WorldWideScience

Sample records for good electrical contacts

  1. Electrical contacts principles and applications

    CERN Document Server

    Slade, Paul G

    2013-01-01

    Covering the theory, application, and testing of contact materials, Electrical Contacts: Principles and Applications, Second Edition introduces a thorough discussion on making electric contact and contact interface conduction; presents a general outline of, and measurement techniques for, important corrosion mechanisms; considers the results of contact wear when plug-in connections are made and broken; investigates the effect of thin noble metal plating on electronic connections; and relates crucial considerations for making high- and low-power contact joints. It examines contact use in switch

  2. Experimental investigation on the electrical contact behavior of rolling contact connector

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Junxing; Yang, Fei, E-mail: yfei2007@mail.xjtu.edu.cn; Luo, Kaiyu; Zhu, Mingliang; Wu, Yi; Rong, Mingzhe [State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049 (China)

    2015-12-15

    Rolling contact connector (RCC) is a new technology utilized in high performance electric power transfer systems with one or more rotating interfaces, such as radars, satellites, wind generators, and medical computed tomography machines. Rolling contact components are used in the RCC instead of traditional sliding contacts to transfer electrical power and/or signal. Since the requirement of the power transmission is increasing in these years, the rolling electrical contact characteristics become more and more important for the long-life design of RCC. In this paper, a typical form of RCC is presented. A series of experimental work are carried out to investigate the rolling electrical contact characteristics during its lifetime. The influence of a variety of factors on the electrical contact degradation behavior of RCC is analyzed under both vacuum and air environment. Based on the surface morphology and elemental composition changes in the contact zone, which are assessed by field emission scanning electron microscope and confocal laser scanning microscope, the mechanism of rolling electrical contact degradation is discussed.

  3. Non-contact magnetic coupled power and data transferring system for an electric vehicle

    International Nuclear Information System (INIS)

    Matsuda, Y.; Sakamoto, H.

    2007-01-01

    We have developed a system which transmits electric power and communication data simultaneously in a non-contact method using a magnetic coupling coil. Already, we are developing the fundamental technology of a non-contact charging system, and this is applied in electric shavers, electric toothbrushes, etc. Moreover, basic experiments are being conducted for applying this non-contact charging system to electric equipments such as an electric vehicle (EV), which is a zero emission vehicle and environmentally excellent and will be the transportation means of the next generation. The technology can also be applied in other electronic equipment, etc. However, since the power supply route for these individual devices is independent, the supply system is complicated. EV also has to perform the transmission of electric power and the transmission of information (data), such as the amount of the charge, in a separate system, and thus is quite complicated. In this study, by performing simultaneously the transmission of electric power and information (data) using magnetic coupling technology in which it does not contact, the basic experiment aimed at attaining and making unification of a system simple was conducted, and the following good results were obtained: (1) Electric power required for load can be transmitted easily by non-contact. (2) A signal can easily be transmitted bidirectionally by non-contact. (3) This system is reliable, and is widely applicable

  4. Electric contact arcing

    International Nuclear Information System (INIS)

    Cuthrell, R.E.

    1976-01-01

    Electrical contacts must function properly in many types of components used in nuclear weapon systems. Design, application, and testing of these components require detailed knowledge of chemical and physical phenomena associated with stockpile storage, stockpile testing, and operation. In the past, investigation of these phenomena has led to significant discoveries on the effects of surface contaminants, friction and wear, and the mechanics of closure on contact performance. A recent investigation of contact arcing phenomena which revealed that, preceding contact closure, arcs may occur at voltages lower than had been previously known is described. This discovery is important, since arcing may damage contacts, and repetitive testing of contacts performed as part of a quality assurance program might produce cumulative damage that would yield misleading life-test data and could prevent proper operation of the contacts at some time in the future. This damage can be avoided by determining the conditions under which arcing occurs, and ensuring that these conditions are avoided in contact testing

  5. Evaluation of metal–nanowire electrical contacts by measuring contact end resistance

    International Nuclear Information System (INIS)

    Park, Hongsik; Beresford, Roderic; Xu, Jimmy; Ha, Ryong; Choi, Heon-Jin; Shin, Hyunjung

    2012-01-01

    It is known, but often unappreciated, that the performance of nanowire (NW)-based electrical devices can be significantly affected by electrical contacts between electrodes and NWs, sometimes to the extent that it is really the contacts that determine the performance. To correctly understand and design NW device operation, it is thus important to carefully measure the contact resistance and evaluate the contact parameters, specific contact resistance and transfer length. A four-terminal pattern or a transmission line model (TLM) pattern has been widely used to measure contact resistance of NW devices and the TLM has been typically used to extract contact parameters of NW devices. However, the conventional method assumes that the electrical properties of semiconducting NW regions covered by a metal are not changed after electrode formation. In this study, we report that the conventional methods for contact evaluation can give rise to considerable errors because of an altered property of the NW under the electrodes. We demonstrate that more correct contact resistance can be measured from the TLM pattern rather than the four-terminal pattern and correct contact parameters including the effects of changed NW properties under electrodes can be evaluated by using the contact end resistance measurement method. (paper)

  6. Numerical Modeling of Electrical Contact Conductance of Rough Bodies

    Directory of Open Access Journals (Sweden)

    M. V. Murashov

    2015-01-01

    Full Text Available Since the beginning of the 20th century to the present time, efforts have been made to develop a model of the electrical contact conductance. The development of micro- and nanotechnologies make contact conductance problem more essential. To conduct borrowing from a welldeveloped thermal contact conductance models on the basis of thermal and electrical conductivity analogy is often not possible due to a number of fundamental differences. While some 3Dmodels of rough bodies deformation have been developed in one way or another, a 3D-model of the electrical conductance through rough bodies contact is still not. A spatial model of electrical contact of rough bodies is proposed, allows one to calculate the electrical contact conductance as a function of the contact pressure. Representative elements of the bodies are parallelepipeds with deterministic roughness on the contacting surfaces. First the non-linear elastic-plastic deformation of rough surface under external pressure is solved using the finite element software ANSYS. Then the solution of electrostatic problem goes on the same finite element mesh. Aluminum AD1 is used as the material of the contacting bodies with properties that account for cold work hardening of the surface. The numerical model is built within the continuum mechanics and nanoscale effects are not taken into account. The electrical contact conductance was calculated on the basis of the concept of electrical resistance of the model as the sum of the electrical resistances of the contacting bodies and the contact itself. It was assumed that there is no air in the gap between the bodies. The dependence of the electrical contact conductance on the contact pressure is calculated as well as voltage and current density distributions in the contact bodies. It is determined that the multi-asperity contact mode, adequate to real roughness, is achieved at pressures higher than 3MPa, while results within the single contact spot are

  7. Oxide Thin-Film Electronics using All-MXene Electrical Contacts

    KAUST Repository

    Wang, Zhenwei

    2018-02-23

    2D MXenes have shown great promise in electrochemical and electromagnetic shielding applications. However, their potential use in electronic devices is significantly less explored. The unique combination of metallic conductivity and hydrophilic surface suggests that MXenes can also be promising in electronics and sensing applications. Here, it is shown that metallic Ti3C2 MXene with work function of 4.60 eV can make good electrical contact with both zinc oxide (ZnO) and tin monoxide (SnO) semiconductors, with negligible band offsets. Consequently, both n-type ZnO and p-type SnO thin-film transistors (TFTs) have been fabricated entirely using large-area MXene (Ti3C2) electrical contacts, including gate, source, and drain. The n- and p-type TFTs show balanced performance, including field-effect mobilities of 2.61 and 2.01 cm2 V−1 s−1 and switching ratios of 3.6 × 106 and 1.1 × 103, respectively. Further, complementary metal oxide semiconductor (CMOS) inverters are demonstrated. The CMOS inverters show large voltage gain of 80 and excellent noise margin of 3.54 V, which is 70.8% of the ideal value. Moreover, the operation of CMOS inverters is shown to be very stable under a 100 Hz square waveform input. The current results suggest that MXene (Ti3C2) can play an important role as contact material in nanoelectronics.

  8. Electroless Ni-B plating for electrical contact applications

    Directory of Open Access Journals (Sweden)

    Dervos, C. T.

    2005-12-01

    Full Text Available Electroless Ni-B plating has been tried on steel substrate in an effort to employ low-cost starting materials for electrical contacts or connectors. By selected conditions of heat treatment in a high vacuum environment the plating can acquire Cr-equivalent hardness without the effluents of the hard chromium plating process. The surfaces were characterized under scanning electron microscope and by XRD. The fabricated materials were tested under corrosion conditions by polarization measurements. Semispherical nickel plated steel joints were tested in a computer controlled contact make-break apparatus, under simultaneous application of a mechanical and a low-voltage electrical load for 20,000 cycles. After heat treatment the plating acquires a crystalline structure with very good adhesion to the substrate material. Corrosion decreases and increased hardness is obtained. The surface is also characterized by good electrical properties during aging accelerated tests.

    Se ha investigado la deposición de Ni-B por vía química sobre un substrato de acero, con el fin de poder emplear materiales de bajo coste para los contactos o conectores eléctricos. Mediante condiciones específicas de tratamiento térmico en un ambiente de alto vacío, la deposición puede alcanzar durezas equivalentes al cromo (Cr sin los efluentes del proceso de cromado duro. Las superficies se caracterizaron en el microscopio electrónico de barrido y mediante DRX. Los materiales fabricados se ensayaron bajo condiciones de corrosión utilizando mediciones de polarización. Se ensayaron las juntas semiesféricas de acero niquelado en un equipo de contactos controlado por ordenador bajo la aplicación simultánea de una carga mecánica y de una carga eléctrica de bajo voltaje durante 20.000 ciclos. Después del tratamiento térmico, el recubrimiento adquiere una estructura cristalina con muy buena adherencia al material del substrato. Se consigue una menor corrosión y mayor

  9. Electrical contact arrangement for a coating process

    Science.gov (United States)

    Kabagambe, Benjamin; McCamy, James W; Boyd, Donald W

    2013-09-17

    A protective coating is applied to the electrically conductive surface of a reflective coating of a solar mirror by biasing a conductive member having a layer of a malleable electrically conductive material, e.g. a paste, against a portion of the conductive surface while moving an electrodepositable coating composition over the conductive surface. The moving of the electrodepositable coating composition over the conductive surface includes moving the solar mirror through a flow curtain of the electrodepositable coating composition and submerging the solar mirror in a pool of the electrodepositable coating composition. The use of the layer of a malleable electrically conductive material between the conductive member and the conductive surface compensates for irregularities in the conductive surface being contacted during the coating process thereby reducing the current density at the electrical contact area.

  10. Electrical Contacts in Monolayer Arsenene Devices.

    Science.gov (United States)

    Wang, Yangyang; Ye, Meng; Weng, Mouyi; Li, Jingzhen; Zhang, Xiuying; Zhang, Han; Guo, Ying; Pan, Yuanyuan; Xiao, Lin; Liu, Junku; Pan, Feng; Lu, Jing

    2017-08-30

    Arsenene, arsenic analogue of graphene, as an emerging member of two-dimensional semiconductors (2DSCs), is quite promising in next-generation electronic and optoelectronic applications. The metal electrical contacts play a vital role in the charge transport and photoresponse processes of nanoscale 2DSC devices and even can mask the intrinsic properties of 2DSCs. Here, we present a first comprehensive study of the electrical contact properties of monolayer (ML) arsenene with different electrodes by using ab initio electronic calculations and quantum transport simulations. Schottky barrier is always formed with bulk metal contacts owing to the Fermi level pinning (pinning factor S = 0.33), with electron Schottky barrier height (SBH) of 0.12, 0.21, 0.25, 0.35, and 0.50 eV for Sc, Ti, Ag, Cu, and Au contacts and hole SBH of 0.75 and 0.78 eV for Pd and Pt contacts, respectively. However, by contact with 2D graphene, the Fermi level pinning effect can be reduced due to the suppression of metal-induced gap states. Remarkably, a barrier free hole injection is realized in ML arsenene device with graphene-Pt hybrid electrode, suggestive of a high device performance in such a ML arsenene device. Our study provides a theoretical foundation for the selection of favorable electrodes in future ML arsenene devices.

  11. The nature of electrical interaction of Schottky contacts

    International Nuclear Information System (INIS)

    Torkhov, N. A.

    2011-01-01

    Electrical interaction between metal-semiconductor contacts combined in a diode matrix with a Schottky barrier manifests itself in an appreciable variation in their surface potentials and static current-volt-characteristics. The necessary condition for appearance of electrical interaction between such contacts consists in the presence of a peripheral electric field (a halo) around them; this field propagates to a fairly large distances ( i,j ), concentration of doping impurities in the semiconductor N D , and physical nature of a metal-semiconductor system with a Schottky barrier (with the barrier height φ b ). It is established that bringing the contacts closer leads to a relative decrease in the threshold value of the “dead” zone in the forward current-voltage characteristics, an increase in the effective height of the barrier, and an insignificant increase in the nonideality factor. An increase in the total area of contacts (a total electric charge in the space charge region) in the matrix brings about an increase in the threshold value of the “dead” zone, a relative decrease in the effective barrier height, and an insignificant increase in the ideality factor.

  12. Is electricity a public good?

    International Nuclear Information System (INIS)

    Salies, Evens; Kiesling, Lynne; Giberson, Michael

    2007-04-01

    Wholesale electricity markets are increasingly driven by the rules of competition while recent outages in different regions of the world suggest that security of supply is a public good. The objective of this paper is to show that security of supply and more generally, electricity supply has both public and private characteristics. Whilst the public good characteristic explains why some producers may prefer to free ride on others' investments to maintain reliability, the private good aspect of reliability shows that agents may have a variety of preferences for reliability. Then by relying on the concept of Pareto-relevant externality, the paper explores the private aspect of reliability for the prospect of creating and selling reliability as a differentiated product complementary to bulk power markets. Finally, policy recommendations are derived that aim to enhance information content in the network. Initially published in 'Revue de l'OFCE' No. 101

  13. CONTACT RESISTANCE MODELING

    Directory of Open Access Journals (Sweden)

    S. V. LOSKUTOV

    2018-05-01

    Full Text Available Purpose. To determine the contribution of the real contact spots distribution in the total conductivity of the conductors contact. Methodology. The electrical contact resistance research was carried out on models. The experimental part of this work was done on paper with a graphite layer with membranes (the first type and conductive liquids with discrete partitions (the second type. Findings. It is shown that the contact electrical resistance is mainly determined by the real area of metal contact. The experimental dependence of the electrical resistance of the second type model on the distance between the electrodes and the potential distribution along the sample surface for the first type model were obtained. The theoretical model based on the principle of electric field superposition was considered. The dependences obtained experimentally and calculated by using the theoretical model are in good agreement. Originality. The regularity of the electrical contact resistance formation on a large number of membranes was researched for the first time. A new model of discrete electrical contact based on the liquid as the conducting environment with nuclear membrane partitions was developed. The conclusions of the additivity of contact and bulk electrical resistance were done. Practical value. Based on these researches, a new experimental method of kinetic macroidentation that as a parameter of the metal surface layer deformation uses the real contact area was developed. This method allows to determine the value of average contact stresses, yield point, change of the stress on the depth of deformation depending on the surface treatment.

  14. Processing and properties of silver-metal oxide electrical contact materials

    Directory of Open Access Journals (Sweden)

    Nadežda M. Talijan

    2012-12-01

    Full Text Available The presented study gives a brief overview of the experimental results of investigations of different production technologies of silver-metal oxide electrical contact materials in relation: processing method - properties. The two most common routes of production, i.e. internal oxidation/ingot metallurgy and powder metallurgy are demonstrated on the example of Ag-CdO and Ag-ZnO materials. For illustration of alternative processing routes that provide higher dispersion of metal-oxide particles in silver matrix more environmentally friendly Ag-SnO2 contact materials are used. Processing of electrical contact materials by mechanical mixing of starting powders in high energy ball mill is presented. The obtained experimental results of application of different methods of introduction of SnO2 nanoparticles in the silver matrix such as conventional powder metallurgy mixing and template method are given and discussed in terms of their influence on microstructure and physical properties (density, hardness and electrical conductivity of the prepared Ag-SnO2 electrical contact materials.

  15. Electric field effect on the critical current of SNS-contact

    International Nuclear Information System (INIS)

    Rakhmanov, A.L.; Rozhkov, A.V.

    1995-01-01

    Electric field effect on the SNS-contact critical current is investigated in the Ginzburg-Landau theory approximation. It is shown that the electric field may cause a notable increase of the contact critical current especially if the sample temperature is close to the temperature of a superconducting transition of T sc normal layer. Electric field effect is increased with the reduction of film thickness, but it can strong enough for thick films as well at temperature close to T sc . 11 refs.; 4 figs

  16. From waste to intelligence: the good use of electricity

    International Nuclear Information System (INIS)

    2010-01-01

    While presenting and commenting many data tables and graphs, this study gives an overview of electricity production and of its good use (production, transport, production and distribution management, uses, sector-based consumption, consumption prospective studies in France for the past 15 years, good use criteria, electricity CO 2 content assessments and objectives). It comments the challenges and sector-based perspectives of an electricity good use by 2020 (in the industry, transport, agriculture, housing and tertiary, and building sectors) and emphasizes, for each sector, some recent assessments or policy choices (national plans adopted within the frame of the 'Grenelle de l'Environnement'). The next part describes and comments how electricity is treated within the energy efficiency European policies with different directives. The last part describes some examples of good practices and comments the various challenges to be met by 2020

  17. Rough surface electrical contact resistance considering scale dependent properties and quantum effects

    International Nuclear Information System (INIS)

    Jackson, Robert L.; Crandall, Erika R.; Bozack, Michael J.

    2015-01-01

    The objective of this work is to evaluate the effect of scale dependent mechanical and electrical properties on electrical contact resistance (ECR) between rough surfaces. This work attempts to build on existing ECR models that neglect potentially important quantum- and size-dependent contact and electrical conduction mechanisms present due to the asperity sizes on typical surfaces. The electrical conductance at small scales can quantize or show a stepping trend as the contact area is varied in the range of the free electron Fermi wavelength squared. This work then evaluates if these effects remain important for the interface between rough surfaces, which may include many small scale contacts of varying sizes. The results suggest that these effects may be significant in some cases, while insignificant for others. It depends on the load and the multiscale structure of the surface roughness

  18. Alternative current source based Schottky contact with additional electric field

    Science.gov (United States)

    Mamedov, R. K.; Aslanova, A. R.

    2017-07-01

    Additional electric field (AEF) in the Schottky contacts (SC) that covered the peripheral contact region wide and the complete contact region narrow (as TMBS diode) SC. Under the influence of AEF is a redistribution of free electrons produced at certain temperatures of the semiconductor, and is formed the space charge region (SCR). As a result of the superposition of the electric fields SCR and AEF occurs the resulting electric field (REF). The REF is distributed along a straight line perpendicular to the contact surface, so that its intensity (and potential) has a minimum value on the metal surface and the maximum value at a great distance from the metal surface deep into the SCR. Under the influence of AEF as a sided force the metal becomes negative pole and semiconductor - positive pole, therefore, SC with AEF becomes an alternative current source (ACS). The Ni-nSi SC with different diameters (20-1000 μm) under the influence of the AEF as sided force have become ACS with electromotive force in the order of 0.1-1.0 mV, which are generated the electric current in the range of 10-9-10-7 A, flowing through the external resistance 1000 Ohm.

  19. Improvement and evaluation of thermal, electrical, sealing and mechanical contacts, and their interface materials

    Science.gov (United States)

    Luo, Xiangcheng

    Material contacts, including thermal, electrical, seating (fluid sealing and electromagnetic sealing) and mechanical (pressure) contacts, together with their interface materials, were, evaluated, and in some cases, improved beyond the state of the art. The evaluation involved the use of thermal, electrical and mechanical methods. For thermal contacts, this work evaluated and improved the heat transfer efficiency between two contacting components by developing various thermal interface pastes. Sodium silicate based thermal pastes (with boron nitride particles as the thermally conductive filler) as well as polyethylene glycol (PEG) based thermal pastes were developed and evaluated. The optimum volume fractions of BN in sodium silicate based pastes and PEG based pastes were 16% and 18% respectively. The contribution of Li+ ions to the thermal contact conductance in the PEG-based paste was confirmed. For electrical contacts, the relationship between the mechanical reliability and electrical reliability of solder/copper and silver-epoxy/copper joints was addressed. Mechanical pull-out testing was conducted on solder/copper and silver-epoxy/copper joints, while the contact electrical resistivity was measured. Cleansing of the copper surface was more effective for the reliability of silver-epoxy/copper joint than that of solder/copper joint. For sealing contacts, this work evaluated flexible graphite as an electromagnetic shielding gasket material. Flexible graphite was found to be at least comparable to conductive filled silicone (the state of the art) in terms of the shielding effectiveness. The conformability of flexible graphite with its mating metal surface under repeated compression was characterized by monitoring the contact electrical resistance, as the conformability is important to both electromagnetic scaling and fluid waling using flexible graphite. For mechanical contacts, this work focused on the correlation of the interface structure (such as elastic

  20. In situ electric fields causing electro-stimulation from conductor contact of charged human

    International Nuclear Information System (INIS)

    Nagai, T.; Hirata, A.

    2010-01-01

    Contact currents flow from/into a human body when touching an object such as a metal structure with a different electric potential. These currents can stimulate muscle and peripheral nerves. In this context, computational analyses of in situ electric fields caused by the contact current have been performed, while their effectiveness for transient contact currents has not well been investigated. In the present study, using an anatomically based human model, a dispersive finite-difference time-domain model was utilised to computed transient contact current and in situ electric fields from a charged human. Computed in situ electric fields were highly localised in the hand. In order to obtain an insight into the relationship between in situ electric field and electro-stimulation, cell-maximum and 5-mm averaged in situ electric fields were computed and compared with strength-duration curves. The comparison suggests that both measures could be larger than thresholds derived from the strength- duration curves with parameters used in previous studies. (authors)

  1. Modelling of a Double-Track Railway Contact System Electric Field Intensity

    Science.gov (United States)

    Belinsky, Stanislav; Khanzhina, Olga; Sidorov, Alexander

    2017-12-01

    Working conditions of personnel that serves contact system (CS) are affected by factors including health and safety, security and working hours (danger of rolling stock accidents, danger of electric shock strokes, work at height, severity and tension of work, increased noise level, etc.) Low frequency electromagnetic fields as part of both electric and magnetic fields are among of the most dangerous and harmful factors. These factors can affect not only the working personnel, but also a lot of people, who do not work with the contact system itself, but could be influenced by electromagnetic field as the result of their professional activity. People, who use public transport or live not far from the electrified lines, are endangered by these factors as well. There are results of the theoretical researches in which low frequency electric fields of railway contact system were designed with the use of mathematical and computer modelling. Significant features of electric field distribution near double-track railway in presence or absence of human body were established. The studies showed the dependence of low frequency electric field parameters on the distance to the track axis, height, and presence or absence of human body. The obtained data were compared with permissible standards established in the Russian Federation and other countries with advanced electrified railway system. Evaluation of low frequency electric fields harmful effect on personnel is the main result of this work. It is also established, that location of personnel, voltage and current level, amount of tracks and other factors influence electric fields of contact systems.

  2. Effect of different atmospheres on the electrical contact performance of electronic components under fretting wear

    Science.gov (United States)

    Liu, Xin-Long; Cai, Zhen-Bing; Cui, Ye; Liu, Shan-Bang; Xu, Xiao-Jun; Zhu, Min-Hao

    2018-04-01

    The effects of oxide etch on the surface morphology of metals for industrial application is a common cause of electrical contacts failure, and it has becomes a more severe problem with the miniaturization of modern electronic devices. This study investigated the effects of electrical contact resistance on the contactor under three different atmospheres (oxygen, air, and nitrogen) based on 99.9% copper/pogo pins contacts through fretting experiments. The results showed the minimum and stable electrical contact resistance value when shrouded in the nitrogen environment and with high friction coefficient. The rich oxygen environment promotes the formation of cuprous oxide, thereby the electrical contact resistance increases. Scanning electron microscope microscopy and electron probe microanalysis were used to analyze the morphology and distribution of elements of the wear area, respectively. The surface product between contacts was investigated by x-ray photoelectron spectroscopy analysis to explain the different electrical contact properties of the three tested samples during fretting.

  3. On the electrical contact and long-term behavior of compression-type connections with conventional and high-temperature conductor ropes with low sag

    International Nuclear Information System (INIS)

    Hildmann, Christian

    2016-01-01

    of hexagonal compression connections with stranded overhead transmission line conductors was calculated with the finite element method. The compression forces and the residual contact forces were determined for all contacts between barrel and conductor as well as between the wires of the conductor. It was shown, that high compression and residual contact forces are the main cause of good electrical contact behaviour. The physical relations are discussed. The electrical long-term behaviour was furthermore investigated in experiments. The results confirm the influence of the residual contact force on the long-term behaviour qualitatively. Those compression connections, which had only small residual contact forces, were less stable in the long-term tests.

  4. Electricity as a traded good

    International Nuclear Information System (INIS)

    Srinivasan, Sunderasan

    2013-01-01

    Electric power has traditionally been classified as a non-traded good, produced and consumed within the country of origin. More recently, electricity has been traded across national borders and in certain cases, viz., Bhutan, has been the dominant export; in other situations, it is used to repay debts owed to neighboring countries. This paper investigates the role of electricity as the primary export, analyzes its valuation, and then goes on to evaluate the impact on the terms of trade. We conclude that in the medium-term, the electric power exporting economy would be better off developing its manufacturing sector to diversify its exposure and to protect its trade interests. The case of Bhutanese hydro-electricity exports to India is studied and the change in trade advantage with every increase in power tariff is ascertained. It is found that a 1.26% annual increase in (non-food) consumer prices is correlated with a 1% increase in electricity export tariff. While the causality from electric power tariff to Indian manufactures prices is not established statistically, a change in manufactures prices feeding back into consumer prices in Bhutan is statistically significant. Suggestions are offered for Bhutan to reduce dependence on Indian imports and to diversify its export market exposure. - Highlights: • Electricity as principal export of small economy. • Bilateral trade with large economy. • Tourism as major income generator for small economy. • Partial equilibrium model involving key variables. • Small economy would need to diversify. • Important subject for inter-temporal and inter-regional trade of power

  5. Characterization of Deposited Platinum Contacts onto Discrete Graphene Flakes for Electrical Devices

    KAUST Repository

    Holguin Lerma, Jorge A.

    2016-05-03

    For years, electron beam induced deposition has been used to fabricate electrical contacts for micro and nanostructures. The role of the contact resistance is key to achieve high performance and efficiency in electrical devices. The present thesis reports on the electrical, structural and chemical characterization of electron beam deposited platinum electrodes that are exposed to different steps of thermal annealing and how they are used in four-probe devices of ultrathin graphite (uG) flakes (<100nm thickness). The device integration of liquid phase exfoliated uG is demonstrated, and its performance compared to devices made with analogous mechanically exfoliated uG. For both devices, similar contact resistances of ~2kΩ were obtained. The electrical measurements confirm a 99.5% reduction in contact resistance after vacuum thermal annealing at 300 °C. Parallel to this, Raman characterization confirms the formation of a nanocrystalline carbon structure over the electrode. While this could suggest an enhancement of the electrical transport in the device, an additional thermal annealing step in air at 300 °C, promoted the oxidation and removal of the carbon shell and confirmed that the contact resistance remained the same. Overall this shows that the carbon shell along the electrode has no significant role in the contact resistance. Finally, the challenges based on topographical analysis of the deposited electrodes are discussed. Reduction of the electrode’s height down to one-third of the initial value, increased surface roughness, formation of voids along the electrodes and the onset of platinum nanoparticles near the area of deposition, represent a challenge for future work.

  6. Stable and low contact resistance electrical contacts for high temperature SiGe thermoelectric generators

    KAUST Repository

    Zhang, Bo

    2018-04-14

    The thermal stability and contact resistance of TaAlN thin films as electrical contacts to SiGe thermoelectric elements are reported. We demonstrate that a sharp interface is maintained after the device annealed at 800°C for over 100h, indicating that no interdiffusion takes place between TaAlN and SiGe. A specific contact resistivity of (2.1±1.3)×10−6Ω-cm2 for p-type SiGe and (2.8±1.6)×10−5 Ω-cm2 for n-type SiGe is demonstrated after the high temperature annealing. These results show that TaAlN is a promising contact material for high temperature thermoelectrics such as SiGe.

  7. Production technology optimization of biscuit baked by electric-contact way

    Science.gov (United States)

    Sidorenko, G. A.; Popov, V. P.; Khanina, T. V.; Maneeva, E. Sh; Krasnova, M. S.

    2018-03-01

    Electric-contact way of baking allows one to maintain more nutrients used in biscuit making. As a result of the biscuit production technology optimization, it is established that 30-62,5% is an optimal amount of starch brought instead of flour; 184-200% is optimal amount of egg melange; at this a complex indicator of organoleptic properties will be more than 340 degrees, a complex indicator of physical and chemical properties will be more than 3,3 degrees, and specific costs of energy spent on the biscuit electric-contact baking process will be less than 100 W/kg.

  8. The Preceding Voltage Pulse and Separation Welding Mechanism of Electrical Contacts

    DEFF Research Database (Denmark)

    Yang, Xiao Cheng; Huang, Jiang; Li, Zhen Biao

    2016-01-01

    In order to obtain a better understanding of the welding mechanism in contact separation, electrical endurance tests were conducted with AgSnO2 and AgNi contacts on a simulation test device. Waveforms of contact displacement, contact voltage, and current were recorded with LabVIEW during the tests......, and changes in a contact gap and heights of pips with increases in operation cycles were observed through charge-coupled device cameras. The resultant test results show that welding in separation is accompanied with a preceding voltage pulse which represents arc rather than contact bounce arc....

  9. Electrical contacts on polyimide substrates for flexible thin film photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, C.; Herrero, J

    2003-05-01

    Both frontal and back electrical contacts have been developed onto polyimide sheets (Kapton KJ[reg]) as alternative substrates to the conventional glasses, for application in lightweight and flexible thin film photovoltaic devices. Transparent and conductive indium tin oxide (ITO) thin films have been deposited by r.f.-magnetron sputtering as the frontal electrical contact. On the other hand, Mo, Cr and Ni layers have been prepared by e-gun evaporation for the back electrical connections. ITO films deposited onto polyimide have shown similar optical transmittance and higher electrical conductivity than onto glass substrates. The transmittance decreases and the conductivity increases after heating at 400 sign C in vacuum atmosphere. Mo, Cr and Ni layers deposited onto polyimide showed similar structure and electrical conductivity than onto conventional glasses. The properties of Mo and Cr layers remained unchanged after heating at 400 sign C in selenium atmosphere.

  10. Effects of vacuum heat treatment on the photoelectric work function and surface morphology of multilayered silver–metal electrical contacts

    International Nuclear Information System (INIS)

    Akbi, Mohamed; Bouchou, Aïssa; Zouache, Noureddine

    2014-01-01

    Contact materials used for electrical breakers are often made with silver alloys. Mechanical and thermodynamical properties as well as electron emission of such complicated alloys present a lack of reliable and accurate experimental data. This paper deals mainly with electron work function (EWF) measurements about silver–metal (Ag–Me) electrical contacts (Ag–Ni (60/40) and Ag–W (50/50)), before and after surface heat treatments at 513 K–873 K, under UHV conditions (residual gas pressure of 1.4 × 10 −7 mbar). The electron work function (EWF) of silver alloyed contacts was measured photoelectrically, using both Fowler's method of isothermal curves and linearized Fowler plots. An interesting fact brought to light by this investigation is that after vacuum heat treatments, the diffusion and/or evaporation phenomena, affecting the atomic composition of the alloy surface, somehow confine the EWF of the silver–nickel alloy, Φ(Ag–Ni), determined at room temperature in interval]Φ(Ag), Φ(Ni) [=] 4.26 eV, 4.51 eV[. Surface analysis of two specimens before and after heating showed a significant increase of tungsten atomic proportion on the contact surface for Ag–W contacts after VH treatments. A multilayer model, taking into account the strong intergranular and volume segregation gives a good interpretation of the obtained results.

  11. An Experimental Study of the Electrical Contact Resistance in Resistance Welding

    DEFF Research Database (Denmark)

    Song, Quanfeng; Zhang, Wenqi; Bay, Niels

    2005-01-01

    Electrical contact resistance is of critical importance in resistance welding. In this article, the contact resistance is experimentally investigated for welding mild steel, stainless steel, and aluminum to themselves. A parametric study was carried out on a Gleeble® machine, investigating...

  12. Graphene as a protective coating and superior lubricant for electrical contacts

    Science.gov (United States)

    Berman, Diana; Erdemir, Ali; Sumant, Anirudha V.

    2014-12-01

    Potential for graphene to be used as a lubricant for sliding electrical contacts has been evaluated. Graphene, being deposited as a sporadic flakes on the gold substrate sliding against titanium nitride ball shows not only significant improvement in tribological behavior by reducing both friction (by factor of 2-3) and wear (by 2 orders) but also, even more importantly, demonstrates stable and low electrical resistance at the sliding contacts undergoing thousands of sliding passes regardless of the test environment (i.e., both in humid and dry conditions).

  13. Comparison of properties of silver-metal oxide electrical contact materials

    Directory of Open Access Journals (Sweden)

    Ćosović V.

    2012-01-01

    Full Text Available Changes in physical properties such as density, porosity, hardness and electrical conductivity of the Ag-SnO2 and Ag-SnO2In2O3 electrical contact materials induced by introduction of metal oxide nanoparticles were investigated. Properties of the obtained silver-metal oxide nanoparticle composites are discussed and presented in comparison to their counterparts with the micro metal oxide particles as well as comparable Ag-SnO2WO3 and Ag-ZnO contact materials. Studied silvermetal oxide composites were produced by powder metallurgy method from very fine pure silver and micro- and nanoparticle metal oxide powders. Very uniform microstructures were obtained for all investigated composites and they exhibited physical properties that are comparable with relevant properties of equivalent commercial silver based electrical contact materials. Both Ag-SnO2 and Ag- SnO2In2O3 composites with metal oxide nanoparticles were found to have lower porosity, higher density and hardness than their respective counterparts which can be attributed to better dispersion hardening i.e. higher degree of dispersion of metal oxide in silver matrix.

  14. Renewable electricity as a differentiated good? The case of the Republic of Korea

    International Nuclear Information System (INIS)

    Kim, Jihyo; Park, Jooyoung; Kim, Jinsoo; Heo, Eunnyeong

    2013-01-01

    This paper examines the willingness for Korean consumers to pay a premium for renewable electricity under a differentiated good framework by applying the contingent valuation method. Korean consumers have been required to pay for their use of renewable electricity as of 2012. First, we find that Korean consumers recognise renewable electricity as a differentiated good from traditional electricity generated from fossil fuels or nuclear energy. The mean willingness to pay to use renewable electricity is USD 1.26 per month. Second, we confirm the existence of perfect substitution relationships among variant renewable technologies, which suggests that Korean consumers do not perceive them as differentiated goods. One reason for this perception is that Korean consumers are more inclined to favour economic feasibility over sustainability or the availability of the resource stock when choosing between renewable technology types. In sum, we can say that Korean consumers recognise renewable electricity as a differentiated good but that they do not differentiate between variant renewable technologies. Thus, the imposition of the cost of renewable electricity on consumers in the form of increased electricity charges would be acceptable to consumers as long as any price rise properly reflects their preferences. - Highlights: ► We examine renewable electricity in Korea using contingent valuation. ► Korean consumers recognise renewable electricity to be a differentiated good. ► They do not perceive types of renewable technologies as differentiated goods. ► A cost-minimising portfolio is assumed to be preferred by Korean consumers

  15. Chemical control of electrical contact to sp² carbon atoms.

    Science.gov (United States)

    Frederiksen, Thomas; Foti, Giuseppe; Scheurer, Fabrice; Speisser, Virginie; Schull, Guillaume

    2014-04-16

    Carbon-based nanostructures are attracting tremendous interest as components in ultrafast electronics and optoelectronics. The electrical interfaces to these structures play a crucial role for the electron transport, but the lack of control at the atomic scale can hamper device functionality and integration into operating circuitry. Here we study a prototype carbon-based molecular junction consisting of a single C60 molecule and probe how the electric current through the junction depends on the chemical nature of the foremost electrode atom in contact with the molecule. We find that the efficiency of charge injection to a C60 molecule varies substantially for the considered metallic species, and demonstrate that the relative strength of the metal-C bond can be extracted from our transport measurements. Our study further suggests that a single-C60 junction is a basic model to explore the properties of electrical contacts to meso- and macroscopic sp(2) carbon structures.

  16. Chemical control of electrical contact to sp2 carbon atoms

    Science.gov (United States)

    Frederiksen, Thomas; Foti, Giuseppe; Scheurer, Fabrice; Speisser, Virginie; Schull, Guillaume

    2014-04-01

    Carbon-based nanostructures are attracting tremendous interest as components in ultrafast electronics and optoelectronics. The electrical interfaces to these structures play a crucial role for the electron transport, but the lack of control at the atomic scale can hamper device functionality and integration into operating circuitry. Here we study a prototype carbon-based molecular junction consisting of a single C60 molecule and probe how the electric current through the junction depends on the chemical nature of the foremost electrode atom in contact with the molecule. We find that the efficiency of charge injection to a C60 molecule varies substantially for the considered metallic species, and demonstrate that the relative strength of the metal-C bond can be extracted from our transport measurements. Our study further suggests that a single-C60 junction is a basic model to explore the properties of electrical contacts to meso- and macroscopic sp2 carbon structures.

  17. Analysis of the material's expenditure of electric contacts by means of the isotopic method

    International Nuclear Information System (INIS)

    Farkash, K.

    1979-01-01

    To investigate lifetime of the weak-current and heavy-current contacts different radioisotopic methods have been developed. Advantages of the radioisotopic methods as compared with other methods of testing consists of the fact that due to their sensitivity they permit to determine low expense of material; permit to determine quantitatively expense of each element separately from the elements, composing the contacts alloy; by means of these methods it is possible to evaluate quantitatively topological distribution of the matter separated from the contacts into the environment; it is possible to determine morphological characteristics of the matter separated from the contact. During investigation of the lifetime of contacts there were determined: value of the expense of the material of contacts; composition of the expense of the material of contacts; composition of the matter separated from the contact; distribution of the separated matter depending on the electrical parameters and number of the closings of contact in the case of different compositions of contacts and in different conditions. Strength of the contacts' alloys related to the electrical load was investigated at the special stand [ru

  18. Three-dimensional direct laser written graphitic electrical contacts to randomly distributed components

    Science.gov (United States)

    Dorin, Bryce; Parkinson, Patrick; Scully, Patricia

    2018-04-01

    The development of cost-effective electrical packaging for randomly distributed micro/nano-scale devices is a widely recognized challenge for fabrication technologies. Three-dimensional direct laser writing (DLW) has been proposed as a solution to this challenge, and has enabled the creation of rapid and low resistance graphitic wires within commercial polyimide substrates. In this work, we utilize the DLW technique to electrically contact three fully encapsulated and randomly positioned light-emitting diodes (LEDs) in a one-step process. The resolution of the contacts is in the order of 20 μ m, with an average circuit resistance of 29 ± 18 kΩ per LED contacted. The speed and simplicity of this technique is promising to meet the needs of future microelectronics and device packaging.

  19. Note: Laser ablation technique for electrically contacting a buried implant layer in single crystal diamond

    International Nuclear Information System (INIS)

    Ray, M. P.; Baldwin, J. W.; Butler, J. E.; Pate, B. B.; Feygelson, T. I.

    2011-01-01

    The creation of thin, buried, and electrically conducting layers within an otherwise insulating diamond by annealed ion implantation damage is well known. Establishing facile electrical contact to the shallow buried layer has been an unmet challenge. We demonstrate a new method, based on laser micro-machining (laser ablation), to make reliable electrical contact to a buried implant layer in diamond. Comparison is made to focused ion beam milling.

  20. Low voltage initiation of damaging arcs between electrical contacts

    International Nuclear Information System (INIS)

    Cuthrell, R.E.

    1975-07-01

    Metallic arcs were found to precede the firm contacting of electrical contacts which were closed without bounce. When the open-circuit voltages were below the ionization potential, the initiation of these arcs was found to depend on the presence of asperities on the surfaces and on asperity contracting, melting, and pinching off by magnetic forces. The arc is thought to be initiated inductively when the molten metallic asperity contact is pinched off, and the electrode damage is similar to that produced by the arcing of opening contacts. Arcing could not be produced for exceptionally smooth surfaces, or, for rough surfaces when the open-circuit potential was below the melting voltages of the electrode metals. In order to prevent damage to contact surfaces by melting or arcing, it is suggested that test potentials be limited to below the melting voltages, that the current be limited, the test circuits be designed to prevent inductively generated high voltage transients, and the contact surfaces be very smooth. In order to facilitate arc initiation in arc welding applications, it is suggested that the surfaces of electrodes and work pieces be roughened. (U.S.)

  1. Effects of contact resistance on electrical conductivity measurements of SiC-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Thomsen, E.C.; Henager, C.H., E-mail: chuck.henager@pnnl.gov

    2013-11-15

    A combination 2/4-probe method was used to measure electrical resistances across a pure, monolithic CVD-SiC disc sample with contact resistance at the SiC/metallic electrode interfaces. By comparison of the almost simultaneous 2/4-probe measurements, the specific contact resistance (R{sub c}) and its temperature dependence were determined for two types (sputtered gold and porous nickel) electrodes from room temperature (RT) to ∼973 K. The R{sub c}-values behaved similarly for each type of metallic electrode: R{sub c} > ∼1000 Ω cm{sup 2} at RT, decreasing continuously to ∼1–10 Ω cm{sup 2} at 973 K. The temperature dependence of the inverse R{sub c} indicated thermally activated electrical conduction across the SiC/metallic interface with an apparent activation energy of ∼0.3 eV. For the flow channel insert application in a fusion reactor blanket, contact resistance potentially could reduce the transverse electrical conductivity by about 50%.

  2. Control of Surface Attack by Gallium Alloys in Electrical Contacts.

    Science.gov (United States)

    1986-03-28

    and atmospheric control but does not allow visual observation of the contact brushes. This machine is a small homopolar motor built from mild steel...collectors,gallium, homopolar devices,liquid metals,~- is. ABSTRACT ICNI.. .. w 41N"w -~dv.mp.d Wrllt by Itabata" * Electrical contact between a copp’er...32 5 Test rig with felt metal brushes 32 6 Homopolar test apparatus 33 7 Rewetting of alloy track 33 8 Alloy track after running with finger 34 brushes

  3. Effect of Temperature and Vibration on Electrical Connectors with Different Number of Contact Cores

    Directory of Open Access Journals (Sweden)

    Song W. L.

    2016-01-01

    Full Text Available In this paper, we presented the results from three related analysis performed by adopting the failure models, which provided an explanation of performance influencing factors caused by different number of contact cores, for the purpose of measuring the temperature change and deformation value, which were the factors causing contact failure. The failures were localized in contact parts of the connectors. Performed investigations included thermal analysis, modal analysis, harmonic response analysis and contact failure analysis. From the results of these simulations, related temperature and vibration analysis nephograms were got respectively. And the correctness of results of thermal analysis was verified by Fourier law. The research results of this paper provide a reference for thermal analysis and vibration analysis of electrical connectors, which is important for ensuring the reliability and safety of electrical connectors.

  4. NRC Information No. 88-98: Electrical relay degradation caused by oxidation of contact surfaces

    International Nuclear Information System (INIS)

    Rossi, C.E.

    1992-01-01

    The NRC staff was recently informed by Clinton Power Station that a reactor scram on June 24, 1988, was caused by an electrical relay failure from oxide buildup on relay contact surfaces. Other information on relay failure from contact oxidation indicates that this problem may be more prevalent than previously thought. For example, a July 17, 1988, 10 CFR Part 21 report from Palo Verde, Unit 2, reported relay failures from contact oxidation that were due to the low current application of the relays. The relay contact surfaces in both of these examples are silver-nickel alloys, and both applications were for low current (i.e., milli-ampere current). Electrical relay contacts made of silver-nickel or silver-cadmium alloys will oxidize (tarnish) when used in low current applications because of the absence of contact surface sparking from the typical relay contact ''making and breaking'' functions. The sparking in the contact surfaces promotes a self-cleaning mechanism that reduces the tarnish buildup on the silver-nickel or silver-cadmium contacts. Discussions with one relay manufacturer revealed that the normal industry practice for low current circuit applications is either to use a contact surface material that will not oxidize or to compensate for the oxidation by increased maintenance activities to ensure reliability. The applied voltage may also influence contact oxidation

  5. Characterization of Deposited Platinum Contacts onto Discrete Graphene Flakes for Electrical Devices

    KAUST Repository

    Holguin Lerma, Jorge Alberto

    2016-01-01

    The electrical measurements confirm a 99.5% reduction in contact resistance after vacuum thermal annealing at 300 °C. Parallel to this, Raman characterization confirms the formation of a nanocrystalline carbon structure over the electrode. While this could suggest an enhancement of the electrical transport in the device, an additional thermal annealing step in air at 300 °C, promoted the oxidation and removal of the carbon shell and confirmed that the contact resistance remained the same. Overall this shows that the carbon shell along the electrode has no significant role in the contact resistance. Finally, the challenges based on topographical analysis of the deposited electrodes are discussed. Reduction of the electrode’s height down to one-third of the initial value, increased surface roughness, formation of voids along the electrodes and the onset of platinum nanoparticles near the area of deposition, represent a challenge for future work.

  6. On the behavior and stability of a liquid metal in quasi-planar electric contacts

    Science.gov (United States)

    Samuilov, S. D.

    2016-06-01

    The contacts between conductors formed under relatively low pressures can be treated as quasi-planar. Melting of the material of such contacts upon the passage of electric current is used in some technological processes, but the behavior of liquid in these conditions has not been analyzed. In this study, such an estimate was obtained for specific conditions appearing under electric-pulse compacting (briquetting) of metal shavings. Analysis of derived relations shows that this estimate is valid for any quasi-2D contacts upon passage of a pulsed current of duration from microseconds to milliseconds. It is shown that the spacing between contact surfaces decreases, the liquid metal is extruded in the lateral directions, and the area of the contact and its conductivity increase. Sausage-type magnetohydrodynamic (MHD) instability and overheating instability do not evolve in these conditions because the instability wavelength is larger than the rated thickness of the molten layer; screw MHD instability can appear in slower processes.

  7. On Ni/Au Alloyed Contacts to Mg-Doped GaN

    Science.gov (United States)

    Sarkar, Biplab; Reddy, Pramod; Klump, Andrew; Kaess, Felix; Rounds, Robert; Kirste, Ronny; Mita, Seiji; Kohn, Erhard; Collazo, Ramon; Sitar, Zlatko

    2018-01-01

    Ni/Au contacts to p-GaN were studied as a function of free hole concentration in GaN using planar transmission line measurement structures. All contacts showed a nonlinear behavior, which became stronger for lower doping concentrations. Electrical and structural analysis indicated that the current conduction between the contact and the p-GaN was through localized nano-sized clusters. Thus, the non-linear contact behavior can be well explained using the alloyed contact model. Two contributions to the contact resistance were identified: the spreading resistance in the semiconductor developed by the current crowding around the electrically active clusters, and diode-type behavior at the interface of the electrically active clusters with the semiconductor. Hence, the equivalent Ni/Au contact model consists of a diode and a resistor in series for each active cluster. The reduced barrier height observed in the measurements is thought to be generated by the extraction of Ga from the crystalline surface and localized formation of the Au:Ga phase. The alloyed contact analyses presented in this work are in good agreement with some of the commonly observed behavior of similar contacts described in the literature.

  8. Performance of electrical contact pins near a nuclear explosion

    International Nuclear Information System (INIS)

    Ragan, C.E.; Silbert, M.G.; Ellis, A.N.; Robinson, E.E.; Daddario, M.J.

    1977-09-01

    The pressures attainable in equation-of-state studies using nuclear-explosion-driven shock waves greatly exceed those that can be reached in normal laboratory conditions. However, the diagnostic instrumentation must survive in the high-radiation environment present near such an explosion. Therefore, a set of experiments were fielded on the Redmud event to test the feasibility of using electrical contact pins in this environment. In these experiments a 60-cm-high shield of boron-lead was placed on the rack lid approximately 1 m from the device. A sample consisting of slabs of molybdenum and 238 U was placed on top of the shield, and twelve electrical contact pins were embedded to five different depths in the materials. Five different multiplexing-charging circuits were used for the pins, and a piezoelectric quartz gauge was placed on top of the uranium to obtain an estimate of the fission-energy deposition. All of the charged pins survived the radiation and produced signals indicating shock arrival. The uncertainty in determining the pin-closure time was approximately 3 ns. The signal from the quartz gauge corresponded to a pressure that was consistent with the calculated neutron fluence

  9. Measuring the electrical resistivity and contact resistance of vertical carbon nanotube bundles for application as interconnects

    International Nuclear Information System (INIS)

    Chiodarelli, Nicolo'; Li, Yunlong; Arstila, Kai; Richard, Olivier; Cott, Daire J; Heyns, Marc; De Gendt, Stefan; Groeseneken, Guido; Vereecken, Philippe M; Masahito, Sugiura; Kashiwagi, Yusaku

    2011-01-01

    Carbon nanotubes (CNT) are known to be materials with potential for manufacturing sub-20 nm high aspect ratio vertical interconnects in future microchips. In order to be successful with respect to contending against established tungsten or copper based interconnects, though, CNT must fulfil their promise of also providing low electrical resistance in integrated structures using scalable integration processes fully compatible with silicon technology. Hence, carefully engineered growth and integration solutions are required before we can fully exploit their potentialities. This work tackles the problem of optimizing a CNT integration process from the electrical perspective. The technique of measuring the CNT resistance as a function of the CNT length is here extended to CNT integrated in vertical contacts. This allows extracting the linear resistivity and the contact resistance of the CNT, two parameters to our knowledge never reported separately for vertical CNT contacts and which are of utmost importance, as they respectively measure the quality of the CNT and that of their metal contacts. The technique proposed allows electrically distinguishing the impact of each processing step individually on the CNT resistivity and the CNT contact resistance. Hence it constitutes a powerful technique for optimizing the process and developing CNT contacts of superior quality. This can be of relevant technological importance not only for interconnects but also for all those applications that rely on the electrical properties of CNT grown with a catalytic chemical vapor deposition method at low temperature.

  10. Grain Refinement and High-Performance of Equal-Channel Angular Pressed Cu-Mg Alloy for Electrical Contact Wire

    Directory of Open Access Journals (Sweden)

    Aibin Ma

    2014-12-01

    Full Text Available Multi-pass equal-channel angular pressing (EACP was applied to produce ultrafine-grained (UFG Cu-0.2wt%Mg alloy contact wire with high mechanical/electric performance, aim to overcome the catenary barrier of high-speed trains by maximizing the tension and improving the power delivery. Microstructure evolution and overall properties of the Cu-Mg alloy after different severe-plastic-deformation (SPD routes were investigated by microscopic observation, tensile and electric tests. The results show that the Cu-Mg alloy after multi-pass ECAP at 473 K obtains ultrafine grains, higher strength and desired conductivity. More passes of ECAP leads to finer grains and higher strength, but increasing ECAP temperature significantly lower the strength increment of the UFG alloy. Grain refinement via continuous SPD processing can endow the Cu-Mg alloy superior strength and good conductivity characteristics, which are advantageous to high-speed electrification railway systems.

  11. Evaluation of the contact switch materials in high voltage power supply for generate of underwater shockwave by electrical discharge

    Directory of Open Access Journals (Sweden)

    K Higa

    2016-10-01

    Full Text Available We have developed the high voltage power-supply unit by Cockcroft-Walton circuit for ingenerate high pressure due to underwater shockwave by electrical discharge. This high voltage power supply has the problem of the metal contact switch operation that contact switch stop by melting and bonding due to electrical spark. We have studied the evaluation of materials of contact switch for the reducing electrical energy loss and the problem of contact switch operation. In this research, measurement of discharge voltage and high pressure due to underwater shockwave was carried out using the contact switch made of different materials as brass plate, brass-carbon plate-brass and carbon block. The contact switch made of carbon is effective to reduce energy loss and problem of contactor switch operation.

  12. Investigation of Thermostressed State of Coating Formation at Electric Contact Surfacing of “Shaft” Type Parts

    Directory of Open Access Journals (Sweden)

    Olena V. Berezshnaya

    2016-01-01

    Full Text Available The forming of coating at electric contact surfacing is considered. The mathematical model of the coating formation is developed. The method of numerical recurrent solution of the finite-difference form of static equilibrium conditions of the selected elementary volume of coating is used. This model considers distribution of thermal properties and geometric parameters along the thermal deformation zone during the process of electric contact surfacing by compact material. It is found that the change of value of speed asymmetry factor leads to increasing of the friction coefficient in zone of surfacing. This provides the forming of the coating of higher quality. The limitation of the technological capabilities of equipment for electric contact surfacing is related to the size of recoverable parts and application of high electromechanical powers. The regulation of the speed asymmetry factor allows for expanding the technological capabilities of equipment for electric contact surfacing. The nomograms for determination of the stress on the roller electrode and the finite thickness of the coating as the function of the initial thickness of the compact material and the deformation degree are shown.

  13. A mechanical-electrical finite element method model for predicting contact resistance between bipolar plate and gas diffusion layer in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Xinmin; Liu, Dong' an; Peng, Linfa [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Ni, Jun [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2125 (United States)

    2008-07-15

    Contact resistance between the bipolar plate (BPP) and the gas diffusion layer (GDL) plays a significant role on the power loss in a proton exchange membrane (PEM) fuel cell. There are two types of contact behavior at the interface of the BPP and GDL, which are the mechanical one and the electrical one. Furthermore, the electrical contact behavior is dependent on the mechanical one. Thus, prediction of the contact resistance is a coupled mechanical-electrical problem. The current FEM models for contact resistance estimation can only simulate the mechanical contact behavior and moreover they are based on the assumption that the contact surface is equipotential, which is not the case in a real BPP/GDL assembly due to the round corner and margin of the BPP. In this study, a mechanical-electrical FEM model was developed to predict the contact resistance between the BPP and GDL based on the experimental interfacial contact resistivity. At first, the interfacial contact resistivity was obtained by experimentally measuring the contact resistance between the GDL and a flat graphite plate of the same material and processing conditions as the BPP. Then, with the interfacial contact resistivity, the mechanical and electrical contact behaviors were defined and the potential distribution of the BPP/GDL assembly was analyzed using the mechanical-electrical FEM model. At last, the contact resistance was calculated according to the potential drop and the current of the contact surface. The numerical results were validated by comparing with those of the model reported previously. The influence of the round corner of the BPP on the contact resistance was also studied and it is found that there exists an optimal round corner that can minimize the contact resistance. This model is beneficial in understanding the mechanical and electrical contact behaviors between the BPP and GDL, and can be used to predict the contact resistance in a new BPP/GDL assembly. (author)

  14. Nanolithography based contacting method for electrical measurements on single template synthesized nanowires

    DEFF Research Database (Denmark)

    Fusil, S.; Piraux, L.; Mátéfi-Tempfli, Stefan

    2005-01-01

    A reliable method enabling electrical measurements on single nanowires prepared by electrodeposition in an alumina template is described. This technique is based on electrically controlled nanoindentation of a thin insulating resist deposited on the top face of the template filled by the nanowires....... We show that this method is very flexible, allowing us to electrically address single nanowires of controlled length down to 100 nm and of desired composition. Using this approach, current densities as large as 10 A cm were successfully injected through a point contact on a single magnetic...

  15. Application and analysis of palladium vapor deposited on stainless steel for high temperature electrical contacts

    International Nuclear Information System (INIS)

    Jodeh, S.

    2008-01-01

    Using electron beam evaporation. Pd thin films of 300 nm thickness have been deposited on 301 stainless steel for high temperature electrical contact studies. The structure and compost ion of the helms were studied in detail x-ray diffraction (XRD), scanning electron microscopy (Sem), electron probe microanalysis (EPMA), and x-ray photoelectron spectroscopy (XP S) with sputter depth profiling. The contact properties such as contact resistance, fretting wear resistance, and thermal stability have been measured.The contact resistance rem ins low after heat-aging in air for 168 h at 150 and 200 deg., but increases significantly after heat-aging at 340 deg.. This increase in contact resistance is caused by the formation of about a 27 nm (1 μin.) thick Pdo. In contrast, the thickness of the Pdo is too thin to cause measurable contact resistance increases after heat-aging at 150 and 200 deg.. The fretting wear resistance of Pd coated 301 stainless steel is better than that of electroplated Sn of ser veal thousand nm thickness. Thus, vapor deposited Pd coating on 301 stainless steel may replace electroplated Sn for electrical contact application at elevated temperatures.

  16. Chemical and electrical characteristics of annealed Ni/Au and Ni/Ir/Au contacts on AlGaN

    Energy Technology Data Exchange (ETDEWEB)

    Ngoepe, P.N.M., E-mail: phuti.ngoepe@up.ac.za [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Meyer, W.E.; Auret, F.D.; Omotoso, E.; Diale, M. [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Swart, H.C.; Duvenhage, M.M.; Coetsee, E. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa)

    2016-01-01

    The evolution of Ni/Au and Ni/Ir/Au metal contacts deposited on AlGaN was investigated at different annealing temperatures. The samples were studied with electrical and chemical composition techniques. I–V characteristics of the Schottky diodes were optimum after 500 and 600 °C annealing for Ni/Au and Ni/Ir/Au based diodes, respectively. The depth profiles of the contacts were measured by x-ray photoelectron spectroscopy and time of flight secondary ion mass spectroscopy. These chemical composition techniques were used to examine the evolution of the metal contacts in order to verify the influence the metals have on the electrical properties of the diodes. The insertion of Ir as a diffusion barrier between Ni and Au effected the electrical properties, improving the stability of the contacts at high temperatures. Gold diffused into the AlGaN film, degrading the electrical properties of the Ni/Au diode. At 500 °C, the insertion of Ir, however, prevented the in-diffusion of Au into the AlGaN substrate.

  17. Probing into frictional contact dynamics by ultrasound and electrical simulations

    Directory of Open Access Journals (Sweden)

    Changshan Jin

    2014-12-01

    Full Text Available Friction arises in the interface of friction pair, and therefore, it is difficult to detect it. Ultrasonic means, as a NDT, is the correct alternative. This paper introduces a means of detecting dynamic contact and an interpretation of behaviors of dry friction. It has been determined that frictional surfaces have a specific property of dynamic response hardening (DRH. Dynamic response forces and oscillation arise during static–kinetic transition process. While the contact zone of sliding surfaces appears “hard” in motion, it appears “soft” at rest. Consequently, a separation of the surfaces occurs and the real area of contact is decreased as sliding velocity increases. This is the cause of F–v descent phenomenon. When the friction comes to a rest, the remaining process of DRH and micro-oscillation do not disappear instantaneously, instead they gradually return to their original static position. The contact area, therefore, is increased by rest period (F–T ascent characteristics. Based on analogies between a solid unit (η–m–k and an R-L-C circuit, the DRH is demonstrated by electrical simulations.

  18. Microstructure and wear behaviors of WC–12%Co coating deposited on ductile iron by electric contact surface strengthening

    International Nuclear Information System (INIS)

    Qi, Xiaoben; Zhu, Shigen; Ding, Hao; Zhu, Zhengkun; Han, Zhibing

    2013-01-01

    WC–12%Co powders deposited on ductile iron by electric contact strengthening were studied. This technology was based on the application of the contact resistance heating between the electrode and work piece to form a wear resistant layer on ductile iron. The microstructure, microhardness distribution, phase transformation and wear behaviors of the coating were investigated using optical microscope, scanning electron microscope, Vickers hardness (HV 0.5 ), X-ray diffraction, rolling contact wear tests. The results showed that the WC–12%Co coating by electric contact strengthening was metallurgically bonded to the ductile iron. Additionally, the effect of experimental parameters on microhardness and wear resistance of coatings were studied using orthogonal experiment. The results showed that compared with (A) electric current and (B) rotating speed, (C) contact force displays the most significant effect on microhardness and wear resistance of coatings. The coatings produced at A = 19 kA, B = 0.3 r/min and C = 700 N possessed highest microhardness of 1073 HV 0.5 and wear resistance.

  19. Comparison of mechanical properties for several electrical spring contact alloys

    International Nuclear Information System (INIS)

    Nordstrom, T.V.

    1976-06-01

    Work was conducted to determine whether beryllium-nickel alloy 440 had mechanical properties which made it suitable as a substitute for the presently used precious metal contact alloys Paliney 7 and Neyoro G, in certain electrical contact applications. Possible areas of applicability for the alloy were where extremely low contact resistance was not necessary or in components encountering elevated temperatures above those presently seen in weapons applications. Evaluation of the alloy involved three major experimental areas: 1) measurement of the room temperature microplastic (epsilon approximately 10 -6 ) and macroplastic (epsilon approximately 10 -3 ) behavior of alloy 440 in various age hardening conditions, 2) determination of applied stress effects on stress relaxation or contact force loss and 3) measurement of elevated temperature mechanical properties and stress relaxation behavior. Similar measurements were also made on Neyoro G and Paliney 7 for comparison. The primary results of the study show that beryllium-nickel alloy 440 is from a mechanical properties standpoint, equal or superior to the presently used Paliney 7 and Neyoro G for normal Sandia requirements. For elevated temperature applications, alloy 440 has clearly superior mechanical properties

  20. An improved model for predicting electrical contact resistance between bipolar plate and gas diffusion layer in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhiliang; Wang, Shuxin [School of Mechanical Engineering, Tianjin University, Tianjin 300072 (China); Zhou, Yuanyuan; Lin, Guosong; Hu, S. Jack [Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI 48109-2125 (United States)

    2008-07-15

    Electrical contact resistance between bipolar plates (BPPs) and gas diffusion layers (GDLs) in PEM fuel cells has attracted much attention since it is one significant part of the total contact resistance which plays an important role in fuel cell performance. This paper extends a previous model by Zhou et al. [Y. Zhou, G. Lin, A.J. Shih, S.J. Hu, J. Power Sources 163 (2007) 777-783] on the prediction of electrical contact resistance within PEM fuel cells. The original microscale numerical model was based on the Hertz solution for individual elastic contacts, assuming that contact bodies, GDL carbon fibers and BPP asperities are isotropic elastic half-spaces. The new model features a more practical contact by taking into account the bending behavior of carbon fibers as well as their anisotropic properties. The microscale single contact process is solved numerically using the finite element method (FEM). The relationship between the contact pressure and the electrical resistance at the GDL/BPP interface is derived by multiple regression models. Comparisons of the original model by Zhou et al. and the new model with experimental data show that the original model slightly overestimates the electrical contact resistance, whereas a better agreement with experimental data is observed using the new model. (author)

  1. Alloyed Aluminum Contacts for Silicon Solar Cells

    International Nuclear Information System (INIS)

    Tin Tin Aye

    2010-12-01

    Aluminium is usually deposited and alloyed at the back of p-p silicon solar cell for making a good ohmic contact and establishing a back electric field which avoids carrier recombination of the back surface. It was the deposition of aluminum on multicrystalline silicon (mc-Si) substrate at various annealing temperature. Physical and elemental analysis was carried out by using scanning electron microscopy (SEM) and X-rays diffraction (XRD). The electrical (I-V) characteristic of the photovoltaic cell was also measured.

  2. Transition from steady to periodic liquid-metal magnetohydrodynamic flow in a sliding electrical contact

    Science.gov (United States)

    Talmage, Gita; Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.

    1993-09-01

    In homopolar motors and generators, large dc electric currents pass through the sliding electrical contacts between rotating copper disks (rotors) and static copper surfaces shrouding the rotor tips (stators). A liquid metal in the small radial gap between the rotor tip and concentric stator surface can provide a low-resistance, low-drag electrical contact. Since there is a strong magnetic field in the region of the electrical contacts, there are large electromagnetic body forces on the liquid metal. The primary, azimuthal motion consists of simple Couette flow, plus an electromagnetically driven flow with large extremes of the azimuthal velocity near the rotor corners. The secondary flow involves the radial and axial velocity components, is driven by the centrifugal force associated with the primary flow, and is opposed by the electromagnetic body force, so that the circulation varies inversely as the square of the magnetic-field strength. Three flow regimes are identified as the angular velocity Ω of the rotor is increased. For small Ω, the primary flow is decoupled from the secondary flow. As Ω increases, the secondary flow begins to convect the azimuthal-velocity peaks radially outward, which in turn changes the centrifugal force driving the secondary flow. At some critical value of Ω, the flow becomes periodic through the coupling of the primary and secondary flows. The azimuthal-velocity peaks begin to move radially in and out with an accompanying oscillation in the secondary-flow strength.

  3. Out-of-plane strain and electric field tunable electronic properties and Schottky contact of graphene/antimonene heterostructure

    Science.gov (United States)

    Phuc, Huynh V.; Hieu, Nguyen N.; Hoi, Bui D.; Phuong, Le T. T.; Hieu, Nguyen V.; Nguyen, Chuong V.

    2017-12-01

    In this paper, the electronic properties of graphene/monolayer antimonene (G/m-Sb) heterostructure have been studied using the density functional theory (DFT). The effects of out-of-plane strain (interlayer coupling) and electric field on the electronic properties and Schottky contact of the G/m-Sb heterostructure are also investigated. The results show that graphene is bound to m-Sb layer by a weak van-der-Waals interaction with the interlayer distance of 3.50 Å and the binding energy per carbon atom of -39.62 meV. We find that the n-type Schottky contact is formed at the G/m-Sb heterostructure with the Schottky barrier height (SBH) of 0.60 eV. By varying the interlayer distance between graphene and the m-Sb layer we can change the n-type and p-type SBH at the G/m-Sb heterostructure. Especially, we find the transformation from n-type to p-type Schottky contact with decreasing the interlayer distance. Furthermore, the SBH and the Schottky contact could be controlled by applying the perpendicular electric field. With the positive electric field, electrons can easily transfer from m-Sb to graphene layer, leading to the transition from n-type to p-type Schottky contact.

  4. Combined effects of fretting and pollutant particles on the contact resistance of the electrical connectors

    Directory of Open Access Journals (Sweden)

    Zhigang Kong

    2017-06-01

    Full Text Available Usually, when electrical connectors operate in vibration environments, fretting will be produced at the contact interfaces. In addition, serious environmental pollution particles will affect contact resistance of the connectors. The fretting will worsen the reliability of connectors with the pollutant particles. The combined effects of fretting and quartz particles on the contact resistance of the gold plating connectors are studied with a fretting test system. The results show that the frequencies have obvious effect on the contact resistance. The higher the frequency, the higher the contact resistance is. The quartz particles cause serious wear of gold plating, which make the nickel and copper layer exposed quickly to increase the contact resistance. Especially in high humidity environments, water supply certain adhesion function and make quartz particles easy to insert or cover the contact surfaces, and even cause opening resistance.

  5. On the electrical contact and long-term behavior of compression-type connections with conventional and high-temperature conductor ropes with low sag; Zum elektrischen Kontakt- und Langzeitverhalten von Pressverbindungen mit konventionellen und Hochtemperatur-Leiterseilen mit geringem Durchhang

    Energy Technology Data Exchange (ETDEWEB)

    Hildmann, Christian

    2016-12-09

    of hexagonal compression connections with stranded overhead transmission line conductors was calculated with the finite element method. The compression forces and the residual contact forces were determined for all contacts between barrel and conductor as well as between the wires of the conductor. It was shown, that high compression and residual contact forces are the main cause of good electrical contact behaviour. The physical relations are discussed. The electrical long-term behaviour was furthermore investigated in experiments. The results confirm the influence of the residual contact force on the long-term behaviour qualitatively. Those compression connections, which had only small residual contact forces, were less stable in the long-term tests.

  6. Direct current electric potential in an anisotropic half-space with vertical contact containing a conductive 3D body

    Directory of Open Access Journals (Sweden)

    Li Ping

    2004-01-01

    Full Text Available Detailed studies of anomalous conductors in otherwise homogeneous media have been modelled. Vertical contacts form common geometries in galvanic studies when describing geological formations with different electrical conductivities on either side. However, previous studies of vertical discontinuities have been mainly concerned with isotropic environments. In this paper, we deal with the effect on the electric potentials, such as mise-à-la-masse anomalies, due to a conductor near a vertical contact between two anisotropic regions. We also demonstrate the interactive effects when the conductive body is placed across the vertical contact. This problem is normally very difficult to solve by the traditional numerical methods. The integral equations for the electric potential in anisotropic half-spaces are established. Green's function is obtained using the reflection and transmission image method in which five images are needed to fit the boundary conditions on the vertical interface and the air-earth surface. The effects of the anisotropy of the environments and the conductive body on the electric potential are illustrated with the aid of several numerical examples.

  7. Annealing effects on structural and electrical properties of Ru/Au on n-GaN Schottky contacts

    International Nuclear Information System (INIS)

    Reddy, V. Rajagopal; Rao, P. Koteswara; Ramesh, C.K.

    2007-01-01

    Thermal annealing effects on electrical and structural properties of Ru/Au Schottky contact to n-type GaN (n d = 4.07 x 10 17 cm -3 ) have been investigated using current-voltage (I-V), capacitance-voltage (C-V), Auger electron spectroscopy (AES) and X-ray diffraction (XRD). The Schottky barrier height of the as-deposited sample was found to be 0.75 eV (I-V) and 0.93 eV (C-V), respectively. It is noted that the barrier height increased when the contact was annealed at 300 deg. C and slightly decreased upon annealing at temperatures of 400 deg. C and 500 deg. C. The extracted Schottky barrier heights are 0.99 eV (I-V), 1.34 eV (C-V) for 300 deg. C, 0.88 eV (I-V), 1.20 eV (C-V) for 400 deg. C and 0.72 eV (I-V), 1.08 eV (C-V) for 500 deg. C annealed contacts, respectively. Further it is observed that annealing results in the improvement of electrical properties of Ru/Au Schottky contacts. Based on Auger electron spectroscopy and X-ray diffraction studies, the formation of gallide phases at the Ru/Au/n-GaN interface could be the reason for the improvement of electrical characteristics upon annealing at elevated temperatures

  8. Electric generation and ratcheted transport of contact-charged drops

    Science.gov (United States)

    Cartier, Charles A.; Graybill, Jason R.; Bishop, Kyle J. M.

    2017-10-01

    We describe a simple microfluidic system that enables the steady generation and efficient transport of aqueous drops using only a constant voltage input. Drop generation is achieved through an electrohydrodynamic dripping mechanism by which conductive drops grow and detach from a grounded nozzle in response to an electric field. The now-charged drops are transported down a ratcheted channel by contact charge electrophoresis powered by the same voltage input used for drop generation. We investigate how the drop size, generation frequency, and transport velocity depend on system parameters such as the liquid viscosity, interfacial tension, applied voltage, and channel dimensions. The observed trends are well explained by a series of scaling analyses that provide insight into the dominant physical mechanisms underlying drop generation and ratcheted transport. We identify the conditions necessary for achieving reliable operation and discuss the various modes of failure that can arise when these conditions are violated. Our results demonstrate that simple electric inputs can power increasingly complex droplet operations with potential opportunities for inexpensive and portable microfluidic systems.

  9. Development and applications of the contact electric resistance technique

    Energy Technology Data Exchange (ETDEWEB)

    Saario, T.

    1995-12-31

    At the moment both the scientific understanding of corrosion processes and the engineering practices of corrosion control in power plants can benefit considerably from the development of in situ on-line instruments for characterisation of the surface films on construction materials. In this work a new in situ Contact Electric Resistance (CER) technique has been developed for measurement of electric resistance of surface films on metals. The CER technique was applied in this work in several different research areas. These include e.g. localized corrosion of stainless steel in paper mill wet end environment, investigation of the effect of inhibitors in steam generator crevice environments, passivation of GaAs single crystals by sulphate treatment and monitoring of the kinetics of oxide growth on zirconium metals in high temperature water. The CER technique has a measurement capacity ranging from 10-9 {omega} to 105 {omega}. The lowest range of resistance is typical for metallic layers deposited on the surface in electrodeposition processes. The highest range of resistance is found for insulator type of films e.g. on zirconium metals. (author)

  10. Determination of the mechanical thermostat electrical contacts switching quality with sound and vibration analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rejc, Jure; Munih, Marko [University of Ljubljana, Ljubljana (Slovenia)

    2017-05-15

    A mechanical thermostat is a device that switches heating or cooling appliances on or off based on temperature. For this kind of use, electronic or mechanical switching concepts are applied. During the production of electrical contacts, several irregularities can occur leading to improper switching events of the thermostat electrical contacts. This paper presents a non-obstructive method based on the fact that when the switching event occurs it can be heard and felt by human senses. We performed several laboratory tests with two different methods. The first method includes thermostat switch sound signal analysis during the switching event. The second method is based on sampling of the accelerometer signal during the switching event. The results show that the sound analysis approach has great potential. The approach enables an accurate determination of the switching event even if the sampled signal carries also the switching event of the neighbour thermostat.

  11. The mechanisms and models of interaction between electrical arc and contact materials

    International Nuclear Information System (INIS)

    Kharin, S.N.

    1999-01-01

    Mechanisms of arc erosion in electrical contacts are different and depends on the conditions of contact separation. The first one, which occurs at low current with relatively slow rate of heat transfer, involves the evaporation of material from the contact surface. The second mechanism can be characterized by the formation of droplets of molten metal caused by high currents and vapor or magnetic pressure on a molten metal pool. However, in certain cases it is impossible to explain the formation of molten metal droplets in terms of pressure only. Therefore a new hypothesis regarding thermo-capillary mechanism of ejection of liquid metal is discussed. This hypothesis is based on the Marangoni effect which is important when the temperature gradient along the liquid contact zone and the temperature dependence of surface tension become significant (tungsten, zirconium, molybdenum etc.). The fourth erosion mechanism is associated with the ejection of solid particles of contact material with distinct crystalline structure during high current pulses of a short duration. It occurs when thermo-elastic processes overcome the mechanical strength. A mathematical model describing each of the four mechanisms of erosion is presented. Temperature fields and erosion characteristics are determined as a function of the commutation regime and the properties of contact materials. The experimental data are discussed in terms of theoretical approach with respect to the solid phase and droplet formation. Dynamics of each type of arc erosion is described, and recommendations for optimal selection of contact material with minimum erosion are given. (author)

  12. Contact-Engineered Electrical Properties of MoS2 Field-Effect Transistors via Selectively Deposited Thiol-Molecules.

    Science.gov (United States)

    Cho, Kyungjune; Pak, Jinsu; Kim, Jae-Keun; Kang, Keehoon; Kim, Tae-Young; Shin, Jiwon; Choi, Barbara Yuri; Chung, Seungjun; Lee, Takhee

    2018-05-01

    Although 2D molybdenum disulfide (MoS 2 ) has gained much attention due to its unique electrical and optical properties, the limited electrical contact to 2D semiconductors still impedes the realization of high-performance 2D MoS 2 -based devices. In this regard, many studies have been conducted to improve the carrier-injection properties by inserting functional paths, such as graphene or hexagonal boron nitride, between the electrodes and 2D semiconductors. The reported strategies, however, require relatively time-consuming and low-yield transfer processes on sub-micrometer MoS 2 flakes. Here, a simple contact-engineering method is suggested, introducing chemically adsorbed thiol-molecules as thin tunneling barriers between the metal electrodes and MoS 2 channels. The selectively deposited thiol-molecules via the vapor-deposition process provide additional tunneling paths at the contact regions, improving the carrier-injection properties with lower activation energies in MoS 2 field-effect transistors. Additionally, by inserting thiol-molecules at the only one contact region, asymmetric carrier-injection is feasible depending on the temperature and gate bias. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Technical issues of electric nanopulse contact lithotripsy as factors affecting lithotripsy effectiveness and probe resourses

    Directory of Open Access Journals (Sweden)

    L. Yu. Ivanova

    2012-01-01

    Full Text Available To assess the relationship of main technical issues of electric nanopulse contact lithotripsy (CLT with lithotripsy effectiveness and lithotripsy resources of probe.Electric nanopulses were transmitted by the flexible probes and the lithotripter «Urolit». The relationship between lithotripsy effectiveness and tip diameter of probes, pulse energy, pulse frequency was assessed, and resources of lithotripsy probes with different diameters of the tip were analyzed.Sufficient number of electric nanopulse to destroy stone models was less when tip diameter, nanopulse energy and frequency were greater.Effectiveness of electric nanopulse CLT can be enhanced with the increase of nanopulse energy, frequency and probe diameter. Complex correction of technical issues of electric nanopulse CLT can be a way of probe resources saving.

  14. Laser cladding of copper with molybdenum for wear resistance enhancement in electrical contacts

    International Nuclear Information System (INIS)

    Ng, K.W.; Man, H.C.; Cheng, F.T.; Yue, T.M.

    2007-01-01

    Laser cladding of Mo on Cu has been attempted with the aim of enhancing the wear resistance and hence increasing the service life of electrical contacts made of Cu. In order to overcome the difficulties arising from the large difference in thermal properties and the low mutual solubility between Cu and Mo, Ni was introduced as an intermediate layer between Mo and Cu. The Ni and Mo layers were laser clad one after the other to form a sandwich layer of Mo/Ni/Cu. Excellent bonding between the clad layer and the Cu substrate was ensured by strong metallurgical bonding. The hardness of the surface of the clad layer is seven times higher than that of the Cu substrate. Pin-on-disc wear tests consistently showed that the abrasive wear resistance of the clad layer was also improved by a factor of seven as compared with untreated Cu substrate. The specific electrical contact resistance of the clad surface was about 5.6 x 10 -7 Ω cm 2

  15. Effect of surfaces similarity on contact resistance of fractal rough surfaces under cyclic loading

    Science.gov (United States)

    Gao, Yuanwen; Liu, Limei; Ta, Wurui; Song, Jihua

    2018-03-01

    Although numerous studies have shown that contact resistance depends significantly on roughness and fractal dimension, it remains elusive how they affect contact resistance between rough surfaces. The interface similarity index is first proposed to describe the similarity of the contact surfaces, which gives a good indication of the actual contact area between surfaces. We reveal that the surfaces' similarity be an origin of contact resistance variation. The cyclic loading can increase the contact stiffness, and the contact stiffness increases with the increase of the interface similarity index. These findings explain the mechanism of surface roughness and fractal dimension on contact resistance, and also provide reference for the reliability design of the electrical connection.

  16. Non-contact assessment of electrical performance for rapidly sintered nanoparticle silver coatings through colorimetry

    International Nuclear Information System (INIS)

    Cherrington, M.; Claypole, T.C.; Gethin, D.T.; Worsley, D.A.; Deganello, D.

    2012-01-01

    The color change during the ultrafast near-infrared sintering process of a nanoparticle silver ink has been correlated to its electrical performance through colorimetry using the CIELAB industry standard. Nanoparticle silver ink films, deposited over a flexible polyethylene terephthalate substrate, presented significant shifting in the a* and b* color coordinates during sintering, exhibiting the best conductivity with an a* coordinate of approximately 0 and a b* coordinate of approximately + 10. This color change has been associated with the Lorenz–Mie theory of electromagnetic scattering. This indirect measurement technique is potentially a breakthrough technology for fast in-line non-contact characterization of the drying and sintering process of nanoparticle conductive inks for use in large area roll-to-roll processing of printed electronics. - Highlights: ► Color change of a nanoparticle silver coating was measured during sintering ► Color change was correlated to the electrical performance of the coating. ► Potential in-line non-contact measurement method for roll-to-roll printed electronics

  17. Solar cell with back side contacts

    Science.gov (United States)

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J; Wanlass, Mark Woodbury; Clews, Peggy J

    2013-12-24

    A III-V solar cell is described herein that includes all back side contacts. Additionally, the positive and negative electrical contacts contact compoud semiconductor layers of the solar cell other than the absorbing layer of the solar cell. That is, the positive and negative electrical contacts contact passivating layers of the solar cell.

  18. Wet etch methods for InAs nanowire patterning and self-aligned electrical contacts

    Science.gov (United States)

    Fülöp, G.; d'Hollosy, S.; Hofstetter, L.; Baumgartner, A.; Nygård, J.; Schönenberger, C.; Csonka, S.

    2016-05-01

    Advanced synthesis of semiconductor nanowires (NWs) enables their application in diverse fields, notably in chemical and electrical sensing, photovoltaics, or quantum electronic devices. In particular, indium arsenide (InAs) NWs are an ideal platform for quantum devices, e.g. they may host topological Majorana states. While the synthesis has been continously perfected, only a few techniques have been developed to tailor individual NWs after growth. Here we present three wet chemical etch methods for the post-growth morphological engineering of InAs NWs on the sub-100 nm scale. The first two methods allow the formation of self-aligned electrical contacts to etched NWs, while the third method results in conical shaped NW profiles ideal for creating smooth electrical potential gradients and shallow barriers. Low temperature experiments show that NWs with etched segments have stable transport characteristics and can serve as building blocks of quantum electronic devices. As an example we report the formation of a single electrically stable quantum dot between two etched NW segments.

  19. Contact mechanics: contact area and interfacial separation from small contact to full contact

    International Nuclear Information System (INIS)

    Yang, C; Persson, B N J

    2008-01-01

    We present a molecular dynamics study of the contact between a rigid solid with a randomly rough surface and an elastic block with a flat surface. The numerical calculations mainly focus on the contact area and the interfacial separation from small contact (low load) to full contact (high load). For a small load the contact area varies linearly with the load and the interfacial separation depends logarithmically on the load. For a high load the contact area approaches the nominal contact area (i.e. complete contact), and the interfacial separation approaches zero. The numerical results have been compared with analytical theory and experimental results. They are in good agreement with each other. The present findings may be very important for soft solids, e.g. rubber, or for very smooth surfaces, where complete contact can be reached at moderately high loads without plastic deformation of the solids

  20. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices.

    Science.gov (United States)

    Batra, Nitin M; Patole, Shashikant P; Abdelkader, Ahmed; Anjum, Dalaver H; Deepak, Francis L; Costa, Pedro M F J

    2015-11-06

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode-interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode-nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  1. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices

    KAUST Repository

    Batra, Nitin M; Patole, Shashikant P.; Abdelkader, Ahmed; Anjum, Dalaver H.; Deepak, Francis L; Da Costa, Pedro M. F. J.

    2015-01-01

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode–interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode–nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  2. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices

    KAUST Repository

    Batra, Nitin M

    2015-10-09

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode–interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode–nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  3. Repulsion-based model for contact angle saturation in electrowetting.

    Science.gov (United States)

    Ali, Hassan Abdelmoumen Abdellah; Mohamed, Hany Ahmed; Abdelgawad, Mohamed

    2015-01-01

    We introduce a new model for contact angle saturation phenomenon in electrowetting on dielectric systems. This new model attributes contact angle saturation to repulsion between trapped charges on the cap and base surfaces of the droplet in the vicinity of the three-phase contact line, which prevents these surfaces from converging during contact angle reduction. This repulsion-based saturation is similar to repulsion between charges accumulated on the surfaces of conducting droplets which causes the well known Coulombic fission and Taylor cone formation phenomena. In our model, both the droplet and dielectric coating were treated as lossy dielectric media (i.e., having finite electrical conductivities and permittivities) contrary to the more common assumption of a perfectly conducting droplet and perfectly insulating dielectric. We used theoretical analysis and numerical simulations to find actual charge distribution on droplet surface, calculate repulsion energy, and minimize energy of the total system as a function of droplet contact angle. Resulting saturation curves were in good agreement with previously reported experimental results. We used this proposed model to predict effect of changing liquid properties, such as electrical conductivity, and system parameters, such as thickness of the dielectric layer, on the saturation angle, which also matched experimental results.

  4. The challenges of a good use of electricity: China, United States, India and the European Union

    International Nuclear Information System (INIS)

    Dessus, B.; Laponche, B.

    2011-01-01

    After a discussion of the peculiar characteristics of electricity as energy vector (electricity production, transport and distribution, usages, the issue of load curves and power), this report identifies and discusses criteria corresponding to a 'good use' of electricity. These criteria are related to several issues: greenhouse gas emissions, availability and costs of natural resources, safety, local and global environment, economical and social issues. These issues are addressed through the examination of electricity consumption in China and India, of its evolution in comparison with two other regions (United States and Europe). A third part discusses opportunities and perspectives of a good use of electricity in China and India, in the main socio-economic sectors, and their consequences for the environment, for the preservation of natural resources, and for the Indian and Chinese economy. These aspects are also addressed in comparison with the United States and Europe. Thus, the authors highlight the contrast between the electricity consumption curves for some sectors depending on strategic choices by the Chinese and Indian governments

  5. Pulsed Current Static Electrical Contact Experiment

    National Research Council Canada - National Science Library

    Jones, Harry N; Neri, Jesse M; Boyer, Craig N; Cooper, Khershed P; Meger, Robert A

    2006-01-01

    .... The voltage developed across the interface is directly related to the contact temperature and pressure, the number of a-spots, the thermophysical and mechanical properties of the contacting materials...

  6. Electrical Matching at Metal/Molecule Contacts for Efficient Heterogeneous Charge Transfer.

    Science.gov (United States)

    Sato, Shino; Iwase, Shigeru; Namba, Kotaro; Ono, Tomoya; Hara, Kenji; Fukuoka, Atsushi; Uosaki, Kohei; Ikeda, Katsuyoshi

    2018-02-27

    In a metal/molecule hybrid system, unavoidable electrical mismatch exists between metal continuum states and frontier molecular orbitals. This causes energy loss in the electron conduction across the metal/molecule interface. For efficient use of energy in a metal/molecule hybrid system, it is necessary to control interfacial electronic structures. Here we demonstrate that electrical matching between a gold substrate and π-conjugated molecular wires can be obtained by using monatomic foreign metal interlayers, which can change the degree of d-π* back-donation at metal/anchor contacts. This interfacial control leads to energy level alignment between the Fermi level of the metal electrode and conduction molecular orbitals, resulting in resonant electron conduction in the metal/molecule hybrid system. When this method is applied to molecule-modified electrocatalysts, the heterogeneous electrochemical reaction rate is considerably improved with significant suppression of energy loss at the internal electron conduction.

  7. Non-contact assessment of electrical performance for rapidly sintered nanoparticle silver coatings through colorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Cherrington, M.; Claypole, T.C.; Gethin, D.T. [Welsh Centre for Printing and Coating, College of Engineering, Swansea University, Singleton Park, Swansea, SA2 8PP (United Kingdom); Worsley, D.A. [SPECIFIC, College of Engineering, Swansea University, Baglan Bay Innovation Centre, Central Avenue, Baglan Energy Park, Port Talbot, SA12 7AX (United Kingdom); Deganello, D., E-mail: d.deganello@swansea.ac.uk [Welsh Centre for Printing and Coating, College of Engineering, Swansea University, Singleton Park, Swansea, SA2 8PP (United Kingdom)

    2012-11-01

    The color change during the ultrafast near-infrared sintering process of a nanoparticle silver ink has been correlated to its electrical performance through colorimetry using the CIELAB industry standard. Nanoparticle silver ink films, deposited over a flexible polyethylene terephthalate substrate, presented significant shifting in the a* and b* color coordinates during sintering, exhibiting the best conductivity with an a* coordinate of approximately 0 and a b* coordinate of approximately + 10. This color change has been associated with the Lorenz-Mie theory of electromagnetic scattering. This indirect measurement technique is potentially a breakthrough technology for fast in-line non-contact characterization of the drying and sintering process of nanoparticle conductive inks for use in large area roll-to-roll processing of printed electronics. - Highlights: Black-Right-Pointing-Pointer Color change of a nanoparticle silver coating was measured during sintering Black-Right-Pointing-Pointer Color change was correlated to the electrical performance of the coating. Black-Right-Pointing-Pointer Potential in-line non-contact measurement method for roll-to-roll printed electronics.

  8. An evaluation of electric melter refractories for contact with glass used for the immobilisation of nuclear waste

    International Nuclear Information System (INIS)

    Hayward, P.J.; George, I.M.

    1987-01-01

    Corrosion tests have been performed on twelve candidate refractories in contact with borosilicate, titanosilicate, and aluminosilicate melts, in order to rank them for use in an all-electric melter for the production of waste form materials suitable for immobilising nuclear fuel recycle wastes. Viscosities and electrical conductivities of the melts have also been measured to enable optimum processing conditions to be determined. Of the materials tested, the choice of glass contact refractory for the Joule heated melting of the borosilicate and titanosilicate compositions is Monofrax K3 or SEPR 2161, in conjunction with tin oxide electrodes. The aluminosilicate glass waste form would require an alternative method of production (sol-gel processing, or sintering of a precursor frit), because of its high viscosity. (author)

  9. The role of nano-contacts in electrical transport through a molecular wire

    International Nuclear Information System (INIS)

    Shokri, Ali A.; Mardaani, M.

    2006-01-01

    Theoretical studies on electrical transport in a nano-device which consisting of two semi-infinite cubic leads with finite cross-sections separated by a typical molecular wire (MW) are carried out by including the effect of single and multiple contacts. The calculations are based on the tight-binding model and Green's function method in the coherent regime. In order to calculate the effect of contact coupling on molecular wire transport, we derive a theoretical formula based on the nearest and next nearest neighbor coupling strengths between the MW and the surface atoms in the simple cubic leads. This approach can be generalized to other leads with different lattice structure. The results show small changes in the transport properties with changing next nearest neighbor coupling strength. Some asymmetry is noted in the strong multiple contact limit. Also, we observe that with enlarging the cross-section size of leads, the current density increases and then leads to the quantum unit of conductance. Hence, our derived formalism can be used for devices attached to macroscopic surfaces. The theoretical results obtained, can be a base for developments in designing nano-electronic devices

  10. Electrical properties of nanosized non-barrier inhomogeneities in Zn-based metal-semiconductor contacts to InP

    DEFF Research Database (Denmark)

    Clausen, Thomas; Leistiko, Otto

    1998-01-01

    We have found that the electrical properties of carriers across the metal-semiconductor interface for alloyed Zn based metallizations to n- and p-InP are dominated by nanosized non-barrier inhomogeneities. The effective area covered by the nanosized regions is a small fraction of the contact area...... resulting in high values of the specific contact resistance to p-InP. For n(-)-InP, thermionic emission across nanosized inhomogeneities dominates the carrier flow when T-ann > 440 degrees C. (C) 1998 Elsevier Science B.V....

  11. Defining the value of injection current and effective electrical contact area for EGaIn-based molecular tunneling junctions.

    Science.gov (United States)

    Simeone, Felice C; Yoon, Hyo Jae; Thuo, Martin M; Barber, Jabulani R; Smith, Barbara; Whitesides, George M

    2013-12-04

    Analysis of rates of tunneling across self-assembled monolayers (SAMs) of n-alkanethiolates SCn (with n = number of carbon atoms) incorporated in junctions having structure Ag(TS)-SAM//Ga2O3/EGaIn leads to a value for the injection tunnel current density J0 (i.e., the current flowing through an ideal junction with n = 0) of 10(3.6±0.3) A·cm(-2) (V = +0.5 V). This estimation of J0 does not involve an extrapolation in length, because it was possible to measure current densities across SAMs over the range of lengths n = 1-18. This value of J0 is estimated under the assumption that values of the geometrical contact area equal the values of the effective electrical contact area. Detailed experimental analysis, however, indicates that the roughness of the Ga2O3 layer, and that of the Ag(TS)-SAM, determine values of the effective electrical contact area that are ~10(-4) the corresponding values of the geometrical contact area. Conversion of the values of geometrical contact area into the corresponding values of effective electrical contact area results in J0(+0.5 V) = 10(7.6±0.8) A·cm(-2), which is compatible with values reported for junctions using top-electrodes of evaporated Au, and graphene, and also comparable with values of J0 estimated from tunneling through single molecules. For these EGaIn-based junctions, the value of the tunneling decay factor β (β = 0.75 ± 0.02 Å(-1); β = 0.92 ± 0.02 nC(-1)) falls within the consensus range across different types of junctions (β = 0.73-0.89 Å(-1); β = 0.9-1.1 nC(-1)). A comparison of the characteristics of conical Ga2O3/EGaIn tips with the characteristics of other top-electrodes suggests that the EGaIn-based electrodes provide a particularly attractive technology for physical-organic studies of charge transport across SAMs.

  12. A micro-scale model for predicting contact resistance between bipolar plate and gas diffusion layer in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.; Lin, G.; Shih, A.J.; Hu, S.J. [Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI 48109-2125 (United States)

    2007-01-01

    Contact resistance between the bipolar plate (BPP) and the gas diffusion layer (GDL) in a proton exchange membrane (PEM) fuel cell constitutes a significant portion of the overall fuel cell electrical resistance under the normal operation conditions. Most current methods for contact resistance estimation are experimental and there is a lack of well developed theoretical methods. A micro-scale numerical model is developed to predict the electrical contact resistance between BPP and GDL by simulating the BPP surface topology and GDL structure and numerically determining the status for each contact spot. The total resistance and pressure are obtained by considering all contact spots as resistances in parallel and summing the results together. This model shows good agreements with experimental results. Influences of BPP surface roughness parameters on contact resistance are also studied. This model is beneficial in understanding the contact behavior between BPP and GDL and can be integrated with other fuel cell simulations to predict the overall performance of PEM fuel cells. (author)

  13. Electrical Resistance Measurements and Microstructural Characterization of the Anode/Interconnect Contact in Simulated Anode-Side SOFC Conditions

    DEFF Research Database (Denmark)

    Harthøj, Anders; Alimadadi, Hossein; Holt, Tobias

    2015-01-01

    in phase transformation of the steel and in formation of oxides with a poor electrical conductivity in the anode. In this study, the area specific resistance (ASR) of the steel Crofer 22 APU, in contact with a Ni/YSZ anode with and without a tape casted CeO2 barrier layer was measured in simulated SOFC...... anode conditions at 800◦C. The microstructure in the contact area was characterized using scanning electron microscopy techniques. The ASR was low for the steel in direct contact with the Ni/YSZ anode. Nickel diffusion into the steel resulted in a fine grained zone, which was identified as ferrite...

  14. On the contact values of the density profiles in an electric double layer using density functional theory

    Directory of Open Access Journals (Sweden)

    L.B. Bhuiyan

    2012-06-01

    Full Text Available A recently proposed, local second contact value theorem [Henderson D., Boda D., J. Electroanal. Chem., 2005, Vol. 582, 16] for the charge profile of an electric double layer is used in conjunction with existing Monte Carlo data from the literature to assess the contact behavior of the electrode-ion distributions predicted by the density functional theory. The results for the contact values of the co- and counterion distributions and their product are obtained for the symmetric valency, restricted primitive model planar double layer for a range of electrolyte concentrations and temperatures. Overall the theoretical results satisfy the second contact value theorem reasonably well the agreement with the simulations being semi-quantitative or better. The product of the co- and counterion contact values as a function of the electrode surface charge density is qualitative with the simulations with increasing deviations at higher concentrations.

  15. Au/Zn Contacts to rho-InP: Electrical and Metallurgical Characteristics and the Relationship Between Them

    Science.gov (United States)

    Weizer, Victor G.; Fatemi, Navid S.; Korenyi-Both, Andras L.

    1994-01-01

    The metallurgical and electrical behavior of Au/Zn contacting metallization on p-type InP was investigated as a function of the Zn content in the metallization. It was found that ohmic behavior can be achieved with Zn concentrations as small as 0.05 atomic percent Zn. For Zn concentrations between 0.1 and 36 at. percent, the contact resistivity rho(sub c) was found to be independent of the Zn content. For low Zn concentrations the realization of ohmic behavior was found to require the growth of the compound Au2P3 at the metal-InP interface. The magnitude of rho(sub c) is shown to be very sensitive to the growth rate of the interfacial Au2P3 layer. The possibility of exploiting this sensitivity to provide low resistance contacts while avoiding the semiconductor structural damage that is normally attendant to contact formation is discussed.

  16. The challenges of achieving good electrical and mechanical properties when making structural supercapacitors

    Science.gov (United States)

    Ciocanel, C.; Browder, C.; Simpson, C.; Colburn, R.

    2013-04-01

    The paper presents results associated with the electro-mechanical characterization of a composite material with power storage capability, identified throughout the paper as a structural supercapacitor. The structural supercapacitor uses electrodes made of carbon fiber weave, a separator made of Celgard 3501, and a solid PEG-based polymer blend electrolyte. To be a viable structural supercapacitor, the material has to have good mechanical and power storage/electrical properties. The literature in this area is inconsistent on which electrical properties are evaluated, and how those properties are assessed. In general, measurements of capacitance or specific capacitance (i.e. capacitance per unit area or per unit volume) are made, without considering other properties such as leakage resistance and equivalent series resistance of the supercapacitor. This paper highlights the significance of these additional electrical properties, discusses the fluctuation of capacitance over time, and proposes methods to improve the stability of the material's electric properties over time.

  17. Electrical Thermal Network for Direct Contact Membrane Distillation Modeling and Analysis

    KAUST Repository

    Karam, Ayman M.

    2015-02-04

    Membrane distillation is an emerging water distillation technology that offers several advantages compared to conventional water desalination processes. Although progress has been made to model and understand the physics of the process, many studies are based on steady-state assumptions or are computationally not appropriate for real time control. This paper presents the derivation of a novel dynamical model, based on analogy between electrical and thermal systems, for direct contact membrane distillation (DCMD). The proposed model captures the dynamics of temperature distribution and distilled water flux. To demonstrate the adequacy of the proposed model, validation with transient and steady-state experimental data is presented.

  18. Thermal stability of TaN Schottky contacts on n-GaN

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, J.R.; Kim, D-W.; Meidia, H.; Mahajan, S

    2003-02-07

    The thermal stability and electrical characteristics of tantalum-nitrogen alloy Schottky contacts on n-GaN were investigated. Non-stoichiometric {delta}-phase (40 atomic percent nitrogen) tantalum nitride contacts exhibited good electrical properties up to an annealing temperature of 600 deg. C. However, they degrade rapidly above this temperature due to outward diffusion of Ga and presumably nitrogen into the {delta}-phase tantalum nitride. It is surmised that excess Ta reacts with N at the GaN surface, freeing Ga which then diffuses into the TaN layer. Stoichiometric TaN Schottky contacts were stable at temperatures as high as 800 deg. C and had far superior electrical performance. This stems from the thermodynamic stability of the stoichiometric TaN/GaN interface. {delta}-phase TaN had I-V and C-V barrier heights of 0.55 eV and 0.8 eV respectively. On the other hand, TaN had an I-V barrier height near 0.7 eV and a C-V barrier height near 1.2 eV. The ideality factors for both {delta}-phase TaN and TaN were above 1.8 at all annealing temperatures, suggesting tunneling contributes significantly to current transport.

  19. String and Sticky Tape Experiments: Simple Self-Lubricated Electric Motor for Elementary Physics Lab.

    Science.gov (United States)

    Entrikin, Jerry; Griffiths, David

    1983-01-01

    The main problem in constructing functioning electric motors from simple parts is the mounting of the axle (which is too flimsy to maintain good electrical contacts or too tight, imposing excessive friction at the supports). This problem is solved by using a pencil sharpened at both ends as the axle. (JN)

  20. Controlled fabrication of electrically contacted carbon nanoscrolls

    Science.gov (United States)

    Schmidt, Marek E.; Hammam, Ahmed M. M.; Iwasaki, Takuya; Kanzaki, Teruhisa; Muruganathan, Manoharan; Ogawa, Shinichi; Mizuta, Hiroshi

    2018-06-01

    Carbon nanoscrolls (CNS) with their open ended morphology have recently attracted interest due to the potential application in gas capture, biosensors and interconnects. However, CNS currently suffer from the same issue that have hindered widespread integration of CNTs in sensors and devices: formation is done ex situ, and the tubes have to be placed with precision and reliability—a difficult task with low yield. Here, we demonstrate controlled in situ formation of electrically contacted CNS from suspended graphene nanoribbons with slight tensile stress. Formation probability depends on the length to width aspect ratio. Van der Waals interaction between the overlapping layers fixes the nanoscroll once formed. The stability of these CNSs is investigated by helium nano ion beam assisted in situ cutting. The loose stubs remain rolled and mostly suspended unless subject to a moderate helium dose corresponding to a damage rate of 4%–20%. One CNS stub remaining perfectly straight even after touching the SiO2 substrate allows estimation of the bending moment due to van der Waals force between the CNS and the substrate. The bending moment of 5400 eV is comparable to previous theoretical studies. The cut CNSs show long-term stability when not touching the substrate.

  1. Successful catheter ablation of ventricular premature complexes from the right atrial side of the atrioventricular septum with good contact force.

    Science.gov (United States)

    Arai, Marina; Fukamizu, Seiji; Kawamura, Iwanari; Miyazawa, Satoshi; Hojo, Rintaro; Sakurada, Harumizu; Hiraoka, Masayasu

    2018-04-01

    The acquisition of good contact force for radiofrequency catheter ablation of ventricular premature complexes (VPCs) originating from the basal septum of the left ventricle (LV) is often difficult. We describe a case of VPCs originating from the basal septum of the LV, which were successfully eliminated by applying radiofrequency at the right atrium (RA) side of the atrioventricular septum (AVS) without causing any significant impairment of atrioventricular conduction because the ablation catheter could obtain better contact force through the RA approach. Moreover, intracardiac echocardiography (ICE) and RA angiography effectively demonstrated the AVS.

  2. 2D and 3D Subsurface Geo-electrical Resistivity Imaging of ...

    African Journals Online (AJOL)

    PROF HORSFALL

    2018-04-12

    Apr 12, 2018 ... heavy metals is rare through ingestion or dermal contact, but it is possible. ... Earth). Experimental: Electrical Resistivity Tomography. (ERT) survey was ... hence the area is prone to a good age of leach material that has been ...

  3. Lateral-electric-field-induced spin polarization in a suspended GaAs quantum point contact

    Science.gov (United States)

    Pokhabov, D. A.; Pogosov, A. G.; Zhdanov, E. Yu.; Shevyrin, A. A.; Bakarov, A. K.; Shklyaev, A. A.

    2018-02-01

    The conductance of a GaAs-based suspended quantum point contact (QPC) equipped with lateral side gates has been experimentally studied in the absence of the external magnetic field. The half-integer conductance plateau ( 0.5 ×2 e2/h ) has been observed when an asymmetric voltage between the side gates is applied. The appearance of this plateau has been attributed to the spin degeneracy lifting caused by the spin-orbit coupling associated with the lateral electric field in the asymmetrically biased QPC. We have experimentally demonstrated that, despite the relatively small g-factor in GaAs, the observation of the spin polarization in the GaAs-based QPC became possible after the suspension due to the enhancement of the electron-electron interaction and the effect of the electric field guiding. These features are caused by a partial confinement of the electric field lines within a suspended semiconductor layer with a high dielectric constant.

  4. Wettability and Contact Time on a Biomimetic Superhydrophobic Surface

    Science.gov (United States)

    Liang, Yunhong; Peng, Jian; Li, Xiujuan; Huang, Jubin; Qiu, Rongxian; Zhang, Zhihui; Ren, Luquan

    2017-01-01

    Inspired by the array microstructure of natural superhydrophobic surfaces (lotus leaf and cicada wing), an array microstructure was successfully constructed by high speed wire electrical discharge machining (HS-WEDM) on the surfaces of a 7075 aluminum alloy without any chemical treatment. The artificial surfaces had a high apparent contact angle of 153° ± 1° with a contact angle hysteresis less than 5° and showed a good superhydrophobic property. Wettability, contact time, and the corresponding superhydrophobic mechanism of artificial superhydrophobic surface were investigated. The results indicated that the micro-scale array microstructure was an important factor for the superhydrophobic surface, while different array microstructures exhibited different effects on the wettability and contact time of the artificial superhydrophobic surface. The length (L), interval (S), and height (H) of the array microstructure are the main influential factors on the wettability and contact time. The order of importance of these factors is H > S > L for increasing the apparent contact angle and reducing the contact time. The method, using HS-WEDM to fabricate superhydrophobic surface, is simple, low-cost, and environmentally friendly and can easily control the wettability and contact time on the artificial surfaces by changing the array microstructure. PMID:28772613

  5. Numerical simulation for arc-plasma dynamics during contact opening process in electrical circuit-breakers

    International Nuclear Information System (INIS)

    Gupta, D N; Srinivas, D; Patil, G N; Kale, S S; Potnis, S B

    2010-01-01

    The high-energy, high-current thermal plasma that develops between electric contacts in a gas circuit-breaker during circuit interruption is an important phenomenon in the power transmission industry. The high temperature and pressure arc dissipates the tremendous amount of energy generated by the fault current. Simultaneously, this energy has to be transferred away from the contacts to build the dielectric strength level of the circuit-breaker. In order to interrupt the current, the arc must be weakened and finally extinguished. We model these phenomena by using a computer software code based on the solution of the unsteady Euler equations of gas dynamics. We consider the equations of fluid flows. These equations are solved numerically in complex circuit breaker geometries using a finite-volume method. The domain is initially filled with SF 6 gas. We begin our simulations from cold mode, where the fault current is not present (hence no arc). An axis-symmetric geometry of a 145 kV gas circuit-breaker is considered to study the pressure, density, and temperature profile during contact opening process.

  6. Determination of electric field threshold for electrofusion of erythrocyte ghosts. Comparison of pulse-first and contact-first protocols.

    OpenAIRE

    Wu, Y; Montes, J G; Sjodin, R A

    1992-01-01

    Rabbit erythrocyte ghosts were fused by means of electric pulses to determine the electrofusion thresholds for these membranes. Two protocols were used to investigate fusion events: contact-first, and pulse-first. Electrical capacitance discharge (CD) pulses were used to induce fusion. Plots of fusion yield vs peak field strength yielded curves that intersected the field strength axis at positive values (pseudothresholds) which depended on the protocol and decay half time of the pulses. It wa...

  7. An analytical model and parametric study of electrical contact resistance in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhiliang; Wang, Shuxin; Zhang, Lianhong [School of Mechanical Engineering, Tianjin University, Tianjin 300072 (China); Hu, S. Jack [Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI 48109-2125 (United States)

    2009-04-15

    This paper presents an analytical model of the electrical contact resistance between the carbon paper gas diffusion layers (GDLs) and the graphite bipolar plates (BPPs) in a proton exchange membrane (PEM) fuel cell. The model is developed based on the classical statistical contact theory for a PEM fuel cell, using the same probability distributions of the GDL structure and BPP surface profile as previously described in Wu et al. [Z. Wu, Y. Zhou, G. Lin, S. Wang, S.J. Hu, J. Power Sources 182 (2008) 265-269] and Zhou et al. [Y. Zhou, G. Lin, A.J. Shih, S.J. Hu, J. Power Sources 163 (2007) 777-783]. Results show that estimates of the contact resistance compare favorably with experimental data by Zhou et al. [Y. Zhou, G. Lin, A.J. Shih, S.J. Hu, J. Power Sources 163 (2007) 777-783]. Factors affecting the contact behavior are systematically studied using the analytical model, including the material properties of the two contact bodies and factors arising from the manufacturing processes. The transverse Young's modulus of chopped carbon fibers in the GDL and the surface profile of the BPP are found to be significant to the contact resistance. The factor study also sheds light on the manufacturing requirements of carbon fiber GDLs for a better contact performance in PEM fuel cells. (author)

  8. Monitoring of good practices programs and independence for electricity and natural gas system operators. Report 2012

    International Nuclear Information System (INIS)

    2013-09-01

    Electricity and natural gas transmission system operators (TSO) and distribution system operators (DSO) are regulated operators that provide public service functions for the benefit of the network users and the consumers they serve. Accordingly, European and French law requires that they be under independent and nondiscriminatory obligations. In particular, they must develop a good practices program which includes a range of measures to prevent the risk of discriminatory practices in network access. Pursuant to Article L.134-15 of the Energy Code, the Energy Regulatory Commission (CRE) is publishing this year its 8. annual report on the monitoring of good practices programs and independence for electricity and natural gas system operators for the year 2012. This report is based on analysis of the 'reports on the implementation of good practices programs' submitted to the CRE by the operators in late 2012 and audits carried out by the CRE services in these companies in 2012

  9. Monitoring of good practices programs and independence for electricity and natural gas system operators. 2010 report

    International Nuclear Information System (INIS)

    2011-01-01

    Electricity and natural gas transmission system operators (TSO) and distribution system operators (DSO) are regulated operators that provide public service functions for the benefit of the network users and the consumers they serve. Accordingly, European and French law requires that they be under independent and nondiscriminatory obligations. In particular, they must develop a good practices program which includes a range of measures to prevent the risk of discriminatory practices in network access. Pursuant to Article L.134-15 of the Energy Code, the Energy Regulatory Commission (CRE) is publishing this year its 6. annual report on the monitoring of good practices programs and independence for electricity and natural gas system operators for the year 2010. This report is based on analysis of the 'reports on the implementation of good practices programs' submitted to the CRE by the operators in late 2010 and audits carried out by the CRE services in these companies in 2010

  10. Experimental Characterization and Modeling of Thermal Contact Resistance of Electric Machine Stator-to-Cooling Jacket Interface Under Interference Fit Loading

    Energy Technology Data Exchange (ETDEWEB)

    Cousineau, Justine E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bennion, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chieduko, Victor [UQM Technologies, Inc.; Lall, Rajiv [UQM Technologies, Inc.; Gilbert, Alan [UQM Technologies, Inc.

    2018-05-08

    Cooling of electric machines is a key to increasing power density and improving reliability. This paper focuses on the design of a machine using a cooling jacket wrapped around the stator. The thermal contact resistance (TCR) between the electric machine stator and cooling jacket is a significant factor in overall performance and is not well characterized. This interface is typically an interference fit subject to compressive pressure exceeding 5 MPa. An experimental investigation of this interface was carried out using a thermal transmittance setup using pressures between 5 and 10 MPa. The results were compared to currently available models for contact resistance, and one model was adapted for prediction of TCR in future motor designs.

  11. Electrical characterisation of ruthenium Schottky contacts on n-Ge (1 0 0)

    Energy Technology Data Exchange (ETDEWEB)

    Chawanda, Albert, E-mail: albert.chawanda@up.ac.za [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); Department of Physics, Midlands State University, Bag 9055, Gweru (Zimbabwe); Nyamhere, Cloud [Department of Physics, Nelson Mandela Metropolitan University, Box 7700, Port Elizabeth 6031 (South Africa); Auret, Francois D.; Nel, Jacqueline M.; Mtangi, Wilbert; Diale, Mmatsae [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa)

    2012-05-15

    Ruthenium (Ru) Schottky contacts were fabricated on n-Ge (1 0 0) by electron beam deposition. Current-voltage (I-V), deep level transient spectroscopy (DLTS), and Laplace-DLTS techniques were used to characterise the as-deposited and annealed Ru/n-Ge (1 0 0) Schottky contacts. The variation of the electrical properties of the Ru samples annealed between 25 Degree-Sign C and 575 Degree-Sign C indicates the formation of two phases of ruthenium germanide. After Ru Schottky contacts fabrication, an electron trap at 0.38 eV below the conduction band with capture cross section of 1.0 Multiplication-Sign 10{sup -14} cm{sup -2} is the only detectable electron trap. The hole traps at 0.09, 0.15, 0.27 and 0.30 eV above the valence band with capture cross sections of 7.8 Multiplication-Sign 10{sup -13} cm{sup -2}, 7.1 Multiplication-Sign 10{sup -13} cm{sup -2}, 2.4 Multiplication-Sign 10{sup -13} cm{sup -2} and 6.2 Multiplication-Sign 10{sup -13} cm{sup -2}, respectively, were observed in the as-deposited Ru Schottky contacts. The hole trap H(0.30) is the prominent single acceptor level of the E-centre, and H(0.09) is the third charge state of the E-centre. H(0.27) shows some reverse annealing and reaches a maximum concentration at 225 Degree-Sign C and anneals out after 350 Degree-Sign C. This trap is strongly believed to be V-Sb{sub 2} complex formed from the annealing of V-Sb defect centre.

  12. Electrical and structural properties of surfaces and interfaces in Ti/Al/Ni Ohmic contacts to p-type implanted 4H-SiC

    Science.gov (United States)

    Vivona, M.; Greco, G.; Bongiorno, C.; Lo Nigro, R.; Scalese, S.; Roccaforte, F.

    2017-10-01

    In this work, the electrical and structural properties of Ti/Al/Ni Ohmic contacts to p-type implanted silicon carbide (4H-SiC) were studied employing different techniques. With increasing the annealing temperature, an improvement of the electrical properties of the contacts is highlighted, until an Ohmic behavior is obtained at 950 °C, with a specific contact resistance ρc = 2.3 × 10-4 Ω cm2. A considerable intermixing of the metal layers occurred upon annealing, as a consequence of the formation of different phases, both in the uppermost part of the stack (mainly Al3Ni2) and at the interface with SiC, where the formation of preferentially aligned TiC is observed. The formation of an Ohmic contact was associated with the occurrence of the reaction and the disorder at the interface, where the current transport is dominated by the thermionic field emission mechanism with a barrier height of 0.56 eV.

  13. Electrical equivalent thermal network for direct contact membrane distillation modeling and analysis

    KAUST Repository

    Karam, Ayman M.

    2016-09-19

    Membrane distillation (MD) is an emerging water desalination technology that offers several advantages compared to conventional desalination methods. Although progress has been made to model the physics of the process, there are two common limitations of existing models. Firstly, many of the models are based on the steady-state analysis of the process and secondly, some of the models are based on partial differential equations, which when discretized introduce many states which are not accessible in practice. This paper presents the derivation of a novel dynamic model, based on the analogy between electrical and thermal systems, for direct contact membrane distillation (DCMD). An analogous electrical thermal network is constructed and its elements are parameterized such that the response of the network models the DCMD process. The proposed model captures the spatial and temporal responses of the temperature distribution along the flow direction and is able to accurately predict the distilled water flux output. To demonstrate the adequacy of the proposed model, validation with time varying and steady-state experimental data is presented. (C) 2016 Elsevier Ltd. All rights reserved.

  14. HTSC-Josephson step contacts

    International Nuclear Information System (INIS)

    Herrmann, K.

    1994-03-01

    In this work the properties of josephson step contacts are investigated. After a short introduction into Josephson step contacts the structure, properties and the Josphson contacts of YBa 2 Cu 3 O 7-x high-T c superconductors is presented. The fabrication of HTSC step contacts and the microstructure is discussed. The electric properties of these contacts are measured together with the Josephson emission and the magnetic field dependence. The temperature dependence of the stationary transport properties is given. (WL)

  15. Inactive end cell assembly for fuel cells for improved electrolyte management and electrical contact

    Science.gov (United States)

    Yuh, Chao-Yi [New Milford, CT; Farooque, Mohammad [Danbury, CT; Johnsen, Richard [New Fairfield, CT

    2007-04-10

    An assembly for storing electrolyte in a carbonate fuel cell is provided. The combination of a soft, compliant and resilient cathode current collector and an inactive anode part including a foam anode in each assembly mitigates electrical contact loss during operation of the fuel cell stack. In addition, an electrode reservoir in the positive end assembly and an electrode sink in the negative end assembly are provided, by which ribbed and flat cathode members inhibit electrolyte migration in the fuel cell stack.

  16. Impact of incomplete metal coverage on the electrical properties of metal-CNT contacts: A large-scale ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Fediai, Artem, E-mail: artem.fediai@nano.tu-dresden.de; Ryndyk, Dmitry A. [Institute for Materials Science and Max Bergman Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden (Germany); Seifert, Gotthard [Theoretical Chemistry, TU Dresden, 01062 Dresden (Germany); Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden (Germany); Dresden Center for Computational Materials Science, TU Dresden, 01062 Dresden (Germany); Mothes, Sven; Schroter, Michael; Claus, Martin [Chair for Electron Devices and Integrated Circuits, TU Dresden, 01062 Dresden (Germany); Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden (Germany); Cuniberti, Gianaurelio [Institute for Materials Science and Max Bergman Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden (Germany); Dresden Center for Computational Materials Science, TU Dresden, 01062 Dresden (Germany)

    2016-09-05

    Using a dedicated combination of the non-equilibrium Green function formalism and large-scale density functional theory calculations, we investigated how incomplete metal coverage influences two of the most important electrical properties of carbon nanotube (CNT)-based transistors: contact resistance and its scaling with contact length, and maximum current. These quantities have been derived from parameter-free simulations of atomic systems that are as close as possible to experimental geometries. Physical mechanisms that govern these dependences have been identified for various metals, representing different CNT-metal interaction strengths from chemisorption to physisorption. Our results pave the way for an application-oriented design of CNT-metal contacts.

  17. Faults and energy losses in electric contacts; Fallas y perdidas de energia en contactos electricos

    Energy Technology Data Exchange (ETDEWEB)

    Bratu Serban, Neagu; Campero Littlewood, Eduardo [Universidad Autonoma Metropolitana, Mexico, D. F. (Mexico)

    1994-12-31

    In this paper a brief description is made of the behavior of the electric contacts and the elements that affect in the heat release during its operation. The mathematical expressions describing this phenomenon are presented. The losses that can be produced at the contacts are evaluated and the graphs, where the behavior of these different operating conditions can be seen, are included. [Espanol] En este articulo se hace una breve descripcion del comportamiento de los contactos electricos y de los elementos que influyen en la generacion de calor durante su operacion. Se presentan las expresiones con las que se describe matematicamente este fenomeno. Se evaluan las perdidas que pueden llegar a tenerse en los contactos y se incluyen graficas donde puede verse el comportamiento de estos en diferentes condiciones de operacion.

  18. Faults and energy losses in electric contacts; Fallas y perdidas de energia en contactos electricos

    Energy Technology Data Exchange (ETDEWEB)

    Bratu Serban, Neagu; Campero Littlewood, Eduardo [Universidad Autonoma Metropolitana, Mexico, D. F. (Mexico)

    1993-12-31

    In this paper a brief description is made of the behavior of the electric contacts and the elements that affect in the heat release during its operation. The mathematical expressions describing this phenomenon are presented. The losses that can be produced at the contacts are evaluated and the graphs, where the behavior of these different operating conditions can be seen, are included. [Espanol] En este articulo se hace una breve descripcion del comportamiento de los contactos electricos y de los elementos que influyen en la generacion de calor durante su operacion. Se presentan las expresiones con las que se describe matematicamente este fenomeno. Se evaluan las perdidas que pueden llegar a tenerse en los contactos y se incluyen graficas donde puede verse el comportamiento de estos en diferentes condiciones de operacion.

  19. Measurement of the geometric parameters of power contact wire based on binocular stereovision

    Science.gov (United States)

    Pan, Xue-Tao; Zhang, Ya-feng; Meng, Fei

    2010-10-01

    In the electrified railway power supply system, electric locomotive obtains power from the catenary's wire through the pantograph. Under the action of the pantograph, combined with various factors such as vibration, touch current, relative sliding speed, load, etc, the contact wire will produce mechanical wear and electrical wear. Thus, in electrified railway construction and daily operations, the geometric parameters such as line height, pull value, the width of wear surface must be under real-timely and non-contact detection. On the one hand, the safe operation of electric railways will be guaranteed; on the other hand, the wire endurance will be extended, and operating costs reduced. Based on the characteristics of the worn wires' image signal, the binocular stereo vision technology was applied for measurement of contact wire geometry parameters, a mathematical model of measurement of geometric parameters was derived, and the boundaries of the wound wire abrasion-point value were extracted by means of sub-pixel edge detection method based on the LOG operator with the least-squares fitting, thus measurements of the wire geometry parameters were realized. Principles were demonstrated through simulation experiments, and the experimental results show that the detection methods presented in this paper for measuring the accuracy, efficiency and convenience, etc. are close to or superior to the traditional measurements, which has laid a good foundation for the measurement system of geometric parameters for the contact wire of the development of binocular vision.

  20. Investigation of electrochemical intrusion of cations by the method of contact electric resistance

    International Nuclear Information System (INIS)

    Marichev, V.A.

    1997-01-01

    Paper shows the possibility and prospects of application of contact electric resistance technique (CER) to study in-situ the initial stages of electrochemical admission of cations (ECA). ECA is shown to increase CER of metals. It enables to determine ECA potential and to investigate kinetics of this process. Using ECA in copper, silver and zinc from alkali solutions as an example one has shown that CER technique enables to obtain results that do not contradict well-known published data. Potentials of ECA cations from acid and neutral solutions in copper, platinum, iron, titanium and tungsten are determined

  1. Schottky and Ohmic Au contacts on GaAs: Microscopic and electrical investigation

    International Nuclear Information System (INIS)

    Liliental-Weber, Z.; Gronsky, R.; Washburn, J.; Newman, N.; Spicer, W.E.; Weber, E.R.

    1986-01-01

    We report here a systematic study which uses electrical device measurements and transmission electron microscopy (TEM) methods to investigate the electrical, morphological, and structural properties of Au/GaAs Schottky diodes. The electrical characteristics of Au diodes formed on atomically clean and air-exposed GaAs(110) surfaces are found to change from rectifying to Ohmic behavior after annealing above the Au--Ga eutectic temperature (360 0 C). This change is shown to be due to an Ohmic-like contact at the periphery of the device. TEM studies of these structures indicate that the Ohmic peripheral current pathway can be correlated with the formation of near surface Ga-rich Au crystallites at the diode circumference upon annealing. Further evidence of the correlation of the Ohmic electrical characteristics with the morphology of the periphery comes from data which indicate that the removal of these Au crystallites by mesa etching is also accompanied with the elimination of the Ohmic current. The morphology of the overlayer was found to depend strongly on annealing and surface treatment. TEM indicates that the interface is flat and abrupt for all unannealed diodes, as well as for annealed diodes formed on atomically clean surfaces. For annealed diodes formed on the air-exposed surfaces, the metal--semiconductor interface contains large metallic protrusions extending up to several hundred angstroms into the semiconductor. For comparison to practical structures, the morphology of annealed diodes formed using typical commercial processing technology [i.e., formed on chemically prepared (100) surfaces annealed in forming gas] was also investigated using TEM. The interface for these structures is more complex than interfaces formed on the atomically clean and air-exposed cleaved (110) surfaces

  2. A new contact electric resistance technique for in-situ measurement of the electric resistance of surface films on metals in electrolytes at high temperatures and pressures

    International Nuclear Information System (INIS)

    Saario, T.; Marichev, V.A.

    1993-01-01

    Surface films play a major role in corrosion assisted cracking. A new Contact Electric Resistance (CER) method has been recently developed for in situ measurement of the electric resistance of surface films. The method has been upgraded for high temperature high pressure application. The technique can be used for any electrically conductive material in any environment including liquid, gas or vacuum. The technique has been used to determine in situ the electric resistance of films on metals during adsorption of water and anions, formation and destruction of oxides and hydrides, electroplating of metals and to study the electric resistance of films on semiconductors. The resolution of the CER technique is 10 -9 Ω, which corresponds to about 0.03 monolayers of deposited copper during electrochemical deposition Cu/Cu 2+ . Electric resistance data can be measured with a frequency of the order of one hertz, which enables one to follow in situ the kinetics of surface film related processes. The kinetics of these processes and their dependence on the environment, temperature, pH and electrochemical potential can be investigated

  3. Novel four-point-probe design and nanorobotic dual endeffector strategy for electrical characterization of as-grown SWCNT bundles

    DEFF Research Database (Denmark)

    Eichhorn, V; Fatikow, S; Sardan Sukas, Özlem

    2010-01-01

    In this paper, a novel nanorobotic strategy for non-destructive and direct electrical characterization of as-grown bundles of single-walled carbon nanotubes (SWCNTs) is presented. For this purpose, test patterns of SWCNT bundles having different diameters are grown on a silicon substrate...... by chemical vapor deposition. A new design of microstructured four-point-probes is proposed and fabricated allowing for direct contacting of vertically aligned bundles of SWCNTs. A nanorobotic setup is upgraded into a dual endeffector system to achieve good electrical contact between four...

  4. Power operated contact apparatus for superconductive circuit

    Energy Technology Data Exchange (ETDEWEB)

    Woods, D.C.; Efferson, K.R.

    1989-10-10

    This patent describes a power operated contact apparatus for extending and retracting one or more electrical leads into and out of a cryostat for making and breaking, at a cryogenic temperature, electrical contact with a superconductive circuit. It comprises at least one rigid elongated lead for extending into a cold space of the cryostat which is at or near a cryogenic temperature. The lead having an inner end and a outer end; a connector fixed at the inner end of the lead for making electrical contact in the cold space with a connector of the superconductive circuit; guide means journaling the lead for allowing the lead to move axially relative to the guide means and sealing against the lead; a foundation for sealed attachment to the cryostat and to the guide means so that the connector on the inner end of the lead is extendable into making electrical contact with the connector of the superconductive circuit in the cold space; power operated means mounted on the foundation and fixed to the outer end of the lead for extending and retracting the lead to and from making electrical contact with the superconductive circuit in the cold space; and means for de-icing the exterior of the leads and guide means when the leads are connected to the superconducting circuit.

  5. 2008 report on the Monitoring of good practices programs and independence for electricity and natural gas system operators

    International Nuclear Information System (INIS)

    2009-01-01

    Electricity and natural gas transmission system operators (TSO) and distribution system operators (DSO) are regulated operators that provide public service functions for the benefit of the network users and the consumers they serve. Accordingly, European and French law requires that they be under independent and nondiscriminatory obligations. In particular, they must develop a good practices program which includes a range of measures to prevent the risk of discriminatory practices in network access. Pursuant to Article L.134-15 of the Energy Code, the Energy Regulatory Commission (CRE) is publishing this year its 4. annual report on the monitoring of good practices programs and independence for electricity and natural gas system operators for the year 2008. This report is based on analysis of the 'reports on the implementation of good practices programs' submitted to the CRE by the operators in late 2008 and audits carried out by the CRE services in these companies in 2008

  6. Atlas of point contact spectra of electron-phonon interactions in metals

    CERN Document Server

    Khotkevich, A V

    1995-01-01

    The characteristics of electrical contacts have long attracted the attention of researchers since these contacts are used in every electrical and electronic device. Earlier studies generally considered electrical contacts of large dimensions, having regions of current concentration with diameters substantially larger than the characteristic dimensions of the material: the interatomic distance, the mean free path for electrons, the coherence length in the superconducting state, etc. [110]. The development of microelectronics presented to scientists and engineers the task of studying the characteristics of electrical contacts with ultra-small dimensions. Characteristics of point contacts such as mechanical stability under continuous current loads, the magnitudes of electrical fluctuations, inherent sensitivity in radio devices and nonlinear characteristics in connection with electromagnetic radiation can not be understood and altered in the required way without knowledge of the physical processes occurring in c...

  7. Monitoring of good practices programs and independence for electricity and natural gas system operators. Summary report 2011

    International Nuclear Information System (INIS)

    2012-07-01

    Electricity and natural gas transmission system operators (TSO) and distribution system operators (DSO) are regulated operators that provide public service functions for the benefit of the network users and the consumers they serve. Accordingly, European and French law requires that they be under independent and nondiscriminatory obligations. In particular, they must develop a good practices program which includes a range of measures to prevent the risk of discriminatory practices in network access. Pursuant to Article L.134-15 of the Energy Code, the Energy Regulatory Commission (CRE) is publishing this year its 7. annual report on the monitoring of good practices programs and independence for electricity and natural gas system operators for the year 2011. This report is based on analysis of the 'reports on the implementation of good practices programs' submitted to the CRE by the operators in late 2011 and audits carried out by the CRE services in these companies in 2011. These elements were supplemented and clarified by many exchanges with the operators, in particular during the committee hearings that took place in spring 2012 with each network operator. This report is structured around four cross-cutting themes, supplemented by individual analyses of each operator's situation. The cross-cutting issues address communication and user's awareness of the network operators, the new compliance officer function, TSO certification and, finally, the results of the 'mystery shopper' telephone survey carried out by the CRE. The individual situations analysed were those of the eight DSOs serving over 100,000 customers (ERDF, ES, URM, SRD and Geredis-Deux-Sevres for electricity, GrDF, Regaz-Bordeaux and Reseau GDS for natural gas) and the three TSOs (RTE for electricity and GRTgaz and TIGF for natural gas)

  8. Potentially damaging failure modes of high- and medium-voltage electrical equipment

    International Nuclear Information System (INIS)

    Hoy, H.C.

    1983-07-01

    The electrical equipment failures of both nuclear and nonnuclear public utilities were reviewed. Those failures that could pose an additional problem to surrounding and connected equipment were defined. The literature was searched; utilities, repair shops, and large electrical equipment users were contacted for failure information. The data were reviewed in detail, and failure modes were determined. Sample cascade failures are discussed. The failure rate of electrical equipment in utilities is historically quite low. Nuclear plants record too few failures to be statistically valid, but failures that have been recorded show that good design usually restricts the failure to a single piece of equipment

  9. Effects of C+ ion implantation on electrical properties of NiSiGe/SiGe contacts

    International Nuclear Information System (INIS)

    Zhang, B.; Yu, W.; Zhao, Q.T.; Buca, D.; Breuer, U.; Hartmann, J.-M.; Holländer, B.; Mantl, S.; Zhang, M.; Wang, X.

    2013-01-01

    We have investigated the morphology and electrical properties of NiSiGe/SiGe contact by C + ions pre-implanted into relaxed Si 0.8 Ge 0.2 layers. Cross-section transmission electron microscopy revealed that both the surface and interface of NiSiGe were improved by C + ions implantation. In addition, the effective hole Schottky barrier heights (Φ Bp ) of NiSiGe/SiGe were extracted. Φ Bp was observed to decrease substantially with an increase in C + ion implantation dose

  10. Variable reluctance switch avoids contact corrosion and contact bounce

    Science.gov (United States)

    Watson, P. C.

    1967-01-01

    Variable reluctance switch avoids contact corrosion and bounce in a hostile environment. It consists of a wire-wound magnetic core and moveable bridge piece that alters the core flux pattern to produce an electrical output useful for switching control media.

  11. Friction and universal contact area law for randomly rough viscoelastic contacts.

    Science.gov (United States)

    Scaraggi, M; Persson, B N J

    2015-03-18

    We present accurate numerical results for the friction force and the contact area for a viscoelastic solid (rubber) in sliding contact with hard, randomly rough substrates. The rough surfaces are self-affine fractal with roughness over several decades in length scales. We calculate the contribution to the friction from the pulsating deformations induced by the substrate asperities. We also calculate how the area of real contact, A(v, p), depends on the sliding speed v and on the nominal contact pressure p, and we show how the contact area for any sliding speed can be obtained from a universal master curve A(p). The numerical results are found to be in good agreement with the predictions of an analytical contact mechanics theory.

  12. Improved study of electric dipoles on the Si(100)-2 × 1 surface by non-contact scanning nonlinear dielectric microscopy

    International Nuclear Information System (INIS)

    Suzuki, Masataka; Yamasue, Kohei; Cho, Yasuo; Abe, Masayuki; Sugimoto, Yoshiaki

    2014-01-01

    We studied a Si(100)-2 × 1 surface by non-contact scanning nonlinear dielectric microscopy (NC-SNDM). Simultaneously taken images of the topography and electric dipole moment distribution show that negative electric dipole moments are locally formed on individual dimers on the surface. In addition, we obtained the dc bias voltage dependence of the ε local (3) signal on a specific dimer by using an atom-tracking technique with NC-SNDM. We observed that the electric dipole induced a surface potential of around −250 mV on the dimer.

  13. Bottom-up realization and electrical characterization of a graphene-based device

    International Nuclear Information System (INIS)

    Maffucci, A; Micciulla, F; Cataldo, A; Bellucci, S; Miano, G

    2016-01-01

    We propose a bottom-up procedure to fabricate an easy-to-engineer graphene-based device, consisting of a microstrip-like circuit where few-layer graphene nanoplatelets are used to contact two copper electrodes. The graphene nanoplatelets are obtained by the microwave irradiation of intercalated graphite, i.e., an environmentally friendly, fast and low-cost procedure. The contact is created by a bottom-up process, driven by the application of a DC electrical field in the gap between the electrodes, yielding the formation of a graphene carpet. The electrical resistance of the device has been measured as a function of the gap length and device temperature. The possible use of this device as a gas sensor is demonstrated by measuring the sensitivity of its electrical resistance to the presence of gas. The measured results demonstrate a good degree of reproducibility in the fabrication process, and the competitive performance of devices, thus making the proposed technique potentially attractive for industrial applications. (paper)

  14. Annual report on the Monitoring of good practices programs and independence for electricity and natural gas system operators - 2006

    International Nuclear Information System (INIS)

    2007-01-01

    Electricity and natural gas transmission system operators (TSO) and distribution system operators (DSO) are regulated operators that provide public service functions for the benefit of the network users and the consumers they serve. Accordingly, European and French law requires that they be under independent and nondiscriminatory obligations. In particular, they must develop a good practices program which includes a range of measures to prevent the risk of discriminatory practices in network access. Pursuant to Article L.134-15 of the Energy Code, the Energy Regulatory Commission (CRE) is publishing this year its 2. annual report on the monitoring of good practices programs and independence for electricity and natural gas system operators for the year 2006. This report is based on analysis of the 'reports on the implementation of good practices programs' submitted to the CRE by the operators in late 2006 and audits carried out by the CRE services in these companies in 2006

  15. Annual report on the Monitoring of good practices programs and independence for electricity and natural gas system operators - 2007

    International Nuclear Information System (INIS)

    2008-01-01

    Electricity and natural gas transmission system operators (TSO) and distribution system operators (DSO) are regulated operators that provide public service functions for the benefit of the network users and the consumers they serve. Accordingly, European and French law requires that they be under independent and nondiscriminatory obligations. In particular, they must develop a good practices program which includes a range of measures to prevent the risk of discriminatory practices in network access. Pursuant to Article L.134-15 of the Energy Code, the Energy Regulatory Commission (CRE) is publishing this year its 3. annual report on the monitoring of good practices programs and independence for electricity and natural gas system operators for the year 2007. This report is based on analysis of the 'reports on the implementation of good practices programs' submitted to the CRE by the operators in late 2007 and audits carried out by the CRE services in these companies in 2007

  16. Impact of contact resistance on the electrical properties of MoS2 transistors at practical operating temperatures

    Directory of Open Access Journals (Sweden)

    Filippo Giannazzo

    2017-01-01

    Full Text Available Molybdenum disulphide (MoS2 is currently regarded as a promising material for the next generation of electronic and optoelectronic devices. However, several issues need to be addressed to fully exploit its potential for field effect transistor (FET applications. In this context, the contact resistance, RC, associated with the Schottky barrier between source/drain metals and MoS2 currently represents one of the main limiting factors for suitable device performance. Furthermore, to gain a deeper understanding of MoS2 FETs under practical operating conditions, it is necessary to investigate the temperature dependence of the main electrical parameters, such as the field effect mobility (μ and the threshold voltage (Vth. This paper reports a detailed electrical characterization of back-gated multilayer MoS2 transistors with Ni source/drain contacts at temperatures from T = 298 to 373 K, i.e., the expected range for transistor operation in circuits/systems, considering heating effects due to inefficient power dissipation. From the analysis of the transfer characteristics (ID−VG in the subthreshold regime, the Schottky barrier height (ΦB ≈ 0.18 eV associated with the Ni/MoS2 contact was evaluated. The resulting contact resistance in the on-state (electron accumulation in the channel was also determined and it was found to increase with T as RC proportional to T3.1. The contribution of RC to the extraction of μ and Vth was evaluated, showing a more than 10% underestimation of μ when the effect of RC is neglected, whereas the effect on Vth is less significant. The temperature dependence of μ and Vth was also investigated. A decrease of μ proportional to 1/Tα with α = 1.4 ± 0.3 was found, indicating scattering by optical phonons as the main limiting mechanism for mobility above room temperature. The value of Vth showed a large negative shift (about 6 V increasing the temperature from 298 to 373 K, which was explained in terms of electron

  17. High current capacity electrical connector

    International Nuclear Information System (INIS)

    Bettis, E.S.; Watts, H.L.

    1976-01-01

    An electrical connector is provided for coupling high current capacity electrical conductors such as copper busses or the like. The connector is arranged in a ''sandwiched'' configuration in which a conductor plate contacts the busses along major surfaces clamped between two stainless steel backing plates. The conductor plate is provided with contact buttons in a spaced array such that the caps of the buttons extend above the conductor plate surface to contact the busses. When clamping bolts provided through openings in the sandwiched arrangement are tightened, Belleville springs provided under the rim of each button cap are compressed and resiliently force the caps into contact with the busses' contacting surfaces to maintain a predetermined electrical contact area provided by the button cap tops. The contact area does not change with changing thermal or mechanical stresses applied to the coupled conductors

  18. Bismuth nanowire growth under low deposition rate and its ohmic contact free of interface damage

    Directory of Open Access Journals (Sweden)

    Ye Tian

    2012-03-01

    Full Text Available High quality bismuth (Bi nanowire and its ohmic contact free of interface damage are quite desired for its research and application. In this paper, we propose one new way to prepare high-quality single crystal Bi nanowires at a low deposition rate, by magnetron sputtering method without the assistance of template or catalyst. The slow deposition growth mechanism of Bi nanowire is successfully explained by an anisotropic corner crossing effect, which is very different from existing explanations. A novel approach free of interface damage to ohmic contact of Bi nanowire is proposed and its good electrical conductivity is confirmed by I-V characteristic measurement. Our method provides a quick and convenient way to produce high-quality Bi nanowires and construct ohmic contact for desirable devices.

  19. Influence of typical faults over the dynamic behavior of pantograph-catenary contact force in electric rail transport

    Science.gov (United States)

    Rusu-Anghel, S.; Ene, A.

    2017-05-01

    The quality of electric energy capture and also the equipment operational safety depend essentially of the technical state of the contact line (CL). The present method for determining the technical state of CL based on advance programming is no longer efficient, due to the faults which can occur into the not programmed areas. Therefore, they cannot be remediated. It is expected another management method for the repairing and maintenance of CL based on its real state which must be very well known. In this paper a new method for determining the faults in CL is described. It is based on the analysis of the variation of pantograph-CL contact force in dynamical regime. Using mathematical modelling and also experimental tests, it was established that each type of fault is able to generate ‘signatures’ into the contact force diagram. The identification of these signatures can be accomplished by an informatics system which will provide the fault location, its type and also in the future, the probable evolution of the CL technical state. The measuring of the contact force is realized in optical manner using a railway inspection trolley which has appropriate equipment. The analysis of the desired parameters can be accomplished in real time by a data acquisition system, based on dedicated software.

  20. Laminated photovoltaic modules using back-contact solar cells

    Science.gov (United States)

    Gee, James M.; Garrett, Stephen E.; Morgan, William P.; Worobey, Walter

    1999-09-14

    Photovoltaic modules which comprise back-contact solar cells, such as back-contact crystalline silicon solar cells, positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The module designs allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

  1. Mechanisms of Contact Electrification at Aluminum-Polytetrafluoroethylene and Polypropylene-Water

    KAUST Repository

    Nauruzbayeva, Jamilya

    2017-04-01

    Contact electrification refers to the transfer of electrical charges between two surfaces, similar and dissimilar, as they are brought into contact and separated; this phenomenon is also known as static electrification or triboelectrification. For example, everyone has experienced weak electrical shocks from metal doorknobs, wool and synthetic clothing on dry days. While contact electrification might appear insignificant, it plays a key role in numerous natural and industrial processes, including atmospheric lightning, accumulation of dust on solar panels, charging of liquids during pipetting and flow in the tubes, and fire hazards in granular media. Contact electrification at metal-metal interfaces is well understood in terms of transfer of electrons, but a comprehensive understanding of contact electrification at interfaces of electrical insulators, such as air, water, polytetrafluoroethylene (PTFE), polypropylene remains incomplete. In fact, a variety of mechanisms responsible for transfer of electrical charges during mechanical rubbing, slipping, sliding, or flow at interfaces have been proposed via: electrons, ions, protons, hydroxide ions from water, specific orientation of dipoles, mechanoradicals, cryptoelectrons, and transfer of material. We have noticed that the extent of contact electrification of solids in water is influenced by surface free energies, mobile ions, surface roughness, duration of contact, sliding speeds, and relative humidity. Herein, we present results of our experimental investigation of contact electrification at the following interfaces: (i) PTFE-aluminum in air and (ii) polypropylene-water interfaces. To identify the underlying mechanism, we started with various hypotheses and exploited a variety of experimental techniques to falsify most of them until we got an answer; our techniques included high-voltage power supply (0-10,000 V), Faraday cages, Kelvin probe force microscopy, electrodeposition, X-ray photoelectron spectroscopy

  2. Contact isotopic- and contact ion-exchange between two adsorbents

    International Nuclear Information System (INIS)

    Bunzl, K.; Mohan, R.; Haimerl, M.

    1975-01-01

    The kinetics of contact ion exchange processes between an ion exchange membrane and resin ion exchange beads, stirred in pure water, was investigated. A general criterion was derived, which indicates whether diffusion of the ions between the intermingling electric double layers or the collision frequency between the two adsorbents is the rate dermining step. Since the latter process proved to be rate controlling under our experimental conditions, the corresponding rate equations were derived under various initial and boundary conditions. Experimentally, the kinetics of contact isotopic exchange of Cs + - and Na + -ions as well as of the reverse contact ion exchange process of Cs + -versus Na + -ions were investigated by using Na 22 and Cs 137 radioisotopes. The experiments reveal in quantitative accord with the theory that the rate of collision controlled contact ion exchange processes depends mainly on the 'exchange coefficient', the separation factor and the collision frequency. While the latter two quantities were determined independently by separate experiments, the 'exchange coefficient' was evaluated from a contact isotopic exchange experiment. (orig.) [de

  3. Electro-thermal analysis of contact resistance

    Science.gov (United States)

    Pandey, Nitin; Jain, Ishant; Reddy, Sudhakar; Gulhane, Nitin P.

    2018-05-01

    Electro-Mechanical characterization over copper samples are performed at the macroscopic level to understand the dependence of electrical contact resistance and temperature on surface roughness and contact pressure. For two different surface roughness levels of samples, six levels of load are selected and varied to capture the bulk temperature rise and electrical contact resistance. Accordingly, the copper samples are modelled and analysed using COMSOLTM as a simulation package and the results are validated by the experiments. The interface temperature during simulation is obtained using Mikic-Elastic correlation and by directly entering experimental contact resistance value. The load values are varied and then reversed in a similar fashion to capture the hysteresis losses. The governing equations & assumptions underlying these models and their significance are examined & possible justification for the observed variations are discussed. Equivalent Greenwood model is also predicted by mapping the results of the experiment.

  4. Transfer characteristics and contact resistance in Ni- and Ti-contacted graphene-based field-effect transistors

    International Nuclear Information System (INIS)

    Di Bartolomeo, A; Giubileo, F; Iemmo, L; Romeo, F; Santandrea, S; Gambardella, U

    2013-01-01

    We produced graphene-based field-effect transistors by contacting mono- and bi-layer graphene by sputtering Ni or Ti as metal electrodes. We performed electrical characterization of the devices by measuring their transfer and output characteristics. We clearly observed the presence of a double-dip feature in the conductance curve for Ni-contacted transistors, and we explain it in terms of charge transfer and graphene doping under the metal contacts. We also studied the contact resistance between the graphene and the metal electrodes with larger values of ∼30 kΩμm 2 recorded for Ti contacts. Importantly, we prove that the contact resistance is modulated by the back-gate voltage. (paper)

  5. Contact lenses fitting after intracorneal ring segments implantation in keratoconus

    Directory of Open Access Journals (Sweden)

    Luciane Bugmann Moreira

    2013-08-01

    Full Text Available PURPOSE: Evaluate contact lenses fitting after intracorneal ring implantation for keratoconus, its visual acuity and comfort. METHODS: Retrospective study of patients undergoing contact lenses fitting, after intracorneal ring for keratoconus. The criterion for contact lens fitting was unsatisfactory visual acuity with spectacle correction as referred by the patients. All patients were intolerants to contact lenses prior to intracorneal implantation. Visual acuity analysis was done by conversion of Snellen to logMAR scales. The comfort was evaluated according subjective questioning of good, medium or poor comfort. RESULTS: Nineteen patients were included in the study. Two patients (10.5% did not achieved good comfort with contact lenses and underwent penetrating keratoplasties. All the others 17 patients showed good or medium comfort. Four rigid gas-permeable contact lenses were fitted, one piggyback approach, 3 toric soft contact lenses, 2 soft lenses specially design for keratoconus and 7 disposable soft lenses. The average visual acuity improved from 0.77 ± 0.37 to 0.19 ± 0.13 logMAR units after contact lenses fitting. CONCLUSION: Contact lens fitting after intracorneal ring is possible, provides good comfort, improves visual acuity, and therefore, may postpone the need for penetrating keratoplasty.

  6. Electric field induced instabilities in free emulsion films

    Energy Technology Data Exchange (ETDEWEB)

    Tchoukov, P.; Dabros, T. [Natural Resources Canada, Devon, AB (Canada); Mostowfi, F. [Schlumberger DBR Technology Center, Edmonton, AB (Canada); Panchev, N. [Champion Technologies Inc., Houston, TX (United States); Czarnecki, J. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2009-07-01

    This presentation reported on a study that investigated the mechanism of electric field-induced breakdown of free emulsion films. Instability patterns were observed on the plane of a water-oil-water film following electric polarization. The length-scales of the instabilities were measured by analyzing images immediately after applying the electric field. Linear stability analysis was used to calculate the theoretical dominant wavelengths. The calculated values were found to be in good agreement with measured values. The films were formed in a thin film apparatus modified so that the oil film separated 2 aqueous phase compartments, each in contact with a platinum electrode. This enabled the measurement of disjoining pressure while applying the electric field to the film. It was concluded that breakdown of thin films induced by electric field has many applications, including electrostatic de-emulsification/desalination of crude oil and emulsion stability measurements. It was concluded that electroporation and dielectric breakdown may be responsible for electric field-induced breakdown. This study also presented evidence of an increase in electric field-induced instabilities in emulsion films resulting in rupture. tabs., figs.

  7. Frictionless contact analysis of a functionally graded piezoelectric layered half-plane

    International Nuclear Information System (INIS)

    Ke Liaoliang; Yang Jie; Kitipornchai, Sritawat; Wang Yuesheng

    2008-01-01

    This paper investigates the frictionless contact problem of a layered half-plane made of functionally graded piezoelectric material (FGPM) in the plane strain state under the action of a rigid punch whose shape may be flat, triangular or cylindrical. It is assumed that the punch is a perfect electrical insulator with zero electric charge distribution. The electroelastic properties of the FGPM layer vary exponentially along the thickness direction. By using the Fourier integral transform technique, the problem is reduced to a Cauchy singular integral equation which is then numerically solved to determine the contact pressure, contact region, maximum indentation depth, normal stress, electrical potential and electric displacement fields. The stress intensity factor is also given to quantitatively characterize the singularity behavior of the contact pressure at the ends of a flat and triangular punch. Numerical results show that both the material property gradient of the FGPM layer and the punch geometry have a significant influence on the contact performance of the FGPM layered half-plane

  8. Ohmic contacts to semiconducting diamond

    Science.gov (United States)

    Zeidler, James R.; Taylor, M. J.; Zeisse, Carl R.; Hewett, C. A.; Delahoussaye, Paul R.

    1990-10-01

    Work was carried out to improve the electron beam evaporation system in order to achieve better deposited films. The basic system is an ion pumped vacuum chamber, with a three-hearth, single-gun e-beam evaporator. Four improvements were made to the system. The system was thoroughly cleaned and new ion pump elements, an e-gun beam adjust unit, and a more accurate crystal monitor were installed. The system now has a base pressure of 3 X 10(exp -9) Torr, and can easily deposit high-melting-temperature metals such as Ta with an accurately controlled thickness. Improved shadow masks were also fabricated for better alignment and control of corner contacts for electrical transport measurements. Appendices include: A Thermally Activated Solid State Reaction Process for Fabricating Ohmic Contacts to Semiconducting Diamond; Tantalum Ohmic Contacts to Diamond by a Solid State Reaction Process; Metallization of Semiconducting Diamond: Mo, Mo/Au, and Mo/Ni/Au; Specific Contact Resistance Measurements of Ohmic Contracts to Diamond; and Electrical Activation of Boron Implanted into Diamond.

  9. Detection of needle to nerve contact based on electric bioimpedance and machine learning methods.

    Science.gov (United States)

    Kalvoy, Havard; Tronstad, Christian; Ullensvang, Kyrre; Steinfeldt, Thorsten; Sauter, Axel R

    2017-07-01

    In an ongoing project for electrical impedance-based needle guidance we have previously showed in an animal model that intraneural needle positions can be detected with bioimpedance measurement. To enhance the power of this method we in this study have investigated whether an early detection of the needle only touching the nerve also is feasible. Measurement of complex impedance during needle to nerve contact was compared with needle positions in surrounding tissues in a volunteer study on 32 subjects. Classification analysis using Support-Vector Machines demonstrated that discrimination is possible, but that the sensitivity and specificity for the nerve touch algorithm not is at the same level of performance as for intra-neuralintraneural detection.

  10. EMMA - the electric and magnetic monitor of the aurora on Astrid-2

    DEFF Research Database (Denmark)

    Blomberg, L.G.; Marklund, G.T.; Lindqvist, P.A.

    2004-01-01

    discuss in the present paper, is designed to provide simultaneous sampling of two electric and three magnetic field components up to about 1 kHz. The spin plane components of the electric field are measured by two pairs of opposing probes extended by wire booms with a separation distance of 6.7 m....... The probes have titanium nitride (TiN) surfaces. which has proved to be a material with excellent properties for providing good electrical contact between probe and plasma. The wire booms are of a new design in which the booms in the stowed position are wound around the exterior of the spacecraft body...

  11. Ink-Jet Printer Forms Solar-Cell Contacts

    Science.gov (United States)

    Alexander, Paul, Jr.; Vest, R. W.; Binford, Don A.; Tweedell, Eric P.

    1988-01-01

    Contacts formed in controllable patterns with metal-based inks. System forms upper metal contact patterns on silicon photovoltaic cells. Uses metallo-organic ink, decomposes when heated, leaving behind metallic, electrically conductive residue in printed area.

  12. State of the art and challenges in development of electrical contact materials in the light of the RoHS directive

    Directory of Open Access Journals (Sweden)

    Ćosović V.

    2012-01-01

    Full Text Available The article surveys current state of the art and challenges in the development of the electrical contact materials in the light of the EU Directive on Restriction of Hazardous Substances (RoHS. The focus was placed on widely used silver-cadmium alloys. According to this directive, as of July 1, 2006, use of six hazardous materials, including cadmium, are restricted for applicable electrical and electronic products intended for the EU market. In contrast, traditionally preferred material for production of electrical contacts is Ag-CdO, due to its outstanding functional properties. These conflicting interests result in present state where RoHS directive has not yet been implemented in its original form and has undergone numerous amendments and exceptions regarding the use of cadmium. Main reason for this seems to be the unrealistic time frame imposed by legislation. Although, significant effort has been put into research and development of alternative materials, there are still cases where adequate replacement materials had not been found. Therefore, importance of synchronicity between legislation and technological progress i.e. communication between legislative administration and industry and academia is brought to light as well as some common issues that may arise with an introduction of new replacement materials or product modification. [Projekat Ministarstva nauke Republike SRbije, br. OI 172037 and TR 34023

  13. Simulation of thermal stresses in anode-supported solid oxide fuel cell stacks. Part II: Loss of gas-tightness, electrical contact and thermal buckling

    Science.gov (United States)

    Nakajo, Arata; Wuillemin, Zacharie; Van herle, Jan; Favrat, Daniel

    Structural stability issues in planar solid oxide fuel cells arise from the mismatch between the coefficients of thermal expansion of the components. The stress state at operating temperature is the superposition of several contributions, which differ depending on the component. First, the cells accumulate residual stresses due to the sintering phase during the manufacturing process. Further, the load applied during assembly of the stack to ensure electric contact and flatten the cells prevents a completely stress-free expansion of each component during the heat-up. Finally, thermal gradients cause additional stresses in operation. The temperature profile generated by a thermo-electrochemical model implemented in an equation-oriented process modelling tool (gPROMS) was imported into finite-element software (ABAQUS) to calculate the distribution of stress and contact pressure on all components of a standard solid oxide fuel cell repeat unit. The different layers of the cell in exception of the cathode, i.e. anode, electrolyte and compensating layer were considered in the analysis to account for the cell curvature. Both steady-state and dynamic simulations were performed, with an emphasis on the cycling of the electrical load. The study includes two different types of cell, operation under both thermal partial oxidation and internal steam-methane reforming and two different initial thicknesses of the air and fuel compressive sealing gaskets. The results generated by the models are presented in two papers: Part I focuses on cell cracking. In the present paper, Part II, the occurrences of loss of gas-tightness in the compressive gaskets and/or electrical contact in the gas diffusion layer were identified. In addition, the dependence on temperature of both coefficients of thermal expansion and Young's modulus of the metallic interconnect (MIC) were implemented in the finite-element model to compute the plastic deformation, while the possibilities of thermal buckling

  14. Correlation between the electrical properties and the interfacial microstructures of TiAl-based ohmic contacts to p-type 4H-SiC

    Science.gov (United States)

    Tsukimoto, S.; Nitta, K.; Sakai, T.; Moriyama, M.; Murakami, Masanori

    2004-05-01

    In order to understand a mechanism of TiAl-based ohmic contact formation for p-type 4H-SiC, the electrical properties and microstructures of Ti/Al and Ni/Ti/Al contacts, which provided the specific contact resistances of approximately 2×10-5 Ω-cm2 and 7×10-5 Ω-cm2 after annealing at 1000°C and 800°C, respectively, were investigated using x-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Ternary Ti3SiC2 carbide layers were observed to grow on the SiC surfaces in both the Ti/Al and the Ni/Ti/Al contacts when the contacts yielded low resistance. The Ti3SiC2 carbide layers with hexagonal structures had an epitaxial orientation relationship with the 4H-SiC substrates. The (0001)-oriented terraces were observed periodically at the interfaces between the carbide layers and the SiC, and the terraces were atomically flat. We believed the Ti3SiC2 carbide layers primarily reduced the high Schottky barrier height at the contact metal/p-SiC interface down to about 0.3 eV, and, thus, low contact resistances were obtained for p-type TiAl-based ohmic contacts.

  15. Annealing-induced interfacial reactions and the effects on the electrical properties of Ga doped ZnO/CuxS contacts to p-GaN

    International Nuclear Information System (INIS)

    Gu, Wen; Wu, Xingyang; Song, Peng; Zhang, Jianhua

    2015-01-01

    Highlights: • The electrical properties of GZO/CuS x contacts to p-GaN annealed at different temperatures in air have been studied. • Ohmic contacts were formed by annealing the contacts at 500 and 600 °C in air. • The oxygen in air was found to be essential for the formation of ohmic contact. • The possible formation mechanism of the ohmic contacts was illustrated. - Abstract: Ga-doped ZnO (GZO) contacts to p-GaN were investigated by using Cu x S interlayers under different annealing temperatures. It is shown that the GZO/Cu x S contacts annealed at 300 and 400 °C for 3 min in air exhibited non-ohmic characteristics. However, annealing the contacts at 500 and 600 °C in air resulted in linear current–voltage characteristics. The lowest specific contact resistivity of 1.66 × 10 −2 Ω cm 2 was obtained for the contact annealed at 500 °C. To account for the formation mechanism of the ohmic contact, AES and XPS were used to analyze the interfacial properties of the GZO/Cu x S/p-GaN and Cu x S/p-GaN interfaces, respectively. The possible reasons were discussed in detail, suggesting that the interfacial reactions and atomic diffusions are thought to be responsible for forming such a low contact resistance

  16. Effect of Source/Drain Electrodes on the Electrical Properties of Silicon–Tin Oxide Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Xianzhe Liu

    2018-05-01

    Full Text Available Ultra-high definition displays have become a trend for the current flat plane displays. In this study, the contact properties of amorphous silicon–tin oxide thin-film transistors (a-STO TFTs employed with source/drain (S/D electrodes were analyzed. Ohmic contact with a good device performance was achieved when a-STO was matched with indium-tin-oxide (ITO or Mo electrodes. The acceptor-like densities of trap states (DOS of a-STO TFTs were further investigated by using low-frequency capacitance–voltage (C–V characteristics to understand the impact of the electrode on the device performance. The reason of the distinct electrical performances of the devices with ITO and Mo contacts was attributed to different DOS caused by the generation of local defect states near the electrodes, which distorted the electric field distribution and formed an electrical potential barrier hindering the flow of electrons. It is of significant importance for circuit designers to design reliable integrated circuits with SnO2-based devices applied in flat panel displays.

  17. Improvements To Micro Contact Performance And Reliability

    Science.gov (United States)

    2016-12-22

    layers approximately 0.2mm thick. The extruder is controlled in both the x and y directions by servo motors while the plate height is controlled with a...and contact area as the contacts pressed together and shared more surface area as the contacts elastically or plastically pressed together[164]. Figure...CrossRef 33. M. Braunovic, N. K. Myshkin, and V. V. Konchits, Electrical contacts: funda- mentals, applications and technology. CRC press , 2010, vol

  18. Electrical characteristics of multilayer MoS2 FET's with MoS2/graphene heterojunction contacts.

    Science.gov (United States)

    Kwak, Joon Young; Hwang, Jeonghyun; Calderon, Brian; Alsalman, Hussain; Munoz, Nini; Schutter, Brian; Spencer, Michael G

    2014-08-13

    The electrical properties of multilayer MoS2/graphene heterojunction transistors are investigated. Temperature-dependent I-V measurements indicate the concentration of unintentional donors in exfoliated MoS2 to be 3.57 × 10(11) cm(-2), while the ionized donor concentration is determined as 3.61 × 10(10) cm(-2). The temperature-dependent measurements also reveal two dominant donor levels, one at 0.27 eV below the conduction band and another located at 0.05 eV below the conduction band. The I-V characteristics are asymmetric with drain bias voltage and dependent on the junction used for the source or drain contact. I-V characteristics of the device are consistent with a long channel one-dimensional field-effect transistor model with Schottky contact. Utilizing devices, which have both graphene/MoS2 and Ti/MoS2 contacts, the Schottky barrier heights of both interfaces are measured. The charge transport mechanism in both junctions was determined to be either thermionic-field emission or field emission depending on bias voltage and temperature. On the basis of a thermionic field emission model, the barrier height at the graphene/MoS2 interface was determined to be 0.23 eV, while the barrier height at the Ti/MoS2 interface was 0.40 eV. The value of Ti/MoS2 barrier is higher than previously reported values, which did not include the effects of thermionic field emission.

  19. Electrical characterization and nanoscale surface morphology of optimized Ti/Al/Ta/Au ohmic contact for AlGaN/GaN HEMT.

    Science.gov (United States)

    Wang, Cong; Kim, Nam-Young

    2012-02-07

    Good ohmic contacts with low contact resistance, smooth surface morphology, and a well-defined edge profile are essential to ensure optimal device performances for the AlGaN/GaN high electron mobility transistors [HEMTs]. A tantalum [Ta] metal layer and an SiNx thin film were used for the first time as an effective diffusion barrier and encapsulation layer in the standard Ti/Al/metal/Au ohmic metallization scheme in order to obtain high quality ohmic contacts with a focus on the thickness of Ta and SiNx. It is found that the Ta thickness is the dominant factor affecting the contact resistance, while the SiNx thickness affects the surface morphology significantly. An optimized Ti/Al/Ta/Au ohmic contact including a 40-nm thick Ta barrier layer and a 50-nm thick SiNx encapsulation layer is preferred when compared with the other conventional ohmic contact stacks as it produces a low contact resistance of around 7.27 × 10-7 Ω·cm2 and an ultra-low nanoscale surface morphology with a root mean square deviation of around 10 nm. Results from the proposed study play an important role in obtaining excellent ohmic contact formation in the fabrication of AlGaN/GaN HEMTs.

  20. Magnesium and Manganese Silicides For Efficient And Low Cost Thermo-Electric Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Sudhir B. [Brimrose Technology Corporation; Kutcher, Susan W. [Brimrose Technology Corporation; Rosemeier, Cory A. [Brimrose Technology Corporation; Mayers, David [Brimrose Technology Corporation; Singh, Jogender [Pennsylvania State University

    2013-12-02

    Thermoelectric Power Generation (TEPG) is the most efficient and commercially deployable power generation technology for harvesting wasted heat from such things as automobile exhausts, industrial furnaces, and incinerators, and converting it into usable electrical power. We investigated the materials magnesium silicide (Mg2Si) and manganese silicide (MnSi) for TEG. MgSi2 and MnSi are environmentally friendly, have constituent elements that are abundant in the earth's crust, non-toxic, lighter and cheaper. In Phase I, we successfully produced Mg2Si and MnSi material with good TE properties. We developed a novel technique to synthesize Mg2Si with good crystalline quality, which is normally very difficult due to high Mg vapor pressure and its corrosive nature. We produced n-type Mg2Si and p-type MnSi nanocomposite pellets using FAST. Measurements of resistivity and voltage under a temperature gradient indicated a Seebeck coefficient of roughly 120 V/K on average per leg, which is quite respectable. Results indicated however, that issues related to bonding resulted in high resistivity contacts. Determining a bonding process and bonding material that can provide ohmic contact from room temperature to the operating temperature is an essential part of successful device fabrication. Work continues in the development of a process for reproducibly obtaining low resistance electrical contacts.

  1. Device including a contact detector

    DEFF Research Database (Denmark)

    2011-01-01

    arms (12) may extend from the supporting body in co-planar relationship with the first surface. The plurality of cantilever arms (12) may extend substantially parallel to each other and each of the plurality of cantilever arms (12) may include an electrical conductive tip for contacting the area......The present invention relates to a probe for determining an electrical property of an area of a surface of a test sample, the probe is intended to be in a specific orientation relative to the test sample. The probe may comprise a supporting body defining a first surface. A plurality of cantilever...... of the test sample by movement of the probe relative to the surface of the test sample into the specific orientation.; The probe may further comprise a contact detector (14) extending from the supporting body arranged so as to contact the surface of the test sample prior to any one of the plurality...

  2. Causes of electrical deaths and injuries among construction workers.

    Science.gov (United States)

    McCann, Michael; Hunting, Katherine L; Murawski, Judith; Chowdhury, Risana; Welch, Laura

    2003-04-01

    Contact with electrical current is the fourth leading cause of deaths of construction workers. This study evaluates electrical deaths and injuries to construction workers. Two sources of data were analyzed in detail: (1) 1,019 electrical deaths identified by the Bureau of Labor Statistics, Census of Fatal Occupational Injuries (CFOI) for the years 1992-1998; and (2) 61 electrical injuries identified between November 1, 1990 and December 31, 1998 from a George Washington University Emergency Department injury surveillance database. Contact with "live" electrical wiring, equipment, and light fixtures was the main cause of electrical deaths and injuries among electrical workers, followed by contact with overhead power lines. Among non-electrical workers, contact with overhead power lines was the major cause of death. Other causes included contact with energized metal objects, machinery, power tools, and portable lights. Arc flash or blast caused 31% of electrical injuries among construction workers, but less than 2% of electrical deaths. Adoption of a lockout/tagout standard for construction, and training for non-electrical workers in basic electrical safety would reduce the risk of electrical deaths and injuries in construction. Further research is needed on ways to prevent electrical deaths and injuries while working "live". Copyright 2003 Wiley-Liss, Inc.

  3. Instrument for measuring metal-thermoelectric semiconductor contact resistence

    International Nuclear Information System (INIS)

    Lanxner, M.; Nechmadi, M.; Meiri, B.; Schildkraut, I.

    1979-02-01

    An instrument for measuring electrical, metal-thermoelectric semiconductor contact resistance is described. The expected errors of measurement are indicated. The operation of the instrument which is based on potential traversing perpendicularly to the contact plane is illustrated for the case of contacts of palladium and bismuth telluride-based thermoelectric material

  4. Electrical and structural properties of group-4 transition-metal nitride (TiN, ZrN, and HfN) contacts on Ge

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Keisuke; Nakashima, Hiroshi, E-mail: nakasima@astec.kyushu-u.ac.jp [Art, Science and Technology Center for Cooperative Research, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Noguchi, Ryutaro; Wang, Dong [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Mitsuhara, Masatoshi; Nishida, Minoru [Department of Engineering Sciences for Electronics and Materials, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Hara, Toru [National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2015-09-21

    Electrical and structural properties were investigated for group-4 transition-metal nitride contacts on Ge (TiN/Ge, ZrN/Ge, and HfN/Ge), which were prepared by direct sputter depositions using nitride targets. These contacts could alleviate the intrinsic Fermi-level pinning (FLP) position toward the conduction band edge. It was revealed that this phenomenon is induced by an amorphous interlayer (a-IL) containing nitrogen atoms at the nitride/Ge interfaces. The strength of FLP alleviation positively depended on the thickness of a-IL. TiN/Ge and ZrN/Ge contacts with ∼2 nm-thick a-ILs showed strong FLP alleviations with hole barrier heights (Φ{sub BP}) in the range of 0.52–56 eV, and a HfN/Ge contact with an ∼1 nm-thick a-IL showed a weaker one with a Φ{sub BP} of 0.39 eV. However, TaN/Ge contact without a-IL did not show such FLP alleviation. Based on the results of depth distributions for respective elements, we discussed the formation kinetics of a-ILs at TiN/Ge and ZrN/Ge interfaces. Finally, we proposed an interfacial dipole model to explain the FLP alleviation.

  5. Structural and electrical characterization of AuPtAlTi ohmic contacts to AlGaN/GaN with varying annealing temperature and Al content

    OpenAIRE

    Fay, Mike W.; Han, Y.; Brown, Paul D.; Harrison, Ian; Hilton, K.P.; Munday, A.; Wallis, D.; Balmer, R.S.; Uren, M.J.; Martin, T.

    2008-01-01

    The effect of varying annealing temperature and Al layer thickness on the structural and electrical characteristics of AuPtAlTi/AlGaN/GaN ohmic contact structures has been systematically investigated. The relationship between annealing temperature, Al content, interfacial microstructure, surface planarity and contact resistance is\\ud examined. In particular, the presence of a detrimental low temperature Pt-Al reaction is identified. This is implicated in both the requirement for a higher Al:T...

  6. Experimental Methods for Implementing Graphene Contacts to Finite Bandgap Semiconductors

    DEFF Research Database (Denmark)

    Meyer-Holdt, Jakob

    Present Ph.D. thesis describes my work on implanting graphene as electrical contact to finite bandgap semiconductors. Different transistor architectures, types of graphene and finite bandgap semiconductors have been employed. The device planned from the beginning of my Ph.D. fellowship...... contacts to semiconductor nanowires, more specifically, epitaxially grown InAs nanowires. First, we tried a top down method where CVD graphene was deposited on substrate supported InAs nanowires followed by selective graphene ashing to define graphene electrodes. While electrical contact between...

  7. Self-powered, ultra-sensitive, flexible tactile sensors based on contact electrification

    Science.gov (United States)

    Wang, Zhong Lin; Zhu, Guang

    2018-03-20

    A tactile sensor for sensing touch from a human finger includes a triboelectric layer and includes a material that becomes electrically charged after being in contact with the finger. The first side of a first conductive layer is in contact with the second side of triboelectric layer. The first side of a dielectric layer is in contact with the first conductive layer and the second side of the dielectric layer is in contact with a second conductive layer. When the triboelectric layer becomes electrically charged after being in contact with the finger, the first conductive layer and the second conductive layer are subjected to an electric field, which has a first field strength at the first conductive layer and a second field strength, different from the first field strength, at the second conductive layer. A plurality of tactile sensors can be arranged as a keyboard.

  8. Effects of chemical intermixing on electrical and thermal contact conductances at metallized bismuth and antimony telluride interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Devender,; Mehta, Rutvik J.; Ramanath, Ganpati, E-mail: Ramanath@rpi.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lofgreen, Kelly; Mahajan, Ravi [Intel Corporation, Assembly Test and Technology Development, Chandler, Arizona 85226 (United States); Yamaguchi, Masashi [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Borca-Tasciuc, Theodorian [Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-03-15

    Tailoring electrical and thermal contact conductivities (Σ{sub c} and Γ{sub c}) across metallized pnictogen chalcogenide interfaces is key for realizing efficient thermoelectric devices. The authors report that Cu, Ni, Ti, and Ta diffusion and interfacial telluride formation with n-Bi{sub 2}Te{sub 3} and p-Sb{sub 2}Te{sub 3} influence both Σ{sub c} and Γ{sub c}. Cu metallization yields the highest Γ{sub c} and the lowest Σ{sub c}, correlating with maximal metal diffusion and copper telluride formation. Ni diffuses less and yields the highest Σ{sub c} with Sb{sub 2}Te{sub 3} due to p-type nickel telluride formation, which diminishes Σ{sub c} improvement with n-Bi{sub 2}Te{sub 3} interfaces. Ta and Ti contacts yield the lowest properties similar to that in Ni-metallized structures. These correlations between interfacial diffusion and phase formation on electronic and thermal transport properties will be important for devising suitable metallization for thermoelectric devices.

  9. Formation Process and Properties of Ohmic Contacts Containing Molybdenum to AlGaN/GaN Heterostructures

    Directory of Open Access Journals (Sweden)

    Wojciech Macherzynski

    2016-01-01

    Full Text Available Properties of wide bandgap semiconductors as chemical inertness to harsh conditions and possibility of working at high temperature ensure possible applications in the field as military, aerospace, automotive, engine monitoring, flame detection and solar UV detection. Requirements for ohmic contacts in semiconductor devices are determined by the proposed application. These contacts to AlGaN/GaN heterostructure for application as high temperature, high frequency and high power devices have to exhibit good surface morphology and low contact resistance. The latter is a crucial factor in limiting the development of high performance AlGaN/GaN devices. Lowering of the resistance is assured by rapid thermal annealing process. The paper present studies of Ti/Al/Mo/Au ohmic contacst annealed at temperature range from 825°C to 885°C in N2 atmosphere. The electrical parameters of examined samples as a function of the annealing process condition have been studied. Initially the annealing temperature increase caused lowering of the contacts resistance. The lowest value was noticed for the temperature of annealing equal to 885°C. Further increase of annealing temperature led to deterioration of contact resistance of investigated ohmic contacts.

  10. Experimental and numerical investigation of contact-area-limited doping for top-contact pentacene thin-film transistors with Schottky contact.

    Science.gov (United States)

    Noda, Kei; Wada, Yasuo; Toyabe, Toru

    2015-10-28

    Effects of contact-area-limited doping for pentacene thin-film transistors with a bottom-gate, top-contact configuration were investigated. The increase in the drain current and the effective field-effect mobility was achieved by preparing hole-doped layers underneath the gold contact electrodes by coevaporation of pentacene and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), confirmed by using a thin-film organic transistor advanced simulator (TOTAS) incorporating Schottky contact with a thermionic field emission (TFE) model. Although the simulated electrical characteristics fit the experimental results well only in the linear regime of the transistor operation, the barrier height for hole injection and the gate-voltage-dependent hole mobility in the pentacene transistors were evaluated with the aid of the device simulation. This experimental data analysis with the simulation indicates that the highly-doped semiconducting layers prepared in the contact regions can enhance the charge carrier injection into the active semiconductor layer and concurrent trap filling in the transistor channel, caused by the mitigation of a Schottky energy barrier. This study suggests that both the contact-area-limited doping and the device simulation dealing with Schottky contact are indispensable in designing and developing high-performance organic thin-film transistors.

  11. Investigation of the properties of indium tin oxide-organic contacts for optoelectronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Stanculescu, A. [National Institute of Materials Physics, 105 bis Atomistilor Street, P.O. Box MG-7, Bucharest-Magurele 077125 (Romania)], E-mail: sanca@infim.ro; Stanculescu, F. [University of Bucharest, Faculty of Physics, 405 Atomistilor Street, P.O. Box MG-11, Bucharest-Magurele 077125 (Romania)

    2007-10-15

    This paper presents some investigations on the electrical transport properties of ITO/single (double) layer organic semiconductor (m-DNB, benzil, PTCDA, Alq3) contacts in SIS-like (ITO/organic/Si) and MIS-like (ITO/organic/metal) heterostructures. The I-V characteristics have emphasised the injection properties of different contacts and the effect of space charge limited currents in correlation with the type and preparation conditions of the contacts. We have studied the influence of the type of contact (In/ITO; In/Al) on the electrical conduction in Alq3/PTCDA/Si/In heterostructure. In a planar grid contact configuration for In/Al/PTCDA/Al/In structure we have observed the effect of the low electric field on the shape of the I-V characteristic.

  12. The effect of gate voltage on the electrical transport properties in the contacts of C60 to carbon nanotube leads

    Directory of Open Access Journals (Sweden)

    AA Shokri

    2012-06-01

    Full Text Available  In this paper, we examined the effect of gate voltage, bias voltage, contact geometries and the different bond lengths on the electrical transport properties in a nanostructure consisting of C60 molecule attached to two semi-infinite leads made of single wall carbon nanotubes in the coherent regime. Our calculation was based on the Green’s function method within nearest-neighbour tight-binding approximation. After the calculation was of transmission, the electrical current was obtained by the Landauer-Buttiker formula. Next, the effect of the mentioned factors was investigated in the nanostructure. The application of the present results may be useful in designing devices based on molecular electronics in nanoscale.

  13. Optoelectronic characterisation of an individual ZnO nanowire in contact with a micro-grid template

    International Nuclear Information System (INIS)

    Jiang Wei; Gao Hong; Xu Ling-Ling; Ma Jia-Ning; Zhang E; Wei Ping; Lin Jia-Qi

    2011-01-01

    Optoelectronic characterisation of an individual ZnO nanowire in contact with a micro-grid template has been studied. The low-cost micro-grid template made by photolithography is used to fabricate the ohmic contact metal electrodes. The current increases linearly with the bias, indicating good ohmic contacts between the nanowire and the electrodes. The resistivity of the ZnO nanowire is calculated to be 3.8 Ω·cm. We investigate the photoresponses of an individual ZnO nanowire under different light illumination using light emitting diodes (λ = 505 nm, 460 nm, 375 nm) as excitation sources in atmosphere. When individual ZnO nanowire is exposured to different light irradiation, we find that it is extremely sensitive to UV illumination; the conductance is much larger upon UV illumination than that in the dark at room temperature. This phenomenon may be related to the surface oxygen molecule adsorbtion, which indicates their potential application to the optoelectronic switching device. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  14. CD-SEM metrology of spike detection on sub-40 nm contact holes

    Science.gov (United States)

    Momonoi, Yoshinori; Osabe, Taro; Yamaguchi, Atsuko; Mclellan Martin, Erin; Koyanagi, Hajime; Colburn, Matthew E.; Torii, Kazuyoshi

    2010-03-01

    In this work, for the purpose of contact-hole process control, new metrics for contact-hole edge roughness (CER) are being proposed. The metrics are correlated to lithographic process variation which result in increased electric fields; a primary driver of time-dependent dielectric breakdown (TDDB). Electric field strength at the tip of spoke-shaped CER has been simulated; and new hole-feature metrics have been introduced. An algorithm for defining critical features like spoke angle, spoke length, etc has been defined. In addition, a method for identifying at-risk holes has been demonstrated. The number of spike holes can determine slight defocus conditions that are not detected though the conventional CER metrics. The newly proposed metrics can identify contact holes with a propensity for increased electric field concentration and are expected to improve contact-hole reliability in the sub-40-nm contact-hole process.

  15. Layer-by-layer polyelectrolyte films for contact electric energy harvesting

    International Nuclear Information System (INIS)

    Guo, X D; Helseth, L E

    2015-01-01

    We report how self-assembly of polyelectrolyte thin films alters the contact electrification of polyimide polymer films used in contact based triboelectric energy harvesting systems. Polyimide films of the same size do produce a very small current when brought into contact. However, by covering one of the polyimide films with a polyelectrolyte thin film terminated by positively charged poly(allylamine hydrochloride) (PAH), the current is reversed and a much larger current and voltage are generated upon contact with the other polyimide film. A similar increase in contact current is not seen for polyelectrolyte thin films terminated by the negatively charged poly(sodium 4-styrenesulfonate). The PAH-terminated Kapton films are used to create an energy harvesting system providing a voltage of about 60 V and a current of 10 μA. At an average power of 11 μW for a load resistance of 100 MΩ, the energy harvester is able to power several light emitting diodes. Further studies on the contact electrification of the polyelectrolyte demonstrate that nanostructuring of the polymer surface using reactive ion etching does not give rise to polarity reversal. This is explained as hidden pockets of charge not accessible to PAH molecules, but which become accessible when the polymer is put under stress. Although the current originating for a PAH-terminated multilayer film does initially have the opposite sign to that of bare polyimide, it is found that the polarity will switch after subjecting it to a periodical mechanical force. Characteristic changes in current signatures associated with the switch are found, and are interpreted as mechanical interpenetration of the charged layers. (paper)

  16. Improving the electrical contact at a Pt/TiO2 nanowire interface by selective application of focused femtosecond laser irradiation

    Science.gov (United States)

    Xing, Songling; Lin, Luchan; Zou, Guisheng; Liu, Lei; Peng, Peng; Wu, Aiping; Duley, Walter W.; Zhou, Y. Norman

    2017-10-01

    In this paper, we show that tightly focused femtosecond laser irradiation is effective in improving nanojoining of an oxide nanowire (NW) (TiO2) to a metal electrode (Pt), and how this process can be used to modify contact states. Enhanced chemical bondings are created due to localized plasmonically enhanced optical absorption at the Pt/TiO2 interface as confirmed by finite element simulations of the localized field distribution during irradiation. Nano Auger electron spectroscopy shows that the resulting heterojunction is depleted in oxygen, suggesting that a TiO2-x layer is formed between the Pt electrode and the TiO2 NW. The presence of this redox layer at the metal/oxide interface plays an important role in decreasing the Schottky barrier height and in facilitating chemical bonding. After laser irradiation at the cathode for 10 s at a fluence of 5.02 mJ cm-2, the Pt/TiO2 NW/Pt structure displays different electrical properties under forward and reverse bias voltage, respectively. The creation of this asymmetric electrical characteristic shows the way in which modification of the electronic interface by laser engineering can replace the electroforming process in resistive switching devices and how it can be used to control contact states in a metal/oxide interface.

  17. Highly reproducible and reliable metal/graphene contact by ultraviolet-ozone treatment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China); Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Hacker, Christina A.; Cheng, Guangjun; Hight Walker, A. R.; Richter, Curt A.; Gundlach, David J., E-mail: david.gundlach@nist.gov, E-mail: liangxl@pku.edu.cn [Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Liang, Yiran; Tian, Boyuan; Liang, Xuelei, E-mail: david.gundlach@nist.gov, E-mail: liangxl@pku.edu.cn; Peng, Lianmao [Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871 (China)

    2014-03-21

    Resist residue from the device fabrication process is a significant source of contamination at the metal/graphene contact interface. Ultraviolet Ozone (UVO) treatment is proven here, by X-ray photoelectron spectroscopy and Raman measurement, to be an effective way of cleaning the metal/graphene interface. Electrical measurements of devices that were fabricated by using UVO treatment of the metal/graphene contact region show that stable and reproducible low resistance metal/graphene contacts are obtained and the electrical properties of the graphene channel remain unaffected.

  18. Highly reproducible and reliable metal/graphene contact by ultraviolet-ozone treatment

    International Nuclear Information System (INIS)

    Li, Wei; Hacker, Christina A.; Cheng, Guangjun; Hight Walker, A. R.; Richter, Curt A.; Gundlach, David J.; Liang, Yiran; Tian, Boyuan; Liang, Xuelei; Peng, Lianmao

    2014-01-01

    Resist residue from the device fabrication process is a significant source of contamination at the metal/graphene contact interface. Ultraviolet Ozone (UVO) treatment is proven here, by X-ray photoelectron spectroscopy and Raman measurement, to be an effective way of cleaning the metal/graphene interface. Electrical measurements of devices that were fabricated by using UVO treatment of the metal/graphene contact region show that stable and reproducible low resistance metal/graphene contacts are obtained and the electrical properties of the graphene channel remain unaffected

  19. Bus bar electrical feedthrough for electrorefiner system

    Science.gov (United States)

    Williamson, Mark; Wiedmeyer, Stanley G; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J

    2013-12-03

    A bus bar electrical feedthrough for an electrorefiner system may include a retaining plate, electrical isolator, and/or contact block. The retaining plate may include a central opening. The electrical isolator may include a top portion, a base portion, and a slot extending through the top and base portions. The top portion of the electrical isolator may be configured to extend through the central opening of the retaining plate. The contact block may include an upper section, a lower section, and a ridge separating the upper and lower sections. The upper section of the contact block may be configured to extend through the slot of the electrical isolator and the central opening of the retaining plate. Accordingly, relatively high electrical currents may be transferred into a glovebox or hot-cell facility at a relatively low cost and higher amperage capacity without sacrificing atmosphere integrity.

  20. Results from Coupled Optical and Electrical Sentaurus TCAD Models of a Gallium Phosphide on Silicon Electron Carrier Selective Contact Solar Cell

    Energy Technology Data Exchange (ETDEWEB)

    Limpert, Steven; Ghosh, Kunal; Wagner, Hannes; Bowden, Stuart; Honsberg, Christiana; Goodnick, Stephen; Bremner, Stephen; Green, Martin

    2014-06-09

    We report results from coupled optical and electrical Sentaurus TCAD models of a gallium phosphide (GaP) on silicon electron carrier selective contact (CSC) solar cell. Detailed analyses of current and voltage performance are presented for devices having substrate thicknesses of 10 μm, 50 μm, 100 μm and 150 μm, and with GaP/Si interfacial quality ranging from very poor to excellent. Ultimate potential performance was investigated using optical absorption profiles consistent with light trapping schemes of random pyramids with attached and detached rear reflector, and planar with an attached rear reflector. Results indicate Auger-limited open-circuit voltages up to 787 mV and efficiencies up to 26.7% may be possible for front-contacted devices.

  1. Monitoring of good practices programs and independence for electricity and natural gas system operators in 2015 and 2016. Follow-up report, January 2017

    International Nuclear Information System (INIS)

    2017-01-01

    Electricity and natural gas transmission system operators (TSO) and distribution system operators (DSO) are regulated operators that provide public service functions for the benefit of the network users and the consumers they serve. Accordingly, European and French law requires that they be under independent and nondiscriminatory obligations. In particular, they must develop a good practices program which includes a range of measures to prevent the risk of discriminatory practices in network access. Pursuant to Article L.134-15 of the Energy Code, the Energy Regulatory Commission (CRE) is publishing this year its 10. annual report on the monitoring of good practices programs and independence for electricity and natural gas system operators for the 2015-2016 period. This report is based on analysis of the 'reports on the implementation of good practices programs' submitted to the CRE by the operators in 2015-2016 and audits carried out by the CRE services in these companies during the same period

  2. Palladium silicide - a new contact for semiconductor radiation detectors

    International Nuclear Information System (INIS)

    Totterdell, D.H.J.

    1981-11-01

    Silicide layers can be used as low resistance contacts in semiconductor devices. The formation of a metal rich palladium silicide Pd 2 Si is discussed. A palladium film 100A thick is deposited at 300 0 C and the resulting silicide layer used as an ohmic contact in an n + p silicon detector. This rugged contact has electrical characteristics comparable with existing evaporated gold contacts and enables the use of more reproducible bonding techniques. (author)

  3. Source/drain electrodes contact effect on the stability of bottom-contact pentacene field-effect transistors

    Directory of Open Access Journals (Sweden)

    Xinge Yu

    2012-06-01

    Full Text Available Bottom-contact pentacene field-effect transistors were fabricated with a PMMA dielectric layer, and the air stability of the transistors was investigated. To characterize the device stability, the field-effect transistors were exposed to ambient conditions for 30 days and subsequently characterized. The degradation of electrical performance was traced to study the variation of field-effect mobility, saturation current and off-state current. By investigating the morphology variance of the pentacene film at the channel and source/drain (S/D contact regions by atomic force microscopy, it was clear that the morphology of the pentacene film adhered to the S/D degenerated dramatically. Moreover, by studying the variation of contact resistance in detail, it was found that the S/D contact effect was the main reason for the degradation in performance.

  4. Contacting nanowires and nanotubes with atomic precision for electronic transport

    KAUST Repository

    Qin, Shengyong; Hellstrom, Sondra; Bao, Zhenan; Boyanov, Boyan; Li, An-Ping

    2012-01-01

    Making contacts to nanostructures with atomic precision is an important process in the bottom-up fabrication and characterization of electronic nanodevices. Existing contacting techniques use top-down lithography and chemical etching, but lack atomic precision and introduce the possibility of contamination. Here, we report that a field-induced emission process can be used to make local contacts onto individual nanowires and nanotubes with atomic spatial precision. The gold nano-islands are deposited onto nanostructures precisely by using a scanning tunneling microscope tip, which provides a clean and controllable method to ensure both electrically conductive and mechanically reliable contacts. To demonstrate the wide applicability of the technique, nano-contacts are fabricated on silicide atomic wires, carbon nanotubes, and copper nanowires. The electrical transport measurements are performed in situ by utilizing the nanocontacts to bridge the nanostructures to the transport probes. © 2012 American Institute of Physics.

  5. Effects of coating process on the characteristics of Ag-SnO2 contact materials

    International Nuclear Information System (INIS)

    Liu, X.M.; Wu, S.L.; Chu, Paul K.; Chung, C.Y.; Zheng, J.; Li, S.L.

    2006-01-01

    Good wettability between the SnO 2 and silver matrix can improve the electrical contact performance of Ag-SnO 2 materials. In this work, Ag was deposited onto the surface of Ti-doped SnO 2 particles using chemical plating to enhance the wettability. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the Ag-coated SnO 2 particles. Scanning electron microscopy (SEM), conductivity tests, differential thermal analysis (DTA), and thermogravimetric analysis (TGA) were performed on the Ag-SnO 2 materials. Our results reveal that the chemical plating process can enhance the wettability between the Ti-doped SnO 2 particles and Ag matrix, and the Ag-coated SnO 2 particles are uniformly distributed in the Ag matrix. Both the thermal and electrical conductivity of the Ag-SnO 2 materials are significantly improved

  6. Role of Firing Temperature, Sheet Resistance, and Contact Area in Contact Formation on Screen-Printed Metal Contact of Silicon Solar Cell

    Science.gov (United States)

    Ahmad, Samir Mahmmod; Leong, Cheow Siu; Sopian, K.; Zaidi, Saleem H.

    2018-03-01

    Formation of an Ohmic contact requires a suitable firing temperature, appropriate doping profile, and contact dimensions within resolution limits of the screen-printing process. In this study, the role of the peak firing temperature in standard rapid thermal annealing (RTA) six-zone conveyor belt furnace (CBF) and two inexpensive alternate RTA systems [a custom-designed, three-zone, 5″-diameter quartz tube furnace (QTF) and a tabletop, 3″-diameter rapid thermal processing (RTP)] has been investigated. In addition, the role of sheet resistance and contact area in achieving low-resistance ohmic contacts has been examined. Electrical measurements of ohmic contacts between silver paste/ n +-emitter layer with varying sheet resistances and aluminum paste/ p-doped wafer were carried out in transmission line method configuration. Experimental measurements of the contact resistivity ( ρ c) exhibited the lowest values for CBF at 0.14 mΩ cm2 for Ag and 100 mΩ cm2 for Al at a peak firing temperature of 870°C. For the QTF configuration, lowest measured contact resistivities were 3.1 mΩ cm2 for Ag and 74.1 mΩ cm2 for Al at a peak firing temperature of 925°C. Finally, for the RTP configuration, lowest measured contact resistivities were 1.2 mΩ cm2 for Ag and 68.5 mΩ cm2 for Al at a peak firing temperature of 780°C. The measured contact resistivity exhibits strong linear dependence on sheet resistance. The contact resistivity for Ag decreases with contact area, while for Al the opposite behavior is observed.

  7. Interaction of pantographs and contact lines at Shinkansen

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Mitsuru; Uzuka, Tetsuo [Railway Technical Research Institute (RTRI), Tokyo (Japan)

    2011-07-15

    Tokaido Shinkansen started service between Tokyo and Osaka in 1964. Today, the Shinkansen network comprises 2388 km of lines. The Shinkansen pantograph/contact line system was continuously developed in response to changes in the conditions surrounding railways. Today, there are several unique features. The Auto-transformer feeding system with changeover sections permits electrical connection between pantographs. The Shinkansen train sets are equipped with two pantographs with electrical connection in general. Since due to the electrical connection of pantographs which avoids intense arcing, the mean contact force can be kept low leading to a highly reliable design without serious troubles caused by fatigue. New pantographs achieve very low noise performance, helping the system to be environmental friendly. Today, the Shinkansen network provides stable operation whereby the achievements reported hereafter were implemented. (orig.)

  8. Localization of pellicle-induced open contacts using Charge-Induced Voltage Alteration

    Energy Technology Data Exchange (ETDEWEB)

    Cole, E.I. Jr.; Soden, J.M.

    1993-08-01

    The recently developed Charge-Induced Voltage Alteration (CIVA) technique for localizing open metal conductors was used successfully to identify transistors with electrically open metal-1 contacts to silicon. The transistors were in the I/O port circuitry of a failing microcontroller and were completely covered by a metal-2 power bus. The root cause of the open contacts was a subtle scratch in the pellicle over the contact reticle. The scratch prevented full exposure of the photoresist, resulting in incomplete removal of the interlevel oxide in several contact windows. In addition to this powerful new application of CIVA, a number of failure analysis techniques utilizing both the electrical and physical properties of the failing microcontrollers were employed to identify and confirm the open contacts. These techniques are reviewed and recommendations are given for improved pellicle/reticle inspection.

  9. Transparent back contacts for P3HT:PCBM bulk heterojunction solar cells

    International Nuclear Information System (INIS)

    Sendova-Vassileva, M; Dikov, H; Popkirov, G; Lazarova, E; Vitanov, P; Gancheva, V; Grancharov, G; Tsocheva, D; Mokreva, P

    2014-01-01

    A new combination of layers functioning as a transparent contact is proposed and tested in real solar cells. The contacts consist of TiO 2 layers and thin metal layers (Ag, Cu) and are deposited by magnetron sputtering. The optical transmission and electrical conductivity of the transparent contact layers (TCL) are measured. The TCLs are applied as back contacts in bulk heterojunction polymer solar cells deposited on ITO covered glass and consisting of the following layers: ITO/PEDOT:PSS/P3HT:PCBM/back contact. The organic layers are deposited by spin-coating. For comparison, the same bulk heterojunction polymer solar cells are prepared with a sputtered Ag back contact. The first results show a dependence of the current-voltage parameters of the studied solar cells on the thickness of the different component layers of the transparent back contacts. There is a balance that has to be observed between the electrical characteristics of the contacts and their optical transparency. Future plans involve their inclusion as intermediate contacts in tandem organic solar cells.

  10. Making a Back-Illuminated Imager with Back-Side Contact and Alignment Markers

    Science.gov (United States)

    Pain, Bedabrata

    2008-01-01

    A design modification and a fabrication process that implements the modification have been conceived to solve two problems encountered in the development of back-illuminated, back-sidethinned complementary metal oxide/ semiconductor (CMOS) image-detector integrated circuits. The two problems are (1) how to form metal electrical-contact pads on the back side that are electrically connected through the thickness in proper alignment with electrical contact points on the front side and (2) how to provide alignment keys on the back side to ensure proper registration of backside optical components (e.g., microlenses and/or color filters) with the front-side pixel pattern. The essence of the design modification is to add metal plugs that extend from the desired front-side locations through the thickness and protrude from the back side of the substrate. The plugs afford the required front-to-back electrical conduction, and the protrusions of the plugs serve as both the alignment keys and the bases upon which the back-side electrical-contact pads can be formed.

  11. Virtual goods recommendations in virtual worlds.

    Science.gov (United States)

    Chen, Kuan-Yu; Liao, Hsiu-Yu; Chen, Jyun-Hung; Liu, Duen-Ren

    2015-01-01

    Virtual worlds (VWs) are computer-simulated environments which allow users to create their own virtual character as an avatar. With the rapidly growing user volume in VWs, platform providers launch virtual goods in haste and stampede users to increase sales revenue. However, the rapidity of development incurs virtual unrelated items which will be difficult to remarket. It not only wastes virtual global companies' intelligence resources, but also makes it difficult for users to find suitable virtual goods fit for their virtual home in daily virtual life. In the VWs, users decorate their houses, visit others' homes, create families, host parties, and so forth. Users establish their social life circles through these activities. This research proposes a novel virtual goods recommendation method based on these social interactions. The contact strength and contact influence result from interactions with social neighbors and influence users' buying intention. Our research highlights the importance of social interactions in virtual goods recommendation. The experiment's data were retrieved from an online VW platform, and the results show that the proposed method, considering social interactions and social life circle, has better performance than existing recommendation methods.

  12. Technique eliminates high voltage arcing at electrode-insulator contact area

    Science.gov (United States)

    Mealy, G.

    1967-01-01

    Coating the electrode-insulator contact area with silver epoxy conductive paint and forcing the electrode and insulator tightly together into a permanent connection, eliminates electrical arcing in high-voltage electrodes supplying electrical power to vacuum facilities.

  13. Contact stress sensor

    Science.gov (United States)

    Kotovsky, Jack [Oakland, CA

    2012-02-07

    A contact stress sensor includes one or more MEMS fabricated sensor elements, where each sensor element of includes a thin non-recessed portion, a recessed portion and a pressure sensitive element adjacent to the recessed portion. An electric circuit is connected to the pressure sensitive element. The circuit includes a thermal compensator and a pressure signal circuit element configured to provide a signal upon movement of the pressure sensitive element.

  14. Segmentation of the Outer Contact on P-Type Coaxial Germanium Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hull, Ethan L.; Pehl, Richard H.; Lathrop, James R.; Martin, Gregory N.; Mashburn, R. B.; Miley, Harry S.; Aalseth, Craig E.; Hossbach, Todd W.

    2006-09-21

    Germanium detector arrays are needed for low-level counting facilities. The practical applications of such user facilities include characterization of low-level radioactive samples. In addition, the same detector arrays can also perform important fundamental physics measurements including the search for rare events like neutrino-less double-beta decay. Coaxial germanium detectors having segmented outer contacts will provide the next level of sensitivity improvement in low background measurements. The segmented outer detector contact allows performance of advanced pulse shape analysis measurements that provide additional background reduction. Currently, n-type (reverse electrode) germanium coaxial detectors are used whenever a segmented coaxial detector is needed because the outer boron (electron barrier) contact is thin and can be segmented. Coaxial detectors fabricated from p-type germanium cost less, have better resolution, and are larger than n-type coaxial detectors. However, it is difficult to reliably segment p-type coaxial detectors because thick (~1 mm) lithium-diffused (hole barrier) contacts are the standard outside contact for p-type coaxial detectors. During this Phase 1 Small Business Innovation Research (SBIR) we have researched the possibility of using amorphous germanium contacts as a thin outer contact of p-type coaxial detectors that can be segmented. We have developed amorphous germanium contacts that provide a very high hole barrier on small planar detectors. These easily segmented amorphous germanium contacts have been demonstrated to withstand several thousand volts/cm electric fields with no measurable leakage current (<1 pA) from charge injection over the hole barrier. We have also demonstrated that the contact can be sputter deposited around and over the curved outside surface of a small p-type coaxial detector. The amorphous contact has shown good rectification properties on the outside of a small p-type coaxial detector. These encouraging

  15. Rugged Low-Resistance Contacts To High-Tc Superconductors

    Science.gov (United States)

    Caton, Randall; Selim, Raouf; Byvik, Charles E.; Buoncristiani, A. Martin

    1992-01-01

    Newly developed technique involving use of gold makes possible to fabricate low-resistance contacts with rugged connections to high-Tc superconductors. Gold diffused into specimen of superconducting material by melting gold beads onto surface of specimen, making strong mechanical contacts. Shear strength of gold bead contacts greater than epoxy or silver paste. Practical use in high-current-carrying applications of new high-Tc materials, including superconducting magnets, long-wavelength sensors, electrical ground planes at low temperatures, and efficient transmission of power.

  16. Non-Contact Magnetic Transmission For Hybrid/Electric Rotorcraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Electric propulsion has the potential to revolutionize aircraft design and architecture. A distributed electric propulsion system for a VTOL aircraft can exploit...

  17. Application of calendering for improving the electrical characteristics of a printed top-gate, bottom-contact organic thin film transistors

    Science.gov (United States)

    Lee, Sang Hoon; Lee, Dong Geun; Jung, Hoeryong; Lee, Sangyoon

    2018-05-01

    Interface between the channel and the gate dielectric of organic thin film transistors (OTFTs) needs to be smoothed in order to improve the electrical characteristics. In this study, an optimized calendering process was proposed to improve the surface roughness of the channel. Top-gate, bottom-contact structural p-type OTFT samples were fabricated using roll-to-roll gravure printing (source/drain, channel), spin coating (gate dielectric), and inkjet printing (gate electrode). The calendering process was optimized using the grey-based Taguchi method. The channel surface roughness and electrical characteristics of calendered and non-calendered samples were measured and compared. As a result, the average improvement in the surface roughness of the calendered samples was 26.61%. The average on–off ratio and field-effect mobility of the calendered samples were 3.574 × 104 and 0.1113 cm2 V‑1 s‑1, respectively, which correspond to the improvements of 16.72 and 10.20%, respectively.

  18. The Improvement of Electrical Characteristics of Pt/Ti Ohmic Contacts to Ga-Doped ZnO by Homogenized KrF Pulsed Excimer Laser Treatment

    Science.gov (United States)

    Oh, Min-Suk

    2018-04-01

    We investigated the effect of KrF excimer laser surface treatment on Pt/Ti ohmic contacts to Ga-doped n-ZnO ( N d = 4.3 × 1017 cm-3). The treatment of the n-ZnO surfaces by laser irradiation greatly improved the electrical characteristics of the metal contacts. The Pt/Ti ohmic layer on the laser-irradiated n-ZnO showed specific contact resistances of 2.5 × 10-4 ˜ 4.8 × 10-4 Ω cm2 depending on the laser energy density and gas ambient, which were about two orders of magnitude lower than that of the as-grown sample, 8.4 × 10-2 Ω cm2. X-ray photoelectron spectroscopy and photoluminescence measurements showed that the KrF excimer laser treatments increased the electron concentration near the surface region of the Ga-doped n-ZnO due to the preferential evaporation of oxygen atoms from the ZnO surface by the laser-induced dissociation of Zn-O bonds.

  19. Toward full-chip prediction of yield-limiting contact patterning failure: correlation of simulated image parameters to advanced contact metrology metrics

    Science.gov (United States)

    Sturtevant, John L.; Chou, Dyiann

    2006-03-01

    Electrical failure due to incomplete contacts or vias has arisen as one of the primary modes of yield loss for 130 nm and below designs in manufacturing. Such failures are generally understood to arise from both random and systematic sources. The addition of redundant vias, where possible, has long been an accepted DFM practice for mitigating the impact of random defects. Incomplete vias are often characterized by having a diameter near the target dimension but a depth of less than 100% of target. As such, it is a difficult problem to diagnose and debug in-line, since bright and dark field optical inspection systems cannot typically distinguish between a closed, partially open and fully open contact. Advanced metrology systems have emerged in recent years to meet this challenge, but no perfect manufacturing solution has yet been identified for full field verification of all contacts. Voltage Contrast (VC) SEM metrology biases the wafer to directly measure electrical conductivity after fill / polish, and can therefore easily discern a lack of electrical connection to the underlying conductor caused by incomplete photo, etch, or fill processing. While an entire wafer can in principal be VC scanned, throughput limitations dictate very sparse sampling in manufacturing. SEM profile grading (PG) leverages the rich content of the secondary electron waveform to decipher information about the bottom of the contact. Several authors have demonstrated an excellent response of the Profile Grade to intentional defocus vectors. However, the SEM can only target discreet or single digit groupings of contacts, and therefore requires intelligent guidance to identify those contacts which are most prone to failure, enabling protection of the fab WIP. An a-priori knowledge of which specific contacts in a layout are most likely to fail would prove very useful for proactive inspection in manufacturing. Model based pre-manufacturing verification allows for such knowledge to be communicated

  20. Effect of contact barrier on electron transport in graphene.

    Science.gov (United States)

    Zhou, Yang-Bo; Han, Bing-Hong; Liao, Zhi-Min; Zhao, Qing; Xu, Jun; Yu, Da-Peng

    2010-01-14

    The influence of the barrier between metal electrodes and graphene on the electrical properties was studied on a two-electrode device. A classical barrier model was used to analyze the current-voltage characteristics. Primary parameters including barrier height and effective resistance were achieved. The electron transport properties under magnetic field were further investigated. An abnormal peak-valley-peak shape of voltage-magnetoresistance curve was observed. The underlying mechanisms were discussed under the consideration of the important influence of the contact barrier. Our results indicate electrical properties of graphene based devices are sensitive to the contact interface.

  1. Frequency-dependent transient response of an oscillating electrically actuated droplet

    International Nuclear Information System (INIS)

    Dash, S; Kumari, N; Garimella, S V

    2012-01-01

    The transient response of a millimeter-sized sessile droplet under electrical actuation is experimentally investigated. Under dc actuation, the droplet spreading rate increases as the applied voltage is increased due to the higher electrical forces induced. At sufficiently high dc voltages, competition between the electrical actuation force, droplet inertia, the retarding surface tension force and contact line friction leads to droplet oscillation. The timescale for the droplet to attain its maximum wetted diameter during step actuation is analyzed. Systematic experiments are conducted over a frequency range of 5–200 Hz and actuation voltages of 40–80 V rms to determine the dependence of droplet oscillation on these parameters. The response of the droplet to different actuation frequencies and voltages is determined in terms of its contact angle and contact radius variation. The frequency of the driving force (equal to twice the frequency of the applied electrical signal) determines the mode of oscillation of the droplet which, together with its resonance characteristics, governs whether the droplet contact angle and contact radius vary in phase or out of phase with each other. In addition to the primary frequency response at the electrical forcing frequency, the droplet oscillation exhibits sub-harmonic oscillation at half of the forcing frequency that is attributed to the parametric nature of the electrical force acting on the triple contact line of the droplet. (paper)

  2. Occupational Contact Dermatitis in Mechanics and Repairers Referred for Patch Testing: Retrospective Analysis From the North American Contact Dermatitis Group 1998-2014.

    Science.gov (United States)

    Warshaw, Erin M; Hagen, Solveig L; Sasseville, Denis; Maibach, Howard I; DeKoven, Joel G; Belsito, Donald V; Fowler, Joseph F; Zug, Kathryn A; Taylor, James S; Mathias, C G Toby; Fransway, Anthony F; DeLeo, Vincent A; Marks, James G; Pratt, Melanie D; Zirwas, Matthew J; Storrs, Frances J

    Contact dermatoses are common in mechanic and repair occupations. This study aimed to (1) estimate the prevalence of occupationally related contact dermatitis among mechanics/repairers patch tested from 1998 to 2014 by the North American Contact Dermatitis Group, (2) characterize responsible allergens and irritants, and their sources, and (3) compare results among 3 occupational subgroups (mechanics, electrical/electronic, and other). A cross-sectional analysis of patients patch tested by the North American Contact Dermatitis Group between 1998 and 2014. Of 38,784 patients patch tested, 691 (1.8%) were mechanics/repairers. Male sex (93.5%) and hand involvement (59.5%) were common overall. Occupationally related skin disease was more prevalent among vehicle and mobile equipment mechanics/repairers (52.7%) and other mechanics/repairers (41.4%) than electrical/electronic equipment mechanics/repairers (21.3%). Overall, carba mix, thiuram mix, and methylchloroisothiazolone/methylisothiazolone were the most common occupation-related clinically relevant allergens. Gloves, automotive vehicles, solvents, oils, lubricants, and fuels were the most common sources of responsible allergens. Common occupationally related allergens included rubber accelerators and the preservative methylchloroisothiazolone/methylisothiazolone.

  3. How to give a good talk.

    Science.gov (United States)

    Alon, Uri

    2009-10-23

    We depend on talks to communicate our work, and we spend much of our time as audience members in talks. However, few scientists are taught the well-established principles of giving good talks. Here, I describe how to prepare, present, and answer questions in a scientific talk. We will see how a talk prepared with a single premise and delivered with good eye contact is clear and enjoyable.

  4. Computational dosimetry for grounded and ungrounded human models due to contact current

    International Nuclear Information System (INIS)

    Chan, Kwok Hung; Hattori, Junya; Laakso, Ilkka; Hirata, Akimasa; Taki, Masao

    2013-01-01

    This study presents the computational dosimetry of contact currents for grounded and ungrounded human models. The uncertainty of the quasi-static (QS) approximation of the in situ electric field induced in a grounded/ungrounded human body due to the contact current is first estimated. Different scenarios of cylindrical and anatomical human body models are considered, and the results are compared with the full-wave analysis. In the QS analysis, the induced field in the grounded cylindrical model is calculated by the QS finite-difference time-domain (QS-FDTD) method, and compared with the analytical solution. Because no analytical solution is available for the grounded/ungrounded anatomical human body model, the results of the QS-FDTD method are then compared with those of the conventional FDTD method. The upper frequency limit for the QS approximation in the contact current dosimetry is found to be 3 MHz, with a relative local error of less than 10%. The error increases above this frequency, which can be attributed to the neglect of the displacement current. The QS or conventional FDTD method is used for the dosimetry of induced electric field and/or specific absorption rate (SAR) for a contact current injected into the index finger of a human body model in the frequency range from 10 Hz to 100 MHz. The in situ electric fields or SAR are compared with the basic restrictions in the international guidelines/standards. The maximum electric field or the 99th percentile value of the electric fields appear not only in the fat and muscle tissues of the finger, but also around the wrist, forearm, and the upper arm. Some discrepancies are observed between the basic restrictions for the electric field and SAR and the reference levels for the contact current, especially in the extremities. These discrepancies are shown by an equation that relates the current density, tissue conductivity, and induced electric field in the finger with a cross-sectional area of 1 cm 2 . (paper)

  5. The formation mechanism for printed silver-contacts for silicon solar cells.

    Science.gov (United States)

    Fields, Jeremy D; Ahmad, Md Imteyaz; Pool, Vanessa L; Yu, Jiafan; Van Campen, Douglas G; Parilla, Philip A; Toney, Michael F; van Hest, Maikel F A M

    2016-04-01

    Screen-printing provides an economically attractive means for making Ag electrical contacts to Si solar cells, but the use of Ag substantiates a significant manufacturing cost, and the glass frit used in the paste to enable contact formation contains Pb. To achieve optimal electrical performance and to develop pastes with alternative, abundant and non-toxic materials, a better understanding the contact formation process during firing is required. Here, we use in situ X-ray diffraction during firing to reveal the reaction sequence. The findings suggest that between 500 and 650 °C PbO in the frit etches the SiNx antireflective-coating on the solar cell, exposing the Si surface. Then, above 650 °C, Ag(+) dissolves into the molten glass frit - key for enabling deposition of metallic Ag on the emitter surface and precipitation of Ag nanocrystals within the glass. Ultimately, this work clarifies contact formation mechanisms and suggests approaches for development of inexpensive, nontoxic solar cell contacting pastes.

  6. Effects of nanoscale coatings on reliability of MEMS ohmic contact switches

    Science.gov (United States)

    Tremper, Amber Leigh

    This thesis examines how the electrical and mechanical behavior of Au thin films is altered by the presence of ultra-thin metallic coatings. To examine the mechanical behavior, nanoindentation, nano-scratch, and atomic force microscopy (AFM) testing was performed. The electrical behavior was evaluated through Kelvin probe contact resistance measurements. This thesis shows that ultra-thin, hard, ductile coatings on a softer, ductile underlying layer (such as Ru or Pt on Au) had a significant effect on mechanical behavior of the system, and can be tailored to control the deformation resistance of the thin film system. Despite Ru and Pt having a higher hardness and plane strain modulus than Au, the Ru and Pt coatings decreased both the hardness and plane strain modulus of the layered system when the indentation depth was on the order of the coating thickness. Alternately, when the indentation depth was several times the coating thickness, the ductile, plastically hard, elastically stiff layer significantly hardened the contact response. These results correlate well with membrane stress theoretical predictions, and demonstrate that membrane theory can be applied even when the ratio of indentation depth, h, to coating thickness, t, is very large ( h/telectrical behavior of the Ru-coated Au films was examined, it was found that all the measured resistances of the Au-only film and Ru-coated systems were several orders of magnitude larger than those predicted by Holm's law, but were still in good agreement with previously reported values in the literature. Previous studies attributed the high contact resistances to a variety of causes, including the buildup of an insulating contamination layer. This thesis determined the cause of the deviations to be large sheet resistance contributions to the total measured resistance. Further, studies on aged samples (with thicker contamination layers) conclusively showed that, while contamination increases the contact resistance, it

  7. Chemical Detection using Electrically Open Circuits having no Electrical Connections

    Science.gov (United States)

    Woodward, Stanley E.; Olgesby, Donald M.; Taylor, Bryant D.; Shams, Qamar A.

    2008-01-01

    This paper presents investigations to date on chemical detection using a recently developed method for designing, powering and interrogating sensors as electrically open circuits having no electrical connections. In lieu of having each sensor from a closed circuit with multiple electrically connected components, an electrically conductive geometric pattern that is powered using oscillating magnetic fields and capable of storing an electric field and a magnetic field without the need of a closed circuit or electrical connections is used. When electrically active, the patterns respond with their own magnetic field whose frequency, amplitude and bandwidth can be correlated with the magnitude of the physical quantities being measured. Preliminary experimental results of using two different detection approaches will be presented. In one method, a thin film of a reactant is deposited on the surface of the open-circuit sensor. Exposure to a specific targeted reactant shifts the resonant frequency of the sensor. In the second method, a coating of conductive material is placed on a thin non-conductive plastic sheet that is placed over the surface of the sensor. There is no physical contact between the sensor and the electrically conductive material. When the conductive material is exposed to a targeted reactant, a chemical reaction occurs that renders the material non-conductive. The change in the material s electrical resistance within the magnetic field of the sensor alters the sensor s response bandwidth and amplitude, allowing detection of the reaction without having the reactants in physical contact with the sensor.

  8. Laser-annealed GaP OHMIC contacts for high-temperature devices

    International Nuclear Information System (INIS)

    Eknoyan, O.; Van der Hoeven, W.; Richardson, T.; Porter, W.A.; Coquat, J.A.

    1980-01-01

    The results of successful Nd:YAG laser annealed ohmic contacts on n-type GaP are reported. Comparisons on identical laser and thermal annealed contacts on the same substrates are performed. Aging investigations are also studied. The results indicate that laser annealed contacts have far superior electrical characteristics, much better surface morphology and are substantially more stable with aging than the same but thermally alloyed ones

  9. Development of Low Surge Vacuum Contact with Te

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B. S.; Lee, H. W.; Woo, B. C.; Kim, B. G. [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    1996-12-01

    The purpose of this study is to develop of low surge Te contact for vacuum circuit breaker. The vacuum circuit breaker have various advantages such that it is free from maintenance, does not bring about public pollution, is excellent in its current breaking property, and so forth, on account of which the extent of its application has become broadened rapidly. For the characteristics of the contact material for the vacuum circuit breaker to satisfy, there may be enumerated: (1)large current breaking capacity; (2)high voltage withstand; (3)small contact resistance; (4)small melt-adhesive force; (5)low chopping current value; (6)good workability; (7)sufficient mechanical strength; and so forth. In this study we used cobalt for based refractory material having high melting temperature and intermetallic material between tellurium and silver to reduce chopping current. The contact materials were produced in accordance with the powder metallurgy using the method of infiltration. Production of the contact material was carried out in such a method that cobalt powder having average particle size of 50{mu}m, pre sintered in H{sub 2} atmosphere, 900 degree C , 2 hour. Ag ingot and Te(Se) were alloyed using high frequency furnaced in vacuum. And then Ag-Te(Se) alloy was infiltrated to Co skeleton in H{sub 2} atmosphere, 1000 degree C , 1 hour. The melting of the alloy to be infiltrated was carried out in a vacuum sealed quartz tube and be analysed by X-ray diffraction, scanning electron microscope, optical microscope and energy dispersive energy spectrometer. In the alloying of silver and tellurium, tellurium does not exist in single element but Ag{sub 2}Te intermetallic compound. And In Ag and Se, Se does not exist in single element but Ag{sub 2}Se intermetallic compound. We also produced the test vacuum interruptor to evaluate the electrode properties in vacuum atmosphere. The electrical properties of Co-(Ag-Se) electrode have better value than that of Co-(Ag-Te) electrode

  10. Improving the contact resistance at low force using gold coated carbon nanotube surfaces

    Science.gov (United States)

    McBride, J. W.; Yunus, E. M.; Spearing, S. M.

    2010-04-01

    Investigations to determine the electrical contact performance under repeated cycles at low force conditions for carbon-nanotube (CNT) coated surfaces were performed. The surfaces under investigation consisted of multi-walled CNT synthesized on a silicon substrate and coated with a gold film. These planar surfaces were mounted on the tip of a PZT actuator and contacted with a plated Au hemispherical probe. The dynamic applied force used was 1 mN. The contact resistance (Rc) of these surfaces was investigated with the applied force and with repeated loading cycles performed for stability testing. The surfaces were compared with a reference Au-Au contact under the same experimental conditions. This initial study shows the potential for the application of gold coated CNT surfaces as an interface in low force electrical contact applications.

  11. Calibrating the social value of prospective new goods: The case of hydrogen fuel cell electric Vehicles

    Science.gov (United States)

    Topel, Robert H.

    2018-01-01

    Economic studies of the value of a new good or product innovation are typically retrospective: after a new good has been developed and marketed to consumers, data on prices and consumer choices can be used to estimate welfare gains. This paper calibrates the prospective welfare gains in the United States from a nascent vehicle platform, fuel cell electric vehicles (FCVs), that may or may not succeed in competition with existing vehicle platforms. Prospective gains are due to three main sources: (1) possibly reduced carbon emissions compared to existing vehicle alternatives; (2) the monopsony benefit to the U.S. from reducing world oil demand and hence the price of oil; (3) national security benefits due to reduced "oil dependence", mitigating the impact of oil price shocks on national income. I find that the benefits of reduced carbon emissions are likely to be quite small because reduced oil demand in the U.S. as only a small impact on world oil consumption and carbon emissions. Net monopsony benefits to U.S. consumers are much larger.

  12. Electric passenger and goods vehicles: A review of UK activities

    International Nuclear Information System (INIS)

    Escombe, F.; Rawnsley, A.

    1993-01-01

    The production of electric-powered vehicles has been reduced to only a few hundred, after several thousand had been produced in Great Britain during the past five years. In the framework of this article, the different components of electric-powered vehicles are being examined regarding the economical situation: such as the vehicle itself, the batteries, the motor and the vehicle control. (BWI) [de

  13. Long-Term Stability of Oxide Nanowire Sensors via Heavily Doped Oxide Contact.

    Science.gov (United States)

    Zeng, Hao; Takahashi, Tsunaki; Kanai, Masaki; Zhang, Guozhu; He, Yong; Nagashima, Kazuki; Yanagida, Takeshi

    2017-12-22

    Long-term stability of a chemical sensor is an essential quality for long-term collection of data related to exhaled breath, environmental air, and other sources in the Internet of things (IoT) era. Although an oxide nanowire sensor has shown great potential as a chemical sensor, the long-term stability of sensitivity has not been realized yet due to electrical degradation under harsh sensing conditions. Here, we report a rational concept to accomplish long-term electrical stability of metal oxide nanowire sensors via introduction of a heavily doped metal oxide contact layer. Antimony-doped SnO 2 (ATO) contacts on SnO 2 nanowires show much more stable and lower electrical contact resistance than conventional Ti contacts for high temperature (200 °C) conditions, which are required to operate chemical sensors. The stable and low contact resistance of ATO was confirmed for at least 1960 h under 200 °C in open air. This heavily doped oxide contact enables us to realize the long-term stability of SnO 2 nanowire sensors while maintaining the sensitivity for both NO 2 gas and light (photo) detections. The applicability of our method is confirmed for sensors on a flexible polyethylene naphthalate (PEN) substrate. Since the proposed fundamental concept can be applied to various oxide nanostructures, it will give a foundation for designing long-term stable oxide nanomaterial-based IoT sensors.

  14. Getting Out the Good News.

    Science.gov (United States)

    Paciancia, David

    1995-01-01

    A majority of American schools are meeting the challenge of educating children. A New York State district gets out the good news by producing school newsletters and videos, by constant and close contact with the local news media, and by forming ties with local real estate agents. (MLF)

  15. Design and fabrication stable LNF contact for future IC application

    International Nuclear Information System (INIS)

    Bhuiyan, M M I; Bhuiyan, M; Rashid, M M; Ahmed, Sayem; Kajihara, M

    2013-01-01

    Enable the design of a small contact spring for applications requiring high density, high speed and high durability. A low normal force (LNF) contact spring with high performance is fabricated using a unique combined MEMS photo resist lithography and electro fine forming (EFF) technology. Reducing a total contact material cost of a connector, a high-Hertz stress with LNF contact will be a key technology in the future. Only radius R 5μm tip with 0.1N force contact provides an excellent electrical performance which is much sharper than conventional contact. 0.30million cycle's durability test was passed at 300μm displacement and the contact resistance was ≤50mΩ

  16. Effect of the periphery of metal-semiconductor contacts with Schottky barriers on their static current-voltage characteristic

    International Nuclear Information System (INIS)

    Torkhov, N. A.

    2010-01-01

    Kelvin probe atomic-force microscopy of the electrostatic surface potential of gold Schottky contacts on n-GaAs showed that there is an extended transition area (halo) (tens of micrometers) around contacts in which the surface potential varies from the n-GaAs free surface potential to the gold contact surface potential. The contact potential and its distribution in the surrounding halo are controlled by the contact structure. The study of spreading currents showed that there is a high-conductance area (periphery) around the contact perimeter due to strong electric fields of the halo, which causes leakage currents. The conductivity of the main contact area is caused by 100- to 200-nm local areas with higher and lower conducting abilities. Mesa formation around contacts causes a decrease in the work function, a decrease in the halo extent and electric field strength, which is accompanied by spreading and decreasing of the peripheral area conductance. This results in disappearance of leakage currents and a decrease in the ideality index. In contrast, protection of the peripheral area by a SiO 2 insulating film 0.5 μm thick increases the work function, which is accompanied by the formation of potential lobes around the contact in two mutually perpendicular crystallographic directions. A stronger penetration of halo electric fields into the contact area results in an increase in the ideality index and disappearance of high-conductance peripheral area and leakage currents. The difference between the electrical properties of the periphery, gold grains, and their boundaries controls the contact switching mechanism when applying forward or reverse biases.

  17. Asymmetric contacts on a single SnO₂ nanowire device: an investigation using an equivalent circuit model.

    Science.gov (United States)

    Huh, Junghwan; Na, Junhong; Ha, Jeong Sook; Kim, Sangtae; Kim, Gyu Tae

    2011-08-01

    Electrical contacts between the nanomaterial and metal electrodes are of crucial importance both from fundamental and practical points of view. We have systematically compared the influence of contact properties by dc and EIS (Electrochemical impedance spectroscopy) techniques at various temperatures and environmental atmospheres (N(2) and 1% O(2)). Electrical behaviors are sensitive to the variation of Schottky barriers, while the activation energy (E(a)) depends on the donor states in the nanowire rather than on the Schottky contact. Equivalent circuits in terms of dc and EIS analyses could be modeled by Schottky diodes connected with a series resistance and parallel RC circuits, respectively. These results can facilitate the electrical analysis for evaluating the nanowire electronic devices with Schottky contacts.

  18. Elastic contact mechanics: percolation of the contact area and fluid squeeze-out.

    Science.gov (United States)

    Persson, B N J; Prodanov, N; Krick, B A; Rodriguez, N; Mulakaluri, N; Sawyer, W G; Mangiagalli, P

    2012-01-01

    The dynamics of fluid flow at the interface between elastic solids with rough surfaces depends sensitively on the area of real contact, in particular close to the percolation threshold, where an irregular network of narrow flow channels prevails. In this paper, numerical simulation and experimental results for the contact between elastic solids with isotropic and anisotropic surface roughness are compared with the predictions of a theory based on the Persson contact mechanics theory and the Bruggeman effective medium theory. The theory predictions are in good agreement with the experimental and numerical simulation results and the (small) deviation can be understood as a finite-size effect. The fluid squeeze-out at the interface between elastic solids with randomly rough surfaces is studied. We present results for such high contact pressures that the area of real contact percolates, giving rise to sealed-off domains with pressurized fluid at the interface. The theoretical predictions are compared to experimental data for a simple model system (a rubber block squeezed against a flat glass plate), and for prefilled syringes, where the rubber plunger stopper is lubricated by a high-viscosity silicon oil to ensure functionality of the delivery device. For the latter system we compare the breakloose (or static) friction, as a function of the time of stationary contact, to the theory prediction.

  19. The features of ballistic electron transport in a suspended quantum point contact

    International Nuclear Information System (INIS)

    Shevyrin, A. A.; Budantsev, M. V.; Bakarov, A. K.; Toropov, A. I.; Pogosov, A. G.; Ishutkin, S. V.; Shesterikov, E. V.

    2014-01-01

    A suspended quantum point contact and the effects of the suspension are investigated by performing identical electrical measurements on the same experimental sample before and after the suspension. In both cases, the sample demonstrates conductance quantization. However, the suspended quantum point contact shows certain features not observed before the suspension, namely, plateaus at the conductance values being non-integer multiples of the conductance quantum, including the “0.7-anomaly.” These features can be attributed to the strengthening of electron-electron interaction because of the electric field confinement within the suspended membrane. Thus, the suspended quantum point contact represents a one-dimensional system with strong electron-electron interaction

  20. Electric Shock Injuries in Children

    Science.gov (United States)

    ... Issues Listen Español Text Size Email Print Share Electric Shock Injuries in Children Page Content ​When the ... comes into direct contact with a source of electricity, the current passes through it, producing what's called ...

  1. Dual ohmic contact to N- and P-type silicon carbide

    Science.gov (United States)

    Okojie, Robert S. (Inventor)

    2013-01-01

    Simultaneous formation of electrical ohmic contacts to silicon carbide (SiC) semiconductor having donor and acceptor impurities (n- and p-type doping, respectively) is disclosed. The innovation provides for ohmic contacts formed on SiC layers having n- and p-doping at one process step during the fabrication of the semiconductor device. Further, the innovation provides a non-discriminatory, universal ohmic contact to both n- and p-type SiC, enhancing reliability of the specific contact resistivity when operated at temperatures in excess of 600.degree. C.

  2. Transportation of hazardous goods

    CERN Multimedia

    TS Department

    2008-01-01

    A general reminder: any transportation of hazardous goods by road is subject to the European ADR rules. The goods concerned are essentially the following: Explosive substances and objects; Gases (including aerosols and non-flammable gases such as helium and nitrogen); Flammable substances and liquids (inks, paints, resins, petroleum products, alcohols, acetone, thinners); Toxic substances (acids, thinners); Radioactive substances; Corrosive substances (paints, acids, caustic products, disinfectants, electrical batteries). Any requests for the transport of hazardous goods must be executed in compliance with the instructions given at this URL: http://ts-dep.web.cern.ch/ts-dep/groups/he/HH/adr.pdf Heavy Handling Section TS-HE-HH 73793 - 160364

  3. Stable and low contact resistance electrical contacts for high temperature SiGe thermoelectric generators

    KAUST Repository

    Zhang, Bo; Zheng, Tao; Wang, Qingxiao; Guo, Zaibing; Kim, Moon J.; Alshareef, Husam N.; Gnade, Bruce E.

    2018-01-01

    that no interdiffusion takes place between TaAlN and SiGe. A specific contact resistivity of (2.1±1.3)×10−6Ω-cm2 for p-type SiGe and (2.8±1.6)×10−5 Ω-cm2 for n-type SiGe is demonstrated after the high temperature annealing. These results show that TaAlN is a promising

  4. THE ELECTROSTATIC CHARACTERISTICS OF LINEAR INSULATORS FOR CONTACT NETWORKS OF RAILWAYS

    Directory of Open Access Journals (Sweden)

    Ye. D. Kim

    2009-03-01

    Full Text Available On the base of numeric investigations on mathematical models of stationary electric field the basic electric performances of insulating suspensions from porcelain and polymeric insulators for contact nets of alternating and direct current are compared.

  5. From public good to private exploitation : electricity deregulation, privatization and continental integration

    International Nuclear Information System (INIS)

    Griffin Cohen, M.

    2002-07-01

    A study was conducted to examine the initiative of the World Trade Organization (WTO) on energy taking place through negotiations on the General Agreement on Trade in Services (GATS), which coincide with the U.S. drive for integrated continental energy policy. These negotiations will affect the nature of the electricity industry in Canada. It was noted that if the U.S. proposal for energy in GATS succeeds, it would support complete electricity deregulation, privatization of power generation, and full-scale continental pricing. This report includes several chapters. The chapter on electricity deregulation deals with changes in the electricity industry and the U.S. drive for energy. The GATS chapter describes the main features of GATS and what it covers, including general obligations, disciplines and negotiations. The chapter on the electricity industry in Canada describes major features, major electrical utilities, exports and the state of deregulation in Canada's 10 provinces. The chapter on GATS implications for electrical utilities focused on deregulation and market power, the implications for developing nations and general environmental issues. It was cautioned that if a Canadian agreement were to include electricity as a covered industry, it could erode the security of supply, drive prices up and have negative consequences for energy conservation. 137 refs., 8 tabs

  6. Multi-winding homopolar electric machine

    Science.gov (United States)

    Van Neste, Charles W

    2012-10-16

    A multi-winding homopolar electric machine and method for converting between mechanical energy and electrical energy. The electric machine includes a shaft defining an axis of rotation, first and second magnets, a shielding portion, and a conductor. First and second magnets are coaxial with the shaft and include a charged pole surface and an oppositely charged pole surface, the charged pole surfaces facing one another to form a repulsive field therebetween. The shield portion extends between the magnets to confine at least a portion of the repulsive field to between the first and second magnets. The conductor extends between first and second end contacts and is toroidally coiled about the first and second magnets and the shield portion to develop a voltage across the first and second end contacts in response to rotation of the electric machine about the axis of rotation.

  7. Electrical properties of aluminum contacts deposited by DC sputtering method for photovoltaic applications

    Directory of Open Access Journals (Sweden)

    Krawczak Ewelina

    2017-01-01

    Full Text Available The use of aluminum contacts is common in the process of silicon solar cells production because of low contact resistivity. It has also a great importance in thin film technology for photovoltaics, especially in copper-indium-gallium-diselenide (CIGS devices. The final stage of CIGS cell production is the top contact deposition of high conductivity layer for lateral current collection. Such material has to be highly optically transparent as well. In order to make a contact, metal is deposited onto TCO layer with minimum shadowing to allow as much light as possible into device. The metal grid contact is being made by deposition of few microns of aluminum. The resistivity of the deposited material as well as resistance between the metal grid and TCO layer plays a great role in high quality solar cell production. This paper presents the results of four point probe conductivity analysis of Al thin films deposited by direct current (DC magnetron sputtering method. Influence of technological parameters of the Al deposition process on sheet resistance of deposited layers has been showed. In order to obtain the lowest resistivity of the thin contact layer, optimal set of sputtering parameters, i.e. power applied, deposition time and deposition pressure was found. The resistivity of the contact between two adjacent Al metal fingers deposited onto transparent conductive Al-doped zinc oxide film has been also examined.

  8. Electrical properties of aluminum contacts deposited by DC sputtering method for photovoltaic applications

    Science.gov (United States)

    Krawczak, Ewelina; Gułkowski, Sławomir

    2017-10-01

    The use of aluminum contacts is common in the process of silicon solar cells production because of low contact resistivity. It has also a great importance in thin film technology for photovoltaics, especially in copper-indium-gallium-diselenide (CIGS) devices. The final stage of CIGS cell production is the top contact deposition of high conductivity layer for lateral current collection. Such material has to be highly optically transparent as well. In order to make a contact, metal is deposited onto TCO layer with minimum shadowing to allow as much light as possible into device. The metal grid contact is being made by deposition of few microns of aluminum. The resistivity of the deposited material as well as resistance between the metal grid and TCO layer plays a great role in high quality solar cell production. This paper presents the results of four point probe conductivity analysis of Al thin films deposited by direct current (DC) magnetron sputtering method. Influence of technological parameters of the Al deposition process on sheet resistance of deposited layers has been showed. In order to obtain the lowest resistivity of the thin contact layer, optimal set of sputtering parameters, i.e. power applied, deposition time and deposition pressure was found. The resistivity of the contact between two adjacent Al metal fingers deposited onto transparent conductive Al-doped zinc oxide film has been also examined.

  9. Temperature dependence of annealing on the contact resistance of MoS2 with graphene electrodes observed

    Science.gov (United States)

    Lu, Qin; Fang, Cizhe; Liu, Yan; Shao, Yao; Han, Genquan; Zhang, Jincheng; Hao, Yue

    2018-04-01

    Two-dimensional (2D) materials are promising candidates for atomically thin nanoelectronics. Among them, MoS2 has attracted considerable attention in the nanoscience and nanotechnology community owing to its unique characteristics including high electron mobility and intrinsic band gap. In this study, we experimentally explored the contact resistances of MoS2 films based on much layered graphene films as electrodes using the circular transmission line model (CTLM). The variation in the chemical composition of the material is thoroughly analyzed by Raman and X-ray photoelectric spectroscopy (XPS) measurements. Experimental results demonstrate that annealing followed by oxygen plasma treatment can effectively improve the contact resistance. Furthermore, the current-voltage curves measured after different annealing temperatures indicate good linear characteristics, which means a marked improvement in electrical property. Calculations show that a relatively low contact resistance of ˜4.177 kΩ (ignoring its size) without back gate voltage in a single-layer graphene/MoS2 structure at an optimal annealing temperature of 500 °C is achieved. This work about the effect of annealing temperature on contact resistance can also be employed for other 2D materials, which lays a foundation for further development of novel 2D material devices.

  10. Survival of the insulator under the electrical stress condition at cryogenic temperature

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Seung Myeong [Dept. of Fire Protection Engineering, Changwon Moonsung University, Changwon (Korea, Republic of); Kim, Sang Hyun [Dept. of Electrical Engineering, Gyeongsang National University, Jinju (Korea, Republic of)

    2013-12-15

    We have clearly investigated with respect to the survival of the insulator at cryogenic temperature under the electrical stress. The breakdown and voltage-time characteristics of turn-to-turn models for point contact geometry and surface contact geometry using copper multi wrapped with polyimide film for an HTS transformer were investigated under AC and impulse voltage at 77 K. Polyimide film (Kapton) 0.025 mm thick is used for multi wrapping of the electrode. As expected, the breakdown voltages for the surface contact geometry are lower than that of the point contact geometry, because the contact area of the surface contact geometry is lager than that of the point contact geometry. The time to breakdown t50 decreases as the applied voltage is increased, and the lifetime indices increase slightly as the number of layers is increased. The electric field amplitude at the position where breakdown occurs is about 80% of the maximum electric field value. The relationship between survival probability and the electrical stress at cryogenic temperature was evident.

  11. Restoring the consistency with the contact density theorem of a classical density functional theory of ions at a planar electrical double layer.

    Science.gov (United States)

    Gillespie, Dirk

    2014-11-01

    Classical density functional theory (DFT) of fluids is a fast and efficient theory to compute the structure of the electrical double layer in the primitive model of ions where ions are modeled as charged, hard spheres in a background dielectric. While the hard-core repulsive component of this ion-ion interaction can be accurately computed using well-established DFTs, the electrostatic component is less accurate. Moreover, many electrostatic functionals fail to satisfy a basic theorem, the contact density theorem, that relates the bulk pressure, surface charge, and ion densities at their distances of closest approach for ions in equilibrium at a smooth, hard, planar wall. One popular electrostatic functional that fails to satisfy the contact density theorem is a perturbation approach developed by Kierlik and Rosinberg [Phys. Rev. A 44, 5025 (1991)PLRAAN1050-294710.1103/PhysRevA.44.5025] and Rosenfeld [J. Chem. Phys. 98, 8126 (1993)JCPSA60021-960610.1063/1.464569], where the full free-energy functional is Taylor-expanded around a bulk (homogeneous) reference fluid. Here, it is shown that this functional fails to satisfy the contact density theorem because it also fails to satisfy the known low-density limit. When the functional is corrected to satisfy this limit, a corrected bulk pressure is derived and it is shown that with this pressure both the contact density theorem and the Gibbs adsorption theorem are satisfied.

  12. Contact effects analyzed by a parameter extraction method based on a single bottom-gate/top-contact organic thin-film transistor

    Science.gov (United States)

    Takagaki, Shunsuke; Yamada, Hirofumi; Noda, Kei

    2018-03-01

    Contact effects in organic thin-film transistors (OTFTs) were examined by using our previously proposed parameter extraction method from the electrical characteristics of a single staggered-type device. Gate-voltage-dependent contact resistance and channel mobility in the linear regime were evaluated for bottom-gate/top-contact (BGTC) pentacene TFTs with active layers of different thicknesses, and for pentacene TFTs with contact-doped layers prepared by coevaporation of pentacene and tetrafluorotetracyanoquinodimethane (F4TCNQ). The extracted parameters suggested that the influence of the contact resistance becomes more prominent with the larger active-layer thickness, and that contact-doping experiments give rise to a drastic decrease in the contact resistance and a concurrent considerable improvement in the channel mobility. Additionally, the estimated energy distributions of trap density in the transistor channel probably reflect the trap filling with charge carriers injected into the channel regions. The analysis results in this study confirm the effectiveness of our proposed method, with which we can investigate contact effects and circumvent the influences of characteristic variations in OTFT fabrication.

  13. Electrical measurements on submicronic synthetic conductors : carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Langer, L [Unite de Physico-Chimie et de Physique des Materiaux, Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium); Stockman, L [Lab. voor Vaste Stof-Fysika en Magnetisme, Katholieke Univ. Leuven (Belgium); Heremans, J P [Physics Dept., General Motors Research, Warren, MI (United States); Bayot, V [Unite de Physico-Chimie et de Physique des Materiaux, Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium); Olk, C H [Physics Dept., General Motors Research, Warren, MI (United States); Haesendonck, C van [Lab. voor Vaste Stof-Fysika en Magnetisme, Katholieke Univ. Leuven (Belgium); Bruynseraede, Y [Lab. voor Vaste Stof-Fysika en Magnetisme, Katholieke Univ. Leuven (Belgium); Issi, J P [Unite de Physico-Chimie et de Physique des Materiaux, Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium)

    1995-03-15

    The synthesis of very small samples has raised the need for a drastic miniaturization of the classical four-probe technique in order to realize electrical resistance measurements. Two methods to realize electrical contacts on very small fibers are described here. Using classical photolithography the electrical resistivity of a submicronic catalytic chemical vapour deposited filament is estimated. Scanning tunneling microscopy (STM) lithography allowed to attach small gold contacts to a small bundle (diameter 50 nm) of carbon nanotubes. This bundle is found to exhibit a semimetallic behavior at higher temperature and an unexpected drop of the electrical resistivity at lower temperature. (orig.)

  14. Novel Contact Materials for Improved Performance CdTe Solar Cells Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rockett, Angus [Colorado School of Mines, Golden, CO (United States); Marsillac, Sylvain [Old Dominion Univ., Norfolk, VA (United States); Collins, Robert [Univesity of Toledo

    2018-04-15

    This program has explored a number of novel materials for contacts to CdTe solar cells in order to reduce the back contact Schottky barrier to zero and produce an ohmic contact. The project tested a wide range of potential contact materials including TiN, ZrN, CuInSe2:N, a-Si:H and alloys with C, and FeS2. Improved contacts were achieved with FeS2. As part of understanding the operation of the devices and controlling the deposition processes, a number of other important results were obtained. In the process of this project and following its conclusion it led to research that resulted in seven journal articles, nine conference publications, 13 talks presented at conferences, and training of eight graduate students. The seven journal articles were published in 2015, 2016, and 2017 and have been cited, as of March 2018, 52 times (one cited 19 times and two cited 11 times). We demonstrated high levels of doping of CIS with N but electrical activity of the resulting N was not high and the results were difficult to reproduce. Furthermore, even with high doping the contacts were not good. Annealing did not improve the contacts. A-Si:H was found to produce acceptable but unstable contacts, degrading even over a day or two, apparently due to H incorporation into the CdTe. Alloying with C did not improve the contacts or stability. The transition metal nitrides produced Schottky type contacts for all materials tested. While these contacts were found to be unsatisfactory, we investigated FeS2 and found this material to be effective and comparable to the best contacts currently available. The contacts were found to be chemically stable under heat treatment and preferable to Cu doped contacts. Thus, we demonstrated an improved contact material in the course of this project. In addition, we developed new ways of controlling the deposition of CdTe and other materials, demonstrated the nature of defects in CdTe, and studied the distribution of conductivity and carrier type in Cd

  15. Renewable Electricity Standards: Good Practices and Design Considerations

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Sadie [National Renewable Energy Lab. (NREL), Golden, CO (United States); Esterly, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-02

    In widespread use globally, renewable electricity standards (RES) are one of the most widely adopted renewable energy policies and a critical regulatory vehicle to accelerate renewable energy deployment. This policy brief provides an introduction to key RES design elements, lessons from country experience, and support resources to enable more detailed and country-specific RES policy design.

  16. Hydrodynamic instability induced liquid--solid contacts in film boiling

    International Nuclear Information System (INIS)

    Yao, S.; Henry, R.E.

    1976-01-01

    The film boiling liquid-solid contacts of saturated ethanol and water to horizontal flat gold plated copper are examined by using electric conductance probe. It is observed that the liquid-solid contacts occur over a wide temperature range, and generally, induced by hydrodynamic instabilities. The area of contact decreases exponentially with interface temperature and is liquid depth dependent. The averaged duration of contacts is strongly influenced by the dominant nucleation process, and thus, depends on the interface temperature and the wettability of the solid during the contact. The frequency of major contacts is about 1.5 times the bubble detaching frequency. It is found that the liquid-solid contacts may account for a large percentage of the film boiling heat transfer near the low temperature end of film boiling and decreases as the interface temperature increases

  17. The effect of silver (Ag) addition to mechanical and electrical properties of copper alloy (Cu) casting product

    Science.gov (United States)

    Felicia, Dian M.; Rochiem, R.; Laia, Standley M.

    2018-04-01

    Copper have good mechanical properties and good electrical conductivities. Therefore, copper usually used as electrical components. Silver have better electrical conductivities than copper. Female contact resistor is one of the electrical component used in circuit breaker. This study aims to analyze the effect of silver addition to hardness, strength, and electric conductivity properties of copper alloy. This study uses variation of 0; 0.035; 0.07; 0.1 wt. % Ag (silver) addition to determine the effect on mechanical properties and electrical properties of copper alloy through sand casting process. Modelling of thermal analysis and structural analysis was calculated to find the best design for the sand casting experiments. The result of Cu-Ag alloy as cast will be characterized by OES test, metallography test, Brinell hardness test, tensile test, and LCR meter test. The result of this study showed that the addition of silver increase mechanical properties of Cu-Ag. The maximum hardness value of this alloy is 83.1 HRB which is Cu-0.01 Ag and the lowest is 52.26 HRB which is pure Cu. The maximum strength value is 153.2 MPa which is Cu-0.07 Ag and the lowest is 94.6 MPa which is pure Cu. Silver addition decrease electrical properties of this alloy. The highest electric conductivity is 438.98 S/m which is pure Cu and the lowest is 52.61 S.m which is Cu-0.1 Ag.

  18. The electric field at hole injecting metal/organic interfaces as a cause for manifestation of exponential bias-dependent mobility

    International Nuclear Information System (INIS)

    Cvikl, B.

    2014-01-01

    It is shown that the well-known empirical exponential bias-dependent mobility is an approximation function of the relevant term emerging in the Mott–Gurney space charge limited current model when the constant non-zero electric field at the hole injecting metal/organic interface E int is taken into account. The term in question is the product of the bias-independent (but organic layer thickness-dependent) effective mobility coefficient and the algebraic function, f(λ), of the argument λ = E int /E a , where E a is the externally applied electric field. On account of the non-zero interfacial field, E int , the singularity of the spatial dependence of the hole current density, p(x), is removed. The resulting hole drift current density, j, is tested as a function of E a against a number of published room temperature hole current j–E a data sets, all characterized by good ohmic contact at the hole injecting interface. It is shown that the calculated current density provides a very good fit to the measurements within a high range of E a intervals. Low values of E a , are investigated analytically under the assumption of hole drift-diffusion. The extremely large internal electric fields at the anode/organic junction indicate drift-diffusion to be an improbable process for the structures investigated. However, a description of hole transport throughout the whole interval of experimental E a values may be obtained at low values of E a by an extended Mark–Helfrich drift model with traps occupying the exponentially distributed energy levels, followed by the extended Mott–Gurney model description within the remaining part of the E a interval. In both models the same (bias-independent) effective mobility coefficient is incorporated into the calculations. The results present evidence that within the framework of the extended Mott–Gurney expression the properly derived term should replace the empirical exponential bias-dependent mobility, making it redundant in the

  19. A frictional contact problem for an electro-viscoelastic body

    Directory of Open Access Journals (Sweden)

    Mircea Sofonea

    2007-12-01

    Full Text Available A mathematical model which describes the quasistatic frictional contact between a piezoelectric body and a deformable conductive foundation is studied. A nonlinear electro-viscoelastic constitutive law is used to model the piezoelectric material. Contact is described with the normal compliance condition, a version of Coulomb's law of dry friction, and a regularized electrical conductivity condition. A variational formulation of the model, in the form of a coupled system for the displacements and the electric potential, is derived. The existence of a unique weak solution of the model is established under a smallness assumption on the surface conductance. The proof is based on arguments of evolutionary variational inequalities and fixed points of operators.

  20. Electrical characteristics of top contact pentacene organic thin film

    Indian Academy of Sciences (India)

    Organic thin film transistors (OTFTs) were fabricated using pentacene as the active layer with two different gate dielectrics, namely SiO2 and poly(methyl methacrylate) (PMMA), in top contact geometry for comparative studies. OTFTs with SiO2 as dielectric and gold deposited on the rough side of highly doped silicon (n+ -Si) ...

  1. Bulk-Like Electrical Properties Induced by Contact-Limited Charge Transport in Organic Diodes: Revised Space Charge Limited Current

    KAUST Repository

    Xu, Guangwei

    2018-02-22

    Charge transport governs the operation and performance of organic diodes. Illuminating the charge-transfer/transport processes across the interfaces and the bulk organic semiconductors is at the focus of intensive investigations. Traditionally, the charge transport properties of organic diodes are usually characterized by probing the current–voltage (I–V) curves of the devices. However, to unveil the landscape of the underlying potential/charge distribution, which essentially determines the I–V characteristics, still represents a major challenge. Here, the electrical potential distribution in planar organic diodes is investigated by using the scanning Kelvin probe force microscopy technique, a method that can clearly separate the contact and bulk regimes of charge transport. Interestingly, by applying to devices based on novel, high mobility organic materials, the space-charge-limited-current-like I–V curves, which are previously believed to be a result of the bulk transport, are surprisingly but unambiguously demonstrated to be caused by contact-limited conduction. A model accounting is developed for the transport properties of both the two metal/organic interfaces and the bulk. The results indicate that pure interface-dominated transport can indeed give rise to I–V curves similar to those caused by bulk transport. These findings provide a new insight into the charge injection and transport processes in organic diodes.

  2. Organic [6,6]-phenyl-C61-butyric-acid-methyl-ester field effect transistors: Analysis of the contact properties by combined photoemission spectroscopy and electrical measurements

    Science.gov (United States)

    Scheinert, S.; Grobosch, M.; Sprogies, J.; Hörselmann, I.; Knupfer, M.; Paasch, G.

    2013-05-01

    Carrier injection barriers determined by photoemission spectroscopy for organic/metal interfaces are widely accepted to determine the performance of organic field-effect transistors (OFET), which strongly depends on this interface at the source/drain contacts. This assumption is checked here in detail, and a more sophisticated connection is presented. According to the preparation process described in our recently published article [S. Scheinert, J. Appl. Phys. 111, 064502 (2012)], we prepared PCBM/Au and PCBM/Al samples to characterize the interface by photoemission and electrical measurements of PCBM based OFETs with bottom and top (TOC) contacts, respectively. The larger drain currents for TOC OFETs indicate the presence of Schottky contacts at source/drain for both metals. The hole injection barrier as determined by photoemission is 1.8 eV for both Al and Au. Therefore, the electron injection barriers are also the same. In contrast, the drain currents are orders of magnitude larger for the transistors with the Al contacts than for those with the Au contacts. We show that indeed the injection is determined by two other properties measured also by photoemission, the (reduced) work functions, and the interface dipoles, which have different sign for each contact material. In addition, we demonstrate by core-level and valence band photoemission that the deposition of gold as top contact onto PCBM results in the growth of small gold clusters. With increasing gold coverage, the clusters grow inside and begin to form a metallic, but not uniform, closed film onto PCBM.

  3. Measurement of contact angle in a clearance-fit pin-loaded hole

    Science.gov (United States)

    Prabhakaran, R.; Naik, R. A.

    1986-01-01

    A technique which measures load-contact variation in a clearance-fit, pin-loaded hole is presented in detail. A steel instrumented pin, which activates a make-or-break electrical circuit in the pin-hole contact region, was inserted into one aluminum and one polycarbonate specimen. The resulting load-contact variations are indicated schematically. The ability to accurately determine the arc of contact at any load was crucial to this measurement. It is noted that this simple experimental technique is applicable to both conducting and nonconducting materials.

  4. Contact lens surface by electron beam

    International Nuclear Information System (INIS)

    Shin, Jung Hyuck; Lee, Suk Ju; Hwang, Kwang Ha; Jeon Jin

    2011-01-01

    Contact lens materials needs good biocompatibility, high refractive index, high optical transparency, high water content etc. Surface treat method by using plasma and radiation can modify the physical and/or chemical properties of the contact lens surface. Radiation technology such as electron beam irradiation can apply to polymerization reaction and enhance the functionality of the polymer.The purpose of this study is to modify of contact lens surface by using Eb irradiation technology. Electron beam was irradiated to the contact lens surface which was synthesized thermal polymerization method and commercial contact lens to modify physical and chemical properties. Ft-IR, XP, UV-vis spectrophotometer, water content, oxygen trans-metastability were used to characterize the surface state, physicochemical, and optical property of the contact lens treated with Eb. The water content and oxygen transmissibility of the contact lens treated with Eb were increased due to increase in the hydrophilic group such as O-C=O and OH group on the contact lens surface which could be produced by possible reaction between carbon and oxygen during the Eb irradiation. All of the lenses showed the high optical transmittance above 90%. In this case of B/Es, TES, Ti contact lens, the optical transmittance decreased about 5% with increasing Eb dose in the wavelength of UV-B region. The contact lens modified by Eb irradiation could improve the physical properties of the contact lens such as water content and oxygen transmissibility

  5. Oscillations of oblate drop between heterogeneous plates under uniform electric field

    Science.gov (United States)

    Kashina, M. A.; Alabuzhev, A. A.

    2018-01-01

    The forced oscillations of the incompressible fluid drop under the action of the uniform electric field are considered. In equilibrium, the drop has the form of a circular cylinder bounded axially by the parallel solid planes; the contact angle is right. An incompressible fluid of different density surrounds the drop. The external electric field acts as an external force that causes motion of the contact line. In order to describe this contact line motion, the modified Hocking boundary condition is applied: the velocity of the contact line is proportional to the deviation of the contact angle and the speed of the fast relaxation processes, whose frequency is proportional to twice the frequency of the electric field. The case of heterogeneous plates is investigated. We assume that the Hocking parameter depends on the polar angle in this case. The function describing the change in the coefficient of the interaction between the plate and the fluid (the contact line) is expanded in a series of the Laplace operator eigenfunctions.

  6. 75 FR 61454 - Electricity Advisory Committee

    Science.gov (United States)

    2010-10-05

    ... DEPARTMENT OF ENERGY Electricity Advisory Committee AGENCY: Department of Energy, Office of.... FOR FURTHER INFORMATION CONTACT: David Meyer, Designated Federal Officer, Office of Electricity... following electronic file formats are acceptable: Microsoft Word (.doc), Corel Word Perfect (.wpd), Adobe...

  7. Mapping the electrical properties of large-area graphene

    DEFF Research Database (Denmark)

    Bøggild, Peter; Mackenzie, David; Whelan, Patrick Rebsdorf

    2017-01-01

    The significant progress in terms of fabricating large-area graphene films for transparent electrodes, barriers, electronics, telecommunication and other applications has not yet been accompanied by efficient methods for characterizing the electrical properties of large-area graphene. While......, and a high measurement effort per device. In this topical review, we provide a comprehensive overview of the issues that need to be addressed by any large-area characterisation method for electrical key performance indicators, with emphasis on electrical uniformity and on how this can be used to provide...... a more accurate analysis of the graphene film. We review and compare three different, but complementary approaches that rely either on fixed contacts (dry laser lithography), movable contacts (micro four point probes) and non-contact (terahertz time-domain spectroscopy) between the probe and the graphene...

  8. Au/n-ZnO rectifying contact fabricated with hydrogen peroxide pretreatment

    Science.gov (United States)

    Gu, Q. L.; Cheung, C. K.; Ling, C. C.; Ng, A. M. C.; Djurišić, A. B.; Lu, L. W.; Chen, X. D.; Fung, S.; Beling, C. D.; Ong, H. C.

    2008-05-01

    Au contacts were deposited on n-type ZnO single crystals with and without hydrogen peroxide pretreatment for the ZnO substrate. The Au/ZnO contacts fabricated on substrates without H2O2 pretreatment were Ohmic and those with H2O2 pretreatment were rectifying. With an aim of fabricating a good quality Schottky contact, the rectifying property of the Au/ZnO contact was systemically investigated by varying the treatment temperature and duration. The best performing Schottky contact was found to have an ideality factor of 1.15 and a leakage current of ˜10-7 A cm-2. A multispectroscopic study, including scanning electron microscopy, positron annihilation spectroscopy, deep level transient spectroscopy, x-ray photoelectron spectroscopy, and photoluminescence, showed that the H2O2 treatment removed the OH impurity and created Zn-vacancy related defects hence decreasing the conductivity of the ZnO surface layer, a condition favorable for forming good Schottky contact. However, the H2O2 treatment also resulted in a deterioration of the surface morphology, leading to an increase in the Schottky contact ideality factor and leakage current in the case of nonoptimal treatment time and temperature.

  9. Contact with friction modeling for the study of a bolted junction

    International Nuclear Information System (INIS)

    Lebon, F.; Raous, M.; Boulegues, D.

    1987-01-01

    Many structural analysis problems are concerned by contact phenomena. A good knowledge of the contact displacements and the contact forces between the different parts of the structure is generally essential in structure assembling. The special boundary behaviour has a strong influence on the distribution of the stresses in the whole structure and on his total fiability. The contact behaviour is strongly non linear because of the non penetration conditions on the one hand, and because of the friction on the other. On such problems the real contact zone and the contact forces are unknown 'a priori' and have to be determined during the resolution. The non-penetration is characterized by unilateral conditions and the friction is described by a constitutive law (Coulomb friction law). The application presented here concerns the assembling of the three parts of a bolted junction using a pressing ring. There are three contact zones in this program. A good description of the contact phenomena is essential to ensure tightness. Our methods are based on projection techniques coupled with overrelaxed Gauss-Seidel methods including condensation procedures (reduction of the number of variables). Non linear programming methods and iterative procedures on special boundary conditions are also used. (orig./HP)

  10. Large area optical mapping of surface contact angle.

    Science.gov (United States)

    Dutra, Guilherme; Canning, John; Padden, Whayne; Martelli, Cicero; Dligatch, Svetlana

    2017-09-04

    Top-down contact angle measurements have been validated and confirmed to be as good if not more reliable than side-based measurements. A range of samples, including industrially relevant materials for roofing and printing, has been compared. Using the top-down approach, mapping in both 1-D and 2-D has been demonstrated. The method was applied to study the change in contact angle as a function of change in silver (Ag) nanoparticle size controlled by thermal evaporation. Large area mapping reveals good uniformity for commercial Aspen paper coated with black laser printer ink. A demonstration of the forensic and chemical analysis potential in 2-D is shown by uncovering the hidden CsF initials made with mineral oil on the coated Aspen paper. The method promises to revolutionize nanoscale characterization and industrial monitoring as well as chemical analyses by allowing rapid contact angle measurements over large areas or large numbers of samples in ways and times that have not been possible before.

  11. Electrical and magnetic properties of MgGa_(_2_-_x_)Fe_xO_4 ferrite

    International Nuclear Information System (INIS)

    Ribeiro, Vander Alkmin dos Santos

    2005-01-01

    The ceramics of the type ferrites are materials that present important characteristics of electrical conduction and magnetic properties, as much as material magnetic hard, how much of soft magnetic materials. The cubic ferrites of the spinel structure are oxides with chemical formula MFe_2O_4, where M is a divalent metallic ion. Due to characteristic of the spinel, diverse magnetic configurations are a gotten, depending on the occupation tax of the magnetic ion (in general iron) in each sublattice. The diluted ferrites possess general formula given for: MD_2_-_xFe_xO4, where M and D are diamagnetic ions, being D the ion of substitution doping and x is the concentration of ions of iron (0,002 ≤ x ≤ 0,350). The sample was prepared using ceramics techniques in reaction of solid state and later they were submitted to a magnetic characterization, electric and X-ray diffraction. The results of the magnetic characterization were gotten by a magnetometer of vibrant sample (VSM) EG&G-Princeton Applied Research, model 4500; the characterization for X-ray was used one X-ray diffractometer, model URD 65; of the Seifert & with. Electrical measurements DC were carried through with the use of a unit high-voltage measuring source - Keithley, model 237, where the voltage applied in the samples varied of 0-40 V, the high temperatures. Two types of contacts were used: the arrangement type 'sandwich', being the inferior electrode the proper door-sample, and the superior electrode with ring geometry and a silver was pasted on both sides of the samples to ensure good electrical contact. The magnetic measurements confirm its ferrite characteristics and in the electrical measurements, the electrical conductivity indicated behavior of a semiconductor the high temperatures and the process of electrical conduction thermally presented to be activated. (author)

  12. Investigations of niobium carbide contact for carbon-nanotube-based devices

    International Nuclear Information System (INIS)

    Huang, L; Chor, E F; Wu, Y; Guo, Z

    2010-01-01

    Single-walled carbon nanotube (SWCNT) field effect transistors (FETs) with Nb contacts have been fabricated and upon annealing in vacuum at 700 deg. C for 1 h, niobium carbide (Nb 2 C) is formed at the Nb/SWCNT interface. The Nb 2 C/SWCNT contacts demonstrate a very small Schottky barrier height of ∼ 18 meV (decreased by > 80% relative to that of pristine Nb/SWCNT contact of ∼ 98 meV) to p-type transport. This is attributed to the higher work function of Nb 2 C (∼5.2 eV) than Nb (∼4.3 eV) and better bonding between Nb 2 C and SWCNTs. The performance of Nb 2 C-contacted SWCNT FETs is as follows: the p-channel ON current is as high as 0.5 μA at V DS = 0.1 V, the I ON /I OFF ratio is up to ∼ 10 5 and the subthreshold slope is ∼ 550 mV/dec, which is as good as that of titanium carbide (TiC-) and Pd-contacted SWCNT FETs. Compared with TiC, Nb 2 C contacts yield more unipolar p-type SWCNT FETs, as a result of the Nb 2 Cs higher work function. More importantly, Nb 2 C contacts can form near-ohmic contacts to both large-(≥1.6 nm) and small-diameter (∼1 nm) SWCNTs, while Pd can only form near-ohmic contacts for large-diameter SWCNTs. Moreover, the Nb 2 C contacts demonstrate good stability in air.

  13. Mounting Thin Samples For Electrical Measurements

    Science.gov (United States)

    Matus, L. G.; Summers, R. L.

    1988-01-01

    New method for mounting thin sample for electrical measurements involves use of vacuum chuck to hold a ceramic mounting plate, which holds sample. Contacts on mounting plate establish electrical connection to sample. Used to make electrical measurements over temperature range from 77 to 1,000 K and does not introduce distortions into magnetic field during Hall measurements.

  14. An Experimental Study on Heat Conduction and Thermal Contact Resistance for the AlN Flake

    Directory of Open Access Journals (Sweden)

    Huann-Ming Chou

    2013-01-01

    Full Text Available The electrical technology has been a fast development over the past decades. Moreover, the tendency of microelements and dense division multiplex is significantly for the electrical industries. Therefore, the high thermal conductible and electrical insulating device will be popular and important. It is well known that AlN still maintains stablility in the high temperature. This is quite attractive for the research and development department. Moreover, the thermal conduct coefficient of AlN is several times larger than the others. Therefore, it has been thought to play an important role for the radiator of heat source in the future. Therefore, this paper is focused on the studies of heat conduction and thermal contact resistance between the AlN flake and the copper specimens. The heating temperatures and the contact pressures were selected as the experimental parameters. According to the experimental results, the materials are soft and the real contact areas between the interfaces significantly increase under higher temperatures. As a result, the thermal contact resistance significantly decreases and the heat transfer rate increases with increasing the heating temperature or the contact pressures.

  15. Wear behavior of Cu-Ag-Cr alloy wire under electrical sliding

    International Nuclear Information System (INIS)

    Jia, S.G.; Liu, P.; Ren, F.Z.; Tian, B.H.; Zheng, M.S.; Zhou, G.S.

    2005-01-01

    The wear behavior of a Cu-Ag-Cr alloy contact wire against a copper-base sintered alloy strip was investigated. Wear tests were conducted under laboratory conditions with a special sliding wear apparatus that simulated train motion under electrical current conditions. The initial microstructure of the Cu-Ag-Cr alloy contact wire was analyzed by transmission electron microscopy. Worn surfaces of the Cu-Ag-Cr alloy wire were analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). The results indicate that the wear rate of the Cu-Ag-Cr wire increased with increasing electrical current and sliding. Within the studied range of electrical current, the wear rate increases with increasing electrical current and sliding speed. Compared with the Cu-Ag contact wire under the same testing conditions, the Cu-Ag-Cr alloy wire has much better wear resistance. Adhesive, abrasive, and electrical erosion wear are the dominant mechanisms during the electrical sliding processes

  16. Resistance switching in silver - manganite contacts

    International Nuclear Information System (INIS)

    Gomez-Marlasca, F; Levy, P

    2009-01-01

    We investigate the electric pulse induced resistance switching in a transition metal oxide-metal contact at room temperature - a non volatile, reversible and multilevel memory device. Using a simple multiterminal configuration, we find that the complementary effect -in which the contact resistance of each pulsed electrode displays variations of opposite sign- is strongly influenced by the history of the pulsing procedure. Loops performed by varying the magnitude and sign of the stimulus at each pulsed electrode allow to disentangle their sole contribution at different stages of the process. Electromigration of oxygen ions and vacancies is discussed as participating at the core of the underlying mechanisms for resistance switching.

  17. Resistance switching in silver - manganite contacts

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Marlasca, F [Materia Condensada GIA GAIANN CAC -CNEA, and Instituto de Nanociencia y Nanotecnologia, CNEA, Gral Paz 1499 (1650) San Martin, Pcia. Buenos Aires (Argentina); Levy, P, E-mail: levy@cnea.gov.a

    2009-05-01

    We investigate the electric pulse induced resistance switching in a transition metal oxide-metal contact at room temperature - a non volatile, reversible and multilevel memory device. Using a simple multiterminal configuration, we find that the complementary effect -in which the contact resistance of each pulsed electrode displays variations of opposite sign- is strongly influenced by the history of the pulsing procedure. Loops performed by varying the magnitude and sign of the stimulus at each pulsed electrode allow to disentangle their sole contribution at different stages of the process. Electromigration of oxygen ions and vacancies is discussed as participating at the core of the underlying mechanisms for resistance switching.

  18. Contact engineering for nano-scale CMOS

    KAUST Repository

    Hussain, Muhammad Mustafa

    2012-09-10

    High performance computation with longer battery lifetime is an essential component in our today\\'s digital electronics oriented life. To achieve these goals, field effect transistors based complementary metal oxide semiconductor play the key role. One of the critical requirements of transistor structure and fabrication is efficient contact engineering. To catch up with high performance information processing, transistors are going through continuous scaling process. However, it also imposes new challenges to integrate good contact materials in a small area. This can be counterproductive as smaller area results in higher contact resistance thus reduced performance for the transistor itself. At the same time, discovery of new one or two-dimensional materials like nanowire, nanotube, or atomic crystal structure materials, introduces new set of challenges and opportunities. In this paper, we are reviewing them in a synchronized fashion: fundamentals of contact engineering, evolution into non-planar field effect transistors, opportunities and challenges with one and two-dimensional materials and a new opportunity of contact engineering from device architecture perspective. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The influence of thermal annealing on the characteristics of Au/Ni Schottky contacts on n-type 4 H-SiC

    Science.gov (United States)

    Omotoso, E.; Auret, F. D.; Igumbor, E.; Tunhuma, S. M.; Danga, H. T.; Ngoepe, P. N. M.; Taleatu, B. A.; Meyer, W. E.

    2018-05-01

    The effects of isochronal annealing on the electrical, morphological and structural characteristics of Au/Ni/4 H-SiC Schottky barrier diodes (SBDs) have been studied. Current-voltage ( I- V), capacitance-voltage ( C- V), deep-level transient spectroscopy, scanning electron microscope (SEM) and X-ray diffraction measurements were employed to study the thermal effect on the characteristics of the SBDs. Prior to thermal annealing of Schottky contacts, the I- V measurements results confirmed the good rectification behaviour with ideality factor of 1.06, Schottky barrier height of 1.20 eV and series resistance of 7 Ω. The rectification properties after annealing was maintained up to an annealing temperature of 500 °C, but deviated slightly above 500 °C. The uncompensated ionized donor concentration decreased with annealing temperature, which could be attributed to out-diffusion of the 4 H-SiC into the Au/Ni contacts and decrease in bonding due to formation of nickel silicides. We observed the presence of four deep-level defects with energies 0.09, 0.11, 0.16 and 0.65 eV below the conduction band before and after the isochronal annealing up to 600 °C. The conclusion drawn was that annealing did not affect the number of deep-level defects present in Au/Ni/4 H-SiC contacts. The variations in electrical properties of the devices were attributed to the phase transformations and interfacial reactions that occurred after isochronal annealing.

  20. 1/f Fluctuations in ion implanted metal semiconductor contacts

    International Nuclear Information System (INIS)

    Stojanovic, M.; Marjanovic, N.; Radojevic, B.

    1998-01-01

    Ion implanted Metal-Semiconductor contacts is the most widely used structures in electrical devices. Weather complete devices or some parts are of interest, properties of metal-semiconductor junction strongly influence the quality and external characteristic of electronic devices. That is the reason why special attention is paid to the investigation of factor (noise for example) that could influence given junction. Low frequency 1/f fluctuations (noise) are constantly present in metal-semiconductor junction, so measurement of their level as well as the dependence on factors such as temperature must be taken into account in detailed analysis of electrical characteristics of devices such as contact, nuclear detector with surface barrier etc. In this paper we present the results of low frequency noise level measurements on TiN-Ti-Si structures produced by As + ion implantation. (author)

  1. Investigation into Contact Resistance And Damage of Metal Contacts Used in RF-MEMS Switches

    Science.gov (United States)

    2009-09-01

    mechanically cycled by a piezo - electric transducer (PZT). The resistance through the simulated switch was measured using a four-wire measurement technique...determined that the microwave performance of a closed relay can be modeled as a simple resistor to a first order equivalent [106,108]. The relay resistance is...Therefore, a piezo device capable of precise higher frequency motion was chosen to provide cyclic contact motion. This device needed to be physically small

  2. Role of aluminum in silver paste contact to boron-doped silicon emitters

    Directory of Open Access Journals (Sweden)

    Wei Wu

    2017-01-01

    Full Text Available The addition of aluminum to silver metallization pastes has been found to lower the contact resistivity of a silver metallization on boron-doped silicon emitters for n-type Si solar cells. However, the addition of Al also induces more surface recombination and increases the Ag pattern′s line resistivity, both of which ultimately limit the cell efficiency. There is a need to develop a fundamental understanding of the role that Al plays in reducing the contact resistivity and to explore alternative additives. A fritless silver paste is used to allow direct analysis of the impact of Al on the Ag-Si interfacial microstructure and isolate the influence of Al on the electrical contact from the complicated Ag-Si interfacial glass layer. Electrical analysis shows that in a simplified system, Al decreases the contact resistivity by about three orders of magnitude. Detailed microstructural studies show that in the presence of Al, microscale metallic spikes of Al-Ag alloy and nanoscale metallic spikes of Ag-Si alloy penetrate the surface of the boron-doped Si emitters. These results demonstrate the role of Al in reducing the contact resistivity through the formation of micro- and nano-scale metallic spikes, allowing the direct contact to the emitters.

  3. Feasible homopolar dynamo with sliding liquid-metal contacts

    OpenAIRE

    Priede, Jānis; Avalos-Zúñiga, Raúl

    2013-01-01

    We present a feasible homopolar dynamo design consisting of a flat, multi-arm spiral coil, which is placed above a fast-spinning metal ring and connected to the latter by sliding liquid-metal electrical contacts. Using a simple, analytically solvable axisymmetric model, we determine the optimal design of such a setup. For small contact resistance, the lowest magnetic Reynolds number, Rm~34.6, at which the dynamo can work, is attained at the optimal ratio of the outer and inner radii of the ri...

  4. All-Solid-State Sodium-Selective Electrode with a Solid Contact of Chitosan/Prussian Blue Nanocomposite

    Directory of Open Access Journals (Sweden)

    Tanushree Ghosh

    2017-11-01

    Full Text Available Conventional ion-selective electrodes with a liquid junction have the disadvantage of potential drift. All-solid-state ion-selective electrodes with solid contact in between the metal electrode and the ion-selective membrane offer high capacitance or conductance to enhance potential stability. Solution-casted chitosan/Prussian blue nanocomposite (ChPBN was employed as the solid contact layer for an all-solid-state sodium ion-selective electrode in a potentiometric sodium ion sensor. Morphological and chemical analyses confirmed that the ChPBN is a macroporous network of chitosan that contains abundant Prussian blue nanoparticles. Situated between a screen-printed carbon electrode and a sodium-ionophore-filled polyvinylchloride ion-selective membrane, the ChPBN layer exhibited high redox capacitance and fast charge transfer capability, which significantly enhanced the performance of the sodium ion-selective electrode. A good Nernstian response with a slope of 52.4 mV/decade in the linear range from 10−4–1 M of NaCl was observed. The stability of the electrical potential of the new solid contact was tested by chronopotentiometry, and the capacitance of the electrode was 154 ± 4 µF. The response stability in terms of potential drift was excellent (1.3 µV/h for 20 h of continuous measurement. The ChPBN proved to be an efficient solid contact to enhance the potential stability of the all-solid-state ion-selective electrode.

  5. Reduction of Ag–Si electrical contact resistance by selective RF heating

    International Nuclear Information System (INIS)

    De Wijs, W-J A; Ljevar, S; Van de Sande, M J; De With, G

    2016-01-01

    Fast and selective inductive heating of pre-sintered silver lines on silicon as present in solar cells using 27 MHz radio-frequency inductive fields is shown. IR measurements of silicon substrates show that above 450 °C the heating rate of the samples increases sharply, indicating that both the silver and the silicon are heated. By moving the substrate with respect to the RF antenna and modulation of the RF field, silicon wafers were heated reproducibly above 450 °C with heating rates in excess of 200 °C s −1 . Furthermore, selective heating of lines of pre-sintered silver paste was shown below the 450 °C threshold on silicon substrates. The orientation of the silver tracks relative to the RF antenna appeared to be crucial for homogeneity of heating. Transmission line measurements show a clear effect on contact formation between the silver lines and the silicon substrate. To lower the contact resistance sufficiently for industrial feasibility, a high temperature difference between the Si substrate and the Ag tracks is required. The present RF heating process does not match the time scale needed for contact formation between silver and silicon sufficiently, but the significantly improved process control achieved shows promise for applications requiring fast heating and cooling rates. (paper)

  6. Intrinsically safe electrical installations, auxiliary circuits and electric communication equipment

    Energy Technology Data Exchange (ETDEWEB)

    Herms, C D

    1981-11-19

    Technical progress has not stopped short of electrical systems in mining, so that three new chapters are new included in the VDE regulations leaflet No. 0118 on 'Installation of electrical systems in underground coal mining'. The regulations on intrinsically safe electric systems, auxiliary circuits and communication systems are briefly described, and grounds for the regulations are presented. The regulations already take account of European regulations on intrinsic safety which will soon be published in a European Regulation on Mine Explosions. In the chapters on auxiliary circuits and communication systems, protection against direct contact, fires, and explosions is discussed as well as the further goal of reliable signal transmission.

  7. Dynamic Model of Contact Interface between Stator and Rotor

    Directory of Open Access Journals (Sweden)

    ZengHui Zhao

    2013-01-01

    Full Text Available Based on the equivalent principle, a linear spring contact model was established for the friction layer between stator and rotor. Different contact conditions were described by a distance index δ. Detailed analysis of the nonlinear contact behavior especially the static and dynamic slipping was carried on using a space-time equation. A contact deflection angle was proposed to quantitatively express the influence of friction force on the output performance. A more precision simulation model was established based on the theoretical analysis, and influences of different preload pressures and elastic modulus Em of friction layer on output performance were analyzed. The results showed the simulation results had very good consistency with experimental results, and the model could well reflect the output characteristics of contact interface.

  8. The Use of Energy Storage Systems for Supporting the Voltage Needs of Urban and Suburban Railway Contact Lines

    Directory of Open Access Journals (Sweden)

    Enrico Pagano

    2013-03-01

    Full Text Available The paper aims to contribute to the use of electric double layer capacitor (EDLC sets for boosting voltages of contact lines in urban and suburban railway traction systems. Different electrical configurations of contact lines are considered and investigated. For each of them, proper mathematical models are suggested to evaluate the electrical performances of the contact lines. They give rise, also, to sample design procedures for the sizing of the most appropriate energy storage systems, to be distributed along the lines, for boosting line voltages and avoiding undesired voltage drops. A numerical example based on the “Cumana” suburban Naples railway network is presented to give an idea of the weights and sizes of electric double layer capacitors needed to boost the voltage of a sample contact line. In particular, three different EDLC systems, for a overall installed energy of 9.6 kWh, have been placed nearby the stations presenting the highest voltage drops during the most representative situation of trains’ service. The new voltage drop is equal to 32% of that obtained in absence of EDLCs.

  9. The Use of Energy Storage Systems for Supporting the Voltage Needs of Urban and Suburban Railway Contact Lines

    Energy Technology Data Exchange (ETDEWEB)

    Iannuzzi, Diago [University of Federico II, Naples (Italy). Electrical Engineering Department; Pagano, Enrico [University of Federico II, Naples (Italy). Electrical Engineering Department; Tricoli, Pietro [University of Birmingham (United Kingdom). School of Electronic, Electrical and Computer Engineering

    2013-04-15

    The paper aims to contribute to the use of electric double layer capacitor (EDLC) sets for boosting voltages of contact lines in urban and suburban railway traction systems. Different electrical configurations of contact lines are considered and investigated. For each of them, proper mathematical models are suggested to evaluate the electrical performances of the contact lines. They give rise, also, to sample design procedures for the sizing of the most appropriate energy storage systems, to be distributed along the lines, for boosting line voltages and avoiding undesired voltage drops. A numerical example based on the “Cumana” suburban Naples railway network is presented to give an idea of the weights and sizes of electric double layer capacitors needed to boost the voltage of a sample contact line. In particular, three different EDLC systems, for a overall installed energy of 9.6 kWh, have been placed nearby the stations presenting the highest voltage drops during the most representative situation of trains’ service. The new voltage drop is equal to 32% of that obtained in absence of EDLCs.

  10. Derivation of the electric dipole--dipole interaction as an electric hyperfine interaction

    International Nuclear Information System (INIS)

    Parker, G.W.

    1986-01-01

    The electric dipole--dipole interaction is derived by assuming that the electron and proton in hydrogen have intrinsic electric dipole moments that interact to give an electric hyperfine interaction. The electric field at the proton due to the electron's presumed dipole moment then gives rise to a contact type term for l = 0 and the normal dipole--dipole term for lnot =0. When combined with our previous derivation of the magnetic hyperfine interaction [Am. J. Phys. 52, 36 (1984)], which used a similar approach, these derivations provide a unified treatment of the interaction of electric and magnetic dipoles. As an application of these results, the product of the electron's and proton's dipole moments is estimated to be less than 10 -29 e 2 cm 2

  11. Kinetics of chloride ion adsorption on stainless alloys by in situ contact electric resistance technique

    International Nuclear Information System (INIS)

    Marichev, V.A.

    2008-01-01

    As the primary reason for pitting of stainless alloys, chloride adsorption is not adequately studied, e.g. kinetic investigations of chloride adsorption are actually absent. We discuss and partly reconsider some well-known facts (e.g. halides order: Cl - > Br - > I - ), disputed points (chloride penetration in passive film), and still unknown aspects of chloride adsorption. For the first time, we report kinetic studies of chloride adsorption on stainless alloys by in situ contact electric resistance technique. The peak-like character of kinetic curves has been found for all studied stainless alloys, but not for pure iron and nickel. This has been considered as a sequence of the substantial charge transfer during chloride adsorption. Opposite to typical d metals, stainless materials are alloys of early and late transition metals having unfilled d-bands with increased number of d-electron vacancies. Such electronic structure is favorable for adsorption of electron donating adsorbates like halide ions. Experimental data of this work are more compatible with possibility of chloride penetration into the passive films on stainless alloys that also might involve a transformation of primary oxy-hydroxide films into oxy-chloride films

  12. Epidemic contact tracing via communication traces.

    Directory of Open Access Journals (Sweden)

    Katayoun Farrahi

    Full Text Available Traditional contact tracing relies on knowledge of the interpersonal network of physical interactions, where contagious outbreaks propagate. However, due to privacy constraints and noisy data assimilation, this network is generally difficult to reconstruct accurately. Communication traces obtained by mobile phones are known to be good proxies for the physical interaction network, and they may provide a valuable tool for contact tracing. Motivated by this assumption, we propose a model for contact tracing, where an infection is spreading in the physical interpersonal network, which can never be fully recovered; and contact tracing is occurring in a communication network which acts as a proxy for the first. We apply this dual model to a dataset covering 72 students over a 9 month period, for which both the physical interactions as well as the mobile communication traces are known. Our results suggest that a wide range of contact tracing strategies may significantly reduce the final size of the epidemic, by mainly affecting its peak of incidence. However, we find that for low overlap between the face-to-face and communication interaction network, contact tracing is only efficient at the beginning of the outbreak, due to rapidly increasing costs as the epidemic evolves. Overall, contact tracing via mobile phone communication traces may be a viable option to arrest contagious outbreaks.

  13. Epidemic contact tracing via communication traces.

    Science.gov (United States)

    Farrahi, Katayoun; Emonet, Rémi; Cebrian, Manuel

    2014-01-01

    Traditional contact tracing relies on knowledge of the interpersonal network of physical interactions, where contagious outbreaks propagate. However, due to privacy constraints and noisy data assimilation, this network is generally difficult to reconstruct accurately. Communication traces obtained by mobile phones are known to be good proxies for the physical interaction network, and they may provide a valuable tool for contact tracing. Motivated by this assumption, we propose a model for contact tracing, where an infection is spreading in the physical interpersonal network, which can never be fully recovered; and contact tracing is occurring in a communication network which acts as a proxy for the first. We apply this dual model to a dataset covering 72 students over a 9 month period, for which both the physical interactions as well as the mobile communication traces are known. Our results suggest that a wide range of contact tracing strategies may significantly reduce the final size of the epidemic, by mainly affecting its peak of incidence. However, we find that for low overlap between the face-to-face and communication interaction network, contact tracing is only efficient at the beginning of the outbreak, due to rapidly increasing costs as the epidemic evolves. Overall, contact tracing via mobile phone communication traces may be a viable option to arrest contagious outbreaks.

  14. Interfacial durability and electrical properties of CNT or ITO/PVDF nanocomposites for self-sensor and micro actuator applications

    International Nuclear Information System (INIS)

    Park, Joung-Man; Gu, Ga-Young; Wang, Zuo-Jia; Kwon, Dong-Jun; DeVries, K. Lawrence

    2013-01-01

    Interfacial durability and electrical properties of CNT (carbon nanotube) or ITO (indium tin oxide) coated PVDF (poly(vinylidene fluoride)) nanocomposites were investigated for self-sensor and micro-actuator applications. The electrical resistivity of nanocomposites and the durability of interfacial adhesion were measured using a four points method during cyclic fatigue loading. Although the CNT/PVDF nanocomposites exhibited lower electrical resistivity due to the inherently low resistivity of CNT, both composite types showed good self-sensing performance. The durability of the adhesion at the interface was also good for both CNT and ITO/PVDF nanocomposites. Static contact angle, surface energy, work of adhesion, and spreading coefficient between either CNT or ITO and PVDF were determined as checks to verify the durability of the interfacial adhesion. The actuation performance of CNT or ITO coated PVDF specimens was determined through measurements of the induced displacement using a laser displacement sensor, while both the frequency and voltage were changed. The displacement of these actuated nanocomposites increased with increasing voltage and decreased with increasing frequency. CNT/PVDF nanocomposites exhibited better performance as self-sensors and micro-actuators than did ITO/PVDF nanocomposites.

  15. Non-Contact Circuit for Real-Time Electric and Magnetic Field Measurements

    Science.gov (United States)

    2015-10-01

    response, noise spectral density, and dynamic range. 15. SUBJECT TERMS electric field, magnetic field, 1Wire, low-power microcontroller 16. SECURITY...4 Fig. 4 Altium DesignerTM schematic showing the pin connections of our MSP430 microcontroller ...electrical characteristics of the attached cable. 2. Methods and Procedures The circuit’s primary design consists of a microcontroller , 8-channel digital-to

  16. Mechanisms of Contact Electrification at Aluminum-Polytetrafluoroethylene and Polypropylene-Water

    KAUST Repository

    Nauruzbayeva, Jamilya

    2017-01-01

    of electrons, but a comprehensive understanding of contact electrification at interfaces of electrical insulators, such as air, water, polytetrafluoroethylene (PTFE), polypropylene remains incomplete. In fact, a variety of mechanisms responsible for transfer

  17. A Feasibility Study on the Worn Area Estimation by Measuring a Contact Resistance (I)

    International Nuclear Information System (INIS)

    Lee, Young-Ho; Kim, Hyung-Kyu

    2007-01-01

    In order to improve the fretting wear resistance of the nuclear fuel rod with considering the effect of the contacting spring shape, it is necessary to examine the formation procedure of the worn area during the fretting wear experiments with including its shape, size and the debris removal path. This is because the wear volume and the maximum wear depth are dominantly affected by the worn area and the wear resistance of the nuclear fuel rod was dominantly affected by the spring shape rather than the test environment and the contact mode (i.e. impact, sliding, rubbing, etc.). Unfortunately, it is almost impossible to archive the size and shape of the worn area on real-time basis because the contact surfaces are always hidden. If we could measure the worn area properties during fretting wear tests, it enables us to promptly estimate the wear resistance or behavior with various contacting spring shapes. Generally, fretting wear degradation is generated by the localized plastic deformation, fracture and finally detachment of wear debris. Generally, wear debris easily oxidized by frictional heat, test environment, etc. From the previous studies, most of the wear debris was detached from the worn surface in the distilled water condition while the wear debris in the dry condition remained on or adhered to the worn surface. At this time, it is reasonable that the accumulated wear debris on the worn surface is existed in the form of oxide. If small amount of electric current was applied between the contacting surfaces, wear debris could be an obstacle to flow the electric current. This means that the variation of the contact resistance under constant electric current during the fretting wear tests has much information on the formation of the worn area even though the applying current could accelerate the oxidation of the generated wear debris. So, in this study, fretting wear tests have been performed with applying an electric current in room temperature air in order to

  18. Underwater sediment-contact radiation survey method

    International Nuclear Information System (INIS)

    Lee, D.R.; St. Aubin, M.; Welch, S.J.

    1991-01-01

    The authors are striving to produce a practical system for mapping lateral distributions in gamma activity on submerged sediments. This is in response to the need for quality control and interpretation of data obtainable by sediment sampling and analyses near nuclear utilities. A prototype gamma probe has been constructed and tested. The prototype is essentially a background survey meter packaged in a 53-cm-long x 5.4-cm-diam waterproof vehicle. This usage-shaped vehicle is connected to a cable for towing in contact with bottom sediments of lakes, rivers, and coastal waters. This vehicle, or sediment probe as it is called, was initially developed for measuring sediment electrical conductances, a parameter that can be used to locate underwater areas of groundwater and contaminant upwelling. During towing, the probe does not roll or twist around its longitudinal axis by more than 10 deg, so that sensors, which have been fixed within the vehicle, can be oriented to look up, down, or sideways. In over 450 lin-km of underwater survey, only a single sediment probe has been irretrievably snagged on sunken rocks or other debris. Work in the Ottawa River near the Chalk River Laboratories has shown good agreement among point measurements of river sediment with continuous measurements using the moving probe

  19. Influence of Asymmetric Contact Form on Contact Resistance and Schottky Barrier, and Corresponding Applications of Diode.

    Science.gov (United States)

    Zhao, Yudan; Xiao, Xiaoyang; Huo, Yujia; Wang, Yingcheng; Zhang, Tianfu; Jiang, Kaili; Wang, Jiaping; Fan, Shoushan; Li, Qunqing

    2017-06-07

    We have fabricated carbon nanotube and MoS 2 field-effect transistors with asymmetric contact forms of source-drain electrodes, from which we found the current directionality of the devices and different contact resistances under the two current directions. By designing various structures, we can conclude that the asymmetric electrical performance was caused by the difference in the effective Schottky barrier height (Φ SB ) caused by the different contact forms. A detailed temperature-dependent study was used to extract and compare the Φ SB for both contact forms of CNT and MoS 2 devices; we found that the Φ SB for the metal-on-semiconductor form was much lower than that of the semiconductor-on-metal form and is suitable for all p-type, n-type, or ambipolar semiconductors. This conclusion is meaningful with respect to the design and application of nanomaterial electronic devices. Additionally, using the difference in barrier height caused by the contact forms, we have also proposed and fabricated Schottky barrier diodes with a current ratio up to 10 4 ; rectifying circuits consisting of these diodes were able to work in a wide frequency range. This design avoided the use of complex chemical doping or heterojunction methods to achieve fundamental diodes that are relatively simple and use only a single material; these may be suitable for future application in nanoelectronic radio frequency or integrated circuits.

  20. Electrical properties of sputtered-indium tin oxide film contacts on n-type GaN

    International Nuclear Information System (INIS)

    Hwang, J. D.; Lin, C. C.; Chen, W. L.

    2006-01-01

    A transparent indium tin oxide (ITO) Ohmic contact on n-type gallium nitride (GaN) (dopant concentration of 2x10 17 cm -3 ) having a specific contact resistance of 4.2x10 -6 Ω cm 2 was obtained. In this study, ITO film deposition method was implemented by sputtering. We found that the barrier height, 0.68 eV, between ITO and n-type GaN is the same for both evaporated- and sputtered-ITO films. However, the 0.68 eV in barrier height renders the evaporated-ITO/n-GaN Schottky contact. This behavior is different from that of our sputtered-ITO/n-GaN, i.e., Ohmic contact. During sputtering, oxygen atoms on the GaN surface were significantly removed, thereby resulting in an improvement in contact resistance. Moreover, a large number of nitrogen (N) vacancies, caused by sputtering, were produced near the GaN surface. These N vacancies acted as donors for electrons, thus affecting a heavily doped n-type formed at the subsurface below the sputtered ITO/n-GaN. Both oxygen removal and heavy doping near the GaN surface, caused by N vacancies, in turn led to a reduction in contact resistivity as a result of electrons tunneling across the depletion layer from the ITO to the n-type GaN. All explanations are given by Auger analysis and x-ray photoelectron spectroscopy

  1. Fatigue life prediction method for contact wire using maximum local stress

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Seok; Haochuang, Li; Seok, Chang Sung; Koo, Jae Mean [Sungkyunkwan University, Suwon (Korea, Republic of); Lee, Ki Won; Kwon, Sam Young; Cho, Yong Hyeon [Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2015-01-15

    Railway contact wires supplying electricity to trains are exposed to repeated mechanical strain and stress caused by their own weight and discontinuous contact with a pantograph during train operation. Since the speed of railway transportation has increased continuously, railway industries have recently reported a number of contact wire failures caused by mechanical fatigue fractures instead of normal wear, which has been a more common failure mechanism. To secure the safety and durability of contact wires in environments with increased train speeds, a bending fatigue test on contact wire has been performed. The test equipment is too complicated to evaluate the fatigue characteristics of contact wire. Thus, the axial tension fatigue test was performed for a standard specimen, and the bending fatigue life for the contact wire structure was then predicted using the maximum local stress occurring at the top of the contact wire. Lastly, the tested bending fatigue life of the structure was compared with the fatigue life predicted by the axial tension fatigue test for verification.

  2. Fatigue life prediction method for contact wire using maximum local stress

    International Nuclear Information System (INIS)

    Kim, Yong Seok; Haochuang, Li; Seok, Chang Sung; Koo, Jae Mean; Lee, Ki Won; Kwon, Sam Young; Cho, Yong Hyeon

    2015-01-01

    Railway contact wires supplying electricity to trains are exposed to repeated mechanical strain and stress caused by their own weight and discontinuous contact with a pantograph during train operation. Since the speed of railway transportation has increased continuously, railway industries have recently reported a number of contact wire failures caused by mechanical fatigue fractures instead of normal wear, which has been a more common failure mechanism. To secure the safety and durability of contact wires in environments with increased train speeds, a bending fatigue test on contact wire has been performed. The test equipment is too complicated to evaluate the fatigue characteristics of contact wire. Thus, the axial tension fatigue test was performed for a standard specimen, and the bending fatigue life for the contact wire structure was then predicted using the maximum local stress occurring at the top of the contact wire. Lastly, the tested bending fatigue life of the structure was compared with the fatigue life predicted by the axial tension fatigue test for verification.

  3. Steps toward an all-electric spin valve using side-gated quantum point contacts with lateral spin-orbit coupling

    Science.gov (United States)

    Bhandari, Nikhil; Dutta, Maitreya; Charles, James; Newrock, Richard S.; Cahay, Marc; Herbert, Stephen T.

    2013-03-01

    Spin-based electronics or ‘spintronics’ has been a topic of interest for over two decades. Electronic devices based on the manipulation of the electron spin are believed to offer the possibility of very small, non-volatile and ultrafast devices with very low power consumption. Since the proposal of a spin-field-effect transistor (SpinFET) by Datta and Das in 1990, many attempts have been made to achieve spin injection, detection and manipulation in semiconductor materials either by incorporating ferromagnetic materials into device architectures or by using external magnetic fields. This approach has significant design complexities, partly due to the influence of stray magnetic fields on device operation. In addition, magnetic electrodes can have magneto-resistance and spurious Hall voltages that can complicate device performance. To date, there has been no successful report of a working Datta-Das SpinFET. Over the last few years we have investigated an all-electric means of manipulating spins, one that only relies on electric fields and voltages and not on ferromagnetic materials or external magnetic fields. We believe we have found a pathway toward this goal, using in-plane side-gated quantum point contacts (QPCs) that rely on lateral spin-orbit coupling to create spin polarization. In this paper we discuss several aspects of our work, beginning with our finding what we believe is nearly complete spin-polarization in InAs QPCs by purely electrical means, our theoretical work to understand the basic mechanisms leading to that situation (asymmetric lateral confinement, lateral spin-orbit coupling and a strong e-e interaction), and our recent work extending the effort to GaAs and to dual QPC systems where one QPC acts as a polarizer and the other as an analyzer. Keynote talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology, 30 October-2 November 2012, Ha Long, Vietnam.

  4. Steps toward an all-electric spin valve using side-gated quantum point contacts with lateral spin–orbit coupling

    International Nuclear Information System (INIS)

    Bhandari, Nikhil; Dutta, Maitreya; Charles, James; Cahay, Marc; Newrock, Richard S; Herbert, Stephen T

    2013-01-01

    Spin-based electronics or ‘spintronics’ has been a topic of interest for over two decades. Electronic devices based on the manipulation of the electron spin are believed to offer the possibility of very small, non-volatile and ultrafast devices with very low power consumption. Since the proposal of a spin-field-effect transistor (SpinFET) by Datta and Das in 1990, many attempts have been made to achieve spin injection, detection and manipulation in semiconductor materials either by incorporating ferromagnetic materials into device architectures or by using external magnetic fields. This approach has significant design complexities, partly due to the influence of stray magnetic fields on device operation. In addition, magnetic electrodes can have magneto-resistance and spurious Hall voltages that can complicate device performance. To date, there has been no successful report of a working Datta–Das SpinFET. Over the last few years we have investigated an all-electric means of manipulating spins, one that only relies on electric fields and voltages and not on ferromagnetic materials or external magnetic fields. We believe we have found a pathway toward this goal, using in-plane side-gated quantum point contacts (QPCs) that rely on lateral spin–orbit coupling to create spin polarization. In this paper we discuss several aspects of our work, beginning with our finding what we believe is nearly complete spin-polarization in InAs QPCs by purely electrical means, our theoretical work to understand the basic mechanisms leading to that situation (asymmetric lateral confinement, lateral spin–orbit coupling and a strong e–e interaction), and our recent work extending the effort to GaAs and to dual QPC systems where one QPC acts as a polarizer and the other as an analyzer. (review)

  5. Low-resistance and highly transparent Ag/IZO ohmic contact to p-type GaN

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han-Ki, E-mail: imdlhkkim@khu.ac.k [Department of Display Materials Engineering, Kyung Hee University, 1 Seochoen-dong, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of); Yi, Min-Su [Department of Materials Science and Engineering, Kyungpook National University, Sangju, Gyeongbuk, 742-711 (Korea, Republic of); Lee, Sung-Nam [Department of Engineering in Energy and Applied Chemistry, Silla University, Busan, 617-736 (Korea, Republic of)

    2009-05-29

    The electrical, structural, and optical characteristics of Ag/ZnO-doped In{sub 2}O{sub 3} (IZO) ohmic contacts to p-type GaN:Mg (2.5 x 10{sup 17} cm{sup -3}) were investigated. The Ag and IZO (10 nm/50 nm) layers were prepared by thermal evaporation and linear facing target sputtering, respectively. Although the as-deposited and 400 {sup o}C annealed samples showed rectifying behavior, the 500 and 600 {sup o}C annealed samples showed linear I-V characteristics indicative of the formation of an ohmic contact. The annealing of the contact at 600 {sup o}C for 3 min in a vacuum ({approx} 10{sup -3} Torr) resulted in the lowest specific contact resistivity of 1.8 x 10{sup -4} {Omega}.cm{sup 2} and high transparency of 78% at a wavelength of 470 nm. Using Auger electron spectroscopy, depth profiling and synchrotron X-ray scattering analysis, we suggested a possible mechanism to explain the annealing dependence of the electrical properties of the Ag/IZO contacts.

  6. Controllable Electrical Contact Resistance between Cu and Oriented-Bi2Te3 Film via Interface Tuning.

    Science.gov (United States)

    Kong, Xixia; Zhu, Wei; Cao, Lili; Peng, Yuncheng; Shen, Shengfei; Deng, Yuan

    2017-08-02

    The contact resistance between metals and semiconductors has become critical for the design of thin-film thermoelectric devices with their continuous miniaturization. Herein, we report a novel interface tuning method to regulate the contact resistance at the Bi 2 Te 3 -Cu interface, and three Bi 2 Te 3 films with different oriented microstructures are obtained. The lowest contact resistivity (∼10 -7 Ω cm 2 ) is observed between highly (00l) oriented Bi 2 Te 3 and Cu film, nearly an order of magnitude lower than other orientations. This significant decrease of contact resistivity is attributed to the denser film connections, lower lattice misfit, larger effective conducting contact area, and smaller width of the surface depletion region. Meanwhile, our results show that the reduction of contact resistance has little dependence on the interfacial diffusion based on the little change in contact resistivity after the introduction of an effective Ti barrier layer. Our work provides a new idea for the mitigation of contact resistivity in thin-film thermoelectric devices and also gives certain guidance for the size design of the next-level miniaturized devices.

  7. Economic Impact Assessment of Wind Power Integration: A Quasi-Public Goods Property Perspective

    Directory of Open Access Journals (Sweden)

    Huiru Zhao

    2015-08-01

    Full Text Available The integration of wind power into power grid will bring some impacts on the multiple subjects of electric power system. Economic impacts of wind power integration on multiple subjects of China’s electric power system were quantitatively assessed from Quasi-public goods property perspective in this paper. Firstly, the Quasi-public goods property of transmission services provided by power grid corporations was elaborated. Secondly, the multiple subjects of China’s electric power system, which include electricity generation enterprises (EGEs, power grid corporations (PGCs, electricity consumers (ECs, and environment, were detailed analyzed. Thirdly, based on the OPF-based nodal price model and transmission service cost allocation model, the economic impact assessment model of wind power integration was built from Quasi-public goods property perspective. Then, the IEEE-24 bus system employed in this paper was introduced according to current status of China’s electric power system, and the modeling of wind turbine was also introduced. Finally, the simulation analysis was performed, and the economic impacts of wind power integration on EGEs, PGCs, ECs and Environment were calculated. The results indicate, from Quasi-public goods property perspective, the wind power integration will bring positive impacts on EGEs, PGCs and Environment, while negative impacts on ECs. The findings can provide references for power system managers, energy planners, and policy makers.

  8. Electrical Resistivity Measurement of Petroleum Coke Powder by Means of Four-Probe Method

    Science.gov (United States)

    Rouget, G.; Majidi, B.; Picard, D.; Gauvin, G.; Ziegler, D.; Mashreghi, J.; Alamdari, H.

    2017-10-01

    Carbon anodes used in Hall-Héroult electrolysis cells are involved in both electrical and chemical processes of the cell. Electrical resistivity of anodes depends on electrical properties of its constituents, of which carbon coke aggregates are the most prevalent. Electrical resistivity of coke aggregates is usually characterized according to the ISO 10143 standardized test method, which consists of measuring the voltage drop in the bed of particles between two electrically conducing plungers through which the current is also applied. Estimation of the electrical resistivity of coke particles from the resistivity of particle bed is a challenging task and needs consideration of the contribution of the interparticle void fraction and the particle/particle contact resistances. In this work, the bed resistivity was normalized by subtracting the interparticle void fraction. Then, the contact size was obtained from discrete element method simulation and the contact resistance was calculated using Holm's theory. Finally, the resistivity of the coke particles was obtained from the bed resistivity.

  9. Temperature dependence of contact resistance at metal/MWNT interface

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Eui; Moon, Kyoung-Seok; Sohn, Yoonchul, E-mail: yoonchul.son@samsung.com [Materials Research Center, Samsung Advanced Institute of Technology, Samsung Electronics, Suwon 443-803 (Korea, Republic of)

    2016-07-11

    Although contact resistance of carbon nanotube (CNT) is one of the most important factors for practical application of electronic devices, a study regarding temperature dependence on contact resistance of CNTs with metal electrodes has not been found. Here, we report an investigation of contact resistance at multiwalled nanotube (MWNT)/Ag interface as a function of temperature, using MWNT/polydimethylsiloxane (PDMS) composite. Electrical resistance of MWNT/PDMS composite revealed negative temperature coefficient (NTC). Excluding the contact resistance with Ag electrode, the NTC effect became less pronounced, showing lower intrinsic resistivity with the activation energy of 0.019 eV. Activation energy of the contact resistance of MWNT/Ag interface was determined to be 0.04 eV, two times larger than that of MWNT-MWNT network. The increase in the thermal fluctuation assisted electron tunneling is attributed to conductivity enhancement at both MWNT/MWNT and MWNT/Ag interfaces with increasing temperature.

  10. Contact Modelling in Resistance Welding, Part II: Experimental Validation

    DEFF Research Database (Denmark)

    Song, Quanfeng; Zhang, Wenqi; Bay, Niels

    2006-01-01

    Contact algorithms in resistance welding presented in the previous paper are experimentally validated in the present paper. In order to verify the mechanical contact algorithm, two types of experiments, i.e. sandwich upsetting of circular, cylindrical specimens and compression tests of discs...... with a solid ring projection towards a flat ring, are carried out at room temperature. The complete algorithm, involving not only the mechanical model but also the thermal and electrical models, is validated by projection welding experiments. The experimental results are in satisfactory agreement...

  11. Thermometry in dielectrophoresis chips for contact-free cell handling

    International Nuclear Information System (INIS)

    Jaeger, M S; Mueller, T; Schnelle, T

    2007-01-01

    Cell biology applications, protocols in immunology and stem cell research, require that individual cells are handled under strict control of their contacts to other cells or synthetic surfaces. Dielectrophoresis (DEP) in microfluidic chips is an established technique to investigate, group, wash, cultivate and sort cells contact-free under physiological conditions: microelectrode octode cages, versatile dielectrophoretic elements energized with radio frequency electric fields, stably trap single cells or cellular aggregates. For medical applications and cell cultivation, possible side effects of the dielectrophoretic manipulation, such as membrane polarization and Joule heating, have to be quantified. Therefore, we characterized the electric field-induced warming in dielectrophoretic cages using ohmic resistance measurements, fluorometry, liquid crystal beads, infra-red thermography and bubble size thermometry. We compare the results of these techniques with respect to the influences of voltage, electric conductivity of buffer, frequency, cage size and electrode surface. We conclude that in the culture medium thermal effects may be neglected if low voltages and an electric field-reducing phase pattern are used. Our experimental results provide explicit values for estimating the thermal effect on dielectrophoretically caged cells and show that Joule heating is best minimized by optimizing the cage geometry and reducing the buffer conductivity. The results may additionally serve to evaluate and improve theoretical predictions on field-induced effects. Based on present-day chip processing possibilities, DEP is well suited for the manipulation of cells

  12. Corrosion failure analysis of hearing aid battery-spring contacts

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Ambat, Rajan

    2017-01-01

    the susceptibility of these systems to galvanic corrosion. In this study, traditional behind the ear (BTE) hearing aid systems, which failed during service were analysed. Failure analysis was performed on the dome type battery-spring contact systems. The morphology of the contact areas was observed using scanning......Reliability of low power electrical contacts such as those in hearing aid battery-spring systems is a very critical aspect for the overall performance of the device. These systems are exposed to certain harsh environments like high humidity and elevated temperatures, and often in combination...... electron microscopy, and the compositional analysis of the corrosion products and contaminants was performed using energy dispersive X-ray spectroscopy. Wear track morphology was observed on the contact points, and the top coating on the dome was worn out exposing the substrate spring material...

  13. Establishing an upper bound on contact resistivity of ohmic contacts to n-GaN nanowires

    International Nuclear Information System (INIS)

    Blanchard, Paul; Bertness, Kris A; Harvey, Todd; Sanford, Norman

    2014-01-01

    Contact resistivity ρ c is an important figure of merit in evaluating and improving the performance of electronic and optoelectronic devices. Due to the small size, unique morphology, and uncertain transport properties of semiconductor nanowires (NWs), measuring ρ c of contacts to NWs can be particularly challenging. In this work, Si-doped n-GaN NWs were grown by molecular beam epitaxy. Four-contact structures with 20 nm Ti/200 nm Al contacts were fabricated on individual NWs by photolithography, and the contacts were annealed to achieve ohmic behavior. Two-point resistances R 23  and four-point collinear resistances R 23collinear  were measured between the middle two contacts on each NW. These resistances were then modeled by taking into account the non-uniform distribution of current flow along the length of each contact. Contrary to the assumption that the resistance difference R 23 −R 23collinear  is equal to the total contact resistance R c , the distributed-current-flow contact model shows that R 23 −R 23collinear  ≪ R c when ρ c is sufficiently small. Indeed, the measured R 23 −R 23collinear  was so small in these devices that it was within the measurement uncertainty, meaning that it was not possible to directly calculate ρ c from these data. However, it was possible to calculate an upper bound on ρ c for each device based on the largest possible value of R 23 −R 23collinear . In addition, we took into account the large uncertainties in the NW transport properties by numerically maximizing ρ c with respect to the uncertainty range of each measured and assumed parameter in the contact model. The resulting upper limits on ρ c ranged from 4.2 × 10 −6  to 7.6 × 10 −6  Ω cm 2 , indicating that 20 nm Ti/200 nm Al is a good choice of ohmic contact for moderately-doped n-GaN NWs. The measurement and numerical analysis demonstrated here offer a general approach to modeling ohmic contact resistivity via NW four

  14. Electrostatics and quantum efficiency simulations of asymmetrically contacted carbon nanotube photodetector

    Directory of Open Access Journals (Sweden)

    Xiao Guo

    2017-10-01

    Full Text Available Electrostatic properties of asymmetrically contacted carbon nanotube barrier-free bipolar diode photodetector are studied by solving the Poisson equation self-consistently with equilibrium carrier statistics. For electric field parallel to tube’s axis, the maximum electric field occurs near contact but decays rapidly in a few nanometers, followed by a slowly increasing trend when it extends to the center of channel. By considering the field ionization and the diffusion effect of exciton, a model of estimation on quantum efficiency for the device is made. We find that the quantum efficiency increases with increasing exciton lifetime, decreasing diffusion constant and channel length. For devices with a channel length shorter than 50 nm, the contribution of field ionization to the quantum efficiency can reach 60%.

  15. Metallic amorphous electrodeposited molybdenum coating from aqueous electrolyte: Structural, electrical and morphological properties under current density

    Energy Technology Data Exchange (ETDEWEB)

    Nemla, Fatima [LEPCM, Department of Physics, University of Batna (Algeria); Cherrad, Djellal, E-mail: cherradphisic@yahoo.fr [Laboratory for Developing New Materials and Their Characterizations, University of Setif (Algeria)

    2016-07-01

    Graphical abstract: - Highlights: • Although difficulties related to electrodeposition of Mo films, we have successfully coated onto a cooper substrate. • A good formation of bcc Mo phase and lattice parameter was very accurate. • It seems that electrical properties of our samples are good and suitable as back contact for thin film solar cells. • It seems that grain size, microstrain and dislocation density are all managed and correlated to retain the resistivity to a considerable minimum value. - Abstract: Molybdenum coatings are extensively utilized as back contact for CIGS-based solar cells. However, their electrodeposition from aqueous electrolyte still sophisticates, since long time, owing to the high reactivity with oxygen. In this study, we present a successful 30 min electrodeposition experiment of somewhat thick (∼0.98–2.9 μm) and of moderate surface roughness RMS (∼47–58 nm), metallic bright Mo coating from aqueous electrolyte containing molybdate ions. XRD analysis and Hall Effect measurements have been used to confirm the presence of Mo. The crystal structure of deposits was slightly amorphous in nature to body centred cubic structure (bcc) Mo (110), (211) and (220) face. Lattice parameters exhibit some weak fluctuated tensile stress when compared to the reference lattice parameter. Additionally, our calculated lattice parameters are in good agreement with some previous works from literature. Discussions on the grain growth prove that they are constrained by grain boundary energy not the thickness effect. Further discussions were made on the electrical resistivity and surface morphology. Resonance scattering of Fermi electrons are expected to contribute towards the variation in the film resistivity through the carrier mobility limitation. However, studied samples might be qualified as candidates for solar cell application.

  16. Electric current arising from unpolarized polyvinyl formal

    Indian Academy of Sciences (India)

    Unknown

    An appreciable electric current is observed in a system consisting of a polyvinyl formal (PVF) film in a sandwich ... Electric current; open circuit voltage; water activated phenomenon; plasticization effect. 1. Introduction ... either the trapping parameters or the distribution of the ..... For this reason contact potential drop between.

  17. Diminution of contact angle hysteresis under the influence of an oscillating force.

    Science.gov (United States)

    Manor, Ofer

    2014-06-17

    We suggest a simple quantitative model for the diminution of contact angle hysteresis under the influence of an oscillatory force invoked by thermal fluctuations, substrate vibrations, acoustic waves, or oscillating electric fields. Employing force balance rather than the usual description of contact angle hysteresis in terms of Gibbs energy, we highlight that a wetting system, such as a sessile drop or a bubble adhered to a solid substrate, appears at long times to be partially or fully independent of contact angle hysteresis and thus independent of static friction forces, as a result of contact line pinning. We verify this theory by studying several well-known experimental observations such as the approach of an arbitrary contact angle toward the Young contact angle and the apparent decrease (or increase) in an advancing (or a receding) contact angle under the influence of an external oscillating force.

  18. Contact resistance at ceramic interfaces and its dependence on mechanical load

    DEFF Research Database (Denmark)

    Koch, Søren; Hendriksen, P.V.

    2004-01-01

    Low contact resistance between individual components is important for solid oxide fuel cell stacks if high performance is to be achieved. Several mechanisms may result in high contact resistance, e.g., current constriction due to low area of contact and formation of resistive phases between...... the components. In this study, the importance of current constriction due to limited area of contact at an interface is investigated by comparing the characteristics of contacts between LSM pellets with different surface finish. The load behaviour of the contact resistance has been investigated and a power law...... of the contact resistance was calculated using a simple model describing the variation of the contact area with load based on the measured surface roughness. Good agreement between the calculations and the experimentally observed resistances was found. (C) 2004 Elsevier B.V. All rights reserved....

  19. Charge loss between contacts of CdZnTe pixel detectors

    International Nuclear Information System (INIS)

    Bolotnikov, A.E.; Cook, W.R.; Harrison, F.A.; Wong, A.-S.; Schindler, S.M.; Eichelberger, A.C.

    1999-01-01

    The surface of Cd 1-x Zn x Te (CZT) material has high resistivity but is not a perfect dielectric. Even a small surface conductivity can affect the electric field distribution, and therefore, the charge collection efficiency of a CZT pixel detector. The paper describes studies of this phenomenon for several contact configurations made on a single CZT detector. We have determined the maximum inter-contact separation at which the surface inter-pixel charge loss can be neglected. (author)

  20. Achieving Ohmic Contact for High-quality MoS2 Devices on Hexagonal Boron Nitride

    Science.gov (United States)

    Cui, Xu

    MoS2, among many other transition metal dichalcogenides (TMDCs), holds great promise for future applications in nano-electronics, opto-electronics and mechanical devices due to its ultra-thin nature, flexibility, sizable band-gap, and unique spin-valley coupled physics. However, there are two main challenges that hinder careful study of this material. Firstly, it is hard to achieve Ohmic contacts to mono-layer MoS2, particularly at low temperatures (T) and low carrier densities. Secondly, materials' low quality and impurities introduced during the fabrication significantly limit the electron mobility of mono- and few-layer MoS2 to be substantially below theoretically predicted limits, which has hampered efforts to observe its novel quantum transport behaviours. Traditional low work function metals doesn't necessary provide good electron injection to thin MoS2 due to metal oxidation, Fermi level pinning, etc. To address the first challenge, we tried multiple contact schemes and found that mono-layer hexagonal boron nitride (h-BN) and cobalt (Co) provide robust Ohmic contact. The mono-layer spacer serves two advantageous purposes: it strongly interacts with the transition metal, reducing its work function by over 1 eV; and breaks the metal-TMDCs interaction to eliminate the interfacial states that cause Fermi level pinning. We measure a flat-band Schottky barrier of 16 meV, which makes thin tunnel barriers upon doping the channels, and thus achieve low-T contact resistance of 3 kohm.um at a carrier density of 5.3x10. 12/cm. 2. Similar to graphene, eliminating all potential sources of disorder and scattering is the key to achieving high performance in MoS2 devices. We developed a van der Waals heterostructure device platform where MoS2 layers are fully encapsulated within h-BN and electrically contacted in a multi-terminal geometry using gate-tunable graphene electrodes. The h-BN-encapsulation provides excellent protection from environmental factors, resulting in

  1. Probing wavenumbers of current-induced excitations in point-contact experiments

    Directory of Open Access Journals (Sweden)

    Z Wei

    2010-06-01

    Full Text Available Z Wei, M TsoiDepartment of Physics, Center for Nano and Molecular Science and Technology, and Texas Materials Institute, The University of Texas at Austin, Austin, TX, USAAbstract: We demonstrate how a mechanical point-contact technique can provide information on the wavenumber of spin waves excited by high-density electrical current in magnetic multilayers. By varying the size of point-contacts, we have been able to control the size of the excitation volume and therefore the wavelength of current-induced spin waves. This leads to a technique with in situ sensitivity to wavenumbers of current-induced excitations. Our detailed size-dependent measurements support the prediction that the excited wavelength is determined by the contact size.Keywords: spin transfer torque, giant magnetoresistance, spin waves, point contact

  2. Microscopic mapping of specific contact resistances and long-term reliability tests on 4H-silicon carbide using sputtered titanium tungsten contacts for high temperature device applications

    Science.gov (United States)

    Lee, S.-K.; Zetterling, C.-M.; Ostling, M.

    2002-07-01

    We report on the microscopic mapping of specific contact resistances (rhoc) and long-term reliability tests using sputtered titanium tungsten (TiW) ohmic contacts to highly doped n-type epilayers of 4H-silicon carbide. The TiW ohmic contacts showed good uniformity with low contact resistivity of 3.3 x10-5 Omega cm2. Microscopic mapping of the rhoc showed that the rhoc had a distribution that decreased from the center to the edge of the wafer. This distribution of the rhoc is caused by variation of the doping concentration of the wafer. Sacrificial oxidation at high temperature partially recovered inductively coupled plasma etch damage. TiW contacts with platinum and gold capping layers have stable specific contact resistance at 500 and 600 degC in a vacuum chamber for 308 h.

  3. Simulation, elaboration and analysis of inter-digitated back contacts photovoltaic cells

    International Nuclear Information System (INIS)

    Nichiporuk, O.

    2005-05-01

    Solar energy is the most promising and powerful energy source among renewable energies. Photovoltaic electricity is obtained by direct transformation of the sunlight into electricity by means of photovoltaic cells. The objective of this work is to develop photovoltaic cells with back inter-digitated contacts. In the first chapter, we recall the principle of operation and the fundamental parameters of a photovoltaic cell. In a second part, we explain specificities of the inter-digitated back-contact solar cells, as well as the advantages and the disadvantages of such cells. In the second chapter we study the operation of inter-digitated back-contacts solar cells by two dimensional numerical simulation in order to optimize the geometry and doping profiles of the cell. The third chapter relates to the techniques and the methods of characterization of photovoltaic devices and components. In the fourth chapter, we describe the elaboration of inter-digitated back-contact cells. Three technological processes are presented in order to develop a simple technology for cells realization. In particular, we develop the auto-aligned technological process, which enables to elaborate the cells by using only one lithography step. In the last chapter we examine various approaches to reduce the surface recombination: SiO 2 , silicon nitride deposited by UVCVD, hydrogen annealing, etc.. (author)

  4. Simulation, elaboration and analysis of inter-digitated back-contacts photovoltaic cells

    International Nuclear Information System (INIS)

    Nichiporuk, O.

    2005-05-01

    Solar energy is the most promising and powerful energy source among renewable energies. Photovoltaic electricity is obtained by direct transformation of the sunlight into electricity by means of photovoltaic cells. The objective of this work is to develop photovoltaic cells with back inter-digitated contacts. In the first chapter, we recall the principle of operation and the fundamental parameters of a photovoltaic cell. In a second part, we explain specificities of the inter-digitated back-contact solar cells, as well as the advantages and the disadvantages of such cells. In the second chapter we study the operation of inter-digitated back-contacts solar cells by two dimensional numerical simulation in order to optimize the geometry and doping profiles of the cell. The third chapter relates to the techniques and the methods of characterization of photovoltaic devices and components. In the fourth chapter, we describe the elaboration of inter-digitated back-contact cells. Three technological processes are presented in order to develop a simple technology for cells realization. In particular, we develop the auto-aligned technological process, which enables to elaborate the cells by using only one lithography step. In the last chapter we examine various approaches to reduce the surface recombination: SiO 2 , silicon nitride deposited by UVCVD, hydrogen annealing, etc... (author)

  5. Metal Contacts to Gallium Arsenide.

    Science.gov (United States)

    Ren, Fan

    1991-07-01

    While various high performance devices fabricated from the gallium arsenide (GaAs) and related materials have generated considerable interest, metallization are fundamental components to all semiconductor devices and integrated circuits. The essential roles of metallization systems are providing the desired electrical paths between the active region of the semiconductor and the external circuits through the metal interconnections and contacts. In this work, in-situ clean of native oxide, high temperature n-type, low temperature n-type and low temperature p-type ohmic metal systems have been studied. Argon ion mill was used to remove the native oxide prior to metal deposition. For high temperature process n-type GaAs ohmic contacts, Tungsten (W) and Tungsten Silicide (WSi) were used with an epitaxial grown graded Indium Gallium Arsenide (InGaAs) layer (0.2 eV) on GaAs. In addition, refractory metals, Molybdenum (Mo), was incorporated in the Gold-Germanium (AuGe) based on n-type GaAs ohmic contacts to replace conventional silver as barrier to prevent the reaction between ohmic metal and chlorine based plasma as well as the ohmic metallization intermixing which degrades the device performance. Finally, Indium/Gold-Beryllium (In/Au-Be) alloy has been developed as an ohmic contact for p-type GaAs to reduce the contact resistance. The Fermi-level pinning of GaAs has been dominated by the surface states. The Schottky barrier height of metal contacts are about 0.8 V regardless of the metal systems. By using p-n junction approach, barrier height of pulsed C-doped layers was achieved as high as 1.4 V. Arsenic implantation into GaAs method was also used to enhance the barrier height of 1.6 V.

  6. Charge loss between contacts of CdZnTe pixel detectors

    CERN Document Server

    Bolotnikov, A E; Harrison, F A; Wong, A S; Schindler, S M; Eichelberger, A C

    1999-01-01

    The surface of Cd sub 1 sub - sub x Zn sub x Te (CZT) material has high resistivity but is not a perfect dielectric. Even a small surface conductivity can affect the electric field distribution, and therefore, the charge collection efficiency of a CZT pixel detector. The paper describes studies of this phenomenon for several contact configurations made on a single CZT detector. We have determined the maximum inter-contact separation at which the surface inter-pixel charge loss can be neglected. (author)

  7. Interface and transport properties of metallization contacts to flat and wet-etching roughed N-polar n-type GaN.

    Science.gov (United States)

    Wang, Liancheng; Liu, Zhiqiang; Guo, Enqing; Yang, Hua; Yi, Xiaoyan; Wang, Guohong

    2013-06-26

    The electrical characteristics of metallization contacts to flat (F-sample, without wet-etching roughed) and wet-etching roughed (R-sample) N-polar (Nitrogen-polar) n-GaN have been investigated. R-sample shows higher contact resistance (Rc) to Al/Ti/Au (~2.5 × 10(-5) Ω·cm(2)) and higher Schottky barriers height (SBH, ~0.386 eV) to Ni/Au, compared with that of F-sample (~1.3 × 10(-6) Ω·cm(2), ~0.154 eV). Reasons accounting for this discrepancy has been detail investigated and discussed: for R-sample, wet-etching process caused surface state and spontaneous polarization variation will degraded its electrical characteristics. Metal on R-sample shows smoother morphology, however, the effect of metal deposition state on electrical characteristics is negligible. Metallization contact area for both samples has also been further considered. Electrical characteristics of metallization contact to both samples show degradation upon annealing. The VLED chip (1 mm × 1 mm), which was fabricated on the basis of a hybrid scheme, coupling the advantage of F- and R-sample, shows the lowest forward voltage (2.75 V@350 mA) and the highest light output power.

  8. A Simple Approach to Characterize Gas-Aqueous Liquid Two-phase Flow Configuration Based on Discrete Solid-Liquid Contact Electrification.

    Science.gov (United States)

    Choi, Dongwhi; Lee, Donghyeon; Kim, Dong Sung

    2015-10-14

    In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two-phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid-liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability.

  9. Contact-free handling using actively controlled electrostatic levitating fields

    NARCIS (Netherlands)

    Woo, S.J.

    2012-01-01

    In general electric field forces have the distinctive property of being able to mediate forces to virtually any material in a fully non-invasive and contact-free fashion. Based on this property, electrostatic levitation holds great promise for the semiconductor, solar panel, and flat-panel display

  10. Fuel cell electrode interconnect contact material encapsulation and method

    Science.gov (United States)

    Derose, Anthony J.; Haltiner, Jr., Karl J.; Gudyka, Russell A.; Bonadies, Joseph V.; Silvis, Thomas W.

    2016-05-31

    A fuel cell stack includes a plurality of fuel cell cassettes each including a fuel cell with an anode and a cathode. Each fuel cell cassette also includes an electrode interconnect adjacent to the anode or the cathode for providing electrical communication between an adjacent fuel cell cassette and the anode or the cathode. The interconnect includes a plurality of electrode interconnect protrusions defining a flow passage along the anode or the cathode for communicating oxidant or fuel to the anode or the cathode. An electrically conductive material is disposed between at least one of the electrode interconnect protrusions and the anode or the cathode in order to provide a stable electrical contact between the electrode interconnect and the anode or cathode. An encapsulating arrangement segregates the electrically conductive material from the flow passage thereby, preventing volatilization of the electrically conductive material in use of the fuel cell stack.

  11. Aluminum–Titanium Alloy Back Contact Reducing Production Cost of Silicon Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Hsin-Yu Wu

    2016-11-01

    Full Text Available In this study, metal films are fabricated by using an in-line reactive direct current magnetron sputtering system. The aluminum–titanium (AlTi back contacts are prepared by changing the pressure from 10 mTorr to 25 mTorr. The optical, electrical and structural properties of the metal back contacts are investigated. The solar cells with the AlTi had lower contact resistance than those with the silver (Ag back contact, resulting in a higher fill factor. The AlTi contact can achieve a solar cell conversion efficiency as high as that obtained from the Ag contact. These findings encourage the potential adoption of AlTi films as an alternative back contact to silver for silicon thin-film solar cells.

  12. Prophylactic and thermovision measurements of electric machines and equipment

    Energy Technology Data Exchange (ETDEWEB)

    Jedlicka, R; Brestovansky, L [Atomova Elektraren Bohunice, Jaslovske Bohunice (Slovakia)

    1997-12-31

    High-voltage measurements of generators, unit and service transformers and some significant motor drives used at a nuclear power plant are described in this paper. Thermovision measurements of electric machines and distribution systems are dealt with in the second part of the paper. Power electric equipment represent one of the most significant components of a nuclear power plant. Turbine mechanical energy is converted into the electrical energy within these equipment. Power generated by generators is transformed by transformers so that it can achieve appropriate parameters for both the transmission over the distribution system and the power plant service power supply. The service power supply switchboards and cables provide supply to motors and other consumers necessary for the nuclear power plant technological process. The whole complex of equipment has to be maintained in good technical conditions. It is necessary to make thermovision and prophylactic measurements to identify and verify the electric equipment technical condition. The mentioned measurements warn the operation staff in advance against both gradual deterioration of power connection contact resistances, i.e. power connections overheating, and the machine insulation systems condition deterioration. The operation staff try to prevent the electric equipment operation accidents by early removing the detected failures, thus, improving the nuclear safety. In order to provide the above-mentioned activities a special prophylactic measurement group was established at the NPP Bohunice in 1983. The group specialists make following types of measurements. 1. Prophylactic measurements of electric machines. Prophylactics of 220 MW generators and 6 MW service power generators; Prophylactics of both unit and service transformers and VHV bushings; Prophylactics of major 6 kV motor drives. 2. Thermovision measurements of current connections. (Abstract Truncated)

  13. Electrical property heterogeneity at transparent conductive oxide/organic semiconductor interfaces: mapping contact ohmicity using conducting-tip atomic force microscopy.

    Science.gov (United States)

    MacDonald, Gordon A; Veneman, P Alexander; Placencia, Diogenes; Armstrong, Neal R

    2012-11-27

    We demonstrate mapping of electrical properties of heterojunctions of a molecular semiconductor (copper phthalocyanine, CuPc) and a transparent conducting oxide (indium-tin oxide, ITO), on 20-500 nm length scales, using a conductive-probe atomic force microscopy technique, scanning current spectroscopy (SCS). SCS maps are generated for CuPc/ITO heterojunctions as a function of ITO activation procedures and modification with variable chain length alkyl-phosphonic acids (PAs). We correlate differences in small length scale electrical properties with the performance of organic photovoltaic cells (OPVs) based on CuPc/C(60) heterojunctions, built on these same ITO substrates. SCS maps the "ohmicity" of ITO/CuPc heterojunctions, creating arrays of spatially resolved current-voltage (J-V) curves. Each J-V curve is fit with modified Mott-Gurney expressions, mapping a fitted exponent (γ), where deviations from γ = 2.0 suggest nonohmic behavior. ITO/CuPc/C(60)/BCP/Al OPVs built on nonactivated ITO show mainly nonohmic SCS maps and dark J-V curves with increased series resistance (R(S)), lowered fill-factors (FF), and diminished device performance, especially near the open-circuit voltage. Nearly optimal behavior is seen for OPVs built on oxygen-plasma-treated ITO contacts, which showed SCS maps comparable to heterojunctions of CuPc on clean Au. For ITO electrodes modified with PAs there is a strong correlation between PA chain length and the degree of ohmicity and uniformity of electrical response in ITO/CuPc heterojunctions. ITO electrodes modified with 6-8 carbon alkyl-PAs show uniform and nearly ohmic SCS maps, coupled with acceptable CuPc/C(60)OPV performance. ITO modified with C14 and C18 alkyl-PAs shows dramatic decreases in FF, increases in R(S), and greatly enhanced recombination losses.

  14. Effect of contacts configuration and location on selective stimulation of cuff electrode.

    Science.gov (United States)

    Taghipour-Farshi, Hamed; Frounchi, Javad; Ahmadiasl, Nasser; Shahabi, Parviz; Salekzamani, Yaghoub

    2015-01-01

    Cuff electrodes have been widely used chronically in different clinical applications. Advancements have been made in selective stimulation by using multi-contact cuff electrodes. Steering anodic current is a strategy to increase selectivity by reshaping and localizing electric fields. There are two configurations for contacts to be implemented in cuff, monopolar and tripolar. A cuff electrode with tripolar configuration can restrict the activation to a more localized region within a nerve trunk compared to a cuff with monopolar configuration and improve the selectivity. Anode contacts in tripolar configuration can be made in two structures, "ring" and "dot". In this study, the stimulation capabilities of these two structures were evaluated. The recruitment properties and the selectivity of stimulation were examined by measuring the electric potential produced by stimulation currents. The results of the present study indicated that using dot configuration, the current needed to stimulate fascicles in tripolar topologies would be reduced by 10%. It was also shown that stimulation threshold was increased by moving anode contacts inward the cuff. On the other hand, stimulation threshold was decreased by moving the anode contacts outward the cuff which would decrease selectivity, too. We conclude that dot configuration is a better choice for stimulation. Also, a cuff inward placement of 10% relative to the cuff length was near optimal.

  15. Low resistivity contacts to YBa2Cu3O(7-x) superconductors

    Science.gov (United States)

    Hsi, Chi-Shiung; Haertling, Gene H.

    1991-01-01

    Silver, gold, platinum, and palladium metals were investigated as electroding materials for the YBa2Cu3O(7-x) superconductors. Painting, embedding, and melting techniques were used to apply the electrodes. Contact resistivities were determined by: (1) type of electrode; (2) firing conditions; and (3) application method. Electrodes fired for long times exhibited lower contact resistivities than those fired for short times. Low-resistivity contacts were found for silver and gold electrodes. Silver, which made good ohmic contact to the YBa2Cu3O(7-x) superconductor with low contact resistivities was found to be the best electroding material among the materials evaluated in this investigation.

  16. Microwave assisted growth of nanorods vanadium dioxide VO2 (R): structural and electrical properties

    Science.gov (United States)

    Derkaoui, I.; Khenfouch, M.; Mothudi, B. M.; Moloi, S. J.; Zorkani, I.; Jorio, A.; Maaza, M.

    2018-03-01

    Nanostructured metal oxides have attracted a lot of attention recently owning to their unique structural advantages and demonstrated promising chemical and physical properties for various applications. In this study, we report the structural and electrical properties of vanadium dioxide VO2 (R) prepared via a single reaction microwave (SRC) synthesis. Our results are revealing that the components of VO2 (R) films have a rod-like shape with a uniform size distribution. The nanorods with very smooth and flat surfaces have a typical length of up to 2μm and a width of about several nanometers. The structural investigations reveal the high crystallinity of VO2 (R) ensuring good electrical contact and showing a high conductivity as a function of temperature. This synthesis method provides a new simple route to fabricate one-dimensional nanostructured metal oxides which is suitable for a large field of applications especially for smart windows.

  17. Effect of Contact Conditions on Void Coalescence at Low Stress Triaxiality Shearing

    DEFF Research Database (Denmark)

    Dahl, Jonas; Nielsen, Kim Lau; Tvergaard, Viggo

    2012-01-01

    , the deformed voids develop into shapes that closely resemble micro-cracks. It is found that the predictions using the frictionless pseudo-contact approach are in rather good agreement with corresponding simulations that fully account for frictionless contact. In particular, good agreement is found at close...... to zero stress triaxiality. Furthermore, it is shown that accounting for friction at the void surface strongly postpones the onset of coalescence, hence, increasing the overall material ductility. The changes in overall material behavior are here presented for a wide range of initial material and loading...... conditions, such as various stress triaxialities, void sizes, and friction coefficients....

  18. On multiscale moving contact line theory.

    Science.gov (United States)

    Li, Shaofan; Fan, Houfu

    2015-07-08

    In this paper, a multiscale moving contact line (MMCL) theory is presented and employed to simulate liquid droplet spreading and capillary motion. The proposed MMCL theory combines a coarse-grained adhesive contact model with a fluid interface membrane theory, so that it can couple molecular scale adhesive interaction and surface tension with hydrodynamics of microscale flow. By doing so, the intermolecular force, the van der Waals or double layer force, separates and levitates the liquid droplet from the supporting solid substrate, which avoids the shear stress singularity caused by the no-slip condition in conventional hydrodynamics theory of moving contact line. Thus, the MMCL allows the difference of the surface energies and surface stresses to drive droplet spreading naturally. To validate the proposed MMCL theory, we have employed it to simulate droplet spreading over various elastic substrates. The numerical simulation results obtained by using MMCL are in good agreement with the molecular dynamics results reported in the literature.

  19. Prophylactic and thermovision measurements of electric machines and equipment

    International Nuclear Information System (INIS)

    Jedlicka, R.; Brestovansky, L.

    1996-01-01

    High-voltage measurements of generators, unit and service transformers and some significant motor drives used at a nuclear power plant are described in this paper. Thermovision measurements of electric machines and distribution systems are dealt with in the second part of the paper. Power electric equipment represent one of the most significant components of a nuclear power plant. Turbine mechanical energy is converted into the electrical energy within these equipment. Power generated by generators is transformed by transformers so that it can achieve appropriate parameters for both the transmission over the distribution system and the power plant service power supply. The service power supply switchboards and cables provide supply to motors and other consumers necessary for the nuclear power plant technological process. The whole complex of equipment has to be maintained in good technical conditions. It is necessary to make thermovision and prophylactic measurements to identify and verify the electric equipment technical condition. The mentioned measurements warn the operation staff in advance against both gradual deterioration of power connection contact resistances, i.e. power connections overheating, and the machine insulation systems condition deterioration. The operation staff try to prevent the electric equipment operation accidents by early removing the detected failures, thus, improving the nuclear safety. In order to provide the above-mentioned activities a special prophylactic measurement group was established at the NPP Bohunice in 1983. The group specialists make following types of measurements. 1. Prophylactic measurements of electric machines. Prophylactics of 220 MW generators and 6 MW service power generators; Prophylactics of both unit and service transformers and VHV bushings; Prophylactics of major 6 kV motor drives. 2. Thermovision measurements of current connections. Measurements enumarated in paragraph 1 are made on disconnected electric

  20. Tactile Robotic Topographical Mapping Without Force or Contact Sensors

    Science.gov (United States)

    Burke, Kevin; Melko, Joseph; Krajewski, Joel; Cady, Ian

    2008-01-01

    A method of topographical mapping of a local solid surface within the range of motion of a robot arm is based on detection of contact between the surface and the end effector (the fixture or tool at the tip of the robot arm). The method was conceived to enable mapping of local terrain by an exploratory robot on a remote planet, without need to incorporate delicate contact switches, force sensors, a vision system, or other additional, costly hardware. The method could also be used on Earth for determining the size and shape of an unknown surface in the vicinity of a robot, perhaps in an unanticipated situation in which other means of mapping (e.g., stereoscopic imaging or laser scanning with triangulation) are not available. The method uses control software modified to utilize the inherent capability of the robotic control system to measure the joint positions, the rates of change of the joint positions, and the electrical current demanded by the robotic arm joint actuators. The system utilizes these coordinate data and the known robot-arm kinematics to compute the position and velocity of the end effector, move the end effector along a specified trajectory, place the end effector at a specified location, and measure the electrical currents in the joint actuators. Since the joint actuator current is approximately proportional to the actuator forces and torques, a sudden rise in joint current, combined with a slowing of the joint, is a possible indication of actuator stall and surface contact. Hence, even though the robotic arm is not equipped with contact sensors, it is possible to sense contact (albeit with reduced sensitivity) as the end effector becomes stalled against a surface that one seeks to measure.

  1. Physical model of the contact resistivity of metal-graphene junctions

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, Ferney A., E-mail: ferneyalveiro.chaves@uab.cat; Jiménez, David [Departament d' Enginyeria Electrònica, Escola d' Enginyeria, Universitat Autònoma de Barcelona, Campus UAB, 08193 Bellaterra, Barcelona (Spain); Cummings, Aron W. [ICN2–Institut Català de Nanociència i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain); Roche, Stephan [ICN2–Institut Català de Nanociència i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain); ICREA, Institució Catalana de Recerca i Estudis Avançats, 08070 Barcelona (Spain)

    2014-04-28

    While graphene-based technology shows great promise for a variety of electronic applications, including radio-frequency devices, the resistance of the metal-graphene contact is a technological bottleneck for the realization of viable graphene electronics. One of the most important factors in determining the resistance of a metal-graphene junction is the contact resistivity. Despite the large number of experimental works that exist in the literature measuring the contact resistivity, a simple model of it is still lacking. In this paper, we present a comprehensive physical model for the contact resistivity of these junctions, based on the Bardeen Transfer Hamiltonian method. This model unveils the role played by different electrical and physical parameters in determining the specific contact resistivity, such as the chemical potential of interaction, the work metal-graphene function difference, and the insulator thickness between the metal and graphene. In addition, our model reveals that the contact resistivity is strongly dependent on the bias voltage across the metal-graphene junction. This model is applicable to a wide variety of graphene-based electronic devices and thus is useful for understanding how to optimize the contact resistance in these systems.

  2. Physical model of the contact resistivity of metal-graphene junctions

    International Nuclear Information System (INIS)

    Chaves, Ferney A.; Jiménez, David; Cummings, Aron W.; Roche, Stephan

    2014-01-01

    While graphene-based technology shows great promise for a variety of electronic applications, including radio-frequency devices, the resistance of the metal-graphene contact is a technological bottleneck for the realization of viable graphene electronics. One of the most important factors in determining the resistance of a metal-graphene junction is the contact resistivity. Despite the large number of experimental works that exist in the literature measuring the contact resistivity, a simple model of it is still lacking. In this paper, we present a comprehensive physical model for the contact resistivity of these junctions, based on the Bardeen Transfer Hamiltonian method. This model unveils the role played by different electrical and physical parameters in determining the specific contact resistivity, such as the chemical potential of interaction, the work metal-graphene function difference, and the insulator thickness between the metal and graphene. In addition, our model reveals that the contact resistivity is strongly dependent on the bias voltage across the metal-graphene junction. This model is applicable to a wide variety of graphene-based electronic devices and thus is useful for understanding how to optimize the contact resistance in these systems

  3. Strong Schottky barrier reduction at Au-catalyst/GaAs-nanowire interfaces by electric dipole formation and Fermi-level unpinning.

    Science.gov (United States)

    Suyatin, Dmitry B; Jain, Vishal; Nebol'sin, Valery A; Trägårdh, Johanna; Messing, Maria E; Wagner, Jakob B; Persson, Olof; Timm, Rainer; Mikkelsen, Anders; Maximov, Ivan; Samuelson, Lars; Pettersson, Håkan

    2014-01-01

    Nanoscale contacts between metals and semiconductors are critical for further downscaling of electronic and optoelectronic devices. However, realizing nanocontacts poses significant challenges since conventional approaches to achieve ohmic contacts through Schottky barrier suppression are often inadequate. Here we report the realization and characterization of low n-type Schottky barriers (~0.35 eV) formed at epitaxial contacts between Au-In alloy catalytic particles and GaAs-nanowires. In comparison to previous studies, our detailed characterization, employing selective electrical contacts defined by high-precision electron beam lithography, reveals the barrier to occur directly and solely at the abrupt interface between the catalyst and nanowire. We attribute this lowest-to-date-reported Schottky barrier to a reduced density of pinning states (~10(17) m(-2)) and the formation of an electric dipole layer at the epitaxial contacts. The insight into the physical mechanisms behind the observed low-energy Schottky barrier may guide future efforts to engineer abrupt nanoscale electrical contacts with tailored electrical properties.

  4. Phase-coherent electron transport through metallic atomic-sized contacts and organic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Pauly, F.

    2007-02-02

    This work is concerned with the theoretical description of systems at the nanoscale, in particular the electric current through atomic-sized metallic contacts and organic molecules. In the first part, the characteristic peak structure in conductance histograms of different metals is analyzed within a tight-binding model. In the second part, an ab-initio method for quantum transport is developed and applied to single-atom and single-molecule contacts. (orig.)

  5. Patterned Liquid Metal Contacts for Printed Carbon Nanotube Transistors.

    Science.gov (United States)

    Andrews, Joseph B; Mondal, Kunal; Neumann, Taylor V; Cardenas, Jorge A; Wang, Justin; Parekh, Dishit P; Lin, Yiliang; Ballentine, Peter; Dickey, Michael D; Franklin, Aaron D

    2018-05-14

    Flexible and stretchable electronics are poised to enable many applications that cannot be realized with traditional, rigid devices. One of the most promising options for low-cost stretchable transistors are printed carbon nanotubes (CNTs). However, a major limiting factor in stretchable CNT devices is the lack of a stable and versatile contact material that forms both the interconnects and contact electrodes. In this work, we introduce the use of eutectic gallium-indium (EGaIn) liquid metal for electrical contacts to printed CNT channels. We analyze thin-film transistors (TFTs) fabricated using two different liquid metal deposition techniques-vacuum-filling polydimethylsiloxane (PDMS) microchannel structures and direct-writing liquid metals on the CNTs. The highest performing CNT-TFT was realized using vacuum-filled microchannel deposition with an in situ annealing temperature of 150 °C. This device exhibited an on/off ratio of more than 10 4 and on-currents as high as 150 μA/mm-metrics that are on par with other printed CNT-TFTs. Additionally, we observed that at room temperature the contact resistances of the vacuum-filled microchannel structures were 50% lower than those of the direct-write structures, likely due to the poor adhesion between the materials observed during the direct-writing process. The insights gained in this study show that stretchable electronics can be realized using low-cost and solely solution processing techniques. Furthermore, we demonstrate methods that can be used to electrically characterize semiconducting materials as transistors without requiring elevated temperatures or cleanroom processes.

  6. Electrical Safety During a Hurricane

    Centers for Disease Control (CDC) Podcasts

    2006-08-10

    Power outages and flooding can cause electrical hazards. Never touch a downed power line or anything in contact with one.  Created: 8/10/2006 by Emergency Communications System.   Date Released: 10/22/2007.

  7. Metallization systems for stable ohmic contacts to GaAs

    International Nuclear Information System (INIS)

    Tandon, J.L.; Douglas, K.D.; Vendura, G.; Kolawa, E.; So, F.C.T.; Nicolet, M.A.

    1986-01-01

    A metallization scheme to form reproducible and stable ohmic contacts to GaAs is described. The approach is based on the configuration: GaAs/X/Y/Z; where X is a thin metal film (e.g. Pt, Ti, Pd, Ru), Y is an electrically conducting diffusion barrier layer (TiN, W or W/sub 0.7/N/sub 0.3/), and Z is a thick metal layer (e.g. Ag) typically required for bonding or soldering purposes. The value and reproducibility of the contact resistance in these metallization systems results from the uniform steady-state solid-phase reaction of the metal X with GaAs. The stability of the contacts is achieved by the diffusion barrier layer Y, which not only confines the reaction of X with GaAs, but also prevents the top metal layer Z from interfering with this reaction. Applications of such contacts in fabricating stable solar cells are also discussed

  8. Electrically conductive polymer concrete coatings

    Science.gov (United States)

    Fontana, Jack J.; Elling, David; Reams, Walter

    1990-01-01

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  9. Top contact organic field effect transistors fabricated using a photolithographic process

    International Nuclear Information System (INIS)

    Wang Hong; Peng Ying-Quan; Ji Zhuo-Yu; Shang Li-Wei; Liu Xing-Hua; Liu Ming

    2011-01-01

    This paper proposes an effective method of fabricating top contact organic field effect transistors by using a photolithographic process. The semiconductor layer is protected by a passivation layer. Through photolithographic and etching processes, parts of the passivation layer are etched off to form source/drain electrode patterns. Combined with conventional evaporation and lift-off techniques, organic field effect transistors with a top contact are fabricated successfully, whose properties are comparable to those prepared with the shadow mask method and one order of magnitude higher than the bottom contact devices fabricated by using a photolithographic process. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. Modeling of electric and heat processes in spot resistance welding of cross-wire steel bars

    Science.gov (United States)

    Iatcheva, Ilona; Darzhanova, Denitsa; Manilova, Marina

    2018-03-01

    The aim of this work is the modeling of coupled electric and heat processes in a system for spot resistance welding of cross-wire reinforced steel bars. The real system geometry, dependences of material properties on the temperature, and changes of contact resistance and released power during the welding process have been taken into account in the study. The 3D analysis of the coupled AC electric and transient thermal field distributions is carried out using the finite element method. The novel feature is that the processes are modeled for several successive time stages, corresponding to the change of contact area, related contact resistance, and reduction of the released power, occurring simultaneously with the creation of contact between the workpieces. The values of contact resistance and power changes have been determined on the basis of preliminary experimental and theoretical investigations. The obtained results present the electric and temperature field distributions in the system. Special attention has been paid to the temperature evolution at specified observation points and lines in the contact area. The obtained information could be useful for clarification of the complicated nature of interrelated electric, thermal, mechanical, and physicochemical welding processes. Adequate modeling is also an opportunity for proper control and improvement of the system.

  11. CONFOLD2: improved contact-driven ab initio protein structure modeling.

    Science.gov (United States)

    Adhikari, Badri; Cheng, Jianlin

    2018-01-25

    Contact-guided protein structure prediction methods are becoming more and more successful because of the latest advances in residue-residue contact prediction. To support contact-driven structure prediction, effective tools that can quickly build tertiary structural models of good quality from predicted contacts need to be developed. We develop an improved contact-driven protein modelling method, CONFOLD2, and study how it may be effectively used for ab initio protein structure prediction with predicted contacts as input. It builds models using various subsets of input contacts to explore the fold space under the guidance of a soft square energy function, and then clusters the models to obtain the top five models. CONFOLD2 obtains an average reconstruction accuracy of 0.57 TM-score for the 150 proteins in the PSICOV contact prediction dataset. When benchmarked on the CASP11 contacts predicted using CONSIP2 and CASP12 contacts predicted using Raptor-X, CONFOLD2 achieves a mean TM-score of 0.41 on both datasets. CONFOLD2 allows to quickly generate top five structural models for a protein sequence when its secondary structures and contacts predictions at hand. The source code of CONFOLD2 is publicly available at https://github.com/multicom-toolbox/CONFOLD2/ .

  12. Experimental characterization of electrochemically polymerized polycarbazole film and study of its behavior with different metals contacts

    Science.gov (United States)

    Srivastava, Aditi; Chakrabarti, P.

    2017-12-01

    In this paper, we present the method of fabrication, experimental characterization, and comparison of electrical parameters of semiconducting polycarbazole film with different rectifying metals contacts. Electrochemical polymerization and deposition of organic semiconductor, i.e., polycarbazole on ITO-coated glass substrate, were performed using an electrochemical workstation. Experimental characterization of the prepared polymer film was done in respect of morphology, absorption, bandgap, and thickness. The stability and electro-activity of polycarbazole film were verified by the cyclic voltammetric method. Study of the behavior of prepared polycarbazole film with the different metals contacts such as Aluminum, Copper, Tungsten, and Tin has been done using semiconductor device analyzer. Various electrical parameters such as barrier height, ideality factor, and reverse saturation current have been extracted with different metal contacts, and the values were compared and contrasted. The nature of I- V characteristic of polycarbazole film in non-contact mode has also been analyzed using scanning tunneling microscope. The rectifying I- V characteristics obtained with different metals contacts have also been validated by the simulation on Deckbuild platform of the of ATLAS® software tool from Silvaco Inc.

  13. Current voltage characteristics of composite superconductors with high contact resistance

    International Nuclear Information System (INIS)

    Akhmetov, A.A.; Baev, V.P.

    1984-01-01

    An experimental study has been made of current-voltage characteristics of composite superconductors with contact resistance between superconducting filaments and normal metal with high electrical conductivity. It is shown that stable resistive states exist in such conductors over a wide range of currents. The presence of resistive states is interpreted in terms of the resistive domain concept. The minimum and maximum currents of resistive states are found to be dependent on the electrical resistance of normal metal and magnetic field. (author)

  14. Surface coating for blood-contacting devices

    Science.gov (United States)

    Nair, Ajit Kumar Balakrishnan

    The major problems always encountered with the blood-contacting surfaces are their compatibility, contact blood damage, and thrombogenicity. Titanium nitride (TiN) is a hard, inert, ceramic material that is widely used in the engineering industry. TiN has been proven to be a good biomaterial in its crystalline form, in orthopedic, and in tissue implant applications. This dissertation describes a method to coat amorphous TiN on the blood-contacting surfaces of certain medical devices using the room-temperature sputtering process and to characterize, to test, and to evaluate the coating for a reliable, durable, and compatible blood-contacting surface The blood-compatibility aspects were evaluated with standard, established protocols and procedures to prove the feasibility. An amorphous TiN coating is developed, characterized, tested, and blood compatibility evaluated by applying to the blood-contacting surfaces of stainless steel, catheters, and blood filters. The flexibility characteristics were proven by applying it to the diaphragms of the pulsatile pneumatic ventricular assist device. The results show that amorphous titanium nitride is flexible and adherent to polymeric substrates like polyurethane and polyester. Blood compatibility evaluation showed comparable results with catheters and superior behavior with stainless steel and polyester filters. It is concluded that amorphous titanium nitride can be considered to be applied to the surfaces of some of the medical devices in order to improve blood compatibility.

  15. A dynamic contact problem between elasto-viscoplastic piezoelectric bodies

    Directory of Open Access Journals (Sweden)

    Tedjani Hadj ammar

    2014-10-01

    Full Text Available We consider a dynamic contact problem with adhesion between two elastic-viscoplastic piezoelectric bodies. The contact is frictionless and is described with the normal compliance condition. We derive variational formulation for the model which is in the form of a system involving the displacement field, the electric potential field and the adhesion field. We prove the existence of a unique weak solution to the problem. The proof is based on arguments of nonlinear evolution equations with monotone operators, a classical existence and uniqueness result on parabolic inequalities, differential equations and fixed point arguments.

  16. Estimation of contact resistance in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lianhong; Liu, Ying; Song, Haimin; Wang, Shuxin [School of Mechanical Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072 (China); Zhou, Yuanyuan; Hu, S. Jack [Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI 48109-2125 (United States)

    2006-11-22

    The contact resistance between the bipolar plate (BPP) and the gas diffusion layer (GDL) is an important factor contributing to the power loss in proton exchange membrane (PEM) fuel cells. At present there is still not a well-developed method to estimate such contact resistance. This paper proposes two effective methods for estimating the contact resistance between the BPP and the GDL based on an experimental contact resistance-pressure constitutive relation. The constitutive relation was obtained by experimentally measuring the contact resistance between the GDL and a flat plate of the same material and processing conditions as the BPP under stated contact pressure. In the first method, which was a simplified prediction, the contact area and contact pressure between the BPP and the GDL were analyzed with a simple geometrical relation and the contact resistance was obtained by the contact resistance-pressure constitutive relation. In the second method, the contact area and contact pressure between the BPP and GDL were analyzed using FEM and the contact resistance was computed for each contact element according to the constitutive relation. The total contact resistance was then calculated by considering all contact elements in parallel. The influence of load distribution on contact resistance was also investigated. Good agreement was demonstrated between experimental results and predictions by both methods. The simplified prediction method provides an efficient approach to estimating the contact resistance in PEM fuel cells. The proposed methods for estimating the contact resistance can be useful in modeling and optimizing the assembly process to improve the performance of PEM fuel cells. (author)

  17. Contact of a spherical probe with a stretched rubber substrate

    Science.gov (United States)

    Frétigny, Christian; Chateauminois, Antoine

    2017-07-01

    We report on a theoretical and experimental investigation of the normal contact of stretched neo-Hookean substrates with rigid spherical probes. Starting from a published formulation of surface Green's function for incremental displacements on a prestretched, neo-Hookean, substrate [J. Mech. Phys. Solids 56, 2957 (2008), 10.1016/j.jmps.2008.07.002], a model is derived for both adhesive and nonadhesive contacts. The shape of the elliptical contact area together with the contact load and the contact stiffness are predicted as a function of the in-plane stretch ratios λx and λy of the substrate. The validity of this model is assessed by contact experiments carried out using an uniaxally stretched silicone rubber. For stretch ratio below about 1.25, a good agreement is observed between theory and experiments. Above this threshold, some deviations from the theoretical predictions are induced as a result of the departure of the mechanical response of the silicone rubber from the neo-Hokeean description embedded in the model.

  18. Determination of a Wear Initiation Cycle by using a Contact Resistance Measurement in Nuclear Fuel Fretting

    International Nuclear Information System (INIS)

    Lee, Young Ho; Kim, Hyung Kyu

    2008-01-01

    In nuclear fuel fretting, the improving of the contact condition with a modified spring shape is a useful method for increasing the wear resistance of the nuclear fuel rod. This is because the fretting wear resistance between the fuel rod and grid spring is mainly affected by the grid spring shape rather than the environment, the contact modes, etc. In addition, the wear resistance is affected by the wear debris behavior between contact surfaces. So, it is expected that the wear initiation of each spring shape should be determined in order to evaluate a wear resistance. However, it is almost impossible to measure the wear behavior in contact surfaces on a real time basis because the contact surfaces are always hidden. Besides, the results of the worn surface observation after the fretting wear tests are restricted to archive the information on the wear debris behavior and the formation mechanism of the wear scar. In order to evaluate the wear behavior during the fretting wear tests, it is proposed that the contact resistance measurement is a useful method for examining the wear initiation cycle and modes. Generally, fretting wear damages are rapidly progressed by a localized plastic deformation between the contact surfaces, crack initiation and fracture of the deformed surface with a strain hardening difference between a surface and a subsurface and finally a detachment of wear debris. After this, wear debris is easily oxidized by frictional heat, test environment, etc. At this time, a small amount of electric current applied between the contact surfaces will be influenced by the wear debris, which could be an obstacle to an electric current flow. So, it is possible to archive the information on the wear behavior by measuring the contact resistance. In order to determine the wear initiation cycle during the fretting wear tests, in this study, fretting wear tests have been performed by applying a constant electric current in room temperature air

  19. Social contacts of older people in 27 European Countries : The role of welfare spending and economic inequality

    NARCIS (Netherlands)

    Ellwardt, Lea; Peter, S; Praeg, Patrick; Steverink, Nardi

    Social contacts of older people have consistently been associated with good health and longevity. The extent of individual social contacts, however, varies considerably between countries. We study why countries differ in amounts of social contacts of older adults. Using theory on income inequality

  20. Benefits of a good quality assurance program to an electric utility

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, W.J. (Detroit Edison, Detroit, MI (United States))

    1994-10-01

    A good quality assurance program at a coal mine or power plant should be timely and consistent. The quality analysis is accurate due to a complete sampling of the coal stream loaded into the unit train. The sample analysis is accurate because standardized testing procedures are applied. A good coal quality assurance program includes: coal quality analysis of the delivered coal; bias testing of mechanical coal samplers; dust control during coal handling; and freeze conditioning during the winter. 2 figs., 2 plates

  1. Rough viscoelastic sliding contact: Theory and experiments

    Science.gov (United States)

    Carbone, G.; Putignano, C.

    2014-03-01

    In this paper, we show how the numerical theory introduced by the authors [Carbone and Putignano, J. Mech. Phys. Solids 61, 1822 (2013), 10.1016/j.jmps.2013.03.005] can be effectively employed to study the contact between viscoelastic rough solids. The huge numerical complexity is successfully faced up by employing the adaptive nonuniform mesh developed by the authors in Putignano et al. [J. Mech. Phys. Solids 60, 973 (2012), 10.1016/j.jmps.2012.01.006]. Results mark the importance of accounting for viscoelastic effects to correctly simulate the sliding rough contact. In detail, attention is, first, paid to evaluate the viscoelastic dissipation, i.e., the viscoelastic friction. Fixed the sliding speed and the normal load, friction is completely determined. Furthermore, since the methodology employed in the work allows to study contact between real materials, a comparison between experimental outcomes and numerical prediction in terms of viscoelastic friction is shown. The good agreement seems to validate—at least partially—the presented methodology. Finally, it is shown that viscoelasticity entails not only the dissipative effects previously outlined, but is also strictly related to the anisotropy of the contact solution. Indeed, a marked anisotropy is present in the contact region, which results stretched in the direction perpendicular to the sliding speed. In the paper, the anisotropy of the deformed surface and of the contact area is investigated and quantified.

  2. Surface charging, discharging and chemical modification at a sliding contact

    DEFF Research Database (Denmark)

    Singh, Shailendra Vikram; Kusano, Yukihiro; Morgen, Per

    2012-01-01

    Electrostatic charging, discharging, and consequent surface modification induced by sliding dissimilar surfaces have been studied. The surface-charge related phenomena were monitored by using a home-built capacitive, non-contact electrical probe, and the surface chemistry was studied by X...... are also able to comment on the behavior and the charge decay time in the ambient air-like condition, once the sliding contact is discontinued. XPS analysis showed a marginal deoxidation effect on the polyester disks due to the charging and discharging of the surfaces. Moreover, these XPS results clearly...

  3. Visual method for detecting critical damage in railway contact strips

    Science.gov (United States)

    Judek, S.; Skibicki, J.

    2018-05-01

    Ensuring an uninterrupted supply of power in the electric traction is vital for the safety of this important transport system. For this purpose, monitoring and diagnostics of the technical condition of the vehicle’s power supply elements are becoming increasingly common. This paper presents a new visual method for detecting contact strip damage, based on measurement and analysis of the movement of the overhead contact line (OCL) wire. A measurement system configuration with a 2D camera was proposed. The experimental method has shown that contact strips damage can be detected by transverse displacement signal analysis. It has been proven that the velocity signal numerically established on that basis has a comparable level in the case of identical damage, regardless of its location on the surface of the contact strip. The proposed method belongs to the group of contact-less measurements, so it does not require interference with the structure of the catenary network nor the mounting of sensors in its vicinity. Measurement of displacements of the contact wire in 2D space makes it possible to combine the functions of existing diagnostic stands assessing the correctness of the mean contact force control adjustment of the current collector with the elements of the contact strip diagnostics, which involves detecting their damage which may result in overhead contact line rupture.

  4. Ho-doped SrBi{sub 2}Nb{sub 2}O{sub 9} multifunctional ceramics with bright green emission and good electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Lei; Hao, Jigong; Li, Wei [College of Materials Science and Engineering, Liaocheng University, Liaocheng (China); Xu, Zhijun; Chu, Ruiqing [School of Environmental and Materials Engineering, Yantai University, Yantai (China)

    2017-10-15

    Ho{sup 3+}-doped SrBi{sub 2}Nb{sub 2}O{sub 9} multifunctional ferroelectric ceramics with bright green light emission and good electrical properties were fabricated in this work. Under blue light excitation, samples showed bright green light with two typical emission bands: a strong green emission centered at 545 nm corresponding to the intra f-f transition from the excited {sup 5}S{sub 2} to the ground state {sup 5}I{sub 8} and a relatively weak red emission located 653 nm induced by the {sup 5}F{sub 5} → {sup 5}I{sub 8} transition of Ho{sup 3+}. Due to the concentration quenching effect, the intensity of emission was strongly dependent on the doping concentration. Furthermore, the electrical properties have improved by Ho{sup 3+} doping. At x = 0.004, samples exhibit optimal electrical properties with high Curie temperature (T{sub c} = 441 C) and large 2P{sub r} and d{sub 33} values (2P{sub r} = 15.54 μC cm{sup -2}, d{sub 33} = 19 pC/N). These results demonstrate that the SBN-xHo ceramics possess excellent multifunctional properties to achieve a variety of applications. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Toward an innovative stochastic modeling of electric charges loss through dielectric

    Directory of Open Access Journals (Sweden)

    Micolau G.

    2016-01-01

    Full Text Available This paper deals with new stochastic modeling of very low tunneling currents in Non-Volatile Memories. For this purpose, we first develop current measurement method based on Floating Gate technique. In order to reach the long time behavior of electrical dynamic, we aim at using very basic tools (power supply, multimeter... but still having a very good current resolution. Also, our measurement is led in a very particular low-noise environment (underground laboratory allowing to keep the electrical contacts on the device under test as long as possible. After showing the feasibility of such measurements, we present a modeling approach of the charge loss process inside the Non-volatile Memories by using mathematical tool involving long memory effect. The model is based on stochastic counting process with memory effect yielding to a fractional relaxation equation for the charge loss over time. The main interest of the present model lies in the fact that the corresponding inversion problem involves only two parameters that can be carried out efficiently.

  6. Electrical installations and regulations

    CERN Document Server

    Whitfield, J F

    1966-01-01

    Electrical Installations and Regulations focuses on the regulations that apply to electrical installations and the reasons for them. Topics covered range from electrical science to alternating and direct current supplies, as well as equipment for providing protection against excess current. Cables, wiring systems, and final subcircuits are also considered, along with earthing, discharge lighting, and testing and inspection.Comprised of 12 chapters, this book begins with an overview of electrical installation work, traits of a good electrician, and the regulations governing installations. The r

  7. Back-contacted back-junction silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mangersnes, Krister

    2010-10-15

    Conventional silicon solar cells have a front-side contacted emitter. Back-contacted back-junction (BC-BJ) silicon solar cells, on the other hand, have both the complete metallization and the active diffused regions of both polarities on the backside. World-record efficiencies have already been demonstrated for this type of cell design in production, both on cell and module level. However, the production of these cells is both complex and costly, and a further cost reduction in fabrication is needed to make electricity from BC-BJ silicon solar cells cost-competitive with electricity on the grid ('grid-parity'). During the work with this thesis, we have investigated several important issues regarding BC-BJ silicon solar cells. The aim has been to reduce production cost and complexity while at the same time maintaining, or increasing, the already high conversion efficiencies demonstrated elsewhere. This has been pursued through experimental work as well as through numerical simulations and modeling. Six papers are appended to this thesis, two of which are still under review in scientific journals. In addition, two patents have been filed based on the work presented herein. Experimentally, we have focused on investigating and optimizing single, central processing steps. A laser has been the key processing tool during most of the work. We have used the same laser both to structure the backside of the cell and to make holes in a double-layer of passivating amorphous silicon and silicon oxide, where the holes were opened with the aim of making local contact to the underlying silicon. The processes developed have the possibility of using a relatively cheap and industrially proven laser and obtain results better than most state-of-the-art laser technologies. During the work with the laser, we also developed a thermodynamic model that was able to predict the outcome from laser interaction with amorphous and crystalline silicon. Alongside the experimental work, we

  8. Progress in Effect of Nano-modified Coatings and Welding Process Parameters on Wear of Contact Tube for Non-copper Coated Solid Wires

    Directory of Open Access Journals (Sweden)

    LI Zhuo-xin

    2017-12-01

    Full Text Available Environment-friendly non-copper coated solid wire is the main developing trend for gas shielded solid wires, whereas wear of contact tube limits their wide application. The effect of nano-modified coatings and welding process parameters on wear of contact tube for non-copper coated solid wires was reviewed. It was found that the wear of contact tube can be reduced due to the formation of tribo-films on the rubbing surfaces of welding wires against contact tube; it is feasible to decrease contact tube wear when non-copper coated solid wires are coated with nano-modified lubricants, thereby displaying excellent lubricating and thermal or electrical conduction characteristics. The wear of contact tube increases with the increase of welding current. The wear of contact tube is worse in direct-current electrode positive (DCEP than in direct-current electrode negative (DCEN. Arc ablation and electrical erosion are the dominant wear mechanisms of contact tube.

  9. Parallel- and serial-contact electrochemical metallization of monolayer nanopatterns: A versatile synthetic tool en route to bottom-up assembly of electric nanocircuits

    Directory of Open Access Journals (Sweden)

    Jonathan Berson

    2012-02-01

    Full Text Available Contact electrochemical transfer of silver from a metal-film stamp (parallel process or a metal-coated scanning probe (serial process is demonstrated to allow site-selective metallization of monolayer template patterns of any desired shape and size created by constructive nanolithography. The precise nanoscale control of metal delivery to predefined surface sites, achieved as a result of the selective affinity of the monolayer template for electrochemically generated metal ions, provides a versatile synthetic tool en route to the bottom-up assembly of electric nanocircuits. These findings offer direct experimental support to the view that, in electrochemical metal deposition, charge is carried across the electrode–solution interface by ion migration to the electrode rather than by electron transfer to hydrated ions in solution.

  10. Precision contact level gauge

    International Nuclear Information System (INIS)

    Krejci, M.; Pilat, M.; Stulik, P.

    1977-01-01

    Equipment was developed measuring the heavy water level in the TR-0 reactor core within an accuracy of several hundredths of a millimeter in a range of around 3.5 m and at a temperature of up to 90 degC. The equipment uses a vibrating needle contact as a high sensitivity level gauge and a servomechanical system with a motion screw carrying the gauge for monitoring and measuring the level in the desired range. The advantage of the unique level gauge consists in that that the transducer converts the measured level position to an electric signal, ie., pulse width, with high sensitivity and without hysteresis. (Kr)

  11. Construction and Assessment of an on the Go Soil Electrical

    Directory of Open Access Journals (Sweden)

    J Baradaran Motie

    2011-03-01

    Full Text Available The issue of soil salinity is one of the snags for increasing agricultural productivity, which must be inhibited by appropriate devise and scientific management. One way to identify salty areas of farm lands is to prepare salinity maps. In this study, a prototype soil apparent electrical conductivity measuring and mapping device, was designed and built. This device employs direct contact method of electrodes with soil (Also called Wenner method. The system inputs include power supply voltage, location signal from a GPS receiver and signal of voltage between the electrodes. The outputs include the apparent electrical conductivity with respective to geographical coordinate that created in a TEXT file, and then transmitted through a RS-232 serial port to a PC. Electrical conductivity data calibrated and mapped using ESAP-95 software package. To evaluate the device, electrical conductivity map of a land with area of 0.8 Ha surveyed in two ways: using the on the go EC mapper and capturing soil samples manually. The results of these two methods were then compared. Assessment of the device in a clay-loamy soil with low salt level, showed a good correlation with the laboratory EC, having mean error (ME of -15.27μS.cm-1. Point to point comparison between surveyed data and laboratory EC’s shown that in 67 percent of measurements the errors were under 10 percent. These errors are acceptable mainly due to unknown soil variables and in comparison with other research findings.

  12. Characterization of Contact and Bulk Thermal Resistance of Laminations for Electric Machines

    Energy Technology Data Exchange (ETDEWEB)

    Cousineau, J. Emily [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bennion, Kevin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); DeVoto, Doug [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mihalic, Mark [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-06-30

    The ability to remove heat from an electric machine depends on the passive stack thermal resistances within the machine and the convective cooling performance of the selected cooling technology. This report focuses on the passive thermal design, specifically properties of the stator and rotor lamination stacks. Orthotropic thermal conductivity, specific heat, and density are reported. Four materials commonly used in electric machines were tested, including M19 (29 and 26 gauge), HF10, and Arnon 7 materials.

  13. Capillary Rise: Validity of the Dynamic Contact Angle Models.

    Science.gov (United States)

    Wu, Pingkeng; Nikolov, Alex D; Wasan, Darsh T

    2017-08-15

    The classical Lucas-Washburn-Rideal (LWR) equation, using the equilibrium contact angle, predicts a faster capillary rise process than experiments in many cases. The major contributor to the faster prediction is believed to be the velocity dependent dynamic contact angle. In this work, we investigated the dynamic contact angle models for their ability to correct the dynamic contact angle effect in the capillary rise process. We conducted capillary rise experiments of various wetting liquids in borosilicate glass capillaries and compared the model predictions with our experimental data. The results show that the LWR equations modified by the molecular kinetic theory and hydrodynamic model provide good predictions on the capillary rise of all the testing liquids with fitting parameters, while the one modified by Joos' empirical equation works for specific liquids, such as silicone oils. The LWR equation modified by molecular self-layering model predicts well the capillary rise of carbon tetrachloride, octamethylcyclotetrasiloxane, and n-alkanes with the molecular diameter or measured solvation force data. The molecular self-layering model modified LWR equation also has good predictions on the capillary rise of silicone oils covering a wide range of bulk viscosities with the same key parameter W(0), which results from the molecular self-layering. The advantage of the molecular self-layering model over the other models reveals the importance of the layered molecularly thin wetting film ahead of the main meniscus in the energy dissipation associated with dynamic contact angle. The analysis of the capillary rise of silicone oils with a wide range of bulk viscosities provides new insights into the capillary dynamics of polymer melts.

  14. Controlling interface oxygen for forming Ag ohmic contact to semi-polar (1 1 -2 2) plane p-type GaN

    Science.gov (United States)

    Park, Jae-Seong; Han, Jaecheon; Seong, Tae-Yeon

    2014-11-01

    Low-resistance Ag ohmic contacts to semi-polar (1 1 -2 2) p-GaN were developed by controlling interfacial oxide using a Zn layer. The 300 °C-annealed Zn/Ag samples showed ohmic behavior with a contact resistivity of 6.0 × 10-4 Ω cm2 better than that of Ag-only contacts (1.0 × 10-3 Ω cm2). The X-ray photoemission spectroscopy (XPS) results showed that annealing caused the indiffusion of oxygen at the contact/GaN interface, resulting in the formation of different types of interfacial oxides, viz. Ga-oxide and Ga-doped ZnO. Based on the XPS and electrical results, the possible mechanisms underlying the improved electrical properties of the Zn/Ag samples are discussed.

  15. 78 FR 41339 - Electric Reliability Organization Proposal To Retire Requirements in Reliability Standards

    Science.gov (United States)

    2013-07-10

    ...] Electric Reliability Organization Proposal To Retire Requirements in Reliability Standards AGENCY: Federal... Reliability Standards identified by the North American Electric Reliability Corporation (NERC), the Commission-certified Electric Reliability Organization. FOR FURTHER INFORMATION CONTACT: Kevin Ryan (Legal Information...

  16. Silver antimony Ohmic contacts to moderately doped n-type germanium

    Energy Technology Data Exchange (ETDEWEB)

    Dumas, D. C. S.; Gallacher, K.; Millar, R.; Paul, D. J., E-mail: Douglas.Paul@glasgow.ac.uk [School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT (United Kingdom); MacLaren, I. [SUPA School of Physics and Astronomy, University of Glasgow, Kelvin Building, University Avenue, Glasgow G12 8QQ (United Kingdom); Myronov, M.; Leadley, D. R. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2014-04-21

    A self doping contact consisting of a silver/antimony alloy that produces an Ohmic contact to moderately doped n-type germanium (doped to a factor of four above the metal-insulator transition) has been investigated. An evaporation of a mixed alloy of Ag/Sb (99%/1%) onto n-Ge (N{sub D}=1×10{sup 18} cm{sup −3}) annealed at 400 °C produces an Ohmic contact with a measured specific contact resistivity of (1.1±0.2)×10{sup −5} Ω-cm{sup 2}. It is proposed that the Ohmic behaviour arises from an increased doping concentration at the Ge surface due to the preferential evaporation of Sb confirmed by transmission electron microscope analysis. It is suggested that the doping concentration has increased to a level where field emission will be the dominate conduction mechanism. This was deduced from the low temperature electrical characterisation of the contact, which exhibits Ohmic behaviour down to a temperature of 6.5 K.

  17. Competition in electricity markets

    International Nuclear Information System (INIS)

    Taylor, W.

    1996-01-01

    This article examines expanded wholesale and retail competition and the effect that they are likely to have on the electric power industry. The author believes that expanded wholesale competition is good and will bring immediate benefit to all electric consumers; however, based on the experience of the natural gas industry and the electric power industry in California and other parts of the world, the author counsels caution in moving toward expanded retail competition

  18. Monte Carlo simulations of electrical percolation in multicomponent thin films with nanofillers

    Science.gov (United States)

    Ni, Xiaojuan; Hui, Chao; Su, Ninghai; Jiang, Wei; Liu, Feng

    2018-02-01

    We developed a 2D disk-stick percolation model to investigate the electrical percolation behavior of an insulating thin film reinforced with 1D and 2D conductive nanofillers via Monte Carlo simulation. Numerical predictions of the percolation threshold in single component thin films showed good agreement with the previous published work, validating our model for investigating the characteristics of the percolation phenomena. Parametric studies of size effect, i.e., length of 1D nanofiller and diameter of 2D nanofiller, were carried out to predict the electrical percolation threshold for hybrid systems. The relationships between the nanofillers in two hybrid systems was established, which showed differences from previous linear assumption. The effective electrical conductance was evaluated through Kirchhoff’s current law by transforming it into a resistor network. The equivalent resistance was obtained from the distribution of nodal voltages by solving a system of linear equations with a Gaussian elimination method. We examined the effects of stick length, relative concentration, and contact patterns of 1D/2D inclusions on electrical performance. One novel aspect of our study is its ability to investigate the effective conductance of nanocomposites as a function of relative concentrations, which shows there is a synergistic effect when nanofillers with different dimensionalities combine properly. Our work provides an important theoretical basis for designing the conductive networks and predicting the percolation properties of multicomponent nanocomposites.

  19. All-back-Schottky-contact thin-film photovoltaics

    Science.gov (United States)

    Nardone, Marco

    2016-02-01

    The concept of All-Back-Schottky-Contact (ABSC) thin-film photovoltaic (TFPV) devices is introduced and evaluated using 2D numerical simulation. Reach-through Schottky junctions due to two metals of different work functions in an alternating, side-by-side pattern along the non-illuminated side generate the requisite built-in field. It is shown that our simulation method quantitatively describes existing data for a recently demonstrated heterojunction thin-film cell with interdigitated back contacts (IBCs) of one metal type. That model is extended to investigate the performance of ABSC devices with bimetallic IBCs within a pertinent parameter space. Our calculations indicate that 20% efficiency is achievable with micron-scale features and sufficient surface passivation. Bimetallic, micron-scale IBCs are readily fabricated using photo-lithographic techniques and the ABSC design allows for optically transparent surface passivation layers that need not be electrically conductive. The key advantages of the ABSC-TFPV architecture are that window layers, buffer layers, heterojunctions, and module scribing are not required because both contacts are located on the back of the device.

  20. Impact of Contact With Grandparents on Children's and Adolescents' Views on the Elderly.

    Science.gov (United States)

    Flamion, Allison; Missotten, Pierre; Marquet, Manon; Adam, Stéphane

    2017-12-19

    Stereotypes, prejudice, and discrimination against the elderly (ageism) may manifest themselves in children at an early age. However, the factors influencing this phenomenon are not well known. Using both explicit and open-ended questions, this study analyzed the influence of personal and familial parameters on the views of 1,151 seven- to sixteen-year-old Belgian children and adolescents on the elderly. Four factors were found to affect these views: gender (girls had slightly more positive views than boys), age (ageism was lowest in 10- to 12-year-old, reminiscent of other forms of stereotypes and cognitive developmental theories), grandparents' health, and most importantly, quality of contact with grandparents (very good and good contacts correlated with more favorable feelings toward the elderly, especially in children with frequent contacts). © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  1. TS/EL ELECTRICAL WORK REQUEST FORM

    CERN Multimedia

    TS Department

    2008-01-01

    To facilitate the processing of requests for minor electrical installation work to be carried out by the TS/EL group, a new procedure designed to improve contacts and exchange of information with customers has been set up. The procedure comprises a check to determine whether the TS/EL or the TS/FM group is responsible for the area where the electrical work is to be done. If the work is to be performed by the EL group, an on-line request form must be completed. The following steps must be completed: On a web browser, use the link http://ts-dep.web.cern.ch/ts-dep/groups/el/el.htm In the left-hand menu choose ‘Demande de Travaux Electriques’ Enter the building number to check which group to contact and click ‘FIND’ If the area is: Under FM’s responsibility:\tCall 77777 Under EL’s responsibility:\tClick the link to the work form, complete it and send it (click ‘ENVOYER’) IMPORTANT This form is for minor electrical installation requests only. Please call 72201 in t...

  2. Risk of neurological diseases among survivors of electric shocks

    DEFF Research Database (Denmark)

    Grell, Kathrine; Meersohn, Andrea; Schüz, Joachim

    2012-01-01

    Several studies suggest a link between electric injuries and neurological diseases, where electric shocks may explain elevated risks for neuronal degeneration and, subsequently, neurological diseases. We conducted a retrospective cohort study on the risk of neurological diseases among people...... in Denmark who had survived an electric accident in 1968-2008. The cohort included 3,133 people and occurrences of neurological diseases were determined by linkage to the nationwide population-based Danish National Register of Patients. The numbers of cases observed at first hospital contact in the cohort...... were compared with the respective rates of first hospital contacts for neurological diseases in the general population. We observed significantly increased risks for peripheral nerve diseases (standardized hospitalization ratio (SHR), 1.66; 95% confidence interval (CI), 1.22-2.22), for migraine (SHR, 1...

  3. Fabrication and characterization of contact layers in amorphous silicon solar cells

    International Nuclear Information System (INIS)

    Kolter, M.

    1993-04-01

    The production and characterisation of amorphous and microcrystalline n-doped layers (a-Si:H(n) and c-Si:H(n)) for thin film solar cells is described together contact investigations. The layers were produced in a plasma CVD. The electric conductivity was measured

  4. Solar cell contact pull strength as a function of pull-test temperature

    Science.gov (United States)

    Yasui, R. K.; Berman, P. A.

    1972-01-01

    Four types of solar cell contacts were given pull-strength tests at temperatures between -173 and +165 C. Contacts tested were: (1) solder-coated titanium-silver contacts on n-p cells, (2) palladium-containing titanium-silver contacts on n-p cells, (3) titanium-silver contacts on 0.2-mm-thick n-p cells, and (4) solder-coated electroless-nickel-plated contacts on p-n cells. Maximum pull strength was demonstrated at temperatures significantly below the air mass zero cell equilibrium temperature of +60 C. At the lowest temperatures, the chief failure mechanism was silicon fracture along crystallographic planes; at the highest temperatures, it was loss of solder strength. In the intermediate temperatures, many failure mechanisms operated. Pull-strength tests give a good indication of the suitability of solar cell contact systems for space use. Procedures used to maximize the validity of the results are described.

  5. Improving Single-Carbon-Nanotube-Electrode Contacts Using Molecular Electronics.

    Science.gov (United States)

    Krittayavathananon, Atiweena; Ngamchuea, Kamonwad; Li, Xiuting; Batchelor-McAuley, Christopher; Kätelhön, Enno; Chaisiwamongkhol, Korbua; Sawangphruk, Montree; Compton, Richard G

    2017-08-17

    We report the use of an electroactive species, acetaminophen, to modify the electrical connection between a carbon nanotube (CNT) and an electrode. By applying a potential across two electrodes, some of the CNTs in solution occasionally contact the electrified interface and bridge between two electrodes. By observing a single CNT contact between two microbands of an interdigitated Au electrode in the presence and absence of acetaminophen, the role of the molecular species at the electronic junction is revealed. As compared with the pure CNT, the current magnitude of the acetaminophen-modified CNTs significantly increases with the applied potentials, indicating that the molecule species improves the junction properties probably via redox shuttling.

  6. High thermally stable Ni /Ag(Al) alloy contacts on p-GaN

    Science.gov (United States)

    Chou, C. H.; Lin, C. L.; Chuang, Y. C.; Bor, H. Y.; Liu, C. Y.

    2007-01-01

    Ag agglomeration was found to occur at Ni /Ag to p-GaN contacts after annealing at 500°C. This Ag agglomeration led to the poor thermal stability showed by the Ni /Ag contacts in relation to the reflectivity and electrical properties. However, after alloying with 10at.% Al by e-gun deposition, the Ni /Ag(Al) p-GaN contacts were found to effectively retard Ag agglomeration thereby greatly enhancing the thermal stability. Based on the x-ray photoelectron spectroscopy analysis, the authors believe that the key for the retardation of Ag agglomeration was the formation of ternary Al-Ni-O layer at p-GaN interface.

  7. Occupational contact urticaria and protein contact dermatitis.

    Science.gov (United States)

    Doutre, Marie-Sylvie

    2005-01-01

    Irritant dermatitis and eczema are the most prevalent occupational skin diseases. Less common are immediate contact reactions such as contact urticaria and protein contact dermatitis. Occupational contact urticaria can be subdivided into two categories, immunological and non immunological. However, some agents can induce these two types of reactions. Contact urticaria to natural rubber latex is particularly frequent among health care personnel, but contact urticaria to a wide variety of other substances occurs in many other occupations. Among those at risk are cooks, bakers, butchers, restaurant personnel, veterinarians, hairdressers, florists, gardeners, and forestry workers. Protein contact dermatitis in some of these occupations is caused principally by proteins of animal or plant origin, especially among individuals with a history of atopic dermatitis. Diagnosis requires careful interrogation, clinical examination and skin tests (open tests and prick tests with immediate lecture) to identify a particular contact allergen.

  8. From natural to biomimetic: The superhydrophobicity and the contact time.

    Science.gov (United States)

    Liang, Yun-Hong; Peng, Jian; Li, Xiu-Juan; Xu, Jin-Kai; Zhang, Zhi-Hui; Ren, Lu-Quan

    2016-08-01

    The superhydrophobicities and the contact time of lotus leaf and reed leaf were investigated. The results indicated that both lotus leaf and reed leaf have good superhydrophobic properties, and the water contact time was 12.7 and 14.7 ms on the surface of lotus leaf and reed leaf, respectively. Surface structure plays a key role in the different contacting times. Homogeneous distribution of papillae on the surface of lotus leaf was more helpful to reduce the contact time than anisotropic groove-shape on the surface of reed leaf. Based on the bionics coupling theory, the bionics sample possessing similar lotus-leaf-like surface structure on the aluminum alloy was designed and fabricated successfully. The water contact angle was about 153 ± 2°, sliding angle less than 5°, and the water contact time was 13.4 ms on the surface of bionics sample, which presented excellent superhydrophobic property, and achieved the aim of bionic design. Microsc. Res. Tech. 79:712-720, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Electrical biopsy of irradiated intestinal tissue with a simple electrical impedance spectroscopy system for radiation enteropathy in rats—a pilot study

    International Nuclear Information System (INIS)

    Huang, Yu-Jie; Lu, Yi-Yu; Chen, Cheng-Yu; Cheng, Kuo-Sheng; Huang, Eng-Yen

    2011-01-01

    Electrical impedance is one of the most often used parameters for characterizing material properties, especially in biomedical applications. Electrical impedance spectroscopy (EIS), used for revealing both resistive and capacitive characteristics, is good for use in tissue characterization. In this study, a portable and simple EIS system based on a commercially available chip was used to assess rat intestinal tissues following irradiation. The EIS results were fitted to a resistor and capacitor electrical circuit model to solve the electrical properties of the tissue. The variation in the tissue's electrical characteristics was compared to the morphological and histological findings. From the experimental results, it was clear that the electrical properties, based on receiver operation curve analysis, demonstrated good detection performance relative to the histological changes. The electrical parameters of the tissues could be used to distinguish the tissue's status for investigation, which introduced a concept of 'electrical biopsy', and this 'electrical biopsy' approach may be used to complement histological examinations

  10. Distortion of maximal elevator activity by unilateral premature tooth contact

    DEFF Research Database (Denmark)

    Bakke, Merete; Møller, Eigild

    1980-01-01

    In four subjects the electrical activity in the anterior and posterior temporal and masseter muscles during maximal bite was recorded bilaterally with and without premature unilateral contact. Muscle activity was measured as the average level and the peak of the mean voltage with layers of strips...... of 0.05, 0.10, 0.15 and 2.0 mm, placed between first molars either on the left or the right side, and compared with the level of activity with undistrubed occlusion. Unilateral premature contact caused a significant asymmetry of action in all muscles under study with stronger activity ipsilaterally...

  11. On the correlation of electricity spot market prices and photovoltaic electricity generation

    International Nuclear Information System (INIS)

    Meyer, Tim; Luther, Joachim

    2004-01-01

    Discussions about market introduction of grid connected photovoltaics (PV) and its costs usually concentrate only on the gross energy produced without taking the time dependency of electricity prices and, thus, the time dependency of the value of PV electricity into account. To make a first approximation of what the effect of the time variance of electricity cost on the value of PV electricity is, the correlation with spot market prices is analysed in this paper. PV is not dispatchable by nature, but is relatively well predictable in the range of one day, if the average of spatially dispersed systems is considered. Thus, this correlation gives a good indication for the additional value of PV electricity

  12. On the correlation of electricity spot market prices and photovoltaic electricity generation

    International Nuclear Information System (INIS)

    Meyer, T.; Luther, J.

    2004-01-01

    Discussions about market introduction of grid connected photovoltaics (PV) and its costs usually concentrate only on the gross energy produced without taking the time dependency of electricity prices and, thus, the time dependency of the value of PV electricity into account. To make a first approximation of what the effect of the time variance of electricity cost on the value of PV electricity is, the correlation with spot market prices is analysed in this paper. PV is not dispatchable by nature, but is relatively well predictable in the range of one day, if the average of spatially dispersed systems is considered. Thus, this correlation gives a good indication for the additional value of PV electricity. (Author)

  13. Contactless Electric Igniter for Vehicle to Lower Exhaust Emission and Fuel Consumption

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2014-01-01

    Full Text Available An electric igniter for engine/hybrid vehicles is presented. The igniter comprises a flyback converter, a voltage-stacked capacitor, a PIC-based controller, a differential voltage detector, and an ignition coil, of which structure is non-contact type. Since the electric igniter adopts a capacitor to accumulate energy for engine ignition instead of traditional contacttype approach, it enhances the igniting performance of a spark plug effectively. As a result, combustion efficiency is promoted, fuel consumption is saved, and exhaust emission is reduced. The igniter not only is good for fuel efficiency but also can reduce HC and CO emission significantly, which therefore is an environmentally friendly product. The control core of the igniter is implemented on a single chip, which lowers discrete component count, reduces system volume, and increases reliability. In addition, the ignition timing can be programmed so that a timing regulator can be removed from the proposed system, simplifying its structure. To verify the feasibility and functionality of the igniter, key waveforms are measured and real-car experiments are performed as well.

  14. Anatomy-performance correlation in Ti-based contact metallizations on AlGaN/GaN heterostructures

    International Nuclear Information System (INIS)

    Mohammed, Fitih M.; Wang, Liang; Koo, Hyung Joon; Adesida, Ilesanmi

    2007-01-01

    A comprehensive study of the electrical and surface microstructural characteristics of Ti/Au, Ti/Al/Au, Ti/Mo/Au, and Ti/Al/metal/Au schemes, where metal is Ir, Mo, Nb, Pt, Ni, Ta, and Ti, has been carried out to determine the role of constituent components of multilayer contact metallizations on Ohmic contact formation on AlGaN/GaN heterostructures. Attempts have been made to elucidate the anatomy (composition-structure) performance correlation in these schemes. Evidences have been obtained for the necessity of the Al and metal barrier layer as well as an optimal amount of Ti for achieving low-resistance Ohmic contact formation. A strong dependence of electrical properties and intermetallic interactions on the type of metal barrier layer used was found. Scanning electron microscopy characterization, coupled with energy dispersive x-ray spectroscopy, has shown evidence for alloy aggregation, metal layer fragmentation, Al-Au solid solution formation, and possible Au and/or Al reaction with metal layer. Results from the present study provide insights on the active and the necessary role various components of a multilayer contact metallization play for obtaining excellent Ohmic contact formation in the fabrication of AlGaN/GaN high electron mobility transistors

  15. Thermal burn and electrical injuries among electric utility workers, 1995-2004.

    Science.gov (United States)

    Fordyce, Tiffani A; Kelsh, Michael; Lu, Elizabeth T; Sahl, Jack D; Yager, Janice W

    2007-03-01

    This study describes the occurrence of work-related injuries from thermal-, electrical- and chemical-burns among electric utility workers. We describe injury trends by occupation, body part injured, age, sex, and circumstances surrounding the injury. This analysis includes all thermal, electric, and chemical injuries included in the Electric Power Research Institute (EPRI) Occupational Health and Safety Database (OHSD). There were a total of 872 thermal burn and electric shock injuries representing 3.7% of all injuries, but accounting for nearly 13% of all medical claim costs, second only to the medical costs associated with sprain- and strain-related injuries (38% of all injuries). The majority of burns involved less than 1 day off of work. The head, hands, and other upper extremities were the body parts most frequently injured by burns or electric shocks. For this industry, electric-related burns accounted for the largest percentage of burn injuries, 399 injuries (45.8%), followed by thermal/heat burns, 345 injuries (39.6%), and chemical burns, 51 injuries (5.8%). These injuries also represented a disproportionate number of fatalities; of the 24 deaths recorded in the database, contact with electric current or with temperature extremes was the source of seven of the fatalities. High-risk occupations included welders, line workers, electricians, meter readers, mechanics, maintenance workers, and plant and equipment operators.

  16. The Effect of Sputtering Parameters on the Film Properties of Molybdenum Back Contact for CIGS Solar Cells

    Directory of Open Access Journals (Sweden)

    Peng-cheng Huang

    2013-01-01

    Full Text Available Molybdenum (Mo thin films are widely used as a back contact for CIGS-based solar cells. This paper determines the optimal settings for the sputtering parameters for an Mo thin film prepared on soda lime glass substrates, using direct current (dc magnetron sputtering, with a metal Mo target, in an argon gas environment. A Taguchi method with an L9 orthogonal array, the signal-to-noise ratio, and an analysis of variances is used to determine the performance characteristics of the coating operation. The main sputtering parameters, such as working pressure (mTorr, dc power (W, and substrate temperature (°C, are optimized with respect to the structural features, surface morphology, and electrical properties of the Mo films. An adhesive tape test is performed on each film to determine the adhesion strength of the films. The experimental results show that the working pressure has the dominant effect on electrical resistivity and reflectance. The intensity of the main peak (110 for the Mo film increases and the full width at half maximum decreases gradually as the sputtering power is increased. Additionally, the application of an Mo bilayer demonstrates good adherence and low resistivity.

  17. Meter of dynamics of restoring the electrical strength of spark gaps

    International Nuclear Information System (INIS)

    Kuznetsov, E.A.; Kravchenko, S.A.; Yagnov, V.A.; Shipuk, I.Ya.

    1997-01-01

    Method for diagnostics of the dynamics spark gap electric strength restoration and an electric device for its realization are described. The electric strength measurement error, conditioned by the breakdown current through electric probes or the contacts of a spark gap under investigation, is reduced to minimum due to fast switching off the probe voltage if the breakdown current exceeds some established value (1 mA). 1 ref

  18. Electrical properties of transparent CNT and ITO coatings on PET substrate including nano-structural aspects

    Science.gov (United States)

    Park, Joung-Man; Wang, Zuo-Jia; Kwon, Dong-Jun; Gu, Ga-Young; Lawrence DeVries, K.

    2013-01-01

    Ultraviolet (UV)-visible spectra and surface resistance measurement were used to investigate optical transmittance and conductive properties of carbon nanotube (CNT) and indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrates. Conductive CNT and ITO coatings were successfully fabricated on PET by a spray-coating method. Thin coatings of both materials exhibited good conductivity and transparency. Changes in electrical and optical properties of the coatings were studied as a function of the coating suspension concentration. Interfacial durability of the coatings on PET substrates was also investigated under fatigue and bending loads. CNT coated substrates, with high aspect ratios, exhibited no detectable change in surface resistance up to 2000 cyclic loadings, whereas the ITO coated substrates exhibited a substantial increase in surface resistance at 1000 loading cycles. This change in resistance is attributed to a reduction in the number and effectiveness of the electrical contact points due to the inherent brittle nature of ITO.

  19. How to Estimate Epidemic Risk from Incomplete Contact Diaries Data?

    Science.gov (United States)

    Mastrandrea, Rossana; Barrat, Alain

    2016-06-01

    Social interactions shape the patterns of spreading processes in a population. Techniques such as diaries or proximity sensors allow to collect data about encounters and to build networks of contacts between individuals. The contact networks obtained from these different techniques are however quantitatively different. Here, we first show how these discrepancies affect the prediction of the epidemic risk when these data are fed to numerical models of epidemic spread: low participation rate, under-reporting of contacts and overestimation of contact durations in contact diaries with respect to sensor data determine indeed important differences in the outcomes of the corresponding simulations with for instance an enhanced sensitivity to initial conditions. Most importantly, we investigate if and how information gathered from contact diaries can be used in such simulations in order to yield an accurate description of the epidemic risk, assuming that data from sensors represent the ground truth. The contact networks built from contact sensors and diaries present indeed several structural similarities: this suggests the possibility to construct, using only the contact diary network information, a surrogate contact network such that simulations using this surrogate network give the same estimation of the epidemic risk as simulations using the contact sensor network. We present and compare several methods to build such surrogate data, and show that it is indeed possible to obtain a good agreement between the outcomes of simulations using surrogate and sensor data, as long as the contact diary information is complemented by publicly available data describing the heterogeneity of the durations of human contacts.

  20. Electrode-Skin contact impedance: In vivo measurements on an ovine model

    International Nuclear Information System (INIS)

    Nguyen, D T; Kosobrodov, R; Jin, C; McEwan, A; Barry, M A; Chik, W; Thiagalingam, A; Oh, T I

    2013-01-01

    The problem of electrical impedance between the skin and the electrode is an on-going challenge in bio-electronics. This is particularly true in the case of Electrical Impedance Tomography (EIT), which uses a large number of skin-contact electrodes and is very sensitive to noise. In the present article, contact impedance is measured and compared for a range of electrodes placed on the thorax of an ovine model. The study has been approved by the Westmead Hospital Animal Ethics Committee. The electrode models that were employed in the research are Ag/AgCl electrodes (E1), commonly used for ECG and EIT measurements in both humans and animal models, stainless steel crocodile clips (E2), typically used on animal models, and novel multi-point dry electrodes in two modifications: bronze plated (E3) and nickel plated (E4). Further, since the contact impedance is mostly attributed to the acellular outer layer of the skin, in our experiment, we attempted to study the effect of this layer by comparing the results when the skin is intact and when electrodes are introduced underneath the skin through small cuts. This boundary effect was assessed by comparison of measurements obtained during E2 skin surface contact, and sub-cutaneous contact (E5). Twelve gauge intradermal needles were also tested as an electrode (E6). The full impedance spectrum, from 500 Hz to 300 kHz, was recorded, analysed and compared. As expected, the contact impedance in the more invasive cases, i.e the electrodes under the skin, is significantly lower than in the non-invasive cases. At the frequency of 50 kHz which is commonly used in lung EIT acquisition, electrodes E3, E4 and E6 demonstrated contact impedance of less than 200 Ω, compared to more than 400 Ω measured for electrodes E1, E2 and E5. In conclusion, the novel multipoint electrodes proved to be best suited for EIT purposes, because they are non-invasive and have lower contact impedance than Ag/AgCl and crocodile clips, in both invasive and

  1. The Electric Vehicle Development

    DEFF Research Database (Denmark)

    Wang, Jingyu; Liu, Yingqi; Kokko, Ari

    2014-01-01

    In order to respond to the energy crisis and environment problem, countries carry out their research and promotion about electric vehicles. As the ten cities one thousand new energy buses started in 2009, the new energy vehicles have been greatly developed in China, while the development...... in three aspects-city environment, government and stakeholders. Then the paper discusses the promotion ways and role of government and consumer. Finally, the paper offers some suggestions to promote electric vehicles in China: focusing on feasibility and adaptability of electric vehicles, playing...... of electric vehicles is not that good. This paper selects four cities-Los Angeles, Kanagawa, Hamburg, Amsterdam-that promote electric vehicles successfully and deeply analyzes the development of electric vehicles in these four cities and analyzes the factors that affect the development of electric vehicles...

  2. Electrical properties of ZnO nanorods and layers

    Energy Technology Data Exchange (ETDEWEB)

    Schlenker, Eva; Bakin, Andrey; Peters, Ole; Mofor, Augustine C.; Postels, Bianca; El-Shaer, Hamid; Wehmann, Hergo-Heinrich; Waag, Andreas [Institut fuer Halbleitertechnik, TU Braunschweig (Germany); Weimann, Thomas; Hinze, Peter [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany)

    2007-07-01

    ZnO has attracted a lot of interest in the scientific community due to its outstanding properties. With a band gap of 3.37 eV and an exciton binding energy of 60 meV it is a promising candidate for micro- and optoelectronic applications. The growth of ZnO nanostructures and epitaxial layers is well under control and their optical and structural properties are already thoroughly characterized. However, due to contacting difficulties, less reports exist on the electrical properties of single ZnO nanostructures. In this contribution we present various contacting methods in order to explore the electrical properties of individual nanorods either grown by aqueous chemical growth or vapor phase transport. Current-Voltage characteristics were obtained by using an atomic force microscope with a conductive tip or by patterning contacts with e-beam lithography. The results are compared to the ones obtained from measurements on epitaxially grown ZnO layers and first applications are presented.

  3. Assessment of risk factors for death in electrical injury.

    Science.gov (United States)

    Dokov, William

    2009-02-01

    Fatal high-voltage injuries present a problem which has not yet been studied sufficiently in the context of interaction between the human body and electricity, as a technical, anthropogenic and natural phenomenon. The forensic medicine records of 291 cases of death caused by high-voltage current for a 41-year-long period (1965-2006) were examined in retrospect. The descriptive statistical analyses were made using the SPSS 11.0 software. Death was found to result most commonly from contact between the deceased and elements of the power transmission and distribution grid: (41.24%), and from the action of lightning: (32.3%), the difference in their relative share being insignificant. Much more rarely, death was due to contact with construction and repair electrical devices: (7.56%), or with elements of the power transport railway infrastructure: (6.87%). Death resulting from contact with agricultural electrical devices was only occasional: (0.68%). The victims' average age was 36.19 years. Our analysis indicates that the relative share (43.98%) of the victims is the highest in the age period between 25 and 44. The ratio between women and men is 1:21.38.

  4. Type conversion, contacts, and surface effects in electroplated CdTe films

    International Nuclear Information System (INIS)

    Basol, B.M.; Ou, S.S.; Stafsudd, O.M.

    1985-01-01

    Efficient electroplated CdS/CdTe solar cells can be fabricated by heat treating and type-converting the n-CdTe films deposited on CdS layers. In this paper, various mechanisms which may give rise to the conversion of electroplated CdTe films from n to p type are investigated. It is concluded that Cd-vacancy generation is the main mechanism of type conversion. Possible effects of oxygen on this mechanism are also discussed. Evaporated Au contacts to electroplated p-CdTe films were studied. It was found that the Au contacts depleted the excess Te present on the surface of Br 2 -methanol etched p-CdTe films. Oxygen was found to affect the electrical characteristics of such contacts

  5. The Achievement of Near-Theoretical-Minimum Contact Resistance to InP

    Science.gov (United States)

    Fatemi, Navid S.; Weizer, Victor G.

    1993-01-01

    We have investigated the electrical and metallurgical behavior of the InP/Au/Ni contact system. We show that when a layer of Au, 100 A or more in thickness, is introduced between n-InP and Ni contact metallization, specific contact resistivity R, values in the low 10(exp -8) Omega cm(exp 2) range are achieved after sintering. It is suggested that these ultralow values of R(sub c) are due to the presence, at the metal-InP interface, of a Ni3P layer combined with a stoichiometry change in the InP surface. We show, in addition, that it is possible to achieve very low R(sub c) values with this system without incurring device destroying sinter-induced metallurgical interdiffusion.

  6. Electrical bushing for a superconductor element

    Science.gov (United States)

    Mirebeau, Pierre; Lallouet, Nicolas; Delplace, Sebastien; Lapierre, Regis

    2010-05-04

    The invention relates to an electrical bushing serving to make a connection at ambient temperature to a superconductor element situated in an enclosure at cryogenic temperature. The electrical bushing passes successively through an enclosure at intermediate temperature between ambient temperature and cryogenic temperature, and an enclosure at ambient temperature, and it comprises a central electrical conductor surrounded by an electrically insulating sheath. According to the invention, an electrically conductive screen connected to ground potential surrounds the insulating sheath over a section that extends from the end of the bushing that is in contact with the enclosure at cryogenic temperature at least as far as the junction between the enclosure at intermediate temperature and the enclosure at ambient temperature. The invention is more particularly applicable to making a connection to a superconductor cable.

  7. Electric conductivity of TlInTe2 monocrystal in strong electric fields

    International Nuclear Information System (INIS)

    Zarbaliev, M.M.; Godzhaev, Eh.M.; Gadzhiev, V.A.

    1980-01-01

    Electric condUctivity of the TlInTe 2 single crystal in strong electric fields has been studied in the range of 77-300 K. The electron part of the TlInTe 2 dielectric constant has been found to be 4. The dependence of the activation energy of current carriers on the electric field strength is constructed and the value of the activation energy of current carriers in the absence of an electric field is determined by the extrapolation method. The results of the experiments are in good agreement with the Frenkel-Pool theory, and this affords grounds for asserting that the obtained dependences of electric conductivity on temperature and the electric field strength are defined by variation in the current carrier concentration due to action of the thermal-electron ionization mechanism

  8. Perspectives on setting limits for RF contact currents: a commentary.

    Science.gov (United States)

    Tell, Richard A; Tell, Christopher A

    2018-01-15

    Limits for exposure to radiofrequency (RF) contact currents are specified in the two dominant RF safety standards and guidelines developed by the Institute of Electrical and Electronics Engineers (IEEE) and the International Commission on Non-Ionizing Radiation Protection (ICNIRP). These limits are intended to prevent RF burns when contacting RF energized objects caused by high local tissue current densities. We explain what contact currents are and review some history of the relevant limits with an emphasis on so-called "touch" contacts, i.e., contact between a person and a contact current source during touch via a very small contact area. Contact current limits were originally set on the basis of controlling the specific absorption rate resulting from the current flowing through regions of small conductive cross section within the body, such as the wrist or ankle. More recently, contact currents have been based on thresholds of perceived heating. In the latest standard from the IEEE developed for NATO, contact currents have been based on two research studies in which thresholds for perception of thermal warmth or thermal pain have been measured. Importantly, these studies maximized conductive contact between the subject and the contact current source. This factor was found to dominate the response to heating wherein high resistance contact, such as from dry skin, can result in local heating many times that from a highly conductive contact. Other factors such as electrode size and shape, frequency of the current and the physical force associated with contact are found to introduce uncertainty in threshold values when comparing data across multiple studies. Relying on studies in which the contact current is minimized for a given threshold does not result in conservative protection limits. Future efforts to develop limits on contact currents should include consideration of (1) the basis for the limits (perception, pain, tissue damage); (2) understanding of the

  9. Simulation of Novel NEMS Contact Switch Using MRTD with Alterable Steps

    Directory of Open Access Journals (Sweden)

    Wen-Ge Yu

    2010-01-01

    Full Text Available In order to apply Radio Frequency Micro-nano-Electro-Mechanical System (MEMS/NEMS technologies to produce miniature, high isolation, low insertion loss, good linear characteristic, and low power consumption microwave switches, we present a novel NEMS switch with nanoscaling in this paper through the analysis of electrics and mechanics of the RF switch. The measured data show the pull-in voltage of 24.1 V and the good RF performance of the insertion loss of below −10 dB at 0 GHz on the “on” state, and the isolation of beyond –40 dB at 0–40 GHz on the “off” state, indicating that the witch is suitable for the 0–40 GHz applications. Our analysis shows that the NEMS switch not only can work in wide frequency bands, but also has better isolation performance in lower frequency, thus extending the application to the lower band. The Haar-wavelet-based multiresolution time domain (MRTD with compactly supported scaling function is used for modeling and analyzing the nanomachine switch for the first time. The major advantage of the MRTD algorithms is their capability to develop real-time time and space adaptive grids through the efficient thresholding of the wavelet coefficients. The error between the measured and computed results is below 5%, this indicated that the Haar-wavelet-based multiresolution time domain was suitable for simulating the nano-scaling contact switch.

  10. Radiation-heterogeneous processes on the surface of stainless steel in contact with water

    International Nuclear Information System (INIS)

    Garibov, A.; Agayev, T.N.; Velibekova, G.Z.; Ismayilov, Sh.S.; Aliyev, A.G.

    2003-01-01

    Full text: Stainless steels are one of prevailing materials of nuclear power engineering. Under operating conditions in real systems they are exposed to influence of ionizing radiation in contact with various environments. Therefore in the processes of corrosion and destruction of stainless steels special significance takes on surface processes and subsequent heterogeneous processes with their participation. In this report the results of research of nuclear-heterogeneous processes regularities in contact with stainless steel of nuclear reactors with water under influence of γ-quanta in the temperature range 300-573 K are given. Radiolytic processes in water are investigated comprehensively and therefore it was taken as modelling system for titration of surface defects and secondary electrons, emitted from metal. It was determined, that radiation processes in stainless steel give rise to the increasing of energy output of molecular hydrogen at water radiolysis from 0.45 molecule/100 eV at pure water radiolysis at 296 K up to 3.4 molecule/100 eV at the presence of stainless steel at 300 K. With increase of temperature the output of molecular hydrogen increases up to 8.2 molecule/100 eV at 573 K. Processes of lattice damage in samples of stainless steel under influence of γ-rays were investigated by electrophysical method. Influence of γ-radiation on stainless steel in contact with water at temperatures T ≤ 423 K and initial values of radiation dose D ≤ 200 kGy given rise to the reduction of electrical resistivity of samples. At doses D≥200 kGy electrical resistivity is increased. Increase of temperature from 333 K up to 423 K lead to the reduction of dose value, at which the transition to resistance increase, from 200 kGy up to 100 kGy occurs. At T≥523 K insoluble oxide phase is formed on a surface of metal which give rise to the increase of electrical resistivity of stainless steel samples. Surface oxide film formed in contact of stainless steel + H 2 O

  11. Preliminary evaluation of the activity concentration limits for consumer goods containing NORM

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Mee; Chung, Kun Ho; Ji, Young Yong; Lim, Jong Myung; Kang, Mun Ja; Choi, Guen Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-06-15

    To protect the public from natural radioactive materials, the 'Act on safety control of radioactive rays around living environment' was established in Korea. There is an annual effective dose limit of 1 mSv for products, but the activity concentration limit for products is not established yet. To suggest the activity concentration limits for consumer goods containing NORM, in this research, we assumed the 'small room model' surrounding the ICRP reference phantom to simulate the consumer goods in contact with the human bodies. Using the Monte Carlo code MCNPX, we evaluate the effective dose rate for the ICRP reference phantom in a small room with dimension of phantom size and derived the activity concentration limit for consumer goods. The consumer goods have about 1600, 1200 and 19000 Bq·kg{sup -1} for {sup 226}Ra, {sup 232}Th and {sup 40}K, and the activity concentration limits are about six times comparing with the values of building materials. We applied the index to real samples, though we did not consider radioactivity of {sup 40}K, indexes of the some samples are more than 6. However, this index concept using small room model is very conservative, for the consumer goods over than index 6, it is necessary to reevaluate the absorbed dose considering real usage scenario and material characteristics. In this research, we derived activity concentration limits for consumer goods in contact with bodies and the results can be used as preliminary screening tool for consumer goods as index concept.

  12. Preliminary evaluation of the activity concentration limits for consumer goods containing NORM

    International Nuclear Information System (INIS)

    Jang, Mee; Chung, Kun Ho; Ji, Young Yong; Lim, Jong Myung; Kang, Mun Ja; Choi, Guen Sik

    2016-01-01

    To protect the public from natural radioactive materials, the 'Act on safety control of radioactive rays around living environment' was established in Korea. There is an annual effective dose limit of 1 mSv for products, but the activity concentration limit for products is not established yet. To suggest the activity concentration limits for consumer goods containing NORM, in this research, we assumed the 'small room model' surrounding the ICRP reference phantom to simulate the consumer goods in contact with the human bodies. Using the Monte Carlo code MCNPX, we evaluate the effective dose rate for the ICRP reference phantom in a small room with dimension of phantom size and derived the activity concentration limit for consumer goods. The consumer goods have about 1600, 1200 and 19000 Bq·kg -1 for 226 Ra, 232 Th and 40 K, and the activity concentration limits are about six times comparing with the values of building materials. We applied the index to real samples, though we did not consider radioactivity of 40 K, indexes of the some samples are more than 6. However, this index concept using small room model is very conservative, for the consumer goods over than index 6, it is necessary to reevaluate the absorbed dose considering real usage scenario and material characteristics. In this research, we derived activity concentration limits for consumer goods in contact with bodies and the results can be used as preliminary screening tool for consumer goods as index concept

  13. Characteristics of molybdenum bilayer back contacts for Cu(In,Ga)Se2 solar cells on Ti foils

    International Nuclear Information System (INIS)

    Roger, Charles; Noël, Sébastien; Sicardy, Olivier; Faucherand, Pascal; Grenet, Louis; Karst, Nicolas; Fournier, Hélène; Roux, Frédéric; Ducroquet, Frédérique; Brioude, Arnaud; Perraud, Simon

    2013-01-01

    Molybdenum back contact properties are critical for Cu(In,Ga)Se 2 (CIGS) solar cell performance on metallic substrates. In this work, we investigated the properties of sputter-deposited Mo bilayer back contacts on Ti foils. The morphology, electrical resistivity, optical reflectance and residual mechanical stress of the bottom Mo layer were modified by varying the working pressure during its deposition. Working pressures ranging from 0.27 Pa to 4.00 Pa were used. The top Mo layer was deposited using constant conditions at a pressure of 0.13 Pa. It was demonstrated that unlike a Mo monolayer, the use of a Mo bilayer allows controlling the mechanical stress at the Mo/CIGS interface without degrading the optical reflectance and the electrical resistance of the back contact. It was also found that the morphology of the bottom Mo layer affects the growth of the top Mo layer, resulting in a modified back contact surface morphology. This induces changes in the crystalline orientation of the CIGS layer. The resulting solar cell characteristics strongly vary as a function of the bottom Mo layer deposition pressure. A bottom Mo layer growth at 2.93 Pa allows improving the solar cell conversion efficiency by 1.5 times compared to a bottom Mo layer deposited at 0.27 Pa. Using the improved Mo bilayer back contact, a maximum solar cell efficiency of 10.0% was obtained without sodium addition nor anti-reflection coating. - Highlights: • Mo bilayer back contacts for Cu(In,Ga)Se 2 solar cells were grown on Ti substrates. • The sputtering pressure of the bottom Mo layer was varied between 0.27 Pa and 4 Pa. • The top Mo layer controls the optical and electrical properties of the back contact. • The structure of the bottom Mo layer influences the morphology of the top Mo layer. • The back contact affects the CIGS texture, device series resistance and efficiency

  14. Time-dependent contact behavior between diamond and a CNT turf

    International Nuclear Information System (INIS)

    Qiu, A; Bahr, D F; Fowler, S P; Jiao, J; Kiener, D

    2011-01-01

    The elastic and adhesive properties of nominally vertically aligned carbon nanotube (CNT) turfs have been measured using nanoindentation. The perceived stiffness of a CNT turf is dependent on the unloading rate, which decreases at slower unloading rates. Depth-controlled nanoindentation was used to examine adhesion effects. Adhesive loads between the turf and the probe tip increased as the time the tip is in contact with the turf increased. As these effects could be from either more tubes coming into contact with the tip due to relaxation and motion of CNTs relative to one another or each tube in contact increasing its adhesive behavior and sub-contact stiffness due to tube-tube interactions within the turf, electrical resistance measurements during nanoindentation were carried out. When the tip is held at a fixed nominal depth, the current remains constant while the contact load decreases, suggesting the number of tubes in contact with the tip stays constant with time while the relaxation mechanisms in the turf occur at positions lower than the contact surface. These observations, in conjunction with in situ TEM compression test of CNT arrays, are used to describe the relative effects the various length and time scales may have on the perceived properties measured during experiments, including elastic modulus and adhesion for gecko-like dry adhesives.

  15. Time-dependent contact behavior between diamond and a CNT turf

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, A; Bahr, D F [School of Mechanical and Materials Engineering, Washington State University, 99164-2920 WA (United States); Fowler, S P; Jiao, J [Department of Physics, Portland State University, Portland, 97207-0751 OR (United States); Kiener, D, E-mail: anqi_qiu@wsu.edu, E-mail: dbahr@wsu.edu [Department of Materials Physics, University of Leoben, A-8700 Leoben (Austria)

    2011-07-22

    The elastic and adhesive properties of nominally vertically aligned carbon nanotube (CNT) turfs have been measured using nanoindentation. The perceived stiffness of a CNT turf is dependent on the unloading rate, which decreases at slower unloading rates. Depth-controlled nanoindentation was used to examine adhesion effects. Adhesive loads between the turf and the probe tip increased as the time the tip is in contact with the turf increased. As these effects could be from either more tubes coming into contact with the tip due to relaxation and motion of CNTs relative to one another or each tube in contact increasing its adhesive behavior and sub-contact stiffness due to tube-tube interactions within the turf, electrical resistance measurements during nanoindentation were carried out. When the tip is held at a fixed nominal depth, the current remains constant while the contact load decreases, suggesting the number of tubes in contact with the tip stays constant with time while the relaxation mechanisms in the turf occur at positions lower than the contact surface. These observations, in conjunction with in situ TEM compression test of CNT arrays, are used to describe the relative effects the various length and time scales may have on the perceived properties measured during experiments, including elastic modulus and adhesion for gecko-like dry adhesives.

  16. Mechanic-electrical transformations in the Kelvin method

    Energy Technology Data Exchange (ETDEWEB)

    Zharkikh, Yu. S., E-mail: yurzhar@gmail.com [Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv, 4G, Ave. Academician Glushkov, 03127, Kyiv (Ukraine); Lysochenko, S.V., E-mail: lys@univ.kiev.ua [Institute of High Technologies, Taras Shevchenko National University of Kyiv, 4G, Ave. Academician Glushkov, 03127, Kyiv (Ukraine)

    2017-04-01

    Highlights: • Used in Kelvin method dynamic capacitor is a mechanic-electrical transformer. • The oscillations of its plate are source of extraneous forces which cause the appearance of an electric current. • The signal is caused not by the contact potential difference, but by oscillation in the screening conditions of charge in the dynamic capacitor gap. • Combining the Kelvin method with electron emission methods to determine the work function may lead to incorrectness. - Abstract: To explain the initiation mechanism of alternating current in an electric circuit containing the dynamic capacitor a model of mechanic- electrical transformation is suggested to use. In such a model, electric charges disposed between the capacitor plates serve as a cause of measured signal in contrast to the contact potential difference, which is considered as the main base in the Kelvin’s model. If one of the plates moves periodically, then the conditions of the charges screening are changed and thereby the capacitor recharging current is arise. The measuring is based on compensation of the recharging current by current, which generated by a source of electromotive force (EMF). The compensation voltage depends on both the distribution of ions or dipoles over the studied surface and the charges creating the surface potential barrier. This voltage is independent on the bulk electro-physical characteristics of a solid.

  17. QUANTUM ELECTRONIC DEVICES: Superconducting Nb3Sn point contact in the submillimeter range of electromagnetic radiation

    Science.gov (United States)

    Belenov, É. M.; Danileĭko, M. V.; Derkach, V. E.; Romanenko, V. I.; Uskov, A. V.

    1988-05-01

    An investigation was made of the influence of submillimeter radiation emitted by an HCN laser operating at a frequency νl = 891 GHz on a superconducting point contact made of Nb3Sn. Three steps of the electric current were recorded. The experimental results indicated that such a contact could be used for frequency multiplication up to 3 THz.

  18. A simulation study on the electrical structure of interdigitated back-contact silicon solar cells

    Science.gov (United States)

    Kang, Min Gu; Song, Hee-eun; Kim, Soo Min; Kim, Donghwan

    2015-05-01

    In this paper, a simulation for interdigitated back-contact (IBC) silicon solar cells was performed by using Silvaco TCAD ATLAS to investigate the cell's electrical properties. The impacts of various parameters, including the depth of the front surface field(FSF), the FSF peak doping concentration, the depths of the emitter and the back surface field(BSF), the peak doping concentrations of the emitter and BSF, the base doping, and the bulk lifetime on the output characteristics like the light current-voltage curves and the internal quantum efficiency of the IBC solar cell, were investigated. The light absorption was determined by adjusting the antireflection coating and the Al thickness. The FSF must be thin and have a low doping concentration for high-efficiency IBC cells. If the conversion efficiency is to be improved, a thick emitter and a high doping concentration are needed. Because of the low resistivity of the Si substrate, the series resistance was reduced, but recombination was increased. With a high-resistivity Si substrate, the opposite trends were observed. By counter-balancing the series resistance and the recombination, we determined by simulation that the optimized resistivity for the IBC cells was 1 Ω·cm. Because all metal electrodes in the IBC cells are located on the back side, a higher minority carrier lifetime showed a higher efficiency. After the various parameters had been optimized, texturing and surface recombination were added into the simulation. The simulated IBC cells showed a short-circuit current density of 42.89 mA/cm2, an open-circuit voltage of 714.8 mV, a fill factor of 84.04%, and a conversion efficiency of 25.77%.

  19. Evoked Electromyographically Controlled Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Hayashibe

    2016-07-01

    Full Text Available Time-variant muscle responses under electrical stimulation (ES are often problematic for all the applications of neuroprosthetic muscle control. This situation limits the range of ES usage in relevant areas, mainly due to muscle fatigue and also to changes in stimulation electrode contact conditions, especially in transcutaneous ES. Surface electrodes are still the most widely used in noninvasive applications.Electrical field variations caused by changes in the stimulation contact condition markedly affect the resulting total muscle activation levels. Fatigue phenomena under functional electrical stimulation (FES are also well known source of time-varying characteristics coming from muscle response under ES. Therefore it is essential to monitor the actual muscle state and assess the expected muscle response by ES so as to improve the current ES system in favour of adaptive muscle-response-aware FES control. To deal with this issue, we have been studying a novel control technique using evoked electromyography (eEMG signals to compensate for these muscle time-variances under ES for stable neuroprosthetic muscle control. In this perspective article, I overview the background of this topic and highlight important points to be aware of when using ES to induce the desired muscle activation regardless of the time-variance. I also demonstrate how to deal with the common critical problem of ES to move toward robust neuroprosthetic muscle control with the Evoked Electromyographically Controlled Electrical Stimulation paradigm.

  20. Operation of ohmic Ti/Al/Pt/Au multilayer contacts to GaN at 600 °C in air

    Science.gov (United States)

    Hou, Minmin; Senesky, Debbie G.

    2014-08-01

    The high-temperature characteristics (at 600 °C) of Ti/Al/Pt/Au multilayer contacts to gallium nitride (GaN) in air are reported. Microfabricated circular-transfer-line-method test structures were subject to 10 h of thermal storage at 600 °C. Intermittent electrical characterization during thermal storage showed minimal variation in the contact resistance after 2 h and that the specific contact resistivity remained on the order of 10-5 Ω-cm2. In addition, the thermally stored multilayer contacts to GaN showed ohmic I-V characteristics when electrically probed at 600 °C. The microstructural analysis with atomic force microscopy showed minimal changes in surface roughness after thermal storage. Observations of the thermochemical reactions after thermal storage using Auger electron spectroscopy chemical depth profiling showed diffusion of Pt and minimal additional Al oxidation. The results support the use of Ti/Al/Pt/Au multilayer metallization for GaN-based sensors and electronic devices that will operate within a high-temperature and oxidizing ambient.

  1. The Risk of Contact Lens Wear and the Avoidance of Complications

    Directory of Open Access Journals (Sweden)

    Farihah Tariq

    2013-11-01

    Full Text Available Contact lenses are lenses placed on the surface of the cornea to correct refractive errors such as myopia (short-sightedness, hypermetropia (far-sightedness and astigmatism. Lens-related complications are becoming a greater health concern as increasing number of individuals are using them as an alternative to spectacles. Contact lenses alter the natural ocular environment and reduce the efficacy of the innate defences. Although many complications are minor, microbial keratitis is potentially blinding and suspected cases should be rapidly diagnosed and referred to an ophthalmologist for treatment. Several risk factors have been identified with extended wear, poor hand hygiene, inadequate lens and lens-case care being the most significant. Promotion of good contact lens hygiene and practices are essential to reduce the adverse effects of contact lens wear.

  2. Multi-scale strategies for dealing with moving contact lines

    Science.gov (United States)

    Smith, Edward R.; Theodorakis, Panagiotis; Craster, Richard V.; Matar, Omar K.

    2017-11-01

    Molecular dynamics (MD) has great potential to elucidate the dynamics of the moving contact line. As a more fundamental model, it can provide a priori results for fluid-liquid interfaces, surface tension, viscosity, phase change, and near wall stick-slip behaviour which typically show very good agreement to experimental results. However, modelling contact line motion combines all this complexity in a single problem. In this talk, MD simulations of the contact line are compared to the experimental results obtained from studying the dynamics of a sheared liquid bridge. The static contact angles are correctly matched to the experimental data for a range of different electro-wetting results. The moving contact line results are then compared for each of these electro-wetting values. Despite qualitative agreement, there are notable differences between the simulation and experiments. Many MD simulation have studied contact lines, and the sheared liquid bridge, so it is of interest to review the limitations of this setup in light of this discrepancy. A number of factors are discussed, including the inter-molecular interaction model, molecular-scale surface roughness, model of electro-wetting and, perhaps most importantly, the limited system sizes possible using MD simulation. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  3. Ohmic Contacts for Technology for Frequency Agile Digitally Synthesized Transmitters

    National Research Council Canada - National Science Library

    Mohney, Suzanne E

    2007-01-01

    ... bipolar transistors to smaller sizes. For p-type InAs, the combination of modest contact resistance and good thermal stability at 250 0 C was achieved with metallizations that had thin Pd layers deposited first, fol lowed by W or Ti/Pt...

  4. Towards nanometer-spaced silicon contacts to proteins

    Science.gov (United States)

    Schukfeh, Muhammed I.; Sepunaru, Lior; Behr, Pascal; Li, Wenjie; Pecht, Israel; Sheves, Mordechai; Cahen, David; Tornow, Marc

    2016-03-01

    A vertical nanogap device (VND) structure comprising all-silicon contacts as electrodes for the investigation of electronic transport processes in bioelectronic systems is reported. Devices were fabricated from silicon-on-insulator substrates whose buried oxide (SiO2) layer of a few nanometers in thickness is embedded within two highly doped single crystalline silicon layers. Individual VNDs were fabricated by standard photolithography and a combination of anisotropic and selective wet etching techniques, resulting in p+ silicon contacts, vertically separated by 4 or 8 nm, depending on the chosen buried oxide thickness. The buried oxide was selectively recess-etched with buffered hydrofluoric acid, exposing a nanogap. For verification of the devices’ electrical functionality, gold nanoparticles were successfully trapped onto the nanogap electrodes’ edges using AC dielectrophoresis. Subsequently, the suitability of the VND structures for transport measurements on proteins was investigated by functionalizing the devices with cytochrome c protein from solution, thereby providing non-destructive, permanent semiconducting contacts to the proteins. Current-voltage measurements performed after protein deposition exhibited an increase in the junctions’ conductance of up to several orders of magnitude relative to that measured prior to cytochrome c immobilization. This increase in conductance was lost upon heating the functionalized device to above the protein’s denaturation temperature (80 °C). Thus, the VND junctions allow conductance measurements which reflect the averaged electronic transport through a large number of protein molecules, contacted in parallel with permanent contacts and, for the first time, in a symmetrical Si-protein-Si configuration.

  5. Towards nanometer-spaced silicon contacts to proteins

    International Nuclear Information System (INIS)

    Schukfeh, Muhammed I; Behr, Pascal; Tornow, Marc; Sepunaru, Lior; Li, Wenjie; Pecht, Israel; Sheves, Mordechai; Cahen, David

    2016-01-01

    A vertical nanogap device (VND) structure comprising all-silicon contacts as electrodes for the investigation of electronic transport processes in bioelectronic systems is reported. Devices were fabricated from silicon-on-insulator substrates whose buried oxide (SiO_2) layer of a few nanometers in thickness is embedded within two highly doped single crystalline silicon layers. Individual VNDs were fabricated by standard photolithography and a combination of anisotropic and selective wet etching techniques, resulting in p"+ silicon contacts, vertically separated by 4 or 8 nm, depending on the chosen buried oxide thickness. The buried oxide was selectively recess-etched with buffered hydrofluoric acid, exposing a nanogap. For verification of the devices’ electrical functionality, gold nanoparticles were successfully trapped onto the nanogap electrodes’ edges using AC dielectrophoresis. Subsequently, the suitability of the VND structures for transport measurements on proteins was investigated by functionalizing the devices with cytochrome c protein from solution, thereby providing non-destructive, permanent semiconducting contacts to the proteins. Current–voltage measurements performed after protein deposition exhibited an increase in the junctions’ conductance of up to several orders of magnitude relative to that measured prior to cytochrome c immobilization. This increase in conductance was lost upon heating the functionalized device to above the protein’s denaturation temperature (80 °C). Thus, the VND junctions allow conductance measurements which reflect the averaged electronic transport through a large number of protein molecules, contacted in parallel with permanent contacts and, for the first time, in a symmetrical Si–protein–Si configuration. (paper)

  6. The Variations of Thermal Contact Resistance and Heat Transfer Rate of the AlN Film Compositing with PCM

    Directory of Open Access Journals (Sweden)

    Huann-Ming Chou

    2015-01-01

    Full Text Available The electrical industries have been fast developing over the past decades. Moreover, the trend of microelements and packed division multiplex is obviously for the electrical industry. Hence, the high heat dissipative and the electrical insulating device have been popular and necessary. The thermal conduct coefficient of aluminum nitride (i.e., AlN is many times larger than the other materials. Moreover, the green technology of composite with phase change materials (i.e., PCMs is worked as a constant temperature cooler. Therefore, PCMs have been used frequently for saving energy and the green environment. Based on the above statements, it does show great potential in heat dissipative for the AlN film compositing with PCM. Therefore, this paper is focused on the research of thermal contact resistance and heat transfer between the AlN/PCM pairs. According to the experimental results, the heat transfer decreases and the thermal contact resistance increases under the melting process of PCM. However, the suitable parameters such as contact pressures can be used to improve the above defects.

  7. Amorphous germanium as an electron or hole blocking contact on high-purity germanium detectors

    International Nuclear Information System (INIS)

    Hansen, W.L.; Haller, E.E.

    1976-10-01

    Experiments were performed in an attempt to make thin n + contacts on high-purity germanium by the solid phase/sup 1)/ epitaxial regrowth of arsenic doped amorphous germanium. After cleaning the crystal surface with argon sputtering and trying many combinations of layers, it was not found possible to induce recrystallization below 400 0 C. However, it was found that simple thermally evaporated amorphous Ge made fairly good electron or hole blocking contacts. Excellent spectrometers have been made with amorphous Ge replacing the n + contact. As presently produced, the amorphous Ge contact diodes show a large variation in high-voltage leakage current

  8. The relationship between anatomically correct electric and magnetic field dosimetry and published electric and magnetic field exposure limits

    International Nuclear Information System (INIS)

    Kavet, R.; Dovan, T.; Patrick Reilly, J.

    2012-01-01

    Electric and magnetic field exposure limits published by International Commission for Non-Ionizing Radiation Protection and Inst. of Electrical and Electronics Engineers are aimed at protection against adverse electro-stimulation, which may occur by direct coupling to excitable tissue and, in the case of electric fields, through indirect means associated with surface charge effects (e.g. hair vibration, skin sensations), spark discharge and contact current. For direct coupling, the basic restriction (BR) specifies the not-to-be-exceeded induced electric field. The key results of anatomically based electric and magnetic field dosimetry studies and the relevant characteristics of excitable tissue were first identified. This permitted us to assess the electric and magnetic field exposure levels that induce dose in tissue equal to the basic restrictions, and the relationships of those exposure levels to the limits now in effect. We identify scenarios in which direct coupling of electric fields to peripheral nerve could be a determining factor for electric field limits. (authors)

  9. A frictional contact problem with damage and adhesion for an electro elastic-viscoplastic body

    Directory of Open Access Journals (Sweden)

    Adel Aissaoui

    2014-01-01

    Full Text Available We consider a quasistatic frictional contact problem for an electro elastic-viscopalastic body with damage and adhestion. The contact is modelled with normal compliance. The adhesion of the contact surfaces is taken into account and modelled by a surface variable. We derive variational formulation for the model which is in the form of a system involving the displacement field, the electric potential field, the damage field and the adhesion field. We prove the existence of a unique weak solution to the problem. The proof is based on arguments of time-dependent variational inequalities, parabolic inequalities, differential equations and fixed point.

  10. THE DYNAMIC INTERACTION OF THE MOVING CONTACTING SURFACES AT THE EXAMPLE OF THE ELECTRIC ROLLING STOCK CURRENT COLLECTOR

    Directory of Open Access Journals (Sweden)

    M. O. Babiak

    2009-07-01

    Full Text Available The process of mutual moving and contacting of surfaces of current collecting pantograph elements and contact network is considered taking into account the particularities of inf1uence of speed and acceleration parameters, determination of which will allow to forecast mathematically the wear-out degree of contacting elements.

  11. Fundamentals of Electrical Propulsion Plant Design,

    Science.gov (United States)

    1982-04-06

    contacts DVI and DV2 close the indicator light LS2 and L53 circuits. Electric Fan starter n. r. contacts DVl and DY2 close the red indicator light...forward rotation, /. corresponding tD vessel movement i///’,/iI X,, /;/forward; ’ are curves of GED -tJ ’ !’ i ’ " f \\ \\ ’ . . L---,torques after reversal...Calculation based on generator static characteristics, i. e., based on parameters Xd and Td , are linked with the most difficult GED operating conditions

  12. Tuning the electronic properties and Schottky barrier height of the vertical graphene/MoS2 heterostructure by an electric gating

    Science.gov (United States)

    Nguyen, Chuong V.

    2018-04-01

    In this paper, the electronic properties and Schottky contact in graphene/MoS2 (G/MoS2) heterostructure under an applied electric field are investigated by means of the density functional theory. It can be seen that the electronic properties of the G/MoS2 heterostructure are preserved upon contacting owing to the weak van der Waals interaction. We found that the n-type Schottky contact is formed in the G/MoS2 heterostructure with the Schottky barrier height of 0.49 eV. Furthermore, both Schottky contact and Schottky barrier height in the G/MoS2 heterostructure could be controlled by the applied electric field. If a positive electric field of 4 V/nm is applied to the system, a transformation from the n-type Schottky contact to the p-type one was observed, whereas the system keeps an n-type Schottky contact when a negative electric field is applied. Our results may provide helpful information to design, fabricate, and understand the physics mechanism in the graphene-based two-dimensional van der Waals heterostructures like as G/MoS2 heterostructure.

  13. Molecular dynamics study of contact mechanics: contact area and interfacial separation from small to full contact

    OpenAIRE

    Yang, C.; Persson, B. N. J.

    2007-01-01

    We report a molecular dynamics study of the contact between a rigid solid with a randomly rough surface and an elastic block with a flat surface. We study the contact area and the interfacial separation from small contact (low load) to full contact (high load). For small load the contact area varies linearly with the load and the interfacial separation depends logarithmically on the load. For high load the contact area approaches to the nominal contact area (i.e., complete contact), and the i...

  14. Electrical and structural properties of a stacked metal layer contact to n-InP

    International Nuclear Information System (INIS)

    Huang, Wen-Chang; Horng, Chia-Tsung

    2011-01-01

    In this study, we found that the double metal contact structure in Pt/Al/n-InP diodes provides better rectification characteristics than conventional single-metal/n-InP Schottky diodes. The effective barrier height was measured to be 0.67 eV for a 400 deg. C-annealed Pt/Al/n-InP diode sample. The increase in the barrier height is attributed to the formation of Al 2 O 3 at the metal/n-InP contact interface during thermal annealing. The formation of the phase Al 2 O 3 phase was monitored by X-ray diffraction (XRD) analysis. The corresponding element profiles of Al and O were also confirmed at the metal/n-InP contact interface using secondary ion mass spectrum (SIMS) analysis. The lowering of the Schottky barrier height due to the inhomogeneity at the metal/n-InP junction is also discussed on the basis of the TE theory. The distribution of local effective Schottky barrier heights was explained by a model incorporating the existence of double Gaussian barrier heights, which represent the high barrier and low barrier of the full distribution in the temperature ranges of 83-198 and 198-300 K.

  15. Choice of electricity provider in California after deregulation

    Science.gov (United States)

    Keanini, Rasa Ilze

    Surveys often ask consumers how much they are willing to pay for certain goods and services, without requiring the consumer to actually pay for the good or service. Such surveys, termed stated preference studies, find that consumers value renewable electricity. This result is in contrast to actual experiences in recently deregulated electricity markets in several states, including California. When given the opportunity to choose in California, only one to two percent of the population opted for renewable electricity products. This dissertation used data from residential customers who chose an alternative electricity product in California's deregulated electricity market to determine the value placed on the renewable attribute of electricity products. This dissertation begins by taking a historical look at the electricity market of the nation and specifically California. From 1998 through 2001, California's electricity market was deregulated to include retail competition. This dissertation used data from electric service providers to reveal the factors influencing residential customer's choice of electricity product. Discrete choice models were used to determine the factors influencing electricity product choice. The results indicated that both price and renewable content had an effect on choice of product. Additionally, a more complicated model jointly estimating the discrete choice of electricity product with the continuous choice of electricity consumption (kWh) was specified and estimated.

  16. Dispersive FDTD analysis of induced electric field in human models due to electrostatic discharge

    International Nuclear Information System (INIS)

    Hirata, Akimasa; Nagai, Toshihiro; Koyama, Teruyoshi; Hattori, Junya; Chan, Kwok Hung; Kavet, Robert

    2012-01-01

    Contact currents flow from/into a charged human body when touching a grounded conductive object. An electrostatic discharge (ESD) or spark may occur just before contact or upon release. The current may stimulate muscles and peripheral nerves. In order to clarify the difference in the induced electric field between different sized human models, the in-situ electric fields were computed in anatomically based models of adults and a child for a contact current in a human body following ESD. A dispersive finite-difference time-domain method was used, in which biological tissue is assumed to obey a four-pole Debye model. From our computational results, the first peak of the discharge current was almost identical across adult and child models. The decay of the induced current in the child was also faster due mainly to its smaller body capacitance compared to the adult models. The induced electric fields in the forefingers were comparable across different models. However, the electric field induced in the arm of the child model was found to be greater than that in the adult models primarily because of its smaller cross-sectional area. The tendency for greater doses in the child has also been reported for power frequency sinusoidal contact current exposures as reported by other investigators. (paper)

  17. Dispersive FDTD analysis of induced electric field in human models due to electrostatic discharge.

    Science.gov (United States)

    Hirata, Akimasa; Nagai, Toshihiro; Koyama, Teruyoshi; Hattori, Junya; Chan, Kwok Hung; Kavet, Robert

    2012-07-07

    Contact currents flow from/into a charged human body when touching a grounded conductive object. An electrostatic discharge (ESD) or spark may occur just before contact or upon release. The current may stimulate muscles and peripheral nerves. In order to clarify the difference in the induced electric field between different sized human models, the in-situ electric fields were computed in anatomically based models of adults and a child for a contact current in a human body following ESD. A dispersive finite-difference time-domain method was used, in which biological tissue is assumed to obey a four-pole Debye model. From our computational results, the first peak of the discharge current was almost identical across adult and child models. The decay of the induced current in the child was also faster due mainly to its smaller body capacitance compared to the adult models. The induced electric fields in the forefingers were comparable across different models. However, the electric field induced in the arm of the child model was found to be greater than that in the adult models primarily because of its smaller cross-sectional area. The tendency for greater doses in the child has also been reported for power frequency sinusoidal contact current exposures as reported by other investigators.

  18. Degradation pattern of black phosphorus multilayer field-effect transistors in ambient conditions: Strategy for contact resistance engineering in BP transistors

    Science.gov (United States)

    Lee, Byung Chul; Kim, Chul Min; Jang, Ho-Kyun; Lee, Jae Woo; Joo, Min-Kyu; Kim, Gyu-Tae

    2017-10-01

    Black phosphorus (BP) has been proposed as a future optoelectronic material owing to its direct bandgap with excellent electrical performances. However, oxygen (O2) and water (H2O) molecules in an ambient condition can create undesired bubbles on the surface of the BP, resulting in hampering its excellent intrinsic properties. Here, we report the electrical degradation pattern of a mechanically exfoliated BP field-effect transistor (FET) in terms of the channel and contact, separately. Various electrical parameters such as the threshold voltage (VTH), carrier mobility (μ), contact resistance (RCT) and channel resistance (RCH) are estimated by the Y function method (YFM) with respect to time (up to 2000 min). It is found that RCT reduces and then, increases with time; whereas, the behavior of RCH is vice versa in ambient conditions. We attribute these effects to oxygen doping at the contact and the surface oxidation effects on the surface of the BP, respectively.

  19. Optimal contact definition for reconstruction of Contact Maps

    Directory of Open Access Journals (Sweden)

    Stehr Henning

    2010-05-01

    Full Text Available Abstract Background Contact maps have been extensively used as a simplified representation of protein structures. They capture most important features of a protein's fold, being preferred by a number of researchers for the description and study of protein structures. Inspired by the model's simplicity many groups have dedicated a considerable amount of effort towards contact prediction as a proxy for protein structure prediction. However a contact map's biological interest is subject to the availability of reliable methods for the 3-dimensional reconstruction of the structure. Results We use an implementation of the well-known distance geometry protocol to build realistic protein 3-dimensional models from contact maps, performing an extensive exploration of many of the parameters involved in the reconstruction process. We try to address the questions: a to what accuracy does a contact map represent its corresponding 3D structure, b what is the best contact map representation with regard to reconstructability and c what is the effect of partial or inaccurate contact information on the 3D structure recovery. Our results suggest that contact maps derived from the application of a distance cutoff of 9 to 11Å around the Cβ atoms constitute the most accurate representation of the 3D structure. The reconstruction process does not provide a single solution to the problem but rather an ensemble of conformations that are within 2Å RMSD of the crystal structure and with lower values for the pairwise average ensemble RMSD. Interestingly it is still possible to recover a structure with partial contact information, although wrong contacts can lead to dramatic loss in reconstruction fidelity. Conclusions Thus contact maps represent a valid approximation to the structures with an accuracy comparable to that of experimental methods. The optimal contact definitions constitute key guidelines for methods based on contact maps such as structure prediction through

  20. Decomposition of Composite Electric Field in a Three-Phase D-Dot Voltage Transducer Measuring System

    Directory of Open Access Journals (Sweden)

    Xueqi Hu

    2016-10-01

    Full Text Available In line with the wider application of non-contact voltage transducers in the engineering field, transducers are required to have better performance for different measuring environments. In the present study, the D-dot voltage transducer is further improved based on previous research in order to meet the requirements for long-distance measurement of electric transmission lines. When measuring three-phase electric transmission lines, problems such as synchronous data collection and composite electric field need to be resolved. A decomposition method is proposed with respect to the superimposed electric field generated between neighboring phases. The charge simulation method is utilized to deduce the decomposition equation of the composite electric field and the validity of the proposed method is verified by simulation calculation software. With the deduced equation as the algorithm foundation, this paper improves hardware circuits, establishes a measuring system and constructs an experimental platform for examination. Under experimental conditions, a 10 kV electric transmission line was tested for steady-state errors, and the measuring results of the transducer and the high-voltage detection head were compared. Ansoft Maxwell Stimulation Software was adopted to obtain the electric field intensity in different positions under transmission lines; its values and the measuring values of the transducer were also compared. Experimental results show that the three-phase transducer is characterized by a relatively good synchronization for data measurement, measuring results with high precision, and an error ratio within a prescribed limit. Therefore, the proposed three-phase transducer can be broadly applied and popularized in the engineering field.

  1. Electrical signal transfer system for a rotary kiln

    International Nuclear Information System (INIS)

    Tyson, J.H.; Kennett, L.P.; Davidson, I.S.

    1985-01-01

    A rotary kiln has a number of thermocouples respectively sensing the kiln temperature at spaced locations and respectively connected to annular slip rings. Laterally facing peripheral surfaces of the rings are respectively cooperable with brush contacts connected to a bar and a fork which embraces a ring moveable axially with the rings. Thus on longitudinal expansion of the kiln the contacts are caused to move with the rings. The electric signals from the thermocouples are thus fed to stationary monitoring equipment. In a modification the ring sections are electrically isolated and each section is connected to a respective sensor. Position sensors may be used to detect the rotary position of the kiln. The invention can be applied to other sensors. (author)

  2. Tin Whisker Electrical Short Circuit Characteristics. Part 2

    Science.gov (United States)

    Courey, Karim J.; Asfour, Shihab S.; Onar, Arzu; Bayliss, Jon A.; Ludwig, Lawrence L.; Wright, Maria C.

    2009-01-01

    Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that has an unknown probability associated with it. Note however that due to contact resistance electrical shorts may not occur at lower voltage levels. In our first article we developed an empirical probability model for tin whisker shorting. In this paper, we develop a more comprehensive empirical model using a refined experiment with a larger sample size, in which we studied the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From the resulting data we estimated the probability distribution of an electrical short, as a function of voltage. In addition, the unexpected polycrystalline structure seen in the focused ion beam (FIB) cross section in the first experiment was confirmed in this experiment using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size of each card guide's tin plating to determine its finish.

  3. Evaluation of surface characteristics under fretting of electrical contacts: Removal behaviour of hot dipped tin coating

    International Nuclear Information System (INIS)

    Park, Young Woo; Ramesh Bapu, G.N.K.; Lee, Kang Yong

    2009-01-01

    The fretting corrosion behaviour of hot dipped tin coating is investigated at low fretting cycles at ±25 μm displacement amplitude, 0.5N normal load, 3 Hz frequency, 45-50% relative humidity, and 25 ± 1 deg. C temperature. The typical characteristics of the change in contact resistance with fretting cycles are explained. The fretted surface is examined using laser scanning microscope, scanning electron microscope and energy dispersive X-ray analysis to assess the surface profile, extent of fretting damage, extent of oxidation and elemental distribution across the contact zone. The interdependence of extent of wear and oxidation increases the complexity of the fretting corrosion behaviour of tin coating. The variation of contact resistance clearly revealed the fretting of tin coating from 50 to 1200 cycles and the fretting of the substrate above 1200 cycles. The observed low and stable contact resistance region and the fluctuating resistance region at various fretting cycles are explained and substantiated with Scanning electron microscopy (SEM), laser scanning microscope (LSM) and energy dispersive analysis of X-rays (EDAX) analysis results of the fretted surface.

  4. Design, construction and experimental study of Electric Cum Solar Oven-II

    International Nuclear Information System (INIS)

    Nandwani, S.S.

    1987-11-01

    As in many developing countries, 35-40% of the population of Costa Rica still use firewood for domestic cooking. Considering the fact that Costa Rica is blessed with good sunshine, good hydroelectric potential, and a good electric network, a hybrid solar oven was thought to be useful. In the present paper the construction and working of a new type of Electric Cum Solar Oven (ECSO) has been described. This oven can be used for cooking and baking any type of meal at any time during the year employing solar and/or electric energy but consuming the minimum quantity of electric energy in case it is required. (author). 9 refs, 6 figs, 1 tab

  5. A fiber-optic technique for the measurement of contact angle in a clearance-fit pin-loaded hole

    Science.gov (United States)

    Prabhakaran, R.; Naik, R. A.

    1987-01-01

    A fiber-optic technique for measuring contact angle during pin loading of a specimen is proposed. The experimental design and procedures for loading a 49.8-mm-diameter instrumented pin into an quasi-isotropic graphite-epoxy specimen are described. The optical fiber was located just above the surface of the pin outer diameter in order to obtain accurate pin-hole contact-angle measurements at increasing load levels. The movement of the optical fiber through the no-contact, contact, and no-contact regions is discussed; the photodiode output decreased monotonically as the fiber moved from the no-contact to the contact region and then decreased monotonically as the fiber moved from the contact region to the no-contact region. Variations in the contact angle measurements are examined as function of applied load level. The measurements are compared to contact angle values obtained using a finite element analysis and an electrical technique; it is determined that the data correlate well.

  6. The properties of metal contacts on TiO2 thin films produced by reactive magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Brus V. V.

    2010-10-01

    Full Text Available The article deals with research on volt-ampere characteristics of metal contacts (Al, Cr, In, Mo, Ti on titanium dioxide thin films and influence of annealing in vacuum on their electric properties. Volt-ampere characteristics measurements were taken by three-probe method. There was established that indium contact on TiO2 thin films possessed sharply defined ohmic properties.

  7. 3D Printing Electrically Small Spherical Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2013-01-01

    3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations.......3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations....

  8. Depleted-heterojunction colloidal quantum dot photovoltaics employing low-cost electrical contacts

    KAUST Repository

    Debnath, Ratan

    2010-01-01

    With an aim to reduce the cost of depleted-heterojunction colloidal quantum dot solar cells, we describe herein a strategy that replaces costly Au with a low-cost Ni-based Ohmic contact. The resultant devices achieve 3.5% Air Mass 1.5 power conversion efficiency. Only by incorporating a 1.2-nm-thick LiF layer between the PbS quantum dot film and Ni, we were able to prevent undesired reactions and degradation at the metal-semiconductor interface. © 2010 American Institute of Physics.

  9. Characteristics of molybdenum bilayer back contacts for Cu(In,Ga)Se{sub 2} solar cells on Ti foils

    Energy Technology Data Exchange (ETDEWEB)

    Roger, Charles, E-mail: charles.rgr@gmail.com [CEA, LITEN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Noël, Sébastien; Sicardy, Olivier; Faucherand, Pascal; Grenet, Louis; Karst, Nicolas; Fournier, Hélène; Roux, Frédéric [CEA, LITEN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Ducroquet, Frédérique [IMEP-LAHC, Minatec, Grenoble-INP, CNRS UMR 5130, 38016 Grenoble (France); Brioude, Arnaud [Laboratoire des Multimatériaux et Interfaces, UMR 5615, Villeurbanne (France); Perraud, Simon [CEA, LITEN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2013-12-02

    Molybdenum back contact properties are critical for Cu(In,Ga)Se{sub 2} (CIGS) solar cell performance on metallic substrates. In this work, we investigated the properties of sputter-deposited Mo bilayer back contacts on Ti foils. The morphology, electrical resistivity, optical reflectance and residual mechanical stress of the bottom Mo layer were modified by varying the working pressure during its deposition. Working pressures ranging from 0.27 Pa to 4.00 Pa were used. The top Mo layer was deposited using constant conditions at a pressure of 0.13 Pa. It was demonstrated that unlike a Mo monolayer, the use of a Mo bilayer allows controlling the mechanical stress at the Mo/CIGS interface without degrading the optical reflectance and the electrical resistance of the back contact. It was also found that the morphology of the bottom Mo layer affects the growth of the top Mo layer, resulting in a modified back contact surface morphology. This induces changes in the crystalline orientation of the CIGS layer. The resulting solar cell characteristics strongly vary as a function of the bottom Mo layer deposition pressure. A bottom Mo layer growth at 2.93 Pa allows improving the solar cell conversion efficiency by 1.5 times compared to a bottom Mo layer deposited at 0.27 Pa. Using the improved Mo bilayer back contact, a maximum solar cell efficiency of 10.0% was obtained without sodium addition nor anti-reflection coating. - Highlights: • Mo bilayer back contacts for Cu(In,Ga)Se{sub 2} solar cells were grown on Ti substrates. • The sputtering pressure of the bottom Mo layer was varied between 0.27 Pa and 4 Pa. • The top Mo layer controls the optical and electrical properties of the back contact. • The structure of the bottom Mo layer influences the morphology of the top Mo layer. • The back contact affects the CIGS texture, device series resistance and efficiency.

  10. Contact angle and local wetting at contact line.

    Science.gov (United States)

    Li, Ri; Shan, Yanguang

    2012-11-06

    This theoretical study was motivated by recent experiments and theoretical work that had suggested the dependence of the static contact angle on the local wetting at the triple-phase contact line. We revisit this topic because the static contact angle as a local wetting parameter is still not widely understood and clearly known. To further clarify the relationship of the static contact angle with wetting, two approaches are applied to derive a general equation for the static contact angle of a droplet on a composite surface composed of heterogeneous components. A global approach based on the free surface energy of a thermodynamic system containing the droplet and solid surface shows the static contact angle as a function of local surface chemistry and local wetting state at the contact line. A local approach, in which only local forces acting on the contact line are considered, results in the same equation. The fact that the local approach agrees with the global approach further demonstrates the static contact angle as a local wetting parameter. Additionally, the study also suggests that the wetting described by the Wenzel and Cassie equations is also the local wetting of the contact line rather than the global wetting of the droplet.

  11. Magnetic Properties of Electrically Contacted Fe4 Molecular Magnets

    Science.gov (United States)

    Burgess, Jacob; Malavolti, Luigi; Lanzilotto, Valeria; Mannini, Matteo; Totti, Frederico; Ninova, Silviya; Yan, Shichao; Choi, Deung-Jang; Rolf-Pissarczyk, Steffen; Cornia, Andrea; Sessoli, Roberta; Loth, Sebastian

    2015-03-01

    Single molecule magnets (SMMs) are often large and fragile molecules. This poses challenges for the construction of SMM based spintronics. Device geometries with two electronic leads contacting a molecule may be explored via scanning tunneling microscopy (STM). The Fe4 molecule stands out as a robust, thermally evaporable SMM, making it ideal for such an experiment. Here we present the first STM investigations of individual Fe4 molecules thermally evaporated onto a monolayer of Cu2N on a Cu (100) crystal. Using inelastic electron tunneling spectroscopy (IETS), spin excitations in single Fe4 molecules can be detected at meV energies. Analysis using a Spin Hamiltonian allows extraction of magnetic properties of individual Fe4 molecules, and investigation of the influence of the electronic leads. The tip and sample induce small changes in the magnetic properties of Fe4 molecules, making Fe4 a promising candidate for the development of spintronics devices based on SMMs.

  12. [Sport injuries in full contact and semi-contact karate].

    Science.gov (United States)

    Greier, K; Riechelmann, H; Ziemska, J

    2014-03-01

    Karate enjoys great popularity both in professional and recreational sports and can be classified into full, half and low contact styles. The aim of this study was the analysis of sports injuries in Kyokushinkai (full contact) and traditional Karate (semi-contact). In a retrospective study design, 215 active amateur karateka (114 full contact, 101 semi-contact) were interviewed by means of a standardised questionnaire regarding typical sport injuries during the last 36 months. Injuries were categorised into severity grade I (not requiring medical treatment), grade II (single medical treatment), grade III (several outpatient medical treatments) and grade IV (requiring hospitalisation). In total, 217 injuries were reported in detail. 125 injuries (58%) occurred in full contact and 92 (42%) in semi-contact karate. The time related injury rate of full contact karateka was 1.9/1000 h compared to 1.3/1000 h of semi-contact karateka (p injuries were musculoskeletal contusions (33% full contact, 20% semi-contact), followed by articular sprains with 19% and 16%. The lower extremity was affected twice as often in full contact (40%) as in semi-contact (20%) karate. Training injuries were reported by 80% of the full contact and 77% of the semi-contact karateka. Most injuries, both in training and competition, occurred in kumite. 75% of the reported injuries of full contact and 70% of semi-contact karateka were classified as low grade (I or II). The high rate of injuries during training and kumite (sparring) points to specific prevention goals. The emphasis should be put on proprioceptive training and consistent warm-up. In the actual competition the referees play a vital role regarding prevention. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Theoretical modelling, analysis and validation of the shaft motion and dynamic forces during rotor–stator contact

    DEFF Research Database (Denmark)

    Lahriri, Said; Santos, Ilmar

    2013-01-01

    and stator. Expressions for the restoring magnetic forces are derived using Biot Savart law for uniformed magnetised bar magnets and the contact forces are derived by use of a compliant contact force model. The theoretical mathematical model is verified with experimental results, and shows good agreements...

  14. The effect of elastic modulus on ablation catheter contact area.

    Science.gov (United States)

    Camp, Jon J; Linte, Cristian A; Rettmann, Maryam E; Sun, Deyu; Packer, Douglas L; Robb, Richard A; Holmes, David R

    2015-02-21

    Cardiac ablation consists of navigating a catheter into the heart and delivering RF energy to electrically isolate tissue regions that generate or propagate arrhythmia. Besides the challenges of accurate and precise targeting of the arrhythmic sites within the beating heart, limited information is currently available to the cardiologist regarding intricate electrode-tissue contact, which directly impacts the quality of produced lesions. Recent advances in ablation catheter design provide intra-procedural estimates of tissue-catheter contact force, but the most direct indicator of lesion quality for any particular energy level and duration is the tissue-catheter contact area, and that is a function of not only force, but catheter pose and material elasticity as well. In this experiment, we have employed real-time ultrasound (US) imaging to determine the complete interaction between the ablation electrode and tissue to accurately estimate contact, which will help to better understand the effect of catheter pose and position relative to the tissue. By simultaneously recording tracked position, force reading and US image of the ablation catheter, the differing material properties of polyvinyl alcohol cryogel [1] phantoms are shown to produce varying amounts of tissue depression and contact area (implying varying lesion quality) for equivalent force readings. We have shown that the elastic modulus significantly affects the surface-contact area between the catheter and tissue at any level of contact force. Thus we provide evidence that a prescribed level of catheter force may not always provide sufficient contact area to produce an effective ablation lesion in the prescribed ablation time.

  15. Research on Effective Supply Mode of Rural Public Goods

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    On the basis of definition and classification of rural public goods, this paper analyses the status quo of public goods supply in vast rural areas of China, and it indicates that the electricity and communication facility in rural areas have not yet been popularized; the culture and education facility is critically backward; the medical care and social warfare institutions are short. It points out the rational supply model of public goods as follows: the government plays dominant role in the public goods supply with a large amount of investments, related to the quality of living and production of multitudinous farmers; small wieldy quasi-public goods that can be easily supplied and marginalized public goods can introduce multiplex supply main body under the framework of government guidance. According to this model, corresponding policy suggestions are put forward as follows: increase financial inputs, and perfect local financial system; actively encourage the majority of farmers in rural areas to participate in public goods supply mechanism, so that the supply has pertinence; vigorously develop multiplex supply system of rural public goods, to ensure effective supply.

  16. Explanation of the barrier heights of graphene Schottky contacts by the MIGS-and-electronegativity concept

    Science.gov (United States)

    Mönch, Winfried

    2016-09-01

    Graphene-semiconductor contacts exhibit rectifying properties and, in this respect, they behave in exactly the same way as a "conventional" metal-semiconductor or Schottky contacts. It will be demonstrated that, as often assumed, the Schottky-Mott rule does not describe the reported barrier heights of graphene-semiconductor contacts. With "conventional" Schottky contacts, the same conclusion was reached already in 1940. The physical reason is that the Schottky-Mott rule considers no interaction between the metal and the semiconductor. The barrier heights of "conventional" Schottky contacts were explained by the continuum of metal-induced gap states (MIGSs), where the differences of the metal and semiconductor electronegativities describe the size and the sign of the intrinsic electric-dipoles at the interfaces. It is demonstrated that the MIGS-and-electronegativity concept unambiguously also explains the experimentally observed barrier heights of graphene Schottky contacts. This conclusion includes also the barrier heights reported for MoS2 Schottky contacts with "conventional" metals as well as with graphene.

  17. Low frequency noise in the unstable contact region of Au-to-Au microcontact for microelectromechanical system switches

    Science.gov (United States)

    Qiu, Haodong; Wang, Hong; Ke, Feixiang

    2014-06-01

    The noise behavior of Au-to-Au microcontact for microelectromechanical system switches has been experimentally studied in the unstable contact region. The results suggest that the electrical conduction remains nonmetallic at the initial stage during contact formation due to the existence of alien films, and traps in the alien layer located at the contact interface could play an important role in determining the conduction noise. The conduction fluctuation induced by electron trapping-detrapping associated with the hydrocarbon layer is found to be an intrinsic noise source contributing to the low frequency noise in the unstable contact region.

  18. Low frequency noise in the unstable contact region of Au-to-Au microcontact for microelectromechanical system switches

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Haodong; Wang, Hong, E-mail: ewanghong@ntu.edu.sg [NOVITAS, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Ke, Feixiang [Temasek Laboratories at Nanyang Technological University, Research Techno Plaza, Singapore 637553 (Singapore)

    2014-06-23

    The noise behavior of Au-to-Au microcontact for microelectromechanical system switches has been experimentally studied in the unstable contact region. The results suggest that the electrical conduction remains nonmetallic at the initial stage during contact formation due to the existence of alien films, and traps in the alien layer located at the contact interface could play an important role in determining the conduction noise. The conduction fluctuation induced by electron trapping-detrapping associated with the hydrocarbon layer is found to be an intrinsic noise source contributing to the low frequency noise in the unstable contact region.

  19. Low frequency noise in the unstable contact region of Au-to-Au microcontact for microelectromechanical system switches

    International Nuclear Information System (INIS)

    Qiu, Haodong; Wang, Hong; Ke, Feixiang

    2014-01-01

    The noise behavior of Au-to-Au microcontact for microelectromechanical system switches has been experimentally studied in the unstable contact region. The results suggest that the electrical conduction remains nonmetallic at the initial stage during contact formation due to the existence of alien films, and traps in the alien layer located at the contact interface could play an important role in determining the conduction noise. The conduction fluctuation induced by electron trapping-detrapping associated with the hydrocarbon layer is found to be an intrinsic noise source contributing to the low frequency noise in the unstable contact region.

  20. Contact and Non-contact Measurements of Grinding Pins

    Directory of Open Access Journals (Sweden)

    Magdziak Marek

    2015-01-01

    Full Text Available The paper presents the results of contact and non-contact measurements of external profiles of selected grinding pins. The measurements were conducted in order to choose the appropriate measuring technique in the case of the considered measurement task. In the case of contact measurements the coordinate measuring machine ACCURA II was applied. The used coordinate measuring machine was equipped with the contact scanning probe VAST XT and the Calypso inspection software. Contact coordinate measurements were performed by using of different measurement strategies. The applied strategies included different scanning velocities and distances between measured points. Non-contact measurements were conducted by means of the tool presetter produced by the Mahr company. On the basis of gained results the guidelines concerning measurements of grinding pins were formulated. The measurements of analyzed grinding pins performed by means of the non-contact measuring system are characterized by higher reproducibility than the contact measurements. The low reproducibility of contact measurements may be connected with the inaccuracy of the selected coordinate measuring machine and the measuring probe, the measurement parameters and environmental conditions in the laboratory where the coordinate measuring machine is located. Moreover, the paper presents the possible application of results of conducted investigations. The results of non-contact measurements can be used in the simulation studies of grinding processes. The simulations may reduce the costs of machining processes.

  1. Contact Thermal Analysis and Wear Simulation of a Brake Block

    Directory of Open Access Journals (Sweden)

    Nándor Békési

    2013-01-01

    Full Text Available The present paper describes an experimental test and a coupled contact-thermal-wear analysis of a railway wheel/brake block system through the braking process. During the test, the friction, the generated heat, and the wear were evaluated. It was found that the contact between the brake block and the wheel occurs in relatively small and slowly moving hot spots, caused by the wear and the thermal effects. A coupled simulation method was developed including numerical frictional contact, transient thermal and incremental wear calculations. In the 3D simulation, the effects of the friction, the thermal expansion, the wear, and the temperature-dependent material properties were also considered. A good agreement was found between the results of the test and the calculations, both for the thermal and wear results. The proposed method is suitable for modelling the slowly oscillating wear caused by the thermal expansions in the contact area.

  2. An electric-eel-inspired soft power source from stacked hydrogels

    Science.gov (United States)

    Schroeder, Thomas B. H.; Guha, Anirvan; Lamoureux, Aaron; Vanrenterghem, Gloria; Sept, David; Shtein, Max; Yang, Jerry; Mayer, Michael

    2017-12-01

    Progress towards the integration of technology into living organisms requires electrical power sources that are biocompatible, mechanically flexible, and able to harness the chemical energy available inside biological systems. Conventional batteries were not designed with these criteria in mind. The electric organ of the knifefish Electrophorus electricus (commonly known as the electric eel) is, however, an example of an electrical power source that operates within biological constraints while featuring power characteristics that include peak potential differences of 600 volts and currents of 1 ampere. Here we introduce an electric-eel-inspired power concept that uses gradients of ions between miniature polyacrylamide hydrogel compartments bounded by a repeating sequence of cation- and anion-selective hydrogel membranes. The system uses a scalable stacking or folding geometry that generates 110 volts at open circuit or 27 milliwatts per square metre per gel cell upon simultaneous, self-registered mechanical contact activation of thousands of gel compartments in series while circumventing power dissipation before contact. Unlike typical batteries, these systems are soft, flexible, transparent, and potentially biocompatible. These characteristics suggest that artificial electric organs could be used to power next-generation implant materials such as pacemakers, implantable sensors, or prosthetic devices in hybrids of living and non-living systems.

  3. An electric-eel-inspired soft power source from stacked hydrogels.

    Science.gov (United States)

    Schroeder, Thomas B H; Guha, Anirvan; Lamoureux, Aaron; VanRenterghem, Gloria; Sept, David; Shtein, Max; Yang, Jerry; Mayer, Michael

    2017-12-13

    Progress towards the integration of technology into living organisms requires electrical power sources that are biocompatible, mechanically flexible, and able to harness the chemical energy available inside biological systems. Conventional batteries were not designed with these criteria in mind. The electric organ of the knifefish Electrophorus electricus (commonly known as the electric eel) is, however, an example of an electrical power source that operates within biological constraints while featuring power characteristics that include peak potential differences of 600 volts and currents of 1 ampere. Here we introduce an electric-eel-inspired power concept that uses gradients of ions between miniature polyacrylamide hydrogel compartments bounded by a repeating sequence of cation- and anion-selective hydrogel membranes. The system uses a scalable stacking or folding geometry that generates 110 volts at open circuit or 27 milliwatts per square metre per gel cell upon simultaneous, self-registered mechanical contact activation of thousands of gel compartments in series while circumventing power dissipation before contact. Unlike typical batteries, these systems are soft, flexible, transparent, and potentially biocompatible. These characteristics suggest that artificial electric organs could be used to power next-generation implant materials such as pacemakers, implantable sensors, or prosthetic devices in hybrids of living and non-living systems.

  4. Spin-dependent tunneling transport into CrO2 nanorod devices with nonmagnetic contacts.

    Science.gov (United States)

    Song, Yipu; Schmitt, Andrew L; Jin, Song

    2008-08-01

    Single-crystal nanorods of half-metallic chromium dioxide (CrO2) were synthesized and structurally characterized. Spin-dependent electrical transport was investigated in individual CrO2 nanorod devices contacted with nonmagnetic metallic electrodes. Negative magnetoresistance (MR) was observed at low temperatures due to the spin-dependent direct tunneling through the contact barrier and the high spin polarization in the half-metallic nanorods. The magnitude of this negative magnetoresistance decreases with increasing bias voltage and temperature due to spin-independent inelastic hopping through the barrier, and a small positive magnetoresistance was found at room temperature. It is believed that the contact barrier and the surface state of the nanorods have great influence on the spin-dependent transport limiting the magnitude of MR effect in this first attempt at spin filter devices of CrO2 nanorods with nonmagnetic contacts.

  5. Electricity trade under financial market supervision; Der Stromhandel unter Finanzmarktaufsicht

    Energy Technology Data Exchange (ETDEWEB)

    Hagena, Martin

    2011-07-01

    With the competitive opening of the electricity market at European and national level, the goods electricity became a freely traded commodity. The author of the contribution under consideration describes the legal consequences related to financial market for trading electricity in the context of the current Directive 2004/39/EC now under consideration of the commodity futures trading in its representational scope. The statements clearly indicate that the power market is a goods market with its own laws and not a classical financial market. It considers what characteristics exist in electricity trading and whether and how they are considered for regulatory purposes.

  6. A comparative study of Mg and Pt contacts on semi-insulating GaAs: Electrical and XPS characterization

    Energy Technology Data Exchange (ETDEWEB)

    Dubecký, F., E-mail: elekfdub@savba.sk [Institute of Electrical Engineering, SAS, Dúbravská cesta 9, Bratislava, SK-84104 (Slovakia); Kindl, D.; Hubík, P. [Institute of Physics CAS, v.v.i., Cukrovarnická 10, CZ-16200 Prague (Czech Republic); Mičušík, M. [Polymer Institute, SAS, Dúbravská cesta 9, Bratislava, SK-84541 (Slovakia); Dubecký, M. [Department of Physics, Faculty of Science, University of Ostrava, 30. dubna 22, CZ-70103 Ostrava 1 (Czech Republic); Boháček, P.; Vanko, G. [Institute of Electrical Engineering, SAS, Dúbravská cesta 9, Bratislava, SK-84104 (Slovakia); Gombia, E. [IMEM-CNR, Parco area delle Scienze 37/A, Parma, I-43010 (Italy); Nečas, V. [Faculty of Electrical Engineering and Information Technology, SUT, Ilkovičova 3, Bratislava, SK-81219 (Slovakia); Mudroň, J. [Department of Electronics, Academy of Armed Forces, Demänová 393, Liptovský Mikuláš, SK-03106 (Slovakia)

    2017-02-15

    Highlights: • Explored were diodes with full-area low/high work function metal contacts on semi-insulating GaAs (S). • The Mg-S-Mg diode is promising for radiation detectors for its low high-field current. • The XPS analysis of Mg-S interface shows presence of MgO instead of Mg metal. - Abstract: We present a comparative study of the symmetric metal-SI GaAs-metal (M-S-M) diodes with full-area contacts on both device sides, in order to demonstrate the effect of contact metal work function in a straightforward way. We compare the conventional high work function Pt contact versus the less explored low work function Mg contact. The Pt-S-Pt, Mg-S-Mg and mixed Mg-S-Pt structures are characterized by the current-voltage measurements, and individual Pt-S and Mg-S contacts are investigated by the X-ray photoelectron spectroscopy (XPS). The transport measurements of Mg-S-Pt structure show a significant current decrease at low bias while the Mg-S-Mg structure shows saturation current at high voltages more than an order of magnitude lower with respect to the Pt-S-Pt reference. The phenomena observed in Mg-containing samples are explained by the presence of insulating MgO layer at the M-S interface, instead of the elementary Mg, as confirmed by the XPS analysis. Alternative explanations of the influence of MgO layer on the effective resistance of the structures are presented. The reported findings have potential applications in M-S-M sensors and radiation detectors based on SI GaAs.

  7. Selective contacts drive charge extraction in quantum dot solids via asymmetry in carrier transfer kinetics

    KAUST Repository

    Mora-Sero, Ivan; Bertoluzzi, Luca; Gonzalez-Pedro, Victoria; Gimenez, Sixto; Fabregat-Santiago, Francisco; Kemp, Kyle W.; Sargent, Edward H.; Bisquert, Juan

    2013-01-01

    Colloidal quantum dot solar cells achieve spectrally selective optical absorption in a thin layer of solution-processed, size-effect tuned, nanoparticles. The best devices built to date have relied heavily on drift-based transport due to the action of an electric field in a depletion region that extends throughout the thickness of the quantum dot layer. Here we study for the first time the behaviour of the best-performing class of colloidal quantum dot films in the absence of an electric field, by screening using an electrolyte. We find that the action of selective contacts on photovoltage sign and amplitude can be retained, implying that the contacts operate by kinetic preferences of charge transfer for either electrons or holes. We develop a theoretical model to explain these experimental findings. The work is the first to present a switch in the photovoltage in colloidal quantum dot solar cells by purposefully formed selective contacts, opening the way to new strategies in the engineering of colloidal quantum dot solar cells. © 2013 Macmillan Publishers Limited. All rights reserved.

  8. Selective contacts drive charge extraction in quantum dot solids via asymmetry in carrier transfer kinetics

    KAUST Repository

    Mora-Sero, Ivan

    2013-08-12

    Colloidal quantum dot solar cells achieve spectrally selective optical absorption in a thin layer of solution-processed, size-effect tuned, nanoparticles. The best devices built to date have relied heavily on drift-based transport due to the action of an electric field in a depletion region that extends throughout the thickness of the quantum dot layer. Here we study for the first time the behaviour of the best-performing class of colloidal quantum dot films in the absence of an electric field, by screening using an electrolyte. We find that the action of selective contacts on photovoltage sign and amplitude can be retained, implying that the contacts operate by kinetic preferences of charge transfer for either electrons or holes. We develop a theoretical model to explain these experimental findings. The work is the first to present a switch in the photovoltage in colloidal quantum dot solar cells by purposefully formed selective contacts, opening the way to new strategies in the engineering of colloidal quantum dot solar cells. © 2013 Macmillan Publishers Limited. All rights reserved.

  9. Treatment of chitin-producing wastewater by micro-electrolysis-contact oxidization.

    Science.gov (United States)

    Yang, Yue-ping; Xu, Xin-hua; Chen, Hai-feng

    2004-04-01

    The technique of micro-electrolysis-contact oxidization was exploited to treat chitin-producing wastewater. Results showed that Fe-C micro-electrolysis can remove about 30% COD(cr), raise pH from 0.7 to 5.5. The COD(cr) removal efficiency by biochemical process can be more than 80%. During a half year's operation, the whole system worked very stably and had good results, as proved by the fact that every quality indicator of effluent met the expected discharge standards; which means that chitin wastewater can be treated by the technique of micro-electrolysis, contact oxidization.

  10. Feasible homopolar dynamo with sliding liquid-metal contacts

    International Nuclear Information System (INIS)

    Priede, Jānis; Avalos-Zúñiga, Raúl

    2013-01-01

    We present a feasible homopolar dynamo design consisting of a flat, multi-arm spiral coil, which is placed above a fast-spinning metal ring and connected to the latter by sliding liquid-metal electrical contacts. Using a simple, analytically solvable axisymmetric model, we determine the optimal design of such a setup. For small contact resistance, the lowest magnetic Reynolds number, Rm≈34.6, at which the dynamo can work, is attained at the optimal ratio of the outer and inner radii of the rings R i /R o ≈0.36 and the spiral pitch angle 54.7°. In a setup of two copper rings with the thickness of 3 cm, R i =10 cm and R o =30 cm, self-excitation of the magnetic field is expected at a critical rotation frequency around 10 Hz

  11. Mapping the electrical properties of large-area graphene

    Science.gov (United States)

    Bøggild, Peter; Mackenzie, David M. A.; Whelan, Patrick R.; Petersen, Dirch H.; Due Buron, Jonas; Zurutuza, Amaia; Gallop, John; Hao, Ling; Jepsen, Peter U.

    2017-12-01

    The significant progress in terms of fabricating large-area graphene films for transparent electrodes, barriers, electronics, telecommunication and other applications has not yet been accompanied by efficient methods for characterizing the electrical properties of large-area graphene. While in the early prototyping as well as research and development phases, electrical test devices created by conventional lithography have provided adequate insights, this approach is becoming increasingly problematic due to complications such as irreversible damage to the original graphene film, contamination, and a high measurement effort per device. In this topical review, we provide a comprehensive overview of the issues that need to be addressed by any large-area characterisation method for electrical key performance indicators, with emphasis on electrical uniformity and on how this can be used to provide a more accurate analysis of the graphene film. We review and compare three different, but complementary approaches that rely either on fixed contacts (dry laser lithography), movable contacts (micro four point probes) and non-contact (terahertz time-domain spectroscopy) between the probe and the graphene film, all of which have been optimized for maximal throughput and accuracy, and minimal damage to the graphene film. Of these three, the main emphasis is on THz time-domain spectroscopy, which is non-destructive, highly accurate and allows both conductivity, carrier density and carrier mobility to be mapped across arbitrarily large areas at rates that by far exceed any other known method. We also detail how the THz conductivity spectra give insights on the scattering mechanisms, and through that, the microstructure of graphene films subject to different growth and transfer processes. The perspectives for upscaling to realistic production environments are discussed.

  12. Electrical conductivity of metal–carbon nanotube structures: Effect of ...

    Indian Academy of Sciences (India)

    Administrator

    The electrical properties of asymmetric metal–carbon nanotube (CNT) structures have been studied using ... The models with asymmetric metal contacts and carbon nanotube bear resemblance to experimental ... ordinary mechanical strength.

  13. Calculation of Equivalent Resistance for Ground Wires Twined with Armor Rods in Contact Terminals

    Directory of Open Access Journals (Sweden)

    Gang Liu

    2018-03-01

    Full Text Available Ground wire breakage accidents can destroy the stable operation of overhead lines. The excessive temperature increase arising from the contact resistance between the ground wire and armor rod in the contact terminal is one of the main reasons causing the breakage of ground wires. Therefore, it is necessary to calculate the equivalent resistance for ground wires twined with armor rods in contact terminals. According to the actual distribution characteristics of the contact points in the contact terminal, a three-dimensional electromagnetic field simulation model of the contact terminal was established. Based on the model, the current distribution in the contact terminal was obtained. Subsequently, the equivalent resistance of a ground wire twined with the armor rod in the contact terminal was calculated. The effects of the factors influencing the equivalent resistance were also discussed. The corresponding verification experiments were conducted on a real ground wire on a contact terminal. The measurement results of the equivalent resistance for the armor rod segment showed good agreement with the electromagnetic modeling results.

  14. Treatment of contact lens related dry eye with antibacterial honey.

    Science.gov (United States)

    Wong, Daniel; Albietz, Julie M; Tran, Huan; Du Toit, Cimonette; Li, Anita Hui; Yun, Tina; Han, Jee; Schmid, Katrina L

    2017-12-01

    Contact lens induced dry eye affects approximately 50% of contact lens wearers. The aim was to assess the effects of Manuka (Leptospermum sp.) honey eye drops (Optimel, Melcare, Australia) on dry eye in contact lens wearers. The safety of the honey eye drops in contact lens wear and contact lens wearers' compliance were also evaluated. Prospective, randomised, cross over study, examiner masked, pilot treatment trial. Twenty-four participants aged 20 to 55 years with contact lens related dry eye were recruited and randomised to two treatment groups; 20 completed the study. One group used Optimel eye drops twice a day for two weeks followed by conventional lubricant (Systane Ultra, Alcon) therapy for two weeks; the other group completed the treatments in the reverse order. Before and after each treatment dry eye symptomology, ocular surface inflammation, and tear quantity and quality were assessed. Participants completed a daily log detailing their usage of treatments and any issues. Dry eye symptoms improved significantly after Optimel treatment. Patients with more severe symptoms at baseline showed a greater improvement in symptoms. No significant differences were observed in the objective signs of dry eye; presumably because of the short treatment duration. Seventy-five% of contact lens wearers reported good adherence to Optimel treatment and 95% reported no issues using this product. Optimel Eye Drops reduce the symptoms of dry eye in contact lens wearers and are safe to use. A longer treatment period to assess the effect on clinical signs of dry eye is required. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  15. Electricity consumption and ICT in the French service sector

    Energy Technology Data Exchange (ETDEWEB)

    Collard, Fabrice [Toulouse Univ., (GREMAQ-CNRS, IDEI), Toulouse (France); Feve, Patrick [GREMAQ-Univ. de Toulouse 1, Toulouse, 31 (France); Portier, Franck [Toulouse Univ., (GREMAQ, LEERNA, IDEI, IUF, CEPR), Toulouse (France)

    2005-05-01

    The paper documents the evolution of electricity use and the development of information and communication (IC) technologies in the French service sector. To that purpose, we put together two data sets documenting electricity consumption and the diffusion of IC capital goods. Using a simple factor demand model, we estimate the structural parameters of the model using both the time series and the cross-sectional dimension of the data, and allow for a specific effect of IC capital goods on the efficiency of electricity in production. We obtain robust results showing that, once controlled for technical progress, prices, and heated areas, electricity intensity of production increases with computers and software, while it decreases with the diffusion of communication device. (Author)

  16. Vertical Soil Profiling Using a Galvanic Contact Resistivity Scanning Approach

    Directory of Open Access Journals (Sweden)

    Luan Pan

    2014-07-01

    Full Text Available Proximal sensing of soil electromagnetic properties is widely used to map spatial land heterogeneity. The mapping instruments use galvanic contact, capacitive coupling or electromagnetic induction. Regardless of the type of instrument, the geometrical configuration between signal transmitting and receiving elements typically defines the shape of the depth response function. To assess vertical soil profiles, many modern instruments use multiple transmitter-receiver pairs. Alternatively, vertical electrical sounding can be used to measure changes in apparent soil electrical conductivity with depth at a specific location. This paper examines the possibility for the assessment of soil profiles using a dynamic surface galvanic contact resistivity scanning approach, with transmitting and receiving electrodes configured in an equatorial dipole-dipole array. An automated scanner system was developed and tested in agricultural fields with different soil profiles. While operating in the field, the distance between current injecting and measuring pairs of rolling electrodes was varied continuously from 40 to 190 cm. The preliminary evaluation included a comparison of scan results from 20 locations to shallow (less than 1.2 m deep soil profiles and to a two-layer soil profile model defined using an electromagnetic induction instrument.

  17. Posterior labral injury in contact athletes.

    Science.gov (United States)

    Mair, S D; Zarzour, R H; Speer, K P

    1998-01-01

    Nine athletes (seven football offensive linemen, one defensive lineman, and one lacrosse player) were found at arthroscopy to have posterior labral detachment from the glenoid. In our series, this lesion is specific to contact athletes who engage their opponents with arms in front of the body. All patients had pain with bench pressing and while participating in their sport, diminishing their ability to play effectively. Conservative measures were ineffective in relieving their symptoms. Examination under anesthesia revealed symmetric glenohumeral translation bilaterally, without evidence of posterior instability. Treatment consisted of glenoid rim abradement and posterior labral repair with a bioabsorbable tack. All patients returned to complete at least one full season of contact sports and weightlifting without pain (minimum follow-up, > or = 2 years). Although many injuries leading to subluxation of the glenohumeral joint occur when an unanticipated force is applied, contact athletes ready their shoulder muscles in anticipation of impact with opponents. This leads to a compressive force at the glenohumeral joint. We hypothesize that, in combination with a posteriorly directed force at impact, the resultant vector is a shearing force to the posterior labrum and articular surface. Repeated exposure leads to posterior labral detachment without capsular injury. Posterior labral reattachment provides consistently good results, allowing the athlete to return to competition.

  18. Annual report on compliance with the codes of good conduct and independence of electricity grid and natural gas network operators. November 2005

    International Nuclear Information System (INIS)

    2005-11-01

    In France, system operators belong to groups that also conduct business in the energy sector, in fields governed by competition rules. They could therefore be tempted to use their privileged position to their group's benefit, which would disadvantage end consumers. Non-discriminatory access to electricity and gas transmission and distribution networks is at the core of the market opening to competition approach implemented by the European Union since the end of the 1990's. EU and national enactments in force highlight two tools to ensure nondiscrimination: compliance programmes and independence of system operators with regard to their parent companies. Firstly, compliance programs contain measures taken to ensure that discrimination is completely excluded and that their application is subject to appropriate monitoring. Secondly, system operator independence plays a part in preventing discrimination against competitors with other business activities (generation, supply, etc.) within the same group. In application of these enactments, every electricity or natural gas transmission or distribution system operator serving more than 100,000 customers provided CRE, the Energy Regulatory Commission, with their annual reports on the application of their compliance programs. This document is CRE's November 2005 report about compliance programmes and independence of electricity and natural gas system operators. It has been prepared using the codes of good conduct and the annual reports supplied by network operators. CRE also launched a public consultation of the market players in October 2005 and listened to what the network operators had to say. Moreover, it carried out a certain number of checks on operators' practices

  19. Fabrication of contacts for silicon solar cells including printing burn through layers

    Science.gov (United States)

    Ginley, David S; Kaydanova, Tatiana; Miedaner, Alexander; Curtis, Calvin J; Van Hest, Marinus Franciscus Antonius Maria

    2014-06-24

    A method for fabricating a contact (240) for a solar cell (200). The method includes providing a solar cell substrate (210) with a surface that is covered or includes an antireflective coating (220). For example, the substrate (210) may be positioned adjacent or proximate to an outlet of an inkjet printer (712) or other deposition device. The method continues with forming a burn through layer (230) on the coating (220) by depositing a metal oxide precursor (e.g., using an inkjet or other non-contact printing method to print or apply a volume of liquid or solution containing the precursor). The method includes forming a contact layer (240) comprising silver over or on the burn through layer (230), and then annealing is performed to electrically connect the contact layer (240) to the surface of the solar cell substrate (210) through a portion of the burn through layer (230) and the coating (220).

  20. A rheological model for elastohydrodynamic contacts based on primary laboratory data

    Science.gov (United States)

    Bair, S.; Winer, W. O.

    1979-01-01

    A shear rheological model based on primary laboratory data is proposed for concentrated contact lubrication. The model is a Maxwell model modified with a limiting shear stress. Three material properties are required: Low shear stress viscosity, limiting elastic shear modulus, and the limiting shear stress the material can withstand. All three are functions of temperature and pressure. In applying the model to EHD contacts the predicted response possesses the characteristics expected from several experiments reported in the literature and, in one specific case where direct comparison could be made, good numerical agreement is shown.

  1. Electrochemically-gated single-molecule electrical devices

    International Nuclear Information System (INIS)

    Guo, Shaoyin; Artés, Juan Manuel; Díez-Pérez, Ismael

    2013-01-01

    In the last decade, single-molecule electrical contacts have emerged as a new experimental platform that allows exploring charge transport phenomena in individual molecular blocks. This novel tool has evolved into an essential element within the Molecular Electronics field to understand charge transport processes in hybrid (bio)molecule/electrode interfaces at the nanoscale, and prospect the implementation of active molecular components into functional nanoscale optoelectronic devices. Within this area, three-terminal single-molecule devices have been sought, provided that they are highly desired to achieve full functionality in logic electronic circuits. Despite the latest experimental developments offer consistent methods to bridge a molecule between two electrodes (source and drain in a transistor notation), placing a third electrode (gate) close to the single-molecule electrical contact is still technically challenging. In this vein, electrochemically-gated single-molecule devices have emerged as an experimentally affordable alternative to overcome these technical limitations. In this review, the operating principle of an electrochemically-gated single-molecule device is presented together with the latest experimental methodologies to built them and characterize their charge transport characteristics. Then, an up-to-date comprehensive overview of the most prominent examples will be given, emphasizing on the relationship between the molecular structure and the final device electrical behaviour

  2. Biomass production and control of nutrient leaching of willows using different planting methods with special emphasis on an appraisal of the electrical impedance for roots

    Energy Technology Data Exchange (ETDEWEB)

    Yang Cao

    2011-07-01

    Willow reproduction can be achieved through vertically or horizontally planted cuttings. Conventionally, plantations are established by inserting cuttings vertically into the soil. There is, however, a lack of information about the biomass production and nutrient leaching of plantations established through horizontally planted cuttings. A greenhouse experiment and a field trial were carried out to investigate whether horizontally planted Salix schwerinii cuttings have a positive effect on stem yield, root distribution and nutrient leaching in comparison with vertically planted cuttings with different planting densities. The shoots' height of horizontally planted cuttings was significantly smaller than that of vertically planted cuttings during the first two weeks after planting in the pot experiment. Thereafter, no significant effect of planting orientation on the stem biomass was observed in the two conducted experiments. In both experiments the total stem biomass increased with the planting density. It was also found that the fine root biomass and the specific root length were not affected by the planting orientation or density, while the fine root surface area and the absorbing root surface area (ARSA) were affected only by the planting density. The planting orientation did not affect the nutrient concentrations in the soil leachate, apart from SO{sub 4}-S and PO{sub 4}-P in the pot experiment. The ARSA in the pot experiment was assessed by using the earth impedance method. The applicability of this method was evaluated in a hydroponic study of willow cuttings where root and stem were measured independently. Electrical resistance had a good correlation with the contact area of the roots with the solution. However, the resistance depended strongly on the contact area of the stem with the solution, which caused a bias in the evaluation of root surface area. A similar experimental set-up with electrical impedance spectroscopy was employed to study the

  3. Chemotaxis of Dictyostelium discoideum: Collective Oscillation of Cellular Contacts

    Science.gov (United States)

    Schäfer, Edith; Tarantola, Marco; Polo, Elena; Westendorf, Christian; Oikawa, Noriko; Bodenschatz, Eberhard; Geil, Burkhard; Janshoff, Andreas

    2013-01-01

    Chemotactic responses of Dictyostelium discoideum cells to periodic self-generated signals of extracellular cAMP comprise a large number of intricate morphological changes on different length scales. Here, we scrutinized chemotaxis of single Dictyostelium discoideum cells under conditions of starvation using a variety of optical, electrical and acoustic methods. Amebas were seeded on gold electrodes displaying impedance oscillations that were simultaneously analyzed by optical video microscopy to relate synchronous changes in cell density, morphology, and distance from the surface to the transient impedance signal. We found that starved amebas periodically reduce their overall distance from the surface producing a larger impedance and higher total fluorescence intensity in total internal reflection fluorescence microscopy. Therefore, we propose that the dominant sources of the observed impedance oscillations observed on electric cell-substrate impedance sensing electrodes are periodic changes of the overall cell-substrate distance of a cell. These synchronous changes of the cell-electrode distance were also observed in the oscillating signal of acoustic resonators covered with amebas. We also found that periodic cell-cell aggregation into transient clusters correlates with changes in the cell-substrate distance and might also contribute to the impedance signal. It turned out that cell-cell contacts as well as cell-substrate contacts form synchronously during chemotaxis of Dictyostelium discoideum cells. PMID:23349816

  4. Nuclear waste: good news

    International Nuclear Information System (INIS)

    Gay, Michel

    2014-01-01

    The author states that the problem of nuclear wastes is solved. He states that 90 per cent of radioactive wastes are now permanently managed and that technical solutions for deep geological storage and for transmutation will soon solve the problem for the remaining 10 pc. He states that geological storage will be funded (it is included in electricity price). He denounces why these facts which he consider as good news, do not prevail. He proposes several documents in appendix: a text explaining the nuclear fuel cycle in France, and an extract of a report made by the national inventory of radioactive materials and wastes

  5. Evolution of Electrically Active Defects in n-GaN During Heat Treatment Typical for Ohmic Contact Formation

    DEFF Research Database (Denmark)

    Boturchuk, Ievgen; Scheffler, Leopold Julian; Larsen, Arne Nylandsted

    2018-01-01

    Ohmic contact formation to n-type GaN often involves high temperature steps, for example sintering at about 800 °C in the case of Ti-based contacts. Such processing steps might cause changes in the distribution, concentration, and properties of the defects. The present work aims at contributing...... to the knowledge about defect evolution in GaN upon processing at different temperatures. The processing temperatures are selected according to fabrication procedures for commonly used ohmic contacts to n-GaN: 300 °C (In-based), 550 °C (Ta-based), and 800 °C (Ti-based). Properties and concentration of the defects...

  6. An elastic-plastic contact model for line contact structures

    Science.gov (United States)

    Zhu, Haibin; Zhao, Yingtao; He, Zhifeng; Zhang, Ruinan; Ma, Shaopeng

    2018-06-01

    Although numerical simulation tools are now very powerful, the development of analytical models is very important for the prediction of the mechanical behaviour of line contact structures for deeply understanding contact problems and engineering applications. For the line contact structures widely used in the engineering field, few analytical models are available for predicting the mechanical behaviour when the structures deform plastically, as the classic Hertz's theory would be invalid. Thus, the present study proposed an elastic-plastic model for line contact structures based on the understanding of the yield mechanism. A mathematical expression describing the global relationship between load history and contact width evolution of line contact structures was obtained. The proposed model was verified through an actual line contact test and a corresponding numerical simulation. The results confirmed that this model can be used to accurately predict the elastic-plastic mechanical behaviour of a line contact structure.

  7. Equilibrium contact angle or the most-stable contact angle?

    Science.gov (United States)

    Montes Ruiz-Cabello, F J; Rodríguez-Valverde, M A; Cabrerizo-Vílchez, M A

    2014-04-01

    It is well-established that the equilibrium contact angle in a thermodynamic framework is an "unattainable" contact angle. Instead, the most-stable contact angle obtained from mechanical stimuli of the system is indeed experimentally accessible. Monitoring the susceptibility of a sessile drop to a mechanical stimulus enables to identify the most stable drop configuration within the practical range of contact angle hysteresis. Two different stimuli may be used with sessile drops: mechanical vibration and tilting. The most stable drop against vibration should reveal the changeless contact angle but against the gravity force, it should reveal the highest resistance to slide down. After the corresponding mechanical stimulus, once the excited drop configuration is examined, the focus will be on the contact angle of the initial drop configuration. This methodology needs to map significantly the static drop configurations with different stable contact angles. The most-stable contact angle, together with the advancing and receding contact angles, completes the description of physically realizable configurations of a solid-liquid system. Since the most-stable contact angle is energetically significant, it may be used in the Wenzel, Cassie or Cassie-Baxter equations accordingly or for the surface energy evaluation. © 2013 Elsevier B.V. All rights reserved.

  8. Tuning the Schottky barrier in the arsenene/graphene van der Waals heterostructures by electric field

    Science.gov (United States)

    Li, Wei; Wang, Tian-Xing; Dai, Xian-Qi; Wang, Xiao-Long; Ma, Ya-Qiang; Chang, Shan-Shan; Tang, Ya-Nan

    2017-04-01

    Using density functional theory calculations, we investigate the electronic properties of arsenene/graphene van der Waals (vdW) heterostructures by applying external electric field perpendicular to the layers. It is demonstrated that weak vdW interactions dominate between arsenene and graphene with their intrinsic electronic properties preserved. We find that an n-type Schottky contact is formed at the arsenene/graphene interface with a Schottky barrier of 0.54 eV. Moreover, the vertical electric field can not only control the Schottky barrier height but also the Schottky contacts (n-type and p-type) and Ohmic contacts (n-type) at the interface. Tunable p-type doping in graphene is achieved under the negative electric field because electrons can transfer from the Dirac point of graphene to the conduction band of arsenene. The present study would open a new avenue for application of ultrathin arsenene/graphene heterostructures in future nano- and optoelectronics.

  9. Numerical Investigation on the Performance of an Automotive Thermoelectric Generator with Exhaust-Module-Coolant Direct Contact

    Science.gov (United States)

    Wang, Yiping; Tang, Yulin; Deng, Yadong; Su, Chuqi

    2018-06-01

    Energy conservation and environmental protection have typically been a concern of research. Researchers have confirmed that in automotive engines, just 12-25% of the fuel energy converts into effective work and 30-40% gets wasted in the form of exhaust. Saidur et al. (Energy Policy 37:3650, 2009) and Hasanuzzaman et al. (Energy 36:233, 2011). It will be significant to enhance fuel availability and decrease environmental pollution if the waste heat in the exhaust could be recovered. Thermoelectric generators (TEGs), which can translate heat into electricity, have become a topic of interest for vehicle exhaust waste heat recovery. In conventional automotive TEGs, the thermoelectric modules (TEMs) are arranged between the exhaust tank and the coolant tank. The TEMs do not contact the hot exhaust and coolant, which leads to low heat transfer efficiency. Moreover, to provide enough packing force to keep good contact with the exhaust tank and the coolant tank, the framework required is so robust that the TEGs become too heavy. Therefore, in current study, an automotive TEG was designed which included one exhaust channel, one coolant channel and several TEMs. In the TEG, the TEMs which contacted the exhaust and coolant directly were inserted into the walls of each coolant channel. To evaluate the performance of the automotive TEG, the flow field and temperature field were computed by computational fluid dynamics (CFD). Based on the temperature distribution obtained by CFD and the performance parameters of the modules, the total power generation was obtained by some proved empirical formulas. Compared with conventional automotive TEGs, the power generation per unit volume exhaust was boosted.

  10. Numerical Investigation on the Performance of an Automotive Thermoelectric Generator with Exhaust-Module-Coolant Direct Contact

    Science.gov (United States)

    Wang, Yiping; Tang, Yulin; Deng, Yadong; Su, Chuqi

    2017-12-01

    Energy conservation and environmental protection have typically been a concern of research. Researchers have confirmed that in automotive engines, just 12-25% of the fuel energy converts into effective work and 30-40% gets wasted in the form of exhaust. Saidur et al. (Energy Policy 37:3650, 2009) and Hasanuzzaman et al. (Energy 36:233, 2011). It will be significant to enhance fuel availability and decrease environmental pollution if the waste heat in the exhaust could be recovered. Thermoelectric generators (TEGs), which can translate heat into electricity, have become a topic of interest for vehicle exhaust waste heat recovery. In conventional automotive TEGs, the thermoelectric modules (TEMs) are arranged between the exhaust tank and the coolant tank. The TEMs do not contact the hot exhaust and coolant, which leads to low heat transfer efficiency. Moreover, to provide enough packing force to keep good contact with the exhaust tank and the coolant tank, the framework required is so robust that the TEGs become too heavy. Therefore, in current study, an automotive TEG was designed which included one exhaust channel, one coolant channel and several TEMs. In the TEG, the TEMs which contacted the exhaust and coolant directly were inserted into the walls of each coolant channel. To evaluate the performance of the automotive TEG, the flow field and temperature field were computed by computational fluid dynamics (CFD). Based on the temperature distribution obtained by CFD and the performance parameters of the modules, the total power generation was obtained by some proved empirical formulas. Compared with conventional automotive TEGs, the power generation per unit volume exhaust was boosted.

  11. Electrical conductivity of metal–carbon nanotube structures

    Indian Academy of Sciences (India)

    The electrical properties of asymmetric metal–carbon nanotube (CNT) structures have been studied using density functional theory and non-equilibrium Green's function method with Atomistix tool kit. The models with asymmetric metal contacts and carbon nanotube bear resemblance to experimental set-ups. The study ...

  12. A conceptual framework for designing micro electrical connectors for hearing aid instruments

    OpenAIRE

    Doagou Rad, Saeed; Islam, Aminul; Fuglsang-Philip, M.

    2016-01-01

    Electrical connectors play vital roles in modern electronic instruments. Hearing aid devices as advanced combinations of micro mechanics and electronics comprise various electrical connectors for different purposes. However, the current trend in the miniaturization along with the sharp technological advancements have urged them to incorporate increased number of electrical contacts. The current paper presents a conceptual framework for designing and manufacturing novel plug and socket systems...

  13. An Investigation of the Electrical Short Circuit Characteristics of Tin Whiskers

    Science.gov (United States)

    Courey, Karim J.

    2008-01-01

    Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that has a currently unknown probability associated with it. Due to contact resistance electrical shorts may not occur at lower voltage levels. In this experiment, we study the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From this data we can estimate the probability of an electrical short, as a function of voltage, given that a free tin whisker has bridged two adjacent exposed electrical conductors. Also, three tin whiskers grown from the same Space Shuttle Orbiter card guide used in the aforementioned experiment were cross-sectioned and studied using a focused ion beam (FIB). The rare polycrystalline structure seen in the FIB cross section was confirmed using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size to determine that the tin plating on the card guides had a bright finish.

  14. Development of radiation-hard electric connector with ball bearing for in-vessel remote maintenance equipment of ITER

    International Nuclear Information System (INIS)

    Ito, Akira; Obara, Kenjiro; Tada, Eisuke; Morita, Yousuke; Yagi, Toshiaki; Iida, Kazuhisa; Sato, Masaru.

    1997-12-01

    Development of radiation-hard electric connector with ball bearing for in-vessel remote maintenance equipment of ITER (International Thermonuclear Experimental Reactor) has been conducted. Since the in-vessel remote maintenance equipment is operated under the condition of 10 6 R/h gamma ray dose rate, the electric connector has to be radiation hard for an accumulation dose of 10 10 R. In addition, the simple attachment/removal mechanism is essential for remote operation. For this, the alumina (Al203) ceramics and a ball bearing were adopted to electric insulator and plug (male) of connector, respectively. The handling tests on attachment/removal of the connector were conducted by using master slave manipulator and general purpose robot with handling tool, and as a result, the validity of the attachment/removal mechanism was verified. In the gamma ray irradiation tests, which are under way, no degradation in break down voltage (1000V 1min.) up to 10 10 R was confirmed. However insulation resistance and contact resistance between contact pin and contact socket were deteriorated in proportion to the accumulation dose. Increase of contact resistance is considered due to an erosion of contact pin. (author)

  15. Transport comparison of multiwall carbon nanotubes by contacting outer shell and all shells.

    Science.gov (United States)

    Luo, Qiang; Cui, A-Juan; Zhang, Yi-Guang; Lu, Chao; Jin, Ai-Zi; Yang, Hai-Fang; Gu, Chang-Zhi

    2010-11-01

    Carbon nanotubes, particularly multiwall carbon nanotubes (MWCNTs) can serve as interconnects in nanoelectronic devices and integrated circuits because of their extremely large current-carrying capacity. Many experimental results about the transport properties of individual MWCNTs by contacting outer shell or all shells have been reported. In this work, a compatible method with integrated circuit manufacturing process was presented to compare the transport property of an individual multiwall carbon nanotube (MWCNT) by contacting outer shell only and all shells successively. First of the Ti/Au electrodes contacting outer shell only were fabricated onto the nanotube through the sequence of electron beam lithography (EBL) patterning, metal deposition and lift-off process. After the characterization of its transport property, focused ion beam (FIB) was used to drill holes through the same nanotube at the as-deposited electrodes. Then new contact to the holes and electrodes were made by ion-induced deposition of tungsten from W(CO)6 precursor gas. The transport results indicated that the new contact to all shells can clear up the intershell resistance and the electrical conductance of the tube can be improved about 8 times compared to that of by contacting outer shell only.

  16. Elevated exhaust temperature, zoned, electrically-heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN

    2012-04-17

    A system includes an electrical heater and a particulate matter (PM) filter that is arranged one of adjacent to and in contact with the electrical heater. A control module selectively increases an exhaust gas temperature of an engine to a first temperature and that initiates regeneration of the PM filter using the electrical heater while the exhaust gas temperature is above the first temperature. The first temperature is greater than a maximum exhaust gas temperature at the PM filter during non-regeneration operation and is less than an oxidation temperature of the PM.

  17. Correlations between deformations, surface state and leak rate in metal to metal contact; Correlations entre deformations, etat de surface et debit de fuite au contact metal-metal

    Energy Technology Data Exchange (ETDEWEB)

    Armand, G; Lapujoulade, J; Paigne, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    The study of metal to metal contact from the stand-point of the leak rate has been carried on a copper ring located between two hard-steel flanges. The analysis of the results confirms the hysteresis phenomenon already seen. Some curves (leak rate versus force and leak rate versus true deformation) in semi-logarithmic coordinates are straight lines. Likewise some curves (electrical contact resistance versus force) in bi-logarithmic coordinates are straight lines. All these results can be understood by looking at the conductance introduced by the deformations of the micro-geometry of the surfaces in contact. Some tests carried out in rising the temperature confirm these hypothesis. (authors) [French] L'etude du contact metal-metal du point de vue debit de fuite a ete poursuivie en utilisant un anneau de cuivre place entre brides d'acier dur. L'analyse des resultats confirme le phenomene d'hysteresis deja constate, montre l'influence de l'etat de surface des brides et du joint. Certaines courbes (debit de fuite/force et debit de fuite/deformation rationnelle), en coordonnees semi-logarithmiques, sont des droites. De meme, certaines courbes (resistance de contact/force) en coordonnees bi-logarithmiques, sont des droites. Ces resultats s'interpretent en considerant la conductance produite par la deformation des microgeometries des surfaces en contact. Quelques essais d'elevation de temperature confirment ces resultats. (auteurs)

  18. Electromechanically generating electricity with a gapped-graphene electric generator

    Science.gov (United States)

    Dressen, Donald; Golovchenko, Jene

    2015-03-01

    We demonstrate the fabrication and operation of a gapped-graphene electric generator (G-GEG) device. The G-GEG generates electricity from the mechanical oscillation of droplets of electrolytes and ionic liquids. The spontaneous adsorption of ionic species on graphene charges opposing electric double-layer capacitors (EDLCs) on each half of the device. Modulating the area of contact between the droplet and graphene leads to adsorption/desorption of ions, effectively charging/discharging each EDLC and generating a current. The flow of current supports a potential difference across the G-GEG due to the device's internal impedance. Both the magnitude and polarity of the induced current and voltage show a strong dependence on the type of ionic species used, suggesting that certain ions interact more strongly with graphene than others. We find that a simple model circuit consisting of an AC current source in series with a resistor and a time-varying capacitor accurately predicts the device's dynamic behavior. Additionally, we discuss the effect of graphene's intrinsic quantum capacitance on the G-GEG's performance and speculate on the utility of the device in the context of energy harvesting.

  19. Numerical Study for a Large Volume Droplet on the Dual-rough Surface: Apparent Contact Angle, Contact Angle Hysteresis and Transition Barrier.

    Science.gov (United States)

    Dong, Jian; Jin, Yanli; Dong, He; Liu, Jiawei; Ye, Senbin

    2018-06-14

    The profile, apparent contact angle (ACA), contact angle hysteresis (CAH) and wetting state transmission energy barrier (WSTEB) are important static and dynamic properties of a large volume droplet on the hierarchical surface. Understanding them can provide us with important insights to functional surfaces and promote the application in corresponding areas. In this paper, we established three theoretical models (Model 1, Model 2 and Model 3) and corresponding numerical methods, which were obtained by the free energy minimization and the nonlinear optimization algorithm, to predict the profile, ACA, CAH and WSTEB of a large volume droplet on the horizontal regular dual-rough surface. In consideration of the gravity, the energy barrier on the contact circle, the dual heterogenous structures and their roughness on the surface, the models are more universal and accurate than previous models. It showed that the predictions of the models were in good agreement with the results from the experiment or literature. The models are promising to become novel design approaches of functional surfaces, which are frequently applied in microfluidic chips, water self-catchment system and dropwise condensation heat transfer system.

  20. Reducing contact resistance in graphene devices through contact area patterning.

    Science.gov (United States)

    Smith, Joshua T; Franklin, Aaron D; Farmer, Damon B; Dimitrakopoulos, Christos D

    2013-04-23

    Performance of graphene electronics is limited by contact resistance associated with the metal-graphene (M-G) interface, where unique transport challenges arise as carriers are injected from a 3D metal into a 2D-graphene sheet. In this work, enhanced carrier injection is experimentally achieved in graphene devices by forming cuts in the graphene within the contact regions. These cuts are oriented normal to the channel and facilitate bonding between the contact metal and carbon atoms at the graphene cut edges, reproducibly maximizing "edge-contacted" injection. Despite the reduction in M-G contact area caused by these cuts, we find that a 32% reduction in contact resistance results in Cu-contacted, two-terminal devices, while a 22% reduction is achieved for top-gated graphene transistors with Pd contacts as compared to conventionally fabricated devices. The crucial role of contact annealing to facilitate this improvement is also elucidated. This simple approach provides a reliable and reproducible means of lowering contact resistance in graphene devices to bolster performance. Importantly, this enhancement requires no additional processing steps.

  1. Enhancing cell proliferation by non-contact nanosecond PEF treatment of cell culture vials

    NARCIS (Netherlands)

    Bree, van J.W.M.; Geysen, J.J.G.; Pemen, A.J.M.

    2012-01-01

    The applicability of nanosecond pulsed electric fields (nsPEF) has been focused on killing of cells by means of direct contact between the nsPEF electrodes and tissue or liquid, such as in melanoma destruction [1] and sterilization of fluids. Here we present a novel, tabletop device that induces

  2. An Empirical Model for Estimating the Probability of Electrical Short Circuits from Tin Whiskers-Part I

    Science.gov (United States)

    Courey, Karim; Wright, Clara; Asfour, Shihab; Bayliss, Jon; Ludwig, Larry

    2008-01-01

    Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that has a currently unknown probability associated with it. Due to contact resistance, electrical shorts may not occur at lower voltage levels. In this experiment, we study the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From this data, we can estimate the probability of an electrical short, as a function of voltage, given that a free tin whisker has bridged two adjacent exposed electrical conductors. In addition, three tin whiskers grown from the same Space Shuttle Orbiter card guide used in the aforementioned experiment were cross sectioned and studied using a focused ion beam (FIB).

  3. Electrical resistance determination of actual contact area of cold welded metal joints

    Science.gov (United States)

    Hordon, M. J.

    1970-01-01

    Method measures the area of the bonded zone of a compression weld by observing the electrical resistance of the weld zone while the load changes from full compression until the joint ruptures under tension. The ratio of bonding force to maximum tensile load varies considerably.

  4. Position indicating systems and reed contact unit assemblies for such systems

    International Nuclear Information System (INIS)

    Foxworthy, M.K.

    1980-01-01

    Specifications are given for a position indicating system for determining the position of a movable member inside a sealed container such as the position of a control rod in a nuclear reactor. The system comprises a magnetic flux producing member mounted to the movable member so as to move with it, a series of magnetic reed contact units mounted along the outside of the sealed container to be individually actuated by the flux producer as the movable member moves within the sealed container to indicate the position of this member. Each of the reed contact units is connected to a source of alternating electric current to produce a magnetic flux field to minimize the flux differential between the actuated and unactuated reed contact positions. A second aspect of the invention provides for a low operating flux differential reed contact unit assembly for a position indicating system such that it is actuated by the magnetic member at one magnetic flux level and deactivated at a second level. There is a source of alternating current connected to a coil surrounding the reed contact unit so as to produce an alternating magnetic flux with amplitude less than the difference between the two levels. Variations are given, also diagrams and benefits. (U.K.)

  5. The value of electricity and reserve services in low carbon electricity systems

    International Nuclear Information System (INIS)

    Vijay, Avinash; Fouquet, Nicolas; Staffell, Iain; Hawkes, Adam

    2017-01-01

    Highlights: •A power dispatch model is used to simulate electricity and reserve prices. •Good agreement is observed between modelled and historic prices in 2015. •Higher renewables and CCS with lower fossil fuels leads to lower electricity prices. •Contrary to expectation, gone green scenario leads to lowest increase in reserve price. •Flexible aggregated demand response likely to offer significant economic benefits. -- Abstract: Decarbonising electricity systems is essential for mitigating climate change. Future systems will likely incorporate higher penetrations of intermittent renewable and inflexible nuclear power. This will significantly impact on system operations, particularly the requirements for flexibility in terms of reserves and the cost of such services. This paper estimates the interrelated changes in wholesale electricity and reserve prices using two novel methods. Firstly, it simulates the short run marginal cost of generation using a unit commitment model with post-processing to achieve realistic prices. It also introduces a new reserve price model, which mimics actual operation by first calculating the day ahead schedules and then letting deviations from schedule drive reserve prices. The UK is used as a case study to compare these models with traditional methods from the literature. The model gives good agreement with and historic prices in 2015. In a 2035 scenario, increased renewables penetration reduces mean electricity prices, and leads to price spikes due to expensive plants being brought online briefly to cope with net load variations. Contrary to views previously held in literature, a renewable intensive scenario does not lead to a higher reserve price than a fossil fuel intensive scenario. Demand response technology is shown to offer sizeable economic benefits when maintaining system balance. More broadly, this framework can be used to evaluate the economics of providing reserve services by aggregating decentralised energy

  6. Prioritized Contact Transport Stream

    Science.gov (United States)

    Hunt, Walter Lee, Jr. (Inventor)

    2015-01-01

    A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.

  7. American Contact Dermatitis Society Contact Allergy Management Program: An Epidemiologic Tool to Determine Relative Prevalence of Contact Allergens.

    Science.gov (United States)

    Scheman, Andrew; Severson, David

    2016-01-01

    Data on the prevalence of contact allergy in North America are currently reported by groups of academic contact allergy specialists at select academic centers. Sampling of data from numerous centers across North America, including practices performing more limited patch testing, would provide a broader perspective of contact allergen prevalence in North America. The American Contact Dermatitis Society Contact Allergy Management Program is an ideal tool for collection of epidemiologic data regarding contact allergy prevalence in North America. The aim of the study was to identify the relative prevalence of contact allergy to common contact allergens in North America. Mapping of Contact Allergy Management Program (CAMP) data was performed to allow analysis of how frequently searches were performed for various contact allergens. The number of searches performed for specific allergens provides a measure of the relative prevalence of contact allergy to these allergens. The top 35 allergens for the period from November 18, 2012 to November 18, 2013 are reported. Although these data are useful, specific recommendations for minor alterations to CAMP are discussed, which will allow future CAMP data to be stratified and more powerful. With minor modifications, CAMP can provide a quantum leap in the reporting of contact allergy epidemiologic data in North America.

  8. Using an alternate light source to detect electrically singed feathers and hair in a forensic setting.

    Science.gov (United States)

    Viner, Tabitha C; Kagan, Rebecca A; Johnson, Jennifer L

    2014-01-01

    Mortality due to electrical injury in wildlife may occur in the form of lightning strike or power line contact. Evidence of electrical contact may be grossly obvious, with extensive singeing, curling, and blackening of feathers, fur, or skin. Occasionally, changes may be subtle, owing to lower current or reduced conductivity, making a definitive diagnosis of electrocution more difficult. We describe the use of an alternate light source in the examination of cases of lightning strike and power line contact in wildlife, and the enhanced detection of changes due to electrical currents in the hair and feathers of affected animals. Subtle changes in the wing feathers of 12 snow geese and 1 wolf that were struck by separate lightning events were made obvious by the use of an alternate light source. Similarly, this technique can be used to strengthen the evidence for power line exposure in birds. Published by Elsevier Ireland Ltd.

  9. Two-point concrete resistivity measurements: interfacial phenomena at the electrode–concrete contact zone

    International Nuclear Information System (INIS)

    McCarter, W J; Taha, H M; Suryanto, B; Starrs, G

    2015-01-01

    Ac impedance spectroscopy measurements are used to critically examine the end-to-end (two-point) testing technique employed in evaluating the bulk electrical resistivity of concrete. In particular, this paper focusses on the interfacial contact region between the electrode and specimen and the influence of contacting medium and measurement frequency on the impedance response. Two-point and four-point electrode configurations were compared and modelling of the impedance response was undertaken to identify and quantify the contribution of the electrode–specimen contact region on the measured impedance. Measurements are presented in both Bode and Nyquist formats to aid interpretation. Concretes mixes conforming to BSEN206-1 and BS8500-1 were investigated which included concretes containing the supplementary cementitious materials fly ash and ground granulated blast-furnace slag. A measurement protocol is presented for the end-to-end technique in terms of test frequency and electrode–specimen contacting medium in order to minimize electrode–specimen interfacial effect and ensure correct measurement of bulk resistivity. (paper)

  10. Two Studies of the Long-Term Follow-up of Minimal Therapist Contact Treatments of Vascular and Tension Headache.

    Science.gov (United States)

    Blanchard, Edward B.; And Others

    1988-01-01

    Followed up on tension and vascular headache patients, intially treated with biofeedback and/or relaxation training in either a minimal therapist contact or an intensive individual protocol, where one-half of patients continued keeping headache diaries and were seen monthly; others had minimal contact. Demonstrated equally good maintenance from…

  11. An innovative wheel–rail contact model for railway vehicles under degraded adhesion conditions

    International Nuclear Information System (INIS)

    Meli, E.; Ridolfi, A.

    2015-01-01

    The accurate modelling of the wheel–rail contact plays a fundamental role in the railway field since the contact forces heavily affect the vehicle dynamics, the wear of the contact surfaces and the vehicle safety. Concerning the wheel–rail contact, an important open problem is represented by the degraded adhesion. A realistic adhesion model is quite difficult to obtain because of the complex and highly non-linear behaviour of the adhesion coefficient and the presence of external unknown contaminants (the third body); this is especially true when degraded adhesion and large sliding between the wheel and rail contact surfaces occur.In this work the authors present an adhesion model particularly developed to describe degraded adhesion conditions. The new approach will have to be suitable to be employed within the wheel–rail contact models typical of the multibody applications. In other words, the contact model, comprising the new adhesion model, will have to guarantee a good accuracy and, at the same time, a high numerical efficiency to be implemented directly online inside the general multibody model of the vehicles (e.g. in Matlab-Simulink or Simpack environments) ( www.mathworks.com http://www.mathworks.com , 2012; www.simpack.com http://www.simpack.com , 2012).The model analysed in the paper is based on some of the main phenomena characterising the degraded adhesion, such as large sliding at the contact interface, high energy dissipation, the consequent cleaning effect on the contact surfaces and the final adhesion recovery due to the removal of external unknown contaminants.The adhesion model has been validated because of the experimental data provided by Trenitalia S.p.A. coming from on-track tests performed in Velim (Czech Republic). The tests have been carried out on a straight railway track under degraded adhesion conditions with the railway vehicle UIC-Z1 equipped with a fully-working Wheel Slide Protection (WSP) system.The validation highlighted the

  12. An innovative wheel–rail contact model for railway vehicles under degraded adhesion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Meli, E., E-mail: enrico.meli@unifi.it; Ridolfi, A., E-mail: a.ridolfi@unifi.it [University of Florence, Department of Industrial Engineering (Italy)

    2015-03-15

    The accurate modelling of the wheel–rail contact plays a fundamental role in the railway field since the contact forces heavily affect the vehicle dynamics, the wear of the contact surfaces and the vehicle safety. Concerning the wheel–rail contact, an important open problem is represented by the degraded adhesion. A realistic adhesion model is quite difficult to obtain because of the complex and highly non-linear behaviour of the adhesion coefficient and the presence of external unknown contaminants (the third body); this is especially true when degraded adhesion and large sliding between the wheel and rail contact surfaces occur.In this work the authors present an adhesion model particularly developed to describe degraded adhesion conditions. The new approach will have to be suitable to be employed within the wheel–rail contact models typical of the multibody applications. In other words, the contact model, comprising the new adhesion model, will have to guarantee a good accuracy and, at the same time, a high numerical efficiency to be implemented directly online inside the general multibody model of the vehicles (e.g. in Matlab-Simulink or Simpack environments) ( www.mathworks.com http://www.mathworks.com , 2012; www.simpack.com http://www.simpack.com , 2012).The model analysed in the paper is based on some of the main phenomena characterising the degraded adhesion, such as large sliding at the contact interface, high energy dissipation, the consequent cleaning effect on the contact surfaces and the final adhesion recovery due to the removal of external unknown contaminants.The adhesion model has been validated because of the experimental data provided by Trenitalia S.p.A. coming from on-track tests performed in Velim (Czech Republic). The tests have been carried out on a straight railway track under degraded adhesion conditions with the railway vehicle UIC-Z1 equipped with a fully-working Wheel Slide Protection (WSP) system.The validation highlighted the

  13. Search for Superconducting Energy Gap in UPt3 by Point-Contact Spectroscopy

    International Nuclear Information System (INIS)

    Gouchi, Jun; Sumiyama, Akihiko; Yamaguchi, Akira; Motoyama, Gaku; Kimura, Noriaki; Yamamoto, Etsuji; Haga, Yoshinori; Ōnuki, Yoshichika

    2015-01-01

    We have investigated the differential resistance of the point contacts between heavy-fermion superconductor UPt 3 and a normal metal Pt, which were fabricated using a commercial piezo-electric actuator, and retried the observation of the energy gap of UPt 3 . A V-shaped dip is observed in both normal and superconducting states and disappeared around T K ∼ 20 K, suggesting that it is related to the Kondo effect. Below the superconducting transition temperature, a shallow double-minimum structure, which indicates the energy gap, has been observed for the contacts on the faces perpendicular to the a-, b- and c-axes of UPt 3

  14. Apparatus for cooling an electric machine

    Science.gov (United States)

    Palafox, Pepe; Gerstler, William Dwight; Shen, Xiaochun; El-Refaie, Ayman Mohamed Fawzi; Lokhandwalla, Murtuza; Salasoo, Lembit

    2013-07-16

    Provided is an apparatus, for example, for use with a rotating electric machine, that includes a housing. The housing can include a housing main portion and a housing end portion. The housing main portion can be configured to be disposed proximal to a body portion of a stator section of an electric machine. The housing main portion can define a main fluid channel that is configured to conduct fluid therethrough. The housing end portion can receive fluid from said main fluid channel and direct fluid into contact with a winding end portion of a conductive winding of the stator section.

  15. Language Contact.

    Science.gov (United States)

    Nelde, Peter Hans

    1995-01-01

    Examines the phenomenon of language contact and recent trends in linguistic contact research, which focuses on language use, language users, and language spheres. Also discusses the role of linguistic and cultural conflicts in language contact situations. (13 references) (MDM)

  16. Contacts, non-linear transport effects and failure in multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Berger, C; Yi, Y; Gezo, J; Poncharal, P; Heer, W A de

    2003-01-01

    Pristine arc-produced multi-walled carbon nanotubes are contacted to liquid mercury in situ in a transmission electron microscope. The conductance G(V) for all tubes increases with increasing bias voltage V. This is related to the electronic density of the nanotubes. Similar G(V) behaviour is observed for HOPG-graphite contacted in air with Hg, with dG(V)/dV∼0.3G 0 . Variations observed in the conductance are related to nanotube-Hg contact effects. For tubes barely touching the Hg surface, the conductance is low (typically G(V=0)∼0.1-0.5G 0 ); G(V) may maximize around V=1.5-2 V or continue to increase linearly depending on the MWNT-Hg contact. For good contacts the maximum low-bias conductance is 1G 0 . Non-conducting tubes are observed having a low-bias conductance smaller than 10 -3 G 0 . High-voltage tube failure usually occurs at the contact with Hg for clean tubes, or at tube defects. An important phenomenon is the formation of a Hg bubble near the contact nanotube-Hg surface when the nanotube is negatively biased, under high bias current conditions, indicating the heating effect of hot electrons injected into the mercury

  17. Characterization technique for inhomogeneous 4H-SiC Schottky contacts: A practical model for high temperature behavior

    Science.gov (United States)

    Brezeanu, G.; Pristavu, G.; Draghici, F.; Badila, M.; Pascu, R.

    2017-08-01

    In this paper, a characterization technique for 4H-SiC Schottky diodes with varying levels of metal-semiconductor contact inhomogeneity is proposed. A macro-model, suitable for high-temperature evaluation of SiC Schottky contacts, with discrete barrier height non-uniformity, is introduced in order to determine the temperature interval and bias domain where electrical behavior of the devices can be described by the thermionic emission theory (has a quasi-ideal performance). A minimal set of parameters, the effective barrier height and peff, the non-uniformity factor, is associated. Model-extracted parameters are discussed in comparison with literature-reported results based on existing inhomogeneity approaches, in terms of complexity and physical relevance. Special consideration was given to models based on a Gaussian distribution of barrier heights on the contact surface. The proposed methodology is validated by electrical characterization of nickel silicide Schottky contacts on silicon carbide (4H-SiC), where a discrete barrier distribution can be considered. The same method is applied to inhomogeneous Pt/4H-SiC contacts. The forward characteristics measured at different temperatures are accurately reproduced using this inhomogeneous barrier model. A quasi-ideal behavior is identified for intervals spanning 200 °C for all measured Schottky samples, with Ni and Pt contact metals. A predictable exponential current-voltage variation over at least 2 orders of magnitude is also proven, with a stable barrier height and effective area for temperatures up to 400 °C. This application-oriented characterization technique is confirmed by using model parameters to fit a SiC-Schottky high temperature sensor's response.

  18. Electron transport in a Pt-CO-Pt nanocontact: Density functional theory calculations

    DEFF Research Database (Denmark)

    Strange, Mikkel; Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2006-01-01

    We have performed first-principles calculations for the mechanic and electric properties of pure Pt nanocontacts and a Pt contact with a single CO molecule adsorbed. For the pure Pt contacts we see a clear difference between point contacts and short chains in good agreement with experiments. We...

  19. Grips for testing of electrical characteristics of a specimen under a mechanical load

    Science.gov (United States)

    Briggs, Timothy; Loyola, Bryan

    2018-04-24

    Various technologies to facilitate coupled electrical and mechanical measurement of conductive materials are disclosed herein. A gripping device simultaneously holds a specimen in place and causes contact to be made between the specimen and a plurality of electrodes connected to an electrical measuring device. An electrical characteristic of the specimen is then measured while a mechanical load is applied to the specimen, and a relationship between the mechanical load and changes in the electrical characteristic can be identified.

  20. A new method of making ohmic contacts to p-GaN

    Energy Technology Data Exchange (ETDEWEB)

    Hernández-Gutierrez, C.A., E-mail: chernandez@fis.cinvestav.mx [DNyN, Cinvestav-IPN, México, DF, 07360 (Mexico); Kudriavtsev, Yu. [Departamento Ingeniería Eléctrica – SEES, Cinvestav-IPN, México, DF, 07360 (Mexico); Mota, Esteban [ESIME, Instituto Politécnico Nacional, México, DF, 07738 (Mexico); Hernández, A.G.; Escobosa-Echavarría, A.; Sánchez-Resendiz, V. [Departamento Ingeniería Eléctrica – SEES, Cinvestav-IPN, México, DF, 07360 (Mexico); Casallas-Moreno, Y.L.; López-López, M. [Departamento Física, Cinvestav-IPN, México, DF, 07360 (Mexico)

    2016-12-01

    Highlights: • Low resistance Ohmic contacts preparation is based on low energy high dose In{sup +} ion implantation into Metal/p-GaN to achieve a thin layer of In{sub x}Ga{sub 1-x}N just at the interface. • The specific ohmic contact was reduced from 10{sup −2} Ωcm{sup 2} to 2.5 × 10{sup −4} Ωcm{sup 2}. - Abstract: The structural, chemical, and electrical characteristics of In{sup +} ion-implanted Au/Ni, Au/Nb and Au/W ohmic contacts to p-GaN were investigated. After the preparation of Ni, Nb and W electrode on the surface of p-GaN, the metal/p-GaN contact interface was implanted by 30 keV In{sup +} ions with an implantation dose of 5 × 10{sup 15} ions/cm{sup 2} at room temperature to form a thin layer of In{sub x}Ga{sub 1-x}N located at the metal-semiconductor interface, achieved to reduce the specific contact resistance due to the improving quantum tunneling transport trough to the structure. The characterization was carried out by high-resolution X-ray diffraction, scanning electron microscopy, Raman spectroscopy, and secondary ion mass spectrometry to investigate the formation of ternary alloy, re-crystallization by rapid thermal annealing process after In{sup +} implantation, and the redistribution of elements. The specific contact resistance was extracted by current-voltage (I-V) curves using transmission line method; the lowest specific contact resistance of 2.5 × 10{sup −4} Ωcm{sup 2} was achieved for Au/Ni/p-In{sub x}Ga{sub 1-x}N/p-GaN ohmic contacts.