WorldWideScience

Sample records for gome satellite measurements

  1. Observing lowermost tropospheric ozone pollution with a new multispectral synergic approach of IASI infrared and GOME-2 ultraviolet satellite measurements

    Science.gov (United States)

    Cuesta, Juan; Foret, Gilles; Dufour, Gaëlle; Eremenko, Maxim; Coman, Adriana; Gaubert, Benjamin; Beekmann, Matthias; Liu, Xiong; Cai, Zhaonan; Von Clarmann, Thomas; Spurr, Robert; Flaud, Jean-Marie

    2014-05-01

    Tropospheric ozone is currently one of the air pollutants posing greatest threats to human health and ecosystems. Monitoring ozone pollution at the regional, continental and global scale is a crucial societal issue. Only spaceborne remote sensing is capable of observing tropospheric ozone at such scales. The spatio-temporal coverage of new satellite-based instruments, such as IASI or GOME-2, offer a great potential for monitoring air quality by synergism with regional chemistry-transport models, for both inter-validation and full data assimilation. However, current spaceborne observations using single-band either UV or IR measurements show limited sensitivity to ozone in the atmospheric boundary layer, which is the major concern for air quality. Very recently, we have developed an innovative multispectral approach, so-called IASI+GOME-2, which combines IASI and GOME-2 observations, respectively in the IR and UV. This unique multispectral approach has allowed the observation of ozone plumes in the lowermost troposphere (LMT, below 3 km of altitude) over Europe, for the first time from space. Our first analyses are focused on typical ozone pollution events during the summer of 2009 over Europe. During these events, LMT ozone plumes at different regions are produced photo-chemically in the boundary layer, transported upwards to the free troposphere and also downwards from the stratosphere. We have analysed them using IASI+GOME-2 observations, in comparison with single-band methods (IASI, GOME-2 and OMI). Only IASI+GOME-2 depicts ozone plumes located below 3 km of altitude (both over land and ocean). Indeed, the multispectral sensitivity in the LMT is greater by 40% and it peaks at 2 to 2.5 km of altitude over land, thus at least 0.8 to 1 km below that for all single-band methods. Over Europe during the summer of 2009, IASI+GOME-2 shows 1% mean bias and 21% precision for direct comparisons with ozonesondes and also good agreement with CHIMERE model simulations

  2. Measurements of O3, NO2 and BrO during the INDOEX campaign using ground based DOAS and GOME satellite data

    Directory of Open Access Journals (Sweden)

    A. Ladstätter-Weißenmayer

    2007-01-01

    Full Text Available The INDian Ocean EXperiment (INDOEX was an international, multi-platform field campaign to measure long-range transport of air masses from South and South-East-(SE Asia towards the Indian Ocean. During the dry monsoon season between January and March 1999, local measurements were carried out from ground based platforms and were compared with satellite based data. The objective of this study was to characterise stratospheric and tropospheric trace gas amounts in the equatorial region, and to investigate the impact of air pollution at this remote site. For the characterisation of the chemical composition of the outflow from the S-SE-Asian region, we performed ground based dual-axis-DOAS (Differential Optical Absorption Spectroscopy measurements at the KCO (Kaashidhoo Climate Observatory in the Maldives (5.0° N, 73.5° E. The measurements were conducted using two different observation modes (off-axis and zenith-sky. This technique allows the separation of the tropospheric and stratospheric columns for different trace gases like O3 and NO2. These dual-axis DOAS data were compared with O3-sonde measurements performed at KCO and satellite based GOME (Global Ozone Measuring Experiment data during the intensive measuring phase of the INDOEX campaign in February and March 1999. From GOME observations, tropospheric and stratospheric columns for O3 and NO2 were retrieved. In addition, the analysis of the O3-sonde measurements allowed the determination of the tropospheric O3 amount. The comparison shows that the results of all three measurement systems agree within their error limits. During the INDOEX campaign, mainly background conditions were observed, but in a single case an increase of tropospheric NO2 during a short pollution event was observed from the ground and the impact on the vertical columns was calculated. GOME measurements showed evidence for small tropospheric contributions to the BrO budget, probably located in the free troposphere and

  3. Global Monitoring of Terrestrial Chlorophyll Fluorescence from Moderate-spectral-resolution Near-infrared Satellite Measurements: Methodology, Simulations, and Application to GOME-2

    Science.gov (United States)

    Joiner, J.; Gaunter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A. P.; Middleton, E. M.; Huemmrich, K. F.; Yoshida, Y.; Frankenberg, C.

    2013-01-01

    Globally mapped terrestrial chlorophyll fluorescence retrievals are of high interest because they can provide information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling and agricultural applications. Previous satellite retrievals of fluorescence have relied solely upon the filling-in of solar Fraunhofer lines that are not significantly affected by atmospheric absorption. Although these measurements provide near-global coverage on a monthly basis, they suffer from relatively low precision and sparse spatial sampling. Here, we describe a new methodology to retrieve global far-red fluorescence information; we use hyperspectral data with a simplified radiative transfer model to disentangle the spectral signatures of three basic components: atmospheric absorption, surface reflectance, and fluorescence radiance. An empirically based principal component analysis approach is employed, primarily using cloudy data over ocean, to model and solve for the atmospheric absorption. Through detailed simulations, we demonstrate the feasibility of the approach and show that moderate-spectral-resolution measurements with a relatively high signal-to-noise ratio can be used to retrieve far-red fluorescence information with good precision and accuracy. The method is then applied to data from the Global Ozone Monitoring Instrument 2 (GOME-2). The GOME-2 fluorescence retrievals display similar spatial structure as compared with those from a simpler technique applied to the Greenhouse gases Observing SATellite (GOSAT). GOME-2 enables global mapping of far-red fluorescence with higher precision over smaller spatial and temporal scales than is possible with GOSAT. Near-global coverage is provided within a few days. We are able to show clearly for the first time physically plausible variations in fluorescence over the course of a single month at a spatial resolution of 0.5 deg × 0.5 deg

  4. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2

    Directory of Open Access Journals (Sweden)

    J. Joiner

    2013-10-01

    Full Text Available Globally mapped terrestrial chlorophyll fluorescence retrievals are of high interest because they can provide information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling and agricultural applications. Previous satellite retrievals of fluorescence have relied solely upon the filling-in of solar Fraunhofer lines that are not significantly affected by atmospheric absorption. Although these measurements provide near-global coverage on a monthly basis, they suffer from relatively low precision and sparse spatial sampling. Here, we describe a new methodology to retrieve global far-red fluorescence information; we use hyperspectral data with a simplified radiative transfer model to disentangle the spectral signatures of three basic components: atmospheric absorption, surface reflectance, and fluorescence radiance. An empirically based principal component analysis approach is employed, primarily using cloudy data over ocean, to model and solve for the atmospheric absorption. Through detailed simulations, we demonstrate the feasibility of the approach and show that moderate-spectral-resolution measurements with a relatively high signal-to-noise ratio can be used to retrieve far-red fluorescence information with good precision and accuracy. The method is then applied to data from the Global Ozone Monitoring Instrument 2 (GOME-2. The GOME-2 fluorescence retrievals display similar spatial structure as compared with those from a simpler technique applied to the Greenhouse gases Observing SATellite (GOSAT. GOME-2 enables global mapping of far-red fluorescence with higher precision over smaller spatial and temporal scales than is possible with GOSAT. Near-global coverage is provided within a few days. We are able to show clearly for the first time physically plausible variations in fluorescence over the course of a single month at a spatial resolution of 0

  5. Estimates of lightning NOx production from GOME satellite observations

    NARCIS (Netherlands)

    Boersma, K.F.; Eskes, H.J.; Meijer, E.W.; Kelder, H.M.

    2005-01-01

    Tropospheric NO2 column retreivals from the Global Ozone Monitoring Expeiment (GOME) satellite spectrometer are used to quantify the source strength and 3-D distribution of lightning produced nitrogen oxides (NOx=NO+NO2). A sharp increase of NO2 is observed at convective cloud tops with increasing

  6. On the use of harmonized HCHO and NO2 MAXDOAS measurements for the validation of GOME-2 and OMI satellite sensors

    Science.gov (United States)

    Pinardi, Gaia; Hendrick, François; Gielen, Clio; Van Roozendael, Michel; De Smedt, Isabelle; Lambert, Jean-Christopher; Granville, José; Compernolle, Steven; Richter, Andreas; Peters, Enno; Piters, Ankie; Wagner, Thomas; Wang, Yang; Drosoglou, Theano; Bais, Alkis; Wang, Shanshan; Saiz-Lopez, Alfonso

    2017-04-01

    During the last decade, the MAXDOAS technique has been increasingly recognized as a source of Fiducial Reference Measurements (FRM) suitable for the validation of satellite nadir observations of species relevant for climate and air quality like NO2 and HCHO. As part of the EU FP7 QA4ECV (Quality Assurance for Essential Climate Variables; see http://www.qa4ecv.eu/) project, efforts have been recently made to harmonize a network of a dozen of MAXDOAS spectrometers in view of their use to assess the quality of satellite climate data records generated within the same project. Harmonization tasks have addressed both retrieval steps involved in MAXDOAS retrievals, i.e. the DOAS spectral fit providing the differential slant column densities (DSCDs) and the conversion of the retrieved DSCDs into vertical profiles and/or vertical column densities (VCDs). In this work, we illustrate the successive harmonization steps and present the resulting QA4ECV MAXDOAS database v2. The approach adopted for the conversion of slant to vertical columns is based on a simplified look-up-table approach. The strength and limitation of this approach are discussed using reference data retrieved using an optimal estimation scheme. The QA4ECV MAXDOAS database is then used to validate satellite data sets of NO2 and HCHO columns derived from the Aura/OMI and MetOp/GOME-2 sensors. The methodology of comparison, which is also a subject of the QA4ECV project, is reviewed with respect to co-location criteria, impact of vertical and horizontal smoothing and representativeness of validation sites. We conclude by assessing the current strengths and limitations of the existing MAXDOAS datasets for NO2 and HCHO satellite validation.

  7. Geophysical validation and long-term consistency between GOME-2/MetOp-A total ozone column and measurements from the sensors GOME/ERS-2, SCIAMACHY/ENVISAT and OMI/Aura

    Directory of Open Access Journals (Sweden)

    M. E. Koukouli

    2012-09-01

    Full Text Available The main aim of the paper is to assess the consistency of five years of Global Ozone Monitoring Experiment-2/Metop-A [GOME-2] total ozone columns and the long-term total ozone satellite monitoring database already in existence through an extensive inter-comparison and validation exercise using as reference Brewer and Dobson ground-based measurements. The behaviour of the GOME-2 measurements is being weighed against that of GOME (1995–2011, Ozone Monitoring Experiment [OMI] (since 2004 and the Scanning Imaging Absorption spectroMeter for Atmospheric CartograpHY [SCIAMACHY] (since 2002 total ozone column products. Over the background truth of the ground-based measurements, the total ozone columns are inter-evaluated using a suite of established validation techniques; the GOME-2 time series follow the same patterns as those observed by the other satellite sensors. In particular, on average, GOME-2 data underestimate GOME data by about 0.80%, and underestimate SCIAMACHY data by 0.37% with no seasonal dependence of the differences between GOME-2, GOME and SCIAMACHY. The latter is expected since the three datasets are based on similar DOAS algorithms. This underestimation of GOME-2 is within the uncertainty of the reference data used in the comparisons. Compared to the OMI sensor, on average GOME-2 data underestimate OMI_DOAS (collection 3 data by 1.28%, without any significant seasonal dependence of the differences between them. The lack of seasonality might be expected since both the GOME data processor [GDP] 4.4 and OMI_DOAS are DOAS-type algorithms and both consider the variability of the stratospheric temperatures in their retrievals. Compared to the OMI_TOMS (collection 3 data, no bias was found. We hence conclude that the GOME-2 total ozone columns are well suitable to continue the long-term global total ozone record with the accuracy needed for climate monitoring studies.

  8. Neural networks for the dimensionality reduction of GOME measurement vector in the estimation of ozone profiles

    International Nuclear Information System (INIS)

    Del Frate, F.; Iapaolo, M.; Casadio, S.; Godin-Beekmann, S.; Petitdidier, M.

    2005-01-01

    Dimensionality reduction can be of crucial importance in the application of inversion schemes to atmospheric remote sensing data. In this study the problem of dimensionality reduction in the retrieval of ozone concentration profiles from the radiance measurements provided by the instrument Global Ozone Monitoring Experiment (GOME) on board of ESA satellite ERS-2 is considered. By means of radiative transfer modelling, neural networks and pruning algorithms, a complete procedure has been designed to extract the GOME spectral ranges most crucial for the inversion. The quality of the resulting retrieval algorithm has been evaluated by comparing its performance to that yielded by other schemes and co-located profiles obtained with lidar measurements

  9. Interpretation of ozone vertical profiles and their variations in the Northern hemisphere on the basis of GOME satellite data. Final report; Interpretation von Ozon-Vertikalprofilen und deren Variationen in der noerdlichen Hemisphaere unter Benutzung von GOME Satellitendaten. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Eichmann, K.U.; Bramstedt, K.; Weber, M.; Rozanov, V.; Debeek, R.; Hoogen, R.; Burrows, J.P.

    2000-07-04

    Semiglobal ozone vertical profiles based on GOME measurements were established and evaluated systematically. GOME (Global Ozone Monitoring Experiment), carried by the ERS-2 satellite, is the first European passive optical sensor for long-term monitoring of ozone, other trace elements, and aerosols. Especially the vertical distribution of ozone in the Arctic region was measured and interpreted with a view to enhanced ozone degradation in the Arctic winter and spring seasons. Apart from the regional variations, also the time variations of the profiles are to provide further information on the dynamics and chemical processes in the polar vortex. The retrieval algorithm used for assessing the ozone vertical profiles, FURM (FUll Retrieval Method), is based on the GOMETRAN radiation transport model developed at Bremen university especially for evaluation of the GOME data. The GOME ozone profiles were validated with ozone probes and other satellite experiments. [German] Ziel des Projektes war eine systematische Bestimmung und Auswertung von semiglobalen Ozonvertikalprofilen aus den Messdaten von GOME. Das auf dem Satelliten ERS-2 fliegende Spektrometer GOME (Global Ozone Monitoring Experiment) ist der erste europaeische, passive, optische Sensor, der fuer Langzeitmessungen von Ozon, anderen Spurenstoffen und Aerosolen konzipiert wurde. Im Projekt wurde insbesondere die vertikale Verteilung von Ozon in der Arktis bestimmt und interpretiert hinsichtlich des verstaerkten Ozonabbaus im arktischen Winter und Fruehjahr. Neben der raeumlichen Variation sollen auch die zeitlichen Ablaeufe und Veraenderungen der Profile weitere Erkenntnise hinsichtlich der Dynamik und der chemischen Prozesse im Polarwirbel liefern. Der Retrievalalgorithmus zur Bestimmung des Ozonhoehenprofils, FURM (Full Retrieval Method) genannt, basiert auf dem Strahlungstransportmodell GOMETRAN, das an der Universitaet Bremen speziell fuer die Auswertung der Daten des GOME Instrumentes entwickelt wurde

  10. Global observations of BrO in the troposphere using GOME-2 satellite data

    Science.gov (United States)

    Theys, N.; van Roozendael, M.; Hendrick, F.; Xin, Y.; Isabelle, D.; Richter, A.; Mathias, B.; Quentin, E.; Johnston, P. V.; Kreher, K.; Martine, D.

    2010-12-01

    Measurements from the GOME-2 satellite instrument have been analyzed for tropospheric BrO using a residual technique that combines measured BrO columns and estimates of the stratospheric BrO content from a climatological approach driven by O3 and NO2 observations. Comparisons between the GOME-2 results and correlative data including ground-based BrO vertical columns and total BrO columns derived from SCIAMACHY nadir observations, present a good level of consistency. We show that the adopted technique enables to separate the stratospheric and tropospheric fractions of the measured total BrO columns and allows studying the BrO plumes in polar region in more detail. While several satellite BrO plumes can largely be explained by an influence of stratospheric descending air, we show that numerous tropospheric BrO hotspots are associated to regions with low tropopause heights as well. Elaborating on simulations using the p-TOMCAT tropospheric chemical transport model, this finding is found to be consistent with the mechanism of bromine release through sea salt aerosols production during blowing snow events. Outside the polar region, evidences are provided for a global tropospheric BrO background with columns of 1-3 x 1013 molec/cm2.

  11. Global observations of tropospheric BrO columns using GOME-2 satellite data

    Science.gov (United States)

    Theys, N.; van Roozendael, M.; Hendrick, F.; Yang, X.; de Smedt, I.; Richter, A.; Begoin, M.; Errera, Q.; Johnston, P. V.; Kreher, K.; de Mazière, M.

    2011-02-01

    Measurements from the GOME-2 satellite instrument have been analyzed for tropospheric BrO using a residual technique that combines measured BrO columns and estimates of the stratospheric BrO content from a climatological approach driven by O3 and NO2 observations. Comparisons between the GOME-2 results and BrO vertical columns derived from correlative ground-based and SCIAMACHY nadir observations, present a good level of consistency. We show that the adopted technique enables separation of stratospheric and tropospheric fractions of the measured total BrO columns and allows quantitative study of the BrO plumes in polar regions. While some satellite observed plumes of enhanced BrO can be explained by stratospheric descending air, we show that most BrO hotspots are of tropospheric origin, although they are often associated to regions with low tropopause heights as well. Elaborating on simulations using the p-TOMCAT tropospheric chemical transport model, this result is found to be consistent with the mechanism of bromine release through sea salt aerosols production during blowing snow events. No definitive conclusion can be drawn however on the importance of blowing snow sources in comparison to other bromine release mechanisms. Outside polar regions, evidence is provided for a global tropospheric BrO background with column of 1-3 × 1013 molec cm-2, consistent with previous estimates.

  12. Global observations of tropospheric BrO columns using GOME-2 satellite data

    Directory of Open Access Journals (Sweden)

    N. Theys

    2011-02-01

    Full Text Available Measurements from the GOME-2 satellite instrument have been analyzed for tropospheric BrO using a residual technique that combines measured BrO columns and estimates of the stratospheric BrO content from a climatological approach driven by O3 and NO2 observations. Comparisons between the GOME-2 results and BrO vertical columns derived from correlative ground-based and SCIAMACHY nadir observations, present a good level of consistency. We show that the adopted technique enables separation of stratospheric and tropospheric fractions of the measured total BrO columns and allows quantitative study of the BrO plumes in polar regions. While some satellite observed plumes of enhanced BrO can be explained by stratospheric descending air, we show that most BrO hotspots are of tropospheric origin, although they are often associated to regions with low tropopause heights as well. Elaborating on simulations using the p-TOMCAT tropospheric chemical transport model, this result is found to be consistent with the mechanism of bromine release through sea salt aerosols production during blowing snow events. No definitive conclusion can be drawn however on the importance of blowing snow sources in comparison to other bromine release mechanisms. Outside polar regions, evidence is provided for a global tropospheric BrO background with column of 1–3 × 1013 molec cm−2, consistent with previous estimates.

  13. Estimates of lightning NOx production from GOME satellite observations

    Directory of Open Access Journals (Sweden)

    K. F. Boersma

    2005-01-01

    Full Text Available Tropospheric NO2 column retrievals from the Global Ozone Monitoring Experiment (GOME satellite spectrometer are used to quantify the source strength and 3-D distribution of lightning produced nitrogen oxides (NOx=NO+NO2. A sharp increase of NO2 is observed at convective cloud tops with increasing cloud top height, consistent with a power-law behaviour with power 5±2. Convective production of clouds with the same cloud height are found to produce NO2 with a ratio 1.6/1 for continents compared to oceans. This relation between cloud properties and NO2 is used to construct a 10:30 local time global lightning NO2 production map for 1997. An extensive statistical comparison is conducted to investigate the capability of the TM3 chemistry transport model to reproduce observed patterns of lightning NO2 in time and space. This comparison uses the averaging kernel to relate modelled profiles of NO2 to observed NO2 columns. It exploits a masking scheme to minimise the interference of other NOx sources on the observed total columns. Simulations are performed with two lightning parameterizations, one relating convective preciptation (CP scheme to lightning flash distributions, and the other relating the fifth power of the cloud top height (H5 scheme to lightning distributions. The satellite-retrieved NO2 fields show significant correlations with the simulated lightning contribution to the NO2 concentrations for both parameterizations. Over tropical continents modelled lightning NO2 shows remarkable quantitative agreement with observations. Over the oceans however, the two model lightning parameterizations overestimate the retrieved NO2 attributed to lightning. Possible explanations for these overestimations are discussed. The ratio between satellite-retrieved NO2 and modelled lightning NO2 is used to rescale the original modelled lightning NOx production. Eight estimates of the lightning NOx production in 1997 are obtained from spatial and temporal

  14. Temperature dependent O3 absorption cross sections for GOME, SCIAMACHY and GOME-2: II. New laboratory measurements

    Science.gov (United States)

    Serdyuchenko, Anna; Gorshelev, Victor; Chehade, Wissam; Weber, Mark; Burrows, John P.

    We report on the work devoted to the up-to-date measurements of the ozone absorption cross-sections. The main goal of the project is to produce a consolidated and consistent set of high resolution cross-sections for satellite spectrometers series that allows a derivation of the harmonized long term data set. The generation of long-term datasets of atmospheric trace gases is a major need and prerequisite for climate and air quality related studies. At present there are three atmospheric chemistry instruments (GOME1, SCIAMACHY and GOME2) in operation and two more spectrometers (GOME2) to be launched five years apart in the next decade resulting in a time series covering two or more decades of ozone observations. Information from different sensors has to be com-bined for a consistent long-term data record, since the lifetime of individual satellite missions is limited. The harmonization of cross-sections is carried out by combination of new experimental work with re-evaluation of the existing cross-sections data. New laboratory measurements of ozone cross-section are underway that will improve a) absolute scaling of cross-sections, b) temper-ature dependence of cross-sections (using very low temperatures starting at 190 K and higher sampling of temperatures up to room temperature) and c) improved wavelength calibration. We take advantage of a Fourier transform spectrometer (visible, near IR) and Echelle spectropho-tometer (UV, visible) to extend the dynamic range of the system (covering several orders of magnitude in cross-sections from UV up to the near IR). We plan to cover the spectral range 220 -1000 nm at a spectral resolution of 0.02 nm in UV/VIS with absolute intensity accuracy of at least 2%, and wavelength accuracy better than 0.001 nm in the temperature range 193-293 K in 10 K steps. A lot of attention is paid to the accuracy of determining the temperature of the ozone flow and new methods for absolute calibration of relative spectra. This work is in

  15. Eleven years of tropospheric NO2 measured by GOME, SCIAMACHY and OMI

    Science.gov (United States)

    Eskes, H.; Boersma, F.; Dirksen, R.; van der A, R.; Veefkind, P.; Levelt, P.; Brinksma, E.; van Roozendael, M.; de Smedt, I.; Gleason, J.

    2006-12-01

    Based on measurements of GOME on ESA ERS-2, SCIAMACHY on ESA-ENVISAT, and Ozone Monitoring Instrument (OMI) on the NASA EOS-Aura satellite there is now a unique 11-year dataset of global tropospheric nitrogen dioxide measurements from space. The retrieval approach consists of two steps. The first step is an application of the DOAS (Differential Optical Absorption Spectroscopy) approach which delivers the total absorption optical thickness along the light path (the slant column). For GOME and SCIAMACHY this is based on the DOAS implementation developed by BIRA/IASB. For OMI the DOAS implementation was developed in a collaboration between KNMI and NASA. The second retrieval step, developed at KNMI, estimates the tropospheric vertical column of NO2 based on the slant column, cloud fraction and cloud top height retrieval, stratospheric column estimates derived from a data assimilation approach and vertical profile estimates from space-time collocated profiles from the TM chemistry-transport model. The second step was applied with only minor modifications to all three instruments to generate a uniform 11-year data set. In our talk we will address the following topics: - A short summary of the retrieval approach and results - Comparisons with other retrievals - Comparisons with global and regional-scale models - OMI-SCIAMACHY and SCIAMACHY-GOME comparisons - Validation with independent measurements - Trend studies of NO2 for the past 11 years

  16. Contiguous polarisation spectra of the Earth from 300-850 nm measured by GOME-2 onboard MetOp-A

    Science.gov (United States)

    Tilstra, L. G.; Lang, R.; Munro, R.; Aben, I.; Stammes, P.

    2013-12-01

    In this paper we present the first contiguous high-resolution spectra of the Earth's polarisation observed by a satellite instrument. The measurements of the Stokes fraction Q/I are performed by the spectrometer GOME-2 onboard the MetOp-A satellite. Polarisation measurements by GOME-2 are performed by onboard polarisation measurement devices (PMDs) and the high-resolution measurements discussed in this paper are taken in the special "PMD RAW" mode of operation. The spectral resolution of these PMD RAW polarisation measurements varies from 3 nm in the ultraviolet (UV) to 35 nm in the near-infrared wavelength range. We first compare measurements of the polarisation from cloud-free scenes with radiative transfer calculations for a number of cases. We find good agreement but also a spectral discrepancy at 800 nm, which we attribute to remaining imperfections in the calibration key data. Secondly, we study the polarisation of scenes with special scattering geometries that normally lead to near-zero Q/I. The GOME-2 polarisation spectra indeed show this behaviour and confirm the existence of the small discrepancy found earlier. Thirdly, we study the Earth polarisation for a variety of scenes. This provides a blueprint of Q/I over land and sea surfaces for various degrees of cloud cover. Fourthly, we compare the spectral dependence of measurements of Q/I in the UV with the generalised distribution function that was proposed in the past (Schutgens and Stammes, 2002) to describe the shape of the UV polarisation spectrum. The GOME-2 data confirm that these functions match the spectral behaviour captured by the GOME-2 PMD RAW mode.

  17. Contiguous polarisation spectra of the Earth from 300 to 850 nm measured by GOME-2 onboard MetOp-A

    Science.gov (United States)

    Tilstra, L. G.; Lang, R.; Munro, R.; Aben, I.; Stammes, P.

    2014-07-01

    In this paper we present the first contiguous high-resolution spectra of the Earth's polarisation observed by a satellite instrument. The measurements of the Stokes fraction Q/I are performed by the spectrometer GOME-2 onboard the MetOp-A satellite. Polarisation measurements by GOME-2 are performed by onboard polarisation measurement devices (PMDs) and the high-resolution measurements discussed in this paper are taken in the special "PMD RAW" mode of operation. The spectral resolution of these PMD RAW polarisation measurements varies from 3 nm in the ultraviolet (UV) to 35 nm in the near-infrared wavelength range. We first compare measurements of the polarisation from cloud-free scenes with radiative transfer calculations for a number of cases. We find good agreement but also a spectral discrepancy at 800 nm, which we attribute to remaining imperfections in the calibration key data. Secondly, we study the polarisation of scenes with special scattering geometries that normally lead to near-zero Q/I. The GOME-2 polarisation spectra indeed show this behaviour and confirm the existence of the small discrepancy found earlier. Thirdly, we study the Earth polarisation for a variety of scenes. This provides a blueprint of Q/I over land and sea surfaces for various degrees of cloud cover. Fourthly, we compare the spectral dependence of measurements of Q/I in the UV with the generalised distribution function proposed by Schutgens and Stammes (2002) to describe the shape of the UV polarisation spectrum. The GOME-2 data confirm that these functions match the spectral behaviour captured by the GOME-2 PMD RAW mode.

  18. Godiva, a European Project for Ozone and Trace Gas Measurements from GOME

    Science.gov (United States)

    Goede, A. P. H.; Tanzi, C. P.; Aben, I.; Burrows, J. P.; Weber, M.; Perner, D.; Monks, P. S.; Llewellyn-Jones, D.; Corlett, G. K.; Arlander, D. W.; Platt, U.; Wagner, T.; Pfeilsticker, K.; Taalas, P.; Kelder, H.; Piters, A.

    GODIVA (GOME Data Interpretation, Validation and Application) is a European Commission project aimed at the improvement of GOME (Global Ozone Monitoring Experiment) data products. Existing data products include global ozone, NO2 columns and (ir)radiances. Advanced data products include O3 profiles, BrO, HCHO and OCIO columns. These data are validated by ground-based and balloon borne instruments. Calibration issues are investigated by in-flight monitoring using several complementary calibration sources, as well as an on-ground replica of the GOME instrument. The results will lead to specification of operational processing of the EUMETSAT ozone Satellite Application Facility as well as implementation of the improved and new GOME data products in the NILU database for use in the European THESEO (Third European Stratospheric Experiment on Ozone) campaign of 1999

  19. Volcanic SO2 fluxes derived from satellite data: a survey using OMI, GOME-2, IASI and MODIS

    Directory of Open Access Journals (Sweden)

    N. Theys

    2013-06-01

    Full Text Available Sulphur dioxide (SO2 fluxes of active degassing volcanoes are routinely measured with ground-based equipment to characterize and monitor volcanic activity. SO2 of unmonitored volcanoes or from explosive volcanic eruptions, can be measured with satellites. However, remote-sensing methods based on absorption spectroscopy generally provide integrated amounts of already dispersed plumes of SO2 and satellite derived flux estimates are rarely reported. Here we review a number of different techniques to derive volcanic SO2 fluxes using satellite measurements of plumes of SO2 and investigate the temporal evolution of the total emissions of SO2 for three very different volcanic events in 2011: Puyehue-Cordón Caulle (Chile, Nyamulagira (DR Congo and Nabro (Eritrea. High spectral resolution satellite instruments operating both in the ultraviolet-visible (OMI/Aura and GOME-2/MetOp-A and thermal infrared (IASI/MetOp-A spectral ranges, and multispectral satellite instruments operating in the thermal infrared (MODIS/Terra-Aqua are used. We show that satellite data can provide fluxes with a sampling of a day or less (few hours in the best case. Generally the flux results from the different methods are consistent, and we discuss the advantages and weaknesses of each technique. Although the primary objective of this study is the calculation of SO2 fluxes, it also enables us to assess the consistency of the SO2 products from the different sensors used.

  20. New Methods for Retrieval of Chlorophyll Red Fluorescence from Hyperspectral Satellite Instruments: Simulations and Application to GOME-2 and SCIAMACHY

    Science.gov (United States)

    Joiner, Joanna; Yoshida, Yasuko; Guanter, Luis; Middleton, Elizabeth M.

    2016-01-01

    Global satellite measurements of solar-induced fluorescence (SIF) from chlorophyll over land and ocean have proven useful for a number of different applications related to physiology, phenology, and productivity of plants and phytoplankton. Terrestrial chlorophyll fluorescence is emitted throughout the red and far-red spectrum, producing two broad peaks near 683 and 736nm. From ocean surfaces, phytoplankton fluorescence emissions are entirely from the red region (683nm peak). Studies using satellite-derived SIF over land have focused almost exclusively on measurements in the far red (wavelengths greater than 712nm), since those are the most easily obtained with existing instrumentation. Here, we examine new ways to use existing hyperspectral satellite data sets to retrieve red SIF (wavelengths less than 712nm) over both land and ocean. Red SIF is thought to provide complementary information to that from the far red for terrestrial vegetation. The satellite instruments that we use were designed to make atmospheric trace-gas measurements and are therefore not optimal for observing SIF; they have coarse spatial resolution and only moderate spectral resolution (0.5nm). Nevertheless, these instruments, the Global Ozone Monitoring Instrument 2 (GOME-2) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY), offer a unique opportunity to compare red and far-red terrestrial SIF at regional spatial scales. Terrestrial SIF has been estimated with ground-, aircraft-, or satellite-based instruments by measuring the filling-in of atmospheric andor solar absorption spectral features by SIF. Our approach makes use of the oxygen (O2) gamma band that is not affected by SIF. The SIF-free O2 gamma band helps to estimate absorption within the spectrally variable O2 B band, which is filled in by red SIF. SIF also fills in the spectrally stable solar Fraunhofer lines (SFLs) at wavelengths both inside and just outside the O2 B band, which further helps

  1. Validation of GOME (ERS-2) NO2 vertical column data with ground-based measurements at Issyk-Kul (Kyrgyzstan)

    Science.gov (United States)

    Ionov, D.; Sinyakov, V.; Semenov, V.

    Starting from 1995 the global monitoring of atmospheric nitrogen dioxide is carried out by the measurements of nadir-viewing GOME spectrometer aboard ERS-2 satellite. Continuous validation of that data by means of comparisons with well-controlled ground-based measurements is important to ensure the quality of GOME data products and improve related retrieval algorithms. At the station of Issyk-Kul (Kyrgyzstan) the ground-based spectroscopic observations of NO2 vertical column have been started since 1983. The station is located on the northern shore of Issyk-Kul lake, 1650 meters above the sea level (42.6 N, 77.0 E). The site is equipped with grating spectrometer for the twilight measurements of zenith-scattered solar radiation in the visible range, and applies the DOAS technique to retrieve NO2 vertical column. It is included in the list of NDSC stations as a complementary one. The present study is focused on validation of GOME NO2 vertical column data, based on 8-year comparison with correlative ground-based measurements at Issyk-Kul station in 1996-2003. Within the investigation, an agreement of both individual and monthly averaged GOME measurements with corresponding twilight ground-based observations is examined. Such agreement is analyzed with respect to different conditions (season, sun elevation), temporal/spatial criteria choice (actual overpass location, correction for diurnal variation) and data processing (GDP version 2.7, 3.0). In addition, NO2 vertical columns were integrated from simultaneous stratospheric profile measurements by NASA HALOE and SAGE-II/III satellite instruments and introduced to explain the differences with ground-based observations. In particular cases, NO2 vertical profiles retrieved from the twilight ground-based measurements at Issuk-Kul were also included into comparison. Overall, summertime GOME NO2 vertical columns were found to be systematicaly lower than ground-based data. This work was supported by International Association

  2. SO2 plume height retrieval from direct fitting of GOME-2 backscattered radiance measurements

    Science.gov (United States)

    van Gent, J.; Spurr, R.; Theys, N.; Lerot, C.; Brenot, H.; Van Roozendael, M.

    2012-04-01

    The use of satellite measurements for SO2 monitoring has become an important aspect in the support of aviation control. Satellite measurements are sometimes the only information available on SO2 concentrations from volcanic eruption events. The detection of SO2 can furthermore serve as a proxy for the presence of volcanic ash that poses a possible hazard to air traffic. In that respect, knowledge of both the total vertical column amount and the effective altitude of the volcanic SO2 plume is valuable information to air traffic control. The Belgian Institute for Space Aeronomy (BIRA-IASB) hosts the ESA-funded Support to Aviation Control Service (SACS). This system provides Volcanic Ash Advisory Centers (VAACs) worldwide with near real-time SO2 and volcanic ash data, derived from measurements from space. We present results from our algorithm for the simultaneous retrieval of total vertical columns of O3 and SO2 and effective SO2 plume height from GOME-2 backscattered radiance measurements. The algorithm is an extension to the GODFIT direct fitting algorithm, initially developed at BIRA-IASB for the derivation of improved total ozone columns from satellite data. The algorithm uses parameterized vertical SO2 profiles which allow for the derivation of the peak height of the SO2 plume, along with the trace gas total column amounts. To illustrate the applicability of the method, we present three case studies on recent volcanic eruptions: Merapi (2010), Grímsvotn (2011), and Nabro (2011). The derived SO2 plume altitude values are validated with the trajectory model FLEXPART and with aerosol altitude estimations from the CALIOP instrument on-board the NASA A-train CALIPSO platform. We find that the effective plume height can be obtained with a precision as fine as 1 km for moderate and strong volcanic events. Since this is valuable information for air traffic, we aim at incorporating the plume height information in the SACS system.

  3. The ESA GOME-Evolution "Climate" water vapor product: a homogenized time series of H2O columns from GOME, SCIAMACHY, and GOME-2

    Science.gov (United States)

    Beirle, Steffen; Lampel, Johannes; Wang, Yang; Mies, Kornelia; Dörner, Steffen; Grossi, Margherita; Loyola, Diego; Dehn, Angelika; Danielczok, Anja; Schröder, Marc; Wagner, Thomas

    2018-03-01

    We present time series of the global distribution of water vapor columns over more than 2 decades based on measurements from the satellite instruments GOME, SCIAMACHY, and GOME-2 in the red spectral range. A particular focus is the consistency amongst the different sensors to avoid jumps from one instrument to another. This is reached by applying robust and simple retrieval settings consistently. Potentially systematic effects due to differences in ground pixel size are avoided by merging SCIAMACHY and GOME-2 observations to GOME spatial resolution, which also allows for a consistent treatment of cloud effects. In addition, the GOME-2 swath is reduced to that of GOME and SCIAMACHY to have consistent viewing geometries.Remaining systematic differences between the different sensors are investigated during overlap periods and are corrected for in the homogenized time series. The resulting Climate product v2.2 (https://doi.org/10.1594/WDCC/GOME-EVL_water_vapor_clim_v2.2" target="_blank">https://doi.org/10.1594/WDCC/GOME-EVL_water_vapor_clim_v2.2) allows the study of the temporal evolution of water vapor over the last 20 years on a global scale.

  4. Comparison of GOME-2/MetOp total ozone data with Brewer spectroradiometer data over the Iberian Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Anton, M.; Serrano, A. [Universidad de Extremadura, Badajoz (Spain). Dept. de Fisica; Loyola, D.; Zimmer, W. [German Aerospace Center (DLR), Wessling (DE). Remote Sensing Technology Inst. (IMF); Lopez, M.; Banon, M. [Agencia Estatal de Meteorologia (AEMet), Madrid (Spain); Vilaplana, J.M. [Instituto Nacional de Tecnica Aeroespacial (INTA), Huelva (Spain). Estacion de Sondeos Atmosferico ' ' El Arenosillo' '

    2009-07-01

    The main objective of this article is to compare the total ozone data from the new Global Ozone Monitoring Experiment instrument (GOME-2/MetOp) with reliable ground-based measurement recorded by five Brewer spectroradiometers in the Iberian Peninsula. In addition, a similar comparison for the predecessor instrument GOME/ERS-2 is described. The period of study is a whole year from May 2007 to April 2008. The results show that GOME-2/MetOp ozone data already has a very good quality, total ozone columns are on average 3.05% lower than Brewer measurements. This underestimation is higher than that obtained for GOME/ERS-2 (1.46%). However, the relative differences between GOME-2/MetOp and Brewer measurements show significantly lower variability than the differences between GOME/ERS-2 and Brewer data. Dependencies of these relative differences with respect to the satellite solar zenith angle (SZA), the satellite scan angle, the satellite cloud cover fraction (CF), and the ground-based total ozone measurements are analyzed. For both GOME instruments, differences show no significant dependence on SZA. However, GOME-2/MetOp data show a significant dependence on the satellite scan angle (+1.5%). In addition, GOME/ERS-2 differences present a clear dependence with respect to the CF and ground-based total ozone; such differences are minimized for GOME-2/MetOp. The comparison between the daily total ozone values provided by both GOME instruments shows that GOME-2/MetOp ozone data are on average 1.46% lower than GOME/ERS-2 data without any seasonal dependence. Finally, deviations of a priori climatological ozone profile used by the satellite retrieval algorithm from the true ozone profile are analyzed. Although excellent agreement between a priori climatological and measured partial ozone values is found for the middle and high stratosphere, relative differences greater than 15% are common for the troposphere and lower stratosphere. (orig.)

  5. Total ozone column derived from GOME and SCIAMACHY using KNMI retrieval algorithms: Validation against Brewer measurements at the Iberian Peninsula

    Science.gov (United States)

    Antón, M.; Kroon, M.; López, M.; Vilaplana, J. M.; Bañón, M.; van der A, R.; Veefkind, J. P.; Stammes, P.; Alados-Arboledas, L.

    2011-11-01

    This article focuses on the validation of the total ozone column (TOC) data set acquired by the Global Ozone Monitoring Experiment (GOME) and the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite remote sensing instruments using the Total Ozone Retrieval Scheme for the GOME Instrument Based on the Ozone Monitoring Instrument (TOGOMI) and Total Ozone Retrieval Scheme for the SCIAMACHY Instrument Based on the Ozone Monitoring Instrument (TOSOMI) retrieval algorithms developed by the Royal Netherlands Meteorological Institute. In this analysis, spatially colocated, daily averaged ground-based observations performed by five well-calibrated Brewer spectrophotometers at the Iberian Peninsula are used. The period of study runs from January 2004 to December 2009. The agreement between satellite and ground-based TOC data is excellent (R2 higher than 0.94). Nevertheless, the TOC data derived from both satellite instruments underestimate the ground-based data. On average, this underestimation is 1.1% for GOME and 1.3% for SCIAMACHY. The SCIAMACHY-Brewer TOC differences show a significant solar zenith angle (SZA) dependence which causes a systematic seasonal dependence. By contrast, GOME-Brewer TOC differences show no significant SZA dependence and hence no seasonality although processed with exactly the same algorithm. The satellite-Brewer TOC differences for the two satellite instruments show a clear and similar dependence on the viewing zenith angle under cloudy conditions. In addition, both the GOME-Brewer and SCIAMACHY-Brewer TOC differences reveal a very similar behavior with respect to the satellite cloud properties, being cloud fraction and cloud top pressure, which originate from the same cloud algorithm (Fast Retrieval Scheme for Clouds from the Oxygen A-Band (FRESCO+)) in both the TOSOMI and TOGOMI retrieval algorithms.

  6. Comparison of GOME total ozone data with ground data from the Spanish Brewer spectroradiometers

    Directory of Open Access Journals (Sweden)

    M. Antón

    2008-03-01

    Full Text Available This paper compares total ozone measurements from five Brewer spectroradiometers located at the Iberian Peninsula with satellite observations given by the GOME (Global Ozone Monitoring Experiment sensor. The analyzed period covers simultaneous ozone values from July 1995 until December 2004. The regression analysis shows an excellent agreement between Brewer-GOME values in the five locations; the coefficient of correlation is always higher than 0.92 and the root mean square error is about 3%. Moreover, the comparison shows that the satellite retrieval accuracy is within the uncertainty of current ground-based instruments. In addition, the effects of several variables, such as cloudiness, solar zenith angle (SZA, effective temperature and total ozone values in Brewer-GOME differences are analyzed. The results indicate that clouds induce a minor dependence of GOME values on the SZA. For example, during heavy cloudy conditions in Madrid station, GOME observations overestimate ground-based Brewer data for low AMF (low SZA values by 2% while for high AMF (high SZA values the satellite underestimates ground-based ozone values by 1%. Moreover, the dependence of Brewer-GOME differences with respect to SZA for cloud-free conditions may be due to the variability of effective temperature. This fact could indicate that the effective temperature estimated by GOME does not fully reflect the actual atmospheric temperature variability. Finally, GOME ozone observations slightly underestimate the highest values measured by the Brewer spectrophotometers and overestimates the lowest ground-based measurements.

  7. Influence of stratospheric airmasses on tropospheric vertical O3 columns based on GOME (Global Ozone Monitoring Experiment measurements and backtrajectory calculation over the Pacific

    Directory of Open Access Journals (Sweden)

    A. Ladstätter-Weißenmayer

    2004-01-01

    Full Text Available Satellite based GOME (Global Ozone Measuring experiment data are used to characterize the amount of tropospheric ozone over the tropical Pacific. Tropospheric ozone was determined from GOME data using the Tropospheric Excess Method (TEM. In the tropical Pacific a significant seasonal variation is detected. Tropospheric excess ozone is enhanced during the biomass burning season from September to November due to outflow from the continents. In September 1999 GOME data reveal an episode of increased excess ozone columns over Tahiti (18.0° S; 149.0° W (Eastern Pacific compared to Am. Samoa (14.23° S; 170.56° W and Fiji (18.13° S; 178.40° E, both situated in the Western Pacific. Backtrajectory calculations show that none of the airmasses arriving over the three locations experienced anthropogenic pollution (e. g. biomass burning. Consequently other sources of ozone have to be considered. One possible process leading to an increase of tropospheric ozone is stratosphere-troposphere-exchange. An analysis of the potential vorticity along trajectories arriving above each of the locations reveals that airmasses at Tahiti are subject to enhanced stratospheric influence, compared to Am. Samoa and Fiji. As a result this study shows clear incidents of transport of airmasses from the stratosphere into the troposphere.

  8. A fast H2O total column density product from GOME – Validation with in-situ aircraft measurements

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2003-01-01

    Full Text Available Atmospheric water vapour is the most important greenhouse gas which is responsible for about 2/3 of the natural greenhouse effect, therefore changes in atmospheric water vapour in a changing climate (the water vapour feedback is subject to intense debate. H2O is also involved in many important reaction cycles of atmospheric chemistry, e.g. in the production of the OH radical. Thus, long time series of global H2O data are highly required. Since 1995 the Global Ozone Monitoring Experiment (GOME continuously observes atmospheric trace gases. In particular it has been demonstrated that GOME as a nadir looking UV/vis-instrument is sensitive to many tropospheric trace gases. Here we present a new, fast H2O algorithm for the retrieval of vertical column densities from GOME measurements. In contrast to existing H2O retrieval algorithms it does not depend on additional information like e.g. the climatic zone, aerosol content or ground albedo. It includes an internal cloud-, aerosol-, and albedo correction which is based on simultaneous observations of the oxygen dimer O4. From sensitivity studies using atmospheric radiative modelling we conclude that our H2O retrieval overestimates the true atmospheric H2O vertical column density (VCD by about 4% for clear sky observations in the tropics and sub-tropics, while it can lead to an underestimation of up to -18% in polar regions. For measurements over (partly cloud covered ground pixels, however, the true atmospheric H2O VCD might be in general systematically underestimated. We compared the GOME H2O VCDs to ECMWF model data over one whole GOME orbit (extending from the Arctic to the Antarctic including also totally cloud covered measurements. The correlation of the GOME observations and the model data yield the following results: a slope of 0.96 (r2 = 0.86 and an average bias of 5%. Even for measurements with large cloud fractions between 50% and 100% an average underestimation of only -18% was found. This

  9. Comparison of GOME tropospheric NO2 columns with NO2 profiles deduced from ground-based in situ measurements

    Science.gov (United States)

    Schaub, D.; Boersma, K. F.; Kaiser, J. W.; Weiss, A. K.; Folini, D.; Eskes, H. J.; Buchmann, B.

    2006-08-01

    Nitrogen dioxide (NO2) vertical tropospheric column densities (VTCs) retrieved from the Global Ozone Monitoring Experiment (GOME) are compared to coincident ground-based tropospheric NO2 columns. The ground-based columns are deduced from in situ measurements at different altitudes in the Alps for 1997 to June 2003, yielding a unique long-term comparison of GOME NO2 VTC data retrieved by a collaboration of KNMI (Royal Netherlands Meteorological Institute) and BIRA/IASB (Belgian Institute for Space Aeronomy) with independently derived tropospheric NO2 profiles. A first comparison relates the GOME retrieved tropospheric columns to the tropospheric columns obtained by integrating the ground-based NO2 measurements. For a second comparison, the tropospheric profiles constructed from the ground-based measurements are first multiplied with the averaging kernel (AK) of the GOME retrieval. The second approach makes the comparison independent from the a priori NO2 profile used in the GOME retrieval. This allows splitting the total difference between the column data sets into two contributions: one that is due to differences between the a priori and the ground-based NO2 profile shapes, and another that can be attributed to uncertainties in both the remaining retrieval parameters (such as, e.g., surface albedo or aerosol concentration) and the ground-based in situ NO2 profiles. For anticyclonic clear sky conditions the comparison indicates a good agreement between the columns (n=157, R=0.70/0.74 for the first/second comparison approach, respectively). The mean relative difference (with respect to the ground-based columns) is -7% with a standard deviation of 40% and GOME on average slightly underestimating the ground-based columns. Both data sets show a similar seasonal behaviour with a distinct maximum of spring NO2 VTCs. Further analysis indicates small GOME columns being systematically smaller than the ground-based ones. The influence of different shapes in the a priori and

  10. Comparison of GOME tropospheric NO2 columns with NO2 profiles deduced from ground-based in situ measurements

    Directory of Open Access Journals (Sweden)

    D. Schaub

    2006-01-01

    Full Text Available Nitrogen dioxide (NO2 vertical tropospheric column densities (VTCs retrieved from the Global Ozone Monitoring Experiment (GOME are compared to coincident ground-based tropospheric NO2 columns. The ground-based columns are deduced from in situ measurements at different altitudes in the Alps for 1997 to June 2003, yielding a unique long-term comparison of GOME NO2 VTC data retrieved by a collaboration of KNMI (Royal Netherlands Meteorological Institute and BIRA/IASB (Belgian Institute for Space Aeronomy with independently derived tropospheric NO2 profiles. A first comparison relates the GOME retrieved tropospheric columns to the tropospheric columns obtained by integrating the ground-based NO2 measurements. For a second comparison, the tropospheric profiles constructed from the ground-based measurements are first multiplied with the averaging kernel (AK of the GOME retrieval. The second approach makes the comparison independent from the a priori NO2 profile used in the GOME retrieval. This allows splitting the total difference between the column data sets into two contributions: one that is due to differences between the a priori and the ground-based NO2 profile shapes, and another that can be attributed to uncertainties in both the remaining retrieval parameters (such as, e.g., surface albedo or aerosol concentration and the ground-based in situ NO2 profiles. For anticyclonic clear sky conditions the comparison indicates a good agreement between the columns (n=157, R=0.70/0.74 for the first/second comparison approach, respectively. The mean relative difference (with respect to the ground-based columns is −7% with a standard deviation of 40% and GOME on average slightly underestimating the ground-based columns. Both data sets show a similar seasonal behaviour with a distinct maximum of spring NO2 VTCs. Further analysis indicates small GOME columns being systematically smaller than the ground-based ones. The influence of different shapes in the a

  11. Observing atmospheric formaldehyde (HCHO from space: validation and intercomparison of six retrievals from four satellites (OMI, GOME2A, GOME2B, OMPS with SEAC4RS aircraft observations over the southeast US

    Directory of Open Access Journals (Sweden)

    L. Zhu

    2016-11-01

    Full Text Available Formaldehyde (HCHO column data from satellites are widely used as a proxy for emissions of volatile organic compounds (VOCs, but validation of the data has been extremely limited. Here we use highly accurate HCHO aircraft observations from the NASA SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys campaign over the southeast US in August–September 2013 to validate and intercompare six retrievals of HCHO columns from four different satellite instruments (OMI, GOME2A, GOME2B and OMPS; for clarification of these and other abbreviations used in the paper, please refer to Appendix A and three different research groups. The GEOS-Chem chemical transport model is used as a common intercomparison platform. All retrievals feature a HCHO maximum over Arkansas and Louisiana, consistent with the aircraft observations and reflecting high emissions of biogenic isoprene. The retrievals are also interconsistent in their spatial variability over the southeast US (r  =  0.4–0.8 on a 0.5°  ×  0.5°  grid and in their day-to-day variability (r  =  0.5–0.8. However, all retrievals are biased low in the mean by 20–51 %, which would lead to corresponding bias in estimates of isoprene emissions from the satellite data. The smallest bias is for OMI-BIRA, which has high corrected slant columns relative to the other retrievals and low scattering weights in its air mass factor (AMF calculation. OMI-BIRA has systematic error in its assumed vertical HCHO shape profiles for the AMF calculation, and correcting this would eliminate its bias relative to the SEAC4RS data. Our results support the use of satellite HCHO data as a quantitative proxy for isoprene emission after correction of the low mean bias. There is no evident pattern in the bias, suggesting that a uniform correction factor may be applied to the data until better understanding is achieved.

  12. Transport and build-up of tropospheric trace gases during the MINOS campaign: comparision of GOME, in situ aircraft measurements and MATCH-MPIC-data

    Directory of Open Access Journals (Sweden)

    A. Ladstätter-Weißenmayer

    2003-01-01

    Full Text Available The MINOS (Mediterranean INtensive Oxidant Study campaign was an international, multi-platform field campaign to measure long-range transport of air-pollution and aerosols from South East Asia and Europe towards the Mediterranean basin during August 2001. High pollution events were observed during this campaign. For the Mediterranean region enhanced tropospheric nitrogen dioxide (NO2 and formaldehyde (HCHO, which are precursors of tropospheric ozone (O3, were detected by the satellite based GOME (Global Ozone Monitoring Experiment instrument and compared with airborne in situ measurements as well as with the output from the global 3D photochemistry-transport model MATCH-MPIC (Model of Atmospheric Transport and CHemistry - Max Planck Institute for Chemistry. The increase of pollution in that region leads to severe air quality degradation with regional and global implications.

  13. GOME and Sciamachy data access using the Netherlands Sciamachy Data Center

    Science.gov (United States)

    Som de Cerff, Wim; de Vreede, Ernst; van de Vegte, John; van Hees, Ricard; van der Neut, Ian; Stammes, Piet; Pieters, Ankie; van der A, Ronald

    2010-05-01

    The Netherlands Sciamachy Data Center (NL-SCIA-DC) provides access to satellite data from the GOME and Sciamachy instruments for over 10 years now. GOME and Sciamachy both measure trace gases like Ozone, Methane, NO2 and aerosols, which are important for climate and air quality monitoring. Recently (February 2010) a new release of the NL-SCIA-DC provides an improved processing and archiving structure and an improved user interface. This Java Webstart application allows the user to browse, query and download GOME and Sciamachy data products, including KNMI and SRON GOME and Sciamachy products (cloud products, CH4, NO2, CO). Data can be searched on file and pixel level, and can be graphically displayed. The huge database containing all pixel information of GOME and Sciamachy is unique and allows specific selection, e.g., selecting cloud free pixels. Ordered data is delivered by FTP or email. The data available spans the mission times of GOME and Sciamachy, and is constantly updated as new data becomes available. The data services future upgrades include offering additional functionality to end-users of Sciamachy data. One of the functionalities provided will be the possibility to select and process Sciamachy products using different data processors, using Grid technology. This technology was successfully researched and will be made operationally available in the near future.

  14. Highly resolved global distribution of tropospheric NO2 using GOME narrow swath mode data

    Directory of Open Access Journals (Sweden)

    S. Beirle

    2004-01-01

    Full Text Available The Global Ozone Monitoring Experiment (GOME allows the retrieval of tropospheric vertical column densities (VCDs of NO2 on a global scale. Regions with enhanced industrial activity can clearly be detected, but the standard spatial resolution of the GOME ground pixels (320x40km2 is insufficient to resolve regional trace gas distributions or individual cities. Every 10 days within the nominal GOME operation, measurements are executed in the so called narrow swath mode with a much better spatial resolution (80x40km2. We use this data (1997-2001 to construct a detailed picture of the mean global tropospheric NO2 distribution. Since - due to the narrow swath - the global coverage of the high resolution observations is rather poor, it has proved to be essential to deseasonalize the single narrow swath mode observations to retrieve adequate mean maps. This is done by using the GOME backscan information. The retrieved high resolution map illustrates the shortcomings of the standard size GOME pixels and reveals an unprecedented wealth of details in the global distribution of tropospheric NO2. Localised spots of enhanced NO2 VCD can be directly associated to cities, heavy industry centers and even large power plants. Thus our result helps to check emission inventories. The small spatial extent of NO2 'hot spots' allows us to estimate an upper limit of the mean lifetime of boundary layer NOx of 17h on a global scale. The long time series of GOME data allows a quantitative comparison of the narrow swath mode data to the nominal resolution. Thus we can analyse the dependency of NO2 VCDs on pixel size. This is important for comparing GOME data to results of new satellite instruments like SCIAMACHY (launched March 2002 on ENVISAT, OMI (launched July 2004 on AURA or GOME II (to be launched 2005 with an improved spatial resolution.

  15. Studies on calibration and validation of data provided by the Global Ozone Monitoring Experiment GOME on ERS-2 (CAVEAT). Final report; Studie zur Kalibrierung und Validation von Daten des Global Ozone Monitoring Experiments GOME auf ERS-2 (CAVEAT). Endbericht

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, J.P.; Kuenzi, K.; Ladstaetter-Weissenmayer, A.; Langer, J. [Bremen Univ. (Germany). Inst. fuer Umweltphysik; Neuber, R.; Eisinger, M. [Alfred-Wegener-Institut fuer Polar- und Meeresforschung, Potsdam (Germany)

    2000-04-01

    The Global Ozone Monitoring Experiment (GOME) was launched on 21 April 1995 as one of six scientific instruments on board the second European remote sensing satellite (ERS-2) of the ESA. The investigations presented here aimed at assessing and improving the accuracy of the GOME measurements of sun-standardized and absolute radiation density and the derived data products. For this purpose, the GOME data were compared with measurements pf terrestrial, airborne and satellite-borne systems. For scientific reasons, the measurements will focus on the medium and high latitudes of both hemispheres, although equatorial regions were investigated as well. In the first stage, operational data products of GOME were validated, i.e. radiation measurements (spectra, level1 product) and trace gas column densities (level2 product). [German] Am 21. April 1995 wurde das Global Ozone Monitoring Experiment (GOME) als eines von insgesamt sechs wissenschaftlichen Instrumenten an Bord des zweiten europaeischen Fernerkundungssatelliten (ERS-2) der ESA ins All gebracht. Das Ziel dieses Vorhabens ist es, die Genauigkeit der von GOME durchgefuehrten Messungen von sonnennormierter und absoluter Strahlungsdichte sowie der aus ihnen abgeleiteten Datenprodukte zu bewerten und zu verbessern. Dazu sollten die GOME-Daten mit Messungen von boden-, flugzeug- und satellitengestuetzten Systemen verglichen werden. Aus wissenschaftlichen Gruenden wird der Schwerpunkt auf Messungen bei mittleren und hohen Breitengraden in beiden Hemisphaeren liegen. Jedoch wurden im Laufe des Projektzeitraumes auch Regionen in Aequatornaehe untersucht. Im ersten Schritt sollen operationelle Datenprodukte von GOME validiert werden. Dieses sind Strahlungsmessungen (Spektren, Level1-Produkt) und Spurengas-Saeulendichten (Level2-Produkt). (orig.)

  16. Operational surface UV radiation product from GOME-2 and AVHRR/3 data

    OpenAIRE

    J. Kujanpää; N. Kalakoski

    2015-01-01

    The surface ultraviolet (UV) radiation product, version 1.20, generated operationally in the framework of the Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF) of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) is described. The product is based on the total ozone column derived from the measurements of the second Global Ozone Monitoring Experiment (GOME-2) instrument aboard EUMETSA...

  17. Evaluation of the hydrological cycle of MATCH driven by NCEP reanalysis data: comparison with GOME water vapor measurements

    Directory of Open Access Journals (Sweden)

    R. Lang

    2005-01-01

    Full Text Available This study examines two key parameters of the hydrological cycle, water vapor (WV and precipitation rates (PR, as modelled by the chemistry transport model MATCH (Model of Atmospheric Transport and Chemistry driven by National Centers for Environmental Prediction (NCEP reanalysis data (NRA. For model output evaluation we primarily employ WV total column data from the Global Ozone Monitoring Experiment (GOME on ERS-2, which is the only instrument capable measuring WV on a global scale and over all surface types with a substantial data record from 1995 to the present. We find that MATCH and NRA WV and PR distributions are closely related, but that significant regional differences in both parameters exist in magnitude and distribution patterns when compared to the observations. We also find that WV residual patterns between model and observations show remarkable similarities to residuals observed in the PR when comparing MATCH and NRA output to observations comprised by the Global Precipitation Climatology Project (GPCP. We conclude that deficiencies in model parameters shared by MATCH and NRA, like in the surface evaporation rates and regional transport patterns, are likely to lead to the observed differences. Monthly average regional differences between MATCH modelled WV columns and the observations can be as large as 2 cm, based on the analysis of three years. Differences in the global mean WV values are, however, below 0.1 cm. Regional differences in the PR between MATCH and GPCP can be above 0.5 cm per day and MATCH computes on average a higher PR than what has been observed. The lower water vapor content of MATCH is related to shorter model WV residence times by up to 1 day as compared to the observations. We find that MATCH has problems in modelling the WV content in regions of strong upward convection like, for example, along the Inter Tropical Convergence Zone, where it appears to be generally too dry as compared to the observations. We

  18. Satellite-Based Stratospheric and Tropospheric Measurements: Determination of Global Ozone and Other Trace Species

    Science.gov (United States)

    Chance, Kelly

    2003-02-01

    This grant is an extension to our previous NASA Grant NAG5-3461, providing incremental funding to continue GOME (Global Ozone Monitoring Experiment) and SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY) studies. This report summarizes research done under these grants through December 31, 2002. The research performed during this reporting period includes development and maintenance of scientific software for the GOME retrieval algorithms, consultation on operational software development for GOME, consultation and development for SCIAMACHY near-real-time (NRT) and off-line (OL) data products, and participation in initial SCIAMACHY validation studies. The Global Ozone Monitoring Experiment was successfully launched on the ERS-2 satellite on April 20, 1995, and remains working in normal fashion. SCIAMACHY was launched March 1, 2002 on the ESA Envisat satellite. Three GOME-2 instruments are now scheduled to fly on the Metop series of operational meteorological satellites (Eumetsat). K. Chance is a member of the reconstituted GOME Scientific Advisory Group, which will guide the GOME-2 program as well as the continuing ERS-2 GOME program.

  19. U.S. Participation in the GOME and SCIAMACHY Projects

    Science.gov (United States)

    Chance, K. V.

    1996-01-01

    This report summarizes research done under NASA Grant NAGW-2541 from April 1, 1996 through March 31, 1997. The research performed during this reporting period includes development and maintenance of scientific software for the GOME retrieval algorithms, consultation on operational software development for GOME, consultation and development for SCIAMACHY near-real-time (NRT) and off-line (OL) data products, and development of infrared line-by-line atmospheric modeling and retrieval capability for SCIAMACHY. SAO also continues to participate in GOME validation studies, to the limit that can be accomplished at the present level of funding. The Global Ozone Monitoring Experiment was successfully launched on the ERS-2 satellite on April 20, 1995, and remains working in normal fashion. SCIAMACHY is currently in instrument characterization. The first two European ozone monitoring instruments (OMI), to fly on the Metop series of operational meteorological satellites being planned by Eumetsat, have been selected to be GOME-type instruments (the first, in fact, will be the refurbished GOME flight spare). K. Chance is the U.S. member of the OMI Users Advisory Group.

  20. OCRA radiometric cloud fractions for GOME-2 on MetOp-A/B

    Science.gov (United States)

    Lutz, Ronny; Loyola, Diego; Gimeno García, Sebastián; Romahn, Fabian

    2016-05-01

    This paper describes an approach for cloud parameter retrieval (radiometric cloud-fraction estimation) using the polarization measurements of the Global Ozone Monitoring Experiment-2 (GOME-2) onboard the MetOp-A/B satellites. The core component of the Optical Cloud Recognition Algorithm (OCRA) is the calculation of monthly cloud-free reflectances for a global grid (resolution of 0.2° in longitude and 0.2° in latitude) to derive radiometric cloud fractions. These cloud fractions will serve as a priori information for the retrieval of cloud-top height (CTH), cloud-top pressure (CTP), cloud-top albedo (CTA) and cloud optical thickness (COT) with the Retrieval Of Cloud Information using Neural Networks (ROCINN) algorithm. This approach is already being implemented operationally for the GOME/ERS-2 and SCIAMACHY/ENVISAT sensors and here we present version 3.0 of the OCRA algorithm applied to the GOME-2 sensors. Based on more than five years of GOME-2A data (April 2008 to June 2013), reflectances are calculated for ≈ 35 000 orbits. For each measurement a degradation correction as well as a viewing-angle-dependent and latitude-dependent correction is applied. In addition, an empirical correction scheme is introduced in order to remove the effect of oceanic sun glint. A comparison of the GOME-2A/B OCRA cloud fractions with colocated AVHRR (Advanced Very High Resolution Radiometer) geometrical cloud fractions shows a general good agreement with a mean difference of -0.15 ± 0.20. From an operational point of view, an advantage of the OCRA algorithm is its very fast computational time and its straightforward transferability to similar sensors like OMI (Ozone Monitoring Instrument), TROPOMI (TROPOspheric Monitoring Instrument) on Sentinel 5 Precursor, as well as Sentinel 4 and Sentinel 5. In conclusion, it is shown that a robust, accurate and fast radiometric cloud-fraction estimation for GOME-2 can be achieved with OCRA using polarization measurement devices (PMDs).

  1. Seven years of global retrieval of cloud properties using space-borne data of GOME

    Directory of Open Access Journals (Sweden)

    L. Lelli

    2012-07-01

    Full Text Available We present a global and regional multi-annual (June 1996–May 2003 analysis of cloud properties (spherical cloud albedo – CA, cloud optical thickness – COT and cloud top height – CTH of optically thick (COT > 5 clouds, derived using measurements from the GOME instrument on board the ESA ERS-2 space platform. We focus on cloud top height, which is obtained from top-of-atmosphere backscattered solar light measurements in the O2 A-band using the Semi-Analytical CloUd Retrieval Algorithm SACURA. The physical framework relies on the asymptotic equations of radiative transfer. The dataset has been validated against independent ground- and satellite-based retrievals and is aimed to support trace-gases retrievals as well as to create a robust long-term climatology together with SCIAMACHY and GOME-2 ensuing retrievals. We observed the El Niño-Southern Oscillation anomaly in the 1997–1998 record through CTH values over the Pacific Ocean. The global average CTH as derived from GOME is 5.6 ± 3.2 km, for a corresponding average COT of 19.1 ± 13.9.

  2. Validation of GOME-2/MetOp-A total water vapour column using reference radiosonde data from GRUAN network

    Science.gov (United States)

    Antón, M.; Loyola, D.; Román, R.; Vömel, H.

    2014-09-01

    The main goal of this article is to validate the total water vapour column (TWVC) measured by the Global Ozone Monitoring Experiment-2 (GOME-2) satellite sensor and generated using the GOME Data Processor (GDP) retrieval algorithm developed by the German Aerospace Center (DLR). For this purpose, spatially and temporally collocated TWVC data from highly accurate sounding measurements for the period January 2009-May 2014 at six sites are used. These balloon-borne data are provided by GCOS Reference Upper-Air Network (GRUAN). The correlation between GOME-2 and sounding TWVC data is reasonably good (determination coefficient (R2) of 0.89) when all available radiosondes (1400) are employed in the inter-comparison. When cloud-free cases (544) are selected by means of the satellite cloud fraction (CF), the correlation exhibits a remarkable improvement (R2 ~ 0.95). Nevertheless, analyzing the six datasets together, the relative differences between GOME-2 and GRUAN data shows mean values (in absolute term) of 19% for all-sky conditions and 14% for cloud-free cases, which evidences a notable bias in the satellite TWVC data against the reference balloon-borne measurements. The satellite-sounding TWVC differences show a strong solar zenith angle (SZA) dependence for values above 50° with a stable behaviour for values below this zenith angle. The smallest relative differences found in the inter-comparison (between -5 and +3%) are achieved for those cloud-free cases with SZA below 50°. Furthermore, the detailed analysis of the influence of cloud properties (CF, cloud top albedo (CTA) and cloud top pressure (CTP)) on the satellite-sounding differences reveals, as expected, a large effect of clouds in the GOME-2 TWVC data. For instance, the relative differences exhibit a large negative dependence on CTA, varying from +5 to -20% when CTA rises from 0.3 to 0.9. Finally, the satellite-sounding differences also show a negative dependence on the reference TWVC values, changing from

  3. Chlorophyll induced fluorescence retrieved from GOME2 for improving gross primary productivity estimates of vegetation

    Science.gov (United States)

    van Leth, Thomas C.; Verstraeten, Willem W.; Sanders, Abram F. J.

    2014-05-01

    Mapping terrestrial chlorophyll fluorescence is a crucial activity to obtain information on the functional status of vegetation and to improve estimates of light-use efficiency (LUE) and global primary productivity (GPP). GPP quantifies carbon fixation by plant ecosystems and is therefore an important parameter for budgeting terrestrial carbon cycles. Satellite remote sensing offers an excellent tool for investigating GPP in a spatially explicit fashion across different scales of observation. The GPP estimates, however, still remain largely uncertain due to biotic and abiotic factors that influence plant production. Sun-induced fluorescence has the ability to enhance our knowledge on how environmentally induced changes affect the LUE. This can be linked to optical derived remote sensing parameters thereby reducing the uncertainty in GPP estimates. Satellite measurements provide a relatively new perspective on global sun-induced fluorescence, enabling us to quantify spatial distributions and changes over time. Techniques have recently been developed to retrieve fluorescence emissions from hyperspectral satellite measurements. We use data from the Global Ozone Monitoring Instrument 2 (GOME2) to infer terrestrial fluorescence. The spectral signatures of three basic components atmospheric: absorption, surface reflectance, and fluorescence radiance are separated using reference measurements of non-fluorescent surfaces (desserts, deep oceans and ice) to solve for the atmospheric absorption. An empirically based principal component analysis (PCA) approach is applied similar to that of Joiner et al. (2013, ACP). Here we show our first global maps of the GOME2 retrievals of chlorophyll fluorescence. First results indicate fluorescence distributions that are similar with that obtained by GOSAT and GOME2 as reported by Joiner et al. (2013, ACP), although we find slightly higher values. In view of optimizing the fluorescence retrieval, we will show the effect of the references

  4. Evaluation of Global Ozone Monitoring Experiment (GOME) ozone profiles from nine different algorithms

    NARCIS (Netherlands)

    Meijer, Y.J.; Swart, D.P.J.; Baier, F.; Bhartia, P.K.; Bodeker, G.E.; Casadio, S.; Chance, K.; Frate, Del F.; Erbertseder, T.; Felder, M.D.; Flynn, L.E.; Godin-Beekmann, S.; Hansen, G.; Hasekamp, O.P.; Kaifel, A.; Kelder, H.M.; Kerridge, B.J.; Lambert, J.-C.; Landgraf, J.; Latter, B.G.; Liu, X.; McDermid, I.S.; Pachepsky, Y.; Rozanov, V.; Siddans, R.; Tellmann, S.; A, van der R.J.; Oss, van R.F.; Weber, M.; Zehner, C.

    2006-01-01

    An evaluation is made of ozone profiles retrieved from measurements of the nadir-viewing Global Ozone Monitoring Experiment (GOME) instrument. Currently, four different approaches are used to retrieve ozone profile information from GOME measurements, which differ in the use of external information

  5. Variability in tropical tropospheric ozone: analysis with GOME observations and a global model

    NARCIS (Netherlands)

    Valks, P.J.M.; Koelemeijer, R.B.A.; Weele, van M.; Velthoven, van P.F.J.; Fortuin, J.P.F.; Kelder, H.M.

    2003-01-01

    Tropical tropospheric ozone columns (TTOCs) have been determined with a convective-cloud-differential (CCD) method, using ozone column and cloud measurements from the Global Ozone Monitoring Experiment (GOME) instrument. GOME cloud top pressures, derived with the Fast Retrieval Scheme for Clouds

  6. Validity of satellite measurements used for the monitoring of UV radiation risk on health

    Directory of Open Access Journals (Sweden)

    F. Jégou

    2011-12-01

    Full Text Available In order to test the validity of ultraviolet index (UVI satellite products and UVI model simulations for general public information, intercomparison involving three satellite instruments (SCIAMACHY, OMI and GOME-2, the Chemistry and Transport Model, Modélisation de la Chimie Atmosphérique Grande Echelle (MOCAGE, and ground-based instruments was performed in 2008 and 2009. The intercomparison highlighted a systematic high bias of ~1 UVI in the OMI clear-sky products compared to the SCIAMACHY and TUV model clear-sky products. The OMI and GOME-2 all-sky products are close to the ground-based observations with a low 6 % positive bias, comparable to the results found during the satellite validation campaigns. This result shows that OMI and GOME-2 all-sky products are well appropriate to evaluate the UV-risk on health. The study has pointed out the difficulty to take into account either in the retrieval algorithms or in the models, the large spatial and temporal cloud modification effect on UV radiation. This factor is crucial to provide good quality UV information. OMI and GOME-2 show a realistic UV variability as a function of the cloud cover. Nevertheless these satellite products do not sufficiently take into account the radiation reflected by clouds. MOCAGE numerical forecasts show good results during periods with low cloud covers, but are actually not adequate for overcast conditions; this is why Météo-France currently uses human-expertised cloudiness (rather than direct outputs from Numerical Prediction Models together with MOCAGE clear-sky UV indices for its operational forecasts. From now on, the UV monitoring could be done using free satellite products (OMI, GOME-2 and operational forecast for general public by using modelling, as long as cloud forecasts and the parametrisation of the impact of cloudiness on UV radiation are adequate.

  7. Detection of polar stratospheric clouds with ERS2/GOME data

    International Nuclear Information System (INIS)

    Meerkoetter, R.; Schumann, U.

    1994-01-01

    Based on radiative transfer calculations it is studied whether Polar Stratospheric Clouds (PSCs) can be detected by the new Global Ozone Monitoring Experiment (GOME) onboard the second European Research Satellite (ERS-2) planned to be launched in winter 1994/95. It is proposed to identify PSC covered areas by use of an indicator, the Normalized Radiance Difference (NRD), which relates the difference of two spectral radiances at 0.5 μm and 0.7 μm to one radiance measured in the center of the oxygen A-band at 0.76 μm. The presence of PSCs and under conditions of large solar zenith angles Θ>80 the NRD values are clearly below those derived under conditions of a cloud free stratosphere. In this case the method is successful for PSCs with optical depths greater than 0.03 at 0.55 μm. It is not affected by existing tropospheric clouds and by different tropospheric aerosol loadings or surface albedoes. For solar zenith angles Θ<80 PSCs located above a cloud free troposphere are detectable. PSC detection becomes difficult for Θ<80 when highly reflecting tropospheric clouds like dense cirrus or stratus clouds affect spectral radiances measured at the top of the atmosphere. (orig.)

  8. Measurements of total and tropospheric ozone from IASI: comparison with correlative satellite, ground-based and ozonesonde observations

    Directory of Open Access Journals (Sweden)

    A. Boynard

    2009-08-01

    Full Text Available In this paper, we present measurements of total and tropospheric ozone, retrieved from infrared radiance spectra recorded by the Infrared Atmospheric Sounding Interferometer (IASI, which was launched on board the MetOp-A European satellite in October 2006. We compare IASI total ozone columns to Global Ozone Monitoring Experiment-2 (GOME-2 observations and ground-based measurements from the Dobson and Brewer network for one full year of observations (2008. The IASI total ozone columns are shown to be in good agreement with both GOME-2 and ground-based data, with correlation coefficients of about 0.9 and 0.85, respectively. On average, IASI ozone retrievals exhibit a positive bias of about 9 DU (3.3% compared to both GOME-2 and ground-based measurements. In addition to total ozone columns, the good spectral resolution of IASI enables the retrieval of tropospheric ozone concentrations. Comparisons of IASI tropospheric columns to 490 collocated ozone soundings available from several stations around the globe have been performed for the period of June 2007–August 2008. IASI tropospheric ozone columns compare well with sonde observations, with correlation coefficients of 0.95 and 0.77 for the [surface–6 km] and [surface–12 km] partial columns, respectively. IASI retrievals tend to overestimate the tropospheric ozone columns in comparison with ozonesonde measurements. Positive average biases of 0.15 DU (1.2% and 3 DU (11% are found for the [surface–6 km] and for the [surface–12 km] partial columns respectively.

  9. Sulfur dioxide retrievals from OMI and GOME-2 in preparation of TROPOMI

    Science.gov (United States)

    Theys, Nicolas; De Smedt, Isabelle; Danckaert, Thomas; Yu, Huan; van Gent, Jeroen; Van Roozendael, Michel

    2016-04-01

    The TROPOspheric Monitoring Instrument (TROPOMI) will be launched in 2016 onboard the ESA Sentinel-5 Precursor (S5P) platform and will provide global observations of atmospheric trace gases, with unprecedented spatial resolution. Sulfur dioxide (SO2) measurements from S5P will significantly improve the current capabilities for anthropogenic and volcanic emissions monitoring, and will extend the long-term datasets from past and existing UV sensors (TOMS, GOME, SCIAMACHY, OMI, GOME-2, OMPS). This work presents the SO2 retrieval schemes performed at BIRA-IASB as part of level-2 algorithm prototyping activities for S5P and tested on OMI and GOME-2. With a focus on anthropogenic sources, we show comparisons between OMI and GOME-2 as well as ground-based measurements, and discuss the possible reasons for the differences.

  10. Free-tropospheric BrO investigations based on GOME

    Science.gov (United States)

    Post, P.; van Roozendael, M.; Backman, L.; Damski, J.; Thölix, L.; Fayt, C.; Taalas, P.

    2003-04-01

    Bromine compounds contribute significantly to the stratospheric ozone depletion. However measurements of most bromine compounds are sparse or non-existent, and experimental studies essentially rely on BrO observations. The differences between balloon and ground based measurements of stratospheric BrO columns and satellite total column measurements are too large to be explained by measurement uncertainties. Therefore, it has been assumed that there is a concentration of BrO in the free troposphere of about 1-3 ppt. In a previous work, we have calculated the tropospheric BrO abundance as the difference between total BrO and stratospheric BrO columns. The total vertical column densities of BrO are extracted from GOME measurements using IASB-BIRA algorithms. The stratospheric amount has been calculated using chemical transport models (CTM). Results from SLIMCAT and FinROSE simulations are used for this purpose. SLIMCAT is a widely used 3D CTM that has been tested against balloon measurements. FinROSE is a 3D CTM developed at FMI. We have tried several different tropospheric BrO profiles. Our results show that a profile with high BrO concentrations in the boundary layer usually gives unrealistically high tropospheric column values over areas of low albedo (like oceans). This suggests that the tropospheric BrO would be predominantly distributed in the free troposphere. In this work, attempts are made to identify the signature of a free tropospheric BrO content when comparing cloudy and non-cloudy scenes. The possible impact of orography on measured BrO columns is also investigated.

  11. Identification of tropospheric emissions sources from satellite observations: Synergistic use of HCHO, NO2, and SO2 trace gas measurements

    Science.gov (United States)

    Marbach, T.; Beirle, S.; Khokhar, F.; Platt, U.

    2005-12-01

    We present case studies for combined HCHO, NO2, and SO2 satellite observations, derived from GOME measurements. Launched on the ERS-2 satellite in April 1995, GOME has already performed continuous operations over 8 years providing global observations of the different trace gases. In this way, satellite observations provide unique opportunities for the identifications of trace gas sources. The satellite HCHO observations provide information concerning the localization of biomass burning (intense source of HCHO). The principal biomass burning areas can be observed in the Amazon basin region and in central Africa Weaker HCHO sources (south east of the United States, northern part of the Amazon basin, and over the African tropical forest), not correlated with biomass burning, could be due to biogenic isoprene emissions. The HCHO data can be compared with NO2 and SO2 results to identify more precisely the tropospheric sources (biomass burning events, human activities, additional sources like volcanic emissions). Biomass burning are important tropospheric sources for both HCHO and NO2. Nevertheless HCHO reflects more precisely the biomass burning as it appears in all biomass burning events. NO2 correlate with HCHO over Africa (grassland fires) but not over Indonesia (forest fires). In south America, an augmentation of the NO2 concentrations can be observed with the fire shift from the forest to grassland vegetation. So there seems to be a dependence between the NO2 emissions during biomass burning and the vegetation type. Other high HCHO, SO2, and NO2 emissions can be correlated with climatic events like the El Nino in 1997, which induced dry conditions in Indonesia causing many forest fires.

  12. Estimating the NOx produced by lightning from GOME and NLDN data: a case study in the Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    S. Beirle

    2006-01-01

    Full Text Available Nitrogen oxides (NOxNO+NO2 play an important role in tropospheric chemistry, in particular in catalytic ozone production. Lightning provides a natural source of nitrogen oxides, dominating the production in the tropical upper troposphere, with strong impact on tropospheric ozone and the atmosphere's oxidizing capacity. Recent estimates of lightning produced NOx (LNOx are of the order of 5 Tg [N] per year with still high uncertainties in the range of one order of magnitude. The Global Ozone Monitoring Experiment (GOME on board the ESA-satellite ERS-2 allows the retrieval of tropospheric column densities of NO2 on a global scale. Here we present the GOME NO2 measurement directly over a large convective system over the Gulf of Mexico. Simultaneously, cloud-to-ground (CG flashes are counted by the U.S. National Lightning Detection Network (NLDNTM, and extrapolated to include intra-cloud (IC+CG flashes based on a climatological IC:CG ratio derived from NASA's space-based lightning sensors. A series of 14 GOME pixels shows largely enhanced column densities over thick and high clouds, coinciding with strong lightning activity. The enhancements can not be explained by transport of anthropogenic NOx and must be due to fresh production of LNOx. A quantitative analysis, accounting in particular for the visibility of LNOx from satellite, yields a LNOx production of 90 (32-240 moles of NOx, or 1.3 (0.4-3.4 kg [N], per flash. If simply extrapolated, this corresponds to a global LNOx production of 1.7 (0.6-4.7Tg [N]/yr.

  13. Evaluating a New Homogeneous Total Ozone Climate Data Record from GOME/ERS-2, SCIAMACHY/Envisat, and GOME-2/MetOp-A

    Science.gov (United States)

    Koukouli, M.E.; Lerot, C.; Granville, J.; Goutail, F.; Lambert, J.-C.; Pommereau, J.-P.; Balis, D.; Zyrichidou, I.; Van Roozendael, M.; Coldewey-Egbers, M.; hide

    2015-01-01

    The European Space Agency's Ozone Climate Change Initiative (O3-CCI) project aims at producing and validating a number of high-quality ozone data products generated from different satellite sensors. For total ozone, the O3-CCI approach consists of minimizing sources of bias and systematic uncertainties by applying a common retrieval algorithm to all level 1 data sets, in order to enhance the consistency between the level 2 data sets from individual sensors. Here we present the evaluation of the total ozone products from the European sensors Global Ozone Monitoring Experiment (GOME)/ERS-2, SCIAMACHY/Envisat, and GOME-2/MetOp-A produced with the GOME-type Direct FITting (GODFIT) algorithm v3. Measurements from the three sensors span more than 16 years, from 1996 to 2012. In this work, we present the latest O3-CCI total ozone validation results using as reference ground-based measurements from Brewer and Dobson spectrophotometers archived at the World Ozone and UV Data Centre of the World Meteorological Organization as well as from UV-visible differential optical absorption spectroscopy (DOAS)/Système D'Analyse par Observations Zénithales (SAOZ) instruments from the Network for the Detection of Atmospheric Composition Change. In particular, we investigate possible dependencies in these new GODFIT v3 total ozone data sets with respect to latitude, season, solar zenith angle, and different cloud parameters, using the most adequate type of ground-based instrument. We show that these three O3-CCI total ozone data products behave very similarly and are less sensitive to instrumental degradation, mainly as a result of the new reflectance soft-calibration scheme. The mean bias to the ground-based observations is found to be within the 1 plus or minus 1 percent level for all three sensors while the near-zero decadal stability of the total ozone columns (TOCs) provided by the three European instruments falls well within the 1-3 percent requirement of the European Space

  14. Retrieval and satellite intercomparison of O3 measurements from ground-based FTIR Spectrometer at Equatorial Station: Addis Ababa, Ethiopia

    Directory of Open Access Journals (Sweden)

    T. von Clarmann

    2013-02-01

    Full Text Available Since May 2009, high-resolution Fourier Transform Infrared (FTIR solar absorption spectra have been recorded at Addis Ababa (9.01° N latitude, 38.76° E longitude, 2443 m altitude above sea level, Ethiopia. The vertical profiles and total column amounts of ozone (O3 are deduced from the spectra by using the retrieval code PROFFIT (V9.5 and regularly determined instrumental line shape (ILS. A detailed error analysis of the O3 retrieval is performed. Averaging kernels of the target gas shows that the major contribution to the retrieved information comes from the measurement. The degrees of freedom for signals is found to be 2.1 on average for the retrieval of O3 from the observed FTIR spectra. The ozone Volume Mixing Ratio (VMR profiles and column amounts retrieved from FTIR spectra are compared with the coincident satellite observations of Microwave Limb Sounding (MLS, Michelson Interferometer for Passive Atmospheric Sounding (MIPAS, Tropospheric Emission Spectrometer (TES, Ozone Monitoring Instrument (OMI, Atmospheric Infrared Sounding (AIRS and Global Ozone Monitoring Experiment (GOME-2 instruments. The mean relative differences in ozone profiles of FTIR from MLS and MIPAS are generally lower than 15% within the altitude range of 27 to 36 km, whereas difference from TES is lower than 1%. Comparisons of measurements of column amounts from the satellite and the ground-based FTIR show very good agreement as exhibited by relative differences within +0.2% to +2.8% for FTIR versus MLS and GOME-2; and −0.9 to −9.0% for FTIR versus OMI, TES and AIRS. The corresponding standard deviations are within 2.0 to 2.8% for FTIR versus MLS and GOME-2 comparisons whereas that of FTIR versus OMI, TES and AIRS are within 3.5 to 7.3%. Thus, the retrieved O3 VMR and column amounts from a tropical site, Addis Ababa, is found to exhibit very good agreement with all coincident satellite observations over an approximate 3-yr period.

  15. Quantitative spectroscopy for the analysis of GOME data

    Science.gov (United States)

    Chance, K.

    1997-01-01

    Accurate analysis of the global ozone monitoring experiment (GOME) data to obtain atmospheric constituents requires reliable, traceable spectroscopic parameters for atmospheric absorption and scattering. Results are summarized for research that includes: the re-determination of Rayleigh scattering cross sections and phase functions for the 200 nm to 1000 nm range; the analysis of solar spectra to obtain a high-resolution reference spectrum with excellent absolute vacuum wavelength calibration; Ring effect cross sections and phase functions determined directly from accurate molecular parameters of N2 and O2; O2 A band line intensities and pressure broadening coefficients; and the analysis of absolute accuracies for ultraviolet and visible absorption cross sections of O3 and other trace species measurable by GOME.

  16. Satellite Remote Sensing: Aerosol Measurements

    Science.gov (United States)

    Kahn, Ralph A.

    2013-01-01

    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  17. Satellite measurements of aerosol mass and transport

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, R.S.; Kaufman, Y.J.; Mahoney, R.L.

    1984-01-01

    The aerosol optical thickness over land is derived from satellite measurements of the radiance of scattered sunlight. These data are used to estimate the columnar mass density of particulate sulfur on a day with a large amount of sulfur. The horizontal transport of the particulate sulfur is calculated using wing vectors measured with rawins. 33 references, 7 figures, 1 table.

  18. Satellite observations of ozone and nitrogen dioxide : from retrievals to emission estimates

    NARCIS (Netherlands)

    Mijling, B.

    2012-01-01

    In the last decades, measurements of atmospheric composition from satellites have become very important for scientific research as well as applications for monitoring and forecasting the state of the atmosphere. Instruments such as GOME-2, and OMI look at backscattered sunlight in nadir view,

  19. Correlative studies of satellite ozone sensor measurements

    International Nuclear Information System (INIS)

    Lovill, J.E.; Ellis, J.S.

    1983-01-01

    Comparisons are made between total ozone measurements made by four satellite ozone sensors (TOMS, SBUV, TOVS and MFR). The comparisons were made during July 1979 when all sensors were operating simultaneously. The TOMS and SBUV sensors were observed to measure less total ozone than the MFR sensor, 10 and 15 Dobson units (DU) respectively. The MFR and TOMS sensors measured less ozone than the TOVS sensor, 19 an 28 DU, respectively. Latitudinal variability of the total ozone comparisons is discussed

  20. Defense meteorological satellite measurements of total ozone

    International Nuclear Information System (INIS)

    Lovill, J.E.; Ellis, J.S.; Luther, F.M.; Sullivan, R.J.; Weichel, R.L.

    1992-01-01

    A multichannel filter radiometer (MFR) on Defense Meteorological Satellites (DMS) that measured total ozone on a global-scale from March 1977 - February 1980 is described. The total ozone data measured by the MFR were compared with total ozone data taken by surfaced-based Dobson spectrophotometers. When comparisons were made for five months, the Dobson spectrophotometer measured 2-5% more total ozone than the MFR. Comparisons between the Dobson spectrophotometer and the MFR showed a reduced RMS difference as the comparisons were made at closer proximity. A Northern Hemisphere total ozone distribution obtained from MFR data is presented

  1. Diurnal, seasonal and long-term variations of global formaldehyde columns inferred from combined OMI and GOME-2 observations

    Science.gov (United States)

    De Smedt, I.; Stavrakou, T.; Hendrick, F.; Danckaert, T.; Vlemmix, T.; Pinardi, G.; Theys, N.; Lerot, C.; Gielen, C.; Vigouroux, C.; Hermans, C.; Fayt, C.; Veefkind, P.; Müller, J.-F.; Van Roozendael, M.

    2015-11-01

    We present the new version (v14) of the BIRA-IASB algorithm for the retrieval of formaldehyde (H2CO) columns from spaceborne UV-visible sensors. Applied to OMI measurements from Aura and to GOME-2 measurements from MetOp-A and MetOp-B, this algorithm is used to produce global distributions of H2CO representative of mid-morning and early afternoon conditions. Its main features include (1) a new iterative DOAS scheme involving three fitting intervals to better account for the O2-O2 absorption, (2) the use of earthshine radiances averaged in the equatorial Pacific as reference spectra, and (3) a destriping correction and background normalisation resolved in the across-swath position. For the air mass factor calculation, a priori vertical profiles calculated by the IMAGES chemistry transport model at 09:30 and 13:30 LT are used. Although the resulting GOME-2 and OMI H2CO vertical columns are found to be highly correlated, some systematic differences are observed. Afternoon columns are generally larger than morning ones, especially in mid-latitude regions. In contrast, over tropical rainforests, morning H2CO columns significantly exceed those observed in the afternoon. These differences are discussed in terms of the H2CO column variation between mid-morning and early afternoon, using ground-based MAX-DOAS measurements available from seven stations in Europe, China and Africa. Validation results confirm the capacity of the combined satellite measurements to resolve diurnal variations in H2CO columns. Furthermore, vertical profiles derived from MAX-DOAS measurements in the Beijing area and in Bujumbura are used for a more detailed validation exercise. In both regions, we find an agreement better than 15 % when MAX-DOAS profiles are used as a priori for the satellite retrievals. Finally, regional trends in H2CO columns are estimated for the 2004-2014 period using SCIAMACHY and GOME-2 data for morning conditions, and OMI for early afternoon conditions. Consistent features

  2. Characterisation of Central-African emissions based on MAX-DOAS measurements, satellite observations and model simulations over Bujumbura, Burundi.

    Science.gov (United States)

    Gielen, Clio; Hendrick, Francois; Pinardi, Gaia; De Smedt, Isabelle; Stavrakou, Trissevgeni; Yu, Huan; Fayt, Caroline; Hermans, Christian; Bauwens, Maité; Ndenzako, Eugene; Nzohabonayo, Pierre; Akimana, Rachel; Niyonzima, Sébastien; Müller, Jean-Francois; Van Roozendael, Michel

    2016-04-01

    Central Africa is known for its strong biogenic, pyrogenic, and to a lesser extent anthropogenic emissions. Satellite observations of species like nitrogen dioxide (NO2) and formaldehyde (HCHO), as well as inverse modelling results have shown that there are large uncertainties associated with the emissions in this region. There is thus a need for additional measurements, especially from the ground, in order to better characterise the biomass-burning and biogenic products emitted in this area. We present MAX-DOAS measurements of NO2, HCHO, and aerosols performed in Central Africa, in the city of Bujumbura, Burundi (3°S, 29°E, 850m). A MAX-DOAS instrument has been operating at this location by BIRA-IASB since late 2013. Aerosol-extinction and trace-gases vertical profiles are retrieved by applying the optimal-estimation-based profiling tool bePRO to the measured O4, NO2 and HCHO slant-column densities. The MAX-DOAS vertical columns and profiles are used for investigating the diurnal and seasonal cycles of NO2, HCHO, and aerosols. Regarding the aerosols, the retrieved AODs are compared to co-located AERONET sun photometer measurements for verification purpose, while in the case of NO2 and HCHO, the MAX-DOAS vertical columns and profiles are used for validating GOME-2 and OMI satellite observations. To characterise the biomass-burning and biogenic emissions in the Bujumbura region, the trace gases and aerosol MAX-DOAS retrievals are used in combination to MODIS fire counts/radiative-power and GOME-2/OMI NO2 and HCHO satellite data, as well as simulations from the NOAA backward trajectory model HYSPLIT. First results show that HCHO seasonal variation around local noon is driven by the alternation of rain and dry periods, the latter being associated with intense biomass-burning agricultural activities and forest fires in the south/south-east and transport from this region to Bujumbura. In contrast, NO2 is seen to depend mainly on local emissions close to the city, due

  3. Using satellite-based measurements to explore ...

    Science.gov (United States)

    New particle formation (NPF) can potentially alter regional climate by increasing aerosol particle (hereafter particle) number concentrations and ultimately cloud condensation nuclei. The large scales on which NPF is manifest indicate potential to use satellite-based (inherently spatially averaged) measurements of atmospheric conditions to diagnose the occurrence of NPF and NPF characteristics. We demonstrate the potential for using satellite-measurements of insolation (UV), trace gas concentrations (sulfur dioxide (SO2), nitrogen dioxide (NO2), ammonia (NH3), formaldehyde (HCHO), ozone (O3)), aerosol optical properties (aerosol optical depth (AOD), Ångström exponent (AE)), and a proxy of biogenic volatile organic compound emissions (leaf area index (LAI), temperature (T)) as predictors for NPF characteristics: formation rates, growth rates, survival probabilities, and ultrafine particle (UFP) concentrations at five locations across North America. NPF at all sites is most frequent in spring, exhibits a one-day autocorrelation, and is associated with low condensational sink (AOD×AE) and HCHO concentrations, and high UV. However, there are important site-to-site variations in NPF frequency and characteristics, and in which of the predictor variables (particularly gas concentrations) significantly contribute to the explanatory power of regression models built to predict those characteristics. This finding may provide a partial explanation for the reported spatia

  4. Intercomparison of 4 Years of Global Formaldehyde Observations from the GOME-2 and OMI Sensors

    Science.gov (United States)

    De Smedt, Isabelle; Van Roozendael, Michel; Stravrakou, Trissevgeni; Muller, Jean-Francois; Chance, Kelly; Kurosu, Thomas

    2012-11-01

    Formaldehyde (H2CO) tropospheric columns have been retrieved since 2007 from backscattered UV radiance measurements performed by the GOME-2 instrument on the EUMETSAT METOP-A platform. This data set extends the successful time-series of global H2CO observations established with GOME/ ERS-2 (1996-2003), SCIAMACHY/ ENVISAT (2003-2012), and OMI on the NASA AURA platform (2005-now). In this work, we perform an intercomparison of the H2CO tropospheric columns retrieved from GOME-2 and OMI between 2007 and 2010, respectively at BIRA-IASB and at Harvard SAO. We first compare the global formaldehyde data products that are provided by each retrieval group. We then investigate each step of the retrieval procedure: the slant column fitting, the reference sector correction and the air mass factor calculation. New air mass factors are computed for OMI using external parameters consistent with those used for GOME-2. By doing so, the impacts of the different a priori profiles and aerosol corrections are quantified. The remaining differences are evaluated in view of the expected diurnal variations of the formaldehyde concentrations, based on ground-based measurements performed in the Beijing area.

  5. Selected Geomagnetic Measurements From Several Satellites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — More than 17 million selected magnetic observations from several orbiting low-altitude satellites are contained in this digital collection. Except for MAGSAT, all...

  6. Thermal Conductivity Measurements on Icy Satellite Analogs

    Science.gov (United States)

    Javeed, Aurya; Barmatz, Martin; Zhong, Fang; Choukroun, Mathieu

    2012-01-01

    With regard to planetary science, NASA aspires to: "Advance scientific knowledge of the origin and history of the solar system, the potential for life elsewhere, and the hazards and resources present as humans explore space". In pursuit of such an end, the Galileo and Cassini missions garnered spectral data of icy satellite surfaces implicative of the satellites' structure and material composition. The potential for geophysical modeling afforded by this information, coupled with the plausibility of life on icy satellites, has pushed Jupiter's Europa along with Saturn's Enceladus and Titan toward the fore of NASA's planetary focus. Understanding the evolution of, and the present processes at work on, the aforementioned satellites falls squarely in-line with NASA's cited goal.

  7. Satellite-based detection of volcanic sulphur dioxide from recent eruptions in Central and South America

    Directory of Open Access Journals (Sweden)

    D. Loyola

    2008-01-01

    Full Text Available Volcanic eruptions can emit large amounts of rock fragments and fine particles (ash into the atmosphere, as well as several gases, including sulphur dioxide (SO2. These ejecta and emissions are a major natural hazard, not only to the local population, but also to the infrastructure in the vicinity of volcanoes and to aviation. Here, we describe a methodology to retrieve quantitative information about volcanic SO2 plumes from satellite-borne measurements in the UV/Visible spectral range. The combination of a satellite-based SO2 detection scheme and a state-of-the-art 3D trajectory model enables us to confirm the volcanic origin of trace gas signals and to estimate the plume height and the effective emission height. This is demonstrated by case-studies for four selected volcanic eruptions in South and Central America, using the GOME, SCIAMACHY and GOME-2 instruments.

  8. Multi-annual changes of NOx emissions in megacity regions: nonlinear trend analysis of satellite measurement based estimates

    Directory of Open Access Journals (Sweden)

    J. P. Burrows

    2010-09-01

    Full Text Available Hazardous impact of air pollutant emissions from megacities on atmospheric composition on regional and global scales is currently an important issue in atmospheric research. However, the quantification of emissions and related effects is frequently a difficult task, especially in the case of developing countries, due to the lack of reliable data and information. This study examines possibilities to retrieve multi-annual NOx emissions changes in megacity regions from satellite measurements of nitrogen dioxide and to quantify them in terms of linear and nonlinear trends. By combining the retrievals of the GOME and SCIAMACHY satellite instrument data with simulations performed by the CHIMERE chemistry transport model, we obtain the time series of NOx emission estimates for the 12 largest urban agglomerations in Europe and the Middle East in the period from 1996 to 2008. We employ then a novel method allowing estimation of a nonlinear trend in a noisy time series of an observed variable. The method is based on the probabilistic approach and the use of artificial neural networks; it does not involve any quantitative a priori assumptions. As a result, statistically significant nonlinearities in the estimated NOx emission trends are detected in 5 megacities (Bagdad, Madrid, Milan, Moscow and Paris. Statistically significant upward linear trends are detected in Istanbul and Tehran, while downward linear trends are revealed in Berlin, London and the Ruhr agglomeration. The presence of nonlinearities in NOx emission changes in Milan, Paris and Madrid is confirmed by comparison of simulated NOx concentrations with independent air quality monitoring data. A good quantitative agreement between the linear trends in the simulated and measured near surface NOx concentrations is found in London.

  9. Satellites

    International Nuclear Information System (INIS)

    Burns, J.A.; Matthews, M.S.

    1986-01-01

    The present work is based on a conference: Natural Satellites, Colloquium 77 of the IAU, held at Cornell University from July 5 to 9, 1983. Attention is given to the background and origins of satellites, protosatellite swarms, the tectonics of icy satellites, the physical characteristics of satellite surfaces, and the interactions of planetary magnetospheres with icy satellite surfaces. Other topics include the surface composition of natural satellites, the cratering of planetary satellites, the moon, Io, and Europa. Consideration is also given to Ganymede and Callisto, the satellites of Saturn, small satellites, satellites of Uranus and Neptune, and the Pluto-Charon system

  10. Satellite measurements of the earth's crustal magnetic field

    Science.gov (United States)

    Schnetzler, C. C.

    1989-01-01

    The literature associated with the Magsat mission has evaluated the capabilities and limitations of satellite measurements of the earth's crustal magnetic field, and demonstrated that there exists a 300-3000 km magnetic field, related to major features in the earth's crust, which is primarily caused by induction. Due to its scale and sensitivity, satellite data have been useful in the development of models for such large crustal features as subduction zones, submarine platforms, continental accretion boundaries, and rifts. Attention is presently given to the lack of agreement between laboratory and satellite estimates of lower crustal magnetization.

  11. Assessing the Suitability and Limitations of Satellite-based Measurements for Estimating CO, CO2, NO2 and O3 Concentrations over the Niger Delta

    Science.gov (United States)

    Fagbeja, M. A.; Hill, J. L.; Chatterton, T. J.; Longhurst, J. W.; Akinyede, J. O.

    2011-12-01

    Space-based satellite sensor technology may provide important tools in the study and assessment of national, regional and local air pollution. However, the application of optical satellite sensor observation of atmospheric trace gases, including those considered to be 'air pollutants', within the lower latitudes is limited due to prevailing climatic conditions. The lack of appropriate air pollution ground monitoring stations within the tropical belt reduces the ability to verify and calibrate space-based measurements. This paper considers the suitability of satellite remotely sensed data in estimating concentrations of atmospheric trace gases in view of the prevailing climate over the Niger Delta region. The methodological approach involved identifying suitable satellite data products and using the ArcGIS Geostatistical Analyst kriging interpolation technique to generate surface concentrations from satellite column measurements. The observed results are considered in the context of the climate of the study area. Using data from January 2001 to December 2005, an assessment of the suitability of satellite sensor data to interpolate column concentrations of trace gases over the Niger Delta has been undertaken and indicates varying degrees of reliability. The level of reliability of the interpolated surfaces is predicated on the number and spatial distributions of column measurements. Accounting for the two climatic seasons in the region, the interpolation of total column concentrations of CO and CO2 from SCIAMACHY produced both reliable and unreliable results over inland parts of the region during the dry season, while mainly unreliable results are observed over the coastal parts especially during the rainy season due to inadequate column measurements. The interpolation of tropospheric measurements of NO2 and O3 from GOME and OMI respectively produced reliable results all year. This is thought to be due to the spatial distribution of available column measurements

  12. Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments

    Science.gov (United States)

    van Peet, Jacob C. A.; van der A, Ronald J.; Kelder, Hennie M.; Levelt, Pieternel F.

    2018-02-01

    A three-dimensional global ozone distribution has been derived from assimilation of ozone profiles that were observed by satellites. By simultaneous assimilation of ozone profiles retrieved from the nadir looking satellite instruments Global Ozone Monitoring Experiment 2 (GOME-2) and Ozone Monitoring Instrument (OMI), which measure the atmosphere at different times of the day, the quality of the derived atmospheric ozone field has been improved. The assimilation is using an extended Kalman filter in which chemical transport model TM5 has been used for the forecast. The combined assimilation of both GOME-2 and OMI improves upon the assimilation results of a single sensor. The new assimilation system has been demonstrated by processing 4 years of data from 2008 to 2011. Validation of the assimilation output by comparison with sondes shows that biases vary between -5 and +10 % between the surface and 100 hPa. The biases for the combined assimilation vary between -3 and +3 % in the region between 100 and 10 hPa where GOME-2 and OMI are most sensitive. This is a strong improvement compared to direct retrievals of ozone profiles from satellite observations.

  13. Satellite data sets for the atmospheric radiation measurement (ARM) program

    Energy Technology Data Exchange (ETDEWEB)

    Shi, L.; Bernstein, R.L. [SeaSpace Corp., San Diego, CA (United States)

    1996-04-01

    This abstract describes the type of data obtained from satellite measurements in the Atmospheric Radiation Measurement (ARM) program. The data sets have been widely used by the ARM team to derive cloud-top altitude, cloud cover, snow and ice cover, surface temperature, water vapor, and wind, vertical profiles of temperature, and continuoous observations of weather needed to track and predict severe weather.

  14. Error sources in the retrieval of aerosol information over bright surfaces from satellite measurements in the oxygen A band

    Science.gov (United States)

    Nanda, Swadhin; de Graaf, Martin; Sneep, Maarten; de Haan, Johan F.; Stammes, Piet; Sanders, Abram F. J.; Tuinder, Olaf; Pepijn Veefkind, J.; Levelt, Pieternel F.

    2018-01-01

    Retrieving aerosol optical thickness and aerosol layer height over a bright surface from measured top-of-atmosphere reflectance spectrum in the oxygen A band is known to be challenging, often resulting in large errors. In certain atmospheric conditions and viewing geometries, a loss of sensitivity to aerosol optical thickness has been reported in the literature. This loss of sensitivity has been attributed to a phenomenon known as critical surface albedo regime, which is a range of surface albedos for which the top-of-atmosphere reflectance has minimal sensitivity to aerosol optical thickness. This paper extends the concept of critical surface albedo for aerosol layer height retrievals in the oxygen A band, and discusses its implications. The underlying physics are introduced by analysing the top-of-atmosphere reflectance spectrum as a sum of atmospheric path contribution and surface contribution, obtained using a radiative transfer model. Furthermore, error analysis of an aerosol layer height retrieval algorithm is conducted over dark and bright surfaces to show the dependence on surface reflectance. The analysis shows that the derivative with respect to aerosol layer height of the atmospheric path contribution to the top-of-atmosphere reflectance is opposite in sign to that of the surface contribution - an increase in surface brightness results in a decrease in information content. In the case of aerosol optical thickness, these derivatives are anti-correlated, leading to large retrieval errors in high surface albedo regimes. The consequence of this anti-correlation is demonstrated with measured spectra in the oxygen A band from the GOME-2 instrument on board the Metop-A satellite over the 2010 Russian wildfires incident.

  15. Global distribution of pauses observed with satellite measurements

    Indian Academy of Sciences (India)

    Here we study the commonality and differences observed in the variability of all the pauses. We also examined how good other datasets will represent these features among (and in between) different satellite measurements, re-analysis, and model data. Hemispheric differences observed in all the pauses are also reported.

  16. Determination of atmospheric aerosol properties over land using satellite measurements

    NARCIS (Netherlands)

    Kokhanovsky, A.A.; Leeuw, G. de

    2009-01-01

    Mostly, aerosol properties are poorly understood because the aerosol properties are very sparse. The first workshop on the determination of atmospheric aerosol properties over land using satellite measurements is convened in Bremen, Germany. In this workshop, the topics of discussions included a

  17. A New Satellite System for Measuring BRDF from Space

    Science.gov (United States)

    Wiscombe, W.; Kaufman, Y.; Herman, J.

    1999-01-01

    Formation flying of satellites is at the beginning of an explosive growth curve. Spacecraft buses are shrinking to the point where we will soon be able to launch 10 micro-satellites or 100 nano-satellites on a single launch vehicle. Simultaneously, spectrometers are just beginning to be flown in space by both the U.S. and Europe. On-board programmable band aggregation will soon allow exactly the spectral bands desired to be returned to Earth. Further efforts are being devoted to radically shrink spectrometers both in size and weight. And GPS positioning and attitude determination, plus new technologies for attitude control, will allow fleets of satellites to all point at the same Earth target. All these advances, in combination, make possible for the first time the proper measurement of Bidirectional Reflectance Distribution (BRDF) form space. Previously space BDRF's were mere composites, built up over time by viewing different types of scenes at different times, then creating catalogs of BDRF functions whose use relied upon correct "scene identification" --the weak link. Formation-flying micro-satellites, carrying programmable spectrometers and precision-pointing at the same Earth target, can measure the full BDRF simultaneously, in real time. This talk will review these technological advances and discuss an actual proposed concept, based on these advances, to measure Earth-target BDRF's (clouds as well as surface) across the full solar spectrum in the 2010 timeframe. This concept is part of a larger concept called Leonardo for properly measuring the radiative forcing of Earth for climate purposes; lack of knowing of BDRF and of diurnal cycle are at present the two limiting factors preventing improved estimates of this forcing.

  18. Assessment of global precipitation measurement satellite products over Saudi Arabia

    Science.gov (United States)

    Mahmoud, Mohammed T.; Al-Zahrani, Muhammad A.; Sharif, Hatim O.

    2018-04-01

    Most hydrological analysis and modeling studies require reliable and accurate precipitation data for successful simulations. However, precipitation measurements should be more representative of the true precipitation distribution. Many approaches and techniques are used to collect precipitation data. Recently, hydrometeorological and climatological applications of satellite precipitation products have experienced a significant improvement with the emergence of the latest satellite products, namely, the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) mission (IMERG) products, which can be utilized to estimate and analyze precipitation data. This study focuses on the validation of the IMERG early, late and final run rainfall products using ground-based rain gauge observations throughout Saudi Arabia for the period from October 2015 to April 2016. The accuracy of each IMERG product is assessed using six statistical performance measures to conduct three main evaluations, namely, regional, event-based and station-based evaluations. The results indicate that the early run product performed well in the middle and eastern parts as well as some of the western parts of the country; meanwhile, the satellite estimates for the other parts fluctuated between an overestimation and an underestimation. The late run product showed an improved accuracy over the southern and western parts; however, over the northern and middle parts, it showed relatively high errors. The final run product revealed significantly improved precipitation estimations and successfully obtained higher accuracies over most parts of the country. This study provides an early assessment of the performance of the GPM satellite products over the Middle East. The study findings can be used as a beneficial reference for the future development of the IMERG algorithms.

  19. Total ozone retrieval from satellite multichannel filter radiometer measurements

    International Nuclear Information System (INIS)

    Lovill, J.E.; Sullivan, T.J.; Weichel, R.L.; Ellis, J.S.; Huebel, J.G.; Korver, J.; Weidhaas, P.P.; Phelps, F.A.

    1978-01-01

    A total ozone retrieval model has been developed to process radiance data gathered by a satellite-mounted multichannel filter radiometer (MFR). Extensive effort went into theoretical radiative transfer modeling, a retrieval scheme was developed, and the technique was applied to the MFR radiance measurements. The high quality of the total ozone retrieval results was determined through comparisons with Dobson measurements. Included in the report are global total ozone maps for 20 days between May 12 and July 5, 1977. A comparison of MFR results for 13 days in June 1977 with Dobson spectrophotometer measurements of ozone for the same period showed good agreement: there was a root-mean-square difference of 6.2% (equivalent to 20.2 m.atm.cm). The estimated global total ozone value for June 1977 (296 m.atm.cm) was in good agreement with satellite backscatter ultraviolet data for June 1970 (304 m.atm.cm) and June 1971

  20. Cloud and Thermodynamic Parameters Retrieved from Satellite Ultraspectral Infrared Measurements

    Science.gov (United States)

    Zhou, Daniel K.; Smith, William L.; Larar, Allen M.; Liu, Xu; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.

    2008-01-01

    Atmospheric-thermodynamic parameters and surface properties are basic meteorological parameters for weather forecasting. A physical geophysical parameter retrieval scheme dealing with cloudy and cloud-free radiance observed with satellite ultraspectral infrared sounders has been developed and applied to the Infrared Atmospheric Sounding Interferometer (IASI) and the Atmospheric InfraRed Sounder (AIRS). The retrieved parameters presented herein are from radiance data gathered during the Joint Airborne IASI Validation Experiment (JAIVEx). JAIVEx provided intensive aircraft observations obtained from airborne Fourier Transform Spectrometer (FTS) systems, in-situ measurements, and dedicated dropsonde and radiosonde measurements for the validation of the IASI products. Here, IASI atmospheric profile retrievals are compared with those obtained from dedicated dropsondes, radiosondes, and the airborne FTS system. The IASI examples presented here demonstrate the ability to retrieve fine-scale horizontal features with high vertical resolution from satellite ultraspectral sounder radiance spectra.

  1. Characteristics of tropospheric ozone depletion events in the Arctic spring: analysis of the ARCTAS, ARCPAC, and ARCIONS measurements and satellite BrO observations

    Directory of Open Access Journals (Sweden)

    J.-H. Koo

    2012-10-01

    Full Text Available Arctic ozone depletion events (ODEs are caused by halogen catalyzed ozone loss. In situ chemistry, advection of ozone-poor air mass, and vertical mixing in the lower troposphere are important factors affecting ODEs. To better characterize the ODEs, we analyze the combined set of surface, ozonesonde, and aircraft in situ measurements of ozone and bromine compounds during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS, the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC, and the Arctic Intensive Ozonesonde Network Study (ARCIONS experiments (April 2008. Tropospheric BrO columns retrieved from satellite measurements and back trajectory calculations are also used to investigate the characteristics of observed ODEs. In situ observations from these field experiments are inadequate to validate tropospheric BrO columns derived from satellite measurements. In view of this difficulty, we construct an ensemble of tropospheric column BrO estimates from two satellite (OMI and GOME-2 measurements and with three independent methods of calculating stratospheric BrO columns. Furthermore, we select analysis methods that do not depend on the absolute magnitude of column BrO, such as time-lagged correlation analysis of ozone and tropospheric column BrO, to understand characteristics of ODEs. Time-lagged correlation analysis between in situ (surface and ozonesonde measurements of ozone and satellite derived tropospheric BrO columns indicates that the ODEs are due to either local halogen-driven ozone loss or short-range (∼1 day transport from nearby regions with ozone depletion. The effect of in situ ozone loss is also evident in the diurnal variation difference between low (10th and 25th percentiles and higher percentiles of surface ozone concentrations at Alert, Canada. Aircraft observations indicate low-ozone air mass transported from adjacent high-BrO regions. Correlation analyses of ozone

  2. Interpretation of Spectrometric Measurements of Active Geostationary Satellites

    Science.gov (United States)

    Bedard, D.; Wade, G.

    2014-09-01

    Over 5000 visible near-infrared (VNIR) spectrometric measurements of active geostationary satellites have been collected with the National Research Council (NRC) 1.8m Plaskett telescope located at the Dominion Astrophysical Observatory (DAO) in Victoria, Canada. The objective of this ongoing experiment is to study how reflectance spectroscopy can be used to reliably identify specific material types on the surface of artificial Earth-orbiting objects. Active geostationary satellites were selected as the main subjects for this experiment since their orientation is stable and can be estimated to a high-level of confidence throughout a night of observation. Furthermore, for most geostationary satellites, there is a wide variety of sources that can provide some level of information as to their external surface composition. Notwithstanding the high number of measurements that have been collected to date, it was assumed that the experimenters would have a much greater success rate in material identification given the choice experimental subjects. To date, only the presence of aluminum has been confidently identified in some of the reflectance spectra that have been collected. Two additional material types, namely photovoltaic cells and polyimide film, the first layer of multi-layer insulation (MLI), have also been possibly identified. However uncertainties in the reduced spectral measurements prevent any definitive conclusion with respect to these materials at this time. The surprising lack of results with respect to material identification have forced the experimenters to use other data interpretation methods to characterize the spectral scattering characteristics of the studied satellites. The results from this study have already led to improvements in the ways that reflectance spectra from spacecraft are collected and analysed. Equally important, the data interpretation techniques elaborated over the course of this experiment will also serve to increase the body of

  3. Land-mobile satellite excess path loss measurements

    Science.gov (United States)

    Hess, G. C.

    1980-05-01

    An experiment conducted with the ATS-6 satellite to determine the additional path loss over free-space loss experienced by land-mobile communication links is described. This excess path loss is measured as a function of 1) local environment, 2) vehicle heading, 3) link frequency, 4) satellite elevation angle, and 5) street side. A statistical description of excess loss developed from the data shows that the first two parameters dominate. Excess path loss on the order of 25 dB is typical in urban situations, but decreases to under 10 dB in suburban/rural areas. Spaced antenna selection diversity is found to provide only a slight decrease (4 dB, typically) in the urban excess path loss observed. Level crossing rates are depressed in satellite links relative to those of Rayleigh-faded terrestrial links, but increases in average fade durations tend to offset that advantage. The measurements show that the excess path loss difference between 860-MHz links and 1550-MHz links is generally negligible.

  4. Initial results of centralized autonomous orbit determination of the new-generation BDS satellites with inter-satellite link measurements

    Science.gov (United States)

    Tang, Chengpan; Hu, Xiaogong; Zhou, Shanshi; Liu, Li; Pan, Junyang; Chen, Liucheng; Guo, Rui; Zhu, Lingfeng; Hu, Guangming; Li, Xiaojie; He, Feng; Chang, Zhiqiao

    2018-01-01

    Autonomous orbit determination is the ability of navigation satellites to estimate the orbit parameters on-board using inter-satellite link (ISL) measurements. This study mainly focuses on data processing of the ISL measurements as a new measurement type and its application on the centralized autonomous orbit determination of the new-generation Beidou navigation satellite system satellites for the first time. The ISL measurements are dual one-way measurements that follow a time division multiple access (TDMA) structure. The ranging error of the ISL measurements is less than 0.25 ns. This paper proposes a derivation approach to the satellite clock offsets and the geometric distances from TDMA dual one-way measurements without a loss of accuracy. The derived clock offsets are used for time synchronization, and the derived geometry distances are used for autonomous orbit determination. The clock offsets from the ISL measurements are consistent with the L-band two-way satellite, and time-frequency transfer clock measurements and the detrended residuals vary within 0.5 ns. The centralized autonomous orbit determination is conducted in a batch mode on a ground-capable server for the feasibility study. Constant hardware delays are present in the geometric distances and become the largest source of error in the autonomous orbit determination. Therefore, the hardware delays are estimated simultaneously with the satellite orbits. To avoid uncertainties in the constellation orientation, a ground anchor station that "observes" the satellites with on-board ISL payloads is introduced into the orbit determination. The root-mean-square values of orbit determination residuals are within 10.0 cm, and the standard deviation of the estimated ISL hardware delays is within 0.2 ns. The accuracy of the autonomous orbits is evaluated by analysis of overlap comparison and the satellite laser ranging (SLR) residuals and is compared with the accuracy of the L-band orbits. The results indicate

  5. The Seasonal Cycle of Satellite Chlorophyll Fluorescence Observations and its Relationship to Vegetation Phenology and Ecosystem Atmosphere Carbon Exchange

    Science.gov (United States)

    Joiner, J.; Yoshida, Y.; Vasilkov, A. P.; Schaefer, K.; Jung, M.; Guanter, L.; Zhang, Y; Garrity, S.; Middleton, E. M.; Huemmrich, K. F.; hide

    2014-01-01

    Mapping of terrestrial chlorophyll uorescence from space has shown potentialfor providing global measurements related to gross primary productivity(GPP). In particular, space-based fluorescence may provide information onthe length of the carbon uptake period that can be of use for global carboncycle modeling. Here, we examine the seasonal cycle of photosynthesis asestimated from satellite fluorescence retrievals at wavelengths surroundingthe 740nm emission feature. These retrievals are from the Global OzoneMonitoring Experiment 2 (GOME-2) flying on the MetOp A satellite. Wecompare the fluorescence seasonal cycle with that of GPP as estimated froma diverse set of North American tower gas exchange measurements. Because the GOME-2 has a large ground footprint (40 x 80km2) as compared with that of the flux towers and requires averaging to reduce random errors, we additionally compare with seasonal cycles of upscaled GPP in the satellite averaging area surrounding the tower locations estimated from the Max Planck Institute for Biogeochemistry (MPI-BGC) machine learning algorithm. We also examine the seasonality of absorbed photosynthetically-active radiation(APAR) derived with reflectances from the MODerate-resolution Imaging Spectroradiometer (MODIS). Finally, we examine seasonal cycles of GPP as produced from an ensemble of vegetation models. Several of the data-driven models rely on satellite reflectance-based vegetation parameters to derive estimates of APAR that are used to compute GPP. For forested sites(particularly deciduous broadleaf and mixed forests), the GOME-2 fluorescence captures the spring onset and autumn shutoff of photosynthesis as delineated by the tower-based GPP estimates. In contrast, the reflectance-based indicators and many of the models tend to overestimate the length of the photosynthetically-active period for these and other biomes as has been noted previously in the literature. Satellite fluorescence measurements therefore show potential for

  6. Transportable IOT measurement station for direct-broadcast satellites

    Science.gov (United States)

    Ulbricht, Michael

    A transportable 11.7-12.5-GHz flux-density measurement facility for use in the in-orbit testing (IOT) of the FRG TV-Sat direct-broadcast satellites is described. Major components include a 1.2-m-diameter antenna, the fluxmeter, a radiometer to determine atmospheric attenuation, a weather station, and a control and data-processing computer; all of the components are mounted on a 5.10 x 2.35 x 2.70-m trailer. IOT performance parameters include gain/temperature ratio 15.9 dB/K, measurement range -97 to -117 dBW/sq m, measurement accuracy less than 0.5 dB rms, and measurement rate 250-650 msec. Photographs and a block diagram are provided.

  7. Study of cloud properties using airborne and satellite measurements

    Science.gov (United States)

    Boscornea, Andreea; Stefan, Sabina; Vajaiac, Sorin Nicolae

    2014-08-01

    The present study investigates cloud microphysics properties using aircraft and satellite measurements. Cloud properties were drawn from data acquired both from in situ measurements with state of the art airborne instrumentation and from satellite products of the MODIS06 System. The used aircraft was ATMOSLAB - Airborne Laboratory for Environmental Atmospheric Research, property of the National Institute for Aerospace Research "Elie Carafoli" (INCAS), Bucharest, Romania, which is specially equipped for this kind of research. The main tool of the airborne laboratory is a Cloud, Aerosol and Precipitation Spectrometer - CAPS (30 bins, 0.51- 50 μm). The data was recorded during two flights during the winter 2013-2014, over a flat region in the south-eastern part of Romania (between Bucharest and Constanta). The analysis of cloud particle size variations and cloud liquid water content provided by CAPS can explain cloud processes, and can also indicate the extent of aerosols effects on clouds. The results, such as cloud coverage and/or cloud types, microphysical parameters of aerosols on the one side and the cloud microphysics parameters obtained from aircraft flights on the other side, was used to illustrate the importance of microphysics cloud properties for including the radiative effects of clouds in the regional climate models.

  8. PAMELA: A Satellite Experiment for Antiparticles Measurement in Cosmic Rays

    Science.gov (United States)

    Bongi, M.; Adriani, O.; Ambriola, M.; Bakaldin, A.; Barbarino, G. C.; Basili, A.; Bazilevskaja, G.; Bellotti, R.; Bencardino, R.; Boezio, M.; Bogomolov, E. A.; Bonechi, L.; Bongiorno, L.; Bonvicini, V.; Boscherini, M.; Cafagna, F. S.; Campana, D.; Carlson, P.; Casolino, M.; Castellini, G.; Circella, M.; De Marzo, C. N.; De Pascale, M. P.; Furano, G.; Galper, A. M.; Giglietto, N.; Grigorjeva, A.; Koldashov, S. V.; Korotkov, M. G.; Krut'kov, S. Y.; Lund, J.; Lundquist, J.; Menicucci, A.; Menn, W.; Mikhailov, V. V.; Minori, M.; Mirizzi, N.; Mitchell, J. W.; Mocchiutti, E.; Morselli, A.; Mukhametshin, R.; Orsi, S.; Osteria, G.; Papini, P.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Romita, M.; Rossi, G.; Russo, S.; Schiavon, P.; Simon, M.; Sparvoli, R.; Spillantini, P.; Spinelli, P.; Stochaj, S. J.; Stozhkov, Y.; Straulino, S.; Streitmatter, R. E.; Taccetti, F.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Voronov, S. A.; Wischnewski, R.; Yurkin, Y.; Zampa, G.; Zampa, N.

    2004-06-01

    PAMELA is a satellite-borne experiment that will study the antiproton and positron fluxes in cosmic rays in a wide range of energy (from 80 MeV up to 190 GeV for antiprotons and from 50 MeV up to 270 GeV for positrons) and with high statistics, and that will measure the antihelium/helium ratio with a sensitivity of the order of 10/sup -8/. The detector will fly on-board a polar orbiting Resurs DK1 satellite, which will be launched into space by a Soyuz rocket in 2004 from Baikonur cosmodrome in Kazakhstan, for a 3-year-long mission. Particle identification and energy measurements are performed in the PAMELA apparatus using the following subdetectors: a magnetic spectrometer made up of a permanent magnet equipped with double-sided microstrip silicon detectors, an electromagnetic imaging calorimeter composed of layers of tungsten absorber and silicon detectors planes, a transition radiation detector made of straw tubes interleaved with carbon fiber radiators, a plastic scintillator time-of-flight and trigger system, a set of anticounter plastic scintillator detectors, and a neutron detector. The features of the detectors and the main results obtained in beam test sessions are presented.

  9. Measuring the relativistic perigee advance with satellite laser ranging

    International Nuclear Information System (INIS)

    Iorio, Lorenzo; Ciufolini, Ignazio; Pavlis, Erricos C

    2002-01-01

    The pericentric advance of a test body by a central mass is one of the classical tests of general relativity. Today, this effect is measured with radar ranging by the perihelion shift of Mercury and other planets in the gravitational field of the Sun, with a relative accuracy of the order of 10 -2 -10 -3 . In this paper, we explore the possibility of a measurement of the pericentric advance in the gravitational field of Earth by analysing the laser-ranged data of some orbiting, or proposed, laser-ranged geodetic satellites. Such a measurement of the perigee advance would place limits on hypothetical, very weak, Yukawa-type components of the gravitational interaction with a finite range of the order of 10 4 km. Thus, we show that, at the present level of knowledge of the orbital perturbations, the relative accuracy, achievable with suitably combined orbital elements of LAGEOS and LAGEOS II, is of the order of 10 -3 . With the corresponding measured value of (2 + 2γ - β)/3, by using η = 4β - γ - 3 from lunar laser ranging, we could get an estimate of the PPN parameters γ and β with an accuracy of the order of 10 -2 -10 -3 . Nevertheless, these accuracies would be substantially improved in the near future with the new Earth gravity field models by the CHAMP and GRACE missions. The use of the perigee of LARES (LAser RElativity Satellite), with a suitable combination of orbital residuals including also the node and the perigee of LAGEOS II, would also further improve the accuracy of the proposed measurement

  10. Radiation Measured for Chinese Satellite SJ-10 Space Mission

    Science.gov (United States)

    Zhou, Dazhuang; Sun, Yeqing; Zhang, Binquan; Zhang, Shenyi; Sun, Yueqiang; Liang, Jinbao; Zhu, Guangwu; Jing, Tao; Yuan, Bin; Zhang, Huanxin; Zhang, Meng; Wang, Wei; Zhao, Lei

    2018-02-01

    Space biological effects are mainly a result of space radiation particles with high linear energy transfer (LET); therefore, accurate measurement of high LET space radiation is vital. The radiation in low Earth orbits is composed mainly of high-energy galactic cosmic rays (GCRs), solar energetic particles, particles of radiation belts, the South Atlantic Anomaly, and the albedo neutrons and protons scattered from the Earth's atmosphere. CR-39 plastic nuclear track detectors sensitive to high LET are the best passive detectors to measure space radiation. The LET method that employs CR-39 can measure all the radiation LET spectra and quantities. CR-39 detectors can also record the incident directions and coordinates of GCR heavy ions that pass through both CR-39 and biosamples, and the impact parameter, the distance between the particle's incident point and the seed's spore, can then be determined. The radiation characteristics and impact parameter of GCR heavy ions are especially beneficial for in-depth research regarding space radiation biological effects. The payload returnable satellite SJ-10 provided an excellent opportunity to investigate space radiation biological effects with CR-39 detectors. The space bio-effects experiment was successfully conducted on board the SJ-10 satellite. This paper introduces space radiation in low Earth orbits and the LET method in radiation-related research and presents the results of nuclear tracks and biosamples hitting distributions of GCR heavy ions, the radiation LET spectra, and the quantities measured for the SJ-10 space mission. The SJ-10 bio-experiment indicated that radiation may produce significant bio-effects.

  11. Ground-based observations coordinated with Viking satellite measurements

    International Nuclear Information System (INIS)

    Opgenoorth, H.J.; Kirkwood, S.

    1989-01-01

    The instrumentation and the orbit of the Viking satellite made this first Swedish satellite mission ideally suited for coordinated observations with the dense network of ground-based stations in northern Scandinavia. Several arrays of complementing instruments such as magnetometers, all-sky cameras, riometers and doppler radars monitored on a routine basis the ionosphere under the magnetospheric region passed by Viking. For a large number of orbits the Viking passages close to Scandinavia were covered by the operation of specially designed programmes at the European incoherent-scatter facility (EISCAT). First results of coordinated observations on the ground and aboard Viking have shed new light on the most spectacular feature of substorm expansion, the westward-travelling surge. The end of a substorm and the associated decay of a westward-travelling surge have been analysed. EISCAT measurements of high spatial and temporal resolution indicate that the conductivities and electric fields associated with westward-travelling surges are not represented correctly by the existing models. (author)

  12. A GPS measurement system for precise satellite tracking and geodesy

    Science.gov (United States)

    Yunck, T. P.; Wu, S.-C.; Lichten, S. M.

    1985-01-01

    NASA is pursuing two key applications of differential positioning with the Global Positioning System (GPS): sub-decimeter tracking of earth satellites and few-centimeter determination of ground-fixed baselines. Key requirements of the two applications include the use of dual-frequency carrier phase data, multiple ground receivers to serve as reference points, simultaneous solution for use position and GPS orbits, and calibration of atmospheric delays using water vapor radiometers. Sub-decimeter tracking will be first demonstrated on the TOPEX oceanographic satellite to be launched in 1991. A GPS flight receiver together with at least six ground receivers will acquire delta range data from the GPS carriers for non-real-time analysis. Altitude accuracies of 5 to 10 cm are expected. For baseline measurements, efforts will be made to obtain precise differential pseudorange by resolving the cycle ambiguity in differential carrier phase. This could lead to accuracies of 2 or 3 cm over a few thousand kilometers. To achieve this, a high-performance receiver is being developed, along with improved calibration and data processing techniques. Demonstrations may begin in 1986.

  13. Relativistic effects on earth satellites and their measurement

    International Nuclear Information System (INIS)

    Bertotti, B.

    1988-01-01

    There are three kinds of relativistic effects on earth satellites: those due post newtonian corrections in the field of the earth; the relativistic corrections in the field of the sun; and the precession of the local frames with respect to far away bodies. The authors point out that it is not possible to eliminate the second kind by decreasing the distance of the satellite and the earth; in other words, the effect of the sun is not entirely tidal and a generalized principle of equivalence does hold exactly. Concerning the third kind, the motion of the moon and the measurements of its distance from the earth by lunar laser ranging provides a way to establish experimentally the two connections between the three fundamental frames one should consider: the local frame, determined geometrically by parallel transport; the planetary dynamical frame; and the kinematical frame defined by extragalactic radio sources. According to general relativity the first two frames are related by de Sitter's precision; the last two coincide. It shown that the connections between the first two frames and the first and third frame are already hidden in the existing data

  14. The possible direct use of satellite radiance measurements by the Atmospheric Radiation Measurement Program

    International Nuclear Information System (INIS)

    1993-03-01

    The Atmospheric Radiation Measurement (ARM) Program is a major research program initiated by the Department of Energy to improve our understanding of radiative and cloud processes critical to predicting the Earth's climate and its changes. Central to this concept is the use of four to six intensively instrumented sites for long-term study and characterization of the processes of interest. The instrumentation suites will include ground-based, high-accuracy radiometers for measuring the short and longwave surface flux, as well as an extensive set of ground-and air-based instrumentation for characterizing the intervening atmospheric column. Satellite-based measurements are expected to play a very important role in providing top-of-the-atmosphere measurements. In this study, we examine the possibility of comparing ARM outputs directly with satellite measurements, thereby ensuring the independence of these two important data sets. Thus we focused on what do satellites really measure and how well do they measure it. On what can we do about the general lack of adequate visible channel calibration. On what is the best way for ARM to obtain near-real-time access to this unprocessed data. And on what is the optimum way for ARM to make use of satellite data

  15. Aerosol optical thickness retrieval over land and water using Global Ozone Monitoring Experiment (GOME) data

    NARCIS (Netherlands)

    Kusmierczyk-Michulec, J.; Leeuw, G. de

    2005-01-01

    An algorithm for the retrieval of the aerosol optical thickness over land and over water from Global Ozone Monitoring Experiment (GOME) data is presented. The cloud fraction in the GOME pixels is determined using the Fast Retrieval Scheme for Clouds From the Oxygen A Band (FRESCO) algorithm. Surface

  16. Long-term changes of tropospheric NO2 over megacities derived from multiple satellite instruments

    Directory of Open Access Journals (Sweden)

    A. Hilboll

    2013-04-01

    Full Text Available Tropospheric NO2, a key pollutant in particular in cities, has been measured from space since the mid-1990s by the GOME, SCIAMACHY, OMI, and GOME-2 instruments. These data provide a unique global long-term dataset of tropospheric pollution. However, the observations differ in spatial resolution, local time of measurement, viewing geometry, and other details. All these factors can severely impact the retrieved NO2 columns. In this study, we present three ways to account for instrumental differences in trend analyses of the NO2 columns derived from satellite measurements, while preserving the individual instruments' spatial resolutions. For combining measurements from GOME and SCIAMACHY into one consistent time series, we develop a method to explicitly account for the instruments' difference in ground pixel size (40 × 320 km2 vs. 30 × 60 km2. This is especially important when analysing NO2 changes over small, localised sources like, e.g. megacities. The method is based on spatial averaging of the measured earthshine spectra and extraction of a spatial pattern of the resolution effect. Furthermore, two empirical corrections, which summarise all instrumental differences by including instrument-dependent offsets in a fitted trend function, are developed. These methods are applied to data from GOME and SCIAMACHY separately, to the combined time series, and to an extended dataset comprising also GOME-2 and OMI measurements. All approaches show consistent trends of tropospheric NO2 for a selection of areas on both regional and city scales, for the first time allowing consistent trend analysis of the full time series at high spatial resolution. Compared to previous studies, the longer study period leads to significantly reduced uncertainties. We show that measured tropospheric NO2 columns have been strongly increasing over China, the Middle East, and India, with values over east-central China tripling from 1996 to 2011. All parts of the developed world

  17. Measuring the relativistic perigee advance with satellite laser ranging

    CERN Document Server

    Iorio, L; Pavlis, E C

    2002-01-01

    The pericentric advance of a test body by a central mass is one of the classical tests of general relativity. Today, this effect is measured with radar ranging by the perihelion shift of Mercury and other planets in the gravitational field of the Sun, with a relative accuracy of the order of 10 sup - sup 2 -10 sup - sup 3. In this paper, we explore the possibility of a measurement of the pericentric advance in the gravitational field of Earth by analysing the laser-ranged data of some orbiting, or proposed, laser-ranged geodetic satellites. Such a measurement of the perigee advance would place limits on hypothetical, very weak, Yukawa-type components of the gravitational interaction with a finite range of the order of 10 sup 4 km. Thus, we show that, at the present level of knowledge of the orbital perturbations, the relative accuracy, achievable with suitably combined orbital elements of LAGEOS and LAGEOS II, is of the order of 10 sup - sup 3. With the corresponding measured value of (2 + 2 gamma - beta)/3, ...

  18. Glyoxal Vertical Column Retrievals from the GOME-2/METOP-A European Spaceborne Sensor and Comparisons with the IMAGESv2 CT Model

    Science.gov (United States)

    Lerot, C.; Stavrakou, T.; de Smedt, I.; Muller, J. J.; van Roozendael, M.

    2010-12-01

    Glyoxal is mostly formed in our atmosphere as an intermediate product in the oxidation of non-methane volatile organic compounds (NMVOC). To a lesser extent, it is also directly emitted from biomass burning events and from fossil- and bio-fuel combustion processes. Several studies have estimated its atmospheric lifetime to 2-3 hours, which makes of glyoxal a good indicator for short-lived NMVOC emissions. Glyoxal is also known to be a precursor for secondary organic aerosols and could help to reduce the gap between observations and models for organic aerosol abundances. The three absorption bands of glyoxal in the visible region allow applying the DOAS (Differential Optical Absorption Spectroscopy) technique to retrieve its vertical column densities from the nadir backscattered light measurements performed by the GOME-2 satellite sensor. This instrument has been launched in October 2006 on board of the METOP-A platform and is characterized by a spatial resolution of 80 km x 40 km and by a large scan-width (1920 km) leading to a global coverage reached in 1.5 day. The GOME-2 glyoxal retrieval algorithm developed at BIRA-IASB accounts for the liquid water absorption and provides geophysically sound column measurements not only over lands but also over oceanic regions where spectral interferences between glyoxal and liquid water have been shown to be significant. The a-priori glyoxal vertical distribution required for the slant to vertical column conversion is provided by the global chemical transport model IMAGESv2. The highest glyoxal vertical column densities are mainly observed in continental tropical regions, while the mid-latitude columns strongly depend on the season with maximum values during warm months. An anthropogenic signature is also observed in highly populated regions of Asia. Comparisons with glyoxal columns simulated with IMAGESv2 in different regions of the world generally point to a missing glyoxal source in current models. As already reported from

  19. Vegetation responses to sagebrush-reduction treatments measured by satellites

    Science.gov (United States)

    Johnston, Aaron; Beever, Erik; Merkle, Jerod A.; Chong, Geneva W.

    2018-01-01

    Time series of vegetative indices derived from satellite imagery constitute tools to measure ecological effects of natural and management-induced disturbances to ecosystems. Over the past century, sagebrush-reduction treatments have been applied widely throughout western North America to increase herbaceous vegetation for livestock and wildlife. We used indices from satellite imagery to 1) quantify effects of prescribed-fire, herbicide, and mechanical treatments on vegetative cover, productivity, and phenology, and 2) describe how vegetation changed over time following these treatments. We hypothesized that treatments would increase herbaceous cover and accordingly shift phenologies towards those typical of grass-dominated systems. We expected prescribed burns would lead to the greatest and most-prolonged effects on vegetative cover and phenology, followed by herbicide and mechanical treatments. Treatments appeared to increase herbaceous cover and productivity, which coincided with signs of earlier senescence − signals expected of grass-dominated systems, relative to sagebrush-dominated systems. Spatial heterogeneity for most phenometrics was lower in treated areas relative to controls, which suggested treatment-induced homogenization of vegetative communities. Phenometrics that explain spring migrations of ungulates mostly were unaffected by sagebrush treatments. Fire had the strongest effect on vegetative cover, and yielded the least evidence for sagebrush recovery. Overall, treatment effects were small relative to those reported from field-based studies for reasons most likely related to sagebrush recovery, treatment specification, and untreated patches within mosaicked treatment applications. Treatment effects were also small relative to inter-annual variation in phenology and productivity that was explained by temperature, snowpack, and growing-season precipitation. Our results indicated that cumulative NDVI, late-season phenometrics, and spatial

  20. Air Quality Science and Regulatory Efforts Require Geostationary Satellite Measurements

    Science.gov (United States)

    Pickering, Kenneth E.; Allen, D. J.; Stehr, J. W.

    2006-01-01

    Air quality scientists and regulatory agencies would benefit from the high spatial and temporal resolution trace gas and aerosol data that could be provided by instruments on a geostationary platform. More detailed time-resolved data from a geostationary platform could be used in tracking regional transport and in evaluating mesoscale air quality model performance in terms of photochemical evolution throughout the day. The diurnal cycle of photochemical pollutants is currently missing from the data provided by the current generation of atmospheric chemistry satellites which provide only one measurement per day. Often peak surface ozone mixing ratios are reached much earlier in the day during major regional pollution episodes than during local episodes due to downward mixing of ozone that had been transported above the boundary layer overnight. The regional air quality models often do not simulate this downward mixing well enough and underestimate surface ozone in regional episodes. Having high time-resolution geostationary data will make it possible to determine the magnitude of this lower-and mid-tropospheric transport that contributes to peak eight-hour average ozone and 24-hour average PM2.5 concentrations. We will show ozone and PM(sub 2.5) episodes from the CMAQ model and suggest ways in which geostationary satellite data would improve air quality forecasting. Current regulatory modeling is typically being performed at 12 km horizontal resolution. State and regional air quality regulators in regions with complex topography and/or land-sea breezes are anxious to move to 4-km or finer resolution simulations. Geostationary data at these or finer resolutions will be useful in evaluating such models.

  1. 20 Years of Total and Tropical Ozone Time Series Based on European Satellite Observations

    Science.gov (United States)

    Loyola, D. G.; Heue, K. P.; Coldewey-Egbers, M.

    2016-12-01

    Ozone is an important trace gas in the atmosphere, while the stratospheric ozone layer protects the earth surface from the incident UV radiation, the tropospheric ozone acts as green house gas and causes health damages as well as crop loss. The total ozone column is dominated by the stratospheric column, the tropospheric columns only contributes about 10% to the total column.The ozone column data from the European satellite instruments GOME, SCIAMACHY, OMI, GOME-2A and GOME-2B are available within the ESA Climate Change Initiative project with a high degree of inter-sensor consistency. The tropospheric ozone columns are based on the convective cloud differential algorithm. The datasets encompass a period of more than 20 years between 1995 and 2015, for the trend analysis the data sets were harmonized relative to one of the instruments. For the tropics we found an increase in the tropospheric ozone column of 0.75 ± 0.12 DU decade^{-1} with local variations between 1.8 and -0.8. The largest trends were observed over southern Africa and the Atlantic Ocean. A seasonal trend analysis led to the assumption that the increase is caused by additional forest fires.The trend for the total column was not that certain, based on model predicted trend data and the measurement uncertainty we estimated that another 10 to 15 years of observations will be required to observe a statistical significant trend. In the mid latitudes the trends are currently hidden in the large variability and for the tropics the modelled trends are low. Also the possibility of diverging trends at different altitudes must be considered; an increase in the tropospheric ozone might be accompanied by decreasing stratospheric ozone.The European satellite data record will be extended over the next two decades with the atmospheric satellite missions Sentinel 5 Precursor (launch end of 2016), Sentinel 4 and Sentinel 5.

  2. Coherent Uncertainty Analysis of Aerosol Measurements from Multiple Satellite Sensors

    Science.gov (United States)

    Petrenko, M.; Ichoku, C.

    2013-01-01

    Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS altogether, a total of 11 different aerosol products were comparatively analyzed using data collocated with ground-based aerosol observations from the Aerosol Robotic Network (AERONET) stations within the Multi-sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http://giovanni.gsfc.nasa.gov/aerostat/). The analysis was performed by comparing quality-screened satellite aerosol optical depth or thickness (AOD or AOT) retrievals during 2006-2010 to available collocated AERONET measurements globally, regionally, and seasonally, and deriving a number of statistical measures of accuracy. We used a robust statistical approach to detect and remove possible outliers in the collocated data that can bias the results of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD products was within 12%. Squared correlation coefficient (R2) values of the satellite AOD retrievals relative to AERONET exceeded 0.6, with R2 for most of the products exceeding 0.7 over land and 0.8 over ocean. Root mean square error (RMSE) values for most of the AOD products were within 0.15 over land and 0.09 over ocean. We have been able to generate global maps showing regions where the different products present advantages over the others, as well as the relative performance of each product over different landcover types. It was observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of the landcover types, multi-angle capabilities make MISR the only sensor to retrieve reliable AOD over barren and snow / ice surfaces. Likewise, active sensing enables CALIOP to retrieve aerosol properties over bright-surface shrublands more accurately than the other sensors, while POLDER, which is the only one of the sensors capable of measuring polarized aerosols, outperforms other sensors in

  3. Hydrologic Science and Satellite Measurements of Surface Water (Invited)

    Science.gov (United States)

    Alsdorf, D. E.; Mognard, N. M.; Lettenmaier, D. P.

    2010-12-01

    While significant advances continue to be made for satellite measurements of surface waters, important science and application opportunities remain. Examples include the following: (1) Our current methods of measuring floodwater dynamics are either sparsely distributed or temporally inadequate. As an example, flood depths are measured by using high water marks, which capture only the peak of the flood wave, not its temporal variability. (2) Discharge is well measured at individual points along stream networks using in-situ gauges, but these do not capture within-reach hydraulic variability such as the water surface slope changes on the rising and falling limbs of flood waves. (3) Just a 1.0 mm/day error in ET over the Congo Basin translates to a 35,000 m3/s discharge error. Knowing the discharge of the Congo River and its many tributaries should significantly improve our understanding of the water balance throughout the basin. The Congo is exemplary of many other basins around the globe. (4) Arctic hydrology is punctuated by millions of unmeasured lakes. Globally, there might be as many as 30 million lakes larger than a hectare. Storage changes in these lakes are nearly unknown, but in the Arctic such changes are likely an indication of global warming. (5) Well over 100 rivers cross international boundaries, yet the sharing of water data is poor. Overcoming this helps to better manage the entire river basin while also providing a better assessment of potential water related disasters. The Surface Water and Ocean Topography (SWOT, http://swot.jpl.nasa.gov/) mission is designed to meet these needs by providing global measurements of surface water hydrodynamics. SWOT will allow estimates of discharge in rivers wider than 100m (50m goal) and storage changes in water bodies larger than 250m by 250m (and likely as small as one hectare).

  4. Coordinated airborne and satellite measurements of equatorial plasma depletions

    International Nuclear Information System (INIS)

    Weber, E.J.; Brinton, H.C.; Buchau, J.; Moore, J.G.

    1982-01-01

    A series of experiments was conducted in December 1979 to investigate the structure of plasma depletions in the low latitude, nightime ionosphere. The measurements included all sky imaging photometer (ASIP), ionosonde and amplitude scintillation observations from the AFGL Airborne Ionospheric Observatory (AIO), and in situ ion density measurements from the Atmosphere Explorer (AE-E) Bennett Ion Mass Spectrometer (BIMS). The AIO performed two flights along the Ascension Island (-18 0 MLAT) magnetic meridian: one in the southern hemisphere and one near the Ascension conjugate point in the northern hemisphere. During these flights, measurements from the AE-E satellite at 434 km altitude are compared with simultaneous remote ionospheric measurements from the AIO. Density biteouts of approximately one order of magnitude in the dominant ion O + , were mapped to lower altitudes along magnetic field lines for comparison with 6300-A and 7774-A O I airglow depletions. Because of the different airglow production mechanisms (dissociative recombination of O +2 for 6300 A and radiative recombination of O + for 7774 A) the 6300-A depletions reflect plasma depletions near the bottomside of the F layer, while those at 7774 A are located near the peak of the layer. The O + biteouts map directly into the 7774-A airglow depletions in the same hemisphere and also when traced into the opposite hemisphere, which indicates magnetic flux tube alignment over north-south distances of approx.2220 km. The 6300-A (bottomside) depletions are wider in longitude than the 7774-A (F-peak) depletions near the equatorward edge of the Appleton anomaly. This difference in topside and bottomside structure is used to infer large-scale structure near the anomaly and to relate this to structure, commonly observed near the magnetic equator by the ALTAIR radar

  5. Satellite passive microwave rain measurement techniques for land and ocean

    Science.gov (United States)

    Spencer, R. W.

    1985-01-01

    Multiseasonal rainfall was found to be measurable over land with satellite passive microwave data, based upon comparisons between Nimbus 7 Scanning Multichannel Microwave Radiometer (SMME) brightness temperatures (T sub B) and operational WSR-57 radar rain rates. All of the SMMR channels (bipolarized 37, 21, 18, 10.7, and 6.6. GHz T sub B) were compared to radar reflectivities for 25 SMMR passes and 234 radar scans over the U.S. during the spring, summer, and fall of 1979. It was found that the radar rain rates were closely related to the difference between 37 and 21 GHz T sub B. This result is due to the volume scattering effects of precipitation which cause emissivity decreases with frequency, as opposed to emissive surfaces (e.g., water) whose emissivities increase with frequency. Two frequencies also act to reduce the effects of thermometric temperature variations on T sub B to a miminum. During summer and fall, multiple correlation coefficients of 0.80 and 0.75 were obtained. These approach the limit of correlation that can be expected to exist between two very different data sources, especially in light of the errors attributable to manual digitization of PPI photographs of variable quality from various operational weather radar not calibrated for research purposes. During the spring, a significantly lower (0.63) correlation was found. This poorer performance was traced to cases of wet, unvegetated soil being sensed at the lower frequencies through light rain, partly negating the rain scattering signal.

  6. Measurements of sea ice by satellite and airborne altimetry

    DEFF Research Database (Denmark)

    Kildegaard Rose, Stine

    the modal freeboard heights of 55 cm retrieved from the laser scanner data with the 25 cm retrieved from CryoSat-2 indicates a snow layer of 30 cm, due to the theory that a laser is reflected at the air/snow interface, while the radar is reflected at the snow/ice interface. In the other area, the modal...... freeboard is found to be 35 cm for both the airborne and satellite data implying, that the radar signal is here reflected from the snow surface, probably due to weather conditions. CryoSat-2 is very sensitive to returns from specular surfaces, even if they appear o_-nadir. This contaminates the “true...... and in fjord systems. The Greenland fjords exhange freshwater between the glaciers and the ocean. Measuring a snapshot of the ice mélange in front of Kangiata Nunˆta Sermia in southwest Greenland with airborne LiDAR, gives an estimate of the ice disharge since last autuum. The total volume of 1:70 _ 1:26 GT...

  7. Comparison of Satellite Rainfall Estimates and Rain Gauge Measurements in Italy, and Impact on Landslide Modeling

    Directory of Open Access Journals (Sweden)

    Mauro Rossi

    2017-12-01

    Full Text Available Landslides can be triggered by intense or prolonged rainfall. Rain gauge measurements are commonly used to predict landslides even if satellite rainfall estimates are available. Recent research focuses on the comparison of satellite estimates and gauge measurements. The rain gauge data from the Italian network (collected in the system database “Verifica Rischio Frana”, VRF are compared with the National Aeronautics and Space Administration (NASA Tropical Rainfall Measuring Mission (TRMM products. For the purpose, we couple point gauge and satellite rainfall estimates at individual grid cells, evaluating the correlation between gauge and satellite data in different morpho-climatological conditions. We then analyze the statistical distributions of both rainfall data types and the rainfall events derived from them. Results show that satellite data underestimates ground data, with the largest differences in mountainous areas. Power-law models, are more appropriate to correlate gauge and satellite data. The gauge and satellite-based products exhibit different statistical distributions and the rainfall events derived from them differ. In conclusion, satellite rainfall cannot be directly compared with ground data, requiring local investigation to account for specific morpho-climatological settings. Results suggest that satellite data can be used for forecasting landslides, only performing a local scaling between satellite and ground data.

  8. Metrology of ground-based satellite validation: co-location mismatch and smoothing issues of total ozone comparisons

    Directory of Open Access Journals (Sweden)

    T. Verhoelst

    2015-12-01

    Full Text Available Comparisons with ground-based correlative measurements constitute a key component in the validation of satellite data on atmospheric composition. The error budget of these comparisons contains not only the measurement errors but also several terms related to differences in sampling and smoothing of the inhomogeneous and variable atmospheric field. A versatile system for Observing System Simulation Experiments (OSSEs, named OSSSMOSE, is used here to quantify these terms. Based on the application of pragmatic observation operators onto high-resolution atmospheric fields, it allows a simulation of each individual measurement, and consequently, also of the differences to be expected from spatial and temporal field variations between both measurements making up a comparison pair. As a topical case study, the system is used to evaluate the error budget of total ozone column (TOC comparisons between GOME-type direct fitting (GODFITv3 satellite retrievals from GOME/ERS2, SCIAMACHY/Envisat, and GOME-2/MetOp-A, and ground-based direct-sun and zenith–sky reference measurements such as those from Dobsons, Brewers, and zenith-scattered light (ZSL-DOAS instruments, respectively. In particular, the focus is placed on the GODFITv3 reprocessed GOME-2A data record vs. the ground-based instruments contributing to the Network for the Detection of Atmospheric Composition Change (NDACC. The simulations are found to reproduce the actual measurements almost to within the measurement uncertainties, confirming that the OSSE approach and its technical implementation are appropriate. This work reveals that many features of the comparison spread and median difference can be understood as due to metrological differences, even when using strict co-location criteria. In particular, sampling difference errors exceed measurement uncertainties regularly at most mid- and high-latitude stations, with values up to 10 % and more in extreme cases. Smoothing difference errors only

  9. Measurement-based perturbation theory and differential equation parameter estimation with applications to satellite gravimetry

    Science.gov (United States)

    Xu, Peiliang

    2018-06-01

    The numerical integration method has been routinely used by major institutions worldwide, for example, NASA Goddard Space Flight Center and German Research Center for Geosciences (GFZ), to produce global gravitational models from satellite tracking measurements of CHAMP and/or GRACE types. Such Earth's gravitational products have found widest possible multidisciplinary applications in Earth Sciences. The method is essentially implemented by solving the differential equations of the partial derivatives of the orbit of a satellite with respect to the unknown harmonic coefficients under the conditions of zero initial values. From the mathematical and statistical point of view, satellite gravimetry from satellite tracking is essentially the problem of estimating unknown parameters in the Newton's nonlinear differential equations from satellite tracking measurements. We prove that zero initial values for the partial derivatives are incorrect mathematically and not permitted physically. The numerical integration method, as currently implemented and used in mathematics and statistics, chemistry and physics, and satellite gravimetry, is groundless, mathematically and physically. Given the Newton's nonlinear governing differential equations of satellite motion with unknown equation parameters and unknown initial conditions, we develop three methods to derive new local solutions around a nominal reference orbit, which are linked to measurements to estimate the unknown corrections to approximate values of the unknown parameters and the unknown initial conditions. Bearing in mind that satellite orbits can now be tracked almost continuously at unprecedented accuracy, we propose the measurement-based perturbation theory and derive global uniformly convergent solutions to the Newton's nonlinear governing differential equations of satellite motion for the next generation of global gravitational models. Since the solutions are global uniformly convergent, theoretically speaking

  10. GOME-2 observations of oxygenated VOCs: what can we learn from the ratio glyoxal to formaldehyde on a global scale?

    Directory of Open Access Journals (Sweden)

    M. Vrekoussis

    2010-11-01

    Full Text Available Collocated data sets of glyoxal (CHO.CHO and formaldehyde (HCHO were retrieved for the first time from measurements of the Global Ozone Monitoring Experiment-2 (GOME-2 during the first two years of operation in 2007 and 2008. Both oxygenated Volatile Organic Compounds, OVOC, are key intermediate species produced during the oxidation of precursor hydrocarbons. Their short lifetime of a few hours in the lower troposphere links them to emission sources and makes them useful tracers of photochemical activity. The global composite maps of GOME-2 HCHO and CHO.CHO have strong similarities confirming their common atmospheric and/or surface sources. The highest column amounts of these OVOCs are recorded over regions with enhance biogenic emissions (e.g. tropical forests in South America, Africa and Indonesia. Enhanced OVOC values are also present over areas of anthropogenic activity and biomass burning (e.g. over China, N. America, Europe and Australia. The ratio of CHO.CHO to HCHO, RGF, has been used, for the first time on a global scale, to classify the sources according to biogenic and/or anthropogenic emissions of the precursors; RGF between 0.040 to 0.060 point to the existence of biogenic emissions with the highest values being observed at the highest Enhanced Vegetation Index, EVI. RGFs below 0.040 are indicative of anthropogenic emissions and associated with high levels of NO2. This decreasing tendency of RGF with increasing NO2 is also observed when analyzing data for individual large cities, indicating that it is a common feature. The results obtained for RGF from GOME-2 data are compared with the findings based on regional SCIAMACHY observations showing good agreement. This is explained by the excellent correlation of the global retrieved column amounts of CHO.CHO and HCHO from the GOME-2 and SCIAMACHY instruments for the period 2007

  11. Influence of turbidity and clouds on satellite total ozone data over Madrid (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, J.L. [Agencia Estatal de Meteorologia (AEMET), Madrid (Spain); Anton, M. [Granada Univ. (Spain). Dept. de Fisica Aplicada; Loyola, D. [German Aerospace Center (DLR), Wessling (DE). Remote Sensing Technology Inst. (IMF); Hernandez, E. [Madrid Univ. Complutense (Spain). Dept. Fisica de la Tierra II

    2010-07-01

    This article focuses on the comparison of the total ozone column data from three satellite instruments; Total Ozone Mapping Spectrometers (TOMS) on board the Earth Probe (EP), Ozone Monitoring Instrument (OMI) on board AURA and Global Ozone Monitoring Experiment (GOME) on board ERS/2, with ground-based measurement recorded by a well calibrated Brewer spectrophotometer located in Madrid during the period 1996-2008. A cluster classification based on solar radiation (global, direct and diffuse), cloudiness and aerosol index allow selecting hazy, cloudy, very cloudy and clear days. Thus, the differences between Brewer and satellite total ozone data for each cluster have been analyzed. The accuracy of EP-TOMS total ozone data is affected by moderate cloudiness, showing a mean absolute bias error (MABE) of 2.0%. In addition, the turbidity also has a significant influence on EP-TOMS total ozone data with a MABE {proportional_to}1.6%. Those data are in contrast with clear days with MABE {proportional_to}1.2%. The total ozone data derived from the OMI instrument show clear bias at clear and hazy days with small uncertainties ({proportional_to}0.8%). Finally, the total ozone observations obtained with the GOME instrument show a very smooth dependence with respect to clouds and turbidity, showing a robust retrieval algorithm over these conditions. (orig.)

  12. Transportation Satellite Accounts : A New Way of Measuring Transportation Services in America

    Science.gov (United States)

    2011-01-01

    Transportation Satellite Accounts (TSA), produced by the Bureau of Economic Analysis and the Bureau of Transportation Statistics, provides measures of national transportation output. TSA includes both in-house and for-hire transportation services. Fo...

  13. Measurement of the Lense-Thirring drag on high-altitude, laser-ranged artificial satellites

    International Nuclear Information System (INIS)

    Ciufolini, I.

    1986-01-01

    We describe a new method of measuring the Lense-Thirring relativistic nodal drag using LAGEOS together with another high-altitude, laser-ranged, similar satellite with appropriately chosen orbital parameters. We propose, for this purpose, that a future satellite such as LAGEOS II have an inclination supplementary to that of LAGEOS. The experiment proposed here would provide a method for experimental verification of the general relativistic formulation of Mach's principle and measurement of the gravitomagnetic field

  14. History of satellite missions and measurements of the Earth Radiation Budget (1957-1984)

    Science.gov (United States)

    House, F. B.; Gruber, A.; Hunt, G. E.; Mecherikunnel, A. T.

    1986-01-01

    The history of satellite missions and their measurements of the earth radiation budget from the beginning of the space age until the present time are reviewed. The survey emphasizes the early struggle to develop instrument systems to monitor reflected shortwave and emitted long-wave exitances from the earth, and the problems associated with the interpretation of these observations from space. In some instances, valuable data sets were developed from satellite measurements whose instruments were not specifically designed for earth radiation budget observations.

  15. FLAVOR BIOGENERATION IN MANGABA (Hancornia speciosa Gomes FRUIT

    Directory of Open Access Journals (Sweden)

    Narenda Narain

    2007-11-01

    Full Text Available Most of the volatile flavoring substances are formed during maturation of fruit when it ripens. In this study, the mangaba (Hancornia speciosa Gomes fruit was harvested at half-ripe and ripe stages of maturity and analyzed for its volatile components. The extracts were obtained from the fruit pulp by using simultaneous distillation and extraction technique. Several extraction parameters such as weight of the pulp, dilution with water, solvent volume and extraction period were standardized to obtain highly characteristic fruit aroma extracts. The extracts were analyzed for the identification of volatile compounds by using a system of high resolution gas chromatograph coupled with mass spectrometer. Eighty-six components were separated out of which 46 compounds were positively identified. The volatile flavoring substances pertaining to classes of esters and terpenes increased from 6.19 to 35.487% and from 7.51 to 10.40%, respectively. The principal volatile compounds present in the pulp of ripe mangaba fruit were isopropyl acetate (19.23%, 3-hexanol (10.74%, linalool (7.38%, ä-limonene (2.43%, 3-pentanol (3.80%, 3-ethyl 2-buten-1-ol (2.53% and furfural (1.52%. Biogeneration of mangaba flavor is mainly characterized due to the presence of compounds pertaining to esters, aldehydes and terpenes.

  16. Contribution of BeiDou satellite system for long baseline GNSS measurement in Indonesia

    Science.gov (United States)

    Gumilar, I.; Bramanto, B.; Kuntjoro, W.; Abidin, H. Z.; Trihantoro, N. F.

    2018-05-01

    The demand for more precise positioning method using GNSS (Global Navigation Satellite System) in Indonesia continue to rise. The accuracy of GNSS positioning depends on the length of baseline and the distribution of observed satellites. BeiDou Navigation Satellite System (BDS) is a positioning system owned by China that operating in Asia-Pacific region, including Indonesia. This research aims to find out the contribution of BDS in increasing the accuracy of long baseline static positioning in Indonesia. The contributions are assessed by comparing the accuracy of measurement using only GPS (Global Positioning System) and measurement using the combination of GPS and BDS. The data used is 5 days of GPS and BDS measurement data for baseline with 120 km in length. The software used is open-source RTKLIB and commercial software Compass Solution. This research will explain in detail the contribution of BDS to the accuracy of position in long baseline static GNSS measurement.

  17. Satellite Infrared Radiation Measurements Prior to the Major Earthquakes

    Science.gov (United States)

    Ouzounov, Dimitar; Pulintes, S.; Bryant, N.; Taylor, Patrick; Freund, F.

    2005-01-01

    This work describes our search for a relationship between tectonic stresses and increases in mid-infrared (IR) flux as part of a possible ensemble of electromagnetic (EM) phenomena that may be related to earthquake activity. We present and &scuss observed variations in thermal transients and radiation fields prior to the earthquakes of Jan 22, 2003 Colima (M6.7) Mexico, Sept. 28 .2004 near Parkfield (M6.0) in California and Northern Sumatra (M8.5) Dec. 26,2004. Previous analysis of earthquake events has indicated the presence of an IR anomaly, where temperatures increased or did not return to its usual nighttime value. Our procedures analyze nighttime satellite data that records the general condtion of the ground after sunset. We have found from the MODIS instrument data that five days before the Colima earthquake the IR land surface nighttime temperature rose up to +4 degrees C in a 100 km radius around the epicenter. The IR transient field recorded by MODIS in the vicinity of Parkfield, also with a cloud free environment, was around +1 degree C and is significantly smaller than the IR anomaly around the Colima epicenter. Ground surface temperatures near the Parkfield epicenter four days prior to the earthquake show steady increase. However, on the night preceding the quake, a significant drop in relative humidity was indicated, process similar to those register prior to the Colima event. Recent analyses of continuous ongoing long- wavelength Earth radiation (OLR) indicate significant and anomalous variability prior to some earthquakes. The cause of these anomalies is not well understood but could be the result of a triggering by an interaction between the lithosphere-hydrosphere and atmospheric related to changes in the near surface electrical field and/or gas composition prior to the earthquake. The OLR anomaly usually covers large areas surrounding the main epicenter. We have found strong anomalies signal (two sigma) along the epicentral area signals on Dec 21

  18. Measurements of ionospheric TEC in the direction of GPS satellites and comparison with three ionospheric models

    Directory of Open Access Journals (Sweden)

    E. Zuccheretti

    1997-06-01

    Full Text Available The IEN Galileo Ferraris uses GPS for time and frequency synchronization. To obtain high performance it is important to reduce the error due to the ionospheric time-delay in GPS measurements. Evaluations of TEC in the direction of GPS satellites, obtained from three different ionospheric models, have been compared with corresponding measurements by GPS signal.

  19. Coarse Initial Orbit Determination for a Geostationary Satellite Using Single-Epoch GPS Measurements

    Directory of Open Access Journals (Sweden)

    Ghangho Kim

    2015-04-01

    Full Text Available A practical algorithm is proposed for determining the orbit of a geostationary orbit (GEO satellite using single-epoch measurements from a Global Positioning System (GPS receiver under the sparse visibility of the GPS satellites. The algorithm uses three components of a state vector to determine the satellite’s state, even when it is impossible to apply the classical single-point solutions (SPS. Through consideration of the characteristics of the GEO orbital elements and GPS measurements, the components of the state vector are reduced to three. However, the algorithm remains sufficiently accurate for a GEO satellite. The developed algorithm was tested on simulated measurements from two or three GPS satellites, and the calculated maximum position error was found to be less than approximately 40 km or even several kilometers within the geometric range, even when the classical SPS solution was unattainable. In addition, extended Kalman filter (EKF tests of a GEO satellite with the estimated initial state were performed to validate the algorithm. In the EKF, a reliable dynamic model was adapted to reduce the probability of divergence that can be caused by large errors in the initial state.

  20. Coarse Initial Orbit Determination for a Geostationary Satellite Using Single-Epoch GPS Measurements

    Science.gov (United States)

    Kim, Ghangho; Kim, Chongwon; Kee, Changdon

    2015-01-01

    A practical algorithm is proposed for determining the orbit of a geostationary orbit (GEO) satellite using single-epoch measurements from a Global Positioning System (GPS) receiver under the sparse visibility of the GPS satellites. The algorithm uses three components of a state vector to determine the satellite’s state, even when it is impossible to apply the classical single-point solutions (SPS). Through consideration of the characteristics of the GEO orbital elements and GPS measurements, the components of the state vector are reduced to three. However, the algorithm remains sufficiently accurate for a GEO satellite. The developed algorithm was tested on simulated measurements from two or three GPS satellites, and the calculated maximum position error was found to be less than approximately 40 km or even several kilometers within the geometric range, even when the classical SPS solution was unattainable. In addition, extended Kalman filter (EKF) tests of a GEO satellite with the estimated initial state were performed to validate the algorithm. In the EKF, a reliable dynamic model was adapted to reduce the probability of divergence that can be caused by large errors in the initial state. PMID:25835299

  1. Nitrogen oxides in the troposphere – What have we learned from satellite measurements?

    Directory of Open Access Journals (Sweden)

    Richter A.

    2009-02-01

    Full Text Available Nitrogen oxides are key species in the troposphere where they are linked to ozone formation and acid rain. The sources of nitrogen oxides are anthropogenic to large extend, mainly through combustion of fossil fuels. Satellite observations of NO2 provide global measurements of nitrogen oxides since summer 1995, and these data have been applied for many studies on the emission sources and strengths, the chemistry and the transport of NOx. In this paper, an overview will be given on satellite measurements of NO2 , some examples of typical applications and an outlook on future prospects.

  2. Rectenna array measurement results. [Satellite power transmission and reception

    Science.gov (United States)

    Dickinson, R. M.

    1980-01-01

    The measured performance characteristics of a rectenna array are reviewed and compared to the performance of a single element. It is shown that the performance may be extrapolated from the individual element to that of the collection of elements. Techniques for current and voltage combining are demonstrated. The array performance as a function of various operating parameters is characterized and techniques for overvoltage protection and automatic fault clearing in the array are demonstrated. A method for detecting failed elements also exists. Instrumentation for deriving performance effectiveness is described. Measured harmonic radiation patterns and fundamental frequency scattered patterns for a low level illumination rectenna array are presented.

  3. FULL-PHYSICS INVERSE LEARNING MACHINE FOR SATELLITE REMOTE SENSING OF OZONE PROFILE SHAPES AND TROPOSPHERIC COLUMNS

    Directory of Open Access Journals (Sweden)

    J. Xu

    2018-04-01

    Full Text Available Characterizing vertical distributions of ozone from nadir-viewing satellite measurements is known to be challenging, particularly the ozone information in the troposphere. A novel retrieval algorithm called Full-Physics Inverse Learning Machine (FP-ILM, has been developed at DLR in order to estimate ozone profile shapes based on machine learning techniques. In contrast to traditional inversion methods, the FP-ILM algorithm formulates the profile shape retrieval as a classification problem. Its implementation comprises a training phase to derive an inverse function from synthetic measurements, and an operational phase in which the inverse function is applied to real measurements. This paper extends the ability of the FP-ILM retrieval to derive tropospheric ozone columns from GOME- 2 measurements. Results of total and tropical tropospheric ozone columns are compared with the ones using the official GOME Data Processing (GDP product and the convective-cloud-differential (CCD method, respectively. Furthermore, the FP-ILM framework will be used for the near-real-time processing of the new European Sentinel sensors with their unprecedented spectral and spatial resolution and corresponding large increases in the amount of data.

  4. Full-Physics Inverse Learning Machine for Satellite Remote Sensing of Ozone Profile Shapes and Tropospheric Columns

    Science.gov (United States)

    Xu, J.; Heue, K.-P.; Coldewey-Egbers, M.; Romahn, F.; Doicu, A.; Loyola, D.

    2018-04-01

    Characterizing vertical distributions of ozone from nadir-viewing satellite measurements is known to be challenging, particularly the ozone information in the troposphere. A novel retrieval algorithm called Full-Physics Inverse Learning Machine (FP-ILM), has been developed at DLR in order to estimate ozone profile shapes based on machine learning techniques. In contrast to traditional inversion methods, the FP-ILM algorithm formulates the profile shape retrieval as a classification problem. Its implementation comprises a training phase to derive an inverse function from synthetic measurements, and an operational phase in which the inverse function is applied to real measurements. This paper extends the ability of the FP-ILM retrieval to derive tropospheric ozone columns from GOME- 2 measurements. Results of total and tropical tropospheric ozone columns are compared with the ones using the official GOME Data Processing (GDP) product and the convective-cloud-differential (CCD) method, respectively. Furthermore, the FP-ILM framework will be used for the near-real-time processing of the new European Sentinel sensors with their unprecedented spectral and spatial resolution and corresponding large increases in the amount of data.

  5. First Directly Retrieved Global Distribution of Tropospheric Column Ozone from GOME: Comparison with the GEOS-CHEM Model

    Science.gov (United States)

    Liu, Xiong; Chance, Kelly; Sioris, Christopher E.; Kurosu, Thomas P.; Spurr, Robert J. D.; Martin, Randall V.; Fu, Tzung-May; Logan, Jennifer A.; Jacob, Daniel J.; Palmer, Paul I.; hide

    2006-01-01

    We present the first directly retrieved global distribution of tropospheric column ozone from Global Ozone Monitoring Experiment (GOME) ultraviolet measurements during December 1996 to November 1997. The retrievals clearly show signals due to convection, biomass burning, stratospheric influence, pollution, and transport. They are capable of capturing the spatiotemporal evolution of tropospheric column ozone in response to regional or short time-scale events such as the 1997-1998 El Nino event and a 10-20 DU change within a few days. The global distribution of tropospheric column ozone displays the well-known wave-1 pattern in the tropics, nearly zonal bands of enhanced tropospheric column ozone of 36-48 DU at 20degS-30degS during the austral spring and at 25degN-45degN during the boreal spring and summer, low tropospheric column ozone of 33 DU at some northern high-latitudes during the spring. Simulation from a chemical transport model corroborates most of the above structures, with small biases of <+/-5 DU and consistent seasonal cycles in most regions, especially in the southern hemisphere. However, significant positive biases of 5-20 DU occur in some northern tropical and subtropical regions such as the Middle East during summer. Comparison of GOME with monthly-averaged Measurement of Ozone and Water Vapor by Airbus in-service Aircraft (MOZAIC) tropospheric column ozone for these regions usually shows good consistency within 1 a standard deviations and retrieval uncertainties. Some biases can be accounted for by inadequate sensitivity to lower tropospheric ozone, the different spatiotemporal sampling and the spatiotemporal variations in tropospheric column ozone.

  6. Saharan dust detection using multi-sensor satellite measurements

    Directory of Open Access Journals (Sweden)

    Sriharsha Madhavan

    2017-02-01

    Full Text Available Contemporary scientists have vested interest in trying to understand the climatology of the North Atlantic Basin since this region is considered as the genesis for hurricane formation that eventually get shipped to the tropical Atlantic region and the Caribbean. The effects of atmospheric water cycle and the climate of West Africa and the Atlantic basin are hugely impacted by the radiative forcing of Saharan dust. The focus area in this paper would be to improve the dust detection schemes by employing the use of multi sensor measurements in the thermal emissive wavelengths using legacy sensors such as Terra (T and Aqua (A MODerate-resolution Imaging Spectroradiometer (MODIS, fusing with Ozone Monitoring Instrument (OMI. Previous work by Hao and Qu (2007 had considered a limited number of thermal infrared channels which led to a correlation coefficient R2 value of 0.765 between the Aerosol Optical Thickness (AOT at 550 nm and the modeled dust index. In this work, we extend the thermal infrared based dust detection by employing additional channels: the 8.55 μm which has shown high sensitivity to the Saharan dust, along with water vapor channel of 7.1 μm and cloud top channel of 13.1 μm. Also, the dust pixels were clearly identified using the OMI based aerosol types. The dust pixels were cleanly segregated from the other aerosol types such as sulfates, biomass, and other carbonaceous aerosols. These improvements led to a much higher correlation coefficient R2 value of 0.85 between the modified dust index and the AOT in comparison to the previous work. The key limitations from the current AOT products based on MODIS and were put to test by validating the improved dust detection algorithm. Two improvements were noted. First, the dust measurement radiometry using MODIS is significantly improved by at least an order of 2. Second the spatial measurements are enhanced by a factor of at least 10.

  7. A preliminary comparison between TOVS and GOME level 2 ozone data

    Science.gov (United States)

    Rathman, William; Monks, Paul S.; Llewellyn-Jones, David; Burrows, John P.

    1997-09-01

    A preliminary comparison between total column ozone concentration values derived from TIROS Operational Vertical Sounder (TOVS) and Global Ozone Monitoring Experiment (GOME) has been carried out. Two comparisons of ozone datasets have been made: a) TOVS ozone analysis maps vs. GOME level 2 data; b) TOVS data located at Northern Hemisphere Ground Ozone Stations (NHGOS) vs. GOME data. Both analyses consistently showed an offset in the value of the total column ozone between the datasets [for analyses a) 35 Dobson Units (DU); and for analyses b) 10 DU], despite a good correlation between the spatial and temporal features of the datasets. A noticeably poor correlation in the latitudinal bands 10°/20° North and 10°/20° South was observed—the reasons for which are discussed. The smallest region which was statistically representative of the ozone value correlation dataset of TOVS data at NHGOS and GOME level-2 data was determined to be a region that was enclosed by effective radius of 0.75 arc-degrees (83.5km).

  8. Japanese Global Precipitation Measurement (GPM) mission status and application of satellite-based global rainfall map

    Science.gov (United States)

    Kachi, Misako; Shimizu, Shuji; Kubota, Takuji; Yoshida, Naofumi; Oki, Riko; Kojima, Masahiro; Iguchi, Toshio; Nakamura, Kenji

    2010-05-01

    As accuracy of satellite precipitation estimates improves and observation frequency increases, application of those data to societal benefit areas, such as weather forecasts and flood predictions, is expected, in addition to research of precipitation climatology to analyze precipitation systems. There is, however, limitation on single satellite observation in coverage and frequency. Currently, the Global Precipitation Measurement (GPM) mission is scheduled under international collaboration to fulfill various user requirements that cannot be achieved by the single satellite, like the Tropical Rainfall Measurement Mission (TRMM). The GPM mission is an international mission to achieve high-accurate and high-frequent rainfall observation over a global area. GPM is composed of a TRMM-like non-sun-synchronous orbit satellite (GPM core satellite) and constellation of satellites carrying microwave radiometer instruments. The GPM core satellite carries the Dual-frequency Precipitation Radar (DPR), which is being developed by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT), and microwave radiometer provided by the National Aeronautics and Space Administration (NASA). Development of DPR instrument is in good progress for scheduled launch in 2013, and DPR Critical Design Review has completed in July - September 2009. Constellation satellites, which carry a microwave imager and/or sounder, are planned to be launched around 2013 by each partner agency for its own purpose, and will contribute to extending coverage and increasing frequency. JAXA's future mission, the Global Change Observation Mission (GCOM) - Water (GCOM-W) satellite will be one of constellation satellites. The first generation of GCOM-W satellite is scheduled to be launched in 2011, and it carries the Advanced Microwave Scanning Radiometer 2 (AMSR2), which is being developed based on the experience of the AMSR-E on EOS Aqua satellite

  9. On the coordination of EISCAT measurements with rocket and satellite observations

    International Nuclear Information System (INIS)

    Hultqvist, B.

    1977-01-01

    The scientific interest of combining EISCAT measurements of the thermal ionospheric plasma with sounding rocket and/or satellite measurements of the hot plasma distribution function and other variables is discussed briefly. Some examples are presented where such coordinated measurements are of great interest. The importance of being able to launch rockets through, or at least quite close to, the radar beam is emphasized. (Auth.)

  10. Long-term stability of TES satellite radiance measurements

    Directory of Open Access Journals (Sweden)

    T. C. Connor

    2011-07-01

    Full Text Available The utilization of Tropospheric Emission Spectrometer (TES Level 2 (L2 retrieval products for the purpose of assessing long term changes in atmospheric trace gas composition requires knowledge of the overall radiometric stability of the Level 1B (L1B radiances. The purpose of this study is to evaluate the stability of the radiometric calibration of the TES instrument by analyzing the difference between measured and calculated brightness temperatures in selected window regions of the spectrum. The Global Modeling and Assimilation Office (GMAO profiles for temperature and water vapor and the Real-Time Global Sea Surface Temperature (RTGSST are used as input to the Optimal Spectral Sampling (OSS radiative transfer model to calculate the simulated spectra. The TES reference measurements selected cover a 4-year period of time from mid 2005 through mid 2009 with the selection criteria being; observation latitudes greater than −30° and less than 30°, over ocean, Global Survey mode (nadir view and retrieved cloud optical depth of less than or equal to 0.01. The TES cloud optical depth retrievals are used only for screening purposes and no effects of clouds on the radiances are included in the forward model. This initial screening results in over 55 000 potential reference spectra spanning the four year period. Presented is a trend analysis of the time series of the residuals (observation minus calculations in the TES 2B1, 1B2, 2A1, and 1A1 bands, with the standard deviation of the residuals being approximately equal to 0.6 K for bands 2B1, 1B2, 2A1, and 0.9 K for band 1A1. The analysis demonstrates that the trend in the residuals is not significantly different from zero over the 4-year period. This is one method used to demonstrate that the relative radiometric calibration is stable over time, which is very important for any longer term analysis of TES retrieved products (L2, particularly well-mixed species such as carbon dioxide and methane.

  11. MEASUREMENTS OF ELECTROMAGNETIC ULF FIELD ONBOARD THE MAGION-4 SATELLITE: ULF EXPERIMENT

    Czech Academy of Sciences Publication Activity Database

    Tříska, Pavel; Vojta, Jaroslav; Czapek, Alexandr; Chum, Jaroslav; Teodosiev, D.; Galev, G.; Shibaev, I.

    2003-01-01

    Roč. 17, - (2003), s. 47-53 ISSN 0861-1432 Institutional research plan: CEZ:AV0Z3042911 Keywords : Satellite * measurement * electromagnetic field * ULF Subject RIV: JV - Space Technology http://www.space.bas.bg/astro/eng.html

  12. ATM Quality of Service Parameters at 45 Mbps Using a Satellite Emulator: Laboratory Measurements

    Science.gov (United States)

    Ivancic, William D.; Bobinsky, Eric A.

    1997-01-01

    Results of 45-Mbps DS3 intermediate-frequency loopback measurements of asynchronous transfer mode (ATM) quality of service parameters (cell error ratio and cell loss ratio) are presented. These tests, which were conducted at the NASA Lewis Research Center in support of satellite-ATM interoperability research, represent initial efforts to quantify the minimum parameters for stringent ATM applications, such as MPEG-1 and MPEG-2 video transmission. Portions of these results were originally presented to the International Telecommunications Union's ITU-R Working Party 4B in February 1996 in support of their Draft Preliminary Recommendation on the Transmission of ATM Traffic via Satellite.

  13. Spin motion determination of the Envisat satellite through laser ranging measurements from a single pass measured by a single station

    Science.gov (United States)

    Pittet, Jean-Noël; Šilha, Jiří; Schildknecht, Thomas

    2018-02-01

    The Satellite Laser Ranging (SLR) technology is used to accurately determine the position of space objects equipped with so-called retro-reflectors or retro-reflector arrays (RRA). This type of measurement allows to measure the range to the spacecraft with high precision, which leads to determination of very accurate orbits for these targets. Non-active spacecraft, which are not attitude controlled any longer, tend to start to spin or tumble under influence of the external and internal torques and forces. If the return signal is measured for a non-spherical non-active rotating object, the signal in the range residuals with respect to the reference orbit is more complex. For rotating objects the return signal shows an oscillating pattern or patterns caused by the RRA moving around the satellite's centre of mass. This behaviour is projected onto the radial component measured by the SLR. In our work, we demonstrate how the SLR ranging technique from one sensor to a satellite equipped with a RRA can be used to precisely determine its spin motion during one passage. Multiple SLR measurements of one target over time allow to accurately monitor spin motion changes which can be further used for attitude predictions. We show our solutions of the spin motion determined for the non-active ESA satellite Envisat obtained from measurements acquired during years 2013-2015 by the Zimmerwald SLR station, Switzerland. All the necessary parameters are defined for our own so-called point-like model which describes the motion of a point in space around the satellite centre of mass.

  14. Establishing the Antarctic Dome C community reference standard site towards consistent measurements from Earth observation satellites

    Science.gov (United States)

    Cao, C.; Uprety, S.; Xiong, J.; Wu, A.; Jing, P.; Smith, D.; Chander, G.; Fox, N.; Ungar, S.

    2010-01-01

    Establishing satellite measurement consistency by using common desert sites has become increasingly more important not only for climate change detection but also for quantitative retrievals of geophysical variables in satellite applications. Using the Antarctic Dome C site (75°06′S, 123°21′E, elevation 3.2 km) for satellite radiometric calibration and validation (Cal/Val) is of great interest owing to its unique location and characteristics. The site surface is covered with uniformly distributed permanent snow, and the atmospheric effect is small and relatively constant. In this study, the long-term stability and spectral characteristics of this site are evaluated using well-calibrated satellite instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Preliminary results show that despite a few limitations, the site in general is stable in the long term, the bidirectional reflectance distribution function (BRDF) model works well, and the site is most suitable for the Cal/Val of reflective solar bands in the 0.4–1.0 µm range. It was found that for the past decade, the reflectivity change of the site is within 1.35% at 0.64 µm, and interannual variability is within 2%. The site is able to resolve calibration biases between instruments at a level of ~1%. The usefulness of the site is demonstrated by comparing observations from seven satellite instruments involving four space agencies, including OrbView-2–SeaWiFS, Terra–Aqua MODIS, Earth Observing 1 (EO-1) – Hyperion, Meteorological Operational satellite programme (MetOp) – Advanced Very High Resolution Radiometer (AVHRR), Envisat Medium Resolution Imaging Spectrometer (MERIS) – dvanced Along-Track Scanning Radiometer (AATSR), and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). Dome C is a promising candidate site for climate quality calibration of satellite radiometers towards more consistent satellite measurements, as part

  15. Analysis of global water vapour trends from satellite measurements in the visible spectral range

    Directory of Open Access Journals (Sweden)

    S. Mieruch

    2008-02-01

    Full Text Available Global water vapour total column amounts have been retrieved from spectral data provided by the Global Ozone Monitoring Experiment (GOME flying on ERS-2, which was launched in April 1995, and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY onboard ENVISAT launched in March 2002. For this purpose the Air Mass Corrected Differential Optical Absorption Spectroscopy (AMC-DOAS approach has been used. The combination of the data from both instruments provides us with a long-term global data set spanning more than 11 years with the potential of extension up to 2020 by GOME-2 data on MetOp.

    Using linear and non-linear methods from time series analysis and standard statistics the trends of H2O columns and their errors have been calculated. In this study, factors affecting the trend such as the length of the time series, the magnitude of the variability of the noise, and the autocorrelation of the noise are investigated. Special emphasis has been placed on the calculation of the statistical significance of the observed trends, which reveal significant local changes from −5% per year to +5% per year. These significant trends are distributed over the whole globe. Increasing trends have been calculated for Greenland, East Europe, Siberia and Oceania, whereas decreasing trends have been observed for the northwest USA, Central America, Amazonia, Central Africa and the Arabian Peninsular.

  16. NILU-UV multi-filter radiometer total ozone columns: Comparison with satellite observations over Thessaloniki, Greece.

    Science.gov (United States)

    Zempila, Melina Maria; Taylor, Michael; Koukouli, Maria Elissavet; Lerot, Christophe; Fragkos, Konstantinos; Fountoulakis, Ilias; Bais, Alkiviadis; Balis, Dimitrios; van Roozendael, Michel

    2017-07-15

    This study aims to construct and validate a neural network (NN) model for the production of high frequency (~1min) ground-based estimates of total ozone column (TOC) at a mid-latitude UV and ozone monitoring station in the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki (LAP/AUTh) for the years 2005-2014. In the first stage of model development, ~30,000 records of coincident solar UV spectral irradiance measurements from a Norsk Institutt for Luftforskning (NILU)-UV multi-filter radiometer and TOC measurements from a co-located Brewer spectroradiometer are used to train a NN to learn the nonlinear functional relation between the irradiances and TOC. The model is then subjected to sensitivity analysis and validation. Close agreement is obtained (R 2 =0.94, RMSE=8.21 DU and bias=-0.15 DU relative to the Brewer) for the training data in the correlation of NN estimates on Brewer derived TOC with 95% of the coincident data differing by less than 13 DU. In the second stage of development, a long time series (≥1 million records) of high frequency (~1min) NILU-UV ground-based measurements are presented as inputs to the NN model to generate high frequency TOC estimates. The advantage of the NN model is that it is not site dependent and is applicable to any NILU input data lying within the range of the training data. GOME/ERS-2, SCIAMACHY/Envisat, OMI/Aura and GOME2/MetOp-A TOC records are then used to perform a precise cross-validation analysis and comparison with the NILU TOC estimates over Thessaloniki. All 4 satellite TOC dataset are retrieved using the GOME Direct Fitting algorithm, version 3 (GODFIT_v3), for reasons of consistency. The NILU TOC estimates within ±30min of the overpass times agree well with the satellite TOC retrievals with coefficient of determination in the range 0.88≤R 2 ≤0.90 for all sky conditions and 0.95≤R 2 ≤0.96 for clear sky conditions. The mean fractional differences are found to be -0.67%±2.15%, -1

  17. The along track scanning radiometer - an analysis of coincident ship and satellite measurements

    Science.gov (United States)

    Barton, I. J.; Prata, A. J.; Llewellyn-Jones, D. T.

    1993-05-01

    Following the successful launch of the ERS-1 satellite in July 1991 we have undertaken several geophysical validation cruises in the Coral Sea. The prime aim of these cruises was to compare the sea surface temperature (SST) derived from the Along Track Scanning Radiometer (ATSR) with that measured using precision radiometers mounted on the ships. On most occasions when simultaneous satellite and ship measurements were taken we also launched a radiosonde from one of the research vessels. The results suggest that the ATSR is able to measure the ``skin'' temperature of the sea surface with an accuracy suitable for climate research applications. A case study comparison between the AVHRR and ATSR SST products will also be presented.

  18. Estimations of natural variability between satellite measurements of trace species concentrations

    Science.gov (United States)

    Sheese, P.; Walker, K. A.; Boone, C. D.; Degenstein, D. A.; Kolonjari, F.; Plummer, D. A.; von Clarmann, T.

    2017-12-01

    In order to validate satellite measurements of atmospheric states, it is necessary to understand the range of random and systematic errors inherent in the measurements. On occasions where the measurements do not agree within those errors, a common "go-to" explanation is that the unexplained difference can be chalked up to "natural variability". However, the expected natural variability is often left ambiguous and rarely quantified. This study will look to quantify the expected natural variability of both O3 and NO2 between two satellite instruments: ACE-FTS (Atmospheric Chemistry Experiment - Fourier Transform Spectrometer) and OSIRIS (Optical Spectrograph and Infrared Imaging System). By sampling the CMAM30 (30-year specified dynamics simulation of the Canadian Middle Atmosphere Model) climate chemistry model throughout the upper troposphere and stratosphere at times and geolocations of coincident ACE-FTS and OSIRIS measurements at varying coincidence criteria, height-dependent expected values of O3 and NO2 variability will be estimated and reported on. The results could also be used to better optimize the coincidence criteria used in satellite measurement validation studies.

  19. Vertical Profiles of Aerosol Optical Properties Over Central Illinois and Comparison with Surface and Satellite Measurements

    Science.gov (United States)

    Sheridan P. J.; Andrews, E.; Ogren, J A.; Tackett, J. L.; Winker, D. M.

    2012-01-01

    Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. These statistical data offer guidance as to the likelihood of CALIPSO's ability to retrieve aerosol extinction at various locations around the globe.

  20. Overview of Boundary Layer Clouds Using Satellite and Ground-Based Measurements

    Science.gov (United States)

    Xi, B.; Dong, X.; Wu, P.; Qiu, S.

    2017-12-01

    A comprehensive summary of boundary layer clouds properties based on our few recently studies will be presented. The analyses include the global cloud fractions and cloud macro/micro- physical properties based on satellite measurements using both CERES-MODIS and CloudSat/Caliposo data products,; the annual/seasonal/diurnal variations of stratocumulus clouds over different climate regions (mid-latitude land, mid-latitude ocean, and Arctic region) using DOE ARM ground-based measurements over Southern great plain (SGP), Azores (GRW), and North slope of Alaska (NSA) sites; the impact of environmental conditions to the formation and dissipation process of marine boundary layer clouds over Azores site; characterizing Arctice mixed-phase cloud structure and favorable environmental conditions for the formation/maintainess of mixed-phase clouds over NSA site. Though the presentation has widely spread topics, we will focus on the representation of the ground-based measurements over different climate regions; evaluation of satellite retrieved cloud properties using these ground-based measurements, and understanding the uncertainties of both satellite and ground-based retrievals and measurements.

  1. Comparison of dust-layer heights from active and passive satellite sensors

    Science.gov (United States)

    Kylling, Arve; Vandenbussche, Sophie; Capelle, Virginie; Cuesta, Juan; Klüser, Lars; Lelli, Luca; Popp, Thomas; Stebel, Kerstin; Veefkind, Pepijn

    2018-05-01

    Aerosol-layer height is essential for understanding the impact of aerosols on the climate system. As part of the European Space Agency Aerosol_cci project, aerosol-layer height as derived from passive thermal and solar satellite sensors measurements have been compared with aerosol-layer heights estimated from CALIOP measurements. The Aerosol_cci project targeted dust-type aerosol for this study. This ensures relatively unambiguous aerosol identification by the CALIOP processing chain. Dust-layer height was estimated from thermal IASI measurements using four different algorithms (from BIRA-IASB, DLR, LMD, LISA) and from solar GOME-2 (KNMI) and SCIAMACHY (IUP) measurements. Due to differences in overpass time of the various satellites, a trajectory model was used to move the CALIOP-derived dust heights in space and time to the IASI, GOME-2 and SCIAMACHY dust height pixels. It is not possible to construct a unique dust-layer height from the CALIOP data. Thus two CALIOP-derived layer heights were used: the cumulative extinction height defined as the height where the CALIOP extinction column is half of the total extinction column, and the geometric mean height, which is defined as the geometrical mean of the top and bottom heights of the dust layer. In statistical average over all IASI data there is a general tendency to a positive bias of 0.5-0.8 km against CALIOP extinction-weighted height for three of the four algorithms assessed, while the fourth algorithm has almost no bias. When comparing geometric mean height there is a shift of -0.5 km for all algorithms (getting close to zero for the three algorithms and turning negative for the fourth). The standard deviation of all algorithms is quite similar and ranges between 1.0 and 1.3 km. When looking at different conditions (day, night, land, ocean), there is more detail in variabilities (e.g. all algorithms overestimate more at night than during the day). For the solar sensors it is found that on average SCIAMACHY data

  2. Comprehensive Comparisons of Satellite Data, Signals, and Measurements between the BeiDou Navigation Satellite System and the Global Positioning System †

    Science.gov (United States)

    Jan, Shau-Shiun; Tao, An-Lin

    2016-01-01

    The Chinese BeiDou navigation satellite system (BDS) aims to provide global positioning service by 2020. The combined use of BDS and Global Positioning System (GPS) is proposed to provide navigation service with more stringent requirements. Actual satellite data, signals and measurements were collected for more than one month to analyze the positioning service qualities from both BDS and GPS. In addition to the conversions of coordinate and timing system, five data quality analysis (DQA) methods, three signal quality analysis (SQA) methods, and four measurement quality analysis (MQA) methods are proposed in this paper to improve the integrated positioning performance of BDS and GPS. As shown in the experiment results, issues related to BDS and GPS are resolved by the above proposed quality analysis methods. Thus, the anomalies in satellite data, signals and measurements can be detected by following the suggested resolutions to enhance the positioning performance of the combined use of BDS and GPS in the Asia Pacific region. PMID:27187403

  3. Blending Satellite Observed, Model Simulated, and in Situ Measured Soil Moisture over Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Yijian Zeng

    2016-03-01

    Full Text Available The inter-comparison of different soil moisture (SM products over the Tibetan Plateau (TP reveals the inconsistency among different SM products, when compared to in situ measurement. It highlights the need to constrain the model simulated SM with the in situ measured data climatology. In this study, the in situ soil moisture networks, combined with the classification of climate zones over the TP, were used to produce the in situ measured SM climatology at the plateau scale. The generated TP scale in situ SM climatology was then used to scale the model-simulated SM data, which was subsequently used to scale the SM satellite observations. The climatology-scaled satellite and model-simulated SM were then blended objectively, by applying the triple collocation and least squares method. The final blended SM can replicate the SM dynamics across different climatic zones, from sub-humid regions to semi-arid and arid regions over the TP. This demonstrates the need to constrain the model-simulated SM estimates with the in situ measurements before their further applications in scaling climatology of SM satellite products.

  4. Geometric model of pseudo-distance measurement in satellite location systems

    Science.gov (United States)

    Panchuk, K. L.; Lyashkov, A. A.; Lyubchinov, E. V.

    2018-04-01

    The existing mathematical model of pseudo-distance measurement in satellite location systems does not provide a precise solution of the problem, but rather an approximate one. The existence of such inaccuracy, as well as bias in measurement of distance from satellite to receiver, results in inaccuracy level of several meters. Thereupon, relevance of refinement of the current mathematical model becomes obvious. The solution of the system of quadratic equations used in the current mathematical model is based on linearization. The objective of the paper is refinement of current mathematical model and derivation of analytical solution of the system of equations on its basis. In order to attain the objective, geometric analysis is performed; geometric interpretation of the equations is given. As a result, an equivalent system of equations, which allows analytical solution, is derived. An example of analytical solution implementation is presented. Application of analytical solution algorithm to the problem of pseudo-distance measurement in satellite location systems allows to improve the accuracy such measurements.

  5. Measurement of quasi-static and low frequency electric fields on the Viking satellite

    International Nuclear Information System (INIS)

    Block, L.P.; Faelthammar, C.G.; Lindqvist, P.A.; Marklund, G.T.; Mozer, F.S.; Pedersen, A.

    1987-03-01

    The instrument for measurement of quasi-static and low frequency (dc and slow varying) electric fields on the Viking satellite is described. The instrument uses three spherical probe pairs to measure the full three-dimensional electric field vector with 18.75 ms time resolution. The probes are kept near plasma potential by means of a controllable bias current. A guard covering part of the booms is biased to a negative voltage to prevent photoelectrons escaping from the probes from reaching the satellite body. Current-voltage sweeps are performed to determine the plasma density and temperature and to select the optimal bias current. The bias currents to the probes and the voltage offset on the guards as well as the current-voltage sweeps are controlled by an on-board microprocessor which can be programmed from the ground and allows great flexibility. (authors)

  6. Air Quality Measurements from Satellites during the 2008 Beijing Olympics and Paralympics

    Science.gov (United States)

    Witte, J. C.; Schoeberl, M.; Douglass, A.; Gleason, J.; Krotkov, N.; Gille, J.; Pickering, K.; Livesey, N.

    2009-05-01

    In preparation for the Olympic and Paralympic games in August and September 2008 in Beijing, China, the Chinese government imposed strict controls on industrial emissions and motor vehicle traffic in and around the city and vicinity before and during the events to improve the air quality for the competitors and visitors. To test the efficacy of these measures, we used satellite data from NASA's Aura/Ozone Monitoring Instrument (OMI) and Terra/Measurements Of Pollution In The Troposphere (MOPITT) over Beijing and surrounding areas during the Olympic and Paralympic period. The satellite instruments recorded significant reductions in nitrogen dioxide of up to 50%, up to 10% in tropospheric column ozone, 20-40% in boundary layer sulfur dioxide, and 10-20% reductions in carbon monoxide concentrations below 700 hPa.

  7. Establishing best practices for the validation of atmospheric composition measurements from satellites

    Science.gov (United States)

    Lambert, Jean-Christopher

    As a contribution to the implementation of the Global Earth Observation System of Systems (GEOSS), the Committee on Earth Observation Satellites (CEOS) is developing a data quality strategy for satellite measurements. To achieve GEOSS requirements of consistency and interoperability (e.g. for comparison and for integrated interpretation) of the measurements and their derived data products, proper uncertainty assessment is essential and needs to be continuously monitored and traceable to standards. Therefore, CEOS has undertaken the task to establish a set of best practices and guidelines for satellite validation, starting with current practices that could be improved with time. Best practices are not intended to be imposed as firm requirements, but rather to be suggested as a baseline for comparing against, which could be used by the widest community and provide guidance to newcomers. The present paper reviews the current development of best practices and guidelines for the validation of atmospheric composition satellites. Terminologies and general principles of validation are reminded. Going beyond elementary definitions of validation like the assessment of uncertainties, the specific GEOSS context calls also for validation of individual service components and against user requirements. This paper insists on two important aspects. First one, the question of the "collocation". Validation generally involves comparisons with "reference" measurements of the same quantities, and the question of what constitutes a valid comparison is not the least of the challenges faced. We present a tentative scheme for defining the validity of a comparison and of the necessary "collocation" criteria. Second focus of this paper: the information content of the data product. Validation against user requirements, or the verification of the "fitness for purpose" of both the data products and their validation, needs to identify what information, in the final product, is contributed really

  8. Combining satellite, aerial and ground measurements to assess forest carbon stocks in Democratic Republic of Congo

    Science.gov (United States)

    Beaumont, Benjamin; Bouvy, Alban; Stephenne, Nathalie; Mathoux, Pierre; Bastin, Jean-François; Baudot, Yves; Akkermans, Tom

    2015-04-01

    Monitoring tropical forest carbon stocks changes has been a rising topic in the recent years as a result of REDD+ mechanisms negotiations. Such monitoring will be mandatory for each project/country willing to benefit from these financial incentives in the future. Aerial and satellite remote sensing technologies offer cost advantages in implementing large scale forest inventories. Despite the recent progress made in the use of airborne LiDAR for carbon stocks estimation, no widely operational and cost effective method has yet been delivered for central Africa forest monitoring. Within the Maï Ndombe region of Democratic Republic of Congo, the EO4REDD project develops a method combining satellite, aerial and ground measurements. This combination is done in three steps: [1] mapping and quantifying forest cover changes using an object-based semi-automatic change detection (deforestation and forest degradation) methodology based on very high resolution satellite imagery (RapidEye), [2] developing an allometric linear model for above ground biomass measurements based on dendrometric parameters (tree crown areas and heights) extracted from airborne stereoscopic image pairs and calibrated using ground measurements of individual trees on a data set of 18 one hectare plots and [3] relating these two products to assess carbon stocks changes at a regional scale. Given the high accuracies obtained in [1] (> 80% for deforestation and 77% for forest degradation) and the suitable, but still to be improved with a larger calibrating sample, model (R² of 0.7) obtained in [2], EO4REDD products can be seen as a valid and replicable option for carbon stocks monitoring in tropical forests. Further improvements are planned to strengthen the cost effectiveness value and the REDD+ suitability in the second phase of EO4REDD. This second phase will include [A] specific model developments per forest type; [B] measurements of afforestation, reforestation and natural regeneration processes and

  9. Climatologies from satellite measurements: the impact of orbital sampling on the standard error of the mean

    Directory of Open Access Journals (Sweden)

    M. Toohey

    2013-04-01

    Full Text Available Climatologies of atmospheric observations are often produced by binning measurements according to latitude and calculating zonal means. The uncertainty in these climatological means is characterised by the standard error of the mean (SEM. However, the usual estimator of the SEM, i.e., the sample standard deviation divided by the square root of the sample size, holds only for uncorrelated randomly sampled measurements. Measurements of the atmospheric state along a satellite orbit cannot always be considered as independent because (a the time-space interval between two nearest observations is often smaller than the typical scale of variations in the atmospheric state, and (b the regular time-space sampling pattern of a satellite instrument strongly deviates from random sampling. We have developed a numerical experiment where global chemical fields from a chemistry climate model are sampled according to real sampling patterns of satellite-borne instruments. As case studies, the model fields are sampled using sampling patterns of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS and Atmospheric Chemistry Experiment Fourier-Transform Spectrometer (ACE-FTS satellite instruments. Through an iterative subsampling technique, and by incorporating information on the random errors of the MIPAS and ACE-FTS measurements, we produce empirical estimates of the standard error of monthly mean zonal mean model O3 in 5° latitude bins. We find that generally the classic SEM estimator is a conservative estimate of the SEM, i.e., the empirical SEM is often less than or approximately equal to the classic estimate. Exceptions occur only when natural variability is larger than the random measurement error, and specifically in instances where the zonal sampling distribution shows non-uniformity with a similar zonal structure as variations in the sampled field, leading to maximum sensitivity to arbitrary phase shifts between the sample distribution and

  10. Algorithmic Foundation of Spectral Rarefaction for Measuring Satellite Imagery Heterogeneity at Multiple Spatial Scales

    Science.gov (United States)

    Rocchini, Duccio

    2009-01-01

    Measuring heterogeneity in satellite imagery is an important task to deal with. Most measures of spectral diversity have been based on Shannon Information theory. However, this approach does not inherently address different scales, ranging from local (hereafter referred to alpha diversity) to global scales (gamma diversity). The aim of this paper is to propose a method for measuring spectral heterogeneity at multiple scales based on rarefaction curves. An algorithmic solution of rarefaction applied to image pixel values (Digital Numbers, DNs) is provided and discussed. PMID:22389600

  11. Simultaneous Observations of pi 2 Pulsations on the Satellite and Geound-Based Measurements

    Directory of Open Access Journals (Sweden)

    S. H. Lee

    1997-12-01

    Full Text Available We have investigated Pi2 pulsations which were observed both on ground magnetometer array and by satellites. On November 9th in 1994, pi2 pulsations appeared globally on the 190/210 magnetometer chain and Hermanus station when two satellites(EXOS-D and ETS-VI were located near the magnetic meridian of the 210 array. The local time of measurements covers form morning(LT=8.47hr to afternoon(LT=20.3hr and the bandwidth of peak frequency is found relatively small. The signals of the electric field measurement of board the EXOS-D, which is located inside the plasmasphere(L=2.35, are highly coherent with the ground-based observations with the out of phase oscillations. However, the magnetic field measurement on the ETS-VI in the outer magnetosphere(L=6.60 shows no signature of pi2 pulsations over the same time interval and the correlation with any of ground-based stations is found to be very weak, even though both satellites and magnetometer chain are located close to each other in local time. We suggest that this event may be a direct evidence of Pi2 pulsations as virtual resonant modes which are localized in the plasmasphere(Lee 1996. The results show that the cavity mode oscillations can occur in the inner magnetosphere with less spectral noise compared to the outer magnetospheric case.

  12. Towards validation of ammonia (NH3) measurements from the IASI satellite

    Science.gov (United States)

    Van Damme, M.; Clarisse, L.; Dammers, E.; Liu, X.; Nowak, J. B.; Clerbaux, C.; Flechard, C. R.; Galy-Lacaux, C.; Xu, W.; Neuman, J. A.; Tang, Y. S.; Sutton, M. A.; Erisman, J. W.; Coheur, P. F.

    2015-03-01

    Limited availability of ammonia (NH3) observations is currently a barrier for effective monitoring of the nitrogen cycle. It prevents a full understanding of the atmospheric processes in which this trace gas is involved and therefore impedes determining its related budgets. Since the end of 2007, the Infrared Atmospheric Sounding Interferometer (IASI) satellite has been observing NH3 from space at a high spatio-temporal resolution. This valuable data set, already used by models, still needs validation. We present here a first attempt to validate IASI-NH3 measurements using existing independent ground-based and airborne data sets. The yearly distributions reveal similar patterns between ground-based and space-borne observations and highlight the scarcity of local NH3 measurements as well as their spatial heterogeneity and lack of representativity. By comparison with monthly resolved data sets in Europe, China and Africa, we show that IASI-NH3 observations are in fair agreement, but they are characterized by a smaller variation in concentrations. The use of hourly and airborne data sets to compare with IASI individual observations allows investigations of the impact of averaging as well as the representativity of independent observations for the satellite footprint. The importance of considering the latter and the added value of densely located airborne measurements at various altitudes to validate IASI-NH3 columns are discussed. Perspectives and guidelines for future validation work on NH3 satellite observations are presented.

  13. Search for shot-time growths of flares od cosmic heavy nuclei according to measurement data at ''Prognoz'' satellites

    International Nuclear Information System (INIS)

    Volodichev, N.N.; Savenko, I.A.; Suslov, A.A.

    1983-01-01

    Surch for short-time growths of fluxes of mainly cosmic heavy nuclei with the energy epsilon > or approximately 500 MeV/nucleon according to measurement data at ''Prognoz-2'' and ''Prognoz-3'' satellites is undertaken. Such growths have been recorded during the flights of the first soviet cosmic rockets, spacecraft-satellites, ''Electron'', ''Molnia-1'' satellites. At the ''Prognoz'' satellite such growth have not been observed. Moreover, the 2.1.1974 growth found at the ''Molnia-1'' satellite by the telescope of scintillation and Cherenkov counters has not been recorded by the analogous device at ''Prognoz-3'' satellite. Therefore, the problem on the nature of short-time growths of the heavy nuclei fluxes remains unsolved

  14. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Current Technical Performance Measures

    Science.gov (United States)

    Cochran, S.; Panas, M.; Jamilkowski, M. L.; Miller, S. W.

    2015-12-01

    ABSTRACT The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture is being upgraded to Block 2.0 in 2015 to "operationalize" S-NPP, leverage lessons learned to date in multi-mission support, take advantage of more reliable and efficient technologies, and satisfy new requirements and constraints in the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 49 Technical Performance Measures (TPMs) across 10 categories, such as data latency, operational availability and scalability. This paper will provide an overview of the CGS Block 2.0 architecture, with particular focus on the 10 TPM categories listed above. We will provide updates on how we ensure the deployed architecture meets these TPMs to satisfy our multi-mission objectives with the deployment of Block 2.0.

  15. Photon Pressure Force on Space Debris TOPEX/Poseidon Measured by Satellite Laser Ranging

    Science.gov (United States)

    Kucharski, D.; Kirchner, G.; Bennett, J. C.; Lachut, M.; Sośnica, K.; Koshkin, N.; Shakun, L.; Koidl, F.; Steindorfer, M.; Wang, P.; Fan, C.; Han, X.; Grunwaldt, L.; Wilkinson, M.; Rodríguez, J.; Bianco, G.; Vespe, F.; Catalán, M.; Salmins, K.; del Pino, J. R.; Lim, H.-C.; Park, E.; Moore, C.; Lejba, P.; Suchodolski, T.

    2017-10-01

    The (TOPography EXperiment) TOPEX/Poseidon (T/P) altimetry mission operated for 13 years before the satellite was decommissioned in January 2006, becoming a large space debris object at an altitude of 1,340 km. Since the end of the mission, the interaction of T/P with the space environment has driven the satellite's spin dynamics. Satellite laser ranging (SLR) measurements collected from June 2014 to October 2016 allow for the satellite spin axis orientation to be determined with an accuracy of 1.7°. The spin axis coincides with the platform yaw axis (formerly pointing in the nadir direction) about which the body rotates in a counterclockwise direction. The combined photometric and SLR data collected over the 11 year time span indicates that T/P has continuously gained rotational energy at an average rate of 2.87 J/d and spins with a period of 10.73 s as of 19 October 2016. The satellite attitude model shows a variation of the cross-sectional area in the Sun direction between 8.2 m2 and 34 m2. The direct solar radiation pressure is the main factor responsible for the spin-up of the body, and the exerted photon force varies from 65 μN to 228 μN around the mean value of 138.6 μN. Including realistic surface force modeling in orbit propagation algorithms will improve the prediction accuracy, giving better conjunction warnings for scenarios like the recent close approach reported by the ILRS Space Debris Study Group—an approximate 400 m flyby between T/P and Jason-2 on 20 June 2017.

  16. Insight into the Global Carbon Cycle from Assimilation of Satellite CO2 measurements

    Science.gov (United States)

    Baker, D. F.

    2017-12-01

    A key goal of satellite CO2 measurements is to provide sufficient spatio-temporal coverage to constrain portions of the globe poorly observed by the in situ network, especially the tropical land regions. While systematic errors in both measurements and modeling remain a challenge, these satellite data are providing new insight into the functioning of the global carbon cycle, most notably across the recent 2015-16 En Niño. Here we interpret CO2 measurements from the GOSAT and OCO-2 satellites, as well as from the global in situ network (both surface sites and routine aircraft profiles), using a 4DVar-based global CO2 flux inversion across 2009-2017. The GOSAT data indicate that the tropical land regions are responsible for most of the observed global variability in CO2 across the last 8+ years. For the most recent couple of years where they overlap, the OCO-2 data give the same result, an +2 PgC/yr shift towards CO2 release in the ENSO warm phase, while disagreeing somewhat on the absolute value of the flux. The variability given by both these satellites disagrees with that given by an in situ-only inversion across the recent 2015-16 El Niño: the +2 PgC/yr shift from the satellites is double that given by the in situ data alone, suggesting that the more complete coverage is providing a more accurate view. For the current release of OCO-2 data (version 7), however, the flux results given by the OCO-2 land data (from both nadir- and glint-viewing modes) disagree significantly with those given by the ocean glint data; we examine the soon-to-be-released v8 data to assess whether these systematic retrieval errors have been reduced, and whether the corrected OCO-2 ocean data support the result from the land data. We discuss finer-scale features flux results given by the satellite data, and examine the importance of the flux prior, as well.

  17. SO2 columns over China: Temporal and spatial variations using OMI and GOME-2 observations

    Science.gov (United States)

    Huanhuan, Yan; Liangfu, Chen; Lin, Su; Jinhua, Tao; Chao, Yu

    2014-03-01

    Enhancements of SO2 column amounts due to anthropogenic emission sources over China were shown in this paper by using OMI and GOME-2 observations. The temporal and spatial variations of SO2 columns over China were analyzed for the time period 2005-2010. Beijing and Chongqing showed a high concentration in the SO2 columns, attributable to the use of coal for power generation in China and the characteristic of terrain and meteorology. The reduction of SO2 columns over Beijing and surrounding provinces in 2008 was observed by OMI, which confirms the effectiveness of strict controls on pollutant emissions and motor vehicle traffic before and during 2008 Olympic and Paralympic Games. The SO2 columns over China from GOME-2 (0.2-0.5 DU) were lower than those from OMI (0.6-1 DU), but both showed a decrease in SO2 columns over northern China since 2008 (except an increase in OMI SO2 in 2010).

  18. Application of Vision Metrology to In-Orbit Measurement of Large Reflector Onboard Communication Satellite for Next Generation Mobile Satellite Communication

    Science.gov (United States)

    Akioka, M.; Orikasa, T.; Satoh, M.; Miura, A.; Tsuji, H.; Toyoshima, M.; Fujino, Y.

    2016-06-01

    Satellite for next generation mobile satellite communication service with small personal terminal requires onboard antenna with very large aperture reflector larger than twenty meters diameter because small personal terminal with lower power consumption in ground base requires the large onboard reflector with high antenna gain. But, large deployable antenna will deform in orbit because the antenna is not a solid dish but the flexible structure with fine cable and mesh supported by truss. Deformation of reflector shape deteriorate the antenna performance and quality and stability of communication service. However, in case of digital beam forming antenna with phased array can modify the antenna beam performance due to adjustment of excitation amplitude and excitation phase. If we can measure the reflector shape precisely in orbit, beam pattern and antenna performance can be compensated with the updated excitation amplitude and excitation phase parameters optimized for the reflector shape measured every moment. Softbank Corporation and National Institute of Information and Communications Technology has started the project "R&D on dynamic beam control technique for next generation mobile communication satellite" as a contracted research project sponsored by Ministry of Internal Affairs and Communication of Japan. In this topic, one of the problem in vision metrology application is a strong constraints on geometry for camera arrangement on satellite bus with very limited space. On satellite in orbit, we cannot take many images from many different directions as ordinary vision metrology measurement and the available area for camera positioning is quite limited. Feasibility of vision metrology application and general methodology to apply to future mobile satellite communication satellite is to be found. Our approach is as follows: 1) Development of prototyping simulator to evaluate the expected precision for network design in zero order and first order 2) Trial

  19. Satellite and ground measurements of latitude distribution of upper ionosphere parameters in the region of the main trough of ionization

    International Nuclear Information System (INIS)

    Filippov, V.M.; Alekseev, V.N.; Afonin, V.V.

    1988-01-01

    Results of simultaneous complex measurements of subauroral ionosphere structure at observations of charged-particle precipitation at Interkosmos-19 satellite, electron concentration and temperature at Kosmos-900 satellite, ionosphere parameters and plasma convection at Zhigansk (L∼4) and Jakutsk (L∼3) stations and 630.0 mm line luminescence by scanning photometer at Zhigansk station, carried out on the 26 - 27.03.1979, are presented. It is found, that the through polar edge is formed by low-energy electron precipitations in diffuse auroral zone. It is confirmed by spatial coincidence of diffuse precipitations equatorial boundary, determined by satellite and ground optical measurements, with the ionization main through polar edge, determined by ground ionospherical observation and satellite measurements Ne at Kosmos-900 satellite. Results of these complex experiments show as well, that one of the main mechanisms of main ionospherical through formation may be plasma convection peculiarities within F region at subauroral zone widthes

  20. The Dedicated Aerosol Retrieval Experiment (DARE): scientific requirements for a dedicated satellite instrument to measure atmospheric aerosols

    NARCIS (Netherlands)

    Decae, R.; Courrèges-Lacoste, G.B.; Leeuw, G. de

    2004-01-01

    DARE (Dedicated Aerosol Retrieval Experiment) is a study to design an instrument for accurate remote sensing of aerosol properties from space. DARE combines useful properties of several existing instruments like TOMS, GOME, ATSR and POLDER. It has a large wavelength range, 330 to 1000 nm, to

  1. Fluxes of energetic protons and electrons measured on board the Oersted satellite

    Directory of Open Access Journals (Sweden)

    J. Cabrera

    2005-11-01

    Full Text Available The Charged Particle Detector (CPD on board the Oersted satellite (649 km perigee, 865 km apogee and 96.48° inclination currently measures energetic protons and electrons. The measured peak fluxes of E>1 MeV electrons are found to confirm the predictions of AE8-MAX, though they occur at a geographical position relatively shifted in the SAA. The fluxes of protons are one order of magnitude higher than the predictions of AP8-MAX in the energy range 20-500 MeV. This huge discrepancy between AP8 and recent measurements in LEO was already noticed and modelled in SAMPEX/PSB97 and TPM-1 models. Nevertheless some other LEO measurements such as PROBA and CORONA-F result in flux values in good agreement with AP8 within a factor 2. The anisotropy of the low-altitude proton flux, combined with measurement performed on board three-axis stabilised satellites, has been suspected to be one possible source of the important discrepancies observed by different missions. In this paper, we evaluate the effect of anisotropy on flux measurements conducted using the CPD instruments. On the basis of the available data, we confirm the inaccuracy of AP8 at LEO and suggest methods to improve the analysis of data in future flux measurements of energetic protons at low altitudes.

  2. Comparisons of Satellite Soil Moisture, an Energy Balance Model Driven by LST Data and Point Measurements

    Science.gov (United States)

    Laiolo, Paola; Gabellani, Simone; Rudari, Roberto; Boni, Giorgio; Puca, Silvia

    2013-04-01

    Soil moisture plays a fundamental role in the partitioning of mass and energy fluxes between land surface and atmosphere, thereby influencing climate and weather, and it is important in determining the rainfall-runoff response of catchments; moreover, in hydrological modelling and flood forecasting, a correct definition of moisture conditions is a key factor for accurate predictions. Different sources of information for the estimation of the soil moisture state are currently available: satellite data, point measurements and model predictions. All are affected by intrinsic uncertainty. Among different satellite sensors that can be used for soil moisture estimation three major groups can be distinguished: passive microwave sensors (e.g., SSMI), active sensors (e.g. SAR, Scatterometers), and optical sensors (e.g. Spectroradiometers). The last two families, mainly because of their temporal and spatial resolution seem the most suitable for hydrological applications In this work soil moisture point measurements from 10 sensors in the Italian territory are compared of with the satellite products both from the HSAF project SM-OBS-2, derived from the ASCAT scatterometer, and from ACHAB, an operative energy balance model that assimilate LST data derived from MSG and furnishes daily an evaporative fraction index related to soil moisture content for all the Italian region. Distributed comparison of the ACHAB and SM-OBS-2 on the whole Italian territory are performed too.

  3. Temporal and spatial assessments of minimum air temperature using satellite surface temperature measurements in Massachusetts, USA.

    Science.gov (United States)

    Kloog, Itai; Chudnovsky, Alexandra; Koutrakis, Petros; Schwartz, Joel

    2012-08-15

    Although meteorological stations provide accurate air temperature observations, their spatial coverage is limited and thus often insufficient for epidemiological studies. Satellite data expand spatial coverage, enhancing our ability to estimate near surface air temperature (Ta). However, the derivation of Ta from surface temperature (Ts) measured by satellites is far from being straightforward. In this study, we present a novel approach that incorporates land use regression, meteorological variables and spatial smoothing to first calibrate between Ts and Ta on a daily basis and then predict Ta for days when satellite Ts data were not available. We applied mixed regression models with daily random slopes to calibrate Moderate Resolution Imaging Spectroradiometer (MODIS) Ts data with monitored Ta measurements for 2003. Then, we used a generalized additive mixed model with spatial smoothing to estimate Ta in days with missing Ts. Out-of-sample tenfold cross-validation was used to quantify the accuracy of our predictions. Our model performance was excellent for both days with available Ts and days without Ts observations (mean out-of-sample R(2)=0.946 and R(2)=0.941 respectively). Furthermore, based on the high quality predictions we investigated the spatial patterns of Ta within the study domain as they relate to urban vs. non-urban land uses. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. The retrieval of cloud microphysical properties using satellite measurements and an in situ database

    Directory of Open Access Journals (Sweden)

    C. Poix

    1996-01-01

    Full Text Available By combining AVHRR data from the NOAA satellites with information from a database of in situ measurements, large-scale maps can be generated of the microphysical parameters most immediately significant for the modelling of global circulation and climate. From the satellite data, the clouds can be classified into cumuliform, stratiform and cirrus classes and then into further sub-classes by cloud top temperature. At the same time a database of in situ measurements made by research aircraft is classified into the same sub-classes and a statistical analysis is used to derive relationships between the sub-classes and the cloud microphysical properties. These two analyses are then linked to give estimates of the microphysical properties of the satellite observed clouds. Examples are given of the application of this technique to derive maps of the probability of occurrence of precipitating clouds and of precipitating water content derived from a case study within the International Cirrus Experiment (ICE held in 1989 over the North Sea.

  5. The retrieval of cloud microphysical properties using satellite measurements and an in situ database

    Directory of Open Access Journals (Sweden)

    Christophe Poix

    Full Text Available By combining AVHRR data from the NOAA satellites with information from a database of in situ measurements, large-scale maps can be generated of the microphysical parameters most immediately significant for the modelling of global circulation and climate. From the satellite data, the clouds can be classified into cumuliform, stratiform and cirrus classes and then into further sub-classes by cloud top temperature. At the same time a database of in situ measurements made by research aircraft is classified into the same sub-classes and a statistical analysis is used to derive relationships between the sub-classes and the cloud microphysical properties. These two analyses are then linked to give estimates of the microphysical properties of the satellite observed clouds. Examples are given of the application of this technique to derive maps of the probability of occurrence of precipitating clouds and of precipitating water content derived from a case study within the International Cirrus Experiment (ICE held in 1989 over the North Sea.

  6. The Asian Tropopause Aerosol Layer: Balloon-Borne Measurements, Satellite Observations and Modeling Approaches

    Science.gov (United States)

    Fairlie, T. D.; Vernier, J.-P.; Natarajan, M.; Deshler, Terry; Liu, H.; Wegner, T.; Baker, N.; Gadhavi, H.; Jayaraman, A.; Pandit, A.; hide

    2016-01-01

    Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) can provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols associated with ASM anticyclone, in the upper troposphere and lower stratosphere (UTLS). The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instrumentation, aircraft and satellite observations, combined with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical and optical properties of aerosols in the ATAL. In particular, we show balloon-based observations from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, including in situ backscatter measurements from COBALD instruments, and some of the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous contributions to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that 80-90% of ATAL aerosols originate from south Asian sources, in contrast with some earlier studies.

  7. POGO satellite orbit corrections: an opportunity to improve the quality of the geomagnetic field measurements?

    DEFF Research Database (Denmark)

    Stockmann, Reto; Christiansen, Freddy; Olsen, Nils

    2015-01-01

    We present an attempt to improve the quality of the geomagnetic field measurements from the Polar Orbiting Geophysical Observatory (POGO) satellite missions in the late 1960s. Inaccurate satellite positions are believed to be a major source of errors for using the magnetic observations for field...... modelling. To improve the data, we use aniterative approach consisting of two main parts: one is a main field modelling process to obtain the radial fieldgradient to perturb the orbits and the other is the state-of-the-art GPS orbit modelling software BERNESE to calculatenew physical orbits. We report....... With this approach, weeliminate the orbit discontinuities at midnight but only tiny quality improvements could be achieved forgeomagnetically quiet data. We believe that improvements to the data are probably still possible, but it would require the original tracking observations to be found....

  8. A climate index derived from satellite measured spectral infrared radiation. Ph.D. Thesis

    Science.gov (United States)

    Abel, M. D.; Fox, S. K.

    1982-01-01

    The vertical infrared radiative emitting structure (VIRES) climate index, based on radiative transfer theory and derived from the spectral radiances typically used to retrieve temperature profiles, is introduced. It is assumed that clouds and climate are closely related and a change in one will result in a change in the other. The index is a function of the cloud, temperature, and moisture distributions. It is more accurately retrieved from satellite data than is cloudiness per se. The VIRES index is based upon the shape and relative magnitude of the broadband weighting function of the infrared radiative transfer equation. The broadband weighting curves are retrieved from simulated satellite infrared sounder data (spectral radiances). The retrieval procedure is described and the error error sensitivities of the method investigated. Index measuring options and possible applications of the VIRES index are proposed.

  9. Constraining relationships between rainfall and landsliding with satellite derived rainfall measurements and landslide inventories.

    Science.gov (United States)

    Marc, Odin; Malet, Jean-Philippe; Stumpf, Andre; Gosset, Marielle

    2017-04-01

    In mountainous and hilly regions, landslides are an important source of damage and fatalities. Landsliding correlates with extreme rainfall events and may increase with climate change. Still, how precipitation drives landsliding at regional scales is poorly understood quantitatively in part because constraining simultaneously landsliding and rainfall across large areas is challenging. By combining optical images acquired from satellite observation platforms and rainfall measurements from satellite constellations we are building a database of landslide events caused by with single storm events. We present results from storm-induced landslides from Brazil, Taiwan, Micronesia, Central America, Europe and the USA. We present scaling laws between rainfall metrics derived by satellites (total rainfall, mean intensity, antecedent rainfall, ...) and statistical descriptors of landslide events (total area and volume, size distribution, mean runout, ...). Total rainfall seems to be the most important parameter driving non-linearly the increase in total landslide number, and area and volume. The maximum size of bedrock landslides correlates with the total number of landslides, and thus with total rainfall, within the limits of available topographic relief. In contrast, the power-law scaling exponent of the size distribution, controlling the relative abundance of small and large landslides, appears rather independent of the rainfall metrics (intensity, duration and total rainfall). These scaling laws seem to explain both the intra-storm pattern of landsliding, at the scale of satellite rainfall measurements ( 25kmx25km), and the different impacts observed for various storms. Where possible, we evaluate the limits of standard rainfall products (TRMM, GPM, GSMaP) by comparing them to in-situ data. Then we discuss how slope distribution and other geomorphic factors (lithology, soil presence,...) modulate these scaling laws. Such scaling laws at the basin scale and based only on a

  10. High-Accuracy Spherical Near-Field Measurements for Satellite Antenna Testing

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2017-01-01

    The spherical near-field antenna measurement technique is unique in combining several distinct advantages and it generally constitutes the most accurate technique for experimental characterization of radiation from antennas. From the outset in 1970, spherical near-field antenna measurements have...... matured into a well-established technique that is widely used for testing antennas for many wireless applications. In particular, for high-accuracy applications, such as remote sensing satellite missions in ESA's Earth Observation Programme with uncertainty requirements at the level of 0.05dB - 0.10d......B, the spherical near-field antenna measurement technique is generally superior. This paper addresses the means to achieving high measurement accuracy; these include the measurement technique per se, its implementation in terms of proper measurement procedures, the use of uncertainty estimates, as well as facility...

  11. Improved Forest Biomass and Carbon Estimations Using Texture Measures from WorldView-2 Satellite Data

    Directory of Open Access Journals (Sweden)

    Sandra Eckert

    2012-03-01

    Full Text Available Accurate estimation of aboveground biomass and carbon stock has gained importance in the context of the United Nations Framework Convention on Climate Change (UNFCCC and the Kyoto Protocol. In order to develop improved forest stratum–specific aboveground biomass and carbon estimation models for humid rainforest in northeast Madagascar, this study analyzed texture measures derived from WorldView-2 satellite data. A forest inventory was conducted to develop stratum-specific allometric equations for dry biomass. On this basis, carbon was calculated by applying a conversion factor. After satellite data preprocessing, vegetation indices, principal components, and texture measures were calculated. The strength of their relationships with the stratum-specific plot data was analyzed using Pearson’s correlation. Biomass and carbon estimation models were developed by performing stepwise multiple linear regression. Pearson’s correlation coefficients revealed that (a texture measures correlated more with biomass and carbon than spectral parameters, and (b correlations were stronger for degraded forest than for non-degraded forest. For degraded forest, the texture measures of Correlation, Angular Second Moment, and Contrast, derived from the red band, contributed to the best estimation model, which explained 84% of the variability in the field data (relative RMSE = 6.8%. For non-degraded forest, the vegetation index EVI and the texture measures of Variance, Mean, and Correlation, derived from the newly introduced coastal blue band, both NIR bands, and the red band, contributed to the best model, which explained 81% of the variability in the field data (relative RMSE = 11.8%. These results indicate that estimation of tropical rainforest biomass/carbon, based on very high resolution satellite data, can be improved by (a developing and applying forest stratum–specific models, and (b including textural information in addition to spectral information.

  12. Satellite observations of air quality of megacities in China

    Science.gov (United States)

    Hao, N.; Valks, P.; Smedt, I. D.; Loyola, D.; Roozendael, M. V.; Zhou, B.; Zimmer, W.

    2012-04-01

    In the last three decades, air pollution has become a major environmental issue in metropolitan areas of China as a consequence of fast industrialization and urbanization, and the rapid increase of the vehicle ownership. Now in China there are 3 megacities (Beijing, Shanghai and Guangzhou) in existence. A recent study of Asian megacities showed that they cover less than 2% of the land area, hold more than 30% of the population and produce about 10% of the anthropogenic gas and aerosol emissions. Therefore, it is important to qualify and understand current air pollution distribution and development in and around the megacities of China. Satellite observations provide unique insight into the regional air quality around megacities and air pollution transport from surrounding areas. In this work, we present an investigation of air quality over Beijing, Shanghai and Guangzhou combining satellite and ground-based measurements. Aerosol optical thickness (AOT), precursors of ozone (notably NO2 and CH2O), and SO2 are observed from space. The operational GOME-2 trace gases products developed at German Aerospace Center and MODIS AOT products will be used. Moreover, near surface concentrations of particular matter (PM), NO2 and SO2 in Beijing, Shanghai and Guangzhou are investigated. The effect of air pollution transport from neighboring areas to megacities will be researched using satellite measurements. Initial comparison between satellite and ground-based measurements of air pollutants in Beijing, Shanghai and Guangzhou will be shown. We will present the relationship between AOT and PM concentrations in megacities. The use of AOT, tropospheric NO2 and CH2O columns for air quality applications will also be shown.

  13. Combining Satellite Measurements and Numerical Flood Prediction Models to Save Lives and Property from Flooding

    Science.gov (United States)

    Saleh, F.; Garambois, P. A.; Biancamaria, S.

    2017-12-01

    Floods are considered the major natural threats to human societies across all continents. Consequences of floods in highly populated areas are more dramatic with losses of human lives and substantial property damage. This risk is projected to increase with the effects of climate change, particularly sea-level rise, increasing storm frequencies and intensities and increasing population and economic assets in such urban watersheds. Despite the advances in computational resources and modeling techniques, significant gaps exist in predicting complex processes and accurately representing the initial state of the system. Improving flood prediction models and data assimilation chains through satellite has become an absolute priority to produce accurate flood forecasts with sufficient lead times. The overarching goal of this work is to assess the benefits of the Surface Water Ocean Topography SWOT satellite data from a flood prediction perspective. The near real time methodology is based on combining satellite data from a simulator that mimics the future SWOT data, numerical models, high resolution elevation data and real-time local measurement in the New York/New Jersey area.

  14. Electron precipitation burst in the nighttime slot region measured simultaneously from two satellites

    International Nuclear Information System (INIS)

    Imhof, W.L.; Voss, H.D.; Mobilla, J.; Gaines, E.E.; Evans, D.S.

    1987-01-01

    Based on data acquired in 1982 with the Stimulated Emission of Energetic Particles payload on the low-altitude (170--280 km) S81-1 spacecraft and the Space Environment Monitor instrumentation on the NOAA 6 satellite (800--830 km), a study has been made of short-duration nighttime electron precipitation bursts at L = 2.0--35. From 54 passes of each satellite across the slot region simultaneously in time, 21 bursts were observed on the NOAA 6 spacecraft, and 76 on the S81-1 satellite. Five events, probably associated with lightning, were observed simultaneously from the two spacecraft within 1.2 s, providing a measure of the spatial extent of the bursts. This limited sample indicates that the intensity of precipitation events falls off with width in longitude and L shell but individual events extend as much as 5 0 in invariant latitude and 43 0 in longitude. The number of events above a given flux observed in each satellite was found to be approximately inversely proportional to the flux. The time average energy input to the atmosphere over the longitude range 180 0 E to 360 0 E at a local time of 2230 directly from short-duration bursts spanning a wide range of intensity enhancements was estimated to be about 6 x 10/sup -6/ ergs/cm 2 s in the northern hemisphere and about 1.5 x 10/sup -5/ ergs/cm 2 s in the southern hemisphere. In the south, this energy precipitation rate is lower than that from electrons in the drift loss cone by about 2 orders of magnitude. However, on the basis of these data alone we cannot discount weak bursts from being a major contributor to populating the drift loss cone with electrons which ultimately precipitate into the atmosphere. copyrightAmerican Geophysical Union 1987

  15. Long-term and seasonal Caspian Sea level change from satellite gravity and altimeter measurements

    Science.gov (United States)

    Chen, J. L.; Wilson, C. R.; Tapley, B. D.; Save, H.; Cretaux, Jean-Francois

    2017-03-01

    We examine recent Caspian Sea level change by using both satellite radar altimetry and satellite gravity data. The altimetry record for 2002-2015 shows a declining level at a rate that is approximately 20 times greater than the rate of global sea level rise. Seasonal fluctuations are also much larger than in the world oceans. With a clearly defined geographic region and dominant signal magnitude, variations in the sea level and associated mass changes provide an excellent way to compare various approaches for processing satellite gravity data. An altimeter time series derived from several successive satellite missions is compared with mass measurements inferred from Gravity Recovery and Climate Experiment (GRACE) data in the form of both spherical harmonic (SH) and mass concentration (mascon) solutions. After correcting for spatial leakage in GRACE SH estimates by constrained forward modeling and accounting for steric and terrestrial water processes, GRACE and altimeter observations are in complete agreement at seasonal and longer time scales, including linear trends. This demonstrates that removal of spatial leakage error in GRACE SH estimates is both possible and critical to improving their accuracy and spatial resolution. Excellent agreement between GRACE and altimeter estimates also provides confirmation of steric Caspian Sea level change estimates. GRACE mascon estimates (both the Jet Propulsion Laboratory (JPL) coastline resolution improvement version 2 solution and the Center for Space Research (CSR) regularized) are also affected by leakage error. After leakage corrections, both JPL and CSR mascon solutions also agree well with altimeter observations. However, accurate quantification of leakage bias in GRACE mascon solutions is a more challenging problem.

  16. Angular Normalization of Ground and Satellite Observations of Sun-induced Chlorophyll Fluorescence for Assessing Vegetation Productivity

    Science.gov (United States)

    Chen, J. M.; He, L.; Chou, S.; Ju, W.; Zhang, Y.; Joiner, J.; Liu, J.; Mo, G.

    2017-12-01

    Sun-induced chlorophyll fluorescence (SIF) measured from plant canopies originates mostly from sunlit leaves. Observations of SIF by satellite sensors, such as GOME-2 and GOSAT, are often made over large view zenith angle ranges, causing large changes in the viewed sunlit leaf fraction across the scanning swath. Although observations made by OCO-2 are near nadir, the observed sunlit leaf fraction could still vary greatly due to changes in the solar zenith angle with latitude and time of overpass. To demonstrate the importance of considering the satellite-target-view geometry in using SIF for assessing vegetation productivity, we conducted multi-angle measurements of SIF using a hyperspectral sensor mounted on an automated rotating system over a rice field near Nanjing, China. A method is developed to separate SIF measurements at each angle into sunlit and shaded leaf components, and an angularly normalized canopy-level SIF is obtained as the weighted sum of sunlit and shaded SIF. This normalized SIF is shown to be a much better proxy of GPP of the rice field measured by an eddy covariance system than the unnormalized SIF observations. The same normalization scheme is also applied to the far-red GOME-2 SIF observations on sunny days, and we found that the normalized SIF is better correlated with model-simulated GPP than the original SIF observations. The coefficient of determination (R2) is improved by 0.07±0.04 on global average using the normalization scheme. The most significant improvement in R2 by 0.09±0.04 is found in deciduous broadleaf forests, where the observed sunlit leaf fraction is highly sensitive to solar zenith angle.

  17. Exploring the relationship between monitored ground-based and satellite aerosol measurements over the City of Johannesburg

    CSIR Research Space (South Africa)

    Garland, Rebecca M

    2012-09-01

    Full Text Available This project studied the relationship between aerosol optical depth (AOD) from the Multi-angle Imaging SpectroRadiometer (MISR) instrument on the Terra satellite, and ground-based monitored particulate matter (PM) mass concentrations measured...

  18. Satellite accelerometer measurements of neutral density and winds during geomagnetic storms

    Science.gov (United States)

    Marcos, F. A.; Forbes, J. M.

    1986-01-01

    A new thermospheric wind measurement technique is reported which is based on a Satellite Electrostatic Triaxial Accelerometer (SETA) system capable of accurately measuring accelerations in the satellite's in-track, cross-track and radial directions. Data obtained during two time periods are presented. The first data set describes cross-track winds measured between 170 and 210 km during a 5-day period (25 to 29 March 1979) of mostly high geomagnetic activity. In the second data set, cross-track winds and neutral densities from SETA and exospheric temperatures from the Millstone Hill incoherent scatter radar are examined during an isolated magnetic substorm occurring on 21 March 1979. A polar thermospheric wind circulation consisting of a two cell horizontal convection pattern is reflected in both sets of cross-track acceleration measurements. The density response is highly asymmetric with respect to its day/night behavior. Latitude structures of the density response at successive times following the substorm peak suggest the equatorward propagation of a disturbance with a phase speed between 300 and 600 m/s. A deep depression in the density at high latitudes (less than 70 deg) is evident in conjunction with this phenomenon. The more efficient propagation of the disturbance to lower latitudes during the night is probably due to the midnight surge effect.

  19. REKF and RUKF for pico satellite attitude estimation in the presence of measurement faults

    Institute of Scientific and Technical Information of China (English)

    Halil Ersin Söken; Chingiz Hajiyev

    2014-01-01

    When a pico satel ite is under normal operational condi-tions, whether it is extended or unscented, a conventional Kalman filter gives sufficiently good estimation results. However, if the measurements are not reliable because of any kind of malfunc-tions in the estimation system, the Kalman filter gives inaccurate results and diverges by time. This study compares two different robust Kalman filtering algorithms, robust extended Kalman filter (REKF) and robust unscented Kalman filter (RUKF), for the case of measurement malfunctions. In both filters, by the use of de-fined variables named as the measurement noise scale factor, the faulty measurements are taken into the consideration with a smal weight, and the estimations are corrected without affecting the characteristic of the accurate ones. The proposed robust Kalman filters are applied for the attitude estimation process of a pico satel-lite, and the results are compared.

  20. Determination of polar cusp position by low-energy particle measurements made aboard AUREOLE satellite

    International Nuclear Information System (INIS)

    Gladyshev, V.A.; Jorjio, M.V.; Shuiskaya, F.K.; Crasnier, J.; Sauvaud, J.A.

    1974-01-01

    The Franco-Soviet experiment ARCAD, launched aboard the satellite AUREOLE December 27, 1971, has verified the existence of a particle penetration from the transition zone up to ionospheric altitudes across the polar cusp. The polar cusp is characterized by proton fluxes >10 7 particles/(cm 2 .s.sr.KeV) at 0.5KeV, with energy spectra similar to those in the transition zone. The position and form of the polar cusp are studied from measurements of protons in the range 0.4 to 30KeV during geomagnetically quiet periods (Kp [fr

  1. Measurement of spectra and neutron fluxes on artificial earth satellites from the Cosmos series

    Science.gov (United States)

    Dudkin, V. Y.; Kovalev, Y. Y.; Novikova, M. R.; Potapov, Y. V.; Skvortsov, S. S.; Smirennyy, L. N.

    1975-01-01

    In 1966-1967 measurements were carried out at the altitudes of 200 to 400 km to determine the spectra and fluxes of fast neutrons inside the hermetically sealed artificial earth satellites of the Cosmos series. The detectors used were nuclear emulsions of the B9 and BR types and an emulsion of the P9 type, filled with Li and P. Spectra and fluxes of neutrons in the range of energies from thermal energies to 10 MeV are presented. Neutron doses are also estimated.

  2. Relationship between PC index and magnetospheric field-aligned currents measured by Swarm satellites

    DEFF Research Database (Denmark)

    Troshichev, О.; Sormakov, D.; Behlke, R.

    2018-01-01

    Abstract The relationship between the magnetospheric field-aligned currents (FAC) monitored by the Swarm satellites and the magnetic activity PC index (which is a proxy of the solar wind energy incoming into the magnetosphere) is examined. It is shown that current intensities measured in the R1...... between the PC index and the intensity of field-aligned currents in the R1 dawn and dusk layers: increase of FAC intensity in the course of substorm development is accompanied by increasing the PC index values. Correlation between PC and FAC intensities in the R2 dawn and dusk layers is also observed...

  3. Are Sea Surface Temperature satellite measurements reliable proxies of lagoon temperature in the South Pacific?

    Science.gov (United States)

    Van Wynsberge, Simon; Menkes, Christophe; Le Gendre, Romain; Passfield, Teuru; Andréfouët, Serge

    2017-12-01

    In remote coral reef environments, lagoon and reef in situ measurements of temperature are scarce. Sea Surface Temperature (SST) measured by satellite has been frequently used as a proxy of the lagoon temperature experienced by coral reef organisms (TL) especially during coral bleaching events. However, the link between SST and TL is poorly characterized. First, we compared the correlation between various SST series and TL from 2012 to 2016 in three atolls and one island in the Central South Pacific Ocean. Simple linear correlation between SST and TL ranged between 0.44 and 0.97 depending on lagoons, localities of sensors, and type of SST data. High-resolution-satellite-measurements of SST inside the lagoons did not outperform oceanic SST series, suggesting that SST products are not adapted for small lagoons. Second, we modelled the difference between oceanic SST and TL as a function of the drivers of lagoon water renewal and mixing, namely waves, tide, wind, and season. The multivariate models reduced significantly the bias between oceanic SST and TL. In atoll lagoons, and probably in other hydrodynamically semi-open systems, a correction taking into account these factors is necessary when SST are used to characterize organisms' thermal stress thresholds.

  4. A lithospheric magnetic field model derived from the Swarm satellite magnetic field measurements

    Science.gov (United States)

    Hulot, G.; Thebault, E.; Vigneron, P.

    2015-12-01

    The Swarm constellation of satellites was launched in November 2013 and has since then delivered high quality scalar and vector magnetic field measurements. A consortium of several research institutions was selected by the European Space Agency (ESA) to provide a number of scientific products which will be made available to the scientific community. Within this framework, specific tools were tailor-made to better extract the magnetic signal emanating from Earth's the lithospheric. These tools rely on the scalar gradient measured by the lower pair of Swarm satellites and rely on a regional modeling scheme that is more sensitive to small spatial scales and weak signals than the standard spherical harmonic modeling. In this presentation, we report on various activities related to data analysis and processing. We assess the efficiency of this dedicated chain for modeling the lithospheric magnetic field using more than one year of measurements, and finally discuss refinements that are continuously implemented in order to further improve the robustness and the spatial resolution of the lithospheric field model.

  5. Improved GPS-based Satellite Relative Navigation Using Femtosecond Laser Relative Distance Measurements

    Directory of Open Access Journals (Sweden)

    Hyungjik Oh

    2016-03-01

    Full Text Available This study developed an approach for improving Carrier-phase Differential Global Positioning System (CDGPS based realtime satellite relative navigation by applying laser baseline measurement data. The robustness against the space operational environment was considered, and a Synthetic Wavelength Interferometer (SWI algorithm based on a femtosecond laser measurement model was developed. The phase differences between two laser wavelengths were combined to measure precise distance. Generated laser data were used to improve estimation accuracy for the float ambiguity of CDGPS data. Relative navigation simulations in real-time were performed using the extended Kalman filter algorithm. The GPS and laser-combined relative navigation accuracy was compared with GPS-only relative navigation solutions to determine the impact of laser data on relative navigation. In numerical simulations, the success rate of integer ambiguity resolution increased when laser data was added to GPS data. The relative navigational errors also improved five-fold and two-fold, relative to the GPS-only error, for 250 m and 5 km initial relative distances, respectively. The methodology developed in this study is suitable for application to future satellite formation-flying missions.

  6. Pursuing atmospheric water vapor retrieval through NDSA measurements between two LEO satellites: evaluation of estimation errors in spectral sensitivity measurements

    Science.gov (United States)

    Facheris, L.; Cuccoli, F.; Argenti, F.

    2008-10-01

    NDSA (Normalized Differential Spectral Absorption) is a novel differential measurement method to estimate the total content of water vapor (IWV, Integrated Water Vapor) along a tropospheric propagation path between two Low Earth Orbit (LEO) satellites. A transmitter onboard the first LEO satellite and a receiver onboard the second one are required. The NDSA approach is based on the simultaneous estimate of the total attenuations at two relatively close frequencies in the Ku/K bands and of a "spectral sensitivity parameter" that can be directly converted into IWV. The spectral sensitivity has the potential to emphasize the water vapor contribution, to cancel out all spectrally flat unwanted contributions and to limit the impairments due to tropospheric scintillation. Based on a previous Monte Carlo simulation approach, through which we analyzed the measurement accuracy of the spectral sensitivity parameter at three different and complementary frequencies, in this work we examine such accuracy for a particularly critical atmospheric status as simulated through the pressure, temperature and water vapor profiles measured by a high resolution radiosonde. We confirm the validity of an approximate expression of the accuracy and discuss the problems that may arise when tropospheric water vapor concentration is lower than expected.

  7. Using High-Altitude Pseudo Satellites as an innovative technology platform for climate measurements

    Science.gov (United States)

    Coulon, A.; Johnson, S.

    2017-12-01

    Climate scientists have been using for decades either remotely observed data, mainly from (un)manned aircraft and satellites, or ground-based measurements. High-Altitude Pseudo Satellites (HAPS) are emerging as a disruptive technology that will be used for various "Near Space" applications at altitudes between 15 and 23 km (i.e. above commercial airlines). This new generation of electric solar-powered unmanned aerial vehicles flying in the stratosphere aim to persistently monitor regional areas (with high temporal, spatial and spectral resolution) as well as perform in-situ Near Space observations. The two case studies presented will highlight the advantages of using such an innovative platform. First, calculations were performed to compare the use of a constellation of Low Earth Orbit satellites and a fleet of HAPS for surface monitoring. Using stratospheric drones has a clear advantage for revisiting a large zone (10'000km2 per day) with higher predictability and accuracy. User is free to set time over a location, avoid cloud coverage and obtain Ground Sampling Distance of 30cm using commercially of the shelf sensors. The other impact study focuses on in-situ measurements. Using HAPS will indeed help to closely observe stratospheric compounds, such as aerosols or volcano plumes. Simulations were performed to show how such a drone could collect samples and provide high-accuracy evaluations of compounds that, so far, are only remotely observed. The performed impact studies emphasize the substantial advantages of using HAPS for future stratospheric campaigns. Deploying month-long unmanned missions for monitoring stratospheric aerosols will be beneficial for future research projects such as climate engineering.

  8. First measurements by the DEMETER satellite of ionospheric perturbations associated with earthquakes

    International Nuclear Information System (INIS)

    Blecki, J.; Slominski, J.; Wronowski, R.; Parrot, M.; Lagoutte, D.; Brochot, J.-Y.

    2005-01-01

    DEMETER is a French project of a low altitude microsatellite. Its main scientific goals are to study the ionospheric perturbations related to the seismic and volcanic activity and the Earth's electromagnetic environment. The payload of the DEMETER microsatellite allows to measure waves and also some important plasma parameters (ion composition, electron density and temperature, energetic particles). The launch of the satellite was done by the Ukrainian rocket Dnepr from Baikonour on June 29, 2004. The regular measurements started in the middle of July. Since the beginning of the data gathering some earthquakes with magnitude M>6 were registered. The analysis of the data has been done for selected passes of DEMETER over the epicenters. The results of the measurements for two Earthquakes- one during the pass 5 days before Japanese Earthquake (23.10.2004) and the second one just 3 minutes after Mexico Earthquake (9.09.04) will be shown. (author)

  9. On Variability in Satellite Terrestrial Chlorophyll Fluorescence Measurements: Relationships with Phenology and Ecosystem-Atmosphere Carbon Exchange, Vegetation Structure, Clouds, and Sun-Satellite Geometry

    Science.gov (United States)

    Joiner, J.; Yoshida, Y.; Guanter, L.; Zhang, Y.; Vasilkov, A. P.; Schaefer, K. M.; Huemmrich, K. F.; Middleton, E.; Koehler, P.; Jung, M.; Tucker, C. J.; Lyapustin, A.; Wang, Y.; Frankenberg, C.; Berry, J. A.; Koster, R. D.; Reichle, R. H.; Lee, J. E.; Kawa, S. R.; Collatz, G. J.; Walker, G. K.; Van der Tol, C.

    2014-12-01

    Over the past several years, there have been several breakthroughs in our ability to detect the very small fluorescence emitted by chlorophyll in vegetation globally from space. There are now multiple instruments in space capable of measuring this signal at varying temporal and spatial resolutions. We will review the state-of-the-art with respect to these relatively new satellite measurements and ongoing studies that examine the relationships with photosynthesis. Now that we have a data record spanning more than seven years, we can examine variations due to seasonal carbon uptake, interannual variability, land-use changes, and water and temperature stress. In addition, we examine how clouds and satellite viewing geometry impact the signal. We compare and contrast these variations with those from popular vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), related to the potential photosynthesis as well as with measurements from flux tower gas exchange measurements and other model-based estimates of Global Primary Productivity (GPP). Vegetation fluorescence can be simulated in global vegetation models as well as with 1D canopy radiative transport models. We will describe how the satellite fluorescence data are being used to evaluate and potentially improve these models.

  10. The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements

    Science.gov (United States)

    Nedoluha, Gerald E.; Kiefer, Michael; Lossow, Stefan; Gomez, R. Michael; Kämpfer, Niklaus; Lainer, Martin; Forkman, Peter; Christensen, Ole Martin; Oh, Jung Jin; Hartogh, Paul; Anderson, John; Bramstedt, Klaus; Dinelli, Bianca M.; Garcia-Comas, Maya; Hervig, Mark; Murtagh, Donal; Raspollini, Piera; Read, William G.; Rosenlof, Karen; Stiller, Gabriele P.; Walker, Kaley A.

    2017-12-01

    As part of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapor assessment (WAVAS-II), we present measurements taken from or coincident with seven sites from which ground-based microwave instruments measure water vapor in the middle atmosphere. Six of the ground-based instruments are part of the Network for the Detection of Atmospheric Composition Change (NDACC) and provide datasets that can be used for drift and trend assessment. We compare measurements from these ground-based instruments with satellite datasets that have provided retrievals of water vapor in the lower mesosphere over extended periods since 1996. We first compare biases between the satellite and ground-based instruments from the upper stratosphere to the upper mesosphere. We then show a number of time series comparisons at 0.46 hPa, a level that is sensitive to changes in H2O and CH4 entering the stratosphere but, because almost all CH4 has been oxidized, is relatively insensitive to dynamical variations. Interannual variations and drifts are investigated with respect to both the Aura Microwave Limb Sounder (MLS; from 2004 onwards) and each instrument's climatological mean. We find that the variation in the interannual difference in the mean H2O measured by any two instruments is typically ˜ 1%. Most of the datasets start in or after 2004 and show annual increases in H2O of 0-1 % yr-1. In particular, MLS shows a trend of between 0.5 % yr-1 and 0.7 % yr-1 at the comparison sites. However, the two longest measurement datasets used here, with measurements back to 1996, show much smaller trends of +0.1 % yr-1 (at Mauna Loa, Hawaii) and -0.1 % yr-1 (at Lauder, New Zealand).

  11. The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements

    Directory of Open Access Journals (Sweden)

    G. E. Nedoluha

    2017-12-01

    Full Text Available As part of the second SPARC (Stratosphere–troposphere Processes And their Role in Climate water vapor assessment (WAVAS-II, we present measurements taken from or coincident with seven sites from which ground-based microwave instruments measure water vapor in the middle atmosphere. Six of the ground-based instruments are part of the Network for the Detection of Atmospheric Composition Change (NDACC and provide datasets that can be used for drift and trend assessment. We compare measurements from these ground-based instruments with satellite datasets that have provided retrievals of water vapor in the lower mesosphere over extended periods since 1996. We first compare biases between the satellite and ground-based instruments from the upper stratosphere to the upper mesosphere. We then show a number of time series comparisons at 0.46 hPa, a level that is sensitive to changes in H2O and CH4 entering the stratosphere but, because almost all CH4 has been oxidized, is relatively insensitive to dynamical variations. Interannual variations and drifts are investigated with respect to both the Aura Microwave Limb Sounder (MLS; from 2004 onwards and each instrument's climatological mean. We find that the variation in the interannual difference in the mean H2O measured by any two instruments is typically  ∼  1%. Most of the datasets start in or after 2004 and show annual increases in H2O of 0–1 % yr−1. In particular, MLS shows a trend of between 0.5 % yr−1 and 0.7 % yr−1 at the comparison sites. However, the two longest measurement datasets used here, with measurements back to 1996, show much smaller trends of +0.1 % yr−1 (at Mauna Loa, Hawaii and −0.1 % yr−1 (at Lauder, New Zealand.

  12. Spectralon BRDF and DHR Measurements in Support of Satellite Instruments Operating Through Shortwave Infrared

    Science.gov (United States)

    Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2016-01-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Distribution Functions (BRDFs) of the laboratory and flight diffusers used in their pre-flight and on-orbit calibrations. This paper advances that initial work and presents a comparison of spectral Bidirectional Reflectance Distribution Function (BRDF) and Directional Hemispherical Reflectance (DHR) of Spectralon*, a common material for laboratory and onorbit flight diffusers. A new measurement setup for BRDF measurements from 900 nm to 2500 nm located at NASA Goddard Space Flight Center (GSFC) is described. The GSFC setup employs an extended indium gallium arsenide detector, bandpass filters, and a supercontinuum light source. Comparisons of the GSFC BRDF measurements in the ShortWave InfraRed (SWIR) with those made by the NIST Spectral Trifunction Automated Reference Reflectometer (STARR) are presented. The Spectralon sample used in this study was 2 inch diameter, 99% white pressed and sintered Polytetrafluoroethylene (PTFE) target. The NASA/NIST BRDF comparison measurements were made at an incident angle of 0 deg and viewing angle of 45 deg. Additional BRDF data not compared to NIST were measured at additional incident and viewing angle geometries and are not presented here The total combined uncertainty for the measurement of BRDF in the SWIR range made by the GSFC scatterometer is less than 1% (k=1). This study is in support of the calibration of the Joint Polar Satellite System (JPSS) Radiation Budget Instrument (RBI) and Visible Infrared Imaging Radiometer Suite (VIIRS) of and other current and future NASA remote sensing missions operating across the reflected solar wavelength region.

  13. An Investigation of Multi-Satellite Stratospheric Measurements on Tropospheric Weather Predictions over Continental United States

    Science.gov (United States)

    Shao, Min

    The troposphere and stratosphere are the two closest atmospheric layers to the Earth's surface. These two layers are separated by the so-called tropopause. On one hand, these two layers are largely distinguished, on the other hand, lots of evidences proved that connections are also existed between these two layers via various dynamical and chemical feedbacks. Both tropospheric and stratospheric waves can propagate through the tropopause and affect the down streams, despite the fact that this propagation of waves is relatively weaker than the internal interactions in both atmospheric layers. Major improvements have been made in numerical weather predictions (NWP) via data assimilation (DA) in the past 30 years. From optimal interpolation to variational methods and Kalman Filter, great improvements are also made in the development of DA technology. The availability of assimilating satellite radiance observation and the increasing amount of satellite measurements enabled the generation of better atmospheric initials for both global and regional NWP systems. The selection of DA schemes is critical for regional NWP systems. The performance of three major data assimilation (3D-Var, Hybrid, and EnKF) schemes on regional weather forecasts over the continental United States during winter and summer is investigated. Convergence rate in the variational methods can be slightly accelerated especially in summer by the inclusion of ensembles. When the regional model lid is set at 50-mb, larger improvements (10˜20%) in the initials are obtained over the tropopause and lower troposphere. Better forecast skills (˜10%) are obtained in all three DA schemes in summer. Among these three DA schemes, slightly better (˜1%) forecast skills are obtained in Hybrid configuration than 3D-Var. Overall better forecast skills are obtained in summer via EnKF scheme. An extra 22% skill in predicting summer surface pressure but 10% less skills in winter are given by EnKF when compared to 3D

  14. Mini MAX-DOAS Measurements of Air Pollutants over China

    Science.gov (United States)

    Staadt, Steffen; Hao, Nan; Trautmann, Thomas

    2016-08-01

    This study continues the work of Clémer et al., (2010) and is aimed to improve trace gas retrievals with mini MAX-DOAS measurements in Nanjing. Based on that work, aerosol extinction vertical profiles are retrieved using the bePRO inversion algorithm developed by the Royal Belgian Institute for Space Aeronomy (BIRA- IASB). Afterwards, the tropospheric trace gas vertical profiles and vertical column densities (VCDs) are retrieved by applying the optimal estimation method to the O4 MAX-DOAS measurements. The Profiles for N O2 , S O2 , glyoxal, formaldehyde and nitrous acid are obtained with different results and different settings for the DOAS measurement. The AODs show small positive correlation against the AERONET values. For NO2, the retrieval shows reasonable concentrations in winter as opposed to summer and has small positive correlations with GOME-2 data. The SO2 VCDs are not correlated with the GOME-2 data, due to high uncertainties from MAX-DOAS and satellite retrievals, while the vertical mixing ratios (VMR) show good agreement with in-situ data (SORPES) at Nanjing. Nitrous acid shows a maximum in winter and a minimum in summer, while glyoxal has its maximum in August and September.

  15. Understanding the Driver of Energetic Electron Precipitation Using Coordinated Multi-Satellite Measurements

    Science.gov (United States)

    Capannolo, L.; Li, W.; Ma, Q.

    2017-12-01

    Electron precipitation into the upper atmosphere is one of the important loss mechanisms in the Earth's inner magnetosphere. Various magnetospheric plasma waves (i.e., chorus, plasmaspheric hiss, electromagnetic ion cyclotron waves, etc.) play an important role in scattering energetic electrons into the loss cone, thus enhance ionization in the upper atmosphere and affect ring current and radiation belt dynamics. The present study evaluates conjunction events where low-earth-orbiting satellites (twin AeroCube-6) and near-equatorial satellites (twin Van Allen Probes) are located roughly along the same magnetic field line. By analyzing electron flux variation at various energies (> 35 keV) measured by AeroCube-6 and wave and electron measurements by Van Allen Probes, together with quasilinear diffusion theory and modeling, we determine the physical process of driving the observed energetic electron precipitation for the identified electron precipitation events. Moreover, the twin AeroCube-6 also helps us understand the spatiotemporal effect and constrain the coherent size of each electron precipitation event.

  16. The Use of Meteosat Second Generation Satellite Data Within A New Type of Solar Irradiance Calculation Scheme

    Science.gov (United States)

    Mueller, R. W.; Beyer, H. G.; Cros, S.; Dagestad, K. F.; Dumortier, D.; Ineichen, P.; Hammer, A.; Heinemann, D.; Kuhlemann, R.; Olseth, J. A.; Piernavieja, G.; Reise, C.; Schroedter, M.; Skartveit, A.; Wald, L.

    presentation a new type of the solar irradiance calculation scheme is de- scribed. It is based on the integrated use of a radiative transfer model (RTM), whereas the information of the atmospheric parameters retrieved from satellites (MSG and GOME/ATSR-2) will be used as input for the RTM. First comparisons between calcu- lated and measured solar irradiance are presented. The improvements linked with the usage of the new calculation scheme are discussed, taking into account the benefits and limitations of the new method and the MSG satellite.

  17. A cloud-ozone data product from Aura OMI and MLS satellite measurements

    Directory of Open Access Journals (Sweden)

    J. R. Ziemke

    2017-11-01

    Full Text Available Ozone within deep convective clouds is controlled by several factors involving photochemical reactions and transport. Gas-phase photochemical reactions and heterogeneous surface chemical reactions involving ice, water particles, and aerosols inside the clouds all contribute to the distribution and net production and loss of ozone. Ozone in clouds is also dependent on convective transport that carries low-troposphere/boundary-layer ozone and ozone precursors upward into the clouds. Characterizing ozone in thick clouds is an important step for quantifying relationships of ozone with tropospheric H2O, OH production, and cloud microphysics/transport properties. Although measuring ozone in deep convective clouds from either aircraft or balloon ozonesondes is largely impossible due to extreme meteorological conditions associated with these clouds, it is possible to estimate ozone in thick clouds using backscattered solar UV radiation measured by satellite instruments. Our study combines Aura Ozone Monitoring Instrument (OMI and Microwave Limb Sounder (MLS satellite measurements to generate a new research product of monthly-mean ozone concentrations in deep convective clouds between 30° S and 30° N for October 2004–April 2016. These measurements represent mean ozone concentration primarily in the upper levels of thick clouds and reveal key features of cloud ozone including: persistent low ozone concentrations in the tropical Pacific of  ∼ 10 ppbv or less; concentrations of up to 60 pphv or greater over landmass regions of South America, southern Africa, Australia, and India/east Asia; connections with tropical ENSO events; and intraseasonal/Madden–Julian oscillation variability. Analysis of OMI aerosol measurements suggests a cause and effect relation between boundary-layer pollution and elevated ozone inside thick clouds over landmass regions including southern Africa and India/east Asia.

  18. 1979-1999 satellite total ozone column measurements over West Africa

    Directory of Open Access Journals (Sweden)

    P. Di Carlo

    2000-06-01

    Full Text Available Total Ozone Mapping Spectrometer (TOMS instruments have been flown on NASA/GSFC satellites for over 20 years. They provide near real-time ozone data for Atmospheric Science Research. As part of preliminary efforts aimed to develop a Lidar station in Nigeria for monitoring the atmospheric ozone and aerosol levels, the monthly mean TOMS total column ozone measurements between 1979 to 1999 have been analysed. The trends of the total column ozone showed a spatial and temporal variation with signs of the Quasi Biennial Oscillation (QBO during the 20-year study period. The values of the TOMS total ozone column, over Nigeria (4-14°N is within the range of 230-280 Dobson Units, this is consistent with total ozone column data, measured since April 1993 with a Dobson Spectrophotometer at Lagos (3°21¢E, 6°33¢N, Nigeria.

  19. Satellite observations of energetic electron precipitation during the 1979 solar eclipse and comparisons with rocket measurements

    Science.gov (United States)

    Gaines, E. E.; Imhof, W. L.; Voss, H. D.; Reagan, J. B.

    1983-07-01

    During the solar eclipse of 26 February 1979, the P78-1 satellite passed near Red Lake, Ontario, at an altitude of about 600 km. On two consecutive orbits spanning the time of total eclipse, energetic electrons were measured with two silicon solid state detector spectrometers having excellent energy and angular resolution. Significant fluxes of precipitating electrons were observed near the path of totality. Comparisons of flux intensities and energy spectra with those measured from a Nike Orion and two Nike Tomahawk rockets launched near Red Lake before and during total eclipse give good agreement and indicate that the electron precipitation was relatively uniform for more than an hour and over a broad geographical area.

  20. Satellite observations of energetic electron precipitation during the 1979 solar eclipse and comparisons with rocket measurements

    International Nuclear Information System (INIS)

    Gaines, E.E.; Imhof, W.L.; Voss, H.D.; Reagan, J.B.

    1983-01-01

    During the solar eclipse of 26 February 1979, the P78-1 satellite passed near Red Lake, Ontario, at an altitude of approx. 600 km. On two consecutive orbits spanning the time of total eclipse, energetic electrons were measured with two silicon solid state detector spectrometers having excellent energy and angular resolution. Significant fluxes of precipitating electrons were observed near the path of totality. Comparisons of flux intensities and energy spectra with those measured from a Nike Orion and two Nike Tomahawk rockets launched near Red Lake before and during total eclipse give good agreement and indicate that the electron precipitation was relatively uniform for more than an hour and over a broad geographical area. (author)

  1. Evaluation of the ion-density measurements by the Indian satellite SROSS-C2

    Science.gov (United States)

    Subrahmanyam, P.; Jain, A. R.; Maini, H. K.; Bahl, M.; Das, Rupesh M.; Garg, S. C.; Niranjan, K.

    2010-12-01

    The ion and electron F region plasma measurements made by the ion and electron Retarding Potential Analyzers (RPAs) onboard the Indian satellite SROSS-C2, have yielded excellent data set over the Indian region for more than half a solar cycle, after the SROSS-C2 launch in May 1994. The absolute ion density, ion temperature, and ion composition parameters are derived from these in situ measurements and used by many workers. In this paper the absolute values of ion density derived from the ion RPA measurements are compared and evaluated with the measurements made by ground-based ionosondes located in the Indian region and close to the SROSS-C2 orbital path. It is shown that a slight adjustment in efficiency factor of the ion RPA sensor brings the in situ measurements much closer to those obtained from the ground-based ionosonde measurements taking into account the model calculations. It may be mentioned that this is a correction to the ion density measurement by SROSS-C2 by a fixed proportion (14-11.4%). The effect of change in efficiency factor on the ion current, which is used to deduce the ion number density, is demonstrated and discussed.

  2. How Consistent are Recent Variations in the Tropical Energy and Water Cycle Resolved by Satellite Measurements?

    Science.gov (United States)

    Robertson, F. R.; Lu, H.-I.

    2004-01-01

    One notable aspect of Earth's climate is that although the planet appears to be very close to radiative balance at top-of-atmosphere (TOA), the atmosphere itself and underlying surface are not. Profound exchanges of energy between the atmosphere and oceans, land and cryosphere occur over a range of time scales. Recent evidence from broadband satellite measurements suggests that even these TOA fluxes contain some detectable variations. Our ability to measure and reconstruct radiative fluxes at the surface and at the top of atmosphere is improving rapidly. One question is 'How consistent, physically, are these diverse remotely-sensed data sets'? The answer is of crucial importance to understanding climate processes, improving physical models, and improving remote sensing algorithms. In this work we will evaluate two recently released estimates of radiative fluxes, focusing primarily on surface estimates. The International Satellite Cloud Climatology Project 'FD' radiative flux profiles are available from mid-1983 to near present and have been constructed by driving the radiative transfer physics from the Goddard Institute for Space Studies (GISS) global model with ISCCP clouds and TOVS (TIROS Operational Vertical Sounder)thermodynamic profiles. Full and clear sky SW and LW fluxes are produced. A similar product from the NASA/GEWEX Surface Radiation Budget Project using different radiative flux codes and thermodynamics from the NASA/Goddard Earth Observing System (GEOS-1) assimilation model makes a similar calculation of surface fluxes. However this data set currently extends only through 1995. We also employ precipitation measurements from the Global Precipitation Climatology Project (GPCP) and the Tropical Rainfall Measuring Mission (TRMM). Finally, ocean evaporation estimates from the Special Sensor Microwave Imager (SSM/I) are considered as well as derived evaporation from the NCAR/NCEP Reanalysis. Additional information is included in the original extended

  3. What can we learn about Mars from satellite magnetic field measurements?

    Science.gov (United States)

    Morschhauser, A.; Mittelholz, A.; Thomas, P.; Vervelidou, F.; Grott, M.; Johnson, C.; Lesur, V.; Lillis, R. J.

    2017-12-01

    The Mars orbiters MGS and MAVEN provide vector magnetic field data for Mars at a variety of altitudes, locations, and local times. In spite of the abundance of data, there are many open questions concerning the crustal magnetic field of Mars. In this contribution, we present our efforts to estimate the shutdown time of the Martian core dynamo and to estimate Martian paleopole locations, using magnetic field satellite data and models derived from these data [1]. Models are primarily based on MGS data, and we shortly present our recent advances to include MAVEN data. There exists some controversy concerning the timing of the Martian core dynamo shutdown [e.g., 2-5]. We address this question by studying the so-called visible magnetization [6-7] of impact craters larger than 400 km in diameter, and conclude that the dynamo ceased to operate in the Noachian period [8]. Further, paleopole locations have been used to constrain the dynamics of the Martian core dynamo [e.g. 4-5, 9]. However, such estimates are limited by the inherent non-uniqueness of inferring magnetization from magnetic field measurements. Here, we discuss how estimated paleopoles are influenced by this non-uniqueness and the limited signal-to-noise ratio of satellite measurements [6]. Furthermore, we discuss how paleopole locations may still be obtained from satellite magnetic field measurements. In this context, we present some new paleopole estimates for Mars including estimates of uncertainties. References: [1] A. Morschhauser et al. (2014), JGR, doi: 10.1002/2013JE004555 [2] R.J. Lillis et al. (2015), JGR, doi: 10.1002/2014je004774 [3] L.L. Hood et al. (2010), Icarus, doi: 10.1016/j.icarus.2010.01.009 [4] C. Milbury et al. (2012), JGR, doi: 10.1029/2012JE004099 [5] B. Langlais and M. Purucker (2007), PSS, 10.1016/j.pss.2006.03.008 [6] F. Vervelidou et al., On the accuracy of paleopole estimations from magnetic field measurements, GJI, under revision 2017 [7] D. Gubbins et al. (2011), GJI, doi: 10

  4. GOME-2A retrievals of tropospheric NO2 in different spectral ranges – influence of penetration depth

    Directory of Open Access Journals (Sweden)

    L. K. Behrens

    2018-05-01

    Full Text Available In this study, we present a novel nitrogen dioxide (NO2 differential optical absorption spectroscopy (DOAS retrieval in the ultraviolet (UV spectral range for observations from the Global Ozone Monitoring Instrument 2 on board EUMETSAT's MetOp-A (GOME-2A satellite. We compare the results to those from an established NO2 retrieval in the visible (vis spectral range from the same instrument and investigate how differences between the two are linked to the NO2 vertical profile shape in the troposphere.As expected, radiative transfer calculations for satellite geometries show that the sensitivity close to the ground is higher in the vis than in the UV spectral range. Consequently, NO2 slant column densities (SCDs in the vis are usually higher than in the UV if the NO2 is close to the surface. Therefore, these differences in NO2 SCDs between the two spectral ranges contain information on the vertical distribution of NO2 in the troposphere. We combine these results with radiative transfer calculations and simulated NO2 fields from the TM5-MP chemistry transport model to evaluate the simulated NO2 vertical distribution.We investigate regions representative of both anthropogenic and biomass burning NO2 pollution. Anthropogenic air pollution is mostly located in the boundary layer close to the surface, which is reflected by large differences between UV and vis SCDs of  ∼  60 %. Biomass burning NO2 in contrast is often uplifted into elevated layers above the boundary layer. This is best seen in tropical Africa south of the Equator, where the biomass burning NO2 is well observed in the UV, and the SCD difference between the two spectral ranges is only  ∼  36 %. In tropical Africa north of the Equator, however, the biomass burning NO2 is located closer to the ground, reducing its visibility in the UV.While not enabling a full retrieval of the vertical NO2 profile shape in the troposphere, our results can help to constrain the vertical

  5. Light scattering and absorption properties of dust particles retrieved from satellite measurements

    International Nuclear Information System (INIS)

    Hu, R.-M.; Sokhi, R.S.

    2009-01-01

    We use the radiative transfer model and chemistry transport model to improve our retrievals of dust optical properties from satellite measurements. The optical depth and absorbing optical depth of mineral dust can be obtained from our improved retrieval algorithm. We find the nonsphericity and absorption of dust particles strongly affect the scattering signatures such as phase function and polarization at the ultraviolet wavelengths. From our retrieval results, we find the high levels of dust concentration occurred over most desert regions such as Saharan and Gobi deserts. The dust absorption is found to be sensitive to mineral chemical composition, particularly the fraction of strongly absorbing dust particles. The enhancement of polarization at the scattering angles exceeding 120 0 is found for the nonspherical dust particles. If the polarization is neglected in the radiative transfer calculation, a maximum 50 percent error is introduced for the case of forward scattering and 25 percent error for the case of backscattering. We suggest that the application of polarimeter at the ultraviolet wavelengths has the great potential to improve the satellite retrievals of dust properties. Using refined optical model and radiative transfer model to calculate the solar radiative forcing of dust aerosols can reduce the uncertainties in aerosol radiative forcing assessment.

  6. Maritime Aerosol Network optical depth measurements and comparison with satellite retrievals from various different sensors

    Science.gov (United States)

    Smirnov, Alexander; Petrenko, Maksym; Ichoku, Charles; Holben, Brent N.

    2017-10-01

    The paper reports on the current status of the Maritime Aerosol Network (MAN) which is a component of the Aerosol Robotic Network (AERONET). A public domain web-based data archive dedicated to MAN activity can be found at https://aeronet.gsfc.nasa.gov/new_web/maritime_aerosol_network.html . Since 2006 over 450 cruises were completed and the data archive consists of more than 6000 measurement days. In this work, we present MAN observations collocated with MODIS Terra, MODIS Aqua, MISR, POLDER, SeaWIFS, OMI, and CALIOP spaceborne aerosol products using a modified version of the Multi-Sensor Aerosol Products Sampling System (MAPSS) framework. Because of different spatio-temporal characteristics of the analyzed products, the number of MAN data points collocated with spaceborne retrievals varied between 1500 matchups for MODIS to 39 for CALIOP (as of August 2016). Despite these unavoidable sampling biases, latitudinal dependencies of AOD differences for all satellite sensors, except for SeaWIFS and POLDER, showed positive biases against ground truth (i.e. MAN) in the southern latitudes (<50° S), and substantial scatter in the Northern Atlantic "dust belt" (5°-15° N). Our analysis did not intend to determine whether satellite retrievals are within claimed uncertainty boundaries, but rather show where bias exists and corrections are needed.

  7. Capabilities and uncertainties of aircraft measurements for the validation of satellite precipitation products – a virtual case study

    Directory of Open Access Journals (Sweden)

    Andrea Lammert

    2015-08-01

    Full Text Available Remote sensing sensors on board of research aircraft provide detailed measurements of clouds and precipitation which can be used as reference data to validate satellite products. Such satellite derived precipitation data using passive microwave radiometers with a resolution of typically 50×50km2$50\\times50\\,\\text{km}^2$ stands against high spatial and temporal resolved airborne measurements, but only along a chosen line. This paper focuses on analysis on the uncertainty arising from the different spatial resolution and coverage. Therefore we use a perfect model approach, with a high resolved forecast model yielding perfect virtual aircraft and satellite observations. The mean precipitation and standard deviation per satellite box were estimated with a Gaussian approach. The comparison of the mean values shows a high correlation of 0.92, but a very wide spread. As criterion to define good agreement between satellite mean and reference, we choose a deviation of one standard deviation of the virtual aircraft as threshold. Considering flight tracks in the range of 50 km (one overflight, the perfect agreement of satellite and aircraft observations is only detected in 65 % of the cases. To increase this low reliability the precipitation distributions of the virtual aircraft were fitted by a gamma density function. Using the same quality criterion, the usage of gamma density fit yields an improvement of the Aircraft reliability up to 80 %.

  8. A Comparison of MICROTOPS II and OMI Satellite Ozone Measurements in Novi Sad from 2007 to 2015

    Science.gov (United States)

    Podrascanin, Z.; Balog, I.; Jankovic, A.; Mijatovic, Z.; Nadj, Z.

    2017-12-01

    In this paper, we present consecutive daily measurements of the total ozone column (TOC) using MICROTOPS II in Novi Sad, the Republic of Serbia (45.3 N, 19.8 E and the altitude of 84 m) from 2007 to 2015. The MICROTOPS II data set was compared to the ozone monitoring instrument (OMI) satellite data, since there was no nearby comparative long-time series available for the Dobson or Brewer instrument. The data quality control of the measured MICROTOPS II TOC data was carried out before the comparison with the satellite data. The MICROTOPS II was calibrated at the manufacturer's facilities and only TOC values drawn from the 305.5/312.5 nm wavelength combination were compared with the satellite data. The mean bias deviation between MICROTOPS II and OMI satellite data sets was obtained to be less than 2%, and the mean absolute deviation was in the range of 5%. The difference in the mean seasonal TOC values in summer and autumn was less than 0.5%, while in winter and spring this difference reached 2.8%. A possible calibration of MICROTOPS II instrument with the satellite data is presented, where the calibration coefficients for all channels were calculated for every satellite and MICROTPS II data pair during one year. Then, the average value of all the calculated coefficients was used for instrument calibration. The presented calibration improves the MICROTOPS II instrument stability and enables the usage of all the wavelength combinations.

  9. Analysis of rain fade duration models for Earth-to-satellite path based on data measured in Malaysia

    International Nuclear Information System (INIS)

    Dao, Hassan; Rafiqul, Islam Md; Al-Khateeb, Khalid A S

    2013-01-01

    Statistical analysis of rain fade duration is crucial information for system engineer to design and plan a fade mitigation technique (FMT) for the satellite communication system. An investigation is carried out based on data measured of one year period in Kuala Lumpur, Malaysia from satellite path of MEASAT3. This paper presents statistical analysis of measured fade duration on high elevation angle (77.4°) in Ku-band compared to three prediction models of fade duration. It is found that none of the models could predict measured fade duration distribution accurately

  10. SO2 columns over China: Temporal and spatial variations using OMI and GOME-2 observations

    International Nuclear Information System (INIS)

    Huanhuan, Yan; Liangfu, Chen; Lin, Su; Jinhua, Tao; Chao, Yu

    2014-01-01

    Enhancements of SO 2 column amounts due to anthropogenic emission sources over China were shown in this paper by using OMI and GOME-2 observations. The temporal and spatial variations of SO 2 columns over China were analyzed for the time period 2005–2010. Beijing and Chongqing showed a high concentration in the SO 2 columns, attributable to the use of coal for power generation in China and the characteristic of terrain and meteorology. The reduction of SO 2 columns over Beijing and surrounding provinces in 2008 was observed by OMI, which confirms the effectiveness of strict controls on pollutant emissions and motor vehicle traffic before and during 2008 Olympic and Paralympic Games. The SO 2 columns over China from GOME-2 (0.2–0.5 DU) were lower than those from OMI (0.6–1 DU), but both showed a decrease in SO 2 columns over northern China since 2008 (except an increase in OMI SO 2 in 2010)

  11. TEST BED FOR THE SIMULATION OF MAGNETIC FIELD MEASUREMENTS OF LOW EARTH ORBIT SATELLITES

    Directory of Open Access Journals (Sweden)

    Alberto Gallina

    2018-03-01

    Full Text Available The paper presents a test bed designed to simulate magnetic environment experienced by a spacecraft on low Earth orbit. It consists of a spherical air bearing located inside a Helmholtz cage. The spherical air bearing is used for simulating microgravity conditions of orbiting bodies while the Helmholtz cage generates a controllable magnetic field resembling the one surrounding a satellite during its motion. Dedicated computer software is used to initially calculate the magnetic field on an established orbit. The magnetic field data is then translated into current values and transmitted to programmable power supplies energizing the cage. The magnetic field within the cage is finally measured by a test article mounted on the air bearing. The paper provides a description of the test bed and the test article design. An experimental test proves the good performance of the entire system.

  12. Space radiation measurement of plant seeds boarding on the Shijian-8 satellite

    International Nuclear Information System (INIS)

    Lv Duicai; Huang Zengxin; Zhao Yali; Wang Genliang; Jia Xianghong; Guo Huijun; Liu Luxiang; Li Chunhua; Zhang Long

    2008-01-01

    In order to identify cause of mutagenesis of plant seeds induced by space flight, especially to ascertain the interrelation between space radiation and mutagenesis, a 'photograph location' experimental setup was designed in this study. CR-39 solid-state nuclear track detectors were used to detect space heavy particles. The plant seeds and their position hit by space heavy ions were checked based on relative position between track and seeds in the setup. The low LET part of the spectrum was also measured by thermoluminescence dosemeter (TLD, LiF). The results showed that the 'photograph location' experimental method was convenient, practicable and economical. This new method also greatly saved time for microscopical analysis. On Shijian-8 satellite, the average ion flux of space heavy ions was 4.44 ions/cm 2 ·d and the average dosage of low LET space radiation to the plant seeds was 4.79 mGy. (authors)

  13. Quantifying Fire Impact on Alaskan Tundra from Satellite Observations and Field Measurements

    Science.gov (United States)

    Loboda, T. V.; Chen, D.; He, J.; Jenkins, L. K.

    2017-12-01

    Wildfire is a major disturbance agent in Alaskan tundra. The frequency and extent of fire events obtained from paleo, management, and satellite records may yet underestimate the scope of tundra fire impact. Field measurements, collected within the NASA's ABoVE campaign, revealed unexpectedly shallow organic soils ( 15 cm) across all sampled sites of the Noatak valley with no significant difference between recently burned and unburned sites. In typical small and medium-sized tundra burns vegetation recovers rapidly and scars are not discernable in 30 m optical satellite imagery by the end of the first post-fire season. However, field observations indicate that vegetation and subsurface characteristics within fire scars of different ages vary across the landscape. In this study we develop linkages between fire-induced changes to tundra and satellite-based observations from optical, thermal, and microwave imagers to enable extrapolation of in-situ observations to cover the full extent of Alaskan tundra. Our results show that recent ( 30 years) fire history can be reconstructed from optical observations (R2 0.65, pfire history can be determined for 4 years post fire primarily due to increased soil moisture at burned sites. Field measurements suggest that the relatively quick SAR signal dissipation results from more even distribution of surface moisture through the soil column with increases in Active Layer Thickness (ALT). Similar to previous long-term field studies we find an increase in shrub fraction and shrub height within burns over time at the landscape scale; however, the strength and significance of the relationship between shrub fraction and time since fire is governed by burn severity with more severe burns predictably (p post-fire shrub cover. Although reasonably well-correlated to each other when adjusted for topography (R2 0.35, p < 0.001), neither ALT nor soil temperature can be directly linked to optical or thermal brightness observations with acceptable

  14. Low-cost Citizen Science Balloon Platform for Measuring Air Pollutants to Improve Satellite Retrieval Algorithms

    Science.gov (United States)

    Potosnak, M. J.; Beck-Winchatz, B.; Ritter, P.

    2016-12-01

    High-altitude balloons (HABs) are an engaging platform for citizen science and formal and informal STEM education. However, the logistics of launching, chasing and recovering a payload on a 1200 g or 1500 g balloon can be daunting for many novice school groups and citizen scientists, and the cost can be prohibitive. In addition, there are many interesting scientific applications that do not require reaching the stratosphere, including measuring atmospheric pollutants in the planetary boundary layer. With a large number of citizen scientist flights, these data can be used to constrain satellite retrieval algorithms. In this poster presentation, we discuss a novel approach based on small (30 g) balloons that are cheap and easy to handle, and low-cost tracking devices (SPOT trackers for hikers) that do not require a radio license. Our scientific goal is to measure air quality in the lower troposphere. For example, particulate matter (PM) is an air pollutant that varies on small spatial scales and has sources in rural areas like biomass burning and farming practices such as tilling. Our HAB platform test flight incorporates an optical PM sensor, an integrated single board computer that records the PM sensor signal in addition to flight parameters (pressure, location and altitude), and a low-cost tracking system. Our goal is for the entire platform to cost less than $500. While the datasets generated by these flights are typically small, integrating a network of flight data from citizen scientists into a form usable for comparison to satellite data will require big data techniques.

  15. Methods of Evaluating Thermodynamic Properties of Landscape Cover Using Multispectral Reflected Radiation Measurements by the Landsat Satellite

    Directory of Open Access Journals (Sweden)

    Yuriy Puzachenko

    2013-09-01

    Full Text Available The paper discusses methods of evaluating thermodynamic properties of landscape cover based on multi-spectral measurements by the Landsat satellites. Authors demonstrate how these methods could be used for studying functionality of landscapes and for spatial interpolation of Flux NET system measurements.

  16. Multi-source SO2 emission retrievals and consistency of satellite and surface measurements with reported emissions

    NARCIS (Netherlands)

    Fioletov, V.; McLinden, C.A.; Kharol, S.K.; Krotkov, N.A.; Li, C.; Joiner, J.; Moran, M.D.; Vet, R.; Visschedijk, A.J.H.; Denier Van Der Gon, H.A.C.

    2017-01-01

    Reported sulfur dioxide (SO2) emissions from US and Canadian sources have declined dramatically since the 1990s as a result of emission control measures. Observations from the Ozone Monitoring Instrument (OMI) on NASA's Aura satellite and ground-based in situ measurements are examined to verify

  17. Multi-decadal satellite measurements of passive and eruptive volcanic SO2 emissions

    Science.gov (United States)

    Carn, Simon; Yang, Kai; Krotkov, Nickolay; Prata, Fred; Telling, Jennifer

    2015-04-01

    Periodic injections of sulfur gas species (SO2, H2S) into the stratosphere by volcanic eruptions are among the most important, and yet unpredictable, drivers of natural climate variability. However, passive (lower tropospheric) volcanic degassing is the major component of total volcanic emissions to the atmosphere on a time-averaged basis, but is poorly constrained, impacting estimates of global emissions of other volcanic gases (e.g., CO2). Stratospheric volcanic emissions are very well quantified by satellite remote sensing techniques, and we report ongoing efforts to catalog all significant volcanic SO2 emissions into the stratosphere and troposphere since 1978 using measurements from the ultraviolet (UV) Total Ozone Mapping Spectrometer (TOMS; 1978-2005), Ozone Monitoring Instrument (OMI; 2004 - present) and Ozone Mapping and Profiler Suite (OMPS; 2012 - present) instruments, supplemented by infrared (IR) data from HIRS, MODIS and AIRS. The database, intended for use as a volcanic forcing dataset in climate models, currently includes over 600 eruptions releasing a total of ~100 Tg SO2, with a mean eruption discharge of ~0.2 Tg SO2. Sensitivity to SO2 emissions from smaller eruptions greatly increased following the launch of OMI in 2004, but uncertainties remain on the volcanic flux of other sulfur species other than SO2 (H2S, OCS) due to difficulty of measurement. Although the post-Pinatubo 1991 era is often classified as volcanically quiescent, many smaller eruptions (Volcanic Explosivity Index [VEI] 3-4) since 2000 have injected significant amounts of SO2 into the upper troposphere - lower stratosphere (UTLS), peaking in 2008-2011. We also show how even smaller (VEI 2) tropical eruptions can impact the UTLS and sustain above-background stratospheric aerosol optical depth, thus playing a role in climate forcing on short timescales. To better quantify tropospheric volcanic degassing, we use ~10 years of operational SO2 measurements by OMI to identify the

  18. Surface net solar radiation estimated from satellite measurements - Comparisons with tower observations

    Science.gov (United States)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  19. Surface Net Solar Radiation Estimated from Satellite Measurements: Comparisons with Tower Observations

    Science.gov (United States)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation, which is presumably due to the predominance of different cloud types throughout the day. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged by using the temporally averaged column water vapor amount and the temporally averaged cosine of the solar zenith angle. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  20. Snow depth retrieval from L-band satellite measurements on Arctic and Antarctic sea ice

    Science.gov (United States)

    Maaß, N.; Kaleschke, L.; Wever, N.; Lehning, M.; Nicolaus, M.; Rossmann, H. L.

    2017-12-01

    The passive microwave mission SMOS provides daily coverage of the polar regions and measures at a low frequency of 1.4 GHz (L-band). SMOS observations have been used to operationally retrieve sea ice thickness up to 1 m and to estimate snow depth in the Arctic for thicker ice. Here, we present how SMOS-retrieved snow depths compare with airborne measurements from NASA's Operation IceBridge mission (OIB) and with AMSR-2 satellite retrievals at higher frequencies, and we show first applications to Antarctic sea ice. In previous studies, SMOS and OIB snow depths showed good agreement on spatial scales from 50 to 1000 km for some days and disagreement for other days. Here, we present a more comprehensive comparison of OIB and SMOS snow depths in the Arctic for 2011 to 2015. We find that the SMOS retrieval works best for cold conditions and depends on auxiliary information on ice surface temperature, here provided by MODIS thermal imagery satellite data. However, comparing SMOS and OIB snow depths is difficult because of the different spatial resolutions (SMOS: 40 km, OIB: 40 m). Spatial variability within the SMOS footprint can lead to different snow conditions as seen from SMOS and OIB. Ideally the comparison is made for uniform conditions: Low lead and open water fraction, low spatial and temporal variability of ice surface temperature, no mixture of multi- and first-year ice. Under these conditions and cold temperatures (surface temperatures below -25°C), correlation coefficients between SMOS and OIB snow depths increase from 0.3 to 0.6. A finding from the comparison with AMSR-2 snow depths is that the SMOS-based maps depend less on the age of the sea ice than the maps derived from higher frequencies. Additionally, we show first results of SMOS snow depths for Antarctic sea ice. SMOS observations are compared to measurements of autonomous snow buoys drifting in the Weddell Sea since 2014. For a better comparability of these point measurements with SMOS data, we use

  1. Vertical profiles of aerosol optical properties over central Illinois and comparison with surface and satellite measurements

    Directory of Open Access Journals (Sweden)

    P. J. Sheridan

    2012-12-01

    Full Text Available Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1 measure the in situ aerosol properties and determine their vertical and temporal variability and (2 relate these aircraft measurements to concurrent surface and satellite measurements. The primary profile location was within 15 km of the NOAA/ESRL surface aerosol monitoring station near Bondville, Illinois. Identical instruments at the surface and on the aircraft ensured that the data from both platforms would be directly comparable and permitted a determination of how representative surface aerosol properties were of the lower column. Aircraft profiles were also conducted occasionally at two other nearby locations to increase the frequency of A-Train satellite underflights for the purpose of comparing in situ and satellite-retrieved aerosol data. Measurements of aerosol properties conducted at low relative humidity over the Bondville site compare well with the analogous surface aerosol data and do not indicate any major sampling issues or that the aerosol is radically different at the surface compared with the lowest flyby altitude of ~ 240 m above ground level. Statistical analyses of the in situ vertical profile data indicate that aerosol light scattering and absorption (related to aerosol amount decreases substantially with increasing altitude. Parameters related to the nature of the aerosol (e.g., single-scattering albedo, Ångström exponent, etc., however, are relatively constant throughout the mixed layer, and do not vary as much as the aerosol amount throughout the profile. While individual profiles often showed more variability, the median in situ single-scattering albedo was 0.93–0.95 for all sampled altitudes. Several parameters (e.g., submicrometer scattering fraction, hemispheric backscattering fraction, and

  2. Laboratory Measurements of the Dielectronic Recombination Satellite Transitions of He-Like FE XXV and H-Like FE XXVI

    Science.gov (United States)

    Gu, M. F.; Beiersdorfer, P.; Brown, G. V.; Graf, A.; Kelley, R. I.; Kilbourne, C. A.; Porter, F. S.; Kahn, S. M,

    2012-01-01

    We present laboratory spectra of dielectronic recombination (DR) satellite transitions attached to the He-like and H-like iron resonance lines obtained with the NASA Goddard Space Flight Center X-ray calorimeter and produced by a thermal plasma simu1ation technique on the EBIT-I electron beam ion trap at the Lawrence Livermore National Laboratory. We demonstrate that the calorimeter has sufficient spectral resolution in the 6-9 keV range to provide reliable measurements not only of standard DR satellite to resonance line intensities but also of DR satellite to DR satellite ratios that can be used to diagnose nonthermal electron distributions. Electron temperatures derived from the measured line intensities are consistent with the temperature of the simulated plasma. Temperature measurements based on DR satellite transitions have significant advantages over those based on collisional ionization equilibrium or continuum shape. Thus, successful demonstration of this method with the X-ray calorimeter is an important step fur its application in X-ray astronomy.

  3. Electron and ion temperatures: a comparison of ground-based incoherent scatter and AE-C satellite measurements

    International Nuclear Information System (INIS)

    Benson, R.F.; Bauer, P.; Brace, L.H.; Carlson, H.C.; Hagen, J.; Hanson, W.B.; Hoegy, W.R.; Torr, M.R.; Wickwar, V.B.

    1977-01-01

    The Atmosphere Exploere-C satellite (AE-C) is uniquely suited for correlative studies with ground-based stations because its on-board propulsion system enables a desired ground station overflight condition to be maintained for a period of several weeks. It also provides the first low-altitude (below 260 km) comparison of satellite and incoherent scatter electron and ion temperatures. More than 40 comparisons of remote and in situ measurements were made by using data from AE-C and four incoherent scatter stations (Arecibo, Chatanika, Millstone Hill, and St. Santin). The results indicate very good agreement between satellite and ground measurements of the ion temperature, the average satellite retarding potential analyzer temperatures differing from the average incoherent scatter temperatures by -2% at St. Santin, +3% at Millstone Hill, and +2% at Arecibo. The electron temperatures also agree well, the average satellite temperatures exceeding the average incoherent scatter temperatures by 3% at St. Santin, 2% at Arecibo, and 11% at Millstone Hill. Several temperature comparisons were made between AE-C and Chatanika. In spite of the highly variable ionosphere often encountered at this high-latitude location, good agreement was obtained between the in situ and remote measurements of electron and ion temperatures. Longitudinal variations are found to be very important in the comparisons of electron temperature in some locations. The agreement between the electron temperatures is considerably better than that found in some earlier comparisons involving satellities at higher altitudes

  4. Inter-satellite calibration of FengYun 3 medium energy electron fluxes with POES electron measurements

    Science.gov (United States)

    Zhang, Yang; Ni, Binbin; Xiang, Zheng; Zhang, Xianguo; Zhang, Xiaoxin; Gu, Xudong; Fu, Song; Cao, Xing; Zou, Zhengyang

    2018-05-01

    We perform an L-shell dependent inter-satellite calibration of FengYun 3 medium energy electron measurements with POES measurements based on rough orbital conjunctions within 5 min × 0.1 L × 0.5 MLT. By comparing electron flux data between the U.S. Polar Orbiting Environmental Satellites (POES) and Chinese sun-synchronous satellites including FY-3B and FY-3C for a whole year of 2014, we attempt to remove less reliable data and evaluate systematic uncertainties associated with the FY-3B and FY-3C datasets, expecting to quantify the inter-satellite calibration factors for the 150-350 keV energy channel at L = 2-7. Compared to the POES data, the FY-3B and FY-3C data generally exhibit a similar trend of electron flux variations but more or less underestimate them within a factor of 5 for the medium electron energy 150-350 keV channel. Good consistency in the flux conjunctions after the inter-calibration procedures gives us certain confidence to generalize our method to calibrate electron flux measurements from various satellite instruments.

  5. Far from thunderstorm UV transient events in the atmosphere measured by Vernov satellite

    Science.gov (United States)

    Morozenko, Violetta; Klimov, Pavel; Khrenov, Boris; Gali, Garipov; Margarita, Kaznacheeva; Mikhail, Panasyuk; Sergei, Svertilov; Robert, Holzworth

    2016-04-01

    The steady self-contained classification of events such as sprites, elves, blue jets emerged for the period of transient luminous events (TLE) observation. In accordance with TLE origin theories the presence of the thunderstorm region where the lightnings with the large peak current generating in is necessary. However, some far-from-thunderstorm region events were also detected and revealed to us another TLE generating mechanisms. For the discovering of the TLE nature the Universitetsky-Tatiana-2 and Vernov satellites were equipped with ultraviolet (240-400 nm) and red-infrared ( >610 nm) detectors. In both detector it was carried out regardless the lightnings with the guidance by the flashes in the UV wavelength where lightning's emitting is quite faint. The lowered threshold on the Vernov satellite allowed to select the great amount of TLE with the numerous far-from-thunderstorm region events examples. such events were not conjuncted with lightning activity measured by global lightning location network (WWLLN) on the large area of approximately 107 km2 for 30 minutes before and after the time of registration. The characteristic features of this type of event are: the absence of significant signal in the red-infrared detector's channel; a relatively small number of photons (less than 5 ṡ 1021). A large number of without lightning flash were detected at high latitudes over the ocean (30°S - 60°S). Lightning activity in the magnetic conjugate point also was analyzed. The relationship of far-from-thunderstorm region events with the specific lightning discharges didn't confirmed. Far-from-thunderstorm events - a new type of transient phenomena in the upper atmosphere is not associated with the thunderstorm activity. The mechanism of such discharges is not clear, though it was accumulated a sufficient amount of experimental facts of the existence of such flashes. According to the data of Vernov satellite the temporal profile, duration, location with earth

  6. ALGORITHM OF SAR SATELLITE ATTITUDE MEASUREMENT USING GPS AIDED BY KINEMATIC VECTOR

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, in order to improve the accuracy of the Synthetic Aperture Radar (SAR)satellite attitude using Global Positioning System (GPS) wide-band carrier phase, the SAR satellite attitude kinematic vector and Kalman filter are introduced. Introducing the state variable function of GPS attitude determination algorithm in SAR satellite by means of kinematic vector and describing the observation function by the GPS wide-band carrier phase, the paper uses the Kalman filter algorithm to obtian the attitude variables of SAR satellite. Compared the simulation results of Kalman filter algorithm with the least square algorithm and explicit solution, it is indicated that the Kalman filter algorithm is the best.

  7. Multi-decadal record of ice dynamics on Daugaard Jensen Gletscher, East Greenland, from satellite imagery and terrestrial measurements

    DEFF Research Database (Denmark)

    Stearns, L.A.; Hamilton, G.S.; Reeh, Niels

    2005-01-01

    The history of ice velocity and calving front position of Daugaard Jensen Gletscher, a large outlet glacier in East Greenland, is reconstructed from field measurements, aerial photography and satellite imagery for the period 1950-2001. The calving terminus of the glacier has remained in approxima......The history of ice velocity and calving front position of Daugaard Jensen Gletscher, a large outlet glacier in East Greenland, is reconstructed from field measurements, aerial photography and satellite imagery for the period 1950-2001. The calving terminus of the glacier has remained...

  8. Think the way to measure the Earth Radiation Budget and the Total Solar Irradiance with a small satellites constellation

    Science.gov (United States)

    Meftah, M.; Keckhut, P.; Damé, L.; Bekki, S.; Sarkissian, A.; Hauchecorne, A.

    2018-05-01

    Within the past decade, satellites constellations have become possible and practical. One of the interest to use a satellites constellation is to measure the true Earth Radiation Imbalance, which is a crucial quantity for testing climate models and for predicting the future course of global warming. This measurement presents a high interest because the 2001-2010 decade has not shown the accelerating pace of global warming that most models predict, despite the fact that the greenhouse-gas radiative forcing continues to rise. All estimates (ocean heat content and top of atmosphere) show that over the past decade the Earth radiation imbalance ranges between 0.5 to 1W-2. Up to now, the Earth radiation imbalance has not been measured directly. The only way to measure the imbalance with sufficient accuracy is to measure both the incoming solar radiations (total solar irradiance) and the outgoing terrestrial radiations (top of atmosphere outgoing longwave radiations and shortwave radiations) onboard the same satellite, and ideally, with the same instrument. The incoming solar radiations and the outgoing terrestrial radiations are of nearly equal magnitude of the order of 340.5W-2. The objective is to measure these quantities over time by using differential Sun-Earth measurements (to counter calibration errors) with an accuracy better than 0.05Wm-2 at 1σ. It is also necessary to have redundant instruments to track aging in space in order to measure during a decade and to measure the global diurnal cycle with a dozen satellites. Solar irradiance and Earth Radiation Budget (SERB) is a potential first in orbit demonstration satellite. The SERB nano-satellite aims to measure on the same platform the different components of the Earth radiation budget and the total solar irradiance. Instrumental payloads (solar radiometer and Earth radiometers) can acquire the technical maturity for the future large missions (constellation that insure global measurement cover) by flying in a

  9. Multi-model ensemble simulations of troposheric NO2 compared with GOME retrievals for the year 2000

    NARCIS (Netherlands)

    Noije, van T.P.C.; Eskes, H.J.; Dentener, F.J.; Stevenson, D.S.; Ellingsen, K.; Schultz, M.G.; Wild, O.; Amann, M.; Atherton, C.S.; Bergmann, D.; Bey, I.; Boersma, K.F.; Butler, T.; Cofala, J.; Drevet, J.; Fiore, A.M.; Gauss, M.; Hauglustaine, D.A.; Horowitz, L.W.; Isaksen, I.S.A.; Krol, M.C.; Lamarque, J.F.; Lawrence, M.G.; Martin, R.V.; Montanaro, V.; Muller, J.F.; Pitari, G.; Prather, M.J.; Pyle, J.A.; Richter, A.; Rodriguez, J.M.; Savage, N.H.; Strahan, S.E.; Sudo, K.; Szopa, S.; Roozendael, van M.

    2006-01-01

    We present a systematic comparison of tropospheric NO2 from 17 global atmospheric chemistry models with three state-of-the-art retrievals from the Global Ozone Monitoring Experiment (GOME) for the year 2000. The models used constant anthropogenic emissions from IIASA/EDGAR3.2 and monthly emissions

  10. Accelerated ice-sheet mass loss in Antarctica from 18-year satellite laser ranging measurements

    Directory of Open Access Journals (Sweden)

    Shuanggen Jin

    2016-02-01

    Full Text Available Accurate estimate of the ice-sheet mass balance in Antarctic is very difficult due to complex ice sheet condition and sparse in situ measurements. In this paper, the low-degree gravity field coefficients of up to degree and order 5 derived from Satellite Laser Ranging (SLR measurements are used to determine the ice mass variations in Antarctica for the period 1993–2011. Results show that the ice mass is losing with -36±13 Gt/y in Antarctica, -42±11 Gt/y in the West Antarctica and 6±10 Gt/y in the East Antarctica from 1993 to 2011. The ice mass variations from the SLR 5×5 have a good agreement with the GRACE 5×5, GRACE 5×5 (1&2 and GRACE (60×60 for the entire continent since 2003, but degree 5 from SLR is not sufficient to quantify ice losses in West and East Antarctica, respectively. The rate of ice loss in Antarctica is -28±17 Gt/y for 1993-2002 and -55±17 Gt/y for 2003-2011, indicating significant accelerated ice mass losses since 2003. Furthermore, the results from SLR are comparable with GRACE measurements.

  11. Monitoring groundwater variation by satellite and implications for in-situ gravity measurements

    International Nuclear Information System (INIS)

    Fukuda, Yoichi; Yamamoto, Keiko; Hasegawa, Takashi; Nakaegawa, Toshiyuki; Nishijima, Jun; Taniguchi, Makoto

    2009-01-01

    In order to establish a new technique for monitoring groundwater variations in urban areas, the applicability of precise in-situ gravity measurements and extremely high precision satellite gravity data via GRACE (Gravity Recovery and Climate Experiment) was tested. Using the GRACE data, regional scale water mass variations in four major river basins of the Indochina Peninsula were estimated. The estimated variations were compared with Soil-Vegetation-Atmosphere Transfer Scheme (SVATS) models with a river flow model of 1) globally uniform river velocity, 2) river velocity tuned by each river basin, 3) globally uniform river velocity considering groundwater storage, and 4) river velocity tuned by each river basin considering groundwater storage. Model 3) attained the best fit to the GRACE data, and the model 4) yielded almost the same values. This implies that the groundwater plays an important role in estimating the variation of total terrestrial storage. It also indicates that tuning river velocity, which is based on the in-situ measurements, needs further investigations in combination with the GRACE data. The relationships among GRACE data, SVATS models, and in-situ measurements were also discussed briefly.

  12. Using NASA's GRACE and SMAP satellites to measure human impacts on the water cycle

    Science.gov (United States)

    Reager, J. T., II; Castle, S.; Turmon, M.; Famiglietti, J. S.; Fournier, S.

    2017-12-01

    Two satellite missions, the Gravity Recovery and Climate Experiment (GRACE) mission and the Soil Moisture Active Passive (SMAP) mission are enabling the measurement of the dynamic state of the water cycle globally, offering a unique opportunity for the study of human impacts on terrestrial hydrology and an opportunity to quantify the direct augmentation of natural cycles by human activities. While many model-data fusion studies aim to apply observations to improve model performance, we present recent studies on measuring the multi-scale impacts of human activities by differencing or contrasting model simulations and observations. Results that will be presented include studies on: the measurement of human impacts on evapotranspiration in the Colorado River Basin; the estimation of the human portion of groundwater depletion in the Southwestern U.S.; and the influence of irrigation on runoff generation in the Mississippi River basin. Each of these cases has a unique implications for the sustainable use of natural resources by humans, and indicate the relevant extent and magnitude of human influence on natural processes, suggesting their importance for inclusion in hydrology and land-surface models.

  13. First satellite measurements of chemical changes in coincidence with sprite activity

    Science.gov (United States)

    Arnone, Enrico; São Sabbas, Fernanda; Kero, Antti; Soula, Serge; Carlotti, Massimo; Chanrion, Olivier; Dinelli, Bianca Maria; Papandrea, Enzo; Castelli, Elisa; Neubert, Torsten

    2010-05-01

    The last twenty years have seen the discovery of electric discharges in the Earth's atmosphere above thunderstorms, the so-called sprites and jets. It has been suggested that they impact the atmospheric chemistry and possibly affect the ozone layer through their repeated occurrence. Whereas theoretical studies and laboratory experiments suggest enhancement of such gasses as nitrogen oxides by up to hundreds of percent within sprites, a definitive detection of their chemical effects have to date been unsuccessful. In this paper, we report on the first measurements of atmospheric chemical perturbations recorded in coincidence with sprite activity. A striking event occurred on 25 August 2003 when the MIPAS spectrometer onboard the Envisat satellite recorded spectroscopic measurements soon after a sequence of 11 sprites observed above Corsica (France) by Eurosprite ground facilities (details of the convective system are discussed in a companion paper by São Sabbas et al.). The measurements show an enhancement of ambient nitrous oxide by 80% at 52 km altitude in the region above the parent thunderstorm. The recorded chemical changes imply sprites can exert significant modification of the atmospheric chemistry at a regional scale, confirming model and laboratory predictions of sprite-chemistry, and requiring a new estimate of their global impact. The results of the analysis and their implications are discussed.

  14. Satellite Atmospheric Sounder IRFS-2 1. Analysis of Outgoing Radiation Spectra Measurements

    Science.gov (United States)

    Polyakov, A. V.; Timofeyev, Yu. M.; Virolainen, Ya. A.; Uspensky, A. B.; Zavelevich, F. S.; Golovin, Yu. M.; Kozlov, D. A.; Rublev, A. N.; Kukharsky, A. V.

    2017-12-01

    The outgoing radiation spectra measured by the IRFS-2 spectrometer onboard Meteor-M no. 2 satellite have been analyzed. Some statistical parameters of more than 106 spectra measured in spring in 2015 have been calculated. The radiation brightness temperature varied from ˜300 K (surface temperature) up to ˜210 K (tropopause temperature). The quite high variability of the longwave measured radiation has been demonstrated. The signal-to-noise ratio distinctively decreases in the shortwave region (higher than 1300 cm-1). Intercomparisons of IR sounders IRFS-2 with IASI and CrIS spectra showed that the discrepancies in the average spectra and their variability do not exceed measurement errors in the spectral region 660-1300 cm-1. A comparison of specially chosen pairs of the simultaneously measured spectra showed that the differences between IRFS-2 and European instruments in the region of the 15-μm CO2 band and the transparency windows 8-12 μm are less than 1 mW/(m2 sr cm-1) and no more than the differences between the two IASI instruments (-A and -B). The differences between measured and simulated spectra are less than 1 mW/(m2 sr cm-1) in the mean part of CO2 band. However, starting from 720 cm-1, values appear that reach 2-4 mW/(m2 sr cm-1). This is caused by the absence of precise information about the surface temperature. Further investigations into the possible reasons for the observed disagreements are required in order to improve both the method of initial processing and the radiative model of the atmosphere.

  15. Potentials of satellite derived SIF products to constrain GPP simulated by the new ORCHIDEE-FluOR terrestrial model at the global scale

    Science.gov (United States)

    Bacour, C.; Maignan, F.; Porcar-Castell, A.; MacBean, N.; Goulas, Y.; Flexas, J.; Guanter, L.; Joiner, J.; Peylin, P.

    2016-12-01

    A new era for improving our knowledge of the terrestrial carbon cycle at the global scale has begun with recent studies on the relationships between remotely sensed Sun Induce Fluorescence (SIF) and plant photosynthetic activity (GPP), and the availability of such satellite-derived products now "routinely" produced from GOSAT, GOME-2, or OCO-2 observations. Assimilating SIF data into terrestrial ecosystem models (TEMs) represents a novel opportunity to reduce the uncertainty of their prediction with respect to carbon-climate feedbacks, in particular the uncertainties resulting from inaccurate parameter values. A prerequisite is a correct representation in TEMs of the several drivers of plant fluorescence from the leaf to the canopy scale, and in particular the competing processes of photochemistry and non photochemical quenching (NPQ).In this study, we present the first results of a global scale assimilation of GOME-2 SIF products within a new version of the ORCHIDEE land surface model including a physical module of plant fluorescence. At the leaf level, the regulation of fluorescence yield is simulated both by the photosynthesis module of ORCHIDEE to calculate the photochemical yield and by a parametric model to estimate NPQ. The latter has been calibrated on leaf fluorescence measurements performed for boreal coniferous and Mediterranean vegetation species. A parametric representation of the SCOPE radiative transfer model is used to model the plant fluorescence fluxes for PSI and PSII and the scaling up to the canopy level. The ORCHIDEE-FluOR model is firstly evaluated with respect to in situ measurements of plant fluorescence flux and photochemical yield for scots pine and wheat. The potentials of SIF data to constrain the modelled GPP are evaluated by assimilating one year of GOME-2-SIF products within ORCHIDEE-FluOR. We investigate in particular the changes in the spatial patterns of GPP following the optimization of the photosynthesis and phenology parameters

  16. Improving the Accuracy of Satellite Sea Surface Temperature Measurements by Explicitly Accounting for the Bulk-Skin Temperature Difference

    Science.gov (United States)

    Castro, Sandra L.; Emery, William J.

    2002-01-01

    The focus of this research was to determine whether the accuracy of satellite measurements of sea surface temperature (SST) could be improved by explicitly accounting for the complex temperature gradients at the surface of the ocean associated with the cool skin and diurnal warm layers. To achieve this goal, work centered on the development and deployment of low-cost infrared radiometers to enable the direct validation of satellite measurements of skin temperature. During this one year grant, design and construction of an improved infrared radiometer was completed and testing was initiated. In addition, development of an improved parametric model for the bulk-skin temperature difference was completed using data from the previous version of the radiometer. This model will comprise a key component of an improved procedure for estimating the bulk SST from satellites. The results comprised a significant portion of the Ph.D. thesis completed by one graduate student and they are currently being converted into a journal publication.

  17. Validation of satellite-retrieved MBL cloud properties using DOE ARM AMF measurements at the Azores

    Science.gov (United States)

    Xi, B.; Dong, X.; Minnis, P.; Sun-Mack, S.

    2013-05-01

    Marine Boundary Layer (MBL) cloud properties derived for the Clouds and the Earth's Radiant Energy System (CERES) Project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Atmospheric Radiation Measurement (ARM) AMF AZORES site from June 2009 through December 2010. Retrievals from ARM surface-based data were averaged over a 1-hour interval centered at the time of each satellite overpass, and the CERES-MODIS Ed4 cloud properties were averaged within a 30-km x 30-km box centered on the ARM AZORES site. Two datasets were analyzed: all of the single-layered unbroken decks (SL) and those cases without temperature inversions. The CERES-MODIS cloud top/base heights were determined from cloud top/base temperature by using a lapse rate method normalized to the 24-h mean surface air temperature. The preliminary results show: for all SL MBL at daytime, they are, on average, 0.148 km (cloud top) and 0.087 km (cloud base) higher than the ARM radar-lidar observed cloud top and base, respectively. At nighttime, they are 0.446 km (cloud top) and 0.334 km (cloud base). For those cases without temperature inversions, the comparisons are close to their SL counterparts. For cloud temperatures, the MODIS-derived cloud-top and -base temperatures are 1.6 K lower and 0.4 K higher than the surface values with correlations of 0.92 during daytime. At nighttime, the differences are slightly larger and correlations are lower than daytime comparisons. Variations in the height difference are mainly caused by uncertainties in the surface air temperatures and lapse rates. Based on a total of 61 daytime and 87 nighttime samples (ALL SL cases), the temperature inversion layers occur about 72% during daytime and 83% during nighttime. The difference of surface-observed lapse rate and the satellite derived lapse rate can be 1.6 K/km for daytime and 3.3K/km for nighttime. From these lapse rates, we can further analyze the surface

  18. Accurate calibration of waveform data measured by the Plasma Wave Experiment on board the ARASE satellite

    Science.gov (United States)

    Kitahara, M.; Katoh, Y.; Hikishima, M.; Kasahara, Y.; Matsuda, S.; Kojima, H.; Ozaki, M.; Yagitani, S.

    2017-12-01

    The Plasma Wave Experiment (PWE) is installed on board the ARASE satellite to measure the electric field in the frequency range from DC to 10 MHz, and the magnetic field in the frequency range from a few Hz to 100 kHz using two dipole wire-probe antennas (WPT) and three magnetic search coils (MSC), respectively. In particular, the Waveform Capture (WFC), one of the receivers of the PWE, can detect electromagnetic field waveform in the frequency range from a few Hz to 20 kHz. The Software-type Wave Particle Interaction Analyzer (S-WPIA) is installed on the ARASE satellite to measure the energy exchange between plasma waves and particles. Since S-WPIA uses the waveform data measured by WFC to calculate the relative phase angle between the wave magnetic field and velocity of energetic electrons, the high-accuracy is required to calibration of both amplitude and phase of the waveform data. Generally, the calibration procedure of the signal passed through a receiver consists of three steps; the transformation into spectra, the calibration by the transfer function of a receiver, and the inverse transformation of the calibrated spectra into the time domain. Practically, in order to reduce the side robe effect, a raw data is filtered by a window function in the time domain before applying Fourier transform. However, for the case that a first order differential coefficient of the phase transfer function of the system is not negligible, the phase of the window function convoluted into the calibrated spectra is shifted differently at each frequency, resulting in a discontinuity in the time domain of the calibrated waveform data. To eliminate the effect of the phase shift of a window function, we suggest several methods to calibrate a waveform data accurately and carry out simulations assuming simple sinusoidal waves as an input signal and using transfer functions of WPT, MSC, and WFC obtained in pre-flight tests. In consequence, we conclude that the following two methods can

  19. Verification of the Global Precipitation Measurement (GPM) Satellite by the Olympic Mountains Experiment (OLYMPEX)

    Science.gov (United States)

    McMurdie, L. A.; Houze, R.

    2017-12-01

    Measurements of global precipitation are critical for monitoring Earth's water resources and hydrological processes, including flooding and snowpack accumulation. As such, the Global Precipitation Measurement (GPM) Mission `Core' satellite detects precipitation ranging from light snow to heavy downpours in a wide range locations including remote mountainous regions. The Olympic Mountains Experiment (OLYMPEX) during the 2015-2016 fall-winter season in the mountainous Olympic Peninsula of Washington State provide physical and hydrological validation for GPM precipitation algorithms and insight into the modification of midlatitude storms by passage over mountains. The instrumentation included ground-based dual-polarization Doppler radars on the windward and leeward sides of the Olympic Mountains, surface stations that measured precipitation rates, particle size distributions and fall velocities at various altitudes, research aircraft equipped with cloud microphysics probes, radars, lidar, and passive radiometers, supplemental rawinsondes and dropsondes, and autonomous recording cameras that monitored snowpack accumulation. Results based on dropsize distributions (DSDs) and cross-sections of radar reflectivity over the ocean and windward slopes have revealed important considerations for GPM algorithm development. During periods of great precipitation accumulation and enhancement by the mountains on windward slopes, both warm rain and ice-phase processes are present, implying that it is important for GPM retrievals be sensitive to both types of precipitation mechanisms and to represent accurately the concentration of precipitation at the lowest possible altitudes. OLYMPEX data revealed that a given rain rate could be associated with a variety of DSDs, which presents a challenge for GPM precipitation retrievals in extratropical cyclones passing over mountains. Some of the DSD regimes measured during OLYMPEX stratiform periods have the same characteristics found in prior

  20. Selection of fiber-optical components for temperature measurement for satellite applications

    Science.gov (United States)

    Putzer, P.; Kuhenuri Chami, N.; Koch, A. W.; Hurni, A.; Roner, M.; Obermaier, J.; Lemke, N. M. K.

    2017-11-01

    The Hybrid Sensor Bus (HSB) is a modular system for housekeeping measurements for space applications. The focus here is the fiber-optical module and the used fiber-Bragg gratings (FBGs) for temperature measurements at up to 100 measuring points. The fiber-optial module uses a tunable diode laser to scan through the wavelength spectrum and a passive optical network for reading back the reflections from the FBG sensors. The sensors are based on FBGs which show a temperature dependent shift in wavelength, allowing a high accuracy of measurement. The temperature at each sensor is derivated from the sensors Bragg wavelength shift by evaluating the measured spectrum with an FBG peak detection algorithm and by computing the corresponding temperature difference with regard to the calibration value. It is crucial to eliminate unwanted influence on the measurement accuracy through FBG wavelength shifts caused by other reasons than the temperature change. The paper presents gamma radiation test results up to 25 Mrad for standard UV-written FBGs in a bare fiber and in a mechanically housed version. This high total ionizing dose (TID) load comes from a possible location of the fiber outside the satellite's housing, like e.g. on the panels or directly embedded into the satellites structure. Due to the high shift in wavelength of the standard written gratings also the femto-second infrared (fs- IR) writing technique is investigated in more detail. Special focus is given to the deployed fibers for the external sensor network. These fibers have to be mechanically robust and the radiation induced attenuation must be low in order not to influence the system's performance. For this reason different fiber types have been considered and tested to high dose gamma radiation. Dedicated tests proved the absence of enhanced low dose rate sensitivity (ELDRS). Once the fiber has been finally selected, the fs-IR grating will be written to these fibers and the FBGs will be tested in order to

  1. Estimating daily surface NO2 concentrations from satellite data - a case study over Hong Kong using land use regression models

    Science.gov (United States)

    Anand, Jasdeep S.; Monks, Paul S.

    2017-07-01

    Land use regression (LUR) models have been used in epidemiology to determine the fine-scale spatial variation in air pollutants such as nitrogen dioxide (NO2) in cities and larger regions. However, they are often limited in their temporal resolution, which may potentially be rectified by employing the synoptic coverage provided by satellite measurements. In this work a mixed-effects LUR model is developed to model daily surface NO2 concentrations over the Hong Kong SAR during the period 2005-2015. In situ measurements from the Hong Kong Air Quality Monitoring Network, along with tropospheric vertical column density (VCD) data from the OMI, GOME-2A, and SCIAMACHY satellite instruments were combined with fine-scale land use parameters to provide the spatiotemporal information necessary to predict daily surface concentrations. Cross-validation with the in situ data shows that the mixed-effects LUR model using OMI data has a high predictive power (adj. R2 = 0. 84), especially when compared with surface concentrations derived using the MACC-II reanalysis model dataset (adj. R2 = 0. 11). Time series analysis shows no statistically significant trend in NO2 concentrations during 2005-2015, despite a reported decline in NOx emissions. This study demonstrates the utility in combining satellite data with LUR models to derive daily maps of ambient surface NO2 for use in exposure studies.

  2. Measuring co-seismic deformation of the Sichuan earthquake by satellite differential INSAR

    Science.gov (United States)

    Zhang, Yonghong; Gong, Wenyu; Zhang, Jixian

    2008-12-01

    The Sichuan Earthquake, occurred on May 12, 2008, is the strongest earthquake to hit China since the 1976 Tangshan earthquake. The earthquake had a magnitude of M 8.0, and caused surface deformation greater than 3 meters. This paper presents the research work of measuring the co-seismic deformations of the earthquake with satellite differential interferometric SAR technique. Four L-band SAR images were used to form the interferogram with 2 pre- scenes imaged on Feb 17, 2008 and 2 post- scenes on May 19, 2008. The Digital Elevation Models extracted from 1:50,000-scale national geo-spatial database were used to remove the topographic contribution and form a differential interferogram. The interferogram presents very high coherence in most areas, although the pre- and post- images were acquired with time interval of 92 days. This indicates that the L-band PALSAR sensor is very powerful for interferometry applications. The baseline error is regarded as the main phase error source in the differential interferogram. Due to the difficulties of doing field works immediately after the earthquake, only one deformation measurement recorded by a permanent GPS station is obtained for this research. An approximation method is proposed to eliminate the orbital phase error with one control point. The derived deformation map shows similar spatial pattern and deformation magnitude compared with deformation field generated by seismic inversion method.

  3. Signature of biased range in the non-dynamical Chern-Simons modified gravity and its measurements with satellite-satellite tracking missions: theoretical studies

    Science.gov (United States)

    Qiang, Li-E.; Xu, Peng

    2015-08-01

    Having great accuracy in the range and range rate measurements, the GRACE mission and the planed GRACE follow on mission can in principle be employed to place strong constraints on certain relativistic gravitational theories. In this paper, we work out the range observable of the non-dynamical Chern-Simons modified gravity for the satellite-to-satellite tracking (SST) measurements. We find out that a characteristic time accumulating range signal appears in non-dynamical Chern-Simons gravity, which has no analogue found in the standard parity-preserving metric theories of gravity. The magnitude of this Chern-Simons range signal will reach a few times of cm for each free flight of these SST missions, here is the dimensionless post-Newtonian parameter of the non-dynamical Chern-Simons theory. Therefore, with the 12 years data of the GRACE mission, one expects that the mass scale of the non-dynamical Chern-Simons gravity could be constrained to be larger than eV. For the GRACE FO mission that scheduled to be launched in 2017, the much stronger bound that eV is expected.

  4. Advances In Global Aerosol Modeling Applications Through Assimilation of Satellite-Based Lidar Measurements

    Science.gov (United States)

    Campbell, James; Hyer, Edward; Zhang, Jianglong; Reid, Jeffrey; Westphal, Douglas; Xian, Peng; Vaughan, Mark

    2010-05-01

    Modeling the instantaneous three-dimensional aerosol field and its downwind transport represents an endeavor with many practical benefits foreseeable to air quality, aviation, military and science agencies. The recent proliferation of multi-spectral active and passive satellite-based instruments measuring aerosol physical properties has served as an opportunity to develop and refine the techniques necessary to make such numerical modeling applications possible. Spurred by high-resolution global mapping of aerosol source regions, and combined with novel multivariate data assimilation techniques designed to consider these new data streams, operational forecasts of visibility and aerosol optical depths are now available in near real-time1. Active satellite-based aerosol profiling, accomplished using lidar instruments, represents a critical element for accurate analysis and transport modeling. Aerosol source functions, alone, can be limited in representing the macrophysical structure of injection scenarios within a model. Two-dimensional variational (2D-VAR; x, y) assimilation of aerosol optical depth from passive satellite observations significantly improves the analysis of the initial state. However, this procedure can not fully compensate for any potential vertical redistribution of mass required at the innovation step. The expense of an inaccurate vertical analysis of aerosol structure is corresponding errors downwind, since trajectory paths within successive forecast runs will likely diverge with height. In this paper, the application of a newly-designed system for 3D-VAR (x,y,z) assimilation of vertical aerosol extinction profiles derived from elastic-scattering lidar measurements is described [Campbell et al., 2009]. Performance is evaluated for use with the U. S. Navy Aerosol Analysis and Prediction System (NAAPS) by assimilating NASA/CNES satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 0.532 μm measurements [Winker et al., 2009

  5. Relasphone—Mobile and Participative In Situ Forest Biomass Measurements Supporting Satellite Image Mapping

    Directory of Open Access Journals (Sweden)

    Matthieu Molinier

    2016-10-01

    Full Text Available Due to the high cost of traditional forest plot measurements, the availability of up-to-date in situ forest inventory data has been a bottleneck for remote sensing image analysis in support of the important global forest biomass mapping. Capitalizing on the proliferation of smartphones, citizen science is a promising approach to increase spatial and temporal coverages of in situ forest observations in a cost-effective way. Digital cameras can be used as a relascope device to measure basal area, a forest density variable that is closely related to biomass. In this paper, we present the Relasphone mobile application with extensive accuracy assessment in two mixed forest sites from different biomes. Basal area measurements in Finland (boreal zone were in good agreement with reference forest inventory plot data on pine ( R 2 = 0 . 75 , R M S E = 5 . 33 m 2 /ha, spruce ( R 2 = 0 . 75 , R M S E = 6 . 73 m 2 /ha and birch ( R 2 = 0 . 71 , R M S E = 4 . 98 m 2 /ha, with total relative R M S E ( % = 29 . 66 % . In Durango, Mexico (temperate zone, Relasphone stem volume measurements were best for pine ( R 2 = 0 . 88 , R M S E = 32 . 46 m 3 /ha and total stem volume ( R 2 = 0 . 87 , R M S E = 35 . 21 m 3 /ha. Relasphone data were then successfully utilized as the only reference data in combination with optical satellite images to produce biomass maps. The Relasphone concept has been validated for future use by citizens in other locations.

  6. Measuring Relativistic effects in the field of the Earth with Laser Ranged Satellites and the LARASE research program

    Science.gov (United States)

    Lucchesi, David; Anselmo, Luciano; Bassan, Massimo; Magnafico, Carmelo; Pardini, Carmen; Peron, Roberto; Pucacco, Giuseppe; Stanga, Ruggero; Visco, Massimo

    2017-04-01

    The main goal of the LARASE (LAser RAnged Satellites Experiment) research program is to obtain refined tests of Einstein's theory of General Relativity (GR) by means of very precise measurements of the round-trip time among a number of ground stations of the International Laser Ranging Service (ILRS) network and a set of geodetic satellites. These measurements are guaranteed by means of the powerful and precise Satellite Laser Ranging (SLR) technique. In particular, a big effort of LARASE is dedicated to improve the dynamical models of the LAGEOS, LAGEOS II and LARES satellites, with the objective to obtain a more precise and accurate determination of their orbit. These activities contribute to reach a final error budget that should be robust and reliable in the evaluation of the main systematic errors sources that come to play a major role in masking the relativistic precession on the orbit of these laser-ranged satellites. These error sources may be of gravitational and non-gravitational origin. It is important to stress that a more accurate and precise orbit determination, based on more reliable dynamical models, represents a fundamental prerequisite in order to reach a sub-mm precision in the root-mean-square of the SLR range residuals and, consequently, to gather benefits in the fields of geophysics and space geodesy, such as stations coordinates knowledge, geocenter determination and the realization of the Earth's reference frame. The results reached over the last year will be presented in terms of the improvements achieved in the dynamical model, in the orbit determination and, finally, in the measurement of the relativistic precessions that act on the orbit of the satellites considered.

  7. Evolution of stratospheric ozone and water vapour time series studied with satellite measurements

    Directory of Open Access Journals (Sweden)

    A. Jones

    2009-08-01

    Full Text Available The long term evolution of stratospheric ozone and water vapour has been investigated by extending satellite time series to April 2008. For ozone, we examine monthly average ozone values from various satellite data sets for nine latitude and altitude bins covering 60° S to 60° N and 20–45 km and covering the time period of 1979–2008. Data are from the Stratospheric Aerosol and Gas Experiment (SAGE I+II, the HALogen Occultation Experiment (HALOE, the Solar BackscatterUltraViolet-2 (SBUV/2 instrument, the Sub-Millimetre Radiometer (SMR, the Optical Spectrograph InfraRed Imager System (OSIRIS, and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartograpY (SCIAMACHY. Monthly ozone anomalies are calculated by utilising a linear regression model, which also models the solar, quasi-biennial oscillation (QBO, and seasonal cycle contributions. Individual instrument ozone anomalies are combined producing an all instrument average. Assuming a turning point of 1997 and that the all instrument average is represented by good instrumental long term stability, the largest statistically significant ozone declines (at two sigma from 1979–1997 are seen at the mid-latitudes between 35 and 45 km, namely −7.2%±0.9%/decade in the Northern Hemisphere and −7.1%±0.9%/in the Southern Hemisphere. Furthermore, for the period 1997 to 2008 we find that the same locations show the largest ozone recovery (+1.4% and +0.8%/decade respectively compared to other global regions, although the estimated trend model errors indicate that the trend estimates are not significantly different from a zero trend at the 2 sigma level. An all instrument average is also constructed from water vapour anomalies during 1991–2008, using the SAGE II, HALOE, SMR, and the Microwave Limb Sounder (Aura/MLS measurements. We report that the decrease in water vapour values after 2001 slows down around 2004–2005 in the lower tropical stratosphere (20–25 km and has even

  8. Surface energy balance and actual evapotranspiration of the transboundary Indus Basin estimated from satellite measurements and the ETLook model

    NARCIS (Netherlands)

    Bastiaanssen, W.G.M.; Cheema, M.J.M.; Immerzeel, W.W.; Mittenburg, I.J.; Pelgrum, H.

    2012-01-01

    The surface energy fluxes and related evapotranspiration processes across the Indus Basin were estimated for the hydrological year 2007 using satellite measurements. The new ETLook remote sensing model (version 1) infers information on actual Evaporation (E) and actual Transpiration (T) from

  9. Feasibility of a Constellation of Miniature Satellites for Performing Measurements of the Magnetic Field of the Earth

    DEFF Research Database (Denmark)

    Thomsen, Michael; Merayo, José M.G.; Brauer, Peter

    2008-01-01

    This paper studies the requirements for a small constellation of satellites to perform measurements of the magnetic field of the Earth and a payload and boom design for such a mission is discussed. After studying communication, power and mass requirements it is found that it is feasible to develop...

  10. Comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations

    International Nuclear Information System (INIS)

    Lanyi, G.E.; Roth, T.

    1988-01-01

    Total ionospheric electron contents (TEC) were measured by global positioning system (GPS) dual-frequency receivers developed by the Jet Propulsion Laboratory. The measurements included P-code (precise ranging code) and carrier phase data for six GPS satellites during multiple five-hour observing sessions. A set of these GPS TEC measurements were mapped from the GPS lines of sight to the line of sight of a Faraday beacon satellite by statistically fitting the TEC data to a simple model of the ionosphere. The mapped GPS TEC values were compared with the Faraday rotation measurements. Because GPS transmitter offsets are different for each satellite and because some GPS receiver offsets were uncalibrated, the sums of the satellite and receiver offsets were estimated simultaneously with the TEC in a least squares procedure. The accuracy of this estimation procedure is evaluated indicating that the error of the GPS-determined line of sight TEC can be at or below 1 x 10 to the 16th el/sq cm. Consequently, the current level of accuracy is comparable to the Faraday rotation technique; however, GPS provides superior sky coverage. 15 references

  11. Magalhães Gomes, físico e humanista

    Directory of Open Access Journals (Sweden)

    Ângela Vaz Leão

    2002-10-01

    Full Text Available Este trabalho tem dois objetivos: primeiro apresentar aos leitores da revista Scripta e aos jovens universitários a figura de um grande pesquisador na área da Física que foi também um humanista eminente, o Professor Francisco de Assis Magalhães Gomes; depois, publicar um erudito trabalho seu, de crítica etimológica, intitulado “Um erro etimológico: a origem do vocábulo gallium para designar o elemento 31 da classificação periódica”. Esse trabalho, apenas introduzido no presente artigo, será transcrito no artigo seguinte.

  12. Communications satellite business ventures - Measuring the impact of technology programmes and related policies

    Science.gov (United States)

    Greenberg, J. S.

    1986-01-01

    An economic evaluation and planning procedure which assesses the effects of various policies on fixed satellite business ventures is described. The procedure is based on a stochastic financial simulation model, the Domsat II, which evaluates spacecraft reliability, market performance, and cost uncertainties. The application of the Domsat II model to the assessment of NASA's ion thrusters for on-orbit propulsion and GaAs solar cell technology is discussed. The effects of insurance rates and the self-insurance option on the financial performance of communication satellite business ventures are investigated. The selection of a transportation system for placing the satellites into GEO is analyzed.

  13. Monitoring the effect of restoration measures in Indonesian peatlands by radar satellite imagery.

    Science.gov (United States)

    Jaenicke, J; Englhart, S; Siegert, F

    2011-03-01

    In the context of the ongoing climate change discussions the importance of peatlands as carbon stores is increasingly recognised in the public. Drainage, deforestation and peat fires are the main reasons for the release of huge amounts of carbon from peatlands. Successful restoration of degraded tropical peatlands is of high interest due to their huge carbon store and sequestration potential. The blocking of drainage canals by dam building has become one of the most important measures to restore the hydrology and the ecological function of the peat domes. This study investigates the capability of using multitemporal radar remote sensing imagery for monitoring the hydrological effects of these measures. The study area is the former Mega Rice Project area in Central Kalimantan, Indonesia, where peat drainage and forest degradation is especially intense. Restoration measures started in July 2004 by building 30 large dams until June 2008. We applied change detection analysis with more than 80 ENVISAT ASAR and ALOS PALSAR images, acquired between 2004 and 2009. Radar signal increases of up to 1.36 dB show that high frequency multitemporal radar satellite imagery can be used to detect an increase in peat soil moisture after dam construction, especially in deforested areas with a high density of dams. Furthermore, a strong correlation between cross-polarised radar backscatter coefficients and groundwater levels above -50 cm was found. Monitoring peatland rewetting and quantifying groundwater level variations is important information for vegetation re-establishment, fire hazard warning and making carbon emission mitigation tradable under the voluntary carbon market or REDD (Reducing Emissions from Deforestation and Degradation) mechanism. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade....... The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite constellation Swarm will ensure continuity of such measurement and provide enhanced possibilities to improve our...... ability to characterize and understand the many sources that contribute to Earth’s magnetic field. In this review, we summarize investigations of Earth’s interior and environment that have been possible through the analysis of high-precision magnetic field observations taken by LEO satellites....

  15. Dynamical contibution of Mean Potential Vorticity pseudo-observations derived from MetOp/GOME2 Ozone data into weather forecast, a Mediterranean High Precipitation Event study.

    Science.gov (United States)

    Sbii, Siham; Zazoui, Mimoun; Semane, Noureddine

    2015-04-01

    In the absence of observations covering the upper troposphere - lower stratophere, headquarters of several disturbances, and knowing that satellites are uniquely capable of providing uniform data coverage globally, a methodology is followed [1] to convert Total Column Ozone, observed by MetOp/GOME2, into pseudo-observations of Mean Potential Vorticity (MPV). The aim is to study the dynamical impact of Ozone data in the prediction of a Mediterranean Heavy Precipitation Event observed during 28-29 September 2012 in the context of HYMEX1. This study builds on a previously described methodology [2] that generates numerical weather prediction model initial conditions from ozone data. Indeed, the assimilation of MPV in a 3D-var framework is based on a linear regression between observed Ozone and vertical integrated Ertel PV. The latter is calculated using dynamical fields from the moroccan operational limited area model ALADIN-MAROC according to [3]: δθ fp p0 -R δU δV P V = - gξaδp- g-R-(p )Cp [(δp-)2 + (δp-)2] (1) Where ξa is the vertical component of the absolute vorticity, U and V the horizontal wind components, θ the potential temperature, R gas constant, Cp specific heat at constant pressure, p the pressure, p0 a reference pressure, g the gravity and f is the Coriolis parameter. The MPV is estimated using the following expression: --1--∫ P2 M PV = P1 - P2 P P V.δp 1 (2) With P1 = 500hPa and P2 = 100hPa In the present study, the linear regression is performed over September 2012 with a correlation coefficient of 0.8265 and is described as follows: M P V = 5.314610- 2 *O3 - 13.445 (3) where O3 and MPV are given in Dobson Unit (DU) and PVU (1 PV U = 10-6 m2 K kg-1 s-1), respectively. It is found that the ozone-influenced upper-level initializing fields affect the precipitation forecast, as diagnosed by a comparison with the ECMWF model. References [1] S. Sbii, N. Semane, Y. Michel, P. Arbogast and M. Zazoui (2012). Using METOP/GOME-2 data and MSG ozone

  16. A corotation electric field model of the Earth derived from Swarm satellite magnetic field measurements

    Science.gov (United States)

    Maus, Stefan

    2017-08-01

    Rotation of the Earth in its own geomagnetic field sets up a primary corotation electric field, compensated by a secondary electric field of induced electrical charges. For the geomagnetic field measured by the Swarm constellation of satellites, a derivation of the global corotation electric field inside and outside of the corotation region is provided here, in both inertial and corotating reference frames. The Earth is assumed an electrical conductor, the lower atmosphere an insulator, followed by the corotating ionospheric E region again as a conductor. Outside of the Earth's core, the induced charge is immediately accessible from the spherical harmonic Gauss coefficients of the geomagnetic field. The charge density is positive at high northern and southern latitudes, negative at midlatitudes, and increases strongly toward the Earth's center. Small vertical electric fields of about 0.3 mV/m in the insulating atmospheric gap are caused by the corotation charges located in the ionosphere above and the Earth below. The corotation charges also flow outward into the region of closed magnetic field lines, forcing the plasmasphere to corotate. The electric field of the corotation charges further extends outside of the corotating regions, contributing radial outward electric fields of about 10 mV/m in the northern and southern polar caps. Depending on how the magnetosphere responds to these fields, the Earth may carry a net electric charge.

  17. Evidence of Urban Precipitation Anomalies from Satellite and Ground-Based Measurements

    Science.gov (United States)

    Shepherd, J. Marshall; Manyin, M.; Negri, Andrew

    2004-01-01

    Urbanization is one of the extreme cases of land use change. Most of world's population has moved to urban areas. Although currently only 1.2% of the land is considered urban, the spatial coverage and density of cities are expected to rapidly increase in the near future. It is estimated that by the year 2025, 60% of the world's population will live in cities. Human activity in urban environments also alters weather and climate processes. However, our understanding of urbanization on the total Earth-weather-climate system is incomplete. Recent literature continues to provide evidence that anomalies in precipitation exist over and downwind of major cities. Current and future research efforts are actively seeking to verify these literature findings and understand potential cause-effect relationships. The novelty of this study is that it utilizes rainfall data from multiple satellite data sources (e.g. TRMM precipitation radar, TRMM-geosynchronous-rain gauge merged product, and SSM/I) and ground-based measurements to identify spatial anomalies and temporal trends in precipitation for cities around the world. Early results will be presented and placed within the context of weather prediction, climate assessment, and societal applications.

  18. Statistical theory for estimating sampling errors of regional radiation averages based on satellite measurements

    Science.gov (United States)

    Smith, G. L.; Bess, T. D.; Minnis, P.

    1983-01-01

    The processes which determine the weather and climate are driven by the radiation received by the earth and the radiation subsequently emitted. A knowledge of the absorbed and emitted components of radiation is thus fundamental for the study of these processes. In connection with the desire to improve the quality of long-range forecasting, NASA is developing the Earth Radiation Budget Experiment (ERBE), consisting of a three-channel scanning radiometer and a package of nonscanning radiometers. A set of these instruments is to be flown on both the NOAA-F and NOAA-G spacecraft, in sun-synchronous orbits, and on an Earth Radiation Budget Satellite. The purpose of the scanning radiometer is to obtain measurements from which the average reflected solar radiant exitance and the average earth-emitted radiant exitance at a reference level can be established. The estimate of regional average exitance obtained will not exactly equal the true value of the regional average exitance, but will differ due to spatial sampling. A method is presented for evaluating this spatial sampling error.

  19. Ground truth measurements plan for the Multispectral Thermal Imager (MTI) satellite

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, A.J.

    2000-01-03

    Sandia National Laboratories (SNL), Los Alamos National Laboratory (LANL), and the Savannah River Technology Center (SRTC) have developed a diverse group of algorithms for processing and analyzing the data that will be collected by the Multispectral Thermal Imager (MTI) after launch late in 1999. Each of these algorithms must be verified by comparison to independent surface and atmospheric measurements. SRTC has selected 13 sites in the continental U.S. for ground truth data collections. These sites include a high altitude cold water target (Crater Lake), cooling lakes and towers in the warm, humid southeastern US, Department of Energy (DOE) climate research sites, the NASA Stennis satellite Validation and Verification (V and V) target array, waste sites at the Savannah River Site, mining sites in the Four Corners area and dry lake beds in the southwestern US. SRTC has established mutually beneficial relationships with the organizations that manage these sites to make use of their operating and research data and to install additional instrumentation needed for MTI algorithm V and V.

  20. AMFIC Web Data Base - A Satellite System for the Monitoring and Forecasting of Atmospheric Pollution

    Directory of Open Access Journals (Sweden)

    P. Symeonidis

    2008-01-01

    Full Text Available In this work we present the contribution of the Laboratory of Atmospheric Pollution and Pollution Control Engineering of Democritus University of Thrace in the AMFIC-Air Monitoring and Forecasting In China European project. Within the framework of this project our laboratory in co-operation with DRAXIS company will create and manage a web satellite data base. This system will host atmospheric pollution satellite data for China and for the whole globe in general. Atmospheric pollution data with different spatial resolution such as O3 and NO2 total columns and measurements of other important trace gasses from GOME (ERS-2, SCIAMACHY (ENVISAT and OMI (EOS-AURA along with aerosol total load estimates from AATSR (ENVISAT will be brought to a common spatial and temporal resolution and become available to the scientific community in simple ascii files and maps format. Available will also be the results from the validation procedure of the satellite data with the use of ground-based observations and a set of high resolution maps and forecasts emerging from atmospheric pollution models. Data will be available for two geographical clusters. The one cluster includes the greater area of China and the other the whole globe. This integrated satellite system will be fully operational within the next two years and will also include a set of innovative tools that allow easy manipulation and analysis of the data. Automatic detection of features such as plumes and monitoring of their evolution, data covariance analysis enabling the detection of emission signatures of different sources, cluster analysis etc will be possible through those tools. The AMFIC satellite system shares a set of characteristics with its predecessor, AIRSAT. Here, we present some of these characteristics in order to bring out the contribution of such a system in atmospheric sciences.

  1. Satellite AVHRR Temperature Measurements of Pools 4, 7, and 8 of the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Weinkauf, Ronald

    1997-01-01

    ... heavy cloud cover and fog, metal results were obtained. Satellite mean temperatures were within about 1 Celsius degree of in situ temperature means for nine observation dates for the three pools...

  2. Using satellite observations in performance evaluation for regulatory air quality modeling: Comparison with ground-level measurements

    Science.gov (United States)

    Odman, M. T.; Hu, Y.; Russell, A.; Chai, T.; Lee, P.; Shankar, U.; Boylan, J.

    2012-12-01

    Regulatory air quality modeling, such as State Implementation Plan (SIP) modeling, requires that model performance meets recommended criteria in the base-year simulations using period-specific, estimated emissions. The goal of the performance evaluation is to assure that the base-year modeling accurately captures the observed chemical reality of the lower troposphere. Any significant deficiencies found in the performance evaluation must be corrected before any base-case (with typical emissions) and future-year modeling is conducted. Corrections are usually made to model inputs such as emission-rate estimates or meteorology and/or to the air quality model itself, in modules that describe specific processes. Use of ground-level measurements that follow approved protocols is recommended for evaluating model performance. However, ground-level monitoring networks are spatially sparse, especially for particulate matter. Satellite retrievals of atmospheric chemical properties such as aerosol optical depth (AOD) provide spatial coverage that can compensate for the sparseness of ground-level measurements. Satellite retrievals can also help diagnose potential model or data problems in the upper troposphere. It is possible to achieve good model performance near the ground, but have, for example, erroneous sources or sinks in the upper troposphere that may result in misleading and unrealistic responses to emission reductions. Despite these advantages, satellite retrievals are rarely used in model performance evaluation, especially for regulatory modeling purposes, due to the high uncertainty in retrievals associated with various contaminations, for example by clouds. In this study, 2007 was selected as the base year for SIP modeling in the southeastern U.S. Performance of the Community Multiscale Air Quality (CMAQ) model, at a 12-km horizontal resolution, for this annual simulation is evaluated using both recommended ground-level measurements and non-traditional satellite

  3. Quality of Hancornia speciosa Gomes seeds in function of drying periods / Qualidade de sementes de Hancornia speciosa Gomes em função do tempo de secagem

    Directory of Open Access Journals (Sweden)

    Cosmo Rufino de Lima

    2010-07-01

    Full Text Available A mangabeira (Hancornia speciosa Gomes, da família Apocynaceae é originária do Brasil. Seus frutos são obtidos principalmente de forma extrativista e sua propagação é realizada por meio de sementes. O objetivo da pesquisa foi avaliar o efeito da secagem da semente na emergência e crescimento inicial de plântulas de H. speciosa. O trabalho foi conduzido no Laboratório de Análises de Sementes do Centro de Ciências Agrárias da Universidade Federal da Paraíba (CCA/UFPB, onde as sementes foram postas para secar sobre papel toalha em condições de laboratório pelos seguintes períodos: 0 (sem secagem, 24, 48, 72, 96, 120 e 144 horas. Determinou-se o teor de água, a porcentagem, primeira contagem e índice de velocidade de emergência, bem como o comprimento e a massa seca de plântulas. O delineamento experimental foi inteiramente ao acaso, com sete tratamentos em quatro repetições de 25 sementes. O teor de água das sementes foi reduzido de 56 para 12% após 144 horas de secagem; a emergência máxima (73% ocorreu após 33 horas de secagem; na primeira contagem as maiores porcentagens de emergência (67% foram obtidas após 16 horas de secagem; os maiores índices de velocidade de emergência (0,62 ocorreram após 21 horas de secagem; o comprimento da raiz reduziu linearmente ao longo da secagem, enquanto constatou-se maior comprimento da parte aérea (4,96 cm quando as sementes foram submetidas à secagem por 57 horas. A secagem das sementes de H. speciosa é recomendada por até 48 horas.Hancornia speciosa Gomes (Apocynaceae, a fruiting plant originated from Brazil, has fruits obtained mainly by extractivism and its main form of propagation is by seeds. The objective of this research work was to evaluate the effect of drying on emergency and initial growth of seedlings of H. speciosa. The work was developed in the Laboratory of Analyses of Seeds (CCA/UFPB, where the seeds were put to dry on towel paper in the laboratory

  4. Poynting flux measurements on a satellite: A diagnostic tool for space research

    International Nuclear Information System (INIS)

    Kelley, M.C.; Knudsen, D.J.; Vickery, J.F.

    1991-01-01

    The first satellite observations of the total field-aligned component of the quasi-dc Poynting flux are presented for two passes over the polar region, one in the noon sector and one in the afternoon. The energy input due to electron precipitation is also presented. In the noon pass the downward Poynting flux in the auroral oval was comparable to the kinetic energy input rate. The peak electromagnetic energy input rate of 6 ergs/(cm 2 s) equaled the peak particle input while the integrated electromagnetic value along the trajectory was 60% that of the particles. In the afternoon pass the peak electromagnetic energy input was also about 6 ergs/(cm 2 s), but the peak particle energy was 6 times this value. The average electromagnetic input was 10% of the particle input for the pass. In this study, the authors can measure the Poynting flux only over a limited range of scale sizes; thus the contribution to the total energy budget in the polar cap cannot be determined. Both passes show small regions characterized by upward Poynting flux suggesting a neutral wind dynamo. There is also evidence during part of the noontime pass that the external generator acted in opposition to an existing wind field since the Poynting flux was greater than the estimate of Joule heating from the electric field measurement alone (i.e., from Σ p E 2 ). In the course of deriving Poynting's theorem for the geophysical case they also present a proof that ground magnetometer systems respond primarily to the Hall current which does not depend upon geometric cancellation between the field generated by Pedersen and field-aligned currents

  5. Real-Time Rain Rate Evaluation via Satellite Downlink Signal Attenuation Measurement.

    Science.gov (United States)

    Giannetti, Filippo; Reggiannini, Ruggero; Moretti, Marco; Adirosi, Elisa; Baldini, Luca; Facheris, Luca; Antonini, Andrea; Melani, Samantha; Bacci, Giacomo; Petrolino, Antonio; Vaccaro, Attilio

    2017-08-12

    We present the NEFOCAST project (named by the contraction of "Nefele", which is the Italian spelling for the mythological cloud nymph Nephele, and "forecast"), funded by the Tuscany Region, about the feasibility of a system for the detection and monitoring of precipitation fields over the regional territory based on the use of a widespread network of new-generation Eutelsat "SmartLNB" (smart low-noise block converter) domestic terminals. Though primarily intended for interactive satellite services, these devices can also be used as weather sensors, as they have the capability of measuring the rain-induced attenuation incurred by the downlink signal and relaying it on an auxiliary return channel. We illustrate the NEFOCAST system architecture, consisting of the network of ground sensor terminals, the space segment, and the service center, which has the task of processing the information relayed by the terminals for generating rain field maps. We discuss a few methods that allow the conversion of a rain attenuation measurement into an instantaneous rainfall rate. Specifically, we discuss an exponential model relating the specific rain attenuation to the rainfall rate, whose coefficients were obtained from extensive experimental data. The above model permits the inferring of the rainfall rate from the total signal attenuation provided by the SmartLNB and from the link geometry knowledge. Some preliminary results obtained from a SmartLNB installed in Pisa are presented and compared with the output of a conventional tipping bucket rain gauge. It is shown that the NEFOCAST sensor is able to track the fast-varying rainfall rate accurately with no delay, as opposed to a conventional gauge.

  6. CHASER: An Innovative Satellite Mission Concept to Measure the Effects of Aerosols on Clouds and Climate

    Science.gov (United States)

    Renno, N.; Williams, E.; Rosenfeld, D.; Fischer, D.; Fischer, J.; Kremic, T.; Agrawal, A.; Andreae, M.; Bierbaum, R.; Blakeslee, R.; Boerner, A.; Bowles, N.; Christian, H.; Dunion, J.; Horvath, A.; Huang, X.; Khain, A.; Kinne, S.; Lemos, M.-C.; Penner, J.

    2012-04-01

    The formation of cloud droplets on aerosol particles, technically known as the activation of cloud condensation nuclei (CCN), is the fundamental process driving the interactions of aerosols with clouds and precipitation. Knowledge of these interactions is foundational to our understanding of weather and climate. The Intergovernmental Panel on Climate Change (IPCC) and the Decadal Survey (NRC 2007) indicate that the uncertainty in how clouds adjust to aerosol perturbations dominates the uncertainty in the overall quantification of the radiative forcing attributable to human activities. The Clouds, Hazards, and Aerosols Survey for Earth Researchers (CHASER) mission concept responds to the IPCC and Decadal Survey concerns by studying the activation of CCN and their interactions with clouds and storms. CHASER proposes to revolutionize our understanding of the interactions of aerosols with clouds by making the first global measurements of the fundamental physical entity linking them: activated cloud condensation nuclei. The CHASER mission was conceptualized to measure all quantities necessary for determining the interactions of aerosols with clouds and storms. Measurements by current satellites allow the determination of crude profiles of cloud particle size but not of the activated CCN that seed them. CHASER uses a new technique (Freud et al. 2011; Rosenfeld et al. 2012) and high-heritage instruments to produce the first global maps of activated CCN and the properties of the clouds associated with them. CHASER measures the CCN concentration and cloud thermodynamic forcing simultaneously, allowing their effects to be distinguished. Changes in the behavior of a group of weather systems in which only one of the quantities varies (a partial derivative of the intensity with the desirable quantity) allow the determination of each effect statistically. The high uncertainties of current climate predictions limit their much-needed use in decision-making. CHASER mitigates this

  7. Satellite Monitoring of Ash and Sulphur Dioxide for the mitigation of Aviation Hazards: Part II. Validation of satellite-derived Volcanic Sulphur Dioxide Levels.

    Science.gov (United States)

    Koukouli, MariLiza; Balis, Dimitris; Dimopoulos, Spiros; Clarisse, Lieven; Carboni, Elisa; Hedelt, Pascal; Spinetti, Claudia; Theys, Nicolas; Tampellini, Lucia; Zehner, Claus

    2014-05-01

    The eruption of the Icelandic volcano Eyjafjallajökull in the spring of 2010 turned the attention of both the public and the scientific community to the susceptibility of the European airspace to the outflows of large volcanic eruptions. The ash-rich plume from Eyjafjallajökull drifted towards Europe and caused major disruptions of European air traffic for several weeks affecting the everyday life of millions of people and with a strong economic impact. This unparalleled situation revealed limitations in the decision making process due to the lack of information on the tolerance to ash of commercial aircraft engines as well as limitations in the ash monitoring and prediction capabilities. The European Space Agency project Satellite Monitoring of Ash and Sulphur Dioxide for the mitigation of Aviation Hazards, was introduced to facilitate the development of an optimal End-to-End System for Volcanic Ash Plume Monitoring and Prediction. This system is based on comprehensive satellite-derived ash plume and sulphur dioxide [SO2] level estimates, as well as a widespread validation using supplementary satellite, aircraft and ground-based measurements. The validation of volcanic SO2 levels extracted from the sensors GOME-2/MetopA and IASI/MetopA are shown here with emphasis on the total column observed right before, during and after the Eyjafjallajökull 2010 eruptions. Co-located ground-based Brewer Spectrophotometer data extracted from the World Ozone and Ultraviolet Radiation Data Centre, WOUDC, were compared to the different satellite estimates. The findings are presented at length, alongside a comprehensive discussion of future scenarios.

  8. Error threshold inference from Global Precipitation Measurement (GPM) satellite rainfall data and interpolated ground-based rainfall measurements in Metro Manila

    Science.gov (United States)

    Ampil, L. J. Y.; Yao, J. G.; Lagrosas, N.; Lorenzo, G. R. H.; Simpas, J.

    2017-12-01

    The Global Precipitation Measurement (GPM) mission is a group of satellites that provides global observations of precipitation. Satellite-based observations act as an alternative if ground-based measurements are inadequate or unavailable. Data provided by satellites however must be validated for this data to be reliable and used effectively. In this study, the Integrated Multisatellite Retrievals for GPM (IMERG) Final Run v3 half-hourly product is validated by comparing against interpolated ground measurements derived from sixteen ground stations in Metro Manila. The area considered in this study is the region 14.4° - 14.8° latitude and 120.9° - 121.2° longitude, subdivided into twelve 0.1° x 0.1° grid squares. Satellite data from June 1 - August 31, 2014 with the data aggregated to 1-day temporal resolution are used in this study. The satellite data is directly compared to measurements from individual ground stations to determine the effect of the interpolation by contrast against the comparison of satellite data and interpolated measurements. The comparisons are calculated by taking a fractional root-mean-square error (F-RMSE) between two datasets. The results show that interpolation improves errors compared to using raw station data except during days with very small amounts of rainfall. F-RMSE reaches extreme values of up to 654 without a rainfall threshold. A rainfall threshold is inferred to remove extreme error values and make the distribution of F-RMSE more consistent. Results show that the rainfall threshold varies slightly per month. The threshold for June is inferred to be 0.5 mm, reducing the maximum F-RMSE to 9.78, while the threshold for July and August is inferred to be 0.1 mm, reducing the maximum F-RMSE to 4.8 and 10.7, respectively. The maximum F-RMSE is reduced further as the threshold is increased. Maximum F-RMSE is reduced to 3.06 when a rainfall threshold of 10 mm is applied over the entire duration of JJA. These results indicate that

  9. Incorporation of star measurements for the determination of orbit and attitude parameters of a geosynchronous satellite: An iterative application of linear regression

    Science.gov (United States)

    Phillips, D.

    1980-01-01

    Currently on NOAA/NESS's VIRGS system at the World Weather Building star images are being ingested on a daily basis. The image coordinates of the star locations are measured and stored. Subsequently, the information is used to determine the attitude, the misalignment angles between the spin axis and the principal axis of the satellite, and the precession rate and direction. This is done for both the 'East' and 'West' operational geosynchronous satellites. This orientation information is then combined with image measurements of earth based landmarks to determine the orbit of each satellite. The method for determining the orbit is simple. For each landmark measurement one determines a nominal position vector for the satellite by extending a ray from the landmark's position towards the satellite and intersecting the ray with a sphere with center coinciding with the Earth's center and with radius equal to the nominal height for a geosynchronous satellite. The apparent motion of the satellite around the Earth's center is then approximated with a Keplerian model. In turn the variations of the satellite's height, as a function of time found by using this model, are used to redetermine the successive satellite positions by again using the Earth based landmark measurements and intersecting rays from these landmarks with the newly determined spheres. This process is performed iteratively until convergence is achieved. Only three iterations are required.

  10. Satellite myths

    Science.gov (United States)

    Easton, Roger L.; Hall, David

    2008-01-01

    Richard Corfield's article “Sputnik's legacy” (October 2007 pp23-27) states that the satellite on board the US Vanguard rocket, which exploded during launch on 6 December 1957 two months after Sputnik's successful take-off, was “a hastily put together contraption of wires and circuitry designed only to send a radio signal back to Earth”. In fact, the Vanguard satellite was developed over a period of several years and put together carefully using the best techniques and equipment available at the time - such as transistors from Bell Laboratories/Western Electric. The satellite contained not one but two transmitters, in which the crystal-controlled oscillators had been designed to measure both the temperature of the satellite shell and of the internal package.

  11. VALIDATION OF LIDAR TEMPERATURE MEASUREMENTS IN THE STRATOSPHERE OVER TOMSK ON AEROLOGICAL AND SATELLITE DATA FOR 2015-16 YEARS

    Directory of Open Access Journals (Sweden)

    V. N. Marichev

    2017-12-01

    Full Text Available The vertical temperature distribution in the lower stratosphere is compared with the data of lidar, radiosonde, and satellite measurements. In the lidar measurements, Raman and Rayleigh channels for receiving scattered light at wavelengths of 607 nm and 532 nm were used. Taking into account the spatio-temporal separation of the measurements, a qualitative and quantitative correspondence of the vertical temperature profiles was obtained. The prospects of using the Raman scattering method for measuring temperature in the lower stratosphere are shown.

  12. Land-ocean contrast on electrical characteristics of lightning discharge derived from satellite optical measurements

    Science.gov (United States)

    Adachi, T.; Said, R.; Cummer, S. A.; Li, J.; Takahashi, Y.; Hsu, R.; Su, H.; Chen, A. B.; Mende, S. B.; Frey, H. U.

    2010-12-01

    Comparative studies on the electrical properties of oceanic and continental lightning are crucial to elucidate air discharge processes occurring under different conditions. Past studies however have primarily focused on continental lightning because of the limited coverage of ground-based instruments. Recent satellite measurements by FORMOSAT-2/ISUAL provided a new way to survey the global characteristics of lightning and transient luminous events regardless of land and ocean. In this study, we analyze ISUAL/spectrophotometer data to clarify the electrical properties of lightning on a global level. Based on the results obtained by Cummer et al. [2006] and Adachi et al. [2009], the OI-777.4nm emission intensity is used to infer lightning electrical parameters. Results show a clear land-ocean contrast on the parameters of lightning discharge: in oceanic lightning, peak luminosity is 60 % higher and the time scale of return stroke is 30 % shorter. These results suggest higher peak current in oceanic lightning, which is consistent with the fact that elves, EMP-driven phenomena, also tend to occur over the ocean [Chen et al., 2008]. Further analysis of lightning events occurring around the Caribbean Sea shows that the transition-line of lightning electrical properties is precisely located along the coastline. We suggest that the differences in these electrical properties may be due to the boundary conditions (conductivity, surface terrain, etc). In this talk, based on the calibration with NLDN and Duke magnetometer data, current moment change and charge moment change will be globally evaluated using a complete set of the ISUAL-observed lightning events.

  13. Water Accounting Plus (WA+) - a water accounting procedure for complex river basins based on satellite measurements

    Science.gov (United States)

    Karimi, P.; Bastiaanssen, W. G. M.; Molden, D.

    2012-11-01

    Coping with the issue of water scarcity and growing competition for water among different sectors requires proper water management strategies and decision processes. A pre-requisite is a clear understanding of the basin hydrological processes, manageable and unmanageable water flows, the interaction with land use and opportunities to mitigate the negative effects and increase the benefits of water depletion on society. Currently, water professionals do not have a common framework that links hydrological flows to user groups of water and their benefits. The absence of a standard hydrological and water management summary is causing confusion and wrong decisions. The non-availability of water flow data is one of the underpinning reasons for not having operational water accounting systems for river basins in place. In this paper we introduce Water Accounting Plus (WA+), which is a new framework designed to provide explicit spatial information on water depletion and net withdrawal processes in complex river basins. The influence of land use on the water cycle is described explicitly by defining land use groups with common characteristics. Analogous to financial accounting, WA+ presents four sheets including (i) a resource base sheet, (ii) a consumption sheet, (iii) a productivity sheet, and (iv) a withdrawal sheet. Every sheet encompasses a set of indicators that summarize the overall water resources situation. The impact of external (e.g. climate change) and internal influences (e.g. infrastructure building) can be estimated by studying the changes in these WA+ indicators. Satellite measurements can be used for 3 out of the 4 sheets, but is not a precondition for implementing WA+ framework. Data from hydrological models and water allocation models can also be used as inputs to WA+.

  14. Possible experiment with two counter-orbiting drag-free satellites to obtain a new test of Einstein's general theory of relativity and improved measurements in geodesy

    International Nuclear Information System (INIS)

    Van Patten, R.A.; Everitt, C.W.F.

    1976-01-01

    In 1918, Lense and Thirring calculated that a moon orbiting a rotating planet would experience a nodal dragging effect due to general relativity. We describe an experiment to measure this effect to 1% with two counter-orbiting drag-free satellites in polar earth orbit. In addition to tracking data from existing ground stations, satellite-to-satellite Doppler ranging data are taken near the poles. New geophysical information is inherent in the polar data

  15. Nature of the Venus thermosphere derived from satellite drag measurements (solicited paper)

    Science.gov (United States)

    Keating, G.; Theriot, M.; Bougher, S.

    2008-09-01

    From drag measurements obtained by Pioneer Venus and Magellan, the Venus upper atmosphere was discovered to be much colder than Earth's, even though Venus is much closer to the Sun than the Earth. On the dayside, exospheric temperatures are near 300K compared to Earth's of near 1200K [1]. This is thought to result principally from 15 micron excitation of carbon dioxide by atomic oxygen resulting in very strong 15 micron emission to space, cooling off the upper atmosphere [2]. On the nightside the Venus upper atmosphere is near 100K [3], compared to Earth where temperatures are near 900K. The nightside Venus temperatures drop with altitude contrary to a thermosphere where temperatures rise with altitude. As a result, the very cold nightside is called a "cryosphere" rather than a thermosphere. This is the first cryosphere discovered in the solar system [1]. Temperatures sharply drop near the terminator. Apparently, heat is somehow blocked near the terminator from being significantly transported to the nightside [4]. Recently, drag studies were performed on a number of Earth satellites to establish whether the rise of carbon dioxide on Earth was cooling the Earth's thermosphere similar to the dayside of Venus. Keating et al. [5] discovered that a 10 percent drop in density near 350km at solar minimum occurred globally over a period of 20 years with a 10 per cent rise in carbon dioxide. This should result in about a factor of 2 decline in density from 1976 values, by the end of the 21st century brought on by thermospheric cooling. Subsequent studies have confirmed these results. Thus we are beginning to see the cooling of Earth's upper atmosphere apparently from the same process cooling the Venus thermosphere. Fig. 1 VIRA Exospheric Temperatures Atmospheric drag data from the Pioneer Venus Orbiter and Magellan were combined to generate an improved version of the Venus International Reference Atmosphere (VIRA) [6], [7]. A "fountain effect" was discovered where the

  16. Ultraviolet radiation modelling from ground-based and satellite measurements on Reunion Island, southern tropics

    Directory of Open Access Journals (Sweden)

    K. Lamy

    2018-01-01

    . Only clear-sky SUR was modelled, so we needed to sort out the clear-sky measurements. We used two methods to detect cloudy conditions: the first was based on an observer's hourly report on the sky cover, while the second was based on applying Long and Ackerman(2000's algorithm to broadband pyranometer data to obtain the cloud fraction and then discriminating clear-sky windows on SUR measurements. Long et al. (2006's algorithm, with the co-located pyranometer data, gave better results for clear-sky filtering than the observer's report. Multiple model inputs were tested to evaluate the model sensitivity to different parameters such as total ozone column, aerosol optical properties, extraterrestrial spectrum or ozone cross section. For total column ozone, we used ground-based measurements from the SAOZ (Système d'Analyse par Observation Zénithale spectrometer and satellite measurements from the OMI and SBUV instruments, while ozone profiles were derived from radio-soundings and the MLS ozone product. Aerosol optical properties came from a local aerosol climatology established using a Cimel photometer. Since the mean difference between various inputs of total ozone column was small, the corresponding response on UVI modelling was also quite small, at about 1 %. The radiative amplification factor of total ozone column on UVI was also compared for observations and the model. Finally, we were able to estimate UVI on Reunion Island with, at best, a mean relative difference of about 0.5 %, compared to clear-sky observations.

  17. Ultraviolet radiation modelling from ground-based and satellite measurements on Reunion Island, southern tropics

    Science.gov (United States)

    Lamy, Kévin; Portafaix, Thierry; Brogniez, Colette; Godin-Beekmann, Sophie; Bencherif, Hassan; Morel, Béatrice; Pazmino, Andrea; Metzger, Jean Marc; Auriol, Frédérique; Deroo, Christine; Duflot, Valentin; Goloub, Philippe; Long, Charles N.

    2018-01-01

    clear-sky SUR was modelled, so we needed to sort out the clear-sky measurements. We used two methods to detect cloudy conditions: the first was based on an observer's hourly report on the sky cover, while the second was based on applying Long and Ackerman (2000)'s algorithm to broadband pyranometer data to obtain the cloud fraction and then discriminating clear-sky windows on SUR measurements. Long et al. (2006)'s algorithm, with the co-located pyranometer data, gave better results for clear-sky filtering than the observer's report. Multiple model inputs were tested to evaluate the model sensitivity to different parameters such as total ozone column, aerosol optical properties, extraterrestrial spectrum or ozone cross section. For total column ozone, we used ground-based measurements from the SAOZ (Système d'Analyse par Observation Zénithale) spectrometer and satellite measurements from the OMI and SBUV instruments, while ozone profiles were derived from radio-soundings and the MLS ozone product. Aerosol optical properties came from a local aerosol climatology established using a Cimel photometer. Since the mean difference between various inputs of total ozone column was small, the corresponding response on UVI modelling was also quite small, at about 1 %. The radiative amplification factor of total ozone column on UVI was also compared for observations and the model. Finally, we were able to estimate UVI on Reunion Island with, at best, a mean relative difference of about 0.5 %, compared to clear-sky observations.

  18. Estimation of daily global solar irradiation by coupling ground measurements of bright sunshine hours to satellite imagery

    International Nuclear Information System (INIS)

    Ener Rusen, Selmin; Hammer, Annette; Akinoglu, Bulent G.

    2013-01-01

    In this work, the current version of the satellite-based HELIOSAT method and ground-based linear Ångström–Prescott type relations are used in combination. The first approach is based on the use of a correlation between daily bright sunshine hours (s) and cloud index (n). In the second approach a new correlation is proposed between daily solar irradiation and daily data of s and n which is based on a physical parameterization. The performances of the proposed two combined models are tested against conventional methods. We test the use of obtained correlation coefficients for nearby locations. Our results show that the use of sunshine duration together with the cloud index is quite satisfactory in the estimation of daily horizontal global solar irradiation. We propose to use the new approaches to estimate daily global irradiation when the bright sunshine hours data is available for the location of interest, provided that some regression coefficients are determined using the data of a nearby station. In addition, if surface data for a close location does not exist then it is recommended to use satellite models like HELIOSAT or the new approaches instead the Ångström type models. - Highlights: • Satellite imagery together with surface measurements in solar radiation estimation. • The new coupled and conventional models (satellite and ground-based) are analyzed. • New models result in highly accurate estimation of daily global solar irradiation

  19. Flood modelling with global precipitation measurement (GPM) satellite rainfall data: a case study of Dehradun, Uttarakhand, India

    Science.gov (United States)

    Sai Krishna, V. V.; Dikshit, Anil Kumar; Pandey, Kamal

    2016-05-01

    Urban expansion, water bodies and climate change are inextricably linked with each other. The macro and micro level climate changes are leading to extreme precipitation events which have severe consequences on flooding in urban areas. Flood simulations shall be helpful in demarcation of flooded areas and effective flood planning and preparedness. The temporal availability of satellite rainfall data at varying spatial scale of 0.10 to 0.50 is helpful in near real time flood simulations. The present research aims at analysing stream flow and runoff to monitor flood condition using satellite rainfall data in a hydrologic model. The satellite rainfall data used in the research was NASA's Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG), which is available at 30 minutes temporal resolution. Landsat data was used for mapping the water bodies in the study area. Land use land cover (LULC) data was prepared using Landsat 8 data with maximum likelihood technique that was provided as an input to the HEC-HMS hydrological model. The research was applied to one of the urbanized cities of India, viz. Dehradun, which is the capital of Uttarakhand State. The research helped in identifying the flood vulnerability at the basin level on the basis of the runoff and various socio economic parameters using multi criteria analysis.

  20. Aerosol direct effect on solar radiation over the eastern Mediterranean Sea based on AVHRR satellite measurements

    Science.gov (United States)

    Georgakaki, Paraskevi; Papadimas, Christos D.; Hatzianastassiou, Nikos; Fotiadi, Aggeliki; Matsoukas, Christos; Stackhouse, Paul; Kanakidou, Maria; Vardavas, Ilias M.

    2017-04-01

    Despite the improved scientific understanding of the direct effect of aerosols on solar radiation (direct radiative effect, DRE) improvements are necessary, for example regarding the accuracy of the magnitude of estimated DREs and their spatial and temporal variability. This variability cannot be ensured by in-situ surface and airborne measurements, while it is also relatively difficult to capture through satellite observations. This becomes even more difficult when complete spatial coverage of extended areas is required, especially concerning areas that host various aerosol types with variable physico-chemical and optical aerosol properties. Better assessments of aerosol DREs are necessary, relying on aerosol optical properties with high spatial and temporal variation. The present study aims to provide a refined, along these lines, assessment of aerosol DREs over the eastern Mediterranean (EM) Sea, which is a key area for aerosol studies. Daily DREs are computed for 1˚ x1˚ latitude-longitude grids with the FORTH detailed spectral radiation transfer model (RTM) using input data for various atmospheric and surface parameters, such as clouds, water vapor, ozone and surface albedo, taken from the NASA-Langley Global Earth Observing System (GEOS) database. The model spectral aerosol optical depth (AOD), single scattering albedo and asymmetry parameter are taken from the Global Aerosol Data Set and the NOAA Climate Data Record (CDR) version 2 of Advanced Very High resolution Radiometer (AVHRR) AOD dataset which is available over oceans at 0.63 microns and at 0.1˚ x0.1˚ . The aerosol DREs are computed at the surface, the top-of-atmosphere and within the atmosphere, over the period 1985-1995. Preliminary model results for the period 1990-1993 reveal a significant spatial and temporal variability of DREs over the EM Sea, for example larger values over the Aegean and Black Seas, surrounded by land areas with significant anthropogenic aerosol sources, and over the

  1. Measurements of VLF-particle interactions at the South Atlantic Magnetic Anomaly on board a Brazilian geophysical satellite

    International Nuclear Information System (INIS)

    Gonzalez, W.D.; Pinto Junior, O.; Dutra, S.L.G.; Takahashi, H.

    1988-01-01

    A summary of the proposal for measurements of VLF wave-particle interactions, expected to occur at the South Atlantic magnetic anomaly, to be carried out on board a Brazilian geophysical satellite, will be presented. The expected domain of such interactions refers to electromagnetic VLF waves and to energetic-relativistic inner belt electrons, pitch angle diffusing into the atmosphere via cyclotron resonances. The detectors involve a tri-axial search coil magnetometer and a surface barrier silicon telescope. A modified and preliminary version of this proposed experiment will be carried out on board long duration balloon flights, well before the beginning of the intended satellite measurements. For the ballon flights the particle detector will be replaced by an x-ray detector, which can also monitor parameters related to the electron precipitation. (author) [pt

  2. Ozone mixing ratios inside tropical deep convective clouds from OMI satellite measurements

    Directory of Open Access Journals (Sweden)

    J. R. Ziemke

    2009-01-01

    Full Text Available We have developed a new technique for estimating ozone mixing ratio inside deep convective clouds. The technique uses the concept of an optical centroid cloud pressure that is indicative of the photon path inside clouds. Radiative transfer calculations based on realistic cloud vertical structure as provided by CloudSat radar data show that because deep convective clouds are optically thin near the top, photons can penetrate significantly inside the cloud. This photon penetration coupled with in-cloud scattering produces optical centroid pressures that are hundreds of hPa inside the cloud. We combine measured column ozone and the optical centroid cloud pressure derived using the effects of rotational-Raman scattering to estimate O3 mixing ratio in the upper regions of deep convective clouds. The data are obtained from the Ozone Monitoring Instrument (OMI onboard NASA's Aura satellite. Our results show that low O3 concentrations in these clouds are a common occurrence throughout much of the tropical Pacific. Ozonesonde measurements in the tropics following convective activity also show very low concentrations of O3 in the upper troposphere. These low amounts are attributed to vertical injection of ozone poor oceanic boundary layer air during convection into the upper troposphere followed by convective outflow. Over South America and Africa, O3 mixing ratios inside deep convective clouds often exceed 50 ppbv which are comparable to mean background (cloud-free amounts and are consistent with higher concentrations of injected boundary layer/lower tropospheric O3 relative to the remote Pacific. The Atlantic region in general also consists of higher amounts of O3 precursors due to both biomass burning and lightning. Assuming that O3 is well mixed (i.e., constant mixing ratio with height up to the tropopause, we can estimate the stratospheric column O3 over

  3. Next-generation satellite gravimetry for measuring mass transport in the Earth system

    NARCIS (Netherlands)

    Teixeira Encarnação, J.

    2015-01-01

    The main objective of the thesis is to identify the optimal set-up for future satellite gravimetry missions aimed at monitoring mass transport in the Earth’s system.The recent variability of climatic patterns, the spread of arid regions and associ- ated changes in the hydrological cycle, and

  4. Earth's lithospheric magnetic field determined to spherical harmonic degree 90 from CHAMP satellite measurements

    DEFF Research Database (Denmark)

    Maus, S.; Rother, M.; Hemant, K.

    2006-01-01

    of the lithospheric field down to an altitude of about 50 km at lower latitudes, with reduced accuracy in the polar regions. Crustal features come out significantly sharper than in previous models. In particular, bands of magnetic anomalies along subduction zones become visible by satellite for the first time....

  5. Measuring Radiant Emissions from Entire Prescribed Fires with Ground, Airborne and Satellite Sensors RxCADRE 2012

    Science.gov (United States)

    Dickinson, Matthew B.; Hudak, Andrew T.; Zajkowski, Thomas; Loudermilk, E. Louise; Schroeder, Wilfrid; Ellison, Luke; Kremens, Robert L.; Holley, William; Martinez, Otto; Paxton, Alexander; hide

    2015-01-01

    Characterising radiation from wildland fires is an important focus of fire science because radiation relates directly to the combustion process and can be measured across a wide range of spatial extents and resolutions. As part of a more comprehensive set of measurements collected during the 2012 Prescribed Fire Combustion and Atmospheric Dynamics Research (RxCADRE) field campaign, we used ground, airborne and spaceborne sensors to measure fire radiative power (FRP) from whole fires, applying different methods to small (2 ha) and large (.100 ha) burn blocks. For small blocks (n1/46), FRP estimated from an obliquely oriented long-wave infrared (LWIR) camera mounted on a boom lift were compared with FRP derived from combined data from tower-mounted radiometers and remotely piloted aircraft systems (RPAS). For large burn blocks (n1/43), satellite FRP measurements from the Moderate-resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors were compared with near-coincident FRP measurements derived from a LWIR imaging system aboard a piloted aircraft. We describe measurements and consider their strengths and weaknesses. Until quantitative sensors exist for small RPAS, their use in fire research will remain limited. For oblique, airborne and satellite sensors, further FRP measurement development is needed along with greater replication of coincident measurements, which we show to be feasible.

  6. Method for validating cloud mask obtained from satellite measurements using ground-based sky camera.

    Science.gov (United States)

    Letu, Husi; Nagao, Takashi M; Nakajima, Takashi Y; Matsumae, Yoshiaki

    2014-11-01

    Error propagation in Earth's atmospheric, oceanic, and land surface parameters of the satellite products caused by misclassification of the cloud mask is a critical issue for improving the accuracy of satellite products. Thus, characterizing the accuracy of the cloud mask is important for investigating the influence of the cloud mask on satellite products. In this study, we proposed a method for validating multiwavelength satellite data derived cloud masks using ground-based sky camera (GSC) data. First, a cloud cover algorithm for GSC data has been developed using sky index and bright index. Then, Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data derived cloud masks by two cloud-screening algorithms (i.e., MOD35 and CLAUDIA) were validated using the GSC cloud mask. The results indicate that MOD35 is likely to classify ambiguous pixels as "cloudy," whereas CLAUDIA is likely to classify them as "clear." Furthermore, the influence of error propagations caused by misclassification of the MOD35 and CLAUDIA cloud masks on MODIS derived reflectance, brightness temperature, and normalized difference vegetation index (NDVI) in clear and cloudy pixels was investigated using sky camera data. It shows that the influence of the error propagation by the MOD35 cloud mask on the MODIS derived monthly mean reflectance, brightness temperature, and NDVI for clear pixels is significantly smaller than for the CLAUDIA cloud mask; the influence of the error propagation by the CLAUDIA cloud mask on MODIS derived monthly mean cloud products for cloudy pixels is significantly smaller than that by the MOD35 cloud mask.

  7. Fast emission estimates in China and South Africa constrained by satellite observations

    Science.gov (United States)

    Mijling, Bas; van der A, Ronald

    2013-04-01

    Emission inventories of air pollutants are crucial information for policy makers and form important input data for air quality models. Unfortunately, bottom-up emission inventories, compiled from large quantities of statistical data, are easily outdated for emerging economies such as China and South Africa, where rapid economic growth change emissions accordingly. Alternatively, top-down emission estimates from satellite observations of air constituents have important advantages of being spatial consistent, having high temporal resolution, and enabling emission updates shortly after the satellite data become available. However, constraining emissions from observations of concentrations is computationally challenging. Within the GlobEmission project (part of the Data User Element programme of ESA) a new algorithm has been developed, specifically designed for fast daily emission estimates of short-lived atmospheric species on a mesoscopic scale (0.25 × 0.25 degree) from satellite observations of column concentrations. The algorithm needs only one forward model run from a chemical transport model to calculate the sensitivity of concentration to emission, using trajectory analysis to account for transport away from the source. By using a Kalman filter in the inverse step, optimal use of the a priori knowledge and the newly observed data is made. We apply the algorithm for NOx emission estimates in East China and South Africa, using the CHIMERE chemical transport model together with tropospheric NO2 column retrievals of the OMI and GOME-2 satellite instruments. The observations are used to construct a monthly emission time series, which reveal important emission trends such as the emission reduction measures during the Beijing Olympic Games, and the impact and recovery from the global economic crisis. The algorithm is also able to detect emerging sources (e.g. new power plants) and improve emission information for areas where proxy data are not or badly known (e

  8. Evapotranspiration Estimation over Yangtze River Basin from GRACE satellite measurement and in situ data

    Science.gov (United States)

    Li, Qiong; Luo, Zhicai; Zhong, Bo; Wang, Haihong; Zhou, Zebing

    2016-04-01

    As the critical component of hydrologic cycle, evapotranspiration (ET) plays an important role in global water exchanges and energy flow across the hydrosphere, atmosphere and biosphere. Influenced by the Asian monsoon, the Yangtze River Basin (YRB) suffer from the several severe floods and droughts over the last decades due to the significant difference between temporal and spatial distribution terrestrial water storages. As an indispensable part, it is practically important to assessment ET in the YRB accompany with increased population and rapid economic and agriculture development. Average ET over the YRB is computed as the residual of terrestrial water budget using the Gravity Recovery and Climate Experiment (GRACE) satellite-based measurements and the ground-based observations. The GRACE-based ET were well coincidence with the ET from MODIS, with the correlation coefficient of 0.853, and the correlation coefficient is 0.696 while comparing with the ET ground-based observation. The mean monthly average of ET from these various estimates is 56.9 mm/month over the whole YRB, and peak between June and August. Monthly variations of ET reach a maximum in Wujiang with 69.11 mm/month and a minimum in Jinshajiang with 39.01 mm/month. Based on the correlation between ET and independent estimates of near-surface temperature and soil moisture, it is showed that as the temperature increased, the ET of the seven sub-catchment were rising except for the Poyang Lake and Donting Lake. And we also can infer that the midstream of YRB is significant correlated with ESON especially in the Hanjiang basin. The Surface Humidity Index over the YRB was gradually decreased and its variations in each sub-catchment showed a significant decreasing trend in Jinshajiang and Mingjiang. This research has important potential for use in large-scale water budget assessments and intercomparison studies. Acknowledgements: This research is supported by the National Natural Science Foundation of

  9. Atmospheric influences on infrared-laser signals used for occultation measurements between Low Earth Orbit satellites

    Directory of Open Access Journals (Sweden)

    S. Schweitzer

    2011-10-01

    Full Text Available LEO-LEO infrared-laser occultation (LIO is a new occultation technique between Low Earth Orbit (LEO satellites, which applies signals in the short wave infrared spectral range (SWIR within 2 μm to 2.5 μm. It is part of the LEO-LEO microwave and infrared-laser occultation (LMIO method that enables to retrieve thermodynamic profiles (pressure, temperature, humidity and altitude levels from microwave signals and profiles of greenhouse gases and further variables such as line-of-sight wind speed from simultaneously measured LIO signals. Due to the novelty of the LMIO method, detailed knowledge of atmospheric influences on LIO signals and of their suitability for accurate trace species retrieval did not yet exist. Here we discuss these influences, assessing effects from refraction, trace species absorption, aerosol extinction and Rayleigh scattering in detail, and addressing clouds, turbulence, wind, scattered solar radiation and terrestrial thermal radiation as well. We show that the influence of refractive defocusing, foreign species absorption, aerosols and turbulence is observable, but can be rendered small to negligible by use of the differential transmission principle with a close frequency spacing of LIO absorption and reference signals within 0.5%. The influences of Rayleigh scattering and terrestrial thermal radiation are found negligible. Cloud-scattered solar radiation can be observable under bright-day conditions, but this influence can be made negligible by a close time spacing (within 5 ms of interleaved laser-pulse and background signals. Cloud extinction loss generally blocks SWIR signals, except very thin or sub-visible cirrus clouds, which can be addressed by retrieving a cloud layering profile and exploiting it in the trace species retrieval. Wind can have a small influence on the trace species absorption, which can be made negligible by using a simultaneously retrieved or a moderately accurate background wind speed profile. We

  10. Use of GOES, SSM/I, TRMM Satellite Measurements Estimating Water Budget Variations in Gulf of Mexico - Caribbean Sea Basins

    Science.gov (United States)

    Smith, Eric A.

    2004-01-01

    This study presents results from a multi-satellite/multi-sensor retrieval system designed to obtain the atmospheric water budget over the open ocean. A combination of 3ourly-sampled monthly datasets derived from the GOES-8 5-channel Imager, the TRMM TMI radiometer, and the DMSP 7-channel passive microwave radiometers (SSM/I) have been acquired for the combined Gulf of Mexico-Caribbean Sea basin. Whereas the methodology has been tested over this basin, the retrieval system is designed for portability to any open-ocean region. Algorithm modules using the different datasets to retrieve individual geophysical parameters needed in the water budget equation are designed in a manner that takes advantage of the high temporal resolution of the GOES-8 measurements, as well as the physical relationships inherent to the TRMM and SSM/I passive microwave measurements in conjunction with water vapor, cloud liquid water, and rainfall. The methodology consists of retrieving the precipitation, surface evaporation, and vapor-cloud water storage terms in the atmospheric water balance equation from satellite techniques, with the water vapor advection term being obtained as the residue needed for balance. Thus, the intent is to develop a purely satellite-based method for obtaining the full set of terms in the atmospheric water budget equation without requiring in situ sounding information on the wind profile. The algorithm is validated by cross-checking all the algorithm components through multiple- algorithm retrieval intercomparisons. A further check on the validation is obtained by directly comparing water vapor transports into the targeted basin diagnosed from the satellite algorithms to those obtained observationally from a network of land-based upper air stations that nearly uniformly surround the basin, although it is fair to say that these checks are more effective m identifying problems in estimating vapor transports from a leaky operational radiosonde network than in verifying

  11. Probabilistic global maps of the CO2 column at daily and monthly scales from sparse satellite measurements

    Science.gov (United States)

    Chevallier, Frédéric; Broquet, Grégoire; Pierangelo, Clémence; Crisp, David

    2017-07-01

    The column-average dry air-mole fraction of carbon dioxide in the atmosphere (XCO2) is measured by scattered satellite measurements like those from the Orbiting Carbon Observatory (OCO-2). We show that global continuous maps of XCO2 (corresponding to level 3 of the satellite data) at daily or coarser temporal resolution can be inferred from these data with a Kalman filter built on a model of persistence. Our application of this approach on 2 years of OCO-2 retrievals indicates that the filter provides better information than a climatology of XCO2 at both daily and monthly scales. Provided that the assigned observation uncertainty statistics are tuned in each grid cell of the XCO2 maps from an objective method (based on consistency diagnostics), the errors predicted by the filter at daily and monthly scales represent the true error statistics reasonably well, except for a bias in the high latitudes of the winter hemisphere and a lack of resolution (i.e., a too small discrimination skill) of the predicted error standard deviations. Due to the sparse satellite sampling, the broad-scale patterns of XCO2 described by the filter seem to lag behind the real signals by a few weeks. Finally, the filter offers interesting insights into the quality of the retrievals, both in terms of random and systematic errors.

  12. Characterizing the Asian Tropopause Aerosol Layer (ATAL) Using Satellite Observations, Balloon Measurements and a Chemical Transport Model

    Science.gov (United States)

    Fairlie, T. D.; Vernier, J.-P.; Liu, H.; Deshler, T.; Natarajan, M.; Bedka, K.; Wegner, T.; Baker, N.; Gadhavi, H.; Ratnam, M. V.; hide

    2016-01-01

    Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols in the upper troposphere and lower stratosphere (UTLS), associated with the ASM anticyclone. The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instruments, aircraft, and satellite observations, together with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical, and optical properties of aerosols in the ATAL. In particular, we show balloon-data from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, which includes in situ backscatter measurements from COBALD instruments, and the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous components to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that ATAL aerosols originate primary from south Asian sources, in contrast with some earlier studies.

  13. Interdisciplinary study of the panel painting depicting the "Pentecostes", attributed to Fernão Gomes

    Directory of Open Access Journals (Sweden)

    Diana Conde

    2010-01-01

    Full Text Available This paper presents a study on the technique and materials used in the panel painting entitled Pentecostes, attributed to the artist Fernão Gomes (XVIIth century, housed in the Museu Nacional de Arte Antiga, in Lisbon. The study also includes the diagnosis of the conservation state of the painting and the description of the cleaning intervention. For identification of the materials and determination of the conservation state, several analytical techniques were used: micro-FTIR and GC-MS, for identification of the binder and varnish; micro-Raman and micro-FTIR, for identification of fillers and pigments; micro-XRF and SEM-EDX, for elemental analysis; optical microscopy, with visible and fluorescent radiation, and infrared photography, for morphological observation and study of pictorial technique. The analytical approach led to the identification of materials common at the time: gypsum with animal glue, lead white, yellow and red ochres, black earths (based on Mn, Bi, Fe, azurite, possible green earth, lead red, oil and oily varnish with residues of cholesterol. After various cleaning tests, a gel suggested by the literature was chosen (recipe no. 105.4 developed by R. Wolbers and proved to be effective in the removal of the aged and polymerized varnish.

  14. Characterization of nutrient deficiency in Hancornia speciosa Gomes seedlings by omitting micronutrients from the nutrient solution

    Directory of Open Access Journals (Sweden)

    Layara Alexandre Bessa

    2013-06-01

    Full Text Available Hancornia speciosa Gomes (Mangaba tree is a fruit tree belonging to the Apocynaceae family and is native to Brazil. The production of seedlings of this species is limited by a lack of technical and nutritional expertise. To address this deficiency, this study aimed to characterize the visual symptoms of micronutrient deficiency and to assess growth and leaf nutrient accumulation in H. speciosa seedlings supplied with nutrient solutions that lack individual micronutrients. H. speciosa plants were grown in nutrient solution in a greenhouse according to a randomized block design, with four replicates. The treatments consisted of a group receiving complete nutrient solution and groups treated with a nutrient solution lacking one of the following micronutrients: boron (B, copper (Cu, iron (Fe, manganese (Mn, zinc (Zn, and molybdenum (Mo. The visual symptoms of nutrient deficiency were generally easy to characterize. Dry matter production was affected by the omission of micronutrients, and the treatment lacking Fe most limited the stem length, stem diameter, root length, and number of leaves in H. speciosa seedlings as well as the dry weight of leaves, the total dry weight, and the relative growth in H. speciosa plants. The micronutrient contents of H. speciosa leaves from plants receiving the complete nutrient solution treatment were, in decreasing order, Fe>Mn>Cu>Zn>B.

  15. Sediment plume model-a comparison between use of measured turbidity data and satellite images for model calibration.

    Science.gov (United States)

    Sadeghian, Amir; Hudson, Jeff; Wheater, Howard; Lindenschmidt, Karl-Erich

    2017-08-01

    In this study, we built a two-dimensional sediment transport model of Lake Diefenbaker, Saskatchewan, Canada. It was calibrated by using measured turbidity data from stations along the reservoir and satellite images based on a flood event in 2013. In June 2013, there was heavy rainfall for two consecutive days on the frozen and snow-covered ground in the higher elevations of western Alberta, Canada. The runoff from the rainfall and the melted snow caused one of the largest recorded inflows to the headwaters of the South Saskatchewan River and Lake Diefenbaker downstream. An estimated discharge peak of over 5200 m 3 /s arrived at the reservoir inlet with a thick sediment front within a few days. The sediment plume moved quickly through the entire reservoir and remained visible from satellite images for over 2 weeks along most of the reservoir, leading to concerns regarding water quality. The aims of this study are to compare, quantitatively and qualitatively, the efficacy of using turbidity data and satellite images for sediment transport model calibration and to determine how accurately a sediment transport model can simulate sediment transport based on each of them. Both turbidity data and satellite images were very useful for calibrating the sediment transport model quantitatively and qualitatively. Model predictions and turbidity measurements show that the flood water and suspended sediments entered upstream fairly well mixed and moved downstream as overflow with a sharp gradient at the plume front. The model results suggest that the settling and resuspension rates of sediment are directly proportional to flow characteristics and that the use of constant coefficients leads to model underestimation or overestimation unless more data on sediment formation become available. Hence, this study reiterates the significance of the availability of data on sediment distribution and characteristics for building a robust and reliable sediment transport model.

  16. Stratospheric aerosol effects from Soufriere Volcano as measured by the SAGE satellite system

    Science.gov (United States)

    Mccormick, M. P.; Kent, G. S.; Yue, G. K.; Cunnold, D. M.

    1982-01-01

    During its April 1979 eruption series, Soufriere Volcano produced two major stratospheric plumes that the SAGE (Stratospheric Aerosol and Gas Experiment) satellite system tracked to West Africa and the North Atlantic Ocean. The total mass of these plumes, whose movement and dispersion are in agreement with those deduced from meteorological data and dispersion theory, was less than 0.5 percent of the global stratospheric aerosol burden; no significant temperature or climate perturbation is therefore expected.

  17. The first estimates of global nucleation mode aerosol concentrations based on satellite measurements

    Directory of Open Access Journals (Sweden)

    M. Kulmala

    2011-11-01

    Full Text Available Atmospheric aerosols play a key role in the Earth's climate system by scattering and absorbing solar radiation and by acting as cloud condensation nuclei. Satellites are increasingly used to obtain information on properties of aerosol particles with a diameter larger than about 100 nm. However, new aerosol particles formed by nucleation are initially much smaller and grow into the optically active size range on time scales of many hours. In this paper we derive proxies, based on process understanding and ground-based observations, to determine the concentrations of these new particles and their spatial distribution using satellite data. The results are applied to provide seasonal variation of nucleation mode concentration. The proxies describe the concentration of nucleation mode particles over continents. The source rates are related to both regional nucleation and nucleation associated with more restricted sources. The global pattern of nucleation mode particle number concentration predicted by satellite data using our proxies is compared qualitatively against both observations and global model simulations.

  18. Search for Best Astronomical Observatory Sites in the MENA Region using Satellite Measurements

    International Nuclear Information System (INIS)

    Abdelaziz, G; Guebsi, R; Flamant, C; Guessoum, N

    2017-01-01

    We perform a systematic search for astronomical observatory sites in the MENA (Middle-East and North Africa) region using space-based data for all the relevant factors, i.e. altitude (DEM), cloud fraction (CF), light pollution (NTL), precipitable water vapor (PWV), aerosol optical depth (AOD), relative humidity (RH), wind speed (WS), Richardson Number (RN), and diurnal temperature range (DTR). We look for the best locations overall even where altitudes are low (the threshold that we normally consider being 1,500 m) or where the combination of the afore-mentioned determining factors had previously excluded all locations in a given country. In this aim, we use the rich data that Earth-observing satellites provide, e.g. the Terra and Aqua multi-national NASA research satellites, with their MODIS (Moderate Resolution Imaging Spectroradiometer) and AIRS (Atmospheric Infrared Sounder) instruments, the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS), and other products from climate diagnostics archives (e.g. MERRA). We present preliminary results on the best locations for the region. (paper)

  19. Search for Best Astronomical Observatory Sites in the MENA Region using Satellite Measurements

    Science.gov (United States)

    Abdelaziz, G.; Guebsi, R.; Guessoum, N.; Flamant, C.

    2017-06-01

    We perform a systematic search for astronomical observatory sites in the MENA (Middle-East and North Africa) region using space-based data for all the relevant factors, i.e. altitude (DEM), cloud fraction (CF), light pollution (NTL), precipitable water vapor (PWV), aerosol optical depth (AOD), relative humidity (RH), wind speed (WS), Richardson Number (RN), and diurnal temperature range (DTR). We look for the best locations overall even where altitudes are low (the threshold that we normally consider being 1,500 m) or where the combination of the afore-mentioned determining factors had previously excluded all locations in a given country. In this aim, we use the rich data that Earth-observing satellites provide, e.g. the Terra and Aqua multi-national NASA research satellites, with their MODIS (Moderate Resolution Imaging Spectroradiometer) and AIRS (Atmospheric Infrared Sounder) instruments, the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS), and other products from climate diagnostics archives (e.g. MERRA). We present preliminary results on the best locations for the region.

  20. Real-Time Estimation of Volcanic ASH/SO2 Cloud Height from Combined Uv/ir Satellite Observations and Numerical Modeling

    Science.gov (United States)

    Vicente, Gilberto A.

    An efficient iterative method has been developed to estimate the vertical profile of SO2 and ash clouds from volcanic eruptions by comparing near real-time satellite observations with numerical modeling outputs. The approach uses UV based SO2 concentration and IR based ash cloud images, the volcanic ash transport model PUFF and wind speed, height and directional information to find the best match between the simulated and the observed displays. The method is computationally fast and is being implemented for operational use at the NOAA Volcanic Ash Advisory Centers (VAACs) in Washington, DC, USA, to support the Federal Aviation Administration (FAA) effort to detect, track and measure volcanic ash cloud heights for air traffic safety and management. The presentation will show the methodology, results, statistical analysis and SO2 and Aerosol Index input products derived from the Ozone Monitoring Instrument (OMI) onboard the NASA EOS/Aura research satellite and from the Global Ozone Monitoring Experiment-2 (GOME-2) instrument in the MetOp-A. The volcanic ash products are derived from AVHRR instruments in the NOAA POES-16, 17, 18, 19 as well as MetOp-A. The presentation will also show how a VAAC volcanic ash analyst interacts with the system providing initial condition inputs such as location and time of the volcanic eruption, followed by the automatic real-time tracking of all the satellite data available, subsequent activation of the iterative approach and the data/product delivery process in numerical and graphical format for operational applications.

  1. Fast Emission Estimates in China Constrained by Satellite Observations (Invited)

    Science.gov (United States)

    Mijling, B.; van der A, R.

    2013-12-01

    Emission inventories of air pollutants are crucial information for policy makers and form important input data for air quality models. Unfortunately, bottom-up emission inventories, compiled from large quantities of statistical data, are easily outdated for an emerging economy such as China, where rapid economic growth changes emissions accordingly. Alternatively, top-down emission estimates from satellite observations of air constituents have important advantages of being spatial consistent, having high temporal resolution, and enabling emission updates shortly after the satellite data become available. Constraining emissions from concentration measurements is, however, computationally challenging. Within the GlobEmission project of the European Space Agency (ESA) a new algorithm has been developed, specifically designed for fast daily emission estimates of short-lived atmospheric species on a mesoscopic scale (0.25 × 0.25 degree) from satellite observations of column concentrations. The algorithm needs only one forward model run from a chemical transport model to calculate the sensitivity of concentration to emission, using trajectory analysis to account for transport away from the source. By using a Kalman filter in the inverse step, optimal use of the a priori knowledge and the newly observed data is made. We apply the algorithm for NOx emission estimates in East China, using the CHIMERE model together with tropospheric NO2 column retrievals of the OMI and GOME-2 satellite instruments. The observations are used to construct a monthly emission time series, which reveal important emission trends such as the emission reduction measures during the Beijing Olympic Games, and the impact and recovery from the global economic crisis. The algorithm is also able to detect emerging sources (e.g. new power plants) and improve emission information for areas where proxy data are not or badly known (e.g. shipping emissions). The new emission estimates result in a better

  2. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Technical Performance Measures of the Block 2 Architecture

    Science.gov (United States)

    Grant, K. D.; Panas, M.

    2016-12-01

    NOAA and NASA are jointly acquiring the next-generation civilian weather satellite system: the Joint Polar Satellite System (JPSS). JPSS replaced the afternoon orbit component and ground processing of NOAA's old POES system. JPSS satellites carry sensors that collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a globally distributed, multi-mission system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture has been upgraded to Block 2.0 to satisfy several key objectives, including: "operationalizing" the first satellite, Suomi NPP, which originally was a risk reduction mission; leveraging lessons learned in multi-mission support, taking advantage of newer, more reliable and efficient technologies and satisfying constraints due of the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 48 Technical Performance Measures (TPMs) across 9 categories: Data Availability, Data Latency, Operational Availability, Margin, Scalability, Situational Awareness, Transition (between environments and sites), WAN Efficiency, and Data Recovery Processing. This paper will provide an overview of the CGS Block 2.0 architecture, with particular focus on the 9 TPM categories listed above. We will describe how we ensure the deployed architecture meets these TPMs to satisfy our multi-mission objectives with the deployment of Block 2.0.

  3. A possible experiment with two counter-orbiting drag-free satellites to obtain a new test of Einstein's general theory of relativity and improved measurements in geodesy

    Science.gov (United States)

    Van Patten, R. A.; Everitt, C. W. F.

    1976-01-01

    In 1918, Lense and Thirring calculated that a moon in orbit around a massive rotating planet would experience a nodal dragging effect due to general relativity. We describe an experiment to measure this effect by means of two counter-orbiting drag-free satellites in polar orbit about the earth. For a 2-1/2 year experiment, the measurement should approach an accuracy of 1%. An independent measurement of the geodetic precession of the orbit plane due to the motion about the sun may also be possible to about 10% accuracy. In addition to precision tracking data from existing ground stations, satellite-to-satellite Doppler data are taken at points of passing near the poles to yield an accurate measurement of the separation distance between the two satellites. New geophysical information on both earth harmonics and tidal effects is inherent in this polar ranging data.

  4. An automated fog monitoring system for the Indo-Gangetic Plains based on satellite measurements

    Science.gov (United States)

    Patil, Dinesh; Chourey, Reema; Rizvi, Sarwar; Singh, Manoj; Gautam, Ritesh

    2016-05-01

    Fog is a meteorological phenomenon that causes reduction in regional visibility and affects air quality, thus leading to various societal and economic implications, especially disrupting air and rail transportation. The persistent and widespread winter fog impacts the entire the Indo-Gangetic Plains (IGP), as frequently observed in satellite imagery. The IGP is a densely populated region in south Asia, inhabiting about 1/6th of the world's population, with a strong upward pollution trend. In this study, we have used multi-spectral radiances and aerosol/cloud retrievals from Terra/Aqua MODIS data for developing an automated web-based fog monitoring system over the IGP. Using our previous and existing methodologies, and ongoing algorithm development for the detection of fog and retrieval of associated microphysical properties (e.g. fog droplet effective radius), we characterize the widespread fog detection during both daytime and nighttime. Specifically, for the night time fog detection, the algorithm employs a satellite-based bi-spectral brightness temperature difference technique between two spectral channels: MODIS band-22 (3.9μm) and band-31 (10.75μm). Further, we are extending our algorithm development to geostationary satellites, for providing continuous monitoring of the spatial-temporal variation of fog. We anticipate that the ongoing and future development of a fog monitoring system would be of assistance to air, rail and vehicular transportation management, as well as for dissemination of fog information to government agencies and general public. The outputs of fog detection algorithm and related aerosol/cloud parameters are operationally disseminated via http://fogsouthasia.com/.

  5. Applications of asynoptic space - Time Fourier transform methods to scanning satellite measurements

    Science.gov (United States)

    Lait, Leslie R.; Stanford, John L.

    1988-01-01

    A method proposed by Salby (1982) for computing the zonal space-time Fourier transform of asynoptically acquired satellite data is discussed. The method and its relationship to other techniques are briefly described, and possible problems in applying it to real data are outlined. Examples of results obtained using this technique are given which demonstrate its sensitivity to small-amplitude signals. A number of waves are found which have previously been observed as well as two not heretofore reported. A possible extension of the method which could increase temporal and longitudinal resolution is described.

  6. Spatial and temporal interpolation of satellite-based aerosol optical depth measurements over North America using B-splines

    Science.gov (United States)

    Pfister, Nicolas; O'Neill, Norman T.; Aube, Martin; Nguyen, Minh-Nghia; Bechamp-Laganiere, Xavier; Besnier, Albert; Corriveau, Louis; Gasse, Geremie; Levert, Etienne; Plante, Danick

    2005-08-01

    Satellite-based measurements of aerosol optical depth (AOD) over land are obtained from an inversion procedure applied to dense dark vegetation pixels of remotely sensed images. The limited number of pixels over which the inversion procedure can be applied leaves many areas with little or no AOD data. Moreover, satellite coverage by sensors such as MODIS yields only daily images of a given region with four sequential overpasses required to straddle mid-latitude North America. Ground based AOD data from AERONET sun photometers are available on a more continuous basis but only at approximately fifty locations throughout North America. The object of this work is to produce a complete and coherent mapping of AOD over North America with a spatial resolution of 0.1 degree and a frequency of three hours by interpolating MODIS satellite-based data together with available AERONET ground based measurements. Before being interpolated, the MODIS AOD data extracted from different passes are synchronized to the mapping time using analyzed wind fields from the Global Multiscale Model (Meteorological Service of Canada). This approach amounts to a trajectory type of simplified atmospheric dynamics correction method. The spatial interpolation is performed using a weighted least squares method applied to bicubic B-spline functions defined on a rectangular grid. The least squares method enables one to weight the data accordingly to the measurement errors while the B-splines properties of local support and C2 continuity offer a good approximation of AOD behaviour viewed as a function of time and space.

  7. Deforestation fires versus understory fires in the Amazon Basin: What can we learn from satellite-based CO measurements?

    Science.gov (United States)

    Martinez-Alonso, S.; Deeter, M. N.; Worden, H. M.; Gille, J. C.; Clerbaux, C.; George, M.

    2014-12-01

    Deforestation fires in the Amazon Basin abound during the dry season (July to October) and are mostly associated with "slash and burn" agricultural practices. Understory fires occur when fires escape from deforested areas into neighboring standing forests; they spread slowly below the canopy, affecting areas that may be comparable or even larger than clear-cut areas. The interannual variabilities of understory fires and deforestation rates appear to be uncorrelated. Areas burned in understory fires are particularly extensive during droughts. Because they progress below a canopy of living trees, understory fires and their effects are not as easily identifiable from space as deforestation fires. Here we analyze satellite remote sensing products for CO and fire to investigate differences between deforestation fires and understory fires in the Amazon Basin under varying climatic conditions. The MOPITT (Measurements Of Pollution In The Troposphere) instrument on board NASA's Terra satellite has been measuring tropospheric CO since 2000, providing the longest global CO record to date. IASI (the Infrared Atmospheric Sounding Interferometer) A and B are two instruments on board METOP-A and -B, respectively, measuring, among others, CO since 2006 and 2012. MODIS (the Moderate Resolution Imaging Spectroradiometer) instruments on board NASA's Terra and Aqua satellites provide, among other products, a daily record of fires and their effects since 2000 and 2002, respectively. The temporal extent of all these datasets allows for the detailed analysis of drought versus non-drought years. Initial results indicate that MOPITT CO emissions during the dry season peaked in 2005, 2007, and 2010. Those were draught years and coincide with peaks in area affected by understory fires.

  8. Stress level in wild harbour porpoises (Phocoena phocoena) during satellite tagging measured by respiration, heart rate and cortisol

    DEFF Research Database (Denmark)

    Eskesen, Ida Grønborg; Teilmann, J.; Geertsen, B. M.

    2009-01-01

    During satellite tagging of harbour porpoises (Phocoena phocoena), heart rate, respiration rate and cortisol value were measured to evaluate stress effects during handling and tagging. Respiration rates were obtained using video recordings, heart rates were recorded and serum cortisol levels were...... between cortisol and month of year, sex and body length. As high individual variations occurred in response to tagging of harbour porpoises, it is not possible to give general advice based oil the factors investigated, on how to reduce stress during handling. However, pouring water over the animal...

  9. A neural network detection system for lower-hybrid cavities in electron plasma density measured by the FREJA satellite

    International Nuclear Information System (INIS)

    Waldemark, J.; Karlsson, Jan

    1995-03-01

    This paper presents a lower-hybrid cavity detection system, CDS, for measurements of electron plasma density on the FREJA satellite wave experiment. The system can reduce the amount of data to be analysed by as much as 96% and still retain more than 85% of the desired information. The CDS is a combination of a hybrid neural network, HNN and expert rules. The HNN is a Self Organizing Map, SOM, combined with a feed forward back propagation neural net, BP. The CDS can be controlled by the user to operate with various degrees of sensitivity. Maximum detection capability is as high as 95% with data reduction lowered to 85%. 10 refs

  10. Comparison of the simultaneous measurement results of SCR fluxes received by geostationary satellites 'Electro-L' and 'GOES'

    International Nuclear Information System (INIS)

    Arakelov, A S; Burov, V A; Ochelkov, Y P

    2013-01-01

    In the present paper the comparison of the results of the simultaneous measurements of solar proton fluxes on board geostationary satellites 'GOES' and 'Electro' was made for the purpose of calibration of 'Electro-L' detectors and determination of the possibility to utilize 'Electro-L' data for space weather monitoring. It was shown that the solar proton observation data on board 'Electro-L' recalculated to energy thresholds of 'GOES' 10 and 30 MeV are in a good consistent with 'GOES' data and may be used for control of radiation conditions in near-earth space.

  11. Peculiarities of distribution of oil polution in the Southeastern Baltic by satellite data and in situ measurements

    Science.gov (United States)

    Bulycheva, E. V.; Krek, A. V.; Kostianoy, A. G.

    2016-01-01

    The results of satellite monitoring of oil pollution of the sea surface and field measurements of the concentration of oil products in the water column and bottom sediments for the first time allowed the establishment of a relation between the surface pollution from ships and the general characteristics of spatial and temporal distribution of oil products in the Southeastern Baltic Sea. Areas with increased concentrations of oil products in the surface and bottom layers were determined in the southeastern Baltic Sea. The basic directions of pollution spread, which are consistent with the main direction of annual mean transport of substances in the Gdansk Basin, are determined.

  12. RETRIEVAL OF AEROSOL MICROPHYSICAL PROPERTIES BASED ON THE OPTIMAL ESTIMATION METHOD: INFORMATION CONTENT ANALYSIS FOR SATELLITE POLARIMETRIC REMOTE SENSING MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    W. Z. Hou

    2018-04-01

    Full Text Available This paper evaluates the information content for the retrieval of key aerosol microphysical and surface properties for multispectral single-viewing satellite polarimetric measurements cantered at 410, 443, 555, 670, 865, 1610 and 2250 nm over bright land. To conduct the information content analysis, the synthetic data are simulated by the Unified Linearized Vector Radiative Transfer Model (UNLVTM with the intensity and polarization together over bare soil surface for various scenarios. Following the optimal estimation theory, a principal component analysis method is employed to reconstruct the multispectral surface reflectance from 410 nm to 2250 nm, and then integrated with a linear one-parametric BPDF model to represent the contribution of polarized surface reflectance, thus further to decouple the surface-atmosphere contribution from the TOA measurements. Focusing on two different aerosol models with the aerosol optical depth equal to 0.8 at 550 nm, the total DFS and DFS component of each retrieval aerosol and surface parameter are analysed. The DFS results show that the key aerosol microphysical properties, such as the fine- and coarse-mode columnar volume concentration, the effective radius and the real part of complex refractive index at 550 nm, could be well retrieved with the surface parameters simultaneously over bare soil surface type. The findings of this study can provide the guidance to the inversion algorithm development over bright surface land by taking full use of the single-viewing satellite polarimetric measurements.

  13. Retrieval of Aerosol Microphysical Properties Based on the Optimal Estimation Method: Information Content Analysis for Satellite Polarimetric Remote Sensing Measurements

    Science.gov (United States)

    Hou, W. Z.; Li, Z. Q.; Zheng, F. X.; Qie, L. L.

    2018-04-01

    This paper evaluates the information content for the retrieval of key aerosol microphysical and surface properties for multispectral single-viewing satellite polarimetric measurements cantered at 410, 443, 555, 670, 865, 1610 and 2250 nm over bright land. To conduct the information content analysis, the synthetic data are simulated by the Unified Linearized Vector Radiative Transfer Model (UNLVTM) with the intensity and polarization together over bare soil surface for various scenarios. Following the optimal estimation theory, a principal component analysis method is employed to reconstruct the multispectral surface reflectance from 410 nm to 2250 nm, and then integrated with a linear one-parametric BPDF model to represent the contribution of polarized surface reflectance, thus further to decouple the surface-atmosphere contribution from the TOA measurements. Focusing on two different aerosol models with the aerosol optical depth equal to 0.8 at 550 nm, the total DFS and DFS component of each retrieval aerosol and surface parameter are analysed. The DFS results show that the key aerosol microphysical properties, such as the fine- and coarse-mode columnar volume concentration, the effective radius and the real part of complex refractive index at 550 nm, could be well retrieved with the surface parameters simultaneously over bare soil surface type. The findings of this study can provide the guidance to the inversion algorithm development over bright surface land by taking full use of the single-viewing satellite polarimetric measurements.

  14. Sea ice local surface topography from single-pass satellite InSAR measurements: a feasibility study

    Directory of Open Access Journals (Sweden)

    W. Dierking

    2017-08-01

    Full Text Available Quantitative parameters characterizing the sea ice surface topography are needed in geophysical investigations such as studies on atmosphere–ice interactions or sea ice mechanics. Recently, the use of space-borne single-pass interferometric synthetic aperture radar (InSAR for retrieving the ice surface topography has attracted notice among geophysicists. In this paper the potential of InSAR measurements is examined for several satellite configurations and radar frequencies, considering statistics of heights and widths of ice ridges as well as possible magnitudes of ice drift. It is shown that, theoretically, surface height variations can be retrieved with relative errors  ≤  0.5 m. In practice, however, the sea ice drift and open water leads may contribute significantly to the measured interferometric phase. Another essential factor is the dependence of the achievable interferometric baseline on the satellite orbit configurations. Possibilities to assess the influence of different factors on the measurement accuracy are demonstrated: signal-to-noise ratio, presence of a snow layer, and the penetration depth into the ice. Practical examples of sea surface height retrievals from bistatic SAR images collected during the TanDEM-X Science Phase are presented.

  15. Improving the Accuracy of Satellite Sea Surface Temperature Measurements by Explicitly Accounting for the Bulk-Skin Temperature Difference

    Science.gov (United States)

    Wick, Gary A.; Emery, William J.; Castro, Sandra L.; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    The focus of this research was to determine whether the accuracy of satellite measurements of sea surface temperature (SST) could be improved by explicitly accounting for the complex temperature gradients at the surface of the ocean associated with the cool skin and diurnal warm layers. To achieve this goal, work was performed in two different major areas. The first centered on the development and deployment of low-cost infrared radiometers to enable the direct validation of satellite measurements of skin temperature. The second involved a modeling and data analysis effort whereby modeled near-surface temperature profiles were integrated into the retrieval of bulk SST estimates from existing satellite data. Under the first work area, two different seagoing infrared radiometers were designed and fabricated and the first of these was deployed on research ships during two major experiments. Analyses of these data contributed significantly to the Ph.D. thesis of one graduate student and these results are currently being converted into a journal publication. The results of the second portion of work demonstrated that, with presently available models and heat flux estimates, accuracy improvements in SST retrievals associated with better physical treatment of the near-surface layer were partially balanced by uncertainties in the models and extra required input data. While no significant accuracy improvement was observed in this experiment, the results are very encouraging for future applications where improved models and coincident environmental data will be available. These results are included in a manuscript undergoing final review with the Journal of Atmospheric and Oceanic Technology.

  16. Measurement of the anisotropy of inhomogeneities in the auroral ionosphere by means of signals from satellites

    International Nuclear Information System (INIS)

    Bogolyobov, A.A.; Erukhimov, L.M.; Kryazhev, V.A.; Myasnikov, E.N.

    1985-01-01

    The authors show how it is possible to determine the shapes of inhomogeneities by using a method of correlation analysis of the fluctuations in signals from orbiting satellites. The authors show that when this method is used, the finite thickness of the layer containing the inhomogeneity must be taken into accout. It is established that the inhomogeneities in the auroral ionosphere which are responsible for the amplitude fluctuations in the signals are extended along the lines of force of the geomagnetic field and that they have a shape which is close to being axially symmetric in the plane orthogonal to the geomagnetic field and that the fluctuations in the signals may be concentrated in localized regions

  17. Citizen-Enabled Aerosol Measurements for Satellites (CEAMS): A Network for High-Resolution Measurements of PM2.5 and Aerosol Optical Depth

    Science.gov (United States)

    Pierce, J. R.; Volckens, J.; Ford, B.; Jathar, S.; Long, M.; Quinn, C.; Van Zyl, L.; Wendt, E.

    2017-12-01

    Atmospheric particulate matter with diameter smaller than 2.5 μm (PM2.5) is a pollutant that contributes to the development of human disease. Satellite-derived estimates of surface-level PM2.5 concentrations have the potential to contribute greatly to our understanding of how particulate matter affects health globally. However, these satellite-derived PM2.5 estimates are often uncertain due to a lack of information about the ratio of surface PM2.5 to aerosol optical depth (AOD), which is the primary aerosol retrieval made by satellite instruments. While modelling and statistical analyses have improved estimates of PM2.5:AOD, large uncertainties remain in situations of high PM2.5 exposure (such as urban areas and in wildfire-smoke plumes) where the health impacts of PM2.5 may be the greatest. Surface monitoring networks for co-incident PM2.5 and AOD measurements are extremely rare, even in the North America. To provide constraints for the PM2.5:AOD relationship, we have developed a relatively low-cost (application (iOS and Android). Sun photometry is performed across 4 discrete wavelengths that match those reported by the Aerosol Robotic Network (AERONET). Aerosol concentration is reported using both time-integrated filter mass (analyzed in an academic laboratory and reported as a 24-48hr average) and a continuous PM sensor within the instrument. Citizen scientists use the device to report daily AOD and PM2.5 measurements made in their backyards to a central server for data display and download. In this presentation, we provide an overview of (1) AOD and PM2.5 measurement calibration; (2) citizen recruiting and training efforts; and (3) results from our pilot citizen-science measurement campaign.

  18. Satellite-derived SIF and CO2 Observations Show Coherent Responses to Interannual Climate Variations

    Science.gov (United States)

    Butterfield, Z.; Hogikyan, A.; Kulawik, S. S.; Keppel-Aleks, G.

    2017-12-01

    Gross primary production (GPP) is the single largest carbon flux in the Earth system, but its sensitivity to changes in climate is subject to significant uncertainty. Satellite measurements of solar-induced chlorophyll fluorescence (SIF) offer insight into spatial and temporal patterns in GPP at a global scale and, combined with other satellite-derived datasets, provide unprecedented opportunity to explore interactions between atmospheric CO2, GPP, and climate variability. To explore potential drivers of GPP in the Northern Hemisphere (NH), we compare monthly-averaged SIF data from the Global Ozone Monitoring Experiment 2 (GOME-2) with observed anomalies in temperature (T; CRU-TS), liquid water equivalent (LWE) from the Gravity Recovery and Climate Experiment (GRACE), and photosynthetically active radiation (PAR; CERES SYN1deg). Using observations from 2007 through 2015 for several NH regions, we calculate month-specific sensitivities of SIF to variability in T, LWE, and PAR. These sensitivities provide insight into the seasonal progression of how productivity is affected by climate variability and can be used to effectively model the observed SIF signal. In general, we find that high temperatures are beneficial to productivity in the spring, but detrimental in the summer. The influences of PAR and LWE are more heterogeneous between regions; for example, higher LWE in North American temperate forest leads to decreased springtime productivity, while exhibiting a contrasting effect in water-limited regions. Lastly, we assess the influence of variations in terrestrial productivity on atmospheric carbon using a new lower tropospheric CO2 product derived from the Greenhouse Gases Observing Satellite (GOSAT). Together, these data shed light on the drivers of interannual variability in the annual cycle of NH atmospheric CO2, and may provide improved constraints on projections of long-term carbon cycle responses to climate change.

  19. Assessment of Satellite Capabilities to Detect Impacts of Oil and Natural Gas Activity by Analysis of SONGNEX 2015 Aircraft Measurements

    Science.gov (United States)

    Thayer, M. P.; Keutsch, F. N.; Wolfe, G.; St Clair, J. M.; Hanisco, T. F.; Aikin, K. C.; Brown, S. S.; Dubé, W.; Eilerman, S. J.; Gilman, J.; De Gouw, J. A.; Koss, A.; Lerner, B. M.; Neuman, J. A.; Peischl, J.; Ryerson, T. B.; Thompson, C. R.; Veres, P. R.; Warneke, C.; Washenfelder, R. A.; Wild, R. J.; Womack, C.; Yuan, B.; Zarzana, K. J.

    2017-12-01

    In the last decade, the rate of domestic energy production from oil and natural gas has grown dramatically, resulting in increased concurrent emissions of methane and other volatile organic compounds (VOCs). Products of VOC oxidation and radical cycling, such as tropospheric ozone (O3) and secondary organic aerosols (SOA), have detrimental impacts on human health and climate. The ability to monitor these emissions and their impact on atmospheric composition from remote-sensing platforms will benefit public health by improving air quality forecasts and identifying localized drivers of tropospheric pollution. New satellite-based instruments, such as TROPOMI (October 2017 launch) and TEMPO (2019-2021 projected launch), will be capable of measuring chemical species related to energy drilling and production on unprecedented spatial and temporal scales, however there is need for improved assessments of their capabilities with respect to specific applications. We use chemical and physical parameters measured via aircraft in the boundary layer and free troposphere during the Shale Oil and Natural Gas Nexus (SONGNEX 2015) field campaign to view chemical enhancements over tight oil and shale gas basins from a satellite perspective. Our in-situ data are used to calculate the planetary boundary layer contributions to the column densities for formaldehyde, glyoxal, O3, and NO2. We assess the spatial resolution and chemical precisions necessary to resolve various chemical features, and compare these limits to TEMPO and TROPOMI capabilities to show the degree to which their retrievals will be able to discern the signatures of oil and natural gas activity.

  20. Performance evaluation of latest integrated multi-satellite retrievals for Global Precipitation Measurement (IMERG) over the northern highlands of Pakistan

    Science.gov (United States)

    Anjum, Muhammad Naveed; Ding, Yongjian; Shangguan, Donghui; Ahmad, Ijaz; Ijaz, Muhammad Wajid; Farid, Hafiz Umar; Yagoub, Yousif Elnour; Zaman, Muhammad; Adnan, Muhammad

    2018-06-01

    Recently, the Global Precipitation Measurement (GPM) mission has released the Integrated Multi-satellite Retrievals for GPM (IMERG) at a fine spatial (0.1° × 0.1°) and temporal (half hourly) resolutions. A comprehensive evaluation of this newly launched precipitation product is very important for satellite-based precipitation data users as well as for algorithm developers. The objective of this study was to provide a preliminary and timely performance evaluation of the IMERG product over the northern high lands of Pakistan. For comparison reference, the real-time and post real-time Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) products were also evaluated parallel to the IMERG. All of the selected precipitation products were evaluated at annual, monthly, seasonal and daily time scales using reference gauges data from April 2014 to December 2016. The results showed that: (1) the precipitation estimates from IMERG, 3B42V7 and 3B42RT products correlated well with the reference gauges observations at monthly time scale (CC = 0.93, 0.91, 0.88, respectively), whereas moderately at the daily time scale (CC = 0.67, 0.61, and 0.58, respectively); (2) Compared to the 3B42V7 and 3B42RT, the precipitation estimates from IMERG were more reliable in all seasons particularly in the winter season with lowest relative bias (2.61%) and highest CC (0.87); (3) IMERG showed a clear superiority over 3B42V7 and 3B42RT products in order to capture spatial distribution of precipitation over the northern Pakistan; (4) Relative to the 3B42V7 and 3B42RT, daily precipitation estimates from IMEREG showed lowest relative bias (9.20% vs. 21.40% and 26.10%, respectively) and RMSE (2.05 mm/day vs. 2.49 mm/day and 2.88 mm/day, respectively); and (5) Light precipitation events (0-1 mm/day) were usually overestimated by all said satellite-based precipitation products. In contrast moderate (1-20 mm/day) to heavy (>20 mm/day) precipitation events were

  1. Validation of ozone profile retrievals derived from the OMPS LP version 2.5 algorithm against correlative satellite measurements

    Science.gov (United States)

    Kramarova, Natalya A.; Bhartia, Pawan K.; Jaross, Glen; Moy, Leslie; Xu, Philippe; Chen, Zhong; DeLand, Matthew; Froidevaux, Lucien; Livesey, Nathaniel; Degenstein, Douglas; Bourassa, Adam; Walker, Kaley A.; Sheese, Patrick

    2018-05-01

    The Limb Profiler (LP) is a part of the Ozone Mapping and Profiler Suite launched on board of the Suomi NPP satellite in October 2011. The LP measures solar radiation scattered from the atmospheric limb in ultraviolet and visible spectral ranges between the surface and 80 km. These measurements of scattered solar radiances allow for the retrieval of ozone profiles from cloud tops up to 55 km. The LP started operational observations in April 2012. In this study we evaluate more than 5.5 years of ozone profile measurements from the OMPS LP processed with the new NASA GSFC version 2.5 retrieval algorithm. We provide a brief description of the key changes that had been implemented in this new algorithm, including a pointing correction, new cloud height detection, explicit aerosol correction and a reduction of the number of wavelengths used in the retrievals. The OMPS LP ozone retrievals have been compared with independent satellite profile measurements obtained from the Aura Microwave Limb Sounder (MLS), Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) and Odin Optical Spectrograph and InfraRed Imaging System (OSIRIS). We document observed biases and seasonal differences and evaluate the stability of the version 2.5 ozone record over 5.5 years. Our analysis indicates that the mean differences between LP and correlative measurements are well within required ±10 % between 18 and 42 km. In the upper stratosphere and lower mesosphere (> 43 km) LP tends to have a negative bias. We find larger biases in the lower stratosphere and upper troposphere, but LP ozone retrievals have significantly improved in version 2.5 compared to version 2 due to the implemented aerosol correction. In the northern high latitudes we observe larger biases between 20 and 32 km due to the remaining thermal sensitivity issue. Our analysis shows that LP ozone retrievals agree well with the correlative satellite observations in characterizing vertical, spatial and temporal

  2. Measurement of low-LET radiation dose aboard the chinese scientific experiment satellite (1988) by highly sensitive LiF (Mg, Cu, P) TL chips

    International Nuclear Information System (INIS)

    Zhang Zhonglun; Zheng Yanzhen.

    1989-01-01

    Low-LET radiation dose is an important portion of spaceflight dose. It is a new application that highly sensitive LiF(Mg, Cu, P) TL chips are used in measurement of low-LET dose aboard the chinese scientific experiment satellite. Avarage dose rate in satellite is 9.2 mrad/day and on the ground is about 0.32 mrad/day

  3. Pitch angle distribution of trapped energetic protons and helium isotope nuclei measured along the Resurs-01 No. 4 LEO satellite

    Directory of Open Access Journals (Sweden)

    A. Leonov

    2005-11-01

    Full Text Available The NINA detector on board the Resurs-01 No. 4 satellite (835 km, 98° inclination is equipped with particle trackers based on silicon strip detectors. From the energy deposited in each of its silicon layers the mass, the momentum direction and energy of incident particles have been determined. The resolutions in mass and energy allow identification of H and He isotopes over the 10-50 MeV/n energy range. The angular resolution is about 2.5°. We present the direct measurements of proton and helium isotopes pitch angle distributions derived from Resurs-01 No.4/NINA observations and their variations as functions of (B, L coordinates and energy. The measurements of trapped helium isotopes spectrum are also presented.

  4. Differential optical shadow sensor for sub-nanometer displacement measurement and its application to drag-free satellites.

    Science.gov (United States)

    Zoellner, Andreas; Tan, Si; Saraf, Shailendhar; Alfauwaz, Abdul; DeBra, Dan; Buchman, Sasha; Lipa, John A

    2017-10-16

    We present a method for 3D sub-nanometer displacement measurement using a set of differential optical shadow sensors. It is based on using pairs of collimated beams on opposite sides of an object that are partially blocked by it. Applied to a sphere, our 3-axis sensor module consists of 8 parallel beam-detector sets for redundancy. The sphere blocks half of each beam's power in the nominal centered position, and any displacement can be measured by the differential optical power changes amongst the pairs of detectors. We have experimentally demonstrated a displacement sensitivity of 0.87nm/Hz at 1 Hz and 0.39nm/Hz at 10 Hz. We describe the application of the module to the inertial sensor of a drag-free satellite, which can potentially be used for navigation, geodesy and fundamental science experiments as well as ground based applications.

  5. A comparison of wet and dry season ozone and CO over Brazil using in situ and satellite measurements

    International Nuclear Information System (INIS)

    Watson, C.E.; Fishman, J.; Gregory, G.L.; Sachse, G.W.

    1991-01-01

    Several field experiments have measured the regional effects of biomass burning. Two such experiments, designed to understand the chemistry of the Amazon rainforest during both the wet season and dry season, were conducted in the Amazon Basin. The first experiment, ABLE-2A (Amazon Boundary Layer Experiment), took place from July to August 1985, the early dry season, when biomass burning was just beginning. The second experiment, ABLE-2B, took place during the wet season, from April to May 1987, when little biomass burning was occurring. Comparing ABLE ozone data with tropospheric ozone concentrations derived from satellite data, using the method described by Fishman et al., shows a strong correlation between the direct measurements and the derived ozone concentrations, as well as a direct correlation of both to biomass burning. This comparison gives credence to the use of space-based platforms to monitor global chemistry and, in this case, the regional effects of biomass burning

  6. Mobile System for the Measurement of Dose Rates with locations determined by means of satellite positioning technology

    International Nuclear Information System (INIS)

    Baeza, A.; Rio, L.M. del; Macias, J.A.; Vasco, J.

    1998-01-01

    Our laboratory has been developing and implementing a Real Time Radiological Warning Network around the Almaraz Nuclear Power Plant since 1990. It consists of six gamma dosimetry stations, two devices for the detection of radio-iodines and alpha, beta, and gamma emissions in air, a monitor for the continuous measurement of gamma radiation in water, and two basic meteorological stations. In this context, we have developed a mobile station endowed with a device for the measurement of dose rates which uses satellite positioning technology (GPS) so that it can be located remotely. The information gathered is sent back to our central laboratory in real/or deferred time through the digital mobile telephone network. A twofold utility is foreseen for this station: (a) action in the case of a radiological alert situation detected by our network, and (b) the performance of radiological-dosimetric studies of distant geographical zones. (Author)

  7. Using satellite laser ranging to measure ice mass change in Greenland and Antarctica

    Directory of Open Access Journals (Sweden)

    J. A. Bonin

    2018-01-01

    Full Text Available A least squares inversion of satellite laser ranging (SLR data over Greenland and Antarctica could extend gravimetry-based estimates of mass loss back to the early 1990s and fill any future gap between the current Gravity Recovery and Climate Experiment (GRACE and the future GRACE Follow-On mission. The results of a simulation suggest that, while separating the mass change between Greenland and Antarctica is not possible at the limited spatial resolution of the SLR data, estimating the total combined mass change of the two areas is feasible. When the method is applied to real SLR and GRACE gravity series, we find significantly different estimates of inverted mass loss. There are large, unpredictable, interannual differences between the two inverted data types, making us conclude that the current 5×5 spherical harmonic SLR series cannot be used to stand in for GRACE. However, a comparison with the longer IMBIE time series suggests that on a 20-year time frame, the inverted SLR series' interannual excursions may average out, and the long-term mass loss estimate may be reasonable.

  8. Using satellite laser ranging to measure ice mass change in Greenland and Antarctica

    Science.gov (United States)

    Bonin, Jennifer A.; Chambers, Don P.; Cheng, Minkang

    2018-01-01

    A least squares inversion of satellite laser ranging (SLR) data over Greenland and Antarctica could extend gravimetry-based estimates of mass loss back to the early 1990s and fill any future gap between the current Gravity Recovery and Climate Experiment (GRACE) and the future GRACE Follow-On mission. The results of a simulation suggest that, while separating the mass change between Greenland and Antarctica is not possible at the limited spatial resolution of the SLR data, estimating the total combined mass change of the two areas is feasible. When the method is applied to real SLR and GRACE gravity series, we find significantly different estimates of inverted mass loss. There are large, unpredictable, interannual differences between the two inverted data types, making us conclude that the current 5×5 spherical harmonic SLR series cannot be used to stand in for GRACE. However, a comparison with the longer IMBIE time series suggests that on a 20-year time frame, the inverted SLR series' interannual excursions may average out, and the long-term mass loss estimate may be reasonable.

  9. Accuracy improvement of irradiation data by combining ground and satellite measurements

    Energy Technology Data Exchange (ETDEWEB)

    Betcke, J. [Energy and Semiconductor Research Laboratory, Carl von Ossietzky University, Oldenburg (Germany); Beyer, H.G. [Department of Electrical Engineering, University of Applied Science (F.H.) Magdeburg-Stendal, Magdeburg (Germany)

    2004-07-01

    Accurate and site-specific irradiation data are essential input for optimal planning, monitoring and operation of solar energy technologies. A concrete example is the performance check of grid connected PV systems with the PVSAT-2 procedure. This procedure detects system faults in an early stage by a daily comparison of an individual reference yield with the actual yield. Calculation of the reference yield requires hourly irradiation data with a known accuracy. A field test of the predecessing PVSAT-1 procedure showed that the accuracy of the irradiation input is the determining factor for the overall accuracy of the yield calculation. In this paper we will investigate if it is possible to improve the accuracy of sitespeci.c irradiation data by combining accurate localised pyranometer data with semi-continuous satellite data.We will therefore introduce the ''Kriging of Differences'' data fusion method. Kriging of Differences also offers the possibility to estimate it's own accuracy. The obtainable accuracy gain and the effectiveness of the accuracy prediction will be investigated by validation on monthly and daily irradiation datasets. Results will be compared with the Heliosat method and interpolation of ground data. (orig.)

  10. The PAMELA experiment on satellite and its capability in cosmic rays measurements

    CERN Document Server

    Adriani, O; Barbarino, G C; Barbier, L M; Bartalucci, S; Bazilevskaja, G; Bellotti, R; Bertazzoni, S; Bidoli, V; Boezio, M; Bogomolov, E A; Bonechi, L; Bonvicini, V; Boscherini, M; Bravar, U; Cafagna, F; Campana, D; Carlson, Per J; Casolino, M; Castellano, M; Castellini, G; Christian, E R; Ciacio, F; Circella, M; D'Alessandro, R; De Marzo, C N; De Pascale, M P; Finetti, N; Furano, G; Gabbanini, A; Galper, A M; Giglietto, N; Grandi, M; Grigorieva, A; Guarino, F; Hof, M; Koldashov, S V; Korotkov, M G; Krizmanic, J F; Krutkov, S; Lund, J; Marangelli, B; Marino, L; Menn, W; Mikhailov, V V; Mirizzi, N; Mitchell, J W; Mocchiutti, E; Moiseev, A A; Morselli, A; Mukhametshin, R; Ormes, J F; Osteria, G; Ozerov, J V; Papini, P; Pearce, M; Perego, A; Piccardi, S; Picozza, P; Ricci, M; Salsano, A; Schiavon, Paolo; Scian, G; Simon, M; Sparvoli, R; Spataro, B; Spillantini, P; Spinelli, P; Stephens, S A; Stochaj, S J; Stozhkov, Yu I; Straulino, S; Streitmatter, R E; Taccetti, F; Tesi, M; Vacchi, A; Vannuccini, E; Vasiljev, G; Vignoli, V; Voronov, S A; Yurkin, Y; Zampa, G; Zampa, N

    2002-01-01

    The PAMELA equipment will be assembled in 2001 and installed on board the Russian satellite Resurs. PAMELA is conceived mainly to study the antiproton and positron fluxes in cosmic rays up to high energy (190 GeV for p-bar and 270 GeV for e sup +) and to search antinuclei, up to 30 GeV/n, with a sensitivity of 10 sup - sup 7 in the He-bar/He ratio. The PAMELA telescope consists of: a magnetic spectrometer made up of a permanent magnet system equipped with double sided microstrip silicon detectors; a transition radiation detector made up of active layers of proportional straw tubes interleaved with carbon fibre radiators; and a silicon-tungsten imaging calorimeter made up of layers of tungsten absorbers and silicon detector planes. A time-of-flight system and anti-coincidence counters complete the PAMELA equipment. In the past years, tests have been done on each subdetector of PAMELA; the main results are presented and their implications on the anti-particles identification capability in cosmic rays are discus...

  11. Inversion of Magnetic Measurements of the CHAMP Satellite Over the Pannonian Basin

    Science.gov (United States)

    Kis, K. I.; Taylor, P. T.; Wittmann, G.; Toronyi, B.; Puszta, S.

    2011-01-01

    The Pannonian Basin is a deep intra-continental basin that formed as part of the Alpine orogeny. In order to study the nature of the crustal basement we used the long-wavelength magnetic anomalies acquired by the CHAMP satellite. The anomalies were distributed in a spherical shell, some 107,927 data recorded between January 1 and December 31 of 2008. They covered the Pannonian Basin and its vicinity. These anomaly data were interpolated into a spherical grid of 0.5 x 0.5, at the elevation of 324 km by the Gaussian weight function. The vertical gradient of these total magnetic anomalies was also computed and mapped to the surface of a sphere at 324 km elevation. The former spherical anomaly data at 425 km altitude were downward continued to 324 km. To interpret these data at the elevation of 324 km we used an inversion method. A polygonal prism forward model was used for the inversion. The minimum problem was solved numerically by the Simplex and Simulated annealing methods; a L2 norm in the case of Gaussian distribution parameters and a L1 norm was used in the case of Laplace distribution parameters. We INTERPRET THAT the magnetic anomaly WAS produced by several sources and the effect of the sable magnetization of the exsolution of hemo-ilmenite minerals in the upper crustal metamorphic rocks.

  12. Comparison of Satellite-Derived Phytoplankton Size Classes Using In-Situ Measurements in the South China Sea

    Directory of Open Access Journals (Sweden)

    Shuibo Hu

    2018-03-01

    Full Text Available Ocean colour remote sensing is used as a tool to detect phytoplankton size classes (PSCs. In this study, the Medium Resolution Imaging Spectrometer (MERIS, Moderate Resolution Imaging Spectroradiometer (MODIS, and Sea-viewing Wide Field-of-view Sensor (SeaWiFS phytoplankton size classes (PSCs products were compared with in-situ High Performance Liquid Chromatography (HPLC data for the South China Sea (SCS, collected from August 2006 to September 2011. Four algorithms were evaluated to determine their ability to detect three phytoplankton size classes. Chlorophyll-a (Chl-a and absorption spectra of phytoplankton (aph(λ were also measured to help understand PSC’s algorithm performance. Results show that the three abundance-based approaches performed better than the inherent optical property (IOP-based approach in the SCS. The size detection of microplankton and picoplankton was generally better than that of nanoplankton. A three-component model was recommended to produce maps of surface PSCs in the SCS. For the IOP-based approach, satellite retrievals of inherent optical properties and the PSCs algorithm both have impacts on inversion accuracy. However, for abundance-based approaches, the selection of the PSCs algorithm seems to be more critical, owing to low uncertainty in satellite Chl-a input data

  13. Development of new index for forest fire risk using satellite images in Indonesia through the direct spectral measurements of soil

    Science.gov (United States)

    Hashimoto, A.; Akita, M.; Takahashi, Y.; Suzuki, H.; Hasegawa, Y.; Ogino, Y.; Naruse, N.; Takahashi, Y.

    2016-12-01

    In recent years, the smoke caused by the forest fires in Indonesia has become a serious problem. Most of the land in Indonesia is covered with peat moss, which occurs the expanding of fires due to the burning itself. Thus, the surface soil water, reflecting the amount of precipitation in the area, can become the indication of the risk of fires. This study aims to develop a new index reflecting the risk of forest fires in Indonesia using satellite remote sensing through the direct spectral measurements of peat moss soil.We have prepared the peat moss in 7 steps of soil water content measured at an accuracy of ±15 percent (Field pro, WD-3). We obtained spectra between 400nm and 1050nm (Source: halogen lamp, spectroscope: self-made space time, spectral analysis kit) from the peat moss.The obtained spectra show the difference from the previous spectral measurement for the soil in various water content. There are the features, especially, in the wavelength range of ultraviolet (400-450nm) and infrared (530-800nm) as shown in the figure; the more the soil water increases, the lower the reflectance becomes. We have developed a new index using the New deep blue band (433 453nm and NIR band 845 885nm of Landsat 8. The resulting satellite images calculated by our original index appears to reflect the risk of forest fires rather than well-known indices such as Normalized Difference Water Index and Normalized difference Soil Index.In conclusion, we have created a new index that highly reflects to the degree of soil water of a peat soil in Indonesia.

  14. Simultaneous measurements from the Millstone Hill radar and the Active satellite during the SAID/SAR arc event of the March 1990 CEDAR storm

    Directory of Open Access Journals (Sweden)

    M. Förster

    Full Text Available During a nearby passage of the Active satellite above the Millstone Hill radar on 21 March 1990 at local sunset, the satellite and the radar performed simultaneous measurements of upper ionospheric parameters in nearly the same spatial volume. For this purpose the radar carried out a special azimuth-elevation scan to track the satellite. Direct comparisons of radar data and in situ satellite measurements have been carried out quite rarely. In this case, the coincidence of co-ordinated measurements and active ionospheric-magnetospheric processes during an extended storm recovery phase presents a unique occasion resulting in a very valuable data set. The measurements show generally good agreement both during quiet prestorm and storm conditions and the combination of radar and satellite observations gives a more comprehensive picture of the physical processes involved. We find a close relationship between the rapid westward ion drift peak at subauroral latitudes (SAID event and the occurrence of a stable auroral red (SAR arc observed after sunset by an all-sky imager and reported in an earlier study of this event. The SAID electric field is caused by the penetration of energetic ions with energies between about 1 keV and 100 keV into the outer plasmasphere to a latitude equatorward of the extent of the plasmasheet electrons. Charge separation results in the observed polarisation field and the SAID. Unusually high molecular ion densities measured by the satellite at altitudes of 700-870 km at subauroral and auroral latitudes point on strong upward-directed ion acceleration processes and an intense neutral gas upwelling. These structures are collocated with a narrow trough in electron density and an electron temperature peak as observed simultaneously by the radar and the satellite probes.

    Key words. Ionosphere (ionosphere-magnetosphere interactions; plasma temperature and density; Magnetospheric physics (plasmasphere.

  15. Propagation Measurement on Earth-Sky Signal Effects for High Speed Train Satellite Channel in Tropical Region at Ku-Band

    Directory of Open Access Journals (Sweden)

    Abdulmajeed H. J. Al-Jumaily

    2015-01-01

    Full Text Available Recent advances in satellite communication technologies in the tropical regions have led to significant increase in the demand for services and applications that require high channel quality for mobile satellite terminals. Determination and quantification of these requirements are important to optimize service quality, particularly in the Malaysian region. Moreover, the tests on current satellite propagation models were carried out at temperate regions whose environmental characteristics are much different from those in Malaysia. This difference renders these propagation models inapplicable and irrelevant to tropical regions in general. This paper presents the link characteristics observations and performance analysis with propagation measurements done in tropical region to provide an accurate database regarding rain and power arches supply (PAs attenuations in the tropics for mobile scenarios. Hence, an extension for improving the performance assessment and analysis of satellite/transmission has been achieved. The Malaysia propagation measurement for mobile scenario (Malaysia-PMMS enables first-hand coarse estimation and attenuation analysis, because the attenuation resulting from rain and PAs becomes easily amenable for measurement. Parallel to that, the measured attenuation has been compared with that of the simulated output at noise floor level. The underlying analytical tool is validated by measurements specific at tropical region, for dynamic model of mobile satellite links operating at higher than 10 GHz.

  16. Trend analysis of evapotranspiration over India: Observed from long-term satellite measurements

    Science.gov (United States)

    Goroshi, Sheshakumar; Pradhan, Rohit; Singh, Raghavendra P.; Singh, K. K.; Parihar, Jai Singh

    2017-12-01

    Owing to the lack of consistent spatial time series data on actual evapotranspiration ( ET), very few studies have been conducted on the long-term trend and variability in ET at a national scale over the Indian subcontinent. The present study uses biome specific ET data derived from NOAA satellite's advanced very high resolution radiometer to investigate the trends and variability in ET over India from 1983 to 2006. Trend analysis using the non-parametric Mann-Kendall test showed that the domain average ET decreased during the period at a rate of 0.22 mm year^{-1}. A strong decreasing trend (m = -1.75 mm year^{-1}, F = 17.41, P 0.01) was observed in forest regions. Seasonal analyses indicated a decreasing trend during southwest summer monsoon (m= -0.320 mm season^{-1} year^{-1}) and post-monsoon period (m= -0.188 mm season^{-1 } year^{-1}). In contrast, an increasing trend was observed during northeast winter monsoon (m = 0.156 mm season^{-1 } year^{-1}) and pre-monsoon (m = 0.068 mm season^{-1 } year^{-1}) periods. Despite an overall net decline in the country, a considerable increase ( 4 mm year^{-1}) was observed over arid and semi-arid regions. Grid level correlation with various climatic parameters exhibited a strong positive correlation (r >0.5) of ET with soil moisture and precipitation over semi-arid and arid regions, whereas a negative correlation (r -0.5) occurred with temperature and insolation in dry regions of western India. The results of this analysis are useful for understanding regional ET dynamics and its relationship with various climatic parameters over India. Future studies on the effects of ET changes on the hydrological cycle, carbon cycle, and energy partitioning are needed to account for the feedbacks to the climate.

  17. First evidence for correlations between electron fluxes measured by NOAA-POES satellites and large seismic events

    International Nuclear Information System (INIS)

    Battiston, Roberto; Vitale, Vincenzo

    2013-01-01

    We present the result for the search of correlations between the precipitation of low energy electrons (E>0.3MeV) trapped within the Van Allen Belts and earthquakes with magnitude above 5 Richter scale. We used the electron data measured by the NOAA POES 15,16,17 and 18 satellites collected during a period of 13 years, corresponding to about 18 thousands M>5 earthquakes registered in the NEIC catalog of the U.S. Geological Survey. We defined Particle Burst (PB) the fluctuations of electrons counting rate having a probability −6 of being a statistical fluctuation. The observed correlation involves about 1.410 −3 of the earthquakes in that period of time. It provides the first statistically convincing evidence for the existence of a detectable coupling mechanism between the lithosphere and the magnetosphere having well defined time characteristics

  18. In situ measurements and satellite remote sensing of case 2 waters: first results from the Curonian Lagoon

    Directory of Open Access Journals (Sweden)

    Claudia Giardino

    2010-06-01

    Full Text Available In this study we present calibration/validation activities associated with satellite MERIS image processing and aimed at estimatingchl a and CDOM in the Curonian Lagoon. Field data were used to validate the performances of two atmospheric correction algorithms,to build a band-ratio algorithm for chl a and to validate MERIS-derived maps. The neural network-based Case 2 Regional processor wasfound suitable for mapping CDOM; for chl a the band-ratio algorithm applied to image data corrected with the 6S code was found moreappropriate. Maps were in agreement with in situ measurements.This study confirmed the importance of atmospheric correction to estimate water quality and demonstrated the usefulness ofMERIS in investigating eutrophic aquatic ecosystems.

  19. Biografia como história social: o clã Ferreira Gomes e os mundos da escravização no Atlântico Sul

    Directory of Open Access Journals (Sweden)

    Roquinaldo Ferreira

    2013-12-01

    Full Text Available Este artigo analisa as conexões econômicas e sociais engendradas pelo tráfico de escravos entre Angola e Brasil, assim como o abolicionismo português na primeira metade do século XIX. Neste sentido, o artigo usa como ponto de partida a trajetória pessoal de José Ferreira Gomes, um homem negro, nascido em Benguela, cuja mãe, Florinda José Gaspar, era filha de um chefe africano da Catumbela e cujo pai, Francisco Ferreira Gomes, foi um homem negro nascido no Brasil que tinha sido um dos traficantes de escravos mais ativos em Benguela. Tendo como base a biografia de Gomes Júnior, o artigo discute os laços sociais e culturais que os traficantes de escravos angolanos mantinham com o Brasil e com as populações africanas, a transição do tráfico de escravos para o comércio lícito, e as mudanças na políticas portuguesas em relação ao tráfico de escravos na década de 1840. Para entender o recrudescimento do colonialismo em Angola, o artigo examina acusações de que membros da família Ferreira Gomes teriam participado de sedições raciais e anti-coloniais contra os portugueses.

  20. Simulations of the Holuhraun eruption 2014 with WRF-Chem and evaluation with satellite and ground based SO2 measurements

    Science.gov (United States)

    Hirtl, Marcus; Arnold-Arias, Delia; Flandorfer, Claudia; Maurer, Christian; Mantovani, Simone; Natali, Stefano

    2016-04-01

    Volcanic eruptions, with gas or/and particle emissions, directly influence our environment, with special significance when they either occur near inhabited regions or are transported towards them. In addition to the well-known affectation of air traffic, with large economic impacts, the ground touching plumes can lead directly to an influence of soil, water and even to a decrease of air quality. The eruption of Holuhraun in August 2014 in central Iceland is the country's largest lava and gas eruption since the Lakagígar eruption in 1783. Nevertheless, very little volcanic ash was produced. The main atmospheric threat from this event was the SO2 pollution that frequently violated the Icelandic National Air Quality Standards in many population centers. However, the SO2 affectation was not limited to Iceland but extended to mainland Europe. The on-line coupled model WRF-Chem is used to simulate the dispersion of SO2 for this event that affected the central European regions. The volcanic emissions are considered in addition to the anthropogenic and biogenic ground sources at European scale. A modified version of WRF-Chem version 4.1 is used in order to use time depending injection heights and mass fluxes which were obtained from in situ observations. WRF-Chem uses complex gas- (RADM2) and aerosol- (MADE-SORGAM) chemistry and is operated on a European domain (12 km resolution), and a nested grid covering the Alpine region (4 km resolution). The study is showing the evaluation of the model simulations with satellite and ground based measurement data of SO2. The analysis is conducted on a data management platform, which is currently developed in the frame of the ESA-funded project TAMP "Technology and Atmospheric Mission Platform": it provides comprehensive functionalities to visualize and numerically compare data from different sources (model, satellite and ground-measurements).

  1. An In Depth Look at Lightning Trends in Hurricane Harvey using Satellite and Ground-Based Measurements

    Science.gov (United States)

    Ringhausen, J.

    2017-12-01

    This research combines satellite measurements of lightning in Hurricane Harvey with ground-based lightning measurements to get a better sense of the total lightning occurring in the hurricane, both intra-cloud (IC) and cloud-to-ground (CG), and how it relates to the intensification and weakening of the tropical system. Past studies have looked at lightning trends in hurricanes using the space based Lightning Imaging Sensor (LIS) or ground-based lightning detection networks. However, both of these methods have drawbacks. For instance, LIS was in low earth orbit, which limited lightning observations to 90 seconds for a particular point on the ground; hence, continuous lightning coverage of a hurricane was not possible. Ground-based networks can have a decreased detection efficiency, particularly for ICs, over oceans where hurricanes generally intensify. With the launch of the Geostationary Lightning Mapper (GLM) on the GOES-16 satellite, researchers can study total lightning continuously over the lifetime of a tropical cyclone. This study utilizes GLM to investigate total lightning activity in Hurricane Harvey temporally; this is augmented with spatial analysis relative to hurricane structure, similar to previous studies. Further, GLM and ground-based network data are combined using Bayesian techniques in a new manner to leverage the strengths of each detection method. This methodology 1) provides a more complete estimate of lightning activity and 2) enables the derivation of the IC:CG ratio (Z-ratio) throughout the time period of the study. In particular, details of the evolution of the Z-ratio in time and space are presented. In addition, lightning stroke spatiotemporal trends are compared to lightning flash trends. This research represents a new application of lightning data that can be used in future study of tropical cyclone intensification and weakening.

  2. Sea surface temperature measurements by the along-track scanning radiometer on the ERS 1 satellite: Early results

    Science.gov (United States)

    Mutlow, C. T.; ZáVody, A. M.; Barton, I. J.; Llewellyn-Jones, D. T.

    1994-11-01

    The along-track scanning radiometer (ATSR) was launched in July 1991 on the European Space Agency's first remote sensing satellite, ERS 1. An initial analysis of ATSR data demonstrates that the sea surface temperature (SST) can be measured from space with very high accuracy. Comparison of simultaneous measurements of SST made from ATSR and from a ship-borne radiometer show that they agree to within 0.3°C. To assess data consistency, a complementary analysis of SST data from ATSR was also carried out. The ATSR global SST field was compared on a daily basis with daily SST analysis of the United Kingdom Meteorological Office (UKMO). The ATSR global field is consistently within 1.0°C of the UKMO analysis. Also, to demonstrate the benefits of along-track scanning SST determination, the ATSR SST data were compared with high-quality bulk temperature observations from drifting buoys. The likely causes of the differences between ATSR and the bulk temperature data are briefly discussed. These results provide early confidence in the quantitative benefit of ATSR's two-angle view of the Earth and its high radiometric performance and show a significant advance on the data obtained from other spaceborne sensors. It should be noted that these measurements were made at a time when the atmosphere was severely contaminated with volcanic aerosol particles, which degrade infrared measurements of the Earth's surface made from space.

  3. The Use of Satellite Microwave Rainfall Measurements to Predict Eastern North Pacific Tropical Cyclone Intensity

    National Research Council Canada - National Science Library

    West, Derek

    1998-01-01

    .... Relationships between parameters obtained from an operational SSM/I based rainfall measuring algorithm and current intensity and ensuing 12, 24, 36, 48, 60, and 72 hour intensity changes from best...

  4. Citizen and Satellite Measurements Used to Estimate Lake Water Storage Variations

    Science.gov (United States)

    Parkins, G.; Pavelsky, T.; Yelton, S.; Ghafoor, S. K.; Hossain, F.

    2017-12-01

    Of the roughly 20-40 million lakes in the world larger than 0.01 km2, perhaps a few thousand receive regular water level monitoring, and only approximately a thousand are included in the largest lake level databases. The prospect for on-the-ground, automated monitoring of a significant fraction of the world's lakes is not high given the considerable expense involved. In comparison to many other measurements, however, measuring lake water level is relatively simple under most conditions. A staff gauge installed in a lake, essentially a leveled ruler, can be read relatively simply by both experts and ordinary citizens. Reliable staff gauges cost far less than automated systems, making them an attractive alternative. However, staff gauges are only effective when they are regularly observed and when those observations are communicated to a central database. We have developed and tested a system for citizen scientists to monitor water levels in 15 lakes in Eastern North Carolina, USA and to easily report those measurements to our project team. We combine these citizen measurements with Landsat measurements of inundated area to track variations in lake water storage. Here, we present the resulting lake water level, inundation extent, and lake storage change time series and assess measurement accuracy. Our primary validation method for citizen-measured lake water levels is comparison with heights from pressure transducers also installed in all fifteen lakes. We use the validated results to understand spatial patterns in the lake hydrology of Eastern North Carolina. Finally, we consider the motivations of citizens who participate in the project and discuss the feedback they have provided regarding our measurement and communication systems.

  5. Venus thermosphere and exosphere - First satellite drag measurements of an extraterrestrial atmosphere

    Science.gov (United States)

    Keating, G. M.; Tolson, R. H.; Hinson, E. W.

    1979-01-01

    Atmospheric drag measurements obtained from the study of the orbital decay of Pioneer Venus I indicate that atomic oxygen predominates in the Venus atmosphere above 160 kilometers. Drag measurements give evidence that conditions characteristic of a planetary thermosphere disappear near sundown, with inferred exospheric temperatures sharply dropping from approximately 300 K to less than 150 K. Observed densities are generally lower than given by theoretical models.

  6. The Surface Water and Ocean Topography Satellite Mission - An Assessment of Swath Altimetry Measurements of River Hydrodynamics

    Science.gov (United States)

    Wilson, Matthew D.; Durand, Michael; Alsdorf, Douglas; Chul-Jung, Hahn; Andreadis, Konstantinos M.; Lee, Hyongki

    2012-01-01

    The Surface Water and Ocean Topography (SWOT) satellite mission, scheduled for launch in 2020 with development commencing in 2015, will provide a step-change improvement in the measurement of terrestrial surface water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water surface elevations, which will allow for the estimation of river and floodplain flows via the water surface slope. In this paper, we characterize the measurements which may be obtained from SWOT and illustrate how they may be used to derive estimates of river discharge. In particular, we show (i) the spatia-temporal sampling scheme of SWOT, (ii) the errors which maybe expected in swath altimetry measurements of the terrestrial surface water, and (iii) the impacts such errors may have on estimates of water surface slope and river discharge, We illustrate this through a "virtual mission" study for a approximately 300 km reach of the central Amazon river, using a hydraulic model to provide water surface elevations according to the SWOT spatia-temporal sampling scheme (orbit with 78 degree inclination, 22 day repeat and 140 km swath width) to which errors were added based on a two-dimension height error spectrum derived from the SWOT design requirements. Water surface elevation measurements for the Amazon mainstem as may be observed by SWOT were thereby obtained. Using these measurements, estimates of river slope and discharge were derived and compared to those which may be obtained without error, and those obtained directly from the hydraulic model. It was found that discharge can be reproduced highly accurately from the water height, without knowledge of the detailed channel bathymetry using a modified Manning's equation, if friction, depth, width and slope are known. Increasing reach length was found to be an effective method to reduce systematic height error in SWOT measurements.

  7. Measurement of charge and energy spectra of heavy nuclei aboard Cosmos-936 artificial Earth satellite

    International Nuclear Information System (INIS)

    Dashin, S.A.; Marennyy, A.M.; Gertsen, G.P.

    1982-07-01

    Charge and energy spectra of heavy charged particles were measured. Measurements were performed by a package of dielectric track detectors mounted behind the shield of 60-80 kg m to the minus second power thick. The charge of nuclei was determined from the complete track length. A group of 1915 tracks of nuclei with Z 6 in the energy range 100-450 MeV/nuclon were identified. The differential charge spectrum of nuclei with 6 Z 28 and the energy spectrum of nuclei of the iron group were built

  8. Comparison of measured and satellite-derived spectral diffuse attenuation coefficients for the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Talaulikar, M.; Desa, E.; Matondkar, S.G.P.; Mascarenhas, A.

    The results of study comparing the spectral diffuse attenuation coefficients Kd(Lambda) measured in the Arabian Sea with those derived from the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) using three algorithms, of which two are empirical...

  9. Rainfall measurement using cell phone links: classification of wet and dry periods using geostationary satellites

    NARCIS (Netherlands)

    van Delden, A.J.; van het Schip, T.I.; Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko; Meirink, J.F.

    2017-01-01

    Commercial cellular telecommunication networks can be used for rainfall estimation by measur- ing the attenuation of electromagnetic signals transmitted between antennas from microwave links. However, as the received link signal may also decrease during dry periods, a method to separate wet and dry

  10. Optical Properties of the Urban Aerosol Particles Obtained from Ground Based Measurements and Satellite-Based Modelling Studies

    Directory of Open Access Journals (Sweden)

    Genrik Mordas

    2015-01-01

    Full Text Available Applications of satellite remote sensing data combined with ground measurements and model simulation were applied to study aerosol optical properties as well as aerosol long-range transport under the impact of large scale circulation in the urban environment in Lithuania (Vilnius. Measurements included the light scattering coefficients at 3 wavelengths (450, 550, and 700 nm measured with an integrating nephelometer and aerosol particle size distribution (0.5–12 μm and number concentration (Dpa > 0.5 μm registered by aerodynamic particle sizer. Particle number concentration and mean light scattering coefficient varied from relatively low values of 6.0 cm−3 and 12.8 Mm−1 associated with air masses passed over Atlantic Ocean to relatively high value of 119 cm−3 and 276 Mm−1 associated with South-Western air masses. Analysis shows such increase in the aerosol light scattering coefficient (276 Mm−1 during the 3rd of July 2012 was attributed to a major Sahara dust storm. Aerosol size distribution with pronounced coarse particles dominance was attributed to the presence of dust particles, while resuspended dust within the urban environment was not observed.

  11. The Effectiveness of Using Limited Gauge Measurements for Bias Adjustment of Satellite-Based Precipitation Estimation over Saudi Arabia

    Science.gov (United States)

    Alharbi, Raied; Hsu, Kuolin; Sorooshian, Soroosh; Braithwaite, Dan

    2018-01-01

    Precipitation is a key input variable for hydrological and climate studies. Rain gauges are capable of providing reliable precipitation measurements at point scale. However, the uncertainty of rain measurements increases when the rain gauge network is sparse. Satellite -based precipitation estimations appear to be an alternative source of precipitation measurements, but they are influenced by systematic bias. In this study, a method for removing the bias from the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) over a region where the rain gauge is sparse is investigated. The method consists of monthly empirical quantile mapping, climate classification, and inverse-weighted distance method. Daily PERSIANN-CCS is selected to test the capability of the method for removing the bias over Saudi Arabia during the period of 2010 to 2016. The first six years (2010 - 2015) are calibrated years and 2016 is used for validation. The results show that the yearly correlation coefficient was enhanced by 12%, the yearly mean bias was reduced by 93% during validated year. Root mean square error was reduced by 73% during validated year. The correlation coefficient, the mean bias, and the root mean square error show that the proposed method removes the bias on PERSIANN-CCS effectively that the method can be applied to other regions where the rain gauge network is sparse.

  12. A New ENSO Index Derived from Satellite Measurements of Column Ozone

    Science.gov (United States)

    Ziemke, J. R.; Chandra, S.; Oman, L. D.; Bhartia, P. K.

    2010-01-01

    Column Ozone measured in tropical latitudes from Nimbus 7 total ozone mapping spectrometer (TOMS), Earth Probe TOMS, solar backscatter ultraviolet (SBUV), and Aura ozone monitoring instrument (OMI) are used to derive an El Nino-Southern Oscillation (ENSO) index. This index, which covers a time period from 1979 to the present, is defined as the Ozone ENSO Index (OEI) and is the first developed from atmospheric trace gas measurements. The OEI is constructed by first averaging monthly mean column ozone over two broad regions in the western and eastern Pacific and then taking their difference. This differencing yields a self-calibrating ENSO index which is independent of individual instrument calibration offsets and drifts in measurements over the long record. The combined Aura OMI and MLS ozone data confirm that zonal variability in total column ozone in the tropics caused by ENSO events lies almost entirely in the troposphere. As a result, the OEI can be derived directly from total column ozone instead of tropospheric column ozone. For clear-sky ozone measurements a +1K change in Nino 3.4 index corresponds to +2.9 Dobson Unit (DU) change in the OEI, while a +1 hPa change in SOI coincides with a -1.7DU change in the OEI. For ozone measurements under all cloud conditions these numbers are +2.4DU and -1.4 DU, respectively. As an ENSO index based upon ozone, it is potentially useful in evaluating climate models predicting long term changes in ozone and other trace gases.

  13. A statistical study of high-altitude electric fields measured on the Viking satellite

    International Nuclear Information System (INIS)

    Lindqvist, P.A.; Marklund, G.T.

    1990-01-01

    Characteristics of high-altitude data from the Viking electric field instrument are presented in a statistical study based on 109 Viking orbits. The study is focused in particular on the signatures of and relationships between various parameters measured by the electric field instrument, such as the parallel and transverse (to B) components of the electric field instrument, such as electric field variability. A major goal of the Viking mission was to investigate the occurrence and properties of parallel electric fields and their role in the auroral acceleration process. The results in this paper on the altitude distribution of the electric field variability confirm earlier findings on the distribution of small-scale electric fields and indicate the presence of parallel fields up to about 11,000 km altitude. The directly measured parallel electric field is also investigated in some detail. It is in general directed upward with an average value of 1 mV/m, but depends on, for example, altitude and plasma density. Possible sources of error in the measurement of the parallel field are also considered and accounted for

  14. THE THIRD MARGIN OF HISTORY. NOTES ON THE TWO FACES OF WAR BY DIANA ANDRINGA AND FLORA GOMES

    Directory of Open Access Journals (Sweden)

    Livia Apa

    2010-11-01

    Full Text Available The essay intends to approach, taking the documentary authored by the Portuguese journalist Diana Andringa and the Guinea producer Flora Gomes as a starting point, the theme of the memories in conflict, and to reflect upon the manners in which the image archives may function in the process of construction of a collective and shared memory. In this sense, the Portuguese documentary in question seems to present a route that passes by the issue of the “war of memories” proposing a common reading of the histories which occurred on the Guinean front during the colonial war; proposing a reading of the facts which stress how, in accordance to what Amílcar Cabral affirmed, the fate of the two sides, in this particular case, Portugal and Guinea- Bissau, were indissolubly connected.

  15. Aerosol optical properties over the Svalbard region of Arctic: ground-based measurements and satellite remote sensing

    Science.gov (United States)

    Gogoi, Mukunda M.; Babu, S. Suresh

    2016-05-01

    In view of the increasing anthropogenic presence and influence of aerosols in the northern polar regions, long-term continuous measurements of aerosol optical parameters have been investigated over the Svalbard region of Norwegian Arctic (Ny-Ålesund, 79°N, 12°E, 8 m ASL). This study has shown a consistent enhancement in the aerosol scattering and absorption coefficients during spring. The relative dominance of absorbing aerosols is more near the surface (lower single scattering albedo), compared to that at the higher altitude. This is indicative of the presence of local anthropogenic activities. In addition, long-range transported biomass burning aerosols (inferred from the spectral variation of absorption coefficient) also contribute significantly to the higher aerosol absorption in the Arctic spring. Aerosol optical depth (AOD) estimates from ground based Microtop sun-photometer measurements reveals that the columnar abundance of aerosols reaches the peak during spring season. Comparison of AODs between ground based and satellite remote sensing indicates that deep blue algorithm of Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals over Arctic snow surfaces overestimate the columnar AOD.

  16. Comparing multiple model-derived aerosol optical properties to spatially collocated ground-based and satellite measurements

    Science.gov (United States)

    Ocko, Ilissa B.; Ginoux, Paul A.

    2017-04-01

    Anthropogenic aerosols are a key factor governing Earth's climate and play a central role in human-caused climate change. However, because of aerosols' complex physical, optical, and dynamical properties, aerosols are one of the most uncertain aspects of climate modeling. Fortunately, aerosol measurement networks over the past few decades have led to the establishment of long-term observations for numerous locations worldwide. Further, the availability of datasets from several different measurement techniques (such as ground-based and satellite instruments) can help scientists increasingly improve modeling efforts. This study explores the value of evaluating several model-simulated aerosol properties with data from spatially collocated instruments. We compare aerosol optical depth (AOD; total, scattering, and absorption), single-scattering albedo (SSA), Ångström exponent (α), and extinction vertical profiles in two prominent global climate models (Geophysical Fluid Dynamics Laboratory, GFDL, CM2.1 and CM3) to seasonal observations from collocated instruments (AErosol RObotic NETwork, AERONET, and Cloud-Aerosol Lidar with Orthogonal Polarization, CALIOP) at seven polluted and biomass burning regions worldwide. We find that a multi-parameter evaluation provides key insights on model biases, data from collocated instruments can reveal underlying aerosol-governing physics, column properties wash out important vertical distinctions, and improved models does not mean all aspects are improved. We conclude that it is important to make use of all available data (parameters and instruments) when evaluating aerosol properties derived by models.

  17. Comparison of several satellite-derived databases of surface solar radiation against ground measurement in Morocco

    Science.gov (United States)

    Marchand, Mathilde; Ghennioui, Abdellatif; Wey, Etienne; Wald, Lucien

    2018-04-01

    HelioClim-3v4 (HC3v4), HelioClim-3v5 (HC3v5) and the radiation service version 2 of the Copernicus Atmosphere Monitoring Service (CAMS-Rad) are databases that contain hourly values of solar radiation at ground level. These estimated hourly irradiations are compared to coincident measurements made at five stations in Morocco. The correlation coefficients between measurements and estimates are similar for the three databases and around 0.97-0.98 for global irradiation. For the direct irradiation, the correlation coefficients are around 0.70-0.79 for HC3v4, 0.79-0.84 for HC3v5 and 0.78-0.87 for CAMS-Rad. For global irradiation, the bias relative to the average of the measurements is small and ranges between -6 and -1 % for HC3v4, -4 and 0 % for HC3v5, and -4 and 7 % for CAMS-Rad; HC3v4 and HC3v5 exhibit a tendency to slightly underestimate the global irradiation. The root mean square error (RMSE) ranges between 53 (12 %) and 72 Wh m-2 (13 %) for HC3v4, 55 (12 %) and 71 Wh m-2 (13 %) for HC3v5, and 59 (11 %) and 97 Wh m-2 (21 %) for CAMS-Rad. For the direct irradiation, the relative bias ranges between -16 and 21 % for HC3v4, -7 and 22 % for HC3v5, and -18 and 7 % for CAMS-Rad. The RMSE ranges between 170 (28 %) and 210 Wh m-2 (33 %) for HC3v4, 153 (25 %) and 209 Wh m-2 (40 %) for HC3v5, and 159 (26 %) and 244 Wh m-2 (39 %) for CAMS-Rad. HC3v5 captures the temporal and spatial variability of the irradiation field well. The performance is poorer for HC3v4 and CAMS-Rad which exhibit more variability from site to site. As a whole, the three databases are reliable sources on solar radiation in Morocco.

  18. A comparative study of satellite estimation for solar insolation in Albania with ground measurements

    International Nuclear Information System (INIS)

    Mitrushi, Driada; Berberi, Pëllumb; Muda, Valbona; Buzra, Urim; Bërdufi, Irma; Topçiu, Daniela

    2016-01-01

    The main objective of this study is to compare data provided by Database of NASA with available ground data for regions covered by national meteorological net NASA estimates that their measurements of average daily solar radiation have a root-mean-square deviation RMSD error of 35 W/m"2 (roughly 20% inaccuracy). Unfortunately valid data from meteorological stations for regions of interest are quite rare in Albania. In these cases, use of Solar Radiation Database of NASA would be a satisfactory solution for different case studies. Using a statistical method allows to determine most probable margins between to sources of data. Comparison of mean insulation data provided by NASA with ground data of mean insulation provided by meteorological stations show that ground data for mean insolation results, in all cases, to be underestimated compared with data provided by Database of NASA. Converting factor is 1.149.

  19. Comparing Global Positioning System (GPS) and Global Navigation Satellite System (GNSS) Measures of Team Sport Movements.

    Science.gov (United States)

    Jackson, Benjamin M; Polglaze, Ted; Dawson, Brian; King, Trish; Peeling, Peter

    2018-02-21

    To compare data from conventional GPS and new GNSS-enabled tracking devices, and to examine the inter-unit reliability of GNSS devices. Inter-device differences between 10 Hz GPS and GNSS devices were examined during laps (n=40) of a simulated game circuit (SGC) and during elite hockey matches (n=21); GNSS inter-unit reliability was also examined during the SGC laps. Differences in distance values and measures in three velocity categories (low 5 m.s -1 ) and acceleration/deceleration counts (>1.46 m.s -2 and GPS devices in all conditions. These findings suggest that GNSS devices may be more sensitive than GPS in quantifying the physical demands of team sport movements, but further study into the accuracy of GNSS devices is required.

  20. Satellite passive microwave rain rate measurement over croplands during spring, summer and fall

    International Nuclear Information System (INIS)

    Spencer, R.W.

    1984-01-01

    Rain rate algorithms for spring, summer and fall that have been developed from comparisons between the brightness temperatures measured by the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) and rain rates derived from operational WSR-57 radars over land are described. Data were utilized from a total of 25 SMMR passes and 234 radars, resulting in ∼12 000 observations of ∼1600 km 2 areas. Multiple correlation coefficients of 0.63, 0.80 and 0.75 are achieved for the spring, summer and fall algorithms, respectively. Most of this information is in the form of multifrequency contrast in brightness temperature, which is interpreted as a measurement of the degree to which the land-emitted radiation is attenuated by the rain systems. The SMMR 37 GHz channel has more information on rain rate than any other channel. By combining the lower frequency channels with the 37 GHz observations, variations in land and precipitation thermometric temperatures can be removed, leaving rain attenuation as the major effect on brightness temperature. Polarization screening at 37 GHz is found to be sufficient to screen out cases of wet ground, which is only important when the ground is relatively vegetation free. Heavy rain cases are found to be a significant part of the algorithms' success, because of the strong microwave signatures (low brightness temperatures) that result from the presence of precipitation-sized ice in the upper portions of heavily precipitating storms. If IR data are combined with the summer microwave data, an improved (0.85) correlation with radar rain rates is achieved

  1. Measuring radon flux across active faults: Relevance of excavating and possibility of satellite discharges

    Energy Technology Data Exchange (ETDEWEB)

    Richon, Patrick, E-mail: patrick.richon@cea.f [CEA, DAM, DIF, F-91297 Arpajon (France); Institut de Physique du Globe de Paris, Equipe Geologie des Systemes Volcaniques, 4 place Jussieu, UMR-7154 CNRS, F-75005 Paris (France); Klinger, Yann; Tapponnier, Paul [Institut de Physique du Globe de Paris, Equipe de Seismotectonique, 4 place Jussieu, UMR-7154 CNRS, F-75005 Paris (France); Li Chenxia [Institute of Geology, Chinese Earthquake Administration, P.O. Box 9803, 100029 Beijing (China); Van Der Woerd, Jerome [Institut de Physique du Globe de Strasbourg, CNRS, UMR-7516, INSU, Universite Louis Pasteur, Strasbourg I, 5 Rue Rene Descartes, F-67084 Strasbourg Cedex (France); Perrier, Frederic [Institut de Physique du Globe de Paris, Equipe de Geomagnetisme, 4 place Jussieu, UMR-7154 CNRS et Universite Paris 7 Denis-Diderot, F-75005 Paris (France)

    2010-02-15

    Searching for gas exhalation around major tectonic contacts raises important methodological issues such as the role of the superficial soil and the possible long distance transport. These effects have been studied on the Xidatan segment of the Kunlun Fault, Qinghai Province, China, using measurement of the radon-222 and carbon dioxide exhalation flux. A significant radon flux, reaching up to 538 +- 33 mBq m{sup -2} s{sup -1} was observed in a 2-3 m deep trench excavated across the fault. On the soil surface, the radon flux varied from 7 to 38 mBq m{sup -2} s{sup -1}, including on the fault trace, with an average value of 14.1 +- 1.0 mBq m{sup -2} s{sup -1}, similar to the world average. The carbon dioxide flux on the soil surface, with an average value of 12.9 +- 3.3 g m{sup -2} day{sup -1}, also remained similar to regular background values. It showed no systematic spatial variation up to a distance of 1 km from the fault, and no clear enhancement in the trench. However, a high carbon dioxide flux of 421 +- 130 g m{sup -2} day{sup -1} was observed near subvertical fractured phyllite outcrops on a hill located about 3 km north of the fault, at the boundary of the large-scale pull-apart basin associated with the fault. This high carbon dioxide flux was associated with a high radon flux of 607 +- 35 mBq m{sup -2} s{sup -1}. These preliminary results indicate that, at the fault trace, it can be important to measure gas flux at the bottom of a trench to remove superficial soil layers. In addition, gas discharges need to be investigated also at some distance from the main fault, in zones where morphotectonics features support associated secondary fractures.

  2. Measuring the Value of Earth Observation Information with the Gravity Research and Climate Experiment (GRACE) Satellite

    Science.gov (United States)

    Bernknopf, R.; Kuwayama, Y.; Brookshire, D.; Macauley, M.; Zaitchik, B.; Pesko, S.; Vail, P.

    2014-12-01

    Determining how much to invest in earth observation technology depends in part on the value of information (VOI) that can be derived from the observations. We design a framework and then evaluate the value-in-use of the NASA Gravity Research and Climate Experiment (GRACE) for regional water use and reliability in the presence of drought. As a technology that allows measurement of water storage, the GRACE Data Assimilation System (DAS) provides information that is qualitatively different from that generated by other water data sources. It provides a global, reproducible grid of changes in surface and subsurface water resources on a frequent and regular basis. Major damages from recent events such as the 2012 Midwest drought and the ongoing drought in California motivate the need to understand the VOI from remotely sensed data such as that derived from GRACE DAS. Our conceptual framework models a dynamic risk management problem in agriculture. We base the framework on information from stakeholders and subject experts. The economic case for GRACE DAS involves providing better water availability information. In the model, individuals have a "willingness to pay" (wtp) for GRACE DAS - essentially, wtp is an expression of savings in reduced agricultural input costs and for costs that are influenced by regional policy decisions. Our hypothesis is that improvements in decision making can be achieved with GRACE DAS measurements of water storage relative to data collected from groundwater monitoring wells and soil moisture monitors that would be relied on in the absence of GRACE DAS. The VOI is estimated as a comparison of outcomes. The California wine grape industry has features that allow it to be a good case study and a basis for extrapolation to other economic sectors. We model water use in this sector as a sequential decision highlighting the attributes of GRACE DAS input as information for within-season production decisions as well as for longer-term water reliability.

  3. Results of measurements of a proton spectrum in the energy range more then 1 TeV at satellites by the SOKOL instrument

    International Nuclear Information System (INIS)

    Grigor'ev, N.L.

    1989-01-01

    Proton spectra measured by SOKOL instrument at KOSMOS-1543 and KOSMOS-1713 satellites and published by the auther and independently by experiment preparation group are presented. Methods of experimental data application and their substantiation degree that caused differences in spectra and conclusions are analysed. 10 refs.; 7 figs.; 6 tabs

  4. Long-range transport of dust aerosols over the Arabian Sea and Indian region – A case study using satellite data and ground-based measurements

    Digital Repository Service at National Institute of Oceanography (India)

    Badarinath, K.V.S.; Kharol, S.K.; Kaskaoutis, D.G.; Sharma, A; Ramaswamy, V.; Kambezidis, H.D.

    The present study addresses an intense dust storm event over the Persian Gulf and the Arabian Sea (AS) region and its transport over the Indian subcontinent using multi-satellite observations and ground-based measurements. A time series of Indian...

  5. Power laws and inverse motion modelling: application to turbulence measurements from satellite images

    Directory of Open Access Journals (Sweden)

    Pablo D. Mininni

    2012-01-01

    Full Text Available In the context of tackling the ill-posed inverse problem of motion estimation from image sequences, we propose to introduce prior knowledge on flow regularity given by turbulence statistical models. Prior regularity is formalised using turbulence power laws describing statistically self-similar structure of motion increments across scales. The motion estimation method minimises the error of an image observation model while constraining second-order structure function to behave as a power law within a prescribed range. Thanks to a Bayesian modelling framework, the motion estimation method is able to jointly infer the most likely power law directly from image data. The method is assessed on velocity fields of 2-D or quasi-2-D flows. Estimation accuracy is first evaluated on a synthetic image sequence of homogeneous and isotropic 2-D turbulence. Results obtained with the approach based on physics of fluids outperform state-of-the-art. Then, the method analyses atmospheric turbulence using a real meteorological image sequence. Selecting the most likely power law model enables the recovery of physical quantities, which are of major interest for turbulence atmospheric characterisation. In particular, from meteorological images we are able to estimate energy and enstrophy fluxes of turbulent cascades, which are in agreement with previous in situ measurements.

  6. Measuring effusion rates of obsidian lava flows by means of satellite thermal data

    Science.gov (United States)

    Coppola, D.; Laiolo, M.; Franchi, A.; Massimetti, F.; Cigolini, C.; Lara, L. E.

    2017-11-01

    Space-based thermal data are increasingly used for monitoring effusive eruptions, especially for calculating lava discharge rates and forecasting hazards related to basaltic lava flows. The application of this methodology to silicic, more viscous lava bodies (such as obsidian lava flows) is much less frequent, with only few examples documented in the last decades. The 2011-2012 eruption of Cordón Caulle volcano (Chile) produced a voluminous obsidian lava flow ( 0.6 km3) and offers an exceptional opportunity to analyze the relationship between heat and volumetric flux for such type of viscous lava bodies. Based on a retrospective analysis of MODIS infrared data (MIROVA system), we found that the energy radiated by the active lava flow is robustly correlated with the erupted lava volume, measured independently. We found that after a transient time of about 15 days, the coefficient of proportionality between radiant and volumetric flux becomes almost steady, and stabilizes around a value of 5 × 106 J m- 3. This coefficient (i.e. radiant density) is much lower than those found for basalts ( 1 × 108 J m- 3) and likely reflects the appropriate spreading and cooling properties of the highly-insulated, viscous flows. The effusion rates trend inferred from MODIS data correlates well with the tremor amplitude and with the plume elevation recorded throughout the eruption, thus suggesting a link between the effusive and the coeval explosive activity. Modelling of the eruptive trend indicates that the Cordón Caulle eruption occurred in two stages, either incompletely draining a single magma reservoir or more probably tapping multiple interconnected magmatic compartments.

  7. Analysis of BeiDou Satellite Measurements with Code Multipath and Geometry-Free Ionosphere-Free Combinations

    Directory of Open Access Journals (Sweden)

    Qile Zhao

    2016-01-01

    Full Text Available Using GNSS observable from some stations in the Asia-Pacific area, the carrier-to-noise ratio (CNR and multipath combinations of BeiDou Navigation Satellite System (BDS, as well as their variations with time and/or elevation were investigated and compared with those of GPS and Galileo. Provided the same elevation, the CNR of B1 observables is the lowest among the three BDS frequencies, while B3 is the highest. The code multipath combinations of BDS inclined geosynchronous orbit (IGSO and medium Earth orbit (MEO satellites are remarkably correlated with elevation, and the systematic “V” shape trends could be eliminated through between-station-differencing or modeling correction. Daily periodicity was found in the geometry-free ionosphere-free (GFIF combinations of both BDS geostationary Earth orbit (GEO and IGSO satellites. The variation range of carrier phase GFIF combinations of GEO satellites is −2.0 to 2.0 cm. The periodicity of carrier phase GFIF combination could be significantly mitigated through between-station differencing. Carrier phase GFIF combinations of BDS GEO and IGSO satellites might also contain delays related to satellites. Cross-correlation suggests that the GFIF combinations’ time series of some GEO satellites might vary according to their relative geometries with the sun.

  8. Analysis of BeiDou Satellite Measurements with Code Multipath and Geometry-Free Ionosphere-Free Combinations.

    Science.gov (United States)

    Zhao, Qile; Wang, Guangxing; Liu, Zhizhao; Hu, Zhigang; Dai, Zhiqiang; Liu, Jingnan

    2016-01-20

    Using GNSS observable from some stations in the Asia-Pacific area, the carrier-to-noise ratio (CNR) and multipath combinations of BeiDou Navigation Satellite System (BDS), as well as their variations with time and/or elevation were investigated and compared with those of GPS and Galileo. Provided the same elevation, the CNR of B1 observables is the lowest among the three BDS frequencies, while B3 is the highest. The code multipath combinations of BDS inclined geosynchronous orbit (IGSO) and medium Earth orbit (MEO) satellites are remarkably correlated with elevation, and the systematic "V" shape trends could be eliminated through between-station-differencing or modeling correction. Daily periodicity was found in the geometry-free ionosphere-free (GFIF) combinations of both BDS geostationary Earth orbit (GEO) and IGSO satellites. The variation range of carrier phase GFIF combinations of GEO satellites is -2.0 to 2.0 cm. The periodicity of carrier phase GFIF combination could be significantly mitigated through between-station differencing. Carrier phase GFIF combinations of BDS GEO and IGSO satellites might also contain delays related to satellites. Cross-correlation suggests that the GFIF combinations' time series of some GEO satellites might vary according to their relative geometries with the sun.

  9. Debris mitigation measures by satellite design and operational methods - Findings from the DLR space debris End-to-End Service

    Science.gov (United States)

    Sdunnus, H.; Beltrami, P.; Janovsky, R.; Koppenwallner, G.; Krag, H.; Reimerdes, H.; Schäfer, F.

    operational side, the possibility to support mitgation measures supported through radar observation will be addressed as well as measures to minimise the risk during the satellite reentry phase by the choice of proper reentry parameters and spacecraft materials and design options.

  10. MULTI-ELEMENT ABUNDANCE MEASUREMENTS FROM MEDIUM-RESOLUTION SPECTRA. II. CATALOG OF STARS IN MILKY WAY DWARF SATELLITE GALAXIES

    International Nuclear Information System (INIS)

    Kirby, Evan N.; Cohen, Judith G.; Guhathakurta, Puragra; Rockosi, Constance M.; Simon, Joshua D.; Geha, Marla C.; Sneden, Christopher; Sohn, Sangmo Tony; Majewski, Steven R.; Siegel, Michael

    2010-01-01

    We present a catalog of Fe, Mg, Si, Ca, and Ti abundances for 2961 stars in eight dwarf satellite galaxies of the Milky Way (MW): Sculptor, Fornax, Leo I, Sextans, Leo II, Canes Venatici I, Ursa Minor, and Draco. For the purposes of validating our measurements, we also observed 445 red giants in MW globular clusters and 21 field red giants in the MW halo. The measurements are based on Keck/DEIMOS medium-resolution spectroscopy (MRS) combined with spectral synthesis. We estimate uncertainties in [Fe/H] by quantifying the dispersion of [Fe/H] measurements in a sample of stars in monometallic globular clusters (GCs). We estimate uncertainties in Mg, Si, Ca, and Ti abundances by comparing to high-resolution spectroscopic abundances of the same stars. For this purpose, a sample of 132 stars with published high-resolution spectroscopy in GCs, the MW halo field, and dwarf galaxies has been observed with MRS. The standard deviations of the differences in [Fe/H] and ([α/Fe]) (the average of [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe]) between the two samples is 0.15 and 0.16, respectively. This catalog represents the largest sample of multi-element abundances in dwarf galaxies to date. The next papers in this series draw conclusions on the chemical evolution, gas dynamics, and star formation histories from the catalog presented here. The wide range of dwarf galaxy luminosity reveals the dependence of dwarf galaxy chemical evolution on galaxy stellar mass.

  11. Air Mass Factor Formulation for Spectroscopic Measurements from Satellites: Application to Formaldehyde Retrievals from the Global Ozone Monitoring Experiment

    Science.gov (United States)

    Palmer, Paul I.; Jacob, Daniel J.; Chance, Kelly; Martin, Randall V.; Spurr, Robert J. D.; Kurosu, Thomas P.; Bey, Isabelle; Yantosca, Robert; Fiore, Arlene; Li, Qinbin

    2004-01-01

    We present a new formulation for the air mass factor (AMF) to convert slant column measurements of optically thin atmospheric species from space into total vertical columns. Because of atmospheric scattering, the AMF depends on the vertical distribution of the species. We formulate the AMF as the integral of the relative vertical distribution (shape factor) of the species over the depth of the atmosphere, weighted by altitude-dependent coefficients (scattering weights) computed independently from a radiative transfer model. The scattering weights are readily tabulated, and one can then obtain the AMF for any observation scene by using shape factors from a three dimensional (3-D) atmospheric chemistry model for the period of observation. This approach subsequently allows objective evaluation of the 3-D model with the observed vertical columns, since the shape factor and the vertical column in the model represent two independent pieces of information. We demonstrate the AMF method by using slant column measurements of formaldehyde at 346 nm from the Global Ozone Monitoring Experiment satellite instrument over North America during July 1996. Shape factors are cumputed with the Global Earth Observing System CHEMistry (GEOS-CHEM) global 3-D model and are checked for consistency with the few available aircraft measurements. Scattering weights increase by an order of magnitude from the surface to the upper troposphere. The AMFs are typically 20-40% less over continents than over the oceans and are approximately half the values calculated in the absence of scattering. Model-induced errors in the AMF are estimated to be approximately 10%. The GEOS-CHEM model captures 50% and 60% of the variances in the observed slant and vertical columns, respectively. Comparison of the simulated and observed vertical columns allows assessment of model bias.

  12. Satellite Soil Moisture and Water Storage Observations Identify Early and Late Season Water Supply Influencing Plant Growth in the Missouri Watershed

    Science.gov (United States)

    A, G.; Velicogna, I.; Kimball, J. S.; Du, J.; Kim, Y.; Colliander, A.; Njoku, E. G.

    2017-12-01

    We employ an array of continuously overlapping global satellite sensor observations including combined surface soil moisture (SM) estimates from SMAP, AMSR-E and AMSR-2, GRACE terrestrial water storage (TWS), and satellite precipitation measurements, to characterize seasonal timing and inter-annual variations of the regional water supply pattern and its associated influence on vegetation growth estimates from MODIS enhanced vegetation index (EVI), AMSR-E/2 vegetation optical depth (VOD) and GOME-2 solar-induced florescence (SIF). Satellite SM is used as a proxy of plant-available water supply sensitive to relatively rapid changes in surface condition, GRACE TWS measures seasonal and inter-annual variations in regional water storage, while precipitation measurements represent the direct water input to the analyzed ecosystem. In the Missouri watershed, we find surface SM variations are the dominant factor controlling vegetation growth following the peak of the growing season. Water supply to growth responds to both direct precipitation inputs and groundwater storage carry-over from prior seasons (winter and spring), depending on land cover distribution and regional climatic condition. For the natural grassland in the more arid central and northwest watershed areas, an early season anomaly in precipitation or surface temperature can have a lagged impact on summer vegetation growth by affecting the surface SM and the underlying TWS supplies. For the croplands in the more humid eastern portions of the watershed, the correspondence between surface SM and plant growth weakens. The combination of these complementary remote-sensing observations provides an effective means for evaluating regional variations in the timing and availability of water supply influencing vegetation growth.

  13. Enhancement in electron and ion temperatures due to solar flares as measured by SROSS-C2 satellite

    Directory of Open Access Journals (Sweden)

    D. K. Sharma

    2004-06-01

    Full Text Available The observations on the ionospheric electron and ion temperatures (Te and Ti measured by the RPA payload aboard the SROSS-C2 satellite have been used to study the effect of solar flares on ionospheric heating. The data on solar flare has been obtained from the National Geophysical Data Center (NGDC Boulder, Colorado (USA. It has been found that the electron and ion temperatures have a consistent enhancement during the solar flares on the dayside Earth's ionosphere. The estimated enhancement for the average electron temperature is from 1.3 to 1.9 times whereas for ion temperature it is from 1.2 to 1.4 times to the normal days average temperature. The enhancement of ionospheric temperatures due to solar flares is correlated with the diurnal variation of normal days' ionospheric temperatures. The solar flare does not have any significant effect on the nightside ionosphere. A comparison with the temperature obtained from the IRI-95 model also shows a similar enhancement.

  14. Enhancement in electron and ion temperatures due to solar flares as measured by SROSS-C2 satellite

    Directory of Open Access Journals (Sweden)

    D. K. Sharma

    2004-06-01

    Full Text Available The observations on the ionospheric electron and ion temperatures (Te and Ti measured by the RPA payload aboard the SROSS-C2 satellite have been used to study the effect of solar flares on ionospheric heating. The data on solar flare has been obtained from the National Geophysical Data Center (NGDC Boulder, Colorado (USA. It has been found that the electron and ion temperatures have a consistent enhancement during the solar flares on the dayside Earth's ionosphere. The estimated enhancement for the average electron temperature is from 1.3 to 1.9 times whereas for ion temperature it is from 1.2 to 1.4 times to the normal days average temperature. The enhancement of ionospheric temperatures due to solar flares is correlated with the diurnal variation of normal days' ionospheric temperatures. The solar flare does not have any significant effect on the nightside ionosphere. A comparison with the temperature obtained from the IRI-95 model also shows a similar enhancement.

  15. Distinguishing Alfven waves from quasi-static field structures associated with the discrete aurora: Sounding rocket and HILAT satellite measurements

    International Nuclear Information System (INIS)

    Knudsen, D.J.; Kelley, M.C.; Earle, G.D.; Vickrey, J.F.; Boehm, M.

    1990-01-01

    The authors present and analyze sounding rocket and HILAT satellite measurements of the low frequency ( 0 in the auroral oval. By examining the time-domain field data it is often difficult to distinguish temporal fluctuations from static structures which are Doppler shifted to a non-zero frequency in the spacecraft frame. However, they show that such a distinction can be made by constructing the impedance function Z(f). Using Z(f) they find agreement with the static field interpretation below about 0.1 Hz in the spacecraft frame, i.e. Z(f) = Σ p -1 where Σ p is the height-integrated Pedersen conductivity of the ionosphere. About 0.1 Hz the authors find Z(f) > Σ p -1 , which they argue to be due to the presence of Alfven waves incident from the magnetosphere and reflecting from the lower ionosphere, forming a standing wave pattern. These waves may represent an electromagnetic coupling mechanism between the auroral acceleration region and the ionosphere

  16. Surface Runoff Estimation Using SMOS Observations, Rain-gauge Measurements and Satellite Precipitation Estimations. Comparison with Model Predictions

    Science.gov (United States)

    Garcia Leal, Julio A.; Lopez-Baeza, Ernesto; Khodayar, Samiro; Estrela, Teodoro; Fidalgo, Arancha; Gabaldo, Onofre; Kuligowski, Robert; Herrera, Eddy

    Surface runoff is defined as the amount of water that originates from precipitation, does not infiltrates due to soil saturation and therefore circulates over the surface. A good estimation of runoff is useful for the design of draining systems, structures for flood control and soil utilisation. For runoff estimation there exist different methods such as (i) rational method, (ii) isochrone method, (iii) triangular hydrograph, (iv) non-dimensional SCS hydrograph, (v) Temez hydrograph, (vi) kinematic wave model, represented by the dynamics and kinematics equations for a uniforme precipitation regime, and (vii) SCS-CN (Soil Conservation Service Curve Number) model. This work presents a way of estimating precipitation runoff through the SCS-CN model, using SMOS (Soil Moisture and Ocean Salinity) mission soil moisture observations and rain-gauge measurements, as well as satellite precipitation estimations. The area of application is the Jucar River Basin Authority area where one of the objectives is to develop the SCS-CN model in a spatial way. The results were compared to simulations performed with the 7-km COSMO-CLM (COnsortium for Small-scale MOdelling, COSMO model in CLimate Mode) model. The use of SMOS soil moisture as input to the COSMO-CLM model will certainly improve model simulations.

  17. Assessing net ecosystem carbon exchange of U S terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Qianlai [Purdue University; Law, Beverly E. [Oregon State University; Baldocchi, Dennis [University of California, Berkeley; Ma, Siyan [University of California, Berkeley; Chen, Jiquan [University of Toledo, Toledo, OH; Richardson, Andrew [Harvard University; Melillo, Jerry [Marine Biological Laboratory; Davis, Ken J. [Pennsylvania State University; Hollinger, D. [USDA Forest Service; Wharton, Sonia [University of California, Davis; Falk, Matthias [University of California, Davis; Paw, U. Kyaw Tha [University of California, Davis; Oren, Ram [Duke University; Katulk, Gabriel G. [Duke University; Noormets, Asko [North Carolina State University; Fischer, Marc [Lawrence Berkeley National Laboratory (LBNL); Verma, Shashi [University of Nebraska; Suyker, A. E. [University of Nebraska, Lincoln; Cook, David R. [Argonne National Laboratory (ANL); Sun, G. [USDA Forest Service; McNulty, Steven G. [USDA Forest Service; Wofsy, Steve [Harvard University; Bolstad, Paul V [University of Minnesota; Burns, Sean [University of Colorado, Boulder; Monson, Russell K. [University of Colorado, Boulder; Curtis, Peter [Ohio State University, The, Columbus; Drake, Bert G. [Smithsonian Environmental Research Center, Edgewater, MD; Foster, David R. [Harvard University; Gu, Lianhong [ORNL; Hadley, Julian L. [Harvard University; Litvak, Marcy [University of New Mexico, Albuquerque; Martin, Timothy A. [University of Florida, Gainesville; Matamala, Roser [Argonne National Laboratory (ANL); Meyers, Tilden [NOAA, Oak Ridge, TN; Oechel, Walter C. [San Diego State University; Schmid, H. P. [Indiana University; Scott, Russell L. [USDA ARS; Torn, Margaret S. [Lawrence Berkeley National Laboratory (LBNL)

    2011-01-01

    More accurate projections of future carbon dioxide concentrations in the atmosphere and associated climate change depend on improved scientific understanding of the terrestrial carbon cycle. Despite the consensus that U.S. terrestrial ecosystems provide a carbon sink, the size, distribution, and interannual variability of this sink remain uncertain. Here we report a terrestrial carbon sink in the conterminous U.S. at 0.63 pg C yr 1 with the majority of the sink in regions dominated by evergreen and deciduous forests and savannas. This estimate is based on our continuous estimates of net ecosystem carbon exchange (NEE) with high spatial (1 km) and temporal (8-day) resolutions derived from NEE measurements from eddy covariance flux towers and wall-to-wall satellite observations from Moderate Resolution Imaging Spectroradiometer (MODIS). We find that the U.S. terrestrial ecosystems could offset a maximum of 40% of the fossil-fuel carbon emissions. Our results show that the U.S. terrestrial carbon sink varied between 0.51 and 0.70 pg C yr 1 over the period 2001 2006. The dominant sources of interannual variation of the carbon sink included extreme climate events and disturbances. Droughts in 2002 and 2006 reduced the U.S. carbon sink by 20% relative to a normal year. Disturbances including wildfires and hurricanes reduced carbon uptake or resulted in carbon release at regional scales. Our results provide an alternative, independent, and novel constraint to the U.S. terrestrial carbon sink.

  18. Citizen Bio-Optical Observations from Coast- and Ocean and Their Compatibility with Ocean Colour Satellite Measurements

    Directory of Open Access Journals (Sweden)

    Julia A. Busch

    2016-10-01

    Full Text Available Marine processes are observed with sensors from both the ground and space over large spatio-temporal scales. Citizen-based contributions can fill observational gaps and increase environmental stewardship amongst the public. For this purpose, tools and methods for citizen science need to (1 complement existing datasets; and (2 be affordable, while appealing to different user and developer groups. In this article, tools and methods developed in the 7th Framework Programme of European Union (EU FP 7 funded project Citclops (citizens’ observatories for coast and ocean optical monitoring are reviewed. Tools range from a stand-alone smartphone app to devices with Arduino and 3-D printing, and hence are attractive to a diversity of users; from the general public to more specified maker- and open labware movements. Standardization to common water quality parameters and methods allows long-term storage in regular marine data repositories, such as SeaDataNet and EMODnet, thereby providing open data access. Due to the given intercomparability to existing remote sensing datasets, these tools are ready to complement the marine datapool. In the future, such combined satellite and citizen observations may set measurements by the engaged public in a larger context and hence increase their individual meaning. In a wider sense, a synoptic use can support research, management authorities, and societies at large.

  19. Origin of energetic ions in the polar cusp inferred from ion composition measurements by the Viking satellite

    Directory of Open Access Journals (Sweden)

    G. Kremser

    1995-06-01

    Full Text Available The magnetospheric ion composition spectrometer MICS on the Swedish Viking satellite provided measurements of the ion composition in the energy range 10.1 keV/e\\leqE/Q\\leq326.0 keV/e. Data obtained during orbit 842 were used to investigate the ion distribution in the northern polar cusp and its vicinity. The satellite traversed the outer ring current, boundary region, cusp proper and plasma mantle during its poleward movement. H+ and He++ ions were encountered in all of these regions. He+ ions were present only in the ring current. The number of O+ and O++ ions was very small. Heavy high-charge state ions typical for the solar wind were observed for the first time, most of them in the poleward part of the boundary region and in the cusp proper. The H+ ions exhibited two periods with high intensities. One of them, called the BR/CP event, appeared at energies up to 50 keV. It started at the equatorward limit of the boundary region and continued into the cusp proper. Energy spectra indicate a ring current origin for the BR/CP event. Pitch angle distributions show downward streaming of H+ ions at its equatorward limit and upward streaming on the poleward side. This event is interpreted as the result of pitch angle scattering of ring current ions by fluctuations in the magnetopause current layer in combination with poleward convection. The other of the two periods with high H+ ion intensities, called the accelerated ion event, was superimposed on the BR/CP event. It was restricted to energies \\leq15 keV and occurred in the poleward part of the boundary region. This event is regarded as the high-energy tail of magnetosheath ions that were accelerated while penetrating into the magnetosphere. The cusp region thus contains ions of magnetospheric as well as of magnetosheath origin. The appearance of the ions depends, in addition to the ion source, on the magnetic field configuration and dynamic processes inside and close to the cusp.

  20. Origin of energetic ions in the polar cusp inferred from ion composition measurements by the Viking satellite

    Directory of Open Access Journals (Sweden)

    G. Kremser

    Full Text Available The magnetospheric ion composition spectrometer MICS on the Swedish Viking satellite provided measurements of the ion composition in the energy range 10.1 keV/eleqE/Qleq326.0 keV/e. Data obtained during orbit 842 were used to investigate the ion distribution in the northern polar cusp and its vicinity. The satellite traversed the outer ring current, boundary region, cusp proper and plasma mantle during its poleward movement. H+ and He++ ions were encountered in all of these regions. He+ ions were present only in the ring current. The number of O+ and O++ ions was very small. Heavy high-charge state ions typical for the solar wind were observed for the first time, most of them in the poleward part of the boundary region and in the cusp proper. The H+ ions exhibited two periods with high intensities. One of them, called the BR/CP event, appeared at energies up to 50 keV. It started at the equatorward limit of the boundary region and continued into the cusp proper. Energy spectra indicate a ring current origin for the BR/CP event. Pitch angle distributions show downward streaming of H+ ions at its equatorward limit and upward streaming on the poleward side. This event is interpreted as the result of pitch angle scattering of ring current ions by fluctuations in the magnetopause current layer in combination with poleward convection. The other of the two periods with high H+ ion intensities, called the accelerated ion event, was superimposed on the BR/CP event. It was restricted to energies leq15 keV and occurred in the poleward part of the boundary region. This event is regarded as the high-energy tail of magnetosheath ions that were accelerated while penetrating into the magnetosphere. The cusp region thus contains ions of magnetospheric as well as of magnetosheath origin. The appearance of the ions depends, in addition to the ion source, on the

  1. Global Electric Circuit Implications of Combined Aircraft Storm Electric Current Measurements and Satellite-Based Diurnal Lightning Statistics

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2011-01-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of thunderstorms and electrified shower clouds (ESCs) spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, and with positive and negative fields above the storms. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean thunderstorms is 1.7 A while the mean current for land thunderstorms is 1.0 A. The mean current for ocean ESCs 0.41 A and the mean current for land ESCs is 0.13 A. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal flash rate statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie curve) to within 4% for all but two short periods of time. The agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Given our data and assumptions, mean contributions to the global electric circuit are 1.1 kA (land) and 0.7 kA (ocean) from thunderstorms, and 0.22 kA (ocean) and 0.04 (land) from ESCs, resulting in a mean total conduction current estimate for the global electric circuit of 2.0 kA. Mean storm counts are 1100 for land

  2. ANALYSIS OF YEAR 2002 SEASONAL FOREST DYNAMICS USING TIME SERIES IN SITU LAI MEASUREMENTS AND MODIS LAI SATELLITE PRODUCTS

    Science.gov (United States)

    Multitemporal satellite images are the standard basis for regional-scale land-cover (LC) change detection. However, embedded in the data are the confounding effects of vegetation dynamics (phenology). As photosynthetic vegetation progresses through its annual cycle, the spectral ...

  3. Using satellite-based measurements to explore spatiotemporal scales and variability of drivers of new particle formation

    Science.gov (United States)

    New particle formation (NPF) can potentially alter regional climate by increasing aerosol particle (hereafter particle) number concentrations and ultimately cloud condensation nuclei. The large scales on which NPF is manifest indicate potential to use satellite-based (inherently ...

  4. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Volume IV: Inherent Optical Properties: Instruments, Characterizations, Field Measurements and Data Analysis Protocols

    Science.gov (United States)

    Mueller, J. L.; Fargion, G. S.; McClain, C. R. (Editor); Pegau, S.; Zanefeld, J. R. V.; Mitchell, B. G.; Kahru, M.; Wieland, J.; Stramska, M.

    2003-01-01

    This document stipulates protocols for measuring bio-optical and radiometric data for the Sensor Intercomparision and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities and algorithm development. The document is organized into 6 separate volumes as Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4. Volume I: Introduction, Background, and Conventions; Volume II: Instrument Specifications, Characterization and Calibration; Volume III: Radiometric Measurements and Data Analysis Methods; Volume IV: Inherent Optical Properties: Instruments, Characterization, Field Measurements and Data Analysis Protocols; Volume V: Biogeochemical and Bio-Optical Measurements and Data Analysis Methods; Volume VI: Special Topics in Ocean Optics Protocols and Appendices. The earlier version of Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3 is entirely superseded by the six volumes of Revision 4 listed above.

  5. Peak Satellite-to-Earth Data Rates Derived From Measurements of a 20 Gbps Bread-Board Modem

    Science.gov (United States)

    Landon, David G.; Simons, Rainee N.; Wintucky, Edwin G.; Sun, Jun Y.; Winn, James S.; Laraway, Stephen A.; McIntire, William K.; Metz, John L.; Smith, Francis J.

    2011-01-01

    A prototype data link using a Ka-band space qualified, high efficiency 200 W TWT amplifier and a bread-board modem emulator were created to explore the feasibility of very high speed communications in satellite-to-earth applications. Experiments were conducted using a DVB-S2-like waveform with modifications to support up to 20 Gbps through the addition of 128-Quadrature Amplitude Modulation (QAM). Limited by the bandwidth of the amplifier, a constant peak symbol rate of 3.2 Giga-symbols/sec was selected and the modulation order was varied to explore what peak data rate might be supported by an RF link through this amplifier. Using 128-QAM, an implementation loss of 3 dB was observed at 20 Gbps, and the loss decreased as data rate or bandwidth were reduced. Building on this measured data, realistic link budget calculations were completed. Low-Earth orbit (LEO) missions based on this TWTA with reasonable hardware assumptions and antenna sizing are found to be bandwidth-limited, rather than power-limited, making the spectral efficiency of 9/10-rate encoded 128-QAM very attractive. Assuming a bandwidth allocation of 1 GHz, these computations indicate that low-Earth orbit vehicles could achieve data rates up to 5 Gbps-an order of magnitude beyond the current state-of-practice, yet still within the processing power of a current FPGA-based software-defined modem. The measured performance results and a description of the experimental setup are presented to support these conclusions.

  6. Airborne gamma-radiation snow water-equivalent and soil-moisture measurements and satellite areal extent of snow-cover measurements. A user's guide. Version 3.0

    International Nuclear Information System (INIS)

    Carroll, T.; Allen, M.

    1988-01-01

    The National Remote Sensing Hydrology Program is managed by the Office of Hydrology and consists of the Airborne Snow Survey Section and the Satellite Hydrology Section. The Airborne Snow Survey Section makes airborne snow water-equivalent and soil-moisture measurements over large areas of the country subject to a severe and chronic snowmelt flooding threat. The User's Guide is intended primarily to provide field hydrologists with some background on the technical and administrative aspects of the National Remote Sensing Hydrology Program. The guide summarizes the techniques and procedures used to make and distribute real-time, operational airborne snow water-equivalent measurements and satellite areal extent of snow-cover measurements made over large areas of the country. The current airborne and satellite databases are summarized, and procedures to access the real-time observations through both AFOS and through a commercial, electronic bulletin board system are given in the appendices

  7. Chemical and optical properties of atmospheric aerosols in Phimai, Thailand by intensive surface measurements and satellite data analysis

    Science.gov (United States)

    Tsuruta, H.; Thana, B.; Takamura, T.; Hashimoto, M.; Yabuki, M.; Oikawa, E.; Nakajima, T.

    2013-12-01

    Atmospheric aerosols were measured at the Observatory of Atmospheric Research, in Phimai, Thailand, a key station of SKYNET, during 2006-2008. In the surface measurement, mass concentrations and major chemical components in fine and coarse aerosols were analyzed, and the optical properties such as AOT and SSA were measured by skyradiometer. Analysis of MODIS and CALIPSO satellite data was made for wild fire activities and aerosol distribution, respectively. In this paper, the following topics are summarized. The surface wind pattern in dry season was divided into the three periods as follows; D1 (Oct.-Nov.) with northeasterly monsoon, D3 (middle March-April) with southerly wind, and D2 (Dec.-early March) with a transit stage between D1 and D3. Wet season in southwesterly monsoon was from May to September. The concentration ratio of BC/nss-SO4 showed that the dominant PM2.5 aerosols in D1 were due to long-range transport of air pollutants emitted from urban/industrial area of east Asia. In contrast, most of aerosols in D3 were derived from biomass burning in Indochina, because the activity of biomass burning was highest in the latter D2 and early D3 period, by the analysis of the fire database in MODIS and of BC/nss-SO4. The mass concentration in PM2.5 showed a clear seasonal variation with the maximum in D2. On the contrary, AOT showed the maximum in D3, and which could be attributed to an increase in the vertical thickness of high aerosol concentration in the boundary layer by the CALIOP data analysis. Dust particles in D1 were directly transported from east Asia, and re-suspension of soil dusts was dominant in D2 because the surface soil became dry. In D3, soil dusts were re-suspended with the thermal plume caused by biomass burning. In contrast, high dust particles measured in the wet season was due to long range transport of dust aerosols from western desert area by the CALIOP data analysis.

  8. [Luís Gomes Ferreira reports on the health of slaves in his work entitled Erário mineral (1735)].

    Science.gov (United States)

    Eugênio, Alisson

    2015-01-01

    The article analyzes the reports of Luís Gomes Ferreira published in his manual on practical medicine entitled Erário mineral, of 1735, on the most common illnesses in captivity. It is shown that such reports can be interpreted as a criticism of the social relations of the slave era by issuing some warnings to the landowners who failed to look after the health of their slaves.

  9. Saturn satellites

    International Nuclear Information System (INIS)

    Ruskol, E.L.

    1981-01-01

    The characteristics of the Saturn satellites are discussed. The satellites close to Saturn - Janus, Mimas, Enceladus, Tethys, Dione and Rhea - rotate along the circular orbits. High reflectivity is attributed to them, and the density of the satellites is 1 g/cm 3 . Titan is one of the biggest Saturn satellites. Titan has atmosphere many times more powerful than that of Mars. The Titan atmosphere is a peculiar medium with a unique methane and hydrogen distribution in the whole Solar system. The external satellites - Hyperion, Japetus and Phoebe - are poorly investigated. Neither satellite substance density, nor their composition are known. The experimental data on the Saturn rings obtained on the ''Pioneer-11'' and ''Voyager-1'' satellites are presented [ru

  10. Correcting Measurement Error in Satellite Aerosol Optical Depth with Machine Learning for Modeling PM2.5 in the Northeastern USA

    Directory of Open Access Journals (Sweden)

    Allan C. Just

    2018-05-01

    Full Text Available Satellite-derived estimates of aerosol optical depth (AOD are key predictors in particulate air pollution models. The multi-step retrieval algorithms that estimate AOD also produce quality control variables but these have not been systematically used to address the measurement error in AOD. We compare three machine-learning methods: random forests, gradient boosting, and extreme gradient boosting (XGBoost to characterize and correct measurement error in the Multi-Angle Implementation of Atmospheric Correction (MAIAC 1 × 1 km AOD product for Aqua and Terra satellites across the Northeastern/Mid-Atlantic USA versus collocated measures from 79 ground-based AERONET stations over 14 years. Models included 52 quality control, land use, meteorology, and spatially-derived features. Variable importance measures suggest relative azimuth, AOD uncertainty, and the AOD difference in 30–210 km moving windows are among the most important features for predicting measurement error. XGBoost outperformed the other machine-learning approaches, decreasing the root mean squared error in withheld testing data by 43% and 44% for Aqua and Terra. After correction using XGBoost, the correlation of collocated AOD and daily PM2.5 monitors across the region increased by 10 and 9 percentage points for Aqua and Terra. We demonstrate how machine learning with quality control and spatial features substantially improves satellite-derived AOD products for air pollution modeling.

  11. Combined Aircraft and Satellite-Derived Storm Electric Current and Lightning Rates Measurements and Implications for the Global Electric Circuit

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, Richard J.; Bateman, Monte G.

    2010-01-01

    Using rotating vane electric field mills and Gerdien capacitors, we measured the electric field profile and conductivity during 850 overflights of electrified shower clouds and thunderstorms spanning regions including the Southeastern United States, the Western Atlantic Ocean, the Gulf of Mexico, Central America and adjacent oceans, Central Brazil, and the South Pacific. The overflights include storms over land and ocean, with and without lightning, and with positive and negative fields above the storms. The measurements were made with the NASA ER-2 and the Altus-II high altitude aircrafts. Peak electric fields, with lightning transients removed, ranged from -1.0 kV/m to 16 kV/m, with a mean value of 0.9 kV/m. The median peak field was 0.29 kV/m. Integrating our electric field and conductivity data, we determined total conduction currents and flash rates for each overpass. With knowledge of the storm location (land or ocean) and type (with or without lightning), we determine the mean currents by location and type. The mean current for ocean storms with lightning is 1.6 A while the mean current for land storms with lightning is 1.0 A. The mean current for oceanic storms without lightning (i.e., electrified shower clouds) is 0.39 A and the mean current for land storms without lightning is 0.13 A. Thus, on average, land storms with or without lightning have about half the mean current as their corresponding oceanic storm counterparts. Over three-quarters (78%) of the land storms had detectable lightning, while less than half (43%) of the oceanic storms had lightning. We did not find any significant regional or latitudinal based patterns in our total conduction currents. By combining the aircraft derived storm currents and flash rates with diurnal lightning statistics derived from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) low Earth orbiting satellites, we reproduce the diurnal variation in the global electric circuit (i.e., the Carnegie

  12. Attribution and evolution of ozone from Asian wild fires using satellite and aircraft measurements during the ARCTAS campaign

    Directory of Open Access Journals (Sweden)

    R. Dupont

    2012-01-01

    Full Text Available We use ozone and carbon monoxide measurements from the Tropospheric Emission Spectrometer (TES, model estimates of Ozone, CO, and ozone pre-cursors from the Real-time Air Quality Modeling System (RAQMS, and data from the NASA DC8 aircraft to characterize the source and dynamical evolution of ozone and CO in Asian wildfire plumes during the spring ARCTAS campaign 2008. On the 19 April, NASA DC8 O3 and aerosol Differential Absorption Lidar (DIAL observed two biomass burning plumes originating from North-Western Asia (Kazakhstan and South-Eastern Asia (Thailand that advected eastward over the Pacific reaching North America in 10 to 12 days. Using both TES observations and RAQMS chemical analyses, we track the wildfire plumes from their source to the ARCTAS DC8 platform. In addition to photochemical production due to ozone pre-cursors, we find that exchange between the stratosphere and the troposphere is a major factor influencing O3 concentrations for both plumes. For example, the Kazakhstan and Siberian plumes at 55 degrees North is a region of significant springtime stratospheric/tropospheric exchange. Stratospheric air influences the Thailand plume after it is lofted to high altitudes via the Himalayas. Using comparisons of the model to the aircraft and satellite measurements, we estimate that the Kazakhstan plume is responsible for increases of O3 and CO mixing ratios by approximately 6.4 ppbv and 38 ppbv in the lower troposphere (height of 2 to 6 km, and the Thailand plume is responsible for increases of O3 and CO mixing ratios of approximately 11 ppbv and 71 ppbv in the upper troposphere (height of 8 to 12 km respectively. However, there are significant sources of uncertainty in these estimates that point to the need for future improvements in both model and satellite observations. For example, it is challenging to characterize the fraction of air parcels from the stratosphere versus those from the

  13. Investigating aerosol properties in Peninsular Malaysia via the synergy of satellite remote sensing and ground-based measurements

    Science.gov (United States)

    Kanniah, Kasturi Devi; Lim, Hui Qi; Kaskaoutis, Dimitris G.; Cracknell, Arthur P.

    2014-03-01

    Spatio-temporal variation and trends in atmospheric aerosols as well as their impact on solar radiation and clouds are crucial for regional and global climate change assessment. These topics are not so well-documented over Malaysia, the fact that it receives considerable amounts of pollutants from both local and trans-boundary sources. The present study aims to analyse the spatio-temporal evolution and decadal trend of Aerosol Optical Depth (AOD) from Terra and Aqua MODIS sensors, to identify different types and origin of aerosols and explore the link between aerosols and solar radiation. AOD and fine-mode fraction (FMF) products from MODIS, AOD and Ångström Exponent (AE) values from AERONET stations along with ground-based PM10 measurements and solar radiation recordings at selected sites in Peninsular Malaysia are used for this scope. The MODIS AODs exhibit a wide spatio-temporal variation over Peninsular Malaysia, while Aqua AOD is consistently lower than that from Terra. The AOD shows a neutral-to-declining trend during the 2000s (Terra satellite), while that from Aqua exhibits an increasing trend (~ 0.01 per year). AERONET AODs exhibit either insignificant diurnal variation or higher values during the afternoon, while their short-term availability does not allow for a trend analysis. Moreover, the PM10 concentrations exhibit a general increasing trend over the examined locations. The sources and destination of aerosols are identified via the HYSPLIT trajectory model, revealing that aerosols during the dry season (June to September) are mainly originated from the west and southwest (Sumatra, Indonesia), while in the wet season (November to March) they are mostly associated with the northeast monsoon winds from the southern China Sea. Different aerosol types are identified via the relationship of AOD with FMF, revealing that the urban and biomass-burning aerosols are the most abundant over the region contributing to a significant reduction (~- 0.21 MJ m- 2) of

  14. The 2010 Eyja eruption evolution by using IR satellite sensors measurements: retrieval comparison and insights into explosive volcanic processes

    Science.gov (United States)

    Piscini, A.; Corradini, S.; Merucci, L.; Scollo, S.

    2010-12-01

    The 2010 April-May Eyja eruption caused an unprecedented disruption to economic, political and cultural activities in Europe and across the world. Because of the harming effects of fine ash particles on aircrafts, many European airports were in fact closed causing millions of passengers to be stranded, and with a worldwide airline industry loss estimated of about 2.5 billion Euros. Both security and economical issues require robust and affordable volcanic cloud retrievals that may be really improved through the intercomparison among different remote sensing instruments. In this work the Thermal InfraRed (TIR) measurements of different polar and geostationary satellites instruments as the Moderate Resolution Imaging Spectroradiometer (MODIS), the Advanced Very High Resolution Radiometer (AVHRR) and the Spin Enhanced Visible and Infrared Imager (SEVIRI), have been used to retrieve the volcanic ash and SO2 in the entire eruption period over Iceland. The ash retrievals (mass, AOD and effective radius) have been carried out by means of the split window BTD technique using the channels centered around 11 and 12 micron. The least square fit procedure is used for the SO2 retrieval by using the 7.3 and 8.7 micron channels. The simulated TOA radiance Look-Up Table (LUT) needed for both the ash and SO2 column abundance retrievals have been computed using the MODTRAN 4 Radiative Transfer Model. Further, the volcanic plume column altitude and ash density have been computed and compared, when available, with ground observations. The results coming from the retrieval of different IR sensors show a good agreement over the entire eruption period. The column height, the volcanic ash and the SO2 emission trend confirm the indentified different phases occurred during the Eyja eruption. We remark that the retrieved volcanic plume evolution can give important insights into eruptive dynamics during long-lived explosive activity.

  15. A history of the 2014 Minute 319 environmental pulse flow asdocumented by field measurements and satellite imagery

    Science.gov (United States)

    Nelson, Steven M.; Ramirez-Hernandez, Jorge; Rodriguez-Burgeueno, J. Eliana; Milliken, Jeff; Kennedy, Jeffrey R.; Zamora-Arroyo, Francisco; Schlatter, Karen; Santiago-Serrano, Edith; Carrera-Villa, Edgar

    2017-01-01

    As provided in Minute 319 of the U.S.-Mexico Water Treaty of 1944, a pulse flow of approximately 132 million cubic meters (mcm) was released to the riparian corridor of the Colorado River Delta over an eight-week period that began March 23, 2014 and ended May 18, 2014. Peak flows were released in the early part of the pulse to simulate a spring flood, with approximately 101.7 mcm released at Morelos Dam on the U.S.-Mexico border. The remainder of the pulse flow water was released to the riparian corridor via Mexicali Valley irrigation spillway canals, with 20.9 mcm released at Km 27 Spillway (41 km below Morelos Dam) and 9.3 mcm released at Km 18 Spillway (78 km below Morelos Dam). We used sequential satellite images, overflights, ground observations, water discharge measurements, and automated temperature, river stage and water quality loggers to document and describe the progression of pulse flow water through the study area. The rate of advance of the wetted front was slowed by infiltration and high channel roughness as the pulse flow crossed more than 40 km of dry channel which was disconnected from underlying groundwater and partially overgrown with salt cedar. High lag time and significant attenuation of flow resulted in a changing hydrograph as the pulse flow progressed to the downstream delivery points; two peak flows occurred in some lower reaches. The pulse flow advanced more than 120 km downstream from Morelos Dam to reach the Colorado River estuary at the northern end of the Gulf of California.

  16. Water Accounting Plus (WA+ – a water accounting procedure for complex river basins based on satellite measurements

    Directory of Open Access Journals (Sweden)

    P. Karimi

    2013-07-01

    Full Text Available Coping with water scarcity and growing competition for water among different sectors requires proper water management strategies and decision processes. A pre-requisite is a clear understanding of the basin hydrological processes, manageable and unmanageable water flows, the interaction with land use and opportunities to mitigate the negative effects and increase the benefits of water depletion on society. Currently, water professionals do not have a common framework that links depletion to user groups of water and their benefits. The absence of a standard hydrological and water management summary is causing confusion and wrong decisions. The non-availability of water flow data is one of the underpinning reasons for not having operational water accounting systems for river basins in place. In this paper, we introduce Water Accounting Plus (WA+, which is a new framework designed to provide explicit spatial information on water depletion and net withdrawal processes in complex river basins. The influence of land use and landscape evapotranspiration on the water cycle is described explicitly by defining land use groups with common characteristics. WA+ presents four sheets including (i a resource base sheet, (ii an evapotranspiration sheet, (iii a productivity sheet, and (iv a withdrawal sheet. Every sheet encompasses a set of indicators that summarise the overall water resources situation. The impact of external (e.g., climate change and internal influences (e.g., infrastructure building can be estimated by studying the changes in these WA+ indicators. Satellite measurements can be used to acquire a vast amount of required data but is not a precondition for implementing WA+ framework. Data from hydrological models and water allocation models can also be used as inputs to WA+.

  17. Dust impact on surface solar irradiance assessed with model simulations, satellite observations and ground-based measurements

    Science.gov (United States)

    Kosmopoulos, Panagiotis G.; Kazadzis, Stelios; Taylor, Michael; Athanasopoulou, Eleni; Speyer, Orestis; Raptis, Panagiotis I.; Marinou, Eleni; Proestakis, Emmanouil; Solomos, Stavros; Gerasopoulos, Evangelos; Amiridis, Vassilis; Bais, Alkiviadis; Kontoes, Charalabos

    2017-07-01

    This study assesses the impact of dust on surface solar radiation focussing on an extreme dust event. For this purpose, we exploited the synergy of AERONET measurements and passive and active satellite remote sensing (MODIS and CALIPSO) observations, in conjunction with radiative transfer model (RTM) and chemical transport model (CTM) simulations and the 1-day forecasts from the Copernicus Atmosphere Monitoring Service (CAMS). The area of interest is the eastern Mediterranean where anomalously high aerosol loads were recorded between 30 January and 3 February 2015. The intensity of the event was extremely high, with aerosol optical depth (AOD) reaching 3.5, and optical/microphysical properties suggesting aged dust. RTM and CTM simulations were able to quantify the extent of dust impact on surface irradiances and reveal substantial reduction in solar energy exploitation capacity of PV and CSP installations under this high aerosol load. We found that such an extreme dust event can result in Global Horizontal Irradiance (GHI) attenuation by as much as 40-50 % and a much stronger Direct Normal Irradiance (DNI) decrease (80-90 %), while spectrally this attenuation is distributed to 37 % in the UV region, 33 % in the visible and around 30 % in the infrared. CAMS forecasts provided a reliable available energy assessment (accuracy within 10 % of that obtained from MODIS). Spatially, the dust plume resulted in a zonally averaged reduction of GHI and DNI of the order of 150 W m-2 in southern Greece, and a mean increase of 20 W m-2 in the northern Greece as a result of lower AOD values combined with local atmospheric processes. This analysis of a real-world scenario contributes to the understanding and quantification of the impact range of high aerosol loads on solar energy and the potential for forecasting power generation failures at sunshine-privileged locations where solar power plants exist, are under construction or are being planned.

  18. Long-term analysis of aerosol optical depth over Northeast Asia using a satellite-based measurement: MI Yonsei Aerosol Retrieval Algorithm (YAER)

    Science.gov (United States)

    Kim, Mijin; Kim, Jhoon; Yoon, Jongmin; Chung, Chu-Yong; Chung, Sung-Rae

    2017-04-01

    In 2010, the Korean geostationary earth orbit (GEO) satellite, the Communication, Ocean, and Meteorological Satellite (COMS), was launched including the Meteorological Imager (MI). The MI measures atmospheric condition over Northeast Asia (NEA) using a single visible channel centered at 0.675 μm and four IR channels at 3.75, 6.75, 10.8, 12.0 μm. The visible measurement can also be utilized for the retrieval of aerosol optical properties (AOPs). Since the GEO satellite measurement has an advantage for continuous monitoring of AOPs, we can analyze the spatiotemporal variation of the aerosol using the MI observations over NEA. Therefore, we developed an algorithm to retrieve aerosol optical depth (AOD) using the visible observation of MI, and named as MI Yonsei Aerosol Retrieval Algorithm (YAER). In this study, we investigated the accuracy of MI YAER AOD by comparing the values with the long-term products of AERONET sun-photometer. The result showed that the MI AODs were significantly overestimated than the AERONET values over bright surface in low AOD case. Because the MI visible channel centered at red color range, contribution of aerosol signal to the measured reflectance is relatively lower than the surface contribution. Therefore, the AOD error in low AOD case over bright surface can be a fundamental limitation of the algorithm. Meanwhile, an assumption of background aerosol optical depth (BAOD) could result in the retrieval uncertainty, also. To estimate the surface reflectance by considering polluted air condition over the NEA, we estimated the BAOD from the MODIS dark target (DT) aerosol products by pixel. The satellite-based AOD retrieval, however, largely depends on the accuracy of the surface reflectance estimation especially in low AOD case, and thus, the BAOD could include the uncertainty in surface reflectance estimation of the satellite-based retrieval. Therefore, we re-estimated the BAOD using the ground-based sun-photometer measurement, and

  19. Determination Gradients of the Earth's Magnetic Field from the Measurements of the Satellites and Inversion of the Kursk Magnetic Anomaly

    Science.gov (United States)

    Karoly, Kis; Taylor, Patrick T.; Geza, Wittmann

    2014-01-01

    We computed magnetic field gradients at satellite altitude, over Europe with emphasis on the Kursk Magnetic Anomaly (KMA). They were calculated using the CHAMP satellite total magnetic anomalies. Our computations were done to determine how the magnetic anomaly data from the new ESA/Swarm satellites could be utilized to determine the structure of the magnetization of the Earths crust, especially in the region of the KMA. Since the ten years of 2 CHAMP data could be used to simulate the Swarm data. An initial East magnetic anomaly gradient map of Europe was computed and subsequently the North, East and Vertical magnetic gradients for the KMA region were calculated. The vertical gradient of the KMA was determined using Hilbert transforms. Inversion of the total KMA was derived using Simplex and Simulated Annealing algorithms. Our resulting inversion depth model is a horizontal quadrangle with upper 300-329 km and lower 331-339 km boundaries.

  20. In-situ BrO measurements in the upper troposphere / lower stratosphere. Validation of the ENVISAT satellite measurements and photochemical model studies

    Energy Technology Data Exchange (ETDEWEB)

    Hrechanyy, S.

    2007-04-15

    Inorganic bromine species form the second most important halogen family affecting stratospheric ozone (WMO, 2003). Although the stratospheric bromine mixing ratio is about two orders of magnitude lower than the chlorine one, bromine has much higher ozone depleting potential (factor of about 45) compared to chlorine. This study reports and discusses atmospheric bromine monoxide, BrO, measurements in the altitude range 15-30 km performed by the balloon-borne instrument TRIPLE and aircraft instrument HALOX employing the chemical conversion resonance fluorescence technique, which is the only proven in-situ technique for the measurements of BrO. 57 HALOX flights have been performed in the frame of five field campaigns ranging from the Arctic to tropics. Three TRIPLE flights were carried out at high and mid latitudes in the frame of the SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) validation. Calibration, consistency checks, data analysis, and error assessment for the in-situ measurements are described. The balloon measurements have yielded vertical profiles of BrO between 15 and 30 km altitude at northern mid- and at arctic latitudes. From the aircraft measurements a meridional BrO distribution from tropical to the arctic latitudes between 15 and 20 km altitude was obtained. In order to check the reliability of the bromine chemistry in the CLaMS model the BrO profile measured by TRIPLE on June 9, 2003 in Arctic spring/summer conditions was compared to a simulated BrO profile. For the simulation the model was initialized with appropriate satellite and balloon measurements and with a total stratospheric bromine of 18.4 pptv. Very good agreement between the TRIPLE measurements and model results was found. Measurements of BrO in the tropical tropopause layer (TTL) are well suited to investigate the contribution of very short-lived bromine species (VSLS) to the inorganic bromine, Bry. Since tropical HALOX BrO measurements from TROCCINOX

  1. Estimation of CO2 emissions from fossil fuel burning by using satellite measurements of co-emitted gases: a new method and its application to the European region

    Science.gov (United States)

    Berezin, Evgeny V.; Konovalov, Igor B.; Ciais, Philippe; Broquet, Gregoire

    2014-05-01

    Accurate estimates of emissions of carbon dioxide (CO2), which is a major greenhouse gas, are requisite for understanding of the thermal balance of the atmosphere and for predicting climate change. International and regional CO2 emission inventories are usually compiled by following the 'bottom-up' approach on the basis of available statistical information about fossil fuel consumption. Such information may be rather uncertain, leading to uncertainties in the emission estimates. One of the possible ways to understand and reduce this uncertainty is to use satellite measurements in the framework of the inverse modeling approach; however, information on CO2 emissions, which is currently provided by direct satellite measurements of CO2, remains very limited. The main goal of this study is to develop a CO2 emission estimation method based on using satellite measurements of co-emitted species, such as NOx (represented by NO2 in the satellite measurements) and CO. Due to a short lifetime of NOx and relatively low background concentration of CO, the observed column amounts of NO2 and CO are typically higher over regions with strong emission sources than over remote regions. Therefore, satellite measurements of these species can provide useful information on the spatial distribution and temporal evolution of major emission sources. The method's basic idea (which is similar to the ideas already exploited in the earlier studies [1, 2]) is to combine this information with available estimates of emission factors for all of the species considered. The method assumes optimization of the total CO2 emissions from the two major aggregated sectors of economy. CO2 emission estimates derived from independent satellite measurements of the different species are combined in a probabilistic way by taking into account their uncertainties. The CHIMERE chemistry transport model is used to simulate the relationship between NOx (CO) emissions and NO2 (CO) columns from the OMI (IASI

  2. Centriolar satellites

    DEFF Research Database (Denmark)

    Tollenaere, Maxim A X; Mailand, Niels; Bekker-Jensen, Simon

    2015-01-01

    Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking...... highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases....

  3. Evaluation of balloon and satellite water vapour measurements in the Southern tropical and subtropical UTLS during the HIBISCUS campaign

    Science.gov (United States)

    Montoux, N.; Hauchecorne, A.; Pommereau, J.-P.; Lefèvre, F.; Durry, G.; Jones, R. L.; Rozanov, A.; Dhomse, S.; Burrows, J. P.; Morel, B.; Bencherif, H.

    2009-07-01

    Balloon water vapour in situ and remote measurements in the tropical upper troposphere and lower stratosphere (UTLS) obtained during the HIBISCUS campaign around 20° S in Brazil in February-March 2004 using a tunable diode laser (μSDLA), a surface acoustic wave (SAW) and a Vis-NIR solar occultation spectrometer (SAOZ) on a long duration balloon, have been used for evaluating the performances of satellite borne remote water vapour instruments available at the same latitude and measurement period. In the stratosphere, HALOE displays the best precision (2.5%), followed by SAGE II (7%), MIPAS (10%), SAOZ (20-25%) and SCIAMACHY (35%), all of which show approximately constant H2O mixing ratios between 20-25 km. Compared to HALOE of ±10% accuracy between 0.1-100 hPa, SAGE II and SAOZ show insignificant biases, MIPAS is wetter by 10% and SCIAMACHY dryer by 20%. The currently available GOMOS profiles of 25% precision show a positive vertical gradient in error for identified reasons. Compared to these, the water vapour of the Reprobus Chemistry Transport Model, forced at pressures higher than 95 hPa by the ECMWF analyses, is dryer by about 1 ppmv (20%). In the lower stratosphere between 16-20 km, most notable features are the steep degradation of MIPAS precision below 18 km, and the appearance of biases between instruments far larger than their quoted total uncertainty. HALOE and SAGE II (after spectral adjustment for reducing the bias with HALOE at northern mid-latitudes) both show decreases of water vapour with a minimum at the tropopause not seen by other instruments or the model, possibly attributable to an increasing error in the HALOE altitude registration. Between 16-18 km where the water vapour concentration shows little horizontal variability, and where the μSDLA balloon measurements are not perturbed by outgassing, the average mixing ratios reported by the remote sensing instruments are substantially lower than the 4-5 ppmv observed by the μSDLA. Differences

  4. A correlative study of simultaneously measured He(++) fluxes in the solar wind and in the magnetosphere utilizing Imp-1 and 1971-089A satellite data

    Science.gov (United States)

    Shelley, E. G.

    1975-01-01

    Simultaneously measured He(++) fluxes in the solar wind and in the magnetosphere were studied using data from the plasma spectrometer on the Imp I satellite and the energetic ion mass spectrometer on the low altitude polar orbiting satellite 1971-89A. A detailed comparison of the He(++) energy spectra measured simultaneously in the solar wind and in the low altitude dayside polar cusp on March 7, 1972 was made. The energy-per-unit-charge range of the energetic ion mass spectrometer on board the polar orbiting satellite was 700 eV to 12 keV. Within this range there was a clear maximum in the He(++) energy spectrum at approximately 1.5 keV/nucleon. There was not a clearly defined maximum in the H(+) spectrum, but the data were consistent with a peak between 0.7 and 1.0 keV/nucleon. Both spectra could be reasonably well fit with a convecting Maxwellian plus a high energy tail; however, the mean velocity for He(++) distribution was significantly greater than that for the H(+) distribution. The simultaneous solar wind measurements showed the mean velocities for both ion species to be approximately 600 km/sec. The discrepancies between the relative velocity distributions in the low altitude cusp and those in the solar wind are consistent with a potential difference of approximately 1.4 kV along their flow direction between the two points of observation.

  5. The 2010 Russian Drought Impact on Satellite Measurements of Solar-Induced Chlorophyll Fluorescence: Insights from Modeling and Comparisons with the Normalized Differential Vegetation Index (NDVI)

    Science.gov (United States)

    Yoshida, Y.; Joiner, J.; Tucker, C.; Berry, J.; Lee, J. -E.; Walker, G.; Reichle, R.; Koster, R.; Lyapustin, A.; Wang, Y.

    2015-01-01

    We examine satellite-based measurements of chlorophyll solar-induced fluorescence (SIF) over the region impacted by the Russian drought and heat wave of 2010. Like the popular Normalized Difference Vegetation Index (NDVI) that has been used for decades to measure photosynthetic capacity, SIF measurements are sensitive to the fraction of absorbed photosynthetically-active radiation (fPAR). However, in addition, SIF is sensitive to the fluorescence yield that is related to the photosynthetic yield. Both SIF and NDVI from satellite data show drought-related declines early in the growing season in 2010 as compared to other years between 2007 and 2013 for areas dominated by crops and grasslands. This suggests an early manifestation of the dry conditions on fPAR. We also simulated SIF using a global land surface model driven by observation-based meteorological fields. The model provides a reasonable simulation of the drought and heat impacts on SIF in terms of the timing and spatial extents of anomalies, but there are some differences between modeled and observed SIF. The model may potentially be improved through data assimilation or parameter estimation using satellite observations of SIF (as well as NDVI). The model simulations also offer the opportunity to examine separately the different components of the SIF signal and relationships with Gross Primary Productivity (GPP).

  6. The relationship of field burn severity measures to satellite-derived Burned Area Reflectance Classification (BARC) maps

    Science.gov (United States)

    Andrew Hudak; Penelope Morgan; Carter Stone; Pete Robichaud; Terrie Jain; Jess Clark

    2004-01-01

    Preliminary results are presented from ongoing research on spatial variability of fire effects on soils and vegetation from the Black Mountain Two and Cooney Ridge wildfires, which burned in western Montana during the 2003 fire season. Extensive field fractional cover data were sampled to assess the efficacy of quantitative satellite image-derived indicators of burn...

  7. Anticorpos para enterovirus na localidade de Ferreira Gomes, no Território Federal do Amapá

    Directory of Open Access Journals (Sweden)

    Hermann G. Schatzmayr

    1972-02-01

    Full Text Available Sôros coletados no Território Federal do Amapá, localidade de Ferreira Gomes, foram, testados para anticorpos neutralizantes de enterovírus Poliovírus 1, 2 e 3 e Coxsackie B1 a B6, em população autóctone. Os resultados apresentados na Tabela 1, indicam alta circulação do vírus da poliomielite na região atingindo-se níveis tão elevados como em escolares do Estado da Guanabara. Em relação a Coxsackie B, alcançaram-se também resultados semelhantes nas duas populações exceto com Coxsackie B., o qual apresentou-se em valôres bem mais altos nos sôros coletados na região norte. Os autores chamam atenção da necessidade de vacinação contra a poliomielite de grandes segmentos da população susceptível em curto prazo, tendo em vista a ampla disseminação das infecções por poliovírus em tôdas as regiões do país onde forem pesquisadas.

  8. A statistical inference approach for the retrieval of the atmospheric ozone profile from simulated satellite measurements of solar backscattered ultraviolet radiation

    Science.gov (United States)

    Bonavito, N. L.; Gordon, C. L.; Inguva, R.; Serafino, G. N.; Barnes, R. A.

    1994-01-01

    NASA's Mission to Planet Earth (MTPE) will address important interdisciplinary and environmental issues such as global warming, ozone depletion, deforestation, acid rain, and the like with its long term satellite observations of the Earth and with its comprehensive Data and Information System. Extensive sets of satellite observations supporting MTPE will be provided by the Earth Observing System (EOS), while more specific process related observations will be provided by smaller Earth Probes. MTPE will use data from ground and airborne scientific investigations to supplement and validate the global observations obtained from satellite imagery, while the EOS satellites will support interdisciplinary research and model development. This is important for understanding the processes that control the global environment and for improving the prediction of events. In this paper we illustrate the potential for powerful artificial intelligence (AI) techniques when used in the analysis of the formidable problems that exist in the NASA Earth Science programs and of those to be encountered in the future MTPE and EOS programs. These techniques, based on the logical and probabilistic reasoning aspects of plausible inference, strongly emphasize the synergetic relation between data and information. As such, they are ideally suited for the analysis of the massive data streams to be provided by both MTPE and EOS. To demonstrate this, we address both the satellite imagery and model enhancement issues for the problem of ozone profile retrieval through a method based on plausible scientific inferencing. Since in the retrieval problem, the atmospheric ozone profile that is consistent with a given set of measured radiances may not be unique, an optimum statistical method is used to estimate a 'best' profile solution from the radiances and from additional a priori information.

  9. Quantifying the decadal changes of PM2.5 over New York through a combination of satellite, model and in-situ measurements

    Science.gov (United States)

    Jin, X.; Fiore, A. M.; Curci, G.; Lyapustin, A.; Wang, Y.; Civerolo, K.; Ku, M.; van Donkelaar, A.; Martin, R.

    2017-12-01

    Ambient exposure to fine particulate matter (PM2.5) is one of the top global health concerns. Efforts have been made to regulate PM2.5 precursor emissions across the U.S.A, which are expected to mitigate the air pollution related health impacts. However, quantifying the health outcomes from emission controls requires robust estimates of PM2.5 exposures that accurately describe the spatial and temporal variability of PM2.5. Satellite remote sensing offers the potential to fill the gaps of the sparse, limited sampling of in situ measurement networks and is increasingly being used in health assessments. We provide new estimates of PM2.5 over New York State with 1 km spatial resolution that use Multi-Angle Implementation of Atmospheric Correction (MAIAC) AOD and a regional air quality model (CMAQ) to estimate the AOD-PM2.5 scaling factors. Next, we evaluate three major sources of uncertainties of satellite-derived PM2.5 data and their impacts on the derived decadal changes: 1) satellite retrieval of AOD, 2) optical properties of the particles, 3) relationships between the aerosol burden in the planetary boundary layer and full atmospheric column. Finally, we analyze the decadal changes of PM2.5 over New York State using the newly developed PM2.5 data, alongside four other PM2.5 estimates including satellite-derived PM2.5 developed by van Donkelaar et al. (2015), statistical land use regression developed by Beckerman et al. (2013), CMAQ simulations, and a Bayesian fusion of CMAQ and ground-based measurements. By evaluating the decadal changes of PM2.5 from multiple datasets over areas with dense (e.g. New York City area) and sparse ground-based measurements (e.g. upstate New York), we evaluate the extent to which satellite remote sensing could help better quantify the health outcomes of emission controls. References: Beckerman et al., (2013), A Hybrid Approach to Estimating National Scale Spatiotemporal Variability of PM2.5 in the Contiguous United States, Environ. Sci

  10. Dust impact on surface solar irradiance assessed with model simulations, satellite observations and ground-based measurements

    Directory of Open Access Journals (Sweden)

    P. G. Kosmopoulos

    2017-07-01

    Full Text Available This study assesses the impact of dust on surface solar radiation focussing on an extreme dust event. For this purpose, we exploited the synergy of AERONET measurements and passive and active satellite remote sensing (MODIS and CALIPSO observations, in conjunction with radiative transfer model (RTM and chemical transport model (CTM simulations and the 1-day forecasts from the Copernicus Atmosphere Monitoring Service (CAMS. The area of interest is the eastern Mediterranean where anomalously high aerosol loads were recorded between 30 January and 3 February 2015. The intensity of the event was extremely high, with aerosol optical depth (AOD reaching 3.5, and optical/microphysical properties suggesting aged dust. RTM and CTM simulations were able to quantify the extent of dust impact on surface irradiances and reveal substantial reduction in solar energy exploitation capacity of PV and CSP installations under this high aerosol load. We found that such an extreme dust event can result in Global Horizontal Irradiance (GHI attenuation by as much as 40–50 % and a much stronger Direct Normal Irradiance (DNI decrease (80–90 %, while spectrally this attenuation is distributed to 37 % in the UV region, 33 % in the visible and around 30 % in the infrared. CAMS forecasts provided a reliable available energy assessment (accuracy within 10 % of that obtained from MODIS. Spatially, the dust plume resulted in a zonally averaged reduction of GHI and DNI of the order of 150 W m−2 in southern Greece, and a mean increase of 20 W m−2 in the northern Greece as a result of lower AOD values combined with local atmospheric processes. This analysis of a real-world scenario contributes to the understanding and quantification of the impact range of high aerosol loads on solar energy and the potential for forecasting power generation failures at sunshine-privileged locations where solar power plants exist, are under construction or are

  11. Satellite derived trends in NO2 over the major global hotspot regions during the past decade and their inter-comparison

    International Nuclear Information System (INIS)

    Ghude, Sachin D.; Van der A, R.J.; Beig, G.; Fadnavis, S.; Polade, S.D.

    2009-01-01

    We assessed satellite derived tropospheric NO 2 distribution on a global scale and identified the major NO 2 hotspot regions. Combined GOME and SCIAMACHY measurements for the period 1996-2006 have been used to compute the trends over these regions. Our analysis shows that tropospheric NO 2 column amounts have increased over the newly and rapidly developing regions like China (11 ± 2.6%/year), south Asia (1.76 ± 1.1%/year), Middle East (2.3 ± 1%/year) and South Africa (2.4 ± 2.2%/year). Tropospheric NO 2 column amounts show some decrease over the eastern US (-2 ± 1.5%/year) and Europe (0.9 ± 2.1%/year). We found that although tropospheric NO 2 column amounts decreased over the major developed regions in the past decade, the present tropospheric NO 2 column amounts over these regions are still significantly higher than those observed over newly and rapidly developing regions (except China). Tropospheric NO 2 column amounts show some decrease over South America and Central Africa, which are major biomass burning regions in the Southern Hemisphere. - Trends in tropospheric column NO 2 over newly developing regions.

  12. Satellite Communications

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Satellite Communications. Arthur C Clarke wrote a seminal paper in 1945 in wireless world. Use three satellites in geo-synchronous orbit to enable intercontinental communications. System could be realised in '50 to 100 years'

  13. Interpretation of the Total Magnetic Field Anomalies Measured by the CHAMP Satellite Over a Part of Europe and the Pannonian Basin

    Science.gov (United States)

    Kis, K. I.; Taylor, Patrick T.; Wittmann, G.; Toronyi, B.; Puszta, S.

    2012-01-01

    In this study we interpret the magnetic anomalies at satellite altitude over a part of Europe and the Pannonian Basin. These anomalies are derived from the total magnetic measurements from the CHAMP satellite. The anomalies reduced to an elevation of 324 km. An inversion method is used to interpret the total magnetic anomalies over the Pannonian Basin. A three dimensional triangular model is used in the inversion. Two parameter distributions: Laplacian and Gaussian are investigated. The regularized inversion is numerically calculated with the Simplex and Simulated Annealing methods and the anomalous source is located in the upper crust. A probable source of the magnetization is due to the exsolution of the hematite-ilmenite minerals.

  14. Precise measurements and theoretical calculations of He-like ion resonance line satellites radiated from Be-, B-, C-, N-, O-, and F-like ions

    International Nuclear Information System (INIS)

    Faenov, A.Ya.; Pikuz, S.A.; Shlyaptseva, A.S.

    1994-01-01

    Spectra with spectral resolution λ/Δλ∼ =3000-7000 in the vicinity of the He-like ion resonance lines Mg, Al, Si, P, S were obtained in CO 2 laser-produced plasma. The wavelengths of these satellites were measured and compared with numerical calculations. Identification of lines or a group of overlapping lines was performed. Twenty-two transitions of dielectronic satellites for Be-like ions, 41 transitions for B-like, 40 transitions for C-like, 22 transitions for N-like, 12 transitions for O-like ions and 2 transitions for F-like ions were identified. The average between theoretical and experimental wavelengths was ±(0.0005-0.001) A, but in some cases it was ±(0.002-0.003) A. (orig.)

  15. Precise measurements and theoretical calculations of He-like ion resonance line satellites radiated from Be-, B-, C-, N-, O-, and F-like ions

    Energy Technology Data Exchange (ETDEWEB)

    Faenov, A.Ya. [MISDC, NPO `VNIIFTRI`, Mendeleevo (Russian Federation); Pikuz, S.A. [P.N. Lebedev Physical Inst., Russian Academy of Sciences, Moscow (Russian Federation); Shlyaptseva, A.S. [Inst. of Technical Glasses, Moscow (Russian Federation)

    1994-01-01

    Spectra with spectral resolution {lambda}/{Delta}{lambda}{approx} =3000-7000 in the vicinity of the He-like ion resonance lines Mg, Al, Si, P, S were obtained in CO{sub 2} laser-produced plasma. The wavelengths of these satellites were measured and compared with numerical calculations. Identification of lines or a group of overlapping lines was performed. Twenty-two transitions of dielectronic satellites for Be-like ions, 41 transitions for B-like, 40 transitions for C-like, 22 transitions for N-like, 12 transitions for O-like ions and 2 transitions for F-like ions were identified. The average between theoretical and experimental wavelengths was {+-}(0.0005-0.001) A, but in some cases it was {+-}(0.002-0.003) A. (orig.).

  16. Comparison of seasonal variation between anthropogenic and natural emission inventory and Satellite observation in Southeast Asia

    Science.gov (United States)

    Kurata, G.; Lalitaporn, P.

    2012-12-01

    Since the economic growth of the countries in Southeast Asia is significantly rapid, the emission of air pollutant from the anthropogenic activity, such as industry, power generation and transportation is rapidly increasing. Moreover, biomass burning due to unsuitable agricultural management, deforestation and expansion of farmland are discharging large amount of pollutants, such as Carbon monoxide, volatile organic compound and particulate matter. Especially, the particulate matter from biomass burning causes the serious haze pollution in surrounding area in Southeast Asia. Furthermore, the biomass fuel used for cooking at residential sector discharges harmful pollutants including a particulate matter, and causes the adverse health impact to people on indoor and outdoor. In this study, we evaluated the spatial distribution and the seasonal variation of emission inventory for Southeast Asia region by comparing with satellite observation data in order to improve the accuracy of the impact assessment of air pollution by regional atmospheric chemistry transport model (WRF and CMAQ). As an emission inventory data, we used our original regional emission inventory for Southeast Asia region developed from detail transportation and industry data sets as well as a several existing emission inventories. As satellite observation data, the vertical column density of NO2, Particulate matter and Carbon monoxide obtained by various satellite, such as GOME, GOME2, SCIAMACY, OMI and so on. As a result of comparisons between satellite observation and emission inventories from 1996 to 2011, in the case of anthropogenic emission, seasonal variation was comparatively well in agreement with the seasonal variation of satellite data. However, the uncertainty of the seasonal variation was large on several large cities. In the case of emission from biomass burning, the seasonal variation was clear, but inter-annual variation was also large due to large scale climate condition.

  17. Predação de sementes de Allagoptera arenaria (Gomes O'Kuntze (Arecaceae por Pachymerus nucleorum Fabricius (Coleoptera, Chrysomelidae, Bruchinae Seed predation on Allagoptera arenaria (Gomes O'Kuntze (Arecaceae by Pachymerus nucleorum Fabricius (Coleoptera, Chrysomelidae, Bruchinae

    Directory of Open Access Journals (Sweden)

    Viviane Grenha

    2008-01-01

    Full Text Available A predação de sementes da palmeira Allagoptera arenaria (Gomes O'Kuntze, 1891(Arecaceae por Pachymerus nucleorum Fabricius, 1972 foi avaliada de setembro de 2003 a setembro de 2005 no Parque Nacional da Restinga de Jurubatiba (RJ. A biologia e o comportamento de P. nucleorum em A. arenaria e as taxas de predação de sementes foram descritas. Frutos encontrados sob 50 palmeiras foram coletados, mensalmente, em cada uma das duas áreas amostradas no PNRJ (mata de cordão arenoso e formação arbustiva aberta de Clusia Sclthdl, Clusiaceae. A avaliação dos cocos predados foi feita a partir da contagem dos orifícios de saída dos bruquíneos no campo, da emergência dos insetos no laboratório e da abertura dos frutos remanescentes. Através de observações e experimentos em 60 infrutescências, verificou-se que a oviposição de Pachymerus nucleorum em A. arenaria ocorre na infrutescência ainda em desenvolvimento diferentemente de registros na literatura em outras espécies de palmeiras, onde a oviposição ocorre nos frutos no chão. A predação dos frutos por P. nucleorum foi de 29,3% na área de mata de cordão arenoso e 20,6% na formação arbustiva aberta de Clusia. O ciclo de vida de P. nucleorum foi bastante longo e com amplitudes bem grandes dentro de uma mesma amostra, o que sugere uma possível diapausa em alguma fase do seu ciclo de vida.Seed predation on Allagoptera arenaria (Gomes O'Kuntze, 1891(Arecaceae palm by Pachymerus nucleorum Fabricius, 1972 was evaluated from September 2003 to September 2005 at the Parque Nacional da Restinga de Jurubatiba (PNRJ, Rio de Janeiro, Brazil. The biology and behaviour of P. nucleorum on A. arenaria and predation rates were described. Fruits found beneath 50 palms were collected, monthly, for each one of the two sampled areas at PNRJ (ridge forest and Clusia Sclthdl (Clusiaceae open shrubland formation. The evaluation of preyed fruits was done by counting exit holes of Bruchinae in the field

  18. Organização estrutural da folha de Pimenta pseudocaryophyllus (Gomes L.R. Landrum, Myrtaceae Leaf structural organization of Pimenta pseudocaryophyllus (Gomes L.R. Landrum, Myrtaceae

    Directory of Open Access Journals (Sweden)

    Vanessa de Farias

    2009-06-01

    Full Text Available Com grande distribuição no Brasil e ocorrência principalmente no cerrado, caatinga e floresta atlântica, Pimenta pseudocaryophyllus (Gomes L.R. Landrum, que está inclusa em um dos menores gêneros de Myrtaceae, é popularmente conhecida como craveiro-do-mato, louro-cravo ou chá-de-bugre. Trata-se de uma espécie nativa e suas folhas são usadas na culinária substituindo o cravo-da-índia (Syzygium aromaticum devido ao aroma semelhante. O estudo tem o objetivo de caracterizar anatomicamente a folha dessa espécie. Para a confecção do laminário, amostras da região mediana da folha e do pecíolo foram seccionadas em micrótomo de rotação e coradas com azul de toluidina a 1%. Em vista frontal, a epiderme é glabra na face adaxial e pilosa na face abaxial, com tricomas unicelulares. A folha é hipoestomática e os complexos estomáticos são anomocíticos. Em secção transversal, a epiderme é uniestratificada revestida por cutícula espessa e camada subepidérmica formada por 1-2 estratos celulares. O mesofilo é dorsiventral e bainha esclerenquimática envolve o feixe vascular bicolateral. Na folha e no pecíolo observam-se colênquima lacunar, flanges cuticulares, canais secretores e idioblastos contendo drusas e monocristais. Concluise que a espécie possui características freqüentes para Myrtaceae, com exceção da camada subepidérmica e flanges cuticulares, e que os resultados obtidos contribuem com novas informações que podem subsidiar estudos futuros no que se refere à identificação e delimitação do táxon.Pimenta pseudocaryophyllus (Gomes L.R. Landrum is a native species from Brazil and occurs mainly in cerrado, caatinga and Atlantic rainforest vegetation. It is commonly known as "craveiro-do-mato", "louro-cravo" or "chá-de-bugre". It is a tree species whose leaves are used for cooking; they smell and taste like cloves (Syzygium aromaticum. This study describes the leaf anatomy of the species. The leaves were sliced

  19. Rapid uplift in Laguna del Maule volcanic field of the Andean Southern Volcanic Zone (Chile) measured by satellite radar interferometry

    Science.gov (United States)

    Feigl, K.; Ali, T.; Singer, B. S.; Pesicek, J. D.; Thurber, C. H.; Jicha, B. R.; Lara, L. E.; Hildreth, E. W.; Fierstein, J.; Williams-Jones, G.; Unsworth, M. J.; Keranen, K. M.

    2011-12-01

    The Laguna del Maule (LdM) volcanic field of the Andean Southern Volcanic Zone extends over 500 square kilometers and comprises more than 130 individual vents. As described by Hildreth et al. (2010), the history has been defined from sixty-eight Ar/Ar and K-Ar dates. Silicic eruptions have occurred throughout the past 3.7 Ma, including welded ignimbrite associated with caldera formation at 950 ka, small rhyolitic eruptions between 336 and 38 ka, and a culminating ring of 36 post-glacial rhyodacite and rhyolite coulees and domes that encircle the lake. Dating of five post-glacial flows implies that these silicic eruptions occurred within the last 25 kyr. Field relations indicate that initial eruptions comprised modest volumes of mafic rhyodacite magma that were followed by larger volumes of high silica rhyolite. The post-glacial flare-up of silicic magmatism from vents distributed around the lake, is unprecedented in the history of this volcanic field. Using satellite radar interferometry (InSAR), Fournier et al. (2010) measured uplift at a rate of more than 180 mm/year between 2007 and 2008 in a round pattern centered on the west side of LdM. More recent InSAR observations suggest that rapid uplift has continued from 2008 through early 2011. In contrast, Fournier et al. found no measurable deformation in an interferogram spanning 2003 through 2004. In this study, we model the deformation field using the General Inversion of Phase Technique (GIPhT), as described by Feigl and Thurber (2009). Two different models fit the data. The first model assumes a sill at ~5 km depth has been inflating at a rate of more than 20 million cubic meters per year since 2007. The second model assumes that the water level in the lake dropped at a rate of 20 m/yr from January 2007 through February 2010, thus reducing the load on an elastic simulation of the crust. The rate of intrusion inferred from InSAR is an order of magnitude higher than the average rate derived from well-dated arc

  20. Storm Time Global Observations of Large-Scale TIDs From Ground-Based and In Situ Satellite Measurements

    Science.gov (United States)

    Habarulema, John Bosco; Yizengaw, Endawoke; Katamzi-Joseph, Zama T.; Moldwin, Mark B.; Buchert, Stephan

    2018-01-01

    This paper discusses the ionosphere's response to the largest storm of solar cycle 24 during 16-18 March 2015. We have used the Global Navigation Satellite Systems (GNSS) total electron content data to study large-scale traveling ionospheric disturbances (TIDs) over the American, African, and Asian regions. Equatorward large-scale TIDs propagated and crossed the equator to the other side of the hemisphere especially over the American and Asian sectors. Poleward TIDs with velocities in the range ≈400-700 m/s have been observed during local daytime over the American and African sectors with origin from around the geomagnetic equator. Our investigation over the American sector shows that poleward TIDs may have been launched by increased Lorentz coupling as a result of penetrating electric field during the southward turning of the interplanetary magnetic field, Bz. We have observed increase in SWARM satellite electron density (Ne) at the same time when equatorward large-scale TIDs are visible over the European-African sector. The altitude Ne profiles from ionosonde observations show a possible link that storm-induced TIDs may have influenced the plasma distribution in the topside ionosphere at SWARM satellite altitude.

  1. DOAS measurements of NO2 from an ultralight aircraft during the Earth Challenge expedition

    Directory of Open Access Journals (Sweden)

    O. Ronveaux

    2012-08-01

    Full Text Available We report on airborne Differential Optical Absorption Spectroscopy (DOAS measurements of NO2 tropospheric columns above South Asia, the Arabic peninsula, North Africa, and Italy in November and December 2009. The DOAS instrument was installed on an ultralight aircraft involved in the Earth Challenge project, an expedition of seven pilots flying on four ultralight aircraft between Australia and Belgium. The instrument recorded spectra in limb geometry with a large field of view, a set-up which provides a high sensitivity to the boundary layer NO2 while minimizing the uncertainties related to the attitude variations. We compare our measurements with OMI (Ozone Monitoring Instrument and GOME-2 (Global Ozone Monitoring Experiment 2 tropospheric NO2 products when the latter are available. Above Rajasthan and the Po Valley, two areas where the NO2 field is homogeneous, data sets agree very well. Our measurements in these areas are 0.1 ± 0.1 to 3 ± 1 × 1015 molec cm−2 and 2.6 ± 0.8 × 1016 molec cm−2, respectively. Flying downwind of Riyadh, our NO2 measurements show the structure of the megacity's exhaust plume with a higher spatial resolution than OMI. Moreover, our measurements are larger (up to 40% than those seen by satellites. We also derived tropospheric columns when no satellite data were available if it was possible to get information on the visibility from satellite measurements of aerosol optical thickness. This experiment also provides a confirmation for the recent finding of a soil signature above desert.

  2. Satellite Communications

    CERN Document Server

    Pelton, Joseph N

    2012-01-01

    The field of satellite communications represents the world's largest space industry. Those who are interested in space need to understand the fundamentals of satellite communications, its technology, operation, business, economic, and regulatory aspects. This book explains all this along with key insights into the field's future growth trends and current strategic challenges. Fundamentals of Satellite Communications is a concise book that gives all of the key facts and figures as well as a strategic view of where this dynamic industry is going. Author Joseph N. Pelton, PhD, former Dean of the International Space University and former Director of Strategic Policy at Intelstat, presents a r

  3. Antioxidant, Antimicrobial and Cytotoxic Properties as Well as the Phenolic Content of the Extract from Hancornia speciosa Gomes.

    Directory of Open Access Journals (Sweden)

    Uilson P Santos

    Full Text Available Hancornia speciosa Gomes (Apocynaceae is a fruit tree, popularly known as mangabeira, and it is widely distributed throughout Brazil. Several parts of the plant are used in folk medicine, and the leaf and bark extracts have anti-inflammatory, antihypertensive, antidiabetic, and antimicrobial properties. In this study, we investigated the chemical composition of the ethanolic extract of Hancornia speciosa leaves (EEHS and its antioxidant, antimicrobial, and cytotoxic activities as well as the mechanisms involved in cell death. The chemical compounds were identified by liquid chromatography coupled to mass spectrometry (LC-MS/MS. The antioxidant activity of the EEHS was investigated using the method that involves the scavenging of 2,2-diphenyl-1-picrylhydrazyl free radicals as well as the inhibition of oxidative hemolysis and lipid peroxidation induced by 2,2'-azobis (2-amidinopropane in human erythrocytes. The antimicrobial activity was determined by calculating the minimum inhibitory concentration, minimum bactericidal concentration, minimum fungicidal concentration, and zone of inhibition. Kasumi-1 leukemic cells were used to assess the cytotoxic activity and mechanisms involved in cell death promoted by the EEHS. The chemical compounds identified were quinic acid, chlorogenic acid, catechin, rutin, isoquercitrin, kaempferol-rutinoside, and catechin-pentoside. The EEHS demonstrated antioxidant activity via the sequestration of free radicals, inhibition of hemolysis, and inhibition of lipid peroxidation in human erythrocytes incubated with an oxidizing agent. The antimicrobial activity was observed against American Type Culture Collection (ATCC and hospital strains of bacteria and fungi, filamentous fungi and dermatophytes. The cytotoxic activity of the EEHS was induced by apoptosis, reduction of the mitochondrial membrane potential, and activation of cathepsins. Together, these results indicate the presence of phenolic compounds and flavonoids

  4. Symposium on radiation transfer problems and satellite measurements in meteorology and oceanography. Symposium ueber Strahlungstransportprobleme und Satellitenmessungen in der Meteorologie und der Ozeanographie. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The atmospherical cloud fields in the mesoscale and the synoptic scale are studied and classified with respect to brightness, form, structure, horizontal and vertical dimension, and surface temperature on the basis of satellite observations. The different developing stages and the drift of the clouds are analysed by satellite measurements; which give insight into the atmospheric processes, improving the possibilities for predictions. The wind velocities in the higher troposphere are of particular interest for civil aviation. The world climate program takes profit from the covering statistics of the cloud fields, and from measurements of the surface temperature, covering the continents and the sea. Such measurements can be performed by satellite-born radiometers, e.g. also with Meteosat. The surface radiation temperature distributions are the initial data for climate models aiming at climate predictions for the human society on a time scale of several years. Models describing the circulation in the atmosphere and in the sea as well as in the boundary region in between can be considered as a first step in this direction. Several reports are dedicated to the role of the radiation budget for the simulation and description of such physical processes. The changes of the radiation budget components in space and time as well as the resulting meteorological effects, in particular the number and the properties (first of all radiation temperature and albedo) of the clouds have an essential influence on the calculation of the radiation fluxes and divergencies in different layers of the atmosphere. Abstracts are available for 59 papers of this conference report.

  5. Boomerang Satellites

    Science.gov (United States)

    Hesselbrock, Andrew; Minton, David A.

    2017-10-01

    We recently reported that the orbital architecture of the Martian environment allows for material in orbit around the planet to ``cycle'' between orbiting the planet as a ring, or as coherent satellites. Here we generalize our previous analysis to examine several factors that determine whether satellites accreting at the edge of planetary rings will cycle. In order for the orbiting material to cycle, tidal evolution must decrease the semi-major axis of any accreting satellites. In some systems, the density of the ring/satellite material, the surface mass density of the ring, the tidal parameters of the system, and the rotation rate of the primary body contribute to a competition between resonant ring torques and tidal dissipation that prevent this from occurring, either permanently or temporarily. Analyzing these criteria, we examine various bodies in our solar system (such as Saturn, Uranus, and Eris) to identify systems where cycling may occur. We find that a ring-satellite cycle may give rise to the current Uranian ring-satellite system, and suggest that Miranda may have formed from an early, more massive Uranian ring.

  6. Temporal Variability of Total Ozone in the Asian Region Inferred from Ground-Based and Satellite Measurement Data

    Science.gov (United States)

    Visheratin, K. N.; Nerushev, A. F.; Orozaliev, M. D.; Zheng, Xiangdong; Sun, Shumen; Liu, Li

    2017-12-01

    This paper reports investigation data on the temporal variability of total ozone content (TOC) in the Central Asian and Tibet Plateau mountain regions obtained by conventional methods, as well as by spectral, cross-wavelet, and composite analyses. The data of ground-based observation stations located at Huang He, Kunming, and Lake Issyk-Kul, along with the satellite data obtained at SBUV/SBUV2 (SBUV merged total and profile ozone data, Version 8.6) for 1980-2013 and OMI (Ozone Monitoring Instrument) and TOU (Total Ozone Unit) for 2009-2013 have been used. The average relative deviation from the SBUV/SBUV2 data is less than 1% in Kunming and Issyk-Kul for the period of 1980-2013, while the Huang He Station is characterized by an excess of the satellite data over the ground-based information at an average deviation of 2%. According to the Fourier analysis results, the distribution of amplitudes and the periods of TOC oscillations within a range of over 14 months is similar for all series analyzed. Meanwhile, according to the cross-wavelet and composite analyses results, the phase relationships between the series may considerably differ, especially in the periods of 5-7 years. The phase of quasi-decennial oscillations in the Kunming Station is close to the 11-year oscillations of the solar cycle, while in the Huang He and Issyk-Kul stations the TOC variations go ahead of the solar cycle.

  7. The absolute calibration of KOMPSAT-3 and 3A high spatial resolution satellites using radiometric tarps and MFRSR measurments

    Science.gov (United States)

    Yeom, J. M.

    2017-12-01

    Recently developed Korea Multi-Purpose Satellite-3A (KOMPSAT-3A), which is a continuation of the KOMPSAT-1, 2 and 3 earth observation satellite (EOS) programs from the Korea Aerospace Research Institute (KARI) was launched on March, 25 2015 on a Dnepr-1 launch vehicle from the Jasny Dombarovsky site in Russia. After launched, KARI performed in-orbit-test (IOT) including radiometric calibration for 6 months from 14 Apr. to 4 Sep. 2015. KOMPSAT-3A is equipped with two distinctive sensors; one is a high resolution multispectral optical sensor, namely the Advances Earth Image Sensor System-A (AEISS-A) and the other is the Scanner Infrared Imaging System (SIIS). In this study, we focused on the radiometric calibration of AEISS-A. The multispectral wavelengths of AEISS-A are covering three visible regions: blue (450 - 520 nm), green (520 - 600 nm), red (630 - 690 nm), one near infrared (760 - 900 nm) with a 2.0 m spatial resolution at nadir, whereas the panchromatic imagery (450 - 900 nm) has a 0.5 m resolution. Those are the same spectral response functions were same with KOMPSAT-3 multispectral and panchromatic bands but the spatial resolutions are improved. The main mission of KOMPSAT-3A is to develop for Geographical Information System (GIS) applications in environmental, agriculture, and oceanographic sciences, as well as natural hazard monitoring.

  8. Evaluation of geomagnetic field models using magnetometer measurements for satellite attitude determination system at low earth orbits: Case studies

    Science.gov (United States)

    Cilden-Guler, Demet; Kaymaz, Zerefsan; Hajiyev, Chingiz

    2018-01-01

    In this study, different geomagnetic field models are compared in order to study the errors resulting from the representation of magnetic fields that affect the satellite attitude system. For this purpose, we used magnetometer data from two Low Earth Orbit (LEO) spacecraft and the geomagnetic models IGRF-12 (Thébault et al., 2015) and T89 (Tsyganenko, 1989) models to study the differences between the magnetic field components, strength and the angle between the predicted and observed vector magnetic fields. The comparisons were made during geomagnetically active and quiet days to see the effects of the geomagnetic storms and sub-storms on the predicted and observed magnetic fields and angles. The angles, in turn, are used to estimate the spacecraft attitude and hence, the differences between model and observations as well as between two models become important to determine and reduce the errors associated with the models under different space environment conditions. We show that the models differ from the observations even during the geomagnetically quiet times but the associated errors during the geomagnetically active times increase. We find that the T89 model gives closer predictions to the observations, especially during active times and the errors are smaller compared to the IGRF-12 model. The magnitude of the error in the angle under both environmental conditions was found to be less than 1°. For the first time, the geomagnetic models were used to address the effects of the near Earth space environment on the satellite attitude.

  9. Magnetic Satellite Missions and Data

    DEFF Research Database (Denmark)

    Olsen, Nils; Kotsiaros, Stavros

    2011-01-01

    Although the first satellite observations of the Earth’s magnetic field were already taken more than 50 years ago, continuous geomagnetic measurements from space are only available since 1999. The unprecedented time-space coverage of this recent data set opened revolutionary new possibilities...... for exploring the Earth’s magnetic field from space. In this chapter we discuss characteristics of satellites measuring the geomagnetic field and report on past, present and upcoming magnetic satellite missions. We conclude with some basics about space magnetic gradiometry as a possible path for future...... exploration of Earth’s magnetic field with satellites....

  10. Diurnal, seasonal and latitudinal variations of electron temperature measured by the SROSS C2 satellite at 500 km altitude and comparison with the IRI

    Directory of Open Access Journals (Sweden)

    P. K. Bhuyan

    2002-06-01

    Full Text Available The diurnal, seasonal and latitudinal variations of electron temperature Te, measured by the SROSS C2 satellite at equatorial and the low-latitudes during the low solar activity period of 1995–1997 are investigated. The average height of the satellite was ~ 500 km and it covered the latitude belt of –31° to 34° and the longitude range of 40°–100°. Te varies between 700–800 K during night-time (20:00–04:00 LT, rises sharply during sunrise (04:00–06:00 LT to reach a level of ~ 3500 K within a couple of hours and then falls between 07:00–10:00 LT to a daytime average value of ~ 1600 K. A secondary maximum is observed around 16:00–18:00 LT in summer. Latitudinal gradients in Te have been observed during the morning enhancement and daytime hours. Comparison of measured and International Reference Ionosphere (IRI predicted electron temperature reveals that the IRI predicts nighttime Te well within ~ 100 K of observation, but at other local times, the predicted Te is less than that measured in all seasons.Key words. Ionosphere, equatorial ionosphere, plasma temperature, and density

  11. Tropospheric NO2 over China

    NARCIS (Netherlands)

    A, van der R.J.; Peters, D.H.M.U.; Kuenen, J.J.P.; Eskes, H.J.; Boersma, K.F.; Roozendael, Van M.; Smedt, de I.; Zhang, P.; Kelder, H.M.; Lacoste, H.; Ouwehand, L.

    2006-01-01

    The results are presented of a study to tropospheric NO2 over China, based on measurements from the satellite instruments GOME and SCIAMACHY. A data set of 10 year tropospheric NO2 has been processed from GOME and SCIAMACHY observations using a combined retrieval/assimilation approach. This approach

  12. Expressões ecofisiológicas de germoplasma de Hancornia speciosa Gomes cultivado no Litoral de Pernambuco Physiological expressions in Hancornia speciosa Gomes germoplasm from the coastal region, Pernambuco, Brazil

    Directory of Open Access Journals (Sweden)

    Rejane Jurema Mansur Custódio Nogueira

    1999-12-01

    Full Text Available Objetivou-se avaliar in loco as relações hídricas e respectivas correlações em quatro acessos de mangaba (M-UFRPE 1, M-UFRPE 2, M-UFRPE 3 e M-UFRPE 4 cultivados na região litorânea do Estado de Pernambuco. As medidas foram tomadas em folhas adultas, completamente expandidas, em duas situações de exposição à luminosidade: exposição solar plena e sombreamento natural. As variáveis analisadas foram: temperatura foliar (Tf, transpiração (E e resistência difusiva (Rs. Verificou-se que as folhas sombreadas de M-UFRPE 2 transpiraram mais do que as expostas diretamente ao sol, diferindo do comportamento dos demais acessos. A Rs em folhas expostas ao sol variou de 1,1 a 4,5s.cm-1, enquanto que nas folhas sombreadas, essa variação foi de 1,7 a 3,5s.cm-1. Os efeitos de ExRs foram inversos e altamente significativos para ambos os tratamentos estudados. Para as folhas expostas ao sol, a Tf, e a E foram influenciadas muito mais pela umidade relativa do que pela radiação fotossinteticamente ativa.A study was carried out with tropical fruit germoplasm (Hancornia speciosa Gomes to evaluate "in loco" water relations and their respectives correlations in four acesses (M-UFRPE 1, M-UFRPE 2, M-UFRPE 3 and M-UFRPE 4 cultivated at the coastal region, in Brazil. The datas were taken from fully expanded adults leaves. Two treatments were studied: leaves fully exposed to the sun and shadow leaves. The following characters were analized: leaf temperature (Tf, transpiration (E and diffusive resistance (Rs. The shadow leaves of the M-UFRPE 2 showed higher transpiration rate than fully exposed leaves to the sun. This behaviour was different compared to the other treatment. The variation between fully exposed leaves to the sun and shadow leaves for Rs was 1.1 to 4.5s.cm-1 and 1.7 to 3.5s.cm-1, respectively. The ExRs correlation was more significant and negative. The Tf and E correlation was longer influenced by relative humidity than photosynthetically

  13. Measurement of total electron content of midlatitude ionosphere and protonosphere via Faraday rotation and group relay techniques using transmission from geostationary satellites ATS-3 and ATS-6

    Science.gov (United States)

    Paul, M. P.

    1982-01-01

    Measurement of integrated columnar electron content and total electron content for the local ionosphere and the overlying protonosphere via Faraday rotation and group delay techniques has proven very useful. A field station was established having the geographic location of 31.5 deg N latitude and 91.06 deg W longitude to accomplish these objectives. A polarimeter receiving system was set up in the beginning to measure the Faraday rotation of 137.35 MHz radio signal from geostationary satellite ATS 3 to yield the integrated columnar electron content of the local ionosphere. The measurement was continued regularly, and the analysis of the data thus collected provided a synopsis of the statistical variation of the ionosphere along with the transient variations that occurred during the periods of geomagnetic and other disturbances.

  14. Robust adjustment of a geodetic network measured by satellite technology in the Dargovských Hrdinov suburb

    Directory of Open Access Journals (Sweden)

    Slavomír Labant

    2011-12-01

    Full Text Available This article addresses the adjustment of a 3D geodetic network in the Dargovských Hrdinov suburbs using Global Navigation SatelliteSystems (GNSS for the purposes of deformation analysis. The advantage of using the GNSS compared to other terrestrial technology is thatit is not influenced by unpredictability in the ground level atmosphere and individual visibilities between points in the observed network arenot necessary. This article also includes the planning of GNSS observations using Planning Open Source software from Trimble as well assubsequent observations at individual network points. The geodetic network is processing on the basis of the Gauss-Markov model usingthe least square method and robust adjustment. From robust methods, Huber’s Robust M-estimation and Hampel’s Robust M-estimationwere used. Individual adjustments were tested and subsequently the results of analysis were graphically visualised using absolute confidenceellipsoids.

  15. The electrical conductivity of the Earth's upper mantle as estimated from satellite measured magnetic field variations. Ph.D. Thesis

    Science.gov (United States)

    Didwall, E. M.

    1981-01-01

    Low latitude magnetic field variations (magnetic storms) caused by large fluctuations in the equatorial ring current were derived from magnetic field magnitude data obtained by OGO 2, 4, and 6 satellites over an almost 5 year period. Analysis procedures consisted of (1) separating the disturbance field into internal and external parts relative to the surface of the Earth; (2) estimating the response function which related to the internally generated magnetic field variations to the external variations due to the ring current; and (3) interpreting the estimated response function using theoretical response functions for known conductivity profiles. Special consideration is given to possible ocean effects. A temperature profile is proposed using conductivity temperature data for single crystal olivine. The resulting temperature profile is reasonable for depths below 150-200 km, but is too high for shallower depths. Apparently, conductivity is not controlled solely by olivine at shallow depths.

  16. A Satellite Data Analysis and CubeSat Instrument Simulator Tool for Simultaneous Multi-spacecraft Measurements of Solar Energetic Particles

    Science.gov (United States)

    Vannitsen, Jordan; Rizzitelli, Federico; Wang, Kaiti; Segret, Boris; Juang, Jyh-Ching; Miau, Jiun-Jih

    2017-12-01

    This paper presents a Multi-satellite Data Analysis and Simulator Tool (MDAST), developed with the original goal to support the science requirements of a Martian 3-Unit CubeSat mission profile named Bleeping Interplanetary Radiation Determination Yo-yo (BIRDY). MDAST was firstly designed and tested by taking into account the positions, attitudes, instruments field of view and energetic particles flux measurements from four spacecrafts (ACE, MSL, STEREO A, and STEREO B). Secondly, the simulated positions, attitudes and instrument field of view from the BIRDY CubeSat have been adapted for input. And finally, this tool can be used for data analysis of the measurements from the four spacecrafts mentioned above so as to simulate the instrument trajectory and observation capabilities of the BIRDY CubeSat. The onset, peak and end time of a solar particle event is specifically defined and identified with this tool. It is not only useful for the BIRDY mission but also for analyzing data from the four satellites aforementioned and can be utilized for other space weather missions with further customization.

  17. Mapping urban heat islands of arctic cities using combined data on field measurements and satellite images based on the example of the city of Apatity (Murmansk Oblast)

    Science.gov (United States)

    Konstantinov, P. I.; Grishchenko, M. Y.; Varentsov, M. I.

    2015-12-01

    This article presents the results of a study of the urban heat island (UHI) in the city of Apatity during winter that were obtained according to the data of field meteorological measurements and satellite images. Calculations of the surface layer temperature have been made based on the surface temperature data obtained from satellite images. The experimental data on air temperature were obtained as a result of expeditionary meteorological observations, and the experimental data on surface temperature were obtained based on the data of the space hyperspectral Moderate-Resolution Imaging Spectroradiometer (MODIS) system, channels 31 and 32 (10.78-11.28 and 11.77-12.27 micrometers, respectively). As a result of the analysis of temperature fields, an intensive heat island (up to 3.2°C) has been identified that was estimated based on the underlying surface temperature, and its mean intensity over the observation period significantly exceeds the representative data for European cities in winter. It has also been established that the air temperature calculated according to the MODIS data is systematically higher under winter conditions than the air temperature from direct measurement data.

  18. Diversity and genetic structure in natural populations of Hancornia speciosa var. speciosa Gomes in northeastern Brazil Diversidade e estrutura genética em populações naturais de Hancornia speciosa var. speciosa Gomes no nordeste do Brasil

    Directory of Open Access Journals (Sweden)

    Georgia Vilela Martins

    2012-12-01

    Full Text Available Hancornia speciosa Gomes is a fruit tree native from Brazil that belongs to Apocinaceae family, and is popularly known as Mangabeira. Its fruits are widely consumed raw or processed as fruit jam, juices and ice creams, which have made it a target of intense exploitation. The extractive activities and intense human activity on the environment of natural occurrence of H. speciosa has caused genetic erosion in the species and little is known about the ecology or genetic structure of natural populations. The objective of this research was the evaluation of the genetic diversity and genetic structure of H. speciosa var. speciosa. The genetic variability was assessed using 11 allozyme loci with a sample of 164 individuals distributed in six natural populations located in the States of Pernambuco and Alagoas, Northeastern Brazil. The results showed a high level of genetic diversity within the species (e= 0.36 seeing that the most of the genetic variability of H. speciosa var. speciosa is within its natural populations with low difference among populations ( or = 0.081. The inbreeding values within ( = -0.555 and among populations ( =-0.428 were low showing lacking of endogamy and a surplus of heterozygotes. The estimated gene flow ( m was high, ranging from 2.20 to 13.18, indicating to be enough to prevent the effects of genetic drift and genetic differentiation among populations. The multivariate analyses indicated that there is a relationship between genetic and geographical distances, which was confirmed by a spatial pattern analysis using Mantel test (r = 0.3598; p = 0.0920 with 1000 random permutations. The high genetic diversity index in these populations indicates potential for in situ genetic conservation.Hancornia speciosa Gomes é uma árvore frutífera nativa do Brasil, pertencente à família Apocinaceae, e é conhecida popularmente como Mangabeira. Seus frutos são amplamente consumidos in natura ou processados como sucos, sorvetes e

  19. Diurnal variation of stratospheric and lower mesospheric HOCl, ClO and HO2 at the equator: comparison of 1-D model calculations with measurements by satellite instruments

    Directory of Open Access Journals (Sweden)

    M. Khosravi

    2013-08-01

    Full Text Available The diurnal variation of HOCl and the related species ClO, HO2 and HCl measured by satellites has been compared with the results of a one-dimensional photochemical model. The study compares the data from various limb-viewing instruments with model simulations from the middle stratosphere to the lower mesosphere. Data from three sub-millimetre instruments and two infrared spectrometers are used, namely from the Sub-Millimetre Radiometer (SMR on board Odin, the Microwave Limb Sounder (MLS on board Aura, the Superconducting Submillimeter-wave Limb-Emission Sounder (SMILES on the International Space Station, the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS on board ENVISAT, and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS on board SCISAT. Inter-comparison of the measurements from instruments on sun-synchronous satellites (SMR, MLS, MIPAS and measurements from solar occultation instruments (ACE-FTS is challenging since the measurements correspond to different solar zenith angles (or local times. However, using a model which covers all solar zenith angles and data from the SMILES instrument which measured at all local times over a period of several months provides the possibility to verify the model and to indirectly compare the diurnally variable species. The satellite data were averaged for latitudes of 20° S to 20° N for the SMILES observation period from November 2009 to April 2010 and were compared at three altitudes: 35, 45 and 55 km. Besides presenting the SMILES data, the study also shows a first comparison of the latest MLS data (version 3.3 of HOCl, ClO, and HO2 with other satellite observations, as well as a first evaluation of HO2 observations made by Odin/SMR. The MISU-1D model has been carefully initialised and run for conditions and locations of the observations. The diurnal cycle features for the species investigated here are generally well reproduced by the model. The satellite

  20. Validation of ozone profile retrievals derived from the OMPS LP version 2.5 algorithm against correlative satellite measurements

    Directory of Open Access Journals (Sweden)

    N. A. Kramarova

    2018-05-01

    Full Text Available The Limb Profiler (LP is a part of the Ozone Mapping and Profiler Suite launched on board of the Suomi NPP satellite in October 2011. The LP measures solar radiation scattered from the atmospheric limb in ultraviolet and visible spectral ranges between the surface and 80 km. These measurements of scattered solar radiances allow for the retrieval of ozone profiles from cloud tops up to 55 km. The LP started operational observations in April 2012. In this study we evaluate more than 5.5 years of ozone profile measurements from the OMPS LP processed with the new NASA GSFC version 2.5 retrieval algorithm. We provide a brief description of the key changes that had been implemented in this new algorithm, including a pointing correction, new cloud height detection, explicit aerosol correction and a reduction of the number of wavelengths used in the retrievals. The OMPS LP ozone retrievals have been compared with independent satellite profile measurements obtained from the Aura Microwave Limb Sounder (MLS, Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS and Odin Optical Spectrograph and InfraRed Imaging System (OSIRIS. We document observed biases and seasonal differences and evaluate the stability of the version 2.5 ozone record over 5.5 years. Our analysis indicates that the mean differences between LP and correlative measurements are well within required ±10 % between 18 and 42 km. In the upper stratosphere and lower mesosphere (> 43 km LP tends to have a negative bias. We find larger biases in the lower stratosphere and upper troposphere, but LP ozone retrievals have significantly improved in version 2.5 compared to version 2 due to the implemented aerosol correction. In the northern high latitudes we observe larger biases between 20 and 32 km due to the remaining thermal sensitivity issue. Our analysis shows that LP ozone retrievals agree well with the correlative satellite observations in characterizing

  1. Applications of satellite data to the studies of agricultural meteorology, 2: Relationship between air temperature and surface temperature measured by infrared thermal radiometer

    International Nuclear Information System (INIS)

    Horiguchi, I.; Tani, H.; Morikawa, S.

    1985-01-01

    Experiments were performed in order to establish interpretation keys for estimation of air temperature from satellite IR data. Field measurements were carried out over four kinds of land surfaces including seven different field crops on the university campus at Sapporo. The air temperature was compared with the surface temperature measured by infrared thermal radiometer (National ER2007, 8.5-12.5μm) and, also with other meteorological parameters (solar radiation, humidity and wind speed). Also perpendicular vegetation index (PVI) was measured to know vegetation density of lands by ho radio-spectralmeter (Figs. 1 & 2). Table 1 summarizes the measurements taken in these experiments.The correlation coefficients between air temperature and other meteorological parameters for each area are shown in Table 2. The best correlation coefficient for total data was obtained with surface temperature, and it suggests the possibility that air temperature may be estimated by satellite IR data since they are related to earth surface temperatures.Further analyses were done between air temperature and surface temperature measured with thermal infrared radiometer.The following conclusions may be drawn:(1) Air temperature from meteorological site was well correlated to surface temperature of lands that were covered with dense plant and water, for example, grass land, paddy field and rye field (Table 2).(2) The correlation coefficients and the regression equations on grass land, paddy field and rye field were almost the same (Fig. 3). The mean correlation coefficient for these three lands was 0.88 and the regression equation is given in Eq. (2).(3) There was good correlation on bare soil land also, but had large variations (Fig. 3).(4) The correlations on crop fields depend on the density of plant cover. Good correlation is obtained on dense vegetative fields.(5) Small variations about correlation coefficients were obtained for the time of day (Table 3).(6) On the other hand, large

  2. Evaluation of Hyperspectral Multi-Band Indices to Estimate Chlorophyll-A Concentration Using Field Spectral Measurements and Satellite Data in Dianshan Lake, China

    Directory of Open Access Journals (Sweden)

    Linna Li

    2013-04-01

    Full Text Available Chlorophyll-a (Chl-a concentration is considered as a key indicator of the eutrophic status of inland water bodies. Various algorithms have been developed for estimating Chl-a in order to improve the accuracy of predictive models. The objective of this study is to assess the potential of hyperspectral multi-band indices to estimate the Chl-a concentration in Dianshan Lake, which is the largest lake in Shanghai, an international metropolis of China. Based on field spectral measurements and in-situ Chl-a concentration collected on 7–8 September 2010, hyperspectral multi-band indices were calibrated to estimate the Chl-a concentration with optimal wavelengths selected by model tuning. A three-band index accounts for 87.36% (R2 = 0.8736 of the Chl-a variation. A four-band index, which adds a wavelength in the near infrared (NIR region, results in a higher R2 (0.8997 by removing the absorption and backscattering effects of suspended solids. To test the applicability of the proposed indices for routinely monitoring of Chl-a in inland lakes, simulated Hyperion and real HJ-1A satellite data were selected to estimate the Chl-a concentration. The results show that the explanatory powers of these satellite hyperspectral multi-band indices are relatively high with R2 = 0.8559, 0.8945, 0.7969, and 0.8241 for simulated Hyperion and real HJ-1A satellite data, respectively. All of the results provide strong evidence that hyperspectral multi-band indices are promising and applicable to estimate Chl-a in eutrophic inland lakes.

  3. A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model. Measurement of Earth's dragging of inertial frames

    Energy Technology Data Exchange (ETDEWEB)

    Ciufolini, Ignazio [Universita del Salento, Dipartimento Ingegneria dell' Innovazione, Lecce (Italy); Sapienza Universita di Roma, Scuola di Ingegneria Aerospaziale, Rome (Italy); Paolozzi, Antonio; Paris, Claudio [Sapienza Universita di Roma, Scuola di Ingegneria Aerospaziale, Rome (Italy); Museo della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome (Italy); Pavlis, Erricos C. [University of Maryland, Joint Center for Earth Systems Technology (JCET), Baltimore County (United States); Koenig, Rolf [GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Potsdam (Germany); Ries, John [University of Texas at Austin, Center for Space Research, Austin (United States); Gurzadyan, Vahe; Khachatryan, Harutyun; Mirzoyan, Sergey [Alikhanian National Laboratory and Yerevan State University, Center for Cosmology and Astrophysics, Yerevan (Armenia); Matzner, Richard [University of Texas at Austin, Theory Center, Austin (United States); Penrose, Roger [University of Oxford, Mathematical Institute, Oxford (United Kingdom); Sindoni, Giampiero [Sapienza Universita di Roma, DIAEE, Rome (Italy)

    2016-03-15

    We present a test of general relativity, the measurement of the Earth's dragging of inertial frames. Our result is obtained using about 3.5 years of laser-ranged observations of the LARES, LAGEOS, and LAGEOS 2 laser-ranged satellites together with the Earth gravity field model GGM05S produced by the space geodesy mission GRACE. We measure μ = (0.994 ± 0.002) ± 0.05, where μ is the Earth's dragging of inertial frames normalized to its general relativity value, 0.002 is the 1-sigma formal error and 0.05 is our preliminary estimate of systematic error mainly due to the uncertainties in the Earth gravity model GGM05S. Our result is in agreement with the prediction of general relativity. (orig.)

  4. Vicarious calibration of the solar reflection channels of radiometers onboard satellites through the field campaigns with measurements of refractive index and size distribution of aerosols

    Science.gov (United States)

    Arai, K.

    A comparative study on vicarious calibration for the solar reflection channels of radiometers onboard satellite through the field campaigns between with and without measurements of refractive index and size distribution of aerosols is made. In particular, it is noticed that the influence due to soot from the cars exhaust has to be care about for the test sites near by a heavy trafficked roads. It is found that the 0.1% inclusion of soot induces around 10% vicarious calibration error so that it is better to measure refractive index properly at the test site. It is found that the vicarious calibration coefficients with the field campaigns at the different test site, Ivanpah (near road) and Railroad (distant from road) shows approximately 10% discrepancy. It seems that one of the possible causes for the difference is the influence due to soot from cars exhaust.

  5. A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model: Measurement of Earth's dragging of inertial frames.

    Science.gov (United States)

    Ciufolini, Ignazio; Paolozzi, Antonio; Pavlis, Erricos C; Koenig, Rolf; Ries, John; Gurzadyan, Vahe; Matzner, Richard; Penrose, Roger; Sindoni, Giampiero; Paris, Claudio; Khachatryan, Harutyun; Mirzoyan, Sergey

    2016-01-01

    We present a test of general relativity, the measurement of the Earth's dragging of inertial frames. Our result is obtained using about 3.5 years of laser-ranged observations of the LARES, LAGEOS, and LAGEOS 2 laser-ranged satellites together with the Earth gravity field model GGM05S produced by the space geodesy mission GRACE. We measure [Formula: see text], where [Formula: see text] is the Earth's dragging of inertial frames normalized to its general relativity value, 0.002 is the 1-sigma formal error and 0.05 is our preliminary estimate of systematic error mainly due to the uncertainties in the Earth gravity model GGM05S. Our result is in agreement with the prediction of general relativity.

  6. Spatial and Temporal Variability of Ground and Satellite Column Measurements of NO2 and O3 over the Atlantic Ocean During the Deposition of Atmospheric Nitrogen to Coastal Ecosystems Experiment

    Science.gov (United States)

    Martins, Douglas K.; Najjar, Raymond G.; Tzortziou, Maria; Abuhassan, Nader; Thompson, Anne M.; Kollonige, Debra E.

    2016-01-01

    In situ measurements of O3 and nitrogen oxides (NO + NO2=NOx) and remote sensing measurements of total column NO2 and O3 were collected on a ship in the North Atlantic Ocean as part of the Deposition of Atmospheric Nitrogen to Coastal Ecosystems (DANCE) campaign in July August 2014,100 km east of the mid-Atlantic United States. Relatively clean conditions for both surface in situ mixing ratio and total column O3 and NO2 measurements were observed throughout the campaign. Increased surface and column NO2 and O3 amounts were observed when a terrestrial air mass was advected over the study region. Relative to ship-based total column measurements using a Pandora over the entire study, satellite measurements overestimated total column NO2 under these relatively clean atmospheric conditions over offshore waters by an average of 16. Differences are most likely due to proximity, or lack thereof, to surface emissions; spatial averaging due to the field of view of the satellite instrument; and the lack of sensitivity of satellite measurements to the surface concentrations of pollutants. Total column O3 measurements from the shipboard Pandora showed good correlation with the satellite measurements(r 0.96), but satellite measurements were 3 systematically higher than the ship measurements, in agreement with previous studies. Derived values of boundary layer height using the surface in situ and total column measurements of NO2 are much lower than modeled and satellite-retrieved boundary layer heights, which highlight the differences in the vertical distribution between terrestrial and marine environments.

  7. A case study of the energy dissipation of the gravity wave field based on satellite altimeter measurements

    Science.gov (United States)

    Huang, N. E.; Parsons, C. L.; Long, S. R.; Bliven, L. F.

    1983-01-01

    Wave breaking is proposed as the primary energy dissipation mechanism for the gravity wave field. The energy dissipation rate is calculated based on the statistical model proposed by Longuet-Higgins (1969) with a modification of the breaking criterion incorporating the surface stress according to Phillips and Banner (1974). From this modified model, an analytic expression is found for the wave attenuation rate and the half-life time of the wave field which depend only on the significant slope of the wave field and the ratio of friction velocity to initial wave phase velocity. These expressions explain why the freshly generated wave field does not last long, but why swells are capable of propagating long distances without substantial change in energy density. It is shown that breaking is many orders of magnitude more effective in dissipating wave energy than the molecular viscosity, if the significant slope is higher than 0.01. Limited observational data from satellite and laboratory are used to compare with the analytic results, and show good agreement.

  8. Satellite Radio

    Indian Academy of Sciences (India)

    Satellites have been a highly effective platform for multi- form broadcasts. This has led to a ... diversity offormats, languages, genre, and a universal reach that cannot be met by .... programs can be delivered to whom it is intended