude determination system using the global positioning system (GPS), especially in the dynamic situation. Therefore, in order to reject the error by cycle slips, the integer ambiguity should be re-computed. A motion model-based Kalman predictor is used for the ambiguity re-computation in dynamic applications. This method utilizes the correct observation of the last step to predict the current ambiguities. With the baseline length as a constraint to reject invalid values, we can solve the current integer ambiguity and the attitude angles, by substituting the obtained ambiguities into the constrained LAMBDA method. Experimental results demonstrate that the proposed method is more efficient in the dynamic situation, which takes less time to obtain new fixed ambiguities with a higher mean success rate

  10. Fast Data Acquisition system based on NI-myRIO board with GPS time stamping capabilities for atmospheric electricity research

    International Nuclear Information System (INIS)

    Pokhsraryan, D.

    2016-01-01

    In the investigation of the fast physical processes, such as propagation of a lightning leader and detection of the correspondent radio emission waveforms, it is crucial to synchronize the corresponding signals in order to be able to create a model of the lightning initiation. Therefore, the DAQ system should be equipped with a GPS synchronization capability. In the presented report, we describe the DAQ system based on a NI-myRio board that provides detection of particle fluxes, the near-surface electric field disturbances and waveforms of radio signals from atmospheric discharges, all synchronized with an accuracy of tens of nanoseconds. The results of the first measurements made at Aragats high-altitude station of Yerevan Physics Institute in Summer-Autumn 2015 are presented and discussed. (author)

  11. A Study on Remote On-Line Diagnostic System for Vehicles by Integrating the Technology of OBD, GPS, and 3G

    OpenAIRE

    Jyong Lin; Shih-Chang Chen; Yu-Tsen Shih; Shi-Huang Chen

    2009-01-01

    This paper presents a remote on-line diagnostic system for vehicles via the use of On-Board Diagnostic (OBD), GPS, and 3G techniques. The main parts of the proposed system are on-board computer, vehicle monitor server, and vehicle status browser. First, the on-board computer can obtain the location of deriver and vehicle status from GPS receiver and OBD interface, respectively. Then on-board computer will connect with the vehicle monitor server through 3G network to trans...

  12. Global Positioning System (GPS) survey of Augustine Volcano, Alaska, August 3-8, 2000: data processing, geodetic coordinates and comparison with prior geodetic surveys

    Science.gov (United States)

    Pauk, Benjamin A.; Power, John A.; Lisowski, Mike; Dzurisin, Daniel; Iwatsubo, Eugene Y.; Melbourne, Tim

    2001-01-01

    Between August 3 and 8,2000,the Alaska Volcano Observatory completed a Global Positioning System (GPS) survey at Augustine Volcano, Alaska. Augustine is a frequently active calcalkaline volcano located in the lower portion of Cook Inlet (fig. 1), with reported eruptions in 1812, 1882, 1909?, 1935, 1964, 1976, and 1986 (Miller et al., 1998). Geodetic measurements using electronic and optical surveying techniques (EDM and theodolite) were begun at Augustine Volcano in 1986. In 1988 and 1989, an island-wide trilateration network comprising 19 benchmarks was completed and measured in its entirety (Power and Iwatsubo, 1998). Partial GPS surveys of the Augustine Island geodetic network were completed in 1992 and 1995; however, neither of these surveys included all marks on the island.Additional GPS measurements of benchmarks A5 and A15 (fig. 2) were made during the summers of 1992, 1993, 1994, and 1996. The goals of the 2000 GPS survey were to:1) re-measure all existing benchmarks on Augustine Island using a homogeneous set of GPS equipment operated in a consistent manner, 2) add measurements at benchmarks on the western shore of Cook Inlet at distances of 15 to 25 km, 3) add measurements at an existing benchmark (BURR) on Augustine Island that was not previously surveyed, and 4) add additional marks in areas of the island thought to be actively deforming. The entire survey resulted in collection of GPS data at a total of 24 sites (fig. 1 and 2). In this report we describe the methods of GPS data collection and processing used at Augustine during the 2000 survey. We use this data to calculate coordinates and elevations for all 24 sites surveyed. Data from the 2000 survey is then compared toelectronic and optical measurements made in 1988 and 1989. This report also contains a general description of all marks surveyed in 2000 and photographs of all new marks established during the 2000 survey (Appendix A).

  13. High performance systems

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, M.B. [comp.

    1995-03-01

    This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

  14. Optimization Controller for Mechatronic Sun Tracking System to Improve Performance

    Directory of Open Access Journals (Sweden)

    Mustafa Engin

    2013-01-01

    Full Text Available An embedded system that contains hardware and software was developed for two-axis solar tracking system to improve photovoltaic panel utilization. The hardware section of the embedded system consists of a 32-bit ARM core microcontroller, motor driver circuits, a motion control unit, pyranometer, GPS receiver, and an anemometer. The real-time control algorithm enables the solar tracker to operate automatically without external control as a stand-alone system, combining the advantages of the open-loop and the closed-loop control methods. The pyranometer is employed to continuously send radiation data to the controller if the measured radiation is above the lower radiation limit the photovoltaic panel can generate power, guaranteeing the solar tracking process to be highly efficient. The anemometer is utilized in the system to ensure that the solar tracking procedure halts under high wind speed conditions to protect the entire system. Latitude, longitude, altitude, date, and real-time clock data are provided by GPS receiver. The algorithm calculates solar time using astronomical equations with GPS data and converts it to pulse-width modulated motor control signal. The overall objective of this study is to develop a control algorithm that improves performance and reliability of the two-axis solar tracker, focusing on optimization of the controller board, drive hardware, and software.

  15. Atmospheric detritiation system performance

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Jalbert, R.A.; Rossmassler, R.L.

    1989-01-01

    An investigation of the performance of atmospheric detritiation systems and of possible ways for improving their performance was undertaken. Small-scale experiments demonstrated that system performance is strongly dependent on catalyst bed temperature. That may be helped by addition of protium to the process gas stream, but added protium at constant temperature does not increase conversion to HTO. Collection of the HTO on dry sieve with residual HTO fraction of less than one part in 10/sup 7/ was observed. Ways suggested for improvement in collection of HTO on molecular sieve beds include adding H/sub 2/O to the stream entering the molecular sieve and premoistening of the sieve with H/sub 2/O. While these improvement schemes may reduce HTO emissions they increase the amount of tritiated waste that must be handled

  16. Atmospheric detritiation system performance

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Jalbert, R.A.; Rossmassler, R.L.; Los Alamos National Lab., NM; Princeton Univ., NJ

    1988-01-01

    An investigation of the performance of atmospheric detritiation systems and of possible ways for improving their performance was undertaken. Small-scale experiments demonstrated that system performance is strongly dependent on catalyst bed temperature. That may be helped by addition of protium to the process gas stream, but added protium at constant temperature does not increase conversion to HTO. Collection of the HTO on dry sieve with residual HTO fraction of less than one part in 10 7 was observed. Ways suggested for improvement in collection of HTO on molecular sieve beds include adding H 2 O to the stream entering the molecular sieve and premoistening of the sieve with H 2 O. While these improvement schemes may reduce HTO emissions they increase the amount of tritiated waste that must be handled. 13 refs., 4 figs

  17. GPS Estimates of Integrated Precipitable Water Aid Weather Forecasters

    Science.gov (United States)

    Moore, Angelyn W.; Gutman, Seth I.; Holub, Kirk; Bock, Yehuda; Danielson, David; Laber, Jayme; Small, Ivory

    2013-01-01

    Global Positioning System (GPS) meteorology provides enhanced density, low-latency (30-min resolution), integrated precipitable water (IPW) estimates to NOAA NWS (National Oceanic and Atmospheric Adminis tration Nat ional Weather Service) Weather Forecast Offices (WFOs) to provide improved model and satellite data verification capability and more accurate forecasts of extreme weather such as flooding. An early activity of this project was to increase the number of stations contributing to the NOAA Earth System Research Laboratory (ESRL) GPS meteorology observing network in Southern California by about 27 stations. Following this, the Los Angeles/Oxnard and San Diego WFOs began using the enhanced GPS-based IPW measurements provided by ESRL in the 2012 and 2013 monsoon seasons. Forecasters found GPS IPW to be an effective tool in evaluating model performance, and in monitoring monsoon development between weather model runs for improved flood forecasting. GPS stations are multi-purpose, and routine processing for position solutions also yields estimates of tropospheric zenith delays, which can be converted into mm-accuracy PWV (precipitable water vapor) using in situ pressure and temperature measurements, the basis for GPS meteorology. NOAA ESRL has implemented this concept with a nationwide distribution of more than 300 "GPSMet" stations providing IPW estimates at sub-hourly resolution currently used in operational weather models in the U.S.

  18. Miniaturized GPS/MEMS IMU integrated board

    Science.gov (United States)

    Lin, Ching-Fang (Inventor)

    2012-01-01

    This invention documents the efforts on the research and development of a miniaturized GPS/MEMS IMU integrated navigation system. A miniaturized GPS/MEMS IMU integrated navigation system is presented; Laser Dynamic Range Imager (LDRI) based alignment algorithm for space applications is discussed. Two navigation cameras are also included to measure the range and range rate which can be integrated into the GPS/MEMS IMU system to enhance the navigation solution.

  19. M-Health Service for Train Passengers Using Mobile GPS System: An ArchiMate Service Layer Model

    Directory of Open Access Journals (Sweden)

    MUHAMMAD SAJID

    2017-01-01

    Full Text Available EA (Enterprise Architecture is an instrument that is employed to describe the organization?s structure, business layout and operations within the IT (Information Technology environment. Different types of organizations extensively employed EA for aligning their business and operations with IT resources. EA may also be employed in non-organizational setting such as service providing agencies; rescue, medical emergency and education services. This paper suggests an EAF (Enterprise Architecture Framework for non-organizational setting by critically analyzing the top four EAs. The paper also proposes a new m-Health service model based on the mobile GPS (Global Positioning System for train/rail passengers by employing the ArchiMate modeling language and compares the proposed model with existing service providers.

  20. An integer ambiguity resolution method for the global positioning system (GPS)-based land vehicle attitude determination

    International Nuclear Information System (INIS)

    Wang, Bo; Miao, Lingjuan; Wang, Shunting; Shen, Jun

    2009-01-01

    During attitude determination using a global positioning system (GPS), cycle slips occur due to the loss of lock and noise disturbance. Therefore, the integer ambiguity needs re-computation to isolate the error in carrier phase. This paper presents a fast method for integer ambiguity resolution for land vehicle application. After the cycle slips are detected, the velocity vector is utilized to obtain the rough baseline vector. The obtained baseline vector is substituted into carrier phase observation equations to solve the float ambiguity solution which can be used as a constraint to accelerate the integer ambiguity search procedure at next epochs. The probability of correct integer estimation in the expanded search space is analyzed. Experimental results demonstrate that the proposed method gives a fast approach to obtain new fixed ambiguities while the regular method takes longer time and sometimes results in incorrect solutions

  1. A generalized development model for testing GPS user equipment

    Science.gov (United States)

    Hemesath, N.

    1978-01-01

    The generalized development model (GDM) program, which was intended to establish how well GPS user equipment can perform under a combination of jamming and dynamics, is described. The systems design and the characteristics of the GDM are discussed. The performance aspects of the GDM are listed and the application of the GDM to civil aviation is examined.

  2. Software Defined GPS Receiver for International Space Station

    Science.gov (United States)

    Duncan, Courtney B.; Robison, David E.; Koelewyn, Cynthia Lee

    2011-01-01

    JPL is providing a software defined radio (SDR) that will fly on the International Space Station (ISS) as part of the CoNNeCT project under NASA's SCaN program. The SDR consists of several modules including a Baseband Processor Module (BPM) and a GPS Module (GPSM). The BPM executes applications (waveforms) consisting of software components for the embedded SPARC processor and logic for two Virtex II Field Programmable Gate Arrays (FPGAs) that operate on data received from the GPSM. GPS waveforms on the SDR are enabled by an L-Band antenna, low noise amplifier (LNA), and the GPSM that performs quadrature downconversion at L1, L2, and L5. The GPS waveform for the JPL SDR will acquire and track L1 C/A, L2C, and L5 GPS signals from a CoNNeCT platform on ISS, providing the best GPS-based positioning of ISS achieved to date, the first use of multiple frequency GPS on ISS, and potentially the first L5 signal tracking from space. The system will also enable various radiometric investigations on ISS such as local multipath or ISS dynamic behavior characterization. In following the software-defined model, this work will create a highly portable GPS software and firmware package that can be adapted to another platform with the necessary processor and FPGA capability. This paper also describes ISS applications for the JPL CoNNeCT SDR GPS waveform, possibilities for future global navigation satellite system (GNSS) tracking development, and the applicability of the waveform components to other space navigation applications.

  3. An Extended ADOP for Performance Evaluation of Single-Frequency Single-Epoch Positioning by BDS/GPS in Asia-Pacific Region

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2017-09-01

    Full Text Available Single-Frequency Single-Epoch (SFSE high-precision positioning has always been the hot spot of Global Navigation Satellite System (GNSS, and ambiguity dilution of precision (ADOP is a well-known scalar measure for success rate of ambiguity resolution. Traditional ADOP expression is complicated, thus the SFSE extended ADOP (E-ADOP, with the newly defined Summation-Multiplication Ratio of Weight (SMRW and two theorems for short baseline, was developed. This simplifies the ADOP expression; gives a clearer insight into the influences of SMRW and number of satellites on E-ADOP; and makes theoretical analysis of E-ADOP more convenient than that of ADOP, and through that the E-ADOP value can be predicted more accurately than through the ADOP expression for ADOP value. E-ADOP reveals that number of satellites and SMRW or high-elevation satellite are important for ADOP and, through E-ADOP, we studied which factor is dominant to control ADOP in different conditions and make ADOP different between BeiDou Navigation Satellite System (BDS, Global Positioning System (GPS, and BDS/GPS. Based on experimental results of SFSE positioning with different baselines, some conclusions are made: (1 ADOP decreases when new satellites are added mainly because the number of satellites becomes larger; (2 when the number of satellites is constant, ADOP is mainly affected by SMRW; (3 in contrast to systems where the satellites with low-elevation are the majority or where low- and high-elevation satellites are equally distributed, in systems where the high-elevation satellites are the majority, the SMRW mainly makes ADOP smaller, even if there are fewer satellites than in the two previous cases, and the difference in numbers of satellites can be expanded as the proportion of high-elevation satellites becomes larger; and (4 ADOP of BDS is smaller than ADOP of GPS mainly because of its SMRW.

  4. GPS antenna designs

    Science.gov (United States)

    Laube, Samuel J. P.

    1987-05-01

    Application of the current GPS NAVSTAR system to civilian service requires that a right hand, circularly polarized, -160 dBW spread spectrum signal be received from an orbiting satellite, where the antenna environment is also moving. This presents a design challenge when inexpensive antennas are desired. The intent of this survey is to provide information on the antennas mentioned and to construct and test prototypes to determine whether the choice made by the industry, the quadrifilar helix, is the best. The helix antenna is currently the low cost standard for GPS. Prototype versions were constructed using 12 gauge wire and subminiature coaxial hardline. The constructed antennas were tested using a signal generator and a reference turnstile. A spectrum analyzer was used to measure the level of the received signal.

  5. An estimation of the height system bias parameter N (0) using least squares collocation from observed gravity and GPS-levelling data

    DEFF Research Database (Denmark)

    Sadiq, Muhammad; Tscherning, Carl C.; Ahmad, Zulfiqar

    2009-01-01

    This paper deals with the analysis of gravity anomaly and precise levelling in conjunction with GPS-Levelling data for the computation of a gravimetric geoid and an estimate of the height system bias parameter N-o for the vertical datum in Pakistan by means of least squares collocation technique...... covariance parameters has facilitated to achieve gravimetric height anomalies in a global geocentric datum. Residual terrain modeling (RTM) technique has been used in combination with the EGM96 for the reduction and smoothing of the gravity data. A value for the bias parameter N-o has been estimated...... with reference to the local GPS-Levelling datum that appears to be 0.705 m with 0.07 m mean square error. The gravimetric height anomalies were compared with height anomalies obtained from GPS-Levelling stations using least square collocation with and without bias adjustment. The bias adjustment minimizes...

  6. Enterprise performance measurement systems

    Directory of Open Access Journals (Sweden)

    Milija Bogavac

    2014-10-01

    Full Text Available Performance measurement systems are an extremely important part of the control and management actions, because in this way a company can determine its business potential, its market power, potential and current level of business efficiency. The significance of measurement consists in influencing the relationship between the results of reproduction (total volume of production, value of production, total revenue and profit and investments to achieve these results (factors of production spending and hiring capital in order to achieve the highest possible quality of the economy. (The relationship between the results of reproduction and investment to achieve them quantitatively determines economic success as the quality of the economy. Measuring performance allows the identification of the economic resources the company has, so looking at the key factors that affect its performance can help to determine the appropriate course of action.

  7. An adaptive map-matching algorithm based on hierarchical fuzzy system from vehicular GPS data.

    Directory of Open Access Journals (Sweden)

    Jinjun Tang

    Full Text Available An improved hierarchical fuzzy inference method based on C-measure map-matching algorithm is proposed in this paper, in which the C-measure represents the certainty or probability of the vehicle traveling on the actual road. A strategy is firstly introduced to use historical positioning information to employ curve-curve matching between vehicle trajectories and shapes of candidate roads. It improves matching performance by overcoming the disadvantage of traditional map-matching algorithm only considering current information. An average historical distance is used to measure similarity between vehicle trajectories and road shape. The input of system includes three variables: distance between position point and candidate roads, angle between driving heading and road direction, and average distance. As the number of fuzzy rules will increase exponentially when adding average distance as a variable, a hierarchical fuzzy inference system is then applied to reduce fuzzy rules and improve the calculation efficiency. Additionally, a learning process is updated to support the algorithm. Finally, a case study contains four different routes in Beijing city is used to validate the effectiveness and superiority of the proposed method.

  8. Applications of GPS technologies to field sports.

    Science.gov (United States)

    Aughey, Robert J

    2011-09-01

    Global positioning system (GPS) technology was made possible after the invention of the atomic clock. The first suggestion that GPS could be used to assess the physical activity of humans followed some 40 y later. There was a rapid uptake of GPS technology, with the literature concentrating on validation studies and the measurement of steady-state movement. The first attempts were made to validate GPS for field sport applications in 2006. While GPS has been validated for applications for team sports, some doubts continue to exist on the appropriateness of GPS for measuring short high-velocity movements. Thus, GPS has been applied extensively in Australian football, cricket, hockey, rugby union and league, and soccer. There is extensive information on the activity profile of athletes from field sports in the literature stemming from GPS, and this includes total distance covered by players and distance in velocity bands. Global positioning systems have also been applied to detect fatigue in matches, identify periods of most intense play, different activity profiles by position, competition level, and sport. More recent research has integrated GPS data with the physical capacity or fitness test score of athletes, game-specific tasks, or tactical or strategic information. The future of GPS analysis will involve further miniaturization of devices, longer battery life, and integration of other inertial sensor data to more effectively quantify the effort of athletes.

  9. LANSCE target system performance

    International Nuclear Information System (INIS)

    Russell, G.J.; Gilmore, J.S.; Robinson, H.; Legate, G.L.; Bridge, A.; Sanchez, R.J.; Brewton, R.J.; Woods, R.; Hughes, H.G. III

    1989-01-01

    We measured neutron beam fluxes at LANSCE using gold foil activation techniques. We did an extensive computer simulation of the as-built LANSCE Target/Moderator/Reflector/Shield geometry. We used this mockup in a Monte Carlo calculation to predict LANSCE neutronic performance for comparison with measured results. For neutron beam fluxes at 1 eV, the ratio of measured data to calculated varies from ∼0.6-0.9. The computed 1 eV neutron leakage at the moderator surface is 3.9 x 10 10 n/eV-sr-s-μA for LANSCE high-intensity water moderators. The corresponding values for the LANSCE high-resolution water moderator and the liquid hydrogen moderator are 3.3 and 2.9 x 10 10 , respectively. LANSCE predicted moderator intensities (per proton) for a tungsten target are essentially the same as ISIS predicted moderator intensities for a depleted uranium target. The calculated LANSCE steady state unperturbed thermal (E 13 n/cm 2 -s. The unique LANSCE split-target/flux-trap-moderator system is performing exceedingly well. The system has operated without a target or moderator change for over three years at nominal proton currents of ∼25 μA of 800-MeV protons. (author)

  10. Evaluation of an autonomous GPS-based system for intra-row weed control by assessing the tilled area

    DEFF Research Database (Denmark)

    Nørremark, M; Griepentrog, H W; Nielsen, J

    2012-01-01

    -1 and at even plant spacing. A double pass, once on each side of the row in opposite directions, provided higher soil disturbance intensity and resulted in tillage of 31–58% of the intra-row area with highest coverage at a speed of 0.32 m s-1. The intra-row weed control effect was predicted to be up......An automatic tillage system for inter- and intra-row weed control based on real-time kinematic GPS navigation and control has been used to address the problem of mechanically removing weeds within rows of precision seeded crops. The system comprised a side-shifting frame with an attached tine...... crop plants. The system evaluation was based on quantification of treated areas for uprooting and burial and the corresponding prediction of weed control efficiencies. A single pass of an 80 mm wide row band provided tillage of 30–49% of the intra-row area, with highest coverage at a speed of 0.32 m s...

  11. GPS User Devices Parameter Control Methods

    OpenAIRE

    Klūga, A; Kuļikovs, M; Beļinska, V; Zeļenkovs, A

    2007-01-01

    In our day’s wide assortment of GPS user devices is manufacture. How to verify that parameters of the real device corresponds to parameters that manufacture shows. How to verify that parameters have not been changed during the operation time. The last one is very important for aviation GPS systems, which must be verified before the flight, but the values of parameter in time of repair works. This work analyses GPS user devices parameters control methods.

  12. Rapid Open Source GPS software development for modern embedded systems:using the GPSTk with the Gumstix

    OpenAIRE

    Salazar Hernández, Dagoberto José; Hernández Pajares, Manuel; Juan Zornoza, José Miguel; Sanz Subirana, Jaume

    2006-01-01

    This work shows how the combination of GPS Open Source Software (GOSS) and advanced full function miniature computers (FFMC) allows rapid development, implementation and testing of advanced embedded GNSS data processing applications in a flexible way. In this regard, our tools of choice are the “GPS Toolkit” (GPSTk), and a modern, high power embedded platform such as the “Gumstix” computer boards. Peer Reviewed

  13. GPS Satellite Simulation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The GPS satellite simulation facility consists of a GPS satellite simulator controlled by either a Silicon Graphics Origin 2000 or PC depending upon unit under test...

  14. Design and test of a hybrid foot force sensing and GPS system for richer user mobility activity recognition.

    Science.gov (United States)

    Zhang, Zelun; Poslad, Stefan

    2013-11-01

    Wearable and accompanied sensors and devices are increasingly being used for user activity recognition. However, typical GPS-based and accelerometer-based (ACC) methods face three main challenges: a low recognition accuracy; a coarse recognition capability, i.e., they cannot recognise both human posture (during travelling) and transportation mode simultaneously, and a relatively high computational complexity. Here, a new GPS and Foot-Force (GPS + FF) sensor method is proposed to overcome these challenges that leverages a set of wearable FF sensors in combination with GPS, e.g., in a mobile phone. User mobility activities that can be recognised include both daily user postures and common transportation modes: sitting, standing, walking, cycling, bus passenger, car passenger (including private cars and taxis) and car driver. The novelty of this work is that our approach provides a more comprehensive recognition capability in terms of reliably recognising both human posture and transportation mode simultaneously during travel. In addition, by comparing the new GPS + FF method with both an ACC method (62% accuracy) and a GPS + ACC based method (70% accuracy) as baseline methods, it obtains a higher accuracy (95%) with less computational complexity, when tested on a dataset obtained from ten individuals.

  15. Evaluating a cost-effective GPS system for on-mine navigation.

    African Journals Online (AJOL)

    Benefits from this system may be applied in underground navigation and guiding rescue services .... Lightbody and Chisholm, autonomous systems can provide accuracy up to 5metres. The ..... Westminister, Colorado: Trimble Marine Division.

  16. Determination of locational error associated with global positioning system (GPS) radio collars in relation to vegetation and topography in north-central New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, K.; Biggs, J.; Fresquez, P.R.

    1997-02-01

    In 1996, a study was initiated to assess seasonal habitat use and movement patterns of Rocky Mountain elk (Cervus elaphus nelsoni) using global positioning system (GPS) radio collars. As part of this study, the authors attempted to assess the accuracies of GPS (non-differentially corrected) positions under various vegetation canopies and terrain conditions with the use of a GPS ``test`` collar. The test collar was activated every twenty minutes to obtain a position location and continuously uplinked to Argos satellites to transfer position data files. They used a Telonics, Inc. uplink receiver to intercept the transmission and view the results of the collar in real time. They placed the collar on a stand equivalent to the neck height of an adult elk and then placed the stand within three different treatment categories: (1) topographical influence (canyon and mesa tops), (2) canopy influence (open and closed canopy), and (3) vegetation type influence (ponderosa pine and pinion pine-juniper). The collar was kept at each location for one hour (usually obtaining three fixes). In addition, the authors used a hand-held GPS to obtain a position of the test collar at the same time and location.

  17. GeoNetGIS: a Geodetic Network Geographical Information System to manage GPS networks in seismic and volcanic areas

    Science.gov (United States)

    Cristofoletti, P.; Esposito, A.; Anzidei, M.

    2003-04-01

    This paper presents the methodologies and issues involved in the use of GIS techniques to manage geodetic information derived from networks in seismic and volcanic areas. Organization and manipulation of different geodetical, geological and seismic database, give us a new challenge in interpretation of information that has several dimensions, including spatial and temporal variations, also the flexibility and brand range of tools available in GeoNetGIS, make it an attractive platform for earthquake risk assessment. During the last decade the use of geodetic networks based on the Global Positioning System, devoted to geophysical applications, especially for crustal deformation monitoring in seismic and volcanic areas, increased dramatically. The large amount of data provided by these networks, combined with different and independent observations, such as epicentre distribution of recent and historical earthquakes, geological and structural data, photo interpretation of aerial and satellite images, can aid for the detection and parameterization of seismogenic sources. In particular we applied our geodetic oriented GIS to a new GPS network recently set up and surveyed in the Central Apennine region: the CA-GeoNet. GeoNetGIS is designed to analyze in three and four dimensions GPS sources and to improve crustal deformation analysis and interpretation related with tectonic structures and seismicity. It manages many database (DBMS) consisting of different classes, such as Geodesy, Topography, Seismicity, Geology, Geography and Raster Images, administrated according to Thematic Layers. GeoNetGIS represents a powerful research tool allowing to join the analysis of all data layers to integrate the different data base which aid for the identification of the activity of known faults or structures and suggesting the new evidences of active tectonics. A new approach to data integration given by GeoNetGIS capabilities, allow us to create and deliver a wide range of maps, digital

  18. Efficiency Optimization Of Attendance System With GPS And Biometric Method Using Mobile Devices

    OpenAIRE

    Soewito, Benfano; Simanjuntak, Echo Wahana Marciano

    2014-01-01

    The existing attendance system still has drawbacks, namely the queue in front of the finger scanner, the attendance data are not integrated with Human Resources Systems, and also the employees who work outside the office cannot get in the attendance system to roll presence. In the other hand, everyone has the mobile devices and all the mobile devices will be embedded a finger scanner in the future. In this paper, it is proposed the absence system using one own device. The finger scanner and c...

  19. Enhancing the accuracy of GPS point positioning by converting the single frequency data to dual frequency data

    Directory of Open Access Journals (Sweden)

    Aly M. El-naggar

    2011-09-01

    Full Text Available The global positioning system (GPS has been used to support a wide variety of applications, such as high-accuracy positioning and navigation. Differential GPS techniques can largely eliminate common-mode errors between the reference and the rover GPS stations resulting from ionospheric and tropospheric refraction and delays, satellite and receiver clock biases, and orbital errors [1]. The ionospheric delay in the propagation of global positioning system (GPS signals is one of the main sources of error in GPS precise positioning and navigation. A dual-frequency GPS receiver can eliminate (to the first order the ionospheric delay through a linear combination of the L1 and L2 observations [2]. The most significant effect of ionospheric delay appear in case of using single frequency data. In this paper the single frequency data of concerned station are converted to dual frequency data by employing dual frequency data from 11 regional GPS stations distributed around it. Total electron content (TEC was calculated at every GPS station to produce the mathematical model of TEC which is a function of latitude (Φ and longitude (λ. By using this mathematical model the values of TEC and L2 can be predicted at the single frequency GPS station for each satellite, after that the comparison between predicted and observation values of TEC and L2 was performed. The estimation method and test results of the proposed method indicates that the difference between predicted and observation values is very small.

  20. The Global Positioning System--Direction for the Future [and] GPS Technology and Agriculture.

    Science.gov (United States)

    Edmondson, Paul R.; Ginsburg, Alan

    1996-01-01

    Edmondson introduces a satellite-based radio navigation, positioning, and timing system that can be integrated into a variety of curriculum areas. Ginsburg describes how the global positioning system brings far-reaching benefits for crop growers and the environment. (Author)

  1. An improved particle filter and its application to an INS/GPS integrated navigation system in a serious noisy scenario

    International Nuclear Information System (INIS)

    Wang, Xuemei; Ni, Wenbo

    2016-01-01

    For loosely coupled INS/GPS integrated navigation systems with low-cost and low-accuracy microelectromechanical device inertial sensors, in order to obtain enough accuracy, a full-state nonlinear dynamic model rather than a linearized error model is much more preferable. Particle filters are particularly for nonlinear and non-Gaussian situations, but typical bootstrap particle filters (BPFs) and some improved particle filters (IPFs) such as auxiliary particle filters (APFs) and Gaussian particle filters (GPFs) cannot solve the mismatch between the importance function and the likelihood function very well. The predicted particles propagated through inertial navigation equations cannot be scattered with certainty within the effective range of current observation when there are large drift errors of the inertial sensors. Therefore, the current observation cannot play the correction role well and these particle filters are invalid to some extent. The proposed IPF firstly estimates the corresponding state bias errors according to the current observation and then corrects the bias errors of the predicted particles before determining the weights and resampling the particles. Simulations and practical experiments both show that the proposed IPF can effectively solve the mismatch between the importance function and the likelihood function of a BPF and compensate the accumulated errors of INSs very well. It has great robustness in a serious noisy scenario. (paper)

  2. Development of radiation monitoring and visualization systems for Fukushima. GPS monitoring system, Dose3DMap system, and LED-coupled scintillating fiber detector

    International Nuclear Information System (INIS)

    Nakao, Noriaki; Kosako, Kazuaki; Kinoshita, Norikazu; Kawaguchi, Masato

    2016-01-01

    Lands that were contaminated with radioactive elements following the Fukushima Daiichi Nuclear Power Plant accident in 2011 have been decontaminated, and the construction of an interim storage facility for radioactive waste is planned. A GPS monitoring system was developed to concomitantly determine a location and measure the radiation level at the location. Moreover, a mapping system that produces radiation maps at the measurement locations and also predicts post-decontamination radiation maps using the compiled Monte Carlo simulation program was constructed. These systems were used for decontamination planning and estimation of the decontamination effect. An LED-coupled scintillating fiber detector was developed for visually monitoring radiation in real time at the interim storage facility. The LEDs display different colors corresponding to different radiation levels at the measurement locations along the fiber detector, the maximum length of which is 50 m. Thus, the radiation levels at all positions along the length of the detector can be visually monitored in real time. Moreover, it is useful for radiation safety and for risk communication with radiation workers and residents close to the site. (author)

  3. High-precision coseismic displacement estimation with a single-frequency GPS receiver

    Science.gov (United States)

    Guo, Bofeng; Zhang, Xiaohong; Ren, Xiaodong; Li, Xingxing

    2015-07-01

    To improve the performance of Global Positioning System (GPS) in the earthquake/tsunami early warning and rapid response applications, minimizing the blind zone and increasing the stability and accuracy of both the rapid source and rupture inversion, the density of existing GPS networks must be increased in the areas at risk. For economic reasons, low-cost single-frequency receivers would be preferable to make the sparse dual-frequency GPS networks denser. When using single-frequency GPS receivers, the main problem that must be solved is the ionospheric delay, which is a critical factor when determining accurate coseismic displacements. In this study, we introduce a modified Satellite-specific Epoch-differenced Ionospheric Delay (MSEID) model to compensate for the effect of ionospheric error on single-frequency GPS receivers. In the MSEID model, the time-differenced ionospheric delays observed from a regional dual-frequency GPS network to a common satellite are fitted to a plane rather than part of a sphere, and the parameters of this plane are determined by using the coordinates of the stations. When the parameters are known, time-differenced ionospheric delays for a single-frequency GPS receiver could be derived from the observations of those dual-frequency receivers. Using these ionospheric delay corrections, coseismic displacements of a single-frequency GPS receiver can be accurately calculated based on time-differenced carrier-phase measurements in real time. The performance of the proposed approach is validated using 5 Hz GPS data collected during the 2012 Nicoya Peninsula Earthquake (Mw 7.6, 2012 September 5) in Costa Rica. This shows that the proposed approach improves the accuracy of the displacement of a single-frequency GPS station, and coseismic displacements with an accuracy of a few centimetres are achieved over a 10-min interval.

  4. GPS Navigation Above 76,000 km for the MMS Mission

    Science.gov (United States)

    Winternitz, Luke; Bamford, Bill; Price, Samuel; Long, Anne; Farahmand, Mitra; Carpenter, Russell

    2016-01-01

    NASA's MMS mission, launched in March of 2015,consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12and 25 Earth radii in the first and second phases of the mission. Navigation for MMS is achieved independently onboard each spacecraft by processing GPS observables using NASA GSFC's Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents the culmination of over a decade of high-altitude GPS navigation research and development at NASA GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data. We extrapolate these results to predict performance in the Phase 2b mission orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.

  5. Development And Test of A Digitally Steered Antenna Array for The Navigator GPS Receiver

    Science.gov (United States)

    Pinto, Heitor David; Valdez, Jennifer E.; Winternitz, Luke M. B.; Hassouneh, Munther A.; Price, Samuel R.

    2012-01-01

    Global Positioning System (GPS)-based navigation has become common for low-Earth orbit spacecraft as the signal environment is similar to that on the Earth s surface. The situation changes abruptly, however, for spacecraft whose orbital altitudes exceed that of the GPS constellation. Visibility is dramatically reduced and signals that are present may be very weak and more susceptible to interference. GPS receivers effective at these altitudes require increased sensitivity, which often requires a high-gain antenna. Pointing such an antenna can pose a challenge. One efficient approach to mitigate these problems is the use of a digitally steered antenna array. Such an antenna can optimally allocate gain toward desired signal sources and away from interferers. This paper presents preliminary results in the development and test of a digitally steered antenna array for the Navigator GPS research program at NASA s Goddard Space Flight Center. In particular, this paper highlights the development of an array and front-end electronics, the development and test of a real-time software GPS receiver, and implementation of three beamforming methods for combining the signals from the array. Additionally, this paper discusses the development of a GPS signal simulator which produces digital samples of the GPS L1C/A signals as they would be received by an arbitrary antenna array configuration. The simulator models transmitter and receiver dynamics, near-far and multipath interference, and has been a critical component in both the development and test of the GPS receiver. The GPS receiver system was tested with real and simulated GPS signals. Preliminary results show that performance improvement was achieved in both the weak signal and interference environments, matching analytical predictions. This paper summarizes our initial findings and discusses the advantages and limitations of the antenna array and the various beamforming methods.

  6. Using wide area differential GPS to improve total system error for precision flight operations

    Science.gov (United States)

    Alter, Keith Warren

    Total System Error (TSE) refers to an aircraft's total deviation from the desired flight path. TSE can be divided into Navigational System Error (NSE), the error attributable to the aircraft's navigation system, and Flight Technical Error (FTE), the error attributable to pilot or autopilot control. Improvement in either NSE or FTE reduces TSE and leads to the capability to fly more precise flight trajectories. The Federal Aviation Administration's Wide Area Augmentation System (WAAS) became operational for non-safety critical applications in 2000 and will become operational for safety critical applications in 2002. This navigation service will provide precise 3-D positioning (demonstrated to better than 5 meters horizontal and vertical accuracy) for civil aircraft in the United States. Perhaps more importantly, this navigation system, which provides continuous operation across large regions, enables new flight instrumentation concepts which allow pilots to fly aircraft significantly more precisely, both for straight and curved flight paths. This research investigates the capabilities of some of these new concepts, including the Highway-In-The Sky (HITS) display, which not only improves FTE but also reduces pilot workload when compared to conventional flight instrumentation. Augmentation to the HITS display, including perspective terrain and terrain alerting, improves pilot situational awareness. Flight test results from demonstrations in Juneau, AK, and Lake Tahoe, CA, provide evidence of the overall feasibility of integrated, low-cost flight navigation systems based on these concepts. These systems, requiring no more computational power than current-generation low-end desktop computers, have immediate applicability to general aviation flight from Cessnas to business jets and can support safer and ultimately more economical flight operations. Commercial airlines may also, over time, benefit from these new technologies.

  7. High-Performance Operating Systems

    DEFF Research Database (Denmark)

    Sharp, Robin

    1999-01-01

    Notes prepared for the DTU course 49421 "High Performance Operating Systems". The notes deal with quantitative and qualitative techniques for use in the design and evaluation of operating systems in computer systems for which performance is an important parameter, such as real-time applications......, communication systems and multimedia systems....

  8. 77 FR 70421 - GPS Satellite Simulator Control Working Group Meeting

    Science.gov (United States)

    2012-11-26

    ... DEPARTMENT OF DEFENSE Department of the Air Force GPS Satellite Simulator Control Working Group Meeting AGENCY: Space and Missile Systems Center, Global Positioning Systems (GPS) Directorate, Department of the Air Force, DoD. ACTION: Meeting Notice. SUMMARY: This meeting notice is to inform GPS...

  9. A flexible GPS tracking system for studying bird behaviour at multiple scales

    NARCIS (Netherlands)

    Bouten, W.; Baaij, E.W.; Shamoun-Baranes, J.; Camphuysen, K.C.J.

    2013-01-01

    Tracking devices and bio-loggers provide crucial information on the ecology and behaviour of birds in their natural environment. An optimal tracking system should be lightweight, measure three-dimensional locations, enable flexible measurement schemes, transmit data remotely and measure

  10. Performance systems and social capital

    DEFF Research Database (Denmark)

    Rasmussen, Grane Mikael Gregaard; Edwards, Kasper

    2014-01-01

    Performance systems and social capital are considered mutually exclusive. Contemporary studies show that social capital is essential in generating performance improvement. This raises an important question: “How do performance systems and social capital correspond?” This study draws on findings...... from a study on implementation of a performance system in Danish construction. The results show causalities between implementing the performance system and the emergence of social capital in construction projects. Results indicate that performance systems and social capital is not mutually exclusive...

  11. PEMODELAN PROTOTYPE TRACKING DENGAN PEMANFAATAN GEOLOCATION SEBAGAI GPS (GLOBAL POSITIONING SYSTEM BERBASIS WEB MOBILE PADA JASA PENGIRIMAN JNE SEMARANG

    Directory of Open Access Journals (Sweden)

    Ika Tri Meilani

    2016-03-01

    Full Text Available JNE merupakan perusahaan yang bergerak dibidang pengiriman barang atau dokumen yang sangat maju, karena banyak dimanfaatkan berbagai toko online dalam melakukan pengiriman barang pada customer. Sementara itu, tingkat kejahatan dijalanan semakin meningkat di berbagai kota di Indonesia. Sehingga diperlukan antisipasi pengamanan pada sebuah pengiriman untuk meningkatkan kepercayaan customer dan memberi rasa aman pada bagian pengangkutan. Selain dari sisi pengamanan, tingkat efisiensi waktu dalam pengiriman dapat berpengaruh pada tingkat kinerja perusahaan. Maka diperlukan sebuah sistem yang mampu memonitoring pengangkutan dan melakukan estimasi waktu secara efisien dalam membatasi waktu pengiriman dengan memanfaatkan geolocation sebagai GPS dengan menggunakan metode prototype model. Maka dapat diambil kesimpulan bahwa Pemodelan Prototype Tracking dengan Pemanfaat Geolocation sebagai GPS dapat dimanfaatkan sebagai media dalam memonitor pengiriman barang secara visual (Map. Kata Kunci : Tracking, Jasa Pengiriman, Geolocation, Google Map, GPS.

  12. Design and testing of a GPS/GSM collar prototype to combat cattle rustling

    Directory of Open Access Journals (Sweden)

    Francesco M. Tangorra

    2013-10-01

    Full Text Available Rustling is an age-old practice that was widespread in Italy until the first half of the 20th century. Today, incidents of cattle rustling are again being reported. However, the problem is not only found in Italy. It is also becoming a plague for ranchers in the US and is still rampant in East Africa. In Italy, the cattle rustling phenomena have usually been limited through the direct control of the herdsmen. Global positioning system (GPS and geographic information system (GIS combined technologies are increasingly applied for tracking and monitoring livestock with greater spatial and temporal resolution. However, so far, no case studies of the use of GPS technology to combat cattle rustling have been reported in the literature. The aim of this research was to develop a GPS/GSM (global system for mobile communication collar, using commercial hardware and implementing a specific software [ARVAshepherd 1.0; ARVAtec Srl, Rescaldina (MI, Italy] to track animals’ movements outside their grazing area and to signal when animals are straying outside virtual perimeters. A phase I study was conducted from January to June 2011 to build the GPS/GSM collar and to assess its performances in terms of GPS accuracy and precision, while a phase II study was conducted in July 2011 to test the GPS collar under real-life operating conditions. The static GPS positioning error achieved a circular error probable (50% and horizontal 95% accuracy of 1.462 m and 4.501 m, respectively. This is comparable with values obtained by other authors in static tests of a commercial GPS collar for grazing studies. In field tests, the system was able to identify the incorrect position of the cattle and the warning messages were sent promptly to the farmer, continuing until the animals had been repositioned inside the fence, thus highlighting the potential of the GPS/GSM collar as an anti-theft system.

  13. Inspection system performance test procedure

    International Nuclear Information System (INIS)

    Jensen, C.E.

    1995-01-01

    This procedure establishes requirements to administer a performance demonstration test. The test is to demonstrate that the double-shell tank inspection system (DSTIS) supplied by the contractor performs in accordance with the WHC-S-4108, Double-Shell Tank Ultrasonic Inspection Performance Specification, Rev. 2-A, January, 1995. The inspection system is intended to provide ultrasonic (UT) and visual data to determine integrity of the Westinghouse Hanford Company (WHC) site underground waste tanks. The robotic inspection system consists of the following major sub-systems (modules) and components: Mobile control center; Deployment module; Cable management assembly; Robot mechanism; Ultrasonic testing system; Visual testing system; Pneumatic system; Electrical system; and Control system

  14. Category (CAT) IIIb Level 1 Test Plan for Global Positioning System (GPS)

    Science.gov (United States)

    1993-09-01

    applications. CAT 11Tb is defined in Advisory Circular ( AC ) 120-28C [1] as "a precision instrument approach and landing with no decision height (DH), or...2) FAA AC 20-57A (Automatic Landing Systems) [31, AC 120-28C (Criteria for Approval of CAT III Landing Weather Minima) [I] and the FAA tunnel-in...AD-A274 098I I~II l~iiUIRII 11111ilIII2 DOT/FAA/RD-93/21 Category ( CAT ) IIb Level 1 MTR 93W0000102 Research and Test Plan for Global Development

  15. Seasonal Hydrological Loading in Southern Tibet Detected by Joint Analysis of GPS and GRACE.

    Science.gov (United States)

    Zou, Rong; Wang, Qi; Freymueller, Jeffrey T; Poutanen, Markku; Cao, Xuelian; Zhang, Caihong; Yang, Shaomin; He, Ping

    2015-12-04

    In southern Tibet, ongoing vertical and horizontal motions due to the collision between India and Eurasia are monitored by large numbers of global positioning system (GPS) continuous and campaign sites installed in the past decade. Displacements measured by GPS usually include tectonic deformation as well as non-tectonic, time-dependent signals. To estimate the regional long-term tectonic deformation using GPS more precisely, seasonal elastic deformation signals associated with surface loading must be removed from the observations. In this study, we focus on seasonal variation in vertical and horizontal motions of southern Tibet by performing a joint analysis of GRACE (Gravity Recovery and Climate Experiment) and GPS data, not only using continuous sites but also GPS campaign-mode sites. We found that the GPS-observed and GRACE-modeled seasonal oscillations are in good agreements, and a seasonal displacement model demonstrates that the main reason for seasonal variations in southern Tibet is from the summer monsoon and its precipitation. The biggest loading appears from July to August in the summer season. Vertical deformations observed by GPS and modeled by GRACE are two to three times larger than horizontal oscillations, and the north components demonstrate larger amplitudes than the east components. We corrected the GPS position time series using the GRACE-modeled seasonal variations, which gives significant reductions in the misfit and weighted root-mean-squares (WRMS). Misfit (χ2 divided by degree of freedom) reductions for campaign sites range between 20% and 56% for the vertical component, and are much smaller for the horizontal components. Moreover, time series of continuous GPS (cGPS) sites near the 2015 Nepal earthquakes must be corrected using appropriate models of seasonal loading for analyzing postseismic deformation to avoid biasing estimates of the postseismic relaxation.

  16. A Demonstration of GPS Landslide Monitoring Using Online Positioning User Service (OPUS)

    Science.gov (United States)

    Wang, G.

    2011-12-01

    Global Positioning System (GPS) technologies have been frequently applied to landslide study, both as a complement, and as an alternative to conventional surveying methods. However, most applications of GPS for landslide monitoring have been limited to the academic community for research purposes. High-accuracy GPS has not been widely equipped in geotechnical companies and used by technicians. The main issue that limits the applications of GPS in the practice of high-accuracy landslide monitoring is the complexity of GPS data processing. This study demonstrated an approach using the Online Positioning User Service (OPUS) (http://www.ngs.noaa.gov/OPUS) provided by the National Geodetic Survey (NGS) of National Oceanic and Atmospheric Administration (NOAA) to process GPS data and conduct long-term landslide monitoring in the Puerto Rico and Virgin Islands Region. Continuous GPS data collected at a creeping landslide site during two years were used to evaluate different scenarios for landslide surveying: continuous or campaign, long duration or short duration, morning or afternoon (different weather conditions). OPUS uses Continuously Operating Reference Station (CORS) managed by NGS (http://www.ngs.noaa.giv/CORS/) as references and user data as a rover to solve a position. There are 19 CORS permanent GPS stations in the Puerto Rico and Virgin Islands region. The dense GPS network provides a precise and reliable reference frame for subcentimeter-accuracy landslide monitoring in this region. Our criterion for the accuracy was the root-mean-square (RMS) of OPUS solutions over a 2-year period with respect to true landslide displacement time series overt the same period. The true landslide displacements were derived from a single-baseline (130 m) GPS processing by using 24-hour continuous data. If continuous GPS surveying is performed in the field, then OPUS static processing can provide 0.6 cm horizontal and 1.1 cm vertical precision with few outliers. If repeated

  17. Sensing and Classifying Impairments of GPS Reception on Mobile Devices

    DEFF Research Database (Denmark)

    Blunck, Henrik; Kjærgaard, Mikkel Baun; Toftegaard, Thomas Skjødeberg

    2011-01-01

    Positioning using GPS receivers is a primary sensing modality in many areas of pervasive computing. However, previous work has not considered how people’s body impacts the availability and accuracy of GPS positioning and for means to sense such impacts. We present results that the GPS performance...

  18. Design and implementation of the GPS subsystem for the Radio Aurora eXplorer

    Science.gov (United States)

    Spangelo, Sara C.; Bennett, Matthew W.; Meinzer, Daniel C.; Klesh, Andrew T.; Arlas, Jessica A.; Cutler, James W.

    2013-06-01

    This paper presents the design and implementation of the Global Positioning System (GPS) subsystem for the Radio Aurora eXplorer (RAX) CubeSat. The GPS subsystem provides accurate temporal and spatial information necessary to satisfy the science objectives of the RAX mission. There are many challenges in the successful design and implementation of a GPS subsystem for a CubeSat-based mission, including power, size, mass, and financial constraints. This paper presents an approach for selecting and testing the individual and integrated GPS subsystem components, including the receiver, antenna, low noise amplifier, and supporting circuitry. The procedures to numerically evaluate the GPS link budget and test the subsystem components at various stages of system integration are described. Performance results for simulated tests in the terrestrial and orbital environments are provided, including start-up times, carrier-to-noise ratios, and orbital position accuracy. Preliminary on-orbit GPS results from the RAX-1 and RAX-2 spacecraft are presented to validate the design process and pre-flight simulations. Overall, this paper provides a systematic approach to aid future satellite designers in implementing and verifying GPS subsystems for resource-constrained small satellites.

  19. LIGO sensing system performance

    CERN Document Server

    Landry, M

    2002-01-01

    The optical sensing subsystem of a LIGO interferometer is described. The system includes two complex interferometric sensing schemes to control test masses in length and alignment. The length sensing system is currently employed on all LIGO interferometers to lock coupled cavities on resonance. Auto-alignment is to be accomplished by a wavefront-sensing scheme which automatically corrects for angular fluctuations of the test masses. Improvements in lock stability and duration are noted when the wavefront auto-alignment system is employed. Preliminary results from the commissioning of the 2 km detector in Washington are shown.

  20. Transportation mode recognition using GPS and accelerometer data

    NARCIS (Netherlands)

    Feng, T.; Timmermans, H.J.P.

    2013-01-01

    Potential advantages of global positioning systems (GPS) in collecting travel behavior data have been discussed in several publications and evidenced in many recent studies. Most applications depend on GPS information only. However, transportation mode detection that relies only on GPS information

  1. Development of GPS Receiver Kalman Filter Algorithms for Stationary, Low-Dynamics, and High-Dynamics Applications

    Science.gov (United States)

    2016-06-01

    Filter Algorithms for Stationary, Low-Dynamics, and High-Dynamics Applications Executive Summary The Global Positioning system ( GPS ) is the primary...software that may need to be developed for performance prediction of current or future systems that incorporate GPS . The ultimate aim is to help inform...Defence Science and Technology Organisation in 1986. His major areas of work were adaptive tracking , sig- nal processing, and radar systems engineering

  2. Arctic tides from GPS on sea ice

    OpenAIRE

    Kildegaard Rose, Stine; Skourup, Henriette; Forsberg, René

    2012-01-01

    The presence of sea-ice in the Arctic Ocean plays a significant role in the Arctic climate. Sea ice dampens the ocean tide amplitude with the result that global tidal models which use only astronomical data perform less accurately in the polar regions. This study presents a kinematic processing of Global Positioning System (GPS) buoys placed on sea-ice at five different sites north of Greenland for the study of sea level height and tidal analysis to improve tidal models in the Central Arctic....

  3. Shiva laser system performance

    International Nuclear Information System (INIS)

    Glaze, J.; Godwin, R.O.; Holzrichter, J.F.

    1978-01-01

    On November 18, 1977, after four years of experimentation, innovation, and construction, the Shiva High Energy Laser facility produced 10.2 kJ of focusable laser energy delivered in a 0.95 ns pulse. The Shiva laser, with its computer control system and delta amplifiers, demonstrated its versatility on May 18, 1978, when the first 20-beam target shot with delta amplifiers focused 26 TW on a target and produced a yield of 7.5 x 10 9 neutrons

  4. Applying GPS to enhance understanding of transport-related physical activity.

    Science.gov (United States)

    Duncan, Mitch J; Badland, Hannah M; Mummery, W Kerry

    2009-09-01

    The purpose of the paper is to review the utility of the global positioning system (GPS) in the study of health-related physical activity. The paper draws from existing literature to outline the current work performed using GPS to examine transport-related physical activity, with a focus on the relative utility of the approach when combined with geographic information system (GIS) and other data sources including accelerometers. The paper argues that GPS, especially when used in combination with GIS and accelerometery, offers great promise in objectively measuring and studying the relationship of numerous environmental attributes to human behaviour in terms of physical activity and transport-related activity. Limitations to the use of GPS for the purpose of monitoring health-related physical activity are presented, and recommendations for future avenues of research are discussed.

  5. A usabilidade de tarefas típicas de seleção do destino em sistemas de navegação GPS automotivos The usability of typical tasks of destination selection in automotive GPS navigation systems

    Directory of Open Access Journals (Sweden)

    Manuela Quaresma

    2011-06-01

    Full Text Available O sistema de navegação GPS automotivo é um sistema veicular que auxilia o motorista, através de mapas e indicadores de manobra, o caminho que ele deve percorrer até o seu destino. Este artigo apresenta um estudo sobre a usabilidade de tarefas típicas de seleção do destino em três sistemas vendidos no Brasil, com métodos de entrada de dados e interfaces distintos. A pesquisa teve como objetivo avaliar se problemas de usabilidade também ocorriam em navegadores brasileiros. Para tanto, foram aplicados testes de usabilidade com usuários experientes e não experientes, com o intuito de medir a eficácia, a eficiência e a satisfação de uso (métricas de usabilidade das três interfaces. Com os resultados dos testes, pôde-se observar diversos problemas de usabilidade no projeto das interfaces avaliadas. Também, com base neles, foi possível sugerir soluções adequadas para a organização e navegação de menus e comandos.The automotive GPS navigation system is an in-vehicle system that helps drivers find their way to their destination through maps and maneuvering indicators. This article presents a study on the usability of typical tasks of destination selection in three navigation systems sold in Brazil, with different data entry methods and interfaces. The research aimed to calculate the occurrence of usability problems in navigators in Brazil. Usability tests were applied to both experienced and non-experienced users in order to measure the effectiveness, efficiency and use satisfaction (usability metrics of the three interfaces. With the tests results, several usability issues were observed in the design of the interfaces evaluated and appropriate solutions were suggested to the organization and navigation of menus and commands.

  6. Performance analysis of switching systems

    NARCIS (Netherlands)

    Berg, van den R.A.

    2008-01-01

    Performance analysis is an important aspect in the design of dynamic (control) systems. Without a proper analysis of the behavior of a system, it is impossible to guarantee that a certain design satisfies the system’s requirements. For linear time-invariant systems, accurate performance analyses are

  7. Comparison of GLONASS and GPS Time Transfers

    Science.gov (United States)

    Daly, P.; Koshelyaevsky, N. B.; Lewandowski, W.; Petit, G.; Thomas, C.

    1993-01-01

    The Russian global space navigation system GLONASS could provide a technique similar to GPS for international time comparison. The main limitation to its use for time transfer is the lack of commercially available time receivers. The University of Leeds built a GPS/GLONASS receiver five years ago and since then has provided continuous information about GLONASS time and its comparison with GPS time. For the last two years the VNIIFTRI and several other Russian time laboratories have used Russian-built GLONASS navigation receivers for time comparisons. Since June 1991, the VNIIFTRI has operated a GPS time receiver which offers, for the first time, an opportunity for the direct comparison of time transfers using GPS and GLONASS. This seven-month experiment shows that even with relatively imprecise data recording and processing, in terms of time metrology, GLONASS can provide continental time transfer at a level of several tens of nanoseconds.

  8. Integrated INS/GPS Navigation from a Popular Perspective

    Science.gov (United States)

    Omerbashich, Mensur

    2002-01-01

    Inertial navigation, blended with other navigation aids, Global Positioning System (GPS) in particular, has gained significance due to enhanced navigation and inertial reference performance and dissimilarity for fault tolerance and anti-jamming. Relatively new concepts based upon using Differential GPS (DGPS) blended with Inertial (and visual) Navigation Sensors (INS) offer the possibility of low cost, autonomous aircraft landing. The FAA has decided to implement the system in a sophisticated form as a new standard navigation tool during this decade. There have been a number of new inertial sensor concepts in the recent past that emphasize increased accuracy of INS/GPS versus INS and reliability of navigation, as well as lower size and weight, and higher power, fault tolerance, and long life. The principles of GPS are not discussed; rather the attention is directed towards general concepts and comparative advantages. A short introduction to the problems faced in kinematics is presented. The intention is to relate the basic principles of kinematics to probably the most used navigation method in the future-INS/GPS. An example of the airborne INS is presented, with emphasis on how it works. The discussion of the error types and sources in navigation, and of the role of filters in optimal estimation of the errors then follows. The main question this paper is trying to answer is 'What are the benefits of the integration of INS and GPS and how is this, navigation concept of the future achieved in reality?' The main goal is to communicate the idea about what stands behind a modern navigation method.

  9. Total System Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yong Soo; Kang, Chul Hyung; Lee, Youn Myoung; Han, Ji Woong; Choi, Jong Won; Hahn, Pil Soo; Park, Jeong Hwa; Jeong, Mi Seon

    2007-06-15

    Based on the KAERI FEP list developed through the previous studies, the KAERI FEP Encyclopedia has been developed. Current version is 1.0 which includes all relevant FEPs to compose of two references and all alternative scenarios. Many interaction FEPs between scenario defining FEP(SDF) are created throughout the study. FEPs are classified into many Integrated FEP(IFEP) which eventually become the elements of the RES matrix. The FEAS program one of the component of the KAERI's CYPRUS information system is added to develop the FEP, RES, AC, AMF and finally scenarios. It assists to create transparent way to deal with assessment from the stage of the planning of the R and D to the final stage of the external audit and regulatory body review. Even though MASCOT-K and compartment analysis codes such as AMBER, GoldSim and Ecolego are excellent for TSPA they by in heritage possess a certain limitation especially to identify a proper migration cross sectional area when a relatively big component intersects with a tiny one such as a fracture. It is truly 3D phenomena in nature. MDPSA code is developed which is expected to overcome limitations in compartment models while successfully deals with natural disruptive events. The R and D target for the TSPA is to develop the sufficient scenarios and their variation cases to understand the safety of KRS in every possible aspect. For this, reference scenarios, alternative scenarios covering engineered barrier failure and natural events are developed and assessed respectively for around 100 cases. The stylized template to assess the Korean reference biosphere is developed using the AMBER. Three critical groups, agricultural, freshwater and marine water fishing groups are identified to assess the DCF following the guidelines of ICRP. Based on the QA principles of T2R3, the web based QA system is developed using the procedures in the USNRC 10CFR50 Appendix B. The QA system is combined with the PAID and FEAS to create the comprehensive

  10. Total System Performance Assessment

    International Nuclear Information System (INIS)

    Hwang, Yong Soo; Kang, Chul Hyung; Lee, Youn Myoung; Han, Ji Woong; Choi, Jong Won; Hahn, Pil Soo; Park, Jeong Hwa; Jeong, Mi Seon

    2007-06-01

    Based on the KAERI FEP list developed through the previous studies, the KAERI FEP Encyclopedia has been developed. Current version is 1.0 which includes all relevant FEPs to compose of two references and all alternative scenarios. Many interaction FEPs between scenario defining FEP(SDF) are created throughout the study. FEPs are classified into many Integrated FEP(IFEP) which eventually become the elements of the RES matrix. The FEAS program one of the component of the KAERI's CYPRUS information system is added to develop the FEP, RES, AC, AMF and finally scenarios. It assists to create transparent way to deal with assessment from the stage of the planning of the R and D to the final stage of the external audit and regulatory body review. Even though MASCOT-K and compartment analysis codes such as AMBER, GoldSim and Ecolego are excellent for TSPA they by in heritage possess a certain limitation especially to identify a proper migration cross sectional area when a relatively big component intersects with a tiny one such as a fracture. It is truly 3D phenomena in nature. MDPSA code is developed which is expected to overcome limitations in compartment models while successfully deals with natural disruptive events. The R and D target for the TSPA is to develop the sufficient scenarios and their variation cases to understand the safety of KRS in every possible aspect. For this, reference scenarios, alternative scenarios covering engineered barrier failure and natural events are developed and assessed respectively for around 100 cases. The stylized template to assess the Korean reference biosphere is developed using the AMBER. Three critical groups, agricultural, freshwater and marine water fishing groups are identified to assess the DCF following the guidelines of ICRP. Based on the QA principles of T2R3, the web based QA system is developed using the procedures in the USNRC 10CFR50 Appendix B. The QA system is combined with the PAID and FEAS to create the comprehensive

  11. Total System Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yong Soo; Kang, Chul Hyung; Lee, Youn Myoung; Han, Ji Woong; Choi, Jong Won; Hahn, Pil Soo; Park, Jeong Hwa; Jeong, Mi Seon

    2007-06-15

    Based on the KAERI FEP list developed through the previous studies, the KAERI FEP Encyclopedia has been developed. Current version is 1.0 which includes all relevant FEPs to compose of two references and all alternative scenarios. Many interaction FEPs between scenario defining FEP(SDF) are created throughout the study. FEPs are classified into many Integrated FEP(IFEP) which eventually become the elements of the RES matrix. The FEAS program one of the component of the KAERI's CYPRUS information system is added to develop the FEP, RES, AC, AMF and finally scenarios. It assists to create transparent way to deal with assessment from the stage of the planning of the R and D to the final stage of the external audit and regulatory body review. Even though MASCOT-K and compartment analysis codes such as AMBER, GoldSim and Ecolego are excellent for TSPA they by in heritage possess a certain limitation especially to identify a proper migration cross sectional area when a relatively big component intersects with a tiny one such as a fracture. It is truly 3D phenomena in nature. MDPSA code is developed which is expected to overcome limitations in compartment models while successfully deals with natural disruptive events. The R and D target for the TSPA is to develop the sufficient scenarios and their variation cases to understand the safety of KRS in every possible aspect. For this, reference scenarios, alternative scenarios covering engineered barrier failure and natural events are developed and assessed respectively for around 100 cases. The stylized template to assess the Korean reference biosphere is developed using the AMBER. Three critical groups, agricultural, freshwater and marine water fishing groups are identified to assess the DCF following the guidelines of ICRP. Based on the QA principles of T2R3, the web based QA system is developed using the procedures in the USNRC 10CFR50 Appendix B. The QA system is combined with the PAID and FEAS to create the

  12. A Geometry-Based Cycle Slip Detection and Repair Method with Time-Differenced Carrier Phase (TDCP for a Single Frequency Global Position System (GPS + BeiDou Navigation Satellite System (BDS Receiver

    Directory of Open Access Journals (Sweden)

    Chuang Qian

    2016-12-01

    Full Text Available As the field of high-precision applications based on carriers continues to expand, the development of low-cost, small, modular receivers and their application in diverse scenarios and situations with complex data quality has increased the requirements of carrier-phase data preprocessing. A new geometry-based cycle slip detection and repair method based on Global Position System (GPS + BeiDou Navigation Satellite System (BDS is proposed. The method uses a Time-differenced Carrier Phase (TDCP model, which eliminates the Inner-System Bias (ISB between GPS and BDS, and it is conducive to the effective combination of GPS and BDS. It avoids the interference of the noise of the pseudo-range with cycle slip detection, while the cycle slips are preserved as integers. This method does not limit the receiver frequency number, and it is applicable to single-frequency data. The process is divided into two steps to detect and repair cycle slip. The first step is cycle slip detection, using the Improved Local Analysis Method (ILAM to find satellites that have cycle slips; The second step is to repair the cycle slips, including estimating the float solution of changes in ambiguities at the satellites that have cycle slips with the least squares method and the integer solution of the cycle slips by rounding. In the process of rounding, in addition to the success probability, a decimal test is carried out to validate the result. Finally, experiments with filed test data are carried out to prove the effectiveness of this method. The results show that the detectable cycle slips number with GPS + BDS is much greater than that with GPS. The method can also detect the non-integer outliers while fixing the cycle slip. The maximum decimal bias in repair is less than that with GPS. It implies that this method takes full advantages of multi-system.

  13. An improved grey model for the prediction of real-time GPS satellite clock bias

    Science.gov (United States)

    Zheng, Z. Y.; Chen, Y. Q.; Lu, X. S.

    2008-07-01

    In real-time GPS precise point positioning (PPP), real-time and reliable satellite clock bias (SCB) prediction is a key to implement real-time GPS PPP. It is difficult to hold the nuisance and inenarrable performance of space-borne GPS satellite atomic clock because of its high-frequency, sensitivity and impressionable, it accords with the property of grey model (GM) theory, i. e. we can look on the variable process of SCB as grey system. Firstly, based on limits of quadratic polynomial (QP) and traditional GM to predict SCB, a modified GM (1,1) is put forward to predict GPS SCB in this paper; and then, taking GPS SCB data for example, we analyzed clock bias prediction with different sample interval, the relationship between GM exponent and prediction accuracy, precision comparison of GM to QP, and concluded the general rule of different type SCB and GM exponent; finally, to test the reliability and validation of the modified GM what we put forward, taking IGS clock bias ephemeris product as reference, we analyzed the prediction precision with the modified GM, It is showed that the modified GM is reliable and validation to predict GPS SCB and can offer high precise SCB prediction for real-time GPS PPP.

  14. Combined GPS/GLONASS Precise Point Positioning with Fixed GPS Ambiguities

    Science.gov (United States)

    Pan, Lin; Cai, Changsheng; Santerre, Rock; Zhu, Jianjun

    2014-01-01

    Precise point positioning (PPP) technology is mostly implemented with an ambiguity-float solution. Its performance may be further improved by performing ambiguity-fixed resolution. Currently, the PPP integer ambiguity resolutions (IARs) are mainly based on GPS-only measurements. The integration of GPS and GLONASS can speed up the convergence and increase the accuracy of float ambiguity estimates, which contributes to enhancing the success rate and reliability of fixing ambiguities. This paper presents an approach of combined GPS/GLONASS PPP with fixed GPS ambiguities (GGPPP-FGA) in which GPS ambiguities are fixed into integers, while all GLONASS ambiguities are kept as float values. An improved minimum constellation method (MCM) is proposed to enhance the efficiency of GPS ambiguity fixing. Datasets from 20 globally distributed stations on two consecutive days are employed to investigate the performance of the GGPPP-FGA, including the positioning accuracy, convergence time and the time to first fix (TTFF). All datasets are processed for a time span of three hours in three scenarios, i.e., the GPS ambiguity-float solution, the GPS ambiguity-fixed resolution and the GGPPP-FGA resolution. The results indicate that the performance of the GPS ambiguity-fixed resolutions is significantly better than that of the GPS ambiguity-float solutions. In addition, the GGPPP-FGA improves the positioning accuracy by 38%, 25% and 44% and reduces the convergence time by 36%, 36% and 29% in the east, north and up coordinate components over the GPS-only ambiguity-fixed resolutions, respectively. Moreover, the TTFF is reduced by 27% after adding GLONASS observations. Wilcoxon rank sum tests and chi-square two-sample tests are made to examine the significance of the improvement on the positioning accuracy, convergence time and TTFF. PMID:25237901

  15. Combined GPS/GLONASS Precise Point Positioning with Fixed GPS Ambiguities

    Directory of Open Access Journals (Sweden)

    Lin Pan

    2014-09-01

    Full Text Available Precise point positioning (PPP technology is mostly implemented with an ambiguity-float solution. Its performance may be further improved by performing ambiguity-fixed resolution. Currently, the PPP integer ambiguity resolutions (IARs are mainly based on GPS-only measurements. The integration of GPS and GLONASS can speed up the convergence and increase the accuracy of float ambiguity estimates, which contributes to enhancing the success rate and reliability of fixing ambiguities. This paper presents an approach of combined GPS/GLONASS PPP with fixed GPS ambiguities (GGPPP-FGA in which GPS ambiguities are fixed into integers, while all GLONASS ambiguities are kept as float values. An improved minimum constellation method (MCM is proposed to enhance the efficiency of GPS ambiguity fixing. Datasets from 20 globally distributed stations on two consecutive days are employed to investigate the performance of the GGPPP-FGA, including the positioning accuracy, convergence time and the time to first fix (TTFF. All datasets are processed for a time span of three hours in three scenarios, i.e., the GPS ambiguity-float solution, the GPS ambiguity-fixed resolution and the GGPPP-FGA resolution. The results indicate that the performance of the GPS ambiguity-fixed resolutions is significantly better than that of the GPS ambiguity-float solutions. In addition, the GGPPP-FGA improves the positioning accuracy by 38%, 25% and 44% and reduces the convergence time by 36%, 36% and 29% in the east, north and up coordinate components over the GPS-only ambiguity-fixed resolutions, respectively. Moreover, the TTFF is reduced by 27% after adding GLONASS observations. Wilcoxon rank sum tests and chi-square two-sample tests are made to examine the significance of the improvement on the positioning accuracy, convergence time and TTFF.

  16. Performance enhancement of low-cost, high-accuracy, state estimation for vehicle collision prevention system using ANFIS

    Science.gov (United States)

    Saadeddin, Kamal; Abdel-Hafez, Mamoun F.; Jaradat, Mohammad A.; Jarrah, Mohammad Amin

    2013-12-01

    In this paper, a low-cost navigation system that fuses the measurements of the inertial navigation system (INS) and the global positioning system (GPS) receiver is developed. First, the system's dynamics are obtained based on a vehicle's kinematic model. Second, the INS and GPS measurements are fused using an extended Kalman filter (EKF) approach. Subsequently, an artificial intelligence based approach for the fusion of INS/GPS measurements is developed based on an Input-Delayed Adaptive Neuro-Fuzzy Inference System (IDANFIS). Experimental tests are conducted to demonstrate the performance of the two sensor fusion approaches. It is found that the use of the proposed IDANFIS approach achieves a reduction in the integration development time and an improvement in the estimation accuracy of the vehicle's position and velocity compared to the EKF based approach.

  17. Contractor Performance Assessment Reporting System

    Data.gov (United States)

    US Agency for International Development — CPARS is a web-based system used to input data on contractor performance. Reports from the system are used as an aid in awarding contracts to contractors that...

  18. GPS Space Service Volume: Ensuring Consistent Utility Across GPS Design Builds for Space Users

    Science.gov (United States)

    Bauer, Frank H.; Parker, Joel Jefferson Konkl; Valdez, Jennifer Ellen

    2015-01-01

    GPS availability and signal strength originally specified for users on or near surface of Earth with transmitted power levels specified at edge-of-Earth, 14.3 degrees. Prior to the SSV specification, on-orbit performance of GPS varied from block build to block build (IIA, IIRM, IIF) due to antenna gain and beam width variances. Unstable on-orbit performance results in significant risk to space users. Side-lobe signals, although not specified, were expected to significantly boost GPS signal availability for users above the constellation. During GPS III Phase A, NASA noted significant discrepancies in power levels specified in GPS III specification documents, and measured on-orbit performance. To stabilize the signal for high altitude space users, NASA DoD team in 2003-2005 led the creation of new Space Service Volume (SSV) definition and specifications.

  19. Test and Evaluation of an Image-Matching Navigation System for a UAS Operating in a GPS-Denied Environment

    Science.gov (United States)

    2017-09-01

    degraded or GPS-denied environment on Earth or other planets , navigational capabilities are degraded significantly because the INS becomes the only...with a comfortable living environment during this period when I was busily trying to finish this thesis. I will always remember this chapter of my life ...ravioli up to that point in my life ! I would also like to mention a very special friend, Charcoal, although he will not be able to read this, as he is

  20. LADOTD GPS technology management plan : tech summary.

    Science.gov (United States)

    2012-02-01

    Global Positioning System (GPS) technology has been adopted by diff erent sections within the Louisiana : Department of Transportation and Development (LADOTD) over the last decade with no uniform standards : for their use, procurement, training, and...

  1. Overview of GPS Adjacent Band Compatibility Assessment

    Science.gov (United States)

    2014-09-18

    January 13, 2012 National SpaceBased Positioning, Navigation, and Timing (PNT) Executive Committee (EXCOM) cochair letter to National Telecommunications and Information Administration (NTIA) proposed to draft new Global Positioning System (GPS)...

  2. GPS-deprived localisation for underground mines

    CSIR Research Space (South Africa)

    Hlophe, K

    2010-08-31

    Full Text Available robots. Opencast mines utilise the global positioning system (GPS) to obtain location information. The unavailability of this technology in underground mining has actuated numerous researchers to investigate possible alternatives. These attempts exploit...

  3. Novel Hybrid of LS-SVM and Kalman Filter for GPS/INS Integration

    Science.gov (United States)

    Xu, Zhenkai; Li, Yong; Rizos, Chris; Xu, Xiaosu

    Integration of Global Positioning System (GPS) and Inertial Navigation System (INS) technologies can overcome the drawbacks of the individual systems. One of the advantages is that the integrated solution can provide continuous navigation capability even during GPS outages. However, bridging the GPS outages is still a challenge when Micro-Electro-Mechanical System (MEMS) inertial sensors are used. Methods being currently explored by the research community include applying vehicle motion constraints, optimal smoother, and artificial intelligence (AI) techniques. In the research area of AI, the neural network (NN) approach has been extensively utilised up to the present. In an NN-based integrated system, a Kalman filter (KF) estimates position, velocity and attitude errors, as well as the inertial sensor errors, to output navigation solutions while GPS signals are available. At the same time, an NN is trained to map the vehicle dynamics with corresponding KF states, and to correct INS measurements when GPS measurements are unavailable. To achieve good performance it is critical to select suitable quality and an optimal number of samples for the NN. This is sometimes too rigorous a requirement which limits real world application of NN-based methods.The support vector machine (SVM) approach is based on the structural risk minimisation principle, instead of the minimised empirical error principle that is commonly implemented in an NN. The SVM can avoid local minimisation and over-fitting problems in an NN, and therefore potentially can achieve a higher level of global performance. This paper focuses on the least squares support vector machine (LS-SVM), which can solve highly nonlinear and noisy black-box modelling problems. This paper explores the application of the LS-SVM to aid the GPS/INS integrated system, especially during GPS outages. The paper describes the principles of the LS-SVM and of the KF hybrid method, and introduces the LS-SVM regression algorithm. Field

  4. Autonomous GPS/INS navigation experiment for Space Transfer Vehicle (STV)

    Science.gov (United States)

    Upadhyay, Triveni N.; Cotterill, Stephen; Deaton, A. Wayne

    1991-01-01

    An experiment to validate the concept of developing an autonomous integrated spacecraft navigation system using on board Global Positioning System (GPS) and Inertial Navigation System (INS) measurements is described. The feasibility of integrating GPS measurements with INS measurements to provide a total improvement in spacecraft navigation performance, i.e. improvement in position, velocity and attitude information, was previously demonstrated. An important aspect of this research is the automatic real time reconfiguration capability of the system designed to respond to changes in a spacecraft mission under the control of an expert system.

  5. Briefing highlights space weather risks to GPS

    Science.gov (United States)

    Tretkoff, Ernie

    2011-07-01

    Solar storms, which are expected to increase as the Sun nears the most active phase of the solar cycle, can disrupt a variety of technologies on which society relies. Speakers at a 22 June briefing on Capitol Hill in Washington, D. C., focused on how space weather can affect the Global Positioning System (GPS), which is used in a wide range of industries, including commercial air travel, agriculture, national security, and emergency response. Rocky Stone, chief technical pilot for United Airlines, noted that GPS allows more aircraft to be in airspace, saves fuel, and helps aircraft move safely on runways. “Improvements in space weather forecasting need to be pursued,” he said. Precision GPS has also “changed the whole nature of farming,” said Ron Hatch, Director of Navigation Systems, NavCom Technology/John Deere. GPS makes it possible for tractors to be driven in the most efficient paths and for fertilizer and water to be applied precisely to the areas that most need them. Space weather-induced degradation of GPS signals can cause significant loss to farms that rely on GPS. Elizabeth Zimmerman, Deputy Associate Administrator for the Office of Response and Recovery at the Federal Emergency Management Agency (FEMA), described how FEMA relies on GPS for disaster recovery. The agency is developing an operations plan for dealing with space weather, she said.

  6. Measurements of ionospheric TEC in the direction of GPS satellites and comparison with three ionospheric models

    Directory of Open Access Journals (Sweden)

    E. Zuccheretti

    1997-06-01

    Full Text Available The IEN Galileo Ferraris uses GPS for time and frequency synchronization. To obtain high performance it is important to reduce the error due to the ionospheric time-delay in GPS measurements. Evaluations of TEC in the direction of GPS satellites, obtained from three different ionospheric models, have been compared with corresponding measurements by GPS signal.

  7. 77 FR 23668 - GPS Satellite Simulator Working Group Notice of Meeting

    Science.gov (United States)

    2012-04-20

    ... DEPARTMENT OF DEFENSE Department of the Air Force GPS Satellite Simulator Working Group Notice of... inform the public that the Global Positioning Systems (GPS) Directorate will be hosting an open GPS Satellite Simulator Working Group (SSWG) meeting for manufacturers of GPS constellation simulators utilized...

  8. Facilities projects performance measurement system

    International Nuclear Information System (INIS)

    Erben, J.F.

    1979-01-01

    The two DOE-owned facilities at Hanford, the Fuels and Materials Examination Facility (FMEF), and the Fusion Materials Irradiation Test Facility (FMIT), are described. The performance measurement systems used at these two facilities are next described

  9. Joint Performance and Planning System

    Data.gov (United States)

    US Agency for International Development — A joint State/USAID system hosted by State that integrates resource and performance information at the program level and enables more flexible and frequent entry of...

  10. Analysing Performance Characteristics of Biomass Haulage in Ireland for Bioenergy Markets with GPS, GIS and Fuel Diagnostic Tools

    Directory of Open Access Journals (Sweden)

    Amanda Sosa

    2015-10-01

    Full Text Available In Ireland, truck transport by road dominates and will remain the main transportation mode of biomass. Cost efficiency and flexibility of forest transport can be typically improved by optimising routes. It is important to know every process and attributes within the workflow of roundwood transport. This study aimed to analyse characteristics of timber trucking in Ireland, and to estimate the least-cost route for the distribution of biomass with the use of geographic information systems (GIS. Firstly, a tracking system that recorded the truck’s movements and fuel consumption was installed. A total of 152 trips were recorded, routes were chosen by the truck driver. The recorded information was used to analyse the distances and times travelled loaded and unloaded per road class, breaks, loading and unloading times as well as fuel consumption. Secondly, the routes taken by the truck where compared with routes created using Network Analyst (NA, an extension of ArcGIS. Four scenarios based on route selection criteria were selected: shortest distance (S1, shorted time (S2, and prioritising high-class roads with shortest distance (S3 and time (S4. Results from the analysis of the tracking system data showed that driving both loaded and unloaded occupied on average 69% of the driver’s working shift; with an average time driving loaded of 49%. The travel distance per trip varied from 112 km and 197 km, with the truck driver using mostly national and regional roads. An average 2% of the total distance and 11% of the total time was spent driving on forest roads. In general, the truck’s speed recorded on the different road classes was on average 30% lower than the legal maximum speed. The average fuel consumption was 0.64 L/km. In terms of the route comparison, the driving directions from the truck routes coincided with 77% of the directions of the routes based on shortest driving time (S2 and S4. All the routes chosen by the driver had 22% longer

  11. Development of building security integration system using sensors, microcontroller and GPS (Global Positioning System) based android smartphone

    Science.gov (United States)

    Sihombing, P.; Siregar, Y. M.; Tarigan, J. T.; Jaya, I.; Turnip, A.

    2018-03-01

    Security system is one of the common problems to protect an environment such as personal house or a warehouse. There are numerous methods and technologies that can be used as part of a security system. In this paper, we present a security system that offers a better efficiency. The purpose of this study is to build a system that can monitor home security at any time in particular fire and theft. Through sensors, the system will be able to provide warning information of hazard conditions via LCD monitor, sound, and alarm. This information will be sent automatically to the home owner’s smartphone as well as to the corresponding to the security agency. Thus the prevention of theft and fire hazards can be immediately anticipated by the police and firefighters. The system will also notify the position of the coordinates of the location of the building (the house) by a link to the Google map in order to make it easier to get the location quickly.

  12. Integrating different tracking systems in football: multiple camera semi-automatic system, local position measurement and GPS technologies.

    Science.gov (United States)

    Buchheit, Martin; Allen, Adam; Poon, Tsz Kit; Modonutti, Mattia; Gregson, Warren; Di Salvo, Valter

    2014-12-01

    Abstract During the past decade substantial development of computer-aided tracking technology has occurred. Therefore, we aimed to provide calibration equations to allow the interchangeability of different tracking technologies used in soccer. Eighty-two highly trained soccer players (U14-U17) were monitored during training and one match. Player activity was collected simultaneously with a semi-automatic multiple-camera (Prozone), local position measurement (LPM) technology (Inmotio) and two global positioning systems (GPSports and VX). Data were analysed with respect to three different field dimensions (small, systems were compared, and calibration equations (linear regression models) between each system were calculated for each field dimension. Most metrics differed between the 4 systems with the magnitude of the differences dependant on both pitch size and the variable of interest. Trivial-to-small between-system differences in total distance were noted. However, high-intensity running distance (>14.4 km · h -1 ) was slightly-to-moderately greater when tracked with Prozone, and accelerations, small-to-very largely greater with LPM. For most of the equations, the typical error of the estimate was of a moderate magnitude. Interchangeability of the different tracking systems is possible with the provided equations, but care is required given their moderate typical error of the estimate.

  13. Performance Enhancement MEMS Based INS/GPS Integrated System Implemented on a FPGA for Terrestrial Applications

    OpenAIRE

    Garcia Quinchia, Alex

    2014-01-01

    Hoy en día con el desarrollo de sensores inerciales basados en Sistemas Micro\\-electromecánicos (MEMS), podemos encontrar acelerómetros y giróscopos embebidos en diferentes dispositivos y plataformas, teniéndolos en relojes, teléfonos inteligentes, consolas de video juego hasta sistemas de navegación terrestre y vehículos aéreos no tripulados (UAVs), {\\em etc}. A pesar del amplio rango de aplicaciones donde están siendo utilizados, los sensores inerciales de bajo costo (grado MEMs) son afecta...

  14. A novel fusion methodology to bridge GPS outages for land vehicle positioning

    International Nuclear Information System (INIS)

    Chen, Wei; Li, Xu; Song, Xiang; Xu, Qimin; Li, Bin; Song, Xianghui

    2015-01-01

    Many intelligent transportation system applications require accurate, reliable, and continuous vehicle position information whether in open-sky environments or in Global Positioning System (GPS) denied environments. However, there remains a challenging task for land vehicles to achieve such positioning performance using low-cost sensors, especially microelectromechanical system (MEMS) sensors. In this paper, a novel and cost-effective fusion methodology to bridge GPS outages is proposed and applied in the Inertial Navigation System (INS)/GPS/ compass integrated positioning system. In the implementation of the proposed methodology, a key data preprocessing algorithm is first developed to eliminate the noise in inertial sensors in order to provide more accurate information for subsequent modeling. Then, a novel hybrid strategy incorporating the designed autoregressive model (AR model)-based forward estimator (ARFE) with Kalman filter (KF) is presented to predict the INS position errors during GPS outages. To verify the feasibility and effectiveness of the proposed methodology, real road tests with various scenarios were performed. The proposed methodology illustrates significant improvement in positioning accuracy during GPS outages. (paper)

  15. Mapping the Coastline Limits of the Mexican State Sinaloa Using GPS

    Science.gov (United States)

    Vazquez, G. E.

    2007-12-01

    This research work presents the delimitation of the coastline limits of Sinaloa (one of the richest states of northwestern Mexico). In order to achieve this big task, it was required to use GPS (Global Positioning System) together with leveling spirit measurements. Based on the appropriate selection of the cited measurement techniques, the objective was to map the Sinaloa's state coastline to have the cartography of approximate 1600 km of littoral. The GPS measurements were performed and referred with respect to a GPS network located across the state. This GPS network consists of at least one first-order-site at each of the sixteen counties that constitute the state, and three to four second-order-sites of the ten counties of the state surrounded by sea. The leveling spirit measurements were referred to local benchmarks pre-established by the Mexican agency SEMARNAT (SEcretaría Del Medio Ambiente y Recursos NATurales). Within the main specifications of the GPS measurements and equipment, we used geodetic-dual-frequency GPS receivers in kinematic mode for both base stations (first and second order sites of the GPS state network) and rover stations (points forming the state littoral) with 5-sec log-rate interval and 10 deg cut-off angle. The GPS data processing was performed using the commercial software Trimble Geomatics Office (TGO) with Double Differences (DD) in post-processing mode. To this point, the field measurements had been totally covered including the cartography (scale 1:1000) and this includes the specifications and appropriate labeling according to the Mexican norm NOM-146-SEMARNAT-2005.

  16. How GPs value guidelines applied to patients with multimorbidity: a qualitative study.

    Science.gov (United States)

    Luijks, Hilde; Lucassen, Peter; van Weel, Chris; Loeffen, Maartje; Lagro-Janssen, Antoine; Schermer, Tjard

    2015-10-26

    To explore and describe the value general practitioner (GPs) attribute to medical guidelines when they are applied to patients with multimorbidity, and to describe which benefits GPs experience from guideline adherence in these patients. Also, we aimed to identify limitations from guideline adherence in patients with multimorbidity, as perceived by GPs, and to describe their empirical solutions to manage these obstacles. Focus group study with purposive sampling of participants. Focus groups were guided by an experienced moderator who used an interview guide. Interviews were transcribed verbatim. Data analysis was performed by two researchers using the constant comparison analysis technique and field notes were used in the analysis. Data collection proceeded until saturation was reached. Primary care, eastern part of The Netherlands. Dutch GPs, heterogeneous in age, sex and academic involvement. 25 GPs participated in five focus groups. GPs valued the guidance that guidelines provide, but experienced shortcomings when they were applied to patients with multimorbidity. Taking these patients' personal circumstances into account was regarded as important, but it was impeded by a consistent focus on guideline adherence. Preventative measures were considered less appropriate in (elderly) patients with multimorbidity. Moreover, the applicability of guidelines in patients with multimorbidity was questioned. GPs' extensive practical experience with managing multimorbidity resulted in several empirical solutions, for example, using their 'common sense' to respond to the perceived shortcomings. GPs applying guidelines for patients with multimorbidity integrate patient-specific factors in their medical decisions, aiming for patient-centred solutions. Such integration of clinical experience and best evidence is required to practise evidence-based medicine. More flexibility in pay-for-performance systems is needed to facilitate this integration. Several improvements in

  17. Precise Positioning of Uavs - Dealing with Challenging Rtk-Gps Measurement Conditions during Automated Uav Flights

    Science.gov (United States)

    Zimmermann, F.; Eling, C.; Klingbeil, L.; Kuhlmann, H.

    2017-08-01

    For some years now, UAVs (unmanned aerial vehicles) are commonly used for different mobile mapping applications, such as in the fields of surveying, mining or archeology. To improve the efficiency of these applications an automation of the flight as well as the processing of the collected data is currently aimed at. One precondition for an automated mapping with UAVs is that the georeferencing is performed directly with cm-accuracies or better. Usually, a cm-accurate direct positioning of UAVs is based on an onboard multi-sensor system, which consists of an RTK-capable (real-time kinematic) GPS (global positioning system) receiver and additional sensors (e.g. inertial sensors). In this case, the absolute positioning accuracy essentially depends on the local GPS measurement conditions. Especially during mobile mapping applications in urban areas, these conditions can be very challenging, due to a satellite shadowing, non-line-of sight receptions, signal diffraction or multipath effects. In this paper, two straightforward and easy to implement strategies will be described and analyzed, which improve the direct positioning accuracies for UAV-based mapping and surveying applications under challenging GPS measurement conditions. Based on a 3D model of the surrounding buildings and vegetation in the area of interest, a GPS geometry map is determined, which can be integrated in the flight planning process, to avoid GPS challenging environments as far as possible. If these challenging environments cannot be avoided, the GPS positioning solution is improved by using obstruction adaptive elevation masks, to mitigate systematic GPS errors in the RTK-GPS positioning. Simulations and results of field tests demonstrate the profit of both strategies.

  18. GPS Imaging suggests links between climate, magmatism, seismicity, and tectonics in the Sierra Nevada-Long Valley Caldera-Walker Lane system, western United States

    Science.gov (United States)

    Hammond, W. C.; Blewitt, G.; Kreemer, C.; Smith, K.

    2017-12-01

    The Walker Lane is a region of complex active crustal transtension in the western Great Basin of the western United States, accommodating about 20% of the 50 mm/yr relative motion between the Pacific and North American plates. The Long Valley caldera lies in the central Walker Lane in eastern California, adjacent to the eastern boundary of the Sierra Nevada/Great Valley microplate, and experiences intermittent inflation, uplift, and volcanic unrest from the magma chamber that resides at middle crustal depths. Normal and transform faults accommodating regional tectonic transtension pass by and through the caldera, complicating the interpretation of the GPS-measured strain rate field, estimates of fault slip rates, and seismic hazard. Several dozen continuously recording GPS stations measure strain and uplift in the area with mm precision. They observe that the most recent episode of uplift at Long Valley began in mid-2011, continuing until late 2016, raising the surface by 100 mm in 6 years. The timing of the initiation of uplift coincides with the beginning of severe drought in California. Furthermore, the timing of a recent pause in uplift coincides with the very wet 2016-2017 winter, which saw approximately double normal snow pack. In prior studies, we showed that the timing of changes in geodetically measured uplift rate of the Sierra Nevada coincides with the timing of drought conditions in California, suggesting a link between hydrological loading and Sierra Nevada elevation. Here we take the analysis three steps further to show that changes in Sierra Nevada uplift rate coincide in time with 1) enhanced inflation at the Long Valley caldera, 2) shifts in the patterns and rates of horizontal tensor strain rate, and 3) seismicity patterns in the central Walker Lane. We use GPS solutions from the Nevada Geodetic Laboratory and the new GPS Imaging technique to produce robust animations of the time variable strain and uplift fields. The goals of this work are to

  19. Penerapan Teknologi GPS Tracker Untuk Identifikasi Kondisi Traffik Jalan Raya

    Directory of Open Access Journals (Sweden)

    IM. O. Widyantara

    2015-06-01

    Full Text Available Real time tracking system technology has been made possible by integrating three technologies, namely global positioning system (GPS, database technologies such as geographic information system (GIS and mobile telecommunications technologies such as general packet radio service (GPRS. This paper has proposed a vehicle tracking mechanism based on GPS tracker to build a real-time traffic information system. A GPS server is built to process data of position and speed of the vehicle for further processed into vehicle traffic information. The Server and GPS tracker is designed to communicate using GPRS services in real time. Furthermore, the server processes the data from the GPS tracker into traffic information such as traffic jam, dense, medium and smoothly. Test results showed that the GPS server is able to visualize the real position of the vehicle and is able to decide the category of traffic information in real time.

  20. Data management system performance modeling

    Science.gov (United States)

    Kiser, Larry M.

    1993-01-01

    This paper discusses analytical techniques that have been used to gain a better understanding of the Space Station Freedom's (SSF's) Data Management System (DMS). The DMS is a complex, distributed, real-time computer system that has been redesigned numerous times. The implications of these redesigns have not been fully analyzed. This paper discusses the advantages and disadvantages for static analytical techniques such as Rate Monotonic Analysis (RMA) and also provides a rationale for dynamic modeling. Factors such as system architecture, processor utilization, bus architecture, queuing, etc. are well suited for analysis with a dynamic model. The significance of performance measures for a real-time system are discussed.

  1. A Kalman Filter Implementation for Precision Improvement in Low-Cost GPS Positioning of Tractors

    Science.gov (United States)

    Gomez-Gil, Jaime; Ruiz-Gonzalez, Ruben; Alonso-Garcia, Sergio; Gomez-Gil, Francisco Javier

    2013-01-01

    Low-cost GPS receivers provide geodetic positioning information using the NMEA protocol, usually with eight digits for latitude and nine digits for longitude. When these geodetic coordinates are converted into Cartesian coordinates, the positions fit in a quantization grid of some decimeters in size, the dimensions of which vary depending on the point of the terrestrial surface. The aim of this study is to reduce the quantization errors of some low-cost GPS receivers by using a Kalman filter. Kinematic tractor model equations were employed to particularize the filter, which was tuned by applying Monte Carlo techniques to eighteen straight trajectories, to select the covariance matrices that produced the lowest Root Mean Square Error in these trajectories. Filter performance was tested by using straight tractor paths, which were either simulated or real trajectories acquired by a GPS receiver. The results show that the filter can reduce the quantization error in distance by around 43%. Moreover, it reduces the standard deviation of the heading by 75%. Data suggest that the proposed filter can satisfactorily preprocess the low-cost GPS receiver data when used in an assistance guidance GPS system for tractors. It could also be useful to smooth tractor GPS trajectories that are sharpened when the tractor moves over rough terrain. PMID:24217355

  2. Evaluation of EIT system performance.

    Science.gov (United States)

    Yasin, Mamatjan; Böhm, Stephan; Gaggero, Pascal O; Adler, Andy

    2011-07-01

    An electrical impedance tomography (EIT) system images internal conductivity from surface electrical stimulation and measurement. Such systems necessarily comprise multiple design choices from cables and hardware design to calibration and image reconstruction. In order to compare EIT systems and study the consequences of changes in system performance, this paper describes a systematic approach to evaluate the performance of the EIT systems. The system to be tested is connected to a saline phantom in which calibrated contrasting test objects are systematically positioned using a position controller. A set of evaluation parameters are proposed which characterize (i) data and image noise, (ii) data accuracy, (iii) detectability of single contrasts and distinguishability of multiple contrasts, and (iv) accuracy of reconstructed image (amplitude, resolution, position and ringing). Using this approach, we evaluate three different EIT systems and illustrate the use of these tools to evaluate and compare performance. In order to facilitate the use of this approach, all details of the phantom, test objects and position controller design are made publicly available including the source code of the evaluation and reporting software.

  3. Nonlinear Filtering with IMM Algorithm for Ultra-Tight GPS/INS Integration

    Directory of Open Access Journals (Sweden)

    Dah-Jing Jwo

    2013-05-01

    Full Text Available Abstract This paper conducts a performance evaluation for the ultra-tight integration of a Global positioning system (GPS and an inertial navigation system (INS, using nonlinear filtering approaches with an interacting multiple model (IMM algorithm. An ultra-tight GPS/INS architecture involves the integration of in-phase and quadrature components from the correlator of a GPS receiver with INS data. An unscented Kalman filter (UKF, which employs a set of sigma points by deterministic sampling, avoids the error caused by linearization as in an extended Kalman filter (EKF. Based on the filter structural adaptation for describing various dynamic behaviours, the IMM nonlinear filtering provides an alternative for designing the adaptive filter in the ultra-tight GPS/INS integration. The use of IMM enables tuning of an appropriate value for the process of noise covariance so as to maintain good estimation accuracy and tracking capability. Two examples are provided to illustrate the effectiveness of the design and demonstrate the effective improvement in navigation estimation accuracy. A performance comparison among various filtering methods for ultra-tight integration of GPS and INS is also presented. The IMM based nonlinear filtering approach demonstrates the effectiveness of the algorithm for improved positioning performance.

  4. GPS-Aided Video Tracking

    Directory of Open Access Journals (Sweden)

    Udo Feuerhake

    2015-08-01

    Full Text Available Tracking moving objects is both challenging and important for a large variety of applications. Different technologies based on the global positioning system (GPS and video or radio data are used to obtain the trajectories of the observed objects. However, in some use cases, they fail to provide sufficiently accurate, complete and correct data at the same time. In this work we present an approach for fusing GPS- and video-based tracking in order to exploit their individual advantages. In this way we aim to combine the reliability of GPS tracking with the high geometric accuracy of camera detection. For the fusion of the movement data provided by the different devices we use a hidden Markov model (HMM formulation and the Viterbi algorithm to extract the most probable trajectories. In three experiments, we show that our approach is able to deal with challenging situations like occlusions or objects which are temporarily outside the monitored area. The results show the desired increase in terms of accuracy, completeness and correctness.

  5. Fast-Acquisition/Weak-Signal-Tracking GPS Receiver for HEO

    Science.gov (United States)

    Wintemitz, Luke; Boegner, Greg; Sirotzky, Steve

    2004-01-01

    A report discusses the technical background and design of the Navigator Global Positioning System (GPS) receiver -- . a radiation-hardened receiver intended for use aboard spacecraft. Navigator is capable of weak signal acquisition and tracking as well as much faster acquisition of strong or weak signals with no a priori knowledge or external aiding. Weak-signal acquisition and tracking enables GPS use in high Earth orbits (HEO), and fast acquisition allows for the receiver to remain without power until needed in any orbit. Signal acquisition and signal tracking are, respectively, the processes of finding and demodulating a signal. Acquisition is the more computationally difficult process. Previous GPS receivers employ the method of sequentially searching the two-dimensional signal parameter space (code phase and Doppler). Navigator exploits properties of the Fourier transform in a massively parallel search for the GPS signal. This method results in far faster acquisition times [in the lab, 12 GPS satellites have been acquired with no a priori knowledge in a Low-Earth-Orbit (LEO) scenario in less than one second]. Modeling has shown that Navigator will be capable of acquiring signals down to 25 dB-Hz, appropriate for HEO missions. Navigator is built using the radiation-hardened ColdFire microprocessor and housing the most computationally intense functions in dedicated field-programmable gate arrays. The high performance of the algorithm and of the receiver as a whole are made possible by optimizing computational efficiency and carefully weighing tradeoffs among the sampling rate, data format, and data-path bit width.

  6. Performance Confirmation Data Acquisition System

    International Nuclear Information System (INIS)

    D.W. Markman

    2000-01-01

    The purpose of this analysis is to identify and analyze concepts for the acquisition of data in support of the Performance Confirmation (PC) program at the potential subsurface nuclear waste repository at Yucca Mountain. The scope and primary objectives of this analysis are to: (1) Review the criteria for design as presented in the Performance Confirmation Data Acquisition/Monitoring System Description Document, by way of the Input Transmittal, Performance Confirmation Input Criteria (CRWMS M and O 1999c). (2) Identify and describe existing and potential new trends in data acquisition system software and hardware that would support the PC plan. The data acquisition software and hardware will support the field instruments and equipment that will be installed for the observation and perimeter drift borehole monitoring, and in-situ monitoring within the emplacement drifts. The exhaust air monitoring requirements will be supported by a data communication network interface with the ventilation monitoring system database. (3) Identify the concepts and features that a data acquisition system should have in order to support the PC process and its activities. (4) Based on PC monitoring needs and available technologies, further develop concepts of a potential data acquisition system network in support of the PC program and the Site Recommendation and License Application

  7. Computed radiography systems performance evaluation

    International Nuclear Information System (INIS)

    Xavier, Clarice C.; Nersissian, Denise Y.; Furquim, Tania A.C.

    2009-01-01

    The performance of a computed radiography system was evaluated, according to the AAPM Report No. 93. Evaluation tests proposed by the publication were performed, and the following nonconformities were found: imaging p/ate (lP) dark noise, which compromises the clinical image acquired using the IP; exposure indicator uncalibrated, which can cause underexposure to the IP; nonlinearity of the system response, which causes overexposure; resolution limit under the declared by the manufacturer and erasure thoroughness uncalibrated, impairing structures visualization; Moire pattern visualized at the grid response, and IP Throughput over the specified by the manufacturer. These non-conformities indicate that digital imaging systems' lack of calibration can cause an increase in dose in order that image prob/ems can be so/ved. (author)

  8. Tightly coupled low cost 3D RISS/GPS integration using a mixture particle filter for vehicular navigation.

    Science.gov (United States)

    Georgy, Jacques; Noureldin, Aboelmagd

    2011-01-01

    Satellite navigation systems such as the global positioning system (GPS) are currently the most common technique used for land vehicle positioning. However, in GPS-denied environments, there is an interruption in the positioning information. Low-cost micro-electro mechanical system (MEMS)-based inertial sensors can be integrated with GPS and enhance the performance in denied GPS environments. The traditional technique for this integration problem is Kalman filtering (KF). Due to the inherent errors of low-cost MEMS inertial sensors and their large stochastic drifts, KF, with its linearized models, has limited capabilities in providing accurate positioning. Particle filtering (PF) was recently suggested as a nonlinear filtering technique to accommodate for arbitrary inertial sensor characteristics, motion dynamics and noise distributions. An enhanced version of PF called the Mixture PF is utilized in this study to perform tightly coupled integration of a three dimensional (3D) reduced inertial sensors system (RISS) with GPS. In this work, the RISS consists of one single-axis gyroscope and a two-axis accelerometer used together with the vehicle's odometer to obtain 3D navigation states. These sensors are then integrated with GPS in a tightly coupled scheme. In loosely-coupled integration, at least four satellites are needed to provide acceptable GPS position and velocity updates for the integration filter. The advantage of the tightly-coupled integration is that it can provide GPS measurement update(s) even when the number of visible satellites is three or lower, thereby improving the operation of the navigation system in environments with partial blockages by providing continuous aiding to the inertial sensors even during limited GPS satellite availability. To effectively exploit the capabilities of PF, advanced modeling for the stochastic drift of the vertically aligned gyroscope is used. In order to benefit from measurement updates for such drift, which are

  9. Tightly Coupled Low Cost 3D RISS/GPS Integration Using a Mixture Particle Filter for Vehicular Navigation

    Directory of Open Access Journals (Sweden)

    Jacques Georgy

    2011-04-01

    Full Text Available Satellite navigation systems such as the global positioning system (GPS are currently the most common technique used for land vehicle positioning. However, in GPS-denied environments, there is an interruption in the positioning information. Low-cost micro-electro mechanical system (MEMS-based inertial sensors can be integrated with GPS and enhance the performance in denied GPS environments. The traditional technique for this integration problem is Kalman filtering (KF. Due to the inherent errors of low-cost MEMS inertial sensors and their large stochastic drifts, KF, with its linearized models, has limited capabilities in providing accurate positioning. Particle filtering (PF was recently suggested as a nonlinear filtering technique to accommodate for arbitrary inertial sensor characteristics, motion dynamics and noise distributions. An enhanced version of PF called the Mixture PF is utilized in this study to perform tightly coupled integration of a three dimensional (3D reduced inertial sensors system (RISS with GPS. In this work, the RISS consists of one single-axis gyroscope and a two-axis accelerometer used together with the vehicle’s odometer to obtain 3D navigation states. These sensors are then integrated with GPS in a tightly coupled scheme. In loosely-coupled integration, at least four satellites are needed to provide acceptable GPS position and velocity updates for the integration filter. The advantage of the tightly-coupled integration is that it can provide GPS measurement update(s even when the number of visible satellites is three or lower, thereby improving the operation of the navigation system in environments with partial blockages by providing continuous aiding to the inertial sensors even during limited GPS satellite availability. To effectively exploit the capabilities of PF, advanced modeling for the stochastic drift of the vertically aligned gyroscope is used. In order to benefit from measurement updates for such drift

  10. A RLS-SVM Aided Fusion Methodology for INS during GPS Outages.

    Science.gov (United States)

    Yao, Yiqing; Xu, Xiaosu

    2017-02-24

    In order to maintain a relatively high accuracy of navigation performance during global positioning system (GPS) outages, a novel robust least squares support vector machine (LS-SVM)-aided fusion methodology is explored to provide the pseudo-GPS position information for the inertial navigation system (INS). The relationship between the yaw, specific force, velocity, and the position increment is modeled. Rather than share the same weight in the traditional LS-SVM, the proposed algorithm allocates various weights for different data, which makes the system immune to the outliers. Field test data was collected to evaluate the proposed algorithm. The comparison results indicate that the proposed algorithm can effectively provide position corrections for standalone INS during the 300 s GPS outage, which outperforms the traditional LS-SVM method. Historical information is also involved to better represent the vehicle dynamics.

  11. A RLS-SVM Aided Fusion Methodology for INS during GPS Outages

    Directory of Open Access Journals (Sweden)

    Yiqing Yao

    2017-02-01

    Full Text Available In order to maintain a relatively high accuracy of navigation performance during global positioning system (GPS outages, a novel robust least squares support vector machine (LS-SVM-aided fusion methodology is explored to provide the pseudo-GPS position information for the inertial navigation system (INS. The relationship between the yaw, specific force, velocity, and the position increment is modeled. Rather than share the same weight in the traditional LS-SVM, the proposed algorithm allocates various weights for different data, which makes the system immune to the outliers. Field test data was collected to evaluate the proposed algorithm. The comparison results indicate that the proposed algorithm can effectively provide position corrections for standalone INS during the 300 s GPS outage, which outperforms the traditional LS-SVM method. Historical information is also involved to better represent the vehicle dynamics.

  12. Effect of using GPS autosteer guidance systems on the eye-glance behavior and posture of tractor operators.

    Science.gov (United States)

    Karimi, D; Henry, J; Mann, D D

    2012-10-01

    Tractor operators are prone to neck and back discomfort and disorders. It is well known that awkward posture is a major contributor to this problem. Previous studies have investigated the prevalence of awkward posture and the resulting discomfort and disorders among tractor operators. They have also suggested various ways to mitigate this problem. With the introduction of new autosteer guidance systems, the tractor operator is relieved from the task of steering the tractor for most of the time during field work. Therefore, it is expected that the operator's posture will change. The goal of this study was to investigate the changes in the eye-glance behavior and posture of tractor operators as a result of using autosteer guidance systems. An eye-tracking system and a camcorder were used to record the eye-glance behavior and posture of 13 tractor operators as they performed seeding operations. The experiment with each operator consisted of two sessions. In one session, the operator used an autosteer system, while in the other session the operator steered the tractor manually. Analysis of the data showed that the eye-glance behavior and posture of the operators were significantly different between the autosteer and manual steering sessions. With the autosteer system, the operators spent less time in an awkward posture, and they changed their posture less frequently. However, even with the autosteer system, the operators spent 1/3 of their time in an awkward posture. Subjective feedback from the operators indicated that more than half of them experienced back or neck/shoulder discomfort during or after seeding. It is essential that the recommendations of the previous studies, such as using large rear-view mirrors or a rotating tractor seat, be evaluated when the operator is using an autosteer system. Other tools, such as video cameras that show the attached equipment, should also be tested to evaluate their effectiveness in reducing the operator's exposure to awkward

  13. GPS satellite surveying

    CERN Document Server

    Leick, Alfred; Tatarnikov, Dmitry

    2015-01-01

    THE MOST COMPREHENSIVE, UP-TO-DATE GUIDE ON GPS TECHNOLOGY FOR SURVEYING Three previous editions have established GPS Satellite Surveying as the definitive industry reference. Now fully updated and expanded to reflect the newest developments in the field, this Fourth Edition features cutting-edge information on GNSS antennas, precise point positioning, real-time relative positioning, lattice reduction, and much more. Expert authors examine additional tools and applications, offering complete coverage of geodetic surveying using satellite technologies. The past decade has seen a major evolut

  14. Azimuth selection for sea level measurements using geodetic GPS receivers

    Science.gov (United States)

    Wang, Xiaolei; Zhang, Qin; Zhang, Shuangcheng

    2018-03-01

    Based on analysis of Global Positioning System (GPS) multipath signals recorded by a geodetic GPS receiver, GPS Reflectometry (GPS-R) has demonstrated unique advantages in relation to sea level monitoring. Founded on multipath reflectometry theory, sea level changes can be measured by GPS-R through spectral analysis of recorded signal-to-noise ratio data. However, prior to estimating multipath parameters, it is necessary to define azimuth and elevation angle mask to ensure the reflecting zones are on water. Here, a method is presented to address azimuth selection, a topic currently under active development in the field of GPS-R. Data from three test sites: the Kachemak Bay GPS site PBAY in Alaska (USA), Friday Harbor GPS site SC02 in the San Juan Islands (USA), and Brest Harbor GPS site BRST in Brest (France) are analyzed. These sites are located in different multipath environments, from a rural coastal area to a busy harbor, and they experience different tidal ranges. Estimates by the GPS tide gauges at azimuths selected by the presented method are compared with measurements from physical tide gauges and acceptable correspondence found for all three sites.

  15. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation.

    Science.gov (United States)

    Tsuda, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10-100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50-90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10-50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet.

  16. Briefing Highlights Vulnerability of GPS to Adverse Space Weather

    Science.gov (United States)

    Balcerak, Ernie

    2011-08-01

    Through its effects on GPS and other technologies, space weather can affect a variety of industries, including agriculture, commercial air travel, and emergency response. Speakers focused on these topics at a 22 June briefing on Capitol Hill in Washington, D. C. Solar flares can produce radio bursts that directly interfere with GPS signals. Solar activity can also cause ionospheric disturbances that produce distortions and delays in GPS signals, degrading the accuracy of positioning and navigation systems.

  17. Evaluation of the Strategy-Structure Fit of Space and Missile Systems Center Detachment 11

    National Research Council Canada - National Science Library

    Gates, Tommy

    2001-01-01

    ... (SBlRSl, and the Global Positioning System (GPS). The Detachment performs operational software maintenance, satellite systems engineering, space testing and evaluation, and technology master planning...

  18. Subsonic Performance of Ejector Systems

    Science.gov (United States)

    Weil, Samuel

    Combined cycle engines combining scramjets with turbo jets or rockets can provide efficient hypersonic flight. Ejectors have the potential to increase the thrust and efficiency of combined cycle engines near static conditions. A computer code was developed to support the design of a small-scale, turbine-based combined cycle demonstrator with an ejector, built around a commercially available turbojet engine. This code was used to analyze the performance of an ejector system built around a micro-turbojet. With the use of a simple ejector, net thrust increases as large as 20% over the base engine were predicted. Additionally the specific fuel consumption was lowered by 10%. Increasing the secondary to primary area ratio of the ejector lead to significant improvements in static thrust, specific fuel consumption (SFC), and propulsive efficiency. Further ejector performance improvements can be achieved by using a diffuser. Ejector performance drops off rapidly with increasing Mach number. The ejector has lower thrust and higher SFC than the turbojet core at Mach numbers above 0.2. When the nozzle chokes a significant drop in ejector performance is seen. When a diffuser is used, higher Mach numbers lead to choking in the mixer and a shock in the nozzle causing a significant decrease in ejector performance. Evaluation of different turbo jets shows that ejector performance depends significantly on the properties of the turbojet. Static thrust and SFC improvements can be achieved with increasing ejector area for all engines, but size of increase and change in performance at higher Mach numbers depend heavily on the turbojet. The use of an ejector in a turbine based combined cycle configuration also increases performance at static conditions with a thrust increase of 5% and SFC decrease of 5% for the tested configuration.

  19. GPS Ephemeris Message Broadcast Simulation

    National Research Council Canada - National Science Library

    Browne, Nathan J; Light, James J

    2005-01-01

    The warfighter constantly needs increased accuracy from GPS and a means to increasing this accuracy to the decimeter level is a broadcast ephemeris message containing GPS satellite orbit and clock corrections...

  20. Advancing Technology: GPS and GIS Outreach Training for Agricultural Producers

    Science.gov (United States)

    Flynn, Allison; Arnold, Shannon

    2010-01-01

    The use of the Global Positioning System (GPS) and Global Information Systems (GIS) has made significant impacts on agricultural production practices. However, constant changes in the technologies require continuing educational updates. The outreach program described here introduces the operation, use, and applications of GPS receivers and GIS…

  1. PDOP values for simulated GPS/Galileo positioning

    DEFF Research Database (Denmark)

    Cederholm, Jens Peter

    2005-01-01

    The paper illustrates satellite coverage and PDOP values for a simulated combined GPS/Galileo system. The designed GPS satellite constellation and the planned Galileo satellite constellation are presented. The combined system is simulated and the number of visible satellites and PDOP values...

  2. Effect of forest canopy on GPS-based movement data

    Science.gov (United States)

    Nicholas J. DeCesare; John R. Squires; Jay A. Kolbe

    2005-01-01

    The advancing role of Global Positioning System (GPS) technology in ecology has made studies of animal movement possible for larger and more vagile species. A simple field test revealed that lengths of GPS-based movement data were strongly biased (Pof forest canopy. Global Positioning System error added an average of 27.5% additional...

  3. Variability in GPS sources

    NARCIS (Netherlands)

    Jauncey, DL; King, EA; Bignall, HE; Lovell, JEJ; Kedziora-Chudczer, L; Tzioumis, AK; Tingay, SJ; Macquart, JP; McCulloch, PM

    2003-01-01

    Flux density monitoring data at 2.3 and 8.4 GHz is presented for a sample of 33 southern hemisphere GPS sources, drawn from the 2.7 GHz Parkes survey. This monitoring data, together with VLBI monitoring data, shows that a small fraction of these sources, similar to10%, vary. Their variability falls

  4. Physical applications of GPS geodesy: a review.

    Science.gov (United States)

    Bock, Yehuda; Melgar, Diego

    2016-10-01

    Geodesy, the oldest science, has become an important discipline in the geosciences, in large part by enhancing Global Positioning System (GPS) capabilities over the last 35 years well beyond the satellite constellation's original design. The ability of GPS geodesy to estimate 3D positions with millimeter-level precision with respect to a global terrestrial reference frame has contributed to significant advances in geophysics, seismology, atmospheric science, hydrology, and natural hazard science. Monitoring the changes in the positions or trajectories of GPS instruments on the Earth's land and water surfaces, in the atmosphere, or in space, is important for both theory and applications, from an improved understanding of tectonic and magmatic processes to developing systems for mitigating the impact of natural hazards on society and the environment. Besides accurate positioning, all disturbances in the propagation of the transmitted GPS radio signals from satellite to receiver are mined for information, from troposphere and ionosphere delays for weather, climate, and natural hazard applications, to disturbances in the signals due to multipath reflections from the solid ground, water, and ice for environmental applications. We review the relevant concepts of geodetic theory, data analysis, and physical modeling for a myriad of processes at multiple spatial and temporal scales, and discuss the extensive global infrastructure that has been built to support GPS geodesy consisting of thousands of continuously operating stations. We also discuss the integration of heterogeneous and complementary data sets from geodesy, seismology, and geology, focusing on crustal deformation applications and early warning systems for natural hazards.

  5. Integration of GPS precise point positioning and MEMS-based INS using unscented particle filter.

    Science.gov (United States)

    Abd Rabbou, Mahmoud; El-Rabbany, Ahmed

    2015-03-25

    Integration of Global Positioning System (GPS) and Inertial Navigation System (INS) integrated system involves nonlinear motion state and measurement models. However, the extended Kalman filter (EKF) is commonly used as the estimation filter, which might lead to solution divergence. This is usually encountered during GPS outages, when low-cost micro-electro-mechanical sensors (MEMS) inertial sensors are used. To enhance the navigation system performance, alternatives to the standard EKF should be considered. Particle filtering (PF) is commonly considered as a nonlinear estimation technique to accommodate severe MEMS inertial sensor biases and noise behavior. However, the computation burden of PF limits its use. In this study, an improved version of PF, the unscented particle filter (UPF), is utilized, which combines the unscented Kalman filter (UKF) and PF for the integration of GPS precise point positioning and MEMS-based inertial systems. The proposed filter is examined and compared with traditional estimation filters, namely EKF, UKF and PF. Tightly coupled mechanization is adopted, which is developed in the raw GPS and INS measurement domain. Un-differenced ionosphere-free linear combinations of pseudorange and carrier-phase measurements are used for PPP. The performance of the UPF is analyzed using a real test scenario in downtown Kingston, Ontario. It is shown that the use of UPF reduces the number of samples needed to produce an accurate solution, in comparison with the traditional PF, which in turn reduces the processing time. In addition, UPF enhances the positioning accuracy by up to 15% during GPS outages, in comparison with EKF. However, all filters produce comparable results when the GPS measurement updates are available.

  6. GPS phase scintillation during the geomagnetic storm of March 17, 2015: The relation to auroral electrojet currents

    DEFF Research Database (Denmark)

    Prikryl, Paul; Ghoddousi-Fard, Reza; Connors, Martin

    and magnetometers. GPS phase scintillation index is computed for L1 signal sampled at the rate of 50 Hz by specialized GPS scintillation receivers of the Expanded Canadian High Arctic Ionospheric Network (ECHAIN). To further extend the geographic coverage, the phasescintillation proxy index is obtained from......Ionospheric irregularities cause rapid fluctuations of radio wave amplitude and phase that candegrade GPS positional accuracy and affect performance of radio communication and navigation systems. The ionosphere becomes particularly disturbed during geomagnetic storms caused by impacts of coronal...... mass ejections compounded by high-speed plasma streams from coronal holes. Geomagnetic storm of March 17, 2015 was the largest in the current solar cycle. The high-latitude ionosphere dynamics is studied using arrays of ground-based instruments including GPS receivers, HF radars, ionosondes, riometers...

  7. Suomi NPP Ground System Performance

    Science.gov (United States)

    Grant, K. D.; Bergeron, C.

    2013-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). JPSS will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The first satellite in the JPSS constellation, known as the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite, was launched on 28 October 2011, and is currently undergoing product calibration and validation activities. As products reach a beta level of maturity, they are made available to the community through NOAA's Comprehensive Large Array-data Stewardship System (CLASS). CGS's data processing capability processes the satellite data from the Joint Polar Satellite System satellites to provide environmental data products (including Sensor Data Records (SDRs) and Environmental Data Records (EDRs)) to NOAA and Department of Defense (DoD) processing centers operated by the United States government. CGS is currently processing and delivering SDRs and EDRs for Suomi NPP and will continue through the lifetime of the Joint Polar Satellite System programs. Following the launch and sensor activation phase of the Suomi NPP mission, full volume data traffic is now flowing from the satellite through CGS's C3, data processing, and data delivery systems. Ground system performance is critical for this operational system. As part of early system checkout, Raytheon measured all aspects of data acquisition, routing, processing, and delivery to ensure operational performance requirements are met, and will continue to be met throughout the mission. Raytheon developed a tool to measure, categorize, and

  8. Semantic Enrichment of GPS Trajectories

    NARCIS (Netherlands)

    de Graaff, V.; van Keulen, Maurice; de By, R.A.

    2012-01-01

    Semantic annotation of GPS trajectories helps us to recognize the interests of the creator of the GPS trajectories. Automating this trajectory annotation circumvents the requirement of additional user input. To annotate the GPS traces automatically, two types of automated input are required: 1) a

  9. Efficient GPS Position Determination Algorithms

    National Research Council Canada - National Science Library

    Nguyen, Thao Q

    2007-01-01

    ... differential GPS algorithm for a network of users. The stand-alone user GPS algorithm is a direct, closed-form, and efficient new position determination algorithm that exploits the closed-form solution of the GPS trilateration equations and works...

  10. New constraints on slip rates and locking depths of the San Andreas Fault System from Sentinel-1A InSAR and GAGE GPS observations

    Science.gov (United States)

    Ward, L. A.; Smith-Konter, B. R.; Higa, J. T.; Xu, X.; Tong, X.; Sandwell, D. T.

    2017-12-01

    After over a decade of operation, the EarthScope (GAGE) Facility has now accumulated a wealth of GPS and InSAR data, that when successfully integrated, make it possible to image the entire San Andreas Fault System (SAFS) with unprecedented spatial coverage and resolution. Resulting surface velocity and deformation time series products provide critical boundary conditions needed for improving our understanding of how faults are loaded across a broad range of temporal and spatial scales. Moreover, our understanding of how earthquake cycle deformation is influenced by fault zone strength and crust/mantle rheology is still developing. To further study these processes, we construct a new 4D earthquake cycle model of the SAFS representing the time-dependent 3D velocity field associated with interseismic strain accumulation, co-seismic slip, and postseismic viscoelastic relaxation. This high-resolution California statewide model, spanning the Cerro Prieto fault to the south to the Maacama fault to the north, is constructed on a 500 m spaced grid and comprises variable slip and locking depths along 42 major fault segments. Secular deep slip is prescribed from the base of the locked zone to the base of the elastic plate while episodic shallow slip is prescribed from the historical earthquake record and geologic recurrence intervals. Locking depths and slip rates for all 42 fault segments are constrained by the newest GAGE Facility geodetic observations; 3169 horizontal GPS velocity measurements, combined with over 53,000 line-of-sight (LOS) InSAR velocity observations from Sentinel-1A, are used in a weighted least-squares inversion. To assess slip rate and locking depth sensitivity of a heterogeneous rheology model, we also implement variations in crustal rigidity throughout the plate boundary, assuming a coarse representation of shear modulus variability ranging from 20-40 GPa throughout the (low rigidity) Salton Trough and Basin and Range and the (high rigidity) Central

  11. Improving Ambiguity Resolution for Medium Baselines Using Combined GPS and BDS Dual/Triple-Frequency Observations.

    Science.gov (United States)

    Gao, Wang; Gao, Chengfa; Pan, Shuguo; Wang, Denghui; Deng, Jiadong

    2015-10-30

    The regional constellation of the BeiDou navigation satellite system (BDS) has been providing continuous positioning, navigation and timing services since 27 December 2012, covering China and the surrounding area. Real-time kinematic (RTK) positioning with combined BDS and GPS observations is feasible. Besides, all satellites of BDS can transmit triple-frequency signals. Using the advantages of multi-pseudorange and carrier observations from multi-systems and multi-frequencies is expected to be of much benefit for ambiguity resolution (AR). We propose an integrated AR strategy for medium baselines by using the combined GPS and BDS dual/triple-frequency observations. In the method, firstly the extra-wide-lane (EWL) ambiguities of triple-frequency system, i.e., BDS, are determined first. Then the dual-frequency WL ambiguities of BDS and GPS were resolved with the geometry-based model by using the BDS ambiguity-fixed EWL observations. After that, basic (i.e., L1/L2 or B1/B2) ambiguities of BDS and GPS are estimated together with the so-called ionosphere-constrained model, where the ambiguity-fixed WL observations are added to enhance the model strength. During both of the WL and basic AR, a partial ambiguity fixing (PAF) strategy is adopted to weaken the negative influence of new-rising or low-elevation satellites. Experiments were conducted and presented, in which the GPS/BDS dual/triple-frequency data were collected in Nanjing and Zhengzhou of China, with the baseline distance varying from about 28.6 to 51.9 km. The results indicate that, compared to the single triple-frequency BDS system, the combined system can significantly enhance the AR model strength, and thus improve AR performance for medium baselines with a 75.7% reduction of initialization time on average. Besides, more accurate and stable positioning results can also be derived by using the combined GPS/BDS system.

  12. STILT: System design and performance

    Science.gov (United States)

    Mawson, N. R.; Steele, I. A.; Smith, R. J.

    2013-08-01

    The Small Telescopes Installed at the Liverpool Telescope (STILT) have been in operation since March 2009, collecting wide field data from their position, mounted to the Liverpool Telescope. The two instruments; SkycamT and SkycamZ have been used to create a variability search of the skies visible at La Palma with the limits of 12th and 18th R-band magnitude with fields of view of 21°× 21o and 1°× 1o. We provide here a description of the hardware and software setup and the performance of the system to date.

  13. Integrating GPS with Dead Reckoning Sensors

    DEFF Research Database (Denmark)

    Cederholm, Jens Peter

    2000-01-01

    A vehicle positioning system comprising a GPS receiver, a digital compass, and an odometer was tested on a 2.8-km stretch in Aalborg, Denmark. The system, which merges observations from the three instruments using a Kalman filter, has an update rate of 1 Hz and is intended for use in both urban a...

  14. Plant operator performance evaluation system

    International Nuclear Information System (INIS)

    Ujita, Hiroshi; Fukuda, Mitsuko; Kubota, Ryuji.

    1989-01-01

    A plant operator performance evaluation system to analyze plant operation records during accident training and to identify and classify operator errors has been developed for the purpose of supporting realization of a training and education system for plant operators. A knowledge engineering technique was applied to evaluation of operator behavior by both even-based and symptom-based procedures, in various situations including event transition due to multiple failures or operational errors. The system classifies the identified errors as to their single and double types based on Swain's error classification and the error levels reflecting Rasmussen's cognitive level, and it also evaluates the effect of errors on plant state and then classifies error influence, using 'knowledge for phenomena and operations', as represented by frames. It has additional functions for analysis of error statistics and knowledge acquisition support of 'knowledge for operations'. The system was applied to a training analysis for a scram event in a BWR plant, and its error analysis function was confirmed to be effective by operational experts. (author)

  15. Benefits of Combined GPS/GLONASS with Low-Cost MEMS IMUs for Vehicular Urban Navigation

    Directory of Open Access Journals (Sweden)

    Giovanni Pugliano

    2012-04-01

    Full Text Available The integration of Global Navigation Satellite Systems (GNSS with Inertial Navigation Systems (INS has been very actively researched for many years due to the complementary nature of the two systems. In particular, during the last few years the integration with micro-electromechanical system (MEMS inertial measurement units (IMUs has been investigated. In fact, recent advances in MEMS technology have made possible the development of a new generation of low cost inertial sensors characterized by small size and light weight, which represents an attractive option for mass-market applications such as vehicular and pedestrian navigation. However, whereas there has been much interest in the integration of GPS with a MEMS-based INS, few research studies have been conducted on expanding this application to the revitalized GLONASS system. This paper looks at the benefits of adding GLONASS to existing GPS/INS(MEMS systems using loose and tight integration strategies. The relative benefits of various constraints are also assessed. Results show that when satellite visibility is poor (approximately 50% solution availability the benefits of GLONASS are only seen with tight integration algorithms. For more benign environments, a loosely coupled GPS/GLONASS/INS system offers performance comparable to that of a tightly coupled GPS/INS system, but with reduced complexity and development time.

  16. Benefits of combined GPS/GLONASS with low-cost MEMS IMUs for vehicular urban navigation.

    Science.gov (United States)

    Angrisano, Antonio; Petovello, Mark; Pugliano, Giovanni

    2012-01-01

    The integration of Global Navigation Satellite Systems (GNSS) with Inertial Navigation Systems (INS) has been very actively researched for many years due to the complementary nature of the two systems. In particular, during the last few years the integration with micro-electromechanical system (MEMS) inertial measurement units (IMUs) has been investigated. In fact, recent advances in MEMS technology have made possible the development of a new generation of low cost inertial sensors characterized by small size and light weight, which represents an attractive option for mass-market applications such as vehicular and pedestrian navigation. However, whereas there has been much interest in the integration of GPS with a MEMS-based INS, few research studies have been conducted on expanding this application to the revitalized GLONASS system. This paper looks at the benefits of adding GLONASS to existing GPS/INS(MEMS) systems using loose and tight integration strategies. The relative benefits of various constraints are also assessed. Results show that when satellite visibility is poor (approximately 50% solution availability) the benefits of GLONASS are only seen with tight integration algorithms. For more benign environments, a loosely coupled GPS/GLONASS/INS system offers performance comparable to that of a tightly coupled GPS/INS system, but with reduced complexity and development time.

  17. A Multi-Sensorial Simultaneous Localization and Mapping (SLAM) System for Low-Cost Micro Aerial Vehicles in GPS-Denied Environments.

    Science.gov (United States)

    López, Elena; García, Sergio; Barea, Rafael; Bergasa, Luis M; Molinos, Eduardo J; Arroyo, Roberto; Romera, Eduardo; Pardo, Samuel

    2017-04-08

    One of the main challenges of aerial robots navigation in indoor or GPS-denied environments is position estimation using only the available onboard sensors. This paper presents a Simultaneous Localization and Mapping (SLAM) system that remotely calculates the pose and environment map of different low-cost commercial aerial platforms, whose onboard computing capacity is usually limited. The proposed system adapts to the sensory configuration of the aerial robot, by integrating different state-of-the art SLAM methods based on vision, laser and/or inertial measurements using an Extended Kalman Filter (EKF). To do this, a minimum onboard sensory configuration is supposed, consisting of a monocular camera, an Inertial Measurement Unit (IMU) and an altimeter. It allows to improve the results of well-known monocular visual SLAM methods (LSD-SLAM and ORB-SLAM are tested and compared in this work) by solving scale ambiguity and providing additional information to the EKF. When payload and computational capabilities permit, a 2D laser sensor can be easily incorporated to the SLAM system, obtaining a local 2.5D map and a footprint estimation of the robot position that improves the 6D pose estimation through the EKF. We present some experimental results with two different commercial platforms, and validate the system by applying it to their position control.

  18. WGS 84 Coordinate Validation and Improvement for the NIMA and Air Force GPS Tracking Stations

    National Research Council Canada - National Science Library

    Cunningham, James

    1996-01-01

    Using 10 days of Global Positioning System (GPS) pseudorange and carrier phase data collected in 1995 from 31 stations and 24 Block II/IIA satellites, estimates of GPS clocks, orbits, and tracking station coordinates were generated...

  19. Ionospheric correction for spaceborne single-frequency GPS based ...

    Indian Academy of Sciences (India)

    A modified ionospheric correction method and the corresponding approximate algorithm for spaceborne single-frequency Global Positioning System (GPS) users are proposed in this study. Single Layer Model (SLM) mapping function for spaceborne GPS was analyzed. SLM mapping functions at different altitudes were ...

  20. Backyard Botany: Using GPS Technology in the Science Classroom

    Science.gov (United States)

    March, Kathryn A.

    2012-01-01

    Global Positioning System (GPS) technology can be used to connect students to the natural world and improve their skills in observation, identification, and classification. Using GPS devices in the classroom increases student interest in science, encourages team-building skills, and improves biology content knowledge. Additionally, it helps…

  1. GPS & Galileo. Friendly Foes?

    Science.gov (United States)

    2007-04-01

    some of their data, others employ different techniques. United States defense contractor Lockheed Martin developed an anti-jam GPS receiver in 2000 for...Europe in a New Generation of Satellite Navigation Services,” European Commission (9 Feb 1999): 16. 25. Ibid. 26. Anne Jolis , “Problems Run Rampant...European Outer Space,” Euro Topics (19 March 2007), found at http://www.eurotopics.net/en/presseschau/archiv/archiv_dossier/DOSSIER15435. 40. Jolis

  2. Validity and reliability of GPS and LPS for measuring distances covered and sprint mechanical properties in team sports.

    Science.gov (United States)

    Hoppe, Matthias W; Baumgart, Christian; Polglaze, Ted; Freiwald, Jürgen

    2018-01-01

    This study aimed to investigate the validity and reliability of global (GPS) and local (LPS) positioning systems for measuring distances covered and sprint mechanical properties in team sports. Here, we evaluated two recently released 18 Hz GPS and 20 Hz LPS technologies together with one established 10 Hz GPS technology. Six male athletes (age: 27±2 years; VO2max: 48.8±4.7 ml/min/kg) performed outdoors on 10 trials of a team sport-specific circuit that was equipped with double-light timing gates. The circuit included various walking, jogging, and sprinting sections that were performed either in straight-lines or with changes of direction. During the circuit, athletes wore two devices of each positioning system. From the reported and filtered velocity data, the distances covered and sprint mechanical properties (i.e., the theoretical maximal horizontal velocity, force, and power output) were computed. The sprint mechanical properties were modeled via an inverse dynamic approach applied to the center of mass. The validity was determined by comparing the measured and criterion data via the typical error of estimate (TEE), whereas the reliability was examined by comparing the two devices of each technology (i.e., the between-device reliability) via the coefficient of variation (CV). Outliers due to measurement errors were statistically identified and excluded from validity and reliability analyses. The 18 Hz GPS showed better validity and reliability for determining the distances covered (TEE: 1.6-8.0%; CV: 1.1-5.1%) and sprint mechanical properties (TEE: 4.5-14.3%; CV: 3.1-7.5%) than the 10 Hz GPS (TEE: 3.0-12.9%; CV: 2.5-13.0% and TEE: 4.1-23.1%; CV: 3.3-20.0%). However, the 20 Hz LPS demonstrated superior validity and reliability overall (TEE: 1.0-6.0%; CV: 0.7-5.0% and TEE: 2.1-9.2%; CV: 1.6-7.3%). For the 10 Hz GPS, 18 Hz GPS, and 20 Hz LPS, the relative loss of data sets due to measurement errors was 10.0%, 20.0%, and 15.8%, respectively. This study shows that

  3. EXPERIMENTAL MEASUREMENTS OF TAILING UNDERWATER SEDIMENTS AND LIQUID INDUSTRIAL WASTES IN STORAGE TANK ON THE BASIS OF ECHOLOCATION AND GPS-SYSTEMS AT JSC “BELARUSKALI”

    Directory of Open Access Journals (Sweden)

    V. I. Mikhailov

    2016-01-01

    Full Text Available The paper presents a new approach to calculate volume of tailing underwater sediments and liquid industrial wastes on the basis of innovative technologies. Two theodolites which are set at various points and a boat with a load for measuring water depth have been traditionally used for topographic survey of slime storage bottom. Horizontal directions have been simultaneously measured on the boat marker while using theodolites. Water depth has been determined while using  a 2-kg circular load which was descended into brine solution with the help of rope. In addition to rather large time and labour costs such technology has required synchronization in actions on three participants involved in the work: operators of two theodolites and boat team in every depth measuring point. Methodology has been proposed for more efficient solution of the problem. It presupposes the use of echolocation together with space localization systems (GPS-systems which can be set on a boat with the purpose to measure depth of a storage tank bed. An echolocation transducer has been installed under the boat bottom at the depth of 10 cm from the brine solution level in the slime storage.  An aerial of GPS-receiver has been fixed over the echo-sounder transducer. Horizontal positioning of bottom depth measuring points have been carried out in the local coordinate system. Formation of digital model for slime storage bottom has been executed after data input of the coordinate positioning that corresponded to corrected depths in the software package LISCAD Plus SEE. The formation has been made on the basis of a strict triangulation method.  Creation of the digital model makes it rather easy to calculate a volume between a storage bottom and a selected level (height of filling material. In this context it is possible to determine a volume and an area not only above but also lower of the datum surface. For this purpose it is recommended to use digital models which are developed

  4. Impact of a high density GPS network on the operational forecast

    Directory of Open Access Journals (Sweden)

    C. Faccani

    2005-01-01

    Full Text Available Global Positioning System Zenith Total Delay (GPS ZTD can provide information about the water vapour in atmosphere. Its assimilation into the analysis used to initialize a model can then improve the weather forecast, giving the right amount of moisture and reducing the model spinup. In the last year, an high density GPS network has been created on the Basilicata region (south of Italy by the Italian Space Agency in the framework of a national project named MAGIC2. MAGIC2 is the Italian follow on of the EC project MAGIC has. Daily operational data assimilation experiments are performed since December 2003. The results show that the assimilation of GPS ZTD improves the forecast especially during the transition from winter to spring even if a no very high model resolution (9km is used.

  5. PRECISE POSITIONING OF UAVS – DEALING WITH CHALLENGING RTK-GPS MEASUREMENT CONDITIONS DURING AUTOMATED UAV FLIGHTS

    Directory of Open Access Journals (Sweden)

    F. Zimmermann

    2017-08-01

    Full Text Available For some years now, UAVs (unmanned aerial vehicles are commonly used for different mobile mapping applications, such as in the fields of surveying, mining or archeology. To improve the efficiency of these applications an automation of the flight as well as the processing of the collected data is currently aimed at. One precondition for an automated mapping with UAVs is that the georeferencing is performed directly with cm-accuracies or better. Usually, a cm-accurate direct positioning of UAVs is based on an onboard multi-sensor system, which consists of an RTK-capable (real-time kinematic GPS (global positioning system receiver and additional sensors (e.g. inertial sensors. In this case, the absolute positioning accuracy essentially depends on the local GPS measurement conditions. Especially during mobile mapping applications in urban areas, these conditions can be very challenging, due to a satellite shadowing, non-line-of sight receptions, signal diffraction or multipath effects. In this paper, two straightforward and easy to implement strategies will be described and analyzed, which improve the direct positioning accuracies for UAV-based mapping and surveying applications under challenging GPS measurement conditions. Based on a 3D model of the surrounding buildings and vegetation in the area of interest, a GPS geometry map is determined, which can be integrated in the flight planning process, to avoid GPS challenging environments as far as possible. If these challenging environments cannot be avoided, the GPS positioning solution is improved by using obstruction adaptive elevation masks, to mitigate systematic GPS errors in the RTK-GPS positioning. Simulations and results of field tests demonstrate the profit of both strategies.

  6. GPS Precision Timing at CERN

    CERN Document Server

    Beetham, C G

    1999-01-01

    For the past decade, the Global Positioning System (GPS) has been used to provide precise time, frequency and position co-ordinates world-wide. Recently, equipment has become available specialising in providing extremely accurate timing information, referenced to Universal Time Co-ordinates (UTC). This feature has been used at CERN to provide time of day information for systems that have been installed in the Proton Synchrotron (PS), Super Proton Synchrotron (SPS) and the Large Electron Positron (LEP) machines. The different systems are described as well as the planned developments, particularly with respect to optical transmission and the Inter-Range Instrumentation Group IRIG-B standard, for future use in the Large Hadron Collider (LHC).

  7. AMiBA: SYSTEM PERFORMANCE

    International Nuclear Information System (INIS)

    Lin, K.-Y.; Li, C.-T.; Ho, Paul T.P.; Liu, G.-C.; Koch, Patrick M.; Molnar, Sandor M.; Nishioka, Hiroaki; Umetsu, Keiichi; Altamirano, Pablo; Chang, C.-H.; Chang, S.-H.; Chang, S.-W.; Chen, M.-T.; Martin-Cocher, Pierre; Huang, C.-W.L.; Liao, Y.-W.; Wang, F.-C.; Wu, J.-H.P.; Kestevan, Michael; Birkinshaw, Mark

    2009-01-01

    The Y.T. Lee Array for Microwave Background Anisotropy started scientific operation in early 2007. This work describes the optimization of the system performance for the measurements of the Sunyaev-Zel'dovich effect for six massive galaxy clusters at redshifts 0.09-0.32. We achieved a point-source sensitivity of 63 ± 7 mJy with the seven 0.6 m dishes in 1 hr of on-source integration in two-patch differencing observations. We measured and compensated for the delays between the antennas of our platform-mounted interferometer. Beam switching was used to cancel instrumental instabilities and ground pick up. Total power and phase stability were good on timescales of hours, and the system was shown to integrate down on equivalent timescales of 300 hr per baseline/correlation, or about 10 hr for the entire array. While the broadband correlator leads to good sensitivity, the small number of lags in the correlator resulted in poorly measured bandpass response. We corrected for this by using external calibrators (Jupiter and Saturn). Using Jupiter as the flux standard, we measured the disk brightness temperature of Saturn to be 149 +5 -12 K.

  8. AMiBA: System Performance

    Science.gov (United States)

    Lin, Kai-Yang; Li, Chao-Te; Ho, Paul T. P.; Huang, Chih-Wei Locutus; Liao, Yu-Wei; Liu, Guo-Chin; Koch, Patrick M.; Molnar, Sandor M.; Nishioka, Hiroaki; Umetsu, Keiichi; Wang, Fu-Cheng; Wu, Jiun-Huei Proty; Kestevan, Michael; Birkinshaw, Mark; Altamirano, Pablo; Chang, Chia-Hao; Chang, Shu-Hao; Chang, Su-Wei; Chen, Ming-Tang; Martin-Cocher, Pierre; Han, Chih-Chiang; Huang, Yau-De; Hwang, Yuh-Jing; Ibañez-Roman, Fabiola; Jiang, Homin; Kubo, Derek Y.; Oshiro, Peter; Raffin, Philippe; Wei, Tashun; Wilson, Warwick; Chen, Ke-Jung; Chiueh, Tzihong

    2009-04-01

    The Y.T. Lee Array for Microwave Background Anisotropy started scientific operation in early 2007. This work describes the optimization of the system performance for the measurements of the Sunyaev-Zel'dovich effect for six massive galaxy clusters at redshifts 0.09-0.32. We achieved a point-source sensitivity of 63 ± 7 mJy with the seven 0.6 m dishes in 1 hr of on-source integration in two-patch differencing observations. We measured and compensated for the delays between the antennas of our platform-mounted interferometer. Beam switching was used to cancel instrumental instabilities and ground pick up. Total power and phase stability were good on timescales of hours, and the system was shown to integrate down on equivalent timescales of 300 hr per baseline/correlation, or about 10 hr for the entire array. While the broadband correlator leads to good sensitivity, the small number of lags in the correlator resulted in poorly measured bandpass response. We corrected for this by using external calibrators (Jupiter and Saturn). Using Jupiter as the flux standard, we measured the disk brightness temperature of Saturn to be 149+5 -12 K.

  9. NordicWalking Performance Analysis with an Integrated Monitoring System

    Directory of Open Access Journals (Sweden)

    Francesco Mocera

    2018-05-01

    Full Text Available There is a growing interest in Nordic walking both from the fitness and medical point of views due to its possible therapeutic applications. The proper execution of the technique is an essential requirement to maximize the benefits of this practice. This is the reason why a monitoring system for outdoor Nordic walking activity was developed. Using data obtained from synchronized sensors, it is possible to have a complete overview of the users’ movements. The system described in this paper is able to measure: the pole angle during the pushing phase, the arms cycle frequency and synchronization and the pushing force applied to the ground. Furthermore, data from a GPS module give an image of the environment where the activity session takes place, in terms of the distance, slope, as well as the ground typology. A heart rate sensor is used to monitor the effort of the user through his/her Beats Per Minute (BPM. In this work, the developed monitoring system is presented, explaining how to use the gathered data to obtain the main feedback parameters for Nordic walking performance analysis. The comparison between left and right arm measurements allowed validating the system as a tool for technique evaluation. Finally, a procedure to estimate the peak pushing force from acceleration measurements is proposed.

  10. A Simultaneously Calibration Approach for Installation and Attitude Errors of an INS/GPS/LDS Target Tracker

    Directory of Open Access Journals (Sweden)

    Jianhua Cheng

    2015-02-01

    Full Text Available To obtain the absolute position of a target is one of the basic topics for non-cooperated target tracking problems. In this paper, we present a simultaneously calibration method for an Inertial navigation system (INS/Global position system (GPS/Laser distance scanner (LDS integrated system based target positioning approach. The INS/GPS integrated system provides the attitude and position of observer, and LDS offers the distance between the observer and the target. The two most significant errors are taken into jointly consideration and analyzed: (1 the attitude measure error of INS/GPS; (2 the installation error between INS/GPS and LDS subsystems. Consequently, a INS/GPS/LDS based target positioning approach considering these two errors is proposed. In order to improve the performance of this approach, a novel calibration method is designed to simultaneously estimate and compensate these two main errors. Finally, simulations are conducted to access the performance of the proposed target positioning approach and the designed simultaneously calibration method.

  11. A simultaneously calibration approach for installation and attitude errors of an INS/GPS/LDS target tracker.

    Science.gov (United States)

    Cheng, Jianhua; Chen, Daidai; Sun, Xiangyu; Wang, Tongda

    2015-02-04

    To obtain the absolute position of a target is one of the basic topics for non-cooperated target tracking problems. In this paper, we present a simultaneously calibration method for an Inertial navigation system (INS)/Global position system (GPS)/Laser distance scanner (LDS) integrated system based target positioning approach. The INS/GPS integrated system provides the attitude and position of observer, and LDS offers the distance between the observer and the target. The two most significant errors are taken into jointly consideration and analyzed: (1) the attitude measure error of INS/GPS; (2) the installation error between INS/GPS and LDS subsystems. Consequently, a INS/GPS/LDS based target positioning approach considering these two errors is proposed. In order to improve the performance of this approach, a novel calibration method is designed to simultaneously estimate and compensate these two main errors. Finally, simulations are conducted to access the performance of the proposed target positioning approach and the designed simultaneously calibration method.

  12. Radiotracking large wilderness mammals: Integration of GPS and Argos technology

    Science.gov (United States)

    Schwartz, Charles C.; Arthur, Steve M.

    1999-01-01

    We tested 30 prototype global positioning system (GPS) radiocollars on brown bears (Ursus arctos) over a 3-year period on the Kenai Peninsula, Alaska. Collars were of 2 design types: GPS with an Argos (Argos Data collection and Location System) satellite uplink (n=19) and GPS unites where the data were stored on board (n=10) for retrieval at a later date. All units also contained a conventional VHF (very high frequency) transmitter and weighed 1.7 kg. GPS-Argos united obtained 10-82% of expected GPS fixes, and fix rate declined significantly (Pbears varied more and were lower than fix rates for stationary collars placed in various vegetation types, suggesting that the bear, terrain, and movement all influence both fix and uplink success rate. Application of this new technology to grizzly and brown bear research and comparisons to studies with moose (Alces alces) are discussed.

  13. Time assignment system and its performance aboard the Hitomi satellite

    Science.gov (United States)

    Terada, Yukikatsu; Yamaguchi, Sunao; Sugimoto, Shigenobu; Inoue, Taku; Nakaya, Souhei; Murakami, Maika; Yabe, Seiya; Oshimizu, Kenya; Ogawa, Mina; Dotani, Tadayasu; Ishisaki, Yoshitaka; Mizushima, Kazuyo; Kominato, Takashi; Mine, Hiroaki; Hihara, Hiroki; Iwase, Kaori; Kouzu, Tomomi; Tashiro, Makoto S.; Natsukari, Chikara; Ozaki, Masanobu; Kokubun, Motohide; Takahashi, Tadayuki; Kawakami, Satoko; Kasahara, Masaru; Kumagai, Susumu; Angelini, Lorella; Witthoeft, Michael

    2018-01-01

    Fast timing capability in x-ray observation of astrophysical objects is one of the key properties for the ASTRO-H (Hitomi) mission. Absolute timing accuracies of 350 or 35 μs are required to achieve nominal scientific goals or to study fast variabilities of specific sources. The satellite carries a GPS receiver to obtain accurate time information, which is distributed from the central onboard computer through the large and complex SpaceWire network. The details of the time system on the hardware and software design are described. In the distribution of the time information, the propagation delays and jitters affect the timing accuracy. Six other items identified within the timing system will also contribute to absolute time error. These error items have been measured and checked on ground to ensure the time error budgets meet the mission requirements. The overall timing performance in combination with hardware performance, software algorithm, and the orbital determination accuracies, etc. under nominal conditions satisfies the mission requirements of 35 μs. This work demonstrates key points for space-use instruments in hardware and software designs and calibration measurements for fine timing accuracy on the order of microseconds for midsized satellites using the SpaceWire (IEEE1355) network.

  14. Global Positioning System Derived Performance Measures Are Responsive Indicators of Physical Activity, Disease and the Success of Clinical Treatments in Domestic Dogs

    Science.gov (United States)

    Bruno, Elizabeth A.; Guthrie, James W.; Ellwood, Stephen A.; Mellanby, Richard J.; Clements, Dylan N.

    2015-01-01

    Objective To assess the use of Global Positioning System receiver (GPS) derived performance measures for differentiating between: 1) different outdoor activities in healthy dogs; 2) healthy dogs and those with osteoarthritis; 3) osteoarthritic dogs before and after treatment with non-steroidal anti-inflammatory analgesia. Design Prospective study. Animals Ten healthy dogs and seven dogs with osteoarthritis of the elbow joint (OA dogs). Procedure Healthy dogs were walked on a standard route on-lead, off-lead and subjected to playing activity (chasing a ball) whilst wearing a GPS collar. Each dog was walked for five consecutive days. Dogs with OA were subjected to a single off-lead walk whilst wearing a GPS collar, and then administered oral Carprofen analgesia daily for two weeks. OA dogs were then subjected to the same walk, again wearing a GPS collar. Results GPS derived measures of physical performance could differentiate between on-lead activity, off-lead activity and playing activity in healthy dogs, and between healthy dogs and OA dogs. Variation in the performance measures analysed was greater between individual dogs than for individual dogs on different days. Performance measures could differentiate healthy dogs from OA dogs. OA Dogs treated with Carprofen analgesia showed improvements in their physical performance, which returned to values indistinguishable from those of healthy dogs on nearly all the measures assessed. Conclusions and Clinical Relevance GPS derived measures of physical performance in dogs are objective, easy to quantify, and can be used to gauge the effects of disease and success of clinical treatments. Specific stimuli can be used to modulate physical performance beyond the self-governed boundaries that dogs will naturally express when allowed to exercise freely without stimulation. PMID:25692761

  15. Global positioning system derived performance measures are responsive indicators of physical activity, disease and the success of clinical treatments in domestic dogs.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Bruno

    Full Text Available To assess the use of Global Positioning System receiver (GPS derived performance measures for differentiating between: 1 different outdoor activities in healthy dogs; 2 healthy dogs and those with osteoarthritis; 3 osteoarthritic dogs before and after treatment with non-steroidal anti-inflammatory analgesia.Prospective study.Ten healthy dogs and seven dogs with osteoarthritis of the elbow joint (OA dogs.Healthy dogs were walked on a standard route on-lead, off-lead and subjected to playing activity (chasing a ball whilst wearing a GPS collar. Each dog was walked for five consecutive days. Dogs with OA were subjected to a single off-lead walk whilst wearing a GPS collar, and then administered oral Carprofen analgesia daily for two weeks. OA dogs were then subjected to the same walk, again wearing a GPS collar.GPS derived measures of physical performance could differentiate between on-lead activity, off-lead activity and playing activity in healthy dogs, and between healthy dogs and OA dogs. Variation in the performance measures analysed was greater between individual dogs than for individual dogs on different days. Performance measures could differentiate healthy dogs from OA dogs. OA Dogs treated with Carprofen analgesia showed improvements in their physical performance, which returned to values indistinguishable from those of healthy dogs on nearly all the measures assessed.GPS derived measures of physical performance in dogs are objective, easy to quantify, and can be used to gauge the effects of disease and success of clinical treatments. Specific stimuli can be used to modulate physical performance beyond the self-governed boundaries that dogs will naturally express when allowed to exercise freely without stimulation.

  16. Systemic Approach to Architectural Performance

    Directory of Open Access Journals (Sweden)

    Marie Davidova

    2017-04-01

    Full Text Available First-hand experiences in several design projects that were based on media richness and collaboration are described in this article. Although complex design processes are merely considered as socio-technical systems, they are deeply involved with natural systems. My collaborative research in the field of performance-oriented design combines digital and physical conceptual sketches, simulations and prototyping. GIGA-mapping - is applied to organise the data. The design process uses the most suitable tools, for the subtasks at hand, and the use of media is mixed according to particular requirements. These tools include digital and physical GIGA-mapping, parametric computer aided design (CAD, digital simulation of analyses, as well as sampling and 1:1 prototyping. Also discussed in this article are the methodologies used in several design projects to strategize these tools and the developments and trends in the tools employed.  The paper argues that the digital tools tend to produce similar results through given pre-sets that often do not correspond to real needs. Thus, there is a significant need for mixed methods including prototyping in the creative design process. Media mixing and cooperation across disciplines is unavoidable in the holistic approach to contemporary design. This includes the consideration of diverse biotic and abiotic agents. I argue that physical and digital GIGA-mapping is a crucial tool to use in coping with this complexity. Furthermore, I propose the integration of physical and digital outputs in one GIGA-map and the participation and co-design of biotic and abiotic agents into one rich design research space, which is resulting in an ever-evolving research-design process-result time-based design.

  17. GPS Versus Seismological Observations in two Seismogenic Zones in the Adria-Alps- Pannon System; Block Motion vs. Diffuse Deformation, Increased Earthquake Potential vs. Aseismic Slip

    Science.gov (United States)

    Grenerczy, G.; Bus, Z.; Toth, L.; Monus, P.

    2008-12-01

    The tectonic activity, seismicity and the associated seismic hazard is highly variable in the Adria-Alps-Pannon region. The engine of the system is the Adria microplate that compresses a puzzle of crustal blocks towards the European Platform. Based on seismicity and data of continuous and campaign style GPS measurements between 1991 and 2007 we investigated the existence of different blocks and their present kinematics. At the resolution and signal level we have, deformation seems to be more diffuse and block motion is no longer recognizable over the Pannonian basin towards the Carpathains. Although towards the basin seismicity decreases to moderate, the vulnerability is still high, as three capital cities are located near to the two most active seismic zones in this subregion. Each cities and their suburbs produce about 30- 40 % of the GDP of the respective countries. In the second par of our analysis these two seismically active areas, the Mur-Murz and Central Pannonian zones, are investigated. Uniform strain rates and relative displacements were calculated for these regions. The GPS data confirm the mostly left lateral strike slip character of the Mur-Murz fault zone and suggest a contraction between the eastward moving Alpine-North Pannonian unit and the Carpathians. The computation of the seismic strain rate was based on the Kostrov summation. The averaged unit norm seismic moment tensor, which describes the characteristic style of deformation, has been obtained by using the available focal mechanism solutions, whereas the annual seismic moment release showing the rate of the deformation was estimated using the catalogs of historical and recent earthquakes. Our analysis reveals that in both zones the geodetic strain rate is significantly larger than the seismic deformation. Based on the weakness of the lithosphere, the stress magnitudes and the regional features of seismicity, we suggest that the low value of the seismic/geodetic strain rate ratio in the

  18. Standardization of GPS data processing

    International Nuclear Information System (INIS)

    Park, Pil Ho

    2001-06-01

    A nationwide GPS network has been constructed with about 60 permanent GPS stations after late 1990s in Korea. For using the GPS in variety of application area like crustal deformation, positioning, or monitoring upper atmosphere, it is necessary to have ability to process the data precisely. Now Korea Astronomy Observatory has the precise GPS data processing technique in Korea because it is difficult to understand characteristics of the parameters we want to estimate, resolve the integer ambiguity, and analyze many errors. There are three reliable GPS data processing software in the world ; Bernese(University of Berne), GIPSY-OASIS(JPL), GAMIT(MIT). These software allow us to achieve millimeter accuracy in the horizontal position and about 1 cm accuracy vertically even for regional networks with a diameter of several thousand kilometers. But we established the standard of GPS data processing using Bernese as main tool and GIPSY O ASIS as side

  19. Sensing Human Activity: GPS Tracking

    Science.gov (United States)

    van der Spek, Stefan; van Schaick, Jeroen; de Bois, Peter; de Haan, Remco

    2009-01-01

    The enhancement of GPS technology enables the use of GPS devices not only as navigation and orientation tools, but also as instruments used to capture travelled routes: as sensors that measure activity on a city scale or the regional scale. TU Delft developed a process and database architecture for collecting data on pedestrian movement in three European city centres, Norwich, Rouen and Koblenz, and in another experiment for collecting activity data of 13 families in Almere (The Netherlands) for one week. The question posed in this paper is: what is the value of GPS as ‘sensor technology’ measuring activities of people? The conclusion is that GPS offers a widely useable instrument to collect invaluable spatial-temporal data on different scales and in different settings adding new layers of knowledge to urban studies, but the use of GPS-technology and deployment of GPS-devices still offers significant challenges for future research. PMID:22574061

  20. Sensing Human Activity: GPS Tracking

    Directory of Open Access Journals (Sweden)

    Remco de Haan

    2009-04-01

    Full Text Available The enhancement of GPS technology enables the use of GPS devices not only as navigation and orientation tools, but also as instruments used to capture travelled routes: as sensors that measure activity on a city scale or the regional scale. TU Delft developed a process and database architecture for collecting data on pedestrian movement in three European city centres, Norwich, Rouen and Koblenz, and in another experiment for collecting activity data of 13 families in Almere (The Netherlands for one week. The question posed in this paper is: what is the value of GPS as ‘sensor technology’ measuring activities of people? The conclusion is that GPS offers a widely useable instrument to collect invaluable spatial-temporal data on different scales and in different settings adding new layers of knowledge to urban studies, but the use of GPS-technology and deployment of GPS-devices still offers significant challenges for future research.

  1. Combining GPS measurements and IRI model predictions

    International Nuclear Information System (INIS)

    Hernandez-Pajares, M.; Juan, J.M.; Sanz, J.; Bilitza, D.

    2002-01-01

    The free electrons distributed in the ionosphere (between one hundred and thousands of km in height) produce a frequency-dependent effect on Global Positioning System (GPS) signals: a delay in the pseudo-orange and an advance in the carrier phase. These effects are proportional to the columnar electron density between the satellite and receiver, i.e. the integrated electron density along the ray path. Global ionospheric TEC (total electron content) maps can be obtained with GPS data from a network of ground IGS (international GPS service) reference stations with an accuracy of few TEC units. The comparison with the TOPEX TEC, mainly measured over the oceans far from the IGS stations, shows a mean bias and standard deviation of about 2 and 5 TECUs respectively. The discrepancies between the STEC predictions and the observed values show an RMS typically below 5 TECUs (which also includes the alignment code noise). he existence of a growing database 2-hourly global TEC maps and with resolution of 5x2.5 degrees in longitude and latitude can be used to improve the IRI prediction capability of the TEC. When the IRI predictions and the GPS estimations are compared for a three month period around the Solar Maximum, they are in good agreement for middle latitudes. An over-determination of IRI TEC has been found at the extreme latitudes, the IRI predictions being, typically two times higher than the GPS estimations. Finally, local fits of the IRI model can be done by tuning the SSN from STEC GPS observations

  2. ACCESS Sub-system Performance

    Science.gov (United States)

    Kaiser, Mary Elizabeth; Morris, Matthew J.; Aldoroty, Lauren Nicole; Godon, David; Pelton, Russell; McCandliss, Stephan R.; Kurucz, Robert L.; Kruk, Jeffrey W.; Rauscher, Bernard J.; Kimble, Randy A.; Wright, Edward L.; Benford, Dominic J.; Gardner, Jonathan P.; Feldman, Paul D.; Moos, H. Warren; Riess, Adam G.; Bohlin, Ralph; Deustua, Susana E.; Dixon, William Van Dyke; Sahnow, David J.; Lampton, Michael; Perlmutter, Saul

    2016-01-01

    ACCESS: Absolute Color Calibration Experiment for Standard Stars is a series of rocket-borne sub-orbital missions and ground-based experiments designed to leverage significant technological advances in detectors, instruments, and the precision of the fundamental laboratory standards used to calibrate these instruments to enable improvements in the precision of the astrophysical flux scale through the transfer of laboratory absolute detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35 to 1.7 micron bandpass.A cross wavelength calibration of the astrophysical flux scale to this level of precision over this broad a bandpass is relevant for the data used to probe fundamental astrophysical problems such as the SNeIa photometry based measurements used to constrain dark energy theories.We will describe the strategy for achieving this level of precision, the payload and calibration configuration, present sub-system test data, and the status and preliminary performance of the integration and test of the spectrograph and telescope. NASA APRA sounding rocket grant NNX14AH48G supports this work.

  3. Performance confirmation data acquisition system

    International Nuclear Information System (INIS)

    McAffee, D.A.; Raczka, N.T.

    1997-01-01

    As part of the Viability Assessment (VA) work, this QAP-3-9 document presents and evaluates a comprehensive set of viable concepts for collecting Performance Confirmation (PC) related data. The concepts include: monitoring subsurface repository air temperatures, humidity levels and gaseous emissions via the subsurface ventilation systems, and monitoring the repository geo-technical parameters and rock mass from bore-holes located along the perimeter main drifts and throughout a series of human-rated Observation Drifts to be located in a plane 25 meters above the plane of the emplacement drifts. A key element of this document is the development and analysis of a purposed multi-purpose Remote Inspection Gantry that would provide direct, real-time visual, thermal, and radiological monitoring of conditions inside operational emplacement drifts and close-up observations of in-situ Waste Packages. Preliminary finite-element analyses are presented that indicate the technological feasibility of operating an inspection gantry inside the operational emplacement drifts for short inspection missions lasting 2--3 hours. Overall reliability, availability, and maintainability of the PC data collection concepts are discussed. Preliminary concepts for PC data collection network are also provided

  4. Performance confirmation data acquisition system

    Energy Technology Data Exchange (ETDEWEB)

    McAffee, D.A.; Raczka, N.T. [Yucca Mountain Project, Las Vegas, NV (United States)

    1997-12-31

    As part of the Viability Assessment (VA) work, this QAP-3-9 document presents and evaluates a comprehensive set of viable concepts for collecting Performance Confirmation (PC) related data. The concepts include: monitoring subsurface repository air temperatures, humidity levels and gaseous emissions via the subsurface ventilation systems, and monitoring the repository geo-technical parameters and rock mass from bore-holes located along the perimeter main drifts and throughout a series of human-rated Observation Drifts to be located in a plane 25 meters above the plane of the emplacement drifts. A key element of this document is the development and analysis of a purposed multi-purpose Remote Inspection Gantry that would provide direct, real-time visual, thermal, and radiological monitoring of conditions inside operational emplacement drifts and close-up observations of in-situ Waste Packages. Preliminary finite-element analyses are presented that indicate the technological feasibility of operating an inspection gantry inside the operational emplacement drifts for short inspection missions lasting 2--3 hours. Overall reliability, availability, and maintainability of the PC data collection concepts are discussed. Preliminary concepts for PC data collection network are also provided.

  5. USGS earthquake hazards program (EHP) GPS use case : earthquake early warning (EEW) and shake alert

    Science.gov (United States)

    2017-03-30

    GPS Adjacent Band Workshop VI RTCA Inc., Washington D.C., 30 March 2017. USGS GPS receiver use case - Real-Time GPS for EEW -Continued: CRITICAL EFFECT - The GNSS component of the Shake Alert system augments the inertial sensors and is especial...

  6. Seasonal and circadian biases in bird tracking with solar GPS-tags

    OpenAIRE

    Silva, Rafa; Afán, Isabel; Gil, Juan A.; Bustamante, Javier

    2017-01-01

    Global Positioning System (GPS) tags are nowadays widely used in wildlife tracking. This geolocation technique can suffer from fix loss biases due to poor satellite GPS geometry, that result in tracking data gaps leading to wrong research conclusions. In addition, new solar-powered GPS tags deployed on birds can suffer from a new "battery drain bias" currently ignored in movement ecology analyses. We use a GPS tracking dataset of bearded vultures (Gypaetus barbatus), tracked for several years...

  7. IT Performance Dashboard: Systems Dashboard

    Data.gov (United States)

    Department of Veterans Affairs — The IT Performance Dashboard a trusted source for IT performance information across VA. This is available only on the VA intranet. The dashboard is a collection of...

  8. Real-Time Single-Frequency GPS/MEMS-IMU Attitude Determination of Lightweight UAVs

    Science.gov (United States)

    Eling, Christian; Klingbeil, Lasse; Kuhlmann, Heiner

    2015-01-01

    In this paper, a newly-developed direct georeferencing system for the guidance, navigation and control of lightweight unmanned aerial vehicles (UAVs), having a weight limit of 5 kg and a size limit of 1.5 m, and for UAV-based surveying and remote sensing applications is presented. The system is intended to provide highly accurate positions and attitudes (better than 5 cm and 0.5∘) in real time, using lightweight components. The main focus of this paper is on the attitude determination with the system. This attitude determination is based on an onboard single-frequency GPS baseline, MEMS (micro-electro-mechanical systems) inertial sensor readings, magnetic field observations and a 3D position measurement. All of this information is integrated in a sixteen-state error space Kalman filter. Special attention in the algorithm development is paid to the carrier phase ambiguity resolution of the single-frequency GPS baseline observations. We aim at a reliable and instantaneous ambiguity resolution, since the system is used in urban areas, where frequent losses of the GPS signal lock occur and the GPS measurement conditions are challenging. Flight tests and a comparison to a navigation-grade inertial navigation system illustrate the performance of the developed system in dynamic situations. Evaluations show that the accuracies of the system are 0.05∘ for the roll and the pitch angle and 0.2∘ for the yaw angle. The ambiguities of the single-frequency GPS baseline can be resolved instantaneously in more than 90% of the cases. PMID:26501281

  9. GPS Usage in a Population of Low-Vision Drivers.

    Science.gov (United States)

    Cucuras, Maria; Chun, Robert; Lee, Patrick; Jay, Walter M; Pusateri, Gregg

    2017-01-01

    We surveyed bioptic and non-bioptic low-vision drivers in Illinois, USA, to determine their usage of global positioning system (GPS) devices. Low-vision patients completed an IRB-approved phone survey regarding driving demographics and usage of GPS while driving. Participants were required to be active drivers with an Illinois driver's license, and met one of the following criteria: best-corrected visual acuity (BCVA) less than or equal to 20/40, central or significant peripheral visual field defects, or a combination of both. Of 27 low-vision drivers, 10 (37%) used GPS while driving. The average age for GPS users was 54.3 and for non-users was 77.6. All 10 drivers who used GPS while driving reported increased comfort or safety level. Since non-GPS users were significantly older than GPS users, it is likely that older participants would benefit from GPS technology training from their low-vision eye care professionals.

  10. Hospital System Performance within Veterans Affairs

    Data.gov (United States)

    Department of Veterans Affairs — Strategic Analytics for Improvement and Learning Value Model or SAIL, is a system for summarizing hospital system performance within Veterans Health Administration...

  11. GNSS global real-time augmentation positioning: Real-time precise satellite clock estimation, prototype system construction and performance analysis

    Science.gov (United States)

    Chen, Liang; Zhao, Qile; Hu, Zhigang; Jiang, Xinyuan; Geng, Changjiang; Ge, Maorong; Shi, Chuang

    2018-01-01

    Lots of ambiguities in un-differenced (UD) model lead to lower calculation efficiency, which isn't appropriate for the high-frequency real-time GNSS clock estimation, like 1 Hz. Mixed differenced model fusing UD pseudo-range and epoch-differenced (ED) phase observations has been introduced into real-time clock estimation. In this contribution, we extend the mixed differenced model for realizing multi-GNSS real-time clock high-frequency updating and a rigorous comparison and analysis on same conditions are performed to achieve the best real-time clock estimation performance taking the efficiency, accuracy, consistency and reliability into consideration. Based on the multi-GNSS real-time data streams provided by multi-GNSS Experiment (MGEX) and Wuhan University, GPS + BeiDou + Galileo global real-time augmentation positioning prototype system is designed and constructed, including real-time precise orbit determination, real-time precise clock estimation, real-time Precise Point Positioning (RT-PPP) and real-time Standard Point Positioning (RT-SPP). The statistical analysis of the 6 h-predicted real-time orbits shows that the root mean square (RMS) in radial direction is about 1-5 cm for GPS, Beidou MEO and Galileo satellites and about 10 cm for Beidou GEO and IGSO satellites. Using the mixed differenced estimation model, the prototype system can realize high-efficient real-time satellite absolute clock estimation with no constant clock-bias and can be used for high-frequency augmentation message updating (such as 1 Hz). The real-time augmentation message signal-in-space ranging error (SISRE), a comprehensive accuracy of orbit and clock and effecting the users' actual positioning performance, is introduced to evaluate and analyze the performance of GPS + BeiDou + Galileo global real-time augmentation positioning system. The statistical analysis of real-time augmentation message SISRE is about 4-7 cm for GPS, whlile 10 cm for Beidou IGSO/MEO, Galileo and about 30 cm

  12. The covariance of GPS coordinates and frames

    International Nuclear Information System (INIS)

    Lachieze-Rey, Marc

    2006-01-01

    We explore, in the general relativistic context, the properties of the recently introduced global positioning system (GPS) coordinates, as well as those of the associated frames and coframes that they define. We show that they are covariant and completely independent of any observer. We show that standard spectroscopic and astrometric observations allow any observer to measure (i) the values of the GPS coordinates at his position (ii) the components of his 4-velocity and (iii) the components of the metric in the GPS frame. This provides this system with a unique value both for conceptual discussion (no frame dependence) and for practical use (involved quantities are directly measurable): localization, motion monitoring, astrometry, cosmography and tests of gravitation theories. We show explicitly, in the general relativistic context, how an observer may estimate his position and motion, and reconstruct the components of the metric. This arises from two main results: the extension of the velocity fields of the probes to the whole (curved) spacetime, and the identification of the components of the observer's velocity in the GPS frame with the (inversed) observed redshifts of the probes. Specific cases (non-relativistic velocities, Minkowski and Friedmann-Lemaitre spacetimes, geodesic motions) are studied in detail

  13. Utilizing a GPS-enabled fleet management system to improve safety through real-time personnel monitoring and asset management

    Energy Technology Data Exchange (ETDEWEB)

    Mavreas, M. [Bell Canada, Montreal, PQ (Canada)

    2005-07-01

    The telepod is a real-time dispatch, tracking and vehicle management system developed by Bell, which also allows remote access to company data. Advantages of the system were discussed in this power point presentation. It was suggested that the system offers increased efficiency, asset tracking and more accurate maintenance. Productivity improvements are made possible through real-time dispatching of orders, which results in improved customer service. Additional benefits of the system include fuel savings; trip reports to track vehicle start and stop times; and improved route changes through trip analysis. The system also enables the tracking of vehicles driven after work hours and on weekends. The generator tracking capability provides information on when generators are being moved as well as uptime for improved maintenance in addition to registering fuel levels to ensure business keeps running during a blackout. The vehicle management system is also capable of identifying under-utilized vehicles and can assist in the reduction of inactive vehicles as well as in a reduction of fuel consumption and harmful emissions by controlling idling time. Other advantages include maintenance eliminated mileage errors; an improved inspection program; remote diagnosis and prognostics; a reduction in downtime and costs associated with unnecessary vehicle breakdown; and reduced vehicle wear and tear. Among the safety features is a trigger for the dispatch of emergency vehicles. It was suggested that the lone worker device provides technicians with a sense of security, as well as ensuring greater consumer safety. It was concluded that Bell supports industry cooperation for safe driving awareness through advertising campaigns, and communicates safety messages to customers, employees and the public at large. tabs, figs.

  14. Improving File System Performance by Striping

    Science.gov (United States)

    Lam, Terance L.; Kutler, Paul (Technical Monitor)

    1998-01-01

    This document discusses the performance and advantages of striped file systems on the SGI AD workstations. Performance of several striped file system configurations are compared and guidelines for optimal striping are recommended.

  15. FAA aircraft certification human factors and operations checklist for standalone GPS receivers (TSO C129 Class A)

    Science.gov (United States)

    1995-04-01

    This document is a checklist designed to assist Federal Aviation Administration(FAA) certification personnel and global : positioning system (GPS) receiver manufacturers in the evaluation of the pilot-system interface characteristlcs of GPS : recieve...

  16. Dynamism in Electronic Performance Support Systems.

    Science.gov (United States)

    Laffey, James

    1995-01-01

    Describes a model for dynamic electronic performance support systems based on NNAble, a system developed by the training group at Apple Computer. Principles for designing dynamic performance support are discussed, including a systems approach, performer-centered design, awareness of situated cognition, organizational memory, and technology use.…

  17. A Lane-Level LBS System for Vehicle Network with High-Precision BDS/GPS Positioning

    Science.gov (United States)

    Guo, Chi; Guo, Wenfei; Cao, Guangyi; Dong, Hongbo

    2015-01-01

    In recent years, research on vehicle network location service has begun to focus on its intelligence and precision. The accuracy of space-time information has become a core factor for vehicle network systems in a mobile environment. However, difficulties persist in vehicle satellite positioning since deficiencies in the provision of high-quality space-time references greatly limit the development and application of vehicle networks. In this paper, we propose a high-precision-based vehicle network location service to solve this problem. The major components of this study include the following: (1) application of wide-area precise positioning technology to the vehicle network system. An adaptive correction message broadcast protocol is designed to satisfy the requirements for large-scale target precise positioning in the mobile Internet environment; (2) development of a concurrence service system with a flexible virtual expansion architecture to guarantee reliable data interaction between vehicles and the background; (3) verification of the positioning precision and service quality in the urban environment. Based on this high-precision positioning service platform, a lane-level location service is designed to solve a typical traffic safety problem. PMID:25755665

  18. Challenges and advantages of using GPS data in outdoor advertisement

    OpenAIRE

    Hecker, Dirk; Körner, Christine; May, Michael

    2011-01-01

    A growing number of companies use mobility data in their day-to-day business. Especially in the area of outdoor advertising, GPS devices have been successfully applied in order to measure poster performance in recent years. Based on personal mobility traces, the quality and precision of performance measures has increased significantly. However, the usage of GPS technology poses several challenges when applied to critical business processes. We will present several challenges and solutions whi...

  19. The GPS odograph user's guide

    Science.gov (United States)

    The GPS-based Odograph Prototype (GOP or GPS Odograph) was developed in an effort sponsored by The Federal Highway Administration (FHWA). The purpose of this effort was to develop a means of using inexpensive commercial off-the-self laptop (or notebo...

  20. High Gain Advanced GPS Receiver

    National Research Council Canada - National Science Library

    Brown, Alison; Zhang, Gengsheng

    2006-01-01

    NAVSYS High Gain Advanced GPS Receiver (HAGR) uses a digital beam-steering antenna array to enable up to eight GPS satellites to be tracked, each with up to 10 dBi of additional antenna gain over a conventional receiver solution...

  1. Sensing human activity : GPS tracking

    NARCIS (Netherlands)

    van der Spek, Stefan; van Schaick, Jeroen; de Bois, P.G.; de Haan, Remco

    2009-01-01

    The enhancement of GPS technology enables the use of GPS devices not only as navigation and orientation tools, but also as instruments used to capture travelled routes: as sensors that measure activity on a city scale or the regional scale. TU Delft developed a process and database architecture for

  2. Performance analysis of nuclear materials accounting systems

    International Nuclear Information System (INIS)

    Cobb, D.D.; Shipley, J.P.

    1979-01-01

    Techniques for analyzing the level of performance of nuclear materials accounting systems in terms of the four performance measures, total amount of loss, loss-detection time, loss-detection probability, and false-alarm probability, are presented. These techniques are especially useful for analyzing the expected performance of near-real-time (dynamic) accounting systems. A conservative estimate of system performance is provided by the CUSUM (cumulative summation of materials balances) test. Graphical displays, called performance surfaces, are developed as convenient tools for representing systems performance, and examples from a recent safeguards study of a nuclear fuels reprocessing plant are given. 6 refs

  3. The impact of GPS receiver modifications and ionospheric activity on Swarm baseline determination

    Science.gov (United States)

    Mao, X.; Visser, P. N. A. M.; van den IJssel, J.

    2018-05-01

    The European Space Agency (ESA) Swarm mission is a satellite constellation launched on 22 November 2013 aiming at observing the Earth geomagnetic field and its temporal variations. The three identical satellites are equipped with high-precision dual-frequency Global Positioning System (GPS) receivers, which make the constellation an ideal test bed for baseline determination. From October 2014 to August 2016, a number of GPS receiver modifications and a new GPS Receiver Independent Exchange Format (RINEX) converter were implemented. Moreover, the on-board GPS receiver performance has been influenced by the ionospheric scintillations. The impact of these factors is assessed for baseline determination of the pendulum formation flying Swarm-A and -C satellites. In total 30 months of data - from 15 July 2014 to the end of 2016 - is analyzed. The assessment includes analysis of observation residuals, success rate of GPS carrier phase ambiguity fixing, a consistency check between the so-called kinematic and reduced-dynamic baseline solution, and validations of orbits by comparing with Satellite Laser Ranging (SLR) observations. External baseline solutions from The German Space Operations Center (GSOC) and Astronomisches Institut - Universität Bern (AIUB) are also included in the comparison. Results indicate that the GPS receiver modifications and RINEX converter changes are effective to improve the baseline determination. This research eventually shows a consistency level of 9.3/4.9/3.0 mm between kinematic and reduced-dynamic baselines in the radial/along-track/cross-track directions. On average 98.3% of the epochs have kinematic solutions. Consistency between TU Delft and external reduced-dynamic baseline solutions is at a level of 1 mm level in all directions.

  4. School infrastructure performance indicator system (SIPIS)

    CSIR Research Space (South Africa)

    Gibberd, Jeremy T

    2007-05-01

    Full Text Available This paper describes the School Infrastructure Performance Indicator System (SIPIS) project which explores how an indicator system could be developed for school infrastructure in South Africa. It outlines the key challenges faced by the system...

  5. Cognitive performance modeling based on general systems performance theory.

    Science.gov (United States)

    Kondraske, George V

    2010-01-01

    General Systems Performance Theory (GSPT) was initially motivated by problems associated with quantifying different aspects of human performance. It has proved to be invaluable for measurement development and understanding quantitative relationships between human subsystem capacities and performance in complex tasks. It is now desired to bring focus to the application of GSPT to modeling of cognitive system performance. Previous studies involving two complex tasks (i.e., driving and performing laparoscopic surgery) and incorporating measures that are clearly related to cognitive performance (information processing speed and short-term memory capacity) were revisited. A GSPT-derived method of task analysis and performance prediction termed Nonlinear Causal Resource Analysis (NCRA) was employed to determine the demand on basic cognitive performance resources required to support different levels of complex task performance. This approach is presented as a means to determine a cognitive workload profile and the subsequent computation of a single number measure of cognitive workload (CW). Computation of CW may be a viable alternative to measuring it. Various possible "more basic" performance resources that contribute to cognitive system performance are discussed. It is concluded from this preliminary exploration that a GSPT-based approach can contribute to defining cognitive performance models that are useful for both individual subjects and specific groups (e.g., military pilots).

  6. DOTD standards for GPS data collection accuracy : research project capsule.

    Science.gov (United States)

    2013-12-01

    Global Navigational Satellite Systems (GNSS), which includes GPS technologies : maintained by the United States, are used extensively throughout government : and industry. These technologies continue to revolutionize positional data : collection acti...

  7. GPS satellite and receiver instrumental biases estimation using least ...

    Indian Academy of Sciences (India)

    PA) landings. Therefore, GPS augmentation sys- tem is required to provide users with orbit, clock, and ionosphere corrections. The first space-based augmentation system .... detailed structure of the transversal filter consists of 3 basic weight ...

  8. Hurricane Inner-Core Structure as Revealed by GPS Dropwindsondes

    National Research Council Canada - National Science Library

    Leejoice, Robert

    2000-01-01

    New high-resolution information of the vertical thermodynamic and kinematic structure of the hurricane inner-core is now available from aircraft released Global Positioning System (GPS) dropwindsondes...

  9. DARPA looks beyond GPS for positioning, navigating, and timing

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, David

    2014-10-01

    Cold-atom interferometry, microelectromechanical systems, signals of opportunity, and atomic clocks are some of the technologies the defense agency is pursuing to provide precise navigation when GPS is unavailable.

  10. A Usability Survey of GPS Avionics Equipment: Some Preliminary Findings

    National Research Council Canada - National Science Library

    Joseph, Kurt

    1999-01-01

    The rapid introduction of Global Positioning System (GPS) receivers for airborne navigation has outpaced the capacity of international aviation authorities to resolve human factors issues that concern safe and efficient use of such devices...

  11. SMEX02 Airborne GPS Bistatic Radar Data, Iowa

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains measurements of Global Positioning System (GPS) signals reflected from the Earth’s surface and collected on an airborne platform. The...

  12. Deployment of Autonomous GPS Stations in Marie Byrd Land, Antartica

    Science.gov (United States)

    Donnellan, A.; Luyendyk, B.; Smith, M.; Dace, G.

    1999-01-01

    During the 1998-1999 Antarctic field season, we installed three autonomous GPS stations in Marie Byrd Land, West Antarctica to measure glacio-isostatic rebound and rates of spreading across the West Antartic Rift System.

  13. Improving Process Heating System Performance v3

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-04-11

    Improving Process Heating System Performance: A Sourcebook for Industry is a development of the U.S. Department of Energy (DOE) Advanced Manufacturing Office (AMO) and the Industrial Heating Equipment Association (IHEA). The AMO and IHEA undertook this project as part of an series of sourcebook publications developed by AMO on energy-consuming industrial systems, and opportunities to improve performance. Other topics in this series include compressed air systems, pumping systems, fan systems, steam systems, and motors and drives

  14. De GPS al mapa

    Directory of Open Access Journals (Sweden)

    Esteban Dörries

    2016-03-01

    Full Text Available Las coordenadas Lambert obtenidas a partir de mediciones con equipos GPS de mano, llamados a veces navegadores, en ciertos casos confunden al usuario, por diferir claramente de su posición real al ser graficadas en un mapa del Instituto Geográfico Nacional (IGN: Esto puede resolverse con suficiente exactitud mediante una transformación de Molodensky, seguida de la correspondiente proyección cartográfica. Sin embargo, los tres parámetros necesarios para la transformación, supuestamente válidos para Costa Rica, se encuentran en muchas variantes y producen obviamente resultados diferentes. En este trabajo se analizan los fundamentos del problema y sus posibles soluciones, culminando con un estudio comparativo de ocho casos, que permite seleccionar los valores más adecuados para los parámetros.

  15. How is the high vaginal swab used to investigate vaginal discharge in primary care and how do GPs' expectations of the test match the tests performed by their microbiology services?

    Science.gov (United States)

    Noble, H; Estcourt, C; Ison, C; Goold, P; Tite, L; Carter, Y H

    2004-06-01

    To describe the management of vaginal discharge in general practice, with particular regard to the use of the high vaginal swab (HVS), and to compare GPs' expectations of this test with the processing and reporting undertaken by different laboratories. A postal questionnaire survey of 2146 GPs in the North Thames area and postal questionnaire study of the 22 laboratories serving the same GPs were carried out. GPs were asked how they would manage a young woman with vaginal discharge and what information they would like on an HVS report. Laboratories were asked how they would process and report on the HVS sample from the same patient. Response rate was 26%. 72% of GPs would take an HVS and 62% would refer on to a genitourinary medicine (GUM) clinic. 45% would offer empirical therapy and 47% of these would treat for candida initially. 75% of GPs routinely request "M,C&S" on HVS samples but 55% only want to be informed about specific pathogens. Routine processing of HVS samples varies widely between laboratories and 86% only report specific pathogens. 78% of GPs would like to be offered a suggested diagnosis on HVS reports, and 74% would like a suggested treatment. 43% of laboratories ever provide a diagnosis, and 14% provide a suggested treatment. GPs frequently manage vaginal discharge and most of them utilise the HVS. GPs' expectations of the test are not well matched to laboratory processing or reporting of the samples.

  16. Performance assurance for IT systems

    CERN Document Server

    King, Brian

    2004-01-01

    INDIVIDUAL AREAS OF INTERESTPreparing for the ChallengeAbstractIntroductionIn the BeginningThe Need to Address New ApplicationsDefinition of PerformanceThe Required SkillsPerformance Assurance Within a Project LifecycleSummaryCaveat Emptor (Let the Buyer Beware)AbstractSoftware Product LifecycleHardware Product LifecycleMarketingTechnical Reviews of ProductsLies, Damned Lies and BenchmarksAbstractIntroductionIndustry BenchmarksVendor BenchmarksIndependent BenchmarkingIn-House Benchmarking""Tricks of the Trade""Using Benchmarks Non-Functional Requirements and SolutionsAbstractIntroductionThe Pr

  17. Efficacy of GPS cluster analysis for predicting carnivory sites of a wide-ranging omnivore: the American black bear

    Science.gov (United States)

    Kindschuh, Sarah R.; Cain, James W.; Daniel, David; Peyton, Mark A.

    2016-01-01

    The capacity to describe and quantify predation by large carnivores expanded considerably with the advent of GPS technology. Analyzing clusters of GPS locations formed by carnivores facilitates the detection of predation events by identifying characteristics which distinguish predation sites. We present a performance assessment of GPS cluster analysis as applied to the predation and scavenging of an omnivore, the American black bear (Ursus americanus), on ungulate prey and carrion. Through field investigations of 6854 GPS locations from 24 individual bears, we identified 54 sites where black bears formed a cluster of locations while predating or scavenging elk (Cervus elaphus), mule deer (Odocoileus hemionus), or cattle (Bos spp.). We developed models for three data sets to predict whether a GPS cluster was formed at a carnivory site vs. a non-carnivory site (e.g., bed sites or non-ungulate foraging sites). Two full-season data sets contained GPS locations logged at either 3-h or 30-min intervals from April to November, and a third data set contained 30-min interval data from April through July corresponding to the calving period for elk. Longer fix intervals resulted in the detection of fewer carnivory sites. Clusters were more likely to be carnivory sites if they occurred in open or edge habitats, if they occurred in the early season, if the mean distance between all pairs of GPS locations within the cluster was less, and if the cluster endured for a longer period of time. Clusters were less likely to be carnivory sites if they were initiated in the morning or night compared to the day. The top models for each data set performed well and successfully predicted 71–96% of field-verified carnivory events, 55–75% of non–carnivory events, and 58–76% of clusters overall. Refinement of this method will benefit from further application across species and ecological systems.

  18. Real-time GPS seismology using a single receiver: method comparison, error analysis and precision validation

    Science.gov (United States)

    Li, Xingxing

    2014-05-01

    Earthquake monitoring and early warning system for hazard assessment and mitigation has traditional been based on seismic instruments. However, for large seismic events, it is difficult for traditional seismic instruments to produce accurate and reliable displacements because of the saturation of broadband seismometers and problematic integration of strong-motion data. Compared with the traditional seismic instruments, GPS can measure arbitrarily large dynamic displacements without saturation, making them particularly valuable in case of large earthquakes and tsunamis. GPS relative positioning approach is usually adopted to estimate seismic displacements since centimeter-level accuracy can be achieved in real-time by processing double-differenced carrier-phase observables. However, relative positioning method requires a local reference station, which might itself be displaced during a large seismic event, resulting in misleading GPS analysis results. Meanwhile, the relative/network approach is time-consuming, particularly difficult for the simultaneous and real-time analysis of GPS data from hundreds or thousands of ground stations. In recent years, several single-receiver approaches for real-time GPS seismology, which can overcome the reference station problem of the relative positioning approach, have been successfully developed and applied to GPS seismology. One available method is real-time precise point positioning (PPP) relied on precise satellite orbit and clock products. However, real-time PPP needs a long (re)convergence period, of about thirty minutes, to resolve integer phase ambiguities and achieve centimeter-level accuracy. In comparison with PPP, Colosimo et al. (2011) proposed a variometric approach to determine the change of position between two adjacent epochs, and then displacements are obtained by a single integration of the delta positions. This approach does not suffer from convergence process, but the single integration from delta positions to

  19. Accuracy assessment of high-rate GPS measurements for seismology

    Science.gov (United States)

    Elosegui, P.; Davis, J. L.; Ekström, G.

    2007-12-01

    Analysis of GPS measurements with a controlled laboratory system, built to simulate the ground motions caused by tectonic earthquakes and other transient geophysical signals such as glacial earthquakes, enables us to assess the technique of high-rate GPS. The root-mean-square (rms) position error of this system when undergoing realistic simulated seismic motions is 0.05~mm, with maximum position errors of 0.1~mm, thus providing "ground truth" GPS displacements. We have acquired an extensive set of high-rate GPS measurements while inducing seismic motions on a GPS antenna mounted on this system with a temporal spectrum similar to real seismic events. We found that, for a particular 15-min-long test event, the rms error of the 1-Hz GPS position estimates was 2.5~mm, with maximum position errors of 10~mm, and the error spectrum of the GPS estimates was approximately flicker noise. These results may however represent a best-case scenario since they were obtained over a short (~10~m) baseline, thereby greatly mitigating baseline-dependent errors, and when the number and distribution of satellites on the sky was good. For example, we have determined that the rms error can increase by a factor of 2--3 as the GPS constellation changes throughout the day, with an average value of 3.5~mm for eight identical, hourly-spaced, consecutive test events. The rms error also increases with increasing baseline, as one would expect, with an average rms error for a ~1400~km baseline of 9~mm. We will present an assessment of the accuracy of high-rate GPS based on these measurements, discuss the implications of this study for seismology, and describe new applications in glaciology.

  20. GPS Modeling and Analysis. Summary of Research: GPS Satellite Axial Ratio Predictions

    Science.gov (United States)

    Axelrad, Penina; Reeh, Lisa

    2002-01-01

    This report outlines the algorithms developed at the Colorado Center for Astrodynamics Research to model yaw and predict the axial ratio as measured from a ground station. The algorithms are implemented in a collection of Matlab functions and scripts that read certain user input, such as ground station coordinates, the UTC time, and the desired GPS (Global Positioning System) satellites, and compute the above-mentioned parameters. The position information for the GPS satellites is obtained from Yuma almanac files corresponding to the prescribed date. The results are displayed graphically through time histories and azimuth-elevation plots.

  1. System Reliability Analysis Considering Correlation of Performances

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Saekyeol; Lee, Tae Hee [Hanyang Univ., Seoul (Korea, Republic of); Lim, Woochul [Mando Corporation, Seongnam (Korea, Republic of)

    2017-04-15

    Reliability analysis of a mechanical system has been developed in order to consider the uncertainties in the product design that may occur from the tolerance of design variables, uncertainties of noise, environmental factors, and material properties. In most of the previous studies, the reliability was calculated independently for each performance of the system. However, the conventional methods cannot consider the correlation between the performances of the system that may lead to a difference between the reliability of the entire system and the reliability of the individual performance. In this paper, the joint probability density function (PDF) of the performances is modeled using a copula which takes into account the correlation between performances of the system. The system reliability is proposed as the integral of joint PDF of performances and is compared with the individual reliability of each performance by mathematical examples and two-bar truss example.

  2. Telerobotic system performance measurement - Motivation and methods

    Science.gov (United States)

    Kondraske, George V.; Khoury, George J.

    1992-01-01

    A systems performance-based strategy for modeling and conducting experiments relevant to the design and performance characterization of telerobotic systems is described. A developmental testbed consisting of a distributed telerobotics network and initial efforts to implement the strategy described is presented. Consideration is given to the general systems performance theory (GSPT) to tackle human performance problems as a basis for: measurement of overall telerobotic system (TRS) performance; task decomposition; development of a generic TRS model; and the characterization of performance of subsystems comprising the generic model. GSPT employs a resource construct to model performance and resource economic principles to govern the interface of systems to tasks. It provides a comprehensive modeling/measurement strategy applicable to complex systems including both human and artificial components. Application is presented within the framework of a distributed telerobotics network as a testbed. Insight into the design of test protocols which elicit application-independent data is described.

  3. System Reliability Analysis Considering Correlation of Performances

    International Nuclear Information System (INIS)

    Kim, Saekyeol; Lee, Tae Hee; Lim, Woochul

    2017-01-01

    Reliability analysis of a mechanical system has been developed in order to consider the uncertainties in the product design that may occur from the tolerance of design variables, uncertainties of noise, environmental factors, and material properties. In most of the previous studies, the reliability was calculated independently for each performance of the system. However, the conventional methods cannot consider the correlation between the performances of the system that may lead to a difference between the reliability of the entire system and the reliability of the individual performance. In this paper, the joint probability density function (PDF) of the performances is modeled using a copula which takes into account the correlation between performances of the system. The system reliability is proposed as the integral of joint PDF of performances and is compared with the individual reliability of each performance by mathematical examples and two-bar truss example.

  4. Using Map Service API for Driving Cycle Detection for Wearable GPS Data: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lei [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gonder, Jeffrey D [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-06

    Following advancements in smartphone and portable global positioning system (GPS) data collection, wearable GPS data have realized extensive use in transportation surveys and studies. The task of detecting driving cycles (driving or car-mode trajectory segments) from wearable GPS data has been the subject of much research. Specifically, distinguishing driving cycles from other motorized trips (such as taking a bus) is the main research problem in this paper. Many mode detection methods only focus on raw GPS speed data while some studies apply additional information, such as geographic information system (GIS) data, to obtain better detection performance. Procuring and maintaining dedicated road GIS data are costly and not trivial, whereas the technical maturity and broad use of map service application program interface (API) queries offers opportunities for mode detection tasks. The proposed driving cycle detection method takes advantage of map service APIs to obtain high-quality car-mode API route information and uses a trajectory segmentation algorithm to find the best-matched API route. The car-mode API route data combined with the actual route information, including the actual mode information, are used to train a logistic regression machine learning model, which estimates car modes and non-car modes with probability rates. The experimental results show promise for the proposed method's ability to detect vehicle mode accurately.

  5. Influence of Ephemeris Error on GPS Single Point Positioning Accuracy

    Science.gov (United States)

    Lihua, Ma; Wang, Meng

    2013-09-01

    The Global Positioning System (GPS) user makes use of the navigation message transmitted from GPS satellites to achieve its location. Because the receiver uses the satellite's location in position calculations, an ephemeris error, a difference between the expected and actual orbital position of a GPS satellite, reduces user accuracy. The influence extent is decided by the precision of broadcast ephemeris from the control station upload. Simulation analysis with the Yuma almanac show that maximum positioning error exists in the case where the ephemeris error is along the line-of-sight (LOS) direction. Meanwhile, the error is dependent on the relationship between the observer and spatial constellation at some time period.

  6. Measured performance of the GTA rf systems

    International Nuclear Information System (INIS)

    Denney, P.M.; Jachim, S.P.

    1993-01-01

    This paper describes the performance of the RF systems on the Ground Test Accelerator (GTA). The RF system architecture is briefly described. Among the RF performance results presented are RF field flatness and stability, amplitude and phase control resolution, and control system bandwidth and stability. The rejection by the RF systems of beam-induced disturbances, such as transients and noise, are analyzed. The observed responses are also compared to computer-based simulations of the RF systems for validation

  7. Performance Enhancements for Advanced Database Management Systems

    OpenAIRE

    Helmer, Sven

    2000-01-01

    New applications have emerged, demanding database management systems with enhanced functionality. However, high performance is a necessary precondition for the acceptance of such systems by end users. In this context we developed, implemented, and tested algorithms and index structures for improving the performance of advanced database management systems. We focused on index structures and join algorithms for set-valued attributes.

  8. Arctic tides from GPS on sea ice

    DEFF Research Database (Denmark)

    Kildegaard Rose, Stine; Skourup, Henriette; Forsberg, René

    The presence of sea-ice in the Arctic Ocean plays a significant role in the Arctic climate. Sea ice dampens the ocean tide amplitude with the result that global tidal models which use only astronomical data perform less accurately in the polar regions. This study presents a kinematic processing o......-gauges and altimetry data. Furthermore, we prove that the geodetic reference ellipsoid WGS84, can be interpolated to the tidal defined zero level by applying geophysical corrections to the GPS data....

  9. Why GPS makes distances bigger than they are.

    Science.gov (United States)

    Ranacher, Peter; Brunauer, Richard; Trutschnig, Wolfgang; Van der Spek, Stefan; Reich, Siegfried

    2016-02-01

    Global navigation satellite systems such as the Global Positioning System (GPS) is one of the most important sensors for movement analysis. GPS is widely used to record the trajectories of vehicles, animals and human beings. However, all GPS movement data are affected by both measurement and interpolation errors. In this article we show that measurement error causes a systematic bias in distances recorded with a GPS; the distance between two points recorded with a GPS is - on average - bigger than the true distance between these points. This systematic 'overestimation of distance' becomes relevant if the influence of interpolation error can be neglected, which in practice is the case for movement sampled at high frequencies. We provide a mathematical explanation of this phenomenon and illustrate that it functionally depends on the autocorrelation of GPS measurement error ( C ). We argue that C can be interpreted as a quality measure for movement data recorded with a GPS. If there is a strong autocorrelation between any two consecutive position estimates, they have very similar error. This error cancels out when average speed, distance or direction is calculated along the trajectory. Based on our theoretical findings we introduce a novel approach to determine C in real-world GPS movement data sampled at high frequencies. We apply our approach to pedestrian trajectories and car trajectories. We found that the measurement error in the data was strongly spatially and temporally autocorrelated and give a quality estimate of the data. Most importantly, our findings are not limited to GPS alone. The systematic bias and its implications are bound to occur in any movement data collected with absolute positioning if interpolation error can be neglected.

  10. Functions and technology of digital tachographs systems with contemporary telematic system in road transport, on board informatics net and GPS system

    Directory of Open Access Journals (Sweden)

    Marcin RYCHTER

    2009-01-01

    Full Text Available Tachograph belong to On Board Recording Devices. Their development begun before The Second World War. The first on board recording devices is an analog tachograph which was obligatory to use and was introduce in USA in 1939. This paper include main rules of functions of the analog tachograph and digital tachographs system using in road transport. Paper presents also possibility of future requirements of digital tachograph and authorize workshops.

  11. GPS on Every Roof, GPS Sensor Network for Post-Seismic Building-Wise Damage Identification

    Directory of Open Access Journals (Sweden)

    Kenji Oguni

    2013-12-01

    Full Text Available Development of wireless sensor network equipped with GPS for post-seismic building-wise damage identification is presented in this paper. This system is called GPS on Every Roof. Sensor node equipped with GPS antenna and receiver is installed on the top of the roof of each and every building. The position of this sensor node is measured before and after earthquake. The final goal of this system is to i identify the displacement of the roof of each house and ii collect the information of displacement of the roof of the houses through wireless communication. Superposing this information on GIS, building-wise damage distribution due to earthquake can be obtained. The system overview, hardware and some of the key components of the system such as on-board GPS relative positioning algorithm to achieve the accuracy in the order of several centimeters are described in detail. Also, the results from a field experiment using a wireless sensor network with 39 sensor nodes are presented.

  12. Hastighedskort for Danmark vha. GPS

    DEFF Research Database (Denmark)

    Andersen, Ove; Lahrmann, Harry; Torp, Kristian

    2011-01-01

    Hastighed på vejnettet er en central metrik indenfor trafikplanlægning og trafikoptimering. I denne artikel beskrives, hvorledes et hastighedskort for hele Danmark er skabt udelukkende vha. GPS data. To tilgangsvinkler til at beregne hastigheder vha. GPS data er præsenteret. Dette er hhv. en....... Opsummeret anses den turbaseret for at beregne det mest akkurate estimat, men metoden er meget datakrævende. Det er derfor nødvendigt at have den punktbaserede at falde tilbage på. Generelt mangler metoder til beregning af hastigheder vha. GPS data at blive valideret. Hvordan en sådan validering kan...

  13. Traffic Management Systems Performance Measurement: Final Report

    OpenAIRE

    Banks, James H.; Kelly, Gregory

    1997-01-01

    This report documents a study of performance measurement for Transportation Management Centers (TMCs). Performance measurement requirements were analyzed, data collection and management techniques were investigated, and case study traffic data system improvement plans were prepared for two Caltrans districts.

  14. Electricity system performance in Brazil

    International Nuclear Information System (INIS)

    Pires Rodrigues, A.; Souza Dias, D. De

    1992-01-01

    Nowadays, there is great uncertainty and concern about the capacity of the electric sector to go ahead with the programme of investments which was planned to keep pace with the growth in electricity demand. The sector is in an important financial crisis caused by the progressive reduction in its ability to generate resources either through self-financing or through external sources. The Brazilian electric sector is mostly public. Moreover, it is marked by a high degree of integration, which makes the whole system vulnerable to problem in each of its parts. First, the financial health of the Electrobras system which is at the top of the pyramidal sectoral structure depends on the capacity of the state-level utilities (operating mainly on the distribution side) to pay for the bulk supplies which they buy from Electrobras-controlled utilities. Second, tariffs are equal in the country as a whole regardless of differences in costs. Differences must be covered by the transfers between state utilities. Thus, there is also a significant horizontal financial inter-dependence in the sector. These institutional characteristics have been very important in the context of the present financial crisis

  15. Spacecraft Multiple Array Communication System Performance Analysis

    Science.gov (United States)

    Hwu, Shian U.; Desilva, Kanishka; Sham, Catherine C.

    2010-01-01

    The Communication Systems Simulation Laboratory (CSSL) at the NASA Johnson Space Center is tasked to perform spacecraft and ground network communication system simulations, design validation, and performance verification. The CSSL has developed simulation tools that model spacecraft communication systems and the space and ground environment in which the tools operate. In this paper, a spacecraft communication system with multiple arrays is simulated. Multiple array combined technique is used to increase the radio frequency coverage and data rate performance. The technique is to achieve phase coherence among the phased arrays to combine the signals at the targeting receiver constructively. There are many technical challenges in spacecraft integration with a high transmit power communication system. The array combining technique can improve the communication system data rate and coverage performances without increasing the system transmit power requirements. Example simulation results indicate significant performance improvement can be achieved with phase coherence implementation.

  16. Information systems for materials performance

    International Nuclear Information System (INIS)

    Roberge, P.

    1999-01-01

    The rapid development of accessible computing power in the 1980s has led to the use of machine intelligence in every sphere of engineering. The incredible progress in computing power and availability has also created a tremendous wealth of information available at the touch of few buttons. However, such wealth can easily provoke what is commonly described as 'information overload'. The massive number of connections produced by a single search of the web, for example, can greatly overwhelm users of this new technology. The rapidity of Web searches is due to the synergy between progress made in network connectivity protocols, intelligent search strategies and supporting hardware. This paper will attempt to define the basic elements of machine intelligence in the context of corrosion engineering and examine what has been done or could be done to introduce artificial thinking into daily operations. This paper will also review some modem software systems commonly used for information processing and internet searches. (author)

  17. Global Geodesy Using GPS Without Fiducial Sites

    Science.gov (United States)

    Heflin, Michael B.; Blewitt, Geoffrey

    1994-01-01

    Global Positioning System, GPS, used to make global geodetic measurements without use of fiducial site coordinates. Baseline lengths and geocentric radii for each site determined without having to fix any site coordinates. Given n globally distributed sites, n baseline lengths and n geocentric radii form polyhedron with each site at vertex and with geocenter at intersection of all radii. Geodetic information derived from structure of polyhedron and its change with time. Approach applied to any global geodetic technique.

  18. GPS Water Vapor Tomography Based on Accurate Estimations of the GPS Tropospheric Parameters

    Science.gov (United States)

    Champollion, C.; Masson, F.; Bock, O.; Bouin, M.; Walpersdorf, A.; Doerflinger, E.; van Baelen, J.; Brenot, H.

    2003-12-01

    The Global Positioning System (GPS) is now a common technique for the retrieval of zenithal integrated water vapor (IWV). Further applications in meteorology need also slant integrated water vapor (SIWV) which allow to precisely define the high variability of tropospheric water vapor at different temporal and spatial scales. Only precise estimations of IWV and horizontal gradients allow the estimation of accurate SIWV. We present studies developed to improve the estimation of tropospheric water vapor from GPS data. Results are obtained from several field experiments (MAP, ESCOMPTE, OHM-CV, IHOP, .). First IWV are estimated using different GPS processing strategies and results are compared to radiosondes. The role of the reference frame and the a priori constraints on the coordinates of the fiducial and local stations is generally underestimated. It seems to be of first order in the estimation of the IWV. Second we validate the estimated horizontal gradients comparing zenith delay gradients and single site gradients. IWV, gradients and post-fit residuals are used to construct slant integrated water delays. Validation of the SIWV is under progress comparing GPS SIWV, Lidar measurements and high resolution meteorological models (Meso-NH). A careful analysis of the post-fit residuals is needed to separate tropospheric signal from multipaths. The slant tropospheric delays are used to study the 3D heterogeneity of the troposphere. We develop a tomographic software to model the three-dimensional distribution of the tropospheric water vapor from GPS data. The software is applied to the ESCOMPTE field experiment, a dense network of 17 dual frequency GPS receivers operated in southern France. Three inversions have been successfully compared to three successive radiosonde launches. Good resolution is obtained up to heights of 3000 m.

  19. 75 FR 8928 - Announcement of IS-GPS-200, IS-GPS-705, IS-GPS-800 Interface Control Working Group (ICWG...

    Science.gov (United States)

    2010-02-26

    ... DEPARTMENT OF DEFENSE Department of the Air Force Announcement of IS-GPS-200, IS-GPS-705, IS-GPS... document/s IS-GPS-200E (NAVSTAR GPS Space Segment/Navigation User Interfaces), IS-GPS-705A (NAVSTAR GPS Space Segment/User Segment L5 Interfaces), and IS-GPS-800A (NAVSTAR GPS Space Segment/User Segment L1C...

  20. An Enhanced Error Model for EKF-Based Tightly-Coupled Integration of GPS and Land Vehicle's Motion Sensors.

    Science.gov (United States)

    Karamat, Tashfeen B; Atia, Mohamed M; Noureldin, Aboelmagd

    2015-09-22

    Reduced inertial sensor systems (RISS) have been introduced by many researchers as a low-cost, low-complexity sensor assembly that can be integrated with GPS to provide a robust integrated navigation system for land vehicles. In earlier works, the developed error models were simplified based on the assumption that the vehicle is mostly moving on a flat horizontal plane. Another limitation is the simplified estimation of the horizontal tilt angles, which is based on simple averaging of the accelerometers' measurements without modelling their errors or tilt angle errors. In this paper, a new error model is developed for RISS that accounts for the effect of tilt angle errors and the accelerometer's errors. Additionally, it also includes important terms in the system dynamic error model, which were ignored during the linearization process in earlier works. An augmented extended Kalman filter (EKF) is designed to incorporate tilt angle errors and transversal accelerometer errors. The new error model and the augmented EKF design are developed in a tightly-coupled RISS/GPS integrated navigation system. The proposed system was tested on real trajectories' data under degraded GPS environments, and the results were compared to earlier works on RISS/GPS systems. The findings demonstrated that the proposed enhanced system introduced significant improvements in navigational performance.

  1. Comparison of a novel real-time SonixGPS needle-tracking ultrasound technique with traditional ultrasound for vascular access in a phantom gel model.

    Science.gov (United States)

    Kopac, Daniel S; Chen, Jerry; Tang, Raymond; Sawka, Andrew; Vaghadia, Himat

    2013-09-01

    Ultrasound-guided percutaneous vascular access for endovascular procedures is well established in surgical practice. Despite this, rates of complications from venous and arterial access procedures remain a significant cause of morbidity. We hypothesized that the use of a new technique of vascular access using an ultrasound with a novel needle-guidance positioning system (GPS) would lead to improved success rates of vascular puncture for both in-plane and out-of-plane techniques compared with traditional ultrasound. A prospective, randomized crossover study of medical students from all years of medical school was conducted using a phantom gel model. Each medical student performed three ultrasound-guided punctures with each of the four modalities (in-plane no GPS, in-plane with GPS, out-of-plane no GPS, out-of-plane with GPS) for a total of 12 attempts. The success or failure was judged by the ability to aspirate a simulated blood solution from the model. The time to successful puncture was also recorded. A poststudy validated NASA Task Load Index workload questionnaire was conducted to assess the student's perceptions of the two different techniques. A total of 30 students completed the study. There was no significant difference seen in the mean times of vascular access for each of the modalities. Higher success rates for vascular access using the GPS for both the in-plane (94% vs 91%) and the out-of-plane (86% vs 70%) views were observed; however, this was not statistically significant. The students perceived the mental demand (median 12.0 vs 14.00; P = .035) and effort to be lower (mean 11.25 vs 14.00; P = .044) as well as the performance to be higher (mean 15.50 vs 14.00; P = .041) for the GPS vs the traditional ultrasound-guided technique. Students also perceived their ability to access vessels increased with the aid of the GPS (7.00 vs 6.50; P = .007). The majority of students expressed a preference for GPS (26/30, 87%) as opposed to the traditional counterpart

  2. Global Ionospheric Modelling using Multi-GNSS: BeiDou, Galileo, GLONASS and GPS.

    Science.gov (United States)

    Ren, Xiaodong; Zhang, Xiaohong; Xie, Weiliang; Zhang, Keke; Yuan, Yongqiang; Li, Xingxing

    2016-09-15

    The emergence of China's Beidou, Europe's Galileo and Russia's GLONASS satellites has multiplied the number of ionospheric piercing points (IPP) offered by GPS alone. This provides great opportunities for deriving precise global ionospheric maps (GIMs) with high resolution to improve positioning accuracy and ionospheric monitoring capabilities. In this paper, the GIM is developed based on multi-GNSS (GPS, GLONASS, BeiDou and Galileo) observations in the current multi-constellation condition. The performance and contribution of multi-GNSS for ionospheric modelling are carefully analysed and evaluated. Multi-GNSS observations of over 300 stations from the Multi-GNSS Experiment (MGEX) and International GNSS Service (IGS) networks for two months are processed. The results show that the multi-GNSS GIM products are better than those of GIM products based on GPS-only. Differential code biases (DCB) are by-products of the multi-GNSS ionosphere modelling, the corresponding standard deviations (STDs) are 0.06 ns, 0.10 ns, 0.18 ns and 0.15 ns for GPS, GLONASS, BeiDou and Galileo, respectively in satellite, and the STDs for the receiver are approximately 0.2~0.4 ns. The single-frequency precise point positioning (SF-PPP) results indicate that the ionospheric modelling accuracy of the proposed method based on multi-GNSS observations is better than that of the current dual-system GIM in specific areas.

  3. Coarse Initial Orbit Determination for a Geostationary Satellite Using Single-Epoch GPS Measurements

    Directory of Open Access Journals (Sweden)

    Ghangho Kim

    2015-04-01

    Full Text Available A practical algorithm is proposed for determining the orbit of a geostationary orbit (GEO satellite using single-epoch measurements from a Global Positioning System (GPS receiver under the sparse visibility of the GPS satellites. The algorithm uses three components of a state vector to determine the satellite’s state, even when it is impossible to apply the classical single-point solutions (SPS. Through consideration of the characteristics of the GEO orbital elements and GPS measurements, the components of the state vector are reduced to three. However, the algorithm remains sufficiently accurate for a GEO satellite. The developed algorithm was tested on simulated measurements from two or three GPS satellites, and the calculated maximum position error was found to be less than approximately 40 km or even several kilometers within the geometric range, even when the classical SPS solution was unattainable. In addition, extended Kalman filter (EKF tests of a GEO satellite with the estimated initial state were performed to validate the algorithm. In the EKF, a reliable dynamic model was adapted to reduce the probability of divergence that can be caused by large errors in the initial state.

  4. Road Traffic Anomaly Detection via Collaborative Path Inference from GPS Snippets

    Directory of Open Access Journals (Sweden)

    Hongtao Wang

    2017-03-01

    Full Text Available Road traffic anomaly denotes a road segment that is anomalous in terms of traffic flow of vehicles. Detecting road traffic anomalies from GPS (Global Position System snippets data is becoming critical in urban computing since they often suggest underlying events. However, the noisy ands parse nature of GPS snippets data have ushered multiple problems, which have prompted the detection of road traffic anomalies to be very challenging. To address these issues, we propose a two-stage solution which consists of two components: a Collaborative Path Inference (CPI model and a Road Anomaly Test (RAT model. CPI model performs path inference incorporating both static and dynamic features into a Conditional Random Field (CRF. Dynamic context features are learned collaboratively from large GPS snippets via a tensor decomposition technique. Then RAT calculates the anomalous degree for each road segment from the inferred fine-grained trajectories in given time intervals. We evaluated our method using a large scale real world dataset, which includes one-month GPS location data from more than eight thousand taxi cabs in Beijing. The evaluation results show the advantages of our method beyond other baseline techniques.

  5. Improved GPS-based Satellite Relative Navigation Using Femtosecond Laser Relative Distance Measurements

    Directory of Open Access Journals (Sweden)

    Hyungjik Oh

    2016-03-01

    Full Text Available This study developed an approach for improving Carrier-phase Differential Global Positioning System (CDGPS based realtime satellite relative navigation by applying laser baseline measurement data. The robustness against the space operational environment was considered, and a Synthetic Wavelength Interferometer (SWI algorithm based on a femtosecond laser measurement model was developed. The phase differences between two laser wavelengths were combined to measure precise distance. Generated laser data were used to improve estimation accuracy for the float ambiguity of CDGPS data. Relative navigation simulations in real-time were performed using the extended Kalman filter algorithm. The GPS and laser-combined relative navigation accuracy was compared with GPS-only relative navigation solutions to determine the impact of laser data on relative navigation. In numerical simulations, the success rate of integer ambiguity resolution increased when laser data was added to GPS data. The relative navigational errors also improved five-fold and two-fold, relative to the GPS-only error, for 250 m and 5 km initial relative distances, respectively. The methodology developed in this study is suitable for application to future satellite formation-flying missions.

  6. Coarse Initial Orbit Determination for a Geostationary Satellite Using Single-Epoch GPS Measurements

    Science.gov (United States)

    Kim, Ghangho; Kim, Chongwon; Kee, Changdon

    2015-01-01

    A practical algorithm is proposed for determining the orbit of a geostationary orbit (GEO) satellite using single-epoch measurements from a Global Positioning System (GPS) receiver under the sparse visibility of the GPS satellites. The algorithm uses three components of a state vector to determine the satellite’s state, even when it is impossible to apply the classical single-point solutions (SPS). Through consideration of the characteristics of the GEO orbital elements and GPS measurements, the components of the state vector are reduced to three. However, the algorithm remains sufficiently accurate for a GEO satellite. The developed algorithm was tested on simulated measurements from two or three GPS satellites, and the calculated maximum position error was found to be less than approximately 40 km or even several kilometers within the geometric range, even when the classical SPS solution was unattainable. In addition, extended Kalman filter (EKF) tests of a GEO satellite with the estimated initial state were performed to validate the algorithm. In the EKF, a reliable dynamic model was adapted to reduce the probability of divergence that can be caused by large errors in the initial state. PMID:25835299

  7. Routing Unmanned Vehicles in GPS-Denied Environments

    OpenAIRE

    Sundar, Kaarthik; Misra, Sohum; Rathinam, Sivakumar; Sharma, Rajnikant

    2017-01-01

    Most of the routing algorithms for unmanned vehicles, that arise in data gathering and monitoring applications in the literature, rely on the Global Positioning System (GPS) information for localization. However, disruption of GPS signals either intentionally or unintentionally could potentially render these algorithms not applicable. In this article, we present a novel method to address this difficulty by combining methods from cooperative localization and routing. In particular, the article...

  8. Performance of Active Wave Absorption Systems

    DEFF Research Database (Denmark)

    Hald, Tue; Frigaard, Peter

    on a horisontal and vertical velocity are treated. All three systems are based on digital FIR-filters. For numerical comparison a performance function combining the frequency response of the set of filters for each system is derived enabling discussion on optimal filter design and system setup. Irregular wave......A comparison of wave gauge based on velocity meter based active absorption systems is presented discussing advantages and disadvantages of the systems. In detail one system based on two surface elevations, one system based on a surface elevation and a horisontal velocity and one system based...... tests with a highly reflective structure with the purely wave gauge based system and the wave gauge velocity meter based system are performed. The wave test depict the differences between the systems....

  9. Cascade Distiller System Performance Testing Interim Results

    Science.gov (United States)

    Callahan, Michael R.; Pensinger, Stuart; Sargusingh, Miriam J.

    2014-01-01

    The Cascade Distillation System (CDS) is a rotary distillation system with potential for greater reliability and lower energy costs than existing distillation systems. Based upon the results of the 2009 distillation comparison test (DCT) and recommendations of the expert panel, the Advanced Exploration Systems (AES) Water Recovery Project (WRP) project advanced the technology by increasing reliability of the system through redesign of bearing assemblies and improved rotor dynamics. In addition, the project improved the CDS power efficiency by optimizing the thermoelectric heat pump (TeHP) and heat exchanger design. Testing at the NASA-JSC Advanced Exploration System Water Laboratory (AES Water Lab) using a prototype Cascade Distillation Subsystem (CDS) wastewater processor (Honeywell d International, Torrance, Calif.) with test support equipment and control system developed by Johnson Space Center was performed to evaluate performance of the system with the upgrades as compared to previous system performance. The system was challenged with Solution 1 from the NASA Exploration Life Support (ELS) distillation comparison testing performed in 2009. Solution 1 consisted of a mixed stream containing human-generated urine and humidity condensate. A secondary objective of this testing is to evaluate the performance of the CDS as compared to the state of the art Distillation Assembly (DA) used in the ISS Urine Processor Assembly (UPA). This was done by challenging the system with ISS analog waste streams. This paper details the results of the AES WRP CDS performance testing.

  10. An Automatic K-Means Clustering Algorithm of GPS Data Combining a Novel Niche Genetic Algorithm with Noise and Density

    Directory of Open Access Journals (Sweden)

    Xiangbing Zhou

    2017-12-01

    Full Text Available Rapidly growing Global Positioning System (GPS data plays an important role in trajectory and their applications (e.g., GPS-enabled smart devices. In order to employ K-means to mine the better origins and destinations (OD behind the GPS data and overcome its shortcomings including slowness of convergence, sensitivity to initial seeds selection, and getting stuck in a local optimum, this paper proposes and focuses on a novel niche genetic algorithm (NGA with density and noise for K-means clustering (NoiseClust. In NoiseClust, an improved noise method and K-means++ are proposed to produce the initial population and capture higher quality seeds that can automatically determine the proper number of clusters, and also handle the different sizes and shapes of genes. A density-based method is presented to divide the number of niches, with its aim to maintain population diversity. Adaptive probabilities of crossover and mutation are also employed to prevent the convergence to a local optimum. Finally, the centers (the best chromosome are obtained and then fed into the K-means as initial seeds to generate even higher quality clustering results by allowing the initial seeds to readjust as needed. Experimental results based on taxi GPS data sets demonstrate that NoiseClust has high performance and effectiveness, and easily mine the city’s situations in four taxi GPS data sets.

  11. SLR and GPS spatial techniques in ITRF. Argentine results.

    Science.gov (United States)

    Actis, Eloy Vicente; Huang, Dongping; Márquez, Raúl; Adarvez, Sonia; Flores, Matías; Brizuela, Diego; Nievas, Jesica; Podestá, Ricardo; Pacheco, Ana M.; Rojas, Hernán Alvis; Yin, Zhiqiang; Li, Jinzeng; Han, Yanben; Liu, Weidong; Wang, Rui

    2012-08-01

    Along the late 30 years spatial geodetic techniques enable us to measure horizontal and vertical deformations of the Earth’s surface with a very high precision. Performing this task we made Satellite Laser Ranging (SLR), and Global Positioning System (GPS) observations in South America ILRS 7406 Station placed at Observatorio Astronómico Félix Aguilar (OAFA) in San Juan, Argentina, accomplishing a Cooperation Agreement between CAS - NAOC and OAFA - UNSJ. Trough LAGEOS II Satellite observations we obtain rectangular coordinates of San Juan ILRS Station in the Terrestrial Reference Frame (ITR 2000), standing out that Argentine Station data were included in the late arrangements ITRF given by International Earth Rotation and Reference System Service (IERS). Spatial and temporary variations of the epoch 2010 - 2011 were evaluated finding out remarkable displacements, of about a half meter, related with seismic events on the region. We confirm these deformations by means of GP S determinations referred to Permanent GPS Station placed nearby the SLR Station.

  12. Verification and Performance Analysis for Embedded Systems

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand

    2009-01-01

    This talk provides a thorough tutorial of the UPPAAL tool suite for, modeling, simulation, verification, optimal scheduling, synthesis, testing and performance analysis of embedded and real-time systems.......This talk provides a thorough tutorial of the UPPAAL tool suite for, modeling, simulation, verification, optimal scheduling, synthesis, testing and performance analysis of embedded and real-time systems....

  13. Cost and Performance Model for Photovoltaic Systems

    Science.gov (United States)

    Borden, C. S.; Smith, J. H.; Davisson, M. C.; Reiter, L. J.

    1986-01-01

    Lifetime cost and performance (LCP) model assists in assessment of design options for photovoltaic systems. LCP is simulation of performance, cost, and revenue streams associated with photovoltaic power systems connected to electric-utility grid. LCP provides user with substantial flexibility in specifying technical and economic environment of application.

  14. RHIC sextant test: Accelerator systems and performance

    Energy Technology Data Exchange (ETDEWEB)

    Pilat, F.; Trbojevic, D.; Ahrens, L. [and others

    1997-08-01

    One sextant of the RHIC Collider was commissioned in early 1997 with beam. We describe here the performance of the accelerator systems, instrumentation subsystems and application software. We also describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems performance and their impact on the planning for RHIC installation and commissioning.

  15. RHIC sextant test: Accelerator systems and performance

    International Nuclear Information System (INIS)

    Pilat, F.; Trbojevic, D.; Ahrens, L.

    1997-01-01

    One sextant of the RHIC Collider was commissioned in early 1997 with beam. We describe here the performance of the accelerator systems, instrumentation subsystems and application software. We also describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems performance and their impact on the planning for RHIC installation and commissioning

  16. Performances of the HL (Hyperloop) transport system

    NARCIS (Netherlands)

    van Goeverden, C.D.; Milakis, D.; Janic, M.; Konings, J.W.; Cools, M.; Limbourg, S.

    2017-01-01

    This paper deals with an analysis of performances of the HL (Hyperloop) transport system considered as an advanced transport alternative to the existing APT (Air Passenger Transport) and HSR (High Speed Rail) systems. The considered performances are operational, financial, social and environmental.

  17. High-performance OPCPA laser system

    International Nuclear Information System (INIS)

    Zuegel, J.D.; Bagnoud, V.; Bromage, J.; Begishev, I.A.; Puth, J.

    2006-01-01

    Optical parametric chirped-pulse amplification (OPCPA) is ideally suited for amplifying ultra-fast laser pulses since it provides broadband gain across a wide range of wavelengths without many of the disadvantages of regenerative amplification. A high-performance OPCPA system has been demonstrated as a prototype for the front end of the OMEGA Extended Performance (EP) Laser System. (authors)

  18. High-performance OPCPA laser system

    Energy Technology Data Exchange (ETDEWEB)

    Zuegel, J.D.; Bagnoud, V.; Bromage, J.; Begishev, I.A.; Puth, J. [Rochester Univ., Lab. for Laser Energetics, NY (United States)

    2006-06-15

    Optical parametric chirped-pulse amplification (OPCPA) is ideally suited for amplifying ultra-fast laser pulses since it provides broadband gain across a wide range of wavelengths without many of the disadvantages of regenerative amplification. A high-performance OPCPA system has been demonstrated as a prototype for the front end of the OMEGA Extended Performance (EP) Laser System. (authors)

  19. Consultants' Corner: System Performance. A Forum.

    Science.gov (United States)

    Drabenstott, John, Ed.

    1986-01-01

    Five library consultants address issues that affect online system performance: options in system design that relate to diverse library requirements; criteria that most affect performance; benchmark tests and sizing criteria; minimalizing the risks of miscalculation; and the roles and responsibilities of vendors, libraries, and consultants.…

  20. Performance Aspects of Synthesizable Computing Systems

    DEFF Research Database (Denmark)

    Schleuniger, Pascal

    Embedded systems are used in a broad range of applications that demand high performance within severely constrained mechanical, power, and cost requirements. Embedded systems implemented in ASIC technology tend to provide the highest performance, lowest power consumption and lowest unit cost. How...